

Republic of Iraq
Shiite Endowment Diwan

Quarterly Refereed Journal
for Natural and Engineering Sciences

Issued by
Al-`Abbas Holy Shrine
International Al-`Ameed Centre for Research and
Studies

Licensed by
Ministry of Higher Education
and Scientific Research

Third Year, Sixth Volume, Issue 11 and 12
Thilhujja, 1438, September 2017

Secretariat General
of Al-Abbas
Holy Shrine

Al-Ameed Interna-
tional center
for Research and Studies

Print ISSN: 5721 – 2312

Online ISSN: 0083 – 2313

Consignment Number in the Housebook and Iraqi
Documents: 1996, 2014

Postal Code: 56001

Mailbox: 232

Al-Abbas Holy Shrine. Al-Ameed International Centre for Research and
Studies.

ALBAHIR : Quarterly Refereed Journal for Natural and Engineering
Sciences \ Issued by Al-Abbas Holy Shrine Al-Ameed International Centre
for Research and Studies. - Karbala, Iraq : Abbas Holy Shrine Al-Ameed
International Centre for Research and Studies.—Karbala, Iraq : AL- Abbas
Holy Shrine Al-Ameed International Centre for Research and Studies, 1433
hijri = 2012 -

Volume : Illustrations; 24 cm

Quarterly.-Third Year, Sixth Volume, Issue 11 and 12 (September 2017)-

ISSN : 5721-2312

Includes bibliographical references.

Text in English ; summaries in Arabic.

1. Science--Periodicals. A. title.

Q1 .A8365 2017 VOL. 6 NO. 11-12

Cataloging center and information systems

- ♦ Tel: +964 032310059
- ♦ Mobile: +9647602355555
- ♦ <http://albahir.alkafeel.net>
- ♦ Email: albahir@alkafeel.net ♦

General Supervision

Seid. Ahmed Al-Safi

Vice- General Supervision

Seid. Leith Al-Moosawi

Consultation Board

Prof. Dr. Riyadh Tariq Al-Ameedi

College of Education for Human Science, University of Babylon, Iraq

Prof. Dr. Kareema M. Ziadan

College of Science, University of Basrah, Iraq

Prof. Dr. Ahmed Mahamood Abid Al-Lateef
College of Science, University of Karbala, Iraq

Prof. Dr. Ghasan Hameed Abid Al-Majeed
College of Engineering, University of Baghdad, Iraq

Prof. Dr. Fadhil Asma`el Sharad Al-Taai
College of Science, University of Karbala, Iraq

Prof. Dr. Shamal Hadi
University of Aukland, USA

Prof. Dr. Sarhan Jafat Salman
College of Education, University of Al-Qadesiya, Iraq

Editor - in - Chief

Prof Dr. Nawras Mohammed Shaheed Al-Dahan, College of Science, University of Kerbala

Managing Editor

Prof. Dr. Iman Sameer Abid Ali Baheia, College of Education for Pure Science, University of Babylon, Iraq

Edition Secretary

Radhwan Abid Al-Hadi Al-Salami

Executive Edition Secretary

Asst. Lec. Hayder Hussein Al-Aaraji

Edition Board

Prof. Dr. Zhenmin Chen

Department of Mathematics and Statistics, Florida International University, Miami, USA.

Prof. Dr. Iftikhar Mohanned Talib Al-Shar'a

College of Education for Pure Science, University of Babylon, Iraq.

Prof. Dr. Adrian Nicolae BRANGA

Department of Mathematics and Informatics, Lucian Blaga University of Sibiu, Romania.

Prof. Dr. Akbar Nikkhah

Department of Animal Sciences, University of Zanjan, Zanjan 313-45195Iran, Iran.

Prof. Dr. Khalil EL-HAMI

Material Sciences towards nanotechnology University of Hassan 1st, Faculty of Khouribga, Morocco, Morocco.

Prof. Dr. Wen-Xiu Ma

Department of Mathematics at University of South Florida, USA.

Prof. Dr. Wasam Sameer Abid Ali Baheia

College of Information Technology, University of Babylon, Iraq.

Prof. Dr. Mohammad Reza Allazadeh

Department of Design, Manufacture and Engineering Management, Advanced Forming Research Centre,
University of Strathclyde, UK.

Prof. Dr. Norsuailina Mohamed Sutan

Department of Civil Engineering, Faculty of Engineering, University Malaysia Sarawak, Malaysia.

Assist. Prof. Dr. Hayder Hmeed Al-Hmedawi

College of Science, University of Kerbala, Iraq.

Prof. Ravindra Pogaku

Chemical and Bioprocess Engineering, Technical Director of Oil and Gas Engineering, Head of Energy
Research Unit, Faculty of Engineering, University Malaysia Sabah (UMS), Malaysia.

Prof. Dr. Luc Avérous

BioTeam/ECPM-ICPEES, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France, France.

Assist. Prof Dr. Ibtisam Abbas Nasir Al-Ali
College of Science, University of Kerbala, Iraq.

Prof. Dr. Hongqing Hu
Huazhong Agricultural University, China.

Prof. Dr. Stefano Bonacci
University of Siena, Department of Environmental Sciences, Italy.

Prof. Dr. Pierre Basmaji
Scientific Director of Innovatecs, and Institute of Science and technology, Director-Brazil, Brazil.

Asst. Prof. Dr. Basil Abeid Mahdi Abid Al-Sada
College of Engineering, University of Babylon, Iraq.

Prof. Dr. Michael Koutsilieris
Experimental Physiology Laboratory, Medical School, National & Kapodistrian University of Athens.
Greece.

Prof. Dr. Gopal Shankar Singh
Institute of Environment & Sustainable Development, Banaras Hindu University, Dist-Varanasi-221 005, UP,
India, India.

Prof. Dr. MUTLU ÖZCAN
Dental Materials Unit (University of Zurich, Dental School, Zurich, Switzerland), Switzerland.

Prof. Dr. Devdutt Chaturvedi
Department of Applied Chemistry, Amity School of Applied Sciences, Amity University Uttar Pradesh, India.

Prof. Dr. Rafat A. Siddiqui
Food and Nutrition Science Laboratory, Agriculture Research Station, Virginia State University, USA.

Prof. Dr. Carlotta Granchi
Department of Pharmacy, Via Bonanno 33, 56126 Pisa, Italy.

Prof. Dr. Piotr Kulczycki
Technical Sciences; Polish Academy of Sciences, Systems Research Institute, Poland.
Prof. Dr. Jan Awrejcewicz
The Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics, Poland, Poland.

Prof. Dr. Fu-Kwun Wang

Department of Industrial Management, National Taiwan University of Science and Technology , Taiwan.

Prof. Min-Shiang Hwang
Department of Computer Science and Information Engineering, Asia University, Taiwan, Taiwan.

Prof. Dr. Ling Bing Kong
School of Materials Science and Engineering, Nanyang Technological University Singapore Singapore.

Prof. Dr. Qualid Hamdaoui
Department of Process Engineering, Faculty of Engineering, Badji Mokhtar-Annaba University, P.O. Box 12,
23000 Annaba, Algeria, Algeria.

Prof. Dr. Abdelkader azarrouk
Mohammed First University, Faculty of Sciences, Department of Chemistry, Morocco.

Prof. Haider Ghazi Al-Jabber Al-Moosawi
College of Education for Human Science, University of Babylon, Iraq.

Prof. Dr. Khalil El-Hami
Laboratory of Nano-sciences and Modeling, University of Hassan 1st, Morocco, Morocco.

Assist. Prof. Dr. Abdurahim Abduraxmonovich Okhunov
Department of Science in Engineering, Faculty of in Engineering, International Islamic University of Malaysia, Uzbekistan.

Dr. Selvakumar Manickam
National Advanced IPv6 Centre, University Sains Malaysia, Malaysia.

Dr. M. V. Reddy
1Department of Materials Science & Engineering
02 Department of Physics, National University of Singapore, Singapore.

Copy Editor (Arabic)

Asst. Prof. Dr. Ameen Abee Al-Duleimi
College of Education, University of Babylon

Copy Editor (English)

Prof. Haider Ghazi Al-Jabber Al-Moosawi
College of Education for Human Science, University of Babylon

Web Site Management

Hassnen Sabah Al-Aegeely
haider sahib al-ubaidi

Administrative and Financial

'Aqeel 'Abid Al-Hussein Al-Yassri
Dhiyaa. M. H . AL-nessrioy

Web Site Management

Samr Falah Al-Safi
Mohammad. J. A. Ebraheem

Graphic Designer

Hussein Ali Shemran

Publication Conditions

In as much as Al-'Bahir- effulgent- Abualfadhal Al-'Abbas cradles his adherents from all humankind, verily Al-Bahir journal does all the original scientific research under the conditions below:

1. Publishing the original scientific research in the various scientific sciences keeping pace with the scientific research procedures and the global common standards; they should be written either in Arabic or English .
 2. The research should not be published before under any means .
 3. The research should adhere the academic commonalities; the first page maintains the title, researcher name /names, address, mobile number under condition that the name, or a hint , should never be mentioned in the context and keywords should be written in Arabic and English as there is an abstract in Arabic and English.
 4. The Research studies should be delivered to us either via Journal website <http://albahir.alkafeel.net> , after filling the two standard format the first with the name of the researcher and the second without in Word .
 5. The page layout should be (2)cm .
 6. The font should be of (16 bold),Time New Roman, subtitles of (14 bold) and also the context.
 7. The space should be single, indentation should not be, as 0 before, 0 after and no spacing, as 0 before, 0 after.
 8. There should be no decoration and the English numeral should proceed to the last text.
 9. Any number should be between two brackets and then measurement unit, for instance: (12) cm .
 10. All sources and references should be mentioned at the end of the article and categorized in conformity with Modern Language Association (MLA) , for instance :
- Name of Author/ Authors, Journal Name Volume Number (Year) pages from - to.
- Similarly done in the Arabic article with a proviso that superscript should be employed.
11. There should be a caption under a diagram in 10 dark , Arabic and English; for instance:

Title or explanation; number of the Fig.

Similarly done with tables.

12. Diagrams , photos and statics should be in colour with high resolution without scanning.
13. The marginal notes, when necessary, should be mentioned at the end of the article before the references.
14. Wherever there is the word " figure" should be abbreviated as Fig. and table should be Table.
15. The pages never exceed 25 pages.
16. The Formulae should be written in Math Type.
17. All the ideas and thoughts reveal the mindset of the researcher not the journal and the article stratification takes technical standards.
18. All the articles are subject to :
 - a- The researcher is notified that his paper is received within 14 days in maximum.
 - b- The article is to be sent to the researcher as soon as it does not meet the requirement of the publication conditions.
 - c- The researcher is notified that his article is accepted.
 - d- The articles need certain modification , as the reviewers state, are sent to the researchers to respond in a span of a month from the date of dispatch.
 - e- The researcher is to be notified in case the article is rejected.
 - f- The researcher is to be granted an edition containing his article.
19. Priorities are given in concordance to :
 - a. The articles participated in the conferences held by the publication institute.
 - b. The date of receiving.
 - c. The date of acceptance.
 - d. The importance and originality of the article.
 - e. The diversity of the fields the articles maintain in the meant edition.
20. The researchers should appeal to the modifications the language and scientific reviewers find in the articles.
21. The researcher should fill the promise paper having the publication rights of the Scientific Al-Bahir Journal and adhering to integrity conditions in writing a research study.

**In the Name of Allah
Most Compassionate, Most Merciful**

Edition Word

In the Name of Allah, Most Merciful, Most Gracious, thanks be upon the Creator of the universe, peace be upon the most eloquent in Arabs, the most evident, the most efficacious, the most righteous and upon his immaculate benevolent progeny

Al-Bahr journal , scientific and peer-reviewed, comes to the fore as a ground to the researchers and academics since its first publication . Today as the eleventh and twelfth edition heaves into effect to be an essential source of information in publishing the specialized research studies and cuddling the contemporary data to keep pace with the creative development in the research fields.

None could feel the ambience of Al-Bahr journal but those who experience its loci and fathom the intent of its incharges , thus it is of delectation for us to lay the hand of readership on such a research bouquet to augment knowledge.

The current edition ramifies into the natural and engineering sciences to have a niche among the other journals , as such we , with the bless of Allah, grow momentum and a cynosure to all researchers, academics and readership as here comes the journal with a vesture , we do hope all the success and sapience to you all.

■ Consultation and Editorial

Ziyaad Hussein Saleh
Petroleum Eng., College, Tikrit University Tikrit, Iraq.

**Master-Slave Circuit Communication by
Using PC Bluetooth
Based Technique** 13

Ammar S. Hameed
Department of Physics, College of Science, University of
Kerbala, Iraq.

**Structural and electrical properties of
CdS & CdS:Sb thin films
prepared by flash evaporation
technique** 25

Qasim Hamadi Abid*, Ayyed H. Hassan**
*College of Science, University of Kerbala
**College of Veterinary Medicine, Animal Physiology
Dept., University of Kerbala.

**Effect of Bisphenol-A- on Some Biochemical and
Hematological
Parameters of Female Rats(*Rattus Norvegicus*)** 33

Eman Samir Bhaya, Shehab Ahmed Abdalredha
University of Babylon, College of Education for Pure
Sciences, Mathematics Department.

**piecewise 3-monotone approximation for 3-monotone
functions
in L_p -spaces for $P < 1$** 41

Aysar Tuama Al-Awadi.
Eng. Affairs Dept. Presidency of Kerbala University of
Kerbala, Iraq.

**Evaluation of Irrigation Water Quality Status of New
Hussainiyah
Canal in Karbala City, Iraq** 49

Nihad A. Saleh*, Talib A. Abdul Wahid**
*physics department, Faculty of science, University of
Babylon
** physics department, Faculty of science, University
of kufa.

**Development of simulation model for calculating radiation
dose used to treat lung malignant cells with the aid of
nanoparticles** 63

Ali A. Al-Hisnawi
Biology Department, College of Sciences, University of Kerbala,
Iraq.

**Evaluation of Efficiency of Some Plant Extracts Against Two
Bacterial Pathogens** 73

Asaad Mohammad Ali Al-Hussainy, Worrod Sabah
Malek
Department of Mathematics, University of Babylon,
Iraq.

Co Compressible Acts 83

Hayder Abdulwahid Hammood
General Directorate of Education in Thi-Qar, Thi-Qar, Iraq.

**^{226}Ra Concentration and 222Rn Exhalation Rate in Sediments of
Euphrates River and Some Its Branches in Thi-Qar Governorate
-Southern Iraq** 95

Zuhair Mohammed Ali Jeddoaa
College of Medicine, University of Kerbala, Kerbala, Iraq.

**Assessment of Vitamin D Receptor Gene Expression
In Type 2 Diabetic and Hypertensive Patients** 107

M.A. Seoud* and M.N. Al-Harere**
*Department of Mathematics, Faculty of Science, Ain Shams
University, Abbassia, Cairo, Egypt
**Department of Applied Science, University of Technology,
Baghdad, Iraq.

δ -Divisor Graphs 119

Master-Slave Circuit Communication by Using PC Bluetooth Based Technique

Ziyaad Hussein Saleh
Petroleum Eng., College, Tikrit University Tikrit, Iraq.

Received Date: 4 / 4 / 2016
Accepted Date: 8 / 9 / 2016

الخلاصة

المقدمة من هذا البحث هو عمل محاكاة للبلوتوث في جهاز الكمبيوتر عن طريق تصميم دائرتين (الأساسية والثانوية) والتي تعمل بصورة مماثلة لعمل جهاز بلوتوث. يصف هذا البحث كيفية التحكم عن بعد بجهاز البلوتوث في الحاسوب عن طريق استخدام المايكروكونترولر باستخدام جهازي Bluetooth، عندما يقوم الجهاز الأول (في الدائرة الرئيسية) على سبيل المثال بارسال حرف «A» من المايكروكونترولر في hex فان جهاز البلوتوث الثاني (في الدائرة الثانوية) سيتسلم الحرف «A» أيضاً في hex. وفي هذه الحالة سيقوم المايكروكونترولر في الدائرة الثانية بفهم الاشارة ومعالجتها لإنجاز المهمة المطلوبة. تم استخدام المصد (CD4050B) لنقل البيانات من جهاز البلوتوث إلى المتحكم الدقيق حيث يستطيع المتحكم الدقيق التعامل معها. وتم استخدام نوعين من منظمات الفولتية، النوع الأول (L7805) هذا النوع من المنظمات يستخدم لتنظيم الفولتية المستلمة من المصدر (7) فولت إلى (5) فولت مناسبة لعمل المتحكم الدقيق. النوع الثاني (LD330V) لتقليل الفولتية إلى (3.3) فولت لضمان عمل جهاز البلوتوث وبعض الدايوارات الضوئية.

الكلمات المفتاحية

البلوتوث، المايكروكونترولر، محطة لاسلكية.

Abstract

The aim of this research is to implement a simulation of PC Bluetooth by designing two circuits (master and slave) which will perform a task in similar way as the PC Bluetooth. The project describes how to control the wireless plant (by using Bluetooth devices). This project is consist of two Bluetooth devices: the first device (transmitter circuit) sends the character "A" for example in hex from microcontroller and the second Bluetooth device (receiver circuit) will receive the character "A" also in hex. The microcontroller in the slave circuit will understand this character and it will perform a particular task (how to control to the plant wireless). Buffer no. (CD4050B) which used to transfer data from Bluetooth devices to Microcontroller with voltage that Microcontroller can be operated to it, (Regulators) that have two no. the first no. is (L7805) this type of regulator used to regulate voltage that received from power supply (7)V to (5)V so that Microcontrollers can be operated to it. The second regulator is (LD330V) which used to reduced voltage to (3.3)V in order to operate the Bluetooth devices, and many led to compensate the plant.

Keywords

Bluetooth, Microcontroller, wireless plant.

1. Introduction

Circumstances that we find ourselves in today in the field of microcontrollers had their beginnings in the development of technology of integrated circuits. This development has made it possible to store hundreds of thousands of transistors into one chip. That was a prerequisite for the production of microprocessors, and the first computers were made by adding external peripherals such as memory, input-output lines, timers and other. Further increasing of the volume of the package resulted in creation of integrated circuits [1].

PC Remote Control is a remote desktop application to help users to control computers and laptops via Wi-Fi and Bluetooth on mobile devices. PC remote control is supported by Windows. The Bluetooth wireless technology is set to revolutionize the way people perceive digital devices in our homes and office environment [2]. The recent developments in technology which permit the use of radio frequency (RF) technology such as Bluetooth, and radio spectrum have enabled different devices to have capabilities of communicating with each other [3]. Bluetooth is a new and developed technology enabling to connect the electronic devices such as computer, Mobile, key board, and headphone to exchange data and information without wires or cable.

ray is called Infrared because it has frequency smaller than frequency of red light. Infrared is used in the remote control which is called Infrared Data Association (IrDA), also it is used in many terminal devices of computer [4].

Although the device depends on infrared but it has two problems. The First problem is that, the technology uses the infrared works only in the range of the light of slight vision, this mean that, we should direct remote control to TV directly in order to control it. The second problem is that, the technology uses infrared is the one to one technique, which enable exchange infrared between two devices only, i.e., exchanging information between computer and held computer devices by infrared, but it is not able to exchange information between computer and Mobil.

The reader may be asking if the device will exchange information and data in a radio signal works at (2.45) GHZ, then what about overlapping between signals which may cause the confuse we may notice on the TV screen when overlaps with wireless signals? The problem of overlapping is solved in an intelligent method, the signal of Bluetooth is poor and its range is about 1mw if it is compared with the signal of Mobil which reach to 3w. This poor in signal make the range of Bluetooth signal effect in limit circular, and its diameter is (10) m [5].

1.1. Literature survey:

Wireless communication is used in many applications by using light ray in the range of infrared and this light ray is not seen by eye. The light

1.2. Background:

1.2.1. Master and Slave circuits:

Bluetooth 2 Stick is an additional board which enables the microcontroller to commu-

the green LED is light. That means Bluetooth ready to receive information from switch and transmit it to the second Bluetooth. Fig.(8) illustrates a buffer for Master circuit.

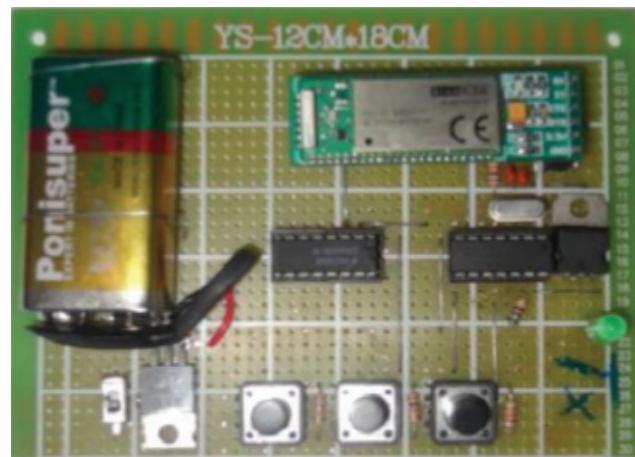


Fig. (7): Master circuit

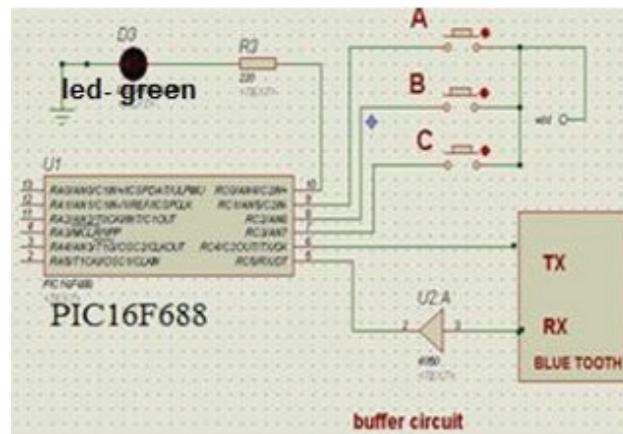


Fig. (8): Buffer for Master circuit

program Master:

```

ORG 0200
START:
CLR C
CLR PC.5
MOV C,PC.5
JHG : JNB C,JHG

```

```

SETB PA.0
LCALL DELAY ; 5 Sec.
DD: MOV C,PA.3 ; Press SW3
JNB C,Q
SJMP Q1
Q: MOV C,PC.3 ; Press SW2
JNB C,QM
SJMP Q2
QM: MOV C,PC.4 ; Press SW1
JNB C,DD
SJMP Q3
;
Q1: MOV R0 ,#4
CLR C
MOV R1,#00001010b
MOV A,R1
SWAPA
PPP: RLC A
MOV PC.5,C
DJNZ R0, PPP
SJMP DD
;
Q2: MOV R0 ,#4
CLR C
MOV R1,#00001011b
MOV A,R1
SWAPA
MMM: RLC A
MOV PC.5,C
DJNZ R0,MMM
SJMP DD
;
Q3: MOV R0 ,#4
CLR C
MOV R1,#00001011b

```

```

MOV A,R1
SWAPA
KKK: RLC A
MOV PC.5,C
DJNZ R0,KKK
SJMP DD
;

```

```

DELAY:
MOV R2, #180d
W: MOV R3, #180d
W1: MOV R4,#142d
W2: DJNZ R4, W2
DJNZ R2,W1
DJNZ R2,W
RET
;
```

```

END
2.2. Receiver circuit (Slave Circuit):
The receiver system consist of Bluetooth (to transmit and received data), microcontroller, buffer, voltage regulator circuit (5V, 3.3V), power supply and three LED as shown in Fig. (9).

```

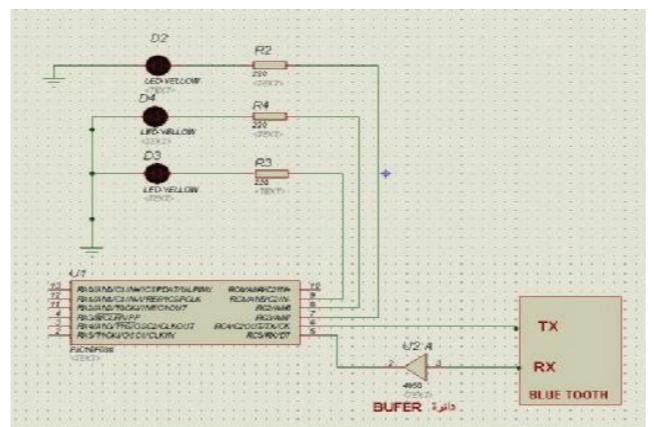


Fig. (9): Buffer for Slave circuit

The white LED Operates after half minute but it must find the second Bluetooth device

operates in order to make connection. When the white LED operates, this mean that Bluetooth device is ready to receive data from the first device. As shown in Fig. (10).

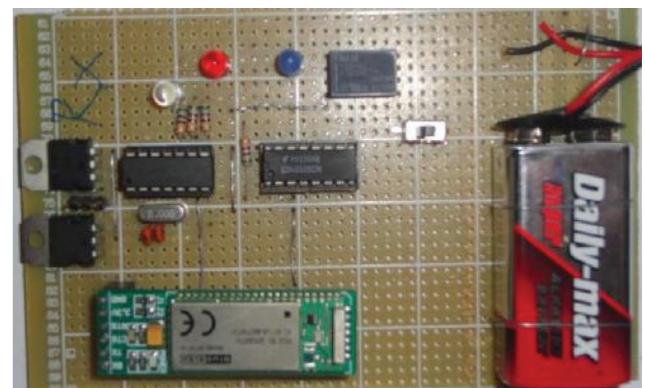


Fig. (10): Received circuit

```

Slave Program:
ORG 0200SRART:
MOV A,#00H
CLR C CLR Pc.5
MOV C,PC.5LL: JNB C,LL
SETB PA.0
MOV R0,#10d
NN: LCALL DELAY
DJNZ R0, NN ; 5 Sec.
CLR C
MOV R0,#00H
MOV A,R0
QQ: MOV C,PC.5
RLC A
CJNE A,#00001010b,MM
SJMP LM
MM: CJNE A,#00001011b,KK
SJMP LMC
KK: CJNE A,#00001100b,QQ
SJMP LMCD
LMC: SETB PA.3 ;Red Led
LCALL DELAY ;0.5 Sec.

```

```

SJMP QQ
SJMP LMCD
;.....
LMC: SETB PA.3 ;Red Led
LCALL DELAY ;0.5 Sec.
SJMP QQ
;.....
LMCD: CLR PA.3 ;Red Led
CLR PA.0 ;White Led
CLR PC.4 ;Blue Led
SJMP QQ
;.....
LM: MOV R0,#00H
MOV A,R0
CLR C
TT: SETB PC.4
MOV C,PC.5
JNB C,TT
MOV C,PC.5
RLC A
CJNE A,#00001010b,MM
SJMP LM
MM: CJNE A,#00001011B,KK
SJMP NN
GG: CJNE A,#00001100b,LM
SJMP LMCD
;.....
NN: SETB PA.3 ; Red Led
LCALL DELAY
SETB PC.4 ; Blue Led
SJMP LM
;.....
DELAY: ; 0.5 Sec.
MOV R2,#80d
W1: MOV R3,#80d
  
```

```

W2: MOV R4,#80d
W3: DJNZ R4,W3
DJNZ R3,W2
DJNZ R2,W1
RET
;.....
END
  
```

3. Practical part:

The project unit operates by putting the switch of power in position ON after sure that power supply in each circuit Slave first then Master in the same time, and wait, nearly more half a minute, until the white LED is light in slave as shown in Fig. (12) and light the green LED in master. The Master circuit is shown in Fig. (11). After the amid switch goes to ON, the blue LED will operate as a step signal. Fig. (13) illustrates the blue LED.

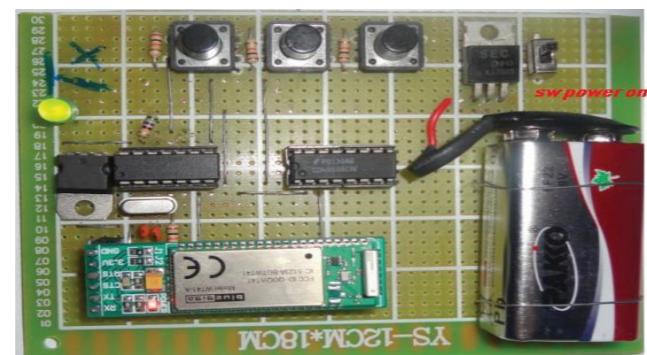


Fig. (11): Master Circuit in Operating Case

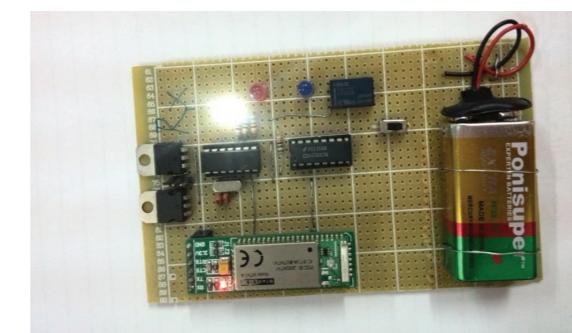


Fig. (12): Slave Circuit in Operating mode

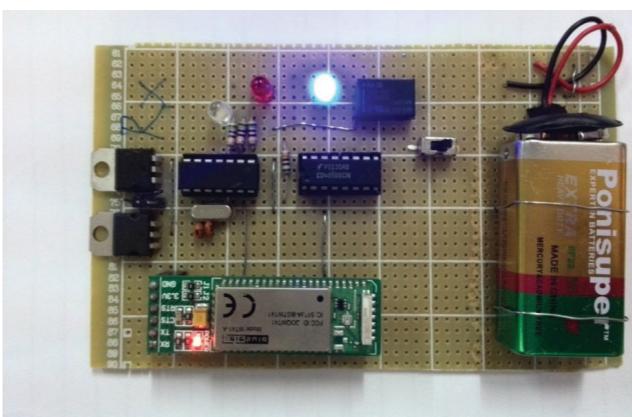


Fig. (13): Slave Circuit part 1

4. Results:

1. The y-axes in Fig. (14) refers to the input and an output voltage which is measured in volts and the x-axes refers to the time that is measured in second. The response of any signal at output is delayed after the input signal in the same point of seconds as shown in Table (1).

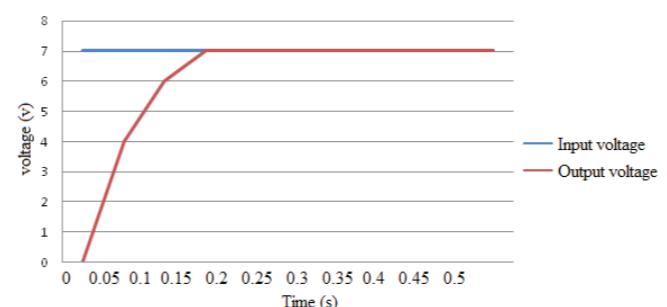


Fig. (14): Unit step response of the Slave part (1).

Table (1): Voltage values of slave circuit part (1).

A	B	C
Input Voltage (volt)	Output Voltage (volt)	Time (second)
7	0	0
7	4	0.05
7	6	0.1

7	7	0.15
7	7	0.2
7	7	0.25
7	7	0.3
7	7	0.35
7	7	0.4
7	7	0.45
7	7	0.5

When the last switch goes ON, the red LED will operate as an impulse as shown in Fig. (15). And if we press the first switch, the three leds will reset as shown in Fig. (16).

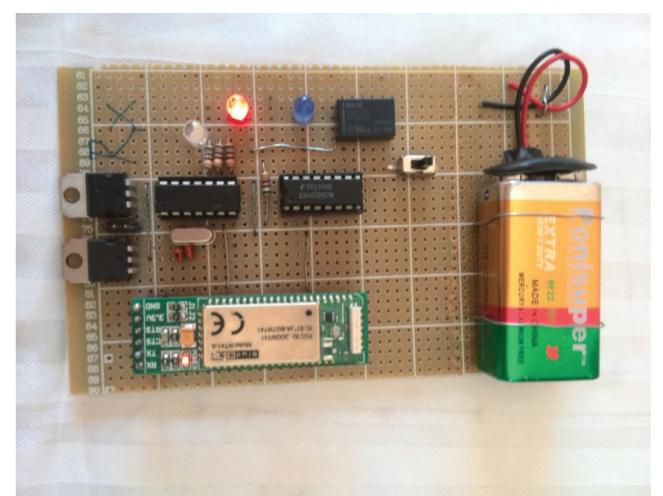


Fig.(15): Slave circuit part2

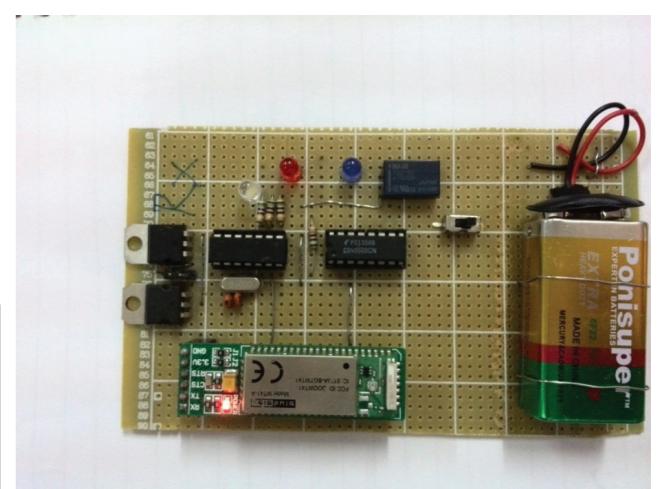


Fig.(16): Slave Circuit in Reset case

The y-axes in Fig.(17) refers to the input and output voltage which is measured in volt. And the x-axes are the time measured in second. The response values of impulse response of the Slave circuit in the same point of seconds as shown in Table (2) while the graphical representation of results is indicated in Fig. (17).

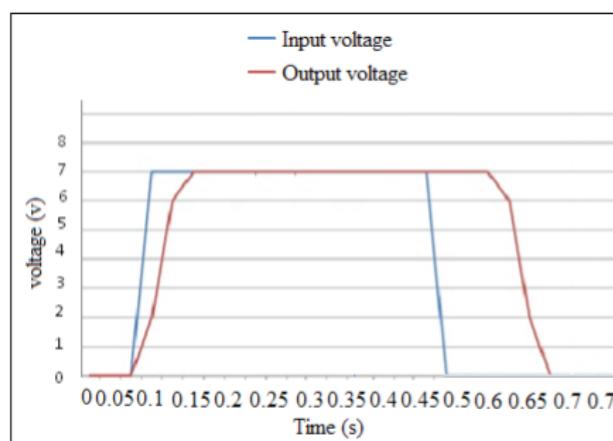


Fig. (17): Impulse response of the Slave part 2.

Table (2): Values of impulse response of the Slave circuit part2.

A	B	C
Input Voltage (volt)	Output Voltage (volt)	Time (second)
0	0	0
0	0	0.05
0	0	0.1
2	2	0.15
7	6	0.2
7	7	0.25
7	7	0.3
7	7	0.35
7	7	0.4
7	7	0.45
0	7	0.5
0	7	0.55

6. Conclusion:

From the results obtained, we can conclude the following:

The project represents a Bluetooth circuit

examined and tested as the same as the PC Bluetooth with the suitable choices.

Enable to send data for distance exceeds (50)m and these very important to control to any plant or process in case of dangerous or other cases.

Bluetooth devices used as expedient to transform data and enable microcontroller, when the Master circuit send particular signal so, the Bluetooth in the Slave circuit receive the signal and enable the microcontroller to perform a particular task (in this project enable led).

Impossible to send and receive data in the same time. This mean that Bluetooth operate in a Simplex Mode.

Bluetooth devices frequency is not effect with other signal (or affectability is very small) because of power of its signal.

LED in Slave circuit operate in (5) V, this leads to the supplied voltage must be not less than the specified voltage.

Reference

- [1] Jin-Shyan Lee, Chun-Chieh Chuang, and Chung-Chou Shen. "Applications of Short Range Wireless Technologies to Industrial Automation: A ZigBee Approach", (2009) .
- [2] "The emergence of ZigBee in building automation and industrial controls", IEE Computing & Control Engineering,(2005).
- [3] N. Sriskanthan, F. Tan, A. Karande, 'Bluetooth Based Home Automation System', Microprocessors and Microsystems, V 26, Pages 281–289, www.elsevier.com/locate/micpro,(2002).
- [4] O. Eze, I. Gozie, F. Opara, 'Design Exploration of a Microcontroller Based RF Remote Control 13 Amps Wall Socket Aru', IOSR Journal of Computer Engineering (IOSR-JCE), V. 11, Issue 1,(2013).
- [5] "www.electronica60norte.com" & "electronica60norte@hotmail.com ". Data sheet Bluetooth to serial port module HC05.
- [6] F. Stevens, ".www.The-electronics-project.com\ started with PIC microcontrollers ,May,20,(2002).
- [7] Microchip Technology Inc. pic16f688 data sheet,(2007).
- [8] Y.Usha Devi 1, II M.Tech, "Wireless Home Automation System Using ZigBee", International Journal of Scientific & Engineering Research Volume 3, Issue 8,August-, (2012).
- [9] "www.Using regulator in electronic circuit" Doc ID 2143 Rev 26 February "data sheet, (2012).
- [10] "www.datasheetcatalog.com" . Datasheets for electronics components.

Structural and electrical properties of CdS &CdS:Sb thin films prepared by flash evaporation technique

Ammar S. Hameed
Department of Physics, College of Science, University of Kerbala, Iraq.

Received Date: 16 / 3 / 2017
Accepted Date: 7 / 6 / 2017

الخلاصة

استخدمت سبيكة CdS لتحضير أغشية CdS المشوبة بعنصر الانتيمون (Sb) (CdS:Sb) بنسبة وزنية (7.3٪) بتقنية التبخير الوميسي على اراضيات زجاجية بسمك (150) نانومتر بدرجة حرارة الغرفة. تم دراسة تأثير التشويب و درجة حرارة التلدين (373 و 473) كلفن لمدة (60) دقيقة على الخواص التركيبة و الكهربائية لجميع الأغشية . قياسات الاشعة السينية اوجدت ان الأغشية (CdS , CdS:Sb) المحضرة بدرجة حرارة الغرفة والملبدنة بدرجة حرارة (373) كلفن هي من النوع العشوائي و بزيادة درجة حرارة التلدين الى (473) كلفن وجد ان الغشاء CdS النقي يتحول الى طور متعدد البلورات السادس و باتجاه نمو مفضل (002) وان الغشاء المشوب بعنصر الانتيمون CdS:Sb يتتحول الى متعدد البلورات بشكل مكعب و باتجاه نمو مفضل (111) . من خلال دراسة التوصيلية الكهربائية المستمرة تم حساب قيم طاقات التنشيط و التوصيلية المستمرة حيث وجد ان قيم طاقات التنشيط تزداد بزيادة درجة الحرارة وتقل بـأضافة عنصر الانتيمون (تقل بالتشويب) وان التوصيلية المستمرة سلكت سلوك معاكس لطاقات التنشيط. من خلال قياسات تأثير هول وجد ان حاملات الشحنة هي من النوع n-type لجميع الأغشية وان تركيز حاملات الشحنة يقل بـزيادة درجة حرارة التلدين بينما التحركية تزداد . تركيز حاملات الشحنة والتحركية أزداد بعد اضافة عنصر الانتيمون الى أغشية CdS.

الكلمات المفتاحية

كبريتيد الكادميوم، كبريتيد الكادميوم CdS المشوبة بعنصر الانتيمون Sb ، تقنية التبخير الوميسي.

Abstract

CdS alloy used to prepare CdS and CdS doped Sb (3%) (CdS:Sb) films by flash evaporation technique with thickness (150) nm on glass substrate at room temperature. The effect of doping and the annealing temperature at (373 and 473) K for (60) min on the structural and electrical properties has been described. The XRD studies show that the annealed film at (373) K has amorphous structure and alters to the polycrystalline at (473) K where the CdS film growth to hexagonal structure with perfect orientation (002) and CdS:Sb growth to cubic structure with perfect orientation (111). From D.C conductivity the variation of activation energies (E_{a1}, E_{a2}) and D.C conductivity at room temperature were measured. It is found that E_{a2} values decreasing for doped films and increase with increasing annealing temperature (T_a) for all film. Hall Effect shows that all films are n-type, carrier's concentration decrease with increasing annealing temperature while Hall mobility increases. Carrier's concentration and Hall mobility increases after adding the doped material (Sb) to the CdS films.

Keywords

CdS, CdS:Sb, flash evaporation technique.

1. Introduction

In the last years, the world has been increment proceeding to II-VI semiconductor materials because of its wide range of technical and industrial applications especially in the optoelectronic devices: solar cells, diode, transparent electrode, photo transistor, optical sensor, etc. Cadmium sulfide (CdS) had actually yellow color, two crystal structure cubic and hexagonal phases [1]. CdS is n-type semiconductor having a direct energy band gap between 2.28-2.45 eV [2]. The energy gap of CdS thin film be influenced by preparation conditions such as substrate temperature, annealing temperature, thickness, doped, etc [3]. More techniques were used to prepared CdS films such as "thermal evaporation" [4], "molecular beam epitaxy (MBE)" [5], "spray pyrolysis" [6], "electro-deposition" [7], pulsed-laser deposition [8], "successive ionic layer adsorption and reaction (SILAR)" [9], "vacuum evaporation" [10], "chemical bath deposition (CBD)" [11], and sputtering [7]. The characteristic of structure, electrical and many properties of CdS thin film can be controlling that lead to wide range of band gap value.

The aim of present work is to prepared CdS and CdS doped Sb (3%) CdS:Sb films by flash evaporation technique and study the structural and electrical properties of it. The electrical properties will calculate from D.C conductivity and Hall measurement.

2. Experimental procedure

CdS powder and antimony (99.99%) Sb used to prepared CdS and CdS:Sb thin film with thick-

ness 150 nm on glass substrate. There are several step during film prepare at first cleaned the glass slide with distilled water and use ultra-sonic and alcohol to cleaning the glass from impurity.

There are different techniques to prepare the thin film and these techniques depending on many fact or slike melting point, substrate, thickness, etc. In this research, there is used flash evaporation technical has used because the material have different melting point. Cadmium sulfide (CdS) and Cadmium sulfide were doped with antimony (CdS:Sb) with thickness (150) nm deposited on the glass substrates by the method of flash thermal vacuum evaporation (Edward E 360) using molybdenum boat under vacuum pressure (10-5) mbar as shown in fig (1). The electric current was gone through the boat step by step to avoid breaking it, the affidavit procedure begins at the vessel temperature achieved the required temperature. Every one of the samples were set up under consistent conditions (weight, substrate temperature and rate of deposited). The doping and annealing temperature (373 and 473) K was the primary parameters that control the film properties.

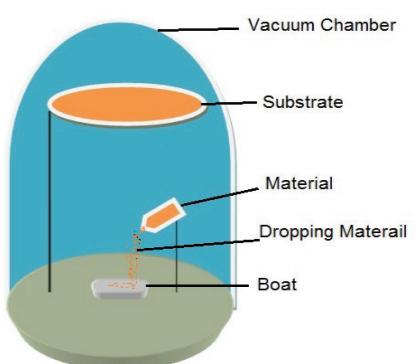


Fig. (1): Flash thermal evaporation technical

Ohmic contacts has been done to study the electrical properties of CdS&CdS:Sb thin films by evaporating (Aluminum) electrodes of (250) nm thickness, by means of thermal evaporation method using Balzers model (BL510) with pressure (10-5) mbar. Interference microscope are used to measure the (CdS&CdS:Sb) film thicknesses.

CdS and CdS:Sb structure were studied by X-ray diffraction and compared with standard value in ASTM, and used a Philips X-ray diffractometer system which records the intensity as a function of Bragg's angle.

The D.C conductivity of the films was calculated using the electrical circuit which consists of oven and keithly digital electrometer 616 to measure the resistance as function of temperature.

The DC conductivity was determined from the relation [12]:

$$\sigma_{d.c.} = \frac{1}{\rho} = \frac{L}{RA} \quad (1)$$

where R : film resistance, A : cross section area of the film and L: distance between the electrodes. The activation energies have been calculated from the plot of $\ln \sigma$ versus $1000/T$ according to the following relation [13].

$$\sigma = \sigma_0 \exp(-E_a/k_B T) \quad (2)$$

Where σ_0 : the pre-exponential factor, k_B is the Boltzmann's constant, E_a : the activation energy and T : the temperature.

Hall effect measurement carried out to determine the type, mobility and the carriers concentration of CdS&CdS:Sb thin films using Hall measurement (Ecopia HMS-3000).

Hall mobility (μ_H) determined by using the following relation [13]:

$$\mu_H = |R_H| \cdot \sigma_{RT} \quad (3)$$

1

Where σ_{RT} is the electrical conductivity at room temperature and R_H is the Hall coefficient, while the carrier concentration (n) can be determined using the relation [13]:

$$n = \frac{1}{|R_H| \cdot e} \quad (4)$$

Where (e) is electron charge.

3. Results and discussion

3.1. X-Ray

X-ray diffraction pattern (XRD) of CdS and CdS:Sb of thickness 150 nm for the as deposited film and annealed to (373 and 473) K are shown in Fig.(2). X-ray pattern show that the CdS and CdS:Sb films have amorphous structure for as deposited and annealed film at (373) K. CdS film was growth to hexagonal structure with perfect orientation (002) at (473) K and CdS:Sb growth to cubic structure with perfect orientation (111). This result

agreement with Mehdi H. Diwan [14] for pure CdS films. So, the addition of antimony leads to change the structure of CdS from hexago-

nal to cubic structure that may be due to fill the vacancy in CdS structure by Sb.

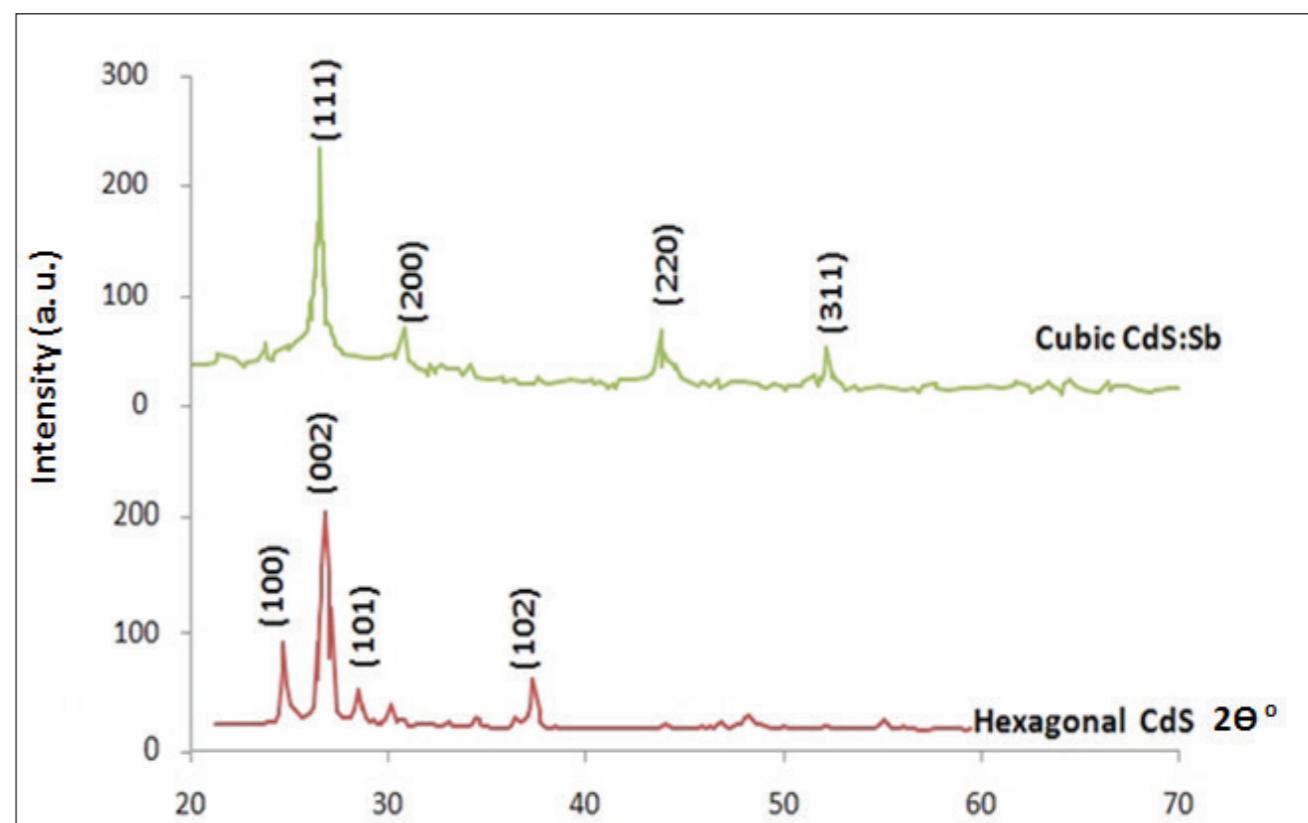


Fig. (2): XRD of annealed CdS and CdS:Sb thin films at (473)K

The experimental data of the (20) at (473) K which compared with the standard degree, hkl & I/I_{max} for CdS and CdS:Sb films value in ASTM are presented in Table (1).

Film	hkl	2θ Exp	2θ standard	I/I _{max}	Crystal structure
CdS	(100)	24.809	24.807	41.6	Hexagonal
	(002)	26.508	26.507	100	
	(101)	28.186	28.182	19.5	
	(102)	36.619	36.620	24.5	
CdS:Sb	(111)	26.49	26.506	100	cubic
	(200)	30.798	30.807	29.9	
	(220)	43.786	43.96	29.4	
	(311)	52.121	52.132	22.7	

3.2. D.C Conductivity

Fig.(3) shows the variation of $\ln \sigma$ as a function of $1000/T$. The activation energy (E_a) and the electrical conductivity in the room tem-

perature (σ_{RT}) for CdS&CdS:Sb films have been studied as a function of different annealing temperature T_a . The electrical conductivity show that there are two activation energies

(Ea1& Ea2), this result proves the structure of CdS and CdS:Sb are polycrystalline thin films. The second activation (Ea2) energies increases with increasing of Ta and decrease with doped material. Table (2) shows that the electrical conductivity (σ_{RT}) decreases with increasing of annealing temperature and increase with doped material. Nahida B. Hasan et al[15] noticed some behavior for annealing

temperature effect. This comportment could be explained as follows: the annealing processes perform to rearrange the crystalline build that lead to reduction the density of state and the dangling bonds in the band gap, which leads to increasing the energy gap and activation energy. So, the carrier's concentration has been decreased and this caused a decrease in the σ_{RT} .

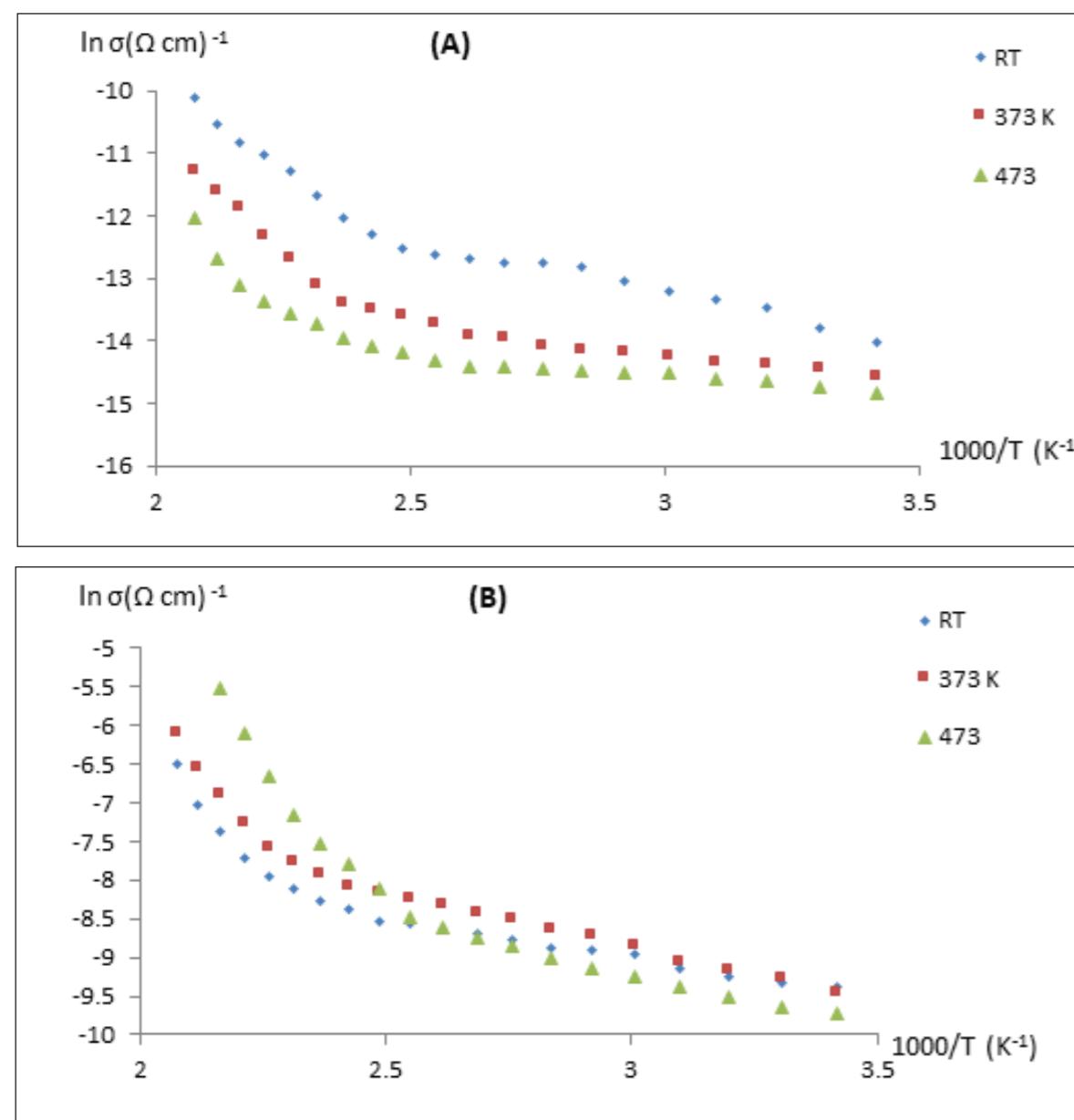


Fig.(3): The variation of $\ln \sigma$ vs. $1000/T$, (A) for CdS , (B) for CdS:Sb

Table (2): shows (Ea1 , Ea2 , σ_{RT}) for CdS and CdS:Sb films

Film	T_a K	(Ea1) eV	(Ea2) eV	σ_{RT} ($\Omega \text{ cm}$) ⁻¹
CdS	RT	0.140	0.537	8.33E-07
	373	0.079	0.637	4.90E-07
	473	0.044	0.841	3.73E-07
(CdS:Sb (3%))	RT	0.085	0.504	8.59E-05
	373	0.119	0.538	8.06E-05
	473	0.125	0.582	6.19E-05

3.3. Hall effect measurement

Hall measurements show that all these films have a negative Hall coefficient (n-type charge carriers). This result are agreement with R. DEMIRa et al [1] and Y. CHEN et al[16]. Table (3) shows the data of the carrier's concentration and Hall mobility as a function of annealing temperature for CdS&CdS:Sb films.

This table show that the carrier's concentration decreases with increasing of annealing temperature while Hall mobility increases. This behavior is due to the re-arrangement process, which leads to reduce the density of state and that make the charge carrier's move freely in the film. So, for that case the mobility is increasing.

Table (3): show the carrier's concentration and Hall mobility for CdS&CdS:Sb films

Film	T_a K	(μ H ($\text{cm}^2/\text{V.S}$))	(n (cm^3))
CdS	RT	359.1	$\times 10^{12} 1.4903$
	373	401	$\times 10^{11} 8.012$
	473	463.5	$\times 10^{10} 5.62$
(CdS:Sb (3%))	RT	397.3	$\times 10^{11} 4.931$
	373	473.6	$\times 10^{10} 7.166$
	473	610.4	$\times 10^{10} 1.197$

4. Conclusion

X-ray pattern show that the CdS and CdS:Sb films have amorphous structure for as deposited annealed film at (373)K CdS film was growth to hexagonal structure with perfect orientation (002) at (473)K CdS:Sb growth to cubic structure with perfect orientation (111) at 473. There are two activation

energies (Ea1& Ea2) , Ea2 increases with increasing of Ta and decrease with doped material. Hall effect shows that all films are n-type. Carrier's concentration decrease with increasing of annealing temperature while Hall mobility increases. Carrier's concentration and Hall mobility increases with doped material (Sb) to the CdS films.

5. Acknowledgement

I am thankful to University of Kerbala for the financial support. I am also thankful to Professor Dr. FADHIL ISMAIL SHARRAD and Prof. Ass. Dr. Mohammed Al-Kaabi for their help. I am grateful to the staff of thin film laboratory at University of Baghdad, especially Dr. Kadhim Abdul Wahid Aadim and Dr. Issam M. Ibrahim.

References

- [1] R. DEMIRa*, F. GODEb . Chalcogenide Letters, Vol.12, p. 43 (2015).
- [2] A. Kariper, E. Guneri, F. Gode, C. Gumus, T. Ozpozan, Mater. Chem. Phys. Vol.129, p.183-188 (2011).
- [3] Salma M. Shaban , JOURNAL OF KUFA – PHYSICS Vol.7, No.2 (2015)
- [4] [4]Heba Salam Tareq Eng. & Tech. Journal , Vol.32,Part (B), No.2, (2014).
- [5] Mohammed A. Kadhim ,Journal of Kerbala University , Vol. 14 No.2 Scientific (2016).
- [6] S.J. Ikhmayies, R.N.A. Bitar, Appl. Surf. Sci. 256, p.3541 (2010).
- [7] C. Lu, L. Zhang, Y. Zhang, S. Liu, G. Liu, Appl. Surf. Sci. Vol.319,p. 278 (2014).
- [8] J.C. Orlianges, C. Champeaux, P. Dutheil, A. Catherinot, T.M. Mejean, Thin Solid Films Vol.519, p.7611-7614 (2011).
- [9] K. GowrishRao, V.K. Ashith, J. Phys. Chem. SolidsVol.77, 14 (2015).
- [10] M. Tomakin, M. Altunbaş, E. Bacaksız, S. Çelik, Thin Solid Films,Vol.520, p.2532 (2012).
- [11] S.U. Shaikh, F.Y. Siddiqui, D.J. Desale, A.V. Ghule, F. Singh, P.K. Kulriya, R. Sharma, Radiation Phys. Chem. Vol.106, p193 (2015).
- [12] SZe .M. and Kowk. K. N., "Physics of Semiconductor Devices", John Wiley and Sons,3rd Ed(2007).

- [13] Fatin. G. Hachim, Baghdad Science Journal. Vol. 11, No.3(2014).
- [14] Mehdi H. Diwan , DIYLALA Journal For pure science , Vol.10 No.2, (2014).
- [15] Nahida B. Hasan,Ahmed S. Hussian and Kadhim A. Aadim Journal of Babylon University/Pure and Applied Sciences, Vol.22 , No.2 (2014).
- [16] Y. CHEN, F. WANG, H. XU, S. REN, H. GU, L. WU, W. WANG, L. FENG , Chalcogenide Letters Vol. 14, No. 1,p. 1 – 9 (2017).

Effect of Bisphenol-A- on Some Biochemical and Hematological Parameters of Female Rats(*Rattus Norvegicus*)

Qasim Hamadi Abid*and Ayyed H. Hassan**

*College of Science, University of Kerbala

**College of Veterinary Medicine, Animal Physiology Dept., University of Kerbala.

Received Date: 13 / 7 / 2016

Accepted Date: 2 / 9 / 2016

الخلاصة

بعد الbisphenol-أ- أحد المواد المعرقلة لعمل الغدد الصماء. وقد تضمنت الدراسة الحالية الكشف عن تأثير bisphenol-أ- على بعض المعايير الكيموحيوية والدمومية مثل ، Glucose ALT, AST وعدد خلايا الدم الحمر وتركيز الهيموكلوبين في الدم وعدد خلايا الدم البيض والعدد التفريقي لخلايا الدم البيض. أربع وعشرون أنثى جرذ قسمت عشوائيا إلى ثلاث مجتمعات (8 حيوانات لكل مجموعة). تضمنت حيوانات المجموعة الأولى السيطرة السالبة والثانية هي مجموعة السيطرة الموجبة تناولت محلول الملحى وزيت النزرة فمويا على التوالي، بينما أناث الجرذان للمجموعة الثالثة تناولت bisphenol-أ- المعلق بزيت النزرة (250 ملغم/ كغم من وزن الجسم) فمويا وعملت كمجموعة معاملة. أظهرت نتائج الدراسة الحالية ارتفاعاً معنونيا (P≤0.05) في مستويات Glucose و عدد خلايا الدم البيض ونسبة الخلايا الدم البيض العدلة بينما هناك نقصان معنوي (P≤0.05) في ALT عدد خلايا الدم الحمر وتركيز الهيموكلوبين ونسبة الخلايا الدم البيض للملمفية في المجموعة المعيطرة bisphenol-أ- بالمقارنة مع مجتمع السيطرة بينما هناك تغيرات غير معنوية في نسبة الخلايا الوحيدة واللمفية والقاعدية من نتائج الدراسة الحالية نحن نستنتج بأن bisphenol أ يؤدي إلى حدوث نتائج سلبية على المعايير الدموية والكيموحيوية .

الكلمات المفتاحية

الbisphenol-أ- ، المعايير الكيموحيوية والدمومية ALT, AST ، جرذ .

Abstract

Bisphenol A (BPA) is one of the manufacturing compounds. The present study was conducted to investigate effect of BPA on some biochemical and hematological parameters such as Alanine Aminotransferase (ALT), Aspartate Aminotransferase(AST) Glucose, Red blood cells (RBCs), Hemoglobin (Hb), White blood cells (WBCs) and differential WBCs. Twenty four female rats were used and divided into three groups (8 animals for each group) randomly. Animals of first group was negative control group and second group was positive control group received normal saline and corn oil orally respectively, while female rat of third group were received BPA suspended with corn oil (250mg/kg B.W/day) orally as treatment group for 30 days. Results of the present study revealed significant increase ($P \leq 0.05$) in serum level of ALT, AST, Glucose, WBCs counts and percentage of neutrophil but there is significant decrease ($P \leq 0.05$) in RBCs counts, Hb concentration and percentage of lymphocyte in group administrated BPA in compared with control groups, while there are non significant changes in percentage of monocyte, eosinophil and basophil. From the results of the present study, it was concluded that BPA leads to occurred negative results on hematological and biochemical parameters.

Keywords

Bisphenol-A-, ALT, AST, Rat.

1. Introduction

Bisphenol A (BPA) is one of the manufacturing compounds, that interfered in production different plastic compounds and polycarbonate and become universally used in the production of paper, food and beverage containers, consumer goods, and in many other industrial applications [1]. Recently researches showed that BPA has ability to leach out of some products, include tableware, plastic lining of cans used for food, white dental fillings sealants and polycarbonate babies' bottles. The leaching was occurred by exposure of the plastic to high temperatures [2]. About 93% of urine samples in the US population contain BPA [3]. [1] BPA found in the fluid portion of many classes of vegetables such as green beans, mushrooms, mixed vegetables, peas, corn and artichokes, which take from Cans with epoxy resin linings. ALT and AST levels were significantly increased in rats orally administrated BPA at dose 50mg/kg/B.W for four weeks [4]. AL -Mossawi [5] reported significant increase in ALT and AST levels at day 90 of age of female and male offspring from mothers exposed to 250 mg/kg /BW of BPA during pre and postnatal life. [5] Reported significant increases in glucose levels of male rats exposed to 50 and 250 mg/kg/B.W. of BPA during pre and postnatal stages of their life. WBCs count significantly increased in rats exposed to (250) mg/kg/B.W. of BPA [6]. BPA is estrogen-like chemical with possible similar effects to diethylstilbestrol so, in the present pre and postnatal exposure study the decrease of

RBC count which resulted in decreasing Hb concentration is thought to be caused by decrease erythropoietin production either due to estrogenic activity of BPA or decrease serum testosterone level or may be resulted from an increase in destruction of red blood cells [7].

The current study was aimed to estimate harmful effects of the exposure to BPA female rats by study the toxic effect of BPA on some biochemical and blood parameters.

2. Materials and Methods

2.1. Experimental animals

The present study was conducted at the College of Veterinary Medicine – University of Karbala. Twenty four mature female rats were purchased from care center and medicinal researches in Baghdad, Iraq. They were (14) to (16) weeks old with an average body weight (200-250) gm.

The animals were clinically healthy, kept under hygienic conditions, metal cages and glassy bottles were used to avoid exposure to BPA from old polycarbonate cages. Water and feed were given ad libitum throughout the experimental period.

Female albino rats (24) females were divided into three main groups

(8 animals of each group) as follows:

1- Negative control group: which received orally normal saline as a vehicle (0.5) ml/kg BW.

2- Positive control group: which received orally corn oil as a vehicle (0.5) ml/kg BW.

3- Treatment group: which received orally BPA at dose of (250) mg/kg B.W. /day (1/20

LD50) suspended in corn oil as high dose [8].

All treatments were given using gavage needle.

At the end of the experimental period (30) days female rats' of each group were sacrificed by placing them in a closed jar containing cotton soaked with chloroform anesthesia.

Blood samples were collected by heart puncture using (5) ml disposable syringe 1 ml of blood was collected in heparinized tube for measurements of hematological parameters as soon as possible.

The rest of the blood was put in plane tubes to be centrifuged at (6000) rpm for (10) minutes to obtain serum which is then transferred to Eppendorf tubes, for the estimation of biochemical parameters. All tubes were stored at (-20) oC until analyzed.

2.2. Biochemical parameters

Serum aspartate aminotransferase(AST), alanine aminotransferase (ALT) and Glucose levels were determined by using aspecial kits (SPECTRUM AST – kit, Egypt) [9].

2.3. Hematological parameters

Red blood cells (RBCs) count, Hemoglobin (Hb), White blood cells (WBCs) count and differential WBCs count were done by using Veterinary automated hematoanalyzer (Genex Inc., Florida USA) according to manufacturer instruction.

2.4. Statistical analysis:

The data were presented as Mean \pm SE and subjected to analysis of variance by using one way analysis of variance(ANOVA) Post hoc test was used LSD to specify the significant difference among means. The SPSSProgram was used for the analysis of data [10].

3. Results

3.1. Effect of BPA on serum levels of ALT,

AST and Glucose in Mature Female Rats

A significant($p \leq 0.05$) increase is noticed in serum AST, ALT and Glucose levels in female rats treated with BPA (250 mg/kg B.W) compared with control groups.

Table (1): Effect of BPA on serum levels of ALT, AST and Glucose in mature female rats

parameters Groups	ALT U/ml	AST U/ml	Glucose mg/dl
Normal saline group (Negative control group) (0.5ml/kg/B.W)	CD 47.71 \pm 1.04	C 80.28 \pm 1.01	BC 65.71 \pm 1.04
Corn oil group (Positive control group) (0.5ml/kg/B.W)	C 52.62 \pm 2.57	C 98.75 \pm 2.68	B 69.37 \pm 1.82

Bisphenol-A- group (Treated group) (mg/kg/B.W 250)	A 96.00 \pm 2.23	A 331.37 \pm 13.25	A 80.50 \pm 3.47
---	-----------------------	-------------------------	-----------------------

Values are mean \pm SE

N=8

Different letters represent a significant difference at ($p \leq 0.05$).

3.2. Effect of BPA on RBCs count and Hb concentration in mature female rats

Table 2 shows that exposure to BPA (250

mg / kg B.W.) produces a significant($p \leq 0.05$) decrease in RBCs count and Hb concentration in female rats compared with control groups.

Table (2): Effect of BPA on RBCs count and Hb concentration in mature female rats

Parameters Groups	RBC 10^6 cell/ml \times	Hb g/dl
Normal saline group (Negative control group) (0.5ml/kg/B.W)	A 6.73 \pm 0.19	A 13.71 \pm 0.42
Corn oil group (Positive control group) (0.5ml/kg/B.W)	B 5.76 \pm 0.21	A 13.25 \pm 0.45
Bisphenol-A- group (Treatment group) (mg/kg/B.W 250)	C 4.16 \pm 0.21	B 8.00 \pm 0.46

Values are mean \pm SE

N=8

Different letters represent a significant difference at ($p \leq 0.05$).

3.3. Effect of BPA on WBC count and differential count of WBC in mature female rats

The effect of exposure to (250 mg / kg B.W.) of BPA demonstrates a significant($p \leq 0.05$) increasein WBCs count and the percentage of neutrophils, while the percentage

of lymphocytes shows asignificant($p \leq 0.05$) decreasein BPA treated of female rats when compared with the control groups Table (3).

No change is observed in the percentage of monocytes, eosinophils and basophils.

Table (3): Effect of BPA(250 mg / kg B.W.)on total and differential leukocyte counts in mature female rats

Parameters Groups	WBC 10^3 cell/ \times ml	Lymphocyte %	Monocyte %	Neutro- phil %	Eosinophil %	Basophil %
Normal saline group (negative control) (group (0.5ml/kg/B.W)	B 8.15 \pm 0.16	A 89.57 \pm 0.61	A 1.50 \pm 0.21	C 6.85 \pm 0.55	A 1.64 \pm 0.17	A 0.42 \pm 0.17
Corn oil group (positive control) (group (0.5ml/kg/B.W)	B 8.27 \pm 0.22	A 89.87 \pm 0.39	A 1.37 \pm 0.18	C 7.37 \pm 0.91	A 1.12 \pm 0.24	A 0.25 \pm 0.09
Bisphenol-A- group (Treatment group) (mg/kg/B.W 250)	A 11.66 \pm 0.33	C 72.37 \pm 1.86	A 1.25 \pm 0.09	A 24.25 \pm 1.86	A 1.50 \pm 0.16	A 0.62 \pm 0.15

Values are means \pm SE

N=8

Different letters represent a significant difference at (p \leq 0. 05).

4. Discussion

The current study showed that female rats treated with (250 mg/kg B.W) of BPA demonstrated a significant increase in AST and ALT levels compared with control groups. These results were matched with the results obtained by [4,11,12,13,14,15,16] reported that exposure to BPA lead to changes in liver result in an increase in oxidative stress that may explain the increased levels of AST and ALT. On the other hand, there was an increase in blood glucose concentration in rats exposed to BPA (250) mg/kg/day. This result matched with [17] who showed that BPA disrupt glucose homeostasis in pregnant mice. BPA affects glucose metabolism by different mechanisms

such as oxidative stress, inflammation, insulin resistance and β cell dysfunction. BPA has also been shown to cause, hyperinsulinemia and is considered a potential diabetogenic agent [18,19, 20]. The current results showed that there was a significant decrease in the RBCs count and Hb level in female rats exposed to (250) mg/kg/BW of BPA compared with control groups and these results were in agreement with previous studies [21, 10, 4, 22, 23, 24]. [25] reported a decrease in RBCs count and Hb concentration in rats exposed to BPA at high doses, BPA may decrease the concentration of iron in the blood or lead to shorter half life for red blood cells and their degradation as a result to changing in cell membrane

permeability that make red blood cells more fragile and prone to hemolysis. These results were matched with [26] who reported anemia and significant alterations in several biochemical parameters in rats exposed to BPA for long time. In the present study, there was an increase in WBCs count after the exposure to 250 mg/kg/BW of BPA, which may be explained on the basis of the role of BPA in induction of inflammatory conditions or may be due to increase in the percentages of neutrophils. In addition the increasing number of WBCs could be due to stress that induced by BPA and stimulation of immune system. This result is in accordance with [27].

References

- 1] Brotons, J.A.; Olea-Serrano, M.F.; Villalobos, M.; Pedraza, V. and Olea, N.: Xenoestrogens released from lacquer coatings in food cans. *Environ. Health. Perspect.*, 103: 608–612, (1995).
- 2] Le, H.H.; Carlson, E.M.; Chua, J.P. and Belcher, S.M.; Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. *Toxicol. Lett.*, 176: 149–156, (2008).
- 3] Calafat, A.M.; Kuklenyik, Z.; Reidy, J.A.; ill, SP; Ekong, J. and Needham, L.L.: Urinary concentrations of bisphenol A and 4-nonyl phenol in a human reference population. *Environ. Health. Perspect.*, 113: 391–395, (2005).
- 4] Korkmaz, A.; Aydogan, M.; Kolankaya, D. and Barlas, N.: Influence of vitamin C on bisphenol A, nonylphenol and octyl-phenol induced oxidative damages in liver of male rats. *Food Chem. Toxicol.*, 48: 2865–2871, (2010).
- 5] AL-Mossawi, A. H.: Physiological and reproductive activity in rats exposed to bisphenol A during different life stages. Ph.D Thesis. College of Veterinary Medicine, Basrah University. PP.50–202, (2013).
- 6] Nitschke, K.; Lomax, L.; Schuetz, D.; Hopkins, P. and Weiss, S. Bisphenol A 13-week aerosol toxicity study with Fischer 344 rats (final report) EPA/OTS. Dow Chemical Company.
- 7] Horiguchi, H.; Oguma, E.; Sakamoto, T.; Murata, K. and Kayama, (2013): Suppression of erythropoietin induction by diethylstilbestrol in rats. *Arch Toxicol.*, 4–13, (1988).
- 8] National Institute for Occupational Safety and Health (NIOSH) Bisphenol A data sheet for prioritized NIOSH/OSHA substances proposed for national toxicology program U.S. Department of Health Education and Welfare, Public Health Service, Centre for disease control, Rockville, Maryland, (1978).
- 9] Young, D.C.; Effects of drugs on clinical laboratory tests. 3rd Ed. PP: 6–12, (1990).
- 10] SPSS Statistical Packages for the Social Sciences. Statistical software for windows version 13.0. Microsoft. SPSS, Chicago, IL, USA, (2001).
- 11] Yamasaki, K.; Sawaki, M.; Noda, S.; Imatanaka, N. and Takatsuki, M. Subacute oral toxicity study of ethynodiol and bisphenol A, based on the draft protocol for the 'enhanced OECD test guideline no. 407'. *Arch Toxicol.*, 76 (2): 65–74, (2002a).
- 12] Yamasaki, K.; Takeyoshi, M.; Noda, S. and Takatsuki, M. Changes of serum α 2 μ -globulin in the subacute oral toxicity of ethynodiol and bisphenol A based on the draft protocol for the 'Enhanced OECD Test Guideline No. 407'. *Toxicology*, 176: 101–112, (2002b).
- 13] Hassan, Z.K.; Elobeid, M.A.; Virk, P.; Omer, S.A.; ElAmin, M.; Daghestani, M.H. and AlOlayan, E.M. Bisphenol A induces hepatotoxicity through oxidative stress in rat model. *Oxidative Med Cell Long.*, 10: 194829, (2012).
- 14] Mourad, I.M. and Khadrawy, Y.A. The sensitivity

- of liver, kidney and testis of rats to oxidative stress induced by different doses of Bisphenol A. *Intern. J. Life Sci. Pharma col. Rev.* .,2:19-28,(2012).
- [15] Sangai,N.P. and Verma, R.J. Quercetin ameliorates bisphenol A induced toxicity in mice: *Acta Polo Pharmac Drug Res.*, 69 (3) 557-563,(2012).
- [16] Moon,M.K; Kim, M.J.; Jung, I.K; Koo, Y.D.; Ann, H.Y.; Lee, K.J. and Kim, S.H. Bisphenol A impairs mitochondrial function in the liver at doses below the no observed adverse effect level. *J. Korean Med. Sci.*27: 644-652,(2012).
- [17] Alonso-Magdalena,P.; Ropero, A.B.; Soriano, S.; Quesada, I. and Nadal, A. Bisphenol-A: a new diabetogenic factor *Hormones (Athens)* 9:118–126,(2010).
- [18] Adachi,T.; Yasuda, K.; Mori, C.; Yoshinaga, M.; Aoki, N.; Tsujimoto, G. and Tsuda, K. Promoting insulin secretion in pancreatic islets by means of bisphenol A and nonylphenol via intracellular estrogen receptors. *Food Chem. Toxicol.*, 43: 713–719,(2005).
- [19] Alonso-Magdalena,P.; Morimoto, S.; Ripoll, C.; Fuentes, E. and Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. *Environ. Health Perspect.*,114: 106–112,(2006).
- [20] Jayashree,S.; Indumathi, D.; Akilavalli, N.; Sathish, S.; Selvaraj, J; and Balasubramanian, K. Effect of Bisphenol-A on insulin signal transduction and glucose oxidation in liver of adult male albino rat. *Environ. Toxicol. and Pharmacol.*, 35 : 300–310,(2013).
- [21] Furukawa,F.; Nishikawa, A.; Mitsui, M.; Sato, M.; Suzuki, J.; Imazawa, T. and Takahashi, M.: A 13-week subchronic toxicity study of Bisphenol A in B6C3F1 Mice. *Bullet Nat Ins Health Sci.*, 112: 89-96,(1994).
- [22] Umano,T.; Miyata, K ; Minobe, Y and Yamasaki, K.: Enhanced OECD TG 407 in detection of endocrine-mediated effects of 4, 4 -(octahydro-
- 4,7-methano-5H-inden-5-ylidene)bisphenol. *Arch Toxicol.*, 84:175–182,(2010).
- [23] Ulutaş,O.K.; Yıldız, N.; Durmaz, E.; Ahbab, M.A.; Barlas, N. and Çok, İ: An in vivo assessment of the genotoxic potential of bisphenol A and 4-tert-octylphenol in rats. *Arch Toxicol.*, 85:995–1001,(2011).
- [24] Yamasaki,K. and Okudab, H.: Comparison of endocrine-mediated effects of two bisphenol A related compounds, 2,2-bis(4 cyanatophenyl) propane and 4,4_- cyclohexylidenebisphenol, based on subacute oral toxicity studies using rats. *Toxicol. Lett.*, 208: 162– 167,(2012).
- [25] Thomas,P.; Bally, M. and Neff, J.M.: Ascorbic acid status of mullet, *Mugil cephalus* Linn., exposed to cadmium. *J. Fish. Biol.* 20: 183 – 196,(1982).
- [26] Ahmed .W.M.;Moselhy ,W.A and Nabil, T.M.: Bisphenol a toxicity in adult male rats hematological, biochemical and histopathological approach. *Glob. Vrterinaria* 14(2):228-238,(2015).
- [27] Adedapo,A.;A and Aiyeletan, O.: Effect of chronic administration of indomethacin on haematological parameters in rats. *Afr J Biomed Res.*, 4:159-160,(2001).

piecewise 3-monotone approximation for 3-monotone functions in L_P -spaces for $P < 1$

Eman Samir Bhaya and Shehab Ahmed Abdalredha
University of Babylon, College of Education for Pure Sciences, Mathematics Department.

Received Date: 4 / 6 / 2015

Accepted Date: 11 / 7 / 2016

الخلاصة

في هذا البحث قمنا بتحمين درجة التقرير 3 - رتب على الفضاءات L_P عندما $P < 1$.

الكلمات المفتاحية

درجة التقرير، فضاءات L_P .

Abstract

In this paper we estimate the degree of 3-monotone shape preserving approximation on L_P -spaces for $P < 1$.

Keywords

The degree of monotone, L_P -spaces.

1. Introduction

In [1] K.A.Kopotun, studied approximation of k -monotone functions, in [2] E. S. Bhaya, and R. Mohsin, studied approximation of 3-monotone functions by 3-monotone functions in L_p -spaces, and in [3] E.S. Bhaya, and M. S. Al-Muhaj studied k -monotone approximation in L_p -spaces, in [4] G.A.Dzyubenko, K. A. Kopotun, and A.V.Prymark, studied Three-monotone spline approximation, in [5] A.Bondarenko, D. Leviatan, and A.Prymark, studied pointwise estimates for 3-monotone approximation.

In this paper we introduce shape preserving approximation theorems for 3-monotone functions in L_p -spaces for $p < 1$.

2. The auxiliary results :

Let us introduce some auxiliary lemmas that we need in our work.

2.1. Lemma

suppose $f, s \in \Delta_{[a,b]}^2 \cap L_p[a,b]$ for $p < 1$. Then either $s'(b-) \leq f[a,b]$ or $s'(a+) \geq f[a,b]$, satisfying

$$\|f - l\|_{L_p[a,b]} \leq c(p) \|f - s\|_{L_p[a,b]},$$

where f define on $[a,b]$ and l is linear Lagrange interpolation f at a and b

Proof:

Suppose that $s'(b-) \leq f[a,b]$, and $s'(a+) \geq f[a,b]$, $[a,b]$ is symmetrical. If $x_1 = \sup\{f'(x) \leq f[a,b], \forall x \in (a,b)\}$, such that $s'(x) \leq s'(b-) \leq f[a,b]$, and $x_1 \leq x \leq b$.

$$\|f - l\|_{L_p[a,b]} = l(x_1) - f(x_1) = \int_{x_1}^b (f'(x) - l'(x)) dx$$

$$\begin{aligned} &\leq \int_{x_1}^b (f'(x) - s'(x)) dx \\ &\leq f(b) - s(b) - (f(x_1) - s(x_1)) \\ &\leq c(p) \|f - s\|_{L_p[a,b]} \end{aligned}$$

2.2. Lemma [6]:

Suppose that f is defined on $[a_1, b_1]$, and that s is a piecewise polynomial of degree $\leq k-1$, which knot a and b , $a_1 \leq a \leq b \leq b_1$, such that $s'(a+) \leq f[a,b] \leq s'(b-)$. If, $s \in \Delta_{[a,b]}^2$, then there exist a piecewise polynomial $s_1 \in \Delta_{[a_1, b_1]}^2$ of degree $\leq k-1$, with knot a and b , satisfying (1) $s'(a+) \leq s_1'(a+)$, $s'(b-) \leq s_1'(b-)$. (2) $s_1(a) = f(a)$, $s_1(b) = f(b)$

2.3. Lemma:

Let f define on $[a_0, b_0]$ and let $s \in \Delta_{[a,b]}^2 \cap L_p[a,b]$ for $p < 1$, of degree $\leq k-1$ at knots a and b , $a_0 \leq a \leq b \leq b_0$, $s'(a+) \leq f[a,b] \leq s'(b-)$. If f , and s are convex polynomials on $[a_0, b_0]$, then there is s' be convex a piecewise polynomial on $[a_0, b_0]$ of degree $\leq k-1$, at same knots, satisfying

$$(1) s'(a+) \leq s_1'(a+), s_1'(b-) \leq s'(b-)$$

$$(2) s_1(a) = f(a), s_1(b) = f(b)$$

$$(3) \|f - s\|_{L_p[a,b]} \leq c(p) \|f - s\|_{L_p[a,b]}$$

$$(4) \|f - s_1\|_{L_p[a_0, b_0]} \leq c(p) \|f - s\|_{L_p[a_0, b_0]}$$

Note if $[a,b] = [a_0, b_0]$, such that s, s_1 are convex a piecewise polynomials on $[a_0, b_0]$ of degree $\leq k-1$.

Proof:

If $(b) - f(a) = s(b) - s(a)$, let $s_1(x) = s(x) + f(a) - s(a)$, for each $x \in [a_0, b_0]$. Then by Lemma 2.2 we get (1) and (2), then

$$\begin{aligned} \|f - s_1\|_{L_p[a,b]} &= \|f - (s(x) + f(a) - s(a))\|_{L_p[a,b]} \\ &\leq c(p) \|f - s\|_{L_p[a,b]} \end{aligned}$$

And

$$\begin{aligned} \|f - s_1\|_{L_p[a_0, b_0]} &= \|f - (s(x) + f(a) - s(a))\|_{L_p[a_0, b_0]} \\ &\leq c(p) \|f - s\|_{L_p[a_0, b_0]} \end{aligned}$$

Suppose $f(b) - f(a) < s(b) - s(a)$ and this case $f(b) - f(a) > s(b) - s(a)$ is symmetrical.

First defines s_1 on the interval $[a,b]$ and then extended to interval $[a_0, b_0]$ if $[a,b] = [a_0, b_0]$.

Assume $s'(x) = s(x) - s'(a+) (x-a)$, for each $x \in [a,b]$, and $f'(x) = f(x) - s'(a+) (x-a)$, for each $x \in [a,b]$, such that $\|f' - s'\|_{L_p[a,b]} = \|f - s\|_{L_p[a,b]}$, then by our hypothesis $f(b) - f(a) < s'(b) - s'(a)$, and $s'(b) - s'(a) > 0$. Thus set $s_1(x) = f'(a) + \lambda (s'(x) - s'(a))$, for each $x \in [a,b]$ and $\lambda = (f'(b) - f'(a)) / (s'(b) - s'(a))$ where $0 \leq \lambda \leq 1$, note that s' is non decreasing and $\|s' - s_1\|_{L_p[a,b]} = s'(b) - s'(a)$, $s_1(a) = f'(a)$, $s_1(b) = f'(b)$, so that s_1 is convex in $[a,b]$. Hence

$$\begin{aligned} \|f - s_1\|_{L_p[a,b]} &= \|f' - s_1\|_{L_p[a,b]} \\ &= \|f' - s_1\|_{L_p[a,b]} + \|s_1 - s\|_{L_p[a,b]} \\ &\leq c(p) (\|f' - s\|_{L_p[a,b]} + \|s - s_1\|_{L_p[a,b]} + \|s_1 - f\|_{L_p[a,b]} - \lambda (s'(b) - s'(a))) \\ &\leq c(p) (\|f' - s\|_{L_p[a,b]} + \|s - s_1\|_{L_p[a,b]} + (1-\lambda) \|s_1 - f\|_{L_p[a,b]} - \lambda (s'(b) - s'(a))) \\ &\leq c(p) (\|f' - s\|_{L_p[a,b]} + \|s - s_1\|_{L_p[a,b]} + \|s_1 - f\|_{L_p[a,b]} - ((f'(b) - f'(a)) / (s'(b) - s'(a))) (s'(b) - s'(a))) \\ &\leq c(p) (\|f' - s\|_{L_p[a,b]} + c(p) \|f' - s\|_{L_p[a,b]}) \\ &\leq c(p) \|f' - s\|_{L_p[a,b]} = c(p) \|f - s\|_{L_p[a,b]} \end{aligned}$$

Further, if $[a,b] \neq [a_0, b_0]$, then extend s_1 either to right or to left or both.

Let

$$s^1(x) = \begin{cases} s(x) + f(x) - s(a), & \text{for each } x \in [a_0, a] \\ s(x) + f(x) - s(b), & \text{for each } x \in (b, b_0] \end{cases}$$

Then see a piecewise polynomial $s_1 \in \Delta_{[a_0, b_0]}^2$ of degree $\leq k-1$ at knots a and b .

Now

$$\begin{aligned} \|f - s_1\|_{L_p[b,b_0]} &= \|f - (s(x) - (f(b) - s(b)))\|_{L_p[b,b_0]} \\ &\leq c(p) \|f - s\|_{L_p[b,b_0]} \end{aligned}$$

and similarly

$$\begin{aligned} \|f - s_1\|_{L_p[a_0,a]} &= \|f - (s(x) - (f(a) - s(a)))\|_{L_p[a_0,a]} \\ &\leq c(p) \|f - s\|_{L_p[a_0,a]} \end{aligned}$$

Combined these with (3), we get (4) ■

2.4. Lemma:

Let $f, s \in \Delta_{[a,b]}^2 \cap L_p[a,b]$, for $p < 1$, $a < b < b_0$ and $s'(b-) - f[b, b_0] > 0$. Then

$$(s'(b-) - f[b, b_0]) (b_0 - b) \leq c(p) \|f - s\|_{L_p[b, b_0]}$$

Symmetric, if $f, s \in \Delta_{[a_0,a]}^2 \cap L_p[a,b]$, for $p < 1$, $a_0 < a < b$, and $f[a_0, a] - s'(a+) \leq c(p) \|f - s\|_{L_p[a_0, a]}$

Proof:

The proofs of the first statement, and the second are similar, let $x_0 = \sup\{x \in (b, b_0) : f'(x) \leq s'(b)\}$, then

$$\begin{aligned} (s'(b-) - f[b, b_0]) (b_0 - b) &= \int_b^{b_0} (s'(b-) - f[b, b_0]) dx \\ &= \int_{b_0}^{b_0} (s'(b-) - f'(x)) dx \\ &\leq \int_b^{x_0} (s'(b-) - f'(x)) dx \\ &\leq \int_b^{x_0} (s'(x) - f'(x)) dx \\ &= s(x_0) - f(x_0) - (s(b) - f(b)) \\ &\leq c(p) \|f - s\|_{L_p[b, b_0]} \end{aligned}$$

where s' be no decreasing such that $f'(x) \leq s'(b-) \leq s'(x)$, for each $x \in (b, x_0)$. ■

2.5. Lemma [6]:

Let $a_1 < a < b < b_1$, and $f \in \Delta_{[a_1, b_1]}^2$, and suppose that $s \in \Delta_{[a_1, b_1]}^2$ is a piecewise polynomial of degree $\leq k-1$ with knots a and b , satisfying $f(a) = s(a), f(b) = s(b)$. Then, there is a polynomial $s_1 \in \Delta_{[a_1, b_1]}^2$ of degree $\leq k-1$, such that

- (1) $s'(a+) \leq s_1'(a+), s_1'(b-) \leq s'(b-)$.
- (2) $f[a, a_1] = k_a \leq s_1'(a+), s_1'(b-) \leq k_b = f[b, b_1]$.
- (3) $s_1(a) = f(a), s_1(b) = f(b)$.

2.6. Lemma:

Suppose $a_0 < a < b < b_0$, and let $m = \max\{\frac{b-a}{b_0-b}, \frac{b-a}{a-a_0}\}$, and f is convex polynomial on $[a_0, b_0]$, and let's convex piecewise polynomial on $[a_0, b_0]$ of degree $\leq k-1$, at knots a and b , we take $f(a) = s(a)$, and $f(b) = s(b)$. Then there exist s_1 is convex polynomial on $[a, b]$ of degree $\leq k-1$, satisfying

- (1) $s'(a+) \leq s_1'(a+), s_1'(b-) \leq s'(b-)$.
- (2) $f[a, a_1] = k_a \leq s_1'(a+), s_1'(b-) \leq k_b = f[b, b_1]$.
- (3) $s_1(a) = f(a), s_1(b) = f(b)$.
- (4) $\|f-s_1\|_{LP[a,b]} \leq c(p,m)\|f-s\|_{LP[a_0,b_0]}$

Proof:

Suppose that $f(a) = f(b)$. If S be constant on interval $[a, b]$, put $s_1(x) = s(x)$, for each $x \in [a, b]$. Otherwise let $s(b) = s(a)$ and s is convex, such that $s''(b-) > 0 > s'(a+)$. let

$$\lambda = \min\{\frac{k_b}{s'(b-)}, \frac{k_a}{s'(a+)}\} \geq 0.$$

If $\lambda \geq 0$, then put $s_1(x) = s(x)$, for each $x \in [a, b]$. Otherwise < 0 , suppose that $\lambda = \frac{k_b}{s'(b-)} < 0$. Then assume $s_1(x) = s(a) + \lambda(s(x) - s(a))$, for each $x \in [a, b]$, since s_1 is convex polynomial on $[a, b]$ of degree $\leq k-1$. We get (1), (2) and (3) from Lemma 2.5.

Let $x_1 = \sup\{s'(x) \leq 0: x \in (a, b)\}$, and $0 = s(b) - s(a) = \int_a^b s'(x) dx$, so that

$$\|s - s_1\|_{LP[a,b]} = \int_{x_1}^a s'(x) dx = \int_{x_1}^b s'(x) dx \leq (b-a)s'(b-)$$

Then by Lemma 2.4.,

$$\begin{aligned} \|s - s_1\|_{LP[a,b]} &= \|s(x) - s(a) - \lambda(s(x) - s(a))\|_{LP[a,b]} \\ &= (1-\lambda)\|s - s(a)\|_{LP[a,b]} \leq (1-\lambda)s'(b-)(b-a) \\ &= (1-\lambda)s'(b-)(b_0-b) \\ &\leq c(p,m)\|f-s\|_{LP[b,b_0]} \end{aligned}$$

Hence

$$\begin{aligned} \|f-s_1\|_{LP[a,b]} &= \|f-s+s-s_1\|_{LP[a,b]} \leq C(p)\|f-s\|_{LP[a,b]} + \|f-s_1\|_{LP[a,b]} \\ &\leq c(p)\|f-s\|_{LP[a_0,b_0]} \end{aligned}$$

The proof of Lemma 2.6 is complete ■

2.7. Lemma [6]:

Let $a < b < b_1$, $\tilde{m} = \frac{b-a}{b_1-b}$, and $f \in \Delta_{[a,b_1]}^2$, and suppose that $s \in \Delta_{[a,b_1]}^2$ is a piecewise polynomial of degree $\leq k-1$ with knot b , satisfying $f(a) = s(a)$ and $f(b) = s(b)$. Then, there is a polynomial $s_1 \in \Delta_{[a,b]}^2$ of degree $\leq k-1$, such that

- (1) $s_1'(b-) \leq s'(b-)$,
- (2) $s_1'(b-) \leq k_b = f[b, b_1]$,
- (3) $s_1(a) = f(a), s_1(b) = f(b)$,

Symmetrically, let $a_1 < a < b$, and $f \in \Delta_{[a_1,b]}^2$, and suppose that $s \in \Delta_{[a_1,b]}^2$ is a piecewise polynomial of degree $\leq k-1$ with knot a , satisfying $f(a) = s(a)$ and $f(b) = s(b)$. Then, there is a polynomial $s_1 \in \Delta_{[a,b]}^2$ of degree $\leq k-1$, such that

- (1) $s_1'(a+) \leq s'(a+)$,
- (2) $f[a, a_1] = k_a \leq s_1'(a+)$,
- (3) $s_1(a) = f(a), s_1(b) = f(b)$,

2.8. Lemma:

Suppose $a < b < b_0$, and f be convex polynomial on $[a, b_0]$ of degree $\leq k-1$, and assume S be convex a piecewise polynomial on $[a, b_0]$ of degree $\leq k-1$ at the knot b , put $f(a) = s(a)$, $f(b) = s(b)$. Then, there exist s_1 convex polynomial on $[a, b]$, of degree $\leq k-1$, satisfying

- (1) $s_1'(b-) \leq s'(b-)$,
 - (2) $s_1'(b-) \leq k_b = f[b, b_0]$,
 - (3) $s_1(a) = f(a), s_1(b) = f(b)$,
 - (4) $\|f-s_1\|_{LP[a,b]} \leq c(p,m)\|f-s\|_{LP[a,b_0]}$
- suppose $a_0 < a < b$, $\tilde{m} = \frac{b-a}{a-a_0}$, and f convex polynomial on $[a_0, b]$ of degree $\leq k-1$ at knot a , we put $f(a) = s(a)$, $f(b) = s(b)$. Then, there exist s_1 convex polynomial on $[a, b]$ of degree $\leq k-1$, satisfying
- (1) $s_1'(a+) \leq s'(a+)$,
 - (2) $f[a, a_1] = k_a \leq s_1'(a+)$,
 - (3) $s_1(a) = f(a), s_1(b) = f(b)$,
 - (4) $\|f-s_1\|_{LP[a,b]} \leq c(p,m)\|f-s\|_{LP[a_0,b]}$

Proof:

We prove the first case and the second case is symmetric.

By Lemma 2.7., we get (1).

And prove (2) by Lemma 2.6,

$$\begin{aligned} \|f-s_1\|_{LP[a,b]} &= \|f-s(a) - \lambda(s(x) - s(a))\|_{LP[a,b]} \\ &\leq c(p)\|f-s\|_{LP[a,b]} + c(p)\|s-f(a)\|_{LP[a,b]} \\ &\leq c(p,m)\|f-s\|_{LP[a,b_0]} \blacksquare \end{aligned}$$

2.9. Proposition [7]:

Let $k \geq 1$ and $r \geq 1$, be integers such that either $r \geq 2$ or $2 \leq k+r \leq 3$. Then for each $f \in L_{P[-1,1]}^{(r)} \cap \Delta_{[-1,1]}^2$ there exist piecewise polynomials $s_1, s_2 \in \Delta_{[-1,1]}^2 \cap L_{P[-1,1]}$ of degree $\leq k+r-1$ such that s_1 has n equidistant knots, and satisfies

$$\|f - s_1\|_{LP[-1,1]} \leq \frac{c(p,k,r)}{n^r} \omega_k(f^{(r)}, \frac{1}{n}; [-1,1]) (1)$$

and s_2 has knots on the Chebyshev partition, and satisfies

$$\|f - s_2\|_{LP[-1,1]} \leq \frac{c(p,k,r)}{n^r} \omega_k(f^{(r)}, \frac{1}{n}; [-1,1]) (2)$$

Moreover, s_1 and s_2 interpolate f at the respective knots.

As a direct consequent of Lemma 11 in [2], p.167, we get the following :

2.10. Lemma:

Assume $B > 1$ and $\max_{0 < i < j \leq n} \frac{(j-i)(x_{i+1}-x_i)}{x_j-x_i}$.

Then for each step-function $g(x) = \sum_{j=1}^{n-1} \alpha_j (x - x_j)_+^0$, for each $x \in [a, b]$, where $\alpha_j \geq 0$, there is a polygonal-line $p(x) = \sum_{j=1}^{n-1} \frac{\beta_j}{(x_{i+1}-x_i)} (x - x_j)_+$. Satisfying $|\beta_j| < \frac{\alpha_j}{B}$, $j = 1, 2, 3, \dots, n-1$. (3)

And

$$\|g(x) - p(x)\|_{LP[a,b]} \leq 8 \mu A B (4)$$

where

$$A = \max_{j=1,2,\dots,n-1} \alpha_j.$$

The following auxiliary Lemma is an improvement of Lemma introduced by D. Leviatan, and A.V. Prymark [Lemma 12, p.167], and it can be proved in the same way and get.

2.11. Lemma:

Given the partition $x_0 < x_1 < x_2 < \dots < x_n$, and the sequence $\delta_1, \delta_2, \dots, \delta_{n-1}$ are nonnegative-numbers, such that

$\delta_j \leq \frac{1}{(x_{j+1}-x_{j-1})^2} \Omega$, $1 \leq j \leq n-1$, with Ω is a positive-constant. Then there is a piecewise polynomial q of degree ≤ 3 , at the knots x_1, x_2, \dots, x_{n-1} , such that $q \in L_{P[a,b]}^{(1)}$,

$$q''(x_j+) - q''(x_j-) = -\delta_j, \quad j=1, 2, 3, \dots, n-1 (5)$$

$$q \in \Delta_{(j-1, x_j)}^3 \cap L_p(x_{j-1}, x_j), \quad j=1, 2, 3, \dots, n (6)$$

$$\|q\|_{LP[a,b]} \leq c(p, m, \mu) \Omega (7)$$

where $c(p, m, \mu)$ is constant depending on m and μ , $\mu = \max_{0 < i < j \leq n} \frac{(j-i)(x_{i+1}-x_i)}{x_j-x_i}$ and $c(p, m, \mu) = \max_{1 \leq j \leq n-1} \left\{ \frac{x_{j+1}-x_j}{x_j-x_{j-1}}, \frac{x_j-x_{j-1}}{x_{j+1}-x_j} \right\}$

2.12. Lemma [8]:

Let $f \in L_p[a,b]$, $0 < p < \infty$. Then there exist q_{k-1} a polynomial of degree $\leq k-1$, such that $\|f - q_{k-1}\|_{L_p[a,b]} \leq c \omega_k(f, b-a, [a,b])_p$.

2.13. Lemma [8]:

Let P be a piecewise polynomial of degree $\leq k$, such that

$$\|P_k^{(s)}\|_{L_p[a,b]} \leq c k^s \|P_k\|_{L_p[a,b]}$$

where c is a constant and s is the order of derivative.

3. The main result

In this section we introduce our main theorems.

3.1.Theorem:

Let $\in \Delta_{[a,b]}^2 \cap L_p[a,b]$, for $p < 1$, with the partition $x_{-1} = a = x_0 < x_1 < x_2 < \dots < x_n = b = x_{n+1}$, and $k \geq 2$. Then for all convex piecewise polynomial S on interval $[a,b]$ of degree $\leq k-1$, at the knots x_j and $j = 1, 2, 3, \dots, n-1$, there exist s_1 is a convex a piecewise polynomial on interval $[a,b]$ of degree $\leq k-1$ at the knots x_j and $j = 1, 2, 3, \dots, n-1$, satisfying

$$(1) f(x_j) = s_1(x_j), \text{ and } j = 0, 1, \dots, n \quad [1]$$

$$(2) \|f - s_1\|_{L_p[x_{j-1}, x_j]} \leq c(p, m) \|f - s\|_{L_p[x_{j-2}, x_{j+1}]}$$

where $c(p, m)$ be constant depended on p and m , and $m = \max_{1 \leq j \leq n-1} \left\{ \frac{x_{j+1}-x_j}{x_j-x_{j-1}}, \frac{x_j-x_{j-1}}{x_{j+1}-x_j} \right\}$

Proof:

Let

$l_u(.) = L(.; x_{u-1}, x_u)$, $u = 0, 1, \dots, n+1$. Assume $A \subset \{1, 2, 3, \dots, n\}$ is the set of each, such that $s'(x_{i-1}+) \leq l_i' \leq s'(x_i-)$. For each $\notin A$, satisfying

$s_i(x) = l_i(x)$, $x \in [x_{i-1}, x_i]$. By using Lemma 2.8.

$$\|f - s_i\|_{L_p[x_{i-1}, x_i]} \leq c(p) \|f - s\|_{L_p[x_{i-2}, x_{i+1}]} \quad (8)$$

So as to define s_1 on interval $[x_{i-1}, x_i]$, $i \in A$, we first suppose $1 < i < n$, and use the interval $[x_{i-2}, x_{i+1}]$. first Lemma 2.3 and use Lemma 2.6 ,at $a = x_{i-1}$ and $b = x_i$. We achieve the existence a convex polynomial s_1 on $[x_{i-1}, x_i]$, then

$$\|f - s_1\|_{L_p[x_{i-1}, x_i]} \leq c(p) \|f - s\|_{L_p[x_{i-2}, x_{i+1}]} \quad (9)$$

and $f(x_{i-1}) = s_1(x_{i-1})$, $f(x_i) = s_1(x_i)$

Finally, we dealwith the possible that either $i=1$ or $i= n$, and $1, n \in A$. To this suppose $1 \in A$, and the second case $n \in A$ is symmetrically, since $s'(a+) \leq f[a, x_1] \leq s'(x_1-)$. Then by using Lemma 2.3 we have a piecewise polynomial

$\tilde{s}_1 \in \Delta_{[a, x_2]}^2$, which f interpolate with a and x_1 . Since $\tilde{s}_1'(x_1-) \leq s'(x_1-)$, then

$$\|\tilde{s}_1\|_{L_p[a, x_2]} \leq c(p) \|f - s\|_{L_p[a, x_2]} \quad (10)$$

We now using Lemma 2.8 and get $s_1 \in \Delta_{[a, x_1]}^2$ of degree $\leq k-1$, which f interpolate with a and x_1 , since $\tilde{s}_1'(x_1-) \leq s'(x_1-)$, then

$$\|f - s_1\|_{L_p[a, x_1]} \leq c(p) \|f - s\|_{L_p[a, x_2]} \quad (11)$$

so , s_1 is a convex and piecewise polynomial –function of degree $\leq k-1$, and $s_1(x_i) = f(x_i)$, $i = 0, 1, 2, \dots, n$, and from (1)-(3) include

$$\|f - s_1\|_{L_p[x_{j-1}, x_j]} \leq c(p, m) \|f - s\|_{L_p[x_{j-2}, x_{j+1}]} \blacksquare$$

3.2. Theorem:

Let F be a 3-monotone function in $L_p[a,b]$, satisfying $f(x) = F'(x)$, for each $x \in (a,b)$, and take $k > 2$, $x_{-1} = a = x_0 < x_1 < \dots < x_n = b = x_{n+1}$ be partition for the interval $[a,b]$. Also let s be convex a piecewise polynomial on $[a,b]$ of degree $\leq k-1$, at knots x_j , $j = 1, 2, \dots, n-1$, then , there is a piecewise polynomial 3-monotone P in $L_p[a,b]$

of degree $\leq k$ at the same knots, satisfying

$$\|F - P\|_{L_p[a,b]} \leq c(p, m) \|f - s\|_{L_p[x_{i-2}, x_{i+1}]}$$

where $c(p, m)$ is constant depended on p and m ,and $m = \max_{1 \leq j \leq n-1} \left\{ \frac{x_{j+1}-x_j}{x_j-x_{j-1}}, \frac{x_j-x_{j-1}}{x_{j+1}-x_j} \right\}$

Proof :

By using Theorem 3.1 ,and using Theorem 2.3 ,we have

$$\begin{aligned} \|F - P\|_{L_p[a,b]} &\leq \|F - P\|_{L_p[a,b]} + \|P - s_1\|_{L_p[x_{j-1}, x_j]} \leq c(p) \\ \|f - s\|_{L_p[x_{i-1}, x_i]} + c(p) \|f - s\|_{L_p[x_{j-2}, x_{j+1}]} \\ &\leq c(p, m) \|f - s\|_{L_p[x_{i-2}, x_{i+1}]} \blacksquare \end{aligned}$$

3.3.Theorem:

Given the integers $k > 1$ and $r > 0$, such that either $r > 3$, or $3 < k+r \leq 4$, and $(k,r) \neq (4,0)$. Then for all $\in L_p^{(r)}[-1,1] \cap \Delta_{[-1,1]}^3$, there exist 3-monotone a piecewise polynomials S_1 and S_1 on $[-1,1]$ of degree $\leq k+r-1$, such that

$$\|F - S_1\|_{L_p[-1,1]} \leq \frac{c(p, k, r)}{n^r} \omega_k(F^{(r)}, \frac{1}{n}; [-1, 1]) \quad (12)$$

Where S_1 has n equal –distant knots.

And such that

$$\|F - S_2\|_{L_p[-1,1]} \leq \frac{c(p, k, r)}{n^r} \omega_k^*(F^{(r)}, \frac{1}{n}; [-1, 1]) \quad (13)$$

Where S_2 has n knot on chebyshev partition.

Proof :

We prove the first case and the second case is symmetrically.

Byusing Theorem 3.2

$$\|F - P\|_{L_p[a,b]} \leq c(p, m) \|f - s\|_{L_p[x_{i-2}, x_{i+1}]}$$

andalso we have ,

$$\begin{aligned} \|f - s_1\|_{L_p[-1,1]} &\leq \frac{c(p, k, r)}{n^r} \omega_k(F^{(r)}, \frac{1}{n}; [-1, 1]) \\ \text{Hence ,} \end{aligned}$$

$$\begin{aligned} \|F - S_1\|_{L_p[-1,1]} &\leq c(p, m) \|f - s\|_{L_p[x_{i-2}, x_{i+1}]} + \frac{c(p, k, r)}{n^r} \omega_k(F^{(r)}, \frac{1}{n}; [-1, 1]) \\ &\leq \frac{c(p, k, r)}{n^r} \omega_k(F^{(r)}, \frac{1}{n}; [-1, 1]) \blacksquare \end{aligned}$$

3.4. Theorem:

Let S be a 3-monotone a piecewise polynomial in $L_p[a,b]$, $P < 1$, of degree $\leq k$ and $k > 3$, at knots $x_{-1} = a = x_0 < x_1 < x_2 < \dots < x_n = b = x_{n+1}$. Then there exist a piecewise polynomial S_1 of degree $\leq k$ at the knots $x_{-1} = a = x_0 < x_1 < x_2 < \dots < x_n = b = x_{n+1}$, such that $S_1 \in \Delta_{[a,b]}^3 \cap L_p^{(2)}[a,b]$, for $P < 1$.And

$$\|S - S_1\|_{L_p[a,b]} \leq c(p, k, m, \mu) \omega_{k+1}(S, (x_{j+1} - x_{j-1}); [x_{j-1}, x_{j+1}]) \quad (14)$$

Where $c(p, k, m, \mu)$ is a constant depending on p, k, m and $m =$

$$\max_{1 \leq j \leq n-1} \left\{ \frac{x_{j+1}-x_j}{x_j-x_{j-1}}, \frac{x_j-x_{j-1}}{x_{j+1}-x_j} \right\}, \text{ and } \mu = \max_{0 < i < j \leq n} \frac{(j-i)(x_{i+1} - x_i)}{x_j - x_i} \quad (15)$$

Proof :

Let $\delta_j = S''(x_j+) - S''(x_j-)$, $j = 1, 2, \dots, n-1$. Since S be a 3-monotone function in $L_p[a,b]$ for $P < 1$, on interval $[x_0, x_n]$, $\delta_j \geq 0$, $1 \leq i \leq n-1$. By Lemma 2.12 there exist polynomial U_k of degree $\leq k$, such that

$$\|S - U_k\|_{L_p[x_{j-1}, x_j]} \leq c(p, k) \omega_{k+1}(S, (x_{j+1} - x_{j-1}); [x_{j-1}, x_{j+1}])_{L_p}$$

This transition by Lemma2.13,

$$\|U_k'' - S''\|_{L_p[x_{j-1}, x_j]} \leq \frac{c(p, k)}{(x_{j+1} - x_j)^2} \omega_{k+1}(S, (x_{j+1} - x_{j-1}); [x_{j-1}, x_{j+1}])_{L_p}$$

Thus,

$$\delta_j \leq \frac{c(p, m, k)}{(x_{j+1} - x_j)^2} \omega_{k+1}(S, (x_{j+1} - x_{j-1}); [x_{j-1}, x_{j+1}])$$

Let

$$\Omega = c(p, m, k) \omega_{k+1}(S, (x_{j+1} - x_{j-1}); [x_{j-1}, x_{j+1}])$$

And by Lemma 2.11 to get the apiecewise-polynomial . The set $S_1(x) = S(x) + g(x)$, for each $x \in [x_0, x_n]$. Clearly ,apiecewise-polynomial S_1 of degree $\leq k$ at knots x_0, x_1, \dots, x_n ,such that

$$S_1''(x_j-) = S_1''(x_j+), \quad j = 1, 2, \dots, n-1, \quad (16)$$

so that $S_1 \in L_p^{(2)}[a,b]$.Also, since $S \in \Delta_{[x_0, x_n]}^3 \cap L_p$

[a,b] for $P < 1$, by (6) that S_1'' be nondecreasing in (x_{j-1}, x_j) , $1 \leq j \leq n$. Combine with (16), and that S_1'' be non decreasing on (x_{j-1}, x_j) , so as to S_1 is 3-monotone function on $[a,b]$. At last, (14) from (7). This completes the proof. ■

References

- [1] K. A. Kopotun, Approximation of k -monotone functions, *J. Approx. Theory* 94, 481-493, (1998).
- [2] E. S. Bhaya, R. R. Mohsin, Approximation of 3-monotone functions by 3-monotone functions in l_p -spaces, *J. Kufa for Math. And computer* vol.1, No.1, April, pp.54-64, (2010).
- [3] E.S. Bhaya, M. S. Al-Muhja, k -monotone approximation in l_p -spaces, *J. Kufa for Math. And computer* vol.1, No.1, April, pp.98-103, (2010).
- [4] G. A. Dzyubenko, K. A. Kopotun, A. V. Prymak, Three-monotone spline approximation, *J. Approx. Theory* 162:2168-2183, (2010).
- [5] A. Bondarenko, D. Leviatan, A. Prymak, Pointwise estimates for 3-monotone approximation, *J. Approx. Theory* 164:1205-1232, (2012).
- [6] D. Leviatan, A. V. Prymak, On 3-monotone approximation by piecewise polynomials, *J. Approx. Theory* 133:147-172, (2005).
- [7] R. A. DeVore, Y. K. Hu, D. Leviatan, convex polynomial and spline approximation in l_p , $0 < p \leq \infty$, *Constr. Approx.* 12:409-422, (1996).
- [8] K. A. Kopotun, Whitney Theorem of Interpolatory Type for k -Monotone Functions, *Constr. Approx.* 17: 307-317, (2001).

Evaluation of Irrigation Water Quality Status of New Hussaini-yah Canal in Karbala City, Iraq

Aysar Tuama Al-Awadi.

Eng. Affairs Dept., Presidency of Kerbala, University of Kerbala, Iraq.

Received Date: 23 / 5 / 2016

Accepted Date: 22 / 8 / 2016

الخلاصة

تعتبر عملية تقييم نوعية مياه الري واحدة من اهم الامور الواجب مراعاتها في ادارة المشاريع الاروائية لما لذلك من تأثير على الواقع الزراعي والاروائي وكذلك انتاج المحاصيل. في هذا البحث تم تقييم نوعية مياه الري في قناة الحسينية الجديدة من خلال مراقبة اربع محطات على طول القناة ولمدة سنه كاملة خلال العام (2015) وفقاً لـ(12) متغير لتصبح عدد الاختبارات الكلية (48) اختبار. شملت الفحوصات العناصر: الموصولة الكهربائية، الرقم الميدروجيني، الاملاح الذائبة الكلية، ايونات الصوديوم، نسبة امتصاص الصوديوم، نسبة ذوبان الصوديوم، الاملاح الكبريتية، ايونات للكالسيوم، ايونات المغسيوم، ايونات البوتاسيوم، ايونات الكلوريدات، والقلوية. توزع المحطات المختارة ابتداء من بداية القناة و حتى نهايتها و قمت تسميتها حسب الاي (الصلامية، الابراهيمية، القنطرة البيضاء والصافي). تم استخدام الطريقة الكنديه لتقدير نوعية مياه الري في القناة وبواقع مؤشر نوعية لكل اربعه اشهر على مدار السنه ولكل محطة. اظهرت النتائج بان مؤشر النوعية لمياه الري في القناة يقع ضمن المستوى المنصف او المقبول لمحطات الصلامية، الابراهيمية، القنطرة البيضاء، في حين كانت بين المستوى المنصف الى القريب من الحد الادنى للمتطلبات في محطة الصافي. وهذا يعني ان نوعية مياه الري في القناة لم تكن تتطابق مع الحدود المرغوب بها خلال بعض اوقات فترة الدراسة. مما تقدم في اعلاه ولاجل المحافظه على هذا المصدر المهم يجب ان تقوم الجهات المكلفة بادارة ملف المياه في محافظة كربلاء بمراقبة نوعية مياه الري وكذلك تقليل منابع التلوث من اجل المحافظه على هذا المصدر المهم .

الكلمات المفتاحية

نوعية مياه الري، قناة الحسينية الجديدة، مؤشر نوعية المياه الكندي، كربلاء، العراق.

Abstract

The assessment of irrigation water quality is a standout amongst the most critical variables that ought to be considered in irrigation projects management, because it has a huge impact on agriculture growth and production. This study has assessed the irrigation water quality status of new Hussainiyah canal in Karbala city, Iraq. Twelve water quality parameters with regard to four observing stations during the year 2015 were surveyed. The 48 samples were tested for, Electric Conductivity, pH value, Total Dissolved Solids, Sodium, Sodium Absorption Ratio, Soluble Sodium Percentage, Sulphate, Calcium, Magnesium, Potassium, Chloride and Alkalinity(EC, PH, TDS, Na, SAR, SSP, SO4, Ca, Mg, K, Cl and Alk). These stations were scattered along the new Hussainiyah canal from upstream to downstream and named as (Salamiyah, Abrahimiyah, QuntaraBedah and Safie). Canadian Water Quality Index (CWQI) technique was applied to make the assessment according to regular time variations(every four months for each station). The results indicated that the irrigation water quality of new hussainiyah canal was in fair conditions for stations, Salamiyah, Abrahimiyah and Quntara Bedah, while it was marginal to fair conditions for Safie station. Also, the conditions of the quality for irrigation water in the canal were not match the eligible levels for some times at the period of study. Regular monitoring for irrigation water quality status and reducing the pollution roots should be adopted from water resources authorities in province of Karbala to pre save that valuable artery source of water.

Keywords

irrigation water quality, new Hussainiyah canal, Canadian Water Quality Index (CWQI), Karbala city, Iraq.

1. Introduction

The status of irrigation water quality, does not get yet the significant priority from water resources authorities in many water sheds area around the world. Absence of data and monitoring about the irrigation water quality in many irrigation projects in Iraq, caused many problems in agriculture productions. This issue might be controlled by comprehension the irrigation water quality data. Water quality index (WQI) is one of simplified tools which converts the complex measurements into easy applicable number. This tool can be used as an effective way to assess the "irrigation water quality" by managers and decision makers of irrigation projects. The main idea of WQI is based on the rule of matching water quality parameters with respect to most commonly standards. Many researchers have been used the WQI to evaluate and monitor the condition of "irrigation water quality". Nabaa Hadi [1], compared the results of applications of the Canadian and Bharagava methods to evaluate irrigation water quality status in Tigris River in Amara region. The results showed that there "was no big difference between two methods and the status of quality of irrigation water was in fair state". Abdulkider [2], assessed water quality of al Husseinieh canal for irrigation purpose in Karbala city using the developed Brazilin model. It was found that "the irrigation water quality was suited to irrigate soils with light texture". Udai Jahan [3], evaluated the water quality index for irrigation in north of Hilla using the Canadian

and Bharagava methods. The results of study showed "bad condition of quality at the downstream and nearly al Kifil station". Bashar AL-Sabah [4], evaluated the water quality index of Tigris River for irrigation use in southern of Iraq in Amara city and it was found "the quality of river within permissible limits". Layla Saleh,[5], assessed the irrigation water quality for al Kifil channel by Brazilin model and found "low restriction limit for soils with light texture". The main goal of this research is to evaluate the irrigation water quality of new hussainiyah canal in Karbala city with respect to (12) parameters (EC, PH, TDS, Na, SAR, SSP, SO4, Ca, Mg, K, Cl and Alk) using (CWQI) at main four stations along the canal. The research focused on evaluation the status with respect to the variation in time period for each station. Four months step was adopted to assess the quality of irrigation in the canal along the period of study.

2. Materials and Methods

2.1. Study Area

The study area is located between latitudes (N 36° 00' to 36° 19') and longitudes (E 41° 01' to 42° 85 '), Fig. (1).The new Hussainiyah canal length is about (27) Km lined with concrete and the irrigated area is close to (23) thousand hectares. During the last ten years, the maximum discharge was about (23.63) while the minimum was near (4.2.) Al Mu-sayyib town represents the north border to the canal, while the entrance of Karbala city (Bab Baghdad) is the south border. The main

regulator of the canal is Al-Hindiah barrage with maximum design discharge nearly (50) m³/sec [6]. Generally, the climate is cold and wet in winter, while it is dry in summer. In

this study, four stations were selected from upstream to downstream along the canal to assess the irrigation water quality.

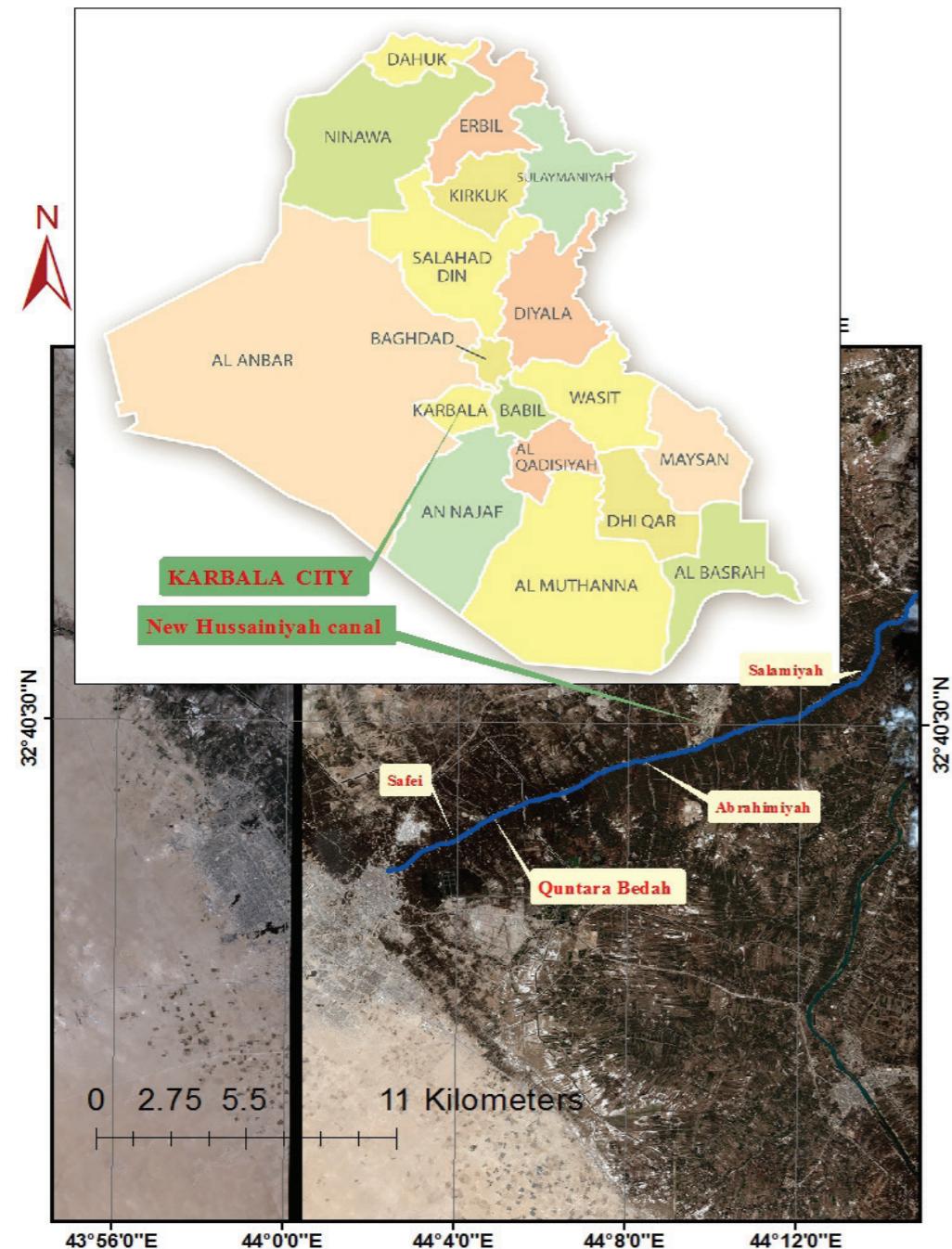


Fig.(1): Location map of the study area

Table (1): Location with respect to latitudes and longitudes for the stations.

ID	Stations	latitudes	longitudes
1	Salamiyah	06 '36°18	94 '76 42°
2	Abrahimiyah	02 '36°14	25 '93 41°
3	QuntaraBedah	76'11 36°	25 '31 41°
4	Al-Safie	62 '10 36°	51 '17 41°

2.2. Testing and Analysis

The (48) water samples were collected from the four monitoring stations along new Hussainiyah canal during the period (January to December 2015). Samples were taken with cooperation of water resources authorities in Karbala city. Polyethylene containers were used to collect the water for each station at the area of study. Samples were analyzed for chemical and physical parameters immediately after collection at the mid-month during the morning. These parameters are (12) parameters (EC, PH, TDS, Na, SAR, SSP, SO₄, Ca, Mg, K, Cl and Alk). The standard method for test water was followed to examine the samples, [7].

2.3. Application and Calculation of CWQI

The Canadian Water Quality Index model was adopted to evaluate the irrigation water quality for the area of study. The model considers a standout amongst the most ordinarily utilized procedure to evaluate water quality. The counts of list rely on upon three components with scale from 0 to 100 and need to

characterize the variables and the target for water tests. The first factor called the scope (F_1), which represents the rate of variables that don't coordinate their targets and can be computed utilizing the following equation, [8]:

$$F_1 \left(\frac{\text{Number of failed parameter}}{\text{Total number of parameters}} \right) * 100 \dots\dots\dots 1$$

The second component named as recurrence (F_2), which represents the fizzled tests and can be characterized as the rate of individual tests that don't meet destinations. The recurrence (F_2) can be computed utilizing the following equation, [8]:

$$F_2 \left(\frac{\text{Number of failed tests}}{\text{Total number of tests}} \right) * 100 \dots\dots\dots 2$$

The third element called the abundance (F_3), which can be defined as the degree (outing) to which the fizzled test surpasses the rule. The computations of this component rely on upon three stages, the first and the second represent the excursions and their normalized sum (nse), which can be estimated as the following, [8]:

$$\text{"Excursions} = \left(\frac{\text{failed test value}}{\text{guideline value}} \right) - 1 \right) \dots\dots\dots 3$$

$$\text{"nse} = \left(\frac{\sum \text{excursion}}{\text{Total number of tests}} \right) = \dots\dots\dots 4$$

At the third step can be estimated as fol-

lowing:

$$"F_3 = \left(\frac{nse}{0.01nse + 0.001} \right) \text{''}$$

Finally the CWQI has been calculated according to the following equation:

$$\text{“CWQI} = 100 - \sqrt{\frac{F_1^2 + F_2^2 + F_3^2}{1.732}}, \dots \quad 6$$

In general, the CWQI is ranged from 0 to 100. The classification of water quality based on five intervals graduated from poor to excellent. In between values of CWQI represent the intervals marginal, fair and good respectively. Table (2), shows the categorization of CWQI, [8].

Table (2): the classification of CWOI, [8 and 9].

Rank	CWQI	Notes
Excellent	95-100	All measurements are within the objectives" "virtually all of the time
Good	80-94.9	Conditions rarely depart from natural or de-" "sirable levels
Fair	65.9-79.9	Conditions sometimes depart from natural or" "desirable levels
Marginal	45-64.9	Conditions often depart from natural or desir-" "able levels
Poor	0-44.9	Conditions usually depart from natural or" "desirable levels

In this study CWQI was estimated for the selected stations according to regular time variations during the year 2015 and the eval-

ation was made every four months for each station. The objectives values that used in the study can be elaborated in Table (3).

Table (3):The objective values that used in estimation CWQI for stations.

Parameters	Units	Objective Values	References
PH		6.5-8.4	[9] and [10]
Total Dissolved Solids (TDS)	(mg/l)	1225.00	[10] and [11]
Electric Conductivity (EC)	ds /m	1.85	[9] and [10]
Sodium (Na)	(mg/l)	70.00	[10] and [12]
SAR	Percentage value	9.00	[10] and [12]
SSP	Percentage value	40.00	[10] and [12]

Sulphate(SO_4)	(mg/l)	240.00	[12] and [13]
Calcium (Ca^{+2})	(mg/l)	120.00	[13]
Magnesium (Mg^{+2})	(mg/l)	40.00	[13]
Potassium (K^+)	(mg/l)	10.00	[12]
Chloride (Cl)	(mg/l)	100.00	[10] and [12]
Total alkalinity	(mg/l)	150.00	[12] and [13]

3. Results and Discussion

the most widely recognized parameters used to evaluate the irrigation water quality according maximum breaking points. This study also, considered the important factors that effect on sodium hazard and toxicity hazard which can be represented in Sodium Absorption Ratio(SAR) and Soluble SodiumPercentage(SSP).SAR can be defined as,"ratio of the concentration of sodium to the sum of the concentration of calcium and magnesium in water", while (SSP) can be defined as "the ratio of soluble sodium concentration to the total cation concentration",[\[10\]](#). Generally the high concentration sodium is unfavorable for irrigation water and plant growth, so it's necessary to deal with the restrictions for these remarkable factor. The equations (7 and 8) represent the have been used to calculate the SAR and SSP respectively as following:

$$\text{SAR} = \frac{\text{Na}}{\sqrt{\frac{\text{Ca}^{+2} + \text{Mg}^{+2}}{2}}} \quad \dots \dots \dots \quad 7$$

$$\text{SSP} = \frac{\text{Na}}{\text{Ca}^{+2} + \text{Mg}^{+2} + \text{K}^{+} + \text{Na}} \quad \dots \dots \dots \quad 8$$

Where all the ions should be expressed in meq/L, [\[10\]](#).

The results of statistical parameters for all stations can be seen in Tables (4 to 7). It is very clear from these results, that most of parameters are fallen near the objective limits shown in Table (3). With focusing on the other parameters results for all stations, it is obvious that parameters like [Sodium (Na), Sulphate(SO_4^{2-}), Calcium (Ca^{+2}), Magnesium(Mg^{+2}) and Chloride (Cl^-)] are fallen over the suggested targets. The maximum concentration founded for the parameters mentioned above was (127, 348, 128, 44 and 148) mg/l for [Sodium (Na), Sulphate, Calcium (Ca^{+2}), Magnesium(Mg^{+2}) and Chloride (Cl^-)] in stations Abrahimiyah, Safie, QuntaraBedah respectively. This may reflect the change in irrigation water quality index according to CWQI classification and lead to investigate the status of irrigation quality for that important branch (new Hussainiyah canal). For every four months for each station, the CWQI was estimated. These results can be found in Tables (8 to 10) which contain all effective parameters used to conclude the irrigation water status with respect to selected stations along the canal. By looking through the Table (8), which represents the status con-

cerned from (Jan-Apr), it is clearly seen that the fair status was dominated in all stations. The maximum irrigation water quality index is (72.55) in Salamiyah station, while the minimum is (66.76) with in al Safie station. Table (9), elaborates the status of irrigation water quality in the canal from (May - Aug). From the results shown in the table, the maximum irrigation water quality index is (73.97) in Salamiyah station, while the minimum is (67.10) with in al Abrahimiyah station and the fair status was dominated also. Results shown in Table (10), represent the status concerned from (Sep-Dec). The fair condition was obviously seen in stations: Salamiyah, Abrahimiyah and Quntara Bedah. On the other hand side, marginal status was found in al Safie station with minimum CWQI (63.44), while the maximum was found at Abrahimiyah station with CWQI (75.23) and it is very close to results obtained in Salamiyah station.

These results lead to diagnose that al Sa-

lamiyah station was the best station according to classification of CWQI. The variation in station position along the new Hussainiyah canal and time of sampling during the year with respect to different objective parameters may cause the different in irrigation water quality status. When the results obtained have been compared with the results of Abdulkider, [2] and which classified irrigation water quality of the canal as "low to moderate restriction", it can be diagnosed that the result of this research was near to that range concluded by, [2]. But more focusing on the time step of the study and the new selected stations on the canal may give more comprehensive idea about this important index and that what the research tried to do and dealt with it. The application of CWQI on that important canal in Karbala city is very helpful to assess the state of irrigation quality. Also it is very understandable way to decision makers to get their assessment with respect to schedule plan.

Table (4):Summary of statistical parameters of Salamiyah station.

water quality parameters	unit	Mean	Max	Min	St deva
PH		8.04	8.3	7.9	0.14
Total Dissolved Solids (TDS)	(mg/l)	732	844.00	636.00	62.51
Electric Conductivity (EC)	ds /m	1.15	1.30	1.00	0.12
Sodium (Na)	(mg/l)	91.08	114.00	72.00	12.62
SAR		2.05	2.45	1.71	0.24
SSP		34.51	38.00	31.60	2.43
Sulphate(SO ₄)	(mg/l)	272.71	341.00	220.00	44.69

Calcium (Ca ²⁺)	(mg/l)	86.5	102.00	72.00	10.21
Magnesium (Mg ²⁺)	(mg/l)	35.83	39.00	33.00	2.12
Potassium (K ⁺)	(mg/l)	4.26	5.10	3.50	0.48
Chloride (Cl)	(mg/l)	116.5	142.00	101.00	11.18
Total alkalinity	(mg/l)	121.92	144.00	104.00	11.62

Table (5):Summary of statistical parameters of Abrahimiyah station.

water quality parameters	unit	Mean	Max	Min	St deva
PH		8.00	8.30	7.70	0.19
Total Dissolved Solids (TDS)	(mg/l)	759.83	922.00	656.00	79.50
Electric Conductivity (EC)	ds /m	1.19	1.34	1.01	0.10
Sodium (Na)	(mg/l)	93.25	127.00	78.00	13.97
SAR		2.09	2.70	1.73	0.28
SSP		34.78	39.70	29.40	2.87
Sulphate(SO ₄)	(mg/l)	276.42	334.00	226.00	38.08
Calcium (Ca ²⁺)	(mg/l)	89.67	103.00	75.00	11.55
Magnesium(Mg ²⁺)	(mg/l)	34.92	40.00	30.00	2.87
Potassium (K ⁺)	(mg/l)	4.30	5.40	3.60	0.46
Chloride (Cl)	(mg/l)	119.58	143.00	99.00	12.92
Total alkalinity	(mg/l)	125.08	145.00	112.00	10.53

Table (6):Summary of statistical parameters of QuntaraBedah station.

water quality parameters	unit	Mean	Max	Min	St deva
PH		8.03	8.20	7.80	0.14
Total Dissolved Solids (TDS)	(mg/l)	713.83	838.00	622.00	73.30
Electric Conductivity (EC)	ds /m	1.13	1.31	1.00	0.12
Sodium (Na)	(mg/l)	88.42	116.00	75.00	12.01
SAR		1.98	2.53	1.74	0.24
SSP		33.54	38.84	30.14	2.45

Sulphate(SO ₄)	(mg/l)	266.5	334.00	218.00	38.28
Calcium (Ca ⁺²)	(mg/l)	86.83	104.00	72.00	11.18
Magnesium(Mg ⁺²)	(mg/l)	36.92	44.00	30.00	3.75
Potassium (K ⁺)	(mg/l)	4.18	4.90	3.60	0.44
Chloride (Cl)	(mg/l)	118	148.00	96.00	15.10
Total alkalinity	(mg/l)	124.67	142.00	112.00	10.28

Table (7):Summary of statistical parameters of Al-Safie station.

water quality parameters	unit	Mean	Max	Min	St deva
PH		8.06	8.20	7.80	0.11
Total Dissolved Solids (TDS)	(mg/l)	747.17	882.00	642.00	75.62
Electric Conductivity (EC)	ds /m	1.18	1.38	1.00	0.14
Sodium (Na)	(mg/l)	89.08	112.00	72.00	12.64
SAR		1.97	2.40	1.50	0.28
SSP		32.97	37.86	25.31	3.60
Sulphate(SO ₄)	(mg/l)	283	348.00	237.00	41.64
Calcium (Ca ⁺²)	(mg/l)	94.08	128.00	77.00	14.89
Magnesium(Mg ⁺²)	(mg/l)	35.83	42.00	24.00	4.86
Potassium (K ⁺)	(mg/l)	4.23	5.20	3.20	0.63
Chloride (Cl)	(mg/l)	122	142.00	104.00	11.66
Total alkalinity	(mg/l)	125	144.00	108.00	12.55

Table (8): State of irrigation water quality for stations from (Jan-Apr).

Stations Related factors	Salamiyah	Abrahimiyah	QuntaraBedah	Al-Safie
F1	25.00	25.00	33.33	33.33
F2	25.00	25.00	27.10	27.10
excursion	3.92	4.50	3.52	4.10

nse	0.08	0.09	0.073	0.09
F3	7.41	8.30	6.80	8.26
WQI (Jan-Apr)	72.55	72.40	66.95	66.76
State of irrigation water quality	Fair	Fair	Fair	Fair

Table (9): State of irrigation water quality for stations from (May - Aug).

Stations Related factors	Salamiyah	Abrahimiyah	QuntaraBedah	Al-Safie
F1	25.00	33.33	33.33	25.00
F2	22.92	27.10	22.92	25.00
excursion	2.30	2.64	2.25	2.70
nse	0.05	0.06	0.05	0.06
F3	4.80	5.70	4.76	5.70
WQI (May - Aug)	73.97	67.10	69.10	72.80
State of irrigation water quality	Fair	Fair	Fair	Fair

Table (10): State of irrigation water quality for stations from (Sep-Dec).

Stations Related factors	Salamiyah	Abrahimiyah	QuntaraBedah	Al-Safie
F1	25.00	25.00	33.33	41.70
F2	20.83	20.83	22.92	25.00

excursion	1.14	1.10	1.04	1.44
nse	0.02	0.02	0.02	0.03
F3	1.96	1.96	1.96	2.91
WQI (Sep-Dec)	75.22	75.23	69.23	63.44
State of irrigation water quality	Fair	Fair	Fair	Marginal

4. Conclusions:

The overall results of CWQI for stations along new Hussainiyah canal during the period of study, ranked from (63.44 to 75.23). According to these results the quality of irrigation water can be classified as marginal to fair status with clearly domination to fair state. Fair conditions were obtained for stations, Salamiyah, Abrahimiyyah and Quntara Bedah, while it was marginal to fair condition for Safie station. These results lead to conclude that the quality of irrigation water was not match the desirable level during some times of the period of study. More efforts should be considered from governorate of Karabala to pre save irrigation water quality with acceptable levels along this important canal. The reduce of pollution sources and monitoring for different control points is very important steps that should be taken from irrigation water authority in Karbala city to keep that valuable source and maintain the agriculture production with in safe level.

5. References:

- [1] NabaaHadi. "Comparison between the results of applications of the Canadian and Bhargava methods for irrigation water quality index at multi locations in Tigris River. (A Case Study of Al-amarah Region)", Journal of KarbalaUniversity, Vol. (10), No. (4),(2012).
- [2] Abdulkider Aziz Mutasher. "Assessment of Water Quality of al-Husseinieh River / Karbala Governorate/ Iraq for Irrigation Purpose by Using Water Quality Index"Journal of AL- Taqani,Vol. (26), No (5),(2013).
- [3] UdaiJahad. "Evaluation of Water Quality Index for Irrigation in North Hilla City by Using Canadian and Bhargava methods", Journal of Babylon University/ Engineering Sciences, Vol. (22), No (2),(2014).
- [4] Bashar ALSabah. "Evaluation of Water Quality Index of Tigris River for irrigationpurposes in Amara city, Southern Iraq", Journal of Kufaa University for Agricultural Sciences, Vol. (6), No (4),(2014).
- [5] Layla Saleh. " Assessment of Irrigation Water Quality for Al-Kifil River in Al-Hindya City", Journal of Babylon University/ Engineering Sciences, Vol. (1), No (24),(2016).
- [6] Ministry of Water Resources, Center of Studies and Design, "Unpublished Data about Al-Hussainiyah irrigation project in Karbala city during (1970 to 2015) ", Iraq, (2015).
- [7] APHA, AWWA and WEF, "Standard Methods for Examination of Water andWastewater", 21st Edition, American Public Health Association, Washington DC,(2005).
- [8] Canadian Council of Ministers of the Environment (CCME). "Canadian water quality guidelines for the protection of Aquatic life": CCME Water Quality Index 1.0. Technical Report. Canadian Council of Ministers of the Environment, Winnipeg, MB,Canada,(2001).
- [9] Al Obaidy Abdul Hameed,Eman S. Awad,Abbas J. Kadhem and Athmar A. Al Mashhad, "Evaluating Water Quality of Mahrut River, Diyala, Iraq for Irrigation",Eng. & Tech.Journal, Vol. (33),Part (A), No. (4), (2015).
- [10] R. S. Ayers and D. W. Westcot, "Water Quality for Agriculture",Irrigation and Drainage Paper No. 29, FAO,Rome, (1985).
- [11] Rahi, K.A. and Halihan, T., "Changes in the Salinity of the Euphrates River System in Iraq". Regional Environment Change, Vol. 10, No. 1, pp. 27-35,(2010).
- [12] US Salinity Laboratory, "Diagnosis and Improvement of Saline and Alkaline Soils," Department of Agriculture, Handbook No. 60, , p. 160,(1954).
- [13] <http://www.spectrumanalytic.com>, "Guide to Interpreting Irrigation Water Analysis", Technical Paper, Accessed, 20 Jan, (2016).

Development of Simulation Model for Calculating Radiation Dose Used to Treat Lung Malignant Cells with The aid of Nanoparticles

Nihad A. Saleh*and Talib A. Abdul Wahid**

*physics department, Faculty of science, University of Babylon

** physics department, Faculty of science, University of kufa.

Received Date: 6 / 11 / 2016

Accepted Date: 16 / 1 / 2017

الخلاصة

هذه الدراسة تركز على تحسين كفاءة العلاج الاشعاعي من خلال تحسين معدل التحسس الاشعاعي (SER). في هذه الدراسة الزيادة في معدل التحسس الاشعاعي تم بواسطة زيادة مقدار الجرعة المتخصصة داخل ورم سرطان الرئة دون النسيج الصحي المحيط بالورم نتيجة وجود المواد النانوية لكل من الذهب والكادوليبيوم والفضة والتيتانيوم. وكل مادة نانوية تتفاعل مع اشعة سينية تتراوح طاقتها من (2) إلى (20) ميكا الكترون فولت. و هنا بدوره انتج زيادة في معدل التحسس الاشعاعي كالتالي (10.86%), (12.15%), (13.03%), (13.59%) عند استخدام التيتانيوم والفضة والكادوليبيوم والذهب كمواد النانوية على التوالي.

الكلمات المفتاحية

سرطان الرئة، جسيمات نانوية، العلاج الاشعاعي، معدل تحسين الحساسية.

Abstract

This theoretical study focuses on the enhancement of efficiency for radiotherapy according to increase sensitivity enhancement ratio (SER). The improvement of SER was done by increasing the amount of absorbed dose in lung cancer without the surrounding health tissue due to presence (Gold, Gadolinium, silver and titanium) nanoparticles (NPs) using x-ray with energy range from (2) to (20)MeV. This causes increasing in SER percentages as follows (10.86%), (12.51%), (13.03%) and (13.59%) when using titanium, silver, gadolinium and gold as nanoparticles respectively depending on the type of nanoparticles.

Keywords

Lung cancer, nanoparticles, radiotherapy, sensitivity enhancement ratio.

1. Introduction

The International Agency for Research on Cancer (IARC) and Global Cancer Statistics researches together concede cancer as global disease spread among men and women lead death in late stage [1, 2].

According to World Health Organization - the International Agency for Research on Cancer there are (10.9) million new cases, the number of deaths due to cancer is (6.7) million and there are (24.6) million people still alive with cancer. The most common cancers are lung (1.35) million, breast cancer (1.15) million, Prostate cancer (1.1) million cases, and ovary cancer (204,000) cases [3].

Cancer treatment process consists of a single stage or several stages, depending on the stage reached by the disease, the process of treatment are surgery combine with chemotherapy and radiotherapy [4].

The radiotherapy involves the use of gamma photons or x-ray photons of high energy which can be produced from linear accelerator these are ionizing radiations lead to death or shrinking for cancer cells. Photon interaction has a high probability of injury to surrounding healthy tissue and thus appears the importance of improved radiotherapy. Improvement of radiation therapy include find a way to make a greater damage in malignant cells with less damage to healthy cells surrounding the tumor [5].

Because human tissues consisting of light elements so photons interact within tissue photoelectric effect phenomenon and Compton scattering. Interaction of electrons and photons within the malignant cells generate free radicals these free radicals leads to the destruction of malignant cells [6, 7].

When the nanoparticles size smaller than human cells, new interactions with surface and inside of the malignant tumor can present, which may improve cancer radiotherapy [8].

The nanoparticles materials have wide utilization in biomedical research. They are used in diagnosing and therapy due to their individual properties like small size, high reaction in the living cells, extensive thermal constancy and nontoxic [9], thus that many of the nanoparticles materials have a high impact on radiotherapy [10].

Many researchers have studied the properties of nanoparticle materials such as gold, gadolinium, silver and titanium elements, the possibility to apply in medical fields in order to improving therapy [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. One of these studies was focused on the increases the number of destructive cancer cells by increasing the energy of incident radiation with a nanoparticles material [22, 23].

Since the human body is made up of a large percentage of the water is about 80%, so water is the main objective of the interaction of ionizing radiation. Interaction of ionizing radiation with the water molecules in vivo interaction produces free radicals. These free radicals are the root of hydrogen and hydrogen hydroxide. The accumulation of free radicals leads to the formation of toxic hydrogen peroxide

molecule which finally destroy the tumor cell by induced of apoptosis[24]. Therefore, the greater the amount of absorption of ionizing radiation has increased the possibility of formation of toxic molecule and consequently increased the malignant cells destruction[25].

In the last few years ago the researchers injected nanoparticles metal inside cancer cells as contrast agentsto increase absorbed dose which lead to increase radio sensitivity of cells. Injection of nanoparticles within the cancer cell leads to serious damage at the injection site without the surrounding health tissue [26].

Nanoparticles with high atomic number effectively can interact with the high energy incident ray and leads to product electron and photons or positron with high-energy this is called nanoparticle Enhanced x-ray Therapy NEXT[27].

This research aims to enhance lung radiotherapy by increasing SER then reduce the number dose fractions of radiotherapy therefore the side effect of radiotherapy will reduce.

This works to increase SER. SER is a relation between survival cells number after irradiation with and without nanoparticles.

2. Theoretical part:

The radiotherapy includes the use of ionizing radiation like x-ray photons of high energy products from linear accelerator these are ionizing radiations cause either death or shrinking for cancer cells but this interaction has hits to the surrounding health tissue therefore the need arises to find a way to oc-

cur more damage in malignant cells with less damage to the healthy cells surrounding the tumor [4]. x-ray interaction within the specified tissue with presence of nano-materials like titanium, silver, gadolinium and gold nano particles lead to an increase in the number of destroyed cancer cells. The high energy x-ray interaction with high atomic number nano-materials leads to ensure the production of electron and positron inside tumor, who in turn are working to increase the ionization process within tumor [13, 14, 15, 16, 17, 18].

The computer program will apply the following equations:

1-Irradiation equation without and with nanoparticles [28, 29, 30]:

$$N_s = N_i e^{-(1+\frac{d}{\alpha/\beta})} \quad \dots \dots \dots (1)$$

Where:

= survival cells number after irradiation. = initial cells number before irradiation [6].

/ is a factor represent radio-sensitivity (Each organ has a constant value for lung 3 Gy)[24]. d(Gy): is dose-per-fraction

2- Dose per fraction equation with nanoparticles[31]:

$$d(Gy) = 8.9 \times 10^{-3} \left(\frac{(\mu/\rho_{Med}) + (\mu/\rho_{nano})}{\mu/\rho_{air}} \right) * X \quad \dots \dots \dots (2)$$

Where: $(\mu/\rho)_{Med}$ is mass energy absorption coefficient for medium. $(\mu/\rho)_{nano}$ is mass energy absorption attenuation coefficient for nanoparticles. $(\mu/\rho)_{air}$ is mass energy absorption coefficient for air.

X: The exposure in roentgen (R) unite calculated theoretically by following equation

$$X = 1.8 \times 10^{-8} E(MeV) \left(\frac{\mu_{en}}{\rho} \right)_{air} \phi \quad [32].$$

E: Photon energy in MeV, $(\mu/\rho)_{air}$: mass en-

ergy absorption attenuation coefficient for air in cm-2 , ϕ : flounce in cm-2.

By substituting equation 2 in equation 1 produce final irradiation equation that will be used to get the results:

$$N_s = N_i e^{(-1 + \frac{8.9 \times 10^{-3} \left(\frac{(\mu/\rho_{Med}) + (\mu/\rho_{nano})}{\mu/\rho_{air}} \right) * X}{\alpha/\beta})} \quad \dots \dots \dots (3)$$

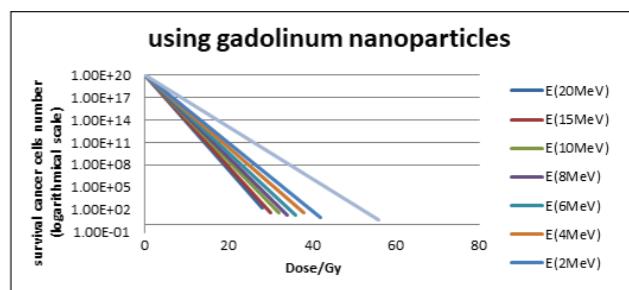
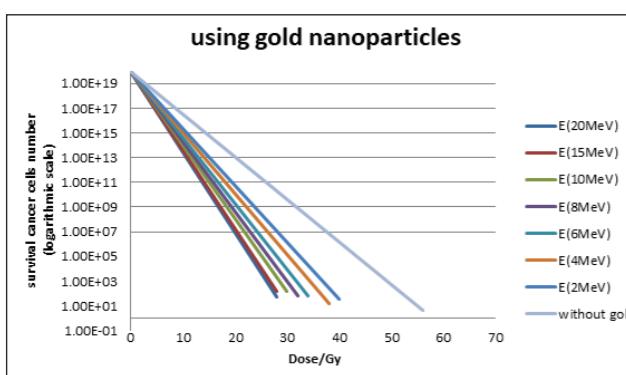
Lung tissue is composite of light elements. These elements have percentage of mass as follow H(10.3), C(10.5), N(3.1), O(74.9), Na(0.2), P(0.2), S(0.3), C(10.3) and K(0.2) so it has low cross section [33]. The increase in cross-section of the lung is by injection of nanoparticles inside lung [34,35]. It is known that cancerous tissue has vascular wider than vascular of surrounding healthy tissue tumor malignant[36]. Therefore the nanoparticles which injected inside the tumor will concentrate more than its presence in the healthy tissue and therefore the absorption of ionizing radiation dose inside the tumor will be greater due to the existence of nanoparticles. Interaction of these nanoparticles with high energy x-ray will increase the free radicals. The accumulation of free radicals product decreasing in surviving cancer cells after irradiation.

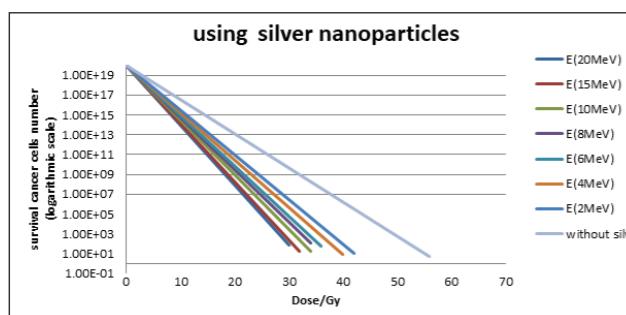
The mass energy absorption coefficient (μ/ρ_{en}) for adding nanoparticles (gadolinium, gold, silver and titanium) get from the National Institute of Standards and Technology NIST2004[37]. Computer simulation used equation of irradiation equation (3) for a lung without and with (gadolinium, gold, silver, titanium) nanoparticles that adding in lung tu-

mor. The X-ray radiation interacts with each kind of nanoparticles with energy ranging from (2) to (20)MeV.

3. Results:

By applying the final irradiation equation equation(3) on lung without and with using-gadolinium nano particles with x-ray photons whose energy range from (2)MeV to(20) MeV we get fig. shows a decrease in the number of surviving cancer cells due to presence of gadoliniumnanoparticles and increasing energy X-rays as shown in fig.(1).


Fig.(1):This figure Shows decreasing in number of surviving cancer cells by utilization gadolinium nanoparticles and incident x-ray radiation with energy (2-20)MeV.

By loading gold nanoparticles inside lung tumor and irradiate by x-ray with energy from (2) MeV to (20) MeV product results as shown in fig. (2). This figure shows more decrease in number of surviving cancer cells in other words more destroy in cancer cells.

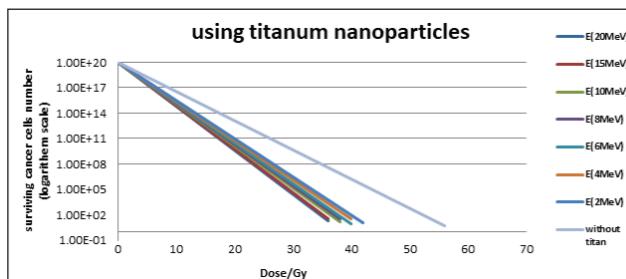

Fig.(2): this figure shows decreasing in number of surviving cancer cells by utilization gold nanoparticles and incident x-ray radiation with energy (2-20)MeV.

Fig.(3) illustrates interaction results of silver nanoparticles injected into lung with x-ray radiation with energy (2-20)MeV.

Fig.(3): this figure shows decreasing in number of surviving cancer cells by utilization silver nanoparticles and incident x-ray radiation with energy (2-20)MeV.

Last fig.(4) shows interaction of titanium nanoparticles with x-ray has energy range(2-20)MeV.

Fig.(4):This figure shows decreasing in number of surviving cancer cells by utilization titanium nanoparticles and incident x-ray radiation with energy (2-20)MeV.

4. Discussion

Fig.(1) shows that when irradiation equation (3) applied on lung malignant cells without and with gadolinium nanoparticles there is an increase in the number of cancer cells destroyed and a decreasing in number of surviving lung cancer cells as a result of the presence of gadolinium nanoparticles.

Also without and with gold, nanoparticles there were increasing in number of destroyed-malignant cells and decreasing malignant cells survivor as shown in fig.(2). Each of fig. (3) and (4) shows reduces in number of surviving lung cancer cells due to presence silver and titanium nanoparticles respectively.

These interesting results were achieved due to the existence of each of nanoparticles in cancer tissue in high concentration. Nanoparticles (NPs) have the ability to increase dose deposited from high energy X-ray inside cancer tissue because of their high mass energy absorption coefficient. Comparing with health tissue mass energy absorption coefficient which in turn caused breaks in DNA by generating free radicals that damage malignant cells.

By comparing the results of the number of surviving cancer cells with and without existence of nanoparticles it's clear can be observed the improvement in sensitivity enhancement ratio(SER), the results show that the SER was (10.86%) for titanium nanoparticles,(12.51%) for silver nanoparticles,(13.03%) for gadolinium nanoparticles and (13.59%) for gold nanoparticles. The largest amount of improvement was for gold nanoparticles because a

gold nanoparticle has a larger absorption coefficient mass attenuation coefficient than gadolinium nanoparticles, silver nanoparticles and titanium nanoparticles respectively as shown in fig.(5).

Fig.(5):this figure shows the sensitivity enhancement ratio (SER) in lung with gold nanoparticles(Au), gadolinium nanoparticles(Gd), silver nanoparticles(Ag) and titanium nanoparticles(Ti).

5. Conclusions

The interaction of high energy X-ray with gold, gadolinium, silver or titanium nanoparticles can be improve the lung cancerous tumor radiotherapy by increasing in the number of destroyed malignant cells and decreasing in the number of surviving malignant cells.

The results show that the SER was (13.59%) with gold nanoparticles, (13.03%) with gadolinium nanoparticles,(12.51%) with silver nanoparticles and (10.86%) with titanium nanoparticles respectively.

6. Acknowledgements

The authors acknowledge the help of the middle Euphrates Center to cancer in the Na-

jaf city, Iraq especially Dr. Hyder N. Rebeea and Dr. Imad Kareem Alsaabery, kufa University –Faculty science –members of physics department to complete this research.

7. References:

- 1] World Health Organization, the International Agency for Research on Cancer,(2013).
- [2] TorreL. A., BrayF., SiegelR.L., FerlayJ., Lortet-Tieulent J., JemalA. "Global Cancer Statistics" . Cancer Journal Clinical65 87-108,(2015).
- [3] FerlayJ., Soerjomataram I., Dikshit R., Eser E., Mathers C., Rebelo M., Parkin D.M., Forman D. and Bray F." Cancer incidence and mortality worldwide". International Journal of Cancer 136 E359-E386,(2015).
- [4] ChapmanJ.D. and NahumA.E."Radiotherapy Treatment Planing".By Taylor and Francis Group(2015).
- [5] Hansen E.K. and Roach M."Handbook of EvidenceBasedRadiationOncology".Springer Science Business Media, (2010).
- [6] BruceG.H., ThomasA.B. , PerezC. A." Perez and Brady's Principles and Practice of Radiation Oncology". 5th Edition, (2008).
- [7] Goitein M."Radiation oncology: a physicist's eye view".1stedition , Springer Science plus Business Media,(2008).
- [8] Logothetidis S."Nanomedicine and Nanobiotechnology".Springer Verlag Berlin Heidelberg, (2012).
- [9] Nie S., Xing Y., KimJ.G. and Simons J.W." Nanotechnology Applications in Cancer". The Annual Review of Biomedical Engineering 9257-88,(2007).
- [10] El-Ansary A. and Al-Daihan S."On the toxicity of therapeutically used nanoparticles: An overview". Journal of Toxicology7548101-9,(2009).
- [11] RoeskeJ.C., NunezL. , HoggarthM. , Labay E., Weichselbaum R.R. "Characterization of the

- theoretical radiation dose enhancement from nanoparticles".*Technology in Cancer Research and Treatment*6,5395–401,(2007).
- [12] HainfeldJ.F.,Dilmanian F.A.,Slatkin D.N.and Smilowitz H.M. "Radiotherapy enhancement with gold nanoparticles" *Journal of Pharmacy and Pharmacology*60977–985,(2008).
- [13] McMahonS. J., MendenhallS. J., and Currell F."Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles".*Physics in Medicine and Biology* 53,205635–5651,(2008).
- [14] Prezado Y., Fois G., LeDuc G. and Bravin A." Gadolinium dose enhancement studies in microbeam radiation therapy". *Medical Physics* 36 3568–3574,(2009).
- [15] LiuC.J., WangC.H., ChenS.T., ChenH.H., LengW.H., ChienC.C., WangC.L., Kempson I.M., Hwu Y., LaiT.C., Hsiao M., YangC.S., Chen Y.J. and Margaritondo G." Enhancement of cell radiation sensitivity by gold nanoparticles".*Physics in Medicine and Biology* 55,4931-945,(2010).
- [16] Lechtman E., Chattopadhyay N., Cai Z., Mashouf S., Reilly R. and Pigno J.P. "Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location". *Physics in Medicine and Biology*564631–4647,(2011).
- [17] TownleyH.E., KimJ., DobsonP.J."In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles".*Nanoscale* 45043–5049,(2012).
- [18] Su X. Y. , Liu P. D. , Wu H., and GuN."Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy".*Cancer Biology and Medicine* 11, 286–91 ,(2014).
- [19] Hossain M."Latest Trends in Nanoparticle Aided X-ray Radiation Therapy". *Journal of Nanomedicine Research* 2,400037,(2015).

- [20] Antosha P.M., Wijesinghe D.D., Shrestha S., Lanou R., Huang Y., Hasselbacher T., Fox D., Neretti N., Sun S., Katenka N., Cooper L.N., Andreev O.A. and Reshetnyak Y.K."Enhancement of radiation effect on cancer cells by gold". *Proceeding of the national academy of sciences of the USA*112,175372–5376,(2015).
- [21] Yamada M., Foote M. and Prow T.W."Therapeutic gold, silver, and platinum nanoparticles".*Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology* 7428–445,(2015).
- [22] McMahon S. J. , Hyland W. B. , Brun E., Butterworth K.T., Coulter J.A., Douki T., Hirst D.G., Suneil J., Kavanagh A.P., Krpetic Z., Mendenhall M.H., Muir M.F. and Prise K.M."Energy Dependence of Gold Nanoparticle Radiosensitization in Plasmid DNA".*Journal of Physics and Chemistry* 115,4120160–20167,(2011).
- [23] Robar J.L., Riccio S.A., Martin M.A."Tumour dose enhancement using modified megavoltage photon beams and contrast media".*Physics in Medicine and Biology* 472433–49,(2002).
- [24] Soren M.B., Paul M.H., Wolfgang A.T. and Minesh P.M."Radiation Oncology Advances". Springer Science plus Business Media,(2008).
- [25] Kwatra D., Venugopal A. and Anant S."Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer". *Translational Cancer Research* 2,4 330-342,(2013).
- [26] Carter J.D., Cheng N.N., Qu Y., Suarez G.D. and Guo T."Nanoscale energy deposition by X-ray absorbing nanostructures". *The Journal of Physical and Chemistry B* 111,4011622-11625,(2007).
- [27] Praetorius N.P. and Mandal T.K." Engineered nanoparticles in cancer therapy". *Recent Patents on Drug Delivery and Formulation* 1,137-51,(2007).
- [28] Mayles P., Nahum A. and Cosenwald J."

- Handbook of Radiation Physics". Taylor and Francis Group,(2007).
- [29] Stewart R. D. and Li X. A." Biologically guided radiation therapy".*Medical Physics* 34,10:3739-3751,(2007).
- [30] Chapman J. D. and Nahum A.E. "Radiotherapy Treatment Planning". Taylor and Francis Group, (2015).
- [31] Khan F.K."The Physics of Radiation Therapy". Lippincott William and Wilkins, (2003) .
- [32] K. Shultis J. and Faw R.E."fundamental of nuclear science and engineering".1st edition , Marcel Dekker, (2002).
- [33] Webster J."Encyclopedia of medical device and instrumentation".2nd Edition, Vol.5, John Wiley and Sons,(2006).
- [34] Babaei M. and Ganjalikhani M." The potential effectiveness of nano-particles as radio sensitizers for radiotherapy".*BioImpacts* 4,115-20,(2014).
- [35] Yamada M., Foote M. and Prow T.W."Therapeutic gold, silver and platinum nanoparticles".*WIREs Nanomedicine and Nanobiotechnology* 7(2015):228-445.
- [36] Rieger H., Fredrich T. and Welter M."Physics of the tumor vasculature: Theory and experiment". *Europe Physics Journal Plus* 131,31, (2016).
- [37] Hubbell J.H. and Seltzer S.M."Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients".*National Institute of Standards and Technology*, (2004).

Evaluation of Efficiency of Some Plant Extracts Against Two Bacterial Pathogens

Ali A. Al-Hisnawi
Biology Department, College of Sciences, University of Kerbala, Iraq.

Received Date: 4 / 8 / 2016
Accepted Date: 30 / 12 / 2016

الخلاصة

انجزت هذه الدراسة لبحث تقييم فعالية التبيط للمستخلص المائي والكحولي لبذور الجرجير *Nasturtium officinale* والقشور الرقيقة للرمان *Punicagranatum* ضد بكتيريا *Escherichia coli* وبكتيريا *Staphylococcus aureus* والمعزولة من الإنسان. تم دراسة تأثير تراكيز مختلفة من المستخلصات المائية والكحولية على نمو البكتيريا قيد الدراسة باستخدام طريقة الانتشار. اشارت النتائج إلى عدم تأثير المستخلص الكحولي لبذور الجرجير على نمو البكتيريا الخاضعة للدراسة. أما بقية المستخلصات فقد أعطت تأثيرات اقتصادية. اشارت النتائج التحليل الاحصائي للنتائج أن المستخلص المائي لقشور الرمان بتركيز (10%) و (25%) والتي حضرت من محلول القياسي (100 ملغم / مل) كان أكثرها معنوية في تبيط بكتيريا المكورات العنقودية ($P = 0.027$) و ($P = 0.036$) على التوالي بينما كان تركيز (75%) من المستخلص المائي لقشور الرمان أكثرها تبيطًا على بكتيريا القولون.

الكلمات المفتاحية

رمان، المستخلصات المائية، بكتيريا القولون، المكورات العنقودية، تبيط البكتيريا.

Abstract

This study was carried out to investigate the effectiveness of inhibition by aqueous and alcoholic extracts of watercress seeds *Nasturtium officinale* and thin peels of pomegranate *Punicagranatum* against two of human pathogens *Escherichia coli* and *Staphylococcus aureus*. The diffusion method was used for investigating the effect of different concentrations of aqueous and alcoholic extracts on the growth of bacteria, and the results showed that the alcoholic extract of the seeds of watercress did not affect the growth of bacteria under the study. The rest of the extracts have given mixed results; statistical analysis showed that the aqueous extract of the peel pomegranate concentrations of 10% and 25%, prepared from the stock solution (100 mg. ml⁻¹), were more significantly affected the growth of *St. aureus* ($P = 0.027$ and $P = 0.036$), respectively. On the other hand, 75% of the aqueous extract of pomegranate peel was more significantly affected the growth of *E. coli*.

Keywords

pomegranate; watercress, *Escherichia coli*, *Staphylococcus aureus*, antibacterial activity.

1. Introduction

Escherichia coli, which is considered a coliform bacteria belonging to the Enterobacteriaceae family, inhabits the digestive tract of animals and humans [1].

E. coli can cause serious infections including inflammatory bowel disease, diarrhea and colitis if they escape from the digestive tract as a result of surgical operations and enter the bloodstream and tissues [2]. *Staphylococcus aureus* is one of the bacteria that cause diseases in humans (gastroenteritis) by producing a highly heat-stable protein toxin. *St. aureus* is a facultative anaerobic bacteria, catalase and coagulase positive and Gram-positive cocci [3].

Diseases caused by these pathogens are normally treated by using antibiotics. The misuse of antibiotics led to serious risks such as the increase of antibiotic resistance [4], the increasing occurrence of bacterial strains with multi-drug resistance and new occurrence of strains with decreased sensitivity to antibiotics [5]. In addition, antibiotics are commonly associated with adverse effects on the host including immune suppression, allergic reactions and hypersensitivity [4]. Furthermore, commensal bacteria are also affected by antibiotics.

Serious attention has been paid towards searching for new antimicrobial substances. Therefore, significant attention has recently been paid to explore alternatives to antimicrobial drugs for the treatment of diseases from medicinal plants. A growing body of literature is available on the application of various plant

extracts in different parts of the world.

Many diseases including dysentery, haemorrhage, microbial infections and respiratory pathologies have been effectively treated by the fruits of pomegranate, *Punicagranatum L.* [6]. Furthermore, pomegranate extracts have shown an antiviral activities against the herpes virus [7]. Although whole fruits of pomegranate have been widely investigated, thin peels of pomegranate were rarely studied.

Watercress (*Nasturtium officinale*) is a perennial plant belonging to the Brassicaceae family which found in clear, cold water in Europe, America and Asia [8]. Watercress is used as a herbal medicine in treatment of some diseases including oxidative stress, asthma and diabetes [9, 10]. Watercress is a high source of vitamins and pro-vitamin A, glucosinolates, folic acid, protein, iron, sulphur and calcium compounds [11].

The present study was carried out to investigate the antibacterial activity of thin peels of pomegranate *Punicagranatum* and watercress seeds *Nasturtium officinale* against two human pathogens *E. coli* and *St. aureus*.

2. Materials and methods

2.1. Plant specimens

Watercress seeds and thin peels of pomegranate were obtained from a local market and transferred to the laboratory, and ground into fine powder using an electric blender. The powder was dried in an oven at 40°C for 24 h. Then plant pellets were collected in polyethylene and stored at 4°C until extraction.

2.2. Preparation of the extract

2.2.1. Preparation of aqueous extracts

Separately, ten grams (10 g) of watercress seeds and thin peels of pomegranate were extracted with (100) ml of hot distilled water in a conical flask (250) ml with a rubber stopper. Suspension was left in a shaking incubator (at room temperature) for (24) hours. After that, plant extracts were filtered off using several layers of sterile gauze medical pads into another clean conical flask. The plant extracts obtained were secondly filtered using sterile filter paper (Whatman no. 1) into another clean conical flask. Finally, plant extracts were then centrifuged at (3000) rpm for (10) min. Supernatants were placed in sterile Petri dishes and the extracted liquid was subjected to rotary evaporation in order to remove the liquid. After drying, the dried extracts were scraped off using a clean and sterile knife. The obtained extracts were then stored at (4) °C for antibacterial activity test. Different concentrations were prepared (7.5, 10, 25, 75 and 100%) by adding the required amount of the extract to a suitable volume of distilled water (D.W.) immediately before use.

2.3. Ethanol extraction

Ten grams (10 g) of watercress seeds and thin peels of pomegranate were separately suspended in (100) ml of ethanol (95%) in a conical flask (250) ml and covered with a rubber stopper. After that, the same steps were used as in hot water extraction.

2.4. Bacterial isolates

Two bacterial strains were used in the study: one Gram negative, namely *E. coli* and one Gram positive, namely *St. aureus*. The tested strains were obtained from Kerbala Public Health Laboratory, Iraq.

2.5. Inoculum preparation

The inocula were prepared from stock cultures, which were maintained on nutrient agar slant at (4) °C and subcultured on to nutrient broth.

To calculate the bacterial cells in the suspension, (0.1) ml of suspension was diluted with (0.9) ml sterile of phosphate buffered saline (PBS; pH (7.3); Oxoid, UK). This solution was then serially diluted tenfold to 10⁻⁷ with PBS and (100) µl of each dilution was spread on duplicate Nutrient Agar (Oxoid, UK) plates and incubated aerobically at (37) °C for (24) h. The colony forming units (CFU) were counted on all plates containing (30–300) CFU to determine the inoculum size to reach an inoculum of approximately log (107) CFU ml⁻¹ to be used in assays.

3. Antibacterial activity

Antibacterial activity of the four different samples: hot water extract of watercress seeds, hot water extract of thin peels of pomegranate, ethanol extract of watercress seeds and ethanol extract of thin peels of pomegranate, were separately investigated against the studied organisms.

In vitro, antibacterial activity was then conducted by an agar-well diffusion method us-

ing (100) µl of final suspension of investigated bacteria (107 CFU ml⁻¹) spread on Mueller-Hilton agar plates. Plates were left at room temperature for 15 minutes for adsorption and wells were cut from the agar by using a sterile tip (5 wells for different concentrations for each plant extract and one for control with sterile distilled water in each plate). Fifty µl (50) µl from each concentration were transferred to the well for each plant extract and at the same time 50 µl D.W. was transferred to a negative control well. The plates were incubated at (37) °C for (24) h. Antibacterial activity was evaluated by measuring the diameter of inhibition zone in centimeters (cm) against the investigated bacteria.

4. Statistical analyses

The means and standard deviations were calculated for all data and a one-way analysis of variance (ANOVA), followed by post-hoc Tukey's HSD test, were applied to test for significant differences between different concentrations in each type of plant extract and between each concentration for plant extracts. Data analysis was conducted using MiniTab statistical software version 16 (IBM, Pennsylvania, USA). The accepted level of significance was P < 0.05.

5. Results

5.1. Escherichia coli

All types of plant extracts except the ethanol extraction of watercress seeds showed different levels of antibacterial action against *St.*

aureus and *E. coli*. Fig (1) showed that all concentrations of aqueous extract of watercress seeds displayed different levels of antibacterial action against *E. coli* bacteria. Although the greatest effect among all concentrations was at (25%) for which diameter of zones of inhibition was (2.2) cm, no significant differences were found between the concentrations (P = 0.127).

Ethanol extract of thin peels of pomegranate exhibited various antibacterial effects against *E. coli*; the pathogen was highly sensitive to (75%) and (100%), with diameter of inhibition zones being (2.6) and (2.9) cm, respectively. Significant differences were shown between these concentrations and the others (P = 0.011) Fig (2).

Fig (3) shows that all concentrations of aqueous extract of thin peels of pomegranate exhibited different levels of antibacterial activity against *E. coli*. The highest effect was observed at (100) % with significant differences among other concentrations (P = 0.002).

5.2. Staphylococcus aureus

The ethanol extract of watercress seeds had no activity against *St. aureus*, unlike that shown with *E. coli*.

Although the highest effect of aqueous extract of watercress was for (75%), for which the diameter of zones of inhibition was (2.9) cm, other concentrations showed antibacterial activity as well. Significant differences were found

between the concentrations ($P = 0.127$) Fig (4)

Fig.(5)reflects the results of antibacterial activity of ethanol extract of thin peels of pomegranate against *St. aureus*. The highest action was for (100)mg ml⁻¹ with significant differences among the concentrations ($P = 0.002$).

Fig.(6)shows that all concentrations of aqueous extract of thin peels of pomegranate exhibited different levels of antibacterial activity against *St. aureus*. No significant differences were found between the concentrations ($P = 0.407$).

6. Discussions

Results of the current work revealed that aqueous and ethanolic extracts of two plants exhibited antibacterial activity against two bacterial pathogens. Experimental findings showed that all the extracts displayed different degrees of antimicrobial activity on the investigated bacteria, but the aqueous extract was more effective than the ethanolic extract for controlling the bacteria.

The ethanolic and aqueous extracts of thin peels of pomegranate displayed strong antibacterial activity on the growth of the tested pathogenic bacteria.

This work is in agreement with Dahhamet al. [12], who found that the peel extract gave highest antimicrobial activity compared to seed, juice and whole fruit of pomegranate extracts on *St. aureus*. In earlier research conducted by other researchers, the growth of *Li-*

steria monocytogenes, *St. aureus*, *E. coli* and *Yersinia enterocolitica* was inhibited by using alcohol extracts of pomegranate peels [13].

Recently, Gullonet al. [14] reported that pomegranate peel flour had antibacterial activity on *Listeria monocytogenes*, *Listeria innocua*, *St. aureus*, *Pseudomonas aeruginosa*, *E. coli* and *Salmonella* sp. Furthermore, the current results confirmed the study of Pagliarulo et al. [15] who found that *St. aureus* and *E. coli*, were affected by both pomegranate aril and peel extracts. In all work mentioned, pomegranate revealed strong antibacterial activity against tested microorganisms due to their phenolic and anthocyanin content of fruits including alkaloids, tannins, phenolic compounds, flavonoids, polyphenols, sugars, fatty acids, aromatic compounds, and amino acids [16, 17].

In the current study, aqueous extract of watercress exhibited higher antibacterial activity on the growth of pathogenic bacteria tested. In agreement with the current results, acetone/dichloromethane, ethanol and aqueous extracts of twelve common medicinal plants, among them watercress, were tested against *St. aureus*, *Bacillus subtilis*, *E. coli*, and *Ps. aeruginosa* [18]. Results obtained from this study showed that watercress revealed antibacterial activity against pathogenic bacteria. In a study Bocanegra-García et al. [19] found that the watery extract of watercress displayed antibacterial activity against the microorganisms tested in that study including *E. coli* and *St. aureus*. Furthermore, in agreement with the current results aqueous extract of watercress has previously been reported

to exhibit antibacterial activity against *Mycobacterium tuberculosis* [20].

Results of the current study showed that the ethanol extract of watercress exhibited no antibacterial activity in the growth of bacteria tested. These results contrast with the above-mentioned studies which indicated that all extracts of watercress including ethanolic extract revealed antibacterial activity against tested bacteria. The reason is not clear but it could be attributed to the method used to obtain the extract which affected the potency of the extract. In addition, the differences in antimicrobial activities of the plant extracts are influenced by such factors including freshness of the plant material, age of the plant used, microbial contamination, physical factors (light, water, or temperature), and incorrect preparation of the plant [21].

7. Conclusions

The results of the present study have provided evidence and confirmed previous results that watercress and pomegranates revealed an antimicrobial activity against *E. coli* and *St. aureus*. The inhibition of these bacteria by the extracts of pomegranate and watercress could become the promising plant antimicrobial agents therapeutic

References:

- [1] Dahlén, Gunnar. Bacterial infections of the oral mucosa. *Periodontology* 2000, 49(1), 13-38. doi/10.1111/j.1600-0757.2008.00295,(2009).
- [2] Muszer, M, Noszczyńska M, Kasperkiewicz K, & Skurnik M. Human microbiome: when a friend becomes an enemy. *Archivum Immunologiae et Therapiae Experimentalis*, 63(4), 287-98. Article/ 10.1007/s00005-015-0332-3,(2015).
- [3] Le Loir, Yves, Florence Baron, & Michel Gautier. *Staphylococcus aureus* and food poisoning. *Genetic Molecular Research*, 2(1), 63-76. https://archive.li/6rHbb.(2003).
- [4] Ahmad, I., Mehmood, Z & Mohammad, F. Screening of some Indian medicinal plants for their antimicrobial properties. *Journal of Ethnopharmacology*, 62(2), 183-93. www.ncbi.nlm.nih.gov/pubmed/9741890.(1998).
- [5] Rojas, Jhon J, Veronica, J Ochoa, Ocampo, Saul A, & Muñoz, John F. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. *BMC Complementary and Alternative Medicine*, 6(1), 1. www.ncbi.nlm.nih.gov/pmc/articles/PMC1395329/. (2006).
- [6] Citarasu, T, Rajajeyasekar R, Venkatramalingam K, Dhandapani PS, & Peter Marian, M. Effect of wood apple *Aegle marmelos*, Correa (Dicotyledons, Sapindales, Rutaceae) extract as an antibacterial agent on patho-

gens infecting prawn (*Penaeus indicus*) larvae. Indian Journal of Marine Sciences, 32(2), 156-61. www.researchgate.net/publication/297535897, (2003).

[7] Citarasu, T, Veeramani S, Grasian I, Namita R, & Vadivel M. Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, *Penaeus monodon* with reference to haematological, biochemical and immunological changes. *Fish & Shellfish Immunology*, 21(4), 372-84. www.ncbi.nlm.nih.gov/pubmed/16698283. (2006).

[8] Jafari, Sajad, & Mohammadreza Hassandokht. Evaluation of some Iranian watercress (*Nasturtium officinale* L.) populations using agro-morphological traits. *International Journal of Forest, Soil and Erosion*, 2(3), 119-23. [http://www.ijfse.com/index.php/IJFSE/article/view/IJFSE-Vol%202\(3\)-2012-2](http://www.ijfse.com/index.php/IJFSE/article/view/IJFSE-Vol%202(3)-2012-2). (2012).

[9] Hoseini, Hassan Fallah, Ahmad R Gohari, Soodabeh Saeidnia, Naghi Shahabi Majd, & Abbass Hadjiakhoondi. The effect of *Nasturtium officinale* on blood glucose level in diabetic rats. *Pharmacologyonline*, 3 (8), 66-71. [https://www.researchgate.net/publication/235418501](http://www.researchgate.net/publication/235418501). (2009).

[10] Yazdanparast, R, Bahramikia, S, & Ardestani, A. *Nasturtium officinale* reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. *Chemo-Bio-*

logical Interactions, 172(3), 176-84. <https://www.ncbi.nlm.nih.gov/pubmed/18325487>. (2008).

[11] Asadi, MS, Mirvaghefei AR, Nematollahi MA, Banaee, M & Ahmadi, K. Effects of Watercress (*Nasturtium officinale*) extract on selected immunological parameters of rainbow trout (*Oncorhynchus mykiss*). *Open Veterinary Journal*, 2(1), 32-39. <https://www.ncbi.nlm.nih.gov/pubmed/26623289>. (2012).

[12] Dahham, Saad Sabbar, Mir Naiman Ali, Hajera Tabassum, & Mazharuddin Khan. Studies on antibacterial and antifungal activity of pomegranate (*Punica granatum* L.). *American-Eurasian Journal of Agriculture and Environmental Science*, 9(3), 273-81. [http://www.idosi.org/aejaes/jaes9\(3\)/8.pdf](http://www.idosi.org/aejaes/jaes9(3)/8.pdf). (2010).

[13] Al-Zoreky, NS. Antimicrobial activity of pomegranate (*Punica granatum* L.) fruit peels. *International Journal of Food Microbiology*, 134(3), 244-48. <http://www.sciencedirect.com/science/article/pii/S0168160509003316>. (2009).

[14] Gullon, B, Manuela E. P, Pérez-Álvarez, José A, & Manuel Viuda-Martos. Assessment of polyphenolic profile and antibacterial activity of pomegranate peel (*Punica granatum*) flour obtained from co-product of juice extraction. *Food Control*, 59, 94-98. <http://www.academicjournals.org/journal/JMPR/article-abstract/7BBEFE22854>. (2011).

www.sciencedirect.com/science/article/pii/S0956713515002844. (2016).

[15] Pagliarulo, C, De Vito V, Picariello G, Colicchio R, Pastore G, Salvatore P, & Grazia Volpe M. Inhibitory effect of pomegranate (*Punica granatum* L.) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic *Staphylococcus aureus* and *Escherichia coli*. *Food Chemistry*, 190, 824-31. <http://www.sciencedirect.com/science/article/pii/S0308814615009176>. (2016).

[16] Duman, Ahmet D, Mustafa Ozgen, Kenan S Dayisoylu, Nurcan Erbil, & Coskun Durgac. Antimicrobial activity of six pomegranate (*Punica granatum* L.) varieties and their relation to some of their pomological and phytonutrient characteristics. *Molecules*, 14(5), 1808-17. (2009).

[17] Mahalakshmi, R, Aswini, M & Thahira Banu A. ANTI DIABETIC ACTIVITY OF POMEGRANATE PEELS. *Research Journal of SRNMC*, 1(2), 76. <http://srnmcollege.net/research/d3ae2ecd594eaec28ce6fad-da63116c7ebab1ace>. (2015).

[18] Penecilla, Gerard L, and Celia P Magno. Antibacterial activity of extracts of twelve common medicinal plants from the Philippines. *Journal of Medicinal Plants Research*, 5 (16), 3975-81. <http://www.academicjournals.org/journal/JMPR/article-abstract/7BBEFE22854>. (2011).

[19] Bocanegra-García, Virgilio, María del Rayo Camacho-Corona, Mónica Ramírez-Cabrera, Gildardo Rivera, & Elvira Garza-González. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. *BMC research notes*, 2(1), 95. <http://bmcresearchnotes.biomedcentral.com/articles/10.1186/1756-0500-2-95>. (2009).

[20] Camacho-Corona, María del Rayo, Mónica A Ramírez-Cabrera, Omar González Santiago, Elvira Garza-González, Isidoro de Paz Palacios, and Julieta Luna-Herrera. Activity against drug resistant-tuberculosis strains of plants used in Mexican traditional medicine to treat tuberculosis and other respiratory diseases. *Phytotherapy Research*, 22(1), 82-85. <http://onlinelibrary.wiley.com/doi/10.1002/ptr.2269/abstract>. (2008).

[21] Yogeshkumar, V, & Chanda S. Screening of methanol and acetone extracts of fourteen Indian medicinal plants for antimicrobial activity. *Turkish Journal of Biology*, 31(4), 243-48. <http://journals.tubitak.gov.tr/biology/abstract.htm?id=9045>. (2007).

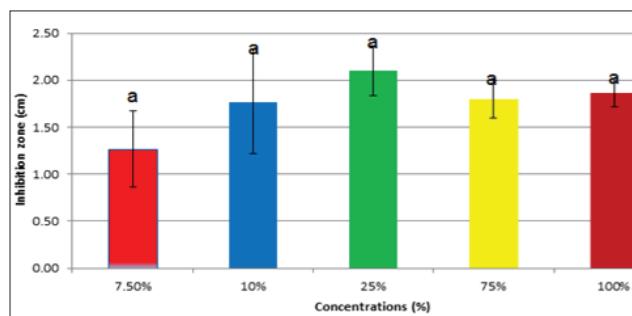


Fig (1): Antibacterial activity (diameter of zone of inhibition; cm) of various concentrations of aqueous extract of watercress seeds against *E. coli*. Results are presented as mean values \pm SD ($n = 3$). No significant differences were found between the concentrations used in the present study ($P = 0.127$).

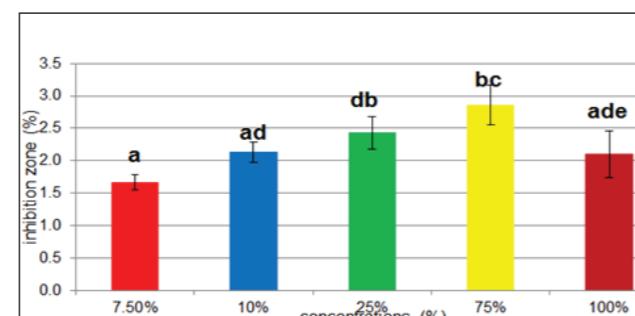


Fig (4): Antibacterial activity (diameter of zone of inhibition; cm) of various concentrations of aqueous extract of watercress seeds against *St. aureus*. Results are presented as mean values \pm SD ($n = 3$). Columns with different letters are significantly different ($P = 0.002$).

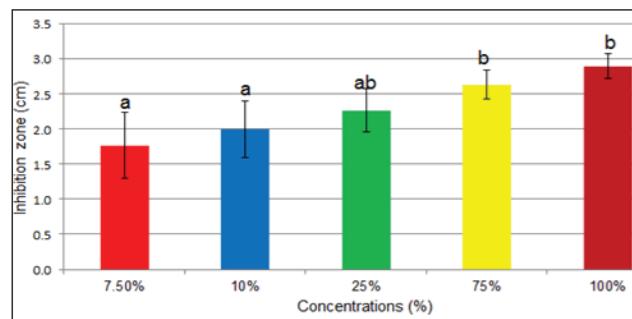


Fig (2): Antibacterial activity (diameter of zone of inhibition; cm) of various concentrations of ethanol extract of thin peels of pomegranate against *E. coli*. Results are presented as mean values \pm SD ($n = 3$). Columns with different letters are significantly different ($P = 0.011$).

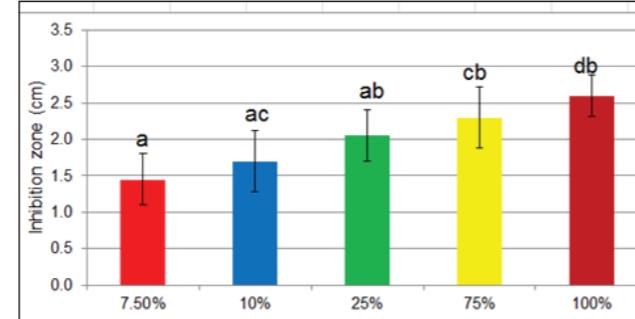


Fig (5): Antibacterial activity (diameter of zone of inhibition; cm) of various concentrations of ethanol extract of thin peels of pomegranate against *St. aureus*. Results are presented as mean values \pm SD ($n = 3$). Columns with different letters are significantly different ($P = 0.002$).

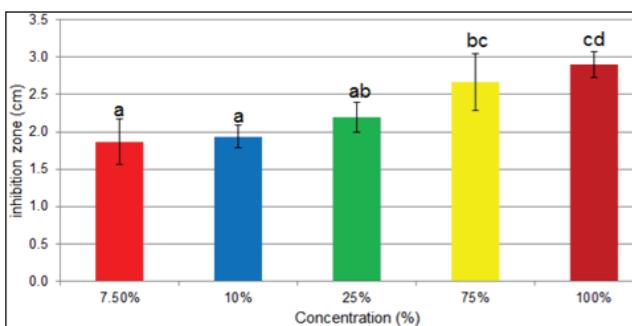


Fig (3): Antibacterial activity (diameter of zone of inhibition; cm) of various concentrations of aqueous extract of thin peels of pomegranate against *E. coli*. Results are presented as mean values \pm SD ($n = 3$). Columns with different letters are significantly different ($P = 0.002$).

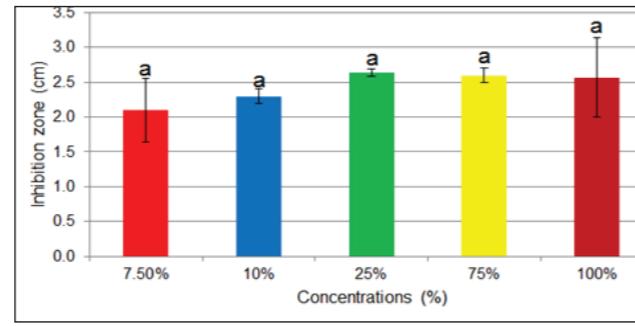


Fig (6): Antibacterial activity (diameter of zone of inhibition; cm) of various concentrations of aqueous extract of thin peels of pomegranate against *E. coli*. Results are presented as mean values \pm SD ($n = 3$). No significant differences were found between the concentrations used in the present study ($P = 0.407$).

Co Compressible Acts

Asaad Mohammad Ali Al-Hussainy and Worrod Sabah Malek
Department of Mathematics, University of Babylon, Iraq.

Received Date: 4 / 4 / 2016
Accepted Date: 22 / 8 / 2016

الخلاصة

الهدف الرئيسي من البحث، وسعنا مفهوم الموديلات رديف المضغوطة، الموديلات رديف المضغوطة حرجاً، إلى المؤثرات رديف المضغوطة، المؤثرات رديف المضغوطة حرجاً، بالتالي، كذلك اعطينا بعض الخواص الأساسية والبراهين والامثلة. في الختام، درسنا مفهوم المؤثرات رديف المضغوطة كأعمام لمفهوم الموديلات رديف المضغوطة، بالإضافة، قدمنا علاقته بالمؤثرات رديف المضغوطة.

الكلمات المفتاحية

الموديلات رديف المضغوطة، الموديلات رديف المضغوطة حرجاً، المؤثرات رديف المضغوطة، المؤثرات رديف المضغوطة.

Abstract

The goal of this paper, we expand the notion of co compressible modules, critically co compressible modules, to co compressible acts, critically co compressible acts, respectively, likewise we give several of their basic properties, theorems and examples. Lastly, we studied the coretractable acts as a generalization of the concept of coretractable modules. Overtime, we introduce relation between it and co compressible acts.

Keywords

co compressible acts, critically co compressible acts, corational acts, fully corational acts, coretractable acts.

1. Introduction and Priliminaries:

Throughout this paper S will denote a semigroup with multiplication. An element $x \in S$ is called a left identity (a right identity) of S , if $\forall y \in S: x \cdot y = y$ ($y \cdot x = y$). If x is both a left and a right identity of S , then x is called an identity of S [1].

A semigroup is a monoid; if it has an identity, for a semigroup S we shall use the notion S^1 defined by $S^1 = S$ if it has an identity and $S^1 = S \cup \{1\}$ otherwise [2]. An element $x \in S$ is called a left zero (a right zero) of S , if $\forall y \in S: x \cdot y = x$ ($y \cdot x = x$) [1]. A zero element is both a left and a right zero of S , for a semigroup S we shall define S^0 by $S^0 = S$ if it has a zero element, $S^0 = \emptyset$ otherwise [2].

A monoid S is said to be zero divisor free (ZDF) if for each $a, b \in S$,

$a \neq 0 \neq b$ implies $a \cdot b \neq 0$ [3].

Let S be a monoid and $A \neq \emptyset$ be a set. If we have a mapping $\mu: A \times S \rightarrow A$ such that $(a, s) \mapsto as := \mu(a, s)$ and the following properties hold:

(a) $a \cdot 1 = a$. (b) $a(st) = (as)t$ for all $a \in A$ and $s, t \in S$, we call A a right

S -act, or a right act over S and write A_S . A subact B of an S -act A_S is a non-empty subset of A such that $bs \in B$ for all $b \in B, s \in S$ which is designate by $B_S \subseteq A_S$.

A subact B_S of A_S is called a proper subact (designate by $B_S < A_S$), if $B_S \neq A_S$ [4].

We call A_S a simple act if it has no proper subacts. We call A_S a θ -simple act

if A_S has no subacts other than A_S and one element subact. Let S be a monoid and A_S be

an S -act, then A_S is simple if and only if $A_S = aS$ for each $0 \neq a \in A_S$ [5].

A proper subact B_S of an S -act A_S is called maximal if for each subact C_S of A_S with $B_S \subseteq C_S \subseteq A_S$ implies either $B_S = C_S$ or $A_S = C_S$ [5].

An element $\theta \in A_S$ is called a zero of A_S (a fixed element, a sink) if $\theta s = \theta$ for all $s \in S$.

If A_S and B_S are right S -acts, then a mapping $f: A_S \rightarrow B_S$ is called a homomorphism of right S -acts, if $f(as) = f(a)s$ for all $a \in A$ and for all $s \in S$, the S -homomorphism $f: A_S \rightarrow A_S$ is called an endomorphism of A_S and the set of all endomorphism of A_S is designate by $\text{End}(A_S)$, it is a monoid with the composition operation.

An equivalence relation ρ on A_S is called a congruence on A_S , if $a\rho a'$ implies $(as)\rho(a's)$ for $a, a' \in A_S, s \in S$.

Let S be a congruence on A_S , define a right multiplication on the factor set $A_S/\rho = \{[a]_\rho, a \in A_S\}$ by elements of S by: $[a]_\rho s = [as]_\rho$ for every $s \in S$, which is called a factor act of A_S by ρ [4]. Any homomorphism $f: A_S \rightarrow B_S$, the kernel congruence on A_S is defined by $a\rho a'$, if and only if $f(a) = f(a')$.

If B is a subact of A , the Rees congruence ρ_B is defined by $a\rho_B a'$ if either $a, a' \in B$ or $a = a'$. We denote the resulting factor act by A_S/B_S .

We say A_S is faithful, if $s, t \in S$, $as = at$ for all $a \in A$, it follows that $s = t$.

A right S -act A is called quasi-projective if for any right S -act B and any S -homomorphisms f and g from A_S to B_S with f being surjective, there exists an S -homomorphism $h: A_S \rightarrow B_S$ such that $f = gh$ [6].

If A_S satisfies the ascending chain condition

for subacts, it is called, Noetherian [7]. In [8], Alex and James defined that A_S is Noetherian if every congruence on A_S is finitely generated, and we say that a monoid S is Noetherian if it is Noetherian as an S -act over itself.

A subact B_S is large (or essential) in A_S if for any P_S and any S -homomorphism $f: A_S \rightarrow P_S$ whose restriction to B_S is one-to-one, then f is itself one-to-one [9].

A nonzero subact B of A_S is intersection large if for all nonzero subacts X of A , $X \cap B \neq \emptyset$. This will be designated by $B_S \subseteq A_S$ [9]. Feller and Gantos in [10] proved that every large subact of A_S is intersection large.

The singular congruence ψ_A on S -act A_S is a right congruence on A_S defined by $\psi = \psi(A_S) = \{(a, b) \in A_S \times A_S \mid aD = bD \text{ for some intersection large ideal } D \text{ of } S\}$. When $\psi = i_{A_S}$, we say that A_S is non-singular [11].

A right S -act A is called retractable if for any subact B_S of A_S , $\text{Hom}(A_S, B_S) \neq \emptyset$. It is clear that for a right S -act A to be retractable it is enough that $\text{Hom}(A_S, aS) \neq \emptyset$ for each $a \in A_S$ [12].

A subact B_S of A_S is called small (designated $B_S \ll A_S$) if it satisfies one of the conditions: (1) for each S -homomorphism $f: C_S \rightarrow A_S$, if $\pi_B \circ f$ is epimorphism then f is epimorphism where $\pi_B: A_S \rightarrow A_S / B_S$ is the natural epimorphism. Or (2) $A_S = B_S \cup C_S$ implies $C_S = A_S$ for each subact C_S of A_S .

An S -act A is called hollow if every subact of A_S is small.

The purpose of this work is to introduce and investigate the concept of co compressible

acts as a converted concept of co compressible modules [13]. Related properties and results are investigated. An affirmative answer to analogues problem, named Zelmanowitz problem, in the case of modules is given.

2. CO-Compressible Acts

2.1. Definition.

Let A_S be an S -act over a monoid S . A_S is co compressible if for each nonuniversal congruence ρ on A , $\text{Hom}_S(A/\rho, A)$ has at least one surjective element. That is, A_S is co compressible if and only if for all congruence $\rho \neq A \times A$ on A_S , there exists an epimorphism $\alpha: A_S / \rho \rightarrow A_S$.

2.2. Remark.

If A_S is a co compressible S -act which is not simple, then A_S must have a zero element.

Proof:

Let B_S be a proper subact of A_S , then A_S / B_S has a zero element. If $\alpha: A_S / B_S \rightarrow A_S$ is an epimorphism, then $\alpha(0)$ is a zero element of A_S . \circledast

2.3. Remark.

If A_S is not simple and has no zero we say A_S co compressible if A_S^0 is co compressible.

2.4. Definition.

A_S is critically co compressible if it is co compressible and for proper subact B_S , $\text{Hom}_S(B, A)$ has no surjective element. That is, A_S is critically co compressible if and only if A_S is co compressible and

$\nexists \alpha: B_S \rightarrow A_S, \forall B_S \leq A_S$, where α is epimorphism.

2.5. Examples.

1. If A_S is a simple act, then A_S is co compressible (trivially).

2. If $S = (N, \cdot)$ is a monoid where N is the set of natural numbers and (\cdot) is the usual multiplication, then S_S is not co compressible.

Proof:

Let $S = (N, \cdot)$, and the subact of S_S are $B = 2N$, according to (Remark 2.3), let $f: S / B \rightarrow S^0$ and $a \in \text{Im}(f)$, then $a = f(x^-)$ for some $x \in S / B$, this implies

$2a = f(x^-) = f(0)$. If $b \in \text{Im}(f)$ and $b \neq a$, then $b = f(y^-) \rightarrow 2b = f(y^-) = f(0)$. Hence $\text{Im}(f)$ has at most one element. Hence $\text{Hom}(S / B, S^0) = \{0\}$ and \nexists epimorphism from S / B onto S^0 . \circledast

2.6. Remarks.

Analogous to the case in modules, it is easy to prove the following statements for acts. (See [14])

1. B_S is a maximal subact of A_S if and only if A_S / B_S is θ -simple.

2. If $\alpha: A_S \rightarrow B_S$ is an epimorphism and $C_S \leq B_S$ then $\alpha(\alpha^{-1}(C_S)) = C_S$.

3. If B_S is a proper subact of a finitely generated S -act A_S then B_S is contained in a maximal subact of A_S .

4. Let S be a monoid and A_S be a Noetherian S -act then A_S is finitely generated.

5. If $f: A_S \rightarrow B_S$ is a right S -act homomorphism then $A_S / (\text{Ker}(f)) \cong \text{Im}(f)$.

6. Let $B_S, C_S \leq A_S$, then $((B_S \cup C_S)) / (B_S \cap C_S) \cong B_S$.

2.7. Proposition.

If A_S is co compressible S -act which is not

simple, then A_S has no maximal nonzero subact.

Proof:

Assume that A_S is a co compressible S -act, and assume that $0 \neq B_S$ is a maximal subact of A_S then A_S / B_S is a θ -simple act (by Remarks 2.6 (1)). If $\alpha: A_S / B_S \rightarrow A_S$ is an S -epimorphism, then $\alpha^{-1}(B_S) \subseteq A_S$ is a subact of A_S / B_S , and hence, either $\alpha^{-1}(B_S) = A_S / B_S$, which implies $B_S = \alpha(A_S / B_S) = A_S$ (since α is onto) (by Remarks 2.6 (2)), not possible or $\alpha^{-1}(B_S) = 0$, that is $B_S = \alpha(0) = 0$ contradicts the assumption, therefore A_S has no maximal subact. \circledast

2.8. Corollary.

Any finitely generated co compressible act is simple.

Proof:

If A_S is not simple, then it has a proper subact say B_S and (by Remarks 2.6 (3)), B_S is contained in a maximal subact which contradicts Proposition 2.7. Therefore A_S is simple. \circledast

2.9. Corollary.

Any Noetherian co compressible act is simple.

Proof:

Since A_S is Noetherian then A_S is finitely generated (by Remarks 2.6 (4)), hence A_S is simple act (by Corollary 2.8). \circledast

2.10. Proposition.

A homomorphic image of a co compressible S -act is co compressible.

Proof:

Assume that $f: A_S \rightarrow A'_S$ is an epimorphism and A_S is a co compressible S -act, let δ be a

congruence on A'_S define a relation ρ on A_S by ρ , either equal to A_S/ρ , then $(a,b) \in \rho \leftrightarrow (f(a),f(b)) \in \delta$, then ρ is a congruence on A_S , hence there exists $\alpha: A'_S \rightarrow A_S$ epimorphism (since A_S is co compressible) which induces a $\beta: A'_S \rightarrow A_S/\rho$ in this way, by δ if $(a) \mapsto \rho a$. β is well defined since if

$\delta f(a) = \delta f(a')$ then $(a, a') \in \rho$, that is $\rho a = \rho a'$. That is β is an epimorphism. Now the composition $f \circ \alpha \circ \beta$ is an epimorphism of A'_S/δ onto A_S . Therefore A'_S is co compressible. \odot

At the following we give more conditions, with which a co compressible act become simple.

2.11. Proposition.

Let A_S be a co compressible act satisfying one of the following statements:

1. A_S is finite.
2. There are only finite subacts in A_S .
3. A_S has a finitenontrivial factor, i.e. \exists a congruence ρ on A_S such that A_S/ρ is finite.
4. There is a simple factor of A_S .

Then, A_S is simple act.

Proof:

1. and 2. imply that A_S has a maximal subact, consequently A_S is simple (by Proposition 2.7).

3. If ρ is a congruence on A_S such that A_S/ρ is finite factor of A_S since A_S is co compressible then there exists $f: A_S/\rho \rightarrow A_S$. Then A_S must be finite too, so A_S is simple by means of (1.)

4. Let ρ be a congruence on A_S such that A_S/ρ is simple since A_S is co compressible act then, $\exists f: A_S/\rho \rightarrow A_S$ epimorphism. Assume that B_S is a subact of A_S , then $f^{-1}B_S$ is a subact of A_S

$B_S = f^{-1}B_S/\rho = A_S/\rho$, not possible, or $f^{-1}B_S = B_S$, then $B_S = f(\bar{0}) = 0$. Therefore A_S is simple. \odot

2.12. Definition.

A_S is epiform iff for each $\rho \neq A_S \times A_S$ congruence on A_S then each homomorphism $\alpha: A_S \rightarrow A_S/\rho$ is an epimorphism.

2.13. Proposition.

Let A_S be a co compressible act, and B_S be a subact of A_S , then the following statements are equivalent:

1. A_S is critically co compressible
2. A_S is epiform.

Proof:

$$1. \Rightarrow 2.$$

Let $\alpha: A_S \rightarrow A_S/\rho$ be a nonzero homomorphism, let $\ker(\alpha) = \delta$, if $\text{Im}(\alpha) = B_S/\rho = \rho \cap (B_S \times B_S)$, which is a congruence on B_S then $A_S/\delta \cong B_S/\rho$ (by Remarks 2.6 (5)). Since A_S is co compressible then there exists $\beta: A_S/\delta \xrightarrow{\text{epi.}} A_S$,

Consider $B_S \xrightarrow{\pi} B_S/\rho \cong A_S/\delta \xrightarrow{\beta} A_S$, here π is the natural mapping. Hence $B_S \rightarrow A_S$ is an epimorphism a contradiction to critically co compressible so $\text{Im}(\alpha) = A_S/\rho$ and α is an epimorphism.

$$2. \Rightarrow 1.$$

Assume that, A_S is co compressible, if $\alpha: B_S \rightarrow A_S$ is an epimorphism then,

$A_S \cong B_S/\ker(\alpha)$. Let $\varphi: A_S \rightarrow B_S/\ker(\alpha)$ be an isomorphism. Let

$\varphi: A_S \rightarrow A_S/\delta$ where $\delta = \ker(\alpha) \cup \{(a,a) : a \in A_S\}$, such that $\varphi'(a) = \varphi(a)$, for each $a \in A_S$ then φ

is not epimorphism a contradiction with epiform. \odot

2.14. Definition.

A subact B_S is called corational in A_S , if $\text{Hom}(A_S, B_S/\rho) = 0$ for each ρ congruence on B_S .

2.15. Definition.

Let A_S be an S-act, we say that A_S is fully corational if every proper subact of A_S is corational.

The following proposition gives the relevance between epiform act and corational act,

2.16. Proposition.

Let A_S be an S-act. Then A_S is fully corational act if and only if A_S is epiform.

Proof:

$$\Rightarrow$$

Assume that $0 \neq \alpha: A_S \rightarrow A_S/\rho$ is not an epimorphism

Let $\alpha': A_S \rightarrow \text{Im}(\alpha) = B_S/\rho$, $B_S < A_S$, $\alpha' \neq 0$ where $\alpha(a) = \alpha'(a)$ for each $a \in A_S$.

Then B_S is not corational hence A_S is not fully corational.

$$\Leftarrow$$

Let $\alpha: A_S \rightarrow B_S/\rho$, $\alpha \neq 0$ then $\alpha': A_S \rightarrow A_S/\rho$ define by

$\alpha(a) = \alpha'(a)$, it is not epimorphism. \odot

2.17. Definition.

Let A_S be an act, we call A_S a copolyform act if for any small subact B_S of A_S , $\text{Hom}(A_S, B_S/\rho) = 0$ for all congruence ρ on B_S .

It is clear that if A_S is copolyform and hollow, then it is fully corational, and thus (by Proposition 2.16) epiform.

In the following lemma, the converse will be proved,

2.18. Lemma.

If the S-act A is epiform, then it is hollow.

Proof:

Assume that A_S is epiform, and let B_S, C_S be two proper subacts of A_S such that $B_S \cup C_S = A_S$ then $A_S/B_S \cong A_S/C_S$ (by Remarks 2.6 (6)). $A_S \xrightarrow{\rho_B} A_S/B_S \xrightarrow{\theta} C_S/(B_S \cap C_S) \xrightarrow{i} A_S/(B_S \cap C_S)$ since $i \circ \theta \circ \rho_B \neq 0$, the composition $i \circ \theta \circ \rho_B$ is not epimorphism; this contradicts the assumption that A_S is epiform, therefore A_S is hollow.

2.19. Proposition.

Any critically co compressible act A_S is hollow, and hence indecomposable.

Proof:

It is clear that A_S is epiform through (Proposition 2.13) and through (Lemma 2.18) it follows that A_S is hollow, and hence indecomposable. \odot

In the rest of this section, two results about co compressible and critically co compressible acts will be added. For the first result the following two statements are needed,

2.20. Lemma.

A faithful simple finite S-act is nonsingular.

Proof:

Assume that A_S is faithful simple (and fi-

nite)S-act over a monoid S. Let

$\psi_{A_S} = \{(a,b) \in A \times A \mid as=bs \ \forall s \text{ in some intersection large ideal in } S\}$. Let $(a,b) \in \psi_{A_S}$, then there exists an intersection large ideal of S such that $aI=bI$ (where $I \neq 0$ since it is intersection large ideal), since A_S is faithful then there exists $x \in A_S, x \neq 0$ and $xI \neq 0$. But xI is a subact of the simple act A_S , so $xI=A_S=xS$. But A_S is finite, implies $I=S$. Now $a=a \cdot 1=b \cdot 1=b$, that is $\psi_{A_S}=i_{A_S}$, then A_S is nonsingular. \odot

2.21. Lemma.

If A_S is an act and B_S is finite subact of A_S , then $A_S/(A_S \setminus B_S)S$ is finite. Since $(A_S \setminus B_S)S \supseteq A_S \setminus B_S$ it follows that $|A_S \setminus B_S| \geq |A_S \setminus B_S| \rightarrow |A_S \setminus (A_S \setminus B_S)S| = |A_S \setminus (A_S \setminus B_S)S|$. Hence $|A_S \setminus (A_S \setminus B_S)S| \leq |A_S \setminus (A_S \setminus B_S)| = |B_S|$.

2.22. Theorem.

A faithful co compressible act A_S over a monoid S is nonsingular in each of the following cases:

1. A_S is finite;
2. S is finite;
3. There are only finite numbers of right ideals in S,
4. There are only finite numbers of right essential ideals in S,
5. S is a right Artinian;
6. The intersection of all essential right ideals is nontrivial.

Proof:

1. Since A_S is finite and co compressible implies A_S is simple (by Proposition 2.11), hence (by lemma 2.20), A_S is nonsingular.

2. Let $0 \neq a \in A_S$ such that $aS \neq 0$ (A_S faithful).

Let $M = A_S \setminus aS$, and $N = MS$, then A/N is a finite factor of A_S (by Lemma 2.21). Since A_S is co compressible, it is simple. Now, A_S is simple and S is finite imply that A_S is finite, then by (1.) it is nonsingular.

3. if S has a finite number of ideal, then it has a minimal ideal, say I, let

$0 \neq a \in A_S$ such that $aI \neq 0$ (A_S is faithful), let $M = A_S \setminus aI$, and $N = MS$, then N is a maximal subact of A_S , for if L is a subact of A_S containing N, then it must contain an element of aI (and hence all of aI , since it is minimal), that is $L = A$. Then A/N is a simple factor of A_S , hence A_S itself is simple. Since A_S is simple implies $A_S = aS$ for each $0 \neq a$ in A_S hence S is simple (since if S has a proper ideal I, then aI is a proper subact of A_S).

Now, if $(a,b) \in \psi_{A_S}$, then $aS = bS$ (S is the only intersection large ideal of S), then $a = b$, that is $\psi_{A_S} = i_{A_S}$ and A_S is nonsingular.

4. If S has a finite number of intersection large ideals, then it possess a minimal one, then we complete the proof as in (3.).

5. If S is Artinian, then it has a minimal ideal, then we proceed as in (3.).

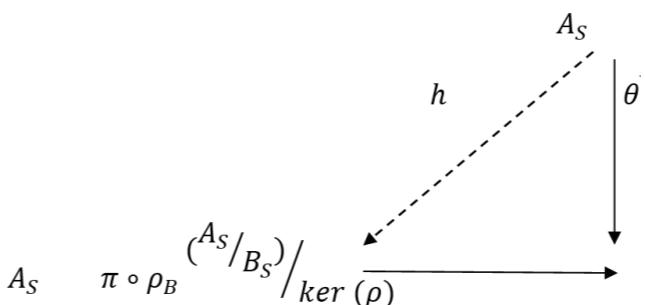
6. In this case also we have a minimal intersection large ideal then as (4.) the proof is completed. \odot

For the second result, we recall the definition of quasi-projective act from section 1.

2.22. Proposition.

Let A_S is a critically co compressible act. A_S

is simple if and only if A_S is quasi-projective.


Proof:

\Rightarrow

It is clear that every simple act A_S is quasi-projective.

\Leftarrow

Let B_S be a proper subact of A_S since A_S is co compressible there exists $\rho: A_S \rightarrow A_S$, epimorphism hence $A_S \cong (A_S / B_S) / \ker(\rho)$. Consider the composition $A_S \xrightarrow{\rho_B} A_S / B_S \xrightarrow{\pi} (A_S / B_S) / \ker(\rho)$, since A_S is quasi-projective $\exists h: A_S \rightarrow A_S$ such that $(\pi \circ \rho_B \circ h) = \theta$ which is isomorphism

that is h is injective, hence $A_S \cong \text{Im}(h)$, then if $\text{Im}(h) = A_S$, then h itself is an isomorphism and hence $\pi \circ \rho_B$ is an isomorphism (not possible), or $\text{Im}(h)$ is a proper subact of A_S which contradicts the assumption that A_S is critically co compressible therefore A_S has no proper subact, that is, A_S is simple. \odot

3. Coretractable Acts

3.1. Definition.

An S-act A is coretractable if there exists a nonzero homomorphism of every nonzero factor of A_S into A_S , i.e.

$\exists f: A_S / \rho \rightarrow A_S, f \neq 0 \ \forall \rho \neq A \times A$ congruence on A_S .

3.2. Examples.

(1) Let $S = (N, \cdot)$ be a semigroup with identity, then S_S is not coretractable. (see Examples 2.5 (2)).

(2) If A_S is simple, then A_S is coretractable (trivially).

3.3. Remark.

Every co compressible act is coretractable act.

In the next lemma, a condition, makes the converse of Remark 3.3 is correct, is given,

3.4. Lemma.

Let an act A_S be a coretractable act, if each $0 \neq f \in \text{End } A_S$ is an epimorphism, then each nonzero element of $\text{Hom } A_S / \rho, A_S$ is an epimorphism, for every congruence ρ of A_S . In particular A_S is co compressible.

Proof:

Let ρ be a congruence on A_S and $0 \neq g: A_S / \rho \rightarrow A_S$, which exist since A_S is coretractable. A nonzero homomorphism considering $v: A_S \rightarrow A_S / \rho, g \circ v$

is epimorphism and obviously g is an epimorphism. In particular A_S is co compressible. \odot

The next theorem is generalization to proposition 2.13.

3.5. Theorem.

Let A_S be a coretractable act, then A_S is critically co compressible if and only if A_S is

epiform.

Proof:

\Rightarrow (by Theorem 2.13).

\Leftarrow

Since A_S is epiform implies each $f \in \text{End}_S$

(A) is an epimorphism since

$f: A_S \rightarrow A_S$, and $\varphi: A_S \rightarrow A_S / i_{A_S}$ is an isomorphism $\varphi \circ f: A_S \rightarrow A_S / i_{A_S}$ is an epimorphism, then f is epimorphism (by Lemma 3.4), A_S is co compressible, (by Theorem 2.12), A_S is critically co compressible. \circledast

3.6. Lemma.

Let A_S be an act with zero, then the next cases are equivalent:

1. Every $0 \neq f \in \text{End}_S(A)$ is an epimorphism;
2. For each B_S proper subact A_S , for each $h \in \text{Hom}(A_S / B_S, A_S)$ is an epimorphism;

3. For each $0 \neq B_S$ proper subact A_S , $\text{Hom}(A_S, B_S) = 0$.

Proof:

1. \Rightarrow 2. The same proof of (Lemma 3.4).

2. \Rightarrow 1. Let $0 \neq f \in \text{End}_S(A_S)$ take $B_S = 0$ and define,

$h: A_S / B_S \rightarrow A_S$, by $h([a]_B) = f(a)$ then h is well defined and $h \neq 0$, through (2) h is an epimorphism, it follows that f is an epimorphism also.

1. \Rightarrow 3. If $h \in \text{Hom}(A_S, B_S)$ and $h \neq 0$ then define $f: A_S \rightarrow A_S$ by $f(a) = h(a)$ for each $a \in A_S$. In this case $\text{Im}(f) = \text{Im}(h) = B_S \neq A_S$ it follows that f is not epimorphism, a contradiction with (1) hence $h = 0$.

3. \Rightarrow 1. Assume $0 \neq f \in \text{End}_S(A)$ and f is not epimorphism $0 \neq B_S = \text{Im}(f) \neq A_S$ define

$h: A_S \rightarrow B_S$ by $h(a) = f(a)$ then $h \in \text{Hom}(A_S, B_S)$ and $h \neq 0$ a contradiction with (3) hence f is epimorphism. \circledast

3.7. Note.

If A_S is an epiform, then the cases of (Lemma 3.6) are satisfied, since each $f: A_S \rightarrow A_S$, can be written accordingly $f: A_S \rightarrow A_S / i_{A_S}$ and hence it is an epimorphism if A_S is epiform.

3.8. Theorem.

Let A_S be an act, the next cases are equivalent:

1. A_S is co compressible and every $0 \neq f \in \text{End}_S(A)$ is an epimorphism;
2. A_S is co compressible and $\text{End}_S(A)$ is ZDF;
3. A_S is coretractable and every $0 \neq f \in \text{End}_S(A)$ is an epimorphism;
4. A_S is coretractable and $\text{End}_S(A)$ is ZDF.

Proof:

1. \Rightarrow 2. Since $f \neq 0$ and $h \neq 0$, f, h are epimorphisms

, then $h \circ f$ is epimorphism, hence $h \circ f \neq 0$.

2. \Rightarrow 4. It is clear that, since every co compressible act is coretractable act.

4. \Rightarrow 3. Let $f: A_S \rightarrow A_S$ be not epimorphism, then $\text{Im}(f) \neq 0$ since A_S is coretractable there exists $\varphi: A_S / \text{Im}(f) \rightarrow A_S$, if $\pi: A_S \rightarrow A_S / \text{Im}(f)$ is the natural epimorphism, then $\varphi \circ \pi = h \in \text{End}_S(A)$ it is clear that $h \neq 0$ (since π is onto and $\varphi \neq 0$), $(h \circ f)(a) = h(f(a)) = \varphi \circ \pi(f(a)) = \varphi(0) = 0$. Now $h \circ f = 0$, a contradiction with $\text{End}_S(A)$ is ZDF.

3. \Rightarrow 1. (by Lemma 3.4). \circledast

References:

- [1] T. Harju, Lecture Notes on Semigroups, Department of Mathematics, University of Turku, Finland, (1996).
- [2] M. Kilp, U. Knauer, A. V. Mikhalev, Monoids, Act and Categories, Walter de Gruyter, Berlin. New York, (2000).
- [3] U. Hebisch, Semirings Without Zero Divisors, Mathematica Pannonica 1/1 73-94, (1990).
- [4] H. Oltmanns, Homological classification of monoids by projectivities of right acts, Ph.D. Thesis, University of Oldenburg (Germany), (2000).
- [5] M.S. Abbas and A. Shaymaa, Principally quasi injective system over monoid, Mustansiriyah University journal of advances in mathematics, Vo.10. 3152-3162, (2015).
- [6] J. Ahsan and L. Zhongkui, On relative quasi-projective acts over monoids, The Arabian journal for science and engineering, Vo.35, 225-233, (2010).
- [7] K. Ahmadi and A. Madanshekaf, Nakayama's Lemma for acts over monoids, Semigroup Forum, Vo.91 (2), 321-337, (2015).
- [8] A. Bailey and J. Renshaw, Covers of acts over monoids II, Semigroup Forum, Vo.87(1), 1-18, (2012).
- [9] A. M. Lopez , Jr. and J. K. Luedeman , Quasi-injective S-systems and their S-endomorphism Semigroup, Czechoslovak Math. J., 29(104) ,97-104, (1979).
- [10] E. H. FELLER and R. L. Gantos of Milwaukee, Indecomposable and Injective S-systems with Zero, Math. Nachr, 38-48, (1967).
- [11] C. V. HINKLE, The Extended Centralizer Of An S-set, Pacific Journal of Mathematics, Vo.53, No.1.163-170, (1974).
- [12] [12] R. KHOSRAVI, On Retractable S-Acts, Journal of Mathematical Research with Applications, Vo.32. 392-398, (2012).
- [13] A.M.AL-Hosainy and H.A. Kadhim, Co compressible modules, International Research Journal of Scientific Findings .Vo1, (2014).
- [14] F. Kasch, Modules and Rings, Academic Press Inc. London, (1982).

^{226}Ra Concentration and ^{222}Rn Exhalation Rate in Sediments of Euphrates River and Some Its Branches in Thi-Qar Governorate -Southern Iraq

Hayder Abdulwahid Hamood
General Directorate of Education in Thi Qar, Thi Qar, Iraq.

Received Date: 13 / 11 / 2016
Accepted Date: 12 / 1 / 2017

الخلاصة

ان العديد من العناصر المشعة المنبعثة من الرواسب تشارك في الجرعة الاشعاعية الكلية، لذلك فان مراقبة تلوث الرواسب انتشر على مدى واسع لتبني مصادر التلوث. في هذه الدراسة تم استخدام كواشف الاثر النووي الصلبة SSNTDs LR-115 type II للحصول على قاعدة بيانات حول تركيز ^{226}Ra و معدل انبعاث ^{222}Rn لوحدة المساحة ولوحدة الكتلة في رواسب نهر الفرات وبعض فروعه في محافظة ذي قار. هذه البيانات يمكن ان تستخدم كمراجع للدراسات المستقبلية و لتكميلة الخارطة الاشعاعية لجمهورية العراق.

يتراوح تركيز ^{226}Ra في رواسب نهر الفرات وبعض فروعه في محافظة ذي قار بين $0.742 - 2.379 \text{ Bq/kg}$ ، وبينما يتراوح معدل انبعاث ^{222}Rn لوحدة المساحة بين $62.52 - 200.34 \text{ mBq.m}^{-2}$ وبمعدل (1.498 Bq/kg) ، ويتأرجح ايضاً معدل انبعاث ^{222}Rn لوحدة الكتلة بين $126.17 - 1.2 \text{ mBq.m}^{-1}$ وبمعدل $(h^{-1} \cdot 11.3)$. كان تركيز ^{226}Ra ضمن الحدود الموصى بها طبقاً لـ OECD. وقد قورنت النتائج مع المعدل العالمي وبعض الدراسات الأخرى.

الكلمات المفتاحية

^{226}Ra ، ^{222}Rn ، رواسب، نهر الفرات

Abstract

Many radionuclides in sediments transference are contributing to global collective doses. Therefore, monitor of the pollution in sediments was used widespread and trace pollution sources. In this study, SSNTDs LR-115 type II are used to provide database about ^{226}Ra concentration and ^{222}Rn exhalation rate in terms of area and mass in sediments of Euphrates river and Its some branches in Thi-Qar governorate. This data can be used as a reference data for future studies and it may be useful for complete radioactivity mapping for Iraq republic.

^{226}Ra concentration in sediments of Euphrates river and its some branches in Thi-Qar governorate varied between (0.742-2.379) Bq/kg with the average value is (1.498) Bq/kg, while the area exhalation rate of ^{222}Rn varied between (62.52-200.34)mBq. $\text{m}^{-2}.\text{h}^{-1}$ with the average value is (126.17) mBq. $\text{m}^{-2}.\text{h}^{-1}$, also the mass exhalation rate of ^{222}Rn varied between (5.61-17.97) mBq. $\text{kg}^{-1}.\text{h}^{-1}$ with the average value is (11.32) mBq. $\text{kg}^{-1}.\text{h}^{-1}$. ^{226}Ra concentration in this study was included the limit recommended by OECD. Also, The results compared with the average of the world and some other studies

Keywords

^{226}Ra , ^{222}Rn Exhalation Rate, sediment, Euphrates river, SSNTDs.

1. Introduction

^{226}Ra radioactive element existed in soil, rock, sand, water, animals and plants. ^{226}Ra has entered the human body from the soil by vegetarian food, its (like calcium) concentrated in the bones. This led to bombard the bone marrow and mutate tissue. Subsequently, ^{226}Ra can cause many health hazards like anemia, sores, bone cancer and other problems [1]. ^{226}Ra is the parent of ^{222}Rn , after decay ^{226}Ra , ^{222}Rn gas distribution in soil, rock, water and sediments [2]. When the atmosphere contains ^{222}Rn gas and its decay daughters, the bronchial epithelium received the big part of ionizing radiation, in addition, the extra thoracic airways and the skin may receive good dose, also low dose may receive to the kidney and bone marrow, while ^{222}Rn dissolved in drinking water may effect on the stomach [3]. Many radionuclides in sediments transference are contributing to global collective doses [4]. Therefore, monitor of the pollution in sediments was used widespread and trace pollution sources [5]. Rates of ^{222}Rn exchange from air-water and sediment-water were traced since 1965 by Broecker [6].

The aim of the present work provides database about ^{226}Ra concentration and ^{222}Rn exhalation rate in terms of area and mass in sediments of Euphrates river and Its some branches in Thi-Qar governorate southern Iraq by using SSNTDs LR-115 type II. This data can be used as a reference data for future studies and it

may be useful for complete radioactivity mapping for Iraq republic.

2. Area of study

Length of Euphrates river within Thi-Qar governorate is (180 km), about (15.5%) of the total length of the river within Iraq, and the total lengths of branches in the governorate about (318 km) [7]. Euphrates river and its some branches pass through three regions consist of some of the districts like batha, Al-Nassiriah, Fudaliyah, Suq Al-Shuyukh, Aekakh, Garmat Bani Sa'eed, Tar, Al-Fuhud, Al-Manar and Chibayish in Thi-Qar governorate as shown in Fig.(1). Approximately, the population of these districts was (968,921) people obtained by CSO [8]. Where Euphrates river and its branches extend along the west, middle and east of Thi-Qar governorate.

3. Materials and Method

After collecting the sediment samples from the Euphrates river and Its some branches in different places in Thi-Qar governorate. The samples dried in an oven to remove moisture, then crashed and milled into a powder (14g). After that its placed at the bottom of a closed-cylindrical plastic can of diameter (4)cm as shown in Fig.(2). LR-115 type II was fixed in the mouth of the can from inside. The tracks of alpha particles recorded on the detector from ^{222}Rn decay. The detectors, fixed for three months, then it's removed and developed in a (NaOH)

solution of (2.5 N at 60 ± 1 °C during 2 h). An ordinary microscope at a magnification of (400 \times) uses to number alpha (α) tracks in LR-115 type II detectors.

To evaluate the ^{226}Ra concentration in sediments was calculated using equation (1) [1]:

$$C_{Ra} = \frac{\rho h A}{K T_e M} \quad (1)$$

Where (tracks.cm $^{-2}$) is the track density due to ^{222}Rn , h (m) is the distance between the SSNTDs and the top of the sediment sample, A (m 2) is the surface area of the sediment sample, M (kg) is the mass of the sediment sample and T_e (d) is the effective exposure time determined by the equation (2):

$$T_e = t - 1 / (1 -) \quad (2)$$

While the calibration factor determined by the equation (3) If ($a_1 \leq a \leq a_0$) [9]:

$$K = \frac{1}{4} a \cos \theta_c (2 - \frac{a_1}{a} - \frac{a}{a_0}) \quad (3)$$

Where θ_c equal (40°) is the critical angle, a is the radius of the can, a_0 and a_1 determined by the equations (4):

$$a_0 = R_0 \cos \theta_c, R_0 = R - R_{\min}, a_1 = R_1 \cos \theta_c \text{ and} \\ R_1 = R - R_{\max} \quad (4)$$

Where R equal (3.90 cm) is the alpha range of ^{222}Rn in air, R_{\max} equal (3.44 cm) and R_{\min} equal (0.80 cm) are the al-

pha (α) particle ranges in the air volume which match to the upper (E_{\max}) and lower (E_{\min}) energy limits respectively [10]. Consequently, $K=0.032$ tracks.cm $^{-2} \cdot \text{day}^{-1}$ per Bq.m $^{-3}$, where this calibration factor compared with [11, 12].

The ^{222}Rn exhalation rate in terms of area(E_A) and mass(E_M) from the sediments determined according to the following equations (5) and (6) [13]:

$$E_A = CV \lambda / A [t + 1 / \lambda (e^{-\lambda t} - 1)] \quad (5)$$

$$E_M = CV \lambda / M [t + 1 / \lambda (e^{-\lambda t} - 1)] \quad (6)$$

Where C (Bq.m $^{-3} \cdot \text{h}$) is the integrated ^{222}Rn exposure from sediments, V (m 3) is the Volume of air in can, λ (h $^{-1}$) is the decay constant of ^{222}Rn , and t(h) is the accumulation time exposure.

4. Results and Discussion

^{226}Ra concentration and ^{222}Rn exhalation rate in terms of area and mass in the samples have been measured from Euphrates river and Its some branches in various places at Thi-Qar governorate. The obtained results are summarized in Table (1), with the maximum, minimum and average values of the total. Point out that showed that Maa Al-Chibayish (samples no. 19) is branch from Gharraf canal and not Euphrates river, but some branches from Euphrates river is flowing in it.

Table(1) ^{226}Ra concentration and ^{222}Rn exhalation rate in sediments of Euphrates river and its some branches in Thi-Qar governorate.

No.	The region	The district	The name of the station	C_{Ra} Bq/kg	E_A mBq.m $^{-2} \cdot \text{h}$	E_M mBq.kg $^{-1} \cdot \text{h}$			
1	Al-Nassiriah	Batha	(Euphrates (1	0.877	73.81	6.62			
2		Almsaffar		1.753	147.61	13.24			
3		Alsaah		1.502	126.53	11.35			
4		Almohia		2.379	200.34	17.97			
5	Suq Al-Shuyukh	Suq Al-Shuyukh	Euphrates (2)	1.712	144.20	12.94			
6		Garmat Bani Sa'aed	Garmat Bani Sa'aed	0.978	82.40	7.39			
7			Agarmashiyah	1.979	166.74	14.96			
8			Am nakhala	0.856	72.11	6.47			
9	Tar	Alhaffar		1.345	113.30	10.16			
10			Kheoah	2.324	195.71	17.56			
11			Abu Ouane	2.079	175.10	15.71			
12	Aekakh	Abu Sha'atha		1.361	114.62	10.28			
13			Al rufia'a	0.742	62.52	5.61			
14			Garmat Hassan	1.345	113.30	10.16			
15	Fudaliyah	Am Hilan		0.856	72.11	6.47			
16			Al Fadliyah	1.345	113.30	10.16			
17			Barbid	2.379	200.34	17.97			
18	Al-Fuhud	Alla'aioossayah		1.252	105.45	9.46			
19			Maa Al-Chibayish	1.878	158.16	14.19			
20			Hanbat	1.502	126.53	11.35			
21	Al-Manar	Tina		1.252	105.45	9.46			
22			Euphrates (3)	1.377	115.98	10.41			
23			Abu nersi	1.502	126.53	11.35			
24	Chibayish	Abu Sobat		1.377	115.98	10.41			
Total				Maximum	2.379	200.34	17.97		
				Minimum	0.742	62.52	5.61		
				Average	1.498	126.17	11.32		
				Standard Deviation	0.482	40.61	3.64		

^{226}Ra concentration in sediments of Euphrates river and some branches in Thi-Qar governorate varied between (0.742-2.379Bq/kg) with the average value is (1.498) Bq/kg, while the area exhalation rate of ^{222}Rn varied between (62.52-200.34) $\text{mBq.m}^{-2}.\text{h}^{-1}$ with the average value is (126.17) $\text{mBq.m}^{-2}.\text{h}^{-1}$, also the mass exhalation rate of ^{222}Rn varied between (5.61-17.97) $\text{mBq.kg}^{-1}.\text{h}^{-1}$ with the average value is (11.32) $\text{mBq.kg}^{-1}.\text{h}^{-1}$.

^{222}Rn exhalation rate varies from one station to another, the variation in these stations may be due to the differences in Obviously, these results are closed from results [15], [16] and [31] from Iraq, but it is lower than other studies especially the average of the world by [4], as shown in the Table(2).

^{226}Ra concentration and porosity of the sediments. The relation between ^{226}Ra concentration and the area exhalation rate of ^{222}Rn , and also the relation between ^{226}Ra concentration and the mass exhalation rate of ^{222}Rn are leaner one, where ($R^2=1$) is the square of the correlation coefficient, these obtained in Figures (3 and 4). It is worth mentioning that the concentration of ^{226}Ra in this study was include the recommended safe (370 Bq/kg) according to OECD [14].

When comparing the results which obtained from sediments of Euphrates river and its branches with other studies, results [15], [16] and [31] from Iraq, but it is lower than other studies especially the average of the world by [4], as shown in the Table(2).

Table(2): comparison of our sediments with other areas of the world

Location	C_{Ra} (Bq/kg)	E_A ($\text{mBq.m}^{-2}.\text{h}^{-1}$)	E_M ($\text{mBq.kg}^{-1}.\text{h}^{-1}$)	Reference
Average (Range)				
^{226}Ra concentration				
Baltic sea, Southern Baltic	(3.6-47)			[17]
China	50			[18]
Dutch	Not detected			[19]
Abano Terme, Italy	Not detected			[20]
Aegean region, Turkey	Not detected			[21]
Cauvery river, India	5.6			[22]
Vistula river, Poland	(205-415)			[23]
Danube river, Serbia	31			[24]
Cauvery river, India	84.89			[25]
Nile river, Egypt	(7-188)			[26]
Al- Hindiyah, Iraq	1.420			[16]

^{222}Rn exhalation rate				
White Oak river, USA		(2041200-4536000)		[6]
Basrah, Iraq		(20-340)		[15]
Azad Kashmir, Pakistan		(193-308)		[27]
^{226}Ra concentration and ^{222}Rn exhalation rate				
The average of the world	35	57600		[4]
Bahawalpur, Pakistan	(28-36.5)	(1560-3330)		[28]
Bulandshahr, India	14.1	600.74	23.1	[29]
Benghazi, Libyan	(1.5-23.0)	216.5	8.2	[13]
Northern Rajasthan, India	12.45(6.88-19.31)	495.32(273.80-768.04)	14.96(8.27-23.19)	[30]
Khor-Abdulla, Arabian Gulf, Basrah, Iraq	0.910(0.235-1.814)	267(69-531)	6.87(1.77-13.70)	[31]
Kassala town, Sudan	16.3(3.9-34.2)	3500(840-7350)	70(17-148)	[32]
Euphrates river, Thi-Qar, Iraq	1.498(0.742-2.379)	126.17(62.52-200.34)	11.32(5.61-17.97)	This study

5. Conclusion

Measurements of gross ^{226}Ra concentration and ^{222}Rn exhalation rate in terms of area and mass of sediments collected from Euphrates river and its some branches in Thi-Qar governorate southern Iraq were performed using SSNTDs LR-115 type II technique. The observed values of ^{226}Ra concentration in sediment samples in the present study are less than the recommended safe according to OECD. ^{226}Ra concentration and ^{222}Rn exhalation rate are much lower than the average of the world. The relation between ^{222}Rn exhalation rate in terms of area and mass to ^{226}Ra concentration obtained in figures (3 and 4) are leaner one, so from ^{226}Ra concentration may give a good estimate about ^{222}Rn exhalation rate and inversion. Thereby it

is concluded that sediments of Euphrates river and Its some branches in Thi-Qar governorate are radiologically safe.

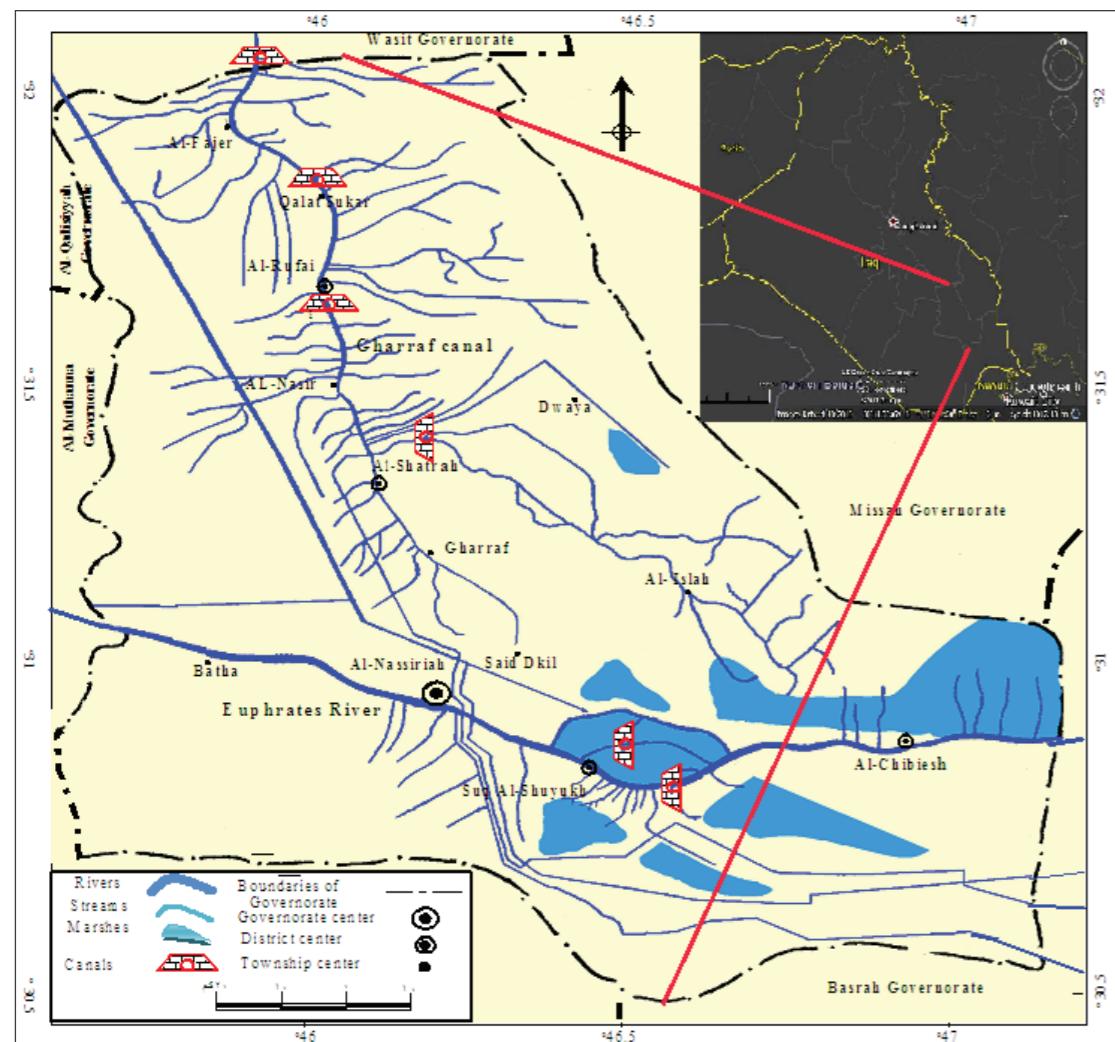


Fig.(1): surface water resources in Thi-Qar governorate including Euphrates river and its branches.

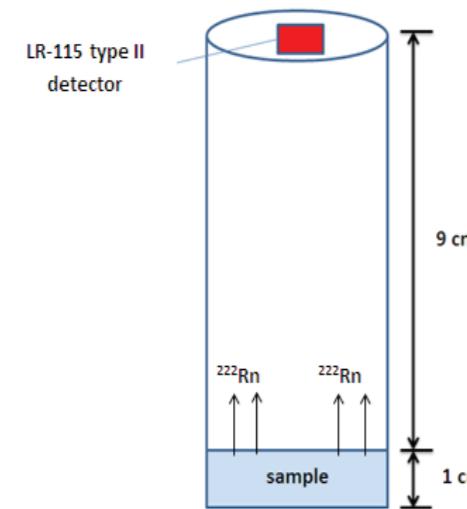


Fig.(2): shown of (LR-115 type II) film and a sediment sample in a closed cylindrical plastic can.

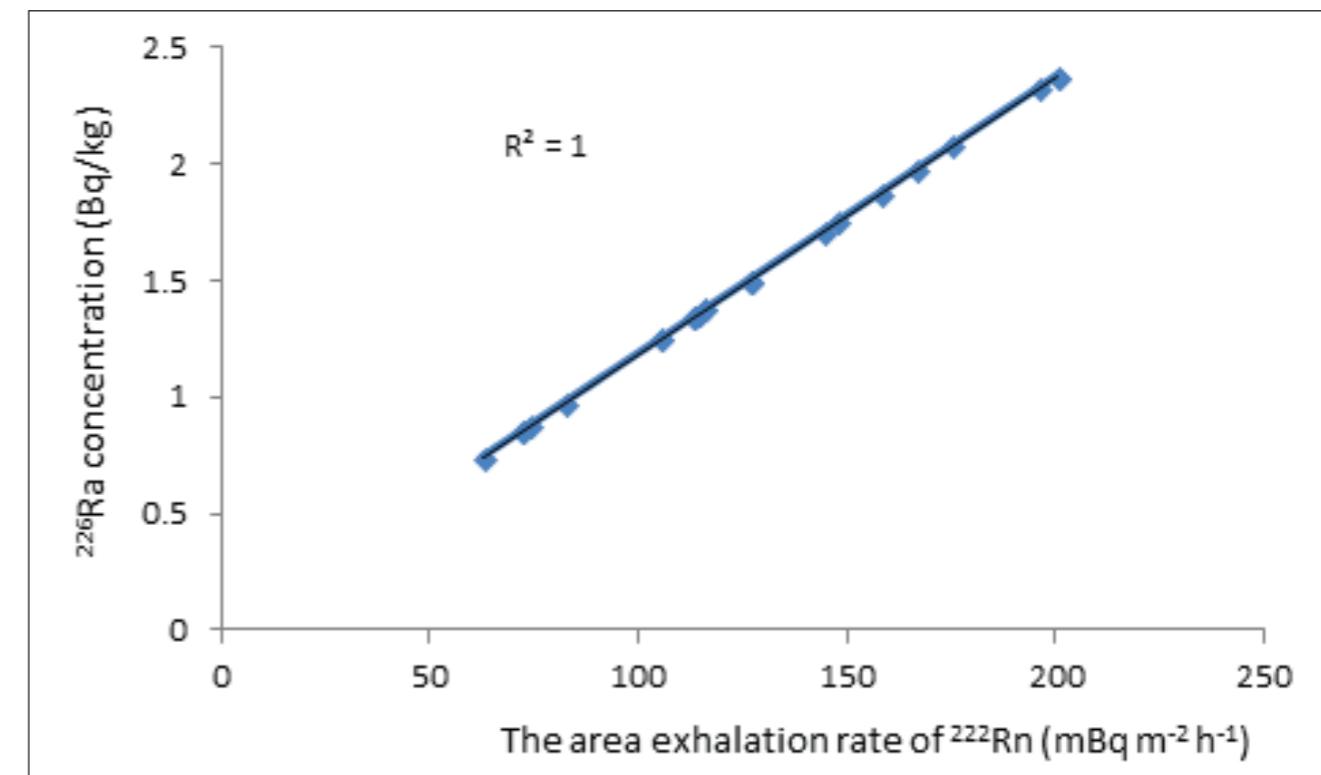


Fig.(3): show the relation between the area exhalation rate of 222Rn and 226Ra concentration

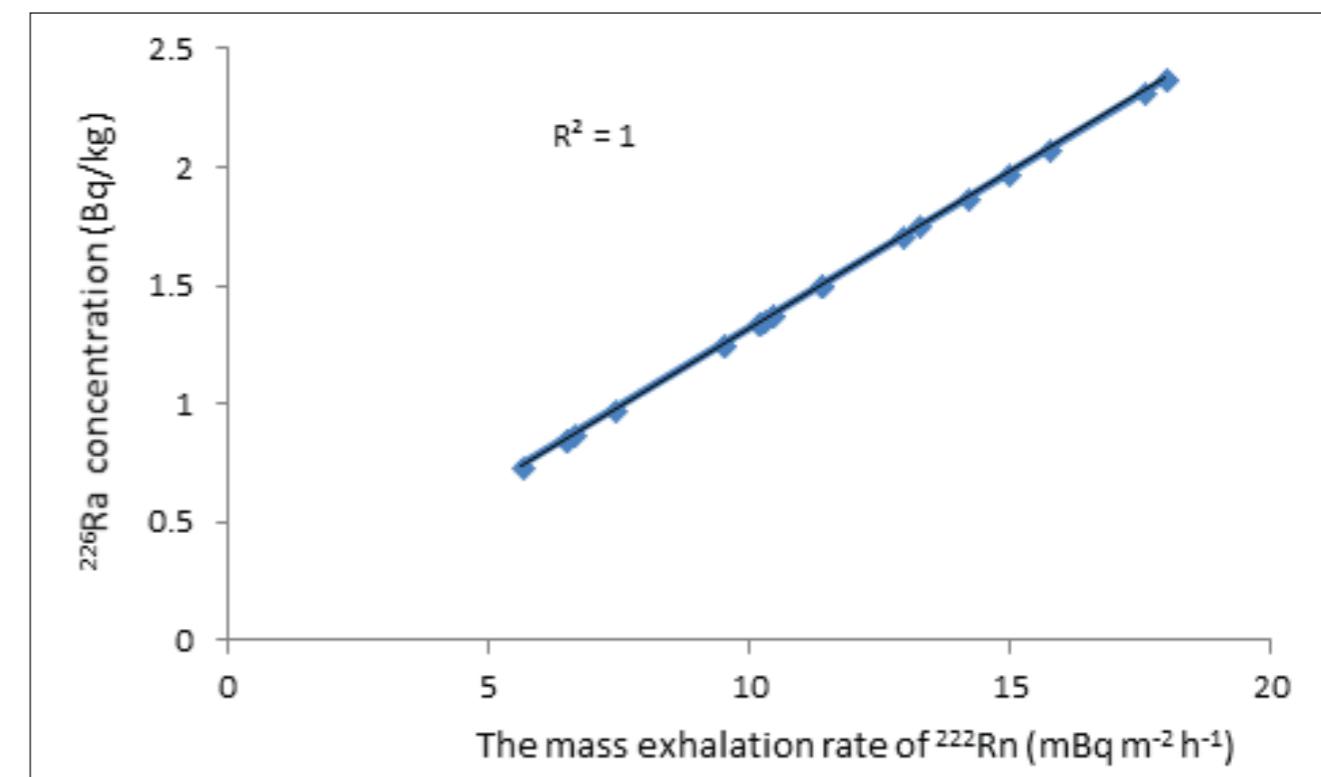


Fig.(4): show the relation between the mass exhalation rate of 222Rn and 226Ra concentration.

References

- [1] Mahur A. K., Khan M. S., Naqvi A. H., Prasad R. and Azam A., Measurement of effective radium content of sand samples collected from Chhatrapur beach, Orissa, India using track etch technique, *Radiation Measurements*, 43, 520-522, (2008).
- [2] Al-Khalifa I. J. M., Polymers track detector used for radon survey in Babel city (Al-Hillah-Iraq), *J Basrah Researches (Sciences)*, 32. Part. 2, 26-30,(2006).
- [3] WHO, WHO handbook on indoor radon; a public health perspective, World Health Organization, (2009).
- [4] UNSCEAR, Report of the United Nation Scientific Committee on the Effect of Atomic Radiation to the General Assembly, (2000).
- [5] Oyebajo O. A., Joshua E.O. and Jibiri N. N., Natural radionuclides and hazards of sediment samples collected from osun river in southwestern Nigeria, *The pacific journal of science and technology*, 13, 2, 391-396,(2012).
- [6] Gruebel K. A. and Martens C. S., Radon-222 tracing of sediment-water chemical transport in an estuarine sediment, *Limnol Oceanogr*, 29, 3, 587-597, (1984).
- [7] Ahmed Z. W., Environmental analysis to geographical factors influential in the quantity and quality of fallen air in Dhi - Qar governorate, Master Thesis, University of Basrah, (2007).
- [8] CSO, Central Statistical Organization, Ministry of planning, Republic of Iraq, (2014).
- [9] Somogyi G., Paripas B. and Varga Zs., Measurement of radon, radon daughters and thoron concentrations by multi-detector devices, *Nuclear Tracks and Radiation Measurements*, 8, 1-4, 423-427, (1984).
- [10] Misdaq M. A., Moustaaidine H., Satif C. and Charik R., A new method for evaluating the influence of building materials on radon emanation in Marrakechi dwellings, *Appl. Radiat. Isot.*, 48, 1, 111-115, (1997).
- [11] Klein D., Pautov V., Chambaudet A. and Barenboim G., Radon emanation measurement using French and Russian track detectors, 25, 1-4, 601- 602, (1995).
- [12] Fahad M., Calibration of LR-115 for uranium estimation and radon measurements from phosphate and coal, *Phys. Chem. News*, 2, 63-65, (2001).
- [13] Saad A.F., Abdallah R.M. and Hussein N.A., Radon exhalation from Libyan soil samples measured with the SSNTD technique, *Applied Radiation and Isotopes* 72, 163-168, (2013).
- [14] [14] OECD, Organization for Economic Cooperation and Development. Report by a group of experts of the OECD, Nuclear Energy Agency, OECD, Paris,(1979).
- [15] Alkhailfa I.J. M. and Bakr H., Determination of radon exhalation rates in Basrah governorate (Iraq) using CR-39 Solid State Nuclear Track Detector (SSNTD's), *Basrah Journal of Science* (A), 25, 2, 97-104, (2007).
- [16] Hashim A. K., Measurement of radium content and radon exhalation rates in soil samples of Al-Hindiyah City, *Journal of Kerbala University*, 11, 3 Scientific, (2013).
- [17] Kowalewska G., Radium-226 in water and sediments of the southern Baltic sea, *Oceanologia*, 23, (1986).
- [18] Ziqiang P., Yin Y. and Mingqiang G., Natural radiation and radioactivity in China, *Radiation Protection Dosimetry*, 24, 1-4, 29-38, (1988).
- [19] Köster H.W., Keen A., Pennders R.M.J., Bannink D.W. and de Winkel J.H., Linear regression models for the natural radioactivity (238U, 232Th and 40K) in Dutch soils: a key to anomalies, *Radiat Prot Dosimetry*, 24, 1-4, 63-68, (1988).
- [20] Doretti L., Ferrara D., Barison G., Gerbasi R. and Battiston G., Natural radionuclides in the muds and waters used in thermal therapy in Abano terme, Italy *Radiat. Prot. Dosim.*, 45, 1/4, 175-178, (1992).
- [21] Kemru M.N., Possible uranium rich areas in the Aegean region of Turkey, *Appl. Radiat. Isot.* 48, 2, 295-299, (1997).
- [22] Hameed P. S., Shaheed K., Somasundaram S. S. N. and Iyengar M. A. R., Radium-226 levels in the Cauvery river ecosystem, India, *J. Biosci.*, 22, 2, 225-231, (1997).
- [23] Jasińska M., Mietelski J. W. and Pociask-Karteczka J., Radionuclide content in the upper Vistula river sediments in a coal mining region in Poland (east-central Europe), *Water, air, and soil pollution* 102, 355-360, (1998).
- [24] Bikit I., Slivka J., Vesović M., Varga E., Žikić-Todorović N., Mrđa D. and Forkapić S., Measurement of Danube sediment radioactivity in Serbia and Montenegro using gamma ray spectrometry, *Volume 41, Issue 4*, 477-481, (2006).
- [25] Murugesan S., Mullainathan S., Ramasamy V. and Meenakshi Sundaram V., Radioactivity and radiation hazard assessment of Cauvery river, Tamilnadu, India, *Iran. J. Radiat. Res.*, 8, 4, 211-222,(2011).
- [26] Issa S., Uosif M. and Elsaman R., Gamma radioactivity measurements in Nile River sediment samples, *Turkish J Eng Env Sci*, 37, 109-122, (2013).
- [27] Rafique M., Rehman S., Mahmood T., Rehman S., Matiullah and Rehman S., Radon exhalation rate from soil, sand, bricks and sedimentary samples collected from Azad Kashmir, Pakistan, *Russian Geology and Geophysics*, 52, 450-457, (2011).
- [28] Rehman S., Matiullah, Rehman S. and Rehman S., Studing 222Rn exhalation rate from soil and sand samples using CR-39 detector, *Radiat. Meas.* 41, 6, 708-713, (2006).
- [29] Zubair M., Khan M. S. and Verma D., Measurement of radium concentration and radon exhalation rates of soil samples collected from some areas of Bulandshahr district, Uttar Pradesh, India using plastic track detectors, *Iran. J. Radiat. Res.*, 10, 2, 83-87, (2012).
- [30] Duggal V., Mehra R. and Rani A., Study of Radium and Radon Exhalation Rate in Soil Samples from Areas of Northern Rajasthan, *Journal Geological Society of India*, 86, 331-336, (2015).
- [31] Jaber M. Q., Subber A. R. H. and Al-Hashimi N. H. N., Radon Concentrations in the Marine Sediments of Khor-Abdulla Northern West of the Arabian Gulf, *International Journal of Physics*, 3, 6, 239-243, (2015).
- [32] Elzain A. A., Mohammed Y. Sh., Mohamed K. S. and Mohamed-Ali A. M., A Study of Radium Concentration and Radon Exhalation Rate in Soil Samples from Kassala Town, Sudan Using SSNTDs, *American Journal of Physics and Applications*, 4, 4, 84-89, (2016).

Assessment of Vitamin D Receptor Gene Expression In Type 2 Diabetic and Hypertensive Patients

Zuhair Mohammed Ali Jeddoaa
College of Medicine, University of Kerbala, Kerbala, Iraq.

Received Date: 20 / 3 / 2017
Accepted Date: 27 / 3 / 2017

الخلاصة

تعتبر مستقبلات فيتامين د والمشفر عنها من جين VDR، احدى عوامل الأستنساخ المهمة التي ترتبط وظيفتها بتنظيم قدرة الجسم على مقاومة التعرض للأمراض المناعية والالتهابات ، ويمكن ان تلعب دورا مهما في امراضية مرضي داء السكري من النوع الثاني وارتفاع ضغط الدم . شملت الدراسة الحالية (104) شخص لغرض تحديد مستويات التضخيم للحامض النووي منقوص الأوكسجين (DNA) منهم (40) مريض بداء السكري من النوع الثاني ، و(40) مريض مصاب بارتفاع ضغط الدم للمقارنة مع (24) شخص من الأصحاء مظهريا كمجموعة سيطرة. تمت دراسة توزيع العينات حسب العمر و الجنس و مكان السكن و تاريخ العائلة المرضي ، وتم استخدام تفاعل البولمرة المترسل الكمي ذو الزمن الحقيقي لغرض تعين مستويات التضخيم لجين ال VDR في العينات المدروسة .

أظهرت النتائج وجود ترابط معنوي مهم احصائيا بين مجموعتي المرضى و مؤشرات الجنس و تاريخ العائلة لكل من داء السكري وارتفاع ضغط الدم على التوالي في حين لم تظهر النتائج اي ترابط معنوي مع مكان السكن في مجموعة مرضي السكري بينما كان هناك ترابط معنوي في مجموعة مرضى ضغط الدم المرتفع . كما اظهرت النتائج بأن قيم نقطة الشروع بتضخيم جين ال VDR لمجتمع مرضى السكري وارتفاع ضغط الدم و مجموعة السيطرة كانت (23.5 ± 1.22) و (24.67 ± 1.30) و (27.41 ± 1.94) على التوالي ، اظهرت نتائج التحليل الاحصائي وجود اختلافات عالية المعنوية لمستويات التضخيم الجيني بين مجموعتي مرضى السكري والسيطرة في حين لم تكن هناك فروقات معنوية بين مرضى ارتفاع ضغط الدم و مجموعة السيطرة ، كما اظهرت النتائج ايضا وجود فروقات احصائية معنوية بين مجموعتي مرضى السكري وارتفاع ضغط الدم

الكلمات الفاتحة

جين ال VDR ، تفاعل البولمرة المترسل الكمي ذو الزمن الحقيقي ، داء السكري ، ارتفاع ضغط الدم.

Abstract

Vitamin D receptor (encoded by the VDR gene) is a transcription factor from the nuclear receptor subfamily. It has been reported that this gene has been participated in the regulation of susceptibility to autoimmune and inflammatory conditions, and could play a role in the pathogenesis of blood pressure and type (2) diabetes mellitus, so this study was conducted to evaluate the effect of some demographical parameters and to assess the gene expression levels of VDR gene in both type (2) diabetic and hypertensive patient groups in comparison with apparently healthy controls. A total of (104) individuals were enrolled in this study, forty of diabetes mellitus type 2 patients, forty of blood hypertension patients and twenty four of apparently healthy individuals as a control group. The age, gender, living region and family history were studied. Real time – quantitative polymerase chain reaction (RT-qPCR) technique was adopted to assess the amplification levels of VDR gene.

The results showed that there were significant associations between patients groups and gender and family history, respectively, and there was no significant association ($p \geq 0.05$) for the living region in diabetic patients. However, a significant positive association ($p \leq 0.05$) exists between living region and Diabetic condition.

RT-qPCR amplification results showed that the mean \pm SD of threshold cycle (Ct) values of amplification cycles of diabetic, hypertension, and control groups were 23.5 ± 1.22 , 24.67 ± 1.30 and 27.41 ± 1.94 respectively. The statistical analyses of quantitative amplifications revealed that there was highly significant difference ($p \leq 0.01$) between diabetic and control groups, and there were no statistically differences ($p \geq 0.05$) of hypertension patients in comparison with control group. The results also revealed significant difference ($p \leq 0.05$) between diabetic and hypertensive groups.

Keywords

VDR gene, RT-PCR, Diabetes, Hypertension.

1. Introduction:

Type (2) diabetes mellitus (T2DM), formerly called non-insulin-dependent diabetes mellitus, obesity-related diabetes or adult-onset diabetes, is a metabolic disorder that is primarily associated with resistance to insulin hormone and relative to deficiency of insulin and increasing the levels of blood sugars (hyperglycemia). Many genes such as hepatocyte nuclear factors, glucokinase, insulin promoter factors, and insulin receptor genes are considered a biomarker for T2DM gene abnormalities [1,2,3]. According to a global survey reported in (2004), the prevalence of diabetes has been estimated (2.8%) in (2000) and about (4.4%) in (2030), around the world.

So, the suspected number of people affected with diabetes is predicted to increase from 171 million in (2000) to (360) million in (2030), most frequently will be T2DM. [2,4]

Vitamin D modulates the gene expression of insulin receptors, as well as insulin secretion, and exerts its activity on specific cells by binding to the cytosolic/nuclear vitamin D receptor (VDR), which act as activation factors for transcription of many genes [3]. Vitamin D (1,25-dihydroxyvitamin D3) receptor gene is located on the long arm (q) of chromosome (12) at position (13.11), from base pairs (47,841,536) to (47,905,030), and consists of (14) exons, and has an extensive promoter region capable of generating multiple tissue-specific transcripts. [5,6,7,8]

This gene encodes the nuclear hormone receptor for vitamin D3, this receptor is im-

portant for the secondary bile lithocholic acid, and also plays critical roles in calcium homeostasis, bone development and mineralization, as well as control of cell growth and differentiation. [1,9]

The VDR gene is also serves as a good candidate gene for susceptibility to several diseases, due to regulating the renin-angiotensin system (RAS) that influencing the regulation of blood pressure. Hence molecular evaluation of VDR polymorphisms and its association with hypertension is suggested to help in the assessment of risk for the disease [10,11,12]. Several studies have demonstrated that VDR are present in aortic endothelial and vascular smooth muscle cells [13], and also VDR polymorphisms predispose to the coronary artery diseases. [14].

The present study aimed to evaluate the effect of some demographical parameters include gender, family history and type of living region, and to assess the gene expression levels through the quantification of amplification of VDR gene in both type (2) diabetic and hypertensive patient groups in comparison with apparently healthy controls using the accurate and reliable RT-qPCR methodology.

Materials and Methods:

A total of (104) blood samples were studied, forty samples from random clinically diagnosed diabetic type (2) patients (mean age 44 ± 6.5 years) and forty samples are from hypertension patients (mean age 42 ± 4.2 years) were involved in this study as a patients group

which were taken from Al-Hussain teaching hospital in Kerbala, Iraq. Beside the patient group, twenty foursamples from apparently healthy individuals with age matchingare served as a control group. The study conducted fromFebruary, (2015)to august, (2015). The gender, living region and family history for the disease were also studied. The official and ethical considerations were approved and provided for participant before sampling,

Blood Samples:

Two ml of peripheral blood samples were collected in EDTA anticoagulant tubes by vein puncture from all patients and controls. The collected blood samples were transmitted within (2)hours using cool box and subjected to DNA extraction and molecular analysis.

Genomic DNA purification:

Genomic DNA was purified from whole fresh blood using genomic DNA purification kit (Geneaid-South Korea), following the protocol provided by the manufacturer, DNA was quantified by the horizontal agarose gel electrophoresis and stored at (-20) Countil use.

The RT-qPCR assessment of VDR gene:

Real time- quantitative polymerase chain reaction (Rt-qPCR) was performed with the following primer sequences (forward primer: 5'-CAGAGCATGGACAGGGAGCAA-3' and reverse primer: -GCAACTCCTCATGGGCTGAG-GTCTCA - 3')(1).

Quantitative real-time PCR assays were performed in triplicate usingReal time PCR (Excecyler 96)®,BIONNER , South Korea. The Real time PCR system primer and SYBR Green master mix was used for quantitative assessment. The (25) μ l of reaction volume containing(10) μ l SYBR Green master mix,(1) μ l of primer mixes ,(10) μ l of RNase free wa- ter and (4) μ l DNA template. Real-Time PCR protocol was as follows: initial denaturation by (1) cycle of (5) min at (95) $^{\circ}$ C, followed by 40 cycles of (30) sec. at (95) $^{\circ}$ C for denatur- ation, (40) sec. at (58) $^{\circ}$ C for annealing, (40) sec. at (72) $^{\circ}$ C for extension, and final hold at (8) $^{\circ}$ C.

Statistical analysis:

The obtained data were evaluated using Statistical Analysis System (SAS) (V 6.12, 2001) and chi- square were adopted for analy- sis of results, the appropriate p-values of less than (0.05) were considered as statistically significant, and value less than 0.01 was considered to be highly significant.

Results:

The study of demographical parameters (Sex, family history and living regions) re- vealed that (57.5%) of diabetic patients group were males and (42.5%)were females, and for hypertensive patients, (45%) of them were males and 55% were females,while for control group were (58.3%) males and (41.7%) fe- males, (table 1), results also showed that there werestatistically significant differences($p \leq$

0.05) between males and females for both dia- betic and hypertension groups.

Regarding to the family historyfor diabetic and hypertension patients, the results showed that (77.5%)of diabetic patients had positive family history in comparison with (22.5%) that had negative family history, while for hy- pertensive patients group the results showed that (67.5%)had positive family history and (32.5%)had negative family history, for con- trol group , the results revealed that (25%) and (75%) had positive and negative family history respectively, and the statistical analysis revealed that there werehighly significant dif- ferences between positive and negative family history, ($p \leq 0.01$) for diabetes and ($p \leq 0.05$)

for hypertension groups.

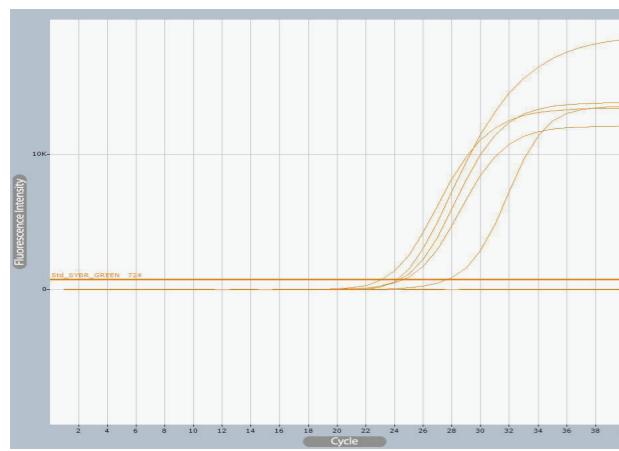
The distribution of the samples according to the living region revealed that (52.5%) of dia- betic patients were live within urban regions while (47.5%)living in the rural regions, and regarding to the hypertension patients the per- centages were (57.5%)and (42.5%) for urban and rural living regions respectively, while for control group , the distribution shows that (62.5%)of samples were living within urban regions in comparison with (37.5%) were live in rural regions, The results also showed no significant differences ($p \geq 0.05$) between two categories for diabetic patients while there was significant differences ($p \leq 0.05$) for liv- ing region of hypertension patients.

Table (1): The distribution of the studied groups according to the gender, family history for the diseases and living region.

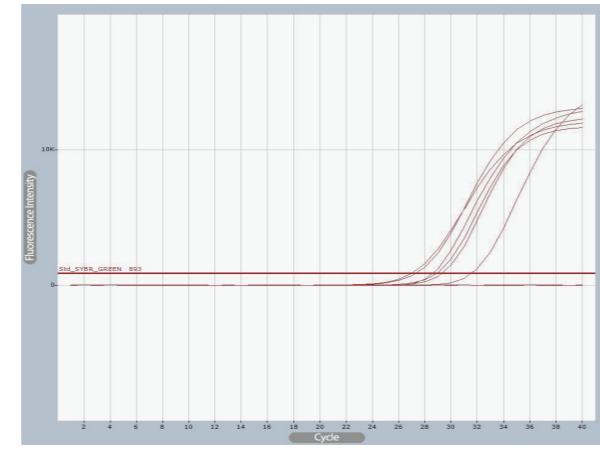
Parameters*		Diabetes N(%)	HypertensionN(%)	Control
Gender	Male	23(57.5) A	18(45) B	14(58.3) A
	Female	17(42.5) B	22(55) A	10(41.7)A
Family history	Positive	31(77.5) A	27(67.5) A	6(25) B
	Negative	9(22.5) B	13(32.5) B	18(75)A
Living region	Urban	21(52.5) A	23(57.5) A	15(62.5)A
	Rural	19(47.5) A	17(42.5)B	9(37.5)B

*the similar vertical letters indicate for non- significant differences while the non- similar vertical letters indicate for significant differences within same parameter results.

The gene expression levels through the quantitative amplification of the target DNA region of VDR gene using RT-qPCR were studied, and according to the threshold cycle (Ct) values of amplification cycles, the results revealed that the mean \pm SD of the Ct values for diabetic, hypertension, and control groups were (23.5 \pm 1.22, 24.67 \pm 1.30 and 27.41 \pm 1.94) respectively.


The statistical analysis of the results regarding the gene expressions and threshold

cycle (Ct) values of amplification revealed there were highly significant difference (P value=0.0024) between diabetic and control groups, and there were no statistically differences (P value = 0.2372) between hypertensive patients in comparison with control group. The results also revealed significant difference (P value = 0.0174) regarding Ct values between diabetes and hypertension groups Tables (2), Figs (1-3).


Table (2): The threshold cycle (Ct) values of VDR gene amplifications in diabetic, hypertensive and control groups.

Group	Threshold cycle (Ct)			
	Maximum Ct value	Minimum Ct value	mean \pm SD	P- value*
Diabetes	25.37	19.42	22.5 \pm 1.22	0.0024 A 0.2372 B 0.0174
Hypertension	27.30	23.10	25.67 \pm 1.30	
Control	35.76	23.10	27.41 \pm 1.94	

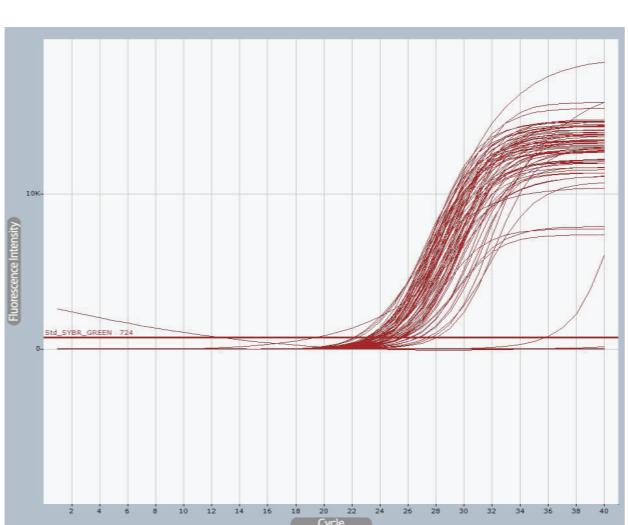

*the similar vertical letters indicate for non- significant differences while the non- similar vertical letters indicate for significant differences within same parameter results.

Fig. (1): RT-qPCR Amplification plot for synthesis of VDR gene in diabetic patients by Real time PCR (Excecyler 96)®, BIONNER , South Korea.

Fig. (2): RT-qPCR Amplification plot for synthesis of VDR gene in hypertensive patients by Real time PCR (Excecyler 96)®, BIONNER , South Korea.

Fig. (3): RT-qPCR Amplification plot for synthesis of VDR gene in diabetic, hypertensive and control groups by Real time PCR (Excecyler 96)®, BIONNER, South Korea.

garding to the age groups which demonstrate that increasing of female gestational diabetic patients with age group range between(15-49) years old and the prevalence of diabetes type (2) will increase in males within increasing of age for (50 -75) years old. The results also compatible with other study findings that shows In the first half of the last century the prevalence of type (2) diabetes was higher among women than among men, but this trend has shifted, so more men than women are now diagnosed with type (2) diabetes. This change in the gender distribution of type (2) diabetes is mainly caused by a more sedentary lifestyle particularly among men, resulting in increased obesity [16].

The present study results were differ from Hariri et al. [17] findings on (4345) individuals, they showed (43.3%) of diabetic patients were male and (56.7%) of them were female. The present study findings revealed that the gender differences in the type (2) diabetes mellitus patients may be related to that women and men with diabetes face different challenges in the management of their condition during different hormonal and physiological condition that explain the effect of obesity and gestational period on diabetic prevalence in study samples for males in comparison with females that have mean age (44 \pm 6.5)years.

For hypertensive, the results agreed with previous study that revealed women have greater increases of cardiovascular risk than men [18]. The present study were different from results reported by study used the tech-

nique of (24) hour ambulatory blood pressure monitoring shown that blood pressure is higher in men than in women at similar age groups due to presence of female hormones which may play a role in protecting females from developing hypertension [19].

Regarding the family history in diabetic patients, the present study showed that the high prevalence (77.5%) of samples have positive family history and the lowest (22.5%) were have negative ones, for hypertensive patients the results showed (67.5%)and (32.5%) were have positive and negative family history to the disease respectively in comparison with control group family history. Statistically, these results showed a significant association of family history with diabetes and hypertension. These findings support previous studies reported that family history to the disease is considered a powerful risk factor for diabetes [20, 21, 22,23,24] which suggested the potential benefit of use of family history for identification at-risk and undiagnosed individuals with diabetes and hypertension.

In regard to living region, the present study revealed that the distribution of diabetic, hypertensive and control groups that live in urban regions were (52.5%), (57.5%) and (62.5%), in comparison with rural living regions were (47.5%), (42.5%) and (37.5%) respectively. The result of statistical analyses between patient and control groups regarding to the rural – urban living regions revealed non-significant differences for diabetic patients, these results are similar to the finding

of Ogursovaet al. [25], both detected no significant differences of diabetes prevalence between rural and urban setting. Regarding to the hypertensive patient and control results the distribution revealed significant increasing of urban distribution of samples in comparison with rural, these results may be due to the trend of urbanization and lifestyle changes, including increasingly sedentary lifestyles, less physically demanding work and the style of nutrition.

Beside the role of vitamin D endocrine system in the calcium metabolism, it is involved in different aspects of cellular replication and differentiation in many target tissues, including the endocrine pancreas [26,27]. Now, it is clear that the VDR is important in the mechanism of insulin delivery and in the preservation of glucose tolerance. On the other hand, the vitamin D–VDR complex was reported as a potential controller of renin functions in human [28] and regulation of blood pressure through its effects on calcium homeostasis [29], vascular smooth muscle cell [30], and endothelial cell function [31]. Additionally, VDR may play a role in the mechanisms of inflammation and insulin sensitivity [32].

Regarding to VDR gene expression, in the present study, we examined the amplification level of VDR gene in patients suffering from the two mentioned diseases using qRT-PCR technique. We have shown that individuals with DMT2 have low threshold cycles comparing to the threshold cycles for hypertensive patients while for control group that have a

high threshold cycle values. The statistical analyses revealed significantly VDR gene expression associated with DMT2, the current results might suggest that a certain level of VDR gene expression is the determining factor in controlling of DMT2. Previous studies have shown that certain mutations and single nucleotide polymorphisms (SNPs) in the VDR gene are associated with diabetes mellitus type (2) (DMT2) and hypertension (1,4,14).

In conclusion, this study provides evidence for the interaction between VDR gene expression and DMT2. To understand the exact mechanism of how VDR gene expression affects the outcome of DMT2, it is recommended to study the expression levels of VDR gene in sufficiently large sample size to produce results with increased precision. And many parameters are important to study including epidemiological life course, social, behavioral, genetic and environmental factors.

Acknowledgment: The author would like to thank Al-Hussein teaching hospital staff in holy Kerbala province, Iraq and lecturer Dr. Jawdat Noori Gaib and Assis. Lecturer Zaineb Nizar Jawad for their kind assistant and support.

References:

- Vural,H.C. and Maltas, E. RT-qPCR assay on the vitamin D receptor gene in type 2 diabetes and hypertension patients in Turkey. *Genet. Mol. Res.*,; 11 (1): 582-590.(2012).
- Nosratabadi,R. , Arababadi,M.K. , Salehabad, V.A. ,Shamsizadeh, A. , Mahmoodi, M., Sayadi, A.R. and Kennedy, D. Polymorphisms within exon 9 but not intron 8 of the vitamin D receptor are associated with the nephropathic complication of type-2 diabetes. *International Journal of Immunogenetics*,; 37, 1-5, (2010).
- Arababadi, M.K., Naghavi, N., Hassanshahi, G. and Mahmoodi, M. Is ccr5-delta32 mutation associated with diabetic nephropathy in type 2 diabetes? *Annals of Saudi Medicine*,;29,413, (2009).
- Nezhad,A.H.,Mirzaei,K.,Shabani,P.,Najmefshar, A.,Emamgholipour,S.,Rahmani,M.,and Larijani, B. Association of VDR gene polymorphism with insulin resistance in diabetic patients. *Iranian Journal of Diabetes and Lipid Disorders*,; 143-150, (2009).
- Al-Daghri,N.M., Al-Attas,O.,Alokail,M.S. , Alkhafry,K.M., Draz,H.M., Agliardi,C., Mohammed,A.K., Guerini, F.R. and Clerici, M. Vitamin D Receptor Gene Polymorphisms and HLA DRB1*04 Cosegregation in Saudi Type 2 Diabetes Patients. *The Journal of Immunology*, <http://www.jimmunol.org/content/suppl/2012/01/04/jimmunol.1101954.DC1.html>, (2012).
- Uitterlinden, A. G., Fang,Y., Meurs,J.B., Leeuwen,H., and Pols, H.A. Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states. *J. Steroid Biochem. Mol. Biol.*; 89-90: 187-193, (2004).
- Ogunkolade, B. W., Boucher,B.J., Prahl,J.M., Bustin,S.A., Burrin,J.M., Noonan,K., North,B.V., Mannan,N., McDermott,M.F., DeLuca,H.F., and Hitman,G.A. Vitamin D receptor (VDR) mRNA and VDR protein levels in relation to vitamin D status, insulin secretary capacity, and VDR genotype in Bangladeshi Asians. *Diabetes*,; 51: 2294-2300, (2002).
- Uitterlinden, A. G., Fang,Y., Van Meurs,J.B., Pols,H.A., and Van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. *Gene*,; 338: 143 –156, (2004).

- [9] Valdivielso, J.M. and Fernandez, E. Vitamin D receptor polymorphisms and diseases. *Clin. Chim. Acta.*;371: 1-12, (2006).
- [10] Swapna,N., Mohana, U., Usha , V. G. and Padma, T. Risk conferred by FokI polymorphism of vitamin D receptor (VDR) gene for essential hypertension. *Indian J Hum Genet.*;17(3): 201-206, (2011).
- [11] Li, Y.C. , Kong, J., Wei, M. Chen, Z.F., Liu, S.Q., Cao, L.P. 1, 25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. *J Clin Invest.*;110:229-38, (2002).
- [12] Carthy, E.P., Yamashita, W. Hsu, A. Ooi, B.S. 1, 25-Dihydroxyvitamin D3and rat vascular smooth muscle cell growth. *Hypertension.*; 13:954-959, (1989).
- [13] Wei N., Stephanie W.W. , Michael N., Songcang C., Denis, J. G., and David G. G. Elimination of vitamin D receptor in vascular function. *Hypertension.*; 64(6): 1290-1298, (2014).
- [14] Lina. H., and Menghong, W. Association of vitamin d receptor-a gene polymorphisms with coronary heart disease in Han Chinese. *Int J ClinExp Med.*; 8(4): 6224-6229, (2015).
- [15] AIHW analysis of ABS Microdata: National Health Survey (NHS), Australian government, Australian institute of health and welfare. www.aihw.gov.au, (2017).
- [16] Kristine Faerch.Gender and T2DM ,Diapedia, the living textbook of diabetes,. <https://doi.org/10.14496/dio3104972816.10>, (2014).
- [17] Susan Hariri, Paula W. Yoon, NadeemQuershi, Radolfo Valdez, Maren T. Scheuner and Muin J. Khoury. Family history of type 2 diabetes: A population-based screening tool for prevention. *Genetics in Medicine.*;8(2): 102-108, (2006).
- [18] Alexandra Kautzky-Willer , Jürgen Harreiter , Giovanni Pacini. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. *Endocr. Rev.*; 37 (3): 278-316, (2016).
- [19] August P., Oparil S. Commentary: hypertension in women. *J.Clin.Endocrinol.Metab.*;84:1862-1866, (1999).
- [20] HarrisonT.A.,HindorffLA.,KimH.,WinesR.C., BowenD.J.,McGrathB.B.,EdwardsK.L. Family history of diabetes as a potential public health tool. *Am. J. Prev. Med.*;24: 152-159. 3, (2003).
- [21] O'RahillyS.,BarrosoI.,WarehamN.J.Geneticf actorsintype2diabetes:theendofthe beginning? *Science*;307:370-373, (2005).
- [22] Newell A.M. Genetics for targeting disease prevention: diabetes. *Prim Care*;31: 743-66, (2004).
- [23] Arslanian S.A, Bacha F., Saad R., Gungor N. Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. *Diabetes Care*;28:115-119, (2005).
- [24] AnnisA.M.,CaulderM.S.,CookM. L.,DuquetteD. Familyhistory,diabetes,another demographic and risk factors among participants of the National Health and Nutrition Examination Survey 1999-2002. Preventing Chronic Disease: Public Health Research, Practice and Policy;2:1-12, (2005).
- [25] Ogurtsova K., Guariguata L.,Linnenkamp U., da Rocha Fernandes J.D., Cho N.H. , Makaroff L. Rigional differences in diabetes prevalence by age and urban/rural setting. *International Diabetes Federation.*;A4156-Diabetes, (2015).
- [26] Walters M.R. Newly identified actions of the vitamin D endocrine system. *Endocrine Reviews.*; 13: 719-764, (1992).
- [27] Lee S., Clark S.A., Gill R.K.& Christakos S.1,25-Dihydroxyvitamin D3 and pancreatic b-cell function: vitamin D receptors, gene expression, and insulin secretion. *Endocrinology*; 134 :1602-1610, (1994).
- [28] Vaidya A., Sun B., Forman J.P., et al. The Fok1 vitamin D receptor gene polymorphism is associated with plasma renin activity in Caucasians. *Clin.Endocrinol. (Oxf)*;74:783-790, (2011).
- [29] Bian K., Ishibashi K.,Bukoski R.D. 1,25(OH)2D3 modulates intracellular Ca²⁺ and force generation in resistance arteries. *Am J Physiol.* 270:H230-H237,(1996).
- [30] Somjen D, Weisman Y, Kohen F, et al. 25-hydroxyvitamin D3- 1alpha-hydroxylase is expressed in human vascular smooth muscle cells and is up regulated by parathyroid hormone and estrogenic compounds. *Circulation*, 2005;111: (1666-1671).
- [31] Zehnder D., Bland R., Chana R.S., et al. Synthesis of 1,25-dihydroxyvitamin D(3) by human endothelial cells is regulated by inflammatory cytokines: a novel autocrine determinant of vascular cell adhesion. *J. Am. Soc.Nephrol.* 13:621-629,(2002).
- [32] Rigby W.F., Denome S., Fanger M.W. Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. *J.Clin. Invest.* 1987;79, (1659-1664).

δ-Divisor Graphs

*M.N.Al-Harere and **M.A.Seoud

*Department of Applied Science, University of Technology, Baghdad, Iraq.

**Department of Mathematics, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt

Received Date: 2 / 5 / 2016

Accepted Date: 22 / 8 / 2016

الخلاصة

في هذا البحث ، قدمنا نتائج لنوع من بطاقات الرسومات البيانية ، والتي أطلقنا عليها رسم بياني δ -divisor وهو عبارة عن رسم بياني مقسم معدّل.

الكلمات الفاتحية

بطاقات الرسومات البيانية، رسم بياني δ -divisor ، رسم بياني مقسم معدّل.

Abstract

In this paper, we introduce results for a kind of labelings of graphs, which we named it the δ -divisor graph which is a modified divisor graph.

Keywords

labelings of graphs, δ -divisor graph, modified divisor graph

1. Introduction

G. Santhosh and G. Singh [1,4] called a graph $G(V,E)$ with vertex set V and edge set E a divisor graph if V is labeled by a set of integers and for each edge $uv \in E$ either the label assigned to u divides the label assigned to v or vice versa. Here, we study the notion “divisor graph” in the sense that its vertices can be labeled with distinct integers $1, 2, \dots, |V|$ such that for each edge $uv \in E$ either the label assigned to u divides the label assigned to v or vice versa and we named it δ -divisor graph. A graph which is not a δ -divisor is called a non- δ -divisor graph.

We introduce a method to calculate the number of vertices of degree 2 in the maximal δ -divisor graph of n vertices. We prove the following graphs are non- δ -divisor graphs: the $\langle S_{n_1}, S_{n_2}, S_{n_3} \rangle$ is a non- δ -graph if and only if $d_l > \left\lfloor \frac{n}{3} \right\rfloor - 1$ or $n_l - \left\lfloor \frac{|n|-1}{2} \right\rfloor + n_k + 3 > \left\lfloor \frac{n}{2} \right\rfloor$, where $n = n_1 + n_2 + n_3$, where $n = n_1 + n_2 + n_3 + 5$, n_j, n_k, n_l are the number of the pendant vertices of the star S_{n_j} , $j=1,2,3$ where the degrees of their central vertices are d_j, d_k, d_l respectively, $d_j \geq d_k \geq d_l$. $(G = \langle S_{n_1}, S_{n_2}, \dots, S_{n_t} \rangle)$ is the graph obtained by joining the central vertices of each star $S_{n_{m-1}}$ and the star S_m to a new vertex x_{m-1} , where $2 \leq m \leq t$; P_n except P_1, P_2, P_3, P_4 and P_6 ; $G = w S_m$, $m > 1, w \geq 4$ (the union of w stars each of m vertices); and hence every graph can be embedded as an induced subgraph of a δ -divisor graph.

Any notion or definition which is not found here could be found in [1], [2].

1.1. Definition [2]

Let x be a non-negative real num-

ber. The Gauss function $\pi(x)$ is defined to be the number of primes not exceeding x . i.e., $\pi(x) = |\{p: p \text{ is prime}, p \leq x\}|$.

1.2. Lemma [5]

The number of vertices of degree 1 in the maximal divisor graph is

$$\pi(n) - \pi\left(\left\lfloor \frac{n}{2} \right\rfloor\right), \text{ where } \pi \text{ is the Gauss's function.}$$

2 δ -divisor graphs

2.1. Definition

A graph $G(V,E)$ with vertex set V is said to be δ -divisor if its vertices can be labeled with distinct integers $1, 2, \dots, |V|$ such that for each edge $uv \in E$ either the label assigned to u divides the label assigned to v or vice versa. A graph which is not δ -divisor is called a non- δ -divisor graph.

2.2. Definition

A maximal δ -divisor graph of n vertices is a δ -divisor graph such that adding any new edge yields a non- δ -divisor graph.

2.3. Method

A method to calculate the number of vertices of degree 2 in the maximal δ -divisor graph of n vertices:

Explanation of method: Let the number of vertices of degree 2 in the maximal δ -divisor graph of n vertices be $M(n)$. There are two kinds of vertices of degree 2:

Kind1. Let p_i be the prime less than or equal to $\left\lfloor \frac{n}{2} \right\rfloor$, $i = 1, 2, \dots, k$, where

$$k = \pi\left(\left\lfloor \frac{n}{2} \right\rfloor\right), p_j < p_{j+1}, j = 1, 2, \dots, k-1. \text{ If } 3p_i > n \dots (1)$$

, then the vertex which is labeled by p_i has degree 2, because p_i is joined only with 1 and $2p_i$. Let $p_{k-u_1}, 0 \leq u_1 \leq k$, be the smallest prime number satisfying (1), then the number of vertices of degree 2 in this case is u_1+1 .

Kind 2. Let $p_i \leq \left\lfloor \frac{n}{2} \right\rfloor$, such that $\left\lfloor \frac{n}{2} \right\rfloor < p_i^2 \leq n$, $i=1,2,\dots,k$. (2).

It is clear that the degree of the vertices labeled by p_i^2 is 2, since p_i^2 is joined with 1 and p_i ($2p_i^2 > n$). Let u_2 be the number of the prime numbers which are satisfying (2), $0 \leq u_2 \leq k$, therefore

$$(n)=u_1+u_2+1.$$

2.4. Example

$$G(V,E), |V|=n=10$$

Prime numbers are 2,3,5,7

Kind 1: $\pi\left(\left\lfloor \frac{10}{2} \right\rfloor\right)=3, p_i \leq \left\lfloor \frac{10}{2} \right\rfloor$, i.e. $p_i \leq 5$, then the prime satisfying condition (1) is $p_3=5$, then $p_3=p_{3-0}$, therefore $u_1=0$.

Then the number of vertices of degree 2 in this case is $u_1+1=1$

Kind 2: If $5 < p_i^2 \leq 10$, the only prime satisfying condition(2) is 3, so $u_2=1$. Therefore, $M(n)=u_1+u_2+1=0+1+1=2$.

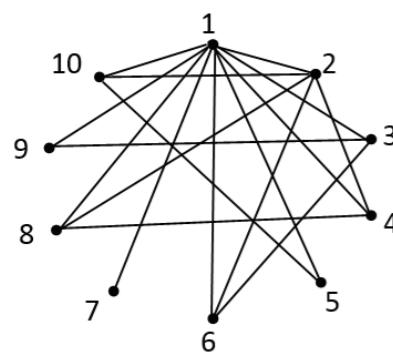


Fig. (1): Maximal δ-divisor graph of order 10

2.5.Remark

If $G(V,E)$ is a connected graph of n vertices and degree $(v) < \pi(n) - \pi\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$,

for every $v \in V$, then G is a non-δ-divisor graph.

Proof. By hypothesis, there is no vertex $v \in G$ such that degree $(v) \geq \pi(n) - \pi\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$, so there

is at least one isolated vertex whose label is a prime number, since all $\pi(n) - \pi\left(\left\lfloor \frac{n}{2} \right\rfloor\right)$, vertices of prime labels can be joined with only the vertex of label one. Thus, we get the result.

2.6. Theorem

□ The path P_n with n vertices is a non-δ-divisor graph except P_1, P_2, P_3, P_4 and P_6 .

proof.

(i) It is clear that P_1, P_2, P_3, P_4 and P_6 are δ-divisor graphs.

(ii) For all $P_n; n=5$, or 10 or $n \geq 7$, it is clear that P_5 and P_{10} are a non- δ-divisor graphs. For all $P_n; n \geq 7$ except $n=10$, $\pi(n) - \pi\left(\left\lfloor \frac{n}{2} \right\rfloor\right) \geq 2$, there are at least two vertices prime numbered labels such that their labels greater than $\left\lfloor \frac{n}{2} \right\rfloor$ and less than or equal to n . So we must put these vertices as pendant vertices and join them with a vertex of label one and this is impossible. Thus, we get the result.

2.7.Theorem $G=w S_m$ is a non-δ-divisor graph, $w \geq 4, m > 1$.

Proof. Let $v_i, i=1, \dots, w$ be the central vertices of the stars. The labeling of the centers of the stars must be labeled from 1 to w , since the vertex labeled 1 can be joined with any other vertex, and the vertex labeled 2 can be joined with $\left\lfloor \frac{n}{2} \right\rfloor - 1$ vertices, where $n=w(m+1)$, the re-

maining vertices labeled $3, \dots, n$ are joined with less than $\left\lfloor \frac{n}{2} \right\rfloor - 1$ vertices. Now suppose that $1, 2, \dots, r-1$ be the labels of the centers of the stars $S_m^i, i=1, 2, \dots, r-1$, and let s be the label of the center of the star S_m^r , where $n \geq s > r$ and $r \leq w, s > w$. The number of vertices that can be joined with the vertex labeled r is greater than or equal to the number of vertices that can be joined with the vertex labeled s since:

1) $|M_1| \geq |M_2|$, where M_1 is a set of the multiples of r other than r from r to s and M_2 is a set of the δ-divisor s of s other than s from r to s , i.e.

$$M_1 = \left\{ jr : 2 \leq j \leq \left\lfloor \frac{s}{r} \right\rfloor \right\} \text{ and}$$

$$M_2 = \left\{ \frac{s}{k} : \frac{s}{k} \text{ is an integer and } 2 \leq k \leq \left\lfloor \frac{s}{r} \right\rfloor \right\}$$

2) From $s+1$ to n , the number of the multiples of r is greater than or equal to the number of the multiples of s , since the nearest multiple of s is $2s$ and in this range there is at least one multiple of r . Therefore, we must label the center of the star S_m^r by label r . We continue with the same manner to other labels. So that let $f(v_i) = i, i=1, \dots, w$.

Case 1. If w is even, then $w/2$ of the central vertices are labeled by even numbers, so all vertices of these stars must have even labels, and the number of these vertices is, where n is the number of vertices of G , $n = \left\lfloor \frac{n}{2} \right\rfloor w m + w$. The other adjacent vertices with v_i would be labeled by odd numbers, but this means that one vertex of these vertices would be labeled by $(2m+1)(w-1) > n$, this is impossible.

2.8.Definition

Consider t of stars namely $S_{n_1}, S_{n_2}, \dots, S_{n_t}$

then

$G = \langle S_{n_1}, S_{n_2}, \dots, S_{n_t} \rangle$ is the graph obtained by joining the central vertices of each $S_{n_{i-1}}$ and S_{n_i} to a new vertex x_{m-1} where $2 \leq m \leq t$.

2.9.Lemma

The graph $\langle S_{n_1}, S_{n_2}, S_{n_3} \rangle$ is a δ-divisor graph if $n_i \leq \left\lfloor \frac{n_{i-1}-1}{2} \right\rfloor$, where $n = n_1 + n_2 + n_3 + 5$, n_j, n_k, n_l are the number of the pendant vertices of the star $S_{n_j}, i=1, 2, 3$ where the degrees of their central vertices are d_j, d_k, d_l respectively, $d_j \geq d_k \geq d_l$.

Proof. Let c_i be the central vertex of S_{n_i} for $i=1, 2, 3$. Now c_1 and c_2 are adjacent to x_1 , c_2 and c_3 are adjacent to x_2 . Let $d_i = \deg c_i, i=1, 2, 3$, where $\deg c_i = n_i + 1, i=1, 3$ and $\deg c_2 = n_2 + 2$. Let d_j, d_l be the maximum and the minimum numbers of the set $\{d_i, i=1, 2, 3\}$ respectively, and the third bed d_k . Let n_j, n_k, n_l be the number of pendant vertices of the stars where the degrees of their central vertices are d_j, d_k, d_l respectively.

We will label the central vertices of degrees d_j, d_k, d_l by the labels 1, 2, 3 respectively, (since any label which is greater than 3 can be joined with a number of vertices less than or equal to the number of vertices which can be joined with the vertex labeled 3).

If n_1 is less than or equal to the number of the odd multiples of 3, other than 3 which is equal to $\left\lfloor \frac{n_1-1}{2} \right\rfloor$, then we assign the odd multiples of 3, other than 3 to the pendant vertices of S_{n_1} , and the even labels to the pendant vertices of S_{n_k} and the vertices x_1 and x_2 , the remaining labels are assigned to the vertices of S_{n_j} . Hence, the graph is a δ-divisor graph.

2.10. Example

In Fig.(2)we give labeling for:

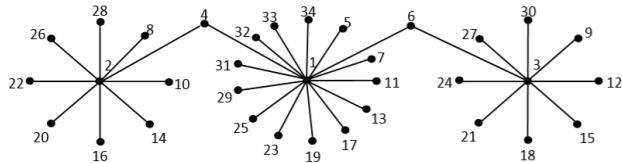


Fig. (2): (S_8, S_{13}, S_8)

2.11. Theorem

The graphs

(i) $G = \langle S_{n_1}, S_{n_2} \rangle$ is a δ -divisor graph if and only if $n_1 \neq n_2$.

(ii) $G = \langle S_{n_1}, S_{n_2}, S_{n_3} \rangle$ is a non- δ -divisor graph if and only if $d_l > \left\lfloor \frac{n}{3} \right\rfloor - 1$ or

$n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor + n_k + 3 > \left\lfloor \frac{n}{2} \right\rfloor$, where $n = n_1 + n_2 + n_3 + 5$, n_j, n_k, n_l are the number of the pendant vertices of the star $S_{n_i}, i=1,2,3$ where the degrees of their central vertices are d_j, d_k, d_l respectively, $d_j \geq d_k \geq d_l$.

Proof.(i) If $n_1 > n_2$, let $v_1^{(i)}, v_2^{(i)}, \dots, v_{n_i}^{(i)}$ be the pendant vertices of the star S_{n_i} and let c_i be the central vertex of S_{n_i} for $i = 1, 2$. Now c_1 and c_2 are adjacent to x , where x is the label of a vertex join the centers vertices of $S_{n_1}^{(1)}$ and $S_{n_2}^{(2)}$. We define the labeling function: $V(S_{n_1} \cup S_{n_2}) \rightarrow \{1, 2, \dots, n_1 + n_2 + 3\}$ as follows: $f(c_1) = 1, f(c_2) = 2, f(x) = 4$, the vertices $v_1^{(2)}, v_2^{(2)}, \dots, v_{n_2}^{(2)}$ will be labeled by even numbers, and the remaining labels are assigned to the vertices $v_1^{(1)}, v_2^{(1)}, \dots, v_{n_1}^{(1)}$.

Conversely, If $n_1 = n_2$, we have two vertices of degree $n_1 + 1$, but we have only one label "1" divides $n_1 + 1$ numbers, since the number of vertices of this graph is

$$2n_1 + 3 \text{ and } |A_1| - 2 \leq |A_2| - 2 = \left(\left\lfloor \frac{2n_1 + 3}{2} \right\rfloor - 1 \right)$$

$< n_1 + 1$, where $A_i = \{k: k|i \text{ or } i|k : k \leq 2n_1 + 3\}$, $i \geq 2$. So the graph is a non- δ -divisor graph.

(ii) Let c_i be the central vertex of S_{n_i} for $i = 1, 2, 3$. Now c_1 and c_2 are adjacent to x_1 , c_2 and c_3 are adjacent to x_2 . Let $d_i = \deg c_i$, $i = 1, 2, 3$, where $\deg c_i = n_i + 1$, $i = 1, 3$ and $\deg c_2 = n_2 + 2$. Let d_j, d_l be the maximum and the minimum numbers of the set $\{d_i, i = 1, 2, 3\}$ respectively, and the third bed. Let n_j, n_k, n_l be the number of pendant vertices of the stars where the degrees of their central vertices are d_j, d_k, d_l respectively.

We will label the central vertices of degrees d_j, d_k, d_l by the labels 1, 2, 3 respectively, (since any label which is greater than 3 can be joined with a number of vertices less than or equal to the number of vertices which can be joined with the vertex labeled 3).

Now if $d_l > \left\lfloor \frac{n}{3} \right\rfloor - 1$ or $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor + n_k + 3 > \left\lfloor \frac{n}{2} \right\rfloor$, then there are two conditions:

Condition 1. If $d_l > \left\lfloor \frac{n}{3} \right\rfloor - 1$, $\left\lfloor \frac{n}{3} \right\rfloor - 1$ is the maximum number of labels which can be joined with the central vertex of S_{n_l} since label 1 is used to label the central vertex of S_{n_l} . Thus G is a non- usual δ -divisor graph.

Condition 2. If $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor + n_k + 3 > \left\lfloor \frac{n}{2} \right\rfloor$, $\left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor$ is the number of odd labels which can be joined with the central vertex of S_{n_l} . If $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor \leq 0$, then by Lemma 2.9 the graph is δ -divisor, which is a contradiction, so $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor > 0$. Let all odd multiples of 3, other than 3 be assigned to the pendant vertices of S_{n_l} , then $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor$ is the minimum number of even labels which are assigned to the remaining pendant vertices of

S_{n_l} . Therefore, we need $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor + n_k + 3$ even labels to label the vertices of the graph, since the vertices of S_{n_k} and the vertices x_1 and x_2 must be even labels, hence the result.

Conversely, let G be a non- δ -divisor graph, the vertices which are joined with the central vertex of S_{n_j} can be labeled by any labels. The central vertex of S_{n_k} and the vertices which are joined with it need at most $n_k + 3$ even labels and $n_k + 3 \leq \left\lfloor \frac{n}{2} \right\rfloor$, so there is no problem to label all the vertices which are joined with the central vertex of S_{n_k} . Thus, we discuss the problem that could occur when we label the adjacent vertices of the central vertex of S_{n_l} , which is labeled 3. Again if $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor \leq 0$, then by Lemma 2.9 the graph is δ -divisor which is a contradiction. Let all odd multiples of 3, other than 3 be assigned to the pendant vertices of S_{n_l} , then we need $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor$ even labels to label the remaining pendant vertices of S_{n_l} , so there are two cases that depend on d_l :

Case 1. If $d_l > \left\lfloor \frac{n}{3} \right\rfloor - 1$, hence the result.

Case 2. If $d_l \leq \left\lfloor \frac{n}{3} \right\rfloor - 1$ so we have n_l even labels, if $n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor + n_k + 3$

$n_l - \left\lfloor \frac{\left\lfloor \frac{n}{3} \right\rfloor - 1}{2} \right\rfloor + n_k + 3 \leq \left\lfloor \frac{n}{2} \right\rfloor$, then the graph is a δ -divisor graph, which is a contradiction, hence the result. \square

2.12. Corollary

$\langle S_{n_1}, S_{n_2}, S_3 \rangle$ is a non- δ -divisor graph if

(i) $n_1 = n_2 = n_3$

(ii) $d_j = d_k = d_l$, where d_j, d_k, d_l are the degree of their central vertices respectively, $d_j \geq d_k \geq d_l$.

2.13. Theorem

Every graph $G(n, q)$ can be embedded as an induced subgraph of a δ -divisor graph.

Proof. Let $G(n, q)$ be a graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. We shall establish an embedding of G in H , where $V(H) = \{v_1, v_2, \dots, v_n, v_{n+1}, \dots, v_{2^{n-1}}\}$. Let $f(v_{i+1}) = 2^i, i = 0, 1, \dots, n-1$, other vertices are labeled from the set $\{1, 2, \dots, 2^{n-1} - 2^i\}, i = 0, 1, \dots, n-1$ and join all vertices of $V(H) - V(G)$ with a vertex of label one. It is clear that H is a δ -divisor graph and $E(H) = q + 2^{n-1} - n$.

2.14. Corollary

Every bipartite graph can be embedded into a bipartite δ -divisor graph.

as an example, see Fig (3)

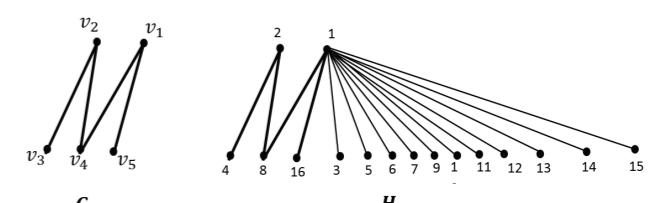


Fig. (3)

Reference

- [1] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18, #DS7, (2015)
- [2] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, (1969).
- [3] G.H.Hardy, and E.M.Wright, An Introduction to the Theory of Numbers, 5 th ed., Clarendon Press, Oxford, (2002).
- [4] G. Santhosh and G. Singh, On divisor graphs, preprint.

