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Abstract

In this paper, a complete set of the orthonormal vector polynomials in a unit annular pupil were derived by finding,
first a set of orthogonal functions that represent vector quantities which can be generated from the gradients of annular
Zernike polynomials ZP, and the orthogonality is made by MATLAB code using Gram Schmidt orthogonalization
method. A relation of these polynomials with the circular ZP and circular ZP gradients are represented also in this work.

Then, to complete the basis, a complementary set of functions were added that have zero divergence, those which

are defined locally as a rotation or curl.
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1. Introduction

Many researchers were having an interest in
annular pupils for their use in optical systems and
several of them were studied them with Zernike
polynomials [1-11].

The vector Zernike polynomials or Zernike
gradients are also important to study. Derivatives
of Zernike polynomials can be useful whenever
the gradient of a wavefront is required. Wave-
front gradients occur in some geometrical optics
problems as well as direct measurements in
an electronic Hartmann Test. These vector func-
tions have immediate application for fitting data
from a Shack-Hartmann wavefront sensor or for
fitting mapping distortion for optical testing.

These polynomials are studied for circular ap-
erture in (1976) by Robert J. Noll, who gave the
rules for computing the derivatives of Zernike
polynomials as a linear combination of the poly-
nomials themselves. [12].

In (2007), Zhao and Burge provide a set of
complete basis for representing vector fields that
can be defined as a gradient of some scalar func-
tions across circular pupil. These polynomials can
be transformed to the scalar circular ZPs [13].
Then in the next year, in (2008), they gave an ad-
ditional set of vector functions consisting only of
rotational terms with zero divergence [14]. These
two sets together provide a complete basis that
can represent all vector distributions in a circular
domain. In (2009), they justified, with examples,
why the set of vector polynomials is the appropri-
ate choice for describing mapping distortions, and
they showed the excellent fitting results with the
polynomials [15].

In this work, the first (21) annular ZPs were
found using the first (21) circular ZP and trans-
form them to an orthonormal polynomials us-
ing Gram Schmidt orthogonalization method
(GSOM) (Which transform non orthogonal poly-
nomials to orthogonal ones) and the normality

law (which transform non normal polynomials
to normal ones). Then a set of vector polynomi-
als are presented, which are orthonormal in a unit
annular aperture with obscuration ratio equal to
(€). These polynomials are perfect for fitting slope
data, and the fitted slope map can be easily con-
verted to the wavefront map expressed in terms of
Zernike polynomials.

But since these polynomials are gradients of
linear combinations of ZPs, they have zero curl,
which means they make an incomplete set of vec-
tor polynomials, such that an arbitrary continu-
ously differentiable vector function defined over a
unit annular pupil cannot be represented by linear
combinations of these polynomials. So, addition-
al vector polynomials were derived and added to
make a complete set of vector polynomials.

In the next section, a procedure for deriving
the orthonormal annular ZP using (GSOM) and
the circular Zernike polynomials were produced.
Then the gradients of the annular ZP are calculat-
ed, and by using, for the second time, the (GSOM)
the orthonormal vector annular ZPs were found.
Then the relation of them with both the circular
ZPs and circular gradient ZPs have been found,
and several equations representing these relations
were concluded. And in the end of this section,
a complementary set of vector polynomials were
derived to have a complete set of vector polyno-
mials. Finally, a discussion were made for the re-
sults in section (3).

2. Results

2.1. Annular circular Zernike polynomials

There are different numbering schemes for cir-
cular ZPs, and in this work, Noll’s notation has
been adopted which is the same as what consid-
ered by C. Zhao and J. Burge [13].

Circular ZPs are not suitable for annular pu-
pils. So, these polynomials must be converted to
annular ZPs, and this could be done with (GSOM)
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[16], which can be illustrated by the following
equation:

Ay (p,6;€) = Ay(p,6;€)

2 2!
A " [ A1 (p.8:0A5(p,8;€) pdpdO—[7 " f5 A1 (p.8:©)A;(p,6;€) pdpd®
JET [ A% (p,8:0)pdpde—[2T [ A (p,6;)pdpd

«*A1(p,6;€) (1)

Where (A)) and (A,) are two non-orthogonal
functions, while (A,’) is orthogonal with (A).

And to normalize these polynomials, the nor-
malization rule must be submitted:
c2 il A%[Sf:el)p dpda-foz:f{ Af(p.6:)pdpdo _ 1 ()

Iy Jo pdpde—[" [ pdpd®

The above two equations were programmed in
MATLAB, and the results were illustrated in Table
(1), which show the first twenty one orthonormal
annular ZP in polar coordinates, for annular pupil

with obscuration ratio(€). These polynomials can
be reduced to circular ZPs by putting (€ =0).

Table (2), shows the annular ZPs in Cartesian
coordinates, the conversion is made also using a
MATLAB code using these equations:

x=r cos (0), y=r sin (0), r=x>+y?,
O=tan'(y/(x) 3)

Then the relationships between the annular
ZP and the circular ZP were shown in Table (3),
Where (Z,) here represents circular ZPs. We can
see from this table that annular ZP is a linear com-
bination of at most three circular ZP, where when
(n=m) it is proportional to one circular ZP, when
(n-m=2), it is proportional to two circular ZP,
while when (n-m=4), it is a linear combination of
three circular ZP.

2.2. The Gradients of annular Zernike polynomials
To find the gradients of annular ZPs, a MAT-
LAB code was written for this purpose. So, either
the results in Table (2), which were written in Car-
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tesian coordinates, are used to compute gradients
with the equation:

AL A
va=214+25 (4)

Or the results of Table (1) were used, which
were written in polar coordinates,

0A A 0A A
VA=a—pap+mae (5)

Where (a Ap and a’,) represent the unit vectors
in polar coordinates. Here a transformation of the
coordinates to the Cartesian coordinates must be
done to get the components of (VA)in (i" and j").

Table (4) represents the gradients of the first
twenty one annular polynomials. These functions
are not easy to work with, because they are not
orthogonal to each other over an annular aperture.
So to convert them to an orthonormal functions,
equations (1) and (2) must be worked but for the
annular gradient polynomials (vector polynomi-
als).

The process now became sort of complicated,
and the computer became slow in finding the func-
tions. So this process can be done in another way
by applying (GSOM) for gradients of Zernike cir-
cular aperture that can be computed from circu-
lar ZP [13], but over the annular aperture, i.e. the
limits of integration will be the limits of annular.

The results of Table (5), show the orthonormal
vector annular polynomials. Table (6), represents
the orthonormal vector annular ZPs as function
of circular ZPs, Z(x,y), while Table (7) represents
them in terms of gradient of circular Zernike poly-
nomials VZ(x,y).

It can be concluded from Table (7) that:

1) For all (j) with (n=m),

2 1
Sj - Vv2n(n+1)(e2" 2 +e2n~%4 +1) VZj (©)

i1) And for all (j) with (n#m), and (n-m=2)

§=g lk VZ— [ VZjmn-zmem)(N€2" D + 022 4t 1}] (7)
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where (C) represent the normalization constant
for the orthogonal vector annular ZP, Table (8),
and k=(e*™3 + 32 + ... +1) except for (n<3),
(k=1).
ii1) For (n#m), (n-m=4)
Sj= G (k]VZj— k, vz,
k1=(2€*-€+2)

~k3 VZ, ., )(8)

(n-2,m)

kzz\/é (10€® + 2e* — €2 + 12),
ks = 103 (e® + 3¢€® — 3e* + 2% + 3)

where (j-j’) is even when (m#0).
In general, the vector polynomial (S ) is equal to:
S=1S, 1S, 9)

Fig. (1) shows the plots of first (9) vector annu-
lar polynomials. The arrows represent the amount
and direction of the displacement of a particular

point.

2.3. The relation between the vector annular

ZP and the scalar circular ZP
The space of vector distribution over the

unit annular circular can be written as a linear
combination of a set of (S ) polynomials:

\" ZZjocj S, (10)

and it can be written as a gradient of scalar
function:

V =Vd (11)

but S =Vé,

so, from equations (6,7, and 8), we get:
1) For all (j) with (n=m),

1
¢j - J2n(n+1)(e2n—2+e2n~%4+.+1) Zj (12)

i1) For all (j) with (n#m), and (n-m=2)

¢'i . Ci ’k Z} g :_j Zjl(m:n—z,m':m)(HEZ(niz) +EED2 4ot 1)] (13)

iii) For (n#m), (n-m=4)
6=C(k, Z-k,Z , K Z ) (14)

2 Tjn2m) 3 T (0-4.m)

where ( j-j’) is even when (m#0).

That means, the scalar polynomials (¢) can be
found form the vector polynomials (S J, for ex-
ample:

S, = [VZ, —V2(3€? + 1)VZ,]/+/ 48€* — 24€% + 48

leads to:
&7 = [Z, —V2(3€? + 1)Z5] /v 48e* — 24€? + 48

V=28 =V (15)

Then the scalar function can be written as a lin-
ear combination of standard circular ZP.

P = 2 ob) = Xy viZ (16)
where (yj) is:
1) For (j) with (n=m),

’17¢2n(n+1)(::l'5j'2":e2"*4+,+1) O =n+2,i=m) C](n’,m)J%(n’eum_z) + @Dt 41).

Qj(a=n+4,rh=m) Cj(n',m)k3 (17)

i1) For all (j) with (n#m) and (n-m=2),

N nr+1 e —2)—
Yi= %jonm Cimm K- Qs=n+2,m=m) Cj' (n'+m) 777 (n'e2=2) 4 =22 4 ... 4 1) (1 8)

ii1) For (j) with (n#m) and (n-m=4),
¥=C % m) (19)

2.4. Derivation of a complementary set of
vector polynomials

Polynomials (S]) and (S]) are represent (x)
and (y) translation respectively, and (S;) repre-
sents scaling. But no (S”) polynomial represents
rotation. The reason is that the rotation vector has
non-zero curl, while all (S”) polynomials have
zero curl. So, we need a complementary set of
vector polynomials which have zero divergence
and non-zero curl. This new set combined with
the zero-curl set (S”) to make a complete set such
that it can represent any continuously differentia-
ble vector polynomials defined over a unit annular
pupil [14].

Any vector field can be written as [17]:
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V=Vd+VXP (20)

where () is a scalar and (P”) is a vector. The
divergence of (v) is then:

V-v=V2p+V-(VxP)=V¢p (D
and the curl of )v ) is:

Vxv=Vx(VxP)=V(V:-P)-V?P (22)

The (S™) polynomials presented in the previ-
ous sections, were defined as gradients of scalar
functions, so have no curl component and (P"= 0).
We complete the basis by adding a second set that
has zero divergence, therefore zero (¢), but non
zero (P), such that: (T =VxP"), this set has to be
mutually orthogonal as well.

As illustrated by C. Zhao and J. Burge [14],
Like the (S_)) polynomials, (TA) polynomials are
vectors defined in (x-y) plane only. A convenient
choice of (P") is vectors along (z) axis only, i.e.
(Px=Py=0). We can use a scalar (y) instead to rep-
resent (P7):

P7=yk~ (23)

where (y ) is a function of (x) and (y): (y =w
(x, y)). It follows that:

— ~ . 0Py, OYy.
T =Vx (k) = 8- 4

dy
The inner product of two (T ) polynomial must
be: L
(T T) = = [ (0 - (Vi) ) dxdy =1

for (i=j and 0) for (i#)) (25)

Abasis of functions {y.} will be chosen to gen-
erate the (TA) polynomials that be the same ba-
sis as that used to generate the (S”) polynomials,
{0.}. So, by letting (yi=e1), we get Tables (9) and
(10) are represent (TA) polynomials in Cartesian
coordinates and in terms of circular Zernike poly-
nomials respectively. Also the plots of first (9) (T)
polynomials are shown in fig. (2).

It can be seen that(TAj (x,y( and S_} (x,y)) have
same magnitude and are orthogonal to each other

a‘i any point in a unit aimular plipil, therefore (TAj.
S j=0). But the sets (S ) and (T ) are not fully in-
dependent. For all (j) with (m=n). It can be shown
that (TAj) has (0) cgrl and is therefore not linearly
independent of (S ) polynomials. For example,
when (=9 or 10), (m=n=3):

Ty = (Zel — ZsD)/V2 = Syoand Ty, = (~Zst— Ze))VZ = —Ss.

3. Discussion:

By looking at the forms of annular ZPs, It can
be seen that these polynomials have the same
properties of that of circular ZP, they have axial
symmetry (because they can be written in one
form of triangular function (sin or cos), and cir-
cular symmetry (because they were separable in
r and 0). When these polynomials were written
in terms of circular ZPs, it can be concluded that
they are a linear combination of at most three cir-
cular ZP, and when (n=m), Annular ZPs A(n,m)
equal to the circular ZP, Z(n,m), multiplied by a
constant depends on obscuration ratio (€), while
when (n-m=2), annular ZP is a linear combina-
tion of two circular ZP (Z(n,m) and Z(n-2,m), and
when (n-m=4), A(n,m) is a linear combination of
(Z(n,m) , Z(n-2), and Z(n-4,m)).

From table (6), which represent the (S J as a
function of (Z), the annular vector ZP is a linear
combination of at most seven circular ZPs, unlike
that of circular vector which contain at most four
circular ZP, as in ref. 13.

As like as when the annular ZP with (e=0) gives
the circular ZP, the vector annular ZP are returned
to circular vector polynomials when (e=0), and
the annular vector ZP, as shown in table (7), can
be represented as linear combination of at most
four circular ZP gradients, while the circular vec-
tor ZP is a linear combination of at most three cir-
cular ZP gradients, as in ref. 13. And again when
(n=m) orthonormal annular vector ZPs equal to
the circular ZP gradient multiplied by a constant
depends on obscuration ratio (€), while when
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(n#m) the (S7) is a linear combination of circular
ZP gradient (VZ(n,m), VZ .y and VZ.. 4)).

From table (5) of (S7), equations (6, 7, and 8)
were concluded, which were used to conclude
equations (12, 13, and 14) that illustrate the rela-
tion between the vector polynomials and the sca-
lar circular ZP.

Because the (S”) polynomials are representing
the divergence of a scalar functions (¢), it can be
known from books of electromagnetism that the
curl of these polynomials is equal to zero, so this
makes these polynomials are not complete, and
another work must be done to get the other poly-
nomials with zero divergence and non-zero curl.

4. Conclusions

By looking to the vector fields (S”) and (T), we
can conclude that:

As (S7) have zero curl everywhere, then (S7) is
known as irrotational vector fields.

Since (S J functions are 2-D vectors defined in
a plane, the curl can be expressed mathematically
as line integral along a closed path in the plane
[15]:

JVxS.ds=¢S-dl=0

As (TQ) have zero divergence everywhere, then
(T) is known as solenoidal vector fields.

As (TA) are also 2-D vectors defined in a plane,
the divergence here can be expressed mathemati-
cally as a line integral over a closed path [17]:

$T n*dl=0

where (n”) is the unit normal vector pointing
out of the closed path.

There is a region for two types of vector fields
have both divergence and curls zero everywhere,
this is known as Laplacian vector field.

V? ¢=0
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implementation of Gram-Schmidt Algorithm for Dense Table (1): Orthonormal Zernike Annular Polynomials

A(p,0;€) in polar coordinates

1 2) 2 p cos(8) 3) 2 p sin(0) ) V3 (2p%2-1-€2) ) V6 p 2 sin(28)
Ve2+1 Vez+1 (1-€2) Vet+eZ+1
6) V6 p 2 cos(26) 7 22 psin(0)[3(e?+1)p?-2( e*+€e2+1)]
Ver+e2+1 [(1-€2)Veb+5e*+5e2+1]
22 pCOS(e)[[3(52+1)p2_2((4+(2+1)]] 9) 22 p3 sin(30) 10) 22 p3 cos(30)
[(1-€2)Veb+5e*+5€2+1] Veb +et+e2+1 Veb +et+e2+1

V5 [6p*—6 (2+1)p?+(e* +4€2+1)] V10 p? cos(20)[4(e*+€24+1)p?—3(e®+e*+€2+1)]

1) (e*—2€2+1) 12) [(€2-1)Vel2+5€10+15e8+18€6 +15e%+5€2+1 ]
13) V10 p? sin(20)[4(e*+€2+1)p?—3(eS+e*+€2+1)]
[(2-1)Vel2+5€10+15e8+18€6 +15€*+5€2+1 ]
14) V10 p* cos(46) 15) V10 p* sin(40)
VeB+eb+et+e2+1 VeB+eb+et+e+1
16) 2V3pcos(0)[3(eB+4€®+10e* +4€2+1)+10(e*+4 €2+ 1)p*—12(e®+4€* +4€2+1)p?|
€*—2e2+1
X /€10 4+ 1368 + 46€6 + 46€* + 13€2 + 1
17) 2v3 psin(0)[3(e8+4€°+10e* +4€2+1)+10(e*+4€2+1)p*—12(e®+4€* +4€%+1) p?|
€t—2e2+1
X /€10 + 1368 + 46€6 + 46€* + 1362 + 1
18) 2V3 p3 cos(30)[5p? (o +e* +€2+1)—4(eB+€C+€*+ €2 +1)]

€2-1
X /€18 + 5¢16 + 1514 + 35€12 + 44€10 + 44€8 + 35€6 + 1564 + 5e2 + 1
2v/3 p3sin(30)[(5p2—4)+4 (e10-€®)/(1—€9)] 2+/3 p° cos(50) 2+/3 p5 sin(50)
20) 7= 21) 7=

(e®+€e*+€2+1) 0+e84+eb+et+e2+1 O+eBteb+et+e?+1

19)
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Table (2): Zernike Annular Polynomials A(x,y;€) in Cartesian coordinates

2x 2y V3 (2 x24+2y%-1-€?) 2V6xy V6 (x%2-y?)
D1 2) Ve2+1 3) Ve2+1 4) (e2-1) 5) Vet+ €241 ) Ver+ e2+1

2V2[3 (e2+1)(x2y+ y3)—2(e*+ €2+1)y] ) 2V2[3 (e2+1)(x3+x y?)—2(e*+ €2 +1)x]

[(1-€2)Veb+5e*+5€2+1 [(1-€?2)Veb+5e*+5€2+1]

2V2 (3yx?-y3) 22 (x3-3xy?) V5 [6(x*+2 x2y%+y*)—-6(e?+1)(x2+y?)+(e* +4€2+1)]

7)

2 Veo+ et +e2+1 10) Vel + e*+e2+1 11) (e*—2€2+1)
12 V10 [4(e*+e2+1) (x*—y*)-3(e®+€* +€2+1) (x%-y?)|

) [(1-€2)VelZ+5€10+15¢8+18€6 +15€*+5€2+1 |
13 2V10 [4(e*+€2+1) (yx3+xy3)—-3(e®+e* +e2 +1)xy]

) [(1-®)Vel2+5€10+1568+18€6 +15e*+5€2+1 |
14) V10 (x*-6 x? y2+y*) 15) 410 (y x3-x y?3)

VeB+eb+et+e?+1 VeB+eb+et+€2+1
16) [2@[3(68+466+1064+462+1)x+10(64+462+1) (x5+ 2x3y2+xy*)— 12(e®+4e*+4€2+1)(x3+ xyz)]]
€*—2e2+1

X /€10 4+ 1368 + 4666 + 46€* + 13€2 + 1

17 [2\/5[3(68+4e6+1064+462+1)y+10(e4+462+1)(yx4+ 2x2y3+y5)-12(e®+ 4€*+4€2+1) (yx2+ y3)]]
) €*—2e2+1
X /€10 + 13€8 + 46€6 + 46€* + 13e2 + 1
2V3[5(eC+e*+€2+1)(x5—2x3 y2-3y*x)—4 (B +eC+€e*+ €2+1)(x3-3x y?)]
€2-1
X /(€18 + 5€16 + 1514 4 35¢12 + 44610 + 4468 + 35¢6 + 1564 + 5¢2 + 1)
2V3[5(e®+e*+€2+1)(Byx*+2x2y3—y5)-4(eB+eC+e* +€2+1)(3yx2—y?)]

18)

19

) (e®+e*+€2+1)

20) 2v3 (x5-10x3y2+5xy%) 21) 2v3 (5yx*—10x2y3+y5)
Vel0+eB+eb+et+e2+1 Vel0+e8+eb+et+e2+1

Table (3): Annular ZPs A(x,y;€) as function of circular ZPs, Z(x,y)

Z; 73 Z4—V3 Z1€% Zs Zg
D2 D den Y ae  VDimes 9 wen
7 [Z7(e2+1)-2vV2Z3€*] 8) [Zzg(€2+1)—-2V2Z,€*] 9) Zy
[(1-€2)Veb+5e*+5€2+1] [(1—€e2)Veb+5e*+5€2+1] Veb+et+e?+1
10) Z10 11) [211—\/€Z4€2+\/gzl(64—62)]
6 4 2 4_ 22

12) Veb+ette [;112(54+52+1)_\/E26 Eg] 2€2+1

[(1-€2)VelZ+5¢10+1568+18€6 +15€%+5€2+1 |
13) [Z13(e*+€2+1)—V15 Z5 €°] 14) 714 15) 715

[(1-€2)Vel2+5610+1568+18€6 +15€%+5€2+1 | VeB+eb+etreZ+1 JeBrebretre?+1)

16) [ Z16(e*+4€2+1)—2v6 €*Zg(€2—3)+V3e*Z,(3€* +4€? + 3)|Vel0+13e8+46€6+46€*+13€2+1

€t—2e2+1
17 [ Z17(e*+4€2+1)—2V6 €*Z; (€2 -3)+V3e* Z3(3e* +4€? + 3)|Vel0+13eB+46€6+46€% +13€2 +1
) €*—2e2+1
18 [Z1g(e®+e*+€%+1)—2v6Z10€%]/(€18+5€16+15€14+ 35612 +44€10+44€8+35€6+15€*+5€2+1)
) €2-1
19) [Z10 (e +€*+€2+1)—21/6Z9€8] 20) Z2o 21) Zy1
(e0+€e*+€2+1) Vel0teBiebiette?+1 Vel0+eB+ebtet+e2+1
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Table (4): orthonormal Gradients of Annular ZPs VA(X,y;€) in Cartesian coordinate

2 21 43 (xi+y 1) 2V6 (y i+x §) 2V6 (x i-y )
o 2) VGZ-:-l 3) VEZ-Ii-l ) (1-€2) : 5) V64+612+11 6) Vet+eZz+1
7 2\/2_[6(€2+1)XY f+(3(62+1)(x2+ 3y2)—2(e4+62+1))i]
) (1—-€2)Veb+5e*++5€2+1
2\/2_[(3(62+1)(3X2+y2)—2(64+62+1)) i+6(e2+1)xy j] 6vZ [2xy i+(x2—y?)]]
8) (1-€2)Veb+5e*+5€2+1 9) Veb+et+e2+1
10) 6vV2 [(x2—y?) i-2xy ] 1) 12V5 [(2(x3 +xy?)— (€2 +1)x) i+(2(y3 +yx?)— (2 +1)y) 1]
Vebret+e2+1 e*—2e2+1
2V10[ (8(e*+ 4€2+1)x3—3(e®+e*+€2+1)x) i—(8(e* + 4€2+1)y> — 3(e®+e* +€2 +1)y) i
12) [(1-€2)Vel2+5€10+15€8+18€6+15€*+5€2+1]
13) 2V10 [(4(e*+€2+1) (3yx2+y®)—3(e®+e*+€2+1)y) i+(4(e* +€2+1) (x3+3xy?) —3(e® +e* +€2 +1)x) ]
[(1-€2)VelZ+5€10 + 15€8+18€6+15e*+5€2+1]
4V10[(x3-3x y?) i+(y3 -3y x?) {] 4y10[(3y x%-y?) i+(x3-3x y?) j]
14) VeB+eb+et+eZ+1 13) VeB+eb+et+e2+1
16) 2v3 [(3(eB+4€5+10€* +4€2 +1) +10(e*+4€? +1) (5x* +6x2y2 +y*)-12(e0 +4€* +4€2+1) (3x2 +y?) ) 1
) et—2e2+1

[(40(e*+4€?+1)(yx3+xy3)—24(eC+4e* +4€+1)xy) 1
€*—2€2+1

I| x Vel T 1368 + 466 + 46¢* + 132 + 1

e*—2e2+1

17) 2v/3 I[(4O(E4+462+1)(YX3+Xy3)_24(66+4€4+462+1)xy)i] +

[(3(68+4e6+10€4+462 +1)+10(e*+4€2+1)(x*+6x2y? +5y*)—12( €0 +4€* +4€2 +1)(x2+3y2)) f]
et-2€2+1
X /€10 + 13€8 + 4666 + 46€* + 1362 + 1
5(e6+e4+62+1)(5x4—6x2y2—3y4)—12(e4+62+1)(x2—yz))i]Ml

€-1

18) 2v/3 [[(

[-(20(e®+e*+€2+1) (yx3+3x y3)—24(eB+€+e* +€2 +1)xy)i|M;
€2-1

[(20(e® + e* + €2+ 1)Byx3 +xy3) —24(e® + €® + €* + €2 + Dxy) 1]
e +et+er+1

19) 2\/§[

N [(5(66 +e*+e?2+1)Bx* +6x%y? —5y*) —12(e® +e® +e* + €2 + 1) (x? — yz))j]
e +et+er+1
20) 10V3 [(x*—6x2y2+y*) i-4(yx3—xy?) j] 21) 10vV3 [4(yx3—xy3) i+ (x*-6x2y2+y*) j]

VelO+eB+ebtet+e2+1 Vel0t+eB+ebtet+e2+1
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Table (5): Orthonormal Vector Annular ZP (S") in Cartesian coordinates Table (6): Orthonormal vector annular ZP (S™) as a function of circular ZP Z(x,y)
o o V2 (X i+y i V2 (y i+x] V2 (x -y i
1) 0 2) 1 3) 3 4) xi+y ) 5) (v ) 6) xi-y - - -
V€2+1 V€2+1 V€2+1 1) O 2) Z ,I\ 3) Z A 4) Zz I+Z3I 5) Z3I+Zzl 6) 221—231
. V3 [2xy +((x2+ 3y2)-(e2+1) )] 5 V3[((3x2+ y?)—(€2+1) ) t+2xy | 1 1] V2eZ+2 V2eZ+2 V2eZ+2
2v/325 1+2(—V/3Z, Z4—3V2€%21)1 2(—/3z Z4—3V2€%Z1) 142325}
) Vaer—eiz ) Vaer—eira 7) WS o 3RS n)T gy 2SO e ) ot
3 [2xy t+(x%-y?)1 3|(x%-y?)i-2xy i €*—24¢ €%—24€
9) V3 [2xy t+(x2-y?) ] 10) VB y?) i-2xy i Zs 476 ] Zgi-Zsi [(Zg(€2+1) —2V2€*Zy) i+ (Z7(e2+1)—-2V2e*Z3) i
Verrert Verte? i N e Y Gomen 1V VZc0rocoe scTrectts
2[(3(e2+1)(x3+xy?)—2(e*+€2+1)x) i+(3(e2+1) (yx2+y3) - 2(e*+e2+1)y) i 2 2 4 2 2 4 %
11) [(Z10(€?+1)/2+Zg(e2+1)/2—V2Zye*) 1+ ( Zo (€2 +1)/2-Z7(e2+1) /2+V2Z3€*) 7]
] Vel0+3e8—-4€6—4€*+3€2+1 12) Vel0+3e8+3€2+1
1 2ﬁ_(2x3(62+1)—(e4+62+1)x) f+((e4+ez+1)y— 2y3(62+1)) i] 13) [(Zo(€2+1)/2+Z,(2+1)/2—V2Z3€*) i+( —Z10(?+1) /2+Zg(e2+1) /2—V2Z2€*) ]
) Vel013e8+3e2+1 [ | \[/610+3€8+]3€2+1
- . . Z101-Zo ] Zo +Z10 ]
2vV2 |((€241)(3yx%+ ¥3)—(e*+€2+1)y ) i+( (€2 +1) (Bxy? +x3)—(e*+€2+1 10—
13) \/_((6 oyt \/e )y)t ((26 Joxrte)o(etre )x) I] 14) V2€b+2e*+2€2+2 15) V2eb+2e4+2€2+2
€104+3e8+3€2+1 Z1o M2 4271 M2, —\15Z(2€0—2€*+€2)—/30Z,(2€®—2€*+€2)+ 210 Z,(e8B—€®—€e*+€2))1
14) 2[(X3_3Xy2)’i_(3yxz_y3) ’I‘] 15) 2[(3yx2_y3)’t‘+(x3_ 3xy2)’1‘] 16) [( 12113 11113 6( )\/EMZMll-( ) 1( )) ]
Vebtettel+1 Veb+et+e?+1 2
Z13 M23—/15 Z5(2€®—2€*+€2) ) |
[((68+266—3e4+2€2+1)+(Ze4—ez+2)(5x4+6y2X2+y4)—3(e6+ 1)(3X2+y2))f] _|_[( 13 Mis—V15 Z5(2€°-2¢* +¢ ))I]
16) 25 T + VZM3M,
sM; [(213M3; —VT5 Zs (2e8—2¢*+€2)) ]
[(4(264—e2+2) (yx+xy3)~6(c6+ 1)yx)i] 17) NGIYEITS +
MZM, [(—212M%3+\/5211M§3+\/E26(266— 2€*+€2)—\/30Z4(2e%—2€*+€2)+2v/10 21(68—66—e4+62))i]
V2M3M
4_ 2 3 3\ _ 6 2 2 M3
17) 2 /5 [[4‘(26 € +2)(yXM:XMY) 6(e°+1)yx) I] + 18) [(Z14(e*+€241)+Z15(e*+€2+1)—V15 €9Z¢) i +(Z15(e*+ €2+1)-Z13(e* +€2+1)+V15 €°Zs) ]
273 /N2 M,
MZM /\/2_M4-
2773 20) [Zl4 ,i_ZZlS i] 21) [Z15 /i+Z14 i]
e*+e?2+1)(5x*-6x%2y2-3y*)-3(e®+e*+€2+1)(x%—y?) )1 V2e8+2e0+2e44+2€2+2 V2e842e6+2€4 426242
18) V5
V2€16+6€1%+ 12612 +€10+3€8+€6+126*+6€2+2
[ (6(66 +et+e2 +1)xy_ 4(64 +€2 +1)(yx3 +3xy3)) i] Table (7): Orthonormal vector annular ZP (S*) as a function of gradient of circular ZP VZ(x,y)
V2el6+6el%+ 12612+€10+3e8+€6+12e*+6€2+2
4(e*+€2+1)(3yx3+xy3)-6(e®+e*+€2+1)xy) nNo 2% ¥ oy Y oy Vi gy Vi
19) V5| L + )0 2) ) ) s 5) L 6) e
) \/— J(2€16+6€14+ 12€12+€10+3e8+€6+12€4+6€2+2) ; [VZ7—\/§(3ZZZ+1)V23] Vi g [stfjge(;ezzil)vzz] 9126 +1ZVZ9 12€ I:)Z VZ10
[((e4+62+ 1) (3x4+6x2y2—5y4)—3(66+e4+62+1)(x2—y2))i] ) V48e*—24€2+48 ) vV 48e*—24€2+48 ) V24et+24€2+24 ) V24e*+24€2+24
201y~ |2 (4et1e? 204V [B/act 2
V(2€16+6€14+ 12612 +€10+3€8+€6+12€%+6€2+2) 11) _VZ“(E ) \ﬂ(% e +1)VZ4] 12) [Vzlz(e 1) \ﬁ(% e +1)V26]
20) \/5[(x4—6x2y2+y4) f—4(yx3—xy3) ﬂ 21) \/3[4(yx3—xy3) i+(x4—6x2y2+y4) f] ) \/8061°+2405€8+24062+80 V80€10+240€8+240€2+80
2 4 2
VeB+eb+et+e2+1 VeB+ebtet+e2+1 13 VZ13(€ +1)_\E(46 e +1)VZS] 14 VZia 15 VZis
) V/80€10+240€8+240€2+80 ) V40€5+40€*+40€2+40 ) V40€6+40e*+40€2+40
[V216(2€4—ez+2)—\/%(10€6+264—62+12)VZS
16)
V60 M2M;
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3
[VZ17(2<-:‘*—e2+2)—\g(10«e6+2e4—52+12)vz7
V60 M3M;

17)
18) [VZ18(€4 + €2 + 1) - \/%(566 + 64 + 62 + 1)VZ10] /\/@M;}

19) lVZlg(e4 +e2+1)— \E(Se6 +et+e?+ 1)Vzgl /N60M,

20) vZZO 21) VZZl
vV 60e8+60€6+60e*+60€2460 vV 60e8+60€6+60e*+60€2+60

Table (8): The normalization constants for orthogonal vector annular ZP.

1

1
7) Vese—zecras
(e*-1)/V80

o 2)1/2n 3)1/2 4

1
8
) V48e*—24€2+48

1
V24€2+24

1
9
) V24e*+24€2+24

1
5) V12€2+12 6) V12€2+12

1
10
) V24et+24€2+24

(e*-1)/V80

(e*-1)/v80

11 12
) Vel0+e8—8eb+8et—€2—1 ) VelO+eB8—4e6+4et—€2—1

14
) V40e6+40e*+40€2+40

15
) V40e6+40e*+40€2+40

13) Vel0+

€8—4€0+4et—e2-1

(2€®—3€e*+3€%2-2)//240

(2€®—3€e*+3€2-2)//240

18
) V2€el4+2€1242€10-15684+15€6—2e4—2€2-2

16 17
) Vel4—3€12411€10-25e8+25e€6—-11e4+3€2 -1 )\/614—3612+11610—2568+25€6—1164+362—1
(e®+2€*+2€%2+1)//60 (e®+2€*+2€2+1)//60

19
) V2€1442€12 42101568+ 15€6—2e4—2€2 -2

20 21
) V60e8+60€6+60e4+60€2+60 ) V60e8+60€6+60e4+60€2+60

Table (9): Orthonormal vector annular ZP (T") in Cartesian coordinates

V2 (yi-xj)

Do 2 -i i 4=

5) \/7()( f_y D 6) \/E (_Y i—x i)
N Ve

6(e®+e*+ e+ 1xy—4(e* + € + 1)(yx® + 3xy?)) 1
1B)E[u )xy — 4( )(y y*))
M,
Ly |GE e+ e+ DG -y — (€ + € + D(5x" — 6x%y* — 3yY)]
M,
19) V5 ((e*+ €+ 1D(Bx* + 6x2y2 — 5y*) — 3(e® + e* + €2 + 1)(x® — y?)) 1
M,
VT (6(e® + €* + €2 + Dxy — 4(e* + €2 + 1)(Byx® + xy?))Jf
M,

20) VE[—4(xy® —yx®) i— (x* - 6x°y* +yH ]l 21) V5[(x* — 6x%y? +y*) 1 — 4(yx®

Vel +eb+et+e2 +1 Vel +e0+ et +e2 +1
where:

M; = (e'® + 5€© + 15€* + 35€!2 + 44€'° + 44€8 + 35€° + 15€* + 5¢% + 1)1/2

Mi=(2¢e*—€* + 2)

M; = (2€'® — 2€* — 3€!3 + 3€'? + 19€'! — 19€10 — 26€° + 26€8+26€” — 26€°
—19¢€° + 19¢€* + 3€® — 3€% — 2e + 2)1/2

M, = (2€'® + 6€™* + 12€'? + €!° + 3 + €® + 12€* + 6€% + 2)1/?

il
7]
3
LAl

................
-

7 x/3_[((x2+3y2)—(62+1))f—2xy i] g \/3_[2xy i+((62+1)—(3x2+y2))f] 9 V3 [(x2-y?)i-2xy |
) V2et—e242 ) V2et—e2+2 ) Vet+e2+1
10) V3 [-2xy i-(x?-y?)j] 1) [(3(e2+1)(yx2+y3)-2(e*+€2+1)y)i—(3(e2+1) (x> +xy?) —2(e* +€2 +1)x )]
VetteZ+1 Vel043e8—4e6—4e4+3e2+1
12 2VZ[((e*+e2+1)y—2(e?+1)y3)i+((e* +e2+1)x—2(e?+1)x3)j]
) NG ey
13 2\/7[((62+1)(x3+3xy2)—(e4+ez+1)X)f—((62+1)(3yx2+ y3)—(e4+62+1)y)i]
) Vel043e843€241
14) 2[(y3-3yx?)i—(x3-3xy?)j] 15) 2[(x3-3xy?)i—-(3yx2-y?)i]
\/€6+€:+€22+1 s . Veb+et+e2+1
16) 2\/5 [4(26 —€ +2)(y);[2+1\);y )-6(e®+1)yx) f] _
M3
€8+2e0-3e*+2e2+1)+(2e*—€2+2) (5x* +6y?x2+y*)—3(®+1)(3x%+y?) ) .
N l(( )+( M)ZM )=3(e8+1)( ))Il
M3
e8+2e5—3e*+2e2+1)+(2€*—€2+2 x‘*+6y2X2+5y4 —3(ef+1 xz+3y2 n
17) 2V [(( )+( M)%(M3 )=3(e8+1)( ))Il B
24/ (4(264—62+2)(yl\)/([32-;/[xy3)—6(66+1)yx)i]
5M3
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__________

Sa 5s S0

Fig. (1): Plots of first (9) orthonormal annular vector ZPs’, (S°) , with (¢=0.2)
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Fig. (2): Plots of first (9) orthonormal annular vector ZP.s’, (T"), with (¢=0.2)
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