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الخلاصة 
قدمنا في هذا لبحث نظرية مباشرة للتقريب باستخدام الشبكات العصبية للدوال في الفضاءات 

.p<1 عندما ،Lp

الكلمات المفتاحية
الشبكات العصبية، مقياس النعومة، مبرهنة مباشرة.
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1. Introduction 
In [3,5,6], the authors proved inverse theorems 

for the approximation by neural networks of 
continuous functions on Rd using the 1st order 
modulus of continuity. There is a natural question 
can we improve the above estimates interms of 
the k th order modulus of smoothness for k variate 
functions in Lp spaces for <1 ? in this article we 
answer this question.

Let N be the set of nonnegative integers 
numbers, R^dbe the d-dimensional Euclidean 
space (d≥1), x=(x1,x2,…,x3)∈Rd, Rn

ϭ (d)the set of 
all polynomials of the form

∑λ∈l(N∪{0})d aλ σ(-λx+bλ )(l>0).
, σ:R→R, and let|k|th order partial derivatives 

of fas     
[2]

A Korovkin's kernel un (x), defined by
,

where un (x) ∈ Tn (1) , un ≥ 0 and 1/2π ∫-π)
π un (x)

dx=1, where Tn (1) is the space of all triangular 
trigonometric polynomials of degree less than 
n, tn (x) =arc cos(nx), tn (x) is called Chebyshev 
polynomial. Define the d-product of un (x) as 
follows 

, also  [4]

We can define the K -functional as follows :
	

where g∈A.C.loc means that gis |m| times 
differentiable and D|m|  g is continuous in the finite 

set [5]. Bernstein inequality can be written as 

1.1. Definition [4] let Q be metric space with 
metric d then if f ∈ Lp (Q), given a direction e∈Rd, 
the rth order Symmetric difference of f defined by 

and ,the rth modulus of smoothness of a 
function f have the form

2. Auxilary  results
In this section we shall introduce some results 

that we need in our proof of the main result. 
2.1. Lemma [7] a positive sequences {an}, 

{bn}, if (p>0), and
 (1)

Then 
(2)

2.2. Theorem [7]  If f∈Lp (R
d), 

Then

where c(p) is a positive constant depending on 
p, and it may different from one line to other.

2.3. Theorem [1] Let f∈Lp ([0,1]d)and n∈N, 
then there is a nearly exponential type of forward 
neural networks , and let Rn

σ (d)as defined above, 
its number of hidden layer components is 

Mn≥minC<ε (n+1)d,
(where , n is any integer satisfy
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which is true for any ϵ.
Therefore

To know the number of neurons in the hidden 
layer, we must choose n smallest integer larger 
than ϵ-1 . So we must choose mn ≥ min(c<∈)n

d, where 
            □

3.2. Theorem let K be a compact subset of 
Rdand f ∈ Lp (K). Then, dp (f,Rn

σ (d) = O (n-α),if 
and only if f ∈ Lip(α), where Lip(α)={f:ωr (f,t) = 
O (tα, α ∈ (0,r]}

Proof: first let us assume dp (f,Rn
σ (d))=O(n-α). 

From Theorem3.1 we have

Now for the opposite side we have, for 
f∈Lip(α), that

=O( ) .Using Theorem2.3 to have

                          □

3.3. Theorem let K be a compact subset of 
Rdand ∈Lp (K) . if

Then 

And
‖f‖p ≤ dp (f,Rn

σ (d))

Proof:
Using Theorem 1.3,  we have

Then using proposition2.4 with 
An=ωr (f,1/n)pand Bk=dp (f,Rk

σ(d)) and E=‖f‖pwe get

≤ c (p) ((1+1/n) dp (f,Rn+1
σ (d))+n-2 ‖f‖p) .                                       

This completes the proof            □
3.4. Theorem If K is a compact subset of Rd 

and 

Proof . In Theorem 3.2 we have 
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2.4. Proposition [4] assume that for the 
nonnegative sequences {an}, {bn}, satisfied 

 , and the inequality

Holds for n∈N, then one has 
an≤C(bn+n-2∈).
Here C≥1 is a constant and ∈ is a constant 

independent of n, k

3. The main results
In this article we introduce our main results
3.1. Theorem let K be a compact subset of Rd 

and f∈Lp (K). Then there is a nearly exponential 
type of forward neural network with hidden 
components number mn ≥ min(c<∈) nd, where 

 And ∈ N , such that

Proof we have

Therefore 
(1)

Then using Bernstein inequality we get
(2)

Now let ,
. Then using (1)and(2) to get

, 
we have

Then for p=|v| in Lemma2.1, we get 
,

and

Then for n≥|v|, there is  a natural number m 
satisfy n / |v| ≤ m ≤ n.

Then 

Then using definition of K-functional to obtain

and

Then using Theorem2.2 to obtain 
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الخلاصة
تعتمد أنظمة الطاقة الكهربائية الحديثة في أدائها الى حداً كبير على عمل قواطع الدورة الكهربائية. يستخدم قاطع 
الدورة الكهربائية في أكتشاف اضطرابات الشبكة الكهربائية و لحماية الاجهزة الحساسة و المعدات غالية الثمن مثل 
المولدات و المحولات و غيرها من الاجهزة. لذا فأنها يجب ان تعمل ضمن سماحية ضيقة جداً خصوصاً في الشبكة 
الكهربائية التي تعمل تحت شروط خطاء دائرة القصر. ان تقييم كفاءة عمل قاطع الدورة امر مهم لآثبات قدرته على 
ايقاف تيارات الخطأ، خصوصاً تيارات دائرة القصر و لتحسين موثوقية الشبكة. تهدف هذه الورقة الى تصميم دائرة 
اختبار ثلاثية الطور تستعمل لتقييم اداء قاطع الدورة ذات الفولتية العالية تحت شرط خطاء دائرة القصر بأستخدام 
المحاكاة. بهذه الطريقة سيتم التغلب على صعوبات الاختبارات العملية كونها لا تحتاج الى قدرة كهربائية عالي من 

مصادر حقيقية و لها مرونة غير محدودة لضبط قيم عناصر دائرة الاختبار و غير خطرة و اقتصادية.  
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