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Preface

One of the main objectives of the series Methods and Principles in Medicinal
Chemistry is to provide practitioners and newcomers in the field with practice-
oriented information on methodological aspects of QSAR.

After Hugo Kubinyi’s volume on Hansch analysis and related approaches.
the present handbook treats chemometric methods in molecular design. An
introductory chapter by the volume editor, Han van de Waterbeemd., is fol-
lowed by a section on molecular descriptors covering the classical physico-
chemical parameters, but also descriptors derived from solvent-accessible
surface area and topological indices.

Experimental design in synthesis planning and structure-property corre-
lations are the focus of the second section. Both methods for direct opti-
mization of lead compounds as well as approaches for the systematic investi-
gation of a parameter space are discussed. In continuation of this topic a
strategy for QSAR development based on statistical experimental design and
multivariate data analysis is outlined. Other topics in this section are opti-
mization procedures in the case of non-linear structure-activity data applying
topological descriptors, and an illustration how disjoint principal properties of
organic substituents can be used for test series design.

In the central section of this volume the various approaches for multi-
variate data analysis are described; both established (principal component and
factor analysis, SIMCA, PLS, discriminant analysis, cluster significance ana-
lysis) as well as new, emerging techniques (graphical analysis, spectral mapping,.
nonlinear mapping and canonical correlation analysis) are comprehensively
described and exemplified in detail.

In the last section, leading experts treat a topic that has attracted increas-
ing interest in recent time: the statistical validation of QSAR results. The first
chapter describes the main tools for assessing the validity of QSAR models,
and the second chapter gives the rules for choosing the proper statistical
method for model validation.

Taken together, the chapters in this volume give a practice-oriented intro-
duction to the continuously developing field of chemometrics in molecular
design and provides the reader with recipes for a proper application of these
tools.

Diisseldorf Raimund Mannhold
Kopenhagen Povl Krogsgaard-Larsen
Amsterdam Hendrik Timmerman

Winter 1994



A Personal Foreword

It was at the first Noordwijkerhout Symposium in 1977 that I first came into
contact with applications of quantitative structure-activity relationships. It was
Corwin Hansch, Roelof Rekker and Hugo Kubinyi who inspired me at the
time in those early days of my career to continue in the rather new field of
QSAR. Much as I learned during my “postdoc” with Bernard Testa at the
University of Lausanne, the real challenge of using chemometric methods in
molecular design and discovery really only began in 1988 when I moved to
industry. Indeed, in this environment one sees what can be best achieved with
these methods and how they are used, misused, or not used at all by medici-
nal chemists. 1 would like to thank Klaus Miiller for creating a stimulating
environment and for having given me the freedom to work on this book.

When I was approached about writing this book, I felt immediately that
this could not be the task of one person only. As can be seen in the diverse
chapters in this volume, there are many methods which can be used in the
process of molecular design, requiring the expertise and experience of other
researchers. Therefore, I would like to warmly thank all the contributors to
this volume.

The scope of this series is to offer many practical examples of interest to
the medicinal chemist. In this volume, we have collected a large variety of dif-
ferent techniques. Several of these have reached some degree of maturity and
many examples can be found in the literature as well as in the present
volume. However, certain other methods, described here, are rather new and
still under development. For these approaches, we have chosen to include
some more details on the algorithms and their preliminary evaluations. As a
medicinal chemist, we hope that you appreciate the efforts of the data analy-
sis “experts” in developing new methods for extracting information or
“mining” data from complex and incomplete biological and chemical data. We
trust that this volume shows that the present chemometric methods used in
structure-property correlations, and in particular, in QSAR studies, go far
beyond the classical Hansch approach. It is hoped that this book fulfills two
missions. First it should offer the medicinal chemist an insight into the diver-
sity of multivariate chemometric methods and their applications in the design
of bioactive molecules. Secondly, for the specialist it should provide an update
of current and newly emerging techniques.

This book is a rather peculiar kind of Christmas present to me. I really
hope that you, as medicinal chemist or any other kind of researcher involved
in molecular design, will find this book a valuable gift too and will enjoy
playing with these chemometric approaches to the benefit of your daily work.



VIII A Personal Foreword

Finally, I would like to thank my wife Kitty and daughter Marion for sharing
their enthusiasm with me and for bringing me sufficient coffee, when 1 was
proofreading all the chapters during many long autumn evenings. It was a
great experience!

December 1994,
Basel Han van de Waterbeemd
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Abbreviations

ALS Adaptive least squares

ANN Artificial neural networks

CA Cluster analysis

CCA Canonical correlation analysis

CR Continuum regression

CFA Correspondence factor analysis

CSA Cluster significance analysis

2D Two-dimensional

3D Three-dimensional

EFMC European Federation for Medicinal Chemistry
FA Factor analysis

FB Fujita-Ban analysis

FW Free-Wilson analysis

GOLPE Generating optimal PLS estimations

kNN k-nearest neighbor

LDA Linear discriminant analysis

LMM Linear learning machines

MLR Multiple linear regression

NLM Non-linear mapping

OLS Ordinary least squares

PC Personal computer

PCA Principal component analysis

PCR Principal component regression

PLS Partial least squares

QSAR Quantitative structure-activity relationships
SCD Single class discrimination

SIMCA Soft independent modeling of class analogy
SMA Spectral mapping analysis

SPC Structure-property correlations

Symbols

log 1/C
E

s
g

p

Biological activity

Taft steric parameter

Hammett constant

Regression parameter in bilinear equation



2 Han van de Waterbeemd

1.1 Quantitative Molecular Design

The discovery of biologically active compounds and their development as drugs is
a highly complex process which involves many scientific disciplines [1]. Medicinal
chemists have for a long time systematically modified a lead compound with the
main driving force being synthetic feasibility, experience, intuition and serendipity.
Over the last 25 years molecular design strategies have changed considerably [2, 3].
Important contributions to the design of new compounds today come from
biostructural research, including protein crystallography, multidimensional bio-
NMR and molecular modeling,.

Corwin Hansch and co-workers [4 — 6] deserved the success of having propagated
the use of physico-chemical properties and statistical methods in structure-activity
relationship studies. A general formula for a quantitative structure-activity relation-
ship (QSAR) can be given by the following:

activity = f (molecular or fragmental properties) (1)

The original work of Hansch and co-workers involved linear combinations of
suitable descriptors, using multiple linear regression to obtain the now well-known
QSAR equations. The Hansch method will be discussed below briefly. For a more
detailed discussion, see the first volume of the present series [7]. In order to be able
to deal with complex data sets, consisting of more than one biological activity and
many (physico-)chemical descriptors, more advanced statistical tools have had to
be considered and developed. This is the field of chemometrics, and QSAR, an
important branch of chemometrics, is the main focus of this volume.

In drug research today, for some people the QSAR approach is taken to be
equivalent to using Hansch-type regression equations, while for others, it includes

chemical
properties

pKa

intrinsic log P
properties / solubility

stability
molar volume molecular
connectivity <~ structure
charge distribution

mol weight biological
properties

activity
toxicity
biotransformation
pharmacokinetics

SPC: Structure-Propetty Correlations

Figure 1. The concept of structure-property correlations (reproduced from Fig.1 of Ref. [2] with
permission from the copyright owner).



1 Introduction 3

any statistical mathematical technique which is employed to unravel information
obtained from the available biological and chemical data. Therefore, attempts have
been made to introduce other terms in order to avoid this confusion [2, §]. We
propose to call all studies which are aimed at broadening the understanding of
relationships between intrinsic molecular, chemical and biological properties, as
structure-property correlation (SPC) studies [2] (see Fig. 1). QSAR, thus, comes
under the generic term of SPC studies. Another source of misunderstanding is the
use of terms such as “rational drug design”. A drug is a product on the market,
which is used in health-care. Such a product is developed from a bioactive molecule,
which has been selected and clinically tested for this purpose. Many other biologically
active compounds appear not to be suited as a drug due to toxicity or unfavorable
side-reactions, or as a result of unfavorable pharmacokinetics. Therefore, we should
strictly speaking refer to molecular design. It should also be pointed out that carlier
generations of scientists have always conducted research rationally, thus, rendering
the word “rational” in the term rational drug design meaningless. The approaches
discussed in the present volume should be regarded as computer-assisted molecular
design or computer-assisted medicinal chemistry. Since chemistry is an experimental
science, these in computro methods are only successful under certain conditions.
Such conditions require that the biological activity of a series of compounds is,
indeed, related to the chemical properties being considered, and that the series is
more or less congeneric. That is all the compounds act by the same biological
mechanism, e.g. with a similar binding mode at the active site of a given biological
target. Medicinal chemists often face the problem of not knowing the 3D structure
of their therapeutic target. Both molecular modeling techniques and quantitative
statistical methods may then be useful in elucidating structural information at the
active site. Molecular modeling provides methods, such as the active analog approach
or constrained search [9], to define pharmacophores or the geometry at the active
site. The methods discussed in the present volume are either complementary to
molecular modelling approaches, or may themselves provide clues about which parts
of the molecule are important for activity as well as for inactivity.

1.2 Chemometrics

The term chemometrics was coined in the 1970s and is defined as the chemical
discipline that uses statistical and mathematical methods for selecting and optimizing
analytical and preparative methods, as well as procedures for the analysis and
interpretation of data. Chemometrics has found wide application in analytical
chemistry [10—15}. Two specific journals are devoted to the development and
applications of chemometrics, namely Chemometrics and Intelligent Laboratory
Systems (1986) and The Journal of Chemometrics (1987). A series of books on
Chemometrics has been started recently [42]. Using essentially the same techniques,
medicinal chemists and specialist “drug designers” have further developed the
field of quantitative structure-activity relationships (QSAR) [16—20]. Various
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statistical methods are known under different names, which is certainly confusing
for the non-specialist. Terms such as multivariate data analysis, chemometrics,
pattern recognition, parametric and non-parametric statistics, regression, latent
variable techniques, QSAR and projection methods are often used without definition.
In addition different authors may have a different understanding of these terms
[21—24].

As already discussed above, a QSAR equation is a correlation between biological
and chemical data obtained by Multiple Linear Regression (MLR), sometimes also
called Ordinary Least Squares (OLS). MLR is referred to as a variable selection
technique [25], while latent variable techniques are techniques, such as Principal
Component Regression (PCR) and Partial Least Squares (PLS). MLR is regarded
as a “hard” model, whereas SIMCA (Soft Independent Modeling of Class Analogy)
and PLS are called “soft” modeling techniques [26].

Two further categories are “supervised™ and “unsupervised” methods. Multiple
linear regression and backpropagation artificial neural networks are supervised
methods, in which a model is fitted to the data, while cluster analysis, principal
component analysis and non-linear mapping, for example, are unsupervised, and
classification patterns are obtained. One should also distinguish between the
quantitative predictions obtained with MLR, and the qualitative predictions
obtained with pattern recognition techniques, such as cluster analysis and principal
component analysis. Non-parametric statistics, such as Adaptive Lcast Squares
{ALS), do not require a normal distribution of the data.

An important part of each multivariate data analysis is the sclection of an
appropriate training (modeling or calibration) and test (validation) set. Without a
careful selection of the training set, any derived model makes little sense. However,
much experience is needed to be able to construct training and test sets which will
be of some significance [27].
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Figure 3.  Overview of SPC methods. ALS = Adaptive Least Squares; ANN = Artificial Neural
Networks; CA = Cluster Analysis; CCA = Canonical Correlation Analysis; CFA = Corre-
spondence Factor Analysis; CR = Continuum Regression; CSA = Cluster Significance Analysis:
FA = Factor Analysis; FB = Fujita-Ban analysis; FW = Free-Wilson analysis; GOLPE =
Generating Optimal Linear PLS Estimations; KNN = k-Nearest Neighbor; LDA = Lincar
Discriminant Analysis; LLM = Linear Learning Machine; MLR = Multiple Lincar Regression;
NLM = Non-Lincar Mapping; PCA = Principal Component Analysis; PCR = Principal
Component Regression; PLS = Partial Least Squares of Projected Latent Structures; SCD =
Single Class Discrimination; SIMCA = Soft Independent Modeling of Class Analogy (Similarity,
Chemistry and Analogy); SMA = Spectral Map Analysis.

1.3 The Hansch Approach

In the early 1960s, Hansch and co-workers systematically investigated ways of
expressing the relationships between structural and physico-chemical properties and
activities quantitatively. The traditional QSAR paradigm is often formulated as
shown in Eq. (1). More recently, due to the confusion surrounding the term QSAR,
Hansch has referred to the science of chemical < biological interactions as the
“unnamed science” [28]. Since it is evident that a biological effect seldom depends
on just one factor, methods have been explored to investigate this multidimensional
problem. The first volume of the present series explains the Hansch approach and
related techniques in much more detail [7]. It should be emphasized that Hansch
analysis is a method, in which the factors which influence biological activity are
rationalized, and should not be considered too much as a predictive method, since
usually only a limited parameter space is covered.

The first QSAR equations were based on the observation that partition cocfficients,
as expressed by log P values, are to some extent, correlated to certain biological
endpoints. In most cases, this relationship appears not to be linear, but displays an
optimum value. The parabolic model of Fujita-Hansch [4] (Eq. (3)) and the bilinear
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model of Kubinyi [7] (Eq. (4)) describe this empirical observation:

log 1/C = a(log P) + b (2)
log 1/C = a(log P)* + b(log P) + ¢ (3)
log 1/C = a(log P) — b(log (fP + 1)) + ¢ (4)

where C is the molar concentration that produces a certain effect, P is often the
1-octanol/water partition coefficient, and a, b, ¢ and S are regression coefficients.
The bilinear model of Kubinyi and the parabolic Hansch model are related and
may be derived from the partitioning of simple two- or three-phase solvent systems
[29]. The Hansch model is most applicable to complex in vivo systems, where a drug
has several barriers to cross to reach its target. In less complex systems, e.g. cell
cultures, in which only a few membranes must be crossed, the bilinear model best
fits the data. Drug transport and distribution is one of the main reasons for the
appearance of a lipophilicity descriptor in many SPC studies. The interaction of a
ligand to its active site involves different kinds of bonding: H-bonding, ionic forces,
van der Waals or hydrophobic, as well as dipole-dipole interactions. These may be
parametrized to some extend in a QSAR expression. The so-called Hansch equation
(Eq. (5)) takes into account these effects [99]:

log 1/C = a(log P)*> + b(log P) + ¢E, + do + ¢ (5)

where E is Taft’s steric descriptor and ¢ the well-known Hammett constant, reflecting
electronic contributions. Over the years many different molecular and fragmental
descriptors have been used in these extrathermodynamic or linear free-energy
relationships (LFER) [30]. The traditional method for calculating a quantitative
model in a Hansch analysis study is by multiple linear regression (MLR). The
most frequently encountered difficulties with multiple linear regression have been
discussed fully in Vol. 1 of this series [7]. However, to obtain suitable equations the
following are important:

— a ratio of compounds to variables greater than five,

— a minimal intercorrelation among the variables in the final equation.

The quality of a MLR can also be judged by looking at the standard error of
the regression coefficients. Some regression programs produce standard deviations,
while others give 95% confidence intervals. One should be aware that the latter are
out by about a factor of two. Another often misused statistical criterion when
comparing two equations, is the correlation coefficient. A statement such as
“Equation A (r = 0.956) is better than Equation B (r = 0.918)” should be treated
with caution and a sequential or partial F-test should be performed to justify
statements of this kind.

Another pitfall is the use of regression coefficients to discuss the relative
contribution of a descriptor to the measured activities. This can only be done after
normalizing the equation, i.e. eliminating the constant term [31].

A modern alternative to MLR is partial least squares regression in latent
variables (PLS) in combination with cross-validation (see Chaps. 4.4, 5.1 and 5.2)
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[32, 100]. Although this method is believed to be very robust, some difficulties should
not be overlooked [7, 33, and Chap. 5.2]. In this relatively new statistical method,
latent variables or components are extracted from the descriptor variables, which
have predictive capability for dependent variables. PLS works for smaller data sets
with many descriptors and can treat a set of multivariate biological activities. New
faster algorithms have been developed for larger data sets [34], which have, however,
been criticized (see Chap. 5.2). PLS is an important component in 3D QSAR or
comparative molecular field analysis (CoMFA) [35] (see Vol. 3 [97]). PLS is also
widely used to solve the problems of analytical calibration and for optimization in
organic synthesis [36]. Interesting alternatives to cross-validation have also been
considered [37].

Further alternatives to deriving Hansch-type QSARs are techniques such as
principal component regression (PCR) (see Chap. 4.1) and stochastic regression
analysis [38].

1.4 Modern Chemometric Approaches
in Molecular Design

Biological activities seldom depend on just one or two chemical properties, and
subsequently, a complex matrix of data must often be analyzed. Biological data can
vary from just mere simple affinity data (ICs, values) to complex in vivo data,
reflecting only the activity or inactivity of a compound. The selection of the
appropriate method for handling such data is extremely important if any useful
conclusive results are to be obtained.

The present volume first describes molecular concepts and the most important
descriptors. More information on chemical descriptors can be found in the series
“Methods and Principles in Medicinal Chemistry” (1993) [7]. Every good chemistry
experiment, including the synthesis of biologically active compounds, should begin
with a good experimental design. The design of a series of compounds is based on
synthetic feasibility, chemical intuition, time and availability of chemicals. A number
of strategies have been described to make more rational choices in synthesis planning
{41 —43]. These are presented in Sect. 3.

The remainder of this volume describes methods that analyze biological and
chemical data, either separately or the correlations between them (see Fig. 4). Based
on the methods already developed, new compounds may be designed, or insight
obtained into molecular mechanisms. Therefore, the validation of such methods
(Chap. 5.1) and the choice of appropriate methods (Chap. 5.2) are important subjects
to discuss.

In drug research today, many disciplines are working closely together. Computer-
assisted data handling, including operations such as data retrieval from 2D and 3D
chemical databases, pharmacophore generation, molecular modeling, and struc-
ture-property correlations (quantitative structure —activity relationships) have be-
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Figure 4. Biological and chemical data tables. Part of the data is used to build a model (for one
or more classes) and another part a test set. Biological and chemical data can be used separately
or in conjunction to classify compounds. Correlations between biological and chemical data can
also be ascertained.

come an integral part of the work of the medicinal chemist [44 —46]. The present
book gives an overview of some of the current methods and illustrates how modern
chemometric techniques can be used in the design of biologically active new chemical
entities.

In forthcoming volumes of this series, other computer-assisted medicinal chemistry
techniques, such as molecular modeling and structure-based design, will be covered.
The increasing importance of 3D data handling and its use in establishing 3D QSAR,
is presented in the next volume of this series {97, 35]. With the advent of combinatorial
chemistry to improve molcular diversity and the chances of lecad discoveries, these
methods will become all the more important. Hence, concepts of molecular similarity
and dissimilarity [39, 40] are also dealt with in Vol. 3 of the present series “Methods
and Principles in Medicinal Chemistry” (1994) [97].

1.5 Software

1.5.1 General Statistical Packages

One of the most difficult tasks for the medicinal chemist s the interpretation of
biological test results and how the rest resuits correlate with the chemical data. The
choice of appropriate software tools to achieve this, is a prerequisite for extracting
all the available information from the data. Although seemingly trivial, simple 2D
scatter plots of either biological or chemical data are still highly informative, as was
recently illustrated in an optimization study of antibacterial agents [47]. Similarly,
plots of biological data against any of the collated chemical descriptors are most
useful, particularly when a color-coding can be employed. Many PC-based programs
are in fact suitable for this, and we would like to mention SYSTAT [95]. SPSS/PC*
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Table 1. Statistical packages for structure — property correlation studies

Program Hardware Proprictor
BMDP Mainframe BMDP [56]
BMDP New System PC BMDP [56]
EXCEL PC, Macintosh Microsoft

GENSTAT Mainframe, workstation, PC  Numerical Algorithms Group [63]
GRAFTOOL PC 3-D Visions [65]
JMP Macintosh SAS Institute [67, 84]
MACSPIN Macintosh D2-Software [68]
MINITAB

MULTISTAT Macintosh Biosoft [71]

NCSS

PARVUS PC Elsevier [73]

P-STAT

QUATTRO-PRO PC Borland

RS/1 VAX, workstation, PC BBN [83]

SAS Mainframe, workstation, PC SAS Insitute [84]
SIGMAPLOT PC Jandel Scientific [85]
SPSS Mainframe, workstation SPSS [87]

SPSS/PC* PC SPSS [87]

STATA

STATISTICA DOS, Windos, Macintosh StatSoft [89]

STATGRAPHICS
SYSTAT

PC
Windows, Macintosh

Systat [95]

[87] and STATGRAPHICS [92]. One special feature of some these programs is real-
time rotation of 3D plots, using e.g. three independent variables or three components
from a principal components analysis. This is available in, e.g. MACSpin [68], IMP
[67] and SYSTAT [95]. Table 1 gives a selection of the available statistical data
modeling packages. A further selection can be found in the literature [48, 98]. In
most SPC and QSAR studies, the first step in looking at data using statistical
approaches involves traditional Hansch analysis using multiple linear regression
(MLR), or modern partial least squares (PLS) modeling. Multiple regression is
available in any statistical package, but unfortunately this is not the case for PLS
modeling. Some packages include a programming language which can be used to
write macros that can perform the operations required for PLS analysis. The dangers
of using incorrectly programmed PLS and cross-validation algorithms are discussed
in Chap. 5.2. However, a more specialized and validated software program (see
below) is preferred in most cases.

1.5.2 Specialized Software for SPC Studies

The statistical packages discussed previously have been developed for gencral-
purpose statistics and, course, are very useful for most of the analyzes described in
this book. However, since many of our chemists are neither trained in statistics,
nor in the use of sophisticated statistical packages, it is advizable to have a look
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Table 2. Specialized SPC software

Program Hardware Proprietor

ADAPT Vax Prof. P. C. Jurs [51]

APEX Workstation Biosym [52]

ARTHUR Mainframe Informetrix [53]

ASP Workstation OML [54]

CATALYST Workstation BioCad {57]

CERIUS? Workstation MSI [76]

CHEMX Workstation CDL [58]

CLOGP Vax BioByte [59]

CLUSTAN Vax [60]

C-QSAR Vax BioByte [61]

GOLPE Unix Tripos & MIA [64]
HYPERCHEM PC, workstation Autodesk [66]
MOLCONN-X Vax Hall Associates Consulting [70]
PCMODELS Vax, workstation Daylight CIS {74]
PIROUETTE PC Informetrix [75]
POLARIS Workstation Molecular Simulations [76]
PROLOGP PC Compudrug Chemistry [77]
QSAR Vax BioByte [80]

QSAR-PC PC Biosoft [81]

RECEPTOR Workstation MSI [82]

SIMCA Vax, PC, workstation Umetri [86]
SYBYL-CoMFA Workstation Tripos [93]

SYBYL-QSAR Workstation Tripos {94]

TSAR Workstation OML [91]
UNSCRAMBLER PC CAMO [96]

at some of the software products, which are more specialized in molecular design.
A list of these products, which are currently on the market, is given in Table 2.
Reviews of new products appear twice a year in the Newsletter of the EFMC
(European Federation for Medicinal Chemistry) [49] and the International QSAR
Society [50]. In particular, those products which offer molecular display, statistical
and graphical tools, such as TSAR [91], are potentially very useful and would be
of considerable interest to any medicinal chemist. Since these products are produced
by rather small companies, most of them still give rise to problems as regards to
their conceptual basis and implementation, and care must be taken when using
them. Various other programs are mentioned in the present volume under specific
topics, as well as in Vol. 3 of the present series “Methods and Principles in Medicinal
Chemistry” (1994) [97].
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2 Molecular Concepts

2.1 Representations of Molecules

Peter C. Jurs, Steven L. Dixon, Leanne M. Egolf

Abbreviations
BA Biological activity
CPSA Charged partial surface area
HMO Hiickel molecular orbital
MO Molecular orbital
NATOMS  Number of atoms
NOCC Number of occupied orbitals
QSAR Quantitative structure-activity relationship
RP-HPLC  Reversed-phase high performance liquid chromatography
Symbols
B, Substituent length parameter measured along attachment bond axis
B; Substituent length parameter measured perpendicular to attachment
bond
G, [(C] Molar concentration
Exomo Energy of the highest occupied molecular orbital
ELumo Energy of the lowest unoccupied molecular orbital
E, Tafts steric substituent parameter
F Dewar and Grisdale field substituent constant
F Swain and Lupton field substituent constant
fELEC Electrophilic frontier orbital density for atom, i
NucL Nucleophilic frontier orbital density for atom, i
K Equilibrium constant
k Rate constant; capacity factor
L Substituent length parameter measured along attachment bond axis
M Dewar and Grisdale mesomeric substituent constant
n Number of observations in a statistical correlation
P Octanol/water partition coefficient
R Original Randi¢ molecular connectivity index
R Swain and Lupton resonance substituent constant
r Statistical correlation coefficient; van der Waals radius
s Standard deviation of regression
SFLEC Electrophilic superdelocalizability for atom, i
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SNUCL Nucleophilic superdelocalizability for atom, i

"% Kappa shape index for paths of length, n

", Kappa shape index corrected for atom type

v Charton steric constant

Verr Charton energy-corrected steric constant

T Hydrophobic substituent constant

0 Hammett reaction constant

" Path-n molecular connectivity index

e Valence-corrected molecular connectivity index

o Hammett electronic substituent constant

g’ Normalized electronic substituent constant

o~ Exalted substituent constant for electron-withdrawing groups
ot Exalted substituent constant for electron-releasing groups
a* Taft inductive substituent constant

oy Taft and Lewis fundamental inductive substituent constant
G Hammett constant for meta substituents

a, Hammett constant for para substituents

Ogr Taft and Lewis fundamental resonance substituent constant

2.1.1 Introduction

The objective of a QSAR study is to develop a relationship between the structures
of a set of compounds and the biological activity (BA) of interest [1]. Such a
relationship can be codified as follows:

BA = f(molecular structure) = f(descriptors) (1)

The nature of the descriptors used, and the extent to which they encode the
structural features of the molecules that are related to the biological activity, is a
crucial part of any QSAR study. The descriptors may be physico-chemical
parameters (hydrophobic, steric or electronic), structural descriptors (frequency of
occurrence of a substructure), topological (connectivity index), clectronic (from a
molecular orbital calculation), geometric (from a molecular surface arca calculation),
or they may be one of the hundreds of other descriptors, which have been proposed
by researchers in this area.

The first studies in QSAR used an approach derived from physical organic
chemistry and variations of the Hammett equation. This was soon followed by
factorizing the interactions into three contributions-electronic, steric, and hydro-
phobic interations. The QSAR relationship, thus, became,

log (1/C) = f(a, E, 1) (2)

where C is the molar concentration of a compound producing a standard response,
o denotes electronic interations, E, is the Taft steric substituent constant or a
variation thereof and r is the hydrophobic substituent parameter. In cach case.
these substituent parameters are defined only for compounds in a homologous series.
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The availability of substantial computational power has led more recently to the
development of many sophisticated computed descriptors. Many of them follow the
same reasoning as regards to the partitioning of molecular features into electronic,
steric, and hydrophobic interactions. Descriptors introduced more recently, however,
use other interpretations of molecular structure. For example, molecular connectivity
indices and other topological indices depict molecules as graphs and use a graph
theoretical approach to descriptor development. On the other hand, descriptors
derived from the solvent accessible surface area depict the molecule as a collection
of overlapping spherical atoms.

In this chapter, we will be discussing a variety of molecular representations that
have been developed. First, we will introduce the basic concepts and point to the
literature where necessary for further details. It should be ecmphasized that many
authors have developed descriptors which are suited for particular problems. such
as in QSAR studies, but which are also suitable in other types of investigations (c.g.
structure-property studies, studies of chromatographic retention time as a function
of structure). Reports of these investigations are scattered throughout the literature,
and no attempt shall be made here to gather information about every descriptor
reported to date.

2.1.2 Substituent Constants

QSAR grew out of physical organic chemistry studies on how differential reaction
rates of chemical reactions depend on the differences in molecular structurc.
Characterizations of these differences in structure, which are due to the substitution
of functional groups on to a fixed core structure, led to the development of substituent
constants. It was not until with the appropriate substitucnt constants, encoding the
electronic, hydrophobic, and steric aspects of a series of compounds, that QSARs
could be developed for understanding structure-activity relationships.

2.1.2.1 Electronic Substituent Constants

Electronic substituent constants were as a direct result of the empirical observation
made from certain chemical systems that substituents have the same relative effects
on the rates of reaction equilibria, regardiess of which reaction was being studicd.
The most significant breakthrough in this area occurred in 1937, when Hammett
[2] proposed the, now famous, Hammett equation for the rate constants and
equilibrium constants of reactions of mera- and para-substituted benzoic acid
derivatives:

logk = log k, + 0o (3)

log K = log K, + g0 4)

The constants, k, and K, refer to the unsubstituted compound, while k and K refer
to a meta- or para-substituted version. The substituent constant, o, reflects the inherent
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polar effect a given substituent has, on the rate or equilibrium of a reaction, relative
to hydrogen. This effect is, in principle, independent of the reaction. The reaction
constant, ¢, depends on the nature and experimental conditions of the reaction under
consideration and measures the sensitivity of the process to polar effects excrted by
substituents. The reference reaction chosen for determining ¢ values was the aqueous
dissociation of benzoic acids at 25 °C, where ¢ was defined to be unity.

A remarkably wide range of data involving benzene dcrivatives [3] has been
successfully correlated according to the Hammett equation, using a single set of
substituent constants, 7, and o, for meta- and para-substitution, respectively. There
are many instances, however, when Eqs. (3) and (4) break down. These deficiencies
have led to the development of several alternative substituent constant scales.

The first and most obvious limitation of the Hammett equation is that it does
not hold, in general, for ortho substituents. This so-called “ortho effect™ was identified
by Ingold [4] as being steric in nature. Based on Ingold’s hypothesis, Taft [5] proposed
a quantitative measure for separating the inductive influence of a substituent from
its steric effect. The substituent constant o* was based on the rates of acid- and
base-catalyzed hydrolysis of esters of the form X—CH, —COOR:

¥ = (1/2.48) [log (k/ko)pase — log (k/ko)acipl (5)

where X =H for k. Taft argued that ¢* should measure only the inductive influence
of a substituent for two reasons: 1) the steric and resonance effects should essentially
be the same in acidic and alkaline hydrolysis, and 2) the inductive component in
log (k/ko)acn should be much smaller than in log (k/ko)sase, because the ¢ values
for the acidic hydrolysis of esters are much smaller than for alkaline hydrolysis.
The factor 2.48 corresponds to the alkaline hydrolysis ¢ value and, thus, puts ¢*
on the same scale as the Hammett o, and o, values.

Discrepancies in the Hammett equation were also noted in the ionization of
phenols and anilines, when a strongly electron-withdrawing group such as —NO,
was present in the para position. The most widely accepted explanation for this, is
that the substituent receives electron density via “cross-conjugation” [6] or “through
resonance”, [7] and that this phenomenon is more important in the base, e.g.
p-nitrophenoxide ion, than in the corresponding acid, as illustrated in Fig. 1. The
increased stability of the base would then account for the unusually high acidities
of p-nitrophenol and p-nitroanilinium ion. Studies of such systems have provided
aset of exalted constants ¢~ which may be used in favor of o, when cross-conjugation
with an electron-withdrawing substituent occurs [8].

O G

acid

Figure 1. The resonance structures of p-nitrophenoxide ion and p-nitrophenol.
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CHj CHs CHs
i +
HyC lca —> HqC C+ €3> H3CO ¢
i
CHj CH;y CHs

Figure 2. Illustration of the stabilization of an intermediate carbocation by the methoxy group.

In analogy to the o~ constants for electron-withdrawing groups, Brown and
coworkers [9] developed a set of substituent constants ¢* for groups that release
electron density via resonance. The reaction selected for defining 6 was the Sy
solvolysis of r-cumyl chlorides in 90% aqueous acetone at 25 °C. Electron-releasing
substituents such as —OCH; speed up the reaction by stabilizing the intermediate
carbocation, as illustrated in Fig. 2. As with the ¢~ constants, ¢™ may be used in
place of 6, for electron-releasing groups.

While the ¢~ and ¢ scales enabled the correlation of a broader set of data using
the Hammett equation, the use of these exalted constants did not address the
fundamental issue of how to account for resonance effects in general. Taft [10]
showed that part of the problem stemmed from the fact that cross-conjugation was
an important factor, even in the reference benzoic acid system. Although it was
previously believed that cross-conjugation was of equal significance in benzoic acids
and the corresponding benzoate ions, there was increasing evidence [11] that the
effect was more important in the acid when groups such as — OCH; were present,
as illustrated in Fig. 3. The implication was that the Hammett o, constants were
biased from the beginning for certain electron-reieasing substituents. To test this
hypothesis, Taft [10] studied the ionization of meta/para-substituted phenylacetic
and 3-phenylpropionic acids and the akaline hydrolysis of meta/para-substituted
ethyl phenylacetates and benzylacetates. In all cases, the reaction center was insulated
from the ring by one or two methylene units, which, as Taft argued, should minimize
any cross-conjugation effects. The mera-substituted systems were used to determine
the appropriate reaction constants g, and these, in turn, were used to find the
normalized substituent constants, ¢°, for para substituents. The ¢° values indicated
that groups such as —N(CHs,),, —NH,, and —OCH; had much less of an influence
in these systems than in the corresponding para-substituted benzoic acids. This
helped to confirm that cross-conjugation was a significant component of the
Hammett constants, o, for these substituents.

OH

Figure 3. Tlustration of cross-conjugation of the benzoate ion and the corresponding benzoic acid.
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The proliferation of substituent constant scales increased the widespread desire
to break down the effect of a substituent into the fundamental components of
induction and resonance. Taft and Lewis [12, 13] proposed the following relationships
for the original Hammett constants:

o, = 0 + 0y (6)

G, = 0, + a0y (7)
The inductive contribution o, was a scaled version of Taft’s ¢* parameter [5], and
o was a transmission coefficient for the resonance parameter, op. Taft and Lewis
suggested that the model could be used to determine whether deviations from the
basic equations; Eqs. (6) and (7), were due to a breakdown in the applicability of
the inductive scale, the resonance scale, or both.

Dewar and Grisdale [14] proposed that a molecule’s structure be incorporated
into a field and mesomeric representation of the substituent constant:

o = Flri; + Mgq;; (8)

The electrostatic field term was dependent on the inverse distance, 1/r;; between
the point of attachment, i, of the substituent and the point of attachment j, of the
reaction center. The mesomeric term utilized the formal charge, ¢;;, which arose at
point j due to the attachment of a —CHY group at point i. Dewar and coworkers
[15] later modified the scheme to allow for a mesomeric field effect which had
originally been ignored.

Swain and Lupton [16] showed that many of the previous substituent scales could
be accurately represented according to the following equation:

oa=fF +rA 9)

In deriving the field and substituent constant, .#, they assumed that the ¢’ scale for
the dissociation of 4-substituted bicyclo[2.2.2]octane-1-carboxylic acids [17] could
be written as a linear combination of the Hammett ¢, and ¢, constants, and that
¢’ contained no resonance component, i.c.,

¢ = as, + bo, = F (10)

The constants, a and b, were determined by a least-squared fitting procedure for
14 different substituents. This alowed # to be calculated for any substituent, for
which ¢, and g, WCIC known. In order to determine the resonance constant, .2,
Swain and Lupton assumed that o, for the substituent —®N(CH,); had no
resonance component and solved Eq. (9) for f. By setting r cqual to unity for the
a, series, the # values for a large number of substituents were computed. With .7
and # defined for each substituent, the various o scales were regressed against these
constants to obtain appropriate values for fand r. From f and r, the percent field
and resonance contributions were determined for each o scale.
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2.1.2.2 The Hydrophobic Substituent Constant, n

When working with a set of derivatives, the hydrophobicity of the compounds in
the series can be represented on a relative scale with the hydrophobic substituent
constant, « [18, 19]. The value for the substituent X is then defined as follows:

nx = log Prx — log Pry (i

where Py is the partition coefficient of the derivative, and Pyy is the partition
cocfficient of the parent compound. The variable ny expresses the variation in
lipophilicity, which results when the substituent X replaces H in RH. For example,
the value for the chloro substituent, 7, is the difference between the partition
coefficient for chlorobenzene and that of benzene. When = has a positive value, the
substituent causes the derivative to favor the lipid phase, and when = has a negative
value the derivative is more hydrophilic than the parent compound.

This equation can be reversed to allow the calculation of log P values for
derivatives, given the log P for the parent compound and = values for the substituents
of interest. Thus, log P for chlorotoluene is calculated as follows:

log Pchlommlucne = IOg Phenzene + ey + Tpe = 213 + 0.71 + 056 = 340 (12)

The measured value of log P for chlorotoluene is 3.33, and thus, the agreement is
good. When multiple substituents are present, simple additivity can fail due to
interactions which must be taken into account in such circumstances. Compendia
of 7 values are available in the literature [c.g. 20, 211

2.1.2.3 Partition Coefficient — Log P

The relative affinity of a drug molecule for an aqueous or lipid medium is an
important correlate of drug activity due to absorption, transport, and partitioning
phenomena. The most widely used molecular structure descriptor to cncode this
property is the logarithm of the partition coefficient, P, between 1-octanol and water:

[C]ljoclan(»l

[C]aqueous

where in this model [C]y_ocunor 18 the concentration of a solute in the lipid phase,
I-octanol, and [C],qucous is the concentration of the solute in the aqueous phase [21].
Compounds for which P > 1 are lipophilic or hydrophobic, and compounds for
which P < 1 are hydrophilic.

Log P has been shown to be highly correlated with a diversity of biological
activities, including drug activity, toxicity, pesticidal activity, genotoxic activity, and
others. It is evident that log P, as an operational definition of lipophilicity or
hydrophobic bonding, plays a significant role in the interactions between drugs and
their receptors. The lipophilic character of drugs is also an important factor in drug
metabolism. In addition, the absorption, distribution, and excretion of many classes
of drugs have been shown to be dependent on log P.

(13)
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The organic phase used most frequently for determining log P is [-octanol. Studies
have shown that it is a good compromise as regards to solvent propertics, and most
measurements and compilations of values have now been made with this lipid phase
being used. Other lipid phases are also used, but less often.

Log P values have been measured by two main methods: the ““shake-flask™ method
and liquid chromatographic methods. The shake-flask method involves the distribu-
tion of a compound between an aqueous phase and organic phase, and once
equilibrium has been attained, measuring the concentrations of the compound in
the two phases. The values obtained depend on a number of experimental factors,
including the pH and ionic strength of the aqueous phase, the nature of the buffer
used, the purity of the organic phase, purity and stability of the drug compound,
solute concentration, temperature, stirring, the analytical method used to determine
the equilibrium concentrations, as well as other factors.

Reversed-phase high performdnce liquid chromatography (RP- HPLC) is now the
method of choice for measuring log P. This method has been reviewed [22] and
yields log k, which is a capacity factor, calculated as follows:

k = (trg — to)/to (14)

where 1y and t, are the retention times of the drug compound and a non-retained
compound, respectively. A lipophilic stationary phase is used, such as an inert
support coated with 1-octanol or alkylsilylated silicas. The mobile phase consists
of a buffered aqueous phase and an organic modifier such as methanol, acetonitrile,
or acetone. Extensive studies on these systems have general many papers discussing
the applicability of the method. The RP-HPLC method has many advantages over
the shake-flask method, including greater accuracy and precision, a wider range of
applicability, decreased dependence on impurities, speed, and only small amounts
of the drug compound are required.

Measured log P values have been evaluated and gathered into a database now
containing more than 40000 log P values which have been measured in more than
300 solvent systems. The database contains more than 18000 log P values measured
with the octanol/water system. A subset of 8162 selected values is called the Starlist.
The entire database will be published soon [23] and is part of the Pomona College
MedChem project.

There have been a number of methods, including substituent additivity, developed
for the calculation of log P from molecular structure, fragments, atomic contributions
and/or surface area, molecular properties, and solvatochromic parameters [24]. The
first general method for the calculation of log P was proposed by Rekker and Nys
[25] in 1973. In this method, after summing fragment constants for the molecule in
question, any necessary correction factors for intramolecular intcractions between
the fragments, such as electronic, steric, or hydrogen-bonding effects, were added.

This fragment addition method led to the method which now is the mostly widely
used and which was developed by Leo and Hansch [21, 23, 24]. Here, the log P of
a compound is computed by summing over the contributions for the fragments and
then applying a number of correction factors as needed.

logP =Y afi + Y bF; (15)
i 7
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where f; are fragment constants and F; are correction factors. The solute structure
is broken down into a series of fragments which are separated by isolating carbon
atoms according to a set of rules. An isolated carbon is a carbon that is not doubly
or triply bonded to a heteroatom. The groups of atoms that remain are polar
fragments. The contribution for each fragment, f;, multiplied by the occurrence of
that fragment, is added accumulatively. This sum is then corrected for a number of
factors according to solvent theory. Each correction factor has an associated value,
F,, and this is multiplied by the number of instances of the correction in the structure,
b, Correction factors include those due to molecular flexibility, branching, polar
fragment interaction factors, ortho effects, and aromatic interactions [21, 24].

This fragment additivity method has been implemented in a commercially
available software package named CLOGP, which currently exists in version three
as CLOGP-3. The only input needed to the program is a structural represcntation
of the compound. A description of the current status of the software, its limitations,
and planned enhancements has appeared recently in the literature [24].

2.1.2.4 Steric Substituent Constants

In a homologous series of compounds, the different biological activity for the
compounds is often related to the size of the substituents. Bulky substituents can
interfere with the intermolecular reactions, which lead to drug activity. The
quantitative encoding of the steric aspect of drug structurc has been accomplished
by a series of steric substituent constants.

Taft’s Steric Parameter, E,
The first steric parameter, E,, was developed by Taft [5] and describes the
intramolecular steric effects on the rate of reaction. Acid-catalyzed ester hydrolysis
was used to derive the following relationship:

E; = log (kg/kme)a (16)

where kg and ky. are the acid-catalyzed rate constants of hydrolysis for the
compounds RCOOR’ and MECOOR'. This equation assumes that there is no
inductive or resonance contribution and that E, is dependent of the medium in
which the rate constants are measured. By definition, E, = 0 for the methyl group.
Tables of E, values have been published [e.g., 26].

Bulkier substituents usually generate negative values for E,. The E, parameter is
correlated with the van der Waals radii of the substituent’s atoms and is also related
to electronic contributions.

Although these E, parameters were derived for physical organic chemistry, they
have also been extensively applied to biological activity problems with success and
form one of the traditional substituent constant parameters for QSARs.

Charton’s Steric Constant, v

Efforts to bypass the uncertainties and limitations which accompany the Taft method
led to new research in the area. Charton, for example, observed that the E, parameter
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closely paralleled group radii [26, 27]. Hence, he developed a new sct of steric
measures, termed v values, which have the following form,

v = Fox — Fua = Fox — 1.20 (17)

where r is the van der Waals radius of the symmetrical substituent (e.g. F, Cl,
—CH;, —CBr;, —1-C,H,) and 1.20 is the radius (in Angstroms) of hydrogen, the
standard [28]. In order to incorporate the effects which werc as a result of the
conformation which, in turn, were dependent on energetic factors, a modified
parameter, the effective steric value, v g, was later introduced [20, 29]. This parameter
takes into account both the log (kg),, as above, as well as the original v value
corresponding to the minimum substituent radius. This results in a scale of steric
measures which essentially is energy-corrected and is, thus, independent of the
medium. Charton has published v values for more than 300 substituents {30].
Hansch and Leo [20] illustrated the wide diversity of substituent types, which can
be characterized as a whole, while also demonstrating the relationship between
Taft’s E, constant and Charton’s v by the following correlation.

E, = —2.062v, — 0.194
n=104 r=0978 s = 0.250 (18)

The fact that there is no obvious structural explanation as to why several
substituents deviate significantly from the majority of substituents in the data set,
indicates that much is still unknown about the representation of the steric nature
of molecules.

STERIMOL Parameters

In an atempt to go beyond the Taft parameters, which were designed for simple
homogeneous organic reactions, Verloop and coworkers [31, 32] designed a
multiparametric method for characterizing the steric features of substituents in more
complex biological systems. With their computer program STERIMOL [32],
covalent and van der Waals radii, along with standard bond angles and lengths,
are used to build chemically feasible three-dimensional models of molecular
substituents. From these models, the spatial requirements of any type of end group
can be effectively represented by distance-based measures.

The substituent to be described is represented by the van der Waals radi of the
atoms, forming the group, by standard bond lengths and angles and by reasonable
conformations derived from molecular mechanics. In the original approach [31],
five directions were used to represent the shape of the substituent. In a later variation
[33], just three are used, L, B, and Bs. The length parameter, L, is defined as the
length of the substituent measured along the axis of the bond that joins the substituent
to the parent molecule. B, is the smallest distance from the axis of the attachment
bond, measured perpendicularly to the edge of the substituent. B; is the maximum
width of the substituent and has no directional relationship with B,. The ratios
L/B, and B,/B, are useful measures of the relative deviations of the substituent’s
shape from a sphere. The B, parameter has been shown to be highly correlated
with Taft’s E; parameter as well as Charton’s v parameter.
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A table with more than 100 values for L, B, and B has been published [26].
The successful application of these parameters, alone or in combination with other
physico-chemical descriptors has been illustrated by examples in a review by Fujita
and Iwamura [34] as well as in a number of additional studies, where the interactions
between various ligands and biomolecules were explored [26].

2.1.3 Whole Molecule Representations

Developments in computer methods for structural representation and manipulation
of chemical structures have led to the generation of a host of methods for representing
entire molecular structures. Many of the whole molecule descriptors are extensions
of the substituent constant approach, but many of them are also completely new
approaches to the problem of representing whole molecules.

Descriptors, based on the connection table for a molecule, are topological in
nature, and their values are independent of a three-dimensional conformation. These
descriptors can be counts of the substructures present in the molecules being
encoded, or they can be calculated topological indices that attempt to encode the
size, shape, or branching in the compound by manipulation of graph-theoretical
aspects of the structures.

In contrast to the topological descriptors, descriptors which are derived from a
three-dimensional conformation of the molecule are dependent on the cxact
conformation chosen and, therefore, on the molecular modeling program employed.
There are now many commercial molecular modeling programs available, and
many of them have the capability of producing descriptors from the molecular
models they develop. Since conformational analysis often requires the calculation
of atomic charges, these programs can also produce electronic descriptors.

2.1.3.1 Topological Descriptions

The basic information about the structure of an organic compound is contained in
the corresponding connection table, which is a compact representation of types of
atoms and bonds, and of the connections forming the molecule. Since the connection
table is the usual storage medium for structures in chemical database systems, they
are casily accessible and have been used to develop descriptors.

Substructure-Based Descriptors

With the advent of chemical structure handling computer systems a convenient and
fast substructure searching was facilitated. A byproduct of this capability is that
compounds in QSAR studies may be represented by integers, which in turn, are
derived from substructure counts. Encoding organic structures as numbers, which
reflects their constituent substructures, is appealing in its simplicity and conforms
to the organic chemistry point of view of chemical structures and the importance
of component parts of the structure.
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One application of substructure descriptors is as indicator variables. Indicator
variables have been used in QSAR studies for a long time, since it is easy to generate
just one such variable. Two sets of compounds which differ from cach other only
by a substructure existing in one set but not the other can be studied as an entire
set when using an indicator variable. This yields a model which simultaneously
utilizes all other independent variables and then combines the models via the
indicator variable. Strictly speaking, such an approach should only be used when
the two sets of compounds are identical in every respect, except for the substructure
being coded with the indicator variable. Such a strategy has been used in many
studies to build a model for a larger set of compounds than would otherwise have
been possible.

Another use of substructure-based counts is found in certain approaches in QSAR
studies, involving a systematic examination of substructures and how they are
related to the biological activity. Such an approach has been successfully imple-
mented in the CASE program by Klopman and coworkers [35, 36]. In this work,
the substructural units were built up from bonded pairs of atoms to larger units
which were called biophores and biophobes, depending on whether their presence
correlates with the presence or absence of biological activity. The software produced
a list of those substructural units that correlate most highly with activity and
inactivity among the training set compounds, and then a mathematical model was
built using these substructural units as the independent variables. Thus, the molecules
in the training set were represented by a list of the substructural units present.

Topological Indices

A long-standing goal in chemistry is to represent chemical structures in numerical
form as succintly, but as completely as possible. When molecular structures are
represented as graphs, [37] then this quest can be equated to secking ways in which
graphs can be represented as numbers. Topological indices have been developed by
chemists in pursuit of this goal [26, 38]. A topological index is a numerical quantity
that is mathematically derived in a direct and unambiguous manner from the
structural graph of a molecule. Since isomorphic graphs possess identical values for
any given topological index, these indices are referred to as graph invariants.
Topological indices ordinarily encode both molecular size and shape at the same
time. More than 50 topological indices have been presented in the literature since
their first development. In this section we will discuss several widely used topological
indices and show how they have been applied to chemical problems.

The first index based on a graph approach to molecular structure was developed
by Wiener [39] in 1947. The path number was defined as the number of bonds
between all pairs of atoms in an acyclic molecule. Using the path number and an
additional index, Wiener was able to fit alkane boiling points fairly well. The Wiener
number is inversely proportional to the compactness of a molecule. In 1971 Hosoya
[40] connected the Wiener number with graph theory, pointing out that the Wiener
number is the half-sum of all the distance matrix entries for a molecule.

In 1975, Randic [41] proposed a topological index that has now evolved into the
most widely used of topological indices in chemical studies. This branching or
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connectivity index was originally defined as,

R=y ! (19)

allbonas (min)17?

where the summation includes one term for each edge in the hydrogen-suppressed
structural graph. Thus, when the graph is representing an organic molecule, there
is one term in the summation for each bond in the structure. The variables, m and
n, are the degrees of the adjacent modes joined by each edge. In terms of chemical
structure, this is the number of bonds attached to each atom participating in the bond.

Fig. 4 shows the sequence of steps for the calculation of the value for this simple
topological index for the example molecule, 3,4-dimethylhexane. At the top of the
figure, the molecular structure is shown as a graph with the degrec of each node
labeled. The value 'y = 3.717 reflects both the size and the degree of branching of
the structure. It is related to the size of the molecule, because when extra atoms
and bonds are added, more terms are added to the summation, and the value
increases. 'y is also related to the degree of branching of the molecule, because
when more branching occurs, the denominators for those terms become larger and
the terms themselves become smaller, thus, decreasing the overall valuc for the index.

The normal valency of a carbon atom is 4, so the valencies of the nodes in the
hydrogen-suppressed structural graphs of simple alkanes cannot exceed 4. Thercfore,
there are 10 possible sets of edges: 1 —1, 1 -2, 1-3,1-4,2—-2,2-3,2—-4,3-3,
3—4,4—4.The 1 —1 edge type occurs only in ethane, and the edges of type  —4 and
2—2 each yield the same product. Thus, this branching index is based on the
decomposition of a compound into eight different carbon-carbon bond types. Since
the number of different bond types is limited, it follows that the branching index
value can be the same for different molecules. For example, 3-methylheptane and
4-methylheptane have identical values for this branching index.

The simple branching index discussed above involves a summation over all paths
of length 1 being treated in the graph. This viewpoint has been extended to include
the definition of additional indices corresponding to paths of length 2, 3, or longer,
and to other subgraphs such as clusters and path-clusters. This entire class of

3,4-dimethylhexane

2 1

1

1, _ 1 . 1 N 1 . 1 1 1 1
= T t—— t— b+ —
V2 V23 V3 V33 V13 V23 V24

= . + 408 + 577 + .333 + .577 + 408 + 707 ' i
707 Figure 4. The calculation of 'y"

for the example molecule 3,4-dime-

= 3717 thylhexanc.
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Table 1. Valence deita values for carbon, nitrogen, and oxygen in
different bonding e¢nvironments for use in calculating valence-corrected
molecular connectivity indices

—CH, 1 —NH, 3 ~OH 5
—CH,— 2 >NH 4 —0- 6
>CH- 3 ~=NH 4 =0 6
=CH-— 3 >N— 5
=C< 4 =N- 5
>C< 4 =N 5

topological indices are commonly called molecular connectivity indices [42). The
original Randi¢ branching index is referred to as the path-1 molecular connectivity
'y. The higher order indices are calculated by equations analogous to the simple
cquation for path-1 molecular connectivity.

The following equation generates the path-2 molecular connectivity from the
degrees of the three edges involved in the definitions of paths of length two:

5 1

X = JE— S
lengih 2 (mnp)'/?
paths

(20)
where m, n, and p are the degrees of the atoms of each path of length two. For
3,4-dimethylhexane there are six terms in the summation for the six paths of length
two in the molecule. The denominator contains the following terms, (1 -2 - 3)!2,
(2-3-3)Y2, 2-3- )12, 3-3-DY2 (1-3-2)Y2 and (3-2- 1)!'2, and the overall
value for ?y for 3,4-dimethylhexane is 2.201.

The simplest molecular connectivity indices described in this context do not allow
for the differentiation of atom types. In order to generalize the molecular connectivity
indices and make them more useful for the characterization of organic molecules
containing heteroatoms, the following enhancement has been developed. In the
denominator of the equation, delta values were used in place of the degree of the
node. The delta values are defined as,

=2 —h 1)

where Z¥ is the number of valence electrons for the atom, and h is the number of
attached hydrogens. Thus, a carbonyl oxygen has a 0" = 6, and a nitrogen atom
as a secondary amine has a value of ¥ = 4. Table | provides a complete list of the
valence delta values for carbon, nitrogen, and oxygen atoms in various bonding
environments.

Molecular connectivity indices calculated with these delta values arc referred to
as valence molecular connectivity indices and have the superscript v. Fig. 5 shows the
calculation of the valence path-1 molecular connectivity index 'y for 2-(methyl-
amino)propionic acid methyl ester (or N-methyl alanine methyl ester).

The valence molecular connectivity index has been correlated with many
physico-chemical properties of organic compounds. The index is easy to compute
and is thus, more accessible than values derived from complicated experimental
measurements. An example to demonstrate this is given by the correlation between
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2-(methylamino)propionic acid methyl ester
60
mcl
4
3 06
o
4\ H3C1
CHs,
1
- 1 1 1 1 1 1 1
= + + +
o 33 V34 T Vi V32 " a6 | Va6 6
= 247

Figure 5. The calculation of '#* for the example molecule 2-(methylamino) propionic acid methyl
ester.

log P and 'y* for 138 simple organic compounds, including 24 esters, 9 carboxylic
acids, 49 alcohols, 28 amines, 16 ketones, and 12 ethers [43]. The log P for a
compound is the logarithm of the partition coefficient of the compound between
water and 1-octanol. Log P of organic compounds has been shown to be related
to biological activity and environmental transport rates in hundreds of studies, and
1s thus, of great interest. The correlation between measured log P values and
calculated 'y" values is illustrated graphically in Fig. 6. The equation for the best fit:

log P = 095"y — 1.48 (22)
n=138 r = 0986 s = 0.152

Thus, molecular connectivity indices can be used to encode information about
molecular structures that are also represented by experimentally measured quantities.
The molecular connectivity indices are the most widely used of topological indices
for quantitative structure-activity relationship and quantitative structurc-property
relationship studies. Kier and Hall [42] include a list of 158 references for examples,
in which molecular connectivity played a prominent role. A recent paper reports
the availability of software for calculating molecular connectivity indices using a
microcomputer [44].

Kappa Indices

A series of graph theoretical indices have been develped by Kier, which relate to
the molecular shape of a molecule [45—47]. The method is based on graph theory
and is not dependent on molecular geometry. In its simplest form, the shape
calculations weight all non-hydrogen atoms and bonds equally. Other forms use
atom and bond type information. In all cases, hydrogen atoms are not treated
explicitly.
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CONNECTIVITY INDEX

Kappa indexes are calculated relative to the least branched (linear) and most
branched (star) compounds with the same number of atoms as the molecule
beinginvestigated. The equation for 2x illustrates this,

2% = 2(2Pmax) (zpmin)/(zpi)z (23)

where *x is the shape index based on paths of length 2, 2P, is the maximum

number of 2 bond fragments possible with the number of atoms in a molecule, i,

?Pmin is the minimum number of 2 bond fragments possible with the number of

atoms in a molecule, i, and 2P, is the number of 2 bond fragments in a molecule, i.
The equations for '»x and 3» are similar:

U = 2(' Prmas) (' Proin) /(1 P)? (24)
3% = 2(3Pmax) (S)I)min)/(:‘Pi)2 (25)

The atom type may be accounted for by using a corrective term, «, that is derived
from the covalent radius of an atom relative to the radius of an sp? carbon. Using
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atom type corrections the equation for ?x, is as follows:
2, = (A + o — 1)(A+a—22CP + a)? (26)

where A4 is the number of atoms in a molecule, i, and (4 — 1) (A — 2)* =
2(*Pumax) (*Pmin). For a straight chain graph: *», = %»x + o

2.1.3.2 Electronic Whole Molecule Descriptors

A large variety of electronic whole molecule descriptors have been used to encode
electronic features in QSAR and QSPR investigations. These descriptors are
distinguished from electronic substituent constants in that a single value is asigned
for a given compound. These values range from experimental to semi-empirical and
to quantum mechanical values, and may encode either general features of the entirc
molecule or local features of a specific site in the molecule. Some of the more
commonly used descriptors are covered here; more extensive compilations can be
found in the literature [c.g. 48, 49].

A number of electronic descriptors may encode the effects or strengths of
intermolecular interactions. The more commonly recognized intermolecular forces
arise from the following interactions: ion-ion, ion-dipole, dipole-dipole, dipole-
induced dipole, dispersion, and hydrogen bonding. Certain electronic descriptors
are clearly associated with one or more of these types of interactions.

Tonic interactions have been encoded in drug potency studies through the use of
ionization constants [50]. As a descriptor, the ionization constant provides informa-
tion about the extent to which a drug molecule ionizes, which is known to strongly
influence the absorption and distribution of the drug [51].

Electric dipole moments obviously encode the strength of polar-type interactions
and Lien et al. [S2] have reviewed their use as descriptors in QSAR studies. While
extensive compilations of experimental dipole moments are available [53, 54], many
accurate empirical [55—57] and quantum mechanical [58 —61] techniques exist for
estimating them.

Molecular polarizability and molar refractivity are closely related properties that
are a measure of a molecule’s susceptibility to becoming polarized. These descriptors
are often useful in situations, where dipole-induced dipole and dispersion interactions
play an important role. They are readily calculated [62] from the refractive index
and the molar volume; however, applications in QSAR and QSPR usually employ
empirical estimates, based on atomic, bond, or group contributions. A recent paper
by Miller [63] includes a review of techniques that have been used to estimate
molecular polarizabilities. Methods for estimating the molar refractivity may be
found in the literature [e.g. 64, 65].

Hydrogen bonding has long been recognized as an important factor in the physical
properties and biological activities of compounds. Fujita et al. [66] have reviewed
the use of hydrogen bonding parameters in QSAR studies. Most applications have
involved the use of an indicator variable for the presence of a hydrogen bond donor
or acceptor group. Kamlet and Taft [67, 68] developed more quantitative scales
based on solvatochromic shifts for carefully selected solutes with known hydrogen
bonding characteristics.
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While descriptors related to intermolecular interactions are useful for predicting
bulk physical properties and certain types of biological activities, they provide little
direct information about the reactivities of compounds. This type of information,
however, is available through molecular orbital (MO) calculations. The Huckel
molecular orbital (HMO) method [69] has provided a number of so-called reactivity
indices [70], although any MO technique could have been used to calculate these
descriptors.

Reactivity indices are usually categorized as cither electrophilic or nucleophilic,
depending on whether the reaction of interest involves electrophilic or nucleophilic
attack. Perhaps the simplest of such descriptors are Eyomo and E; ymo. the energics
of the highest occupied and lowest unoccupied MOs, respectively. The HOMO
energy is roughly related to the ionization potential of a molecule, while the LUMO
energy is related to the electron affinity. The magnitudes of these quantities are
measures of the overall susceptibility of the molecule to losing a pair of electrons
to an electrophile or accepting a pair of electrons from a nucleophile.

Site-specific reactivity indices are obtaied by considering electronic information
at specific locations in the molecule. The electrophilic and nucleophilic super-
delocalizabilities of atom i are energy-weighted atomic electron densities, which, for
the HMO method, are given by [70]:

SELEC _ "R 2t (27)
i=t ey
ghver _ NATOMS 2(,& 08)

j=NOCc+1 e

Here, ¢; ; is the LCAO-MO coefficient for atomic orbital i in MO j, and ¢; is the
energy of MO j. The sums in Egs. (27) and (28) represent the occupied and
unoccupied MO’s, respectively, and the factor of 2 assumes a double occupation
of each MO. The electrophilic superdelocalizability is a rough measurc of the
availability of electrons in atom, i; nucleophilic superdelocalizability is a measure
of the availability of “room™ on atom, i, for additional electron density. While these
indices are atomic in nature, they may be classed as whole molecule descriptors if
atom, i, has a fixed position in a series of congeners, or if the maximum
superdelocalizability among all the atoms has been chosen.

If one considers only the electron densities in the highest occupied and lowest
unoccupied MOs, the so-called clectrophilic and nucleophilic frontier orbital
densities are given by:

f:ELEC = 2('1'2. NOCC (29)
fi‘VUCL = 2('1'2. NOCCH+ 1 (30)

These descriptors assume that the HOMO and LUMO are far more important
than the other MOs in determining the position and likelihood of electrophilic or
nucleophilic attack. Again, when used in the manner discussed previously, these
atom-specific indices become whole molecule descriptors.



2 Molecular Concepts 33

2.1.3.3 Geometric Descriptors

Biological activity is often related to the shape and size of the active compounds
as well as the degree of complementarity of the compound and a receptor. With
the given methods for generating three-dimensional molecular models of compounds,
these models can be used to develop geometric descriptors. Many molecular
modeling routines have the capability of calculating geometric descriptors from the
resulting conformations. An extensive study of molecular conformation, and a
detailed investigation of interactions between drug molecules and receptors (which
often employ interactive computer graphics), gocs beyond the scope of this chapter,
although this is an extremely active area of research in QSARs.

Molecular Volume

One of the most commonly calculated decriptors for biological activity investiga-
tions is the molecular volume. An early volume approximation method, introduced
by Bondi [71], hinges on group contribution techniques. By treating van der Waals
radii as adjustable parameters, Bondi derived group contribution values for
individual atoms and functional groups. Thus, when presented with a new molecule,
whose volume was as yet unknown, the resecarcher merely has to add up the
pre-established increments in order to calculate the Bondi van der Waals volume.

Probably the most widely used volume estimation technique in recent ycars the
volume estimation technique developed by Pearlman [72]. This algorithm utilizes
numerical integration, in which a molecule is viewed as a set of overlapping atomic
spheres. The integration technique divides each sphere either into uniform lunes or
longitudinal sections. For a given atom, the volume of each lune, that is occluded
by intersection with neighboring spheres, is subtracted from the total volume of
that atom. The total molecular volume is then simply the sum of the atomic
contributions.

Molecular Surface Area

Surface area has a prominent effect on the interactions which occur between a drug
molecule and its surroundings. When the surface area is introduced as a descriptor
in chemometric analyzes, it has been found to contribute statistically significant
information in correlations developed for water solubility, octanol-water partition
coefficients, activity coefficients and boiling points [73—79].

While a number of surface area approximation techniques [80, 81] have been
proposed, the methods, which currently gain the most attention, are those of Lee
and Richards [82], Hermann [83], and Pearlman, [75, 84] who developed a
significantly more efficient algorithm based on Hermann’s original work [83]. In
these three algorithms, atomic surface areas are determined by cutting a molecule’s
individual spheres into flat slices, in analogy to the algorithm of Lee and Richards
[82], or to the algorithm of lunes, as described by Hermann and Pearlman [83]. The
overlap between spheres is calculated and the non-occluded areas are summed over
to yield the surface area that is associated with a molecule.
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Figure 7. Diagram of the molecular representation used to derive the charged partial surfacc area
(CPSA) descriptors.

Often a more pertinent and useful structural parameter in molecular design studies
has been proven to be the solvent-accessible surface area, which is simply a
mathematical extension of the surface area just described. Since many properties
and activities (e.g. drug transport, docking) are a consequence of the type and
strength of the solute-solvent interactions, this parameter was designed to reflect
the amount of a molecule’s exposed surface, which is actually capable of coming
into direct physical contact with a neighboring solvent molecule. This accessible,
or contact area is determined by adding the solvent radius (1.5 A for water) to the
original van der Waals radii as previously defined. Conceptually, this new area is
viewed as being the surface, traced out by the center of a solvent sphere, as that
sphere is rolled over the entire van der Waals area of the molecule of interest (sce
Fig. 7a and 7b). The utility of this information, quantified through this parameter,
is clearly illustrated in the following section.

Charged Purtial Surface Area

Properties influenced by interactions, which are polar in nature, have traditionally
been difficult to model. Since the strength of these interactions is thought to be a
function of the size, shape and charge distribution throughout a molecule, attempts
to better understand the added structural complexities of polar molecules spurred
on researchers to develop new groups of descriptors, which could capitalize on both
the combination of surface area and charge information.

Advances in this area began with Grigoras’ work with electrostatic molecular
surface interaction terms [85]. Two structural features are first quantified: the
solvent-accessible surface area of individual atoms and the molecular energy assigned
to the exposed areas. The surface area assoctated with each atom — in the molecular
environment — is determined using Peartman’s SAREA (Surface AREA) program
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[84]. By modifying this program, the researcher can then use the net atomic charges
calculated via the EHT molecular orbital method [86] to estimate the surface
distribution of the molecular energy. Finally, charge scaling factors are incorporated
to correct for discrepancies in estimating the site and strength of the polar interactions
expected within the molecule.

Four descriptors are derived from this charge and surface area information. One
is simply the total molecular surface area. The other three combine charges, surface
areas and correction factors to yield a negatively charged surface area term, a
positively charged surface area term and a hydrogen bonding term (where
applicable). The structure-property relationship is ultimately developed by regress-
ing these four terms, Grigoras’ successful predictions of both critical temperaturcs
and critical volumes [85] illustrate the advantages of these methods.

A continuation of this research soon followed with the development of Stanton
and Jurs’ charged partial surface area (CPSA) descriptors [87]. Thesc parameters
present various combinations of solvent-accessible surface area information from
the SAVOL (Surface Area and VOLume) program of Jurs et al. [88] based on
algorithms by Pearlman [72] as well as partial atomic charge information from
Dixon and Jurs’ [89] expanded version of Abraham and Smith’s CHARGE algorithm
(see Fig. 7¢) [90]. Both ¢ and n charges are included in this iterative algorithm.

Twenty-five CPSA descriptors were proposed. Key structural information which
is represented includes the summed accessible surface areas of the positively charged
atoms, the charge associated with the exposed areas, the total positive charge in
the molecule, the summed positive surface area relative to the total molecular surface
area, and the charge of the most positive atom relative to the total positive charge.
The corresponding information can also be obtained for the negative charges and
negatively charged surface area. Finally, the differences between the positive- and
negative-specific descriptors are also calculated to reveal net charge and surface
area information.

The CPSA descriptors have found immediate use in both structure-property
and structure-activity studies. These descriptors, when used in combination with
other physico-chemical features, have been instrumental in developing strong
correlations for numerous chemical and engineering properties including surface
tensions [91], chromatographic retention indices [92, 93], boiling points [94 —96],
critical temperatures [97] and auto-ignition temperatures [98]. Although these
parameters have not been studied as extensively in conjunction with biological
processes, investigations of Henry’s Law constants [99], odor thresholds [92] and
odor intensities [100], show that the CPSA descriptors have considerable potential
in this context as well.
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2.2 Atom-Level Descriptors for QSAR Analyzes

Lemont B. Kier

Abbreviations and Symbols

0 Count of bonded atoms other than hydrogen
df Count of valence electrons other than those bonding to hydrogen
E-state Electrotopological state

I Intrinsic value

log MAC log of the minimum anesthetic concentration
MAO Monoamine oxidase

N Principle quantum number

plso Inhibitory potency

S; Electropological state of atom i

Xxn Kier/Hall electronegativity

X Mulliken-Jaffe valence state electronegativity

2.2.1 Introduction

The non-empirical molecular descriptors such as molecular connectivity [1, 2] and
the kappa shape indices [3] have served us well in the creation of models, rclating
structure to biological activity (see Chapt. 2.1). These models define path fragments
of importance to the encoding of salient molecular features governing a measured
activity. Numerous examples have revealed the value of this paradigm [4—6]. In
spite of these successes, we are aware of the generally held view that atom-level
parts of molecules are the critical ingredients in meaningful drug-receptor or
drug-enzyme interactions. It is the atom or the group, which engages a com-
plementary receptor feature to initiate a chain of events leading to an effect.
Somehow, the significance of this concept has escaped many of the early
developers of structure-activity quantitation, as they have laid heavy emphasis on
physical properties to model the contribution of the whole molecule to a biological
activity. The developers of topological indices have also neglected this reality and
have concentrated on the entire molecule in their quest to encode the structure.
The early interest in molecular orbital indices to quantitate atom contribution
to activity [7] was a recognition of the importance of an atom or group in this
process. Calculations of atom charges using several levels of rigor have been
considered. From these indices, molecular electrostatic potential maps have been
calculated to encode atom-level information. The concept of molecular fragmenta-
tion to encode local information such as lipophilicity is another such area of study.
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At the level of rigor in topological indices, there is clearly a need for atom level
indices, reflecting both the electronic environment near an atom (group) and nearby
topological state. This need fueled the development of electrotopological state indices
by Hall and Kier [10—13] over the last few years. The train of thought leading to
this development began in 1987 when Kier, [8] seeking a way to identify topologically
equivalent atoms for use in the Shannon information theory equation, proposed an
atom index in which all atom pairs, 6}0}, were identified within a molecule (see
Chapter 3 for definition of S values). A numerical index was derived by taking the
geometric mean of each product. For each atom, i, summation of these (6}'(5}')' 2
terms over all pairs in the molecule gave rise to a rclative topological state for that
atom in that molecule. Hall [12], reported that this index gave unique values for a
large number of test cases. This index could, thus identify topologically equivalent
atoms in any molecule with the aid of a computer. The Shannon equation can thus
be calculated entirely by computation, without the need for external atom equiva-
lence recognition. In a later, more detailed study Hall and Kier [9] sought to
improve the uniqueness of this atom index. Several algorithms were examined, which
were all based on the geometric mean of the valence delta values of the atoms in
cach path from an atom, i. The uniqueness was, thus, greatly improved in this study.
Subsequent studies have produced an electropological state index, encoding both
electronic and topological information in a unified attribute index for atoms in
molecules [10—13]. This work has been reviewed recently [14]. We shall develop
the concept and form of the electrotopological state index in this article followed
by some recent examples of applications.

2.2.2 An Atom-Level Description of Structure
2.2.2.1 The Field

The attributes of atoms or groups in a molecule that engage a receptor or an enzyme
active site must certainly be electronic and topological in character. There is indeed
little else apart from these features that would attract our interest. We have developed
the view that an atom in a molecule is part of a field of information relating to
electronic influences and topological environment [10— 14]. This field is an environ-
ment that can cause two methyl groups in a molecule to be very different or identical.
This field produces changes in the state of an atom or group, when changes in the
molecule are introduced. If we can quantify the influence of this ficld on any atom,
then we have the opportunity to relate this influence to the biological performance
of the molecule. More specifically, we have an opportunity to identify thosc atoms
within the molecule, which are exhibiting field-induced changes, and which correlate
with a biological response. The goal of our research to date has been the
quantification of the principle ingredients in this field, i.e. the electronic and the
topological influences on atoms.

The quantification of the influence of this field on an atom is dependent upon
three components. The first is the attribute associated with each atom, which we
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call the intrinsic state of that atom. This is the quantitation of the composition,
hybrid state, topology and hydride state of the atoms (groups) in isolation. The
second component is the quantification of the field effect which is the influence of
one atom on another within the molecule. Finally, we must include the information
concerning the separation or distance between any two atoms in a convenient metric.
We will briefly review each of these components leading to an index defining the
state of an atom in a molecule.

2.2.2.2 The Intrinsic State of an Atom

An intrinsic state of an atom in a molecule encodes the basic information associated
with that atom regardless of its environment. Because we ultimately want to account
for the electronic and topological influences of one atom on another within a
molecule, it is apparcnt that these two attributes must be encoded into the intrinsic
state. We further require that the molecule is represented as a chemical graph, in
which the hydrogen atoms have been suppressed, and is the familiar skcleton
representation of a molecule.

The electronic influence is most conveniently summarized into a value, which
reflects the electronegativity of an atom or group. Since we are considering skeleton
or chemical graph representations of molecules, we might turn to our previous work
on molecular connectivity for guidance in quantitating this attribute. In 1981 Kier
and Hall [15] found a close relationship between the two molecular connectivity
delta values and the Mulliken-Jaffe valence state electronegativity, X, [17]. This
relationship is approximately:

Xy=20"—9) +7 (1)

for second row atoms, where &* is the number of valence electrons on an atom in
a chemical graph (excluding those bonding to hydrogen) and ¢ is the number of
sigma electrons from that atom (excluding those bonding to hydrogen). The equation
explains 98% of the variation in the X, value.

An interpretation of this relationship is that 6" — 0 is simply the number of pi
and lone pair electrons on an atom in a molecule. Kier and Hall [15] reconciled this
relationship by invoking the reduced shielding of the core induced by a pi or lonc
pair of electrons relative to a sigma bonding electron on that same atom. Another
form of the Kier/Hall electronegativity, Xy, which is useful in student lectures is:

Periodic Table column No. — Number of sigma bonds
(Periodic Table row No.)?

XKH = (2)

Using the delta values, we can define an intrinsic atom state as a function of
electronegativity (8* — d) and of topology. The topology is certainly encoded in the
simple delta value as an index reflecting the number of adjacent atoms. An initial
statement of the intrinsic state can be expressed by:

I=(5"— 0)o (3)
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Calculations of the various atoms and their hydride groups, using this expression,
reveal that ¥ = o for alkane hydride groups, thus, these would have redundant
values. This is simply dealt with by modifying the expression with a constant:

=@ —6+ 1)o 4)
By adding 1 to this expression we can simplify it further to:
I ="+ 1)/o (5)

To account for the diminished electronegativity of atoms in higher quantum levels,
an addition to the intrinsic state must be considered. Several possibilities exist, but
the one chosen was the modification of the 6 value to reflect the principal quantum
number, N, relative to the value of 2 (the N value for C, N, O, F). The general
expression for &¥ in the general equation (5) is (2/N)? " and Eq. (5) becomes:

I'=[@2/N)?&) + 11/0 (6)

Calculated values using Eq. (6) are shown in Table 1. An inspection of this table
reveals that the electronic and topological information is reflected in the I values.
As an atom (group) becomes more electron-rich in terms of valence electrons, the
value of I increases. As the atom becomes more “buried” in the molecule (as
opposed to having mantle status) the value of I decreases. This is an acceptable
definition of the intrinsic state of an atom encoding both electronic and topological
attributes.

Table 1. Intrinsic state values

Atom !
(skeletal hydride group) [(8Y + 1)/9]
>C< 1.250
>CH - 1.333
—CH,— 1.500
>C= 1.667
—CH,;, =CH—, >N-— 2.000
=C—, —NH- 2.500
=CH,, =N-— 3.000
-0 3.500
=CH, —NH, 4.000
=NH 5.000
=N, —OH 6.000
=0 7.000
—F 8.000
—Cl 4.111
-Br 2.750
—1 2.120
=S 3.667
—SH 3.222

i 1.833
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2.2.2.3 The Field Effect on Each Atom

The second ingredient in an atom-level index must describe the field effect on each
atom. Stated another way, this contribution must encode information about the
interaction and relative perturbation that each atom contributes to the electronic
and topological attributes of every other atom. This perturbation, Al, can take
many forms, but the one we have chosen is based on the intrinsic states themselves,
which are sources of perturbation. The simplest form would be the difference between
any two I values relative to atom i, summed over the entire molecule.
Thus, we have
Al = 2, — 1) (7)

as a source of the perturbation.

This expression is not complete, in that the distance between i and j is not stated, but
is nevertheless highly relevant. This third component is reflected in the number of
atoms, separating and including i/ and j in the chemical graph. The graph distance,
r, is included and is expressed to the second power, however, the program
MOLCONN-X [16] permits the power to be varied. The final expression of the

Table 2. Electrotopological state calculations for alaninc

Atom Numbering:

. (H) §]
H,C Cc3
NN
2CH OH 4
i
5 NH,
Intrinsic Values:  [{1) = 2.000 1(4) = 6.000
I(2) = 1.333 1(5) = 4.000
1(3) = 1.667 1(6) = 7.000
{I; — I,)/r* Matrix Al =
i i
1 2 3 4 5 6 row sum
1 0.0 0.1667 0.0370 —0.2500 —0.2222 —0.3125 —0.5810
2 —0.1667 0.0 —0.0833 —0.5185 —0.6667 —0.6296 —2.0648
3 —0.0370 0.0833 0.0 —1.0833 —0.2593 —1.3333  —2.6296
4 0.2500 0.5185 1.0833 0.0 0.1250 —0.1111 1.8657
5 0.2222 0.6667 0.2593 —0.1250 0.0 —0.1875 0.8356
6 0.3125 0.6296 1.3333 0.1111 0.1875 0.0 2.5741
0.0000
Si =1, + Al
09574

|
1419 H,C C-0903

NN
—-0.731 ?H OH 7.866
4.836 NH,
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ficld perturbation of the intrinsic state is:
Al = X(I, — I)/r? (8)

The field effect, A, modifies the intrinsic state, producing a configuration or state
value which we call the electrotopological state, S;:

S, =1+ Al 9)

This, in its abbreviated form, is called the E-state value of an atom. An cxample of
this calculations is shown in Table 2.

2.2.3 Strategies for Use of E-State Indices

The E-state indices reflect the electronic and topological state of atoms and groups
in the molecule. These states change as a function of the distance and of the state
of other atoms along the chemical graph path, which separates two atoms. In a
series of molecules, with a core component remaining constant and some other part
varying in structure, it is possible to quantify in relative terms the extent of the
through-graph influence on atoms and the focus of this influence. In QSAR analyzes
this is a powerful tool for gaining insight into which structural changes in a chemical
series are influencing the rest of the molecule. This information, plus the quantitation
of this influence, produces a potential for identifying atoms or groups, which are
responsible for a measured biological activity. The ultimate aim is that drug design
may proceed on a rational basis with such an insight.

The method described here is more effective, if the molecules in a series have
more than one substituent. This makes it possible to avoid extensive intercorrelation
of influences experienced by single substituent series. It is possible to group nearby
structural features or fragments and to identify them as possible salient features,
which could be influenced by the substitution patterns in the rest of the molecule.

2.2.4 Examples of E-state QSAR

Over the past five years a number of applications of E-state analysis have been
reported in the literature. A brief survey of these studics is presented here to
demonstrate the utility and breadth of application with this atom-level index.

2.2.4.1 MAO Inhibition with Hydrazides

Hall, Mohoney and Kier [11] have reported a study on a series of aryloxyacetohy-
drazides as potential monoamine oxidase (MAQ) inhibitors [18]. The E-state indices
correlating with the activity were assigned to the respective atoms of the parent
structure given in Fig, 1. A comparison between the E-state indices and the molecular
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\/“\ N/ N \CH—CH—
13/ | | Figure 1. The aryloxyacctohydrazide

CH, parent structure for MAO inhibitors.

orbital parameters for these same atoms using the AM1 Hamiltonian, showed that
the E-state values were significantly better in modeling a structure-activity relation-
ship The atoms implicated by the E-state analysis are the same as those implicated
using the less successful molecular orbital model. The equation, re]atmg the E-state
indices to the inhibitory potency, plso is:

plso = 1.695, — 9.14S5 + 0.15813 + 32.15

PRESS r* = 0848, s = 0.23, n =24 (10)

2.2.4.2 Adenosine A, Inhibitors

Joshi and Kier [19] using E-state indices, analyzed a series of xanthines reported
by Jacobson et al. [20] to be inhibitors of adenosine A,. Analysis of the ring atoms
and substituents using the E-state indices revealed a good correlation with affinity,
log K, as modeled by the equation:

logK, = —1.17§, — 0978, — 0.22§,, + 1.71
2 =0.88, s =033, n =28 (1)

The atoms implicated in this QSAR analysis are shown in Fig. 2.

2.2.4.3 Anesthetic Concentration of Haloalkanes

In a study of the anesthetic effect of several haloalkanes reported by Larsen [21],
Tsantili-Kakoulidou, Kier and Joshi reported an E-state analysis of several
derivatives [22]. The series of molecules analyzed were CXYZ-CF ; analogues where
XYZ were halogen or hydrogen atoms. A good correlation was found between the
log of the minimum anesthetic concentration, log M AC and the sum of the E-state

Figure 2. The parcnt xanthine structure for adenosine A,
inhibitors.
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/ R
Figure 3. The parent pyrazinc structure for odor threshold analysis.

values for the -CF; group. The summation of two E-state indices to produce a
single value was initiated in our earlier work [11]. Van de Waterbeemd has considered
this idea in a recent article [23]. This approach is important to the development of
group E-state indices.

log MAC = 33.19 — 1.01Scr,

r? = 0.892, s =023, n=11. (12)

2.2.4.4 Odor Sensitivity of Pyrazines

Tsantili-Kakoulidou and Kier [24] have analyzed a series of alkyl substituted
pyrazines using E-state indices for the ring atoms. A close correlation was found
between the sum of nitrogen atom E-state values, Sy, (see Fig. 3) and the odor
threshold concentration, log ppb.

log ppb = 94.87Sy — 13.178% — 165.39

r? = 0979, s =025, n=13 (13)

2.2.5 Conclusions

The electrotopological state (E-state) method is a new and powerful approach to
encoding information about an atom in its molecular environment. The relative
perturbation of each atom, as molecular structure is varied in a series, is quantitated
in a manner suitable for QSAR analysis. Atoms (or groups) implicated in a biological
event may be identified in this analysis, if the data set has been constructed with
this in mind. The information generated lends itself ideally to the design of new
molecules, since structural influences are easily identified, quantitated and translated
into structural changes. The studies utilizing the E-state paradigm are increasing
with extended applications becoming more prominent. Several new innovations are
being developed and will be described in later reports. These will enhance the ability
of E-state analysis to promote theoretical approaches in molecular design.
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3 Experimental Design in Synthesis Planning and
Structure-Property Correlations

3.1 Experimental Design
Volkhard Austel

Abbreviations and Symbols

HIP Hypersurface iterative projection

MR Molar refractivity (parameter of size or polarity)

b4 Hansch-Fujita value (parameter of lipophilicity)

o Hammett constant (parameter of electronic properties)

3.1.1 The Importance of Experimental Design
in Medicinal Chemistry

The number of compounds that is synthesized and tested for every new chemical
entity introduced onto the market is rising steadily. At present, estimates range
from 10000 to 20000. As the resources for chemical synthesis and biological testing
are limited, there is an urgent need for preventing, or at least slowing down, further
increases in the number of compounds being synthesized.

In theory, the most promising way in which this might be achieved, is to investigate
the causes of diseases and the possibilities of intervention at the molecular level and
by using this insight for designing test compounds. In most cases of interest, the
available information is, however, not detailed enough for deriving structure-activity
relationships that would allow sufficiently potent compounds to be designed more
directly. More informative structure-activity relationships are, therefore, required,
which at present can only be derived empirically, i.e. with sets of test compounds.

Depending on the composition of such sets the average structurc-activity
information per compound can vary greatly. Consider for example the set shown
in Fig. 1 whose elements are characterized by a common pharmacophore, consisting
of a basic skeleton G, to which a variously substituted pheny! ring is attached. The
structure-activity information per compound, obtained from this set, is com-

R. S
G
Figure 1. Example of an uneconomical set of test

R = -H, 4-OCH,, 4-OC,Hs, 4-CH;, 4-F, 4-SCH;  compounds.
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paratively low, since only two of these compounds (c.g, R=H and —OC,H,)
adequately represent the whole set. In addition, potentially important factors such
as steric interactions between the phenyl ring and G, e.g. with an ortho substitutent,
or the influence of hydrophilic or strongly electron withdrawing groups are not
addressed at all. ,

It is clearly uneconomical to work with such data scts, and the problems
encountered with these can, however, be avoided by carcfully designing the test
sets. To this ends methods for experimental design have been developed in the
past decades.

This chapter will be confined to those methods that in my opinion might be
particularly useful for the bench chemist and that could be (but need not be) applied
qualitatively without computational input.

3.1.2 Strategies in Experimental Design

The experimental design methods that have been proposed in the literature can be
devided into two categories:

1) Methods which are aimed at a direct and, therefore, (supposedly) quick optimiza-
tion of lead compounds, and

2) methods that provide a strong basis for deriving reliable structure-activity
relationships.

Methods which belong to the first category arc only suitablc in the final stages
of an optimization procedure, for which reliable fundamental structure-activity
relationships are already available and which require a certain modification. Typical
examples would be the optimization of substitution patterns of aromatic rings or
of aliphatic chains. In addition, these methods frequently give rise to biased results.
since they clearly do not put structure-activity relationships to the test. Such a
procedure is frequently chosen in medicinal chemistry in order to reduce the
experimental input. However, this always entails the risk of overlooking interesting
routes for a lead optimization or even for the discovery of new leads. In the latter
stages of an optimization, this risk is comparatively minor, but it may, however,
become more significant if the structural features that are essential for a particular
activity have not yet been fully elucidated.

The methods which belong to the second category in principle do not need any
prior structure-activity information and are, therefore, applicable at any stage of
the search for new drugs. These methods, in particular, should be used for deriving
qualitative and quantitative structure-activity relationships. In practice structure-
activity relationships are relevant for determining those structural requirements
which give rise to sufficient potency. This also includes the determination of bulk
areas which may become an important feature in the optimization of pharmacokine-
tic and metabolic properties or for achieving selectivity.

The difference between the two categories becomes evident if one considers
optimization on a more abstract level: In order to interact with its target, e.g. a
receptor or an enzyme, a drug molecule must be able to present an appropriate
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pattern of physico-chemical properties in the correct spatial arrangement. This
pattern is usually described in an indirect manner with the aid of molecular
descriptors (see Chap. 2). Every one of these descriptors can be associated with one
of the components of an n-dimensional parameter space. The compounds of a test
set are represented by points in this space. If the descriptors have been correctly
chosen, the active compounds will be concentrated in only one or, at least in a few
localized areas in the corresponding parameter space.

Methods that are aimed at a direct optimization usually cover only a limited
area of parameter space surrounding a previously identified active compound.
Therefore, active compounds that are located in other areas cannot be detected.

Such disadvantages can be significantly reduced by applying methods belonging
to the second category, which allow large areas of the parameter space to be
investigated in a systematic manner. However, this method is usually at the cost
of greater synthetic efforts. In practice, one can reduce the experimental effort by
using the different densities of data points (test compounds) in different areas
of the parameter space, i.e. a higher density surrounding active compounds than
in the other parts of the parameter space.

3.1.3 Selected Methods for Experimental Design

3.1.3.1 Methods for the Direct Optimization of Lead Compounds

Of the many procedures for direct lead optimization, three are particularly suited
for the purposes of the bench chemist. One of these methods uscs operational
schemes, known as Topliss trees [1], which have been designed for substituents on
aromatic rings (Fig. 2) and for modifying aliphatic chains (Fig 3).

In the case of the aromatic substitution, one first compares the unsubstituted
compound with the 4-chloro derivative. If the latter is more active, onc continues
by preparing the 3,4-dichioro derivative. Should this lead to a further increase in
activity then the 3-CF;, 4-Cl and the 3-CF;, 4-NO, derivatives can be considered
as candidates for maximal activity. The other branches of the tree are followed
analogously. As an example, with phenyl tetrazoles of type (1), the unsubstituted
compound showed a higher anti-inflammatory activity than the 4-chloro derivative.
Consequently, the chlorine was replaced by 4-methoxy, which reduced activity even
further. Under these circumstances the scheme suggests the 3-chloro derivative, which
in the present example, was indeed the most active compound (along with the
5-bromo derivative).

X s
< > <\ 1)
N
N \/\COOH



52 Volkhard Austel

H
It ) N
4(I3| <Cl .x(il
L lg Mt IL € IM [ v F
4OCH, sOCH; 4OCH; 4CH; +CH, 4«CH; 1.4Clz 14Cly
L E M
3CI 3?' J(I:I 501 4CICH; )35 4(CH3)2) sCFy[Br 1]
- |
sN{CH:), 3CH; sCF;(Br.l] 24Clz
™ T ™M {NH2.CH;} |
NO»
Claf3 s{CF3)al
NICH:  MNICH),  LNICH)), b ACRR
3CH3.4N{CH:)2
2CL:,CH;3,,0CH,y  3NO;

sNH;;4OH:;CH;.4OCH;

<F

sNO;{CN,COCH;,S0,CH;,CONH;,SO:NH:]

M

1.4Cl

3CF3.4Cl

M = More active, E = equiactive, L = less active. Descending fines indicate sequence. Square brackets indicate alternate

tCompared to 4-H compound.

Figure 2. Opcrational scheme for the optimization of aromatic substitution patterns (reprinted
with permission from Ref. [1] Copyright 1972, American Chemical Society).

The scheme for modifying aliphatic chains can also be applied analogously.

The second procedure for optimizing the substitution on aromatic rings, also
suggested by Topliss [2], begins with a set of five compounds which consists of the
unsubstituted compound and the 4-chloro, 4-methyl, 4-methoxy and 3.4-dichloro
derivatives. The relative activities of these derivatives are considered indicative of a
particular quantitative dependence on electronic properties (represented by Hammet
o constants) and lipophilicity (Hansch-Fujita n values). For example, the order
3,4-Cl, > 4-Cl or 4-CH; > 4-OCH, > H is assumed to signify that the biological
response is dependent on the term (2z — o). On the basis of this relationship.

CH;,
IL E m
i-CyH- -C3Hs j-CiH~
H:CH;0CH,:CH,50,CH, IC 3 m v E M
cycio-C<Hs
C.H;s CiH« CH: cyclo-CsHg cyclo-CHs
cyclo-C.Hy,
CHCI,;CF3;CH:CF1;CH,SCH, cycio-CH-[CH:-cyclo-CiHs) CH:C:H:
CoHs;CH,CoH- tert-CiHo (CH,):CyH«

M = More active, E = equiactive, L = less active. Descending lines indicate sequence. Square brackets indicate alternates.

Figure 3. Operational scheme for modifications of aliphatic chains (reprinted with permission

from Ref. [1], Copyright 1972, American Chemical Society).
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additional substitution patterns have been proposed that might possibly improve
activity. In the present example 4-i-Pr, 4-t-Bu, 3,4-di-Me, 4-O-n-Bu, 4-O-Bz, and
4-N(Et), were proposed as additional candidates.

An illustration using literature data comes from the inhibition of carbonic
anhydrase by compounds of the general structure (2). The ranking of the primary
compounds was found to be 3,4-Cl, > 4-Cl > 4-CH,; > 4-OCH;, H suggesting a
(m + o) relationship. The corresponding additional substitution pattcrns comprisc
3-CF;, 4-NO, which was found to be the most active of the reported compounds.

X
@—SOZNHZ )

Other rankings and the corresponding relationships as well as additional
substitution patterns are also given by Topliss [2].

A third method, which uses the sequential simplex technique, was mtroduccd into
medicinal chemistry by Darvas [3] and was developed further by Gilliom et al. [4].
This method begins with a lead compound and as many analogs of this compound
as there are parameters to be considered. In an n-dimensional parameter space, the
point corresponding to the least active compound of this set, is reflected through
the center of gravity of the remaining points. A new analog is designed. so that its
corresponding point in parameter space is located as closely as possible to the point
of the reflection. The least active compound of the original set is discarded and
the operation is repeated with the remaining set. This procedure may be stopped
prematurely, if the new analog is less active than the other members of the new set.
The modification suggested by Gilliom et al. [4] can circumvent such problems.

A method that combines direct optimization, with indications as to which parts
of a parameter space have not yet been investigated, was proposed by Boyd [5]
under the name “hypersurface iterative projection” (HIP). This method which uses
multidimensional scatter plots requires, however, computerization, even though it
allows the medicinal chemist to select new substituents from a graphical represen-
tation of the data.

3.1.3.2 Methods for the Systematic Investigation of a Parameter Space

The first stage of the second Topliss method (see above) already contains clements
of a systematic investigation of a parameter space. Thus, the first five compounds
are selected with the intention of covering a significant part of a ¢/n parameter
space. However, the selection is not quite optimal, since the hydrophilic parts of
that space are not represented.

A better representation could be achieved by applying one of the various methods
that have been developed for series design. With most of these methods one
selects a number of structural moieties from a larger predefined set and attaches
them to a basic skeleton. In most cases, the structural moieties refer to substituents
on an aromatic ring. It is, however, also possible to spefically design structural
moieties according to predefined physico-chemical or conformational properties. In
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the present context, only manual procedure for the design of a series will be
described (for computer-aided versions and other computerized methods see
Chap. 3.2).

If only one feature (parameter), e.g., lipophilicity (rn), is to be investigated, one
simply selects a small number of compounds that cover a sufficiently wide range
of parameter values, e.g.,, Ph, Me, H, OH, with the corresponding n-values (taken
from Ref. [6]) being 1.96, 0.56, 0.00, —0.67.

A selection with respect to two parameters can be done visually according to
Craig [7] by setting up a two-dimensional plot (Craig plot) in which the structural
moieties (c¢.g., substituents) appear as points. Moieties are then sclected so that the
corresponding points are evenly distributed over the plot.

If more than two parameters need to be considered, one can resort to sets of
substituents that have been reported in the literature, as being more or less evenly
distributed over a larger area of a multi-dimensional parameter space.

Thus, Wootton [8] designed 10 sets, each with 10 members taking into account
the lipophilic, resonance, inductive and space filling properties of 35 substituents
for aromatic systems. An earlier publication by Franke ct al. [9] presented similar
sets, based on 90 substituents. Schaper [10] has reported selections that optimized
the sets with respect to the extension of the parameter space area being investigated
and to the mutual independence of the parameters and aditionally took into account
synthetic accessibility.

Van de Waterbeemd etal. [11] have analyzed the mutual similarity of 59
substituents and divided them into 5 groups accordingly. Again, selection of one
substituent out of each group should result in a representative set to start with.
The groups were formed with consideration of the two most important principal
components which had resulted from a corresponding analysis of 74 descriptors.
These comprised various lipophilicity parameters, parameters describing electronic
properties, steric properties, connectivity indices, indicators for hydrogen bonding
and other indicator variables. Closer examination of the two principal components
revealed that they largely represented two properties, i.e. that of bulk and polarity.
The performance of principal component analysis in series design (see Chap. 4) was
compared with that of cluster analysis (see below). The former method was given
preference, because it led (o groupings that could be interpreted in terms of the
physico-chemical properties.

Cativiela et al. [12] have selected various sets of 10 heterocyclic systems each that
represent altogether 18 systems, and in such a way that maximum structure-activity
information was obtained. The selection was based on a Free-Wilson representation
in conjunction with D-optimal design.

Hansch et al. [6, 13] have used cluster analysis in order group substituents. The
members in each group are considered to be similar, so that any can be chosen
to represent the whole group. Different groups represent different parts of the
corresponding parameter space. A set of test compounds is assembled by selecting
one substituent from every group (cluster). Substituents to be introduced into the
aromatic system of a basic skeleton are clustered, taking into account lipophilic.
resonance, inductive, steric, and H-bonding properties. With substituents for aliphatic
components, the same criteria were applied, except for resonance effects.
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A B AB C AC BC ABC D
1 - - + - + + - -
2 + - - - - + + -
3 - + - - + - -
4 + + - - - - -
5 - - + + - - + -
6 + - - + + - - -
7 - + - + - + - -
8 + + + + + + + -
9 - - + - + + - +
2n+1 0 0 0 0 0 0 0 0..

Figure 4. General form of a 2"-factorial scheme used for series design. The rows refer to individual
compounds, whereas the columns represent structural features or physico-chemical propertics.
Plus signs denote the presence of one of two alternative structural features, or a high level of a
particular physico-chemical property. Minus signs refer to the presence of the other feature, or a
low Ievel of the physico-chemical property. The last row, containing only zcros, refers to a compound
that represents intermediate levels of the physico-chemical propertics. The part separated by solid
lines (upper left corner) constitutes a 22-factorial scheme.

Hansch et al. [6, 13] divided the basic sets of substituents into 5, 10, and 20
clusters, thereby allowing test sets with 5, 10, and 20 compounds to be assembled.
The smatller test sets would normally suffice for an initial preliminary investigation
for particular types of chemical structures. If this yields promising results, onc
usually proceeds on to the larger sets in order to derive reliable structure-activity
relationships.

The use of predefined test sets, as in the examples given above, is confined to
structural moieties (substituents), which are members of the basic set, and to the
particular selection criteria employed, irrespective of how relevant they are for the
biological property of interest. A manual series design method that is not subject
to such limitations is factorial design.

In its simplest form, a 2"-factorial scheme, expresses structural features and
physico-chemical properties in binary terms, e.g. as the presence of one of two
alternative features vs the presence of the other, or as a high level of a property vs
a low level. These classifications are then assigned plus and minus signs in the
factorial schemes. A general scheme is shown in Fig. 4.

If the molecular properties are expressed in physico-chemical terms, it is necessary
to specify, at least approximately, an upper and a lower limit of that property.
The level of a property is considered “high™ if it is closer to the upper limit, and
“low” otherwide. It is generally advisable, however, to also represent the intermediate
levels of physico-chemical properties (denoted by 0), in which case one introduces
an additional row into the factorial scheme (the last row in Fig. 4).
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Figure 5. n/o Craig plot of the set of substituents listed in Table 1. The dashed lines refer to the
limits chosen for 7 and o, respectively. An additional MR axis perpendicular to the plane of the
diagram would separate the pairs 3/7, 4/8, 1/5 and 2/6 further (numbering of the substituents as
in Table 1).

An illustration of this procedure is given in Table 1 which refers to the selection of
9 substituents for aromatic rings, based on the list of well-characterized substituents
for aromatic systems taken from the literature [6], in conjunction with the preset
limits to the applied parameters, which are listed in Table 1.

A w/o Craig diagram (Fig. 5) demonstrates that the 9 compounds are evenly
distributed over the chosen area (within the dashed lines). Note that the points
lying close to each other (3/7, 4/8, 1/5, 2/6) differ in their MR values.

In practice, it is usually more economical to derive approximate structure-activity
relationships from small test series, and only then to design new compounds (see
the second Topliss procedure). Thus, in the previous example, one may wish to start
with less than 9 compounds and factorial schemes allow for such a reduction by
confounding one or more of the parameters with cross terms of the scheme { fractional
Jfactorial schemes). In the present example, MR could be represented by the AB
column in Fig. 4. The scheme now defines 4 compounds (the 4 combinations of
levels within the solid lines) and a fifth may be added to include intermediate levels.
The resulting set consists of substituents 5, 2, 3, 8, and 9 of Table 1. For more
detailed discussions see Austel [14].

One particularly interesting application of factorial schemes is the design of
structural moieties based on a qualitative description of their properties. The
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Table 1. Selection of substituents for an aromatic ring. The top part refers to the physico-chemical
properties that are considered, and the parameters by which they are represented, including the
lower and upper limits of the propertics covered. The bottom part lists the sclected substituents,
together with the combination of levels, which is represented by a particular substituent. The actual
values of the parameters are also given (taken from Ref. [6])

property parameter low limit high limit
lipophilicity T —-1.0 +1.6
electronic propertics a —04 +0.7
size MR 8.0 23.0
No levels subst. T a MR
1 ——— m-NHCH 4 —-047 —0.3 . 10.33
2 +—-= p-C,H; 1.02 —0.15 10.30
3 -+ - p-COCH; —0.55 0.50 11,18
4 ++— m-Br 0.86 0.39 8.88
5 — =+ p-NHCOC,H; —0.43 0.00 19.58
6 + -+ p-OC,H, 1.55 —0.32 21.66
7 —++ m-SO,C;H, —0.55 0.60 22,79
8 ++ + p-COOC;H, 1.07 0.45 22,17
9 000 m-OC,H; 0.38 0.10 12.47

following example from the field of cardiotonic pyridazinylbenzimidazoles (3) may
serve to illustrate the procedure. The question was concerned with which properties
of the substituent R were compatible with high potency.

®)

Special features of interest were:

1) nature of the substituent [aliphatic (—) or aromatic (+)] (the term “aromatic”
refers to an aromatic ring that is directly joined to the benzimidazole)

2) size [small (—) or large (+)]

3) lipophilicity [hydrophilic (—) or lipophilic (+)].

The latter two features need further specificaiton: the smallest common aromatic
substituent is a phenyl group and, therefore, it would be reasonable to consider
groups with less than, say 9 non-hydrogen (second row) atoms as “small”. The
nature of the phenyl ring would also determine the borderline between “hydrophilic”
and “lipophilic” groups, in such a way that hydrophilic substituents on the phenyl
ring, such as a hydroxyl could render it “hydrophilic”. Therefore, groups with an
estimated n value of less than about 1.6 may be considered as “‘hydrophilic”.
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Table 2. Substituents for structure (3) designed dircetly with a 2*-factorial scheme, considering
the nature [aliphatic (—)/aromatic {+)], the size [ <9 non-hydrogen atoms { —)/(+) otherwisc], and
lipophilicity [z < ca. 1.6 (—)/(+) otherwise]. The left column refers to the combination of levels
represented by that particular substituent, the right column gives the increase (% of initial valuc)
in contractility of the heart after i.v. administration of 0.1 mg/kg to anesthetized cats

No properties substituent biological
response
aliph./ small/ hyd./
arom. large lip.
1 - — - —CH, OCH; 86
2 + - - @OH 75
3 — + - -0 inactive

Il
—cH, ¢ -N=C=CH,

4 - : 38
* * - N-soch,
H,CO
5 - - + i, 83
“CH CH,- CH,—CH,
6 + — + 7N ca. 100
7 - + . 98

Br
CH3(§ NH,
Br
8 + + + ‘(}*OC(,H” inactive

With these specifications it was now possible to design a test series using the first
8 rows and the columns A, B, and C of Fig. 4 (23-factorial scheme). According to
this scheme, the first substituent (— — —) is a small hydrophilic aliphatic group
(e.g., —CH,OCH,), whereas the sixth substituent is a small lipophilic aromatic
group (e.g., —CHs). The complete set is listed in Table 2.

Examination of the biological data suggest that a wide range of lipophiticity and
size is compatible with a reasonable potency, and that it does not matter whether
the substituent has a directly connected aromatic ring or not. However, there appears
to be limitations on the length of the substituents. Unfortunately, both inactive
compounds contain aromatic rings, albeit in one case not directly adjoining the
benzimidazole. In order to clarify whether the presence of the aromatic ring or the
length, or both, are responsible for the low potency, one can design a second set
of substituents using the following fcatures:
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Table 3.  Substituents for structure (3) designed dircctly with a 22-factorial scheme, considering
the features aliphatic (—)/aromatic (+) and short (—)/long (+) (at lcast 9 bonds from the
benzimidazole). Biological data refer to increase (%) in contractility of the heart after i.v.
administration of 0.1 mg/kg to anesthetized cats

No properties substituent biological
response
aliph./arom. short/long
1 — — —CHj; 85
2 + — @ ca. 100
3 — + —CyHy; inactive

4 + + @OC(,HI3 inactive

1) aliphatic (—)/aromatic (+)
2) short (—)/long (+) (long, e.g. with a length of at least 9 bonds beginning at the
2-position of the benzimidazole)

The design is based on 2 features so that four rows (1 —4) and two columns (A and
B) of Fig. 4 (22-factorial scheme) are sufficient. The test set and the corresponding
biological data shown in Table 3 support the view that the alkyl chain length is,
generally, a limiting factor for the cardiotonic potency of compounds of the general
structure (3).

All examples of series design which have been discussed so far, do not take into
account one very important aspect of biological activity, i.c. the conformation of
test compounds. It would be very desirable to plan test series so that this property
is represented in its entirety, and yet, without redundance. Factorial design can
serve this very purpose.

Basically, the conformation is described in terms of the distances between
characteristic points within the molecule. These marker points must span the whole
structure and may be (but need not be) placed at the center of groups that arc
relevant for biological activity. Again for every distance, one has to define the range
to be covered. Distances that are closer to the upper limit of the range are denoted
by (+) and in the converse by (—). These distances may, in the simplest application,
be obtained from conventional mechanical molecular models.

In the corresponding factorial schemes, the columns refer to the individual
distances, whereas the rows refer to individual conformations. A flexible compound
will, therefore, often cover several rows. The test series must be designed so that
the following conditions are fulfilled:

1) all the possible conformations are represented by at least two different molecules,

2) for every conformation there are at least two molecules which cannot adopt this
conformation,

3) there is no complete correlation between the occurrance of two (or more)
conformations.
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HOOC

a)

b)

c) dj

Figure 6. Set of nicotinic acid derivatives, which gives a complete account of the conformational
properties of this type of structurc within the limits outlined in Table 4. The open circles indicate
the position of the marker points.

A simple theoretical example is given in Fig. 6 which shows phenylalky! nicotinic
acids. Three marker points are placed at strategic positions, i.c. on the central carbon
atom of the carboxylic group, the ring nitrogen, and the center of the phenyl
group. Two of the resulting three distances, i.e. those between the phenyl group and
the carboxyl group (ranging from 0.3 to 1.6 nm) and the ring nitrogen (ranging
from 0.3 to 1.0 nm) respectively are considered. Therefore, the conformational
properties can be treated with a 22-factorial scheme which defines four conforma-
tions. Table 4 indicates the conformations which can be adopted by the compounds

Table 4. Conformations occupied by the compounds of Fig. 6. Every first column of the signs
refers to the distance between the center of the phenyl ring and the carbon atom of the carboxyl
group [(—): 0.3 t0 0.95 nm, (+): 0.95 to 1.6 nm], the second column represents the distance between
the center of the phenyl group and the ring nitrogen [(—): 0.3 to 0.65 nm, (+): 0.65 to 1.0 nm}

compound a) b) c) d)

conformations — - — J—
+ - + - +—
—+ -+
++ + +
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shown in Fig. 6. All the compounds are more or less flexible and can, therefore,
each represent more than one of the conformations defined by the scheme. Altogether
the conditions for a complete test series, as outlined above, are fulfilled. A detailed
description of a computerized version of the method, which also includes a practical
example from the field of negative chronotropic drugs, is currently in press [15].
Finally, 2"-factorial schemes can also be used for the design of test serics to be
analyzed, according to the Free-Wilson method [16].

3.1.3.3 Choice of Molecular Descriptors

A fundamental problem in experimental design, apart from selecting a suitablc
method, is the choice of molecular descriptors. The two factors, which in this context
must be taken into consideration are:

1) the type of descriptors to be used, e.g. continuous physico-chemical parameters
such as 7, o or quantum mechanical parameters, classifying parameters (c.g.
large, medium, small), or indicator variables (e.g. presence or absencc of a
particular structural moiety)

2) the relevance of the descriptors for the biological process being investigated.

As to which type of descriptor is the most suitable, depends entirely on the problem
being addressed. During the search for a lead compound or a preliminary optimiza-
tion procedure, indicator variables and perhaps classifying paramecters may suffice.
The latter should be particularly suitable in the more advanced stages of the
optimization. Here the aim is to find compounds that surpass a predefined level
of potency, which is based on the requirements for therapeutic use. If this level has
been reached, factors other than potency, such as selectivity, pharmacokinetics, and
metabolism, become the main objective in the optimization. To this end, again
classifying descriptors are most suitable. Continuous desriptors are needed if detailed
quantitative structure-activity relationships are to be derived, e.g. in order to
elucidate binding modes or biomolecular mechanisms. In this context computerized
design (see Chapt. 4) may become the method of choice.

In order to obtain well-defined structure-activity relationships, one should idcally
use only those parameters that are relevant for the biological activity under consider-
ation. However, such prior knowledge is frequently not available, particularly in most
cases of drug design. This problem may be overcome in an iterative manncr: one first
chooses a set of descriptors, preferably indicator variables or classifying parameters,
which one considers potentially relevant. From the resulting test series, preliminary
structure-activity relationships are derived, which in turn, will give an indication as
to which descriptors contribute most strongly to the variance in biological response.
In addition, if inconclusive structure-activity relationships emerge, one might wonder
whether important descriptors have been missed. A simple illustrative example is
provided by the set in Table 2. The descriptors, on which this series was based, did
not lead to conclusive structure-activity relationships. Therefore, these descriptors
are, at least within the range covered by this set, not relevant. More significant results
could, however, be obtained by introducing a new descriptor, i.e. length.
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3.1.4 Summary and Conclusion

Careful design of test series is a prercquisite for an economical use of resources in
drug design. A broad spectrum of appropriate methods have been reported in the
literature. Each of these methods is applicable to particular types of problems. This
issue has been addressed in the present review in a general way. As to which one
of these methods is the most suitable in a particular case must, however, be decided
upon by the medicinal chemist, based on his own judgement or experience.
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3.2 Applications of Statistical Experimental
Design and PLS Modeling in QSAR

Michael Sjostrom and Lennart Eriksson

Abbreviations

COST Change-one-substituent-at-a-time

PCA Principal component analysis

PLS Partial least squares in latent variables

PPs Principal properties

QSAR Quantitative structure-activity relationships

3.2.1 Introduction

The basis of statistical experimental design in QSAR has been reviewed in the
preceding Chapter (3.1). A recent review is also given by Pleiss and Unger [1]. In
this chapter we will discuss this topic further and, in particular, outline and exemplify
a strategy for QSAR development, in which statistical experimental design plays
an important role. An often overlooked problem in QSAR is the selection of the
compounds with which to calibrate the model, i.e. how to design the so-called
training set. This is unfortunate and may result in an unbalanced test series, which
in turn will give rise to QSARs of poor quality. The training set compounds must
be representative of the class of compounds, from which they originate, that is, they
must be chosen in such a way that they efficiently cover the physico-chemical domain
of that class. One approach is to use statistical experimental designs, which are
optimal schemes informationally for the selection of efficient training sets [2].

The goal of quantitative structure-activity modeling is to derive a mathematical
model, having as good predictive capabilities as possible, of the biological effects
of new compounds. However, first the model must be calibrated, using, for
example, easily accessible physico-chemical descriptors and measured biological
responses for the training set compounds. In order to adequately capture the often
complex nature of many biological systems, it is necessary to use a serics of scveral
relevant physico-chemical descriptors. This view, the multivariate analogy approach
to QSAR modeling, which was introduced by Wold and Dunn [3] and Hellberg [4],
assumes that the factors governing the events in a biological system are represented
by a multitude of physico-chemical descriptors. In other words, within a series of
compounds, it is assumed that a small change in chemical structure will be
accompanied by an analogous small change in biological activity, and that the
multivariate physico-chemical description will reveal these analogies.
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Analogy modecls can be regarded as linearizations of “real” complicated relation-
ships between chemical properties and biological responses. Wold and Dunn [3]
have shown that such analogy models typically have local validity only, that is,
they can only encompass compounds having fairly similar structurcs, and which
show commonality in chemical or biological mechanisms. Thus, a QSAR study
should be based on a series of chemically and biologically similar compounds. It
must be noted, however, that the compounds must be dissimilar enough to cause
some systematic change in the biological activity.

Besides being multivariate, QSAR data are often crude, imprecise and strongly
collinear. This implies that traditional regression techniques, like multiple linear
regression, that assume the physico-chemical descriptors to be exact, 100% rclevant,
and independent of each other, will not always work well. Thus, in situations where
many strongly collinear physico-chemical descriptors and/or biological responses
operate together, data analytical methods, other than the classical multiple linear
regression technique, must be used. Partial least squares projections to latent
structures (PLS) is a projection method, which is particularly well suited for handling
these problems. For a more thorough discussion of the data analytical method
selection problem, see Chuap 5.2. PLS is presented in detail in Chap. 4.4 and is well
suited for data sets where the number of descriptor variables excceds the number
of compounds. PLS can also tolerate a moderate number of missing obscrvations.

3.2.2 A Strategy for QSAR Development in Drug Design

In the preceding paragraph, some general, but important remarks on modern QSAR
analysis were given. These considerations have been incorporated into a strategy for
QSAR development, which is described in the next few sections. This strategy
consists of six steps, which are closely linked to each other, and are based on the
two principal methods of statistical experimental design and multivariatc data
analysis [5]. Briefly these steps are: (1) Formulation of classes of similar compounds,
(2) structural description and definition of design variables, (3) sclection of the
training set of compounds, (4) biological testing, (5) QSAR development, and (6)
validation and predictions for non-tested compounds. In the next paragraph these
steps are discussed in more detail. In the examples in paragraph 3.2.3, the emphasis
is placed mainly on the statistical experimental design (Step 3), and the QSAR
modeling (Step 5).

3.2.2.1 Formulation of Classes of Similar Compounds (Step 1)

Since the mechanism of biological action usually differs between different types of
classes of compounds, one can not construct QSARs, which are based on compounds
that are too diverse structurally. Thus, the first step of the strategy consists of
formulating classes of similar compounds. The ideal situation corresponds to classes,
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where, within each class, all the compounds are structurally similar and function
according to the same mode of action. In reality, this is difficult to achieve and
some deviations can be expected.

The formation of classes of similar compounds consists of dividing the series of
compounds of interest into categories on the basis of their chemical structure. This
may, for instance, be achieved according to their general backbone, their substituents,
or perhaps according to crucial properties such as hydrophobicity or chemical
reactivity, and knowledge of the biological mechanism. The subsequent multivariate
data analysis (Step 2) may give information about deviations from the class similarity,
provided that the majority of the compounds are, indeed, chemically and biologically
similar. If the data analysis reveals that the investigated compounds do not form
a homogeneous class, new classes should be formed. This means that this step is
sometimes an iterative procedure.

3.2.2.2 Structural Description and Definition of Design Variables (Step 2)

Once a class of similar compounds has been compiled, the next question is how to
appropriately describe the structural variation. Obviously, the demands on the
structural description depend not only on the considered compounds, but also on
the nature of the biological system under investigation. In general, the more
complicated the system under observation is, then the more unlikely it is that a single
descriptor variable will contain sufficient information about a given biological
phenomenon. Thus, the structural description is multivariate, but to what extent,
varies from case to case. The structural and physico-chemical descriptors can be
categorized into two groups, viz. (1) global types and (2) substituent types [6]. Global
variables, such as log P, are based on the whole molecule, whereas substituent
descriptors correspond to a certain part or moiety of a molecule. Depending on the
application, the two categories of descriptors can be used independently, or in
conjunction with each other. Regardless of which type of variable is chosen, it is
usually difficult to predict in advance which descriptor variables will be useful. If
no prior knowledge or information exists about the importance of certain factors,
it is usually recommended that at least the hydrophobic, steric and electronic
properties of the compounds are described.

Prior to the selection of a series of compounds for synthesis according to a
statistical experimental design scheme, it is necessary to decide on a set of independent
design variables, which might have an influence on the biological effect. In technical
optimization applications, variables, such as time, temperature, pressure, pH, ctc.,
usually can be varied independently of each other. In the optimization of molecules,
however, where substitution patterns or the whole molecular structure is changed,
it is usually not possible to discern design variables that can be changed indepen-
dently of each other. For example, if size and lipophilicity of the varied substituents
are uscd as design variables, they are rarely independent of each other. If the size
of the side-chain is varied, the lipophilicity is also altered. Furthermore, changes in
molecular structures are discrete in nature, which means that it is not possible to
find combinations of substituents that exactly match a statistical design.
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By analyzing the multivariate physico-chemical data table with principal com-
ponent analysis (PCA), the original number of descriptors are contracted into a
few and information-rich principal components. (For a thorough presentation of
PCA see Chap. 4.1). The term principal components shall be used interchangeably
with design variables in this context, because they can be used as variables in
statistical experimental designs, or “principal properties (PPs)”. This is simply
because they can be assumed to reflect the most important features of the compounds
that are hidden in the total variation of all descriptors. The use of PPs in connection
with statistical experimental design is discussed further in Chap. 3.4. The concept of
using PPs as variables in statistical experimental designs has also been useful, for
example, in the selection of solvents, catalysts, etc., in organic synthesis [7].

3.2.2.3 Selection of the Training Set of Compounds (Step 3)

The purpose of the third step is to select a training set of compounds for biological
investigations. Unfortunately, this step is often ignored in QSAR research. It is of
crucial importance for any QSAR model, irrespective of its origin and future use,
that the set of chemicals used to calibrate the model exhibits a well-balanced
distribution and contains representative compounds. This can only be attained by
a systematic selection of the training set of compounds, where the major structural
features are varied systematically and simultaneously. Here, statistical experimental
designs are invaluable. This stems {rom the fact that they generate the training set
by introducing systematic variation in all the variables or PPs simultaneously, and
not just in one design variable at a time. There are different categories of statistical
experimental designs, which are of great practical importance, such as factorial
designs (FD), fractional factorial designs (FFD), and D-optimal designs [8—10].
The resulting models are easy to interpret, and, with regard to the FDs and FFDs,
they are easy to construct and modify.

In an FD or FFD (see Chap. 4.1), each PP (Design variable or factor) is usually
given two fixed levels. With more than three design variables (or PPs), FDs usually
require too many experiments (in this case compounds). In such situations, FFDs
are more attractive, because the number of compounds needed {or biological testing
is drastically decreased with little loss of information. FDs and FFDs only allow
linear and interaction terms to be estimated. However, if FDs and FFDs are
complemented with interior centerpoints, they also permit a rough estimation of
the quadratic terms, which reflect curvature. These designs may also be com-
plemented to form central composite designs, which allow a more rigorous
quantification of curved phenomena. The principles behind the use of PPs for
constructing FDs and FFDs are discussed and exemplified in more detail in
Chap. 4.1. In the selection of training sets for QSAR applications, so-called D-optimal
designs are also of interest. Such designs are particularly attractive in situations
where constraints exist in the physico-chemical domain of possible compounds.
With a D-optimal design, a subset of a given larger set of compounds which fulfill
these restrictions are selected, so that they span the physico-chemical space as well
as possible. For a discussion of D-optimal designs and a review of subset selection
algorithms, see Carlson [7] and Baroni et al. [§].
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3.2.2.4 Biological Testing (Step 4)

One of the core concepts underlying this QSAR strategy, is that the biological
testing should be minimized as far as possible. Thus, the basic idea is to merely subject
the representative training set compounds to extensive testing, in order to obtain a
broad and stable picture of their biological properties. This implies that a large
number of biological mecasurements should be undertaken, so that the response
matrix contains biological variables that span as many aspects of the biological
profiles of the investigated compounds as possible. The more biological tests that
are performed for each compound, the better is the stability of the resulting QSAR
model, and this will likely also lead to an improved predictive capability. Besides
economic considerations, the testing of a few representative compounds also saves
time, and adheres to the principles of animal welfare.

Another general remark about the biological testing, is that such measurements
are commonly recorded as dose-response curves, showing the relationships between
the administered doses and the responses that they elicit. Typically, the information
content of such curves is summarized in a single value, such as LDy, EC5,, etc.
This need not be a problem if the curves are congruent and exhibit the same gencral
features. Then in such a case, a single value will adequately reflect the existing
information. However, if the curves are incongruent, i.c., they are influenced by
more than one factor, summarizing a dose-response curve with only a single value
may lead to a loss of valuable information. It is, therefore, recommended that the
whole (multivariate) dose-response curves are used, whenever possible, in QSAR
analyzes.

3.2.2.5 QSAR Development (Step 5)

In the fifth step of the strategy, the main objective is to calculate the best mathematical
expression linking together the physico-chemical descriptors and biological re-
sponses. During this procedure, information, regarding the essential features of the
chemical and biological data structure, is obtained. There may, for instance, be a
need to transform some of the descriptor variables, or delete compounds, exhibiting
deviating chemical and/or biological propertics. The QSAR analysis also provides
information on whether a descriptor variable is relevant for a certain application.

In practice, there are two ways, in which the physico-chemical variation of the
studied compounds may be represented. One way is to use the PPs for the QSAR
development as well. If these are few, and provided that they are information-rich,
the calculated QSAR is easy to interpret. The problem might arise, however, that
the PPs are not sufficiently adequate for QSAR development. Although the PPs
are derived by a maximum variance projection in PCA, some of the residual variance
might be essential to QSAR development. In the situation, where the PPs are found
insufficient for QSAR analysis, it is recommended that one returns to the use of
the original physico-chemical descriptors. These might lead to an improvement of
the model.
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In QSAR development, we recommend the use of multivariate partial least squares
projections to latent structures (PLS). This is because PLS is a projection-based
method and estimates the correlation structure among the collinear descriptors in
terms of a limited number of latent variables. This means that PLS can analyze
any number of variables, regardless of the number of compounds in the training
set, which is beneficial, since the projections to latent structures become more stable
as more informative variables are included. The statistical significance of the QSAR
is then assessed by means of cross-validation [11]. A measure of the predictive
capability of a model, based on cross-validation, is Q* (sometimes denoted as Rgy,
describing the amount of variance in y that can be predicted). This can be compared
with the R? value, expressing the variance modeled in y. Both these statistical
measures vary between 0 and 1, where 1 signifies a perfect model, and 0 a model,
which has no relevance. The percent variance predicted or explained is expressed
as 100*Q? or 100*R2. A large discrepancy between R* and Q? might indicate an
overfitting of the QSAR model. Cross-validation is sometimes referred to as an “inter-
nal” procedure to ascertain the predictive capability of a QSAR. Cross-validation is
discussed in more detail in Chaps. 5.1 and 5.2 and briefly in the next paragraph (3.2.2.6).

3.2.2.6 Validation and Predictions for Non-Tested Compounds (Step 6)

The final purpose of a QSAR is to predict the biological activities of non-tested
compounds, which belong to the class under investigation. However, first it is
important that the predictive ability of the model is verified experimentally. This
is accomplished by biological testing of some additional compounds in the same way
as the training set, and then comparing the experimental findings with the values
predicted by the QSAR. If the QSAR predicts within acceptable limits, it may be
used for a more extensive prognostication. The prediction errors should be compared
with the precision and range of the biological measurements obtained.

It is desirable that the compounds in the validation set adequately span the
physico-chemical domain and the biological activity range of interest. Conveniently,
the validation set may be selected according to a statistical cxperimental design in
order to result in a series of representative compounds. In fact, the validation set
can be selected already at the third stage of the strategy, simultaneously with selection
of the training set. It also seems relevant to stress that the cross-validation procedure
(internal validation) and the verification of the validation set {external validation),
are not mutually exclusive. On the contrary, these methods should be regarded as
being complementary and, which can be used to obtain an estimate of the precision,
with which the biological activity can be predicted with the QSAR model.

3.2.3 Examples of Design and PLS Modeling

In this section eight examples are given with the aim of illustrating the concepts of
experimental design and PLS analysis in the development of QSARs. The examples
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concern a diverse series of peptides or peptoids (Secs. 3.2.3.1 to 3.2.3.4), halogenated
alkanes (Sec. 3.2.3.5), dibenzofuranes (Sec.3.2.3.6), aromatics (Sec. 3.2.3.7) and
corrosive carboxylic acids (Sec. 3.2.3.8). In the examples given in Secs. 3.2.3.1 to
3.2.3.4, the statistically designed training sets were constructed in retrospect from
earlier and more or less systematically varied series of compounds, but for which
QSARs were developed. In the examples given in Secs. 3.2.3.5 to 3.2.3.8, on the other
hand, a class of interesting compounds was defined prior to the biological testing,
Then, a limited set of compounds was selected by statistical experimental design.
Models were then developed, and the validity of the models was tested by separate
validation sets.

3.2.3.1 Bradykinin Potentiating Pentapeptides

A series of 30 pentapeptides with bradykinin potentiating activity, which had variable
amino acid sequences, was reported by Ufkes et al. [12, 13]. The biological activity
was expressed as a relative activity index, RAI, relative to one of the peptides. A
QSAR was developed using PLS based on a numerical description of each of the
varied positions on the peptides in terms of three PPs, denoted as z,, z, and z;
(see below), for the 20 coded amino acids. Thus, each pentapeptide was described
by 15 variables.

The three z scales for the amino acids were calculated by PCA from an autoscaled
and mean centered multiproperty matrix of 29 physico-chemical variables [14]. The
scales or PPs of the amino acids are listed in Table 1, and plotted against each
other in Fig. 1. These PPs have been shown to be relevant in the development of
numerous peptide QSARs [6, 15— 17]. Moreover, they have been extended also to
comprize a large number of non-coded amino acids [18].

The PLS analysis resulted in a model with two significant components, where
R? = 0.82, i.e. the model described 82% of the variance in the data, and Q% = 0.70,
i.c. 70% of the variance in the biological activity was predicted by cross-validation.
A plot of the observed values against the calculated values is shown in Fig. 2a. In

Table 1. PPs or descriptor scales, z,, z, and z;, for the coded amino acids (AA)

AA zy zy Z3 AA z Z, 3

Ala(A) 0.07 —1.73 009  His(H) 241 174 L1
Val(V) —2.69 —2.53 —-1.29 Gly(G) 223 —35.36 0.30
Leu(L) —4.19 —1.03 —0.98 Ser(S) 1.96 —1.63 0.57
He(I) —4.44 —1.68 —1.03 Thr(T) 0.92 —2.09 —1.40
Pro(P) —1.22 0.88 223 Cys(C) 0.71 —0.97 4.13
Phe(F) —4.92 1.30 0.45 Tyr(Y) —1.39 2.32 0.01
Trp(W) —4.75 3.65 0.85 Asn(N) 322 1.45 0.84
Met(M) —249 —0.27 —0.41 GIn(Q) 2.18 053 —1.14
Lys(K) 2.84 1.41 —3.14 Asp(D) 3.64 1.13 2.36

Arg(R) 288 252 —344  Glu(E) 3.08 039 —0.07
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&

Figure 1. Scatter plot of the three PPs
(z4, z, and z;) for the 20 coded amino acids.
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a) A plot of the observed activities against the calculated activities for a PLS model.

bascd on 30 pentapeptides. b) The observed activities plotted against the predicted activities {open
circles) for a PLS model, based on a designed training set (filled circles) for z; at position 3 and 4

(sec Table 1).
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Figure 3. a) PLS weights for the model based on all 30 pentapeptides, and b}, based on the designed
training set. The numbering refers to the amino acid position and the scale used, i.c. | =3 (z; —z;)
at position 1,4—6 (z, —z3) at position 2, 7—9 (z, —z3) at position 3, etc. Variable 16 is the weight
of the biological activity.

Fig. 3a, the PLS weights are plotted against each other. The plot in Fig. 3a shows
that the weights for the variables 7, 8 and 9, corresponding to position 3, have the
largest absolute values for the first model dimension. Thus, position 3 is the most
influential for regulating the RAL

The present 30 peptides were not synthesized according to a statistical design.
In retrospect, however, we have investigated to determine whether the apparent
success of the QSAR is due to an intrinsic design among the 30 pentapeptides.
Indeed, an approximate full factorial design in just z, in the most varied positions 3
and 4, was present among the 30 pentapeptides (see Table 2). A PLS model based
on this set of four peptides, as a training set, results in a model yielding satisfactory
predictions, as shown in Fig. 2b. This shows that a design with few compounds can
be valuable for screening purposes even if not all of the design variables are informative.
We also noted that the PLS weights are quite similar in the model, based on the
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Figure 4. a) The obscrved activi-
ties plotted against the calculated
activitics (open circles) for the
QSAR model, based on a designed
training set with nine dipeptides
(filled circles) in z; and z, at
positions | and 2 (sec Table 3).
b) The obscrved activitics plotted
against the predicted activities
(open circles) for a COST designed
training sct with 34 dipeptides
(filled circles) and a PLS model,
bascd on linear terms only. ¢} The
plot shown is similar to the one
in b), except that it is a PLS
model, based on lincar, quadratic
and cross terms. d) The observed
activitics plotted against the
calculated activities for a PLS
modecl, based on all 58 dipeptides.

design, as well as for the model, based on all 30 peptides (compare Figs. 3a and
3b). For example, the variables, 7, 8 and 9, have high absolute values of their weights
for the first dimension in Fig. 3a and exhibit a similar size and sign as the
corresponding weights plotted in Fig. 3b.

Table 2. The 22 FD for the selected training set of the pentapeptides. PP, i.c. zy, is used as design

variable for both positions 3 and 4 (amino acids in bold letters)

FD no.  Pentapeptide Setting in PP1
z,(3) 2 (4 7,(3) (4
— — 27 VEWVK —4.75 —2.69
+ - 23 VAAWK 0.07 —4.75
- + 28 PGFSP —4.92 1.96
+ + 13 VGGGK 2.23 223

“* The numbers correspond to those plotted in Fig. 2b and to the data given by Hellberg et al. [15].
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Figure 4. Continued.

3.2.3.2 Dipeptides (Inhibiting the Angiotensin Converting Enzyme)

(c)

(a)

73

In this section, we will show that the predictive capability of a QSAR model is
strongly dependent on the strategy used for selecting the compounds in the training
set. Thus, we have, in retrospect, compiled two training sets, one based on a statistical
design, and one on a change-one-separate-feature-at-a-time (COST) design from a
series of 58 dipeptides which inhibit the angiotensin converting enzyme. The activity,
A, is expressed as 6 + log (1/15,), where I, is the concentration (in pm), which
inhibits 50% of the angiotensin converting enzyme. The biological data was compiled
by Cheunget al.[19]. The results from the statistical design and the COST approaches
are compared to the result of a reference QSAR model with all 58 dipeptides included

(see page 14).
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Table 3. The 2*~! FFD for z; and z, for a peptide varicd at two positions (I and 2). The design
is complemented with a center point. Dipeptides (DP) corresponding approximatcely to the settings
of the angiotcnsin data are given

FFD no.* DP Settings in PPs
2 (1) z,(1) 7,(2) 2,(2) (1 (D) 21(2) 25(2)
- — — + 1 VW —27 =25 —48 37
+ - - - 22 Gl 22 =53 —44 -7
- + — - 55 YA —14 2.3 00 —-17
+ + - + 5 RW 29 25 —48 37
- - + — 20 VG —27 =25 22 -S54
+ — + + 29 GR 22 =53 29 2.5
- + + + 55 FR —49 1.3 29 2.5
+ + + - 48 DG 3.6 (.1 22 54
0 0 0 0 54 AA 00 17 00 -—17

* The numbers correspond to those plotted in Fig. 4a and to the data given by Hellberg et al. [17).

The Statistical Design Approach

Prior to the construction of a statistical design, it was necessary to decide which
descriptor variables might be of importance for biological activity. Here again, we
have used the z scales for the amino acids (Sec. 3.2.3.1) as design variables, as they
are independent of each other and summarize the information content of many
different types of physico-chemical variables. We constructed a 2*~! fractional
factorial design for each of the two dipeptide positions, using only z, and z, as
design variables (see Table 3). It was not possible to find dipeptides corresponding
to a design with all three z variables. The design was also complemented with a
center point. The nine dipeptides, which best corresponded to the settings in the
FFD, were then selected. The training set of the nine peptides was modeled using
PLS, including all cross and quadratic terms in the six variables, i.e. 27 descriptor
variables (6 linear +6 quadratic + 15 cross terms). The QSAR model (R? = 0.97
and Q0% = 0.53) was then used to predict the biological activity of the remaining 49
dipeptides. In Fig. 4a, the observed activities are plotted against the activities
predicted. The predictions can be compared with the results, when all dipeptides
are included in the model.

The COST Approach

Among the 58 dipeptides, 34 contained glycine at either the first or the second
position. Thus, these 34 compounds represent a training set, compiled according
to the strategy to “systematically” change one separate feature at a time, i.c. the
COST approach.

A QSAR for this training set was calculated (R* = 0.64 and Q° = 0.52), which
was based on the three z scales for each one of the dipeptide positions. The cross
and quadratic terms were not included. This QSAR was then used to predict the
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Fig. 5. a) PLS weights for the model, based on all 58 dipeptides, and in b), based on the designed
training sct. The numbering refers to the amino acid position and the scale used, i.c. 1 =3 (z; —z3)
at position 1, 4—6 (z, —z5) at position 2, 7— 12 square terms and 13 —27 cross terms. Variable 28
is the weight for the biological activity.

biological activity for the remaining 24 compounds. The predicted activites are
plotted against the observed activities in Fig. 4b. A comparison of Fig. 4b with
Fig. 4a, shows that the predictions from the COST design are much worse compared
to the predictions from the FFD. The predictions from the COST design are even
worse, if cross terms and quadratic terms are included (Fig. 4c).

Model Based on all 58 Compounds

In order to obtain a reference model, a QSAR was calculated based on the complete
set of 58 dipeptides. As before each of the dipeptides was described by the three
descriptors z,, z, and z; at each amino acid position. In addition, to account for
a weak non-linear behavior between the biological data and the physico-chemical
characterization, quadratic and cross terms were added. PLS analysis resulted in a
model with two significant latent variables (R?> = 0.78 and Q2 = 0.68). In this case,
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Table 4. The2* FD forz, and z, at position 1 and 2. Peptide analogs, approximately corresponding
to the design matrix, were selected from the set of 48 bitter dipeptides

FDP no.* DP Settings in PPs

(1) z(l)  z(2) z:(2) () oy (2 =2
+ + + + c
+ + + — C
+ + - + [
+ + - — c
+ — + + [¢
+ - + - ¢
-+ - - + 18 GW 223 =536 —475 3.65
+ - - — 62 SL 196 —1.63 —4.19 -103
— + + + 59 WE —4.75 3.65 3.08 0.39
- + + - 54 FG —4.92 1.30 223 —5.36
— + — + 60 WwW  —475 365 —475 3.65
— + - — 35 FL —4.92 .30 —4.19 —1.03
— — + + 45 [E —444 —1.68 3.08 0.39
— — + - 47 IS —444 —1.68 196 —1.63
— — — + 41 IwW —444 —1.68 —475 3.65
— — — - 39 Il —444 —168 —444 —-1.68

* The FD settings are not in the standard order.
® The numbers correspond to those plotted in Fig. 6a and to the data given by Asao et al. [201.
¢ Combinations of amino acid properties, which were not found in the sct of 48 dipeptides.

all, except one of the dipeptides, were well described by the model (see Fig. 4d).
The PLS weights for the two model dimensions are plotted against each other in
Fig. Sa. A comparison with the corresponding plot for the FFD (Fig. 5b) revcals a
general similarity of the weights for the two models. This strongly underlines the
stability of the model obtained from the designed training set.

To conclude, we have, in practice, demonstrated the superior predictive capabilities
of a QSAR model, which is based on an approximate statistical design, compared
to a QSAR model, which is based on a poorly balanced design — the COST design.
This is despite the fact that the COST design is based on 34 combinations of
19 different amino acids and the FFD design only consists of nine combinations of
9 amino acids. We have also noted that the model composed of all 58 dipeptides, is
similar to the one based on a designed training set with only 9 dipeptides. Thus,
we propose that the training set analogs for QSAR studies should a/ways be selected
according to an experimental plan. This should increase the information content
in the training sets in comparison to arbitrary or COST designs. This example also
shows that PPs are well suited as design variables in FD or FFD.

3.2.3.3 Dipeptides (Bitter Tasting)

Similarly to the example discussed in Sec. 3.2.3.2, we have investigated 48 bitter
tasting dipeptides, which were compiled by Asao et al. [20]. A 2* factorial design,
with z, and z, as design variables, was constructed, resulting in 16 different
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Figure 6. a) Thc observed bitterness threshhold activitics plotted against the predicted bitterness
threshold activities (open circles) for the QSAR model, based on a designed training set with ten
dipeptides (filled circles) in z; and z, at position 1 and 2. b) The observed bitterness activitics
plotted against the calculated bitterness activities for a PLS model, based on all 48 dipeptides (sce
Tabic 4).

combinations for the two amino acid positions. In ten of these combinations,
dipeptides were found (see Table 4). The missing dipeptides mainly corresponded
to those with polar amino acids such as aspartate and arginine in the first N-terminal
position. A QSAR based on all three z scales, with two PLS components, was able
to predict the bitterness threshold (log 1/T) for the remaining 38 dipeptides (Fig. 6a)
with good accuracy (R* = 0.82 and Q? = 0.54). This plot can be compared with
the corresponding relationship, (Fig. 6b) based on a two-component PLS model,
with all 48 dipeptides included (R* = 0.82 and Q2 = 0.76). Indeed, the training sct,
which was selected according to an approximate experimental design, was in-
formative, and the loss of information was marginal with the designed set compared
to the model, based on all of the dipeptides.
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Figure 7. a) PLS weights for the model, based on all 48 dipeptides, and b) based on the designed
training set. The numbering refers to the amino acid position and the scale used, ic. 1 =3 (z;—z;)
for position 1, 4—6 (z, —z,) for position 2. Variable 7 is the weight for the biological activity.

A comparison of the PLS weights for the model with all the dipeptides included
with the PLS weights for the designed set, also revealed similarities (Fig. 7a and
7b). Thus, the designed set summarizes information about the most important
variables, and this information is scarcely affected by increasing the number of
compounds in the training set.

3.2.3.4 Mimetics

The complex process of forming a non-peptide molecule from a peptide is also of
considerable interest in drug design. One possibility would be to substitute one or
more of the peptide bonds with so called isosteres (e.g. —CH,CH,—), to give a
peptidomimetic, which would be more resistant to hydrolysis. There are few
systematic QSAR studies involving the physico-chemical characterization of mime-
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Figure 8. Scatter plot of the PPs for the peptidomimetics. Filled circles correspond to the training
set and shaded circles correspond to the test set for the cholecystokinin antagonists (CCK-A and
CCK-B). The mimetics are: 1, —COCH—; 2, —CH,0—; 3, —COO—; 4, —CH,NH—;
5, -COCH, —;6, —CH=CH —(cis); 7, —CH=CH — (trans);8, —CH,CH, —;9, —CHOHCH, —
(d, S); 10, —CHOHCH ,-(/, R); 11, —CHNH,CH, —(d, $); 12, —CHNH,CH, —(/, R); 13, —CH,S—;
14, —CSNH —; 15, —CONCH;—;16, —COS —; 17, —CH(O)CH — (trans); 18, — CH(O)YCH — (cis);
19, —CH,NOH —; 20, — CH,C(NOH)—: 21, — CHN(COCH)—.

tics. One exception is the work of Fincham et al.,, [21] where a physico-chemical
characterization of mimetics was used in structure-activity studies for a series of
dipeptoids. Here, the amide bond was replaced with a series mimics. The biological
effects studied for the dipeptoids were the ICso values for cholecystokinin (CCK-A
and CCK-B) antagonism. Recently, we extended their study, see Berglund et al.,
[22], by describing 21 mimetics with 26 physico-chemical variables. The physico-
chemical characterization was then used to calculate three PPs for the mimetics.
The PPs, plotted in Fig. 8, were used to construct a 2°~! FFD (see Table 5), and
dipeptoids approximately matching these specifications were found among the
reported CCK antagonists. The design was complemented with an approximate
center point. The series of five compounds was used to construct two QSAR models

Table 5. The 2°~! FFD (or the mimetic example. The PPs for the mimetics shown in Fig. 8 were
uscd as design variables

FFD* no.® Mimetic Settings in PPs
PPI1 PP2 PP3 PPl PP2 PP3
— — + 1 —COCH — —3.27 —2.94 1.08
— + — 21 —CHN(COCH )~ —5.35 321 —1.45
+ - - 8 —CH,CH,— 429 051 —1.76
+ n n 7 —CH=CH— (ciy) 4.96 219 218
0 0 0 4 —CH,NH— 2.81 —0.85 0.57

* The FFD settings are not in the standard order.
® The numbers correspond to those plotted in Fig. 8.
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Figure 9. The observed activities plotted against the predicted activitics (open circles) for the two
mimctic test scts. The QSARs are based on the designed training set (filled circles) for the dipeptoids
a) cholecystokinin (CCK-A) and b) (CCK-B).

which were used to predict the remaining reported CCK antagonists. Plots of the
observed versus the predicted biological effects for the designed training set, indeed,
showed good predictions for the remaining dipeptoids with known biological
activites (see Figs. 9a and 9b).

3.2.3.5 Haloalkanes

In contrast to our first four examples, where the training sets were generated in
retrospect, based on the existing literature data, the training sets in the following
examples were generated before the biological testing. In the first example, the
application of the QSAR strategy to a class of halogenated aliphatic hydrocarbons
is discussed. This group of chemicals is of relevance for QSAR investigations
from an environmental point of view. The class under consideration comprised
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58 compounds with up to four carbon atoms and a varying degree of halogenation
{5]. Interestingly, this class contained many chlorinated chemicals that arc used on
alarge scale in industrial applications (as solvents, etc.), and also several chlorinated-
fluorocarbons (CFCs).

In order to accomplish a multivariate characterization of the structural and
physico-chemical properties of the 58 haloalkanes, a series of 13 descriptor variables
was compiled [5]. These variables were subjected to PCA, and four significant
principal components described 87% of the total variance. The scores of the first
two PPs are plotted against each other in Fig. 10. These scores represented the PPs
of the halogenated aliphatics and were used to construct a 24~ ! FFD, which is

Table 6. The 2*~' FFD for the training set (top) and the 2° ~! FFD for the validation set (bottom).

The haloalkane example

FFD no. Compound Settings in PPs
PPl PP2 PP3 PP4 PP1 PP2 PP3  PP4

— - — — 52 CH;(CH,),Br —0.72 —120 —-129 —0.5l
+ - — + 48 CH;CHCICH; 196 —0.86 —081 0.15
- + - + 33 CH;CHBr, —-1.77 1.22 —0.14 —0.08
+ + - - 30 CH;CH,Br 1.20 089 —090 —0.12
- - + + 15 CHCI,CHCI, —1.69 -0.83 092 070
+ - + - 7 CCLF 1.14 —040 095 —1.10
- + + - 39 CBr;F —-3.20 1.68 1.07 —1.90
+ + + + 2 CH,Cl, 1.92 0.79 013  0.70
0 0 0 0 3  CHC(l, 0.52 0.22 070 048
0 0 0 0 11 CH,CICH,CI 0.56 0.03 028 1.54
- - + 23  CH,CICHCICH,CI —200 —1.25 0.28
+ — - 47 CH;CH,CH,CI 1.77 —0.89 —0.90
— + - 19  CH,BrCH,Br —2.56 1.39 0.67
+ + + 37 CH,BrCl 0.28 1.78  —0.14
0 0 0 12 CH,BrCH,Cl —0.98 0.83 0.32
0 0 0 6 CCl, —1.14 —040 1.58
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summarized in Table 6. This design encodes eight compounds, which was supple-
mented with two compounds located in the interior part of the design. Thus, a
training set, consisting of ten chemicals, was selected. In an analogous manner, a
validation set of six chemicals was chosen (Table 6). This set was generated by a
2371 FFD, augmented with two center points.

The 16 compounds (training + validation sets), which were preferred as
representatives for the whole class of halogenated aliphatics, were subjected to a
broad range of biological tests, e.g. for acute and subacute toxicity, mutagenicity
and cytotoxicity [5]. Here, we discuss the recent results that were obtained from
cytotoxicity tests with human HeLa cells [23]. The cytotoxicitics of the 16 compounds
were expressed as the concentration, which inhibits cell growth by 50%, and is
termed the 1Cs,. In order to account for the variation in cytotoxicity among the
tested compounds, we found a subset of five predictor variables, which could
sufficiently describe the biological endpoint. These five highly correlated descriptor
variables were the molecular weight, the van der Waals volume, the octanol/water
partition coefficient, and the log retention times from two HPLC systems. The PLS
analysis, based on these five predictors, gave a onc-dimensional model with
R? = 0.89 and Q2 = 0.88. As seen in Fig. 11, the QSAR accurately predicts the
cytotoxicity for the compounds in the validation set. Thus, this QSAR may also be
useful for predicting the cytotoxicities of the 42 non-tested halogenated aliphatic
hydrocarbons.

3.2.3.6 Dibenzofurans

This example refers to a series of 87 polychlorinated dibenzofurans (PCDFs), for
which a biological response concerning a rat enzyme induction potency was
determined. Tysklind [24] first compiled a multivariate characterization of these
compounds, consisting of 18 chemical descriptor variables. These descriptors were
summarized by PCA (see score plot in Fig. 12). The resulting four PCs were used
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Figure 12.  Scatter plot of PP2 vs PP
for the 87 PCDFs. Compounds
belonging to the training and valida-
tion sets arc marked with filled circles
and arc numbered as in Table 7.

to construct a 2*~ ! FFD, encoding ten compounds (eight corner compounds and
two center points). A similar design, i.e. the other half-fraction of the full factorial
design, was also formed to aid the selection of ten congeners for the validation sct.
In the validation set, an additional center point and octachloredibenzofuran (OCDF)
were included. OCDF was included, because it exhibited atypical chemical proper-
ties. In total, 20 compounds were selected out of the 87 PCDFs for biological testing
(Table 7). The compounds were tested for ethoxyresorufin-O-deethylase (EROD)

Table 7. The 2*~' FFD for the training sct (top) and the 2¢ ™! FFD for the validation set (bottom).
The dibenzofuran example

FFD no. Compound Settings in PPs
PPl PP2 PP3 PP4 PP pPP2 PP3  PP4
— — — — 52 1,2,3,7-TCDF —240 —15 —143 —1.18
+ — — + 115 2,34,78-PcCDF .82 —243 082 1.23
- + — + 61 1,2,69-TCDF —2.78 259 —0.29 0.22
+ + — — 135 1,23,4,7.89-HpCDF 6.17 122 =107 —0.19
— — + + 86 2.4,68-TCDF —1.68 —0.57 1.46 2.94
+ — + — 129  1,34,6,7,8-HxCDF 260 —1.34 1.97 —0.86
— + + - 76 1,4,69-TCDF —3.46 217 1.60 —0.98
+ + + + 128 1,2,4,6.89-HxCDF 2.84 2.21 143 1.13
0 0 0 0 104 1,2,6,7,8-PeCDF 0.63 —0.07 0.67 046
0 0 0 0 113 2,3,4,6,7-PcCDF 036 —1.05 —-027 0.70
— - — + 83 23,68 TCDF —021 =301 —143 2.14
+ — — - 125 1,2.3,7.8,9-HxCDF 379 —-048 —327 —040
- + — — 91 1,2,34,9-PeCDF —0.71 250 —1.82 —0.22
+ + - + 103 1,2,4,8,9-PeCDF 0.30 250 —041 1.30
- — + — 70 1,3,6,8-TCDF —1.62 —137 143 —0.16
+ - + + 126 1,2,4,6,7,8-HxCDF 279 —042 219 070
- + + + 60 12,68-TCDF —2.12 0.26 1.06  1.66
+ + + — 127 1,24,6,7.9-HxCDF 2.61 1.38 1.46 —0.90
++ + 0 0 136 1,2,3.4,6,7,8,9-OCDF 8.64 1.09 0.17 —036
0 0 0 0 88 1,2,34,6-PeCDF —0.73 0.76 038  0.20
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induction in the H4IIE rat hepatoma cell bioassay [24]. The mecasured EROD
induction potencies were converted to toxic equivalency factors (T EF) by calibration
against the corresponding biological activity of the most potent known compound
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the QSAR analysis, the negative
logarithm of this TEF scale was used.

By means of PLS and using 37 chemical descriptors [25], a multivariate QSAR
for the T EF scale was calculated, which was based on the ten training set compounds.
This QSAR was effective in describing and predicting the variation in EROD
induction potencies (R? = 0.84 and 02 = 0.69). Using the QSAR for predicting the
biological activities of the validation set chemicals, resulted in an external Q% = 0.81,
which strongly underpins the good predictive capability of this QSAR. Fig. 13
illustrates the relationship between the observed and calculated/predicted TEF
values. It is evident that the model may be useful for predicting T EF values for the
67 non-tested congeners, which belong to this class of compounds.

3.2.3.7 Monosubstituted Benzenes

Skagerberg et al. [26] have determined PPs for one hundred monosubstituted
aromatics. The compounds, which cover four types of electronically different
substituents, i.e. electron acceptors and donors, alkyl groups and halogens, were
multivariately characterized by means of nine physico-chemical descriptors. The
descriptors used were n, MR, 7, ¢, the Verloop parameters L and Bl —B4. PCA
of the resulting 9 x 100 data matrix gave four principal components (PPs), reflecting
76% of the variance (Fig. 14). Tosato et al. [27] have used these PPs in statistical
experimental design for setting priorities and conducting hazard assessments for
monosubstituted benzene derivatives. The three first PCs were considered the most
important and were used in a 2* full factorial design. This scheme encoded eight
training set compounds as good representatives of all the other compounds (Table §).
Moreover, to allow for a verification of the QSAR models developed, a set of 11
additional compounds was selected to constitute the validation sct. The validation
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Figure 14. Scatter plot for the PPs of
the 100 monosubstituted benzenes.
Compounds, which have been
biologically tested for ECs, values, are
depicted with filled circles and are
numbered according to Table 8.

set compounds were selected in such a way as ... to allow evaluation of the range
of validity of the model and of its actual predictive capacity” [27]. Both the training
set compounds and the validation set compounds were tested in the laboratory of
Tosato and coworkers, using an assay called the Daphnia immobilization test
(adjusted according to the relevant OECD guideline). The endpoint determined was
the concentration causing a 50% effect (ECso) and in the QSAR analyzes, the
transformation log 1/ECso was used. A PLS analysis of the training set, characterized
by the nine aromatic descriptors, gave four latent variables with R? = 0.99 and

Table 8. The 23 FD for the training sct (top) and the compounds in the validation set (bottom).
The monosubstituted benzenes example

FD no. Compound Settings in PPs

PP1 PP2 PP3 PP PP2 PP3
— — ~ 8 Ph-NO, —1.80 —1.66 —0.03
+ - - 65 Ph-CO,C,Hj 079 —1.16 —023
— + — 10 Ph-H —2.88 149 —0.54
+ + — 82  Ph-OC,H, 1.93 086 —0.31
— — + 5  Ph-Br —0.47 —1.80 0.87
+ - + 93  Ph-COC.H; 0.62 —1.09 1.70
— + + 33 Ph-CH; —1.66 1.28 0.28
+ + + 80 Ph-n-C,H, 1.42 1.04 0.31
41 Ph-SCH; —0.50 0.42 0.17

56 Ph-C,H; —0.60 1.16 0.26

68  Ph-CH(CH,;), —0.09 0.60 1.38

69 Ph-C;H, 0.33 1.06 0.28

20 Ph-CN —1.43 —1.09 —085

11 Ph-OH —2.30 .34  —0.60

3 Ph-F —2.48 048 —0.34

62 Ph-N(CH,), —0.66 189 047

17 Ph-CF, —1.57 —-0.86 0.83

36 Ph-OCH, —1.02 100 —034
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Figure 15, Scatter plot for the QSAR
of the monosubstituted benzenes
showing observed log (1/EC5,)
plotted against the corresponding
calculated/predicted values. The
compounds are numbered as in
Table 8. Open circles correspond to
the validation sct compounds,
whereas filled circles correspond to the

compounds used for model-building
(training sct).
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0? = 0.64. Fig. 15 shows the correlation plot between the observed and calculated/
predicted biological activities. Evidently, the model predicts rather well, even though
some of the validation set compounds were chosen deliberately, so as to rigorously
test the predictive capability of the model.

3.2.3.8 Corrosive Carboxylic Acids

Our last example deals with a series of 45 aliphatic carboxylic acids and their
corrosive effects towards rabbit skin. This study is of interest, because skin effects
caused by corrosive chemicals are a frequently reported occupational hasard, and
because many, suspectedly corrosive, compounds are commonly involved in
industrial handling and transportation. Furthermore, this study is of relevance,
because, to our knowledge, QSAR techniques have only been applied to a limited
extent to modeling corrosivity endpoints [28]. In this particular investigation, the
corrosive effects towards rabbit was selected as a representative biological model
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Table 9. The 2° FD for the training sct (top) and the compounds in the validation set (below).

The carboxylic acids example

FD no. Compound Settings in PPs

PPI1 PP2 PP3 PPI1 PP2 PP3
— — — 31 Malcic acid —3.74 —1.14 1.06
+ - - 1 Acetic acid 222 —1.74 —0.14
— + — 6 Trichloroacetic acid —3.91 0.74 —1.55
+ + - 35 4-Chlorobutyric acid 0.93 0.86 0.26
- - + 4 Chloroacetic acid —0.79 0.63 0.09
+ - + 15 Butyric acid 2.30 —0.18 —0.75
- + + 2 Bromoacetic acid —2.26 0.92 0.61
+ + + 10 Mercaptoacetic acid 1.37 2.79 221
0 0 0 13 3-Chloropropionic acid 0.80 —033 —-007
29 Malonic acid —1.49 —2.56 1.17

5 Dichloroacetic acid —2.10 0.69 —1.11

14 Methacrylic acid 1.46 1.20 0.37

27 2-Hydroxybutyric acid 1.16 -0.80 0.53

16 Vinylacctic acid 292 1.04 0.44

system. Initially, we described the 45 acids with a multivariate set of nine variables
(molecular weight, melting point, density, refractive index, octanol/water partition
coefficient, pK,, energy of highest occupied and lowest unoccupied molecular orbital,
and electronegativity). PCA of this multiproperty matrix yielded three PPs describing
74% of the variance, which were used to derive a 2* FD, supplemented with one
interior point. In Fig. 16, the two first PPs are plotted against each other. Moreover,
five compounds were selected for the verification set. The nine acids in the training
set and the five acids in the validation set (Table 9) were tested biologically, to
determine the lowest concentration at which signs of cutaneous corrosion could be
found, ie. the lowest-observed-effect-concentration (LOEC). Since strong non-
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Figure 17. Obscrved LOEC
plotted against calculated/predicted
values for the corrosivity QSAR.
The compounds used to calibrate
the model (training set) are marked
with filled circles, and the validation
set is marked with open ones. Sce
Table 9 for the numbering.
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linearities were found in the existing relationship between the chemical structure
and the biological activity, linear and quadratic terms (in total 18 variables) were
used as predictor variables in the PLS modeling. This resulted in a QSAR with
R? = 0.83 and Q* = 0.59. In Figure 17, the agreement between the obscrved and
calculated/predicted LOEC values for the 15 tested compounds is shown. The
external Q2 = 0.60 is based on the performance of the validation sct compounds.
It is interesting to note, that in the ideal situation, both the external (validation set)
and internal (cross-validation) Q? should be of a similar magnitude, since they
mirror the same unknown predictive capability statistic. The conclusion from this
study, is that it is possible to derive multivariate QSAR modcls which provide useful
predictions for endpoints related to skin corrosion.

3.2.4 Discussion and Conclusions

Quantitative structure-activity relationships arc valuable tools for modeling and
predicting the biological responses of chemical compounds, and for the identification
of potential structures with optimized biological properties. It is important to realize
that QSAR modeling is not only restricted to small and semi-rigid molecules, but
as shown here, it can be applied to long-chain and highly flexible chemical structures,
such as peptides. Thus, QSAR modeling of flexible peptide secquences need not
necessarily require a knowledge of the 3D structure of the compounds.

The use of projection methods, such as PLS, which can deal with multivariate
data, will result in models with few descriptive components that are easy to interpret.
However, the process, leading to useful models, consists of a number of important
stages. Those aspects that deserve special attention were discussed in each one of
the six consecutive steps of the multivariate strategy for QSAR. Here, it is particularly
important that the compounds, which are used to calibrate the model, ie. the
training set, and the chemicals used to verify the predictive capability of the QSAR
experimentally, are selected at least by approximate statistical experimental design.
Such design can be achieved by using principal variables or PPs, defined for the
class of compounds of interest. Finally, the compiled data, both chemical and
biological, can be analyzed preferably using multivariate projection methods, such
as PLS, which provides information about the structure of the data and the range
of validity of the model.  In this contribution, the main emphasis has been placed
on demonstrating the benefits of using statistical experimental design in the selection
of test series. This was discussed in connection with the dipeptide example in
Sec. 3.2.3.2, where the quality of QSAR models, based on either a statistically or a
COST-designed training set, are in sharp contrast to each other. The QSAR, based
on the statistical design approach, was superior from the point of view of predictive
capability. These results also revealed the consequences of not using statistical
experimental designs in the compilation of the training set. Statistical experimental
designs guarantee that many latent variables are varied systematically — in a
balanced manner — and simultaneously, which is not the case if only one latent
variable is modified at a time.
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Since the main objectives of this chapter have been to shed some light on the use
of statistical experimental design and PLS analysis, examples have been sclected
that best illustrate these important steps. Thus, the QSARs have been introduced
and discussed, mostly from a statistical and technical point of view. and perhaps
not so much in detail as regards to the interpretation of their meaning. It is, however,
appropriate to stress that once a QSAR has been developed, it is important to
interpret the significance of this relationship. Since QSARs can be interpreted as
mathematical approximations of underlying fundamental relationships, their coeffi-
cients sometimes provide clues for mechanistic interpretations. A QSAR is well-
founded, when the feature of the model is consistent with the mechanistic
interpretation. As regards to the interpretations of the QSAR examples presented,
the reader is referred to the original literature.

We regard QSAR modeling as a special case of semi-cmpirical modeling, typically
leading to linear or low order polynomial expressions. Simple statistical rules for
the validity of semi-empirical models, thus, also apply to QSARs, and can be used
as guidclines to construct QSARs with valid predictive capabilities. These conditions
have becen considered in the development of the QSAR framework discussed in this
chapter. To conclude, we propose that the training set of compounds for screening
purposes and QSAR modeling should always be constructed according to a statistical
experimental design. This, together with a multivariate representation of the chemical
and biological properties of the studied substances, will strongly increase the
information content in the training set series and will increase the efficiency, and
the chances of success in drug development.

Software Used

In all the calculations SIMCA-4.41 for PC was used. SIMCA is available from
Umetri AB, Box 1456, S-901 24 Umea, Sweden.
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3.3 Total Response Surface Optimization

Lowell H. Hall

Symbols

oy Molecular connectivity chi index of order, m, and type, ¢; with the v’
supercript, the valence type index is meant; without the ‘v, the simple
index is intended

pC Negative logarithm of the concentration required to achieve a standard
biological effect, commonly stands for activity

u; Any structure descriptor which may be used in a QSAR equation

2x0 =% + %, the sum of zeroth order chi indexes

Ax0 =0 — 9 the difference between zeroth order chi indexes; called delta
chi zero

zx1 ="'y + '3, the sum of first order chi indexes

Axl =1ty — 'y the difference between first order chi indexes; called delta
chi one

3.3.1 Background

It has been observed, that, for a series of biologically active molecules, the difference
in structure from one molecule to another corresponds to a change in the biological
response. When there s systematic variation in molecular structure, there is also
systematic variation in biological activity. The QSAR paradigm is based on the
assumption that there is a relationship between molecular structure and bio-
logical activity, which arises from this systematic variation. This relation is a
specific manifestation of the form-function relation which is well-known in science.
Capturing the meaning of systematic variation has been the chief problem in QSAR
pursuits.

There are two broad classes of QSAR approaches. In one class, the relationship
is derived from linear free energy relations. In this approach physical properties are
used to represent molecules and to relate to an experimental measure of the activity
in a linear fashion [1]. In a methodology developed over the past 18 years, more
direct representation of the molecular structure have been achieved. In this
structure-based approach, descriptors represent important features of molecular
structure. A set of structure indexes has been developed from chemical graph theory
and will be described in a subsequent section [2 —6].



92 Lowell H. Hall

In the usual QSAR method, a structure variable, u; (physical property or structure
descriptor) is assumed to have a linear relation to activity:

pC = au, + ¢ (1)

It has been observed, however, that the relation between biological activity and
structure is not always linear, especially over a wide range of activity. As molecular
size increases, for example, the biological effect often increases to a maximum value,
and then decreases. This effect may be attributed to several phenomena, including
decreasing solubility and chemical activity, differential lipid transport, or size effects
at the receptor or enzyme active site. Such non-linear cffects are often represented
by a simple quadratic cxpression:

pC = a,u; + aui + ¢ (2)

Many useful non-linear equations of this type have been reported {1, 7, 11].

3.3.2 Representation of a Response Surface

When two or more structure variables are required to represent the variation in
the list of molecules, the non-linear equation becomes more complicated. In addition
to linear and squared terms, there are cross terms in the structure variables. For a
two-variable case:

pC = ayu, + byul + au, + byus + cuyu, +d (3)

The term “response surface” arises because of the contours generated in a plot of
u, versus u,. The right hand side of Eq. (3) expresses a general parabolic surface;
one can draw contours at levels of constant activity. Examples are given in Fig. |
and 2. The contours arc clliptical in shape; each ellipse may be described by two
axes. Because Eq. (3) represents a parabolic shape, the surface posscsses either a
maximum or minimum, corresponding to the extremum value of pC. In general,
the extremum point does not coincide with the u,, u, origin. Further, the ellipse
axes are not parallel to the uy, u, axes. The investigator may choose either to
transform the data or to change the origin and to align the axes; such changes are
not necessary for some aspects of QSAR, but do provide some additional
information.

If it is desired to put the contour ellipses into a standard form, it is possible to
perform two transformations on the general quadratic form of Eq. (3). By obtaining
the position of the extremum (maximum or minimum), one can translate the origin
to the location of the extremum point. The mathematical consequence of this
transformation, is that the linear terms disappear from the equation. Let u, ., be
the position of the optimum activity (extremum point) for variable 1, and for
variable two, u, .. Then, let the transformed variables be ¢, = u; — u, ., and
Gs = Uy — Us oy 11, thus, follows that,

pC = bigi + bag5 + bsgiqs + d (4)
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Figure 1. A plot of Ax1 (labeled Dx1) versus Zx1) for the ncurotoxicity data showing the relation
between the measure of molecular size (Xx1) and molecular clectronic structure (Ax1) with contour
intervals for pD. The contours intervals are for pD = —1.94, —0.65, 0.63, 1.92, 3.20, 4.49, and 5.78
(for the smallest oval). The points are labeled for the compounds as shown under plot symbol in
Table 1. The point of maximum activity is labeled with a + sign.

Finally, the general parabolic surface is characterized by the axes of the elliptical
contours. In general, the axes are not parallel to the u,, u, axcs. These axcs are
rotated by an angle 6. It is possible to find a rotation matrix in order to rotate this
surface, so that the axes are parallel to the u,, u, axes. This transformations B is
based on the cigenvectors of the matrix of coefficients in Eq. (5):

B:< by 1/21;3)
1/2bs  b>

The mathematical consequence of this operation, is that the cross term disappear.
The final form is then:

pC = hlq/lz + bzq’zz +d (5)

in which ¢} and g5 are the rotated coordinates with the origin at the surface
extremum point,

This analysis permits a simplified representation on the data space. The structure-
activity relationship under consideration, which is assumed to be quadratic in
two variables, actually has the appearance of two squared variables, shown in Eq. (5),
as compared to the more complicated form in Eq. (3). This analysis may seem
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Figure 2. A plot of Ax0 (labeleld Dx0) versus Zx0 (labcleld Sx0) for the bioconcentration data,
showing the elliptical contours for pBCF with the contour intervals shown at —8.20, —6.13, —4.06,
—1.99, 0.09, 2.16, and 4.23 (the smallest oval). The data points are shown as lower casc letters
corresponding to the plot symbol in Table 2. The maximum point is labeled as *+ . The pair of
points for i and j occur at the same coordinates as k and 1 as well as q and v.

to be rather cumbersome and, if it must be undertaken manually, it may not appear
worth the effort. Fortunately, most current statistical packages offer routines which
perform the complete analysis along with other diagnostic information. For example,
SAS carries out all the necessary operations in what is called proc RSREG [8]. This
algorithm determines whether the optimum point is a minimum or a maximum
point. Further, the eigenvectors may also be given along with the transformation
cquations. The statistical package may also warn the user, when the extremum
point is actually a saddle point, or that there is insufficient information to establish
the extremum point. All this information is determined, along with the usual
statistical information, including regression coefficients, correlation coefficients,
standard deviation and, so forth.

3.3.3 Structure Descriptors from Chemical Graph Theory

In the analysis of a response surface, any of the indexes from chemical graph theory
can be used as the structure variables, including molecular connectivity chi indexes,
kappa shape indexes (See Chap. 2.1), electropological state indexes (Sec Chapt. 2.2),
and others [10]. For this present discussion, we shall be using molecular con-
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nectivity chi indexes. There are several detailed presentations of the development
of these indexes and reviews of their uses [2, 3, 5, 6]. A very brief presentation is
given in Chap. 2.1.

3.3.4 Examples

3.3.4.1 Neurotoxicity of Fluorophosphorous Compounds

Mager [10] has reported the neurotoxicity of 21 fluorophosphates, fluorophos-
phonates and fluorophosphorodiamides. In this data set, there are cyclic and
non-cyclic alkyl portions of esters and amides along side one aromatic substituent.
The activity to produce ataxia in adult white hens was reported as mg/kg. The
doses were expressed on a molar basis and converted to the negative logarithm,
pD, which ranges from 3.20 to 5.92. The data are shown in Tabie 1. The molecular
connectivity indexes were computed in the standard manner with the aid of the
computer program Molconn-X, Version 2.0 [9]. All statistical analyzes were carried
out using the SAS statistical system [§].

The first order simple and valence chi indexes, 'y and 'y*, gave an excellent QSAR
equation:

pD = 1265 — 0.286('x)% + 1.124%¥ — 0.188('%")? + 0.275'y'y" + 0.661 ©)
r? = 0959 s =0.177 F =170 n=21

The observed, calculated and residual toxicities are given in Table 1. A partial report
on this analysis has already been given [11].

It is important to be able to obtain significant structure information from the
QSAR equation. It was possible to give a structure interpretation for this data set
directly from the two first order chi indexes. In this case, however, a somewhat
different form of analysis will be developed. The 'y and 'y' variables encode
information about both molecular size and molecular electronic structure. At this
point in the analysis, it is useful to separate these two types of information. Such
a separation may be accomplished by a simple transformation:

‘ (7)

These sum and diffierence variables have the following properties [5]. In simple
molecules, such as alkyl alcohols, halides, amines, etc., it can be shown that 'y* may
be partitioned into two terms, one arising from the functional group X, and the
other from the alkyl portion, X .. Such a partition is possible because of the additive
nature of the chi index. In the 'y index, on the other hand, all the terms are calculated,
as if the whole molecule were an altkane. Thus, 'y can be written as a sum of two
terms, X, for the skeletal portion of the functional group, and X ., for the remainder
of the molecule. The term, X, is the same for the two indexcs.
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Table 1. The observed, calculated and residual neurotoxicity values for the data sct of fluoro-
phosphatc compounds

4
R,—P—F
R,
Obs. Compound substitutents (R, R,) Plot oy DY Calet Res' Prest
Symbol?®
1 Di(propylamino) 5121 5518 586 576 010 0.12
2 Di(butylamino) 6.121 6.518 592 587 0.05 0.06
3 Di(propoxy) 5121 5142 566 5.56 0.10  0.12
4 Dibutoxy 6.121 6.142 563 571 —0.08 —0.09
5 Diisopropoxy 4833 4931 557 549 0.08  0.09
6 Di-sec-pentoxy 6909 7.007 543 558 —0.15 —0.18
7 Diethylamino) 4.121 4518 S0 525 —0.14 —0.15
8 Dipentoxy 7121 7.142 526 546 —0.20 —0.26

3.887 4.044 500 492 008  0.09
4.121 4.142 507 5.01 0.06  0.07
8.157 8255 520 481 039 082
3417 4335 494 492 0.02  0.03
3.061 3940 4.62 4.55 007 013
3.504 3505 4.67 445 022 0.25
8.157 8.607 472 488 —0.16 —0.68
3121 3397 409 425 —0.16 —022
3121 2967 403 391 012 0.21
8.978 7.551 323 325 —0002 —1.60
3977 4649 529 528 0.01  0.01
4477 4536 507 527 -020 —023
2561 2611 320 338 —0.18 —0.31

9 N,N’-dimethyl, ethoxy
10 Dicthoxy
11 Dicyclohexoxy
12 Isopropoxy, methyl
13 Ethoxy, methyl
14 N,N’-Dimethyl, mcthoxy
15 Dicyclohexamino)
16 Di(methylamino)
17 Dimethoxy
18 Di(2-Methylphenylamino)
19 [sopropoxy, cthyl
20 [sopropoxy, cthoxy
21 Hydroxy, mcthoxy

E = T O S S =m0 .0 N TS

Symbol used in plot in Fig. 1.

First order molecular connectivity index.

First order valence molecular connectivity index.

Negative logarithm of the neurotoxicity (mg/kg) [9].

pD calculated from Eq. (6) or Eq. (10).

pD — Calec.

The predicited residual, obtained by deleting the observation and then predicting its value from
the remaining n — 1 observations.

L T S-SR

Using the sum and difference variables and the partitions, described above, we
have the following equations

Xxl = IX + IXV = (Xag + Xalk) + (ng + Xulk) = 2)(ulk + (Xug + Xl'g) (8)
Axl =Ty — 1y = (Xug + Xan) — (Xrg + Xan) = Xup — X1y (9)

These two transformed structure variables may be understood as follows. First,
consider the difference variable, Axl. The terms for the saturated portions of a
molecule, X i, disappear entirely from the Ax1 variable. Furthermore, any functional
group or unsaturated portion is represented by X., — Xr.. This difference accen-
tuates the electronic contribution of heteroatoms or non-sigma bonding. X,, arises
from the calculation of 'y, as if the atoms were saturated carbon atoms, that is, as
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if they possessed only sigma clectrons. Since Xy, encodes both the sigma and the
non-sigma eletrons, the difference between X, and Xy, the Ax1 variable, encodes
only the presence of lone pair and pi electrons. Thus, the difference term encodes
electronic effects due to heteroatoms and unsaturation in the molecule.

Now, let us consider the sum variable, 2x1. In the sum variable Xx1, thc common
portion of the two chi indexes, X,i, is emphasized by a multiplication by 2, and
the functional group portion, Xy, is augmented by X,,. These terms encode much
size information and, augmented as they are in contrast to AxI, this variable is
largely a measure of the molecular size. The heteroatom contribution to size is
expressed by 'z" in the Xy, term. Skeletal size is encoded in both X, and X,,.

In terms of molecular electronic structure, the difference between sp* carbon
atoms and heteroatoms or unsaturated carbon atoms, is in the nature of the electron
distribution. In saturated carbon atoms, valence electrons are found in only
sigma-type orbitals, whereas in the functional groups, valence electrons are also
involved in pi and lone pair orbitals. The difference variable, Ax1, is a descriptor of
the structural contribution of the electrons in pi and lone pair orbitals.

The sum variable, £x1, encodes the whole molecular skeleton, including functional
groups. Based on the summation of all skeletal contributions and reflecting contribu-
tions of all atoms, 2x1 is expected to correlate with molecular size. To whatever extent
size is an important factor in biological relationships, such a sum variable was found
to be important. The difference variable encodes non-sigma electrons, which arc
those clectrons, which exert a major influence on chemical interactions. For singly
bonded nitrogen, oxygen and fluorine, Ax1 encodes lone pair electrons.

For multiply bonded nitrogen, oxygen, phosphorous and for aromatic rings, Ax1
encodes electrons in pi orbitals. Thus, use of these two variables permits the factoring
of structure information into molecular size effects and molccular electronic effects.

There is another important characteritic of these two transformed variables: Xx1
and Ax1 are orthogonal. Orthogonality here depends upon two factors. The original
variables, the chi indexes, must not be collinear, and they must be of a similar
magnitude. A simple scaling factor can always ensure that the two chi indexes are
approximately of the same magnitude. This orthogonality is very useful in QSAR
because it eliminates some statistical problems. A similar transformation can be
performed on physical property variables such as log P and MR (molar refraction),
as was achieved by Mager in his analysis of this neurotoxicity data set. However,
the transformed variables, linear combinations of log P and MR, have no physical
mcaning. Thus, use of this sum and difference transformation aids the statistical
analysis, but confuses the interpretation. Chi indexes enhance both statistical analysis
and structure interpretation.

The biological activity may be regressed against the two transformed structure
variables in the full quadratic model, which represents the biological response surface.
Since the transformation is linear, the statistical results are the samec, but the
coefficients are different:

pD = 1.195Zx1 — 0.049 x12 4+ 0.071 Axl — 0.187 Ax12
— 0.049 Xx1 Ax1 — 1477 (10)
r? = 0.959 s = 0.177 F =70 n=21
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Table 1 lists the compounds along side the observed, calculated and residual pD.
These results clearly indicate the quality of the analysis. The largest residual occurs
for compound 11 which contains one of the two cyclic substituents. No residuals
are greater than two standard deviations.

This equation represents a parabolic surface with an extremum point, either a
maximum or minimum in the activity and the analysis of the response surface can
now be performed. Of course, this analysis could also be performed on the equations
obtained by directly using the chi indexes. We were analyzing the equation based
on Xx1 and Axl, because we wished to emphasize the usefulness of these two
variables. The response surface equation is simplified by moving the origin to the
coordinates of the extremum point. That point corresponds to the point at which
the first derivatives are zero. The expressions for Zx1 and Axl at the extremum
point are as follows:

Exleq = Qazby — caz)/(¢* — 4bb3) (1
Axlew = Qashs — cay)/(c: — 4bihy) (12)

The symbols a, b, and ¢ refer to Eq. (3).

In this prepsent study, Xxl. = 12.757, and Axl., = —1.491, In the new
coordinate system, with the origin shifted, ¢, = Zx1 — Zxl., and ¢2 = Axl
— AXxlexw. When this substitution is made, the linear terms disappear and the
remaining equation has only three terms. If one uses ordinary regression on this
three-variable equation, essentially the same statistics result, but with a higher F
value, due to a reduced number of variables:

pD = —0.0497¢? — 0.187¢3 — 0.0493¢:g, + 6.090 (13)

This QSAR analysis can be discussed in terms of the variables, x| and Ax]. Xx1
is much larger than Ax1 as shown in Table 1, as a direct result of its definition. Xx1
also spans a wider range of values, from 2.992 to 15.058, compared to 1.099 to 3.132
for Ax1. Ax1 does not have as large a variance as Xx1; many compounds lie in a
narrow range, because they possess only two heteroatoms (in addition to the
phosphate group), either nitrogen or oxygen (See Fig. 1). Two compounds are
significantly different. Compound 18 is the only one with an aromatic ring and
compound 21 is the only phosphinic acid. [t can casily be scen that the electronic
structure in this data set does not vary much. This electronic variation is directly
represented by the variation in Axl.

On the other hand, there is significant variation in molecular size in this data
set. This variation, encoded by Zx1, is largely responsible for the toxicity variation,
with the exception of compounds 18 and 21, which possess the lowest values.

In a plot of the data on the £x1, Ax1 axes (Fig. 1), most compounds fell within
a band, but compounds I8 and 21 were exceptions. Furthermore, it was noted that
compounds with an alkyl substituent, directly on the phosphorus, were situated in
the region around Axl = —0.8 to —0.9, amides around —0.4, and ecsters near
Ax1 = —0.1. Using this Xx1, Ax] form of analysis, it could clearly be seen that
size variation was very important in this data set. Some useful clustering of
compounds can be achieved with chi index plots based on x1 and Ax1,or 'y and '
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Based on the regression model, the maximum toxicity and the values for the
variables at the maximum point may be obtained from the condition, ¢, = ¢, = 0.
This extremum point is a maximum in this data set, with pDum.x = 6.09, Zx1max
= 12.76, and Ax1 .., = —1.49. Based on the definition of Xx1 and Ax1, the chi index
values at the maximum are, 'ymax = 5.63, and 'yh.x = 7.13. No compound in the
data set corresponds to these values although compound 2 is the closest. In fact,
the maximum point does not lie within the actual data set but just outside as shown
in Fig. 1. If one wishes to use this data sct as an aid in designing compounds of
lower toxicity, then one should design compounds with chi values, which are far
from these values at the maximum. Based on the significance of Zx1 and Dx1, one
would look for a greater size, resulting from increased alkyl portions, or for smaller
molecules with a greater electronic contribution from heteroatoms. Also, introducing
more size, with a much greater contribution from pi and lone pair clectrons, would
result in a molecule being further away from the maximum point on the response
surface. Compound 18 illustrates this point.

3.3.4.2 Bioconcentration of Chlorinated Phenyls and Biphenyls

Another area of significant interest, besides the toxicity of chemicals, is the ability
of chemical substances found in the environment to accumulate in organisms. This
concern is especially important for aquatic organisms. Sablji¢ and Protic¢ [12] have
published an analysis of a set of chlorinated organic molecules, using molecular
connectivity indexes. The measured bioconcentration values were expressed on a
molar basis and then converted to the negative logarithm pBCF.

In their analysis, Sablji¢ and Proti¢ used a simple quadratic relation between
bioaccumulation and structure, which was based on the second order valence chi
index. They included 17 compounds in their test set an then predicted four other
compounds. Their chi equation gave predictions which was in very good agreement
with experimental values.

We expanded the investigation of this data set to a full two-variable parabolic
relation, so that a response surface could be generated and analyzed, and we included
all 21 compounds. We examined the zero, first, and second order valence chi indexes.
The chi indexes were computed using Molconn-X [9]. We found that a very good
full quadratic relation could be built using both the simple and valence zero order
chi indexes, as follows:

log BCF = —0.464% — 0.560(°)% + 1.872%" — 0.788(%%") + 1.327% " — 3.833
r2=0972 s=021 F=110 n=22 (14)

When the sum and difference transformations were performed, similar to Egs. (8)
and (9), the following relation was obtained:
log BCF = 0.704 £x0 — 0.015 (Zx0)*> — 1.168 Ax0 — 0.678 (Ax0)?
+ 0.094 £x0 Ax0 — 3.833 (15)
2 =0972 s =021 F =110 n=22
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Table 2. The observed, calculated and residual biconcentration factors for the data sct of
chlorinated organic compounds

Obs. Compound Name Plot Oy Ove Jog BCF® Cale®  Res'  Prest
Symbol*

Chlorobenzene 5113 4521 1.08 .16 —0.08 —0.19

4-Chlorobiphenyl
2,4.4'-Trichlorobiphenyl

10 2,2,5-Trichlorobiphenyl

11 2,244 -Tetrachlorobiphenyl
12 2,255 -Tetrachlorobiphenyl
13 2,2',4,5,5-Pentachlorobiphenyl
14 2,2'44 55 -Hexachlorobiphenyl
15 Diphenyloxide

16  4-Chlorodiphenyloxide

17  Endrin

18  Mcthoxychlor

19 Heptachlor

20 DDT

21 DDD

22 Dieldrin

9.096 7830 277 323 —046 —0.54
10.836  9.943  4.69 4.48 021 025
10.836 9943  4.69 4.48 021 025
11.707 11.000 486 476 0.10  0.11
11.707 11000 4.86 4.76 0.10 0.1
12.577 12.056 4.66 482 —0.16 -0.19
13447 13.113  4.66 4.66 0.00  0.00

8.933 7.182 229 2.14 0.15 027

9.803 8.238 2.87 314 —027 036
13.533 13.883 3.6l 363 —0.02 —0.03
15.458 13914 479 4.75 004 054
11.878 12267  3.76 390 —0.14 —0.19
14.044 13366 4.79 484 —0.05 —0.07
13121 12309 481 492 —-0.1t —0.12
13.533 13.883  3.76 3.63 0.13 020

)]
2 1,4-Dichlorobenzenc 5983 5577 233 2.16 0.17  0.24
3 1,2,3-Trichlorobenzene 6.853 6.634 2.69 292 —-023 —-0.29
4 1,2.4,5-Tetrachlorobenzenc 77724 7.690  3.65 347 0.18 0.23
S Pentachlorobenzene 8.594 8747 370 378  —0.08 —0.11
6  Hcxachlorobenzene 9464 9.803 393 3.87 0.06 0.09
7  Biphenyl 8.226 6.773 253 2.27 026 035
8
9

«g -~ roToBRg THFTTSNR N 6 TR

Symbol used to identify compound in the plot in Fig. 2.

Zero order molecular connectivity index.

Zero order valence molecular connectivity index.

logarithm of the experimental bioconcentration factor [12].

¢ pBCF calculated from Eq. (14) or Eq. (15).

" pBCF — Culc.

¢ The predicted residual, obtained by deleting the observation and then predicting its value from
the remaining n — 1 observations.

d

The observed, calculated and residual log BCF values are given in Table 2 along side
the compound names. The QSAR model is very good; there is only one observation
having a residual greater than two standard deviations. There are no trends in the
plots of residuals versus the observed log BCF values. Analysis of the response surface
revealed that the extremum point is a maximum and the coordinates of the maximum
are Xx0qy = 26.530, and AxO.,, = 0.971. In the original chi index the values are
Ovext = 13.750, and °y¥, = 12.780. A contour plot of the response surface is given
in Fig. 2 along with the positions of the 22 compounds in the data set.

In the contour plot, the families of compounds are clearly visible. The biphenyls
are arrayed along a straight line, as are the phenyls, which are parallel to the line
of biphenyls. Furthermore, the two diphenyloxides are on an adjacent parallel line.
These lines follow a direction, in which size is increasing due to the addition of
chlorine atoms, and the line also follows along a direction of increasing number of
lone pair €lectrons, due to the increase of chlorine atoms. As number of chlorine
atoms increases, Ax0, becomes more negative, because ' becomes larger relative
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to %: %%¥ > 9y for atoms beyond fluorine in the periodic table. The four compounds
which do not clearly fall into these three structure classes, fall in to a somewhat
different part of the plot, depending upon their size and number of lone pair
electrons. This display of molecular structures gives a clear picture of the structure
attributes which influence the bioconcentration property.

3.3.5 Conclusions

Representation of biological data on a parabolic surface is possible, when the data
set reveals quadratic non-linearity. In this case, it is useful to analyze the data, in
order to determine the extremum point. The analysis Icads to the determination of
the extremum point in a straightforward manner, determining whether the extremum
is @ maximum or minimum.

When the data are displayed as a contour plot, as in Fig. 1 and 2, the structure
information is more clearly visible. Further, it is easier to discern just how the
structure descriptors relate to the biological activity, so that molecular design
information may be obtained. It is not usually necessary to actually carry out the
transformations described above, in order to obtain the equation in the simplified
form. The typical computer output provides the information necessary for analysis.
If a particular computer program does not include a response surface feature, the
same information may be obtained by ordinary multiple linear regression.

It should be pointed out, that the number of observations in these two data sets,
21 and 22, is somewhat small for the five variables in the QSAR models, Egs. (6)
and (14). As a general rule, it 1s desirable to have at least five compounds for cach
variable. The QSAR equations contain five variables, including the linear, squared
and cross terms. There is a somewhat higher possibility for chance correlation in
these cases. If more data is available, these models could be improved by the addition
of such data. We have included the predicted residual for both cases, that is, the
residuals predicted for a given observation, when that observation is deleted from
the data set and then predicted from the remaining observations. As can be secn
in Tables 1 and 2, the predicted residuals (pres) are not poorly behaved, suggesting
that these models may still have predictive power, despite the less than ideal number
of obscrvations.

In this presentation, we have included an additional strategy for structure analysis.
The use of the chi indexes, especially in the sum/difference transformation, reveals
important structure features. The two examples described here make use of the zero
and the first order simple and valence chi indexes. Further, an enhancement in
structure information is developed with particular linear combinations of these
simple and valence indices. The sum variables (£x0, £x1) are highly, related to
molecular size. The difference variables (Ax0, Ax1) are strongly related to molecular
electronic structure, especially the role of the pi and lone pair electrons. We have
described these difference indices also as delta chi indices [3, 5, 13, 14]. Higher order
indexes may also be used in this same manner. This form of structure analysis
provides a basis for further design of molecules, to improve activity or diminish
undesirable effects, such as toxicity or bioconcentration.
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3.4 Disjoint Principal Properties
of Organic Substituents
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Abbreviations

CCD Central composite design
COMFA Comparative molecular field analysis
DOD D-optimal design

DPPs Disjoint principal properties

FD Factorial design

FFD Fractional factorial design

GOLPE  Generating optimal PLS estimations
MLR Multiple linear regression

PC Principal component

PCA Principal component analysis

PLS Partial least squares

PPs Principal properties

Symbols

pED<, Dose at which 50% effect is observed

o, Hammett constant for para substitution

Vi Steric constant related to molar volume

n Number of compounds

r Correlation coefficient

r? Explained variance

0? Cross-validated correlation coefficient

Wy First principal component from w-scales

L First DPP from set of lipophilic descriptors
e, First DPP from set of electronic descriptors
S First DPP from set of steric descriptors

h, First DPP from set of H-bonding descriptors
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3.4.1. The Design of Molecular Diversity

3.4.1.1 Combinatorial Chemistry

The strategy of structure-based molecular design has been proven to be very
successful in the pharmaceutical industry [1]. However, when structural information
about the biological target is lacking, the strategy of lcad finding involves the
synthesis and testing of widely diverse compounds. In the field of peptide chemistry
the generation of large peptide libraries has given new impetus to lead finding
programs [2]. Increasingly, the interest is being focused on non-peptidic small
molecules in combinatorial chemistry projects. Therefore, the definition of structural
diversity is of considerable interest.

The systematic variation of substituents in a molecule has been the subject of
various studies in the past. Besides synthetic feasibility and economic considerations,
substituents are chosen on the basis of properties, such as polarity, size and
H-bonding capacity. Although quantitation scales have been developed for such
substituent properties, it is still not straightforward to select a representative subset of
substituents that adequately covers the multidimensional parameter space. In this
chapter, we will illustrate how principal properties (PPs) and disjoint principal
propertics (DPPs), derived from a large set of property descriptors, can be used to
make rational choices. Using an experimental design approach, we have also
introduced a set of twelve representative organic substituents.

3.4.1.2 Statistical Experimental Design

As described in the previous Chap. 3.1 and 3.2, statistical experimental designs
should be used for complete coverage of the descriptor space by a minimum number
of compounds. Such strategies include factorial designs (FD), fractional factorial
designs (FFD), central composite designs (CCD), or D-optimal designs (DOD) [3.4].
The scope of such design plans is to limit the number of compounds to be synthesized
and to guarantee statistically sound structure-property correlations. Recently, some
of the authors of this paper have reported on the use of D-optimal design schemes
in QSAR studies [4]. Briefly, D-optimal designs are more general than FD and are
particularly appropriate for handling constraint problems, such as reducing of
polysubstitution on an aromatic ring to only a few sites.

3.4.2 Substituent Descriptors

Several important compilations of aliphatic and aromatic substituent descriptors
have been made [S—11]. These collections contain experimental and calculated
substituent descriptor values. Van de Waterbeemd et al. [S—7, 11] at the University
of Lausanne have compiled up to 121 variables for a set of 59 selected substituents,
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many many .
amino acid descriptors ~ substituent descriptors
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principal properties

z-scales w- or t-scales

| l

experimental design and structure-property correlations

Figure 1. The usc of principal properties in the design and in structure-property correlations of
peptides and non-peptidic bioactive compounds.

[5—7, 11] while Clementi et al. [8, 9] at the University of Perugia evaluated a longer
list of substituents, but for only 9 descriptors. Both approaches have their limitations.
The larger set of substituents is described by only a few descriptors and, thus, only
partly covers the descriptor space. The smaller set of substituents adequately covers
the descriptor space, but offers limited choices for substitution.

3.4.2.1 Principal Properties (PPs)

The information content of large data tables can be reduced to less dimensions by
pattern recognition techniques, such as principal component analysis (PCA) (see
Chap. 4.1). The latent variables, obtained as statistical scores of a PCA, are called
principal properties (PPs). These have been derived for amino acids, called z-scales

PPs (t-scales)

PCA | blockscaling ~..
Tl PPs (w-scales)

PCA AETSU .
86 d@——» Ilpophlllc
autoscaling _..- Steric
_______ i electrostatic
------- H-bonding

PCA | disjoint =" g?e;?g)logical)

8 DPPs

Figure 2. Strategies to derive principal propertics (PPs) and disjoint principal propertics (DPPs)
from a set of 86 descriptors for 40 common organic substitucnts.
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Figure 3. Loadings plot of the first two principal properties using the 86 descriptor 40 substituent

data set. Descriptor numbering according to van de Waterbeemd et al. [6.7].

(see Chap. 3.2), as well as for organic substituents, called w-scales [3, 6] or t-scales
[8,9]. Such PPs can be used to describe the substituents or amino acids in
structure-property correlation studies. Furthermore, they arc of great interest in
experimental design strategies (Fig. 1). They have the interesting property, in that
they are orthogonal and can, thus, be used in multiple linear regression (MLR)
studies. The w, and ¢, scales, already mentioned, describe mainly steric features,
and w, and t, encode electronic aspects of the substituents. However, these PPs
contain the generally recognized substituent properties (lipophilic, steric, electronic,

and H-bonding) with contributions of each in each PP.
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Recently we have reconsidered these data sets and performed a study, which is
aimed at obtaining a unique set of PP scales for use in physical organic and medicinal
chemistry [12]. The strategy described below is outlined in Fig. 2. These studies
include the set of 86 descriptors, described by van de Waterbeemd et al. [7] with slight
modifications to the Verloop parameters, B2 — B4. The analyzes were restricted to
a selected set of 40 substituents, for which most experimental data were available.
The PC scores or PPs for the other 19 substituents were obtained by projection
to the models of the training set. PCA on the autoscaled data yielded five principal
components, describing 32%, 27%, 10%, 8% and 4% (cumulative 81%) of the data
respectively. It might be questioned as to whether this is, indeed, sufficient for the
calculation of significant and informative PPs. The loadings plot of the first two
components (PPs explaining 59% of the variance) arc reported in Fig. 3. In this
plot five groups of descriptors were identified, which is partly consistent with our
previous findings. These include the already mentioned lipophilic, steric, elec-
tronic/electrostatic and H-bonding properties of the substituents, as well as a diffuse
group of topological descriptors, which are difficult to interpret. The previously
mentioned w-scales were obtained in the same way [5, 6], which also include 3D
CoMFA-derived field properties [7].

In order to eliminate the effect of the different size of each group, blockscaling of the
descriptors can be applied, using an approach, which has previously been used to
derive t-scales [9, 13]. Since PPs, derived either by autoscaling or blockscaling,
include mixed contributions from all five main groups of variables, we followed a
conceptually different approach by considering disjoint descriptor matrices.

3.4.2.2 Disjoint Principal Properties (DPPs)

Leaving out the topological descriptors, PCA was performed on four sets of
descriptors. The first two significant components of each, called disjoint principal
properties (DPPs), are reported in Table 1. In contrast to PPs, these DPPs are not
orthogonal to each other, and are partly intercorrelated (see Table 2). In particular,
the first lipophilic and H-bonding DPPs are collinear, which can be understood in
the light of recent work on the information content in log P values [14, 15].
Orthogonality of DPPs is not a problem, as long as partial least squares (PLS) is
used for data analysis instead of multiple linear regression (MLR).

3.4.2.3 Selection of Representative Substituents

In Tablc 3, the substituents are grouped according to their subspace in the DPP
space. The sequence of signs, defined with respect to the mean value of each column
in Table 1 for the training set, is steric (s), electronic (), lipophilic (1) and H-bonding
(h), and refers to the first property only. Owing to the collinearity among some of the
scales, several subspaces are void and some subspaces are more populated than
others. Thus, although the selected 59 substituents seem to be optimally chosen,
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Table 1. Disjoint principal properties of common organic substituents

Explained 62 13 77 18 94 2 69 10
variance %
DPP s S5 e e, I 1, I, h,
a)

1 —Br 7.308 —4.285 — 4.853 —3.677 1.159 0.776 0.659 —0.408

2 —Cl 5.344 —3.553 — 4.828 —3.699 0.810 0.724 0.625 —0.400

3 —F 2.935 —2.385 — 4.364 —5.045 —0.266 0.559 0.276 0.034
4 —1 9.859 —4.859 — 4479 —3.315 1.810 0.818 0.096 —0411

5 —NO, 8.622 —5.375 - 9929 —3.029 —1.318 0.546 3804 —1.121
6 —H 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 —OH 3.840 —2.066 — 0.528 —5.170 —2.080 0.639 4.200 1.573
9 —NH, 4519 —-2.110 1.976 —5.203 —2.623 0.178 4919 1.566
10 —SO,NH, 2.765 —6.756 — 7014 —1.380 —3.885 0.194 8.309 0.297
11 —CF; 10.138 —7.693 — 6.288 —1415 1.321 0.540 0816 —1.099
13 —SO,CF, 16.950 —8.764 —11.121 —3.140 0.111 —0.536 6377 2997
15 —CN 6.003 —2.385 — 8476 —2.406 —1.621 0.498 3045 —0.5%2
17 —NCS 10.212 —1.801 — 6954 —4.035 1.612 0.744 2354 —0.739
18 —CHO 6.764 —3.235 — 5343 —1.117 —1.713 0.401 3247 —0.673
19 —COOH 8.541 —3910 - 5.081 —0.904 —1.254 " 0.556 5.041 1.343
20 —CONH, 9.356 —3.653 — 5014 —0.789 —3.443 0.311 7.042 1.084
22 —CH, 5.217 —2.336 1.035 —0.686 1.125 0.064 0013 —0.055
23 —OCH3 7.352 —1.812 — 1.103 —4.761 ~-0911 1.004 3084 —0.04]
24 —CH,OH 7.235 —2.300 - 0.203 —0.499 —2.267 —0.178 4228 1.547
26 —-SO,CH;4 13.825 —6.616 — 8994 —2.657 -3.159 -0.054 6.147 —1910
28 —NHCH, 7477 —1.542 3.527 —5.081 —1.494 0.558 4.809 1.284
32 —COCH, 10.033 —4.151 — 5426 —0.628 —1.343 0.463 3756 —0826
33 —COOCH; 12.236 —4.746 - 5125 —0.959 —0.490 0.565 4198 —0953
39 —C,H; 8.660 —1.877 1.042 —Q.515 1.970 —0.038 —0.154 —-0.072
41 —N(CH,), 10.572 —2.640 2.687 —6.346 -0.379 0.781 3.640  —0905
42 —C H;q [1.076 —3.711 0.982 —1215 2.164 0022 —0.292  —0.002
43 —COOC,H; 14.572 —3.697 — 5140 —1.023 0.496 0.632 4124 —-0.896
4 —C,H, 11.350 —1.278 0.845 —-0.516 2.968 0.036 -0.237 0030
45 —CH(CH,), 12.263 —4.399 1.000 —0.646 2919 0.078 —0.209 —0.044
48 —-C,H, 14.330 —0.254 1.064 —0.621 3.995 0.132 0023 —-0.034
49 —C(CH,); 15.305 —6.877 1.354 —0.528 3.848 0477 —0.106 0.031
50 —OC,H, 15.554 0.962 — 0895 —5.077 2.335 1.043 3060 —0.784
51 —NHC,H, 16.283 0917 4.063 —0.492 1.348 0.908 5.231 1.206
52 —N(C,H;), 17.661 —4.007 3734 —5862 1611 0.948 4366 —1.035
53 —C, H,, 16.652 0.907 1.166 —0.307 5.001 0.211 0023 —0.034
54 —C,H; 16.333 —2.924 — 0.763 —1.067 3.626 0.545 0349 —0.211
55 —OC/H; 17.396 —1.283 — 2.625 —4.764 1.649 1.260 2893 —0473
57 —C(H,, 18.812 —1.009 1.201 —0.634 5112 0136 0095 0.215
58 —COCHq 19.703 —2.742 - 5.321 —-1.292 0.944 0.844 4308 —0.999
59 —CH,CH,Ph 20.018 0.251 0.929 —0.994 5.034 0.249 0.004 —0.025

b)

8 —SH 6.428 —2.899 - 3.070 —2.390 0.351 0.607 1.745 [.460
12 -OCF, 11.299 —3.682 — 5.358 —2.681 —0.069 1.321 3897 —2.057
14 —SCF, 13.233 —4.157 — 6.275 —1.935 1.248 (.873 2454 —1942
16 —SCN 10.138 —2.651 - 7318 —3.069 0.086 0.767 3239 —0981
21 —OCONH, 10.530 —2.121 — 3.093 —0.946 -2.526 0.248 6912 1.026
25 —-NHCONH, 11.396 —-2970 — 0.313 —3.547 —2.987 0.494 7.314 1.250
27 —SCH, 9.575 —2.388 — 1.694 —3.296 0.655 0.514 [.296 —0.728
29 —C,H 6.879 —2.291 - 3014 —1.177 0.478 0.283 0.420 0.236
30 —CH,CN 9.580 —2.521 — 2.554 —2.594 —1.506 —0.096 3.590  —0.812
31 —C,H, 7.902 —2.388 — 0.809 —1.042 1.249 0034 —0.118 0.005
34 —OCOCH; 10.899 —1.694 — 4561 —-2.969 —1.715 (.855 5473 —1.202
35 —CH,COOH 11.514 2723 - 2577 —1.066 —1.396 —0.191 5.615 1.031
36 —OCH,COOH 12550 - [.575 — 1.464 —0.770 —1.928 0.235 6.932 0.70%
37 —NHCOCH, 12.149 —2.341 — 2794 —4.039 —2421 0.523 6.450 0.827
38 —NHCOOCH,; 14053 —2.832 — 0.895 —2.997 —0.838 —0.063 6.204 0.872
40 —OC,H; 10.100 —1.099 - 1278 —4.198 0.209 0.812 3302 —0.686
46 —OC;H, 12927 —0.134 — 1193 —4.448 1.267 0932 3454 —0.721
47 —OCH(CH,), 13.233 —-1.690  — 0.58% —6.218 0.995 0.788 3454 —0.721
56 —NHPh 17.863 —1.159 1.082 —4.848 0.829 0981 5.126 1.242

a) Calculated; (b) Projected. Substituent numbering as given by van de Waterbeemd et al. [6, 7]
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Table 2. Correlation matrix (r) of disjoint principal properties

Sy Sy e, ¢, 1 [, Iy h,
S1
S5 0.02
€y 0.12 0.58
¢,y 0.07 —0.08 —0.05
I8 0.46 0.27 0.38 0.20
[, 0.12 0.21 —0.04 —0.54 0.06
Iy 0.14 —0.17 —0.27 —0.24 —-0.77 0.08
h, —0.23 0.37 0.51 0.12 —-0.20 —0.19 0.14

we were quite confident that they would cover a large part of the descriptor space.
Using D-optimal design implemented in the DESDOP program [4], a sclection of
twelve representative substituents were made [12]. These included: H, Br, OH, CN,
COCH;, CH;, SO,CH;, N(CHj3),, C(CHjy);, CgHs, COCH, and OC,H,. Alternatives
may be selected from the various subgroups in Table 3.

3.4.3 An Example of DPPs in Design and Analysis

In a previous study on substituent descriptors the potential use of w-scales (PPs)
was illustrated with a series of tricyclic neuroleptics [7] (Fig. 4). Using MLR and
the classical Hansch approach the following equation between ataxia in mice and
a steric (Vy) and an electronic descriptor (o) was found:

pPEDs, = 0.5330, + 0.0366V; — 0.000621 1
n=16; r*=0.76; 0% =042 (I

Using the PPs, obtained as w-scales, and again MLR for the analysis, a significant
equation was obtained, but which was difficult to interpret,

PEDS, = —0.085 (w,)? + 0.134(w,)> —0.297(w,)? + 1.343 2)
n=16; 2 =079; 0%=059

where Q7 is the cross-validated correlation coefficient (r2,).

S

N

k/ Figure 4. Decsign and data analysis of tricyclic neuroleptics
N\ using the DPP approach. R = Mg, Et, i-Pr, -Bu, H, OH,
CH; —NH,, F, Cl, Br, —CF;, --OMe, —COMe¢ or —SMe.
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Table 3. Classification of substituents in the DPP space. The signs represent deviations from the
mean values in Table ! for s,, e, I;, h;, respectively. The underligned substituents form a
representative set of substituents with broad coverage of substituent propertics

—— - ——— ——+- — =+ -+ - -+t bt o
-F —NO, —Br ~H —OH —CH,
~SH  —CN —Ci —NH, —C,H,
—-C,H —CHO —1 —OCH, —SCH,

—COOH —CF, ~CH,0OH  —C,H,

— CONH, —NCS — NHCH,

—COCH, —N(CH,),

—SCN ~0C,H;

—OCONH,

—CH,CN

—OCOCH,

By reanalyzing these biological data, using a PLS model obtained by GOLPE
[16] with the present DPPs, and after transformation to pseudo-regression coeffi-
cients [17], one obtains the following:

pED5() = —033() 12]’12 — 0081 ]’lz + 0032 11.5'2 - 0030 111112 - 0004 th1 + 1021
n=16; 0? =075 (3)

It is remarkable that there are mainly cross terms in this equation, and furthermore,
that H-bonding properties are quite important. This was not apparent from
Eq. (1).

By using a D-optimal design approach it can be shown that a similar equation
can be derived by using only nine substituents, namely, ¢-Bu, OH, NH,, H, CH,,.
F, SCH;, Cl and COCH,. This illustrates the way, in which the number of
compounds in a series can be reduced to the strict minimum, thus, saving on
resources for other subseries of compounds.

3.4.4 Conclusions

The present chapter describes a set of 8 new descriptors for 59 common substituents,
which have been derived from 86 original experimental and calculated variable sets.
These new descriptors are obtained from a disjoint analysis of four blocks of different
aspects of substituent effects, namely lipophilic, electronic, steric and H-bonding
effects. For each block, two new significant descriptors were derived. Applying a
D-optimal design strategy, these four pairs of disjoint principal properties (DPPs)
have been used to definc a well-balanced set of substituents, covering the descriptors
space as well as possible. These include H, Br, OH, CN, COCH;, CH;, SO,CH,,
N{CH;),, C(CH3;);, C(H, COC H, and OCH,.

It must be stressed that these DPPs are not orthogonal to each other and cannot
be used in multiple linear regression (MLR) data modeling, whercas they can be
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b=t oot +—++ + - +ob ot +++ + 4+ +
—SO,NH, —OC H, ~NHCONH, —C,H, —OC,H,
~S0,CF, —COC4H, —OCH,COOH —CH, — NHC,H,
-S0,CH, —SCF, ~NHCOOCH, —CH(CH,),  —N(C,Hs)
—COOCH, —C,H, —OC,H,
—CO0C,H; —C(CHy), —OCH(CH,),
~OCF, ~C,H,, — NHPh
~CH,COOH —C4H,
~NHCOCH, —CeH,,

— CH,CH,Ph

used, without any problem, in PLS modeling. The DPP approach might not be
considered satisfactory from a rigorous chemometric point of view. However, work
is in progress to explore how the present DPPs will compare with some rotations
of the w-scales, which cover the four main substituent effects.
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4 Multivariate Data Analysis of Chemical
and Biological Data

4.1 Principal Component and Factor Analysis

Rainer Franke and Andreas Gruska

Abbreviations

A Anilines

B Benzencs

BA Benzoic acids

B. /r. Bacillus fragilis A 22862

CNS Central nervous system

DBH Dopamine fi-hydroxylase

E. ¢l Enterobacter cloacae A 9656

E. co. Escherichia coli A 15119

E. fu. Enterococcus faecalis A 9809

K. pn. Klebsellia pneunoniae A 9664

M. mo. Morganella morganii A 15153

NB Nitrobenzenes

p Phenols

PAA Piperidinoacetanilides

P. ue. Pseudomonas acruginosa A 9843

PCRA Principal component regression analysis
PCMM Principal component analysis and multidimensional mapping
PhAA Phenylacetic acids

PhOAA  Phenoxyacetic acids

P. nii. Proteus mirabilis A 9900

PP Principal property

S. au. Staphylococcus aureus A 9537

S. ma. Serratia marcescens A 20019

S. pn. Streptococeus pieumoniae A 9585
TMIC Two-dimensional mapping of intraclass correlation matrices

Symbols

A

dy;

A
BC(DEF)
BRDu

Loading matrix (also factor pattern)

Loading of the j-th variable in the k-th principal component or factor
Corresponding normalized eigenvector

PPs for organic compounds

Decrease of diastolic (D) blood pressure in Wistar rats at dose a (after
logarithmic transformation)
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BRDb

BRSa

BRSb

CSA

2

t3

t4

t5

Rainer Franke and Andreas Gruska

Decrease of diastolic (D) blood pressure in Wistar ratsat dose b (after
logarithmic transformation)

Decrease of systolic (S) blood pressure in Wistar rats at dose a (after
logarithmic transformation)

Decrease of systolic (S) blood pressure in Wistar rats at dose b (after
logarithmic transformation)

Cavity surfacc area

Matrix of the ¢,

Basic effects operating in a system of biological tests

Error of data reproduction

Fisher’s F value

Inductive electronic substituent constant

Scores of the k-th factor

Communality of the j-th variable

Indicator function

Hydrophobicity parameter from HPLC

Eigenvalue of the k-th principal component

Maximal potency = log (1/IDs0)max

Minimal inhibitory concentration

Molar refractivity

Dipole moment

Partition coefficient n-octanol/water

Scores of the k-th principal component

Inhibition of DBH, Cu? excess

Inhibition of DBH, no Cu*" excess

pK, value of fusaric acids

pK,, value of fusaric acids

Hydrophobic substituent constant

p value according to Exner

Correlation matrix

Resonance polar electronic substituent constant

Correlation coefficient

Reduced correlation matrix

Real error

Standard deviation

Hammett constant

Analgesic potency log = (1/1D5,)of fentanyl derivatives measured after
t =1/32h

Analgesic potency log = (1/1Ds,) of fentanyl derivatives measured after
t =1/16h

Analgesic potency log = (1/IDs,) of fentanyl derivatives measured after
t=1/8h

Analgesic potency log = (1/IDs) of fentanyl derivatives measured after
t =1/4h

Analgesic potency log = (1/1D5,) of fentanyl derivatives measured after
t=1/2h
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t6 Analgesic potency log = (1/ID,) of fentanyl derivatives measured after
t=1h

t7 Analgesic potency log = (1/IDs,) of fentanyl derivatives measured after
t=2h

t8 Analgesic potency log = (1/1D,) of fentanyl derivatives measured after
t=4h

19 Analgesic potency log = (1/1D5,) of fentanyl derivatives measured after
t=6h

tio Analgesic potency log = (1/IDs,)of fentanyl derivatives measured after
t=28h

to— 1, PPs for amino acids

w Matrix of the w,

Wy Corresponding weight for the k-th test

Y Matrix of biological data

Vij Measurement for the i-th compound in the j-th test

Iy — Zy PPs for amino acids
z4 PPs for amino acids

4.1.1 Introduction

If measurements are made on a number of objects, the results are usually arranged
into a matrix, which is called a data table. The measurcments arc traditionally
placed in the columns of this matrix and called variables, and the objects are
associated with the rows. We shall follow this convention, although, from a purely
mathematical point of view, there is no need for such a decision and, in addition,
objects may be regarded as variables in the same right as measurements.

As long as data tables are two-dimensional (two rows or two columns), they can
be quickly visualized using, for example, two-dimensional plots in a cartesian
coordinate system. For multidimensional data tables, this is no longer possible, not
only because of the abundance of entries, but also due to the complexity of data
structure, as these entries depend on variables, objects, and the interactions between
them. In order to understand such data in their entirety and to adequately deal
with their mathematical properties, methods of multivariate statistics are required.
Factor analysis methods, such as principal component analysis, factor analysis,
canonical correlation and (multiple) correspondence analysis, which all have been
applied to biological or chemical problems, (for reviews, see [1—13]) play an
important role here. Their main objectives are to display multidimensional data in
a space of lower dimensionality with a minimal loss of information, to cxtract the
basic features “behind” the data, and to visualize data tables into some pictorial form. if
possible, with the ultimate goal of interpretation and/or prediction. In this chapter,
principal component and factor analysis and their application in the field of medicinal
chemistry will be considered. Emphasis will be placed on practical aspects, which
will be demonstrated with selected examples; additional basic mathematical treat-
ments can be found, for example, in [14 —20]. Some typical applications of principal
component and factor analysis in medicinal chemistry are summarized in Table 1.
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A number of regression cquations will be presented in the following text. The
terms in brackets after the regression coefficients are the 95% confidence intervals.
n is the number of data points, r the correlation coefficient, s the standard deviation,
and F is Fisher’s F value.

4.1.2 Basic Principles

4.1.2.1 Principal Component Analysis

If for n chemical compounds (i = 1, ..., nj biological potencics are measured in
biological tests (j = 1, ..., m) the results can be arranged in a matrix which we shall
call the biological data matrix. If the tests are put into the columns (variables)
and the compounds into the rows (objects), then the matrix has the following form:

Y = (yij)n.m (])

where y;; is the biological potency of the i-th compound in the j-th test. In order
to give all variables (which may be on quite different scales) the same importance,
they are usually standardized by autoscaling according to,

Vi = (yj.originu] - fj.()riginul)/s_i.originnl (2)

where the index “original” refers to the original measurements which have a standard
deviation of §; yrigina- and a mean of J; iiginar

Autoscaled variables have a mean of zero and unity variance. If we refer
to measured values or measurements in this chapter, it is always tacitly assumed
that the measurements have already been autoscaled according to Eq. (2).

If the biological tests considered are similar from a biological point of view, the
following assumptions can be made:

1. The observed biological response in each test depends on a number of fundamental
effects, termed here “basic effects”, for example, transport through a membrane.
binding to a biological target, etc.

2. These basic effects are present in all tests, but to varying degrecs.

3. The biological response, y;;, may be expressed as a linear combination of these
effects.

If there are p such effects, e,, (k = 1, ..., p), we then obtain:
n
Yij = Z CikWy;j (3)
k=1

or, in vector and matrix notation,
p
Yi= ) ewy (4)
k=1

Y = (eik)n.p (wkj)p.m =EW (3)
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where the variable, y;, represents the results from the j-th test, and Y rcpresents
the biological data matrix. The value of ¢, reflects how strongly the k-th basic cffect
is affected by the i-th compound. Thus, ¢, is characteristic of the compounds and
their properties. The weights, w, ;, are a measure of how important the corresponding
¢, are in cach biological test. They arc characteristic of the biological tests, since
it depends on the properties of the biological systems, which basic effects operate
and to what extent they in operation.

Let us consider a simple example, where only two basic effects (p = 2) operate
in three biological tests (m = 3). Then, Eq. (3) takes the following form,

Vit = €W + €Wy
YVio = €Wz + epwy, (6)
Yiz = € W3 T €aWs3

and the matrices W and E become:

tests
e
b f
a f
Wo— s C<W11 Wiz ”’13) (7)
i ¢ \War Wiz Wai;
c t
S
basic effects
C
0
m |€i1 €i2
p .
E =0 € € (8)
u
g €y (%)
S

With the matrices W and L, the features of the chemical compounds arc complctely
separated from those of the biological tests, since E solely depends on the propertics
of the molecules, and W solely on the characteristics of the tests. Such a separation
may provide a much deeper insight into the data structure and its underlying cffects.
than would be obtained from the global response data. In addition, the dimensionali-
ty of the data spacc is reduced. While the original data matrix has n rows and 3
columns, the matrices £ and W have only two columns or two rows, respectively.
Geometrically, the objects and test systems can now be represented in two-
dimensional coordinate systems, spanned by the column vectors of E or the row
vectors of W, respectively, while, originally, the respective coordinate systems would
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have had 3 (columns of Y) or n (rows of Y) axes. If, in addition, the two effects
could indeed be labeled “transport™ and “target binding” by a suitable procedure,
we would have gained considerably more information about the data and would
have actually obtained information about the basic effects, which are operating and
which underly the entire data, without having measured them.

The model underlying principal component analysis exactly corresponds to
Eqns. (3) and (4): the elements of the (standardized) data matrix Yare described by
a sum of product terms where, in each term, one factor i1s characteristic of the
objects (compounds), and the other factor is characteristic of the variables
(measurements, such as for example, from biological testing). In the terminology of
principal component analysis this model becomes:

P m
Yij = Z Pya; + Z Pi(l?)al(c_(i)) 9

k=1 k=p+1
The P, in Eqn. (9) are called principal components (PCs) and are sometimes also
referred to as “scores”. They correspond to the ¢, in Eqn. (3) and characterize the
features of the compounds. Mathematically speaking, the P, are orthogonal vectors,
which are so determined that the original data matrix is reproduced. Analogously,
a,; in Eqn. (9) corresponds to the weight, wy;, in Eq. (3) and characterizes the test
systems. The “weight”, a;;, is a measure of the contribution of the k-th PC to the
Jj-th variable, y; (j-th column of ¥). As a consequence, a high valuc of |a,
signifies a high importance of the k-th PC for the j-th variable. The j-th variable is
then said to be highly “loaded™ in the k-th PC, and the a5 are, thercfore, also
called “loadings™.

Mathematically, the number of PCs, which can be extracted from a data matrix,
is usually equal to m, the number of original variables, v, With this number of
components, the data matrix can be exactly reproduced. This, however, is not a
desired result, since it would not lead to a reduction of the dimensionality of the
data space. What one wants to find is the minimum number. p, of components,
such that, in the space which they span, the original variables can be represented
without loss of relevant information. It is only then that the components will truly
reflect the basic effects “behind™ the data, in keeping with Eq. (3). These p components
are represented by the first term in Eq. (9), while the components with the superscript
“QO” in the second term represent “irrelevant™ or “residual” information comprising
errors of measnrement and, possibly, some error in the model. The objective of
principal component analysis is to only evaluate the first sum in Eq. (9); the
resulting components will then reproduce the data matrix, Y, within residual error.
The following relation, which will not be derived here, serves as a starting point for
evaluating the loadings and components:

R=4A4" (10)
R denotes the correlation matrix of the data, and A is the loading matrix:
4= (akj)p.m (11)

In order to solve Eq. (10), an additional condition is introduced, whereby the
components are determined in scquence, in such a way that the first component
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accounts for the largest amount of correlation in R, the second component for
the next largest amount of correlation in R, and so on. An cigenvalue problem,
then, ensues according to the following,

Roy, = Ay (12)

where 4, are eigenvalues, and «, the corresponding orthonormalized eigenvectors.
This equation is solved by diagonalizing R using standard procedures [21, 22]. Scores
and loadings are obtained from the resulting eigenvectors and eigenvalues. The
cigenvalues represent the variance contributions of the components. As a conse-
quence of the procedure, the first component will have the largest, and the last
component the smallest eigenvalue. Variances and correlations in the principal
component model are related to the loadings and are defined as follows:

1. Variance of variable y; extracted by the k-th principal component, is equal
to ag;
2. The variance of y; extracted by p components is equal to

p
Z a;f_,-

k=1
3. The variance contribution of the k-th principal component is equal to
A= ai
J

4. The total variance extracted by p components is equal to

i Zafj

k=1

5. The correlation between variables y, and y, is given by the following:
)'q,. = ; akqakr

In order to find the minimum number of components, p, necessary for data
reproduction within residual error, the components are added step by step to the
model according to Eq. (12). After each step, the data matrix is reproduced, and
the procedure is continued until only non-systematic “noise” remains. A criterion,
which was sometimes used to recognize this salient feature was to hccept only
components with eigenvalues > 1. However, this criterion seems to be much too
narrow [23, 24] and may lead to the rejection of components, which are important
for explaining the data. A better alternative is the Scree plot [25], where the residual
percent variance (or simply the eigenvalues) are plotted against the number of
components. The resulting curve should descend steeply and level off, if a limit
corresponding to residual variation is approached. This point is used to deduce
the number of components. Some other useful criteria are given in the following
points.
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L

So many components are extracted that the average error of the reproduced data
becomes equal to the average experimental error. The average error, ¢, of data
reproduced using & principal components is:

h
&, = (1/nm) [Z Z <y,-_,- — AZI P,-,‘,ak‘,)] (13)
joi o= .

This criterion requires that the average experimental crror of the variables is
known and that therc is no model error.

If the experimental error is not known, the so-called y value, according to Exner
[26], can be used:

Il )
Pn = " (mn) — h (

where y_ is the total mean. For precise chemical or physical measurements. so
many components should be added that yp, < 0.1. In the case of less precise
biological data, y, should be within the range of about 0.2 to 0.3.
The indicator function, IND, introduced by Malinowski [4, 27, 28], is also very
useful:

IND = RE/{m — h)? (15)

RE is the so-called “real error” and is given by the following equation:

172
RE = {[l/mn(m — ) [ YooAYY 1,-’} (16)

k=h+1 I B d
The indicator function passes through a minimum for the correct number of
components (h = p). The occurrence of a minimum also proves that the data
analyzed can be correctly expressed by the model of principal component analysis.
Cross-validation 1s strongly recommended and is extensively used. especially by
Wold et al. [29]. In this technique modified data scts are generated by eliminating
small groups of objects, until each object has been left out once. and only once.
For each modified set a principal component model is generated, which is then
used to predict the value of the left out compounds. Then the quantity “ PRESS”
(prediction error sum of squares) 1s computed:

PRESS = Z Z (vi; — vi; (predicted))? (17)

4

The number of components is choosen so that PRESS is minimized.

If the minimum number of principal components, necessary to reproduce the data
within experimental error, has been found, the principal component analysis. as
such, 1s essentially complete. The practical gains so far is a reduced dimensionality
of data space and that the number of relevant components reflects the true
complexity of the data in terms of basic effects. Further evaluation and interpretation
of the results can be achieved in several ways:
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Matrix 4 will give information about the internal relatedness of the variables
(c.g. biological tests). Variables, having the same information content, will give
high values for || in the same component. A grouping of variabics is, thus,
obtained. H the first two components already account for a sufficiently high
proportion of the data variance, this can then be visualized by a simple
two-dimensional plot with the loadings of the first two components, a4, and a,,
as axes (loading or factor weight plot). In such a plot each variable appears as
a point, the points of related variables being close together (correlation coefficient
rapproaches 1) or symmectrical with respect to the center of the plot (r approaches
—1)". To obtain a numerically comprehensive picture of the relatedness of
the variables, the loading matrix 4 can be rotated by multiplying with a rotation
matrix. This corresponds to a rotation of the axes of the original plot, so that
they pass through clusters of points, representing closely related variables and,
thus, basic effects (see Fig. 1). Usually, an orthogonal rotation (VARIMAX
rotation) is used, where all axes are rotated about the same angle. For mechanistic
reasons, the basic effects need not necessarily be uncorrelated, i.c. in some cases,
oblique rotations (different angles of rotation for different axes) can produce the
simplest and most interpretable structure of the loadings.

The objects (compounds) can be plotted in a coordinate system with P, as axcs
(score plot). If the two first principal components account for a sufficiently large
proportion of the data variance, this plot is then two-dimensional. Objects may
be clustered with respect to a certain property (which allows classification) or
other characteristic patterns.

Identification of the “abstract” components with physically meaningful parame-
ters will give an indication about the physical naturc of the basic effects which
underly the components and will eventually lead to multivariate RSARs. To this
end, a special target rotation procedure introduced by Weiner and Malinowski
(for details, see Ref. [4]) can be used. First, the parameters which are believed to
be related to the components must be selected, either from a theoretical model,
or from educated guesses (analogous to the Hansch analysis). The components are
then rotated into vectors of these parameters (e.g. n, 0, etc.), also autoscaled, which
are called test vectors; the elements of the test vectors are the values of the
corresponding parameters for the objects (compounds) of the data matrix. If the
target rotation has been successfully performed, the data can be reproduced by
the test vector ¢,. Eq. (9) is then transformed into,

r
Y, = ) taals + & (18)
k=1

where t;, is the value of the k-th vector for the i-th compound, ¢;; is the residual
including the sccond term of Eq. (9) plus the error of the target rotation, and a},
arc the elements of the rotated loading matrix, A®, obtained from:

AR = (agj)p.m = AQA1 (19)

! Such correlations may be difficult to detect. It is, thercfore, recommended to calculate a

correlation matrix, prior to factor or principal component analysis, in order to obtain a clear
picturc of all pairwise correlations to start with.
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The elements of the rotation matrix, @, are the results of least squares fits as in
multiple regression analysis, in which the test vectors are dependent variables, and
the components P, are independent variables. Eq. (19) represents a system of
“multivariate” equations (QSARSs) as in multivariate regression analysis, with the
original variables, y; (autoscaled measurements in the biological tests) as
dependent variables and the test vectors as independent variables.

In many cases, the primary objective is not a complete replacement of all
components by test vectors, but rather the interpretation or identification of
individual components with physico-chemical parameters. A much simpler
approach can then be used. The components (dependent variable), are correlated
with descriptor variables in a standard regression procedure. As a result,
regression equations, for each of the components considered, are obtained.

4. Principal components may also be used within the framework of more complex
methods such as PLS or SIMCA. Such methods will not be dealt with in this
text; instead the reader is referred to Chaps. 4.3 and 4.4.

4.1.2.2 Factor Analysis

Factor analysis (FA) is very similar to principal component analysis (for reviews,
please refer, for example, to Lewi [1], Rummel [14] and Harman [15]). The only but
essential difference is that in FA only a proportion of the data variance is considered
to be common to all variables. The remaining proportion is attributed to unique
properties of one variable at a time. With this in mind, Eq. (9) may be rewitten as
the following in order to obtain the model for FA.

yi
Yii = kzl St + G (20)

In this equation, the so-called common factors, f;, which span the common factor
space, replace the components in Eq. (9), and the g,; are, once again, the loadings,
representing the relations between factors and original variables. The ¢; are called
unique factors; their squared loadings, d?, which are called uniquenesses, comprise
the proportion of the data variance, which can be attributed to the unique variable
properties not involved in the common correlation structure. Factor analysis is the
method of choice in all cases, where such unique properties of variables occur, and
this is to be expected, when a data matrix contains variables, which are quite
different in nature and meaning and which are only loosely interrelated. In such
matrices, error variances differing in size are to be expected, even for autoscaled
data, which is another reason for applying factor analysis instead of principal
component analysis.

The common features (the basic effects), sought after in the data space, are
represented by the factors, f,. Their extraction from the given data is based on the
general assumption that only a certain proportion of the variability of, for example,
a biological test can be explained by the basic effects also present in the other
variables under consideration. As a consequence, only so much of the variance is
considered that a minimum of common factors results.
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The first objective of factor analysis is the evaluation of the loading matrix,

. A = (a) 2n

p.m
which is also called factor pattern in FA. This procedure is nearly the same as in
principal component analysis, with the only difference being, that instead of the
correlation matrix, R, the so-called reduced correlation matrix, R, is diagonalized.
R* differs from R in that the I's in the diagonal of the latter have been replaced
by the communalities hf. As a result, the reduced correlation matrix only contains
that proportion of the data variance, which can be assigned to the common factor
space. Representing this proportion of the data variance, the communality for the
Jj-th variable is defined as,

Ju
hi = ). ai (22)

k=1
and the variance of the j-th standardized variable then becomes,
si=hi +di =1 (23)

where d; represents the uniqueness. The uniqueness consists of the error variance
and the so-called specificity, the latter representing mechanistically meaningful
specific properties and systematic divergencies of the j-th variable.

Communalities must be estimated prior to the analysis. This can be accomplished
in several ways which will not, however, be discussed here. During the computations,
these estimates can be improved through iterative cycles. The number of relevant
factors, p, is usually determined from the corresponding eigenvalues. Only those
factors are considered significant, whose eigenvalues exceed a given borderline value
and which, therefore, account for more than a given minimum variance. The
borderline value is usually taken as representing an cigenvalue > 5% of the sum of
all positive eigenvalues.

Prior to interpretation, the factors are usually rotated in such a way that the
factor pattern simplifies as much as possible (Thurstone’s simple structure). This
structure is characterized by the property that a maximum number of variables lies
close to the coordinate axes when presented in common factor space (axes =
loadings), so that the largest possible number of factor loadings becomes zero
(Fig. 1). Thus, in the presence of a simple structure, the variables are divided into
mutually exclusive groups with, in an ideal case, non-zero loadings only in one
factor. Whereas the original factors are always orthogonal due to the method of
their extraction, the rotation can be orthogonal (VARIMAX rotation) or oblique.
In some cases, a simple structure is achieved only by oblique methods, which arc
also justified by the fact that the “basic effects”, underlying the data, must not
necessarily be uncorrelated.

Results from factor analysis can be evaluated and interpreted in much the same
way as outlined above for principal component analysis. The evaluation of the
factor scores, f;, however, is not as straightforward as in principal component
analysis. Since the rank of the factor matrix (common + unique factors) gencrally
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! in both factors. Rotation gives rise to the variables
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! groups, which have non-zero loadings in only one
4 factor.
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exceeds the number of variables, the fi must be estimated in an indirect way (see.
e.g. Harman [15]). Although it is somewhat laborious to estimate fi, it 1s worthwhile.
since the factors (scores) characterize the features of the objects of the data matrix
and can be handled in much the same way as the principal components (provided
that the proportion of the data variance, represented by the common factor space.
is large enough).

The deciston as to whether principal component analysis or factor analysis is to
be used, depends on the nature of the data. If the variables arc of a similar nature
and reflect the same mechanisms of interactions between objects and systems, and
if, in addition, the error variance of all variables is uniform and of comparable size,
principal component analysis can be applied. Factor analysis is the method of choice,
if the variables reflect very different processes with error variances of different sizes.
From a chemical or biological point of view, principal component analysis can be
used, if there is good reason to assume that the data can be described by Eg. (9)
with no unique contributions of single variables; this requires that a corresponding
theoretical model exists or that it is possible to derive one. If such a model does
not exist and nothing is known about the behavior of variables, factor analysis
probably is a good flirst move, which then operates as a model generator.
If then the communalities of all variables are grater than approximately 0.8, principal
component analysis can also be applied, which has the advantage that the scores
can be exactly calculated [30].

4.1.3 Applications of Principal Component and Factor Analysis
in Medicinal Chemistry

Some typical situations for the application of factor and principal component
analysis in medicinal chemistry are summarized in Table I. The examples, to be
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Table 1. Selected applications of factorial methods in medicinal chemistry

Objects Mecasurements Applicatons
Compounds Poteney in a set of parallel Relations between tests: recognition of
biological tests with similar redundancies and of tests with high in-
objects (e.g. bacteria, fungi) formation content
Compounds Potency in biological tests, Relations between tests (especially: in
belicved to be mechanistically vivo/in vitro): test of mechanistic hypo-
related theses, relevance of in vitro tests, sepa-
ration of pharmacodynamic and pharma-
cokinctic elTects
Compounds Potency in a biological screen Relations between tests: redundancy, se-
lectivity and mapping with respeet to phar-
macological profiles
Compounds Potency at different times Separation of different pharmacokinetic
processes (c.g., distribution/climination);
Separation of pharmacokinctic and phar-
macodynamic cffects
Compounds Various pharmacokinetic Separation of different pharmacokinetic

Compounds/

parameters

Various physico-chemical

Processes

Relations between parameters or between

Substituents parameters properties of compounds/substituents
Compounds; Various physico-chemical Design of optimal training scrics
Substitucnts parameters

Compounds/ Various physico-chemical Mapping/classification with respeet to bio-
Substituents parameters logical properties

Compounds; Various physico-chemical Derivation of principal propertics
Substituents parameters/measurements

discussed in the following subsections, have been selected to demonstrate the utility
of these methods in practical applications to real data and problems in medicinal
chemistry.

4.1.3.1 Data from Parallel Biological Tests

Frequently, a series of compounds is investigated in a battery ol parallel tests with
similar organisms, looking for the same type of biological activity. The main issucs
in this case concern redundancy and specificity. If redundancy is large, certain tests
can be dispensed with to save experimental work, while tests with a high specific
information content must be retained. In addition, if QSARs are to be derived.
it 1s usually not necessary to consider all tests, if a well-defined data structurc
cxists. One can then select representative key tests, or perform QSAR analyscs
directly with principal components or factors. A typical situation would be the
screening of potential antibacterial agents against several bacterial strains; other
examples are the screening for pesticides or for antitumor compounds. Antibacterial
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data have been successfully treated by principal component or factor analysis,
usually showing high redundancy and a well-defined data structure [30—40].
Principal component analyses of herbicidal piperidinoacetanilides [42] and benzoni-
triles {43a] showed in both cases a distinct grouping of tests in accordance with
the biological properties of test objects. A principal component analysis of allylamine
antimycotics, which were screened against seven strains of fungi, revcaled three
significant components, which could then be submitted to a subsequent QSAR
analysis [43b]. Examples for the application of principal component analysis
to antitumor tests can be found in [44] and [45]. The use of simple model
organisms to evaluate the toxic, carcinogenic, and mutagenic potential of chemical
compounds has become a very important issue, in order to be able to cope with
the ever increasing number of chemicals in the human environment. The resulting
batteries of parallel tests can also be effectively investigated by principal component
or tactor analysis. Systematic multivariate analyses of mutagenicity short term tests
have been performed by Benigni and coworkers [46 —49]. In one of the analyses,
it was found, for example, that the results from 20 tests (42 compounds tested)
could be described by 6 factors. The first factor, accounting for;58% of the data
variance, was interpreted to represent “intrinsic genotoxicity” [47]. Nendza and
Seydel [50, 51] investigated the toxic effects of phenols and anilines, measured n
11 in vitro tests (bacteria, yeast, protoplasts and algae), by means of principal
component analysis. The first principal component extracted almost 80% of data
variance (indicating high redundancy) and correlated with lipophilicity. A similar
result was obtained by factor analyzing cytotoxicity data (9 cell lines) and in vivo
toxicities (LDs, in rats and mice) of a structurally heterogeneous sct of 19
compounds: two factors accounted for 90% of the data variance (Gruska, A., Halle,
W., and Franke, R., unpublished resuits). In a similar investigation for 9 endpoints,
Eriksson et al. [52] obtained 3 significant principal components from principal
component analysis. Redundancy was also found for the acute toxicity of 267
chemicals on six species of biota [53]. Two principal components were obtained
from a series of 30 structurally diverse compounds screened in 4 tests, which were
related to the induction of anesthesia and spindle disturbances [54]; the first
component showed a correlation with log P.

Frequently, a certain pharmacological effect 1s investigated n different modecls,
with the assumption that each model reflects the desired potency under more or
less specific conditions. Typical cases are receptor binding assays in vitro (receptors,
enzymes) in combination with pharmacological in vivo tests. The fundamental
problem in this case would be to prove the internal relationship between the models
(whether they have the same mechanism of action), and/or to separate pharmacodyna-
mic and pharmacokinetic factors. A simple example of this type was provided by
a principal component analysis of the inhibitory potency of a series of nine
4-hydroxyquinoline-3-carboxylic acids against respiration of Ehrlich ascites tumor
cell suspensions and three respiratory enzymes in vitro (muscle lactate dehydro-
genase (M4-LDH), pig heart cytoplasmic malate dehydrogenase (s-MDH) and pig
heart mitochondrial malate dehydrogenase (m-MDH) [55]. Two components
accounted for 91% of the data variance. The first principal component was loaded for
the three enzymes, which had loadings close to zero in the second one, while the ascites
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test was highly loaded in the second, but not in the first component. It, thus, follows
that the enzyme tests are closely interrelated and the ascites test is completely
separated, so that the enzyme inhibitory potency is not connected with the inhibition
of Ehrlich ascites respiration. As the first component obviously reflects enzyme
inhibition in vitro, it may be regarded as an average expression for the inhibition
of all three enzymes. Correlating P, (the first principal component) with molecule
parameters yielded the following relationships (the SO5 derivative was not included
because of difficulties in calculating p):

P, = 0.34(+£0.7)u + 1.38(+0.78)B, — 4.86(+2.22) (24)
n=2_8 r = 0902 s = 0.520

In this equation, u is the dipole moment, and B, is Verloop’s width parameter. It,
thus, follows that enzyme inhibition depends on both steric and electronic effects,
with inhibitory potency increasing with increasing dipole moment of electron-
donating power of the substituents as well as with increasing substituent width. In
the case of the second component for the Ehrlich ascites test, the following relation
was obtained (m = hydrophobic substituent constant calculated from apparent
partition coefficients):

P, = 0.79(+0.24)r + 0.51(£0.33) (25)
n=2_8 r = 0.931 s = 0415

In this case, potency is dominated by hydrophobicity; no relationships with
significant contributions by steric or electronic parameters could be found. As a
result of principal component analysis, a clear picture of the data structure, as well
as of the physical nature of the two “basic effects” as reflected by the two components
(QSARS), were obtained. A further example of this type will be discussed in somewhat
more detail on page 130.

Sometimes compounds are also investigated in parallel tests with quite different
biological actions. This may happen, for example, with a general screening in a
pharmaceutical company, or if a synthetic chemist wants to obtain as much biological
information about new compounds as possible. In addition to redundancy and the
general interrelatedness (grouping) of tests, aspects which may be of importance
here, arc selectivity (separation of desired effect(s) from undesired toxic or side
effects) and the evaluation of pharmacological profiles. For such data, factor analysis
will often be the method of choice. A typical example is provided by the work of
Weiner and Weiner [56], who introduced principal component analysis into QSAR
work and investigated the results of a series of diphenylaminopropanols, screened
in 11 different pharmacological tests. As these tests are related to quite different
mechanisms of action high uniquenesses are to be expected. It was, thus, not
surprising that principal component analysis yielded as many as 8 components, so
that the dimensionality reduction achieved was not very impressive. If, however,
the same data was submitted to factor analysis, only 3 relevant factors were obtained,
accounting for 80% of the data variance [30]. A clear grouping of tests resulted, and
factor scores could be related, to physico-chemical parameters. The effect of ortho-,
meta- and para-substituted phenyls (12 substituents in each set) on 24 biological
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activitics, such as antibacterial, antitumor, enzyme inhibition, and othcrs was
investigated by Codarin et al. [41]. Considering the first two components the authors
concluded “that the major behavior of the activity data, expressed by the first two
components, is related to the known descriptors n, g, and E.”. Results for the
induction of various enzymes by polychlorinated biphenyls have been presented by
Franke et al. {57].

A central issue in drug research is to decide whether, within a given series of
compounds, toxic effects can be minimized, while maintaining a desired potency.
How factorial methods can aid in such cases can be demonstrated with a simple
example, concerning a series of antiinflammatory phenylglycin esters with branched
and unbranched alkyl groups in the alcoholic part. The compounds were synthesized
and tested for antiinflammatory potency (against carrageenin and dextran cdema)
as well as for anticonvulsant potency (antagonism against histamine, BaCl, and
acetylcholine) and for toxicity by Schulz and coworkers {58 —60]. Principal com-
ponent analysis afforded 2 components [30], accounting for 93% of the data variance.
As, in a loading plot, toxicity is not separated from the other tests, it was to be
concluded that with the type of structural variation present in the serics, a
pronounced decrease in toxicity, while maintaining the desired effects, is not
possible. The first component could be related to m probably reflecting the
transport to the site of action [30]:

P, = —079(+01)n? + 6.87(£0.88)n — 13.95(4 1.66) (26)
n=13 r = 0.984 s =0.193

Another interesting aspect of such an analysis is to derive pharmacological profiles
by mapping substances according to measurements in relevant biological tests. A
number of representative examples, mostly concerning CNS active drugs, have been
published by Lewi [1 —3].

Drug interactions in model systems have also been investigated by principal
component analysis. Seydel et al. {61] extracted one component from data of
benzylamines interacting with phospholipids, which showed a non-lincar dependence
on 7; if more tests were incorporated, then a sccond component was obtained. The
interaction of monoamino oxidase (MAQ) inhibitors with amino acids, studied by
charge-transfer chromatography, led to 3 principal components and the conclusion
that MAO inhibitory drugs interact only with dicarboxylic acids via clectrostatic
forces [62].

Example: Antibacterial Naphthyridines in Different Bacterial Strains

Data on the antibacterial potency of naphthyridines (structure see Fig. 2) taken
from the literature [63] were submitted to factor analysis (Franke ct al. [63a])
using the statistical program package STATGRAPHICS {64]. The data presented
in Table 2 yielded three significant factors accounting for 82.7%, 7.9%. and 4.9%
of the variance in common factor space, respectively. As the first two factors
together already represent 90.6% of the variance, a weight plot of these factors
can provide enough information about the relatedness of tests. Such a plot is shown
in Fig. 3. Although an ideal simple structure was not achieved, even after VARIMAX
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Figure 2. Antibacterial {luoroquinolones.

rotation of the axes, a distinct clustering of points can still be scen. The largest
cluster contains the tests, P. ae., P. mi., E. ¢l., K. pn., E. co., M. mo. and S. ma. (see
Table 2 for abbreviations). Obviously, these tests arc very similar, at least with
respect to the substances investigated. Situated fairly close to this cluster is another
cluster with the tests F. fu. and S. au., again indicating similarity, but at the same
time, suggesting that these two tests show some special behavior. The tests S. pa.
and B. fr. are situated much further away and the distance of B.fr. is, in fact.
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Figure 3. Loading plot of the antibacterial
tests after VARIMAX rotation. For abbrevia-
tions of variables, see Table 2.
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greater than is shown on the two-dimensional plot in Fig. 3, as this test is the
only one which also has a high loading in the third factor. This clustering
is in good agreement with phylogenetical properties of the bacterial strains
considered. The conclusions, with respect to the compounds investigated, thus, are:
(i) the set of tests is redundant, so that the same information could have been
obtained with less bacterial strains; (ii) the tests S. pn. and B. fr. yield specific
information, not contained in any other test and cannot, therefore, be dispensed
with; (iii) it is sufficient to consider one test from each of the two clusters
and, in addition, the tests S.pn. and B.fr. for SAR considerations or QSAR
analyses.

The first factor mainly represents the tests in the large cluster (with some influence
of the two tests in the smaller cluster). This factor may, thus, be regarded as an
average representation of the results in these tests and can be directly submitted to
a QSAR analysis, providing an overall SAR picture in these tests (factor scores arc
included in Table 3). Using Free-Wilson analysis [65] in the Fujita-Ban variant [66]
(standard substituents: R, = t-Bu; Ry = H; R, = ring Ril; see also Fig.2), a
statistically high significant result was obtained, which is represented in Table 3
together with the Free-Wilson results for S. pn. and B. fr. As was to be expected
from the results of the factor analysis, the de novo activity contributions for these
two strains differ markedly from those obtained for the first factor. When
Free-Wilson analysis was applied to the original activity data of the tests, residing
in the large cluster, the results (not shown) were compatible with the activity
contributions from the first factor, as would be expected.

Table 3. Significant activity contributions from the Free-Wilson analysis of the factor 1 scores as
well as for S. pn. and B. fr. (P = 95%; for the scores in italics, 90% < P < 95%)

Substituent i S. pn. B. fr.
const. 0.40 043 1.11
t-Bu (R} standard

Et (R,) - -
FEt (R)) 0.75

cPr (R) 0.73

F,Ph (R)) 0.43 0.67
FPh (Ry) — —
F-t-Bu (R)) —1.02

H (Rj) standard

Me (R5)

Et (R5) —248

Ph (Ry) —4.21 —1.89 —2.12
Ril (R-) standard

Ri2 (R) —0.88 —-0.72 —0.78
Ri3 (R-) —0.51
Ri4 (R,) —0.74 —1.03
RilMe (R;)

r 0.965 0.788 0.838
N 0.271 0.403 0.361

F 16.2 1.8 28
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The use of principal components or factors as dependent variables in QSAR in
order to represent a set of biological tests is very convenient, if the data structure
enables this (see also Egs. (24)— (26) and (29)). Other examples where this has
been achieved for antibactenal potencies have been presented the literature {34, 40].

Example: Antihypertensive Fusaric Acids In Vitro and In Vivo

Another typical example, which will be discussed briefly here, concerns anti-
hypertensive fusaric and picolinic acids (Fig. 4). These compounds are believed

Rs

O

N COOH  Figure 4. Fusaric (Rs = n-Buj and picolinic (Rs = H} acids.

to act by inhibiting catecholamine biosynthesis, via blockade of the enzyme
dopamine S-hydroxylase (DBH) that converts dopamine into noradrenaline. However,
other mechanisms of action have also been discussed, and the question that remains
to be answered, is whether the blood pressure decreasing effect of these compounds
is due to DBH inhibition or not (see, e.g. Dove et al. {67] and references cited
therein). The following measurements have been made for a number of analogs [68, 69]:

— Inhibition of DBH in vitro:

plso{l): incubation with an excess of Cu?* ions {copper complex formation
may play an important role),
plso(1D): without Cu?" excess,

— Decrease of systolic (index “S”) and diastolic (index “D™) blood pressure in
male Wistar rats with renal hypertension at doses of 0.25 mmol/kg (index “a”)
and 0.5 mmol/kg (index “b™): BRSa, BRSb, BRDa and BRDb (transformed into
logarithms),

— pK, and pK, values.

All data (taken from Ref. [67]) are summarized in Table 4 together with the values
of Z mw and X o. In addition, a classification of compounds with regard to their in
vivo potency is also included [67]: class 0 = “inactive” compounds; class | = “acti-
ve” compounds. Missing pK, and pK, values were estimated from the following
relationships, obtained from experimentally available values and Swain-Lupton’s F
and R values:
pK, = —6.77(+1.39)R(R,) — 4.06(+ 1.I1T)F(R,) (27)
— 091(+0.86)R(R) + 5.33(+0.50)
n=15 r = 0977 s = 0.291 F =529
pK, = 2.53(+ 1.OO)F(R,) + 1.81(+£046)F(R;) (28)
+ L41(+0.30)R(R;) + 13.01{+0.19)
n=18 r = 0974 s = 0126 F = 608
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Figure 5. Loading plot of variables related to the inhibition of DBH and to the decrease of blood
pressure in vivo. For abbreviations of variables, sce text.

A factor analysis of the 6 biological potencies extracted 93.3% of the data variance
with two factors (factor 1: 4, = 2.99, % variance = 61.5; factor 2: 4, = 1.55, %
variance = 31.8). The loading plot in Fig. 5 shows that the in vivo results afford
factor one, while factor two is mainly afforded by the two in vitro tests. It then
follows that there is no simple correlation between in vivo and in vitro tests so
that the in vivo potency does not reflect DBH blocking activity in vitro. The
classification into classes 0 and 1, however, can be described by a discriminant
function with £ n and pIso(II) as variables [67], which can be interpreted to mean
that the compounds are active in vivo, if the DBH inhibition is sufficiently high,
and hydrophobicity allows for efficient transport to the site of action.

Fig. 6 shows a scatter plot of compounds obtained from a principal component
analysis with the variables pK,, pK,, 7 and (X n)®. This analysis afforded two
significant components accounting for 65.4% (4, = 1.83) and 34.6% (4, = 0.97) of
the data variance, respectively, (total: 100%). Compounds were labeled according
to their class membership for in vivo potency, and as can be seen, the two classes
are clearly separated. Thus, scatter plots, obtained from principal component (or
factor) analysis of physico-chemical variables, can produce patterns, in which
compounds are clustered according to some biological property which is not
included in the analysis. This is of some practical importance, as such plots may
be of use in selecting compounds for further investigations. If in such an analysis
compounds with known biological properties and new compounds with unknown
biological properties are included, those new compounds which are in the vicinity
of (or within) clusters containing the already tested analogs possessing the desired
property, are the best candidates for synthesis (or testing, if already synthesized).
This problem can, of course, also be solved by applying classification methods,
including classification, which is based on principal components (SIMCA: see
Chap. 4.3). However, such scatter plots have the advantage, in that they not only



4 Multivariate Data Analysis of Chemical and Biological Data 135

28_l' —T L e s S S ]
[ o1 =R :
1.8 —

[ oo

N r o
= 08 ODQ“ ol —
o F ‘
5 H o1 SR
a C 01 o1 ]
§ 02l 0o ]
[&] F 10 4
o1 1
OODO i
1oL 0o oo -
[ =1t ]
L oo ]
22f no ]
T U ST S R S S Ly PR I T T S S S T R R T |

Lo s
25 -15 -0.5 0.5 1.5 2.5 3.
Component 1

(91

Figure 6. Scatter plot of fusaric acids in the space spanned by the first two principal components.
Variables: pK,, pKy, 7, (£ m)*; 0 = inactive compounds; 1| = active compounds.

allow a selection of compounds with respect to a desired potency but that aspects
of a series design can also be included (see page 153).

The application of principal component analysis in QSAR work often ends at
the stage of such clustering, i.e. the method serves as a cluster analysis approach.
In order to obtain a clearer picture, cluster analysis can subsequently be applicd
to further analyze such scatter plots [70]. Some examples of using simple principal
component analysis for cluster analysis are given in the literature [71 —74]. The
objective is similar to that of classification methods (pattern recognition). If classes
of compounds are known before the analysis, however, this approach works better
with a separate PC model for each class as in the SIMCA method of Wold et al.
(see Chap. 11). A special classification procedure based on principal component
analysis has been recently proposed by Rose et al. [75]. A somewhat different
application of principal component analysis can be found in the work of Cammarata
and Menon [76, 77]. They derived a data matrix for compounds with different modes
of action, by coding the presence or absence of groups at designated positions and
weighing these codes by the molar refractivity of the groups present. A coordinate
system, with the resulting components as axes, was then used to plot the data,
leading to a certain clustering of compounds with similar types of biological
action.

Example : Sulfones and Sulfonamides in Whole-Cell and Cell-Free Systems

The antibacterial effects of 17 4'-substituted 4-aminodiphenylsulfones in 7 cell-free
folate synthesizing enzyme extracts and in 2 whole cell cultures of various
mycobacterial strains and strains of E. coli sensitive and resistant to sulfones,
have been determined by Seydel and coworkers [34] and submitted to principal
component analysis. Missing data 19% were estimated in an iterative process
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within principal component analysis. Two significant principal componcnts were
obtained (2, = 6.94 and A, = 1.45), accounting for 77.1% and 16.1% of the
data variance, respectively (total: 94.2%;).

The loading plot in Fig. 7 shows that the cell-free test systems essentially afford
the first component, while the second component represents whole cell activities.
This means that potency in cell-free and whole cell systems are governed by different
factors. The first component obviously reflects an “average” of cnzyme inhibition,
while the sccond could be related to transport through the cell membrance. 1If this
is true, scores of the first component should be related to physico-chemical
parameters in the same way as found for the cell-free system data, while the second
component should show a relationship to hydrophobicity, as would be typical for
transport processes. This is indeed the case, as P, correlates with the clectronic
demand of substituents and with the fraction 1onized, while P, shows a bilinear
dependence on lipophilicity, which is expressed by the HPLC paramecter, log k',
with the optimum at log k' = 0.83:

P, (rotated) = 1.40(+0.52) log k' — 3.49(4 1.32) log [0.098(+0.173)k' + 1] (29)
+ 0.507(+0.726)
n=17 r=093 =039 F=2227

This 1s another example of how principal component analysis can be of usc to order
data, so that the intrinsic potency at the site ol action can be separated from transport
phenomena.

4.1.3.2 Pharmacokinetic Data and Time Series
Pharmacokinetic properties are characterized by a varicty of paramecters, which

reflect different aspects of pharmacokinetics. Many of these parameters are
intercorrelated and, thus, lend themselves to multivariate analyses, such as
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principal component and factor analysis, with the aim of finding components
(factors), characteristic of fundamental pharmacokinetic processes. If pharmacoki-
netic and response data are combined, there is the opportunity to scparate
pharmacodynamic and pharmacokinetic effects. The same goal may be achieved,
furthermore, if time series of pharmacological response measurements arc subjected
to principal component or factor analysis. In any case, data will be simplified and, thus,
be easier to interpret and subsequent QSAR analyses are made considerably casier.

Hlustrative examples for applying principal component analysis to pharmacokine-
tic data can be found in a paper by Schaper and Seydel [78]. Considering five
examples, it was possible to represent complex data by relatively simple principal
component models. The components could be identified with basic processes such
as elimination, protein binding, and distribution and also showed correlations with
hydrophobicity, as was to be expected for these processes. Pharmacodynamic cffects
could be separated from pharmacokinetic effects for 11 morphine-like analgesics
by analyzing the following variables using principal component analysis (after
logarithmic transformation): the times for the onset of maximum activity and 1/ED
values, respectively, after intravenous and intraventricular administration, 1/EDy,,
in the hot plate assay, and binding to rat brain homogenates. The first of two
significant components represented intrinsic activity, while the sccond could
be attributed to pharmacokinetic processes and showed a bilinear relationship with
log P. Similar results were reported for pyrethroids in insects by Ford et al. [79, 80]
using canonical correlation analysis.

The first principal component analysis of a time series was performed by Franke
and co-workers [81, 82] with data for the antiinflammatory potency of 14 disubstituted
salicylic acids (against carageenin edema in Wistar rats; data supplied by Bekemeyer
[83]) measured 3,4, and 5 hours after administration. Two components were obtained,
with the first component reflecting the pharmacodynamic part of the observed effect
and the sccond, pharmacokinetics. The first component could be related to
substituent constants, indicating that steric effects and the presence of a free carboxyl
group arc important for antiinflammatory potency. This cxample shows the potential
of such an analysis, but suffers from the limited number of times considered and a
low data variance. One cannot expect that a separation of pharmacokinetic and
pharmacodynamic effects will always be possible by analyzing a time series. If, for
example, pharmacokinetic and pharmacodynamic effects depend similarly on
hydrophobicity (which may frequently happen for unspecific effects), principal
component analysis of a time series may simply producc onc component which
represents both effects. An example for this is given by Schaper and Seydel [78] in
the non-specific cardiodepressive effects of f-blockers:

Analysis of a time serics can aid in dissecting more complex pharmacological
processes into components, with the final objective being to derive complex
quantitative structure-time-activity relationships (QSTAR); a further example will
be presented in the next section. If, in a scrics of compounds, the concentrations at
the site of action at different times all relate similarly to log P according to the bilinear
model of Kubinyi [84], or as a parabolic relationship [85], and pharmacodynamic
effects arc absent, only one component will be obtained.
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Table 5. Analgesic potencies (log (1/IDse) in rats, tail withdrawal test [86]; 11 — (10} of fentanyl
{=1/32h;12:t =1/16h;13: ¢t = 1/8h; td: 1 = 1/dh; 15: 1t = 12h; t6: t = L h; 17t = 2 h; (8:
Max = maximal potency = log (1/IDs0)ma fi: factor scores of factor 1: f;: lactor scorcs

No. R, R, R; R, R; 11 2 3 14
1 H H CH,0OCH; C,H; CeHs 8.46 8.72 870  8.66
2 H H CH,0OCH, C,H; C,H;S 8.54 8.64 8.76  B.04
3 H H COOCH; C,H; CeHs 8.72 9.00 9.00  9.03
4 H H COOCH; C,H; C,4H,S 8.77 8.95 9.06 896
5 CH,; H COOCH; C,H; CeHs 8.25 8.66 870  8.76
6 H H COOCH;, C,H;s CyHs 8.27 8.46 8.61  8.67
7 H CH; COOCH; C,Hs CoH; 8.27 8.57 8.62 872
8 H H COCH, C,H; CeH; 8.54 8.68 875 878
9 H H COCH, -C3H; CyHs 8.44 8.69 8.64 871

10 H H COC,H; C,H; CeH; 8.34 8.45 848 848

11 H H COC,H;, C,H;, C,H;S 8.45 8.79 877 872

12 H H H C,H; CeHjy 741 745 748 138

13 H —CH;H C,H; CeHs 8.65 8.73 875 875

Example : Decomposition of Time-Dependent Response Data by Factor Analysis

For analgesic potencies of a series of fentanyl derivatives (for structure see Fig. 8),
measurcd after 10 different times [86] (see Table 5), Balaz ctal. [87] derived
the following relationship starting from a model-based disposition function:

log (1/IDsy) = —log(BP + 1) — Dt/(BP + 1) + A (30)
A = 8923, B=1492-1077, D = 5461

Eq. (30) is statistically highly significant and describes the entire data (compounds
6 and 16 not included). The first term is supposed to describe transport and the
second term is supposed to describe elimination. Both transport and elimination
depend on hydrophobicity.

As an alternative to starting from a well-defined model, the same data (taken from
Ref. [87]) were submitted to factor analysis [87a] using the statistical program
package STATGRAPHICS [64].

Two significant factors were obtained with eigenvalues of 4, = 7.22and 4, = 1.60,
accounting for 80.6% and 17.9% of the variance, respectively (total: 98.5%). Factor
scores (VARIMAX rotated) are included in Table 5. All vatriables have high
communalities and are, thus, well represented in common factor space. A plot of

Rz Figure 8. Fentanyl derivatives.
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derivatives (structure see Fig. 8) measured at diffcrent times, data taken from Balaz et al. [87]. 11:
t=4h; t9: t = 6h; t10: t = 8 h. Log P values and values of Max Balaz ct al. [87] of
factor 2

(5 t6 17 (8 19 ¢10 logP  Max fi £
858 824 7.61 6.87 6.07 274 8.74 —0.04 061
854  8.12 7.59 6.67 6.21 2.39 8.73 ~0.08  —0.69
897 878 8.36 7.34 6.55 6.04 2.54 9.09 090  —0.55
B89 865 8.19 7.28 6.42 5.95 2.19 9.03 079 —~0.73
9.69  8.50 8.31 7.57 6.86 6.46 2.85 8.80 032 057
8.66  8.53 8.43 8.33 8.21 7.96 2.65 8.66 045 1.86
873 872 8.69 8.46 8.43 8.19 2.94 8.76 0.68 2.04
874 843 7.86 6.64 6.06 2.26 8.82 0.16 075
8.65 84l 792 6.89 6.25 2.37 8.74 009 —0.34
827  8.06 739 6.39 5.95 2.79 8.15 —0.57  ~051
856  8.03 7.28 6.48 6.03 244 8.85 —0.16 105
714 6.86 6.29 5.56 5.03 2.35 7.48 —303 059
872  8.54 8.05 7.56 7.07 6.76 2.75 8.78 048 0.8

the factor loadings against time of measurement is presented in Fig. 9. As can be
seen, the proportion of variance, accounted for by the first factor, decreases with
increasing time of measurement (squares), while the variance explained by the second
factor increases with time (crosses). According to Balaz et al. [87], the data arc
primarily dependent on pharmacokinetics, with transport being much faster than
elimination, while differences with respect to receptor affinity were regarded to be
very small. As the first factor reflects those effects common to all measurements,
while the second factor represents differences, it is, thus, tempting to speculate that
the first factor is primarily related to the pharmacokinetic processes (which will losc
in importance as time increases) while the second factor can be attributed to receptor
affinity (pharmacodynamic effect).

1.0Vl""|""' T T T T
Ly + +
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If this were true, onc would expect the following:

1. Scores of factor 1 should be related to hydrophobicity, as this is the dominating
property governing transport.

2. With scores of factor 2 as independent variable, it should be possible to
derive a QSAR for receptor affinity, if such a QSAR cxists.

3. A QSAR for receptor affinity can only be obtained with the original measure-
ment, if the pharmacokinetic effect is not a dominating feature. According to the
factor loadings, this is true for 18 and 9 (see Fig. 9).

A simple relationship exists between scores of factor | and log P after eliminating

compounds 6 and 12, which behaved as pharmacokinetical outliers [87] and were

also left out in the derivation of Eq. (30) (FA1 = scores of factor 1 after VARIMAX
rotation):

FAl = —0.63(+0.36) (log P)* + 1.76(40.95) log P. (31
n=11 r = 0.851 s =0.313 F =118
Eq. (31) is statistically highly significant. Compound 3 shows a rclatively large

deviation from the regression line for reasons unknown. If this compound is also
removed Eq. (3) is then improved to give:

FAl = —0.60(+0.28) (log P)? + 1.65(+0.74) log P (32)
n=10 r = 0.891 s = 0.236 F =154

A plot of the observed versus predicted values of FA1 is shown in Fig. 10. A parabolic
cxpression in log P is usually considered to be a good approximation to describe
pharmacokinetic processes. Non-linear regression analysis does not result in an
improvement but provides a description which corresponds very well to the
model in Eq. (30):

FA1l = —log (0.0037P + 1) — 3.56/(0.0037P + 1) (33)
n =10 r = 0.888 s = 0.241 F =147

11} T .
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05 o g
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T
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Eqgs. (31) to (33) are, thus, in good agreement with the hypothesis that the first
factor primarily represents the pharmacokinetic aspect of biological potencies.

When Free-Wilson analysis was applied to the scores of the second factor (FA2;
VARIMAX rotated) and to scores for 8 and t9, highly significant results were obtained
(see also Fig. 11), which had the following statistical characteristics (n = 13):

FA2: r = 0963, s = 0270, F = 12.8
t8:  r =10965 5 =0208 F =138
19: r=10963, 5 =025, F =127

As expected, a significant Free-Wilson solution does not exist for the other
measurements (t1 — 7).

It was very satisfying to see how the results of factor analysis could indicate which
measurements could be employed to derive a QSAR. The results obtained were
fully consistent with the hypothesis that factor analysis has achieved a separation
of the pharmacokinetic and pharmacodynamic effects.

4.1.3.3 Analysis of QSAR Descriptors

In statistical QSAR analyses chemical compounds (or substituents) arc usually
described by physico-chemical parameters and/or substituent constants as indepen-
dent variables. These parameters can be divided roughly into threc main groups:
hydrophobic, electronic, and steric. A large number of such parameters coexists with
many intercorrelations and redundancies. One way of gaining a better understanding
would be to apply principal component or factor analysis to data matrices, in which
descriptor variables or physico-chemical properties arc listed for a representative
set of substituents or compounds. This has been done with the following objectives:

1. Many parameters, as for example, hydrophobic and eclectronic substituent
constants or log P, are determined by experimental measurements. Parameter
values, which are obtained in this way, can be very sensitive to cxperimental
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conditions or the type of molecules investigated. Principal component or factor
analysis can be used in this case in order to understand the underlying
effects and/or to create unified scales of descriptor values.

2. A grouping of descriptor variables can be obtained, lecading to a better
understanding of their nature and relatedness as well as to their information
content, which can aid in the selection of variables for QSAR analyses.

3. Principal components, extracted from a set of descriptors or measurements, can
serve as new variables in QSAR. Such variables are often referred to as “principal
properties”.

4. Principal component or factor analysis of descriptor variables can be used as
tools in the design of training series with high information content.

These issues will be dealt with in the following sections. Only such examples will
be included, which are directly related to drug design; applications outside this field
{e.g. as in general chemistry) will not be considered.

Variation of Descriptors with Experimental Conditions

The most important cases, which are related to drug design are:

I. Variation of electronic and hydrophobic substituent constants of substituent X
with the nature a functional group Y in aromatic molecules, with the general
structure shown in Fig. 12.

2. Variation of log P, © or chromatographic hydrophobicity parameters with
organic solvent.

Interactions between X and Y have led to a great number of modifications in the
original Hammett equation and, thus, to many scales of ¢ values (see also c.g.
Franke [6, 7]). Using principal component analysis, Wold and Sjostréom [88—91]
investigated a large number of reaction series and arrived at a unified, and later
extended, o-scale.

Franke and coworkers applied principal component analysis to aromatic 7 values
[92, 93] (see also Ref. [7]) for meta- and para-substituents in phenyls with different
functional groups, Y, and to log P values measured in different solvent/water systems
[94, 95]. The principal component analysis of n values resulted in two components,
with the first component reflecting “intrinsic hydrophobicity”, and the sccond
component reflecting electronic corrections. This example will be discussed in some
detail in the next section. In the case of the log P values, which were determined
with 18 structurally diverse solutes in 6 solvent/water systems, again two significant
principal components were obtained, accounting for 71.7% and 24.5% of the data
variance, respectively (total: 96.2%). The first component correlated with the cavity
surface area, according to Hermann [96, 97], and to the B and C values of Cramer
{98, 99] (B and C represent principal properties derived by principal component

X Figure 12. Disubstituted benzenes: X = substituent; Y = functional group.
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analysis and will be discussed later on page 144) according to the following:

P, = 1.18(+0.35)CSA — 2.61(+1.90)C — 2.88(+0.92) (34)
n=18 r = 0.836 s = 0.294

P, = 342(+0.71)B — 5.01(+1.69)C + 0.41(£0.26) (35)
n=18 r= 0910 s = 0223

As CSA and B are measures of bulk effects, and C represents polar effects, the first
component represents an “average” of the hydrophobicity common to all partitio-
ning systems, which can be attributed to the bulk contribution and, in addition, to
a polar contribution, which accounts for more specific solute-solvent interactions.
The second component is highly correlated with the hydrogen bonding parameters
of the solute molecules, such as, for example, Seiler’s [100] I}, value:

P, = 0.28(+0.03)I;; — 0.54(+0.07) (36)
n =18 r = 0.964 s = 0.080
Table 6. Aromatic n-values of 14 substituents (meta and para positions) in § serics of standard

compounds; PhOAA = phenoxyacetic acids, PhAA = phenylacetic acids, B = benzenes, BA =
benzoic acids, P = phenols, A = anilines, PAA = piperidinoacetanilides, NB = nitrobenzencs

No. R PhOAA PhAA B BA P A PAA NB
1 H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 m—F 0.13 0.19 0.14 028 047 0.40 0.39 0.21
3 m-Cl 0.76 0.68 0.71 0.83 1.04 0.98 0.99 0.61
4 m—1 1.15 1.22 1.12 1.28 1.47 2.08 1.46 0.99
5 m—Br 0.97 0.91 0.86 0.99 1.17 1.20 1.16 0.79
6 m—CH, 0.51 0.49 0.56 0.52 0.56 0.50 0.56 0.57
7 m—CF, 1.07 1.16 0.66 1.07 1.49 1.54 1.36 0.87
8 m—OCH, 0.12 004 —002 0.14 0.12 0.03 0.17 0.31
9 m—OH —049 —-052 —-067 —-038 —-031 —-073 —045 0.15
10 m—NO, 0.11 001 -—-028 —005 0.54 0.47 045 —-0.36
11 m—COOH —-0.15 —032 —-028 -—0.19 004 —-018 —0.11 —002
12 m—CN —-030 —0.28 —-0.57 —-0.37 024 —-025 —0.18 —068
13 m—COCH, —028 —036 —-055 —-034 —007 -—-027 -—-033 —-043
14 m—CH,0OH —-0.82 —-076 —103 —-084 —1.02 —-095 —-084 —0.65
15 p-—F 0.15 0.14 0.14 0.19 0.31 0.25 0.25 0.16
16 p—Cl 0.70 0.70 0.71 0.87 0.93 093 0.89 0.54
17 p-—-1 1.43 1.23 1.12 1.14 1.45 244 1.44 1.02
18 p—Br 1.19 0.90 0.86 0.98 1.13 1.36 1.12 0.70
19 p—-CH, 0.60 0.45 0.56 0.42 0.48 0.49 0.50 0.52
20 p—CF, 1.13 0.87 0.66 0.83 1.24 1.72 1.30 0.80
21 p—OCH,; —0.04 015 002 008 —0.12 0.05 0.04 0.18
22 p—OH —-0.61 -0.14 —-0.67 —-030 —-067 —-086 —036 0.11
23 p—NO, 024 —-004 —028 —002 0.50 0.49 048 —0.39
24 p—COOH —-0.22 030 —028 —0.05 0.12 020 ~0.02 0.03
25 p—CN —0.32 001 —-057 031 0.14 —-0.15 —005 —0.66
26 p—COCH, —037 —-045 -—-055 -032 —-011 —-036 —026 —-036

27 p—CH,OH -078 —132 —-103 —-09t —126 ~-130 —087 -0.60
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The second component, thus, reflects specific differences between the partitioning
systems, which are related to hydrogen bonding.

Principal component analyses of log P in disubstituted benzenes and of a set of
solutes in different solvent/water systems were also performed by Dunn and
coworkers, who reached similar conclusions, but with a slightly different interpreta-
tion [101 —105].

Example: Factor Analysis of Aromatic m Values from Different Series
of Standard Compounds

The principal component analysis presented by Franke et al. {92, 93] will be repcated
here for the sake of illustrating factor analysis [64]. Investigations in [92, 93] started
from a known physical model, which applied to principal component analysis,
while, in this section, it will be assumed that no model is known, and factor analysis
is then used to create a model. In addition metu- and para-substituents will be
treated simultaneously, whereas previously they were analyzed separately in [92, 93].

The n values for 14 substituents at the meta and para position (including H) for
8 series of standard compounds (different Y functional group, see Fig. 12) are
summarized in Table 6. Factor analysis revealed two significant factors with
eigenvalues of 2, = 7.51 and 4, = 0.24, accounting for 96.2% and 3.0% of the data
variance, respectively (total: 99.2%). The factor matrix, after VARIMAX rotation,
is shown in Table 7, and factor scores (unrotated) are summarized in Table §&.

A plot of the factor scores is presented in Fig 13. The meta- and para-substituents
are arranged in pairs in a pattern, which reflects their hydrophobicity and electronic
properties: substituents are arranged according to their hydrophobicity from
left to right and according to their electron withdrawing power from top to
bottom. This suggests that the first component reflects basic hydrophobicity of
substituents, while the second component represents electronic substituent proper-
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Table 7. Factor matrix (unrotated and alter VARIMAX rotation) and communalitics. PhOAA
= phenoxyacetic acids, PHAA = phenylacctic acids, B = benzenes, BA = benzoic acids, P =
phenoles, A = anilines, PAA = piperidinoacetanilides, NB = nitrobenzenes

Compound Factor | Factor 2 Communality
series
Unrot. VARIMAX Unrot. VARIMAX

PhOAA 0.99 0.77 —0.04 0.62 0.974
PhAA 097 0.73 —0.00 0.64 0.946
B 0.98 0.66 0.13 0.74 0.974
BA 0.99 0.70 0.08 0.71 0.995
P 0.96 0.87 —0.22 0.46 0.969
A 0.97 0.83 —0.15 0.52 0.967
PAA 0.99 0.82 -0.12 0.56 0.990
NB 0.90 0.45 0.35 0.85 0.930

Table 8. Factor scorcs

No. Substituent Factor 1 Factor 2
1 H —0.35 0.43
2 m-F 0.05 0.07
3 m-Cl 0.90 0.20
4 m-1 1.67 0.05
5 m-Br 1.18 0.41
6 m-CH 0.47 1.14
7 m-CF 5 1.39 —0.31
8 m-OCH, —0.16 1.02
9 m-OH —0.98 1.46

10 m-NO, —0.23 —2.21

1 m-COOH —0.59 0.24

12 m-CN —0.84 —2.05

13 m-COCH 5 —0.87 —0.80

14 m-CH,OH - 1.67 0.15

15 p-F -0.05 0.29

16 p-Cl 0.84 0.29

17 p-1 1.75 —0.21

18 p-Br 1.20 0.06

19 p-CH; 0.42 1.08

20 p-CF, 1.24 —041

21 p-OCH, —0.28 1.06

22 p-OH —0.98 1.93

23 p-NO, —0.21 —-2.29

24 p-COOH —0.35 0.03

25 p-CN —0.74 —1.99

26 p-COCH; —0.89 —0.50

27 p-CH,OH —1.88 0.83
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tics. This is, indeed, the case as indicated in Figs. 14 and 15. Fig. 14 shows a plot
of the scores from factor 1 against = values for the benzoic acid series (z{BA) was
selected, because this variable has a communality of 1.00). Fig. 15 shows the scores
from factor 2 plotted against ¢ of the substituents. Correlating factor scores
with hydrophobic and electronic substituent constants leads to Egs. (37) and (38):

fi = 1.61(+0.07) n(BA) + 0.19(+0.14)0., — 0.38(+0.05) (37)
n=27 r=0995 s=0099 F=12250
fr = —323(+0.77)0m.p + 0.82(%0.30) (38)
n=27 r=0863 s=055 F=725
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Eq. (37) shows that the first factor also contains a slight electronic correction in
addition to basic hydrophobicity.

Figs. (16) and (17) show plots of the factor weights for factors 1 and 2 against
the o values of the functional groups Y (o, used). Obviously, the loadings are related
to the electronic properties of the functional groups. The corresponding equations
are:

a, = —0.26(£0.14)0,(Y) + 0.72(+0.06) (39)
n=2_ r = 0.868 s = 0.067 F =183

a; = 0.24(£0.14)0,(Y) + 0.64(+0.05) (40)
n=2~y r = 0.871 s = 0.063 F =189
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Table 9. Rcgression coefficients from Eq. (41) with n,(Y;) = o(BA)

No. Group b, b,

1 OCH,COOH 1.03 0.17
2 CH,COOH 0.99 0.00
3 H 1.05 —0.18
4 COOH - -

5 —OH 1.06 0.66
6 NH, 1.38 0.49
7 PAA 1.07 042
8 NQO, 0.83 —0.50

If Egs. (37) and (38) are back-translated into a factor model with two factors, it
then follows that the following relationship must exist betwcen n values from
series of compounds with different functional groups:

7 (Y;) = by + by, (Y3} + b0, 41

In this equation n,(Y;) and =,(Y ) are m values for substituent X in an aromatic
series with the functional groups, Y = Y, and Y = Y, respectively; o, is the o value
of the substituent, and by, b, and b, are regression coefficients. An example of
Eq. (41) is the following relationship derived from the = values given in Table 6:

(B} = 1.05(£0.07)n(BA) — 0.18(+0.15)0 — 0.12(+0.06) (42)
n=27 r = 0986 s = 0.105 F = 449.1

A further conclusion, which can be drawn from Egs. (39) and (40), is that the
coefficients b, and b, in Eq. (41) should be related to a(Y,) (to a(Y})), if equations
with the same Y, (the same Y;) and different Y;s (different Y s) arc compared. The
regression coefficients b, and b,, obtained when relating = values of all the series
of compounds considered to n(BA) are summarized in Table 9. These coefficients
do, indeed, correlate with o of the respective functional groups according to:

b, = —0.31(+0.22)5, + 1.02(+0.09) (43)
n=7 r=085 s =0.087 F =131
h, = —0.81(+0.490, (44)

n="17 r = 0.857 s=0227 F =166

The results compare very well with those obtained from principal component
analysis (meta- and para-substituents treated separatel) [92, 93] and are in keeping
with the bidirectional Hammett-type relationship, suggested by Fujita and coworkers
[106, 107), to describe m values in disubstituted benzenes.

Relationships according to Eqs. (41) and (42) have been long known and have
been determined empirically (sec Franke {6, 7] and references cited therein). The
present example demonstrates the capability of factor analysis as a “model
generator™: with no assumptions to begin with, a physically meaningful model has
been obtained in an easy and straightforward way.
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The Grouping of Substituents, Principal Properties, and Principal Component Regres-
sion Analysis

The appropriate selection of descriptors is essentially at the heart of QSAR work.
However, this is not always an easy task, because of the great diversity of descriptors
which are potentially available. In order to better understand the problems of
similarity, redundancy, and information content, Van de Waterbeemd [108] perfor-
med a principal component analysis on 58 descriptors for 59 substituents, which
was extended in a subsequent paper to include 74 substituents {109] (for earlier
work, see e.g. Alunni etal. [110] and Tichy [111]). Five significant principal
components explained 83.94% of the data variance as follows: PC1 = 33.46%,
PC2 = 25.07%, PC3 = 13.12%, PC4 = 7.48% and PC5 = 4.82%. Loading plots
showed a clustering of lipophilic, steric and electronic parameters. A number of
less well-defined descriptors were found around the origin and random numbers
were also situated there. Obviously, parameters situated close to the origin
(considering all significant components) provide little information. The score plots
revealed a very interesting picture: substituents were arranged in the order of
increasing bulk from left to right and increasing polarity from top to bottom, forming
five groups.

An even larger number of substituents, but with less parameters, was analyzed
by Skagerberg et al. [112]. A hundred aromatic substituents were characterized by
9 variables (n, MR, o, 7,, and Verloop’s STERIMOL parameters) and submitted
to principal component analysis. Four components were extracted, accounting for
39%, 21%, 9%, and 7% of the data variance, respectively (total: 76%). The first
component was related mainly to steric bulk and hydrophobicity, the second
component represents electronic properties, the third component again is mainly
hydrophobicity with a contribution for shape, and the last component is believed to
have no real chemical interpretation and to be of minor importance, even though
it i1s statistically significant as determined by cross-validation. The first three
components were then used for selecting substituents for a training series by factorial
design (see next section).

Principal components, derived from a set of descriptors or, to be more general,
a set of property values for a given set of compounds, can be used as independent
variables in QSAR analyses. If the components are derived from as large a (but
still meaningful) selection of physical and chemical properties as possible, then they
represent so-called principal properties (PPs), which can be very useful, especially
for substances which are difficult to parameterize by classical QSAR descriptors (e.g.
amino acids in peptides, sugars, etc.). The first contribution in this field was made
by Cramer [98, 99, 113—115], who derived the so-called BC(DEF) parameters, as
principal components, from a data matrix containing six physico-chemical properties
{activity coefficient in water, log P, MR, boiling point, MV, and heat of vaporization)
for 114 structurally diverse chemical compounds. The first two components (B and
() already cxplain 95.7% of the data variance, while thc proportion of variance
explained by the subsequent components amounted to 2.8%, 0.7%, 0.5%, and 0.3%,
respectively. The most important contribution to property description was, thus,
contained in B and C, which were attributed to bulk and to bulk-corrected
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cohesiveness. The BC(DEF) parameters can be (roughly) estimated from chemical
structure and have been shown to yield excellent descriptions and predictions of
those physical properties of compounds, which are dominated by non-covalent
interactions in a bulk fluid phase. In the case of non-specific biological effects, such
as general anesthesia, nerve blockade, and erythrocyte stabilization, highly significant
QSAR cquations were also obtained. BC(DEF) certainly arc interesting parameters
for QSAR purposes, but have not found much practical application for mainly two
rcasons: (i) they are difficult to compute, and (ii) more specific interactions in a
biological system would require that these global parameters are broken down into
individual contributions for different parts of the molecules, which is not possible
(or, at least, has not yet been attempted).

Much work has been done to derive PP’s for amino acids with the objective of
creating parameters for peptide QSARs, especially by Wold and coworkers [116—127]
following the earlier studies of Sneath [128] and Kidera et al. [129] (for monosac-
charides, see Eriksson et al. [130]). In the first study [116], a principal component
analysis of 20 variables (molecular weight, pKcoon, PKnus» 150€lectric point, van der
Waals valume, 7 NMR measurements, and 8 parametcrs relating to hydrophobicity)
for the 20 naturally occurring amino acids, yielded three components, which accounted
for 58% of the data variance. Score plots revealed the relationships between the
properties of the amino acids and the genetic code. The first component primarily
reflected hydrophobicity, the second component reflected size, and the third com-
ponent reflected electronic properties. The first application of these components, now
referred to as z,, z,, and z;, as variables in a peptide QSAR, has been reported by
Hellberg et al. [117]. A PLS model, using these z-scales, was derived for bradykinin
potentiating pentapeptides, which was shown to possess predictive capability. In later
work, the z-scales were extended to include non-coded amino acids [119, 121, 123, 124].
New and extended z-scales, now designated as z/, z5, and z5, have now been derived
for a total of 55 amino acids from a principal component analysis of the following
variables: R; values from 7 different TLC systems, van der Waals volume, molecular
weight, and 3 NMR measurements. Further QSAR studies using z variables can be
found in the literature [118, 120, 121, 125—127]. An alternative to the z-scales has
been suggested by Norinder [131] who started from computed interaction energies
of amino acids with 2016 grid points, taking into account non-bonded, charge-charge
and hydrophobic interactions. Principal component analysis of the resulting data
matrix resulted in 5 principal components, accounting for 81% of the data variance.
When applied to a scries of biologically active pentapeptides, a good PLS model was
obtained. This work was repeated and extended by Cocchi and Johansson [132], who
used interaction energies from 6 different probes and obtained 7 significant principal
components (f-scales), accounting for 72% of the total data variance. A PLS
modeling of the z-scales by the t-scales gave only poor results, which was attributed
to the fact that the z-scales are based on experimental measurements of intact amino
acids, while the f-scales are only representative of the side-chains. When applied to
the ACE inhibitory potency of 58 dipeptides, however, both scales led to compatible
results. It is also possible to mix the two scales.

Hemken and Lehmann [133] computed steric and electrostatic parameters (size,
shape, and M EP properties at the van der Waals surface) by scanning a grid placed
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around aromatic substituents. Principal components derived from these parameters
correlated well with conventional steric and electronic substituent constants and
could even be used to replace the latter in a few QSAR examples. If such
parameters are not available, dispensing with tabulated data could make this
procedure attractive in certain instances. This is, of course, also true for the electronic,
steric and hydrophobic parameters, derived by Kim and Martin [134 — 138] directly
from 3D structures, using the CoMFA method [139] in a number of extensive studies.
Again, part of this analysis involves principal component analysis, as implemented
in the PLS part of CoMFA. Aromaticity scales derived by principal component
analysis from other variables have been suggested as principal properties in QSAR
work and series design for aromatic and heteroaromatic compounds [140— 142].

An interesting application of principal component analysis, as an aid to identifying
a pharmacophore in amnesia-reversal compounds, has been presented by Cosentino
et al. [143]. The result led to the identification of three interatomic distances, which
were able to provide all the information necessary to describe the relative spatial
position of two key centers for interaction.

Principal components, extracted from a matrix of x variables (descriptor matrix,
X), can be used as independent variables in a regression model (principal component
regression analysis; PCRA). In this context, these principal components are called
latent variables. The model of PCRA (e.g. as in [144]) is as follows,

y=by+ Y hPuX) + ¢ (45)
k

where y is a single biological potency (measurements from one biological test),
P,(X) is the k-th principal component, derived from the descriptor matrix X, b, are
regression coefficients, obtained from correlating y as dependent variable with the
P, (X). P,.(X) will then be independent variables, and ¢ is the residual term.

Moulton and Schultz [145] used principal component regression to investigated
structure — activity relationships for inhibiting the growth of the ciliate Tetrahymena
pyriformis by 20 para-substituted pyridines. They started form eight substituent
constants, including n, two indicator variables to characterize H-acceptor and
H-donor ability, MR, 5,, Swain-Lupton’s I and R constants, and the single bond
fragment molecular connectivity index, 'z, and extracted four principal com-
ponents accounting for 95% of the variance. The first component expressed steric
properties, the second component was related to hydrophobicity (including hydrogen
bonding), the third component reflected resonance electronic effects, and, finally, the
last component reflected electronic field effects. The first two components (after
VARIMAX rotation) afforded a significant regression equation:

log BR = 0.45P, — 0.25P, — 0.59 (46)
n=17 r = 0.831

The authors stated that the results were in good agreement with earlier investigations,
performed with the original variables using multiple regression analysis. If this is
true, then question arises as to why the investigation was repeated with principal
components, which are more difficult to interpret. Turner et al. [146] considered the
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toxicity of two groups of metal ions in mice. With the variables “ionic radius™,
“ionization potential”, “atomic weight”, “William’s softness parameter”, and
“electronegativity”, two components were extracted for each group of metal ions,
accounting for 96% and 94% of variance, respectively, which are related to toxicity.
The statistical quality of the resulting equations, however, is only poor. A series of 32
8-azasteroids was investigated by Sokolov et al. [147]. Two principal components
derived from electronic densities at various atoms lcd to significant regression
equations for the hemolytic and cathepsin as well phosphatasc inhibiting potency.
Domine et al. [148] performed a principal component analysis on 5 physicochemical
properties of 64 pesticides. Two components explained 91.7% of the total variance:
a scorc plot showed an overall structure with respect to the membership of
compounds in the familics “herbicides” and “insecticides™. Investigating the
neurotoxicity of pyrethroids Ford and Livingstone [149] extracted 8 significant
components from a large variety of molecular descriptors. Their use as independent
variables in a subsequent regression step led to highly significant relationships. The
following equation for the neurotoxicity was obtained:

NT = —0.72P, — 0.49P, + 1.37P, + 1.04P, — 0.51P, + 0.87 (d7)
=19 r=0970 F=214

Some additional applications of PCRA (see also [5]) are given in the literature [1 50— 153].

In comparison with multiple regression analysis, PCRA has the advantage that
collinearities between x variables are not a disturbing f(actor, and that the number of
x variables included in the analysis, may exceed the number of observations. In
comparison with automated stepwise regression procedures (only to be recommended
in exceptional cascs), the danger of chance correlations [154] is further reduced. However.
the principal component approach solves the collinearity problem only from a purely
mathematical point of view. Nothing has been gained from the perhaps even more
important chemical point of view. I, for a given case, certain parameters, as for cxample.
m and MR, are correlated, they will remain so also after principal component analysis
has been performed. Thus, a conclusion whether steric or hydrophobic cffects are
operating, is still impossible. What is really necessary in such cases, is to introduce some
carefully selected additional compounds in order to break the collinearity. In the case
of PCRA and similar methods the danger exists that, in an uncritical way. too many
variables will, inadvertently, be included in the principal component analysis step, which
(within certain limits) may be acceptable mathematically, but which will render chemical
interpretation increasingly difficult. Benigni and Giuliani [155] stated that “an analysis
becomes fruitful when the correlation found can be explained within the context of
physical-chemical and biological theories, or when it leads to formulating new hypo-
theses™. This aspect is as important as the mathematical soundness and robustness of
a result and must not be lost by overemphasizing the mathematical aspect alone. Only
if, in particular cases, no reasonable assumptions about the sclection of descriptors are
possible, or if the compounds in question are difficult to parameterize in a straightforward
way, then the principal component analysis step is very useful (e.g. use of z-scales for
peptides). In such cases, however, PLS (see Chap. 4.4) is the preferred method over
principal component regression.
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The principal problem of QSAR is to understand which properties affect biological
potency and why they do so. Even with the great number of x variables available, which
may be included into PCRA or PLS, this problem is by no means solved, but is only
shifted to a different level. If a single y variable is to be analyzed, multiple regression
analysis (MRA) is not performed as automatic procedure, and descriptors are selected and
screened according to the state-of-the-art methodology, then there is no reason to replace
MRA by PLS or PCRA.

Series Design

A better alternative to PCRA in many cascs is the application of principal components
or factors for the preselection of parameters in a given QSAR problem or for the design
of a training scries.

A good training series should provide maximum information with a minimum of
compounds. For this reason, the following conditions must be fulfilled:

1. All important properties must be varied over a sufficiently large range (sufficient
variance in descriptor variables).

2. The parameter space must be covered systematically in order to avoid situations,
such as is shown in Fig. 18. In such a situation there is too much redundancy in the
two point clusters (one analog in cach cluster would have provided the samec
information), and there is no way of determining what is occurring in the range
between the two clusters. Moreover if, for some reason, it is decided that a straight
line should be fitted to the data, the number of degrees of freedom will be
overestimated, as the two point clouds can be regarded as two superpoints. Statistical
tests would then provide a much higher level of significance than would be justified
by the structure of the data.

3. Different properties (electronic, hydrophobic, and steric) must be varied indepen-
dently of each other, since, otherwise, a mechanistic interpretation of later derived
QSARs would become impossible (no collinearities between descriptor variables).

In order to fulfil these conditions simultaneously is no easy task and requircs special
mathematical methods of series design (see, e.g. references [6,7, 156—159]; the
advantage is a pronounced increase of information per compound synthesized (sce

log BR
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2 x *
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* ok k% Figure 18. Series with low information
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e.g. Martin [157], and Unger et al. [160]). Among a variety of different approaches
[158], principal component analysis has also been applied for this purpose.

Franke and coworkers introduced the PCMM and the TMIC method [161 — 165]
(see also [6, 7). PCMM is a combination of principal component analysis and the
multidimensional mapping technique of Wootton et al. [166]. The multidimensional
mapping technique starts from a presentation of all possible substituents in
parameter space. In a stepwise procedure a substituent, which 1s closest to the center
of gravity of all hitherto selected points in parameter space but further apart than
a predefined minimal Euclidean distance, Dwia, is selected in each step. In this way
the variance of variables is maximized and a set of well-spread derivatives is selected.
Multicollinearities, however, are not dealt with by this approach and are, thus, not
necessarily eliminated. If collinearities exist, a hyperplane can be fitted to substituent
points in parameter space and collinearities are mainly due to those points, which
are close to the hyperplane. First substituents are divided into two sets, such that
Set | contains the objects close to the hyperplane and Set 2 contains the substituents
which are distant from the hyperplane, as judged by the Euclidean distances between
substituents and hyperplane. These distances are computed with the help of principal
component analysis. The multidimensional mapping technique of Wootton et al. is
now applied separately to each of the two sets, in such a way that a higher percentage
of substituents is selected from Set 2. Since the hyperplane changes its position
during the selection procedure, this procedure is performed in a stepwise iterative
manner, where the hyperplane position is adjusted after each step. This technique
yields series with high data variance and minimized collinearities.

The TMIC method was devised for less than 50 substituents and is somewhat
closer to the applications of principal component analysis, which have been discussed
so far in this chapter. It is based on a score plot of substituents derived from an
intraclass correlation matrix (two-dimensional mapping of intraclass correlation
matrices). The intraclass correlation coefficient, ry, is related to Euclidean distances
and can be used to characterize the interrelatedness of two substituents X and Y
with respect to m (standardized) descriptor variables, x; (i = 1, ..., m):

fecy =22 oy = X)) (ox — x)/ 2 (v — x)7 + (xix — x)? (48)
with
x, = {1/2m) Z {(Xiv + Xix)

and

A series with low collinearities is characterized by low values of |r| for all possible
pairs of substituents. In a score plot of principal components, derived from an
intraclass correlation matrix, substituents interrelated with respect to the considered
x; will be close together (high positive values of rx.vy), or in positions which are
symmetrical with respect to the origin (high negative values of rix. vy); substituents,
which are placed close to the origin bear little information. If the first two components
extract a sufficient amount of information, the plot is two-dimensional and a good
training series with high x; variances and low collinearities can now be obtained by
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Figure 19. TMIC plot for 40 substituents (variables: n, F, R, and MR).

simple visual inspection. Substituents which are distant from each other, are selected
in such a way that the whole spacc is systematically covered, while not including
points which have a symmetrical position with respect to the origin. A TMIC map
for 40 substituents (parameter space: n, F, R, MR) is shown in Fig. 19. A distinct
clustering of substituents, similar with respect to the properties considered, becomes
evident and is very reasonable from a chemical viewpoint.

In the last few years, 2" factorial design with principal properties (see above) has
frequently been used in series design [112, 120, 125, 126, 167 —173] with the aim of
performing PLS analyses on the data of the training series. Factorial design for the
purpose of series selection in the QSAR field was introduced by Austel [174 —17§]
using design variables based on substituent descriptors. This technique is discussed
in more detail in Chap.3.1. PPs are highly suitable for factorial design as
they are independent, orthogonal and represent a reduction of dimensionality. Thus,
this is the method of choice, if the data are to be analyzed by PLS. If, however, a
multiple regression analysis (Hansch analysis) is planned, series designed in this
way are not necessarily optimal. For example, the following substituents were selected
by Skagerberg et al. [112] by a factorial design based on principal components, which



156 Ruiner Franke and Andreas Gruska

was derived from a data table of 100 aromatic substituents (variables: n, MR, g,
o, STERIMOL parameters): H, — CH3, Br, = NO,, — C,H;, —OC;H,, —COCH;,
—CO,C H,. For multiple regression analysis, this would not be a very good selection
for the following reasons:

— Collinearities are not eliminated. There is a significant correlation between n
and MR (r = 0.735) and a multicollinearity between n, MR, and ¢ (o-term
significant at 94%):

7 = 0.058(+£0.0200MR — 0.88(+0.93)7, (49)
n=8 r=0942 s=0336 F=238

— variances and ranges covered by, especially, ¢, and ¢, arc not optimal.

m
Preselection of Variables for Regression Analysis

In practice, a drug designer is frequently confronted with data of serics, which have
not been designed according to the principles outlined in the previous section. If
then a Hansch analysis is attempted, two problems have to be solved:

1. Selection of variables connected with biological potency from a, sometimes, very
large pool of potential descriptors [108].

2. Investigation of (multiple) collinearities in order to understand which effects
cannot be separated (important for interpretation), and in order to avoid
(multi)collinear variables in the same equation (necessary for statistical reasons).

Factor analysis can serve as a data preprocessing step for both these objectives
[6, 7, 82, 157, 179 —182]. If a factor analysis is performed on a data matrix, containing
the variable log BR (BR = biological response) and all descriptor variables which
are to be considered, the resulting factor pattern (after VARIMAX rotation) will
yield the following information:

1. Only those factors are connected with biological potency (variable log BR), where
log BR has a loading, which is not equal to 0. The number of terms to be expected
in a regression equation should, therefore, be equal to the number of factors with
non-zero loadings for log BR.

2. Variables with a high loading in the same factor arc interrelated (the higher the
loadings the higher the correlation). Variables with non-zero loadings in different
factors only are unrelated.

3. Asfollows from 1. and 2., only variables with non-zero loadings in thosc factors,
where log BR also has non-zero loadings, are important for the description of
log BR.

4. Another consequence of 2. is that only variables with non-zero loadings in
different factors may be combined in one regression equation, in order to avoid
collinearities.

5. The results of factor analysis indicate whether or not a satisfactory description
of log BR can be achieved in the parameter space considercd. If not, one can
immediately choose a different variable space, thus preventing the calculation
of useless regression equations.
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One example is given by Franke [7], where data concerning the inhibition of the
NADH oxidase system from ETP for 17 ring-substituted phenoxyacetic acids were
analyzed. Factor analysis provided three significant factors for the variable space
considered with non-zero loadings for the biological potency (plse) in factors onc
and three. The descriptor variables had non-zero loadings as follows:

Factor 1: ¢,06%, 67,0 2, S
Factor 2: m, n?, P

Factor 3: E,., EZ

It, thus, follows that biological potency depends on electronic and steric cffects,
while hydrophobicity has no significant role. In regression analysis, one of the
electronic substituent constants from factor 1 should be combined with E; (factor 3);
there is no reason at this stage to preferably use squared variable terms. Such
combinations do, indeed, lead to a satisfactory description as follows, for example,
from Eq. (50):

plso = 0.75¢7 — 0.23E, + 3.34 (50)
n=17 r = 0923 s = 0.249

The result was checked by screening all conceivable combinations of descriptor
variables using regression analysis (a strategy, which is frequently employed in the
Hansch analysis). In comparison with this strategy the use of FA as a preprocessing
step, saves on more than 90% of computations made and gives a clear picturc of
the steps being undertaken.

The general strategy of applying factor analysis as a preprocessing step in regression
analysis, is similar to that in principal component regression analysis (PCRA). As
in PCRA, rclationships of biological y variables and “factors” (“patterns™) inherent
in the x variables are investigated. The difference is, that in PCRA all descriptors
arc assumed to be important, while the aim of factor analysis is to find out the
relevant descriptors. With FA as preprocessing step before regression analysis, some
of the drawbacks of “latent variable” models (low interpretability) and of “purc”
regression models (disturbing effects of collincarities) can be avoided. In addition,
the probability of obtaining chance correlations is reduced. Unfortunately, the factor
analysis approach, as described above, has been seldom used in QSAR work. A
variation of factor analysis, which is more frequently applied (see literature for
examples [149, 183 — 185]), is to subject only descriptor variables to FA and to then
correlate biological activity with one highly loaded variable from each factor. In
this way, collinearities are avoided, but one cannot ascertain how many terms the
final regression equations should have, and which of the molecular parameters are
connected with biological potency.
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4.2 Graphical Analysis as an Aid in Medicinal Chemistry
James Devillers and Daniel Chessel

“The greatest value of a picture is when it forces us to notice what
swe never expected to see”

J. W. Tukey [1]

Abbreviations and Symbols

CFA Correspondence factor analysis

log P n-octanol/water partition coefficient
MEM Minimum essential medium

PBS Phosphate buffered saline

PCA Principal components analysis

PCs Principal components

PLS Partial least squares

QSAR Quantitative structure-activity relationship
SAR Structure-activity relationship

4.2.1 Introduction

Despite the fact that graphical techniques in connection with official statistics can
be traced back more than two centuries [2, 3], until the mid-1970’s, routine large-
scale use of graphs in data analysis was not feasible since computer graphics
facilities were not available at a reasonable cost. Since this period, graphs have
provided very powerful tools, both for analyzing scientific data and for com-
municating qualitative and quantitative information [4, 5]. Indeed, graphical me-
thods cnable the data analyst to explore data thoroughly, to look for patterns and
relationships, to confirm or disprove hypothesces, to discover new phenomena, to
serve as a mnemonic device for remembering major conclusions, and to communicate
these conclusions to others [6, 7]. Therefore, in most cases, graphs enhance the
different numerical methods used in classical data analysis. This fact can be
casily illustrated in medicinal chemistry, where regression models are widely used
to describe how a response variable (i.e. biological activity) is related to, or can be
explained by one or more explanatory variables (i.e. physico-chemical descriptors
or topological indices). Indeed, it is now well accepted that in regression analysis,
graphs provide powerful diagnostic tools for conveying properties of fitted reg-
ressions, asscssing the adequacy of the fits, detecting outliers, and suggesting
improvements {6, 8,9]. Conversely, even if chemometric methods are now well
established in medicinal chemistry for the reduction of the dimensionality of data
matrices or for classification problems, the usefulness of graphical methods for
optimizing the use of these approaches is rarely emphasized [10]. Under these
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circumstances, the scope of this paper is first to briefly review some of the basic
principles of graphics, and then to illustrate them from a casc study, dealing with
the co-inertia analysis [11, 12], which can be particularly suitable in medicinal
chemistry to detect the co-structure between two data tables (e.g. biological activities
and molecular descriptors).

4.2.2 Graphical Displays

In this paragraph, our intention is to formulate some of the basic principles, which
allow graphs to be employed more incisively in medicinal chemistry. Indeed, the
study of the theory of data graphics is beyond the scope of this paper and can be
found in numerous reference textbooks [e.g. 2, 13, 14].

4.2.2.1 Overall Strategy

When a graph is drawn up, quantitative and categorical information is encoded
chiefly through the combined use of points, lines, numbers, symbols, words, scales,
and/or colors. This graph should deliver true messages without artifacts linked to
the display technique itself (e.g. the Rorschach effect [6]). 1t should be ablc to
reveal the data at several levels of detail with precision, lack of distortion, com-
pactness and comprehensiveness [15]. Lastly, it is important to notc that the most
valuable graphical approaches are flexible enough to be applied to a wide variety
of data {6].

4.2.2.2 Techniques in Graphical Design
Elementary Principles

Numerous publications deal with techniques of plot constructions [e.g. 2. 13, 14].
On a more basic level, some elementary, but important suggestions for the
design of efficient graphs have to be followed. The amount of uninformative
detail (e.g. the logo of a laboratory) and clutter (e.g. grid lines) in a plot must be
minimized. Conversely, explanations, which highlight the richness of the data, must
be encouraged, since they make graphical displays more attractive. Thus, it is always
useful to write short messages on the plot to explain the data, characterize the
outliers or some interesting data points, write QSAR equations andjor display
molecular formulae on the graph itself, and to integrate the caption and legend
into the design, so that the reader does not have to dart back and forth between
the text and the graph. However, the combined use of words and graphs requires
the adoption of some typographical conventions. Thus, for example, words used
in a graph must not be abbreviated and elaborate coding avoided. Due to the usual
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rcading direction in western languages, words must run from left to right. The
typeface must be clear and precise, using upper-case and lower-case letters with
serifs [2].

Proportions and Scales

A common task in constructing graphs is rescaling the data. This fundamental step
has been widely discussed by Tukey [11]. Thus, for example, it is generally well
accepted that choosing scales to reduce curved configurations of points in a graph
1s highly recommended. However, we have to mention that the choice of a scaling
procedure basically depends on the type of data to be represented and the aim of the
study. Tufte [2] emphasized that graphs should tend toward the horizontal rather
than the vertical and mentioned rules of thumb (p. 189) for drawing up ideal
rectangles for graphical purposes. One of them these rectangles, the Golden Rec-
tangle, finds its origin five centuries B.C. and has a length/width ratio of 1.618

(ie. (1 +)/9)2).

Display of Supplementary Information

The display of supplementary information on a graph is crucial for successful
interpretation. It is also a convenient tool for easily communicating results and for
adding a new dimension to the graph. To reach this goal, we can, for example:

— replace a point on a graph by a word, a symbol or a shape encoding qualitative
and/or quantitative information [16 — 18],

— use lines of different weights [2] or various lengths, which emanate from a point
in different directions [3],

— employ isometric plots 3],

— add colors (especially blue which can be distinguished from other colors by
most color-deficient people who represent 5 to 10% of the population [2]),

— use stereographic and cinematographic techniques [3].

Numerous illustrative examples have been given by Tufte [2], Bertin [14], and
Gnanadesikan [19].

4.2.2.3 Visual Perception

We can consider a graphical method to be successful, only if it can be effectively
decoded visually [5]. Even if our eye-brain system is a particularly sophisticated
device, the study of how we perceive graphs shows that there are some limitations
in our perception of graphical displays. Thus, for example, our visual system is
able to perceive:

— angles more easily than slopes and straight lines more clearly than curved
lines,
— simple patterns more casily than complex ones,
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— large or dark objects (or clusters) with greater impact than small, light, or
1solated ones,
— a log, scale with less difficulty than a log,, scale [5, 6, 20].

It is obvious that these aspects must be taken into account when constructing a
graph.

4.2.2.4 Software Availability

Recent advances in computer graphics technology have now made graphical software
available on many microcomputers and workstations. Besides 2D and 3D systems,
which are only available for multivariate exploratory graphics [21], some statistical
packages now contain numerous multivariate analyses and sophisticated graphical
tools to facilitate presentation and interpretation of data [22 — 24]. Thus, for example,
the statistical analyses and graphical displays presented in this paper have been
undertaken with ADE [22] running on a Macintosh™.

4.2.3 The Key Role of Graphics in Co-Structure Analysis

4.2.3.1 Background

Expressed in statistical terms, SAR or QSAR studies consist in finding qualitative
or quantitative relationships between two data tables, the former being constituted of
the biological activities (onc or more columns) and the latter of the molecular
descriptors (i.e. physico-chemical properties and/or topological indices). If the partial
least squares (PLS) regression method [25] can be considered as the method of choice
to obtain quantitative models, the co-inertia analysis [11, 12] appears to be the most
suitable for emphasizing qualitative information from graphical displays.

The co-inertia analysis allows the determination of the co-structure between two
data tables [11, 12]. The mathematical presentation of the co-inertia analysis is
beyond the scope of this paper (for more details see Refs. 11 and 12), but is
summarized in Fig. 1 using the classical formalism related to SAR and QSAR
studies. In this context, a co-inertia analysis consists of the separate and matched
analyses of a matrix of biological activities (Y) and a matrix of molecular descriptors
(X). It can be viewed as a general method allowing to relate any kind of data set,
using any standard multivariate analysis (e.g. PCA, CFA). Thus, for example, it is
intcresting to note that the Tucker’s inter-battery analysis [26] is actually the
co-inertia analysis of two standardized PCA. The canonical analysis on categorical
variables [27] is actually the co-inertia analysis of two multiple correspondence
analyses. The PLS method [25] consists mainly of using the axes derived from
co-inertia analysis in a regression analysis procedure, in order to obtain QSAR
models for predictive purposes.
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Figure 1. Flow diagram of co-incrtia analysis in the context of SAR and QSAR studics.

4.2.3.2 Example: Structure-Reactivity Relationships
for Unsaturated Dialdehydes

Chemical Stuability of Sesquiterpenoid Unsaturated Dialdehydes

A large number of terpenoids with an unsaturated dialdehyde functionality group
have been isolated from various organisms, which occupy different trophic levels
in the environment (e.g. the Basidiomycete, Lactarius vellereus [28], and the
Nudibranch, Dendrodoris grandiflora [29]). Their potent activity as antifeedants,
antibiotics, mutagens, and so on [30—32], has stimulated both biological and
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Figure 2. Structure of the nine scsquiterpenoid unsaturated dialdehydes under study.

chemical investigations. These studies have shown that small structural variations
in the molecules can considerably change their activity [32, 33]. The have also
stressed numerous contradictory results, certainly in relation with the instability of
some of these chemicals in assay media [34]. In order to confirm this hypothesis,
we have tried to find the co-structure between a data matrix (similar to Table ¥
in Fig. 1), describing the stability of nine sesquiterpenoid unsaturated dialdehydes
(Fig. 2) in three different in vitro assay media [34] and another data matrix (similar
to Table X in Fig. 1), characterizing these molecules by means of the five following
molecular descriptors [35]:

— angle: the dihedral angle (°) between the two aldehyde groups,
— distance: the distance (A) between the two aldehyde carbons,
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Figure 3. Centcered PCA of the chemical stability data table. a) Eigenvalues. b) Biplot. A, B, and
C stand for medium A (Dulbecco’s phosphate buffered saline (PBS), pH 7.3, without Ca®*, Mg?*
or bicarbonate), medium B (Eagle’s minimum cssential medium (MEM) with L-glutamine and
Ham’s F12), and medium C (medium B supplemented with 10% fctal calf secrum), respectively.

— dipole X: the dipole moment in debyes (obtained by CNDO calculations) along
the Cy —C, double bond in compounds 1—4, and 7, the C,—Cg double bond
in compounds 5 and 6, and the C, —C; double bond in compounds 8 and 9,

— dipole: the dipole moment in debyes (obtained by CNDO calculations),

— log P: the n-octanol/water partition coefficient.

Co-Structure Analysis
Separate Analyses

Table Y (Fig. 1), containing the amounts (in %) of the nine chemicals under study
(Fig. 2) remaining after 2, 8, and 24 hours of incubation in the three media [34],
was analyzed by means of a centered PCA. The graphical display of the eigenvalues
(Fig. 3a) shows that the main information is carried by the first principal component
(PC1), but that PC2 can be also considered for the interpretation of the data. Thus,
the biplot {36] displayed in Fig. 3b reveals that only the two cell culture media B
and C participate in the analysis. It also clearly underlines the effects of the media
on the chemical stability of the molecules. Compounds located on the right-hand
side of the map are more stable than those located on the left-hand side. Thus,
9-z-hydroxymerulidial appears as an outlier on the right-hand side since it is not
reactive in media A, B, and C. Conversely, polygodial is very unstable, especially in
media B and C. It is also interesting to note that small structural changes can
considerably affect the reactivity of these chemicals. Thus, for example, isovelleral
is distant from its stereoisomer (iso-isovelleral), and polygodial is opposed to its
epimer (epipolygodial).

The different degrees of correlation between the molecular descriptors [35] are
shown on Fig. 4 which can be easily interpreted due to the combined use of numerical
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Figure 4. Corrclation matrix of the five physico-chemical variables under study.

data and scatter plots. The data matrix of molecular descriptors (Table X, Fig. 1)
was processed by a standardized PCA. According to the eigenvalues (Fig. Sa), PCl
and PC2 enable a graphical interpretation of the data. Fig. 5b shows that PCI is
mainly explained by the angle, distance and dipole X variables, which are negatively
corrclated to the dipole variable, and PC2 is principally dependent on log P.
They principally govern the distribution of the compounds (Fig. 5¢) and show

Angle

. 45
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: 1 i
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Figure 5. Standardized PCA of the physico-chemical data table. a) Eigenvalucs. b) Correlation
circle. ¢) Factorial plane (PC1— PC2) of the compounds.
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Figure 6. Plots of standardized physico-chemical variables vs PC1 coordinates.

that 9-a-hydroxymerulidial is an outlier. These relationships are illustrated in
Fig. 6, which clearly emphasizes the atypical log P value of 9-a-hydroxymerulidial.

Maiched Analysis

The projection of the chemicals, as defined by their physico-chemical properties on
the first factorial plane resulting from the co-inertia analysis, shows (Fig. 7a) that
their distribution is similar to that obtained from the separate analysis (Fig. 5),
disregarding a rotation (Fig. 7b). This is confirmed by the comparison of Fig. 5¢
and 7a. Fig. 7¢ represents the weights of the physico-chemical parameters in the
equations of scores of the chemicals on the first co-inertia plane. Fig. 7d gives the
correlations between the physico-chemical parameters and the scores of the
chemicals on the co-inertia axes. They emphasize the key role of distance, angle,
and dipole X variables on the first axis and that of log P on the second axis.
Furthermore, as previously mentioned, a “distortion™ is introduced by 9-a-hydroxy-
merulidial, which suggests that the role of distance and angle variables is more
important. In the same way, the projection of the nine sesquiterpenoid unsaturated
dialdehydes, as defined by their chemical stability data on the factorial plane resulting
from the co-inertia analysis, shows (Fig. 8) that the distribution of the chemicals is
similar to that obtained from the separate analysis (Fig. 3). To compate the graphical
displays in Figs. 7a and 8a, it is also possible to plot their respective scores after
normalization and to link the two positions of a given chemical by an arrow (Fig. 9).
This procedure emphasizes the correlations between the scores on the axes of the
co-inertia analysis (designated as r, and r, on Fig. 9).

Figs. 7to 9 clearly demonstrate the existence of a co-structure between the chemical
stability of the nine compounds studied and the selected molecular descriptors. This
is not surprising, if we consider that the main difference between the three media
is that medium A is inorganic, while media B and C contain amino acids. Under



174 James Devillers and Daniel Chessel

c -1 »_1}«1
5 Dipole X
N %( ° Dipole '/ AN Distance
Angle
a log lP
Q-a_-Hyd[oxymerulidial

»9-B-Hydroxyisovelleral
S

¥

Dipole X
Dipole Distance

Angle
log P

Figure 7. a) Representation of the compounds, as defined by their physico-chemical data on the
first co-inertia plane. b) Projection of the PCs obtained from the separate analysis (Fig. 5) on the
co-inertia axes of the physico-chemical data table. ¢) Weights of the physico-chemical parameters
in the equations of scores of the chemicals on the first co-inertia plane. d) Correlations between
the physico-chemical parameters and the scores of the compounds on the co-inertia axes.

these conditions, as already mentioned in the literature [37, 38}, we can advance that
some sesquiterpenoid unsaturated dialdehydes can react with amines contained in
media B and C to form pyrrole derivatives. As this type of reaction obviously
depends on the distance and angle between the two aldehyde groups, it is not
surprising to observe a co-structure between the two data tables and to find that
the two above molecular descriptors play a key role in the analysis.

4.2.4 Conclusion

The aim of this study was not to give a catalogue raisonné of all the graphical
methods, which can be used in medicinal chemistry to enhance the statistical results
produced by SAR and QSAR studies. Indeed, our intention was only to present
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some basic principles of graphics and to try to illustrate them in the particular case
dealing with the study of the co-structure between two data tables. Furthermore,
it is obvious that these principles must be only considered as guides and not as
rigid laws. Indeed, as mentioned by Tufte [2], with regards to graphical analysis,
“The principles should not be applied rigidly or in a peevish spirit; they are not
logically or mathematically certain; and it is better to violate any principle than to
place graceless or inelegant marks on paper”.
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Abbreviations

As given in Chapter 4.4 on PLS and:

CNDO/2
ECI

ISA
MMFF

Complete neglect of differential overlap
Electronic charge index

Isotropic surface area

Molecular mechanics force field

Symbols

A
Ca,j
d

d*
dlMS
d,
dOMS
€ik
K

Yij
215225 23

The number of latent variables in principal components or PLS models
ath PLS loading for biological activity, j

Orthogonal projection distance of a compound to the class model
Degrees of freedom corrected distance

Inside model space distance

Revised SIMCA classification distance

Outside model space distance

Residual for compound, i, variable, k

Number of physico-chemical descriptors or independent variables in a
data set

Number of biological activities or dependent variables in a data set
Number of compounds in a data set

ath principal component or PLS loading for variable, &
Cross-validated R? (often referred to as Q2)

Residual standard deviation

ath principal component or PLS score for compound, i

Estimated PLS loading from the inner relation

ath PLS loading for compound, i

ath PLS weight for compound, k

Physico-chemical descriptor or feature matrix, independent variable
data matrix

Physico-chemical descriptor or feature k for compound, i
Biological activity data or dependent variable data matrix
Biological activity, j, for compound, i

Principal properties of the amino acids
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4.3.1 Introduction

The SIMCA method of pattern recognition and classification (hence, abbreviated
PARC) was first described in 1976 [1] and as a tool in drug design, it was last
reviewed by the authors in 1990 [2]. Initially, SIMCA was an acronym for SIMple
Classification Analysis, but was soon reinterpreted by Dave Duewer as Soft
Independent Modeling of Chemical Analogy.

While other methods of PARC have been applied to drug design problems,
SIMCA remains the method of choice, and a number of recent quantitative
structure-activity relationship (QSAR) studies have been published using the SIMCA
method. Rather than focusing on these, the subject of this chapter is recently reported
improvements and extensions of existing methods. Before discussing these, some
ideas about PARC will be presented.

The use of PARC to solve QSAR problems was stimulated by the fact that the
traditional Hansch [3] analysis could not solve the active vs inactive problem. It
could only deal with structure-activity relationships of active compounds. A method
was necessary to estimate the probability that a compound may be inactive and
PARC was well suited for this problem. The objective of PARC is classification,
making it ideal for application to the active vs inactive case. Analogous to traditional
QSAR methods, features or variables are used to describe objects (compounds)
quantitatively. The resulting data (the training set) are used to derive structure-based
models, which can then be used to classify new objects of unknown class (the test
set). Here, since we are discussing QSAR, the objects are compounds and the features
or variables are generally measured physico-chemical descriptors or other variables,
which can be computed from the structures of the compounds. In most cases,
continuous variables are used but in some exceptional cases, discrete variables are
used. The variables must be relevant to the investigated activity. If the design of
new compounds is the objective, then variables must be two-way predictive. This
means that (i) they must be derivable from the structure of a compound without
actually synthesizing it, and (i) one must be able to derive a compound structure
from a profile of structure descriptor variables, which correspond to promising
activity levels, as indicated by the model.

The information obtained from a PARC study is categorized in to what 1s now
known as “the three levels of PARC” [4]. Hence, it is important to usc a PARC
method that corresponds to the information required from the analysis.

At the lowest level, level 1, the objective is just to classify an unknown into one
of several specified classes. The limitation of working at this level is that the unknowns
are assumed to be members of these specified classes. However this is seldom the
case. Considering, as an example, the problem of classifying chemical pollutants as
carcinogens vs non-carcinogens, this is equivalent to assuming that all of the
mechanisms by which a compound can be a carcinogen are known.

At level 11, the assumption above is not strictly adhered to and the result “none
of the specified classes™ is allowed. Here it is possible to predict that a compound
could be a non-carcinogen, but might alternatively be a member of a new class of
carcinogens. This is the lowest level at which SIMCA works. At levels I and 11, the
structure-activity relationships are qualitative, providing only classification.



4.3 SIMCA Pattern Recognition and Classification 181

Compound Biological Structure relaied
activity descriptors
i,j N 12....... k....... K

1

L___________(}Iasﬁ

i Y, Xix Class 2
Class 3

N Test set

Figure 1. Standard pattern recognition data matrixes.

At level 111, in addition to classification, the level of activity in one or more assays
of a compound is estimated. This is similar to Hansch analysis [3] combined with
discriminant analysis, but SIMCA gives a more robust and stable solution.

4.3.2 SIMCA Pattern Recognition

All classification studies begin with a data set as shown in Fig. 1. The Y-block
contains the biological activities and the X-block contains the descriptors. At levels
I and II, the analysis is performed only on X; ,, and a separate Y-block often does
not exist. At level I11 a predictive relationship between the X-and Y-blocks is derived.

Principal components analysis is used at the first two levels to derive a separate
model for each “proper” class (see the asymmetric case below). Before the analysis,
the data are scaled, usually to unit variance (autoscaling) within each class. The
principal components model is given in Eq. (1):

A
Xik = rk + Zl ti,apa,k + €ik (1)
Here x, is the mean of column £, t; , is the ath score for compound i, p, , is the ath
loading for variable k, and e, ; is the residual. The 4 components are calculated to
make the es as small as possible in the least squares sense. The number of components
is determined by cross validation [6].

SIMCA works by deriving a model for each class. Thereafter, classification is
accomplished by projecting the data of the test compounds onto each of the training
sets via the class models in the descriptor space, and classification is determined
from the magnitude of the resulting residual standard deviation of the es. This is
shown graphically in 3-dimensions in Fig. 2.

Since similar compounds cluster in the same regions of descriptor space,
compounds with similar biological activities will also have similar score values, ¢; ,,
in Eq. (1). However, the principal component scores, or t; .8, are not optimal for
estimation of dependent variables at level III. Instead, PLS is used for classification
and prediction at level III (see also the chapter on PLS, Chap. 4.4).
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x1

Figure 2. Graphical description of SIMCA
X3 classification rules.

The form of the PLS model is given in Egs. 2—4, below:

g[S

Xi,k = Xk + 2. ti,aPak + €ik (2)

P A v
Vij=Yj~t Z,l Ui,aCaj + fij 3)
i=b-t 4

The variables, ts and us, are latent variables calculated along the axes of greatest
variation in X and Y. The latent variables make the x-residuals and y-residuals as
small as possible and are maximally correlated. They are related through the inner
relation, expressed by Eq. (4). The PLS model is shown graphically in Fig. 3.

3

Figure 3. Graphical representation
of the PLS model.
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4.3.3 Steps in a Pattern Recognition Study

PARC studies are carried out in defined steps which are: 1) selecting the training
set compounds and developing the training data set (Fig. 1), 2) data preprocessing
(transformation, scaling, centering), 3) developing, optimizing and validating the
classification models, and 4) classification of the test set compounds.

Step 1, ideally, should involve experimental design if the training set is to span
the descriptor space. This topic is discussed by others in this volume. Data
preprocessing, Step 2, is data set dependent and will not be discussed here. SIMCA
1s unique in that it derives separate class models in Step 3 making it work at level 11,
if classification is the sole objective. Step 4 is a matter of fitting data for the unknown
or untested compounds to the class models from Step 3. A number of recent
developments have been made in the areas above, especially in Steps 1 and 3.

4.3.4 Establishing the Training Sets

The training set refers to the set of compounds, whose relevant descriptors or
features are to be used in the learning phase. Historically, training sets are designed
from a lead compound. The result is a group of compounds, which are “similar”
to the lead compound and, for the most part, those that should be most easily
synthesized. As mentioned above, training sets should be established from experi-
mental design methods, but this is seldom the case. Even though far from ideal,
such data can be, and have been shown to be, very useful.

The most difficult aspect of a QSAR study is finding the relevant descriptors.
Traditionally, the Hansch method uses linear free energy related parameters. These
are what are termed macroscopic variables or properties of the system, in that they
are Boltzmann averages of the properties of the many states of the system. Such
data are log P, pKa, etc., and may have minimal information about the active state
of the system if multiple states are possible. With the advent of molecular modeling,
it is now possible to generate descriptors for compounds in discrete states, thus,
adding additional dimensions to the QSAR problem. An example of such methods
is the CoMFA method [7] which generates descriptors according to a user-specified
conformation and alignment.

4.3.4.1 Consideration of Conformation and Alignment
of Flexible Compounds

An important, unsolved problem in modeling the changes in biological activity with
differences in chemical structure within a series of flexible molecules, e.g. peptides,
is finding the optimal conformation and alignment for the series (if it exists).
Conformations of a molecule, as defined by FEliel et al. [8] are the non-identical
arrangements of the atoms in a molecule obtained by rotation about one or more
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Conformation of u
Physicochemical

feature 123456..... a. ... c(a)
1.

Reference v

2.
3.

N

Figure 4. MATRIX analysed by PLS to find a conformation similar to a referénce, v.

single bonds. A common conformation for a series of compounds would be one, in
which a common set of atom positions or torsion angles is specified. An alignment
of conformations is the arrangement of two or more molecules, in which a common
set of atoms, substructures or features is superimposed. Currently, the active
conformation and alignment must be known a priori. Recently, a general solution
for finding the conformation/alignment responsible for biological activity of flexible
compounds has been proposed [9] and applied to the structure-activity data for a
series of twenty-one flexible tricyclic pyridodenzodiazepinone (I) inhibitors of the
muscarinic receptors [9], M2 and M3. In this case, the alignment was known and
each analog could exist in as few as 9, but also in as many as 706 conformations
with energies 6 kcal/mol or less. Each conformer was represented by 29 variables,
most of which were conformationally dependent [10]. It was assumed that the lowest
energy conformation of the most active compound was the active conformer. To
find the conformation of each analog most similar to that of the reference compound,
a PLS analysis of the matrix in Fig. 4 was carried out.

The X-block is the physico-chemical data for all low energy conformers of
compound, u. In this case, N = 29 variables, most of which are conformationally
dependent. The dependent variable was the vector of variables for the reference
compound, v, in the active conformation. The conformation in X was selected that
was most “similar” to the reference compound in the PLS sense. A scoring system
was devised [9] to score each conformer for each compound. Then the features of
this conformer for each compound were used to construct a regular data matrix,
as shown in Fig. 1, for QSAR development. The result was a predictively significant
3D QSAR.

4.3.4.2 Novel Descriptors for Peptide QSAR

There have been recent developments in the QSAR of peptides using newly developed
structure-based descriptors and PLS [11]. Hellberg and coworkers [12] were the
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Table 1. Descriptors for bitter tasting dipeptides, H,N—CH(R,)—C(=O)NH — CH(R,)COOH

No. Peptide Isotropic surface area Electronic charge index
R, R, R, R,
1 GV 19.93 12091 0.02 0.07
2 GL 19.93 154.35 0.02 0.10
3 GI 19.93 149.77 0.02 0.09
4 GP 19.93 122.35 0.02 0.16
5 GF 19.93 189.42 0.02 0.14
6 GW 19.93 179.16 0.02 1.08
7 GY 19.93 132.16 0.02 0.72
8 AV 62.90 12091 0.05 0.07
9 AL 62.9 154.35 0.05 0.10
10 AF 62.90 189.42 0.05 0.14
11 VG 120.91 19.93 0.07 0.02
12 VA 12091 62.90 0.07 0.05
13 \'AY 120.91 120.91 0.07 0.07
14 VL 120.91 154.35 0.07 0.10
15 LG 154.35 19.93 0.10 0.02
16 LA 154.35 62.90 0.10 0.05
17 LL 154.35 154.35 0.10 0.10
18 LF 154.35 189.42 0.10 0.14
19 LW 154.35 179.16 0.10 1.0
20 LY 154.35 132.16 0.10 0.72
21 IG 149.77 19.93 0.09 0.02
22 IA 149.77 62.90 0.09 0.05
23 1AY 149.77 12091 0.09 0.07
24 IL 149.77 154.35 0.09 0.10
25 1 149.77 149.77 0.09 0.09
26 1P 149.77 122.35 0.09 0.16
27 Iw 149.77 17.87 0.09 1.08
28 IN 149.77 17.87 0.09 1.31
29 ID 149.77 18.46 0.09 1.25
30 1Q 149.77 19.53 0.09 1.36
31 IE 149.77 30.19 0.09 1.31
32 IK 149.77 102.78 0.09 0.53
33 IS 149.77 19.75 0.09 0.56
34 IT 149.77 59.44 0.09 0.65
35 PA 122.35 62.9 0.16 0.05
36 PL 122.35 154.35 0.16 0.10
37 Pl 122.35 149.77 0.16 0.09
38 PY 122.35 132.16 0.16 0.72
39 PF 122.35 189.42 0.16 0.14
40 FG 189.42 154.35 0.14 0.10
41 FL 189.42 154.35 0.14 0.16
42 FP 189.42 122.35 0.14 0.16
43 FF 189.42 189.42 0.14 0.14
44 FY 189.42 132.16 0.14 0.72
45 WE 179.16 30.19 1.08 1.31
46 ww 179.16 179.16 1.08 1.08
47 YL 132.16 154.35 0.72 0.10

48 SL 19.75 154.35 0.56 0.10
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first to successfully develop a strategy for deriving QSAR for these important
compounds. By tabulating a large number of measured and theoretical properties
of amino acids and their derivatives, principal components analysis was used to
derive three principal properties, z,, z,, and z,, for each amino acid. The principal
properties are linear combinations of the primary data and were proposed to model
the hydrophilic, bulk and electronic nature of the side-chain substituent, respectively.
In QSAR studies, the principle properties, z, —z5, are used as substituent constants
for each amino acid as it appears in the peptide sequence, and PLS is applied to
the resulting data matrix to derive the QSAR. This approach has been applied to
a number of peptide structure-activity studies, but has been criticized for being
difficult to interpret, because of the lincar combination problem and for not
considering the conformational state of the peptides in the derivation of the principle
properties, z; —z;. This interpretation question can be resolved by attempting to
correlate z,, z, and z; with variables which can be computed from the structure. If
the primary variables can be identified, and if conformation of the peptide is
considered in the computation of the variable, the drug design process will be much
more straightforward.

In order to identify the underlying primary variables of z,, z, and z,, features
related to the two most significant, z, and z,, were explored. These are hydrophilic
in character, or inversely hydrophobic in character, and electronic in character,
respectively. It has been shown that the isotropic surface area of a solute is highly
correlated with hydrophobicity [13, 14]. This parameter, defined as the solvent-
accessible surface arca associated with the nonpolar portion of the supermolecule
solute structure, was found to be highly correlated with z,. The isotropic surface
area is computed on the free amino acid structure which results from its optimization
with the AMBER force field with Molecular Mechanics Force Field, MMFF.

In order to model the electronic nature of the a-carbon of the amino acid, the
sum of the absolute values CNDQO/2 charges of the atoms in the substituents of
the a-carbon were used. This variable, which models the charge separation, is termed

34} .
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Figure 5. A comparison of the predicted activity of bitter dipeptides using the z-scales and isotropic
surface area, ISA, and the electronic charge index, ECIL.
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the electronic charge index, or ECL In both cases the variables are conformationally
dependent. Data for bitter dipeptides, analyzed by Hellberg et al. [15], are given in
Table 1.

When used as side-chain or substituent constants for the a-carbon for amino
acids in peptides, these two variables worked as well as z, —z,, as determined by
R? or the variance explained. Fig. 5 is a plot of the observed and predicted activities
for bitter dipeptides, analyzed previously by Hellberg et al. [15]. The same number
of PLS components was used in both cases, but only two variables were used per
amino acid residue in the peptide.

4.3.5 Symmetric and Asymmetric Data Structures

The problem of predicting that some compounds will be biologically active and
others will be inactive stimulated much of the early applications of PARC to
structure-activity data. Such applications lead to our proposal that QSAR problems
lead to two types of data structure: 1) symmetric data and 2) asymmetric data
[4, 16]. Fig. 2 is an example of symmetric data structure. Two or more classes form
well-defined clusters in descriptor space. This results in classification studies of
antagoniste vs. agonists, substrate vs inhibitor, etc. This contrasts with another
notation for asymmetric data structure, namely embedded structure, which is
discussed in recent article by Rose et al. {17].

However, in studies of active vs inactive, carcinogen vs non-carcinogen, for
example, the data structures are often asymmetric. Here, only one of the classes,
usually the one with active compounds has a data structure that can be modeled;
only this class contains compounds that are similar to each other (biologically and
structurally). The other class, usually the one with inactives, is not a proper class,
and thus, has no inherent similarity and cannot be modeled. This is because a
compound can be inactive for many different reasons, but activity needs a

T
<

2.5
20} o
15
1.0
05} I -t

T T
<o
>0
°
o
[}
%
<o

Sum
]
[

-0.5
-1.0
-1.5
-2.0

T
@
Co

<

05 -0.3 -0.1 0.1 03 05 07
Sum o

-0.7

Figure 6. Plot of asymmetric data for carcinogenic (®) and noncarcinogenic (¢) dimethylamino-
azobenzenes.
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well-defined structure. This is analogous to control theory, where a process under
control occupies a small regular part of the multivariate space, while the process
can be anywhere in this space when it is out of control.

An example of asymmetric data structure is given in Fig. 6. The data are sum pi,
which is the sum of the Hansch = constants for the substituents on the x-axis, and
sum sigma, which is the sum of the Hammett ¢ constants for the substituents on
the y-axis for substituents in the substituent () ring of dimenthylaminoazobenzenes
(IT). They were analyzed with SIMCA by Miyashita et al. [18] using the original
data of Hansch [19].

The asymmetric nature of the data in Fig. 6 is striking and illustrates the power
of the SIMCA method. It is the only method, which is routinely used in QSAR
studies, that can handle this type of data structure.
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4.3.6 Variable Selection

As discussed previously, SIMCA is the method of choice for classification problems
that require results at level II1. It must be realized, however, that each data set is
unique, and to obtain the best results from a method, care must be taken to insure
that the prediction rules are optimal for that data set. One aspect of optimizing
the classification rules is variable selection. In SIMCA and PLS one can select
X-variables on the basis of their residuals, i.e. R? (or the similar MPOW of early
SIMCA papers), their discriminating power (importance for distinguishing between
classes), and, on level ITI, their importance for predicting Y. Here, a number of
methods have been recently developed by Clementi (see the chapter on GOLPE in
Vol. 3), Marsili [20], and others. These are based on cross-validation and are
computationally extensive. The VTP statistic of Wold et al. (see the chapter on PLS),
which is a measure based on the weighted PLS coefficients (w, ) in significant model
components VTP, scems to form a reasonable basis for variable selection, and has
the advantage of not demanding additional computations beyond the model
estimation. There is a clear need to evaluate these measures of variable relevance
before any strong recommendations can be made.

4.3.7 Determining the Model Complexity

An important point to stress is the difference in prediction error and fitting error
[18]. Fitting error is based on predicting the training objects and decreases with
model complexity (adding components). Prediction error is based on estimation of
compounds not included in model development. It decreases, goes through a
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minimum and then generally increases with model complexity. Selection of
components based on cross-validation [6] gives models with optimal prediction
capability. Indeed, predictive capability is identical to the cross-validated R? statistic
(often denoted as Q%) used by Cramer et al. [7] for selecting of the optimal PLS
model in their COMFA® method.

4.3.8 Developing, Optimizing and Validating Classification Rules

SIMCA classification rules are geometric structures in descriptor space. They are
{(for 3 or more variables) a sphere or hypersphere for 4 = 0 (4 is the number of
components or product terms in Eq. 1), a cylinder or hypercylinder for A = 2, and
a parallelepiped or hyperparallelepiped for 4 = 3 or more. Attempts to improve
classification by adjusting the SIMCA classification rules have been limited in
number. An early report by Forina and Lanteri [21] suggested that SIMCA models
be modified to hyperellipsoids to classify Italian wines according to their region of
origin. There seemed to be little improvement in classification results with this
variation, however.

A more recent variation of the SIMCA models was more successful [22]. Even
though the method was developed for application to mass spectral data, it is a general
approach which can be applied to any type of data to improve classification results
with SIMCA. In an effort to develop an automatic scheme for identification of
members of a target list of five classes of airborne environmental pollutants, based
on their mass spectral data, it was observed that SIMCA worked well. Also, an
important aspect of environmental analysis is the detection of non-target compounds,
as these may become important later. At present, no effort for this undertaking has
been made. Thus, one objetive of the study was to obtain a class assignment for an
unknown mass spectrum, if it was not a member of the target list. The mass spectra
were converted in to their autocorrelated transformed spectra. SIMCA rules were
derived and variables were deleted using modeling power, MPOW [1]. Variable
selection was done so that the analysis of each class was performed on the same
subset of variables. Using this strategy, classification results were 99% when applied
to the training set data and the results were verified by visual interpretation.
Classification accuracies were considerably diminished, however, when the rules
were applied to true unknown spectra.

The SIMCA classification rule, shown in Fig. 7, determines class membership by
the orthogonal projection distance, d, of the unknown to the class models. In the
case where the unknown is beyond the class window, as determined by the extreme
principal component scores for the training data, the distance, d*, is calculated from
the unknown to the edge of the classes. The distances, d and d*, when corrected
for differences in degrees of freedom, can be directly compared with the class residual
standard deviation, s, as defined in Eq. (5). The ¢;, are those given by Eq. (1):

1 ) 1/2 5
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If the unknown is “similar” to the class of training compounds, d or d* will be
approximately equal to s.,.. An approximate F-statistic can be calculated to
determine the level of significance of similarity and, therefore, of the classification
result. This similarity rule has been discussed elsewhere [23] and a variation of it
has been proposed [24].

The original SIMCA classification rule gives equal weight to objects with
projections near the extremes of the class and to those near the geometrical mean
or centroid of the class. Principal component scores, t; 48, in Eq. (1), are the positions
of the compounds in the models. In Fig. 7, the distances of two objects to the same
class model are compared and under the usual classification rule, they are equidistant
from the model. SIMCA, thus, gives them the same classification result.

However, the ts also contain information about class assignment. In order to
have the ts considered in the classification rule, a variation of the usual SIMCA
classification rule was proposed and used in this study.

PARC or feature space can be divided into two subspaces [24]. The subspace
defined by the ps, the loading vectors in Eq. (2), is the inside model space, or IMS.
The remaining axes are referred to as the outside model space axes, or OMS axes.
The root-mean-square variance, s, along each p, vector is given in Eq. (6). Here,
t;.. is the principal component score for a compound (i) in component a, which
measures the distance from the center of the class model to the point of projection
of the object onto the class model. NV is the number of compounds in the class.
Thus, s, is the standard deviation of the of the ts along axis, a

1 , 172
. = [m Zl: tia:| (6)

The remaining root-mean-square variance, of OMS distance, is s, from Eq. (5).
The summation is taken over both compounds and variables.
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In the revised SIMCA classification study, class models are derived, and unknowns
are then fitted to the various class models. An unknown compound, when fitted
to an A-component model, will have scores, ¢, 5, ... t; 4 and an OMS distance,
dows of,

. B 1 271/2 ;
oMs = I:m Z eikd (7)

and an IMS distance, dyyg of,

1 Ntk
divs = [Z Z t <Sep~> 1 3)

Sa

and a total distance:
d = adoys + (1 — o) diys ‘ %)

The OMS distance is calculated as in SIMCA. If the unknown actually belongs
to the class, whose model it is being fitted to, then doms X Seps. Otherwise, doys > Seps-
The residuals are smallest when the unknown is fitted to its correct class. The IMS
distance, dyys, is different from that calculated by the ordinary SIMCA. With ordinary
SIMCA, a class window is defined by the class model. If the projection of the
unknown spectrum lies within this window, then its djyg is set to zero. If its projection
lies outside the class window, its s;, is equal to the edge of the window. In practice,
the projections of nearly all of the unknowns lie within the SIMCA class windows,
hence, the dyys = 0. Therefore, the ordinary dpys provides less than optimal class
discrimination in SIMCA.

The modified dyys as given in Eq. 8, with & = 0.75 and = 2, has been found to
be useful in improving class discrimination, particularly by reducing the number of
false positive classifications [24]. In the classification step, a new distance d,, for a
compound is computed for each of the class models. This is shown in Fig. 8. The
unknown is then assigned to the nearest class.

The revised SIMCA rule was an improvement, with a classification accuracy of
unknowns of 221/230 (96%) compared to 209/230 (90%) for the regular SIMCA
model. It actually was a poorer classifier of the training compounds, but gave only
4 false positives.

This revised SIMCA rule can be further adjusted with the parameters a« and .
In this way SIMCA can be based on Mahalanobis distances (¢« = 0.5, § = 0) and
other variants. The “standard” SIMCA has a = 1 and f = 2. A value of B less
than 2.0, say 1.0, seems reasonable, since it gives more weight to the initial more
important components in the classification rule. A value for a of between 0.5 and
1, say 0.75, also seems reasonable. Again, more experience must be obtained before
any generalizations can be made.



192 William J. Dunn III and Svante Wold

feature 1

o a
Q/ e {e&t“re

featu_r Figure 8. Geometric interpretation of the
€2 revised SIMCA classification rule.

4.3.9 Discussion

In QSAR, classification is a common problem due to the strong non-linearity of
the interaction between chemical compounds and biological systems-receptors,
membranes, enzymes, etc. Since most QSAR models are approximately linear,
separating the compounds into distinct classes, each with a fairly linear behavior,
is the best approach.

Among all available classification methods, e.g., linear discriminant analysis,
quadratic discriminant analysis, ALLOC, UNEQ, K-nearest neighbors, etc., SIMCA
is unique, in that it gives models of the classes. These models improve our
understanding of the structural requirements for activity, etc., and are best interpreted
graphically by score plots (plotting t; , against ¢; ,, etc.) for each class, loading plots
of p,, and so on (see, c.g. the PLS chapter).

The score plots give an indication of the data homogeneity in each class. If there
are strong clusters in one of the score plots, this indicates that such a class should
be further divided into subclasses.

The fact that SIMCA is based on principal components (PC) or PLS models
makes it applicable also when the number of structural descriptor variables (K) is
large compared to the number of compounds (N). With the masses of variables
derived from quantitative molecular modeling, this becomes an important asset.
Also, these PC and PLS models tolerate moderate amounts of missing data, which
is often important in practice.

As in any modeling, SIMCA results must be validated before they are used for
interpretation or prediction. Cross-validation, randomized training sets, and external
prediction sets are available approaches, as discussed further in the chapter
concerning validation in this volume.
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Abbreviations

AA Amino acid

Cv Cross-validation

DModX  Distance to model in X space

LV Latent variable

MLR Multiple linear regression

NN Neural networks

PCA Principal components analysis

PCR Principal components regression

PLS Partial Least Squares Projections to Latent Structures
PRESS Predictive residual sum of squares

QMM Quantitative Molecular Modeling

QSAR Quantitative structure-activity relationship

RSD Residual SD

SD Standard deviation

SS Sum of squares

vIipP Variable influence on projection

* Multiplication

a Index of components (model dimensions); (a = 1,2, ..., 4)
i Index of objects (molecules); (i = 1,2, ..., N)

k Index of X variables (k = 1,2, ..., K)

m Index of Y variables (im = 1,2,..., M)

X Matrix of structure descriptors, size (N * K)

Y Matrix of activity variables, size (N * M)

z The transpose of a matrix Z

b,, Regression coefficient vector of the mth y. Size (K = 1)
B Matrix of regression coefficients of all Ys. Size (K * M)
C, PLS Y weights of component a

C The (M = A) Y-weights matrix; ¢, are columns in this matrix
E The (N * K) matrix of X residuals

S Residuals of mth y variable; (N = 1) vector

F The (N % M) matrix of Y residuals

D, PLS X loadings vector of component a

P Loadings matrix; p, are columns of P

R? Multiple correlation coeofficient; the amount of Y “explained”
Q2 Cross-validated R?; the amount of Y “predicted”
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t, X scores of component a

T Score matrix (N = A), where the columns are 7,

U, Y scores of component a

U Score matrix (N # 4), where the columns are #,

w, PLS weights of component a

w The (K * A) X weights matrix; w, are columns in this matrix

w¥ PLS weights transformed to be independent between components
w* (K * A) matrix of transformed PLS weights; w¥* are columns in W*
Notation

Vectors are denoted by lower case characters and are column vectors, unless
otherwise shown transposed (e.g. ). Matrices are denoted by upper case characters,
e.g X

4.4.1 Introduction

QSAR is an approach to understanding how structural variation affects the biological
activity of a set or structural class of compounds. This approach is also useful for
studying properties of chemical compounds other than their biological activity, e.g.
solubility, retention times in various chromatographic systems or catalytic properties.
Such applications are often called Quantitative structure-property relationships)
(QSPR). As has already been set out in this volume, QSAR can be roughly divided
in to the following steps:

1. Problem formulation, i.e. selection of the biological activities of interest, choice
of structural domain (structural class) and the choice of structural features to
be varied,

quantitative description of the structural variation,

choice of model for the QSAR, i.e. either a linear, quadratic polynomial,
hyperbolic or exponential model, etc.,

selection of compounds (series design),

synthesis and biological testing,

data analysis, and validation,

interpretation of results,

proposal of new compounds.

W

e A

In reality, any QSAR development is an iterative cycle, in which the above
steps are repeated a number of times, until sufficient knowledge about a
class of compounds has been obtained in order to either design compounds
with the desired activity profile, or to conclude that such a profile cannot be
attained.
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Although QSAR can not really be separated into several distinct steps, we shall
nevertheless adhere to this breakdown and be concerned here mainly with Steps
6 to 8, ie. data analysis, validation, interpretation, and use of the results
obtained. Some of the consequences of the newer methods of data analysis in Steps |
to 5 will also be discussed, however.

PLS (Partial Least Squares projections to latent structures) is a generalization
of regression, which has been recently developed [1 —6]. PLS is of particular interest
in QSAR because, unlike Multiple Linear Regression (MLR), data with strongly
correlated (collinear) and/or noisy or numerous X variables (structural descriptors)
can be analyzed, and several activitiy variables, Y, i.e. profiles of activity, can be
modeled simultanecously.

Being a generalization of MLR, PLS contains MLR as a special case when a
MLR solution exists, i.e. when the number of X and Y variables is fairly small.
This will be shown in the example below, where it will be seen that in such cases
PLS gives a “reduced” solution, which is statistically more robust than the MLR
solution, and hence, gives better predictions than MLR. PLS gives results analogous
to MLR, such as PLS regression coefficients, Y residuals, R?, and cross-validated
R? (denoted here as Q?%). PLS, in addition, gives a set of plots (scores and loadings)
that provide information about the correlation structures of the variables and the
structural similarities/dissimilarities between the compounds. These plots are most
useful for interpreting the model.

A recent development in QSAR is “Quantification of Molecular Modeling”
(QMM) with methods such as CoOMFA [7] and (GRID) [8]. With QMM, the number
of X variables is large, often exceeding 10000, while the number of compounds is
still moderate, for instance, between 10 and 100. PLS is a suitable tool for data
analysis in QMM as discussed in the next volume of this series.  Thus, being able
to handle numerous collinear X variables, and activity profiles (Y), PLS allows us
to investigate more complex and interesting structure-activity problems than
previously, and to analyze the available data in a more realistic way. However, PLS
still warrants some caution and we are still far from a good understanding of how
molecular structure influences biological activity. Multivariate analysis methods
such as PLS, principal component analysis (PCA), correspondence factor analysis
(CFA), linear discriminant analysis (LDA) and neural networks (NN) are still in
their in fancy, particularly in applications where there are many variables and few
observations (in this case compounds).

4.4.2 Objectives and Data Homogeneity

Data analysis is very much like chemical analysis: one must know what one is
looking for in order to select an appropriate analytical method, and a given problem
can be solved by a variety of methods. Moreover, for a given problem, not all of
the data is of interest, just as a chemical sample contains constituents of little interest.
We shall refer to the uninteresting parts of the data as noise, and the data of interest
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as information. In this context, we must remember that noise is only partly
random, but also systematic due to inadequacies in X (the structure descriptors)
as well as to deficiencies in the model. To illustrate this, QSAR models are often
linear, while the real world always is non-linear but in a way that is usually not
well known.

In order to analyze data, one must have a specific objective or aim, which can
be rather vague, such as obtaining an “overview” of a data set, or more specific,
such as finding the relationship between given sets of variables, X and Y, which
must be then elaborated. The objective is then translated in to a model, taking into
account the expected relationships between variables, and the type of noise. The
first part of the data analysis then consists of using the data to determine values
of parameters in the model so that the model fits the data well.

Data analysis, as in any scientific investigation, is based on an assumption of
homogeneity. In the present context of QSAR, this means a similarity in the biological
mechanism with all the investigated compounds, which in turn, corresponds to
having some limits on structural variability and diversity. These limits may be wide
ranging if the biological activity is not specific such as anaesthetic activity, or the
limits may be narrow, if the biological activity involves binding to a structurally
well-defined receptor.

Since the results of the analysis depend on that, among other things, those critical
assumptions concerning model shape and data homogeneity are fulfilled, it is
essential that the analysis provides diagnostics about how well these assumptions
indeed are, fulfilled. Much of the recent progress in applied statistics has concerned
diagnostics [9], and many of these diagnostics can be also used in PLS modeling,
as discussed below. PLS also provides additional diagnostics outside of regression-
like methods, particularly those which are based on modeling X (score and loading
plots and X residuals).

In the example below, the first PLS analysis indeed indicates that the data set
analyzed is inhomogeneous: three aromatic amino acids (AAs) exert a different
type of effect on the modeled activity in comparison to the other amino acids.
This type of information is difficult to obtain in ordinary regression modeling, or
indeed in most data analysis methods used in the QSAR field.

In fact, PLS can be used for classification (pattern recognition, discriminant
analysis), similar to the Soft Independent Modeling Class Analogy method (SIMCA)
which is based on disjoint principle component (PC) models of each class. If response
data () also exist within each class, a PLS model instead of a PC model can be
used. An example is given in the chapter on SIMCA by Dunn and Wold (Chap. 4.3).

An Example

In order to illustrate PLS modeling and the interpretation of the results, we shall use
a small example form the literature with one Y variable and seven X variables. The
example chosen is simple, and yet illustrative of most aspects of PLS and regression
modeling. [t must be emphasized however, that the present analysis is in no way
a criticism of the work by El Tayar et al. [10], who carried out another type of
analysis with the aim of obtaining a more detailed molecular interpretation.
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Table 1. Raw data for the AA example. The lower half of the table shows the pairwise corrclation
cocfficients of the data. PIE and PIF are the lipophilicity constant of the AA side chain according
to El Tayar [10], and Fauchére and Pliska, respectively, DGR is the free energy of transfer of an
AA side chain from the protein interior into water according to Radzicka and Woldenden.
SAC is the water-accessible surface area of AAs calculated by MOLSV, MR is the molecular
refractivity (Daylight data base), Lam is a polarity parameter according to El Tayar [10]. Vol is
the molecular volume of the AAs calculated by MOSLV . All the data, except MR, were taken from
the data reported by El Tayar ct al. [10]

PIE PIF DGR SAC MR Lam Vol DDGTS
1 Ala 0.23 0.31 —0.55 2542 2126 —0.02 82.2 8.5
2 Asn —0.48 —0.60 0.51 303.6 2994 —1.24 1123 8.2
3 Asp —0.61 —0.77 1.20 2879 2994 —-1.08 103.7 8.5
4 Cys 0.45 1.54 —140 2829 2933  —-0.11 99.1 11.0
5 Gin —0.11 —0.22 0.29 335.0 3458 —1.19 127.5 6.3
6 Glu —-0.51 —0.64 0.76 3116 3243 —143 120.5 8.8
7 Gly 0.00 0.00 0.00 2249 1.662 0.03 65.0 7.1
8 His 0.15 0.13 —-0.25 337.2 3856 —1.06 140.6 10.1
9 lle 1.20 1.80 —2.10 3226 3.350 0.04 1317 16.8
10 Leu 1.28 1.70 —2.00 3240 3.518 0.12 1315 15.0
1l Lys —0.77 —0.99 0.78 336.6 2933 =226 1443 7.9
12 Met 0.90 1.23 —160 3363 3860 —0.33 132.3 133
13 Phe 1.56 1.79 —2.60  366.1 4638 —0.05 155.8 11.2
14 Pro 0.38 0.49 —1.50 2885 2876 —0.31 106.7 8.2
15 Ser 0.00 —0.04 0.09  266.7 2279 —-040 88.5 7.4
16 Thr 0.17 0.26 —0.58 2839 2743 053 105.3 8.8
17 Trp 1.85 2.25 —270 4018 5755 —0.31 1859 9.9
18 Tyr 0.89 0.96 —1.70 3778 4791 —0.84 162.7 8.8
19 Val 0.71 1.22 —1.60 2951 3054 —0.13 115.6 12.0
PIE 1.000 0967 —0.970 0.518 0.650 0.704 0.533 0.645
PIF 0.967 1.000 —0.968 0.416 0.555 0.750 0.433 0.711
DGR —0.970 —0.968 1.000 —0463 —0582 —0.704 —0484 —0.648
SAC 0.518 0416 —0.463 1.000 0.955 —0.230 0.991 0.268
MR 0.650 0.555 —0.582 0.955 1.000 —0.027 0.945 0.290
Lam 0.704 0.750 —0.704 —-0.230 —0.027 1.000  —-0.221 0.499
Vol 0.533 0433 —0.484 0.991 0945 —0.221 1.000 0.300
DDGT 0.645 0711  —0.648 0.268 0.290 0.499 0.300 1.000

The data in question concerns modeling the energy for unfolding a protein
(tryptophane synthase alpha unit of bacteriophage T4 lysozome), where each of the
19 coded amino acids (AAS), except arginine (Arg), had been introduced into position
49 [10]. The AAs are described in terms of x, = PIE and x, = PIF (two measures
of side chain lipophilicity), x; = DGR = AG of transfer from protein interior to
water, x, = SAC = surface area, x; = MR = molecular refractivity, x, = LAM
= side chain polaritiy, and x, = Vol = molecular volume. Computational and
other details are given by El Tayar et al. [10]. The X data are highly correlated,
with rZ(x1, x2, x3) > 0.964, and r?(x4, x5, x7) > 0.945. The raw data are given in
Table 1 together with their correlation coefficients. In summary, the data comprise
one activity variable (y) and seven correlated structure descriptors, x; to x4, for 19
coded AAs. The individual correlations between the response (DDGTS) and each
of the X variables were between 0.268 (x, = SAC) and 0.711 (x, = PIF).
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4.4.3 The QSAR model

Any scientific model consists of several stages, starting with the philosophical
viewpoint, conceptualization to the execution. All aspects are essential in order to
comprehend the model and its underlying concepts.

4.4.3.1 The Conceptual Model

Our way of thinking in chemistry consists of translating the influence of structure
on activity in terms of “effects”, such as lipophilic, steric, polar, hydrogen bonding,
and possibly other “effects”. Some of these can be “localized” (o a part of a molecule,
for instance, a part that fits into a “lipophilic pocket” of a receptor. They may also
be “global”, such as global lipophilicity that may be related to the transport of the
compound across lipophilic/polar boundaries. Much of the efforts in QSAR involves
the translation of structural variation into reasonable scales, corresponding to these
effects, both for localized parts of the molecules as well as for “global” whole
molecules.

Although this formulation of how chemical structure influences biological and
other properties of our molecules is of no immediate concern as regards to the
technicalities of PLS, it is still of interest in that PLS modeling is consistent with
seeing structural influences, mediated by “effects”. The concept of latent variables
in PLS may be seen as directly corresponding to these effects in QSAR-PLS models.
In order to be able to estimate the influence, structure — “effects” — activity, ecach
effect must be parametrized by at least one X variable (structural descriptor),
preferably several. In simple situations, such as in the present example, with
compounds having the same structural “backbone” and just changing substituents
at specific “sites”, the X variables are few- one X variable (substituent scale) for
each “effect” and “site”. In CoMFA and GRID paramerizations of more complicated
sets of molecules, the X variables are numerous and the derivation of the “effects”
is done as an integral part of the modeling and data analysis.

X —— variables -» Y
123 ...k ... K T u 1mM
1
| 2
objs , (Xik) — Yim
l N ",
P’ \'\‘\
fy Io 13 o
Uy U s Figure 1. Data of a QSAR model can

w’ be arranged into two tables, matrices,
X and Y. Note that the raw data may
be transformed (e.g. logarithmically),

Structure descriptors Activity and are usually centered and scaled
measurements  before the analysis.
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In the example, the side chains of the AAs are modeled using three lipophilicity
parameters (PIE, PIF, and DGR), three steric parameters (SAC, MR, and V ol), and
one polar parameter (Lam). Some are highly correlated (see Table 1).

Having translated the structural variation of N compounds in to a number of
structure descriptor variables, as denoted by x, (k = 1, ..., K), and measured the
biological activity of these compounds by a number of variables, y, (m = 1, 2,

.., M), we can collect the data into two matrices X and Y, of dimensions (N x K)
and (N x M), respectively, as shown in Fig. 1. In this example N = 19, K = 7, and
M = 1.

4.4.3.2 Transformation, Scaling and Centering

Before the analysis, the X and Y variables are often transformed, so that their
distribution is consistent with chemical and biological theory. Thus, activity
variables, with a range covering more than one order of magnitude of ten, are often
logarithmically transformed, and the same applies to structure descriptor variables.
If the variable has zero value, the fourth root transformation is a good alternative
to the logarithm. The response variable in the example has alread been logarith-
mically transformed, i.e. expressed in thermodynamic units.

The results of projection methods, such as PLS, depend on the scaiing of the
data. This is an advantage, because with appropriate scaling, one can focus on the
more important ¥ variables in the model, and use one’s experience to increase the
weights of informative X variables.

In the absence of knowing the relative importance of the variables, the standard
PLS procedure consists in scaling each variable to unit variance, the so-called
autoscaling. The software calculates the standard deviation (SD) of each colum of
the data, and thereafter divides each column by the corresponding SD. This
corresponds to assigning each variable with the same weight, and, thus, importance
prior to the analysis.

In the example given, the autoscaled weights of the three lipophilicity variables
and the three steric variables have been divided by 1.5, so that the single polarity
variable does not become masked (so-called blockscaling).

In CoMFA and GRID-QSAR, however, autoscaling is often not the best method
of scaling X, but non-scaled X data or some X-data, which has been subjected to
same form of intermediate scaling between autoscaling and non-scaling, may still
be appropriate. This has been discussed in detail recently [6].

For ease of interpretation and numerical stability, it is recommended that the
data are centered before the analysis. This is done — cither before or after scaling — by
subtracting the column averages from all data in the X and Y columns. Hence, the
analysis concerns the deviations from the means, and how these deviations are
correlated. This centering does not lead to changes in the coefficients or weights of
variables, and hence does not alter the interpretation of the results.
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4.4.3.3 The PLS Model

The linear PLS model finds “new” variables, 4 latent variables, also called
X scores and which are also denoted by ¢, {(a = 1,2, ..., A). These scores are
linear combinations of the original variables, x, with “weights™ of the coefficients,
wi,(a=1,2,..., A).

lia = ZWiXy, (1)

These X scores (t,s) have the following properties:
(a) They are good predictors of Y, so that

Vim = z“41Cmatl'a + ﬁm (2)
Y =TC + F (2a)

In Eq. (2a) the model is expressed in matrix form. The residuals, f;, express
the deviations between the observed and modeled data, and comprise the
elements of the Y residual matrix, F in Eq. (2a). The index i is used for
compounds, ie,i =1,2,...,N.

Because of the relationships expressed in Egs. (1) and (2), the latter can be
rewritten in the form of a regression model:

Vim = LaCma ZaWiaXik T fim = ZibpiXix + fim (3)

The “PLS regression coefficients”, b,,, can be written as:

bmk = 2acmawl><km (4)
(b) They are few in number (A4) and orthogonal; the summations in Egs. (2) and (5)
are made over the component index, a (¢ = 1, 2, ..., A).
(c) They are good “summaries” of X, so that the residuals, e, in Eq. (5) are
“small”:
X = ZaliaPax + Cik (5)
X=TP + E (5a)

Eq. (5a) is the X-model in matrix form.

With multivariate Y (when M > 1), the corresponding “Y scores™ (u,) are good
“summaries” of Y, so that the residuals, g;,, in Eq. (6) are “small”:

Vim = 2:uuiacam + &im (6)
Y=UC+G (6a)
Eq. (6a) is the Y-model in matrix form.

After each dimension, &, the X matrix is “peeled off” by subtracting #;, * py, from
the element x;,. This allows the PLS model to be expressed in weights, w,,
with reference to the residuals according to the previous dimension, E, ,, instead
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of relating to the X variables themselves. Thus, instead of Eq. (1), we have
Eq. (7):
tia = LiWiaCik,a—1 (7
€ia-2 = Cika—1 — Lia—1Pa~1,%
Cik,0 = Xik

However, the weights, w, can be transformed in to w*, which directly relate to X,
giving Eq. (1) above. The relationship between w and w* is given by [6]:

W* = WP'W) ! )

4.4.3.4 Interpretation of the PLS Model

One way of looking at PLS is that it forms “new x variables”, ¢,, as linear
combinations of the old ones, and then uses these new ts as predictors of Y. Only
as many new ts are formed as are required to be predictively significant, and this
is discussed below.

The parameters, t, u, w {and w*), p, and ¢ (see Fig. 1), are determined by a PLS
algorithm as described below. For the interpretation of the PLS model, the scores,
t and u, contain information about the compounds and their similarities/dissimilari-
ties with respect to the given problem and the model.

The weights w, (see below), and ¢, provide information about how the variables
can be combined to form a quantitative relation between X and Y. Hence, these
weights are essential for understanding which X variables are important (numerically
large w values), which X variables provide the same information (similar profiles
of w, values), the interpretation of the scores, ¢, etc.

The part of data that are not explained by the model, that is, the residuals, are of
diagnostic interest. Large residuals of Y indicate that the model is poor, and a normal
probability plot of the residuals of a single Y variable are useful for identifying
outliers, just as in MLR. In PLS residuals for X, the data not used in the modeling
of Y, are also obtained. These X residuals are useful for identifying outliers in
X-space, i.e. molecules with structures that are not consistent with the model.

Geometric Interpretation

PLS is a projection method and, thus, has a simple geometric interpretation with
a projection of the X matrix (a swarm of points in a K-dimensional space) on to
an A-dimensional hyperplane, in such a way that the coordinates of the projection
(t,, a =1,2,..., A) are good predictors of Y. This is indicated in Fig. 2, and the
scores, t, are explained below.

The direction of the plane is expressed in terms of the slope, p.. of cach
principal direction of the plane (each component), with respect to each coordinate
axis, x,. This slope is the cosine of the angle between the principal direction and
the coordinate axis.
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Figure 2. The gcomctric representation of PLS. The X (structural descriptor) matrix can be
represented as N points in K-dimensional space where each column of X(x,) defines a coordinate
axis. The PLS model defines an A-dimensional hyperplane, which in turn, is defined by a line in
one direction per component. The direction cocfficient of the line is given by p,.. The coordinates
of each compound, i, when its structural descriptor data (row 7 in X) are projected down on to this
plane, are given by t,,. The corresponding positions are related to Y, so that projections of all
points onto a line in this plane correlate with the values of Y.

Thus, PLS develops an A-dimensional hyperplane in X-space such that this plane
is a good approximation of X (N points, row vectors of X), and at the same time,
the positions of the projected data points onto this plane, described by the scores
ti., are closely related to the values of the responses: activities, Yin (see Fig. 2).

Incomplete X and 'Y Matrices (Missing Data)

Projection methods such as PLS tolerate certain amounts of missing data both in
X (structural descriptors) and in Y (activities). In order to have missing Y data,
the Y data must be multivariate, i.c. have at least two columns. The larger the
matrices X and Y are, the higher the proportion of missing data can be tolerated.
For the normal sizes of QSAR data, with around 20 compounds, 10 to 20% missing
data can be tolerated, provided that they are not missing as the result of some
systematic procedure.

The PLS algorithm, in principle, automatically accounts for the missing values
by iteratively substituting the missing values with predictions given by the model.
This corresponds to assigning the missing data with values that have zero residuals
and, thus, have no influence on the model parameters.

One Y Variable at a Time, or all Y Variables in the Same Model?

PLS can model and analyze several Ys simultaneously, which has the advantage
of providing a much simpler picture than if a separate model were employed
for each Y. In general, when the Ys variables are correlated, it can be recom-
mended that they be analyzed simultaneously. If, however, the Y variables really
measure different activities and are fairly independent, one gains very little by
analyzing them with in the same model. On the contrary, with uncorrelated Y
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variables, the PLS model tends to have many components and may be difficult to
interpret. Modeling the Y variables separately, thus, gives a set of simpler models
with fewer dimensions, are hence, easier to interpret.

In order to ascertain whether the Y variables are correlated or not, it is
recommended that the analysis is started with a separate PCA of the Y matrix.
This will give information about the rank of ¥ in practice, i.e. the number of
components in the PC model, 4. If 4 is small compared to the number of Y variables
(M), and if we can interpret the resulting components, we can conclude that the
Ys are correlated, and that a PLS model of all the Ys together in combination is
warranted. Often, however, one finds from the PCA that the Ys cluster in to two
or three groups according to the nature of the activity being measured. Thus, thisis an
indication that a separate PLS model for each group of Ys is warranted.

4.4.3.5 The Number of PLS Components, 4

With any empirical modeling, it is essential to determine the correct complexity of the
model. In the case of correlated X variables, there is a substantial risk of “overfitting”,
i.e. obtaining a well-fitted model, with little or no predictive capability. Hence, a
strict test for the significance of each consecutive PLS component is necessary, and
then stopping when components are non-significant.

Cross-validation (CV)is a practical and reliable method for testing this significance
[2—6], which has become the standard in PLS analysis, and is incorporated in one
form or another in all available PLS software. A good discussion of cross-validation
was given recently by Wakeling and Morris [11], and Clark and Cramer [12]. In
principle, CV is performed by dividing the data in to a number of groups, say,
between five and nine, and then developing a number of parallel models from the
reduced data with one of the groups omitted. It should be noted that having the
number of CV groups equal to M, i.e., the so-called “leave-one-out™ approach, is
not recommended [13].

After developing a model, the omitted data is used as a test set, and differences
between actual and predicted Y values are calculated for the test set. The sum of
squares of these differences are computed and assembled from all the parallel models
to form PRESS (Predictive Residual Sum of Squares), which is a measure of the
prepdictive capability of the model.

When CV is used in the sequential mode, PRESS,/SS,_, is evaluated for each
component, and a component is considered to be significant if this ratio is smaller
than around 0.9 for at least one of the y variables (sharper bonds can be obtained
from the results of Wakeling and Morris [11]). Here SS,_, denotes the (fitted)
residual sum of squares before the current component (index a). The calculations
continue until a component is found to be non-significant.

Alternatively, one can calculate PRESS for each component for up to say 10 or
15, for instance, and use the model which gives the lowest PRESS/(N — 4 — 1)
This “total” approach is computationally much more demanding, and is, therefore,
used less often. Although it may in theory be preferable to the sequential approach,
in practice, the difference seems to be small.
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With both the sequential mode and the “total” mode, a PRESS is calculated for
the final model with the estimated number of significant components. This is often
expressed as Q2 (“cross-validated R?”) which is (1 — PRESS/SS) where SS in the
sum of squares of Y corrected for the mean. This can be compared with
R? = (1 — RSS/SS), where RSS is the residual sum of squares. In models with
several Y variables one also obtains RZ and Q2 for each Y-variable, y,.

These measures, of course, can be also expressed as RSDs (Residual SDs) and
PRESDs (Predictive Residual SDs). The latter is often called SDEP (standard Error
of Prediction). If any knowledge of the noise in the system under investigation can
be obtained, for example +0.3 units for log (1/C), these SDs should, of course, be
similar in size to the noise.

4.4.3.6 Model Validation

Any model needs to be validated before it can be seriously used to “comprehend”
or predict biological activity. It would seem that there are two reasonable principles
of validation: validation based on predictions, and validation based on fitting to
random numbers. The best validation method for a model is, of course, that which
precisely predicts the activity of new compounds consistently. An independent
validation set of several compounds (at least 4 or 5 with varying activity) is, however,
a rare luxury.

In the absence of a real validation set, two interesting and powerful ways of model
validation are available: cross-validation (CV) simulates how well the model predicts
new data, and data randomization estimates the chances {probability) to of obtaining
a good fit with randomly reorganized response data. CV has been described above,
and will be discussed more in conjunction with randomization methods in the
chapter on model validation (Ch. 5.1).

4.4.3.7 PLS Algorithms

The algorithm for calculating the PLS model is mainly of technical interest here,
and we would just like to point out that several variants have been developed for
different shapes of data [13, 14]. Most of these algorithms calculate one component
at a time with cross-validation, testing the significance of each component. The
calculations stop when a component is found to be insignificant. Most of these
algorithms also allow for moderate amounts of missing data.

4.4.4 The first PLS Analysis of the AA Data

The first PLS analysis of autoscaled and centered AA data gives one significant
component accounting for 43% of the Y variance (R* = 0.435, Q% = (0.299), with
the second component being far from significant (Q* = —0.130). In contrast, MLR
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Figure 3. The PLS scores, u; and ¢, for the N = 19 AA example (first analysis).

gives an R? of 0.788, which apparently is a much better solution. This is equivalent
to the PLS solution with 4 = 7 components. The full MLR solution, however, has
a Q7 of —0.215, indicating that the model is of low quality and cannot predict
much better than chance. A MLR model with just x, and x, gives R? = 0.507 and
0?2 = 0.248 which is comparable with the two-component PLS model.

4.4.4.1 Score Plots

With just one PLS component, the only meaningful score plot is one of y {or of
the equivalent, u,) against ¢. This plot shows the correlation between X (¢) and Y,
and 1s given in Fig. 3. We can see that the aromatic AAs, Trp, Phe and Tyr, show
a much worse fit than the other amino acids. This is a clear indication of the lack
of homogeneity in the data, which has a detrimental effect on the model.

4.4.4.2 PLS Weights w and ¢

For the interpretation of PLS models, the standard procedure is to plot the PLS
weights, w, of one model dimension against another. Alternatively, one can plot the
w*s to give similar results and a similar interpretation.

The plot of w, versus w, values for the AA example is shown in Fig. 4. We sec
that the first dimension consists mainly of PIF, PIE, and Lam at the positive end,
and DGR at the negative end. Considering the correlations between PIF, PIE, and
Lam, this is not surprising; the first dimension is mainly a mixture of lipophilicity
and polarity. The second insignificant dimension is mainly MR. The ¢ values of the
response, y, are proportional to the linear variation of Y explained by the

corresponding dimension, i.e. |/R?. They define one point per response, and in the
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Figure 4. The PLS weights, w and ¢ for the first two dimensions of the first AA model. The second
dimension was found to be insignificant, but is included for plotting purposes.

example with a single response, this point (DDGTS) is sitvated in the far upper
right-hand quartile of the plot.

The importance of a given X variable for a Y response is obtained by drawing
a line from the response “point™ in the (correctly scaled) plot through the origin
(0, 0) and through to the other side of the axis of origin, see Fig. 5. We shall call
this the Y line. A perpendicular line drawn from a X variable on to this line projects
the X point onto the Y line. The length of the projection to (0, 0) is proportional
to the importance of this X point for a particular Y point and is shown in Fig. 5
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Figure 5. PLS weightings plot as in Fig. 4
with the line from Y = DDGTS going through
the origin as shown in the plot, together with
the projectionsof X = MRand X = DGR on
to this Y linc. The plot has been rescaled to the
same length as both ¢ axes.
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Figure 7. The PLS regression coefficients (b) from thc AA example shown as functions of the
number of components, A. The MLR coefficients are identical to those obtained when 4 = 7.
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Figure 6. PLS rcgression cocfficients for A = 2 components.

for X = MR and X = Vol. We can see that MR has a slight negative influence
and Vol has a somewhat greater positive influence on Y. These correspond closely
to the PLS regression coefficients for A = 2 dimensions (Fig. 6).

4.4.4.3 A Comparison of PLS with Multiple Linear Regression (MLR)

In Fig.7 we see how the PLS regression coefficients (b,,,) change when the
number of components increase up to 4 = 7, when they are identical to the MLR
coefficients. The coefficient of x; (DGR) changes sign between the PLS model (4 = 1)
and the MLR model (4 = 7). Moreover, the coefficients of x,, x5, and x, which
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are almost zero in the PLS (4 = 1) model, are large and have opposite signs in the
MLR model (4 = 7), although they are highly correlated to each other.

It is clear that the coefficients in the MLR model are misleading and difficult
to interpret, and are very much as a result of the strong correlations between the
X variables. PLS, however, stops at A = 1, and gives reasonable coefficient values
both for A = 1 and 4 = 2. Due to the negative correlations between x,, x, and
X3, their coefficients have the same values, but with opposite signs. It is essential
to understand that with correlated variables, it is impossible to assign “correct™
values to the coefficients, we can only estimate their joint contribution to y.

The usual approach taken with MLR and correlated X variables is to select a
subset of variables that are not so well correlated. However, this can lead to a
misinterpretation of the results, and one tends to forget the non-selected variables
in the final model interpretation, although the are usually just as good as candidates
for important variables as the ones already selected. ‘

4.4.4.4 Conclusion of the First Analysis

Interpretation of the first round of results is that the PLS model is poor, with an
R? of only 0.435. A tentative explanation might be that aromatic AAs are different
from the other amino acids and that data are, thus, inhomogeneous. To investigate
this, a second analysis was undertaken with a reduced data set, N = 16, without
the aromatic AAs.

Alternatively, like El Tayer et al. [10]. we tried to include a quadratic term in the Vol
parameter in the model. This gave a slightly better model with 4 = 2and R? = 0.684,
Q? = 0.540, but the score plots still indicated groupings in the data set (inhomogenei-
ties), as shown in Fig. 8.

(N ) ~val t”e..Leuj
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& -1 «Tyr
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Figure 8. Score plot of t; vs t, for the PLS model of N = 19 AAs with a squared Vo/ term
included. The large aromatic AAs arc seen to deviate from the other amino acids, as well as from
the very small (Gly).
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Figure 9. The PLS scores ¢, and t, for the N = 16 AA example (second analysis). The overlapping
points in the right hand corner are Ile and Leu.

4.4.4.5 Conclusion of the Second Analysis

The modeling of N = 16 AAs with the same linear model as before produced a
substantially better result with 4 = 2 significant components and R? = 0.783,
Q? = 0.706. The MLR model for these 16 objects gave an R? of 0.872, and a Q? of
0.608. With only x, and x, included in the model, MLR gave R? = 0.791 and
Q% = 0.684, which was very similar to the PLS model (4 = 2). This marked
improvement indicated that the data set was now, indeed, homogeneous and could
be properly modeled.

The plot of the X scores (t; vs t,, Fig. 9) shows the 16 amino acids grouped
according to polarity from the upper left of the plot to the lower right side, and
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Figure 10. The PLS weights, w and c, for the first two dimensions of the second AA model.
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Figure 11. The PLS scores, #; and ¢, of the AA example, (sccond analysis).

according to size and lipophilicity within each grouping. This is consistent with the
loading plot (Fig. 10), where we can see the first PLS dimension dominated by
lipophilicity and polarity, and the second dimension being a mixture of size and
polaritiy, and is similarly to the previous model.

The plot in Fig. 11 of u,(v) vs ¢, shows, however, a fairly strong curvature,
indicating that squared terms in the lipophilicity parameter and, may be also in the
polarity parameter, are warranted. In the final analysis, the squares of these four
variables were included in the modei, which indeed gave better results. Two
significant PLS components and one additional component of borderline significance
were obtained. The resulting R? and Q2 values were 0.90 and 0.80 for 4 = 2, and
for A =3, 0925 and 0.82, respectively. The A = 3 values corresponded to
RSD = 0.92, and PRESD (SDEP) = 1.23, since the SD of Y was 2.989. The full
MLR model gave R* = 0.967, but with a much worse a Q2 valuc of 0.09.

Finally, the model was tested with the parameters squared for the size (volume),
lipophilicity and polarity descriptors for all the N = 19 compounds. This gave a
PLS model with 4 = 2 or 3, and R? = 0.79 and 0? = 0.47, and still the same
groupings in the score plots. Hence, it was concluded that the model of the above
N = 16 AAs, with the parameters squared for the lipophilicity descriptors was the
best one.

In order to obtain a picture of the relationship between Y and lipophilicity,
polarity, and size of the AAs, a model with just one descriptor per class was
developed, plus the lipophilicity parameter was squared. The variables with the
largest regression coefficients in the final model were selected as representatives, 1.¢.
x, = PIF, x, = Lam, x5 = Vol, and PIF 2. This model was then used to show 3D
plots as in Fig. 12.
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DDGTS

Figure 12. 3D plot of the response
DDGTS (y) as a function of PIF and
Lam with Vol fixed at its average value
of 112.925.

445 Selection of Important Variables

In PLS modeling a variable (x,) may be important for the modeling of Y. Such
variables are identified by large PLS regression coefficients, b,,,. However, a variable
may also be important for the modeling of X, which is identified by large loadings,
Par- A summary of the importance of an X variable for both Y and X is given by
VIP, (variable importance for the projection, Fig. 13). This is a weighted sum of
squares of the PLS weights, w,,, with the weights calculated from the amount of
Y variance of each PLS component, a.
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Figure 13. VIP of the X variables of the 3 component PLS model, (third analysis). The squares
of x, = PIE, x, = PIF, x; = DGR, and x, = Lam are denoted by S1*1, S2*2, S3*3 and S6*6,
respectively.
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In data containing a large number of X variables, it is essential to select a subset
of variables that really are important. The deletion of variables from the model
which have both small PLS regression coefficients and small VIP values furnishes
a pruncd model with decent properties. More elaborate strategies, such as GOLPE,
are described by Clementi in Chap. 2.3 in [16].

In the final model of the AA example, only one X variable has both small VIP
values and small b values, namely the square term of Lam (the polar descriptor).
When this is deleted, a PLS model of Y and the remaining X variables gave almost
identical results as the model including Lam 2, and the results are, therefore, not
shown.

4.4.6 Residuals

The residuals of Y and X are of diagnostic value in determing the quality of the
model. A normal probability plot of the ¥ residuals (Fig. 14) of the final AA model
shows a fairly straight line with all values within +3 SDs. In order to be a serious
outlier, a point must clearly deviate from this line and be outside of the hmit of
+4 SDs.

Since there are many X residuals (N * K), onc needs a summary for each
compound in order not to be cluttered with unnecessary detail. This is provided
by the residual SD of the X residuals of the compound. Because this SD is
proportional to the distance between the point for the compound and the model
plane in X space, it is also often called DModX (distance to the model in X-space).
A DModX larger than around 2.5 times the overall SD of the X residuals
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Figure 14. Y rcsiduals of the 3 component PLS model in a normal probability plot (third analysis).
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Figure 15. RSDs of the X residual (DModX) for each compound (third analysis).

(corresponding to an F-value of 6.25) indicates that the compound is an outlier.
Fig. 15 shows that none of the 19 compounds in the example given has a large
DModX. Here the overall SD = 0.34.

4.4.7 Conclusions

PLS analysis gave diagnostics (score plots) that indicated inhomogeneity in the
data. This was confirmed by the much better model obtained for the N = 16
non-aromatic AAs. A remaining curvature in the score plot of u; vs ¢, led to the
inclusion of squared terms, which gave a very good final model. Only the squared
terms for the lipophilicity variables were found to be significant in the final model.

If additional aromatic AAs had been present, a second separate model could have
been developed for this type of AAs providing an insight in to how this class differs
from non-aromatic AAs. This in a way, corresponds to non-linear modeling; the
changes in the relationship between structure and activity, when going from
non-aromatic to aromatic AAs, are too large and too non-linear to be modeled by
a linear or low degree polynomial model. The use of two separate models which
do not directly model the change from one class to another provides a simple
approach to deal with these non-linearities.
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4.4.8 Summary How to Develop and Interpret a PLS model

1. One must have a good understanding of the given problem, in particular, which
biological properties of interest are to be measured and modeled, and which
structural features should be varied.

2. Good data, both Y (activity) and X (structural descriptors) must be obtained.
Multivariate Y variables provide much more information, because they can first be
analyzed separately by PCA. This gives a good idea about the amount of systematic
variation in Y, and which Y variables should be analyzed in combination, etc.

3. Atthebeginningin PLS modeling, the first information obtained is the significant
number of components, 4, which is an indication of the complexity of the QSAR.
This number of components gives the lower bound of the number of structural
effects that are to be postulated in the system.

4. After obtaining 4 (see above), the second consideration is how well the model
fits the data, i.c. the amount of Y variance (R?) that is accounted for. If there are
several Y variables, one can also obtain an R7 value for each Y variable. For each
of these values, there is a corresponding Q? value (“cross-validated R*”). The R?
values give the upper bound of how well the model explains the data and predicts
activities for new compounds, and the Q2 values give the lower bounds for the model.

These parameters, of course, can be also expressed as RSDs and PRESDs
(Predictive Residual SDs). If there is any knowledge of the noisc in the system being
investigated, for example, +0.3 unitis for log (1/C). These SDs, should of course, be
similar to the order of magnitude of the noise.

5. The first two or three model dimensions in the score plots (u, t) should be
investigated to highlight outliers, curvatures, groupings in the data, or any other
problems.

Then, the score plots (¢, t) — the windows in X space — should be inspected, again
to look for indications of inhomogeneities, groupings, or other patterns. In
conjunction with this the weightings plots (w, ¢) should be used to interpret the
patterns and trends seen in the (¢, f) plots.
6a. If problems are apparent, i.e. such as too small R? and Q? values, with outliers
or groupings in the score plots, one should try to find a solution. First, plots of
residuals (normal probability and DModX and DModY) may give an indication
of the source of such problems.

Single outliers should be inspected to assess the accuracy of the data, and if this
is of no use, be excluded from the analysis, but only if they are non-interesting (i.c.,
of low activity).

Curvature in plots (u, t) may be improved by including selected squared terms
and/or cross-terms in the model.

Then, one returns to point 1 after either, possibly, having transformed the data,
modified the model, divided the data into groups, deleted outliers or taken whatever
action is warranted.
6b. If no problems are apparent, i.e. R* and Q? are of the correct magnitude, and
the model can be interpreted, one should try to prune the model by deleting
unimportant terms, i.e. small regression coefficients and low VIP values. Then, a
final model is developed, which is interpreted, validated, and for which predictions
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are made, etc. For the interpretation the weight plots (w, ¢), coefficient plots,
and contour or 3D plots with dominating X variables as the plot coordinates, are
invaluable.

4.4.9 Conclusions and Discussion

PLS is an approach to quantitiative modeling of the often complicated relationships
between chemical structure and biological activity which is more realistic than MLR,
including stepwise selection variants. The reason is that the assumptions which
underly PLS — correlations between the X variables, noise in X and model errors
— are more in line with reality than the assumptions which underly regression of
independent and error free X variables.

The diagnostics in PLS, notably cross-validation and score plots (u/t, and t/t)
with the corresponding loading plots, provide information about model complexity
and the structure of X data that can not be obtained with ordinary MLR. It will
take time for the QSAR community to get used to this additional information and
obtaining experience in how to interpret and use this information in QSARs. In
particular, a fairly common result in PLS modeling is that the data are inho-
mogeneous (see the AA example given here), which is rarely observed in MLR.
This is mainly because MR lacks the diagnostic tools for highlighting inhomogenci-
ties in the data. Consequently, there is still the common, but wrongly, hold view
that one should always try to squeeze all the data into a single model. With the
strong non-linearities that exist in complicated chemical-biological systems, it is
warranted to use more than one model to obtain a more accurate picture;
non-linearities are typical and sometimes so strong that a single polynomial model
could not be constructed. Hence, a flexible approach to QSAR modeling with
separate models for different structural classes of compounds is often required, there
is no loss of information with this approach in comparison with the single model
approach. A new compound is first classified with respect to its X values, and
predicted activity values are then obtained by employing the appropriate class model.

A consequence of the greater flexibility and power of PLS in comparison with
traditional (stepwise) MLR is that other aspects of the QSAR development are
facilitated. Thus, the ability of PLS to analyze profiles of activity, makes it easier
to devise activity measurements that are relevant to the stated objectives of the
investigation; it is easier to assess biological activity by a series of measurements
than by a single activity variable.

Similarly, the ability of PLS to handle many collinear structure descriptor variables
(X) makes it easier to quantify the variation of structure between compounds,
CoMFA and GRID are semi-automated approaches for the quantification of
structural variation based on the calculation of thousands of descriptors.

And, finally, the possibility of graphical reprepsentation of PLS parameters and
residuals makes it possible to interpret and use the results also in complicated
models, thus making QSAR of interesting systems, such as peptides, proteins, nucleic
acids, and polysaccharides, accessible to everybody.
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Abbreviations

APL A Programming Language, Iverson’s notation

apo Apomorphine test

ATN Apomorphine, tryptamine and norepinephrine test

o alpha-adrenergic (norepinephrine) receptor

CFA Correspondence factor analysis

cpz Chlorpromazine

D Dopamine receptor

G Guanosine

hal Haloperidol

SHT Serotonin receptor

nep Norepinephrine test

PCA Principal components analysis

SMA Spectral map analysis

SVD Singular value decomposition

RC Rows and columns

Symbols

o Factor scaling coefficient for rows (compounds) in the context of factor
analysis

B Factor scaling coefficient for columns (tests)

¢ Global variance of Z

A Diagonal matrix of singular values

Own’ Cronecker delta, 1 if k = k' and 0 otherwise

EDsq 50 percent effective dose

1 /s Factor axes

7 Accuracy of reconstruction of Z using r* factors

1Cs0 50 percent inhibitory concentration

i Indices for compounds

I J Indices for tests

k Constant

kK Indices for factors

Lin Loading of test j onto factor k
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AZ Contribution of factor k to the global variance, ¢

n Number of compounds

% Number of tests

I, Potency of compound i

r Number »f factors of Z

r* Number of structural factors of Z

Sik Score of compound i on factor k

h n-dimensional coordinate space of compounds

S, n-dimensional coordinate space of tests

S, r-dimensional coordinate space of factors

; Sensitivity of test j

U Matrix of normalized scores, left singular vectors

14 Matrix of normalized loadings, right singular vectors
w; Normalized weight coefficients for row (compound) i
w; Normalized weight coefficients for column (test) j

X Table of observed activities

X Global mean of X over all compounds and tests

X Geometric global mean of X over all compounds and tests
Xo Base value for non-positive substitution

X;. Row mean of X for compound i

X Geometric row mean of X for compound i

Xij Activity of compound i in test j

x5 Small positive value substituting a non-positive value x;;
X Column mean of X for test j

X; Geometric column mean of X for test j

VA Table of transformed activities, specificities

Iz Norm of row (compound) i of Z

2 Specificity between compound i and test j

lzi — z[I Contrast between rows (compounds) i, i’ of Z

llz;l Norm of column (test) j of Z

lz; — z;| Contrast between columns (tests) j, j' of Z

4.5.1 Activity, Potency, Sensitivity and Specificity

Spectral mapping is an unsupervised multivariate QSAR method. The term
multivariate indicates that the method is applicable in the case when several
compounds are studied simultaneously in multiple tests. The term “unsupervised”
implies that the method does not rely on a specific model for structure-activity.
In contrast, supervised methods, such as those based on regression and discriminant
analysis, rely on a training set of compounds in order to determine the parameters
of the model. Such a specific model is then used for the prediction of the results of
newly synthesized compounds, usually within a series of homogeneous chemical
structures. In Spectral Map Analysis (SMA), however, no such distinction between
the training and prediction set is made, as the method is primarily designed for
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classification of heterogeneous compounds and for the discovery of structure within
a battery of tests, rather than for prediction of biological activity or clinical effects
(although it would be possible to use the method for this purpose if it were so
required).

Spectral mapping is an exploratory method of analysis, which may help in raising
relevant questions about the data, rather than in providing answers to specific
questions. As such, it is to be regarded as a preliminary stage in the study of QSAR.
The only requirement of the method is that the data are presented in the form of
arectangular table, for example, with rows referring to compounds and with columns
denoting tests. (The assignment of rows to compounds and of columns to tests is
arbitrary and can be interchanged if so desired.) Each element in the table then
expresses the corresponding pharmacological activity of a compound that is
produced in a particular test, or vice versa, the activity of a test with a particular
compound. Note that the symmetry between compounds and tests is fundamental
to the definition of spectral mapping, which is symmetrical with respect to
compounds and tests. The numbers in a particular row of the table define the
spectrum of the corresponding compound. The numbers in a particular column of
the table constitute the spectrum of the corresponding test. From the point of view
of an industrial pharmacologist, one may look at the table as describing each
compound by means of its spectrum of activities that are produced in a battery of
standard tests. From a more academic view point, one can also regard the table as
describing each test by means of its spectrum of activities that are obtained in a
set of reference compounds. The symmetry dictates that the roles of compounds and
tests are interchangeable.

In this context, we define activity as the reciprocal of the effective dose (EDsy),
e.g. in milligrams of substance per kilogram of bodyweight that is required to
produce a stated effect, such as the inhibition of an induced pattern of behavior in
half of the animals that received the dose. Spectral mapping, however, is invariant
with respect to the units that are chosen for the individual tests. In another context,
one may define activity as the reciprocal of the inhibitory concentration (1Csg),
e.g. in nmoles that is required to inhibit a previously induced effect in half of
the test specimens. In general, spectral mapping can be applied to data that are
defined on ratio scales, ie. data that allow for meaningful ratios between them.
In particular, one may multiply any column of the table with any positive constant
without affecting the result of the analysis. Hence, columns of the table may be
defined in different units, although in this context we assume that the units are
the same. Missing data are represented by their expected values. In the context
of Spectral Map Analysis (SMA), and as will be explained later in Sec. 4.5.3, the
expected value for the element at the intersection of a particular row and column
of the table is defined as the product of the geometric means of the elements in the
corresponding row and column, divided by the geometric global mean over all
elements.

Potency of a compound is defined here as the geometric average of the activities
produced in all available tests. Similarly, sensitivity of a test is the geometric average
of the activities obtained from all available compounds. The potency of a compound
and the sensitivity of a test are absolute quantities, which express a notion of size
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or elevation of a spectrum of activities. Specificity is a relative quantity which is
related to the shape or “peakedness™ of a spectrum of activities. Two compounds
are said to be similar, when they have similarly shaped activity spectra, irrespective
of the difference in potency of the two compounds. Two tests are termed as similar,
when they also possess similarly shaped activity spectra, irrespective of the difference
in sensitivity of the two tests. This means that two compounds are similar, when
they have the same specificities for the various standard tests. By virtue of symmetry,
two tests are similar when they exhibit the same specificities for the various reference
compounds. Specificity is a bipolar (or differential) measure of association between
a compound and a test. Specificity is positive, when the association is in the same
direction, i.e. when the compound possesses more than an average specificity for
the test (and vice versa). It is negative when the association is in opposite directions,
i.e. when the compound has less than average specificity for the test (and vice versa).
In the former case, the compound and test can be said to attract each other, while
in the latter, they repel each other. Spectral mapping is directed towards the analysis
of specificities between compounds and tests. In the following section we will define
specificity in mathematical terms as the log of the observed activity minus the log
potency of the compound and minus the log sensitivity of the test. The distinction
between potency, sensitivity and specificity is similar to the one that is made in
biology between the size and the shape of animals [1].

Spectral mapping is primarily a graphic method. As its name indicates, it provides
a visual display, in the form of a map, of all the specificities between compounds
and tests (positive or negative) that are contained in their activity spectra. In the
next sections, we will provide a historical account, a case study, and a mathematical
description of the method. Because of our background, our point of view is influenced
by the design of new therapeutic compounds in a battery of standard tests, but
because of the symmetry property, spectral mapping can also be equally applied to
the development of a new test using a set of reference comounds.

4.5.2 Historical Background

Spectral mapping has been proposed by the author as a multivariate QSAR mecthod
in 1975. The design of the method was the result of favorable circumstances. It first
came about at the research laboratory at Janssen in Beerse, which at that time had
implemented a number of simple, but highly effective ideas for the statistical analysis
of the results of its screening tests. The procedures that resulted from these ideas
relied heavily on graphical displays, as will be shown later on. Secondly, the need
for a multivariate analysis of the screening results appeared at an auspicious time,
when major developments had occurred, notably the biplot graphic for Principal
Component Analysis (PCA) by Gabriel [2] and the publication of Correspondence
Factor Analysis (CFA) by Benzécri and a group of French data analysts and
statisticians [3]. Finally, the availability of APL, a notation for interactive com-
putation designed by Iverson [4], greatly facilitated the formulation and implementa-
tion of an alternative method, which embodies the ideas referred to above, but
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which is more appropriate to pharmacological data. Initially, this approach was
called spectral mapping, but was renamed later as Spectral Map Analysis (SMA),
when applied to other types of data, especially in the field of marketing (for a
more competitive position in the market place) and finance (for performance
evaluation). Eventually, the method proved to be fairly general and was applicable
to a variety of data that can be produced in the form of a rectangular data table.
How this came about is related below.

The starting point of Janssen’s research program in 1953 was the search for
synthetic opiates, anticholinergics and antihistaminics. In 1957 this led to the
screening of a series of propiophenones for morphine-like analgesic activity. The
prototype R951 has strong morphine-like properties and is shown in Fig. 1, adapted

R 951

N morphine-like
% activity

C{\ /—CH; R 1187
c—0 .
N morphine- and
0 % chlorpromazine-like
activity
F .
OH haloperidol
~a
o]
cl butyrophenone-class
neuroleptic

phenothiazine-class

chlorpromazine
_CHg
NN CH,

cl neuroleptic

orprothixen
O o, chlorpro e
NZ-CH,4
O thioxanthene-class
Cl neuroleptic

Figure 1. Change of morphine-like activity of propiophenones into ncuroleptic activity of
butyrophenones, with haloperidol as the prototype. The structures of chlorpromazine and
thioxanthene are shown for comparison (after van Wijngaarden [5]).
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from a publication on the early history of the research within Janssen Pharmaceutica
[5]. Subsequently, when the length of the alkyl chain between the phenone and the
piperidine ring was increased from two to three carbons, this resulted in the formation
of the butyrophenone, R1187. The lengthening of the alkyl chain caused a reduction
of analgesic activity, but at the same time a new type of activity appeared. It was
recognized as being similar to the effect produced by chlorpromazine, a pheno-
thiazine derivative synthesized at Rhone-Poulenc and found by Delay et al. [6] in
1952, to possess antipsychotic properties. Chlorpromazine and related pheno-
thiazines were called neuroleptics by Delay and represented a breakthrough in the
treatment of mental illness. This serendipitous discovery at Janssen led in 1958 to
the synthesis of the butyrophenone analogue haloperidol which was completely
devoid of morphine-like activity and which turned out to be a highly potent and
highly specific neuroleptic. Haloperidol is the prototype of the butyrophenone class
of neuroleptics, which is structurally distinct from the phenothiazine class as shown
in Fig. L.

In 1961 several different chemical classes of neuroleptics had been discovered,
including the thioxanthenes, with chlorprothixenc as the prototype, and other minor
classes in addition to the previously mentioned phenothiazines and butyrophenones.
These neuroleptics were found to antagonize, to varying extents, the effects of
apomorphine, amphetamine, tryptamine, norepinephrine and epinephrine (adrena-
lin) in rats. They also inhibited spontaneous and conditioned motility and produced
catalepsy in various degrees [7]. It, thus, appeared as if each neuroleptic possessed
a typical pharmacological activity spectrum, which would be analogous to possessing
a particular light absorption spectrum. Compounds could, thus, be classified on the
basis of their pharmacological activity spectra. Two compounds are thought to be
similar if they possess similarly shaped activity spectra, irrespective of their potencies.
The process of classification is similar to that of comparing the light absorption
spectrum of an unknown compound with the spectra produced by a collection of
reference compounds. Similarity of these spectra is assessed on the basis of their
shape, irrespective of their average absorption, which is a function of the concentra-
tions of the unknown and reference compounds. Such a continuous classification
implies a spatial arrangement of the compounds, such that similar compounds
appear close together and, such that dissimilar compounds are at a distance from
one another. The arrangement is not necessarily one-dimensional. In fact, in 1961,
the classification of the neuroleptics on the basis of the activity spectra was
two-dimensional (Fig. 2). Haloperidol shows high specificity for the apomorphine
and amphetamine tests; fluanisone, a derived butyrophenone, was found to be
specifically active in the norepinephrine and epinephrine tests; floropipamide, also
a butyrophenone, now called pipamperone, is specific for the tryptamine test.
Regarding the three butyrophenones as vertices or poles of an equilateral triangle,
it is possible, on the basis of their spectra, to visually classify chlorpromazine between
fluanisone and floropipamide, and to position the phenothiazine derivative, perphen-
azine, between haloperidol and fluanisone [7]. Note that in 1961 there was still no
compound, which could be positioned between haloperidol and floropipamide.

The empirical arrangement of the neuroleptics in Fig. 2 is a tripolar classification
on the basis of the shapes of the activity spectra. The colors of the visible spectrum
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Figure 2. Tripolar cmpirical classification of the neuroleptics with respect to their specilicities in
the amphetamine and apomorphine tests (right), the tryptamine test (top) and the norepinephrine
and cpinephrine tests (left) (after Janssen [7)).

can also be represented in a similar tripolar (or trichromatic) diagram on the basis
of their compositions of red, blue and green, as has been already shown by Thobias
Mayer [8] in 1758, long before the discovery of the three types of cone cells in the
retina of the eye, each with different light absorption characteristics. Such a tripolar
classification can be regarded as a form of “avant-garde® spectral mapping. This
suggests that geometric thinking about compounds and tests (or more generally
about objects and their properties) as points in space is a fundamental thought
process. Empirical classifications do not necessarily require coordinate axes for their
construction, and often the underlying dimensions are discovered much later.
Perhaps the most famous illustration of this is the two-dimensional periodical
classification of the chemical elements by D. Mendeleev in 1869, which was based
on atomic weight and chemical properties [9]. The modern interpretation of the
two dimensions in terms of atomic number and valence electrons was only possible
after the development of quantum mechanics. A similar epistemological process
took place in the case of the classification of the neuroleptics. However, the time
span between the empirical classification and the biological interpretation of its
dimensions was much shorter than in the case of the trichromatic classification of
colors and of the periodical classification of the elements.

In 1965 Janssen had completed a comprehensive study of 40 neuroleptics in
12 pharmacological tests in rats. Effective doses were determined at 10 consecutive
hourly intervals after (subcutaneous) administration of the compounds. The results
were published in a seminal paper by Janssen, Niemegeers and Schellekens [10]
with the title: “Is it possible to predict the clinical effects of neuroleptics (major
tranquilizers) from animal data, part 1, neuroleptic activity spectra for rats”. The
data are reproduced in Table 1 as reciprocal effective doses (kg/mg). The paper of
1965 was declared a citation classic by Current Contents [11]. It contains the basic
ideas developed by Janssen at that time for the graphical statistical analysis of
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Figure 3.  Activity spectra of haloperidol and chlorpromazine in 12 pharmacological tests. The
vertical axis represents log reciprocal effective dose, the horizontal line shows the 12 tests in the
order as they appear in Table 1.

pharmacological data. Of most importance to our discussion of spectral mapping
are the “activity spectra” and the “double-log charts®.

In Fig. 3 we have reproduced the activity spectra of haloperidol and chlor-
promazine. The vertical scale represents the reciprocal effective doses for each of
12 pharmacological tests: antagonisms of amphetamine, apomorphine, norepine-
phrine, epinephrine and tryptamine; inhibiton of motility in the jumping box, rearing
and ambulation tests; observations of catalepsy (rigid postures) and ptosis (closing
of eyelids); reduction of weight gain and prevention of traumatic shock. The order
of the tests along the horizontal axis is the same as the ordering in Table 1. This
ordering was chosen deliberately and is outlined below. It was observed that the
spectra could be arranged along a bipolar (or differential) axis with haloperidol-like
compounds at one end and chlorpromazine-like compounds at the other. In fact, the
40 spectra were ordered along this bipolar haloperidol-chlorpromazine contrast.
(This contrast can be regarded as a difference of specificities and, in the case of
logarithmic transformation of the data, as a log ratio of effective doses. This will
be defined more precisely later on.) At the same time, the tests were ordered in
Table I and in Fig. 3, such that haloperidol-specific tests (such as apomorphine)
were on the left side and chlorpromazine-specific ones (such as norepinephrine)
appeared on the right side. The concept of symmetry between compounds and tests
in spectral mapping was already apparent in this empirical bipolar classification,
as both the 40 compounds and the 12 tests were ordered along the same criterion.

In the double logarithmic chart of Fig. 4, neuroleptics are defined as points, which
represent their activities in the apomorphine (apo) and norepinephrine (nep) tests.
The latter define the coordinate axes of the diagram. A diagonal line is constructed
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Figure 4. Double-log chart representing (schematically) compounds as points defined by their
activities produced in two tests. The diagonal line through the center of the pattern (average
compound) represents the axis of potency of the compounds. The axis perpendicular to the latter
is the axis of specificity between compounds and tests. The projections of the compounds onto
this axis of specificity define their contrasts with respect to the two tests. Haloperidol has a positive
contrast, as it is more specific for antagonism of apomorphine than of norepincphrine. Chlor-
promazine has a negative contrast. (Data are taken from Table 1.)

through the geometric average of the two tests (indicated by a small cross). It can
also be understood that the diagonal represents an axis of potency. Compounds
that are projected quite high along this axis tend to possess high activity in both the
apomorphine and norepinephrine tests. Those that are projected at the lower end
tend to have low activity in both tests. There may be exceptions, however. For
example, aceperone is active in the norepinephrine test, but almost devoid of activity
in the apomorphine test, as can be seen from the data in Table 1. The projections
of the 40 compounds upon the potency axis appear in the order of their potency
(or average activity)in the two tests. Compounds below the diagonal possess apo/nep
ratios that are larger than average; they are more specific for apomorphine than
for norepinephrine. Compounds that lie above the diagonal have apo/nep ratios
that are smaller than average; they are more specific for norepinephrine than for
apomorphine. It is evident from the geometrical construction in Fig. 4 that the line
drawn perpendicularly to the potency axis represents an axis of specificity.
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Compounds that are projected at the higher end of this axis have a positive apo/nep
contrast. Those that are projected at the lower end have a negative contrast. The
original coordinate axes (representing reciprocal effective doses in the apo and nep
tests) can be rotated towards a new frame that is defined by the potency axis and
the specificity axis. This transformation is an essential operation in spectral mapping.
It can be understood that in the case of three tests, we will still obtain a single
potency axis (a diagonal line which forms identical angles with all three coordinate
axes) and a plane of specificities, which is drawn perpendicularly to the potency
axis. The procedure can be generalized for multiple tests, resulting always in a single
potency axis and a hyperplane of specificities, which is perpendicular to this axis.
The number of dimensions of this hyperplane is one less than the number of tests.
Spectral mapping can, thus, be understood to be a decomposition of the activity
data into a potency component and one or more components of specificity.

A similar geometrical decomposition can be applied in a double-log diagram, in
which the 12 tests are represented as points based on the activities of haloperidol
(hal) and chlorpromazine (cpz). The latter form the coordinate axes of the diagram
(Fig. 5). The diagonal line then represents the axis of sensitivity, as the projections
of the 12 tests upon this axis are represented in the order of their sensitivity (or
average activity) for the two compounds. The projections upon the line drawn
perpendicularly to the sensitivity axis also represent specificities. Tests that are
projected high upon the axis of sensitivity have greater than average ratios of
hal/cpz and have positive contrasts. Those at the lower end of the specificity axis
have less than average ratios and have negative contrasts. Because of the symmetry
requircment of spectral mapping, one cannot dissociate the two diagrams (Figs. 4
and 5). For this reason they are referred to as dual representations. Both should
be understood in multiple dimensions rather than in the two-dimensional simplifica-
tions, which we have used here. The general multivariate case, however, can only
be treated properly in algebraic terms as will be shown below.

The apomorphine/norepinephrine contrast is one of the strongest that can be found
in the pharmacological data on the neuroleptics (Table 1). The degree of contrast
can be measured by the spread of the projections upon the axis of specificity. If the
spread is zero, then all compounds possess the same apo/nep ratio, and, hence, the
contrast is zero. The larger the spread, the more varicty there is among the apo/nep
ratios, and hence, the compounds will show widely varying specificitics for cither
of the two tests. Here, the apo/nep contrast produces a bipolar classification of the
compounds, from being highly specific in the apo test towards being highly specific
in the nep test. The former compounds are also referred to as being haloperidol-like
and the latter chlorpromazine-like. The relevance of this finding was that the bipolar
pharmacological classification obtained in rats agreed to a large extent with the
bipolar clinical classification of the neuroleptics. The latter was based upon a contrast
between the antipsychotic and the tranquilizing properties of the neuroleptics, which
were described by Lambert and Revol [12]. In clinical tests was observed that the
haloperidol-type compounds were specific for the treatment of delusions and manic
states, while the chlorpromazine-type compounds were specific for cases of extreme
agitation and confusion. It, thus, appeared to be possible, as claimed by Janssen,
et al. [10], to predict the clinical effects of the neuroleptics from their pharmacological
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Figure 5. Double-log chart (schematically) representing tests as points defined by their activities
exhibited by two compounds. The diagonal line through the center of the pattern (average test)
represcnts the axis of specificity of the tests. The axis drawn perpendicularly to it is the axis of
specificity between tests and compounds. The projections of the tests onto this axis of specificity
definc their contrasts, with respect to the two compounds. The apomorphine test has a positive
contrast, as it is more specific for haloperidol-type compounds than for chlorpromazine-type
compounds. The norepinephrine test has a negative contrast. (Data are taken from Table 1.)

activity spectra, since the antipsychotic/tranquilizing contrast observed in the clinic
correlated well with the apomorphine/norepinephrine contrast in rats. So far, no
clinical equivalent could be detected for the tryptamine/norepinephrine or tryptami-
ne/dopamine contrasts that were also apparent on the pharmacological activity
spectra (Fig. 2).

The agreement between pharmacological measurements and clinical observations
led to speculation about the causes of psychosis and about the mechanism of action
of neuroleptics in the brain. It has been known since the early sixties that
apomorphine acts as a dopamine agonist, i.e. it mimics the effects of dopamine.
Similarly, tryptamine was known as a serotonin agonist. These considerations led
to hypotheses that postulated the existence of dopamine and serotonin receptors
in the brain, which are implicated in psychosis and which can be blocked by
neuroleptics [13, 14, 15]. The concept of receptors, intermediates between drugs and
the organisms in which they produce an effect, has been postulated by Emil Fisher
[16] as early as 1894. The existence of receptors in the brain that could be blocked
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by neuroleptics was in 1963 corroborated by the discovery of highly specific
apomorphine-blocking neuroleptics in the class of the diphenylbutylamines by
Janssen et al. [17]. A great advance was made in the mid-seventies, when
it became possible by means of radioactively-labeled compounds, to identify
receptors in the brain that bind specifically to dopamine [18, 19], serotonin [20] or
norepinephrine [21), and which can be blocked by neuroleptics. These radioactive
ligand studies not only provided a biochemical basis for the study of psychosis,
they also created the new field of biochemical pharmacology. The neuroleptic
receptors are known to be G-coupled proteins that are located in the postsynaptic
membranes in the striatum and frontal cortex. In addition to the spectra from
animal studies and from clinical observations, biochemical spectra of receptor
binding of the neuroleptics became available. It was soon realized that neuroleptics
vary considerably in their affinity for the dopamine (D), serotonin (5HT) and
norepinephrine («) receptors. Nowadays, these receptors are known to occur as
various types (D1, D2 up to D5, SHT1, SHT2 up to SHT7 and a1, «2), which in
turn, can be divided into several subtypes. Furthermore, it was established that
occupation of these receptors in vitro correlated well with the in vivo antagonism
of the effects produced by apomorphine, tryptamine and norepinephrine in rats.
Concurrently with these developments, the Janssen screening tests for neuroleptics
was reduced to a single test (ATN), in which the agonists apomorphine, tryptamine
and norepinephrine were given sequentially following administration of a neuroleptic
[22]. These developments provided a rational interpretation of the three poles or
vertices in the initial classification of the neuroleptic spectra (Fig. 2) in terms of
experimentally confirmed receptors.

An analogy exists between the tripolar classification of the neuroleptics based on
their affinities for the apomorphine, tryptamine and norepinephrine receptors, and
the afore mentioned trichromatic diagram, which is defined by the three primary
colors red, blue and green. Both represent contrasts between the effects produced by
receptors (G-protein coupled receptors in the brain and photoreceptors in the
cone cells of the retina, respectively). In both cases, the contrasts have been detected
before the underlying biochemical mechanisms were discovered, by careful explo-
ration and interpretation of the empirical data. In the case of the neuroleptics as
well as in that of the colors, latent (or hidden) variables are responsible for the
multivariate contrasts that are experimentally observed. Latent variables are
computed from the manifest (or observed) variables by methods which are related
to factor analysis. These are usually few in number and their combination enables
the reconstruction of the original manifest variables [23]. The tripolar classification
of the neuroleptics and the trichromatic diagram were the result of an empirical
factor analysis, which did not require multivariate analysis and computers. Not all
rescarch programs, however, can be concluded by empirical factor analysis, in
which the hidden variables are detected by careful interpretation and graphical
analysis, as will be shown below.

In 1974, our laboratory completed a comprehensive study involving 35 reference
compounds with antiepileptic properties, based on the following five observations in
rats: induction of ataxia and loss of righting, suppression of metrazol-induced tonic
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extension of the hind and forelegs and clonic seizures [24]. The corresponding activity
spectra (such as in Fig. 3) were drawn on cards and spread out on a table. This
time, however, it proved to be difficult to classify the spectra along a bipolar line
or a tripolar plane, as has been done in the case of the neuroleptics (Fig. 2).
Pharmacologists differed in opinion about the similarities and dissimilarities of the
spectra and arranged them accordingly in different ways. Indeed, there was no a
priori indication as to the nature and the number of underlying factors in this case.
Eventually, it was realized that only multivariate analysis could produce an objective
mapping of the antiepileptics, with which everybody could agree and which could
be used as a starting point for further interpretation.

Rather than attacking the antiepileptic problem immediately, it was decided
that we would tackle the case of the neuroleptics first. As the solution had already
been derived empirically, it would be easier to determine whether the results of
multivariate analysis made sense or not. At that time, in 1974, two basic methods
for multivariate analysis of tabulated activity data (such as in Table 1) were available
as a first choice. First, one could use Principal Components Analysis (PCA), a well
established proven method [25, 26]. PCA produces a graphic display of the
compounds (called scores plot) which shows their similarity on the basis of the
observed activities in the various tests. This, however, was rather irrelevant to our
problem, as we wanted to classify compounds with respect to their specificities in
the various tests, i.e. independently of their potencies. Furthermore, PCA also yields
a graphic display of the tests (called a loadings plot) which shows the structure of
their intercorrelations. This could give us some indication as to the number of
structural factors (or hidden variables), which could explain most of the variation
in the data. Clearly, PCA does not show specificitics between compounds and tests.
It is also not symmetric with respect to compounds and to tests. The other method,
Correspondence Factor Analysis (CFA), had only recently been described by
Benzécri in 1973 [3] and was at that time mainly known by French data analysts
and statisticians. Fortunately, we were introduced to CFA by Lacourly [27], a
member of Benzécri’s group. The revolutionary aspect of CFA was that it showed
the specificities between the rows and columns of a table, when in the form of a
cross-tabulation (representing parts of a whole) or contingency table (representing
counts). The method makes use of the biplot graph developed by Gabriel, [2] in
which both the rows and columns are displayed in one and the same graph. The
name biplot is derived from the superposition of the scores plot and the loadings plot.

The reading rules of the CFA biplot are simple. A row and a column that are
positioned in the same direction, as viewed from the center are considered to have
positive specificity. A row and a column viewed from the center in opposite directions
have negative specificity. Rows and columns that are at a distance from the center
have high specificity, and those that are close to the center are nonspecific. In the
case of the pharmacological data of the neuroleptics (Table 1), the CFA biplot
produces a classification of the compounds in the form of Fig. 2 and reveals the
tripolar structure of the tests. Hence, it supports the three-receptor theory. The
problem, however, in a pharmacological application, is that the contrasts that are
seen on the CEFA biplot cannot be readily interpreted in terms of the ratios between
observed effective doses. This follows from the fact that dissimilarities between
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compounds and between tests are to be interpreted in CFA as distances of chi
square. The latter 1s a measure of the relative deviation between the observed and
expected values. This follows from a particular transformation in CFA, in which
pharmacological activities are transformed into a kind of specificities. We denote
the table of observed activities (i.e. reciprocal effective doses) by X, and the
corresponding table of transformed values by Z. The transformation by CFA is then

defined by:
o <x-- B xi,x.j>/x,-,x._,~ _NiXe (1)
Y Y X X, XiX

where x;; and z;; represent the elements corresponding to row i and column j in the
tables X and Z, and where x;, is the (arithmetic) mean of row i, x ; is the (arithmetic)
mean of column j, and x _ is the global (arithmetic) mean over all rows and columns
of X. .

The transformation by CFA in Eq. 1 is symmetric with respect to compounds
and tests, i.e. they are interchangeable. Note that the quantity x; x ;/x_is called the
expected value of x;;, under the assumption that the observed activities X are
multinomially distributed. (The assumption is, in the strictest sense, not fulfilled
here, since the observed activities do not represent counts, nor can they be considered
as parts of a whole.) In a broader sense, one may consider the transformed values
z;; as representing a kind of specificity, since the observed activities x;; are divided
by a type of potency, x; and by a type of sensitivity, x ;. The problem that arose,
however, was that in the context of CFA, potency and sensitivity arc defined as
arithmetic means rather than as geometric means of the observed activities, which
is incompatible with the idea that biological response is related to the logarithm of
the observed effective dose, rather than to the dose itself. This idea stems from early
psycho-physical observations and is embodied in the Weber-Fechner law [28], which
postulates an approximately linear relationship between response and the logarithm
of the stimulus. This law is reflected in the decibel scale for sound energy, the
magnitude scale for luminosity, etc. It has also been observed that effective doses

are usually more normally distributed on a logarithmic scale than on a linear scale
[29].

4.5.3 Spectral Map Analysis

Spectral Map Analysis (SMA) is a straightforward multidimensional extension of
the two-dimensional geometrical constructions in Figs. 4 and 5. The original idea
was to define a transformation which would transform the observed log X data
into specificities, Z, and which would have the geometrical effects such as is
illustrated in Figs. 6 and 7. In the first of these, we consider each of the n compounds
to be represented as points in a p-dimensional coordinate space, §,, by means of
their log activities produced in p tests (Fig. 6). The diagonal line, which forms an
equal angle with all p coordinate axes, represents the axis of potency of the
compounds, and the plane drawn perpendicularly to this axis, represents the plane
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Figure 6. Extension of the double-log chart of Fig. 4 for multiple dimensions. The # compounds

arc represented as points in p-dimensional space, S, spanned by p tests. The diagonal linc represents

the potencies of the compounds, and the (hyperjplane perpendicular to it defines the specificitics
between compounds and tests. Spectral mapping performs a Principal Components Analysis (PCA)
ol the specificities in the (hyper)plane.

of contrasts. For the convenience of the illustration, we have only represented three
tests, but in the general case, the plane of contrasts will be a multidimensional
(hyper)plane. In the dual representation (Fig. 7) we represent each of the p tests as
points in an n-dimensional coordinate space, S,, by means of their log activities
obtained from n compounds. The diagonal line, which forms equal angles with all
n coordinate axes, represents the axis of sensitivity of the tests. The plane drawn
perpendicularly to this axis represents the plane of specificities. For convenience,
we have only considered three compounds, but in the general case, the plane of
specificities will be a multidimensional (hyper)plane. It should be understood that
the geometrical procedure can be extended to any number of compounds and tests.
The two spaces S, and S, are referred to as being dual, since one cannot exist without
the other. A change in one will automatically result in a change in the other. The
geometrical projection can also be defined in the form of an algebraic transformation
of the data [30], which in its simplest form can be defined by:

Xij)?“

o (2)

Xi X, j

z;j = log x;; — log X;, — log X; + log £. = log

where x;; and z;; represent the elements corresponding with row i and column j of
the tables X and Z, where X;_is the (geometric) mean of row i, X ; is the (geometric)
mean of column j and X . the global (geometric) mean over all rows and columns of X.
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Figure 7. Extension of the double-log chart of Fig. 5 for multiple dimensions. The p tests are
represented as points in n-dimensional space, S,, spanned by n compounds. The diagonal line
represents the sensitivities of the tests, and the (hyper)plane perpendicular to it defines the specificitics
between compounds and tests. Spectral mapping performs a Principal Components Analysis (PCA)
of the specificities in the (hyper)plane. Figs. 6 and 7 are dual geometrical representations of one
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The transformation of SMA by Eq. (2) is symmetrical, with respect to the
compounds and the tests, i.e. they can be interchanged. Technically, the transforma-
tion is referred to as a log double centering of the observed activities, ie. a
simultaneous correction of the data for differences between the corresponding row
and column means. The term X; can be regarded as an estimate of the potency
of compound i. Likewise, the term X ; can be considered as an estimate of the
sensitivity of test j. The term X is a constant for the table. Consequently, the
expression applies a correction to the log activities for differences in potency of
the compounds and for differences in sensitivity of the tests. The result can, thus,
be interpreted as specificities between compounds and tests, according to our earlier
definition.

We now define contrast as the difference between two specificities, and by virtue
of the symmetry principle, we obtain two types of contrasts. The contrast between
compounds i and i" with respect to test j follows from Eq. (2):

zij — zv; = log x;; — log X;. — (log xi; — log X)) = log ;C” — log ;L’ (3)

i'j
and all the other terms cancel out. This shows that contrasts can be defined in
terms of log ratios of effective doses.
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Similarly, the contrast between tests j and j° with respect to compound i also
follows on from Eq. (2):

4)

zij — ziy = log x;; — log X; — (log xi; — log X ;) = log X log

X
Xij X

J
and all the other terms cancel out. Again, this shows that contrasts can be defined
in terms of log ratios of effective doses.

We can define the root mean square (rms) contrast between compounds i and
as the norm of the individual contrasts of compounds i and i, with respect to all tests:

1 p /2
lz; — 2ol = (Z (Zij - Zi’j)2> (5)
P :

where z; and z;- denote vectors of p elements with the general element z;; and z;.;.
Similarly, we define the rms contrast between test j and j” as the norm of the individual
contrast of tests j and j* with respect to all n compounds:

1 n 1/2
I = ol = (23 62— 20) o

where z; and z; denote vectors of n elements with general element z;; and z;;. For
the sake of completeness, we define the rms specificity of compound i as the norm
of the individual specificities of compound i for all p tests j:

12 12
Izl = <“Zzi2j> (7

j
In a similar fashion, we define the rms specificity of a test j as the norm of the
individual specificities of test j for all n compounds i:

[ 1/2
Iz, = <nZ zi») (8)

13

The reason why root mean square (rms) values are taken, rather than mcan values,
is that the mean specificities over all compounds, or over all tests, are zero, as
follows from the definition of specificities in Eq. (2). The same applies to contrasts,
since a contrast has been defined as the difference between two specificities. Since
the (hyper)planes containing the projections of the compounds and tests are usually
multidimensional, one may attempt to reduce the apparent high dimensionality by
means of Principal Component Analysis (PCA). Hence, one can describe SMA as
a log double centered PCA, or as PCA of specificities. In the present context of
SMA, we will refer to a principal component of specificity by the more general term
of factor. This avoids confusion with the results of the more usual PCA, which is
applied to column standardized data.

Fig. 8a is a schematic representation of the projection of the n compounds (rows)
in the (hyper)plane of specificities within the coordinate space, S, as defined by the
p tests (columns). Fig. 8b shows the projections of p tests (columns) in the
(hyper)plane of specificities within the dual coordinate space. S,, as defined by n
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Figure 8. Illustration of the dual gcometrical representation of the data in an nxp table of
transformed data (specificities). Panel a shows n compounds in test spacc, S, Panel b shows p tests
in compound space, S,. The axes (f; and f,) represent the principal components or factors of the
patterns. Corresponding factors are common in the two spaces. The elliptic contours arc a schematic
representation of the probability density contours of the patterns of points. The diagram corresponds
to the plancs of specificity in Figs. 6 and 7. Panels ¢ and d show the compounds and tcsts in the
rotated space, S,, spanned by the common factors. The projection of compound i onto factor 1
defines the score s;;. The projection of test j onto the same factor 1 defines the loading s;,. In panel
e, the scores and loadings plots are combined into a single biplot.

compounds (rows). By convention, we represent compounds (rows) by circles, and
tests (columns) by squares in our graphical representations. The factors are the axes
of inertia of the patterns of the points in the dual (hyper)planes. In the case of an
ellipsoidal structure, these factors can be regarded as axes of symmetry of the
patterns. 1t is important, although not easy, to realize that corresponding factors
in the dual representations are common. For example, factor 1 of the pattern of
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compounds is the same as factor 1 in the pattern of tests, etc. {(We will show in the
mathematical section how to extract factors from tabuldted data.) The importance
of a factor is measured by its variance (dispersion). Factors are ordered in decreasing
order of their contribution to the global variance of the transformed data, ie.
of the specificities between compounds and tests in Z. The global variance, c,
which in this context is also referred to as global interaction, is defined by the
expression:

1 & &
=LY 32 9)

npi=t1 j=1
The number of factors that can be extracted from the transformed data is equal
to the minimal number of dimensions that are required to represent the compounds
and the tests in the (hyper)planes of specificity. This minimal number of dimensions
is called the rank, r, of the transformed data matrix Z. It is, at the most, equal to
the smallest of the number of rows or number of columns minus one. (The loss of
one dimension is due to the removal of the potency and sensitivity from the observed
activities). The factors are, by construction, orthogonal which implies that they are
uncorrelated. As a consequence, the sum of the variances contributed by all r factors
is equal to the global variance, ¢, in the transformed data. If A2 denotes the

contribution of factor k to the global variance, then we obtain:

Y i (10)

E=1

o
I

Once the orientations of the factors are known, it is possible to rotate the
(hyper)planes of specificity towards the orthogonal factors, as is shown in Fig. 8c
and d. The net result is that the original spaces, S, and S,, are rotated into a common
factor space, S,. The coordinates of the n rows (compounds) along r common factors
in S, are conventionally called factor scores and are compiled in the nx r matrix
of factor scores, S. A plot, such as in Fig. 8c, of the n rows (compounds) in
a low-dimensional factor space is referred to as a scores plot. In a similar manner,
one refers to the coordinates of the p column (tests) along the r common factors
by the conventional name of factor loadings, which are compiled in the p x r matrix
of factor loadings, L. A plot, such as in Fig. 8d, of the p columns (tests} in a
low-dimensional factor space is referred to as a loadings plot. Since the factors are
common to both the scores and loadings plots, it is feasible to combine the two
into a so-called biplot as shown in Fig. 8¢. The biplot derives its name from the two
entities (rows and columns) that are represented in one and the same plot, spanned
by common factors [2]. The scaling of the factor coordinates in § and L is such
that they are related to the specificities in Z by the matrix product:

¥

Zij = Z Sikljk (ny

where s, is the coordinate (score) of compound i along factor k, and where [ is
the coordinate (loading) of test j along factor k. The above formula also defines the
singular value decomposition (SVD) of table Z [31]. From the relation in Eq. (11),
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follow two expressions for contrasts in terms of the factor coordinates:

Zij T Iy = k;} (Sie — Sin) L (12)

Zij — Zij = kgl Sik(ljk - lj’k) (13)

We will now briefly provide a geometrical interpretation of the double centered
PCA biplot (or biplot of specificities). A salient feature of the double centered biplot
is that both the pattern of rows (compounds) and the pattern of columns (tests)
are centered about the origin of factor space. In the usual column-standardized
PCA biplot, only the pattern of the rows is centered about the origin. (In the
illustrations of Fig. 8 the origin of factor space is indicated by a small cross.)

The distance of a compound or test from the center of the plot is proportional
to their rms specificity, as defined by Egs. (7) and (8). A compound that is at a
distance from the center has specificities (positive and negative) for two or more
tests. A test that is at a distance from the center also has specificities (positive and
negative) for two or more compounds. The center itself represents the aspecific
compound and test. The distance between two compounds, or between two tests,
is proportional to the rms contrasts between them, according to Egs. (5) and (6).
Two compounds that are at a distance from one another have contrasts (positive
and negative) for two or more tests. Two tests that are at a distance from one
another exhibit contrasts (positive and negative), with respect to two or more
compounds. Compounds that are coincident on the plot have zero contrast; their
spectra of activity are similarly shaped (although they may be different in potency).
Likewise, tests that are coincident on the plot have zero contrast; their spectra of
activity are similarly shaped (although they may differ in sensitivity).

The projection of a point, representing a test j, onto an axis through the center
and through a compound i is proportional to the specificity z;; between the
compound and test. The same is true for the projection of a point representing a
compound i onto an axis through the center and a test j (Figs. 9a and 9b). This
follows from Eq. (11). An axis through the center and through a point, representing
a compound or test, is called a unipolar axis. It reproduces the specificities in the
table of transformed data, Z.

The projection of a point, representing a test j, onto an axis through two
compounds i and 7, reproduces the contrast between them. The same property
holds for the projection of a point, representing a compound i, and an axis through
two tests j and j' (Figs. 9¢ and 9d). This follows from Egs. {12) and (13). An axis
through two compounds or through two tests is called a bipolar axis. It reproduces
contrasts in the form of differences between specificities in the table of transformed
data, Z. It should be remembered that a contrast is defined here as a difference of
specificities, and that because of the logarithmic reexpression, these can be interpreted
as log ratios in accordance with Egs. (3) and (4).

A fundamental problem with the biplot is its impossibility to exactly reproduce
the distances between rows and between columns, and at the same time, allow
projections between the rows and columns. In other words, it is not possible to
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i

Figure 9. Reading rules of the spectral map.

a) projection of a test j onto a unipolar axis through a compound i and the center (+) reproduces
the specificity z;,

b) projection of a compound j onto a unipolar axis through a test j and the center (+) reproduces
the spccificity z;,

¢) projection of test j onto a bipolar axis through two compounds i and i’ reproduces the contrast
Zi — 2y

d)J projcjction of a compound i onto a bipolar axis through two tests j and j' reproduces the contrast

Zip T i

exactly reproduce simultaneously the rms specificities (or rms contrasts) and the
specificities (or contrasts) themselves. What is exactly reproduced depends on the
choice of two so-called factor scaling coefficients, o« and f, one for the coordinates
of the rows and the other for the coordinates of the columns in factor space. In
SMA we opted for the exact reproduction of specificities at the expense of the
reproduction of the rms specificities. Our choice of factor scaling coefficients for
row and column coordinates is symmetric and is defined by & = f = .5, as explained
in the mathematical section. In a two-dimensional biplot, the degree of distortion
is proportional to the quartic root of the ratio of the contributions (41/43) to the
global variance of the two factors that span the biplot. The effect of this distortion
is to increase the spread along the second factor of the spectral map. The distortion
is minimal when A, is close to 4,, but increases when 4, is much smaller than 4.
(It is assumed here that factors are arranged in decreasing order of the magnitude
of their contribution to the global variance, hence 4, = 1,.)

Often one finds that only the first few factors account for the structure in the
data. The remaining factors then represent noise, artifacts or information that is
not relevant to the problem at hand. If there are r* structural factors and r — r*
residual ones, then the accuracy y of the representation in the reduced factor
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space, S, is given by:
y = kzl it/ (14)

where 17 has been defined before as the contribution of factor k to the global
variance, ¢, of the transformed data, Z.

4.5.4 Spectral Map of the Neuroleptics

Fig. 10 shows the spectral map derived from Table 1. The horizontal axis represents
the first structural factor which accounts for 73% of the global variance of the
transformed data (specificities), the vertical axis represents another 12% of the global
variance. The third factor, which is perpendicular to the plane of the map, contributes
only 6% and is, therefore, not regarded as being relevant. Hence, the two-factor
SMA biplot represents 85% of the global variance, with the residual 15% being in
higher dimensions of factor space. In this case, we have, at the cost of 15% residual
variance, the advantage of representing the specificities between compounds and tests
in a planar representation with sufficient accuracy. Not all cases are as straightfor-
ward as this one, however, and some may require the inclusion of the third factor
for a 3-dimensional perspective. In more complicated cases, it may be necessary to
split the table and perform two or more separate analyses, such that each produces
a two- or three-dimensional spectral map which accounts for a sufficient amount
of variance in the subdivided table.

The reading rules of this SMA biplot are as follows. First, circles represent
compounds and squares represent tests, according to an earlier convention.
Secondly, the areas of the circles and squares are related to the potency and
sensitivity of the compounds and tests, respectively, as defined by the geometric
means of the rows and columns of Table 1. The third rule defines the positions of
the compounds and tests on the biplot. Compounds that are close together on the
map possess similar activity spectra, irrespective of their differences in potency (e.g.
haloperidol and spiroperidol; chlorpromazine and triflupromazine). These com-
pounds exhibit little contrast in the various tests. Tests that are close together on
the map have similar activity spectra, irrespective of their differences in sensitivity
(e.g. amphetamine and apomorphine; norepinephrine and epinephrine). These tests
produce no contrasts in the various compounds. Compounds and tests that appear
in the same direction from the center (which is indicated by a small cross) have
positive specificity for one another (e.g. benperidol and apomorphine; fluanisone
and norepinephrine; floropipamide and tryptamine). These compounds and tests
are said to attract each other. Compounds and tests that appear on opposite sides
of the center have negative specificity. These compounds and tests are said to repel
each other.

The horizontal factor, which accounts for 73% of the specificities, is determined
by the contrast between amphetamine and apomorphine, on the onc hand, and
epinephrine, norepinephrine and traumatic shock, on the other hand. The vertical
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factor, which only contributes 12%, is determined by the contrast of the former
ones with tryptamine and ptosis. This interpretation of the spectral map agrees, to
a large extent, with the result of empirical factor analysis undertaken in 1961 [7]
and is reproduced schematically in Fig. 2. As predicted, chlorpromazine lies between
fluanisone and floropipamide, and perphenazine lies between haloperidol and
fluanisone. The spread along the vertical direction is exaggerated, however, due to
the large discrepancy between the contributions of the first and second factors. The
apparent spread is inflated by an amount which is equal to the quartic root of
73/12, or about 157% of the real spread. As already stated, this is caused by the
particular choice of scaling coefficients of the factor coordinates (« = f = .5) which
favors projections (specificities) rather than reproductions of distances (rms specifici-
ties). A prominent feature on the map is the similarity of the motility tests, including
ambulation, rearing, jumping box and catalepsy. Together with the other similarities
(amphetamine and apomorphine; norepinephrine and epinephrine; ptosis and
tryptamine), this redundancy in the data suggests that a large part of the information
on the map could have been produced with fewer tests. In the case of a two-factor
biplot, the minimal number of tests is three. Hence, we have to sclect three tests
which each have maximal specificity (distance from the center), and which also have
maximal contrast between them (distance between their representative points on
the map). If a selection is to be made between one or more equivalent tests (e.g.
epinephrine and norepinephrine), the one with the greatest sensitivity is taken. A
justifiable choice comprises apomorphine, norepinephrine and tryptamine. These
are precisely the specific agonists of the three receptors that have been identified in
brain tissue and that bind to neuroleptics, namely the dopaminergic, serotonergic
and adrenergic receptors. Although there were no highly specific neuroleptics among
the 40 that have been studied in 1965 by Janssen, et al. [10], the three-receptor
model that emerged from this analysis was in agreement with the knowledge to
date (Fig. 2). The three tests (apomorphine, norepinephrine and tryptamine) that
are defined as the minimal set are called poles of the map. They are also referred
to as marker variables [32]. A reanalysis of Table 1, using only these three poles, is
shown in the SMA biplot of Fig. 11. The horizontal and vertical factors account
for 81 and 19% of the global variance of the transformed data (specificities), which
amounts to 100% in total. The reading rules of this spectral map are the same as
those of the previous one, except for the addition of three bipolar axes. Each of
these bipolar axes defines a contrast, namely, apomorphine/norepinephrine (horizon-
tal), tryptamine/norepinephrine (pointing upwards) and apomorphine/tryptamine
{pointing downwards). The axes are provided with tick marks and logarithmically
spaced scale values, which express the corresponding ratios of effective doses. By
perpendicular projection onto a bipolar axis, one can read off the corresponding
contrast of each compound. For example, the contrast of isospirilene in the
apomorphine and norepinephrine tests amounts to about 400 (exactly 393). This
means that isospirilene is about 400 times more active in the apomorphine test,
when compared to the norepinephrine test. The contrast of floropipamide in the
tryptamine and norepinephrine test is about 1 (exactly 1.08), which means that the
compound is about equally active in both tests. But since the norepinephrine test is
about 4.4 times more sensitive than the tryptamine test (Table 1), floropipamide
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has a highly positive contrast with respect to the tryptamine and norepinephrine
tests. Note that the perpendicular projection of the center (+) onto a bipolar axis
defines the point of zero contrast. This point separates the regions of positive contrast
(in the direction of the arrow) and of negative contrast (in the opposite direction
of the arrow). The agreement between the complete analysis based on 12 tests
(Fig. 10), and the selective analysis using three poles (Fig. 11), is fair, with a few
exceptions (e.g. reserpine and aceperone). This analysis by SMA also supports the
three-receptor model suggested by the earlier empirical factor analysis (Fig. 2). Both
analyses have been produced by SPECTRAMAP [33], a program for multivariate
data analysis with emphasis on graphical representation of the results.*

4.5.5 Mathematical Description of SMA

Let X be an nxp table of activities (reciprocal effecitive doses or inhibitory
concentrations) with the general element, x;;, at the intersection of row i with column
j. By convention, the row index, i, refers to one of the n compounds, and the
column index, j, labels one of the p tests, although the compounds and tests can be
interchanged.

The first step in the analysis is a transformation of the observed activities X into
specificities by means of logarithmic reexpression followed by double centering. The
choice of the base of the logarithms is not relevant, and for the sake of simplicity
we adopted natural logs (base e). The result is an n x p table of specificities between
compounds and tests, Z, with the general element, z;;:

Zij = 10g xij -

\.M'u

1 1 J

— Y logx; — —Ylogx;; + — Y. ) log x;; (15)
p n T np T

or equivalently:

X

z;; = log x;; — log X;, — log X ; + log X, = log )f"ﬂ

%X
where X;, X ; and X represent the geometric row, column and global means of the
elements in X,

The second step involves the application of Singular Value Decomposition (SVD)
to the table (np)”'?Z, which yields the nxr matrix, U, of normalized scores,
the pxr matrix, V, of normalized loadings, and the rxr diagonal matrix, A,
which contains the associated singular values. The decomposition is defined by
means of:

(np)~ 1z Zyj = %“ik”jkﬂvkk (16)

* SPECTRAMARP is a commercial PC software product and a registered trademark of Janssen
Pharmaceutica N.V.
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where r is the number of singular values that are different from zero, where u;, and
vjx are general elements of U and ¥, and where Ay, represents a diagonal element of A.
The columns of U and ¥ are mutually orthogonal, which implies the following:

Z Uikllik' = Ok (17)

ivjkvjk’ = Ou (18)
7

where the Cronecker symbol, dx, represents 1 if k = k', and 0 otherwise. The
columns of U and V are arranged in decreasing order of their associated singular
value in A. The corresponding columns of U and ¥V represent the orientations of
the common factors in row and column space, respectively. Hence, SVD defines an
r-dimensional common factor space. The contribution of each factor to the global
variance ¢ of Z can be shown to be equal to the square of the associated singular
value. Since factors are uncorrelated we have the following:

e I (19)

1

np T
The normalized factor scores, U, and the normalized factor loadings, V, are
also referred to as left- and right-singular vectors, or as normalized row and
column principal components. SVD of a rectangular table can be computed by means
of the Golub and Reinsch algorithm [31]. If only a small number of dominant factors
are required, then use can be mase of the iterative NIPALS algorithm, designed by
Wold [34].

The coordinates of the n rows (compounds) along the r factors are compiled in
the n x r factor score matrix, S, with general elements s;. Likewise, the coordinates
of the p columns (tests), along the same r factors, are compiled in the p x r factor
loadings matrix, L, with general element /;. The factor scores and loadings, .S and
L, are derived from the normalized scores and loadings, U and ¥, by means of
appropriate scaling:

si = n Pugdfy (20)

liw = p'Popifi (1)

where o and f are the factor scaling coefficients for the scores and loadings,
respectively.

It should be noted that we employed here a generalized notation, which requires
the introduction of the constant weights, n'/? and p'/2, for rows and columns of Z
in the definition of SVD. The reason for our choice is that this notation can be
more readily generalized to variable weighting of rows and columns, as will be
shown below in the discussion of generalized SVD. In the usual case of constant
weighting, one may omit the constants related to n'/? and p'/? without violating
the validity of the expressions. In this way, one obtains the usual formulas for
ordinary SVD.
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A plot of the rows (compounds) in a low-dimensional factor space is called a
scores plot. A plot of the columns (tests) in the same low-dimensional factor space
is called a loadings plot. The joint representation of both rows and columns in a
common low-dimensional factor space is called biplot [2]. The interpretation of the
biplot depends largely on the choice of the factor scaling coefficients, « and f. Briefly,
if x = 1, then distances between points representing rows and the origin of space
can be interpreted as root mean square (rms) values of the rows in the table Z. If
p = 1, then distances between points representing columns and the origin of space
can be interpreted as root mean square (rms) values of the columns of the table Z.
If o + 8 = I, then perpendicular projections of points, represeating rows, upon
unipolar axes through the columns and the origin reproduce the values in the table Z.
It is not possible to find a pair («, ), which allows an interpretation of the
distances between rows and between columns, and at the same time, of the
projections. In SMA we define the factor scaling coefficients symmetrically as
o = f = .5, which is in favor of the projections at the expense of the distances. The
reproduction of the specificities in Z by perpendicular projection can be verified by
means of the matrix product of § with (the transpose of) L:

Z Sikljk = (”P)UZ ; “ik)»kkvjk = Zjj (22)
%

using Eqs. (20) and (21), and the assumption that o + f = 1.

The distortion introduced on the biplot by our choice of factor scaling coefficients,
o = f = .5,is most prominent in the direction of the lower order factors. The degree
of distortion can be quantified as follows. Let us assume a biplot which is spanned
by the first two factors, with contributions to the global variance A} and 23. The
apparent spread along the second factor is then (4,/4,)/!/?, while the exact spread
should be 4,/4,. The degree of distortion is then (4,/4,)!/%, or (A3/A3)V/4,

In this section, we assumed that all compounds and all tests carry an equal
weight in the analysis. If a total weight (or mass) of one is assigned to all compounds
and to all tests, then each compound carries a constant weight equal to 1/n, and
each test is given a constant weight equal to 1/p. In the general case of variable
weighting, we assigned to each row (compound) a variable weight, w,, and to cach
column (test) a variable weight, w;, such that:

n P
Yw;=1 and Y w; =1 (23)
i i

These substitutions lead to the definition of generalized SVD. In our application,
one may choose the weights w; to be proportional to the potency of compound i,
and the weight w; may be made proportional to the sensitivity of test j. A weighted
SMA is then defined by substitution in the previous Egs. (15) to (22) of the constant
1/n by w;, and of the constant 1/p by w;. (Care should be taken that the variable
weights w; and w; are within the control of the summations over rows and columns,
respectively.) Because of the logarithmic reexpression in SMA, data must be positive.
A small number of random zeros can be tolerated, however. (Random zeros arise
from the lack of precision of measurements, or from limitation of the sample size.
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Figure 12. Diagram showing the procedure for obtaining the basc number v, which is used in
the calculation of small positive substitution values for random zeros in a rectangular data table X.
The value x,,, is the smallest positive value in the table and p,,;, is the corresponding percentage
with respect to the total number of elements in the table.

They contrast with structural zeros, such as in binary or presence/absence data.)
The procedure for replacing random zeros is outlined below.

In order to determine substitution values for random zeros, we first constructed
the distribution of all values in the original table X on a logarithmic scale (Fig. 12).
This distribution is truncated at the lower end, since we assumed the presence of
a number of zero values in the table. Let us assume that x,;, is the smallest positive
value in the table and that the corresponding ordinate value is pmi,. (In Fig. 12 it
is assumed that about 20% of the data are non-positive.) The next step is to
extrapolate the lower tail of the distribution by means of a linear regression applied
between pmin and the point with an ordinate value at 50 + puia/2, halfway between
Pmin and 100 percent. Next, a point ¢ is determined on the regression line with
an ordinate value at pmin/2. The abscissa which corresponds to this point g
represents the base value, x,, of the zero substitution. In the final step one
computes the substitution value x% at the intersection of a particular row i and
column j from:

Xi X j

XE = xo —- (24)

where X;, X ; and X are the geometric row, column and global means of the data
table X, respectively. It is required further that the substitution value x} is not
larger than the smallest positive value xp;, in the table divided by 2. The effect of
this operation is that random zeros are substituted automatically in a consistent
way such that:

* N
Y X (25)

%
xE
Y= and

= ‘ :_>_<I

%
Xi'j

for all i, and j, .
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4.5.6 Discussion

Spectral mapping is based upon a general model, which relates the observed
biological activities to the potency of a compound, the sensitivity of a test and the
specificity of the compound for that test. In general terms, this relationship can
be written as:

log xij = Z[j + log T; + log Uj + I\ (26)

where ; represents the potency of compound i, g; the sensitivity of test j, x;; and
z;; the activity and specificity of compound i in test j, and where k is a constant.
The potency, n, when measured in binding studies (in vitro), depends upon the
availability of the compound in the immediate vicinity of the receptors. In animal
tests (in vivo), the potency is also a function of the pharmacokinetic properties of
the compound, i.c. its bioavailability, rate of transport into the target tissue, rate of
accumulation in fat, adsorption to circulating proteins, metabolism and elimination.
A particular compound may be more efficient than others in reaching the appropriate
receptors, to which it can bind. In this case, a smaller dose of this compound is
required to produce a pharmacological effect, which in turn makes the particular
compound more active in the battery of tests. The sensitivity, o, depends upon the
intensity of the response by an organism following the activation of a receptor to
which it is coupled. A particular effect may be readily produced, while others require
much more stimulation. In this case, a lesser dose of this compound will be required
to produce the given effect. As a consequence, this increases the activities of the
various compounds in the particular test. The general model is represented
schematically in Fig. 13.

The potency, n;, of compound i is estimated as the gecometric mean activity X; of
row i in the table of observed activities, X. Similarly, the sensitivity, ¢, of test j is

receptor complex k

drug i

Figure 13. General model which under-
lies the procedure of spectral mapping. The
potency m; of a compound i is determined
by the physico-chemical and pharmaco-
kinetic propertics of the compound i. The
sensitivity g; of 4 test j is governed by the
physiological and psychological propertics

potency specificity between  sensitivity

of ‘j{f‘g' drug a:? effectj  of e(f:fectj of the organism in which the effect is
! i ) observed. The scores s, are the coupling
w\/ coefficients between compound i and recep-
activity of tor cqmplex, k _The loadings [, ar.e'the
drug i in test j coupling coefficients between test j and

Xjj receptor complex, k.
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estimated from the geometric mean activity X ; of column j in the samc table X.
Finally, the constant k turns out to be related to the global geometric mean X.. In
addition, we can decompose the specificities Z between n compounds and p tests
into n scores, 8, of compounds, along r* structural factors, and into p loadings, L,
of tests along the same r* structural factors. This has been explained before.
Substitutions of these relations into Eq. (26) leads to an expression for the general
model in terms of observed activities:

log x;; = Z Sulp + log X;, + log X ; — log X, 27
k

The number of structural factors, r*, has been shown to be equal to the number of
operative receptors minus one. It is not possible, therefore, to associate the factors
directly to the individual receptors that bind to the compounds and that trigger
the responses in the tests. In the neuroleptic case of Table 1, we found that the first
factor of the biplot (Fig. 10) is determined by the dopamine and norepinephrine
receptors, while the second factor receives contributions from the three receptors,
i.e. dopamine, norepinephrine and serotonin. A factor can, thus, be seen as a complex
of receptors, each of which contributes to the factor in varying degrees. One can
interpret the score s as the degree of coupling of compound i with receptor com-
plex k. The degree of coupling, s;, depends on the ability of the compound to fit to
the receptors of complex k, and this, of course, depends upon its steric and electronic
properties. In a similar fashion, one can associate the score ! as the degree of
coupling of receptor complex k with test j. The degree of coupling, [}, is determined
by the biochemical and neurological pathways that link the receptor complex k to
the organ that produces the observed effect of test j. The varying degrees of coupling
are incorporated in the general model of Fig. 13 by means of connecting lines of
variable thickness.

It is difficult to assess how original the idea of spectral mapping really was when
it was first applied in 1975 to pharmacological data. The method of double centering
had been known by psychologists as a combination of R-mode and Q-mode factor
analysis (the distinction being related to column centering or row centering of the
data table). The effect of double centering was already recognized by Cronbach and
Gleser [35] as a removal of the size component of spectra, but they did not make
use of logarithms. A logarithmic double centered transformation has been proposed
by the Danish statistician Georg Rasch in 1963 [36] but without a factor analysis
of the resulting specificities. Factor analysis has been applied to log double centered
data in the social and psychological fields according to Andersen [36] as early as
1966, which is before the discovery of the biplot by Gabriel [2]. Kazmierczak [37],
who referred to the method as logarithmic analysis, pointed out that the idea of the
log double centered approach was first proposed by the English statistician Udny
Yule in the form of an invariance principle. (Every row or column of the data table
can be replaced by one that is proportional to it, without affecting the result of the
analysis.) Goodman [38] in a review of factor analytic methods of contingency tables
and cross-tabulations referred to the log double centered approach as the saturated
RC (rows and columns) association model and as the log bilinear model, which is
contrasted with Correspondence Factor Analysis (CFA). The analogy between the
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estimated from the geometric mean activity X; of column j in the same table X.
Finally, the constant k turns out to be related to the global geometric mean X . In
addition, we can decompose the specificities Z between n compounds and p tests
into n scores, S, of compounds, along r* structural factors, and into p loadings, L,
of tests along the same r* structural factors. This has been explained before.
Substitutions of these relations into Eq. (26) leads to an expression for the general
model in terms of observed activities:

log x;; & ) suly + log %, + log X; — log X (27)
k

The number of structural factors, r*, has been shown to be equal to the number of
operative receptors minus one. It is not possible, therefore, to associate the factors
directly to the individual receptors that bind to the compounds and that trigger
the responses in the tests. In the neuroleptic case of Table 1, we found that the first
factor of the biplot (Fig. 10) is determined by the dopamine and norepinephrine
receptors, while the second factor receives contributions from the three receptors,
i.e. dopamine, norepinephrine and serotonin. A factor can, thus, be seen as a complex
of receptors, each of which contributes to the factor in varying degrees. One can
interpret the score sy as the degree of coupling of compound i with receptor com-
plex k. The degree of coupling, s;, depends on the ability of the compound to fit to
the receptors of complex k, and this, of course, depends upon its steric and electronic
properties. In a similar fashion, one can associate the score {; as the degree of
coupling of receptor complex k with test j. The degree of coupling, [, is determined
by the biochemical and neurological pathways that link the receptor complex & to
the organ that produces the observed effect of test j. The varying degrees of coupling
are incorporated in the general model of Fig. 13 by means of connecting lines of
variable thickness.

It is difficult to assess how original the idea of spectral mapping really was when
it was first applied in 1975 to pharmacological data. The method of double centering
had been known by psychologists as a combination of R-mode and Q-mode factor
analysis (the distinction being related to column centering or row centering of the
data table). The effect of double centering was already recognized by Cronbach and
Gleser [35] as a removal of the size component of spectra, but they did not make
use of logarithms. A logarithmic double centered transformation has been proposed
by the Danish statistician Georg Rasch in 1963 [36] but without a factor analysis
of the resulting specificities. Factor analysis has been applied to log double centered
data in the social and psychological fields according to Andersen [36] as early as
1966, which is before the discovery of the biplot by Gabriel [2]. Kazmierczak [37],
who referred to the method as logarithmic analysis, pointed out that the idea of the
log double centered approach was first proposed by the English statistician Udny
Yule in the form of an invariance principle. (Every row or column of the data table
can be replaced by one that is proportional to it, without affecting the result of the
analysis.) Goodman [38] in a review of factor analytic methods of contingency tables
and cross-tabulations referred to the log double centered approach as the saturated
RC (rows and columns) association model and as the log bilinear model, which is
contrasted with Correspondence Factor Analysis (CFA). The analogy between the
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two approaches has been underlined by Escoufier and Junca [39] and Greenacre
[40]. In the case of contingency tables, one can show that the results of SMA and
CFA converge, if the specificities in the data are small and provided that the potencies
and sensitivities are homogeneous. This follows from the fact that Eq. (1) appro-
ximates Eq. (2):
o= N L Jog Y o Jog N

W=, I =~ log ox, ~ log %%, (28)
provided that x;; = x;x ;/x =~ X; X /X .

A comparison between the performance of SMA and CFA has been made by
Thielemans, et al. [41]1in the context of epidemiological contingency tables. The scope
of SMA, however, is not limited to contingency tables and cross-tabulations, and
can be extended to so-called measurement tables. In the latter, columns may be
expressed in different units, and the data need not be parts of a whole, i.e. must not
add up to meaningful totals, such as in Table 1. Perhaps, the originality of SMA
lies in the interpretation of the biplot in terms of bipolar axes, which represent
contrasts between rows and between columns and which can be expressed as ratios
of elements in the original data table, such as in Fig. 11 [33, 42, 43, 44].

The question that arises is whether these tools of analysis and computation can
provide fundamental knowledge that would not be obtainable from careful observa-
tion and interpretation. Perhaps they may not, but in any case, they can speed up
and enrich the process of interpretation by pointing towards unexpected contrasts,
by stimulating relevant questions and by identifying blind alleys. If the biplots
indicate that there is little structure in the data then, probably, keen and diligent
interpretation will add little to this. On the other hand, if a striking pattern is
observed on the biplot, this may point toward an interesting hypothesis which must
be confirmed by collateral information and subsequent testing. An illustration of
this is given below.

In our virology department an unexpected discovery was made by SMA when
analyzing a table of inhibitory concentrations of 15 antiviral compounds in cultures
of 100 rhinovirus subtypes (responsible for the symptoms of common cold). The
biplot revealed two neatly separated groups of serotypes, each with different
specificity for either compounds with aliphatic or for compounds with polycyclic
structural fragments. This led to the hypothesis of two structurally different proteins
on the viral envelope, which form so-called grooves or canyons, and which function
as receptors for antiviral compounds. Once a compound docks into the groove (like
a key in a lock), the viral envelope cannot open properly and, hence, the genetic
material cannot be used to replicate the virus inside the host cell. Antiviral
compounds must, of course, be able to “lock-up” both groups of rhinoviruses in
order for the infection not to spread further. As a consequence, they must possess
an aliphatic element on one side and a polycyclic structure on the other in order
to function as a double key [45, 46]. Of course, the success of the application of
SMA depended to a large extent on the interpretation by the virologist of the main
factor in terms of a contrast between two distinct receptors.

The approach of SMA can also be extended to multiblock analyses, for example,
when the same set of compounds has been studied in different scttings such as in
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animal pharmacology, in radioactive ligand binding experiments and in the clinic.
In such a situation, one may be interested in correlations between the different test
situations and their predictive capability [47].

In summary, we state that SMA is an effective method for discovering contrasts
in pharmacological dose-response data, provided that these are related to specific
biological pathways (such as receptors) that mediate between the administration of
a drug and the observed effects.
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4.6 Display of Multivariate Data
Using Non-Linear Mapping

James Devillers

Abbreviations and Symbols

CFA Correspondence factor analysis

C, Individual contribution to the distances in the non-linear map
d;; Euclidean interpoint distance in the display space
d# Euclidean interpoint distance in the original space
(dy)y Weighting factor

E Mapping error

E; Individual mapping error

NLM Non-linear mapping

PC(s) Principal component(s)

PCA Principal components analysis

QSAR Quantitative structure-activity relationship

SAR Structure-activity relationship

4.6.1 Linear and Non-Linear Methods in SAR and QSAR studies

Linear multivariate methods such as principal components analysis (PCA) and
correspondence factor analysis (CFA) are now widely used in medicinal chemistry
and related disciplines for deriving structure-activity relationships (SAR), [see e.g.
Refs. 1 —4]. However, it is obvious that biological activities of molecules may not
be just related to topological and/or physico-chemical descriptors by means of
linear relationships. Therefore, non-linear multivariate methods can also lead to
interesting SAR conclusions [5—7]. Besides the linear methods, they can be an
additional or complementary source of information about the relationships in the
data. Among the non-linear methods available for multivariate data analysis, [see
e.g. Refs. 8, 9], the non-linear mapping (NLM) method [10] is very useful for the
reduction of dimensionality and visualization of multivariate data [11—15]. Under
these conditions, the aim of this paper is first, to present the statistical principles
of the NLM method, and then to underline the heuristic capability of this
particular statistical analysis in medicinal chemistry.
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4.6.2 Non-Linear Mapping Algorithms

The non-linear mapping (NLM) method was designed by Sammon [10] to visually
represent a set of points defined in an n-dimensional space by a configuration of the
data in a lower d-dimensional display space (d = 2 or 3). The principal feature of
this method is that it tries to preserve as much as possible the distances between
the points in the display space similar to the actual distances in the original
space. The procedure for performing this transformation can be summarized as
follows.

A.

Interpoint distances in the original space are computed. The Euclidean distance is
the most widely used, but any distance measure is suitable for NLM, as long as it
is monotonic and the derivative of the mapping error (E) cxists (e.g. the Hamming
distance which can save valuable time [16]). '

B.

An initial configuration of the points (generally random) in the display space is
chosen. Several authors have proposed to use the co-ordinates of points of the first
principal components (PCs) as the initial configuration [12, 1 7). However, it is always
highly recommended to perform several trials, either with random configurations,
or with the other PC co-ordinates [12].

C.

A mapping error (E) is calculated from the distances in the two spaces. The original
mapping error (E) calculation for NLM, devised by Sammon [10] on the basis of
the Euclidean distance, is stated as follows (Eq. (1)):

id;kji<j dl’xj

i<j

(1)

where df and d;; are the Euclidean interpoint distances in the original and display
spaces, respectively. The procedure proposed by Sammon [10] has been significantly
modified by Kowalski and Bender [18]. They defined the mapping error function,
E, as shown in Eq. (2), where (d%)” is a weighting factor:

No(dE — d )
R @

Indeed, the p value may be adjusted so as to underline particular features in the
data set. A value of p = 2 corresponds to an equal weighting of small and large
distances. When p = —2, the larger distances are preserved at the expense of the
smaller distances [18]. The above equation, Eq. (2), with p = 2 is one of the most
widely used equations. However, other types of mapping errors have been used [12].
D.

Co-ordinates of points in the display space are iteratively modified by means of a
non-linear procedure, so as to minimize the mapping error. Various minimization
algorithms can be used. Thus, for example, Sammon [10] preferred the “steepest
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descent procedure”, Kowalski and Bender [18] adopted the Polak-Ribi¢re method,
and Klein and Dubes [19] proposed simulated annealing. The algorithm terminates
when no significant decrease in the mapping error is obtained over the course of
several iterations [12, 19, 20].

Additional information on the conceptual and theoretical aspects of the NLM
method can be found in an earlier paper by the author and coworkers [12].

4.6.3 Interpretation of Non-Linear Maps

The problem of the quality of the representation of each observation holds for all
lincar (c.g. PCA) and non-linear mapping methods. It is obvious that the interpreta-
tion of the maps must always be accompanied by an inspection of some valuable
statistical parameters (e.g. absolute and relative contributions in the case of CFA [3)).
For the interpretation of non-linear maps, two statistical parameters describing the
quality of the representation (E;) and the contribution to the distances of each point
(C;) were recently proposed [12].

In the case of Sammon’s error [10], E, which estimates the goodness of fit for

each observation, is calculated from Eq. (3):
Ly - 4y
Ei=— N "Z’ ’ d?“%'

2x Y dy’ iy

i<j

3)

By definition, the sum of all the individual mapping errors equals the total mapping
error, E.

The statistical parameter, C,, can be defined (Eq. (4)) as the sum of all distances
between a point i and all the others in the display space, divided by the sum of all
distances between all points in the display space [12]. The sum of the C; values
equals one.

Ci = idij (4)

4.6.4 Drawbacks and Limitations

The NLM method has two major drawbacks. First, the maps obtained are unique.
This means that new objects cannot be directly plotted onto the map without
recomputation, since interpoint distances are interdependent. Furthermore, maps
depend on the initial configuration, in the display space, since the minimization
process finds the nearest local minimum rather than the global minimum. Second,
even if the cost of computation is constantly decreasing, it is important to stress
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Figure 1. a) Non-linear map ol the 166 aromatic substituents described by six substituent constants
(nm, HBA, HBD, MR, F, and R). b} to g) Plot of the scaled values of the six parameters used to
describe the substituents on each point of the non-linear map. Squares (positive values) and circles
{negative values) arc proportional in size to the magnitude of the parameters. In Fig. lc and 1d
the dots indicate the substituents which do not have the ability to accept and donate H-bonds,
respectively. See Table 1 for the numbering of substituents.
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that the computation time to obtain a good NLM configuration using micro-
computers, can be long, when the number of objects considered is large.

Some solutions have been devised to overcome the above two problems. Thus,
for example, it has been proposed to use PC scores as an initial configuration for
solving the problem of uniqueness of the maps obtained. It has also been shown
that when new objects, not too dissimilar from the original training set, werc
introduced, the maps obtained tended to be quite stable [11]. In order to reduce
the time for computation, procedures, using two or more base points as reference
for the map, have been devised [21 —23].

4.6.5 An Illustrative Example in Medicinal Chemistry

In medicinal chemistry, the selection of optimal test series is essential, since the
design of a new drug is extremely costly (ca. $ 100 million [24]). A considerable
amount of work has been directed towards this aim and many authors have
proposed different methods, based on simple 2D plots, decision trees or multivariate
analyses (for a review of these methods see Ref. 24). Recently [25], we have shown
that the NLM method was particularly suitable for the rational selection of test
series and for deriving structure-activity relationships from graphical representations.
Fig. I'a clearly illustrates this principle and represents the non-linear map of 166
aromatic substituents (Table 1), described by six substituent constants (i.e. 7, HBA,
HBD, MR, F and R), encoding hydrophobic, steric, and electronic effects [26].
With a low mapping error (i.e. 6.4e-2), we can advance that the main information
contained in the original data matrix (166 x 6) is summarized on Fig. la. This
can also be shown by calculating the E; values (not given here) and by plotting
the values used for the NLM analysis (i.e. centered and reduced for n, MR, F
and R; reduced for HBA and HBD) onto the non-linear map by means of squares
(positive values) and circles (negative values), whose sizes are proportional to the
magnitude of the parameters studied. Indeed, Fig. Ib to 1g allow a clear inter-
pretation of the location of the points in Fig. la. It is important to note that
a PCA performed on the standardized data does not allow all the information
contained in the original data matrix to be summarized in one plane only. Thus,
for example, Fig. 2a, which represents the PC1 — PC2 plane, shows substituent 7 as
being near to substituent 8, while they are actually different and should be distant
from each other as shown on Fig. 1a. The same remark can be made for substituents
21 and 166 as well as for the series 13/42, 71, 98, and 127/93 and 124 (comparc
Fig. 2a with Fig. 1a).

From these results, it is obvious that for selecting test series with high information
content, the use of Fig. 1a can be particularly suitable, since this selection can be
performed by a simple visual inspection of the map.
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List of the 166 aromatic substituents [26]

N substituent

N° substituent

N* substituent

Br

SO,F

10,

NNN

SH

NHOH
5-Cl-1-Tetrazolyl
OCF,

CN

COZ

CHO

CH,ClI

CONH,
NHCONH,
CH,OH
0SO,CH,
NHCH,

C=CH
CH=CHNO,-(trans)
COCH,;

CO,CH,
C=0(NHCHy)
CH=NNHC=S(NH,)
CH,0CH;
SC,H;

SO,C,H;
P(CH;),
CH=CHCN
SCOC,H;
CH,CH,CO,H
NHCOC,H;
CH(CH,),
OCH(CH,3),
SOC;H,

SeC;H,

N(CHj);

1-Pyrryl
CH=CHCOCH;
SCOC;H,
(CH,);CO,H
NHC=0OCH(CH;),
NHC=S(C;H,)
OC4H,

NHC,H,
CH,Si(CH3);s
CH=NOC H,4
CeH;

SO,C¢H;
NHSO,C4H;
CH=CHCO,C;H,
COC¢H;
N=CHC.H;
CH,C.H;
CH=NNHCOCH;
CH=CHCOC¢H;
P=0(C¢Hs),

Cl

SF;

NO

H

B(OH),
SO,NH,
N=CCl,
SO,CF;

NCS
1-Tetrazolyl
CO,H

CH,I
CH=NOH
NHC=S(NH,)
SOCH;

SCH,
NHSO,CH;
NHCOCF,
CH=CH,
SCOCH;
NHCOCH;
CH=NOCH;
CH,CH;
OCH,CH;
SeC,H;
N(CH,),
PO(OCH;),
Cyclopropyl
CO,C,H;
NHCO,C,H;
CH=NOC,H;
C,H,

OC;H,
SO,C3H,
NHC;H,
Si{CH;),
2-Thienyl
CH=CHCO,CH,
OCOC;H,
CONHC;H,
NHCO,C3H,
C,H,
CH,0C;H,
P(C;H,),
CH=CHCOC,H;
CsHy,
N=NC¢H;
0S0,C4H;
2,5-Dimethyl-1-pyrryl
Cyclohexyl
CO,CH;
CH=NC.H;
CH,0C¢H;
CH,Si(C,Hs),
Ferrocenyl

NHCN

CH,Br

NHCHO

CH,

OCH;,

SO,CH;

SeCH,

CF,CF,

CH,CN

NHC =O(CH,Cl)
OCOCH;
NHCO,CH;
NHC =S(CH3;)
CH=NNHCONHNH,
SOC,H;
NHC,H;
NHSO,C,H;
C(OH)(CF),
COC,H;
OCOC,H;
CONHC,H;
NHC=S(C,Hj)
NHC=S(NHC,H;)
CH,0C,H;
SC;H,
NHSO,C;H,
CH=C(CN),
3-Thienyl
COC;H,
CO,C;H,
NHCOC;H,
CH=NOC;H,
C(CH,),
N(C;Hs),
PO(OC,H5),
CH=CHCO,C,H;
CH,0C4H,

OC H;

NHCgH;
CH=CHCOC;H,
2-Benzthiazolyl
OCOC¢H;
NHCOC H
C=CCyH;

CH =CHCHs-(trans)
N(CeHs),
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Figure 2. a) Score map (PCI— PC2 plane). PC1 and PC2 account for 32% and 26% of the total
variance, respectively. b) Correlation circle. See Table 1 for the numbering of substitucnts.

4.6.6 Software Availability

The number of statistical packages, including the NLM method, is rather small.
Among them, we can cite ARTHUR [27], DISCLOSE [28], ISPAHAN [29], and
STATQSAR [30]. This last package integrates a special module which is dedicated
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to the use of NLM techniques in SAR and QSAR studies. Besides these computer
programs, some casily implementable algorithms are available in the literature [10,
12]. Similarly, Zitko [31] published the listings of two programs written in HP 3000
BASIC.

4.6.7 Concluding Remark

Numerous studies deal with the comparison of the performances of the NLM
method with other non-linear and/or linear mapping techniques {10, 29, 32 —34].
From the published results, it is often difficult to obtain a fair estimation of their
relative efficiency and usefulness, since they are most often presented from artificially
generated data sets or from well-known real data sets (e.g. iris data [35]). In all
cases, from a practical point of view [e.g. 12—15, 25], we think that the NLM
method should be seen as a valuable additional tool in the kit of the classical
multivariate analyses available for deriving structure-activity and structure-property
relationships.
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4.7 The Use of Canonical Correlation Analysis

Martvn Glenn Ford and David William Salt

Abbreviations

CCA
cv
MRA
PCA
QSAR

Symbols

d;;
Bl

B4

b;;

Cxy

CH,
CNVRFi
CNVRSi
EDsq

k
kl'J
KDs,
K

L
LD,
log ¢is

€

Canonical correlation analysis

Canonical variate

Multiple regression analysis

Principal component analysis
Quantitative structure-activity relationship

Coefficient of the j-th response variable in the i-th CV
Verloop steric parameter (breadth 1)

Verloop steric parameter (breadth 4)

Coefficient of the j-th descriptor variable in the i-th CV
Correlation matrix between descriptor and response variables
H-nmr chemical shift of the benzylic methylene

i-th canonical variate first set

i-th canonical variate second set

Dose required to affect 50% of treated insects
Elimination rate constant

Penetration rate constant

Dose required to knock down 50% of treated insects
Livingstone’s charge transfer constant

Verloop steric parameter (length)

Dose required to kill 50% of treated insects
Proportion of cis-isomer in the mixed ester
Pharmacokinetic distribution coefficient

i-th largest eigenvalue of Cyy

Molar threshold concentration

Number of descriptor variables

Partition term

Number of response variables

Coefficient of determination

Redundancy coefficient
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R, Canonical correlation between W; and Z;

[Ry(N)? Proportion of variance in descriptor variables accounted for by the
J-th CV

Fx.(J) Canonical loading of the ith descriptor variable onto the j-th CV

[Ry())? Proportion of variance in response variables accounted for by the
j-th CV

Fy.()) Canonical loading of the i-th response variable on the jth CV

s The smaller of p and g

S, Steric effect

Ss Steric parameter describing esterification of the substituted benzyl
alcohol

o Hammett constant

W, i-th canonical variate first set

X, i-th descriptor variable

Ve Jj-th test statistic for Bartlett’s test

X i-th value of the j-th descriptor variable

Y, i-th response variable

Z, i-th canonical variate second set

4.7.1 Introduction

In studies of structure/activity relationships, several biological responses may be
measured. For example, different potencies, each related to a different biological
response (e.g. 1/EDs,, 1/LDs,, 1/KDs,, etc.) could be estimated for each test
compound, examined during the development of a new drug or agrochemical. It
may then be necessary to determine whether relationships exist between two sets
of variables, the biological potencies (Set 1) and the chemical/molecular properties
(Set 2).

One approach is to employ canonical correlation analysis (CCA). CCA is a
technique which determines the linear combination of the response variables that
i1s maximally correlated (ordinary product moment) with a linear combination of
the predictor variables. Unlike multiple regression, where the potencies are analyzed
independently with one model for each response, thus ignoring any correlation
structure amongst the different potencies. CCA utilizes this shared information and
affords an analysis of all response variables simultaneously.

4.7.2 Formulation of the Problem

The variables in the response group are designated as Y}, Y,, ..., Y, and the variables
in the descriptor group as X, X,, ..., X . The principle of the method is to calculate

a linear combination of the g response variables:

Wl =a11Y1 +a12Y2+ +a1qu (1)
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and a linear combination of the p predictor or descriptor variables:
leb11X1+b12X2+...+b1po (2)

where the coefficients a,, a5, ..., ay, and by, by, ..., by, are estimated from the
data. These coefficients are chosen, so that the pairwise correlation between W, and
Z, will be as large as possible. The idea is that if this maximum correlation, Re;,
is significantly large, then there is evidence of an association between the two sets
of variables. W, and Z,, given by Egs. (1) and (2), are referred to as canonical
variates (CV), and the (maximum) correlation between them (Rc,) is known as the
canonical correlation. These canonical variates are equivalent to the principal
components (PCs) produced in principal component analysis (PCA), or the latent
variables produced in PLS, with the exception that the criterion for their selection
has altered. Whereas all three techniques produce linear combinations of the original
variables, CCA does so not with the object of accounting for as much variance as
possibie within one set of variables (PCA) or maximising the covariance X'Y of
the data (PLS), but in order to maximize the correlation between the two sets of
variables, X and Y.

The techniques of CCA, PCA and PLS are analogous in several other respects.
PCA, for example, selects a first PC that accounts for a maximum amount of
variance in a given set of variables, and then computes a second PC accounting for
as much as possible of the variance left unaccounted for by the first PC. and so
forth. PLS selects successive pairs of latent variables, one member of each pair being
constructed from the X and Y sets, respectively, to have maximum covariance. CCA
follows a similar procedure. The first pair of CVs, W, and Z, (Egs. (1) and (2)), are
selected so as to give the highest intercorrelation possible, given the nature of the
variables involved. A second pair of CVs, (W,, Z,) is then selected to account for
a maximum amount of the relationship between the two sets of variables left
unaccounted for by the first pair of CVs, and so forth. In practice, the number of
pairs of canonical variates (W, Z,), extracted by the analysis, will be equal to the
smaller of ¢ and p. Thus, the linear relationships,

Wl = a“Yl + a12Y2 "F e + aquq
Wy, =aynY) + apY, + ...+ ay,Y,

W, =anY, +a,Y, + ... + ayY,
and
Zl == blle ‘+‘ b]zXz + N + blep
22 = b21X1 + b22X2 + + prXp

Z, = by Xy + boX, + ..+ b,X, 3)

can be found, where s is the smaller of ¢ and p. The pairs of canonical
variates are derived in decreasing order of importance, so that the (canonical)
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correlation R, between the first pair of CVs (W), Z,)is a maximum; the correlation
R¢> betweeen the second pair (W,, Z,) is a maximum, subject to these variables
being uncorrelated with (W, Z,), and Rc, < R¢q; the correlation R; between W,
and Z; is a maximum, subject to (W;, Z;) being uncorrelated with W, Z,, W,
and Z,, and R¢y < R, and so forth.

4.7.3 Features of Canonical Correlation Analysis (CCA)

4.7.3.1 Procedure for CCA

CCA takes, asits b asicinput, two groups of variables (standardized to zero mean and
unit variance), each of which can be given theoretical meaning as a group. These two
groups will generally comprize n observations on a set of response variables
(Y,i=12...,9), and a set of descriptor/predictor variables (X,i = 1,2,...,p),
so that the data matrix will look like the following

X1 X2 oo Xyp Vir Viz oo Vig
Xor X2z oo Xap Var Y2z - Vog
Xn1 Xn2 LR an ynl yn?. L ynq

The method of extracting the successive pairs of CVs involves an eigenvalue-
eigenvector problem, which has some similarity with that for obtaining the PCs in
PCA. The eigenvalues (RZ) and associated eigenvectors constructed by the CCA
are based on the combined (p + ¢)x (p + ¢) correlation matrix, Cyy, between the
descriptor variables and the response variables, where

pxp matrix Ry, ° pxg matrix Ryy
gxp matrix Ryy : gxg matrix Ryy
From this matrix an s xs matrix Ry, RyyRxyRyy can bc constructed, and the
eigenvalues of this matrix 4, > A, > ... > A, are the squares of the canonical
correlations between the pairs of canonical variates, i.c., R¢; = Vii, and represents
the amount of variance in the canonical variate, W, that is accounted for by the

other canonical variate, Z, The corresponding eigenvectors allow the canonical
variate coefficients (a;; and b;; in Eq. (3)) to be calculated.

4.7.3.2 Canonical Weights and Canonical Loadings

Interpretation of the canonical variates is necessary, if a picture of the association
between the two variables sets is to be formulated. Canonical weights and canonical
loadings have been used to assess the relationship between the original variables
and the canonical variates. Canonical weights, a;; and b;;, in Eq. (3), are analogous to
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the coefficients in multiple linear regression analysis {MRA) and indicate the
contribution of cach variable to the variance of the respective canonical variate.
They, therefore, define the location and direction of the canonical vector, and identify
the variables used in its construction. However, as in MRA, the canonical weights
may be highly unstable due to multicollinearity. Thus, some variable may have a
small or negative weight because it is strongly correlated to some other variable(s)
in the model. Canonical loadings are thought by many to be more useful in identifying
the nature of the canonical relationships. Canonical loadings give the simple product
moment correlation of the original variable and its respective CV, and reflects the
degree to which the variable is represented by a CV. The canonical loadings can
casily be found by correlating the raw variable scores with the canonical variate
scores. Canonical variate scores are analogous to PC scores in PCA.

4.7.3.3 Proportion of Explained Variance

A large canonical correlation between pairs of variates does not necessarily indicate
a useful and interpretable solution. For example, if only one or two variables have
a high association with the canonical variable, and, thus, have high loadings, the
total amount of variance in the response set of variables (Y), accounted for by the
canonical variate, can be small. In such cases, there is generally no relationship
between the two sets of variables, since the canonical structure indicates only a
specific relationship between one or two prediction and response variables.

The proportion of explained variance in the Y set that is accounted for by a
particular variate is given by the average squared loading of the response variables
on that particular variate, ie.,

RGP = 3. [P @

where [Ry(j)]*> denotes the proportion of variance in the response set variables
accounted for by the j-th canonical variate, and ry,() is the canonical loading of the
i-th response variable on the j-th canonical variate. Similarly, the proportion of
variance in the predictor set of variables (X) accounted for by the j-th canonical
variate is given by:

b

[Rx(N* = 2. [rx.(N/p - (5)

i=1

4.7.3.4 Redundancy Coefficient

In many QSAR studies, it is useful to know how much of the variance in the response
set is accounted for by the predictor set. One might think that RZ provides this
information. However, atthough the squared canonical correlation coefficients do
have some interpretations of the variance, they give the variance shared by the CVs
and not the variance shared by the original X and Y variables.
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Stewart and Love [1] have proposed an index, called the redundancy coefficient,
which represents the amount of variance in the response set that is redundant
to the variance in the predictor set. This redundancy coefficient, denoted by R, .,
is given by

N

Rey )y = -Z, ARy () (6)
i=

and is the sum of the product of the proportion of explained variance in the Y set
that is accounted for by a particular CV with its associated eigenvalue (= (Rc)?).
Stewart and Love showed that R, ,, is equivalent to regressing each Y variable, in
turn, on all the X variables, and then averaging the ¢ resulting square multiple
correlation coefficients. Thus, R¢,,, expresses the proportion of variance in the Y
set, which is explained by the X set. A redundancy coefficient, Rc, ,, can also be
constructed and represents the amount of variance in the X set of variables that is
redundant to the variance in the Y set.

4.7.3.5 Hypothesis Testing

Bartlett [2] has outlined a procedure for testing the statistical significance of the
canonical correlations, when the sample size is large, and so determined how many
significant relationships exist between the two sets of variables.

To test if there is at least one significant canonical correlation, the following test
statistic is calculated,

on_li”_lv(p‘—’_;ﬁ}iln(l—ii) (7)

where n is the number of observations, for which data are available. The distribution
of y, is approximately chi-squared, so that if y, is greater than a selected percentage
point of the chi-squared distribution with pg degrees of freedom, then it may be
concluded that at least one of the canonical correlation coefficients is significantly
large. However, if g, is not significantly large, then there is no evidence of any
relationship between the X and Y variables.

If x, is significantly large, then the following test statistic is calculated:

xl=[n—1—@%+—9]iln(l‘if) ®
i=2

x, has the effect of the first canonical correlation removed, and is approximately
chi-squared distributed with (p — 1) (¢ — 1) degrees of freedom. This process
continues, until it is found that the remaining correlations are no longer significant.
The test statistic to examine the significance of all, but the first j canonical
coefficients is:

xj-=—[”*1*(p+q~+—lq > In(l — 4 )

2 i=j+1

and has (p — j) (g — Jj) degrees of freedom.
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4.7.4 The Application of CCA to QSAR Problems

Compared with other multivariate procedures, CCA has been used in relatively few
QSAR studies. A search of the Science Citation Database, for example, identificd
only one publication, describing the use of the technique to investigate the
structure/activity relationships of drugs. Nevertheless, a number of studies have
been undertaken in this laboratory, some of which will be described to indicate the
potential of the method as a tool for investigating structure/activity relationships.
There are no examples of the use of CCA, which establish its value for predicting
the biological activity of drugs or agrochemicals, although at least one preliminary
investigation has been undertaken [3].

4.7.4.1 Pharmacokinetics of Pyrethroid Insecticides in Insects -

A mathematical model describing insect pharmacokinetics [4] was used to generate
data, describing the penetration and elimination of a series of pyrethroid analogues,
the (+)-cis/trans-methylbenzyl-chrysanthemates, applied to mustard beetles. The
three parameters of the model, k, (penetration rate constant), k. (elimination rate
constant) and A (a parameter describing the relative affinities of the compound for
the outside and inside of the organism) were estimated for each compound using
pharmacokinetic profiles (mass of insecticide vs time), based on experimental results
obtained by rinsing applied insecticide from the surface of treated insccts, and
grinding and extracting the washed insects with a suitable solvent a various times
after treatment [5].

The physico-chemical properties of the compounds were described by four
variables, viz. © (partition term), 6 (Hammett constant), S, (a steric effect) and log cis
(the proportion of cis-isomer in the mixed esters). The influence of chemical
structure on pharmacokinetics was investigated using canonical correlation analysis
with log k., log k, and log / as the first set of variables, and =, g, S, and log cis
as the second set. The correlation matrix for this analysis is presented in Table 1,
and is based on data for 14 of the 22 possible compounds, plus the parent

Table 1. Interparameter correlations, describing the molecular properties of the methylbenzyl-
(+)-cis/trans-chrysanthematcs and their pharmacokinetic behavior, following topical application
to mustard bectles, Phaedon cochleariae Fab.

log k. log k, log 4 4 a S, log cis
log &, 1.000
log k, 0.359 1.000
fog 4 —0.090 —0.590 1.000
T —0.567 0.088 —0.598 1.000
4 0.565 —0.040 0475 —0.948 1.000
S, —0.291 —-0.078 —0.451 0.356 —0.112 1.000

log cis —0.277 —0.379 0.123 0.134 —0.122 0.185 1.000
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Table 2. The standardized coefficients and correlations (loadings) of the pharmacokinetic and
molecular properties of the methylbenzyl-( 4 )-cis/trans-chrysanthemates with the canonical variates
Variable Standardized Canonical
coefficients loadings

Canonical Variate Canonical Variate
Set | CNVRF1 CNVRF2 CNVRF3 CNVRFI1 CNVRF?2 CNVR3
log k. 0.597 0.028 —0.906 0.634 0.378 —0.674
log k, 0.336 0.970 0.861 0.005 0.999 0.034
log A 0.923 —0.0333 0.850 0.671 —0.609 0.423
Set 2 CNVRS1 CNVRS1 CNVRS1 CNVRS1 CNVRS2 CNVRS3
n —0.121 3.287 —0.160 —0.925 0.179 0.323
o 0.643 2.859 —0.783 0.819 —0.079 —0.565
S, —0.547 —0.858 —0.800 —0.662 —0.137 —0.734
log cis 0.004 —0.687 0.189 —0.193 —0.755 0.114
Can. 0.930 0.503 0.254
Corr.
Eigenvalue 0.866 0.253 0.065

compound benzyl-(+)-cis/trans-chrysanthemate. The results of the CCA, which was
performed using the BMDP program 6M, are summarized in Table 2.
Applying Bartlett’s test (Eq. (7)) we have:

o= —115—1—(4+ 3+ 1/2][In(1 — 0.866)
+ In(1 —0.253) 4+ In (1 — 0.065)] = 23.65 (7)

which, with 4 x3 = 12 degrees of freedom, is significant at the 5% level. Conse-
quently, there is evidence to suggest that there is a relationship between the two
variable sets. We can now test whether a significant relationship exists between the
two sets of variables after the effect of the first canonical variate pair have been
removed. Using Eq. (8) we find that y;, = 3.59, which, with 4 — )3 — 1) =6
degrees of freedom, is not significant. Similarly, y, = 0.67 (with 2 degrees of freedom).
We can conclude, therefore, that only one canonical correlation is significant.

From Table 2 it can be seen that log k, and log A from the first set, and =, ¢ and
S, from the second set, load fairly strongly onto the first CV. The signs of the
coefficients indicate that an increase in the value of this variate is associated with
a) a decrease in 7, b) an increase in g, and ¢) a decrease in S,. A plot of the canonical
scores for W,(CNVRF1) and Z,(CNVRS1) are given in Fig. 1, where the pattern
of points reflects the canonical correlation of 0.930(Rc;).

An increase in the size of k, and A would result in a faster net flow of material
through the two compartments of the pharmacokinetic model. Thus, an increase
in the magnitude of the first CV describes a reduced residence time within the insect,
which would then be exposed to a high level of internal toxicant (large 1) for a reduced
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Figure 1. A plot of the canonical scores for W, (CNVRF1)and Z,(CNVRS!), extracted from data
describing the relationship between the pharmacokinetic and the molecular properties of the
methylbenzyl-( +)-cis/trans-chrysanthemates (R¢; = 0.93).

elapsed time (high rate of elimination, k.). Although the other two pairs of CVs are
not significant, careful interpretation of Bartlett’s y,, statistic is necessary if Type I1
errors (acceptance of false null hypotheses) are to be avoided. Thus, it is interesting
to note that the second CV associates log k,, (with a loading of 0.999) almost entirely
with log cis (loading = 0.755). This result suggests that the second CV may represent
the conductivity of the insect cuticle to movement of insecticide across this barrier,
and that the rate cuticular penetration increases in proportion to the relative amount
of trans-isomer applied.

The redundancy calculations using Eq. (6) show that despite the high canonical
correlation linking the two variable sets, only 38.7% of the variance in the
pharmacokinetic parameters is accounted for by the physico-chemical variables.

4.7.4.2 The Relationship between the Physico-Chemical Properties
of Pyrethroids and Pharmacokinetics, Pharmacodynamics and Toxicity

In a subsequent study from the same laboratory, CCA was used to investigate the
structure/activity relationships of a second series of substituted benzyl (+)-cis/trans-
cyclopropane-1-carboxylates, the QSAR compounds [3]. These compounds were
selected using procedures, designed to produce a training series with good distri-
butional properties and low interparameter associations, and were, therefore, well
suited to a QSAR study. Because pyrethroids have a rapid knockdown (K,)
effect in insects followed much later by lethality (L), two potencies (1/KDs, and
1/LDsg) were determined for each compound in the series. These are respectively
the estimates of the inverse of the dose required to knockdown and kill 50% of the
treated insects.

The association between the set of variables describing knockdown and insecticidal
activities (log KDs, and log LDs,: Set 1) and the physico-chemical properties of the
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QSAR pyrethroids were investigated. The physico-chemical properties of the
pyrethroids were the following: five Verloop steric parameters, viz. 2L, 3B1,4B1, 4B4,
5B1, where the numeral prefix indicates the position of a substituent on the benzyl
ring; Livingstone’s » parameter, derived from NMR studies and describing charge-
transfer interactions [3]; Hammett’s ¢ constant; a dummy variable, S,, describing
the sterification of the substituted benzyl alcohol with an acid moicty. S, = 0 for
chrysanthemates or 1 for chlorsanthemates; and CH,, the NMR chemical shift (ppm)
of the benzylic methylene protons (Set 2). Two significant pairs of canonical variates,
CNVRF1/CNVRS! and CNVRF2/ CNVRS2, were identified (Bartlett's test,
p < 0.00001), and used [3] to identify associations between the response variables
(Set 1) and the descriptor variables (Set 2).

The first pair, CNVRF1/CNVRS1, is based on the sum of the weighted log LD,
and log KDj, estimates, whereas the second pair, CNVRF2/CNVRS2, is based on
a difference between these estimates, i.e. a contrast between the two sets of potencies.

The canonical variates CNVRF1/CNVRS1 were correlated with experimental
estimates of the threshold concentration (log M TC) of pyrethroid required to elicit
abnormal activity in an isolated nerve preparation, the crayfish stretch receptor,
and is, therefore, related to the pharmacodynamic activity of the pyrethroids
(Egs. (10} and (11)).

n r F
CNVRF1 =538 + 085log MTC 16 0.80 254 (10)
CNVRS1 = 659 + 1.03logMTC 6 091 204 (1

The second pair of variates (CN VRF2/CNVRS2) were correlated with the pharmaco-
kinetic parameters, k., k, and /, estimated for these compounds following topical
application (4 pg/insect) to mustard beetles, Phaedon cochleariae.

n r F
CNVRF2 =220 — 274k, — 0.05k, — 0.704 16 091 204 (12)
CNVRS2 = 1.77 — 231k, — 0.05k, — 0.584 6 095 5.6 (13)

This interpretation of the two pairs of variates enabled Szydlo [3] to identify
relationships between the physico-chemical properties of the QSAR compounds
and their pharmacokinetic behavior and pharmacodynamic activity, PA (Table 3).

Table 3. Examples of the relationships between the physico-chemical properties of pyrethroid
insecticides and their pharmacokinetic and pharmacodynamic behavior identified by CCA (3]

Property Pharmacokinetics Pharmacodynamics
4B1 An increase in 4B1 reduces flow through Large dimensions correlate positively
the inscct with pharmacodynamic activity {PA)
K Electron donation reduces reduced k., k, Relatively unimportant
or A
S4 Dichlorovinyl substitution results in a re-  Dichlorovinyl substitution cnhances

duced k,, k, or 4 pharmacodynamic activity (PA)




4.7 The use of Canonical Correlation Analysis 275

4.7.4.3 Variable Deletion Procedures and CCA

In order to obtain a parsimonious QSAR model, based on CCA, Szydlo [7] developed
a procedure for deleting descriptors in a stepwise manner by using an approach
commonly employed in multiple regression. His search for a reduced set of
descriptors was undertaken using an initial set of 22 physico-chemical variables.
This set was characterized by substantial multicollinearity, but could be reduced to
eleven variables without loss of information using the coefficient of determination
(R?) as a diagnostic to identify those variables which could be deleted from the set
because they contained no unique information (i.e. R* is equal to unity) and are,
therefore, redundant. Each descriptor was regressed on all other descriptors in the
set (Set 2), and those with R? values equal to unity were eliminated. The remaining
11 variables, therefore, contained some unique information which could be related
to insecticidal and knockdown activities. ,

The association of this reduced set, with the two toxicity parameters log KD,
and log LDs,, was investigated using CCA. An initial canonical correlation resulted
in two toxicological canonical variates (TF1 and TF2), which summarized the
relationship between the biological and molecular properties of the training series.
However, severe multicollinearity still characterized the physico-chemical variable
set, indicating the presence of redundant variables. In order to reduce the complexity
of the predictor set, whilst retaining its association with the two toxicological
potencies, backward stepping was employed as follows. The variable, whose removal
resulted in the smallest reduction in the CCA eigenvalue, RZ, was discarded and
the process repeated in a second step using the remaining variables. Stepwise deletion
was stopped, when the reduction in R2 was considered to indicate a significant loss
of information on the basis of an F-statistic. The F-test employed compares the
change in variance explained, after removing a variable, with the residual variance
before deletion of a variable,

F = (R%kl - Rékz)/ (1 - R%k,)
k, —ky) | (n—k, — 1)

(14)

Table 4. Summary of thc backward stepping procedure to identify thec most parasimonious
canonical variates, describing the relationship between the toxicity and physico-chemical properties
of the QSAR pyrethroids [7]

Number of Variable Eigenvalue r Figenvaluc F
variables removed of the 1% of the 2"
canonical canonical
variate variate
11 0.969 0.904
10 F 0.969 0.899
9 SL 0.964 0.897
8 R 0.945 0.886 3.20
7 3B1 0.941 1.73 0.814 19.58
6 log MW 0.934 3.25 0.733
5 4L 0.896 19.80 0.687
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Table 5. Squared multiple correlations of each variable in the
predictor set with all other variables in that set, before and after
backward stepping [7]

Variable Original 11 “Best” 6

variables variables
R? R?

3B1 0.996

3B4 0.992 0.383

4L 0.993 0.709

4B1 0.993 0.733

5L 0.997

6L 0.996 0.191

K 0.995 0.270

F 0.995

R 0.998

Sy 0.991 0.090

where k, is the number of variables at the present step, and k, is the number after
the next step when one further variable has been deleted. Thus, this F-statistic
measures whether deletion of a particular variable produces a significant change in
the variation shared between the response and descriptor sets.

This procedure was carried out for each of the canonical variates to yield the
“best” equation based on the following six descriptors viz. 3B4, 4L, 4B1, 6L, k and
S, A summary of this procedure is presented in Table 4. The squared multiple
correlations of each variable in the second set, with all other variables in that set
computed before and after backward stepping, reflecting both the degeneracy and
multicollinearity of this data, is described in Table 5. Table 6 presents loadings and

Table 6. Standardized coefficients and correlations (loadings) of the original variables with the
canonical variates estimated for the QSAR pyrethroids, topically applied to mustard beetles,
Phaedon cochleariae Fab. [7]

Variable Loadings Standardized coefficients
TF! TF2 TF1 TF2
log LDs, 0.998 —0.055 0.949 —0.960
log KD, 0.711 0.703 0.074 1.348
TS1 TS2 TS1 TS2
3B4 —0.347 0.117 —0.744 —0.045
4L —0.134 0.389 0414 —0.416
4B1 —0.332 0.492 —0.759 1.086
6L —-0.318 —0.062 —0.331 —0.355
K 0.263 0.704 0.517 0.862
A —0.582 0.077 —0.552 0.087

Entries in bold indicate significant loading (p < 0.05)
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(a) TF1 vs TS1 (Rop = 0.97)

2T
15 ¢ E%cb
14
1st
canonical %3 T @
variate 0+ 6 @
(set 1),
R 05T 8 8
1+
-1.5 "8 6 O
-2 + + + ]
-2 -1 0 1 2

1st canonical variate (set 2), TS1

(b) TF2 vs TS2 (Recy = 0.86)

25
2 o ag
15 O
2nd 1 Q)
canonical
variate 03 o o %
(set 1), 9
TF2 -0.5 8
4 oo
1.5 O
-2 4 + + + + 4
-2 -1 0 1 2 3

2nd canonical variate (set 2), TS2

Figure 2. A plot of the canonical scores for TF1, TF2, TS1 and TS2 extracted from QSAR data,
describing the insecticidal activity of the aromatic substituted benzyl-(+)-cis/trans-cyclopropane
carboxylates.
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standardized coefficients for the “best” equations for T'1 and T2, and Fig. 2 shows
the observed canonical associations.

Bartlett’s test for the significance of the canonical variates obtained for the six
predictor variables gave the following results:

1st canonical variate (T'1): eigenvalue = 0.934
Chi-squared = 139.48 (12 d.o.f), tail probability < 0.001

2nd canonical variate (T'2): eigenvalue = 0.733
Chi-squared = 45.52 (12 d.o.f), tail probability < 0.001

Thus, two significant variates are obtained using a reduced set of six physico-
chemical properties. It should be noted that different combinations of the response
and descriptor variables load (Table 6) onto the two variates, 71 and 72: some
variables, e.g. log KDso and 4Bl1, are associated with both variates, while others,
e.g. log LDs¢ and 6L, are associated with only one variate. Elimination of redundant
variables, including many of the Verloop parameters, wich for the QSAR pyrethroids
are highly correlated has reduced, though not eliminated, the problems of degeneracy
and multicollinearity (Table 4) and identified a parsimonious set of variates to
describe the structure/activity relationships of these insecticides.

Because the above procedure can be applied to each of the canonical variates
under review, decisions on variable deletion will need to take account of the influence
of a variable on the set of significant variates. It may well be that a variable which
makes no real contribution to the first variate, has a major influence on the second
or third. Thus, sets of canonical variates have to be considered if type Il errors are
to be avoided. It is also advizable to keep a check on the redundancy, within and
between the data sets, during the deletion procedure. The coefficient of variation
for each variable regressed on all other variables within a set (Sec. 4.7.4.3), and the
redundancy coefficient of Stewart and Love [1] (Sec. 4.7.3.4) can provide useful
diagnostics for this task.

4.7.4.4 Mapping the Toxicological and Physico-Chemical Hyperspaces

Szydlo [7] obtained bivariate maps of the toxicological and physico-chemical
hyperspaces of the QSAR pyrethroids by plotting T F1 against TF2, and T'S1 against
TS2, respectively. There are more points in the toxicological space compared with
the physico-chemical space, reflecting the replication of the toxicity estimates, usually
3 per compound. Because the set of toxicological estimates, KD, and LD, is of
low dimensionality and is common to both analyzes, the maps based on the canonical
variates TF1, TF2, TS1 and T52 (Fig. 3) [3] are very similar to those (CNVRFI,
CNVRF2, CNVRS1 and CNVRS2) reported by Szydlo et al. [3]. They can be used
to identify the contributions of pharmacodynamics (T F1/TS1; CNVRF1/CNVRSI1)
and pharmacokinetics (T F2/TS2; CNVRF2/CNVRS?2) to the overall knockdown
and killing potencies of each compound in the series [3, 6]. Egs. (10) and (11), and the
associated CCA loadings (Table 6), for example, suggested that low values of
TF1/TS1 corresponded to high pharmacodynamic (—log MTC), knockdown
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Figure 3. Bivariate maps of the toxicological and physico-chemical hyperspaces, showing the
relationships between pharmacodynamics and pharmacokinetics, and a) the toxicity and b) the
molecular properties of the aromatic substituted (+)-cis/trans-benzyleyclopropane carboxylates.
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(log (1/KDsp) = —log KDso)) and Kkilling (log 1/L.Dso = —log LDso) potencies. In
contrast to this, high values for T F2/TS2 corresponded to small k,, k, and 1 values
(Egs. (12) and (13)), i.e. stow flow through the insect, and consequently decreased
knockdown activity (—log KDs), but increased killing activity (—log LDso) [3, 6].
The maps (Fig. 3) also suggested [3] that the QSAR compound 4 (e), with a low
value for TF1/TS1 and a high value for TF2/TS2, has a relatively good killing
activity, but poor knockdown activity as a consequence of its slow penetration and
elimination by mustard beetles. QSAR compound 13 (m), which has a low value of
TF2/TS2, penetrates rapidly, but is quickly eliminated from the insect body. As a
result, it is a relatively effective knockdown compound, but only has average
insecticidal activity (T'S1 = 0.42). Thus, although the overall potency of these
pyrethroid insecticides is related to TF1/TS1, and therefore, CNVRF1/CNVRS1
and, hence, to neurotoxicity, the balance between knockdown and killing activity
depends on the rate of movement into, elimination from, and distribution within
the insect [3, 6].

The bivariate spaces obtained by plotting each variate against the response
variables, log KDso and log LDs,, can identify further relationships between
molecular properties, pharmacokinetics and toxicity [6].

4.7.5 Useful Features of CCA for the Design
of Biologically Active Compounds

Canonical correlation can be regarded as a generalized regression procedure. Unlike
linear and multiple regression, it is not limited to problems concerning only
univariate y; CCA can consider both multivariate X and Y blocks of data. CCA is
susceptible to many of the problems, ¢.g. assumptions of independance of the X
variables, homoschedasticity and normality of the variance of Y, which are associated
with the simpler regression procedures, based on univariate y. Furthermore, because
two sets of associated variables are under investigation, the strength of these
associations, which can appear large when comparisons are made between canonical
variates (e.g. CNVRFi with CNVRSIi), may appear to be quite small when the
loadings of the original variables are considered (see Sec. 4.7.3.2). This can be a
problem, both for interpretation and prediction. Nevertheless, the technique has
advantages and may be useful for investigating the relationship between biological
activity and molecular structure.

One obvious benefit is that several biological responses can be considered for
the same series of compounds. This is important because it changes the unfortunate
emphasis placed in most QSAR studies on large numbers of physico-chemical
properties, relative to the biological data. Because of the significantly larger variances
in biological data compared with chemical data, application of multiple regression
can, therefore, lead to QSAR models which are overdefined and non-general. Such
models are of no value for identifying novel compounds of high activity. Techniques
such as CCA, which take account of multivariate y, can overcome these limitations
by, 1) weighting the Y block variables (the biological activities) relative to the X
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block (the molecular properties), and 2) constraining the possible models to
constructs, which reflect the associations not only between the X and Y variables,
but also those within both the X and Y sets. This latter feature represents a constraint
which may reduce the chance of a spurious correlation.

4.7.6 Predicting Biological Activity

There are several ways, in which the results of a CCA can be used to obtain a
prediction for the design of a new flavor, drug or agrohemical. One strategy is to
regress each of the original biological potencies on the appropriate set of canonical
variates which have been constructed. Because each variate is a new, orthogonal
variable with a known functional relationship to the original variables, the procedure
is straightforward. Each original y variable is regressed on the set of canonical
variates (i.e. CNVRSs), constructed from the molecular desciptors (the X block),
using a standard multiple regression procedure. The assumptions of this procedure
are now satisfied and a reliable prediction model should result, so long as other
considerations, such as sampling and design criteria have been satisfied. Only those
canonical variates which have a significant t-value should be retained in any model,
however. Non-significant canonical variates can be removed, without having to
re-estimate the regression because the f-coefficients are stable and have been
estimated using an orthogonal set of X variables.

A second approach is to base prediction on a method analogous to that used to
solve simultaneous equations. The various canonical variates are regarded as i
equations in i unknowns, which can be solved analytically; i is the number of
variables in the smallest set. This approach, developed at the University of
Portsmouth, has considerable potential, particularly if the associated canonical
correlation coefficients (Rs) are high. Its validity as a drug design strategy, however,
requires further evaluation.

4.7.7 The Advantages and Disadvantages of Using CCA
in QSAR Studies

Canonical correlation is a procedure for analyzing data, which comprizes more than
one set of variables. This is useful in QSAR studies, where biological and chemical
properties have both been measured using more than one variable. The advantages
of multivariate X and Y blocks in QSAR include a better balanced analysis, which
makes use of more structure/activity information, e.g. the within and between set
covariances, and a lower chance of spurious correlation, since there are more
constraints to model specification. Furthermore, predictions can be made using two
strategies, one based on regression and the other on an analytical approach. However,
failure to satisfy assumptions about the data will have similar disadvantages to
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multiple regression under the same conditions. These include multicollinearity, and
further study is required to assess the sensitivity of CCA to this effect.

Many of the problems which are likely to be encountered, when using CCA in
drug design, can be avoided by adopting the following procedures:

(1) Use the redundancy coefficient of Stewart and Love [1] to check that a
substantial amount of variance is shared between the X and Y variable sets.

(2) Ensure that a high correlation does not exist between one of the Y variables
and one of the X variables, since this could result in a spuriously high canonical
correlation.

(3) Exclude non-significant descriptor/predictor variables by using a backward
stepping procedure. This may also reduce the influence of multicollinear variables.

(4) Compare the weights and loadings to identify any discrepancies such as
reversal of sign or differences in rank order.

Adoption of these guidelines should facilitate the use of CCA to provide a concise
and reliable summary of any multiple associations between two sets of properties,
which are observed during a QSAR study.
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4.8 Discriminant Analysis for Activity Prediction

Han van de Waterbeemd

Abbreviations

ALS Adaptive least squares

ANN Artificial neural networks

CSA Cluster significance analysis

KNN k-nearest neighbor

LDA Linear discriminant analysis

MAO Monoamine Oxidase

MLR Multiple linear regression

PCA Principal component analysis

QSAR Quantitative structure-activity relationships
SCD Single class discrimination

SIMCA Soft independent modeling of class analogy
SPC Structure-property correlations

Symbols

1Csg Binding affinity (50% inhibition)

EDs, Effective dose (50% effective concentration)

D,, Linear discriminant function

X, Chemical or biological data used in classification
L1k Mean of descriptor k in class 1

(514)° Variance of class 1

S[—-3 < EP < +3]

(xx)" !

Measure for the hydropholicity
Swain-Lupton field parameter
Variance-covariance matrix

4.8.1 Theoretical Background

The quality and type of biological data are important factors for selecting the
appropriate statistical method to develop quantitative structure-activity relations-
hips. Quite a number of biological tests produce discrete results, e.g. active or
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inactive, or + +, +, 0, —, — —. Such data are more difficult to deal with than
continuous values, such as ICs, or ED;, values. The problem in this case is how
to correlate qualitative biological data to quantitative chemical data [1]. Techniques
to handle such cases include adaptive least squares ALS [37], cluster significane
analysis CSA (see Chap. 4.9) and linear discriminant analysis LDA. The function
of discriminant analysis is to find a linear combination of factors (descriptors) that
will best discriminate between two or more groups. Principal component analysis
and cluster analysis deal with finding groups among objects, such as chemical
compounds, while discriminant analysis deals with objects which are known to
belong to different groups. In principle, the number of groups that can be considered
can be any number. The maximum number of possible classes equals the total
number of compounds. However, in molecular design problems, a rough separation
into two groups, active vs inactive, is often considered. Therefore, the problem
discussed here is the following. Given a data table with various chemical and/or
biological data, X ,, two groups of compounds should be formed. Group classification
functions, D, and D,, have two be calculated, such that for compounds 1 to n the
discriminant score D; > D,, and for the rest of the compounds D, < D,.

D, =a, X, +a,X, +a3X5+ ... (1)
D, =bX,+b,X, +bX5+ ... (2)

Figure 1. Discriminant functions representing a line or
plane (A) or a hypersurface (B). Function I gives correct
classifications, while function 1l has misclassifications.
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The coefficients, a; and b;, are called discriminant weights and are obtained by a
multiple regression procedure. These functions describe a line, plane or, in general,
a surface (hyperplane) between the groups (see Fig. 1). The difference between the
two group classification functions is called the linear discriminant function, Dy,.

Dz =Dy — D, 3)

This function defines a hyperplane, separating the two groups of compounds. When
the condition for the equality of covariance matrix for the multivariate normal
distribution between two observation groups is not fulfilled, a modified procedure
may be used [2]. The basic assumptions for linear discriminant analysis (LDA) also
include a normal distribution of the descriptor populations and equal covariance
matrices [5] for the classes. In principle, also non-linear discriminants, e.g. quadratic,
can be used. But these are more complicated to deal with.

The hyperplane represented by a LDA is not unique and may be quite different
from a plane calculated by multiple linear regression [31].

LDA works well if the groups of active and inactive compounds are well separated
in space. In the case of embedded or asymmetric data (see Fig. 2), other strategies
should be preferred, such as SIMCA (see Chap. 4.3) and single class discrimination
SCD [37].
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Figure 2. Ovelapping classes (A) and embedded or
asymmetric data (B).
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Discriminant analysis can also be performed by artifical neural networks, [3, 4,
37] or as PLS discriminant analysis [35]. A further development of linear discriminant
analysis is the adaptive least squares (ALS) method [37], which allows the separation
of several activity classes by a single discriminant function. LDA is further related
to techniques such as Bayesian discriminants [5], non-parametric lincar learning
machines (LLM)} [5] and k-nearest neighbor (kNN) classification. The latter strategy
is rather simple, in that one looks for similar compounds in a multidimensional
space [37].

4.8.2 Descriptor Selection

To answer the question as to which properties are best suited to separatc molecules
into classes, we may refer to Sec. 2 of this volume and to Vol. 1 of the present series
[6]. No rules can be given here. As in ordinary Hansch analysis, any property which
seems to be relevant to the problem may be analyzed. Physico-chemical properties,
such as log P, are believed to be more useful in discriminant studies than structural
descriptors [7]. A large collection of potential descriptors has been reported [8]. In
order to give all descriptors the same weight, autoscaling is often performed before
the analysis. In this step, the descriptor is normalized by substracting the mean value
of the descriptor and dividing by its standard deviation. Thus, each descriptor has
a mean value of zero and a standard dcviation of one.

Using feature selection techniques, i.e. elimination of non-significant descriptors,
the final discriminant analysis may be more successful. Cluster analysis or principal
component analysis are often used for descriptor sclection. However, some interesting
alternatives may also be attempted. Jurs and coworkers [5] have used a variance
method, while Takahashi et al. [9] have used the Fisher ratio. The Fisher ratio is
a quantitative estimate of the significance of a given parameter for separating two
classes. The Fisher ratio of the descriptor, k, (F,) is calculated from,

(};lk - 7_2k)2
F, =tk A2 4
o) + (o) @

where y,, and y,, are the mean values of descriptor k in classes 1 and 2, respectively,
and o, and o, are the standard deviations of those classes.

4.8.3 Chance Correlations with Discriminant Analysis

When data sets having many variables are analyzed, there is the danger of finding
chance correlations by fortuitous combinations of variables [10]. Stouch and Jurs
[11—13] have examined the risk of change correlations in linear discriminant
analysis. They concluded that the number of examined variables should be kept to
below one half of the number of observations.
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4.8.4 Validation

The statistical significance of discriminant functions should be tested by, cg. a
chi-square test [14] or by the “jackknifed leave-one-out technique [15]. According
to Kier [16], the quality of the discriminant function may be assessed in three ways:
comparison of the F-value to tabulated values, determination of the percentage of
correctly classified molecules, and prediction of the classification of a test set not
included in the original training series. Another approach was followed by Ogino
et al. [2]. The best set of discriminant functions was selected, in such a way that 1)
a combination of variables, which minimizes the number of misclassified compounds
is best, 2) the smallest number of independent variables is used, and 3) the collinearity
among the independent variables is minimized.

4.8.5 Examples

Discriminant analysis has been used in various SAR studies, e.g. as in the following:

MAQ inhibitors [15, 17]

Antitumor naphthoquinones {18]
Pyrimidine folic acid antagonists [19]
Phenylalkylamines [20]

CNS drugs [21]

Sweet or bitter aldoximes [16]

Antiulcer and antiinflammatory drugs [2]
Mitomycin derivatives and steroids [22]
Carcinogenic aromatic amines [23]
N-nitrosoamines [24]

Periilartine derivatives as sweeteners [9]
Non-narcotic analgetics [25]

Fungicidal 2-antilinopyrimidines [26]
Antiviral N-quinolin-4-yl-N'-benzylidenchydrazines [27]
Antiinflammatory steroids {7}
Calmodulin inhibitors [28]

Olfactory stimulants {29, 30]
Biodegradation [14]

Genotoxic activity [31]

Anticancer retinoids [36]

In the overview given here, we have selected a few representative examples, which
will be discussed below.

4.8.5.1 Mode of Action of Pyrimidine Folic Acid Antagonists

The inhibition of dihydrofolic acid reductase (DHFR) as been subject to many
traditional Hansch-type QSAR studies. Part of the differences between the various
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Figure 3. Structures used in discriminant analyzes studies. (1) Antibacterial pyrimidines [19],
(2) Antjulcer benzoguanamines [2], (3) Calmodulin inhibitors [28] and (4) Monoamine oxidase
inhibitors [15].

compounds are based on their selectivity towards specific of species DHFR, as well
as on the differences in cell penetration and metabolism. For a series of 175
pyrimidines (Fig. 3, Structure 1) studied in an antimalaria program growth,
inhibition of S. faecium has also been studied [19]. Of these, 155 were classified as
reversible or irreversible in their mode of action; the other 20 were inactive. These
data were submitted to regression analyzes [32], which gave regression equations
describing the structural features responsible for reversible and irreversible inhibition
of several bacterial systems (S. faecium, L. casei and P. cerevisiae). However, it was
not clear in quantitative terms, which factors were related to the mode of action.
Therefore, the same data were subjected to discriminant analysis. Using 123
molecules as the training set, while retaining 32 for prediction purposes, the following
classification functions were determined,

reversible = 2.56m; + 14211, + 59615 + 5401, + 957113 — 7.22 35)
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irreversible = 4.14n, + 9341, + 105715 + 11.51],; + 16.621,5 — 823  (6)
Dy, = —1.5Tn, + 4871, — 4.6115 — 6.111,; — 70.51;3 + 1.02 (7

where 7, is the lipophilicity of the substituent at the 2-position, 15, Is, Iy, and I3
are indicator values described by Coats et al. [32]. These functions correctly classify
71 of the 78 reversible inhibitors (91%), and 41 of the 45 irreversible inhibitors
(91%). For the prediction set, 20 out of 20 reversible inhibitors (100%) and 9 out
of 12 irreversible inhibitors (76%) were grouped correctly. The negative coefficient
for #» in the discriminant function D, indicates that lipophilic substituents at the
2-position of the pyrimidine ring gave rise to irreversible inhibition, with respect
to folic acid. The misclassifications could, thus, be rationalized by comparing
structural features to the discriminant function.

4.8.5.2 Antiulcer Benzoguanamines

A set of 34 benzoguanamines were tested for their antiulcer activity, expressed as
the percent inhibition of the control [2]. Physico-chemical descriptors used in the
discriminant analysis include the following: log P values for the unionized form,
Hammett constants, o, and the Swain and Lupton field parameter, % . In discriminant
analysis the groups are preestablished, mostly from their natural grouping based
on the frequency distribution of the response level. In this particular example, three
groups of ca. equal size were formed: the most active, of intermediate actively, and
the least active. Three-group and two-group analyzes were performed, and the
three-group model gave the following equations:

Z(1) = 14.00log P + 7.65Z¢ + 6.82F — 17.40 (8)
Z(2) = 11.75log P + 58330 + 6.69F — 12.23 9)
Z(3) = 701 log P + 1.0936 + 7.17F — 456 (10)

where Xo is the sum of the Hammett constants of all substituents in the ring.
Two-group discriminant functions give similar equations, e.g.,

Z(l) — Z(2) = log P + 0.6582¢ + 0.25 — 2.28 (11)

The predictability in the two-group analysis (ca. 80%) appears to be better than
by dividing into three groups (60 —80%). A certain level of error must always be
expected, since better defined categorizations are not possible with biological data.
A further improvement in two-group classification was attempted by using “ad-
missible” discriminant functions. These are slight modifications of the usual
discriminant method. In this particular case, no improvement was found.

4.8.5.3 Calmodulin Inhibitors

Calmodulin is an intracellular calcium binding protein, involved in the activation
of various enzyme systems, such as phosphodiesterase (PDE) and myosin light chain
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kinase (MLCK). Inhibitors of calmodulin have been classified into four groups {33].
The first three of these groups have been characterized by a discriminant analysis
study, in which the following descriptors, among other descriptors, of the structure
type 3 were considered [28]:

All molecules consist of a ring with a chain part connected to atom, Z.

Geometrical parameters:
S, (solvent accessible surface (SAS) of the ring),
Noy (number of OH groups in a ring)

Electronic parameters:
Q, (atomic charge of atom Z),
EP surface areas (SAS divided by the level of electrostatic potential), where
S[—3 < EP < +3]is a measure of the hydrophobicity of the molecule

Because most of the parameters chosen here are based on the three-dimensional
molecular structure, a low-energy conformer for each compound had to be selected.
As far as possible, X-ray structures were used, and others were estimated by MNDO
calculations.

Discriminant analysis produced a set of three discriminant functions giving rise
to a complete separation of the 22 compounds into three groups:

Y(I) = —445S[EP > +3] +43.7S, + 4.14S[~3 < EP < +3]—90.36  (12)
Y(I)= —G6.0SSJEP > +3] +44.8S, + 12.76S,[—3 < EP < +3] — 111.65 (13)
Y(II) = — 1.70S,[EP > +3] + 28.1S, + 3.03S[—3 < EP < +3] —39.85  (14)

where the subscripts r and ¢ stand for contributions of the ring and side-chain,
respectively. The interpretation of these functions is as follows:

Group II shows a smaller SAS area, with the ring having a positive potential and
a larger hydrophobic area than Groups I and III; Group 111 has a larger SAS area,
with the side-chain having a positive potential and the ring having a smaller total
area than Groups I and IL. Based on this model, twenty-nine additional inhibitors
have been classified. The compounds of Group I have also been studied by a QSAR
analysis, using adaptive least squares (ALS), showing that hydrophibicity is
important for the ring, but not for the side-chain. The negative potential SAS of
the side chain is required for activity. In this QSAR analysis, conformation-dependent
parameters were used for sets of conformers. Thus, a simultaneous selection of the
best set of conformers and the best subset of structural parameters was attained.

4.8.5.4 MAO Inhibitors

Monoamine oxidase (MAO, EC 1.4.3.4) is an enzyme, bound to the mitochondrial
membrane, involved in the desamination of biogenic and xenobiotic monoamines,
particularly of various neurotransmitters. Two forms of this enzyme. MAO-A and
MAO-B, have been characterized. MAO-B inhibitors are of interest for the treatment
of Parkinson’s disease, while inhibitors for the MAO-A form, such as moclobemide,
are used as antidepressants.
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Discriminant analysis has been used to develop relationships between physical
properties and MAQ inhibition by aminotetralins and aminoindans [17, 34]. More
recently the selectivity of a series of indole inhibitors of MAO-A and MAO-B was
studied [15] (Structure 4 in Fig. 3). The discriminant method LDA was compared
to the non-discriminant method, kNN (k-nearest neighbors [37]). Using the full data
set based on a Free-Wilson matrix, a total of 93.4% correct predictions could be
attained. The predictive capability of the method is seen by a “jackknifed”
classification, giving 87.9% correct predictions for selective and non-selective
compounds. A problem arises in the visualization of the selective and non-selective
groups in the 16-dimensional space. The distance between points can be calculated
by the Euclidean distance, while the distance between groups can be expressed by
the generalized or Mahalanobis distance [38]. A useful graphical representation of
the separation of both classes was obtained by plotting the Mahalanobiswistance
of a compound of the first class mean against the corresponding distance of the
same compound to the second class mean. The Mahalanobis distance between the
objects i and j is calculated as follows,

d* (i, j) = (x; — x;) (xx) " (x; — X)) (15)

where (x'x)” ' is the variance-covariance (or correlation) matrix. When the variance
matrix is the unity matrix, this distance coincides with the Euclidean distance. It
was observed further that the non-selective compounds are much more widely
distributed. This is to be expected, since non-selectivity may arise from various
origins. With the kNN method, 100% of the tightly clustered selective compounds,
and 85% of the non-selective are correctly predicted. The kNN method was superior
in this case, since it is less sensitive to asymmetrical distribution of the compounds
in the variable space.

4.8.6 Conclusions

Discriminant analysis is a simple pattern recognition tool for quickly elucidating
structure-property correlations in data sets with categorized biological data [35].
The following steps are involved:

— grouping of biological data

— definition of the groups (usually two or three)

— generation and/or measurement of (physico-jchemical data

— autoscaling of all data to remove unequal weights

— feature selection (= selection of the final descriptor set)

— calculation of the LDA hyperplane

— validation of training and test set by various methods

— prediction of activities of new compounds

The advantage of LDA is that the discriminant functions can be easily understood
in terms of the available variables. The disadvantage is that it does not work with
embedded or asymmetric data. It is good practice to combine discriminant analysis
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with other pattern recognition methods, particularly when the number of activity
classes is not known or can only be loosely defined, such as agonist-partial
agonist-antagonist.
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4.9 Cluster Significance Analysis

James W. McFarland and Daniel J. Gans

Abbreviations and Symbols

CL Confidence limits

CSA Cluster significance analysis

1C5, 50% inhibitory concentration

LDA Linear discriminant analysis

MR Molar refractivity

MSD Mean squared distance

n Hansch-Fujita hydrophobic substituent constant
p Probability

SARs Structure-activity relationships

4.9.1 Introduction

Medicinal chemists have diverse interests, but one of the more common is to
understand how changes in chemical structure relate to changes in biological
activity. For a chemist attempting to discover a better drug, such an understanding
would greatly ease his or her task. Unfortunately, such knowledge is hard to obtain.
The reason for this is that a single change in the structure leads to many changes
in the properties of the compound. For example, substituting a methy! group on a
basic nitrogen may alter not only the compound’s potency, but also its pK,, hydrogen
bonding capacity, lipophilicity, and extension in space. When many such analogs
are considered together, it 1s difficult to see the structure-activity relationships
(SARs) in so many dimensions.

This volume describes a number of statistical methods for detecting such
relationships in multivariate space. Cluster Significance Analysis (CSA) [1, 2] is
another, but one that can be used in the important case of biological data
expressed as one of two responses, for example: “active-inactive” or “agonist-
antagonist”. While the biological data must be binary, the descriptors can be
continuous variables. In this regard, CSA resembles one important aspect of Linear
Discriminant Analysis (LDA; see Chap. 4.8). However, it differs from LDA in that
it can treat data sets in which the compounds giving the biological response of
interest are clustered in the descriptor space, with the non-responders scattered in
all directions from this group. Such data distribution has been termed “asymmetric”
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by Dunn and Wold [3] and is also known as “embedded data” (see Chap. 4.5 in
[15]). LDA can not treat situations of this type.

The purpose of CSA is to identify among many possible descriptors those
that truly influence activity. CSA can be used to identify such descriptors in
asymmetric data and give a general idea about what the optimal descriptor values
are; however, it does not furnish a precise classification rule. Nevertheless, CSA
can give insights that are valuable when trying to discover SARs.

4.9.2 Theoretical Background to CSA

4.9.2.1 Parameter Focusing

CSA was derived to complement a graphical concept called “parameter focusing”,
originated by Magee [4]. Fig. 1 illustrates the basic idea of this concept. It presents
hypothetical biological test results on six compounds that are characterized by
the physical properties, X and Y. Compounds 1—3 are active (A), while 4—6 are
inactive (O). It appears that the actives are clustered in the midst of the inactives,
and can be considered as “focused”. From this arrangement, we can judge that
X and Y, or at least one of them, are determinants of biological activity.

How did we decide this? The logic is as follows. If X and Y had no influence on
biological activity, we would expect the “actives” to be distributed randomly
throughout the graph (the null hypothesis). If, instead, the actives are localized in
one region (the alternative hypothesis), so that they are not scattered, then we may
infer that these descriptors are related to the biological response. “Focused” clusters
indicate non-random, i.e. informative, descriptor patterns. The problem is deciding
when a group is indeed focused. How can we tell that the “focused” group did not
simply arise by chance? CSA addresses this question.

5 -
41 o
6
3 4
Y 24
4 o
N 3 4 Figure 1. Hypothetical case for CSA. Active
11 1 A (A) and inactive (O) compounds plotted in the
2 space of the physical properties X and Y.
0 o Reprinted with modification and permission
5 from Ref. [1]; Copyright 1986 Amecrican
-1 . v . . - . Chemical Society.
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4.9.2.2 A Graphical Explanation

Before getting to the mathematics, it would be helpful to illustrate these ideas by
continuing with the example of Fig. 1. There are six compounds; of these, three are
“active”. From the formula for combinations, there are 20 possible sets of six things
taken three at a time. If it is chance alone that isoperating, the three active compounds
could have appeared as any one of the 20 sets with equal likelihood. That is, the
observed placement of the three actives in Fig. 1 could have arisen by accident with a
probability of 0.05. However, we would be as or more convinced that the actives
were “focused” if they appeared in a set which was as or more compact. Therefore,
a significance probability or p-value for testing the null hypothesis of randomness
is the ratio formed by the number of all such compact sets divided by the total
number of possible sets.

In Fig. 1, how many sets of three are as compact or smaller than the observed
active group? This case is so simple that one can casily obtain an answer by
inspection. The active group itself, compounds 1 —3, is of course one set satisfying
the condition, but compounds 2—4 form an even smaller set. The Sets 1, 2 and 4,
and 1, 3 and 4 are close in size to the active group, but the members are somewhat
farther apart from each other. All other groups include compounds 5 and/or 6 and
are, therefore, much more loosely associated. Thus, there are only two sets that are
as or more compact than the observed group of actives. Therefore, the probability
that this degree of clustering would occur by chance alone is:

p = 2/20 = 0.10 (1)

The p-value of Eq. (1) exceeds the usually accepted maximum of 0.05 for
significance. However, with so few compounds in this data set we can at least
suspect that the null hypothesis may be false, and that the active compounds are
“focused”.

4.9.2.3 Calculations

Mean Squared Distances

Cases which are this simple are rare. A more rigorous mathematical treatment, one
that can be programmed for a computer, is needed to handle larger and more
complex situations. However, the same basic principle remains unchanged: with
sets containing the same number of compounds as the observed active set, count
those that are as compact or smaller than the observed active set, and divide that
count by the total number of allowed possible sets.

We will begin by defining the compactness of a group as the mean squared
distance (M SD) between compounds as represented by points in a multidimensional
space. It is calculated by summing the squared distances between all pairs of points
and dividing that total by the number of pairs. Thus, the MSD of the active group



298 James W. McFarland and Daniel J. Gans

in Fig. 1 would be computed as follows:

total squared distance = (x; — x,)* + (y; — ¥,)* + (x; — x3)?

+ (y — Y3)2 + (x, — x3)2 + (¥, — }’3)2 (2)
MSD = (total squared distance)/3 (3)

We recommend autoscaling (transforming linearly to unit variance) all descriptors
before the distance computations are made. CSA1 and CSA2 are two computer
programs (se¢ below) that autoscale automatically.

The FORTRAN Computer Programs CSAI and CSA2

With this definition of MSD in hand, we can proceed to compare the compactness
of each allowed set to that of the observed active group, counting those at least as
compact, and computing the p-value. The program CSALl does this exhaustively
over all allowed sets. However, this process is computationally demanding and can
take a long time for some problems. For example, a set of 20 compounds with
9 actives requires 167, 960 M SDs to be determined. A VAX computer can handle this
in just a few minutes. However, with the addition of more compounds, the
computation becomes increasingly time-consuming. A set of 24 compounds with
13 actives entails the calculation of 2, 496, 144 MSDs. While this is still possible to
calculate with CSA1, the c.p.u. time rapidly increases.

The program CSA2 was created to handle larger data sets. It operates on the
same principles as CSAI, but instead of exhaustively calculating all possible MSDs,
it samples at random a predetermined number of allowed sets. The p-value is
estimated from the number of randomly chosen sets that have MSDs equal to or
smaller than that of the observed active set. Because this approach is stochastic,
there will be some uncertainty in the probabilities estimated in this way. The program
also calculates 95% confidence limits for the actual p-values.

These two FORTRAN programs are discussed further in Sect. 4.9.3.1.

4.9.2.4 Choosing among Sets of Parameters (Sequential CSA)

Up to this point we have been discussing CSA as if all descriptors under
consideration must either all succeed or all fail to be true determinants of activity.
Realistically, when there is more than one descriptor, the problem becomes more
complex: even if there is genuine clustering, not all the descriptors need be
contributing. A feature of CSA is that it can help separate relevant descriptors from
irrelevant ones. Sequential CSA is an efficient means to achieve this.

When only a few descriptors are under consideration, they can be evaluated in
various combinations in order to arrive readily at a conclusion. However, as
descriptors increase, the number of possible combinations expands rapidly. This
number is 2¥ — 1, where k is the number of descriptors. With k only 5, there are
already 31 combinations; the task of discovering the biologically relevant ones
becomes tedious. To reduce the labor involved, we proposed [5] a sequential
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approach to CSA, one which allows satisfactory conclusions to be drawn, without

having to consider all possible combinations.

In the absence of an equivalent to the partial F-test in multiple regression analyses,
we suggested that a descriptor’s importance may be quantified by considering its
effect on the overall p-value, when it is added or deleted. We proposed the following
operational rules as guidelines for deciding whether to include a descriptor in the
model:

e the addition of a relevant descriptor to the model lowers the p-value for the
“active” cluster;

e the addition of a non-relevant descriptor increases the p-value;

o the subtraction of a relevant descriptor increases the p-value;

e the subtraction of a non-relevant descriptor lowers the p-value.

These rules are somewhat heuristic, but they are inspired by the notion of
“information” or “noise” being added to or subtracted from the data set, and have
an intuitive appeal. Thus, relevant descriptors can be identified rapidly by the
following steps:

1. Determine the p-value of each descriptor when used alone.

2. Arrange the descriptors, & in number, in a list with increasing p-value. Analyze
this list sequentially by CSA, first considering & descriptors. Next, omit the
descriptor with the highest p-value, i.e. the last descriptor, and analyze the k — 1
remaining descriptors. Continue in this manner until only the first descriptor
(the one with the lowest p-value) remains.

3. Using the selection rules above, decide which of these descriptors are contributing
positively to the model and which are not. At this point leave out those variables
which are not contributing.

If ambiguities remain, repeat the sequence of steps with those descriptors that
are still viable possibilitics. An example of this process is given in Sec. 4.9.4.3.

4.9.3 Practical Considerations

4.9.3.1 Software Availability

A Commercially Available Program

Oxford Molecular (Oxford, U.K.) offers a version of CSA as part of its software
package TSAR (Version 2.1). TSAR requires 16 MB of RAM and 24 MB of disk
space on Silicon Graphics, Hewlett-Packard 700 series, or IBM Risc 6000 worksta-
tions. The CSA part of the package has a convenient interface for entering data,
and for selecting the independent variables for analysis.

Do-1t-Yourself

In an earlier publication [1], we presented efficient mathematical algorithms in
enough detail to enable users who so wish to write their own computer programs
to implement CSA. Many, however, will prefer to start from existing FORTRAN
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code for CSA1 and CSA2, given in Ref. [2]. From our contacts with many people
who have expressed an interest in CSA, we are aware that these programs have
been implemented successfully on VAX and IBM mainframes, IBM PCs and their
clones, and, as indicated above, various workstation systems. At Pfizer we have
even adapted CSA for a Cray supercomputer. Thus, CSA can be used on a variety
of hardware and operating systems. FORTRAN is not indispensable: the algorithms
in Ref. [1] are independent of language, and CSA1 and CSA2 have been written in
PASCAL and RPL [the programming language of RS/l (BBN, Cambridge MA,
USA)]. Thus, CSA can be used on almost any reasonably fast computer system.

Although the information given in Refs. [1] and [2] is complete in all necessary
respects, to help those interested in creating their own CSA programs we have
written a few pages of additional suggestions on organizing and manipulating data
files. We will send this document and, if desired, the FORTRAN codes for CSA1
and CSA2 on request (to JW.M.).

4.9.3.2 Dividing the Dependent Variable into Two Categories

Biological test results for a series of compounds are sometimes presented qualitativ-
ely, such that they can be divided readily into two classes of responses, e.g., “+"
for “mutagenic” and “—" for “non-mutagenic”. Data of this type present no
difficulties.

When the results are given in a graded manner (—, %, + and + +, for example)
those familiar with the test may see a natural division between + and +, and divide
the data into two classes at this point. Other divisions are possible, of course, but
they should be decided on the basis of the analytical objective in mind. For instance,
one might really only be interested in the factors leading to strong activity. In this
case the “+ 4+ compounds would be the group of interest and all the others would
constitute the non-responders.

In some cases the compounds differ only in degree of potency; that is, there are
no inactives. One may find that when the compounds are ordered in decreasing
potency, there may be a large step in the middle of the list; this then could be a
natural division point to generate the two classes necessary. When this does not
occur, then an arbitrary division may succeed. An example of this type is given in
Sec. 4.9.4.2.

Table 1. The hypothetical example: data used to generate Fig. 1

Compound Activity? X Y
1 1.0 23 1.2
2 1.0 33 1.0
3 1.0 3.1 1.7
4 0.0 3.8 1.6
5 0.0 1.5 0.0
6 0.0 0.0 3.8

* Active = 1.0; inactive = 0.0.
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4.9.4 Examples
4.9.4.1 CSA1: The Hypothetical Example

In Sec. 4.9.2.2 we inspected Fig. 1 in order to obtain an indication (with p = 0.10)
that the “active” compounds are clustered. Because of the small number of
compounds involved, we accepted this result as suggesting that at least one of X
and Y is a determinant of biological activity. The two dimensional nature of Fig. 1
allows one to see this readily. However, a more difficult question would be: are
both X and Y determinants? The answer to this is not so straightforward. If you
project the six points in Fig. 1 onto the X and Y axes, it is not clear just by
inspection what the respective p-values in each dimension will be. The solution to
this problem can be obtained by applying CSAL.

Table 2. Chemical structure, inhibitory potencies and physico-chemical descriptors for arylthio
and alkylthio derivatives of methacycline®

Compound R Log (1/1Csq) L B, B, T
No.
1 phenyl —0.838 6.28 1.71 311 2.13
2 4-chlorophenyl —(.204 7.74 1.80 3.1 2.83
3 4-bromophenyl —0.146 8.05 1.80 3.11 3.32
4 4-methoxyphenyl —0.079 8.20 1.80 311 2.09
5 benzyl —0.146 3.63 1.52 6.02 2.63
6 4-chlorobenzyl —0.322 442 1.52 7.44 333
7 3,4-dichlorophenyl -0.716 442 1.52 7.44 4.03
10 methyl —0.898 3.00 1.52 2.04 0.50
11 ethyl 0.222 4.11 1.52 297 1.00
12 n-propyl 0.222 5.05 1.52 349 1.50
13 i-propyl 0.222 411 2.04 316 1.30
14 n-butyl 0.155 6.17 1.52 442 2.00
15 i-butyl 0.255 5.05 1.90 3.49 1.80
16 t-butyl 0.301 4.11 2.59 297 2.00
17 n-hexyl —0.643 8.22 1.52 5.87 2.50
18 cyclohexyl 0.222 6.17 2.04 349 2.50
19 cyclopentyl 0.533 4.97 2.04 3.98 2.14
20 i-pentyl 0.533 6.17 1.52 4.42 2.30
21 n-decyl —1.017 12.32 1.52 8.80 5.50
24 2-hydroxyethyl —0.672 479 1.52 338 039
25 2,3-dihydroxypropyl —0.755 5.73 1.52 3.38 0.29
27 3-chloropropyl 0.222 6.82 1.52 3.49 2.20

* Reprinted with modification and permission from Ref. [6]; Copyright 1993 Amecrican Chemical
Society.
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The data used to generate Fig. 1 are listed in Table 1. Of course, CSA1 gives the
p-value of 0.10 when both X and Y are included in the analysis. When we chose
just the X parameter, the p-value remained unchanged at 0.10. Thus, the parameter
X may be all that is necessary to account for the clustering. When we assessed the
contribution of Y alone, however, the p-value was now 0.15, greater than that of
X, or the X—Y combination. We conclude that adding Y to X provides no
improvement, while adding X to Y does. This suggests that X is a possible
determinant of activity, while Y is probably not. The good p-value observed for
the X — Y combination appears to be due solely to the contribution of X.

4.9.4.2 CSA2: Inhibition of Tetracycline Efflux Antiport Protein

Recently, Nelson et al. [6] published a set of data that affords an instructive example
of CSA, using the random sampling technique {CSA2). The problem concerns a set
of 27 arylthio and alkylthio derivatives of methacycline that inhibit a tetracycline
efflux antiport protein isolated from a tetracycline-resistant bacterium. Twenty-two
of the compounds considered and some of their properties are presented in Table 2.
Five of the tetracyclines in the original work were omitted, because they had
structural features that did not permit meaningful values of n to be assigned to
them. These were beyond the scope of the general structure given at the top of Table 2.
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Figure 2. A plot of 22 arylthio and alkylthio derivatives of methacycline in the dimensions of L
and 7. The more potent compounds (A) inhibit a tetracycline efflux antiport protein isolated from
a tetracycline resistant bacterium. The less potent compounds are designated by (O).
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Table 3. CSA2 results for various combinations of descriptors in the series of methacycline
derivatives

#* L B, B, b3 p-valuc Number of
subsets
estimate 95% CLP sampled
4 1 1 1 1 0.071900 +0.003580 20000
1 1 1 0 0.219050 +0.005732 20000
1 1 0 1
1 0 1 1 0.000018 +0.000012 500000
0 1 1 1
2 1 1 0 0
1 0 1 0 0.000650 +0.000158 100000
1 0 0 1 0.000042 +0.000018 500000
0 1 1 0 ‘
0 1 0 1
0 0 1 1 0.000330 +0.000113 100000
1 1 0 0 0 0.009400 +0.001337 20000
0 1 0 0 0.977350 +0.002062 20000
0 0 1 0 0.012740 +0.000983 50000
0 0 0 1 0.002410 +0.000304 100000

* Number of descriptors in set.

® Uncertainty (still at the 95% confidence level) in the difference between two estimated p-values
is given by the square root of the sum of the squares of the two individual uncertaintics (i.e. the
values following the “+” symbols).

The biological response of interest is the IC5, (uM) and expressed in Table 2 as
log (1/IC5), which results in ten compounds with positive values. We used these
as the group of interest (i.e. the “actives”). The physical properties are the Verloop
STERIMOL parameters L, B;, and B, [see Chap.2.1], and the Hansch-Fujita
hydrophobic substituent constant 7 [see also Chap. 2.1]. Fig. 2 indicates that the data
are asymmetric in the dimensions of L and =; in similar plots the actives appear
clustered in B, but not in B, space.

Table 3 shows the 15 possible combinations of the four descriptors. Each row
represents one potential CSA2 run. A “1” in a physical property column indicates
the presence of that variable in the combination. The estimated p-value with its
95% confidence limits (95% CL) and the number of random subsets used are also
given. As the results illustrate, it is not necessary to run all the combinations for a
satisfactory picture to emerge. The last four rows give the p-values for each of the
descriptors separately. Clearly, B, is not a likely determinant of activity. However,
the other three are good candidates, with = being perhaps the most important,
followed by L, and then lastly, B,.

The first row shows that when all four variables are included, the p-value is just
short of being statistically significant. However, when = is removed from the set,
the p-value becomes considerably higher. From the rules given in Sec. 4.9.2.4, we
conclude that = is a relevant determinant. On the other hand, when B, is removed
from the set of four parameters, there is a dramatic improvement in the p-value.
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Table 4. Chemical structures, sweetness and descriptor values for the R group of carbosulfamates®

R—NH-SO;Na*

*

MR L B, B, B, B, o
n-propyl 1.0 150 492 1.52 3.49 1.91 191 =012
n-butyl 1.0 19.6 6.17 152 4.43 1.92 196 —0.13
2-Mec-butyl 1.0 242 6.17 1.52 4.43 3.16 190 —0.16
isopentyl 1.0 243 6.17 1.52 443 3.15 192 —0.16
isobutyl 1.0 19.6 492 1.52 4.21 316 190 —0.13
neopentyl 1.0 243 492 1.52 422 3.16 315 =017
¢-hexyl 1.0 26.7 6.06 1.91 3.24 3.59 281 =015
2-Me-c-hexyl 1.0 313 6.06 191 3.24 3.77 3.9 =015
3-Me-c-hexyl 1.0 313 6.15 1.91 4.47 3.59 335 —01§
c-pentyl 1.0 21.5 490 190 4.06 342 258 —-020
2-Me-c-pentyl 1.0 26.1 490 190 4.06 3.62 342 —020
3-Me-c-pentyl 1.0 26.1 5.91 1.90 4.06 342 258 =020
c-pentylmethyl 1.0 26.1 6.05 1.52 4.11 2.86 286 —0.13
phenyl 1.0 254 6.28 1.71 1.71 311 3.11 0.60
cthyl 0.0 10.3 4.11 1.52 298 191 190 —0.10
n-pentyl 0.0 243 6.97 1.52 4.94 1.92 1.90  —0.16
isohexyl 0.0 28.9 6.97 1.52 5.66 317 1.90 —0.16
2,3-Me,-c-hexyl 0.0 359 6.15 191 4.47 3.77 359 —0.15
2,5-Me,-c-hexyl 0.0 359 6.06 214 3.56 4.42 429 —0.15
2,6-Me,-c-hexyl 0.0 359 6.06 1.91 3.24 4.50 377 —0.15
3,3,5-Me;-c-hexyl 0.0 40.6 6.26 1.91 447 4.50 344 015
2-Et-c-hexyl 0.0 40.6 6.06 1.91 4.29 4.66 3.59  —0.15
4-t-Bu-c-hexyl 0.0 40.6 8.20 1.91 4.59 3.52 272 =015
4-t-pentyl-c-hexyl 0.0 49.9 8.98 1.91 4.59 3.52 272 —0.15
c-butyl 0.0 17.9 4.77 1.77 3.18 3.20 204 —0.15
c-hexylmethyl 0.0 3t3 6.12 152 5.30 3.26 34 —0.13
4-vinyl-c-hexyl 0.0 354 8.28 1.91 4.01 3.59 281 —0.15
benzyl 0.0 30.0 4.62 1.52 6.02 3.43 3.10 0.22
[-adamantyl 0.0 40.6 617 3.6 3.16 3.49 349 —0.26
methyl 0.0 5.7 287 1.52 2.04 1.90 1.90 0.00
n-hexyl 0.0 289 8.22 1.52 5.88 1.92 196 —-017
n-heptyl 0.0 336 9.03 1.52 6.39 1.92 190 —0.17
n-octyl 0.0 38.2 10.27 1.52 7.33 1.93 190 —0.15
isopropyl 0.0 15.0 4.11 1.91 3.16 2.98 276 —0.12
1-Me-propyl 0.0 19.6 492 1.91 3.16 349 276 —0.21
1-Me-butyl 0.0 243 6.17 1.91 4.39 3.54 299 —0.23
1-Me-pentyl 0.0 289 6.97 1.90 494 3.16 276 —026
1-Me-hexyl 0.0 33.6 822 191 5.63 4.30 299 —027
1,2-Me,-hexyl 0.0 289 6.17 191 4,39 3.74 299 —023
1,3-Me,-hexyl 0.0 28.9 6.17 1.91 442 349 298 —0.26
1,4-Me,-hexyl 0.0 28.9 6.97 1.91 4.39 4.50 299 —0.26
1,2,2-Me;-propyl 0.0 335 492 191 4.40 374 299 —0.29
t-butyl 0.0 19.6 4.11 277 2.98 3.16 315 —030
1,1-Me,-propyl 0.0 242 492 277 3.49 316 315 =031
1,1,3,3-Mc,-butyl 0.0 382 6.17 260 4.22 3.16 315 —-036
c-propyl 0.0 13.5 4.14 1.55 3.08 3.24 1.81  —0.15
[-Me-c-pentyl 0.0 26.1 490  2.66 3.24 4.09 317 =030
1-Me-¢-hexyl 0.0 313 6.06 273 348 3.30 316 —044
phenethyl 0.0 34.6 8.33 1.52 3.16 312 311 0.08
3-phenylpropyl 0.0 393 6.67 152 7.47 3.14 3.10 0.02

* Reprinted with modification and permission from Refl. [7]; Copyright 1986 Elscvier Science

Publishers, BV.

Y Sweet = 1.0; not sweet = 0.0.
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Thus, our first impression was confirmed, and B, could be eliminated as a deter-
minant. When the remaining three descriptors are considered in pairs, the p-value
is, in each case, statistically greater than when all three descriptors are treated
together. Hence, the conclusion is that n, L, and B, appear to be genuine determinants
of tetracycline efflux antiport protein inhibition. From Fig. 2, we can by inspection
obtain the approximate ranges in = and L, where the most potent activity will be
found; with a similar plot using B,, the range for good activity in that dimension
can also be estimated.

4.9.4.3 Sequential CSA: Sulfamate Sweetening Agents

In the previous example there were only 15 possible combinations of the four
descriptors. By first considering the descriptors one-at-a-time we were able to select
combinations such that we arrived at a satisfactory answer by using only ten of
the 15; in fact this task could have been accomplished with nine had we followed
a strict sequence of events. We really did not need to exclude just n; this was done
merely to show the effect on the p-value when a relevant descriptor was removed.

To illustrate the sequential approach in more detail, let us consider a set of
sulfamate sweetening agents. Miyashita and coworkers [7] first introduced this
problem. Seven physical descriptors were considered: molar refractivity (M R), Taft’s
o*, and the STERIMOL parameters L, B, B, B, and B, (see Chap. 2.1). According
to the discussion in Sec. 4.9.2.4, there are 127 possible combinations. By plotting the
data in the space of their first two principle components, Miyashita et al. [7] showed
that the sweet compounds were clustered in the midst of the their non-sweet
congeners. However, it was not possible to relate sweetness directly to the original
properties. We recently published an analysis of these same data using CSA [5).
The following is a summarized discussion of our previous work.

Table 4 presents the Miyashita data. 1t consists of properties for 50 sulfamic
acids substituted on the nitrogen atom with various alkyl, cycloalkyl, and phenylalkyl
groups, and a phenyl group. Sweetness is the biological response of interest;
14 compounds fell into this category. Because there are nearly 10'? combinations
of 50 things taken 14 at a time, we used the CSA2 program.

We began by evaluating the descriptors one-at-a-time; the results arc shown at
the bottom of Table 5. From this we found that L is the most likely determinant
of sweetness among these sulfamates. After L in decending order of importance are:
MR, B, B,, B,, B, and o*. Of these, only L, MR, and B, are each statistically
significant. When all of the descriptors are considered together (top row of Table 5),
the cluster of actives is statistically significant. However, when the least significant
variable (¢*) is omitted, the p-value becomes dramatically smaller. Hence, o* need
not be considered further. We then eliminated the next least significant descriptor
(B)) and found a still further decrease in p-value. Proceeding in this manner, we
arrived at a p-value of only 0.00002 + 0.000003, with just those descriptors found
on an independent basis: L, MR, and B,.

" As a final step, as with the Nelson problem, we deleted each descriptor in turn
from this collection of three descriptors. Thus, we investigated whether further
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Table 5. CSA2 results for various combinations of descriptors of carbosulfamate swectening
agents®

#°* L MR B, B, B. B o* p-value Number of
subsets
estimate 95% CL¢ sampled
7 1 1 1 1 1 1 1 0.039600 +0.005400 5000
6 1 1 1 1 1 [ ] 0.000600 +0.000215 50000
5 1 1 1 1 1 0o 0 0.000050 +0.000031 200000
4 1 1 1 ] 0 0 0 0.000010 +0.000006 1000000
3 1 1 1 0 0 0 0 0.000002 +0.000003 1000000
2 1 0 6 0 0 o 0.000027 +0.000010 1000000
I 0 1 0O 0 0 o 0.000058 +0.000021 500000
0 1 1 0 0 0 O 0.000115 +0.000047 200000
1 1 0 0 0 0o 0 O 0.000900 +0.000131 200000
o 1 o0 0o 0 0 o 0.001260 +0.000311 50000
0 0 1 0o 0 0 0O 0.045400 +0.005770 5000
o 0 o 1 0 0 o0 0.061400 +0.006654 5000
0o o0 o0 o0 + 0 O 0.125600 +0.009186 5000
0o o o0 o0 0 1 o0 0.578600 +0.013687 5000
o 0 o0 o 0 0 1 0.720200 +0.012443 5000

* Reprinted with modification and permission {rom Ref. [5]; Copyright 1990 Drug Information
Association.

® Number of descriptors in set.

¢ Uncertainty (still at the 95% confidence level) in the difference between two estimated p-values
1s given by the squarc root of the sum of the squares of the two individual uncertaintics (i.e. the
values following the “+7 symbols).

improvement could be found in combinations taken two-at-a-time. The next entries
in Table 5 show that none of these subcombinations of two descriptors is better
than all three descriptors together. Thus, by considering only 15 out of 127 possible
descriptor combinations, we arrived at a reasonable identification of the determinants
of sweetness among sulfamates.

4.9.4.4 Literature Examples

Other examples of CSA may be found in the literature, and Table 6 gives rcasonably
complete list of such examples.
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Table 6. Literature references of other examples of CSA
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Ref.  Host (system) Activity Compound class Determinants found
[1] mouse monoamine aminotetralins E, (steric
oxidase parametcr), [T
inhibition
[1]  (Ames test) mutagenicity aminoacridines log K, R,,, pK,, it
[8]  (in vitro) antibacterial lasalocid log P
derivatives
[8] duck antimalarial naphthaquinones LUMO cnergy,
(8] rodent carcinogenicity polycyclic excited energy
aromatic states E, and E,
hydrocarbons
[9] rat antihyperptensive prazosin analogs T, o
[9] chicken anticoccidial acridinediones Swain-Lupton F
{10}  rodent solid tumor diarylsulfonyl- 7, volume
inhibition ureas
[11]  (not stated) p-adrenergic: phenethyl- hydrogen bond
agonists vs amines descriptors
antagonists
[12] mouse antitrematodal, pyrazinoisoquin- YWon
anticestodal olines
[13]  adult female cidal antimycin ATCHS, ATCH4,
filaria analogs DIPV_X
(14]  (steroid- receptor binding corticosteroids, similarity indices
binding testosterones
globulins)
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5 Statistical Validation of QSAR Results

5.1 Validation Tools

Svante Wold and Lennart Eriksson

Abbreviations and Symbols

cv Cross-validation

G Number of CV groups

ICs, Concentration needed to lower cell viability by 50%
LOO Leave-one-out

LSO Leave-several-out

MLR Multiple linear regression

NBP 4-nitrobenzylpyridine

PCA Principal components analysis

PLS Projection to latent structures

PRESS Prediction error sum of squares or
Predictive residual sum of squares

Q* Amount of predicted (CV) variance

R? Amount of modelled sum of squares (variance)
RSD Residual standard deviation

SS, The sum of squares of the response values

X matrix Table of N compounds x K structure descriptors

5.1.1 Introduction

The procedure for establishing reliable quantitative structure-activity relationships
(QSAR) involves a number of important steps that are closely related. Notably,
the most significant of these steps are: (a) the selection of representative compounds
with which to calibrate and validate the QSAR (i.e the training set and the validation
set), (b) the multivariate chemical characterization of these sets, (c) the biological
profiling of these compounds, (d) the QSAR modeling, and (e) the validation of
the resulting QSAR model. Some of these steps are usually considered, whereas
others are largely neglected, and, in particular, model validation [1-—3]. This is
unfortunate, because a practical consequence is that a QSAR model can not be
taken seriously, until its performance in a real situation has been adequately
checked.

Any QSAR model needs to be properly validated prior to its use for interpreting
and predicting biological responses of non-investigated compounds. But the
question arises, how do we assure ourselves that a specific QSAR is valid, and what
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do we mean by model quality? There exists a number of ways of expressing the
performance of a model. The conventional approach adopted in QSAR analysis,
based on multiple linear regression (MLR), is to consider R?, the “explained
variance” or (multiple) correlation coefficient, and, s, the residual standard deviation
(RSD). The former quantity varies between 0 and 1, where 1 means a perfect model,
explaining 100% of the response data (Y), and 0 a model without any explanatory
power at all. Thus, a high R? (close to 1) and a low RSD are necessary conditions
for model validity. However, excellent values of R? and RSD are not sufficient
indicators of model validity. This depends on the property of regression models
{including PLS and PCR) to give a closer fit — the better the replicative capability of
the model to the data, the more parameters and terms are incorporated to the model.

Furthermore, if we have many chemical and structural descriptors (X) to choose
from, we may construct a QSAR which produces an apparently good relation
between calculated and observed response data, even with few descriptor variables,
provided that these are selected from the larger set according to their apparent
contribution to the fit. Remarkably, this can be achieved, even when a set of descriptor
variables has been altogether constructed by means of random numbers, and have
no correspondence whatsoever to the biological problem under scrutiny [4,5]. This
risk of coincidental correlations is one main reason why stepwise MLR is not to be
recommended for data sets composed of a multitude of descriptor variables.
Other methods of model fitting, such as PLS, [6 — 8] should then be used, and this
1s discussed in other parts of this volume.

Since a high R? and a small RSD are not sufficient as model validity indicators,
alternatives must be provided. In principle, two reasonable approaches of validation
can be envisaged, one based on predictions and the other based on the fit of the
predictor variables to randomized rearranged response variables. 1deally, of course,
the best option would be a comprehensive validation set of representative com-
pounds, which enables predicted values to be compared to the actual observed values,
and which allows a reliable estimate of Q2, the “predicted variance”, to be calculated
(see below). Obviously because of time and resources, however, adequate validation
sets are not common. In the light of this fact, other techniques have been devized,
and the objective of this chapter is to outline these techniques.

In essence, four tools of assessing the validity of QSAR models can be differentiated.
These are: (i) randomization of the response data into reordered response vectors,
(ii) cross-validation, (iii) splitting of the chemical compounds into a training and
a validation set, and (iv) confirmation using an independent external validation set.
Without the luxury of an independent validation set, which is regarded as the
most reliable of these tools, the soundness of the model may, thus, be checked by
either of the other three procedures.

5.1.2 Examples

In order to illustrate the four methods of assessing QSAR reliability, we shall
consider two examples from the literature. The first example is taken from
environmental chemistry and concerns a series of 15 epoxides and a model of their
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chemical reactivity, which strongly influences the mutagenicity of these compounds
[9]. For six of the epoxides, chemical reactivities are available from two different
chemical model systems, involving the standard nucleophile 4-nitrobenzylpyridine
(NBP). Thus, simultancous QSAR modeling of two dependent variables (Y) is
possible. In the second example, statistical experimental design has been used to
create representative training and validation sets among a series of halogenated
aliphatic hydrocarbons. Ten chemicals were allocated to the training set, and six to
the validation set, and these compounds were subsequently investigated for their
cytotoxicity to human cells (expressed as ICs, values). Computational and other
experimental details of this example have been described by Sjostrom et al. [10]

The QSAR models for these two data sets will be reexamined by means of the
randomization technique and by cross-validation. Moreover, the epoxide data set
gives the possibility of experimental validation using split data sets, whereas the
haloalkanes provide the opportunity of demonstrating external validation using a
designed validation set. We have also noted that the data analysis was carried out
using PLS [6].

5.1.3 Four Tools for Model Validation

5.1.3.1 Tool 1: Randomization of the Responses into an Array
of Reordered Variables

The first of the four tools is based on repetitive randomizations of the response
data (Y) of N compounds in the training set. Thus, a random number generator
is used to allocate the integers between 1 and N to sequences of N numbers. In
each cycle, the resulting arrangement of random integers is employed in order to
reorder the Y data — leaving the X data intact — and then the full data analysis
is carried out on these scrambled data. Every run will yield estimates of R? and
02, which are recorded. If in each case the scrambled data give much lower R? and
Q? values than the original data, then one can feel confident about the relevance
of the “real” QSAR model. Randomization of the Y data a number of times (at
least ten) gives a fairly good idea of the significance of the real QSAR, but in order
to enhance the precision of the probability level, some hundreds of runs of
rerandomized data are usually required. When hundreds of trials have been
performed, histograms of R? and Q2 can provide a precise estimate of the significance
level of the real QSAR model.

We realize, however, that hundreds of repetitions of the QSAR calculations might
be tedious and time-consuming. Fortunately, our experience shows that already at
around ten trials, the essential features of the R? and Q2 histograms are already
discernible. Moreover, sometimes rather high R* and Q2 are to be expected, because
the randomized response variable may be highly correlated to the parent response
variable. Thus, it is recommended that one always keeps a track on the inter-
relationships among the original and reordered data, so that misinterpretations can
be avoided.
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5.1.3.2 Tool 2: Cross-Validation

In contrast to the previous method, cross-validation (CV) is based on predictions
[11, 12]. CV operates by making a number (G) of slightly reduced modifications to
the parent data set, estimating parameters from each of these modified data sets,
and then calculating the precision of the predictions by each of the resulting models.
Thus, CV creates G modified data sets by taking away one or a small group of
compounds from the data in such a way that each observation (here: compound)
is taken away once, and only once, over the total number of CV cycles, G. The model
is then fitted to the data, devoid of the omitted part, and is then used to compute
predictions based on the response data of the left out compounds. This is repeated
for each modified data set, whereupon the squared differences between predicted
and actual response values are summarized to form PRESS (Predictive REsidual
Sum of Squares, or, alternatively, PRediction Error Sum of Squares). In the end,
PRESS will contain one contribution from each observation and is, thus, a good
indicator of the real predictive capability of the model. Next, PRESS is compared
to the sum of squares of the response values (SSy), and if the former is smaller than
the latter, the QSAR predicts better than chance and can be regarded as “statistically
significant” [13]. This because the best “estimate” for the activity of each compound
is y, giving the “estimate error” equal to SSy. The predictive performance of the
QSAR model can be reexpressed as Q2, the predicted or cross-validated variance,
which is (1-PRESS/SSy) and accompanies the parameter R?. For more discussion
on CV in the context of PLS, we refer to Wold [6] in this volume.

In certain situations CV may not work as one wishes. The first is when the
compounds are grouped considerably and, hence, are not independent. This may, for
instance, occur when two or more different types of compounds are incorporated
into the same model, and the activity of these compounds differs only according to
this grouping. Any model will then primarily account for this difference in activity
between the groups, and CV as well as any other significance test (except
randomization), will identify this triviality. Another situation where CV is misleading
occurs when CV is applied after variable selection in stepwise MLR. Here, the
problem is that the final model is based on descriptors that have been selected
according to their correlation with the response values, and the resulting apparent
correlations are also, in retrospect, stable in CV. Finally, CV may yield too
conservative results if the X matrix is generated from an orthogonal statistical
cxperimental design, but this is exceptionally rare in QSAR.

Leave One or Several Out?

Intuitively, we may feel that CV gives better precision, the larger the number of
CV groups and, hence, G cycles. This has led most users to have one compound
in each CV group, which gives, of course, N groups. The CV procedure is then
often called “leave-one-out” (LOO). For computational reasons, however, CV with
multivariate models (PLS, PCA, etc) has usually been performed with much fewer
groups, typically between five and ten. Interestingly, Shao [14] has recently shown
that both theoretically and practically, that this “leave-several-out” (LSO) approach
is preferable to LOOQO. This result can be understood when we consider what
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happens when the number of compounds, N, increases. The LSO technique always
leaves out a certain portion of the data, thus, creating a constant perturbation in
the data structure. The LOO approach perturbs the data structure by removing
I/Nth in each CV round, thus, accomplishing an increasingly smaller perturba-
tion with increasing N. Hence, in the limit, the Q2 of LOO approaches R?, which
is highly unsatisfactory. In short, we recommend setting G around 7 with CV.

5.1.3.3 Tool 3: Splitting of Parent Data Set into Training
and Validation Sets

Cross-validation provides a reasonable approximation of the ability with which the
QSAR predicts the activity values of new compounds. Usually, this is termed internal
validation because all the considered chemicals belong to the same data set. However,
should the number of available compounds be large enough, they can be divided
to form a separate training set and a separate validation set, thus, enabling external
validation. This subdivision of the data set can be accomplished in many ways, but
1t is desirable that the two series of compounds span approximately similar ranges
of the biological responses and the structural properties.

5.1.3.4 Tool 4: External Validation Using a Designed Validation Set

An often overlooked stage in QSAR is the selection of appropriate training and
validation sets, 1.e. how to select the sets to meet the fundamental statistical criterion
of representativity. The training set and validation set compounds must be
representative for the class of compounds from which they originate, which means
that they must be chosen in such a manner that they adequately span the chemical
and structural properties of the compounds considered. One practical way of
attaining such sound sets of chemicals is to use statistical experimental design, which
has already been discussed by Sjostrom et al. [10] in this book.

The use of statistical experimental design to generate well-balanced training and
validation sets of representative compounds is infrequent in QSAR [10]. However,
in the case where this has been done, a validation set will exist that spans the entire
X-space evenly and is independent of the training set. Provided that analogies and
relationships prevail between the chemical and structural properties and the biological
responses of these chemicals, this type of high quality validation set would enable the
QSAR to be experimentally validated across the entire range of biological activity.

5.1.4 Results

The QSAR models, calculated in the following section were all obtained by PLS
using the SIMCA package [15] with cross-validation. Thus, in every model described
below, values of R? and Q? from CV will be quoted.
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Figure 1. Scatter plots for the observed and calculated (training set, solid triangles)/predicted
(validation set, open triangles) values of a) log knpg; and b) log kygpy. The cpoxides are: propylene
oxide (1), glycidol (2), epichlorohydrin (3), epibromohydrin (4), 1,2-epoxybutane (5), 1,2-epoxy-
hexane (6), 1,2-epoxyoctane (7), 1,2-epoxydecane (8), 1,2-epoxydodecane (9), styrene oxide (10),
butadienediepoxide (11), 1,2,7,8-diepoxyoctane (12), epifluorohydrin (13), 3,3,3-trichloropropylene
oxide (14), butadiene monoxide (15).

5.1.4.1 The Epoxide Example

The 15 epoxides studied were chemically and structurally characterized using nine
theoretical quantum chemical descriptors, such as bond orders, atomic charges,
delocalizabilities, electronegativities, and so forth [9]. For six of the compounds,
chemical reactivities originating from two related chemical model systems, log kngp
and log kngpn, Were accessible. The PLS modeling, using these six compounds as
the training set, gave the “real” QSAR with R? = 0.94 and Q* = 0.92 (obtained with
Tool 2), which was further validated using Tool 3. Fig. | shows the relationships
between the observed and calculated/predicted chemical reactivities for the two
endpoints. Evidently, the QSAR is able to adequately forecast the chemical
reactivities of the epoxides in the validation sets. What is particularly remarkable
is the prediction of log kngpn of epoxide 14, which corresponds to an extrapolation
of nearly 100% outside the range of reactivity of the training set.
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Table 1. Obscrved R?s (unadjusted) and Q?s using Tool 1

Epoxides Haloalkanes
Trial R? 0 Trial R? Q2

“Real” 0.94 0.92 “Real” 0.90 0.88
1 0.58 0.42 1 0.23 0.07

2 0.14 —0.86 2 0.12 —0.01

3 0.27 —0.92 3 0.60 0.53

4 0.27 —1.15 4 0.24 0.07

5 0.09 —0.99 5 0.06 —-0.14

6 0.11 —0.58 6 0.40 032

7 0.39 —0.62 7 0.1 —0.03

8 0.05 —1.15 8 0.28 0.14

9 0.65 0.54 9 0.20 —0.08
10 0.06 —0.90 10 0.14 : 0.04

Next, the validity of this QSAR was tested using Tool 1. Thus, ten randomized
and reordered pairs of chemical reactivity variables were constructed and were
modeled pairwise. Table 1 lists the resulting explained and predicted variances,
which are also shown in Fig. 2. As can be seen, the majority of the R?s lie in the
range of 0.0 to 0.4, and in only two cases (1 and 9 with 0.58 and 0.65, respectively)
is this interval exceeded. Similarly, the Qs of trials 1 and 9 are the only ones of
notable quality, whereas the other values are negative and indicate nonsense models.
Moreover, it is of relevance to explore why cases 1 and 9 have such comparatively
good values. The explanation is that the two artificial response variables are
rather strongly correlated with the response of the parent model, with correlation
coefficients of 0.89 (Y1, case 1),0.92 (Y1, case 9),0.65 (Y 2,case 1) and 0.73 (Y 2, case 9).
Thus, the data structure of the synthetic variables 1 and 9 considerably resemble
the systematic variation in the observed log ks, and consequently, the nine structural
descriptors utilized are able to encode the dominant features in the random variables.
In summary, the result of Tools 1 —3 is, thus, compelling evidence that the real
QSAR was well founded.
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5.1.4.2 The Haloalkane Example

In contrast to the epoxide example, this illustration is a case in which both the
training set and the validation set have been generated by means of statistical
experimental design. All the details pertaining to this example can be found elsewhere
in this volume [10]. In this instance, we will only show that five chemical descriptors
reflecting hydrophobicity and molecular size, were used to parameterize the
properties of the 16 tested halogenated aliphatics. These chemicals were tested for
their cytotoxic potential and the endpoint determined was the inhibitory concentra-
tion, which lowered cell viability by 50% (1C).

The PLS modeling based on the ten training set compounds and with the aim to
establish the parent QSAR, gave a model with R? equal to 0.90 and Q2 equal to 0.88
(according to CV, Tool 2). In order to externally validate (Tool 4) the predictive
behavior of this QSAR, the cytotoxicities of the six validation set compounds were
predicted and compared with the experimentally determined IC, values. In Fig. 3,
a scatter plot, representing the agreement between the observed and calculated/
predicted cytotoxicities, is shown. Obviously, Tool 4 shows that the QSAR is able
to predict the biological activities of the validation set compounds in a sound way.

Furthermore, the quality of this QSAR was tested using Tool 1. Analogously to
the above example, ten repetitive randomizations of the response data were carried
out. The PLS modeling, treating the simulated response variables one by one, yielded
the explained and predicted variances printed in Table 1 and those plotted in Fig. 4.
Interestingly, two cases (3 and 6) occur where there were rather high scores of R*s
and Q2s. This can be understood differently when considering the underlying
correlation structure between the original response and the two artificial constructs.
The correlation coefficients in question amount to 0.6 (Case 3) and 0.4 (Case 6),
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Figure 3 Observed 1Cs, values plotted versus the corresponding calculated (training sct, solid
triangles) and predicted (validation set, open triangles) values. The compounds are: dichloro-
methane (2), trichloromethane (3), tetrachloromethane (6), fluoro-trichloromethane (7), 1,2-dichloro-
ethane (11), 1-bromo — 2-chloroethane (12), 1,1,2,2-tetrachloroethane (15), 1,2-dibromoethane (19),
1,2,3-trichloropropane (23), bromo-ethane (30), 1,1-dibromoethane (33), bromochloromethane (37),
fluorotribromo-methane (39), 1-chloropropane (47), 2-chloropropane (48), [-bromobutane (52).
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and hence Cases 3 and 6 have comparatively much in common with the measured
response variable. Apart from these two cases, no other trial has produced R?s and
Q?%s in the proximity of the corresponding values of the real QSAR. Thus, the
conclusion is that Tools 1, 2 and 4 all point to the same conclusion and indicate
the sound predictive capability of the haloalkane QSAR.

5.1.5 Concluding Remarks

A QSAR model should, in general, be viewed with caution until its validity and
predictive power has been properly assessed. As discussed and illustrated above, a
number of alternative procedures exist for such purposes. Ideally, the four tools
mentioned should not be used in isolation, but rather in combination with each
other, due to their complementary character. The absolute minimum requirement,
when developing QSAR, is to test the validity with the randomization technique
(Tool 1), but CV (Tool 2) ought to be carried out as well. However, the external
validation (Tool4), with a designed validation set, clearly produces the most
trustworthy result.

To some people our emphasis on model validation may seem to be an overly
cautious attitude, but in QSAR modeling, this is far better than being totally
accepting of the results. Usually, it is objected that the purpose of developing a
QSAR is to lay the ground for a better understanding of the mechanisms of biological
action, and not prediction or optimization. However, a QSAR model that cannot
predict better than chance is a poor basis for comprehending relationships between
chemical and biological properties.
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Abbreviations

ACC Auto and cross covariance

ACE Alternating conditional expectations

ALS Adaptive least squares

CFA Correspondence factor analysis

CoMFA Comparative molecular field analysis
DOF Degrees of freedom

FD Factorial design

FFD Fractional factorial design

GA Genetic algorithm

GOLPE Generating optimal linear PLS estimations
VS Interactive variable selection

LDA Linear discriminant analysis

LOO Leave-one-out

LOT Level of triviality

MLR Multiple linear regression

NLM Non-Linear mapping

NN Neural networks

OLS Ordinary least squares

PCA Principal components analysis

PCR Principal components regression

PLS Partial least squares

PPs Principal properties

PRESS Predictive residual sum of squares

RR Ridge regression

RSD Residual standard deviation

QPLS Quadratic partial least squares

QSAR Quantitative structure-activity relationship
SAMPLS Sample distance partial least squares
SDEP Standard deviation of error of predictions
SIMCA Soft independent modeling of class analogy
SMA Spectral mapping analysis

SPLS Spline partial least squares

SSY Sum of squares of response value

VIP Variable influence on the predictions

VSS Variable subset selection
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5.2.1 Introduction

We all remember that, having got lost in the wonderland, little Alice met the Cat.
She asked him: “Would you tell me, please, which way 1 ought to go from here?”
. That depends a good deal on where you want to got to”, said the Cat. I don’t
much care where — 7, said Alice. “Then it doesn’t matter which way you go™, said
the Cat. “— so long as I get somewhere”, Alice added as an explanation. ,,Oh, you
are sure to do that if you only walk long enough”, concluded the Cat {1]. This little
excerpt stresses the point that, in order to answer properly the question which is
the title of this chapter, one should clearly specify the goals of a QSAR study,
otherwise any kind of statistics could be used.

The purpose of developing a QSAR for a given problem is that it gives us
information on how changes in the structure of the actual compounds influence
their biological activity. This, in turn, allows us to modify the structure in order to
improve the biological response and to improve our understanding of the actual
biological mechanism [2]. In other words, there are two main objectives in QSAR
studies: interpretation, ie. understanding which structural features affect the
response, and prediction, i.e. estimating the activity of new compounds before they
become available. The requirements of a chemometric tool, aimed at meeting these
objectives, have been described and updated several times over the past ten years
[2—8].

The variety of chemometric methods reviewed in this, and in the other books of
the series [9, 10] may be daunting for the QSAR enduser or the newcomer, who
wishes to select the proper method for his or her own problem. However, we still
wish to encourage such people: the statistical method used is not the most important
step in solving a complex problem. A correct problem formulation and the fact that
the collected data do contain information relevant to the problem itself are, by far,
more important.

The idea that in QSAR research “statistics frequently become merely a tool to
confirm hypotheses, and is not used as a language to describe phenomena” was
also pointed out by Benigni and Giuliani [11]. They also claimed that often
“researchers apply statistics in an exclusively procedural way, as a set of formalized
rules aimed at obtaining a reliable result, which generates a real cult for statistical
indices. Many researchers feel very comfortable with statistical softwarc packages
specifically designed to obtain quick and reliable correlations, while the deep
involvement of statistics with QSAR requires that researchers use it in a very active
and conscious way”.

We agree entirely with these statements and also with their conclusion that “a
greater importance should be given to descriptive analysis”, namely principal
components analysis (PCA), “instead of dwelling almost entirely on statistical
significance”. However, we cannot agree with their other conclusion that “the present
use of statistics does not help to understand the role of chemical parameters in
biological activity”. If this were true, we could attribute possible drawbacks, not to
the statistical tool, but to an inappropriate problem formulation.

In fact there are two souls in chemometrics, which can be referred to as the
multimethod and monomethod philosophies [12]. The first one was developed
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mainly by analytical chemists and led to software packages which contain a variety
of multivariate statistical methods: it is recommended that several methods are used
in order to find confirmation of the findings. The second one is based on a physical
organic chemistry background and uses, within a unique framework, projection
methods, such as PCA and PLS, plus design criteria: the SIMCA (soft independent
modeling of class analogy) philosophy. In principle, choosing a philosophy is like
choosing a religion as one is usually happy with the religion that he was born
into. Similarly, one is usually content with the most familiar method. However, we
believe that working with a single method is simpler for the newcomer and permits
a better understanding of this unique chemometric tool when known in great detail.

Furthermore, all the methods of multivariate statistics are based on one of the
two similarity criteria, either the Euclidean distance or the mathematical models
[13]. The former can only be used to look at molecules in the light of their descriptors,
but they are not aimed at discovering any cause-effect relationship; consequently
these methods, particularly LDA (linear discriminant analysis), SMA (spectral
mapping analysis), NLM (non-linear mapping) or CFA (correspondence factor
analysis), which is similar to PCA, can only be aimed at classification studies. On
the contrary, QSAR studies need a chemometric method aimed at finding the
quantitative relation between activity and structural descriptors: these are called
regression methods and among these we prefer PLS. Mixing together methods
coming from different criteria, e.g. using principal components scores for a
discriminant analysis, leads to a logical stepwise modification in the problem
formulation. The combined methods, PCA/PLS, seem to be particularly appropriate,
both for the exploratory analysis of the structural data and for establishing the
quantitative relationship in the same descriptor space.

5.2.2 Problem Formulation

In the QSAR literature, the statistical models which are generally reported, express
the biological response in terms of a few structural parameters, usually the traditional
substituent constants. The apparent goodness of the model is derived thereafter by
checking the goodness of fit of the simple linear regression between calculated and
experimental y values. The QSAR equations usually contain only some of the
available analogy factors and have the form of an ordinary multiple regression
model, either linear or with some squared terms. However, the way in which these
equations have been derived is seldom discussed.

Therefore, it seems appropriate to illustrate briefly the questions that should be
answered by step, with a definition of the procedure which leads to informationally
sound QSAR models.

5.2.2.1 Parameter Selection

The most important question in a QSAR study, is “which parameters, i.e. which
structural factors, do really affect the response? To answer this question, we should
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first define which parameters are to be used. The way of detecting the important
ones will be dealt with in the next section.

In the traditional QSAR approach (Hansch analysis, see vol. 1 [9]), one uses
substituent parameters which measure the substituent behaviour in some reference
reactions or systems. Therefore, they are “analogy” parameters and their use implies
the implicit assumption that the substituent effect is somehow proportional in the
system under investigation. Since the number of such parameters, proposed so far,
is fairly large, and continues to increase [14], how can we select the parameters to
be used?

Moreover, since QSAR models are likely to be non-linear, most equations contain
some descriptors expressed to the second power, and even reciprocal values have
been used. However, the cross-terms, indicating the interaction between two distinct
effects, seem to be far less popular. Therefore, how many terms should be taken
into account initially in the regression equation before starting any variable choice?
The underlying assumptions involve our desire to describe the activity data either
in terms of a linear model, or in terms of a response surface.

Although traditional descriptors are numerous, PCA provides a tool for grouping
systematic patterns of behavior into a few orthogonal scales. In fact, it is possible
to apply the strategy of experimental design [15] also to discrete systems, provided
that these are multivariately characterized by a principal components analysis of
some selected data. The latent variables obtained as statistical scores are called
principal properties (PPs) and represent in an appropriate way each system by few
(usually three) “constants”, which condense the systematic behavior of the original
data. These have been applied to describe amino acids (AAs) in peptides, [16—17]
or aromatic substituents in general organic series [14, 18]. A chapter in this series
is devoted entirely to this topic [19].

A QSAR table is then prepared, describing each amino acid in a peptide sequence,
or each substituent in a polysubstituted organic skeleton, by their PPs in triplets
or pairs: the descriptor matrix. This table is then submitted to the chemometric
analysis, in order to find out the relationship between the y vector, or the Y matrix,
and the descriptor, X matrix.

5.2.2.2 Regression Methods

When talking about regression methods, one should first divide them into two main
groups depending on the underlying assumptions. On the one hand, one should
group together multiple linear regression (MLR), also called ordinary least squares
(OLS), adaptive least squares (ALS), ridge regression (RR), variable subset selection
(VSS) and other stepwise methods, where the underlying assumption is the
independence between variables. Accordingly, they are only appropriate when there
are few descriptors, many compounds, and no variable selection is attempted. On
the other hand there are the projection methods, namely partial least squares (PLS),
also called projection to latent structures, and principal components regression
(PCR), where the underlying assumption is that there are few “underlying” latent
variables.
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Among the methods used in QSAR, [4, 7, 8, 20] we shall restrict our selves here
to the two more commonly used methods: MLR and PLS. It was only a few years
ago [3] that the conditions for the applicability of statistical methods to QSAR were
first reviewed. The most important condition to be fulfilled was based on the simple
fact that for a model to have predictive value, the number of estimated parameters,
P, should be appreciably smaller than the number of degrees of freedom in the data
set (DOF). Accordingly, one can define a level of triviality (LOT) as the point when
P = DOF. At this point and beyond, (P > DOF), the predictions of the model,
with the calculated parameters, are no better than random, even if the fit of the
model to the training set looks good. Thus, such results are spurious, trivial and
fortuitous.

The comparison between MLR and PLS has been reported several times [4, 7,
8, 21]. There are at least three weak points in using MLR in the area of QSAR: (a)
the number of objects should be much larger than the number of variables; (b)
MLR is based on the assumption that each variable is important for the problem,
in other words, the model dimensionality is fixed a priori; (c) the regression coef-
ficients become unreliable if there are significant correlations among the descriptor
variables, multicollinearity. On the contrary, in PLS the ratio between variables
and objects is not limited, the relevance of individual variables results from the
analysis and their correlations are just used to find out the numerical solution.
Consequently, if the question is “which parameters do really affect the response?”,
the most appropriate answer seems to be obtainable by PLS.

Furthermore, the results of PLS are usually presented as plots, so that groupings,
if any, are easily detected, whereas in MLR, in which the results are usually given
only numerically, this is never observed. Since substituents are grouped [22], MLR
results often appear to be deceptively excellent, as a result of the dramatic decrease
in the real degrees of freedom due to the groupings not being taken into account.
On the other hand, the traditional stepwise procedure [23] cannot strictly speaking
be considered as a multivariate approach, as it does not take into account the
interactions among substituents.

Finally, it is appropriate to point out that a recent statistical report claims
ridge regression (RR) is the method which gives the best predictions [20]. However,
it seems reasonable to presume that the assumptions underlying PLS are much
closer to the requirements of a real problem formulation in QSAR [8]. Also, a simple
refinement of the PLS method gives as good, or better predictions than RR [65].

The last question, regarding regression methods, takes us back to the problem
left open in the previous section, i.e. the choice of the parameters to be used in the
equation. Should we start from all possible descriptors, or should we consider only
a few of them, and in this latter case, how should we choose them?

A further point should be made in that the obvious way for finding out the “best
subset of variables”, giving the best model in MLR, is to test all possible variable
combinations. However, this may easily become impractical due to the increase in
the number of variables. Consequently, two alternative procedures are commonly
used, namely, forward selection and backwards elimination [24, 25]. However, we
have examples [26], which shows that the selected variables are different depending
upon the method chosen. In other words, there might be several equations which
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give almost the same predictivity, based on quite different groupings of structural
descriptors. Since different variables, which are retained in the model, have a different
interpretation, it is clear that such methods cannot be accepted as a reliable tool in
order to understand/interpret QSAR equations. Unfortunately, it seems that quite
a number of scientists, involved in QSAR studies, find their best equation as end-users
of some “general-purpose” statistical package, which is numerically based only in
terms of goodness of fit, and pays no attention to the problem formulation, model
predictivity, interpretation of the results, plots showing homogeneity of the data set,
and in general, to any method derived for understanding why things happen.

Accordingly, since PLS has no limitations concerning the number of variables to
be used from the beginning, we would suggest that all possible variables should be
taken into account, and then to allow the chemometric method to select only the
important variables. In this context, the description using PPs seems to be
particularly suitable. Proposals on how to carry out variable selection are given in
Sect. 5.2.3.2. However, it seems that most equations reported in the literature, which
contain only few traditional descriptors, have been simply derived by forward
selection.

5.2.2.3 Model Evaluation

Only if a QSAR model were valid, may we use the model with its parameter values
to predict what would happen, when the factors were changed. However, how do
we judge that a QSAR model is valid? Using ordinary regression or PLS regression,
we can calculate values of the variable parameters, coefficients or loadings, in such
a way that the residuals are small. A measure of the size of the residuals is given
by the residual standard deviation (s or RSD). Likewise, R?, the multiple correlation
coefficient, measures the “explained” y variance.

Therefore, the first necessary condition for model validity is that R? is close to
1.0, and s is small. However, a large R? and a small s are not sufficient for model
validity due to the unfortunate property of regression models to give a closer fit,
the larger the number of parameters and terms in the model. And, what is even
worse, if we have many structure descriptor variables to select from, we can make
a model fit data very closely, even with few terms, provided that they are selected
according to their apparent contribution to the fit. This is true, even if the variables
we choose from, are completely random and have nothing whatsoever to do with
the problem being investigated! This is one reason why stepwise regression is
impractical with data sets containing many collinear predictor variables.

Although the risk for these chance correlations with variable selection has been
pointed out [3, 27], it seems that this risk is not sufficiently recognized by the
chemical and biological communities. The big problem with chance correlations is
that predictions for new compounds of such models are very poor: the model fits
the training set data well, but is useless for predicting and understanding.

In order to evaluate the validity of a model, the best approach would be to have
a fairly large and representative validation set of compounds, for which the predicted
activity values can be compared with the actual values. In the absence of a real
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validation set, we can use a simulated one, since recent developments in statistics
provide us with a new interesting set of measures of validity that are based on
simulating the self-consistent predictive power of a model. Nowadays, cross-
validation and bootstrapping [28, 29] constitute the basis of the modern statistical
philosophy of “replacing standard assumptions about the data with massive
calculations”, for assessing the generality of a relationship found from a sample
data set [30]. These tools operate by creating a number of slight modifications of
the original data set, estimating parameters from each of these modified data sets,
and then calculating the variability of the predictions by each of the resulting models.

In cross-validation, the data set is divided into a number of groups. The model,
of a given complexity, is fitted to the data set, reduced by one of the groups. Predic-
tions are calculated with the fitted model for the deleted data and the sum of squares
of predicted minus observed values for the deleted data is formed. Then, in the
second round, the same procedure is repeated, but with the second group left out.
Then a third round is performed, etc., until each data point has been left out once
only. The total sum of squares of predictions minus observations then contains one
term for each point. The sum, abbreviated PRESS, is a measure of the predictive
power of the model of a given complexity for the given data set. In the end PRESS
(Predictive REsidual Sum of Squares or PRedicition Error Sum of Squares) will
contain one contribution from each observation.

PRESS is a good estimate of the real prediction error of the model, provided
that the observations (compounds) are independent. If PRESS is smaller than the
sum of squares of the response values (SSY), the model predicts better than chance
and can be considered to be statistically significant. In a reasonable QSAR model,
PRESS/SSY should be smaller that 0.4, whereas a value smaller than 0.1 for this
ratio indicates an excellent model. If the PRESS value is transformed in a
dimensionless term by relating it to the initial sum of squares, one obtains @2, i.c.
the complement to the fraction of unexplained variance over the total variance
(Q* = 1 — PRESS/SSY). PRESS and Q? have good properties which render them
appropriate for statistical testing with critical distributions.

To sum up, a model can be considered reliable when (a) PRESS has been calculated
and PRESS/SSY is lower than 0.4, (b) there are plots of the data patterns, and (c)
a clear description is given of the candidate set of variables and of the variable
selection procedure, if applied. Someone may object in that the purpose of developing
a QSAR is to achieve a better understanding, not for prediction or optimization.
However, a model that cannot predict better than chance is a really poor basis for
understanding chemical-biological interactions.

5.2.3 The SIMCA Philosophy

The SIMCA philosophy is based on three main methods: PCA, PLS and design,
and all these three topics have been covered in more detail in previous chapters.
Its peculiar characteristics, which make it particularly suitable for QSAR modeling,
will only be briefly illustrated here in order to suggest an overall chemometric



326 Sergio Clementi and Svante Wold

strategy for molecular design studies. This stategy relies on two major steps: design
in latent variables and PLS modeling, the latter being refined by taking into account
validation and variable selection. The PLS algorithm, already discussed in Sec.
5.2.2.2, is the most appropriate tool for establishing quantitative relationships
between a biological activity vector and a matrix of structural descriptors, and it
has illustrated its capability in detecting the structural features, which affect the
biological activity as well as in providing reliable predictions [4, 31].

PCA is only used for classification purposes, and gives reliable results in terms
of confidence values, also in QSAR studies, where the objective of discriminating
active from inactive compounds cannot, in principle, be obtained by methods, based
on the Euclidean distance. In fact, while active compounds can be described by a
statistical model and, therefore, constitute a homogeneous class, inactivity may have
originated due to the lack of any of several different structural features and, therefore,
cannot form another separated homogeneous class. On the contrary inactives are
spread all over the descriptor space, thus, defining an asymmetric problem [32].
Even the use of PLS as discriminant function, which is sometimes used here [33],
is not to be recommended in this context.

5.2.3.1 Factorial and D-Optimal Designs in PPs

In order to develop sound QSARs, it is essential that the chemical compounds, on
which the model is to be based, are selected by a design technique. Only when such
requirements are fulfilled, will QSARs permit sound predictions for other molecules.
Design means a computer-assisted strategy, which is able to span the operational
space in the best possible way. The operational space is the space containing the
object under control, and is described by numerical values. These object descriptors
define the operational space, which is usually called variable space.

The importance of design has not yet been fully recognized: new structures are
usually derived on changing one substituent at a time for each substitution site.
Sets of molecules, obtained in this way, do not contain enough information for
ranking the importance of individual features which affect biological activity and
for providing stable models to be used in predictions. The message that there are
strategies and tools to handle complex data has not yet reached all research teams.
Reliable models can be obtained only by a designed training set, or with available
data, by a well balanced data set, containing structures selected by a design strategy
in the latent variables space, which has been derived from raw data, contained
structural descriptors for all the available compounds [16, 34].

Experimental designs provide a strategy for selecting the few most informative
molecular structures in a homologous series. In fact, it is also possible to apply the
strategy of experimental design to discrete systems after a multivariate characteriza-
tion of some selected data, which generate PPs. The strategy of fractional factorial
designs can be applied afterwards by (a) using blocks of three PPs for defining each
item at each site to be varied and (b) selecting a representative item for each position
of the PP space.
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Factorial designs (FDs) and fractional factorial designs (FFDs) are simple,
straightforward, and, therefore, good in facilitating an understanding of the concept
of design by spanning the variable space. The set of possible substituents is divided
into subsets according to their relative position in the PP space. A substituent,
representing each subspace, (quadrants or octants) is selected thereafter, and labeled
by the pair or triplet of signs corresponding to that subspace. Each “experiment”
of a factorial design matrix ean be transformed into a molecule, if we assign a pair
of triplet of columns of the sign matrix to define the substituent corresponding to
each site.

However, with this approach a polysubstituted molecule should bear as many
substituents as many substitution sites. Therefore, the FD approach might not be
easy to apply when a synthetic chemists wants to keep under control a number of
different substitution sites at the same time. It is clear that FDs give a synthetic plan in
which the most informative compounds are difficult to synthesize, because they
contain too many substituents. Because of these reasons we later investigated [6,
35] the effect of using D-optimal designs instead of FDs with PPs in QSAR, since
D-optimal designs can be used as a general alternative to FDs in constrained
situations, e.g. when some regions of the variable space are excluded, or when the
data set is discrete, as with molecular structures.

The D-optimality criterion to evaluate the goodness of experimental designs has
been dealt with by several authors [15]. It consists of determining the »n experiments
which minimize the volume of the ellipsoid of the conficence intervals of the estimated
parameters for the coefficients in a multiple linear regression equation. An
experimental design with n-points is D-optimal if the value of its determinant is
maximum compared with all the other possible designs with n-points, which can
be constructed in the experimental domain. Since the number of coefficients to be
computed is equal to the number of the variables plus one, the experimental design
should contain an equal or greater number of points. In particular, the Mitchell
algorithm [36], which we selected [35], works by starting from an arbitrary initial
design, and adding one point of the experimental domain to the starting design in
such a way as to increase as much as possible the value of the determinant.

FDs are D-optimal when each substitution site is controlled by a single parameter.
On using two PPs, the goddness of D-optimal and factorial designs is comparable.
However, on increasing the number of PPs for describing each substitution site,
the efficiency of D-optimal designs increases much more. Suppose that the problem
formulation is one of 6 variables generated by controlling 2 sites by triplets of PPs,
the total number of possible molecules, allowing our weight selected substituents
for each site, is 8 = 64. The FFD approach would first generate a design matrix
with 8 rows and 6 columns and then assign substituents to the two triplets of signs
according to the subspace codes.

On the contrary, the D-optimality approach works in a 6-dimensional space with
the actual values of the PPs. The D-optimality criterion then results in the selection
of the seven or more points out of the 64, which meet the requirement of maximizing
the quoted determinant, i.e. roughly by spanning the domain in the 6-dimensional
space in the best possible way. It is not appropriate to include all possible substituents
in the D-optimality search, because of the large number of possible candidates.
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Consequently, the use of the substituents, which are representative for each octant
according to FD theory, is highly recommended for reducing the number of
candidates to eight to the power of the number of sites.

The advantages of using D-optimal designs instead of fractional factorial designs
in principal properties can be summarized as follows. It is possible (a) to reduce the
number of required structures; (b) to reduce polysubstitution, and even controlling
several sites; (c) to exclude molecules, which are too difficult to synthesize; (d) to
include molecules, which are already available and/or have been tested.

5.2.3.2 Validation and Variable Selection

In sect. 5.2.2.3 the importance of validating regression models according to their
predictivity has been illustrated, and a whole chapter of this volume is devoted to
this topic [37]. When the relevance of individual variables has been derived by
models, obtained in the usual way (fitting), the physical meaning of the results might
be misleading, if the model happens to be anchored to points of much higher or
much lower activity. Only when a variable has been proved to be useful in increasing
model predictivity, can it also be judged to be relevant to the response and, therefore,
to be used for interpreting the relationship from a chemical viewpoint.

In cross-validation, PRESS values are calculated for different subgroups of the
training set, until each object has been withdrawn and predicted once, and the total
PRESS is formed by summing all partial PRESS values [2]. Nevertheless, for practical
reasons in various branches of chemistry, the use of the square root of PRESS/N
seems to be more directly related to the uncertainty of the predictions, since it has
the same units as the actual y values. Accordingly, we suggested [31, 38] that the
term SDEP (Standard Deviation of Error of Predictions: SDEP = (PRESS/N)'/?)
be used.

This equation, however, has yet to define a unique way of computing the parameter
SDEP, since the way the predictions are made should also be selected. For example,
in defining the cross-validation procedure, the data set should be divided into a
number of groups, but one can also increase the number of groups until it equals
the number of data points, thus obtaining the leave-one-out (LOO) procedure.

LOO should theoretically be the best approach provided data are randomly
distributed or designed, but LOO gives SDEP values lower than the approach using
groups, when data are clustered. Since in QSAR the descriptor variables usually
generate grouped data, owing to the discrete nature of substituents at the various
substitution sites, the prediction capability of a model should be evaluated in a
non-favorable cross-validation technique, ie. by the formation of the lowest
reasonable number of groups.

Moreover, one should not just be satisfied with using a cross-validation technique
that forms groups in one particular way, and we computed SDEP several times on
groups formed in a random way [38]. This definition of SDEP places it halfway
between cross-validation and bootstrapping. In fact, the computation was repeated
several times, as in bootstrapping, but each point was excluded just once in each
run, as in cross-validation. We showed that the higher the number of random



5.2 How to Choose the Proper Statistical Method 329

pathways of forming groups, the more stable is the SDEP value, which is to be
regarded as the mean value of the individual “sdep” values obtained by each
computation.

The SDEP parameter can be logically associated with the uncertainty of any new
prediction made by that model. However, being dependent on the parameter scale,
it is obvious that the “absolute” prediction capability of the model should be
evaluated by Q2.

Procedures for variable selection have long been used with ordinary least squares
regression methods [24). However, almost all previous work in variable selection
was undertaken exclusively for describing data sets (fitting), and it was shown in
Sec. 5.2.2.3 that all regression models increase their fitting capability with increasing
number of variables. In order to evaluate the relevance of individual variables in
validated regression models, investigation of model predictivity is, therefore, nceded.

By means of the SDEP parameter, it was possible to compare the prediction
capability of different regression methods [38], or to select groups of variables,
capable of giving the best prediction capability of a single model [39]. In the latter,
we suggested a preliminary outline of a procedure called GOLPE (Generating
Optimal Linear PLS Estimations), aimed at obtaining the best predictive PLS
models, which allowed us to show that: (a) in PLS modeling all variables are relevant
for fitting but some of them may be detrimental to predictivity; (b) the GOLPE
procedure is a method for detecting variables, which increase predictivity; (c) the
PLS models, obtained by using only variables selected by GOLPE, are more
predictive than the PLS model obtained by using all variables; and (d) PLS models
with variable selection are more predictive than similar models [26] obtained by
ordinary least squares.

The procedure was based on statistical designs, as design matrices used in
fractional factorial designs (FFDs) are a suitable tool for finding an efficient way
of selecting the best combination of variables [15]. The strategy was developed by
using combinations of variables according to a FFD, where each of the two levels
(1, — 1) corresponded to the presence and absence of the variable. The design matrix,
including only the “plus” and excluding the “minus” variables, suggested that only
the prediction capability of these reduced models should be tested. Each model had a
different combination of variables and was all in all a good presentation of all the
possible combinations. For each such combination, the prediction capability of the
corresponding PLS model could be evaluated by means of SDEP. Accordingly, a
response vector was obtained, indicating the model predictivity for each combination
of variables as the lowest SDEP value corresponding to the dimensionality for which
SDEP assumes the minimum value.

Variable selection procedures can find apparent good models that do not give
reliable predictions. This means that the presence of chance correlations may mask
the true effects of individual variables [2, 40]. In fact, when the objects/variables
ratio is far smaller than unity, the biased regression methods may also fail in terms
of predictions. In order to avoid the risk of chance correlations, one should provide
some general rules for obtaining a reliable variable selection. These criteria should
take into account the ratio between variables and objects, the existence of some
structure in the data, and the presence of some initial predictivity, ¢.g. PRESS being
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smaller that SSY. Only when at least one of these criteria, namely the latter, is met,
should the variable selection procedure be allowed and its results should give much
better predictions.

In order to estimate as precisely as possible the significance of a single variable
effect on predictivity, the GOLPE procedure was later refined by introducing a
number of dummy variables into the design matrix [41]. These dummy variables
were not actual numbers and we labelled some columns in the design matrix (say
one out of four) as dummy (or ghost) variables, which were inserted among the
true ones. These dummy variables were not involved in the variable combinations
which evaluate the predictivity of each row of the design matrix. They are only
used to compute the apparent effects on predictivity given by a non existent variable
by means of the Yates algorithm, so that a decision on the positive or the negative
effects of individual true variables can be taken on the basis of a Student- tailoring.
Variables with a positive effect on predictivity can be.fixed within the variable
combinations, while variables with a negative effect on predictivity can always be
excluded from the variable combinations. If variable selection proceeds in an iterative
manner, it increases the stability of the results, thus furnishing the complete list of
selected variables.

The GOLPE procedure appears, therefore, to be a powerful and efficient tool for
variable selection. However, we should note that it can only be properly applied
provided that the regression model on the whole data set have at least some initial
predictive ability (Q* greater than 0.1 —0.3). In such cases GOLPE can take away
the noise and improve considerably the Q2 value. If this is not the case, variable
selection can still be allowed, provided that there is some structure in the X data,
e.g. design has been used, implying that the dimensionality of the problem is lower
than the number of variables.

An independent measure of the relative importance of the x variables can be
calculated as VIP (variable influence on the predictions). VIP is derived from the
PLS weights, taking into account the fraction of variance explained in each model
dimension [7]. In addition to VIP, the regression coefficients are also useful for
assessing the importance of x variables: only those with b values larger than about
half the maximum b value are seen to be important. A further development of VIP
led to the proposal of the Interactive Variable Selection (IVS) method for PLS
studies [65]. There is still no comparison between the selection of important x
variables by GOLPE and by VIP and b values or by IVS.

Selecting variables according to both their VIP and b values gives good results,
provided that some caution is taken, since selecting variables is difficult and risky.
In order to avoid pruning, the elimination of variables should be undertaken to
simplify the model, and not be influenced by the degree of fit or the prediction
error. The latter usually leads to a partly spurious model that overfits the data
considerably.

According to a chapter in one of the previous volumes in this series [42], variable
selection was performed by an iterative procedure, based on the cross-validated R?
of PLS models. At each step, the amount of information carried by each variable
was assessed by its standardized regression coefficient, and the elimination of the
variable with the lowest coefficient improved the model. This improvement was
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again quantitatively estimated by cross-validation, and was shown to go through
a maximum, after which any further elimination caused a decrease in RZ, so that
the iterative procedure was stopped. The reliability of this procedure sounds a little
doubtful, both because of the risk of pruning (cross-validation is made in lecave-
one-out (LOO), and because the relative ranking of the regression coefficients is
considerably dependent upon the number of significant dimensions of the PLS model.

Alternative strategies, which have been suggested for variable selection, include
genetic algorithms [43, 44] and forward/backward methods [25]. However, we should
warn against evaluating predictive performance by LOO. It has been claimed that
ordinary regression, using reduced models, obtained by such selection techniques,
behaves better than the biased regression methods, RR and PLS [26]. Here it is not
difficult to illustrate that PLS behaves even better with selected variables [39]. It is strik-
ing that the two methods of variable selection, forward selection and backwards
elimination, selected totally different groups of variables, thus casting serious doubts
on the reliability of the interpretation of the final model. Once again, the attention
given to predictivity overshadowed other aspects of the regression analysis.

5.2.4 Other PLS Codes

Non-linear variants of PLS modeling have been developed that are very similar to
ordinary PLS models, except that they have a curved inner relation. Thus the y
scores are modeled as a quadratic (QPLS) [45], or cubic polynomial or spline (SPLS)
[46] in the corresponding x scores.

Alternatively, the use of neural networks (NN) [47] has been advocated for
multivariate non-linear modeling. It is clear, however, that NNs, with their non-linear
regression-like formalism, do not work with many variables and few cases. Therefore,
some kind of variable reduction, preferably by projections, is appropriate and a
PLS-projected version of NNs, which is very similar to non-linear PLS, was recently
developed [48].

Other non-linear methods, suggested over the last few years, are alternating
conditional expectations (ACE) [49—51] and some genetic algorithms (GA) [52].
However, the experience with these non-linear models in QSAR is still limited, and
the benefits of non-linearity may not always compensate the drawbacks of more
complicated estimation and interpretation.

In addition, non-linear models seem to have considerable problems with over-
fitting. In fact, non-linear models are likely to give a better fit to the training set
data, but are unable to give better predictions. This was shown, at least for QPLS
and ACE, with five QSAR data sets [31]: In principle, it should be obvious that the
smoother the algorithm, the closer the model fits the available points, and optimizing
predictions is not a main objective in this context. Accordingly, the interpretation,
which is already somewhat obscure, is also greatly dependent upon the representa-
tivity of the training set compounds.

A few years ago a geologist, at a workshop on chemometrics in geochemistry,
proposed the use of a method called Similarity Correspondence Analysis, which
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he wanted to call SIMCA: the time of cloning was upon us [53]! Nowadays we can
see that PLS, having already taken some ten years to be recognized, has become
popular and is accepted as a new, and perhaps better, regression method as compared
to ordinary least squares. As a consequence, several people have written their own
codes and started to use PLS for their QSAR studies. However, it seems to us that
quite often the poor experience of such people in handling PLS models may lead
to some misleading problem formulation, generating, in turn, some misunderstanding
in the interpretation.

A notable example of such a behavior is given in the recently published paper
on SAMPLS [54]. Here the authors, Bush and Nachbar, wrote their own new code
in such a way that the PLS implementation was sample-based instead of property-
based. SAMPLS reduced all explanatory data to the pairwise distances among
samples (molecules), that can be subsequently used to fit the PLS components under
cross-validation (LOO) conditions. They showed that SAMPLS exactly reproduced
conventional PLS analyses, being by far faster.

Even if they are numerically correct, we should point out that transforming a mole-
cular descriptor matrix into an intermolecular distance matrix is not appropriate at all,
since all the information needed for interpretation is lost completely. In a distance
matrix, rows and columns are equal and this makes the problem formulation less clear.
Projections methods highlight the differences between samples because of the variables:
if samples and variables are the same, there can be no way of formulating a relation
from a chemical viewpoint, even if the equation is correct and execution of the model
fast. Deliberately “SAMPLS does not calculate any statistical quantities related to
the explanatory properties” [54], which is the real goal of QSAR.

It is not surprising that Bush and Nachbar [54] stated that using groups in cross-
validation, instead of using a full LOO procedure, is a short cut needed for sav-
ing computational time: their method cannot work with groups. Furthermore, they
quote another disparaging claim made by the authors of the chemometric system
SPECTRE [55]: “the main disadvantage of the PLS method is that the latent variables
are abstract and difficult to interpret™. Therefore SAMPLS was claimed to be “ideally
suited to structure-activity analysis based on CoMFA fields”, that “expresses its pre-
dictions in terms of displacements between real chemical groups, e.g. halfway between
cyclohexyl and phenyl” in order to avoid the use of latent variables, that are so
abstract and complicated. We really have to admit how surprising it is that PLS is
nowadays so widely and successfully used, even despite the fact that it is not thoroughly
understood [20]. Much better than SAMPLS are the kernel algorithms for PLS, which
were proposed both for Tall [56] and wide [65] x-matrices, since they involve the
y-vector. The Kernel algorithm is fast and memory saving and still retains the total
information carried by the variables, describing the structural features [56].

5.2.5 3D QSAR

In a CoMFA study [57], or on applying PLS to the energy field computed by GRID
[58], the rigorous procedure suggested by GOLPE may be impractical, since the
variables in 3D QSAR are in the order of hundreds or thousands. Therefore, a
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strategy providing a reduced number of variables from the beginning and, therefore,
a reduced number of combinations, would be highly desirable.

In Sect. 5.2.3.1, we showed that D-optimal designs are more efficient than FFDs
in constrained problems. Accordingly, in 3D QSAR, the D-optimality criterion
may be used for a preliminary selection of variables in the loading space according
to a D-optimal design. In fact, with so many variables, the information is largely
redundant, and D-optimality is an appropriate criterion to select variables in such
a way as to retain almost all the information by a much smaller number of variables,
which are spread as much as possible in the principal components space.

This preselection ends up by taking away redundancy without destroying
collinearities, since it is recommended that the D-optimality criterion is used to
retain not less than a half of the variables at a time, in an iterative manner, and
stops as soon as the model predictivity begins to change. Of course, this may not
be the only, or the best way of reducing redundancy, but at present it seems to
work quite satisfactorily. However, after cleaning the x-matrix by removing all small
values, all variables at two levels with skewed distribution, and all variables with
a small variance, the number of active variables becomes in the order of hundreds
and the D-optimal preselection is not needed any more [66].

However, while we are trying to develop better chemometric tools and procedures
for handling 3D QSARs, we can see several cxamples of poorly formulated
problems. Typically, on the one hand, there is the risk of obtaining trivial results,
as shown by a series of papers by Kim [59], who implemented PLS to determine
obvious dependencies between CoMFA or GRID fields and the traditional analogy
constants. 3D QSARs represent a highly appealing area for researchers, where one
is dealing with really important problems, to which one can apply the most advanced
computational tools. Their special features are (a) updating current QSAR studies
in keeping with the Hansch trandition and (b) combining chemometrics and
modeling techniques in order to develop a procedure that we would like to call
(mc)?, an acronym for Modeling and Chemometrics in Medicinal Chemistry.

There are very few examples of (mc)? outside of the 3D QSAR area. We are
pleased to announce that the procedure undertaken by the research group
of Pitea and Todeschini [42] represents another good example of this kind, where
chemometric methods and information, derived from modeling, are used in logical
sequence to solve real problems, although strictly speaking, it is not a QSAR method.
Furthermore, although it seems to us that there are a couple of slightly weak
points in the procedure, both in using a classification tool at the beginning in a
fashion similar to the active analog approach for a case that ought to be asym-
metric, and in the variable selection strategy, that we discussed earlier, we are
pleased to see that the procedure has been successfully applied to solve several real
problems.

The real drawbacks in 3D QSAR are different, as they are strictly linked to the
continuity and congruency requirements of such models. Auto- and cross-correlation
and covariance (ACC) transforms are suitable tools for recognizing the information
contained in the 3D fields, generated by CoMFA in such a way that they appear
to be more appropriate for 3D QSAR. This rearrangement provides new data that
have two favorable properties: they take into account neighbor effects, and, therefore,
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the required continuity between grid nodes, and they are independent of alignment
within the grid lattice [60].

Indeed, present day 3D QSAR models depend almost exclusively on the alignment
criterion used, so that it is sometimes customary to realign molecules after the first
analysis in order to improve the model. On the contrary, we would like to find a
molecular description independent of the alignment, and this could be obtained, if
we succeed in describing the molecule in a way that is independent of its location
within the grid space. Using our ACC transformation, data descriptions derived
by CoMFA or GRID can be modeled by PLS without any need for alignment,
thus meeting both the congruency and continuity requirement. The 3D ACC trans-
forms, developed so far, allow a unique and congruent description of “dcgencrate”
numbering of molecules [60]. At present, we can only satisfactorily deal with planar
molecules, but cannot yet properly describe flexible molecules. The improvements
under investigation will hopefully help us to reach our other objectives.

Another aspect which we would like draw attention to is the relative importance
that should be expected (or given) to the different fields in CoMFA, or to the
different probe energies in GRID. In principle, we agreed [7, 41] that the row data
should be blockscaled in order to give the same initial importance to each
“fundamental” effect. Their relative importance is then derived from the results,
often depending upon the absolute values of the fields, and discussed in order to
interpret the biological mechanism and to design new parent molecules.

It might be the case that we would have to change our problem formulation, if
we could dissect a ligand-receptor interaction into sequential steps, each depending
upon specific properties: (a) first, the capability of crossing 4« membrane, presumably
linked to some molecular hydrophobicity parameter, which produces the actual
concentration in the cell; (b) second, the molecular recognition phase, which 1s
presumably an electrostatic interaction across large distances, and driven, therefore,
by molecular electrostatic potentials; (cj finally, the real binding, which is namely
due to H-bonding and steric/lipophilic interactions. If this were true, assigning
the same importance to all the aspects in the PLS analysis might not be the best
choice.

5.2.6 Conclusions

We have tried to give an overall view of the problems concerning the titie of this
chapter, “how to choose the proper statistical method”, highlighting either some
philosophical aspects and some good or bad examples of applications of chemometric
methods in molecular design.

Obviously, as we have already remarked, the SIMCA philosophy provides a
unique framework of multivariate tools that seem to be particularly suitable for
QSAR studies. Anyway, we focused on the importance of an appropriate problem
formulation with respect to the statistical method used. Nevertheless, whatever the
method, it should depend on design, validation, variable selection and inspection
of plots, in order to obtain informationally sound QSAR models.
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5.2 How to Choose the Proper Statistical Method

Design has already been discussed thoroughly in this volume [19, 61]. We would
just like to emphasize once more that the common strategy of constructing a training
set of compounds by changing one structural feature at a time does not work well,
mainly because it does not provide information about the combined influence of all
the varied structural elements which affect the biological activity. In contrast, multi-
variate statistical designs allow the selection of a training set of compounds that is
informationally sound, i.e. that gives data with good predictive power. Furthermore,
it seems appropriate that a QSAR study is carried out in two phases: the first one for
a preliminary screening, typically by fractional factorials, and a second one with a
finer control on substituents, which lie within the good subspaces, for the final re-
sponse surface model, by means of composite design or D-optimal design. Quadratic
models can be derived either by the CARSO procedure [62] or by QPLS [45].

PLS is based on the projection of the structural descriptor variables (X) down
onto a low dimensional subspace simultaneously with the projection of the biological
activity variables onto the same subspace. PLS is not based on assumptions of
independence or exactness or relevance of the X variables, and is, therefore, suitable
for the analysis of the typical QSAR data set with many variables in both X (the
structural description) and Y (the biological activity), even when the number of
investigated compounds is fairly small.

When cross-validation is used to estimate the prediction errors of a model, the
cross-validation must start anew with each deleted group or deleted compound.
Thus, it is wrong to use a stepwise selection of variables to develop a model for
the whole training set and thereafter delete one compound at a time and reestimate
the model with the reduced set of variables. The correct way is to leave one group
of compounds out from the beginning, apply the variable selection and model
development, based on the remaining data, and thereafter predict the left out
compounds. Then, a second group of compounds is left out, a new variable selection
and model development is undertaken, the left out compounds predicted, and so on.
If it is not done in this way, the cross-validation gives a much too optimistic view
of the predictive power of the final model.

It is appropriate to recall that some QSAR endusers have raised some doubts
about the efficacy of cross-validation techniques. It is our pleasure to state that
professional statisticians do believe that cross-validation is, nowadays, a totally
reliable tool [20]. Moreover, it was recently claimed that better theoretical and
practical results could be obtained with cross validation, when several samples are
deleted together groupwise instead of one at a time [63]. There are only two situations
when cross-validation does not work well. The first is when compounds are strongly
grouped and, hence, not independent. The second situation occurs when cross-
validation is applied after variable selection in stepwise multiple regression.

The final point was raised in the question about the capability of the PLS algorithm
to determine the few variables which are really related to the response among a
large number of noisy ones [64]. Although this was probably true for the original
PLS algorithm, it is not true any more, if an appropriate validated procedure of
variable selection is used [Clementi, S., unpublished; Wold, S., unpublished resuits].
Consequently, little Alice can really be helped to proceed securely in the “wonder-
land” of QSAR modeling, possibly with the aid of the SIMCA philosophy.
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of compounds on 174

first order molecular connectivity
index 96

first order valence molecular
connectivity index 96

fitting error 188

floropipamide 224, 241

fluanisone 224, 241

fluorophosphates 95

fluorophosphonates 95

fluorophosphorodiamides 95

folic acid

— irreversible inhibition 289

— reversible inhibitors 289

formation of classes 64

forward selection 323

forward/backward methods 331

fractional factorial designs (FFDs) 56,
66, 327

fragment addition method 22

—Leo and Hansch 22

— Rekker and Nys 22

Free-Wilson analysis 141

— Fujita-Ban variant 131

Free-Wilson matrix 291

Free-Wilson method 61

F-statistic 275

full quadratic relation 99

fungi 126

fungicidal 2-antilinopyrimidines 287

fusaric and picolinic acids 132

G-protein coupled receptors 231

genetic algorithms 331

genotoxic activity 287

geometric global mean 221

geometric mean activity 249

geometric projection in form of an
algebraic transformation 234

geometric thinking about compounds
and tests 225

geometrical decomposition in a double
log diagram 229

geometrical parameters, solvent
accessible surface 290

global variance 238

golden rectangle 167

GOLPE (Generating Optimal Linear
PLS Estimations)

—aims of 329

— based on statistical design 329

-in 3D QSAR 332

Golub and Reinsch algorithm 246

graph distance 43

graph theoretical indices, developed
by Kier 29

graphical design

- elementary principles 166

— techniques in 166

graphical representation of the data,
selection of new substituents from 53

graphical statistical analysis, pharma-
cological data 225



graphical techniques

— for analyzing scientific data 165

—in data analysis 165

— to look for patterns 165

graphical tools 10

graphics, principles of 166

grid nodes, continuity between 334

GRID, probe energies in 334

grooves or canyons as receptors for
antiviral compounds 251

group classification functions 284

groupings in the data set 210

H-acceptor and H-donor ability 151

haloalkanes

— anesthetic effect 45

—example 316

halogenated aliphatic hydrocar-
bons 311

halogenated aliphatics 316

halogenated alkanes 69

haloperidol 223, 241

haloperidol-type compounds, for the
treatment of delusions and manic
states 229

Hammett o constant 6, 271, 274, 289

Hammett ¢ constants 52

Hammett oy, and op, values 18

Hammett equation 16f.

— ionization of phenols and anilines 18

— limitation 18

— ortho effect 18

Hansch analysis, problems to be
solved 156

Hansch approach 5f.

Hansch equation 6

Hansch-Fujita 7 values 52

Hansch-Fujita hydrophobic substituent
constant 1 303

Lhard“ model 4

hemolytic potency 152

Henry’s law constants 35

herbicidal piperidinoacetanilides 126

herbicides 152

heterocyclic systems 54

histograms of R? and Q%> 311

Index 347

HOMO energy, related to the ionization
potential 32

homologous series, substituent
parameters 16

homoschedasticity and normality of the
variance 280

Hiickel molecular orbital (HMO)
method 32

hydrogen bonding 31

— quantitative scales 31

—use of an indicator variable 31

hydrophobic substituent constant,
127

- variation in lipophilicity 21 -

9-a-hydroxymerulidial 171

4-hydroxyquinoline-3-carboxylic
acids 126

hyperplane in X-space 204

hypersurface iterative projection
(HIP) 53

ideal number of observations 101

important variables, selection of 213

in computro methods 3

indicator function IND introduced by
Malinowski 120

indicator variables

induction

— fundamental components of 20

— of anesthesia and spindle
disturbances 126

information, data of interest 197f.

information content in training sets in
comparison to arbitrary or COST
designs 76

information content, 'y and 15"
variables 95

—simple transformation 95

- sum and difference variables 95

Ingold’s hypothesis 18

inhibition

— of carbonic anhydrase 53

— of dihydrofolic acid reductase
(DHFR), traditional Hansch-type
QSAR studies 287

—of S. faecium 288

26, 61
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— of tetracycline efflux antiport
protein 302

- of the NADH oxidase system 157

inner relation 182

insect pharmacokineics 271

insecticides 152

inside model space (IMS) 190

intermolecular forces, commonly
recognized 31

intermolecular interactions, descriptors
related to 32

internal validation 68, 313

interpoint distances

— Euclidean distance 256

-~ Hamming distance 256

intrinsic design 71

intrinsic state of an atom 41

intrinsic state values, examples 42

ionic interactions 31

iso-isovelleral 171

isolated carbon 23

isometric plots 167

isospirilene 243

isotropic surface, correlated with
hydrophobicity 186

isotropic surface area (ISA) 186

isovelleral 171

»jackknifed* classification 291

k-nearest neighbors 291
kappa indices 30

kappa shape indices 39
Kernel algorithm 332
Kier/Hall electronegativity 41
Kronecker symbol 246

L, By, and Bs values, table 25

L. casei 288

lack of homogeneity in the data,
detrimental effect on the model 207

Lactarius vellereus 169

latent variable techniques 4

latent variables 151, 182, 231, 322

— called X scores 202

—concept of 200

LCAO-MO coefficient 32

LDA, see linear discriminant analysis

lead discovery 8

leave one or several out 312

leave-one-out (LOO) 312, 328

length parameter L 24

level of triviality 323

linear discriminant analysis (LDA)

- advantage of 291

— basic assumptions 285

— disadvantage of 291

—risk of chance correlations 286

linear free-energy relationships
(LFER) 6

linear multivariate methods

— correspondence factor analysis 255

— principal components analysis
(PCA) 255

lipophilic character of drugs

— absorption 21

— distribution 21

—excretion 21

lipophilic pocket 200

Livingstone’s » parameter 274

loadings plot, structure of inter-
correlations of variables 232

loadings 118

log bilinear model in contrast with
correspondence factor analysis
(CFA) 250

log P 21

— correlation with a diversity of
biological activities 21

— measurement 22

—1-octanol 22

— operational definition of
lipophilicity 21

— organic phase used most frequently
22

— other lipid phases 22

—values 289

lone pair orbitals 97

lowest-observed-effect-concentration
(LOEC) 87

LUMO energy, related to the electron
affinity 32



macroscopic variables 183

Mahalanobis distance 191, 291

major tranquilizers 225

MAO inhibitors 287, 290

MAO-A 290

— inhibitors, use as antidepressiva 290

MAO-B 290

— inhibitors for the treatment of
Parkinson’s disease 290

mapping of antiepileptics 232

mass spectral data, autocorrelated
transformed spectra 189

matched display after normalization
175

measured log P values

— database 22

— Pomona College MedChem
project 22

MEP properties 150

metabolism 249, 288

methacycline

— alkylthio derivatives 301

— arylthio derivatives 301

methods of model fitting 310

minimum number of components 119

—eigenvalues >1 119

- finding the 119

- rejection of components 119

- scree plot 119

misclassifications 284

missing data

— estimation in an iterative process
within principal component
analysis 1351.

—in PLS 204

Mitchell algorithm 327

mitomycin derivatives and steroids
287

MLR, lack of diagnostic tools 217

MNDO calculations 290

model evaluation 324

model quality 310

model validation, four tools for 311

model validation in PLS 206

— cross-validation (CV) 206

— data randomization 206

Index 349

modeling and chemometrics in
medicinal chemistry 333

modern alternative to MLR 7

- cross-validation 7

— partial least squares regression in
latent variables (PLS) 7

modern QSAR analysis 64

molar refractivity (MR) 31, 305

MOLCONN-X 43

molecular concepts 15 ff.

molecular connectivity delta values 41

molecular connectivity indices

— Randi¢ branching index 28

—software for calculating 29 .

molecular descriptors 39

—choice of 61

— molecular connectivity 39

— non-empirical 39

molecular design strategies 2

molecular diversity 8

molecular flexibility 23

molecular modeling 2, 8

— descriptors for compounds in discrete
states 183

molecular orbital (MO) calculations 32

molecular orbital parameters 44

molecular polarizability 31

molecular representations, basic
concepts 17

molecular size 316

molecular structures, represented as
graphs 26

molecular surface area 33

molecular volume 33

monoamine oxidase (MAO, EC 1.4.3.4)

— desamination of biogenic and
xenobiotic monoamines 290

- neurotransmitters 290

monoamine oxidase (MAO)
inhibitors 44

— interaction with amino acids 130

monosubstituted aromatics, multi-
variately characterized 84

monosubstituted benzenes, scatter plot
for the PPs 85

morphine-like analgesic activity 223
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morphine-like analgesics 137

Mulliken-Jaffe valence state electro-
negativity 41

multicollinearity 275

—in CCA 269

multidimensional (hyper)plane 234

multidimensional data tables

— abundance of entries 115

— complexity of data structure 115

multidimensional mapping
technique 154

multiple linear regression (MLR) 197,
322

— comparison to PLS 197

multivariate analogy approach 63

multivariate data analysis 4

— iterative procedure 65

multivariate exploratory graphics 168

muscle lactate dehydrogenase
(M4-LDH) 126

mustard beetles 271

mutagenic potential of chemical
compounds 126

mutagenicity short term tests,
multivariate analyses 126

mutagenicity 82, 311

mycobacterial strains 135

myosin [ight chain kinase
(MLCK) 289f.

N-nitrosamines 287

NADH oxidase system, inhibition
of 157

naphthyridines, antibacterial potency
of 129f

natural grouping 289

negative chronotropic drugs 61

neighbor effects 334

neural networks (NN) for multivariate
non-linear modeling 331

neuroleptics 224

— empirical arrangement of 224

neurotoxicity 95

newer methods of data analysis 197

nicotinic acid derivates, conformational
properties 60

NIPALs algorithm 246

nitrobenzenes 143

4-nitrobenzylpyridine 311

NLM method

—as an additional tool 262

— capability 255

— drawbacks 257

— for deriving structure-activity
relationships 259

— for the rational selection of test
series 259

— in medicinal chemistry 255

— statistical packages 261

— statistical principles 255

NMR chemical shift, as parameter 274

noise, uninteresting parts of the
data 197

non-coded amino acids 69

non-discriminant method 291

non-linear behavior between the
biological and the physico-chemical
data 75

non-linear discriminants 285

non-linear equations, description of
non-linear effects 92

non-linear map of 166 aromatic
substituents 258

non-linear mapping method, principal
feature 256

non-linear maps, interpretation of 257

non-linear methods

— alternating conditional expectations
(ACE) 331

— genetic algorithms (GA) 331

- neural networks (NN) 331

non-linear modeling 215

non-linear multivariate methods,
non-linear mapping (NLM) 255

non-linear regression analysis 140

non-narcotic analgetics 287

non-parametric linear learning
machines 286

non-parametric statistics 4

non-sigma bonding 96

norepinephrine 224, 241

—test 225



norm of the individual contrasts of
compounds 236

normalized factor loadings 246

normalized factor scores 246

nucleophile 32

nucleophilic frontier orbital density 32

nucleophilic superdelocalizability 32

odor

— intensities 35

— threshold analysis 46

— thresholds 35

olfactory stimulants 287

operational scheme

— for modifications of aliphatic
chains 52

— for the optimization of aromatic
substitution patterns 52

operational space 326

opiates 223

optimization 50

- discovery of new leads 50

— of substitution patterns of aromatic
rings 50

- on a more abstract level 50

- routes for a lead 50

ordinary least squares (OLS) 4, 322

ordinary multiple regression, QSAR
equations 321

organic synthesis

—selection of catalysts 66

—selection of solvents 66

orientations of the factors, rotation of
the (hyper)planes 238

ortho effects 23

ortho substituent 50

ortho-, meta- and para-substituted
phenyls, 24 biological activities

orthogonal vectors 118

orthonormalized eigenvectors 119

outside model space (OMS) 190

overlapping classes 285

P. cerevisiaze 288
parabolic model of Fujita-Hansch,
for complex in vivo systems 6

1271.

Index 351

parabolic relationship 137

parabolic surface, extremum 101

parallel tests

— general screening 127

— with quite different biological
actions 127

parameter focusing 296

parameter selection 321

parameter space 51

— systematic investigation of 53

parametric statistics 4

PARC

— applied to drug design problems 180

- methods of 180 ‘

— objective 180

—studies in defined steps 183

— three levels 180

PARC or feature space, divided into
subspaces 190

parsimonious set of variates 278

partial least squares projections to latent
structures (PLS) 197

— comparison to MLR 197

— generalization of regression 197

- projection method 64

partition coefficient P 21

— between 1-octanol and water 21

partition coefficients, drug transport
and distribution 6

pattern recognition 4

pattern recognition study, steps in 183

PC-based programs 8

PCA

— for classification purposes 326

— orthogonal scales 322

— tool for grouping systematic
patterns 322

PCRA, see principal component
regression analysis

penetration rate constant 271

pentapeptides, bradykinin
potentiating 69

peptide QSARs, parameters for 150

peptides 69

peptidomimetic 78

peptoids 69
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perillartine derivatives as
sweeteners 287

pesticides 152

Phaedon cochleariae Fab 271

pharmacodynamic effects, separated
from pharmacokinetic effects 137

pharmacodynamics 274

pharmacokinetic and response data,
combination of 137

pharmacokinetic data, examples for
applying principal component
analysis 137

pharmacokinetic processes 140

pharmacokinetic properties 136, 249

pharmacokinetics 274

pharmacological profiles, by mapping
substances according to measure-
ments 130

phenols 143

phenols and anilines

- in vitro tests 126

— toxic effects 126

phenothiazine derivatives 224

phenothiazines, neuroleptic 223

phenoxyacetic acids 143

phenylacetic acid, ionization 19

phenylacetic acids 143

phenylalkylamines 287

phenylglycine esters, antiinflamma-
tory 128

3-phenylpropionic acid, ionization
of 19

phenyls 100

philosophies in chemometrics,
multimethod and monomethod 320

phosphatase inhibiting potency 152

phosphinic acid 98

phosphodiesterase (PDE) 289

photoreceptors 231

physical property variables 97

physico-chemical descriptors,
categorized into two groups 65

physico-chemical hyperspace 278

pi orbitals 97

pig heart cytoplasmic malate dehydro-
genase (s-MDH) 126

pig heart mitochondrial malate dehydro-
genase (m-MDH) 126

pipamperone 224

piperidinoacetanilides 143

PLS 7 197

— analysis of any number of varia-
bles 68

- comparison with multiple linear
regression (MLR) 209

— geometric representation 204

- modeling and analysis of several ¥5
simultaneously 204

— optimization in organic sythesis 7

~ problems of analytical calibration 7

~ projection-based method 68

- set of plots (scores and loadings) for
interpreting model 197

— use for classification 198

PLS algorithm, automatic account for
missing values 204

PLS components

— cross-validation (CV) 205

- leave-one-out approach is not
recommended 205

~number of 205

~ PRESS (Predictive REsidual Sum of
Squares) 205

PLS discriminant analysis 286

PLS implementation, sample-
based 332

PLS model

— dimensions 202

- expressed in weights 202

- geometric interpretation 204 f.

— graphical representation of 182

- how to develop and interpret 216

- interpretation 203

PLS modeling

- based on the training set 316

— non-linear variants 331

PLS parameters, graphical represen-
tation 217

PLS regression coefficients 202

PLS weightings plot 208

PLS weights 71

—example 207



Polak-Ribi¢re method 257

polar fragment interaction factors 23

poles of the map 242

- defined as the minimal set 243

polychlorinated biphenyls, induction
of various enzymes 128

polychlorinated dibenzofurans
(PCDFs) 82

polygodial 171

potency 249

—of a compound 221

- sensitivity and specificity, distinction
between 222

PPs, see principal properties

predicted or cross-validated variance
Q%) 312

prediction error 188

predictive behavior of a QSAR 316

predictive power 101

preliminary stage in the study of
OSAR 221

PRESDs (Predictive Residual
SDs) 216

preselection of variables 156

PRESS (Predictive REsidual Sum
of Squares) 312, 325

— for the final model 206

— minimization 120

primary variables 186

principal component analysis

—advantage 124

— as a cluster analysis approach 135

—in 11 different pharmacological
tests 127

— physical nature of the ,basic
effects” 127

— picture of the data structure 127

- practical gains 120

principal component and factor
analysis 115

— application in the field of medicinal
chemistry 115

— basic mathematical treatments
115

- practical aspects 115

- selected examples 115

Index 353

principal component analysis or factor
analysis, choice of 124

principal component regression analysis
151

— advantage 152

principal components (PCs) 118

— design variables 66

principal components analysis
(PCA) 232

principal properties (PPs) 66, 104 1.,
142, 149, 322, 326

— for each amino acid 186

~ interest in experimental design
strategies 106 ‘

— use in structure-property correlation
studies 106

principal quantum number 42

probability density contours of the
patterns of points 237

probability plot of the residuals 203

problem formulation 320f.

profiles of activity 197

projecting the data of the test
compounds 181

projection methods 4, 321

- partial least squares (PLS) 322

- principal components regression
(PCR) 322

projections of p tests in the (hyper)-
plane of specifities 236

property descriptors 104

proportions and scales 167

propriophenones 223

protein crystallography 2

protoplasts 126

psychosis

— mechanism of action of
neuroleptics 230

- speculation about the causes 230

pyrazines, odor sensitivity of 46

pyrethroid analogues 271

pyrethroids

— canonial correlation analysis 137

— knockdown 273

— lethality 273

— neurotoxicity of 152
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pyridazinylbenzimidazoles,
cardiotonic 57

pyrimidine folic acid antagonists, mode
of action 287f.

Q-mode factor analysis 250

Q? value 216

QPLS 331

QSAR

— based on the three z scales 74

- division in steps 196

—equations 2

—modeling 309

— paradigm 91

- purpose of developing 320

- two main objectives 320

QSAR descriptors, analysis of 141

QSAR development 68

— as an iterative cycle 196

—strategy 64

— use of multivariate partial least
squares projections to latent structures
(PLS) 68

QSAR investigations 80

— environmental chemicals 80

— environmental haloalkanes 80

QSAR model

— conceptual model 200

- non-linear models 322

QSAR of peptides, structure-based
descriptors 184

QSAR problems

— traditional Hansch analysis,
limitation 180

—use of PARC 180

QSAR studies

- finding the relevant descriptors 183

- need of a chemometric method 321

— objective 16

— use of hydrogen bonding
parameters 31

QSAR table, submitted to chemometric
analysis 322

QSPR investigations 31

quadratic models, response surface
model 335

quadratic non-linearity 101

qualitative biological data 284

qualitative prediction 4

quality of a MLR 6

- normalizing the equation 6

- 95% confidence intervals 6

~ standard deviations 6

~ use of regression coefficients 6

quantification of molecular
modeling 197

quantitative chemical data 284

quantitative multivariate analysis
methods 197

quantitative prediction 4

quantitative structure-activity
relationship (QSAR) 2

- general formula 2

— most significant steps 309

quantitative structure-activity
relationships 29

quantitative structure-property
relationships 196

quantitative structure-time-activity
relationships (QSTAR) 137

quantum chemical descriptors 314

quantum mechanical parameters 61

quick optimization of lead
compounds 50

radioactively-labeled compounds 231

random variables 315

randomization 310

- of the response data 311

rank, minimal number of
dimensions 238

rank of Y, number of components in the
PC model 205

rate of transport 249

ratio scale 221

rational drug design, molecular
design 3

reactivity indices 32

~ Epomo 32

~Eumo 32
receptor affinity 139

reduced correlation matrix 123



reduced data set 210
redundancy coefficient 270, 278
regression 4
regression methods
— adaptive least squares {(ALS) 322
- multiple linear regression
(MLR) 322
- ordinary least squares (OLS) 322
— other stepwise methods 322
—ridge regression (RR) 322
~ variable subset selection (VSS) 322
regression models 310
relationship between bilinear and
parabolic model 6
relative perturbation by each atom 43
renal hypertension 132
representation of molecules 15 ff.
residual error 119
residual standard deviation 310
residual variance 275
residuals, data not explained by the
model 203
resonance 19
— fundamental components of 20
resonance effects 54
resources for chemical synthesis 49
response surface
— contours of 92
— transformations 92
reversed-phase high performance liquid
chromatography (RP-HPLC) 22
— lipophilic stationary phase 22
— method of choice for measuring log
P 22
— mobile phase 22
revised SIMCA classification rule,
geometric interpretation 192
revised SIMCA rule 191
rhinoviruses 251
ridge regression (RR) 322f.
ring-substituted phenoxyacetic
acids 157
R-mode factor analysis 250
root mean square (rms) contrast
between compounds 236
Rorschach effect 166

Index 355

RP-HPLC method, advantages over the
shake-flask method 22

S. faecium 288

salicylic acids 137

SAMPLS 332

SAREA 34

SAVOL 35

scatter plot in selecting com-
pounds 134

scores 118

scores plot, graphic display of the
compounds 121, 232

SDEP (Standard Deviation of Error of
Predictions) 328

Seiler’s Iy value 143

selecting the appropriate statistical
method, quality and type of biological
data 283

selection

- of a representative subset of
substituents, set of twelve represen-
tative organic substituents 104

—of a series of compounds, according to
statistical experimental design
scheme 65

— of substituents, for an aromatic
ring 57

— of the training set 5

semi-empirical modeling, QSAR
modeling as a special case of 89

sequential CSA 298

sequential simplex technique 53

—in an n-dimensional parameter
space 53

— modification suggested by
Gilliom 53

serendipitous discovery 224

serendipity 2

series design

— conformation of test compounds 59

—examples 59

— mathematical methods 153 ff.

— PCMM and the TMIC method 154

serotypes 251

shake-flask method 22
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Shannon equation 40

shape index 30

side chains of AAs, modeling of 201

sigma electrons 97

sigma-type orbitals 97

SIMCA

— deriving a model for each class
181

— method of choice for classification
problems 188

- method of pattern recognition and
classification 180

— pattern recognition 181

— philosophy 325, 334

—tool in drug design 180

SIMCA classification, similarity
rule 190

SIMCA classification rules

- geometric interpretation of 190

— geometric structures in descriptor
space, hyperellipsoids 189

SIMCA classification study

~ IMS distance 191

— OMS distance 191

— total distance 191

simulated annealing 257

simulated validation set 325

simultaneous QSAR modeling of two
dependent variables 311

singular value decomposition
(SVD) 238, 245

skin corrosion 86

SMA, sec spectral map analysis

,»soft“ modeling 4

software products, reviews of new
products 10

solvent-accessible surface area 34

solvolysis of t-cumyl chlorides 19

sophisticated statistical packages 9

sound QSARs by a design
technique 326

space filling 54

SPC methods, overview 5

specificity 222

spectral map

- interpretation 243

— of pharmacological activities
of 40 neuroleptics 242

—reading rules 240

spectral map analysis (SMA) 233f.

—and CFA, comparison between the
performance 251

—as a log double centered PCA 236

— biplot, reading rules 241

— for classification 220f.

— for the discovery of structure in data
sets 221

— mathematical description 245 ff.

— missing data 221

~ originality of 251

spectral mapping

— as a graphic method 222

— decomposition of the activity
data 229

— essential operation 229

— general model which underlies the
procedure 249

— general multivariate case 229

—renamed as spectral map analysis
(SMA) 223

spiroperidol 241

SPLS 331

stabilization of an intermediate
carbocation 19

standardization 116

statistical analysis of the results of
screening tests 222

statistical experimental designs 104, 311

— benefits 88

— central composite designs (CCD) 104

— D-optimal designs (DOD) 104

— different categories 66

— factorial designs (FD) 104

— fractional factorial designs (FFD) 104

—in QSAR, basis of 53

—selection of test series 88

statistical method, how to choose
319

statistical tools 10

statistics, recent developments 325

steepest descent procedure 256f.

stereographic techniques 167



steric parameter £y 23

— applied to biological activity
problems 23

~ derived for physical organic
chemistry 23

— developed by Taft 23

steric substituent constants 23

STERIMOL, computer program 24

STERIMOL parameters 24, 305
— multiparametric method by
Verloop 24

strategy of lead finding, synthesis and
testing 104

— combinatorial chemistry 104

strongly electron withdrawing
groups 50

structure-activity relationship studies 2

— physico-chemical properties 2

— statistical methods 2

structure-based molecular design 8,
91, 104

structure-property correlations
(SPC) 291

—concept of 2

— studies, definition of 3

subgraphs

—clusters 27

— path-clusters 27

substituent constant o*, Taft 18

substituent constants, electronic 17

substituent properties 106

— electronic bonding 106

- H-bonding 106

- lipophilic bonding 106

— steric bonding 106

4"-substituted 4-aminodiphenyl-
sulfones 135

substituted benzyl(+)-cis/trans-benzyl-
cyclopropane-1-carboxylates 273

substructure-based counts 26

substructure-based descriptors 25

sulfamate sweetening agents 304

sum variable, Zx1 97

sum variables (£x0, Zx1), related to
molecular size 101

sum/difference transformation 101

Index 357

supermolecule 186

supervised methods 4, 220

— backpropagation artificial neural
networks 4

— multiple linear regression 4

surface area 33

surface area approximation
techniques 33

—Hermann 33

— Lee and Richards 33

— Pearlman 33

Swain and Lupton

- Fand R values 132

— field parameter 289

— linear combination of the Hammett
Om and op constants 20

sweet or bitter aldoxines 287

symmetric and asymmetric data, two
types of data structure 187

synthetic accessibility 54

synthetic feasibility 2

systemic variation 91

systolic blood pressure 132

Taft steric substituent constant 16

Taft’s ¢ 305

Taft’s steric descriptor 6

target rotation procedure by Weiner and
Malinowski 121

terpenoids 169

test

— for significant canonical
correlation 270

—set 180

— validation set 4

test compounds 49

—design 49

— uneconomical set of 49

2,3,7 8-tetrachlorodibenzo-p-dioxin
(TCDD) 84

Tetrahymena pyriformis 151

therapeutic target 3

thioxanthene 223

three-group analyses 289

TMIC plot 155

topological descriptions 25
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topological indices 26

— Randi¢ topological index 26

— Wiener number 26

total variance 119

toxicity of metal ions in mice 152

toxicological estimates 278

traditional QSAR approach, use of
substituent parameters 322

training (modeling or calibration) set

training series 273

training set 63, 180, 309f., 326

- selection of 66

— strategy of constructing a 335

— use of statistical experimental
design 313

training sets from experimental design
methods 183

transformation of SMA, log double
centering 235

transformations in current statistical
packages 94

translation of structural variation
200

transport 139

—phenomena 136

—rates 29, 249

— through a membrane 116

— to the active site 128

trichromatic diagram 225

— analogy between the tripolar
classifications 231

tricyclic pyridobenzodiazepinone,
inhibitors of muscarine receptors
184

triflupromazine 241

tripolar classification 224

tryptamine 224, 241

—test 225

tryptophane synthase 199

t-scales for organic substituents 106

Tucker’s inter-battery analysis 168

twelve representative substituents,
selection of 109

two-group analyses 289

two-variable parabolic relation 99

typographical conventions 166

uneconomical set of test com-
pounds 49

unique set of PP scales 107

unnamed science, QSAR 5

unsaturated dialdehydes 169

—as antibodies 169 -

— as antifeedants 169

unsupervised methods 4, 220

— cluster analysis 4

— non-linear mapping 4

— principal component analysis 4

unsupervised multivariate QSAR
method, spectral mapping 220

using MLR, three weak points
323

usual QSAR method 92

valence electrons 97

valence molecular connectivity,
correlated with physico-chemical
properties 28

validation

- approaches of 310

—of the QSAR model 309

validation set 68, 206, 309, 313, 325

—external 310

validity

—of a model 324

—of QSAR models, tools 310

y value according to Exner 120

van der Waals radius 24

variable, significance of 330

variable selection 188

— alternative strategies 331

- procedures for 329

—technique 4

variable subset selection (VSS) 322

variance

- of an extracted factor 238

—of a variable 119

variance-covariance matrix 291

VARIMAX rotation 121f., 145

Verloop steric parameters 274

Verloop STERIMOL parameters L, By,

and B4 303
Verloop’s width parameter By 127



VIP (variable influence on the
predictions) 330

— statistic of Wold, based on weighted
PLS coefficients 188

viral envelope 251

visual perception 167

visual system, perception by 167

w-scales, for organic substituents 106
Weber-Fechner law 233

whole cell cultures

Index
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whole molecule representations

X-ray structures, use of 290

yeast 126

z-scales 150, 186
~ for amino acids

69, 1051.

25

359



	Chemometric Methods in Molecular Design
	Methods and Principles in Medicinal Chemistry
	Copyright
	Preface
	A Personal Foreword
	List of Contributors
	Contents

	1 Introduction
	2 Molecular Concepts
	3 Experimental Design in Synthesis Planning and Structure-Property Correlations
	4 Multivariate Data Analysis of Chemical and Biological Data
	5 Statistical Validation of QSAR Results
	Index



