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Preface 

One of the main objectives of the series Methods and Principles in Medicinal 
Chemistry is to provide practitioners and newcomers in the field with practice- 
oriented information on methodological aspects of QSAR. 

After Hugo Kubinyi’s volume on Hansch analysis and related approaches, 
the present handbook treats chemometric methods in molecular design. An 
introductory chapter by the volume editor, Han van de Waterbeemd, is fol- 
lowed by a section on molecular descriptors covering the classical physico- 
chemical parameters, but also descriptors derived from solvent-accessible 
surface area and topological indices. 

Experimental design in synthesis planning and structure-property corre- 
lations are the focus of the second section. Both methods for direct opti- 
mization of lead compounds as well as approaches for the systematic investi- 
gation of a parameter space are discussed. In continuation of this topic a 
strategy for QSAR development based on statistical experimental design and 
multivariate data analysis is outlined. Other topics in this section are opti- 
mization procedures in the case of non-linear structure-activity data applying 
topological descriptors, and an illustration how disjoint principal properties of 
organic substituents can be used for test series design. 

In the central section of this volume the various approaches for multi- 
variate data analysis are described; both established (principal component and 
factor analysis, SIMCA, PLS, discriminant analysis, cluster significance ana- 
lysis) as well as new, emerging techniques (graphical analysis, spectral mapping, 
nonlinear mapping and canonical correlation analysis) are comprehensively 
described and exemplified in detail. 

In the last section, leading experts treat a topic that has attracted increas- 
ing interest in recent time: the statistical validation of QSAR results. The first 
chapter describes the main tools for assessing the validity of QSAR models, 
and the second chapter gives the rules for choosing the proper statistical 
method for model validation. 

Taken together, the chapters in this volume give a practice-oriented intro- 
duction to the continuously developing field of chemometrics in molecular 
design and provides the reader with recipes for a proper application of these 
tools. 

Dusseldorf 
Kopenhagen 
Amsterdam 

Raimund Mannhold 
Povl Krogsgaard-Larsen 
Hendrik Timmerman 
Winter 1994 



A Personal Foreword 

It was at the first Noordwijkerhout Symposium in 1977 that I first came into 
contact with applications of quantitative structure-activity relationships. It was 
Corwin Hansch, Roelof Rekker and Hugo Kubinyi who inspired me at the 
time in those early days of my career to continue in the rather new field of 
QSAR. Much as I learned during my “postdoc” with Bernard Testa at the 
University of Lausanne, the real challenge of using chemometric methods in 
molecular design and discovery really only began in 1988 when I moved to 
industry. Indeed, in this environment one sees what can be best achieved with 
these methods and how they are used, misused, or not used at all by medici- 
nal chemists. I would like to thank Klaus Muller for creating a stimulating 
environment and for having given me the freedom to work on this book. 

When I was approached about writing this book, I felt immediately that 
this could not be the task of one person only. As can be seen in the diverse 
chapters in this volume, there are many methods which can be used in the 
process of molecular design, requiring the expertise and experience of other 
researchers. Therefore, I would like to warmly thank all the contributors to 
this volume. 

The scope of this series is to offer many practical examples of interest to 
the medicinal chemist. In this volume, we have collected a large variety of dif- 
ferent techniques. Several of these have reached some degree of maturity and 
many examples can be found in the literature as well as in the present 
volume. However, certain other methods, described here, are rather new and 
still under development. For these approaches, we have chosen to include 
some more details on the algorithms and their preliminary evaluations. As a 
medicinal chemist, we hope that you appreciate the efforts of the data analy- 
sis “experts” in developing new methods for extracting information or 
“mining” data from complex and incomplete biological and chemical data. We 
trust that this volume shows that the present chemometric methods used in 
structure-property correlations, and in particular, in QSAR studies, go far 
beyond the classical Hansch approach. It is hoped that this book fulfills two 
missions. First it should offer the medicinal chemist an insight into the diver- 
sity of multivariate chemometric methods and their applications in the design 
of bioactive molecules. Secondly, for the specialist it should provide an update 
of current and newly emerging techniques. 

This book is a rather peculiar kind of Christmas present to me. I really 
hope that you, as medicinal chemist or any other kind of researcher involved 
in molecular design, will find this book a valuable gift too and will enjoy 
playing with these chemometric approaches to the benefit of your daily work. 



VTII A Personal Foreword 

Finally, I would like to  thank my wife Kitty and daughter Marion for sharing 
their enthusiasm with me and for bringing me sufficient coffee, when I was 
proofreading all the chapters during many long autumn evenings. It was a 
great experience! 

December 1994, 
Basel Han van de Waterbeemd 
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1.1 Quantitative Molecular Design 

The discovery of biologically active compounds and their development as drugs is 
a highly complex process which involves many scientific disciplines [ I ] .  Medicinal 
chemists have for a long time systematically modified a lead compouiid with the 
main driving force being synthetic feasibility, experience, intuition and serendipity. 
Over the last 25 years molecular design strategies have changed considerably [2, 31. 
Important contributions to the design of new compounds today come from 
biostructural research, including protein crystallography, multidimensional bio- 
NMR and molecular modeling. 

Corwin Hansch and co-workers [4 - 61 deserved the success of having propagated 
the use of physico-chemical properties and statistical methods in structure-activity 
relationship studies. A general formula for a quantitative structure-activity relation- 
ship (QSAR) can be given by the following: 

(1) 

The original work of Hansch and co-workers involved linear combinations of 
suitable descriptors, using multiple linear regression to obtain the now well-known 
QSAR equations. The Hansch method will be discussed below briefly. For a more 
detailed discussion, see the first volume of the present series [7]. In order to be able 
to deal with complex data sets, consisting of more than one biological activity and 
many (physico-)chemical descriptors, more advanced statistical tools have had to 
be considered and developed. This is the field of chemometrics, and QSAR, an 
important branch of chemometrics, is the main focus of this volume. 

In drug research today, for some people the QSAR approach is taken to be 
equivalent to using Hansch-type regression equations, while for others, i t  includes 

activity = f (molecular or fragmental properties) 

chemical 
properties 

intrinsic log P 
properties 

molar volume molecular 
connectivity 
charge distribution 
moi weight 

properties 

activity 
toxicity 
biotransformation 
pharmacokinetics 

SPC: Structure-Property Correlations 

Figure 1. 
permission from the copyright owner). 

The concept of structure-property correlations (reproduced from Fig1 of Ref. [2] with 
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any statistical mathematical technique which is employed to unravel information 
obtained from the available biological and chemical data. Therefore, attempts have 
been made to introduce other terms in order to avoid this confusion [2, 81. We 
propose to call all studies which are aimed at broadening the understanding of 
relationships between intrinsic molecular, chemical and biological properties, as 
structure-property correlation (SPC) studies [2] (see Fig. 1). QSAR, thus, comes 
under the generic term of SPC studies. Another source of misunderstanding is the 
use of terms such as “rational drug design”. A drug is a product on the market, 
which is used in health-care. Such a product is developed from a bioactive molecule, 
which has been selected and clinically tested for this purpose. Many other biologically 
active compounds appear not to be suited as a drug due to toxicity or unfavorable 
side-reactions, or as a result of unfavorable pharmacokinetics. Therefore, we should 
strictly speaking refer to molecular design. I t  should also be pointed out that earlier 
generations of scientists have always conducted research rationally, thus, rendering 
the word “rational” in the term rational drug design meaningless. The approaches 
discussed in the present volume should be regarded as computer-assisted molecular 
design or computer-assisted medicinal chemistry. Since chemistry is an experimental 
science, these in computro methods are only successful under certain conditions. 
Such conditions require that the biological activity of a series of compounds is, 
indeed, related to the chemical properties being considered, and that the series is 
more or less congeneric. That is all the compounds act by the same biological 
mechanism, e.g. with a similar binding mode at the active site of a given biological 
target. Medicinal chemists often face the problem of not knowing the 3D structure 
of their therapeutic target. Both molecular modeling techniques and quantitative 
statistical methods may then be useful in elucidating structural information at the 
active site. Molecular modeling provides methods, such as the active analog approach 
or constrained search [9], to define pharmacophores or the geometry at the active 
site. The methods discussed in the present volume are either complementary to 
molecular modelling approaches, or may themselves provide clues about which parts 
of the molecule are important for activity as well as for inactivity. 

1.2 Chemometrics 

The term chemometrics was coined in the 1970s and is defined as the chemical 
discipline that uses statistical and mathematical methods for selecting and optimizing 
analytical and preparative methods, as well as procedures for the analysis and 
interpretation of data. Chemometrics has found wide application in analytical 
chemistry [lo- 151. Two specific journals are devoted to the development and 
applications of chemometrics, namely Chemometrics and Intelligent Ldoratory 
Systems (1986) and The Journal of Chemometrics (1987). A series of books on 
Clzemometrics has been started recently [42]. Using essentially the same techniques, 
medicinal chemists and specialist “drug designers” have further developed the 
field of quantitative structure-activity relationships (QSAR) [ 16 - 201. Various 
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latent variable & supervised methods 
variable selection 
methods 

statistical methods are known under different names, which is certainly confusing 
for the non-specialist. Terms such as multivariate data analysis, chemometrics, 
pattern recognition, parametric and non-parametric statistics, regression, latent 
variable techniques, QSAR and projection methods are often used without definition. 
In addition different authors may have a different understanding of these terms 

As already discussed above, a QSAR equation is a correlation between biological 
and chemical data obtained by Multiple Linear Regression (MLR), sometimes also 
called Ordinary Least Squares (OLS). MLR is referred to a s  a variable selection 
technique [25], while latent variable techniques are techniques, such as Principal 
Component Regression (PCR) and Partial Least Squares (PLS). MLR is regarded 
as a “hard” model, whereas SIMCA (Soft Independent Modeling of Class Analogy) 
and PLS are called “soft” modeling techniques [26]. 

Two further categories are “supervised” and “unsupervised” methods. Multiple 
linear regression and backpropagation artificial neural networks are supervised 
methods, in which a model is fitted to the data, while clustcr analysis, principal 
component analysis and non-linear mapping, for example, are unsupervised, and 
classification patterns are obtained. One should also distinguish between the 
quantitative predictions obtained with MLR, and the qualitative predictions 
obtained with pattern recognition techniques, such as cluster analysis and principal 
component analysis. Non-parametric statistics, such as Adaptive Least Squares 
(ALS), do not require a normal distribution of the data. 

An important part of each multivariate data analysis is the selection of an 
appropriate training (modeling or calibration) and test (validation) set. Without a 
careful selection of the training set, any derived model makes little sense. However, 
much experience is needed to be able to construct training and test sets which will 
be of some significance [27]. 

[21- 241. 
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Figure 3. Overview of SPC methods. ALS = Adaptive Least Sqiiarcs; ANN = Artificial Ncural 
Networks; CA = Cluster Analysis; CCA = Canonical Correlation Analysis; CFA = Corrc- 
spondence Factor Analysis; CR = Continuum Regression; CSA = Cluster Significancc Analysis; 
FA = Factor Analysis; FB = Fujita-Ban analysis; FW = Free-Wilson analysis; GOLPE = 
Gcncrating Optimal Linear PLS Estimations; kNN = k-Nearest Neighbor; LDA = Linear 
Discriminant Analysis; LLM = Linear Learning Machine; MLR = Multiple Linear Regression; 
NLM = Non-Linear Mapping; PCA = Principal Component Analysis; PCR = Principal 
Component Regression; PLS = Partial Least Squares or Projected Latent Structures; SCD = 
Single Class Discrimination; SI MCA = Soft Independent Modeling of Class Analogy (Siinil;irity, 
Chemistry and Analogy); SMA = Spectral Map Analysis. 

1.3 The Hansch Approach 

In the early 1960s, Hansch and co-workers systematically investigated ways of 
expressing the relationships between structural and physico-chemical properties and 
activities quantitatively. The traditional QSAR paradigm is often formulatcd as 
shown in Eq. (1). More recently, due to the confusion surrounding the term QSAR, 
Hansch has referred to the science of chemical t) biological interactions as the 
“unnamed science” [28]. Since it is evident that a biological effect seldom depcnds 
on just one factor, methods have been explored to investigate this rnultidimcnsional 
problem. The first volume of the present series explains the Hansch approach and 
related techniques in much more detail [7]. It should be emphasized that Hansch 
analysis is a method, in which the factors which influence biological activity arc 
rationalized, and should not be considered too much as a predictive method, since 
usually only a limited parameter space is covered. 

The first QSAR equations were based on  the observation that partition cocfficicnts, 
as expressed by log P values, are to some extent, correlated to certain biological 
endpoints. In most cases, this relationship appears not to be linear, but displays an 
optimum value. The parabolic model of Fujita-Hansch [4] (Eq. (3)) and the bilinear 
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model of Kubinyi [7] (Eq. (4)) describe this empirical observation: 

log 1/C = a(log P )  + h 

log 1/c = u(l0g P)2 + h(log P )  + c 

(2) 

(3) 

log 1/c = u(l0g P )  - h(1og ( p P  + 1)) + c (4) 

where C is the molar concentration that produces a certain effect, P is often the 
l-octanol/water partition coefficient, and a, h, c and are regression coefficients. 
The bilinear model of Kubinyi and the parabolic Hansch model are related and 
may be derived from the partitioning of simple two- or three-phase solvent systems 
[29]. The Hansch model is most applicable to complex in aivo systems, where a drug 
has several barriers to cross to reach its target. In less complex systems, e.g. cell 
cultures, in which only a few membranes must be crossed, the bilinear model best 
fits the data. Drug transport and distribution is one of the main reasons for the 
appearance of a lipophilicity descriptor in many SPC studies. The interaction of a 
ligand to its active site involves different kinds of bonding: H-bonding, ionic forces, 
van der Waals or hydrophobic, as well as dipole-dipole interactions. These may be 
parametrized to some extend in a QSAR expression. The so-called Hansch equation 
(Eq. (5)) takes into account these effects [99]: 

( 5 )  

where E ,  is Taft’s steric descriptor and o the well-known Hammett constant, reflecting 
electronic contributions. Over the years many different molecular and fragmental 
descriptors have been used in these extrathermodynamic or linear free-energy 
relationships (LFER) [30]. The traditional method for calculating a quantitative 
model in a Hansch analysis study is by multiple linear regression (MLR). The 
most frequently encountered difficulties with multiple linear regression have been 
discussed fully in Vol. 1 of this series [7]. However, to obtain suitable equations the 
following are important: 
- a ratio of compounds to variables greater than five, 
- a minimal intercorrelation among the variables in the final equation. 

The quality of a MLR can also be judged by looking at the standard error of 
the regression coefficients. Some regression programs produce standard deviations, 
while others give 95% confidence intervals. One should be aware that the latter are 
out by about a factor of two. Another often misused statistical criterion when 
comparing two equations, is the correlation coefficient. A statement such as 
“Equation A ( r  = 0.956) is better than Equation B ( r  = 0.918)” should be treated 
with caution and a sequential or partial F-test should be performed to justify 
statements of this kind. 

Another pitfall is the use of regression coefficients to discuss the relative 
contribution of a descriptor to the measured activities. This can only be done after 
normalizing the equation, i.e. eliminating the constant term [3 13. 

A modern alternative to MLR is partial least squares regression in latent 
variables (PLS) in combination with cross-validation (see Chaps. 4.4, 5.1 and 5.2) 

log 1/C = u(l0g P)2  + h(log P )  + c E ,  + do + e 
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[32, 1001. Although this method is believed to be very robust, some difficulties should 
not be overlooked [7, 33, and Chap. 5.21. In this relatively new statistical method, 
latent variables or components are extracted from the descriptor variables, which 
have predictive capability for dependent variables. PLS works for smaller data sets 
with many descriptors and can treat a set of multivariate biological activities. New 
faster algorithms have been developed for larger data sets [34], which have, however, 
been criticized (see Chap. 5.2). PLS is an important component in 3D QSAR or 
comparative molecular field analysis (CoMFA) [35] (see Vol. 3 [97]). PLS is also 
widely used to solve the problems of analytical calibration and for optimization in 
organic synthesis [36]. Interesting alternatives to cross-validation have also been 
considered [37]. 

Further alternatives to deriving Hansch-type QSARs are techniques such as 
principal component regression (PCR) (see Chap. 4.1) and stochastic regression 
analysis [38]. 

1.4 Modern Chemometric Approaches 
in Molecular Design 

Biological activities seldom depend on just one or two chemical properties, and 
subsequently, a complex matrix of data must often be analyzed. Biological data can 
vary from just mere simple affinity data (ZC50 values) to complex in vivo data, 
reflecting only the activity or inactivity of a compound. The selection of the 
appropriate method for handling such data is extremely important if any useful 
conclusive results are to be obtained. 

The present volume first describes molecular concepts and the most important 
descriptors. More information on chemical descriptors can be found in the series 
“Methods and Principles in Medicinal Chemistry” (1993) [7]. Every good chemistry 
experiment, including the synthesis of biologically active compounds, should begin 
with a good experimental design. The design of a series of compounds is based on 
synthetic feasibility, chemical intuition, time and availability of chemicals. A number 
of strategies have been described to make more rational choices in synthesis planning 
[41-431. These are presented in Sect. 3. 

The remainder of this volume describes methods that analyze biological and 
chemical data, either separately or the correlations between them (see Fig. 4). Based 
on the methods already developed, new compounds may be designed, or insight 
obtained into molecular mechanisms. Therefore, the validation of such methods 
(Chap. 5.1) and the choice of appropriate methods (Chap. 5.2) are important subjects 
to discuss. 

In drug research today, many disciplines are working closely together. Computer- 
assisted data handling, including operations such as data retrieval from 2D and 3D 
chemical databases, pharmacophore generation, molecular modeling, and struc- 
ture-property correlations (quantitative structure - activity relationships) have be- 
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1.2 ...... I 1.2 ....... J 

biologlcai data 

training set 

lest set 
_ _ _ _ _ _ _ _ - _ _ _ -  

correlation - ~ 

chemical data 

training set 

test set 

a 
classification 

a 
classification 

Figure 4. Biological and chemical data tables. Part of the data is used to build ;I modcl (Tor one 
or more classes) and another part a test set. Biological and chemical data  can be LIWI scparatel! 
or in conjunction to classify compounds. Correlations bctwecn biological and chcmical data can 
also be ascertained. 

come an integral part of the work of the medicinal chemist [44-461. The present 
book gives an overview of some of the current methods and illustrates how modern 
chemoinetric techniques can be used in the design of biologically active new chemical 
entities. 

In forthcoming volumes of this series, other computer-assisted medicinal chemistry 
techniques, such as molecular modeling and structure-based design, will be covered. 
The increasing importance of 3D data handling and its use in establishing 3D QSAR, 
is presented in the next volume ofthis series [97,35]. With the advent of combinatorial 
chemistry to improve molcular diversity and the chances of lead discoveries, these 
methods will become all the more important. Hence, concepts of molecular similarity 
and dissimilarity [39,40] are also dealt with in Vol. 3 of the present series “Methods 
and Principles in Medicinal Chemistry” (1994) [97]. 

1.5 Software 

1.5.1 General Statistical Packages 

One of the most difficult tasks for the medicinal chemist is the interpretation of 
biological test results and how the rest results correlate with the chemical data. The 
choice of appropriate software tools to achieve this, is a prerequisite for extracting 
all the available information from the data. Although seemingly trivial, simple 2D 
scatter plots of either biological or chemical data arc still highly informative, as was 
recently illustrated in an optimization study of antibacterial agents [47]. Similarly, 
plots of biological data against any of the collated chemical descriptors are most 
useful, particularly when a color-coding can be employed. Many PC-based programs 
are in fact suitable for this, and we would like to mention SYSTAT [95]. SPSS/PC’ 
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Table 1. Statistical packages lor structure - property correlation studies 

Program Hardware Proprietor 

BMDP 
BMDP New System 
EXCEL 
GENSTAT 
GRAFTOOL 
JMP 
MACSPIN 
MINITAB 
MULTISTAT 
NCSS 
PARVUS 
P-STAT 
QUATTRO-PRO 
RS/1 
SAS 
SIGMAPLOT 
SPSS 
SPSSIPC + 

STATA 
STATISTICA 
STATGRAPH ICS 
SYSTAT 

Mainframe 
PC 
PC, Macintosh 
Mainframe, workstation, PC 
PC 
Macintosh 
Macintosh 

M a c h  t os h 

PC 

PC 
VAX, workstation, PC  
Mainframe, workstation, PC 
PC 
Mainframe, workstation 
PC 

DOS, Windos, Macintosh 
PC 
Windows, Macintosh 

BMDP [56] 
BMDP [S6] 
Microsoft 
Numerical Algorithms Group [63] 
3-D Visions [6S] 
SAS Institutc [67, 841 
D2-Softwarc [68] 

Biosort [71] 

Elsevier [73] 

Borland 
BBN [83] 
SAS Insitutc [84] 
Jandel Scientific [85] 
SPSS [87] 
SPSS [87] 

Statsort [891 

Systat [9S] 

[87] and STATGRAPHICS [92]. One special feature of some these programs is real- 
time rotation of 3D plots, using e.g. three independent variables or three components 
from a principal components analysis. This is available in, e.g. MACSpin [68], J M P  
[67] and SYSTAT [95]. Table 1 gives a selection of the available statistical data 
modeling packages. A further selection can be found in the literature [48, 981. In 
most SPC and QSAR studies, the first step in looking at data using statistical 
approaches involves traditional Hansch analysis using multiple linear regression 
(MLR), or modern partial least squares (PLS) modeling. Multiple regression is 
available in any statistical package, but unfortunately this is not the case for PLS 
modeling. Some packages include a programming language which can be used to 
write macros that can perform the operations required for PLS analysis. The dangers 
of using incorrectly programmed PLS and cross-validation algorithms are discussed 
in Chap. 5.2. However, a more specialized and validated software program (see 
below) is preferred in most cases. 

1.5.2 Specialized Software for SPC Studies 

The statistical packages discussed previously have been developed for general- 
purpose statistics and, course, are very useful for most of the analyzes described in 
this book. However, since many of our chemists are neither trained in statistics, 
nor in the use of sophisticated statistical packages, it is advizable to have a look 
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Table 2. Specialized SPC software 

Program Hardware Proprietor 

ADAPT 
APEX 
ARTHUR 
ASP 
CATALYST 
CERIUS2 
CHEMX 
CLOGP 
CLUSTAN 
C-QSAR 
GOLPE 
HYPERCHEM 

PCM ODELS 
PIROUETTE 
POLARIS 
PROLOGP 
QSAR 

RECEPTOR 
SIMCA 

SY BY L-QSAR 
TSAR 
UNSCRAMBLER 

MOLCONN-X 

QSAR-PC 

SYBY L-CoMFA 

Vax 
Workstation 
Mainframe 
Workstation 
Workstation 
Workstation 
Workstation 
Vax 
Vax 
Vax 
Unix 
PC, workstation 
Vax 
Vax, workstation 
PC 
Workstation 
PC 
Vax 
PC 
Workstat ion 
Vax, PC, workstation 
Workstation 
Workstation 
Workstation 
PC 

Prof. P. C. Jurs [51] 
Biosyin [52] 
lnformctrix [53] 
O M L  [54] 
BioCad [57] 
MSI [76] 
CDL [SS]  
BioByte [59] 
[601 
BioByte [hl] 
Tripos & MIA [64] 
Autodesk [66] 
Hall Associates Consulting [70] 
Daylight CIS [74] 
Informetrix (751 
Molecular Simulations [76] 
Conipudrug Chemistry [77] 
BioByte [XO] 
Biosoft [ X I ]  
MSI [82] 
Umetri [86] 
Tripos [93] 
Tripos (941 
O M L  [91] 
C A M 0  [96] 

at some of the software products, which are more specialized in molecular design. 
A list of these products, which are currently on the market, is given in Table 2. 
Reviews of new products appear twice a year in the Newsletter of the EFMC 
(European Federation for Medicinal Chemistry) [49J and the International QSAR 
Society [50]. In particular, those products which offer molecular display, statistical 
and graphical tools, such as TSAR [91], are potentially very useful and would be 
of considerable interest to any medicinal chemist. Since these products are produced 
by rather small companies, most of them still give rise to problems as regards to 
their conceptual basis and implementation, and care must be taken when using 
them. Various other programs are mentioned in the present volume under specific 
topics, as well as in Vol. 3 of the present series “Methods and Principles in Medicinal 
Chemistry” (1994) [97]. 
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2 Molecular Concepts 

2.1 Representations of Molecules 

Peter C. Jurr, Stewn L. Dixon, Lecinne M .  Egolf 

Abbreviations 

BA 
CPSA 
HMO 
MO 
NATOMS 
NOCC 
QSAR 
RP-HPLC 

Symbols 

B ,  
B5 

c, [CI 
EHOMO 
EL",, 
E, 
F 
*F 
f YLEC 

f " C L  

K 
k 
L. 
M 
n 
P 
R 
.% 
r 
S 

SiELEC 

Biological activity 
Charged partial surface area 
Huckel molecular orbital 
Molecular orbital 
Number of atoms 
Number of occupied orbitals 
Quantitative structure-activity relationship 
Reversed-phase high performance liquid chromatography 

Substituent length parameter measured along attachment bond axis 
Substituent length parameter measured perpendicular to attachment 
bond 
Molar concentration 
Energy of the highest occupied molecular orbital 
Energy of the lowest unoccupied molecular orbital 
Tafts steric substituent parameter 
Dewar and Grisdale field substituent constant 
Swain and Lupton field substituent constant 
Electrophilic frontier orbital density for atom, i 
Nucleophilic frontier orbital density for atom, i 
Equilibrium constant 
Rate constant; capacity factor 
Substituent length parameter measured along attachment bond axis 
Dewar and Grisdale mesomeric substituent constant 
Number of observations in a statistical correlation 
Octanol/water partition coefficient 
Original Randii- molecular connectivity index 
Swain and Lupton resonance substituent constant 
Statistical correlation coefficient; van der Waals radius 
Standard deviation of regression 
Electrophilic superdelocalizability for atom, i 



Nucleophilic superdelocalizability for atom, i 
Kappa shape index for paths of length, n 
Kappa shapc index corrected for atom type 
Charton steric constant 
Charton energy-corrected steric constant 
Hydrophobic substitucnt constant 
Hammctt reaction constant 
Path-n molecular connectivity index 
Valence-correctcd molecular connectivity index 
Hammett electronic substituent constant 
Normalized electronic substituent constant 
Exalted substituent constant for electron-withdrawing groups 
Exalted substituent constant for electron-releasing groups 
Taft inductive substituent constant 
Taft and Lewis fundamental inductivc substituent constant 
Hammett constant for rwtu substituents 
Hammett constant for puru substituents 
Taft and Lewis fundamental resonance substitilent constant 

Introduction 

The 
of a 
rela1 

objective of a QSAR study is to develop a relationship between thc structures 
set of compounds and the biological activity (BA) of interest [ I ] .  Such a 

ionship can be codified as follows: 

BA = f'(molecu1ar structure) = j'(descriptors) ( 1 )  

The nature of the descriptors used, and the extent to which they encode the 
structural features of the molecules that are related to the biological activity, is a 
crucial part of any QSAR study. The descriptors may be physico-chemical 
parameters (hydrophobic, steric or electronic), structural descriptors (frequcncy of 
occurrence of a substructure), topological (connectivity index), clcctroiiic (from a 
molccular orbital calculation), geometric (from a molecular surface area calculation). 
or they may be one of the hundreds of other descriptors, which have been proposed 
by researchers in this area. 

The first studies in QSAR used an approach derived from physical organic 
chemistry and variations of the Hammctt equation. This was soon followed by 
factorizing the interactions into three contributions-electronic, steric, and hydro- 
phobic interations. The QSAR relationship, thus, became, 

( 2 )  

where C is the molar concentration of a compound producing a standard response, 
denotes electronic interations, E ,  is the Taft steric substitucnt constant or a 

variation thereof and 71 is the hydrophobic substituent parameter. In  cach case. 
these substituent parameters are defined only for compounds in a homologous series. 

log (1/C) = f(0, E,, 



The availability of substantial computational power has led more recently to the 
development of many sophisticated computed descriptors. Many of them follow the 
same reasoning as regards to the partitioning of molecular features into electronic, 
steric, and hydrophobic interactions. Descriptors introduced more recently, however, 
use other interpretations of molecular structure. For example, molecular connectivity 
indices and other topological indices depict molecules as graphs and use a graph 
theoretical approach to descriptor development. On the other hand, descriptors 
derived from the solvent accessible surface area depict the molecule as a collcctioii 
of overlapping spherical atoms. 

In this chapter, we will be discussing a variety of molecular representations that 
have been developed. First, we will introduce the basic concepts and point to the 
literature where necessary for further details. I t  should be emphasized that many 
authors have developed descriptors which are suited for particular problems, such 
as in QSAR studies, but which are also suitable in other types of investigations (c.g. 
structure-property studies, studies of chromatographic retention time as a function 
of structure). Reports of these investigations are scattered throughout the literature, 
and no attempt shall be made here to gather information about every descriptor 
reported to date. 

2.1.2 Substituent Constants 

QSAR grew out of physical organic chemistry studies on how differential reaction 
rates of chemical reactions depend on the differences in molecular structure. 
Characterizations of these differences in structure, which are due to the substitution 
of functional groups on to a fixed core structure, led to the development of suh.s/i/iiciit 
constants. It was not until with the appropriate substituent constants, encoding the 
electronic, hydrophobic, and steric aspects of a series of compounds, that QSARs 
could be developed for understanding structure-activity relationships. 

2.1.2.1 Electronic Substituent Constants 

Electronic substituent constants were as a direct result of the empirical observation 
made from certain chemical systems that substituents have the same relative effects 
on the rates of reaction equilibria, regardless of which reaction was being studied. 
The most significant breakthrough in this area occurred in 1937, when Hammett 
[2] proposed the, now famous, Hammett equation for the rate constants and 
equilibrium constants of reactions of meta- and para-substituted benzoic acid 
derivatives: 

( 3 )  

(4) 

The constants, k, and K O ,  refer to the unsubstituted compound, while k and K refer 
to a mrfa- or puvu-substituted version. The substituent constant, 0, reflects the inherent 

log k = log k ,  + ~g 
log K = log K O  + eo 
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polar effect a given substituent has, on the rate or  equilibrium of a reaction, relative 
to hydrogen. This effect is, in principle, independent of the reaction. The reaction 
constant, Q, depends on the nature and experimental conditions of the reaction under 
consideration and measures the sensitivity of the process to polar effects exerted by 
substituents. The reference reaction chosen for determining cr values was the aqueous 
dissociation of benzoic acids at 25 ’C, where Q was defined to be unity. 

A remarkably wide range of data involving benzene dcrivatives [3] has been 
successfully correlated according to the Hammett equation, using a single set of 
substituent constants, on, and o,,, for meta- and para-substitution, respectively. There 
are many instances, however, when Eqs. (3) and (4) break down. These deficiencies 
have led to the development of several alternative substituent constant scales. 

The first and most obvious limitation of the Hammett equation is that it does 
not hold, in general, for or1 ho substituents. This so-called “ortlzo effect“ was identified 
by Ingold [4] as being steric in nature. Based on Ingold’s hypothesis, Taft [5]  proposed 
a quantitative measure for separating the inductive influence of a substituent from 
its steric effect. The substituent constant cr* was based on the rates of acid- and 
base-catalyzed hydrolysis of esters of the form X-CH, -COOR: 

O* = (1/2.48) [log (k/kO)13ASF - log (k/kO)ACID1 ( 5 )  

where X = H for k,. Taft argued that cr* should measure only the inductive influence 
of a substituent for two reasons: 1) the steric and resonance effects should essentially 
be the same in acidic and alkaline hydrolysis, and 2) the inductivc component in 
log (k/kO)ACID should be much smaller than in log (k/kO)RASF, because the Q values 
for the acidic hydrolysis of esters are much smaller than for alkaline hydrolysis. 
The factor 2.48 corresponds to the alkaline hydrolysis Q value and, thus, puts o* 
on the same scale as the Hammett om and crp values. 

Discrepancies in the Hammett equation were also noted in the ionization of 
phenols and anilines, when a strongly electron-withdrawing group such as -NO2 
was present in the para position. The most widely accepted explanation for this, is 
that the substituent receives electron density via “cross-conjugation” [6] or “through 
resonance”, [7] and that this phenomenon is more important in the base, e.g. 
p-nitrophenoxide ion, than in the corresponding acid, as illustrated in Fig. 1. The 
increased stability of the base would then account for the unusually high acidities 
of p-nitrophenol and p-nitroanilinium ion. Studies of such systems have provided 
a set ofexalted constants o- which may be used in favor of cr,, when cross-conjugation 
with an electron-withdrawing substituent occurs [S]. 

Figure 1. Thc rcsonance structures of p-nitrophcnoxide ion and p-nitrophcnol. 



Figure 2. Illustration of thc stabilization of an intcrrnediate carbocation by the incthoxy group. 

In analogy to the 6 constants for electron-withdrawing groups, Brown and 
coworkers [9] developed a set of substituent constants u' for groups that release 
electron density via resonance. The reaction selected for defining 6' was the SNi 
solvolysis of t-cumyl chlorides in 90% aqueous acetone at 25 ' C. Electron-releasing 
substituents such as -OCH, speed up the reaction by stabilizing the intermediate 
carbocation, as illustrated in Fig. 2. As with the gp constants, (T' may be uscd i n  
place of cP for electron-releasing groups. 

While the (T- and (T' scales enabled the correlation of a broader set of data using 
the Hammett equation, the use of these exalted constants did not address the 
fundamental issue of how to account for resonance effects in general. Taft [lo] 
showed that part of the problem stemmed from the fact that cross-conjugation was 
an important factor, even in the reference benzoic acid system. Although it was 
previously believed that cross-conjugation was of equal significance in benzoic acids 
and the corresponding benzoate ions, there was increasing evidence [l 11 that the 
effect was more important in the acid when groups such as -OCH, were present, 
as illustrated in Fig. 3. The implication was that the Hammett gP constants were 
biased from the beginning for certain electron-releasing substituents. To test this 
hypothesis, Taft [ 101 studied the ionization of vlzeta/puru-substituted phenylacetic 
and 3-phenylpropionic acids and the akaline hydrolysis of metalpara-substituted 
ethyl phenylacetates and benzylacetates. In all cases, the reaction center was insulated 
from the ring by one or two inethylene units, which, as Taft argued, should minimize 
any cross-conjugation effects. The mefa-substituted systems were used to determine 
the appropriate reaction constants Q, and these, in turn, were used to find the 
normalized substituent constants, oo, for para substituents. The (T" values indicated 
that groups such as -N(CH,),, -NH,, and - OCH, had much less of an influence 
in these systems than in the corresponding paru-substituted benzoic acids. This 
helped to confirm that cross-conjugation was a significant component of the 
Hammett constants, (T,, for these substituents. 

Figure 3. Illustration of cross-conjugation of the benzoate ion and the corrcsponding bcnzoic acid. 
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The proliferation of substituent constant scales increased the widespread desire 
to break down the effect of a substituent into the fundamental components of 
induction and resonance. Taft and Lewis [12,13] proposed the following relationships 
for the original Hammett constants: 

The inductive contribution oI was a scaled version of Taft's B* parameter [5] ,  and 
a was a transmission coefficient for the resonance parameter, uR. Taft and Lewis 
suggested that the model could be used to determine whether deviations from the 
basic equations; Eqs. (6) and (7), were due to a breakdown in  the applicability of 
the inductive scale, the resonance scale, or both. 

Dewar and Grisdale [14] proposed that a molecule's structure be incorporated 
into a field and mesomeric representation of the substituent constant: 

The electrostatic field term was dependent on the inverse distance, I/r,], between 
the point of attachment, i, of the substituent and the point of attachment j ,  of the 
reaction center. The mesomeric term utilized the formal charge, q,,, which arose at 
po in t j  due to the attachment of a -CHF group at point i. Dewar and coworkers 
[15] later modified the scheme to allow for a mesomeric field effect which had 
originally been ignored. 

Swain and Lupton [16] showed that many of the previous substituent scales could 
be accurately represented according to the following equation: 

In deriving the field and substituent constant, 3, they assumed that the d scale for 
the dissociation of 4-substituted bicyelo[2.2.2]octane-l-carboxylic acids [ 171 could 
be written as a linear combination of the Hammett on, and up constants, and that 
CT' contained no resonance component, i.e., 

The constants, ci and b, were determined by a least-squared fitting procedure for 
14 different substituents. This alowed .F to be calculated for any substituent, for 
which cr, and op were known. In order to determine the resonance constant, .R. 
Swain and Lupton assumed that oP for the substituent -@N(CH,),  had no 
resonance Component and solved Eq. (9) for j :  By setting r equal to unity for the 
CT,, series, the .?A values for a large number of substituents were computed. With 3 
and %? defined for each substituent, the various (T scales were regressed against these 
constants to obtain appropriate values for ,f and r .  From .f' and r ,  the percent field 
and resonance contributions were determined for each (T scale. 



2.1.2.2 The Hydrophobic Substituent Constant, n 

When working with a set of derivatives, the hydrophobicity of the compounds i n  
the series can be represented on a relative scale with the hydrophobic substitucnt 
constant, .n [18, 191. The value for the substituent X is then defined as follows: 

where f R ,  is the partition coefficient of the derivative, and P R H  is the partition 
coefficient of the parent compound. The variable n, expresses the variation in 
lipophilicity, which results when the substituent X replaces H in RH.  For example, 
the value for the chloro substituent, ncl, is the differencc between the partition 
coefficient for chlorobenzene and that of benzene. When n has a positive value, the 
substituent causes the derivative to favor the lipid phase, and when n has a negative 
value the derivative is more hydrophilic than thc parent compound. 

This equation can be reversed to allow the calculation of log P values for 
derivatives, given the log P for the parent compound and n values for the substituents 
of interest. Thus, log P for chlorotoluene is calculated as follows: 

The measured value of log P for chlorotoluene is 3.33, and thus, the agreement is 
good. When multiple substituents are present, simple additivity can fail due to 
interactions which must be taken into account in such circumstances. Compendia 
of n values are available in the literature [e.g. 20, 211. 

2.1.2.3 Partition Coefficient - Log P 

The relative affinity of a drug molecule for an aqueous or lipid medium is an 
important correlate of drug activity due to absorption, transport, and partitioning 
phenomena. The most widely used molecular structure descriptor to cncode this 
property is the logarithm of the partition coefficient, P, betwecn 1-octanol and watcr: 

where in this model [C]l.oLtdnol is the concentration of a solutc in the lipid phase, 
I-octanol, and [CIaqueoua is the concentration of the solute in the aqueous phasc [21]. 
Compounds for which P > 1 are lipophilic or hydrophobic, and compounds for 
which P < 1 are hydrophilic. 

Log P has been shown to be highly correlated with a diversity of biological 
activities, including drug activity, toxicity, pesticidal activity, genotoxic activity, and 
others. It is evident that log P ,  as an operational definition of lipophilicity or 
hydrophobic bonding, plays a significant role in the interactions between drugs and 
their receptors. The lipophilic character of drugs is also an important factor in drug 
metabolism. In addition, the absorption, distribution, and excretion of tnany classes 
of drugs have been shown to be dependent on log P. 
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The organic phase used most frequently for determining log P is I-octanol. Studies 
have shown that i t  is a good compromise as regards to solvent properties, and most 
measurements and compilations of values have now been made with this lipid phase 
being used. Other lipid phases are also used, but less often. 

Log P values have been measured by two main methods: the "shake-flask" method 
and liquid chromatographic methods. The shake-flask method involves the distribu- 
tion of a compound between an aqueous phase and organic phase, and once 
equilibrium has been attained, measuring the concentrations of the compound in 
the two phases. The values obtained depend on a number of experimental factors, 
including the pH and ionic strength of the aqueous phase, the nature of the buffer 
used, the purity of the organic phase, purity and stability of the drug compound, 
solute concentration, temperature, stirring, the analytical method used to determine 
the equilibrium concentrations, as well as other factors. 

Reversed-phase high performance liquid chromatography (RP-HPLC) is now the 
method of choice for measuring log P. This method has been reviewed [22] and 
yields log k ,  which is a capacity factor, calculated as follows: 

(14) 

where t ,  and to are the retention times of the drug compound and a non-retained 
compound, respectively. A lipophilic stationary phase is used, such as an inert 
support coated with l-octanol or alkylsilylated silicas. The mobile phase consists 
of a buffered aqueous phase and an organic modifier such as methanol, acetonitrile, 
or acetone. Extensive studies on these systems have general many papers discussing 
the applicability of the method. The RP-HPLC method has many advantages over 
the shake-flask method, including greater accuracy and precision, a wider range of 
applicability, decreased dependence on impurities, speed, and only small amounts 
of the drug compound are required. 

Measured log P values have been evaluated and gathered into a database now 
containing more than 40000 log P values which have been measured in more than 
300 solvent systems. The database contains more than 18000 log P values measured 
with the octanol/water system. A subset of 8 162 selected values is called the Starlist. 
The entire database will be published soon [23] and is part of the Pomona College 
MedChem project. 

There have been a number of methods, including substituent additivity, developed 
for the calculation of log P from molecular structure, fragments, atomic contributions 
and/or surface area, molecular properties, and solvatochromic parameters [24]. The 
first general method for the calculation of log P was proposed by Rekker and Nys 
[25] in 1973. In this method, after summing fragment constants for the molecule in 
question, any necessary correction factors for intramolecular interactions between 
the fragments, such as electronic, steric, or hydrogen-bonding effects, were added. 

This fragment addition method led to the method which now is the mostly widely 
used and which was developed by Leo and Hansch [21, 23, 241. Here, the log P of 
a compound is computed by summing over the contributions for the fragments and 
then applying a number of correction factors as needed. 

k = ( tn  ~ to)/to 

IogP = X U ~ J  + b j F j  (15) 
I .i 



where f ,  are fragment constants and F ,  are correction factors. The solute structure 
is broken down into a series of fragments which are separated by isolating carbon 
atoms according to a set of rules. An isolated carbon is a carbon that is not doubly 
or triply bonded to a heteroatom. The groups of atoms that remain are polar 
fragments. The contribution for each fragment, jL, multiplied by the occurrence of 
that fragment, is added accumulatively. This sum is then corrected for a number of 
factors according to solvent theory. Each correction factor has an associated value, 
F,, and this is multiplied by the number of instances of the correction in the structure, 
b,. Correction factors include those due to molecular flexibility, branching, polar 
fragment interaction factors, ortho effects, and aromatic interactions [2 1, 241. 

This fragment additivity method has been implemented in a commercially 
available software package named CLOGP, which currently exists in version three 
as CLOGP-3. The only input needed to the program is a structural represcntation 
of the compound. A description of the current status of the software, its limitations, 
and planned enhancements has appeared recently in the literature [24]. 

2.1.2.4 Steric Substituent Constants 

In a homologous series of compounds, the different biological activity for the 
compounds is often related to the size of the substituents. Bulky substituents can 
interfere with the intermolecular reactions, which lead to drug activity. The 
quantitative encoding of the steric aspect of drug structure has been accomplished 
by a series of steric substituent constants. 

Tuft’s Stcric Parmnetcr, E, 

The first steric parameter, E,, was developed by Taft [5] and describes the 
intramolecular steric effects on the rate of reaction. Acid-catalyzed ester hydrolysis 
was used to derive the following relationship: 

E s  = log (kR/kMc)A (16) 

where k, and kMe are the acid-catalyzed rate constants of hydrolysis for the 
compounds RCOOR’ and MECOOR’. This equation assumes that there is no 
inductive or resonance contribution and that E ,  is dependent of the medium in 
which the rate constants are measured. By definition, E,  = 0 for the methyl group. 
Tables of E ,  values have been published [e.g., 261. 

Bulkier substituents usually generate negative values for E,. The E ,  parameter is 
correlated with the van der Waals radii of the substituent’s atoms and is also related 
to electronic contributions. 

Although these E ,  parameters were derived for physical organic chemistry, they 
have also been extensively applied to biological activity problems with success and 
form one of the traditional substituent constant parameters for QSARs. 

Charton’s Steric Constant, v 

Efforts to bypass the uncertainties and limitations which accompany the Taft method 
led to new research in the area. Charton, for example, observed that the E ,  parameter 
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closely paralleled group radii [26, 271. Hence, he developed a new sct of steric 
measures, termed v values, which have the following form, 

(17) 
where r is the van der Waals radius of the symmetrical substitucnt (e.g. F, C1, 
-CH,, -CBr,, -t-C,H,) and 1.20 is the radius (in Angstroms) of hydrogen, the 
standard [28]. In order to incorporate the effects which were as a result of the 
conformation which, in turn, were dependent on energetic factors, a modified 
parameter, the effective steric value, GIcff ,  was later introduccd [20,29]. This parameter 
takes into account both the log(k,),, as above, as well as the original \! value 
corresponding to the minimum substituent radius. This results i n  a scale of steric 
measures which essentially is energy-corrected and is, thus, independent of the 
medium. Charton has published veff values for more than 300 substituents [30]. 
Hansch and Leo [20] illustrated the wide diversity of substituent types, which can 
be characterized as a whole, while also demonstrating the relationship between 
Taft’s E,  constant and Charton’s veff  by the following correlation. 

1’x = Tvx - r,,H = r,x - 1.20 

E ,  = - 2.062\3,[f - 0.1 94 

IZ = 104 r = 0.978 s = 0.250 (18) 
The fact that there is no obvious structural explanation as to why several 

substituents deviate significantly from the majority of substituents i n  the data set, 
indicates that much is still unknown about the representation of the stcric nature 
of molecules. 

STE R I M O  L Paranzctcrs 

In an atempt to go beyond the Taft parameters, which were designed for simple 
homogeneous organic reactions, Verloop and coworkers [3  1 ,  321 designcd a 
multiparametric method for characterizing the steric features of substituents in more 
complex biological systems. With their computer program STERIMOL [32], 
covalent and van der Waals radii, along with standard bond angles and lengths, 
are used to build chemically feasible three-dimensional models of molecular 
substituents. From these models, the spatial requirements of any type of end group 
can be effectively represented by distance-based measures. 

The substituent to be described is represented by the van der Waals radii of the 
atoms, forming the group, by standard bond lengths and angles and by reasonable 
conformations derived from molecular mechanics. In the original approach [3 11, 
five directions were used to represent the shape of the substituent. In  a later variation 
[33], just three are used, L, B ,  and B,. The length parameter, L, is defincd as the 
length of the substituent measured along the axis of the bond that joins the substituent 
to the parent molecule. B ,  is the smallest distance from the axis of the attachment 
bond, measured perpendicularly to the edge of the substituent. B, is the maximum 
width of the substituent and has no directional relationship with B , .  The ratios 
LIB, and B J B ,  are useful measures of the relative deviations of the substituent’s 
shape from a sphere. The B ,  parameter has been shown to be highly correlated 
with Taft’s E, parameter as well as Charton’s I’,,.,. parametcr. 



A table with more than 100 values for L, B , ,  and B ,  has been published [26]. 
The successful application of these parameters, alone or in combination with othcr 
physico-chemical descriptors has been illustrated by examples in a review by Fujita 
and Iwamura [34] as well as in a number of additional studies, where the interactions 
between various ligands and biomolecules were explored [26]. 

2.1.3 Whole Molecule Representations 

Developments in computer methods for structural representation and manipulation 
ofchemical structures have led to the generation of a host of methods for representing 
entire molecular structures. Many of the whole molecule descriptors are extensions 
of the substituent constant approach, but many of them are also completely new 
approaches to the problem of representing whole molecules. 

Descriptors, based on the connection table for a molecule, are topological in 
nature, and their values are independent of a three-dimensional conformation. These 
descriptors can be counts of the substructures present in the molecules being 
encoded, or they can be calculated topological indices that attempt to encode thc 
size, shape, or branching in the compound by manipulation of graph-theoretical 
aspects of the structures. 

In contrast to the topological descriptors, descriptors which are derived from a 
three-dimensional conformation of the molecule are dependent on the exact 
conformation chosen and, therefore, on the molecular modeling program employed. 
There are now many commercial molecular modeling programs available, and 
many of them have the capability of producing descriptors from the molecular 
models they develop. Since conformational analysis often requires the calculation 
of atomic charges, these programs can also produce electronic descriptors. 

2.1.3.1 Topological Descriptions 

The basic information about the structure of an organic compound is contained in 
the corresponding connection table, which is a compact representation of types of 
atoms and bonds, and of the connections forming the molecule. Since the connection 
table is the usual storage medium for structures in chemical database systems, they 
are easily accessible and have been used to develop descriptors. 

Substructure-B(md Descriptors 

With the advent of chemical structure handling computer systems a convenient and 
fast substructure searching was facilitated. A byproduct of this capability is that 
compounds in QSAR studies may be represented by integers, which in turn, are 
derived from substructure counts. Encoding organic structures as numbers, which 
reflects their constituent substructures, is appealing in its simplicity and conforms 
to the organic chemistry point of view of chemical structures and the importance 
of component parts of the structure. 
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One application of substructure descriptors is as indicator variables. Indicator 
variables have been used in QSAR studies for a long titnc, since it  is easy to generate 
just one such variable. Two sets of compounds which differ from each other only 
by a substructure existing in one set but not the other can be studied as an entire 
set when using an indicator variable. This yields a model which simultaneously 
utilizes all  other independent variables and then combines the models via the 
indicator variable. Strictly speaking, such an approach should only be used when 
the two sets of compounds are identical in every respect, except for the substructure 
being coded with the indicator variable. Such a strategy has been used in many 
studies to build a model for a larger set of compounds than would otherwise have 
been possible. 

Another use of substructure-based counts is found in certain approaches in QSAR 
studies, involving a systematic examination of substructures and how they are 
related to the biological activity. Such an approach has been successfully imple- 
mented in the CASE program by Klopman and coworkers [35,  361. In this work, 
the substructural units were built up from bonded pairs of atoms to larger units 
which were called biophores and biophobes, depending on whether their presence 
correlates with the presence or absence of biological activity. The software produced 
a list of those substructural units that correlate most highly with activity and 
inactivity among the training set compounds, and then a mathematical model was 
built using these substructural units as the independent variables. Thus, the molecules 
in the training set were represented by a list of the substructural units present. 

Topological Indices 

A long-standing goal in chemistry is to represent chemical structures in numerical 
form as succintly, but as completely as possible. When molecular structures are 
represented as graphs, [37] then this quest can be equated to seeking ways in  which 
graphs can be represented as numbers. Topological itidiccs have been developed by 
chemists in pursuit of this goal [26, 381. A topological index is a numerical quantity 
that is mathematically derived in a direct and unambiguous manner from the 
structural graph of a molecule. Since isomorphic graphs possess identical values for 
any given topological index, these indices are referred to as graph invariants. 
Topological indices ordinarily encode both molecular size and shape at the same 
time. More than 50 topological indices have been presented in the literature since 
their first development. In this section we will discuss several widely wed topological 
indices and show how they have been applied to chemical problems. 

The first index based on a graph approach to molecular structure W;IS developed 
by Wiener [39] in 1947. The path number was defined as the number of bonds 
between all pairs of atoms in an acyclic molecule. Using the path number and an 
additional index, Wiener was able to fit alkane boiling points fairly well. The Wiener 
number is inversely proportional to the compactness of a molecule. In 1971 Hosoya 
[40] connected the Wiener number with graph theory, pointing out that the Wiener 
number is the half-sum of all the distance matrix entries for a molecule. 

In 1975, Randik I411 proposed a topological index that has now evolved into the 
most widely used of topological indices in chemical studies. This branching or 



connectivity index was originally defined as, 

1 
R =  C ~ (19) 

all bond? (m/l)’’2 

where the summation includes one term for each edge in the hydrogen-suppressed 
structural graph. Thus, when the graph is representing an organic molecule, there 
is one term in the summation for each bond in the structure. The variables, M and 
n, are the degrees of the adjacent modes joined by each edge. In terms of chemical 
structure, this is the number of bonds attached to each atom participating in the bond. 

Fig. 4 shows the sequence of steps for the calculation of the value for this simple 
topological index for the example molecule, 3,4-dimethylhexane. At the top of the 
figure, the molecular structure is shown as a graph with the degree of each node 
labeled. The value ‘ x  = 3.717 reflects both the size and the degree of branching of 
the structure. It is related to the size of the molecule, because when extra atoms 
and bonds are added, more terms are added to the summation, and the value 
increases. ‘x is also related to the degree of branching of the molecule, because 
when more branching occurs, the denominators for those terms become larger and 
the terms themselves become smaller, thus, decreasing the overall value for the index. 

The normal valency of a carbon atom is 4, so the valencies of the nodes in the 
hydrogen-suppressed structural graphs of simple alkanes cannot exceed 4. Therefore, 
thereare Iopossiblesetsofedges: 1-1, 1-2, 1-3, 1 -4 ,2-2 ,2-3 ,2-4 ,3-3 ,  
3 -4,4 -4. The 1 - 1 edge type occurs only in ethane, and the edges of type 1 -4 and 
2-2 each yield the same product. Thus, this branching index is based on the 
decomposition of a compound into eight different carbon-carbon bond types. Since 
the number of different bond types is limited, it follows that the branching index 
value can be the same for different molecules. For example, 3-methylheptane and 
4-methylheptane have identical values for this branching index. 

The simple branching index discussed above involves a summation over all paths 
of length 1 being treated in the graph. This viewpoint has been extended to include 
the definition of additional indices corresponding to paths of length 2, 3, or longer, 
and to other subgraphs such as clusters and path-clusters. This entire class of 

1 
3,4-dimethylhexane 

1 +1 

1 

1 1 1 1 1 +- +- +- +-+-+L 1 ‘ x  = - 
41.2 42x3 41.3 43x3 41.3 d2 ’~3  d2.1 

= ,707 + ,408 + ,577 + .333 + ,577 + ,408 + .TO7 

= 3.717 

Figure 4. 
for the example molccule 3,4-dimc- 
thylhcxanc. 

The calculation of ‘1” 
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‘l‘ablc I .  Valence delta values for carbon, nitrogen, and oxygcn in 
different bonding cnvironrnenls for use in calculating valcnce-corrccted 
rnolccular connectivity indiccs 

-CH, 1 - N H I  3 - O H  5 
-CH,- 2 > N H  4 -0- 6 
> C H -  3 = N H  4 = O  6 
=CH-  3 >N- 5 
=c< 4 = N -  5 
>c< 4 E N  5 

topological indices are commonly called molecdiir  coi i t ic~~t i i~ ir .~~  i n r l i w r  [42]. The 
original Randit branching index is referred to as the purli-I tm)lwulur c ~ ) i i t i c c / i r i t j ~  
‘ x .  The higher order indices are calculated by equations analogous to the simple 
equation for path-1 molecular connectivity. 

The following equation generates the path-2 molecular connectivity from the 
degrees of the three edges involved in the definitions of paths of length two: 

where m, n, and p are the degrees of the atoms of each path of length two. For 
3,4-dimethylhexane there are six terms in the summation for the six paths of  length 
two in the molecule. The denominator contains the following terms, ( 1  . 2 .  3)’ ’, 
(2 .  3 . 3)’12, ( 2 .  3 . 1)’ l2 ,  ( 3  . 3 . (1 . 3 . 2)’’2, and (3 . 2 .  1 ) I l 2 ,  and the overall 
value for ’x for 3,4-dimethylhexane is 2.201. 

The simplest molecular connectivity indices described in this contcxt do not allow 
for the differentiation of atom types. In order to generalize thc molecular connectivity 
indices and make them more useful for the characterization of organic molecules 
containing heteroatoms, the following enhancement has been developed. In the 
denominator of the equation, delta values were used in place of the degree of the 
node. The delfu values are defiiied as, 

6’ 1 Z’ - h (21) 

where Z’ is the number of valence electrons for the atom, and 17 is the number of 
attached hydrogens. Thus, a carbonyl oxygen has a 6’ = 6, and a nitrogen atom 
as a secondary amine has a value of (5” = 4. Table 1 provides a complete list of the 
valence delta values for carbon, nitrogen, and oxygen atoms in various bonding 
environments. 

Molecular connectivity indices calculated with these delta values are referred to 
as valencc molecular connectiuitj? indices and have the superscript v. Fig. 5 shows the 
calculation of the valence path-1 molecular connectivity index ‘1‘ for ’-(methyl- 
amino)propionic acid methyl ester (or N-methyl alanine methyl ester). 

The valence molecular connectivity index has been correlated with many 
physico-chemical properties of organic compounds. The index is easy to compute 
and is thus, more accessible than values derived from complicated experimental 
measurements. An example to demonstrate this is given by the correlation between 



2-(methylamino)propionic acid methyl ester 

HN I I 
4\  H3C 

( 7 3  1 

= 2.47 

Figure 5. The calculation of 'x' for the example molecule 2-(mcthylamino) propionic acid incthyl 
ester. 

log P and '1' for 138 simple organic compounds, including 24 esters, 9 carboxylic 
acids, 49 alcohols, 28 amines, 16 ketones, and 12 ethers [43]. The log P for a 
compound is the logarithm of the partition coefficient of the compound between 
water and I-octanol. Log P of organic compounds has been shown to be related 
to biological activity and environmental transport rates in hundreds of studies, and 
is thus, of great interest. The correlation between measured log P values and 
calculated '1" values is illustrated graphically in Fig. 6. The equation for the best fit: 

log P = 0.95'1" - 1.48 

IZ = 138 F = 0.986 s = 0.152 

Thus, molecular connectivity indices can be used to encode information about 
molecular structures that are also represented by experimentally measured quantities. 
The molecular connectivity indices are the most widely used of topological indices 
for quantitative structure-activity relationship and quantitative structure-property 
relationship studies. Kier and Hall [42] include a list of 158 references for examples, 
in which molecular connectivity played a prominent role. A recent paper rcports 
the availability of software for calculating molecular connectivity indices using a 
microcomputer [44]. 

Kappa Indiws 

A series of graph theoretical indices have been develped by Kier, which relatc to 
the molecular shape of a molecule [45 ~ 471. The method is based on graph theory 
and is not dependent on molecular geometry. In its simplest form, the shape 
calculations weight all non-hydrogen atoms and bonds equally. Other forms use 
atom and bond type information. In all cases, hydrogen atoms are not treated 
explicitly. 
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Kappa indexes are calculated relative to the least branched (linear) and most 
branched (star) compounds with the same number of atoms a s  the molecule 
beinginvestigated. The equation for 2 x  illustrates this, 

2 x  = 2(2Pn1ax)  (2Pni i t i ) / (2Pi )2  ( 2 3 )  

where 2 x  is the shape index based on paths of length 2, 'P,,,,, is thc maximum 
number of 2 bond fragments possible with the number of atoms in a molecule, i, 
2P,in is the minimum number of 2 bond fragments possible with the number of 
atoms in a molecule, i, and 2Pi is the number of 2 bond fragments in a molecule, i. 

The equations for 'x and 3x are similar: 

= 2 ( ' P r n a x )  (iPrniti)/(1pi)2 (24) 

x = 2(3Prn,,) (3Pmi, l ) / (3f i )2  ( 2 5 )  3 

The atom type may be accounted for by using a corrective term, SI, that is derived 
from the covalent radius of an atom relative to the radius of an sp3 carbon. Using 



atom type corrections the equation for is as follows: 

’x, = ( A  + M - 1) ( A  + a - 2)2/(’Pi + a)’ (26) 
where A is the number of atoms in a molecule, i, and ( A  - 1 )  ( A  ~ 2)’ = 

2(2Pmax)(2Pmin). For a straight chain graph: ’xZ = ’x + M .  

2.1.3.2 Electronic Whole Molecule Descriptors 

A large variety of electronic whole molecule descriptors have been used to encodc 
electronic features in QSAR and QSPR investigations. These descriptors are 
distinguished from electronic substituent constants in that a single value is asigned 
for a given compound. These values range from experimental to semi-empirical and 
to quantum mechanical values, and may encode either general features of the entirc 
molecule or local features of a specific site in the molecule. Some of the more 
commonly used descriptors are covered here; more extensive compilations can be 
found in the literature [e.g. 48, 491. 

A number of electronic descriptors may encode the effects or strengths of 
intermolecular interactions. The more commonly recognized intermolecular forces 
arise from the following interactions: ion-ion, ion-dipole, dipole-dipole, dipole- 
induced dipole, dispersion, and hydrogen bonding. Certain electronic descriptors 
are clearly associated with one or more of these types of interactions. 

Ionic interactions have been encoded in drug potency studies through the use of 
ionization constants [50]. As a descriptor, the ionization constant provides informa- 
tion about the extent to which a drug molecule ionizes, which is known to strongly 
influence the absorption and distribution of the drug [51]. 

Electric dipole moments obviously encode the strength of polar-type interactions 
and Lien et al. [52] have reviewed their use as descriptors in QSAR studies. While 
extensive compilations of experimental dipole moments are available [53, 541, many 
accurate empirical [55 - 571 and quantum mechanical [58 ~ 611 techniques exist for 
estimating them. 

Molecular polarizability and molar refractivity are closely related properties that 
are a measure of a molecule’s susceptibility to becoming polarized. These descriptors 
are often useful in situations, where dipole-induced dipole and dispersion interactions 
play an important role. They are readily calculated [62] from the refractive index 
and the molar volume; however, applications in QSAR and QSPR usually employ 
empirical estimates, based on atomic, bond, or group contributions. A recent paper 
by Miller [63] includes a review of techniques that have been used to estimate 
molecular polarizabilities. Methods for estimating the molar refractivity may be 
found in the literature [e.g. 64, 651. 

Hydrogen bonding has long been recognized as an important factor in the physical 
properties and biological activities of compounds. Fujita et al. [66] have reviewed 
the use of hydrogen bonding parameters in QSAR studies. Most applications have 
involved the use of an indicator variable for the presence of a hydrogen bond donor 
or acceptor group. Kamlet and Taft [67, 681 developed more quantitative scales 
based on solvatochromic shifts for carefully selected solutes with known hydrogen 
bonding characteristics. 
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While descriptors related to intermolecular interactions are useful for predicting 
bulk physical properties and certain types of biological activities, they provide little 
direct information about the reactivities of compounds. This type of information, 
however, is available through molecular orbital (MO) calculations. The Hiickel 
molecular orbital (HMO) method [69] has provided a number of so-callcd rcactivity 
indices [70], although any MO technique could have been used to calculate thcsc 
descriptors. 

Reactivity indices are usually categorized as cither electrophilic or nuclcophilic, 
depending on whether the reaction of interest involves electrophilic or nuclcophilic 
attack. Perhaps the simplest of such descriptors are EHOMO and EL UMO, the encrgics 
of the highest occupied and lowest unoccupied MOs, respectively. The HOMO 
energy is roughly related to the ioni~ation potential of a molecule, while the LUMO 
energy is related to the electron affinity. The magnitudes of these quantities are 
measures of the overall susceptibility of the molecule to losing a pair of electrons 
to an electrophile or accepting a pair of electrons from a nucleophile. 

Site-specific reactivity indices are obtaied by considering electronic information 
at specific locations in the molecule. The electrophilic and nucleophilic super- 
delocalizabilities of atom i are energy-weighted atomic electron densities, which, for 
the HMO method, are given by [70]: 

Here, c,,, is the LCAO-MO coefficient for atomic orbital i in MO j .  and oI is the 
energy of MO j .  The sums in Eqs. (27) and (28) represent the occupied and 
unoccupied MO's, respectively, and the factor of 2 assumes a double occupation 
of each MO. The electrophilic superdelocalizability is a rough measurc of the 
availability of electrons in atom, i ;  nuclcophilic superdelocalizability is a measure 
of the availability of "room" on atom, i, for additional electron dcnsity. While these 
indices are atomic in nature, they may be classed as whole molecule dcscriptors if 
atom, i ,  has a fixed position in a series of congeners, or if the maximum 
superdelocalizability among all the atoms has been chosen. 

If one considers only the electron densities in the highest occupied and lowest 
unoccupied MOs, the so-called electrophilic and nucleophilic frontier orbital 
densities are given by: 

(30) .fi"UCL = 2c2 
i ,NOCC+ 1 

These descriptors assume that the HOMO and LUMO arc far more important 
than the other MOs in determining the position and likelihood of electrophilic or 
nucleophilic attack. Again, when used in the manner discussed previously, these 
atom-specific indices become whole molecule descriptors. 



2.1.3.3 Geometric Descriptors 

Biological activity is often related to the shape and size of the active compounds 
as well as the degree of complementarity of the compound and a receptor. With 
the given methods for generating three-dimensional molecular models of compounds, 
these models can be used to develop geometric descriptors. Many molecular 
modeling routines have the capability of calculating geometric descriptors from the 
resulting conformations. An extensive study of molecular conformation, and a 
detailed investigation of interactions between drug molecules and receptors (which 
often employ interactive computer graphics), goes beyond the scope of this chapter, 
although this is an extremely active area of research in QSARs. 

Molecular Volume 

One of the most commonly calculated decriptors for biological activity investiga- 
tions is the molecular volume. An early volume approximation method, introduced 
by Bondi [71], hinges on group contribution techniques. By treating van der W a d s  
radii as adjustable parameters, Bondi derived group contribution values for 
individual atoms and functional groups. Thus, when presented with a new molecule, 
whose volume was as yet unknown, the researcher merely has to add up the 
pre-established increments in order to calculate the Bondi van der Waals volume. 

Probably the most widely used volume estimation technique in recent ycars the 
volume estimation technique developed by Pearlman [72]. This algorithm utilizcs 
numerical integration, in which a molecule is viewed as a set of overlapping atomic 
spheres. The integration technique divides each sphere either into uniform lunes or 
longitudinal sections. For a given atom, the volume of each lune, that is occluded 
by intersection with neighboring spheres, is subtracted froin the total volume of 
that atom. The total molecular volume is then simply the sum of the atomic 
contributions. 

Molecular Suyfuc~ Area 

Surface area has a prominent effect on the interactions which occur betwccn a drug 
molecule and its surroundings. When the surface area is introduced as a descriptor 
in chemometric analyzes, it has been found to contribute statistically significant 
information in correlations developed for water solubility, octanol-water partition 
coefficients, activity coefficients and boiling points [73 - 791. 

While a number of surface area approximation techniques 180, 811 have been 
proposed, the methods, which currently gain the most attention, are those of Lee 
and Richards [82], Hermann [83], and Pearlman, 175, 841 who developed a 
significantly more efficient algorithm based on Hermann’s original work [MI. In 
these three algorithms, atomic surface areas are determined by cutting a molecule’s 
individual spheres into flat slices, in analogy to the algorithm of Lee and Richards 
[82], or to the algorithm of lunes, as described by Hermann and Pearlman 1831. The 
overlap between spheres is calculated and the non-occluded areas are summed over 
to yield the surface area that is associated with a molecule. 



Figure 7. 
(CPSA) descriptors. 

Diagram of the molecular representation uscd to derive the charged partial s u r f x c  area 

Often a more pertinent and useful structural parameter in molecular design studies 
has been proven to be the solvent-accessible surface area, which is simply a 
mathematical extension of the surface area just described. Since many properties 
and activities (e.g. drug transport, docking) are a consequence of the type and 
strength of the solute-solvent interactions, this parameter was designed to reflect 
the amount of a molecule’s exposed surface, which is actually capable of coming 
into direct physical contact with a neighboring solvent molecule. This accessible, 
or contact area is determined by adding the solvent radius (1.5 A for water) to the 
original van der Waals radii as previously defined. Conceptually, this new area is 
viewed as being the surface, traced out by the center of a solvent sphere, as that 
sphere is rolled over the entire van der Waals area of the molecule of interest (see 
Fig. 7a  and 7b). The utility of this information, quantified through this parameter, 
is clearly illustrated in the following section. 

Clmrgrd Putiul  Sucfiice Area 

Properties influenced by interactions, which are polar in nature, have traditionally 
been difficult to model. Since the strength of these interactions is thought to be ;I 
function of the size, shape and charge distribution throughout a molecule, attempts 
to better understand the added structural complexities of polar molecules spurred 
on researchers to develop new groups of descriptors, which could capitalize on both 
the combination of surface area and charge information. 

Advances in this area began with Grigoras’ work with electrostatic molecular 
surface interaction terms [85].  Two structural features are first quantified: the 
solvent-accessible surface area of individual atoms and the molecular energy assigned 
to the exposed areas. The surface area associated with each atom - i n  the molecular 
environment - is determined using Pearlman’s SAREA (Surface AREA) program 



[84]. By modifying this program, the researcher can then use the net atomic charges 
calculated via the EHT molecular orbital method [86] to estimate the surface 
distribution of the molecular energy. Finally. charge scaling factors arc incorporated 
to correct for discrepancies in estimating the site and strength ofthe polar interactions 
expected within the molecule. 

Four descriptors are derived from this charge and surface area information. One 
is simply the total molecular surface area. The other three combine charges, surface 
areas and correction factors to yield a negatively charged surface area term, a 
positively charged surface area term and a hydrogen bonding term (where 
applicable). The structure-property relationship is ultimately developed by regrcss- 
ing these four terms, Grigoras’ successful predictions of both critical temperatures 
and critical volumes [85] illustrate the advantages of these methods. 

A continuation of this research soon followed with the development of Stanton 
and Jurs’ charged partial surface area (CPSA) descriptors [87]. These parameters 
present various combinations of solvent-accessible surface area information from 
the SAVOL (Surface Area and VOLume) program of Jurs et al. [88] based on 
algorithms by Pearlman [72] as well as partial atomic charge information from 
Dixon and Jurs’ [89] expanded version of Abraham and Smith’s CHARGE algorithm 
(see Fig. 7c) [90]. Both (T and n charges are included in this iterative algorithm. 

Twenty-five CPSA descriptors were proposed. Key structural information which 
is represented includes the summed accessible surface areas of the positively charged 
atoms, the charge associated with the exposed areas, the total positive charge in 
the molecule, the summed positive surface area relative to the total molecular surface 
area, and the charge of the most positive atom relative to the total positive charge. 
The corresponding information can also be obtained for the negative charges and 
negatively charged surface area. Finally, the differences between the positive- and 
negative-specific descriptors are also calculated to reveal net charge and surface 
area information. 

The CPSA descriptors have found immediate use in both structure-property 
and structure-activity studies. These descriptors, when used in combination with 
other physico-chemical features, have been instrumental i n  developing strong 
correlations for numerous chemical and engineering properties including surface 
tensions [9 11, chromatographic retention indices [92, 931, boiling points [94 - 961, 
critical temperatures [97] and auto-ignition temperatures [98]. Although these 
parameters have not been studied as extensively in conjunction with biological 
processes, investigations of Henry’s Law constants [99], odor thresholds [92] and 
odor intensities [loo], show that the CPSA descriptors have considerable potential 
in this context as well. 
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2.2 Atom-Level Descriptors for QSAR Analyzes 

Lemont B. Kier 

Abbreviations and Symbols 

6 
dr 
E-state 
I 
log M A C  
M A 0  
N 
PI50 

Si 
x,, 
xnl 

Count of bonded atoms other than hydrogen 
Count of valence electrons other than those bonding to hydrogen 
Electrotopological state 
Intrinsic value 
log of the minimum anesthetic concentration 
Monoamine oxidase 
Principle quantum number 
Inhibitory potency 
Electropological state of atom i 
Kier/Hall electronegativity 
Mulliken-Jaffe valence state electronegativity 

2.2.1 Introduction 

The non-empirical molecular descriptors such as molecular connectivity [ 1 ,  21 and 
the kappa shape indices [ 3 ]  have served us well in the creation of models, rclating 
structure to biological activity (see Chapt. 2.1). These models define path fragments 
of importance to the encoding of salient molecular features governing a measured 
activity. Numerous examples have revealed the value of this paradigm [4-61. In 
spite of these successes, we are aware of the generally held view that atom-level 
parts of molecules are the critical ingredients in meaningful drug-receptor or 
drug-enzyme interactions. It is the atom or the group, which engages a com- 
plementary receptor feature to initiate a chain of events leading to an effect. 

Somehow, the significance of this concept has escaped many of the early 
developers of structure-activity quantitation, as they have laid heavy emphasis on 
physical properties to model the contribution of the whole molecule to a biological 
activity. The developers of topological indices have also neglected this reality and 
have concentrated on the entire molecule in their quest to encode the structure. 

The early interest in molecular orbital indices to quantitate atom contribution 
to activity [7] was a recognition of the importance of an atom or group in this 
process. Calculations of atom charges using several levels of rigor have been 
considered. From these indices, molecular electrostatic potential maps have been 
calculated to encode atom-level information. The concept of molecular fragmenta- 
tion to encode local information such as lipophilicity is another such area of study. 
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At the level of rigor in topological indices, there is clearly a need for atom level 
indices, reflecting both the electronic environment near an atom (group) and nearby 
topological state. This need fueled the development of electrotopological state indices 
by Hall and Kier [ lo-  131 over the last few years. The train of thought leading to 
this development began in 1987 when Kier, [S] seeking a way to identify topologically 
equivalent atoms for use in the Shannon information theory equation, proposed an 
atom index in which all atom pairs, (Sr(Sy, were identified within a molecule (see 
Chapter 3 for definition of S values). A numerical index was derived by taking the 
geometric mean of each product. For each atom, i, summation of these ((516;)' ' 
terms over all pairs in the molecule gave rise to a relative topological state for that 
atom in that molecule. Hall [12], reported that this index gave unique values for a 
large number of test cases. This index could, thus identify topologically equivalent 
atoms in any molecule with the aid of a computer. The Shannon equation can thus 
be calculated entirely by computation, without the need for external atom equiva- 
lence recognition. In a later, more detailed study Hall and Kier [9] sought to 
improve the uniqueness of this atom index. Several algorithms were examined, which 
were all based on the geometric mean of the valence deltli values of the atoms in 
each path from an atom, i. The uniqueness was, thus, greatly improved in this study. 
Subsequent studies have produced an electropological state index, encoding both 
electronic and topological information in a unified attribute index for atoms in 
molecules [lo- 131. This work has been reviewed recently [14]. We shall develop 
the concept and form of the electrotopological state index in this article followed 
by some recent examples of applications. 

2.2.2 An Atom-Level Description of Structure 

2.2.2.1 The Field 

The attributes of atoms or groups in a molecule that engage a receptor or an enzyme 
active site must certainly be electronic and topological in character. There is indeed 
little else apart from these features that would attract our interest. We have developed 
the view that an atom in a molecule is part of a field of information relating to 
electronic influences and topological environment [ 10 - 141. This field is an environ- 
ment that can cause two methyl groups in a molecule to be very different or identical. 
This field produces changes in the state of an atom or group, when changes in the 
molecule are introduced. If we can quantify the influence of this field on any atom, 
then we have the opportunity to relate this influence to the biological performance 
of the molecule. More specifically, we have an opportunity to identify those atoms 
within the molecule, which are exhibiting field-induced changes, and which correlate 
with a biological response. The goal of our research to date has been the 
quantification of the principle ingredients in this field, i.e. the electronic and the 
topological influences on atoms. 

The quantification of the influence of this field on an atom is dependent upon 
three components. The first is the attribute associated with each atom, which we 



2.2 Atotii-Lcvc4 DcJscriptor-s ,for QSAR Atialj*zrs 41 

call the intrinsic state of that atom. This is the quantitation of the composition, 
hybrid state, topology and hydride state of the atoms (groups) in isolation. Thc 
second component is the quantification of the field effect which is the influence of 
one atom on another within the molecule. Finally, we must include the inform a t '  ion 
concerning the separation or distance between any two atoms in a convenient metric. 
We will briefly review each of these components leading to an index defining the 
state of an atom in a molecule. 

2.2.2.2 The Intrinsic State of an Atom 

An intrinsic state of an atom in a molecule encodes the basic information associated 
with that atom regardless of its environment. Because we ultimately want to account 
for the electronic and topological influences of one atom on another within a 
molecule, it is apparent that these two attributes must be encoded into thc intrinsic 
state. We further require that the molecule is represented as a chemical graph, in 
which the hydrogen atoms have been supprcssed, and is thc familiar skclcton 
representation of a molecule. 

The electronic influence is most conveniently summarized into a value, which 
reflects the eleetronegativity of an atom or group. Since we are considering skeleton 
or chemical graph representations of molecules, we might turn to our previous work 
on molecular connectivity for guidance in quantitating this attribute. In  1981 Kicr 
and Hall [15] found a close relationship between the two molecular connectivity 
delta values and the Mulliken-Jaffe valence state electronegativity, X, [ 171. This 
relationship is approximately: 

( 1 )  

for second row atoms, where 6" is the number of valence electrons on an atom i n  
a chemical graph (excluding those bonding to hydrogen) and iS is the number of 
sigma electrons from that atom (excluding those bonding to hydrogen). The equation 
explains 98% of the variation in the X, value. 

A n  interpretation of this relationship is that 0' - ij is simply the number of pi 
and lone pair electrons on an atom in a molecule. Kier and Hall [15] reconciled this 
relationship by invoking the reduced shielding of the core induced by a pi or lone 
pair of electrons relative to a sigma bonding electron on that same atom. Another 
form of the Kier/Hall electronegativity, X,,,, which is useful in student lectures is: 

( 2 )  

Using the deltu values, we can define an intrinsic atom state as a function of 
electronegativity (# ~ 6) and of topology. The topology is certainly encoded i n  the 
simple delta value as an index reflecting the number of adjacent atoms. An initial 
statement of the intrinsic state can be expressed by: 

(3) 

x, = 2(sV ~ 0 )  + 7 

Periodic Table column No. ~ Number of sigma bonds 
(Periodic Table r6w No.)' 

~ ~~ XK,, = 

I = (sv ~ o)/(i 
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Calculations of the various atoms and their hydride groups, using this expression, 
reveal that (S' = 6 for alkane hydride groups, thus, these would have redundant 
values. This is simply dealt with by modifying the expression with a constant: 

I = (6" - 0 + 1)/6 (4) 

By adding 1 to this expression we can simplify it further to: 

To account for the diminished electronegativity of atoms in higher quantum levels. 
an addition to the intrinsic state must be considered. Several possibilities exist, but 
the one chosen was the modification of the 6' value to reflect the principal quantum 
number, N ,  relative to the value of 2 (the N value for C, N, 0, F). The general 
expression for 6' in the general equation ( 5 )  is (2/N) '  6" and Eq. ( 5 )  becomes: 

I = [(2/N) '  6") + I ] / S  (6) 

Calculated values using Eq. (6) are shown in Table 1. An inspection of this table 
reveals that the electronic and topological information is reflected i n  the I values. 
As an atom (group) becomes more electron-rich i n  terms of valence electrons, the 
value of I increases. As the atom becomes more "buried" in the molecule (as 
opposed to having mantle status) the value of I decreases. This is an acceptable 
definition of the intrinsic state of an atom encoding both electronic and topological 
attributes. 

Table 1. Intrinsic state values 

Atom I 
(skeletal hydridc group) [ (P  + i)/{j] 

>c< 
> C H -  
-CH,- 
>C= 
-CH,, =CH-,  >N- 
=C-,  - N H -  
- -CH,, =N- 
-0- 
= C H ,  - N H ,  
= N H  
=N, -OH 
= O  
-F 
- el 
- Br 
- I  
= S  
-SH 
-S-  

I .250 
1.333 
1.500 
1.667 
2.000 
2.500 
3.000 
3.500 
4.000 
5.000 
6.000 
7.000 
8.000 
4.1 I I 
2.750 
2.120 
3.661 
3.222 
1.833 



2.2.2.3 The Field Effect on Each Atom 

The second ingredient in an atom-level index must describe the field effect on each 
atom. Stated another way, this contribution must encode information about the 
interaction and relative perturbation that each atom contributes to the electronic 
and topological attributes of every other atom. This perturbation, AI, can take 
many forms, but the one we have chosen is based on the intrinsic states themselves, 
which are sources of perturbation. The simplest form would be the difference between 
any two I values relative to atom i, summed over the entire molecule. 

Thus, we have 
AI = C ( I ,  ~ I J )  (7) 

as a source of the perturbation. 
This expression is not complete, in that the distance between i and j is not stated, but 

is nevertheless highly relevant. This third component is reflected in tho number of 
atoms, separating and including i and j in the chemical graph. The graph distance, 
r ,  is included and is expressed to the second power, however, the program 
MOLCONN-X [16] permits the power to be varied. The final expression of the 

Table 2. Electrotopological state calculations for alaninc 

0 (1 Atom Numbering: 
- 

1 I1 
H,C C 3  

\ / \  
2CH O H 4  

I 

IntrinsicValucs: I(I) = 2.000 I(4) = 6.000 
r(2) = 1.333 1 ( 5 )  = 4.000 
I ( 3 )  = 1.667 I ( 6 )  = 7.000 

( I j  - I j ) / r ’  Matrix A1 = 

row sum I 2 3 4 5 6 

1 0.0 0.1667 0.0370 - 0.2500 - 0.2222 - 0.3 I25 - 0.58 I0 
2 -0.1667 0.0 - 0.0833 - 0.5 1 85 - 0.6667 - 0.629 6 - 2.0648 
3 -0.0370 0.0833 0.0 - 1.0833 -0.2593 - 1.3333 -2.6296 
4 0.2500 0.5185 1.0833 0.0 0.1250 -0.1 1 I 1  1.8657 
5 0.2222 0.6667 0.2593 - 0. I250 0.0 -0.1875 0.8356 
6 0.3125 0.6296 1.3333 0.1111 0.1875 0.0 2.574 I 

0.0000 
Si = Ii + AI, 

0 0.574 
I 1  
C -O.l)h3 

-0.731 CH OH 7.Xh6 

I .4 I9 H 3C 
\ / \  

I 
4.836 NH, 
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field perturbation of the intrinsic state is: 

A1 = C ( I ,  ~ l J ) / ~ 2  (8) 

The field effect, A l ,  modifies the intrinsic state, producing a configuration or state 
value which we call the electrotopological state, S,: 

(9) 

This, in its abbreviated form, is called the E-state value of an atom. A n  example of 
this calculations is shown in Table 2. 

S, = I + A1 

2.2.3 Strategies for Use of E-State Indices 

The E-state indices reflect the electronic and topological state of atoms and groups 
in the molecule. These states change as a function of the distance and of the state 
of other atoms along the chemical graph path, which separates two atoms. In  a 
series of molecules, with a core component remaining constant and some other part 
varying in structure, i t  is possible to quantify in relative terms the extent of the 
through-graph influence on atoms and the focus of this influence. In QSAR analyzes 
this is a powerful tool for gaining insight into which structural changes in  a chemical 
series are influencing the rest of the molecule. This information, plus the quantitation 
of this influence, produces a potential for identifying atoms or groups, which are 
responsible for a measured biological activity. The ultimate aim is that drug design 
may proceed on a rational basis with such an insight. 

The method described here is more effective, if the molecules i n  a series have 
more than one substituent. This makes it possible to avoid extensive intercorrelation 
of influences experienced by single substituent series. I t  is possible to group nearby 
structural features or fragments and to identify them a s  possible salient features, 
which could be influenced by the substitution patterns in the rest of the molecule. 

2.2.4 Examples of E-state QSAR 

Over the past five years a number of applications of E-state analysis have been 
reported in the literature. A brief survey of these studies is prcscnted here to 
demonstrate the utility and breadth of application with this atom-level index. 

2.2.4.1 M A 0  Inhibition with Hydrazides 

Hall, Mohoney and Kier [ I l l  have reported a study on a series of aryloxyacetohy- 
drazides as potential monoamine oxidase (MAO) inhibitors [ 181. The E-state indices 
correlating with the activity were assigned to the respective atoms of the parent 
structure given in Fig. 1. A comparison between the E-state indices and the molecular 
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parcnt structurc for M A 0  inhibitors. 
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orbital parameters for these same atoms using the AM1 Hamiltonian, showed that 
the E-state values were significantly better in modeling a structure-activity relation- 
ship. The atoms implicated by the E-state analysis are the same as those implicatcd 
using the less successful molecular orbital model. The equation, relating the E-state 
indices to the inhibitory potency, p150 is: 

~ 1 5 0  = 1.69S1 ~ 9.1435 + 0.15S13 + 32.15 

PRESS y 2  = 0.848, s = 0.23, IZ = 24 

2.2.4.2 Adenosine A, Inhibitors 

Joshi and Kier [I91 using E-state indices, analyzed a series of xanthincs reported 
by Jacobson et al. [20] to be inhibitors of adenosine A , .  Analysis of the ring atoms 
and substituents using the E-state indices revealed a good correlation with affinity, 
log K , ,  as modeled by the equation: 

log K l  = -1.17S7 - 0.97Slo - 0.22S12 + 1.71 
( 1  1 )  r2  = 0.88, s = 0.33, n = 28 

The atoms implicated in this QSAR analysis are shown in Fig. 2 

2.2.4.3 Anesthetic Concentration of Haloalkanes 

In a study of the anesthetic effect of several haloalkanes reported by Larsen [21], 
Tsantili-Kakoulidou, Kier and Joshi reported an E-state analysis of several 
derivatives [22]. The series of molecules analyzed were CXYZ-CF, analogues where 
XYZ were halogen or hydrogen atoms. A good correlation was found between the 
log of the minimum anesthetic concentration, log M A C  and the sum of the E-state 

10 

12 

R 
Figure 2. 
inhibitors. 

The parcnt xanthinc structure for adcnosinc A ,  
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values for the -CF, group. The summation of two E-state indices to produce a 
single value was initiated in our earlier work [ 1 11. Van de Waterbeemd has considered 
this idea in a recent article [23]. This approach is important to the development of 
group E-state indices. 

log M A C  = 33.19 - l .O lSc~ ,  

r2  = 0.892, s = 0.23, n = 1 1  . (12) 

2.2.4.4 Odor Sensitivity of Pyrazines 

Tsantili-Kakoulidou and Kier [24] have analyzed a series of alkyl substituted 
pyrazines using E-state indices for the ring atoms. A close correlation was found 
between the sum of nitrogen atom E-state values, S,, (see Fig. 3) and the odor 
threshold concentration, log pph.  

logpph = 94.87SN - 13.17s; - 165.39 

r2  = 0.979, s = 0.25, n = 13 (13) 

2.2.5 Conclusions 

The electrotopological state (E-state) method is a new and powerful approach to 
encoding information about an atom in its molecular environment. The relative 
perturbation of each atom, as molecular structure is varied in a series, is quantitated 
in a manner suitable for QSAR analysis. Atoms (or groups) implicated in a biological 
event may be identified in this analysis, if the data set has been constructed with 
this in mind. The information generated lends itself ideally to the design of new 
molecules, since structural influences are easily identified, quantitated and translated 
into structural changes. The studies utilizing the E-state paradigm are increasing 
with extended applications becoming more prominent. Several new innovations are 
being developed and will be described in later reports. These will enhance the ability 
of E-state analysis to promote theoretical approaches in molecular design. 
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3 Experimental Design in Synthesis Planning and 

3.1 Experimental Design 

Structure-Property Correlations 

Volkhard Austel 

Abbreviations and Symbols 

HIP Hypersurface iterative projection 
M R  
n: 
0 

Molar refractivity (parameter of size or polarity) 
Hansch-Fujita value (parameter of lipophilicity) 
Hammett constant (parameter of electronic properties) 

3.1.1 The Importance of Experimental Design 
in Medicinal Chemistry 

The number of compounds that is synthesized and tested for every new chemical 
entity introduced onto the market is rising steadily. At present, estimates range 
from 10000 to 20000. As the resources for chemical synthesis and biological testing 
are limited, there is an urgent need for preventing, or at least slowing down, further 
increases in the number of compounds being synthesized. 

In theory, the most promising way in which this might be achieved, is to investigate 
the causes of diseases and the possibilities of intervention at the molecular levcl and 
by using this insight for designing test compounds. In most cases of intcrcst, the 
available information is, however, not detailed enough for deriving structure-activity 
relationships that would allow sufficiently potent compounds to be designed more 
directly. More informative structure-activity relationships are, thereforc, rcquircd, 
which at present can only be derived empirically, i.e. with sets of test compounds. 

Depending on the composition of such sets the average structurc-activity 
information per compound can vary greatly. Consider for example the set shown 
in Fig. 1 whose elements are characterized by a common pharmacophore, consisting 
of a basic skeleton G, to which a variously substituted phenyl ring is attached. The 
structure-activity information per compound, obtained from this set, is com- 

Figure 1. Example or an uneconomical set of test 
compounds. R = -H, 4-OCH,, 4-OC2H5, 4-CH,, 4-F, 4-SCH3 
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paratively low, since only two of these compounds (e.g., R = H  and -OC,H,) 
adequately represent the whole set. In addition, potentially important factors such 
as steric interactions between the phenyl ring and G, e.g. with an ortlio substitutent. 
or the influence of hydrophilic or strongly electron withdrawing groups are not 
addressed at all. 

It is clearly uneconomical to work with such data sets, and the problems 
encountered with these can, however, be avoided by carefully designing the test 
sets. To this ends methods for experimental design have been developed in the 
past decades. 

This chapter will be confined to those methods that in my opinion might be 
particularly useful for the bench chemist and that could be (but need not be) applied 
qualitatively without computational input. 

3.1.2 Strategies in Experimental Design 

The experimental design methods that have been proposed in the literature can be 
devided into two categories: 
1) Methods which are aimed at a direct and, therefore, (supposedly) quick optimiza- 
tion of lead compounds, and 
2) methods that provide a strong basis for deriving reliable structure-activity 
relationships. 

Methods which belong to the first category are only suitablc in  the final stages 
of an optimization procedure, for which reliable fundamental structure-activity 
relationships are already available and which require a certain modification. Typical 
examples would be the optimization of substitution patterns of aromatic rings or 
of aliphatic chains. In addition, these methods frequently give rise to biased results. 
since they clearly do not put structure-activity relationships to the test. Such a 
procedure is frequently chosen in medicinal chemistry in order to reduce the 
experimental input. However, this always entails the risk of overlooking interesting 
routes for a lead optimization or even for the discovery of new leads. In the latter 
stages of an optimization, this risk is comparatively minor, but it may, however, 
become more significant if the structural features that are essential for a particular 
activity have not yet been fully elucidated. 

The methods which belong to the second category in principle do not need any 
prior structure-activity information and are, therefore, applicable at any stage of 
the search for new drugs. These methods, in particular, should be used for deriving 
qualitative and quantitative structure-activity relationships. In  practice structure- 
activity relationships are relevant for determining those structural requirements 
which give rise to sufficient potency. This also includes the determination of bulk 
areas which may become an important feature in the optimization of pharmacokine- 
tic and metabolic properties or for achieving selectivity. 

The difference between the two categories becomes evident if one considers 
optimization on a more abstract level: In order to interact with its target, e.g. a 
receptor or an enzyme, a drug molecule must be able to present an appropriate 
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pattern of physico-chemical properties in the correct spatial arrangement. This 
pattern is usually described in an indirect manner with the aid of molecular 
descriptors (see Chap. 2). Every one of these descriptors can be associated with one 
of the components of an n-dimensional parameter space. The compounds of a test 
set are represented by points in this space. If the descriptors have been correctly 
chosen, the active compounds will be concentrated in only one or, a t  least in a few 
localized areas in the corresponding parameter space. 

Methods that are aimed at a direct optimization usually cover only a limited 
area of parameter space surrounding a previously identified active compound. 
Therefore, active compounds that are located in other areas cannot be detected. 

Such disadvantages can be significantly reduced by applying methods belonging 
to the second category, which allow large areas of the parameter space to be 
investigated in a systematic manner. However, this method is usually a t  the cost 
of greater synthetic efforts. In practice, one can reduce the experimental effort by 
using the different densities of data points (test compounds) in different areas 
of the parameter space, i.e. a higher density surrounding active compounds than 
in the other parts of the parameter space. 

3.1.3 Selected Methods for Experimental Design 

3.1.3.1 Methods for the Direct Optimization of Lead Compounds 

Of the many procedures for direct lead optimization, three are particularly suited 
for the purposes of the bench chemist. One of these methods uscs operational 
schemes, known as Topliss trees [ I ] ,  which have been designed for substituents on  
aromatic rings (Fig. 2) and for modifying aliphatic chains (Fig 3). 

In the case of the aromatic substitution, one first compares the unsubstituted 
compound with the 4-chloro derivative. If the latter is more active, onc continues 
by preparing the 3,4-dichloro derivative. Should this lead to a further increase in 
activity then the 3-CF3, 4-C1 and the 3-CF3, 4 - N 0 2  derivatives can be considered 
as candidates for maximal activity. The other branches of the tree are followed 
analogously. As an example, with phenyl tetrazoles of type (l), the unsubstituted 
compound showed a higher anti-inflammatory activity than the 4-chloro derivative. 
Consequently, the chlorine was replaced by 4-methoxy, which reduced activity even 
further. Under these circumstances the scheme suggests the 3-chloro derivative, which 
in the present example, was indeed the most active compound (along with the 
5-bromo derivative). 
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M = More active, E = equiactive, L = less active. Descending lines indicate sequence. Square brackets indicate alternata 
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H 

E M 

Figure 2. Operational scheme for the optimizalion o r  nromalic substitution pattcrns (reprinted 
with permission from Ref. [ I ]  Copyright 1972. American Chcniical Society). 

The scheme for modifying aliphatic chains can also be applied analogously. 
The second procedure for optimizing the substitution on aromatic rings, also 

suggested by Topliss [2],  begins with a set of five compounds which consists of the 
unsubstituted compound and the 4-chlor0, 4-methyl, 4-methoxy and 3,4-dichloro 
derivatives. The relative activities of these derivatives are considered indicative of a 
particular quantitative dependence on electronic properties (reprcsented by Hammet 
c constants) and lipophilicity (Hansch-Fujita values). For example, the order 
3,4-C1, > 4-C1 or 4-CH, > 4-OCH, > H is assumed to signify that the biological 
response is dependent on the term (277 ~ c). On the basis of this relationship. 

M = More active, E = equiactive, L = less active. Descending lines indicate sequence. Square brackets indicate alternates. 

Figure 3. 
from Ref. [ I ] ,  Copyright 1972, Amcrican Chemical Society). 

Operational scheme for modifications of' aliphatic c h i n s  (rcprintcd with permission 



additional substitution patterns have been proposed that might possibly improvc 
activity. In the present example 4-i-Pr, 4-/-Bu, 3,4-di-Me, 4-0-n-Bu, 4-0-Bz, and 
4-N(Et), were proposed as additional candidates. 

An illustration using literature data comes from the inhibition of carbonic 
anhydrase by compounds of the general structure (2). The ranking of the primary 
compounds was found to be 3,4-C1, > 4-C1 > 4-CH3 > 4-OCH3, H suggesting a 
(n  + g) relationship. The corresponding additional substitution pattcrns coniprisc 
3-CF3, 4-N02 which was found to be the most active of the reported compounds. 

(2) 

Other rankings and the corresponding relationships as well as additional 
substitution patterns are also given by Topliss [2]. 

A third method, which uses the st~yuc~n/ial sinzplex technique, was introduced into 
medicinal chemistry by Darvas [3] and was developed further by Gilliom et al. [4]. 
This method begins with a lead compound and as many analogs of this compound 
as there are parameters to be considered. In an n-dimensional parameter space, the 
point corresponding to the least active compound of this set, is reflectcd through 
the center of gravity of the remaining points. A new analog is designed, so that its 
corresponding point in parameter space is located as closely as possible to the point 
of the reflection. The least active compound of the original set is discarded and 
the operation is repeated with the remaining set. This procedure may bc stopped 
prematurely, if the new analog is less active than thc other members of the ncw set. 
The modification suggested by Gilliom e ta ] .  [4] can circumvent such problems. 

A method that combines direct optimization, with indications as to which parts 
of a parameter space have not yet been investigated, was proposed by Boyd [ S ]  
under the name “hypersurface iterative projection” (HIP). This method which LISCS 

multidimensional scatter plots requires, however, computerization, even though i t  
allows the medicinal chemist to select new substituents from a graphical represen- 
tation of the data. 

3.1.3.2 Methods for the Systematic lnvestigation of a Parameter Space 

The first stage of the second Tupliss wzctliod (see above) already contains elements 
of a systematic investigation of a parameter space. Thus, the first five compounds 
are selected with the intention of covering a significant part of a rr/n parameter 
space. However, the selection is not quite optimal, since the hydrophilic parts of 
that space are not represented. 

A better representation could be achieved by applying one of thc various methods 
that have been developed for series design. With most of these methods onc 
selects a number of structural moieties from a larger predefined set and attaches 
them to a basic skeleton. In most cases, the structural moieties refer to substituents 
on an aromatic ring. It is, however, also possible to spefically design structural 
moieties according to predefined physico-chemical or conformational properties. In  
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the present context, only manual procedure for the design of a series will be 
described (for computer-aided versions and other computerized methods see 
Chap. 3.2). 

If only one feature (parameter), e.g., lipophilicity (n) ,  is to be invcstigated, one 
simply selects a small number of compounds that cover a sufficiently wide range 
of parameter values, e.g., Ph, Me, H, OH, with the corresponding n-values (taken 
from Ref. (61) being 1.96, 0.56, 0.00, -0.67. 

A selection with respect to two parameters can be done visually according to 
Craig [7] by setting up a two-dimensional plot (C'ruig idol) in which thc structural 
moieties (e.g., substituents) appear as points. Moieties are then sclccted so that the 
corresponding points are evenly distributed over the plot. 

I f  more than two parameters need to be considered, one can resort to sets of 
substituents that have been reported in the literature, as being more or less evenly 
distributed over a larger area of a multi-dimensional parameter space. 

Thus, Wootton [8] designed 10 sets, each with 10 members taking into account 
the lipophilic, resonance, inductive and space filling properties of 35 substituents 
for aromatic systems. An earlier publication by Franke ct al. [9] presented similar 
sets, based on 90 substituents. Schaper [lo] has reported selections that optimized 
the sets with respect to the extension of the parameter space area bcing investigated 
and to the mutual independence of the paraincters and aditionally took into account 
synthetic uccrssibility. 

Van de Waterbeemd et al. [ I  I ]  have analyzed the mutual similarity of 59 
substituents and divided them into 5 groups accordingly. Again, selection of one 
substituent out of each group should result i n  a representative set to start with. 
The groups were formed with consideration or the two most important principul 
con-iponents which had resulted from a corresponding analysis of 74 descriptors. 
These comprised various lipophilicity parameters, parameters describing clcctronic 
properties, steric properties, connectivity indices, indicators for hydrogen bonding 
and other indicator variables. Closer examination of the two princi/~ul coinpoiwits 
revealed that they largely represented two properties, i.e. that of bulk and polarity. 
The performance of principul col~zpoiicizt uizulj~sis in series dcsign (see Chap. 4) was 
compared with that of cluster unuljvis (see below). The former method was given 
preference, because it led to groupings that could be interpreted i n  terms of the 
physico-chemical properties. 

Cativiela et al. [ 121 have selected various sets of I0 heterocyclic systems each that 
rcpresent altogether 18 systems, and in such a way that maximum structure-activity 
information was obtained. The selection was based on a Frcc- Wilson rcpresentation 
in conjunction with D-oprinzul design. 

in order group substituents. The 
members in each group are considered to be similar. so that any can be chosen 
to represent the whole group. Different groups represent different parts of the 
corresponding parameter space. A set of test compounds is assembled by selecting 
one substituent from every group (cluster). Substituents to be introduced into the 
aromatic system of a basic skeleton are clustered, taking into account lipophilic. 
resonance, inductive, steric, and H-bonding properties. With substitucnh for aliphatic 
components, the same criteria were applied, except for resonance effects. 

Hansch et al. [6, 131 have used cluster unulj 
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Figure 4. General form of a 2”-factorial scheme used for series design. The rows rcfcr to individual 
compounds, whereas the columns represent structural features or physico-chemical properties. 
Plus signs denote the presence of one of two alternative structural features, or a high level of ;I 

particular physico-chemical property. Minus signs refer to the presence of the other fcaturc, or ii 

low lcvcl of the physico-chemical property. The last row, containing only nxos,  rcfcrs to a compound 
that represents intermediate levels of thc physico-chemical propcrtics. Thc part separated by solid 
lines (upper left corner) constitutes a 2’-factorial scheme. 

Hansch et al. [6, 131 divided the basic sets of substituents into 5 ,  10, and 20 
clusters, thereby allowing test sets with 5 ,  10, and 20 compounds to be assembled. 
The smaller test sets would no,rmally suffice for an initial preliminary investigation 
for particular types of chemical structures. If this yields promising results, onc 
usually proceeds on to the larger sets in order to derive reliable structure-activity 
relationships. 

The use of predefined test sets, as in the examples given above, is confined to 
structural moieties (substituents), which are members of the basic set, and to the 
particular selection criteria employed, irrespective of how relevant they are for the 
biological property of interest. A manual series design method that is not subject 
to such limitations is ,furtorial design. 

In its simplest form, a 2“-factorial scheme, expresses structural features and 
physico-chemical properties in binary terms, e.g. as the presence of one of two 
alternative features vs the presence of the other, or as a high level of a property vs 
a low level. These classifications are then assigned plus and minus signs in the 
factorial schemes. A general scheme is shown in Fig. 4. 

If the molecular properties are expressed in physico-chemical terms, it is necessary 
to specify, at least approximately, an upper and a lower limit of that propcrty. 
The level of a property is considered “high” if i t  is closer to the upper limit, and 
“low” otherwide. It is generally advisable, however, to also represent the intermediate 
levels of physico-chemical properties (denoted by O), in which case one introduces 
an additional row into the factorial scheme (the last row in Fig. 4). 
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I 
I 

n 
Figure 5. n/a Craig plot of the set of substituents listed in Table I .  The dashed lines rcfcr to the 
limits chosen for n and q, respectively. A n  additional M R  axis perpendicular to thc plane of the 
diagram would separate the pairs 3/7, 418, 1/5 and 2/6 further (nunibcriiig of the substituents as  
in Table 1). 

An illustration of this procedure is given in Table 1 which refers to the selection of 
9 substituents for aromatic rings, based on the list of well-characterized substituents 
for aromatic systems taken from the literature [6], in conjunction with the preset 
limits to the applied parameters, which are listed in Table 1. 

A nlo Craig diagram (Fig. 5 )  demonstrates that the 9 compounds are evenly 
distributed over the chosen area (within the dashed lines). Note that the points 
lying close to each other (3/7, 4/8, 1/5, 2/6) differ in their M R  values. 

In practice, it is usually more economical to derive approximate structure-activity 
relationships from small test series, and only then to design new compounds (see 
the second Topliss procedure). Thus, in the previous example, one may wish to start 
with less than 9 compounds and factorial schemes allow for such a reduction by 
confounding one or more of the parameters with cross terms of the scheme (fiocrionul 
,fuctoi.iul schemes). In the present example, M R  could be represented by the AB 
column in Fig. 4. The scheme now defines 4 compounds (the 4 combinations of 
levels within the solid lines) and a fifth may be added to include intcrmediate levels. 
The resulting set consists of substituents 5,  2, 3, 8, and 9 of Table I .  For more 
detailed discussions see Austel [14]. 

One particularly interesting application of factorial schemes is the design of 
structural moieties based on a qualitative description of their properties. The 
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Table I .  Selection of substituents for an aromatic ring. Thc top part refers to thc physico-chcmical 
properties that are considcrcd, and the parameters by which they arc rcprcscntcd, including thc 
lower and uppcr limits of the propertics covered. The bottom part lists the sclcctcd substituents, 
together with the combination of levels, which is represented by a particular subslitucni. Thc actual 
values of the parameters are also given (taken from RcL [6])  

property parameter low limit high limit 

lipophilicit y 71 

electronic propcrtics l7 

size MR 

- 1.0 
- 0.4 

8.0 

+ 1.6 
+0.7 
23.0 

No levels subst. R U MR 

+ - -  
t f -  

+ 
t-+ 
- + +  
+ + +  
0 0 0  

-- 

- 0.47 
1.02 

-0.55 
0.86 

- 0.43 
1.55 

-0 .55  
1.07 
0.38 

-0.3 
- 0. I 5 

0.50 
0.39 
0.00 

-0.32 
0.60 
0.45 
0. I0 

10.33 
10.30 
11,18 
8.88 

19.58 
21.66 
22,79 
22. I I 
12.47 

following example from the field of cardiotonic pyridazinylbenziinidazoles (3) may 
serve to illustrate the procedure. The question was concerned with which properties 
of the substituent R were compatible with high potency. 

Special features of interest were: 

1) nature of the substituent [aliphatic (-) or aromatic ( + ) I  (the term “aromatic” 
refers to an aromatic ring that is directly joined to the benzimidazole) 
2 )  size [small ( - )  or large (+)I  
3) lipophilicity [hydrophilic ( - )  or lipophilic (+) I .  
The latter two features need further specificaiton: the smallest common aromatic 
substituent is a phenyl group and, therefore, it would be reasonable to consider 
groups with less than, say 9 non-hydrogen (second row) atoms as “small”. The 
nature of the phenyl ring would also determine the borderline between “hydrophilic” 
and “lipophilic” groups, in such a way that hydrophilic substituents on the phenyl 
ring, such as a hydroxyl could render it “hydrophilic”. Therefore, groups with an 
estimated n value of less than about 1.6 may be considered as “hydrophilic”. 
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Table 2. Substitucnts for structure (3) designed directly with a 23-factorial scheme, considering 
the nature [aliphatic (-)/aromatic ( + ) I ,  thc sizc [ 1 9  non-hydrogcn atoms (- ) / (  + )  othcrwisc], and 
lipophilicity [n < ca. 1.6 (-)/( +) otherwise]. The left column refcrs to the combination of levcls 
rcpresentcd by that particular substituent, the right column gives the increase ('% of initial value) 
in contractility of the heart after i.v. administration of 0.1 mg/kg to anesthetized cats 

No properties su bsti tuent biological 
response 

aliph./ small/ hyd./ 
arom. large lip. 

-CH, OCH, 

0 
II 

- C H , ~ - N - C - C H  - H 

H ,CO 
CH, 

-CH CH,- CH2-CH, 

Br 

Br 

86 

IS 

inactive 

38 

83 

c:l. I00 

98 

inactive 

With these specifications it was now possible to design a test series using the first 
8 rows and the columns A, B, and C of Fig. 4 (23-factorial scheme). According to 
this scheme, the first substituent ( -  - -)  is a small hydrophilic aliphatic group 
(e.g., - CH,OCH,), whereas the sixth substituent is a small lipophilic aromatic 
group (e.g., -C,H,). The complete set is listed in Table 2. 

Examination of the biological data suggest that a wide rangc of lipophilicity and 
size is compatible with a reasonable potency, and that i t  does not matter whether 
the substituent has a directly connected aromatic ring or not. However, there appears 
to be limitations on the length of the substituents. Unfortunately, both inactive 
compounds contain aromatic rings, albeit in one case not directly adjoining the 
bcnzimidazole. In order to clarify whether thc presence of the aromatic ring or the 
length, or both, are responsible for the low potency, one can design a second set 
of substituents using the following fcatures: 
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Table 3. Substituents for structure (3) designed directly with a 2’-factorial scheme, considering 
the features aliphatic (-)/aromatic (+)  and short (-)/long ( + )  (at lcast 9 bonds from the 
benzimidazolc). Biological data refer to increase (YO) in contractility of the heart after i.v. 
administration of 0.1 mg/kg to anesthetized cats 

No properties substituent biological 
response 

aliph./arom. short/long 

- 1 
2 + 

3 

4 + 
- + 

+ 

1) aliphatic (-)/aromatic (+) 
2) short (-)/long ( + )  (long, e.g. with a length of at least 9 bonds beginning at the 

The design is based on 2 features so that four rows (1 -4) and two columns (A and 
B) of Fig. 4 (22-factorial scheme) are sufficient. The test set and the Corresponding 
biological data shown in Table 3 support the view that the alkyl chain length is, 
generally, a limiting factor for the cardiotonic potency of compounds of the general 
structure (3). 

All examples of series design which have been discussed so far, do not take into 
account one very important aspect of biological activity, i.e. the conformation of 
test compounds. I t  would be very desirable to plan test series so that this property 
is represented in its entirety, and yet, without redundance. Fuctorid tklsign can 
serve this very purpose. 

Basically, the conformation is described in terms of the distances between 
characteristic points within the molecule. These marker points must span the wholc 
structure and may be (but need not be) placed at the center of groups that arc 
relevant for biological activity. Again for every distance, one has to define the range 
to be covered. Distances that are closer to the upper limit of the range are denoted 
by (+ )  and in the converse by (-). These distances may, in the simplest application, 
be obtained from conventional mechanical molecular models. 

In  the corresponding factorial schemes, the columns refer to the individual 
distances, whereas the rows refer to individual conformations. A flexible compound 
will, therefore, often cover several rows. The test series must be designed so that 
the following conditions are fulfilled: 

1) all the possible conformations are represented by at least two different molecules, 
2) for every conformation there are at least two molecules which cannot adopt this 

3) there is no complete correlation between the occurrance of two (or more) 

2-position of the benzimidazole) 

conformation, 

conformations. 
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Figure 6. Set of nicotinic acid dcrivativcs, which gives a complctc account of thc conformational 
properties of this typc of structure within the limits outlined in Tablc 4. Thc open circles indicate 
the position of the marker points. 

A simple theoretical example is given in Fig. 6 which shows phenylalkyl nicotinic 
acids. Three marker points are placed at strategic positions, i.c. on the ccntral carbon 
atom of the carboxylic group, the ring nitrogen, and the center of the pheiiyl 
group. Two of the resulting three distances, i.e. those betwecn the phcnyl group and 
the carboxyl group (ranging from 0.3 to 1.6nm) and the ring nitrogen (ranging 
from 0.3 to 1.0 nm) respectively are considered. Thereforc, the conformational 
properties can be treated with a 22-factorial scheme which defines four conforma- 
tions. Table 4 indicates the conformations which can be adopted by the compounds 

Table 4. Conformations occupied by the compounds of' Fig. 6. Every first column o f  the signs 
refers to the distance bctween the center or the phcnyl ring and thc carbon atom of thc ciirboxyl 
group [(-): 0.3 to 0.95 nm, (+): 0.95 to 1.6 iim], thc second column rcprcscnls thc distance between 
the center of the phcnyl group and the ring nitrogen [(-): 0.3 t o  0.65 nm, (+ ) :  0.65 10 1.0 nm] 

compound a) b) c) 4 
_ _  _ _  _ _  conformations 
+ -  + -  + -  
- +  - +  
i t  + +  



shown in Fig. 6. All the compounds are more or less flexible and can, therefore, 
each represent more than one of the conformations defined by the scheme. Altogether 
the conditions for a complete test series, as outlined above, are fulfilled. A detailed 
description of a computerized version of the method, which also includes a practical 
example from the field of negative chronotropic drugs, is currently i n  press [15]. 
Finally, 2"-factorial schemes can also be used for the design of test series to be 
analyzed, according to the Free-Wilson method [16]. 

3.1.3.3 Choice of Molecular Descriptors 

A fundamental problem in experimental design, apart from selecting a suitablc 
method, is the choice of molecular descriptors. The two factors, which in this context 
must be taken into consideration are: 

1) the type of descriptors to be used, e.g. continuous physico-chcmical parametcrs 
such as 71, o or quantum mechanical parameters, classifying parameters (c.g. 
large, medium, small), or indicator variables (e.g. presence or absence of a 
particular structural moiety) 

As to which type of descriptor is the most suitable, depends entirely on the problem 
being addressed. During the search for a lead compound or a preliminary optimiza- 
tion procedure, indicator variables and perhaps classifying parameters may suffice. 
The latter should be particularly suitable in the more advanced stages of the 
optimization. Here the aim is to find compounds that surpass a predefined level 
of potency, which is based on the requirements for therapeutic use. If  this level has 
been reached, factors other than potency, such as selectivity, pharmacokinetics, and 
metabolism, become the main objective in the optimization. To this end, again 
classifying descriptors are most suitable. Continuous desriptors are needed if detailed 
quantitative structure-activity relationships are to be derived, e.g. in order to 
elucidate binding modes or biomolecular mechanisms. In this context computerized 
design (see Chapt. 4) may become the method of choice. 

In order to obtain well-defined structure-activity relationships, one should ideally 
use only those parameters that are relevant for the biological activity under consider- 
ation. However, such prior knowledge is frequently not available, particularly i n  most 
cases ofdrug design. This problem may be overcome in an iterative manner: one first 
chooses a set of descriptors, preferably indicator variables or classifying parameters, 
which one considers potentially relevant. From the resulting test series, preliminary 
structure-activity relationships are derived, which in turn, will give an indication as 
to which descriptors contribute most strongly to the variance in biological rcsponsc. 
In addition, if inconclusive structure-activity relationships emerge, one might wonder 
whether important descriptors have been missed. A simple illustrative example is 
provided by the set in Table 2. The descriptors, on which this series was based, did 
not lead to conclusive structure-activity relationships. Therefore, these descriptors 
are, at least within the range covered by this set, not relevant. More significant results 
could, however, be obtained by introducing a new descriptor, i.e. length. 

2) the relevance of the descriptors for the biological process being investigated. 
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3.1.4 Summary and Conclusion 

Careful design of test series is a prercquisite for an economical use of resources in 
drug design. A broad spectrum of appropriate methods have been reported in the 
literature. Each of these methods is applicable to particular types of problems. This 
issue has been addressed in the present review in a general way. As to which one 
of these methods is the most suitable in a particular case must, however, be decided 
upon by the medicinal chemist, based on his own judgement or experience. 
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3.2 Applications of Statistical Experimental 
Design and PLS Modeling in QSAR 

Michael Sjiis t riim and Lrniznr t Eviksson 

Abbreviations 

COST Change-one-substituent-at-a-time 
PCA Principal component analysis 
PLS 
PPS Principal properties 
QSAR Quantitative structure-activity relationships 

Partial least squares in latent variables 

3.2.1 Introduction 

The basis of statistical experimental design in QSAR has been reviewed in  the 
preceding Chapter (3.1). A recent review is also given by Pleiss and Unger [ I ] .  In  
this chapter we will discuss this topic further and, in particular, outline and exemplify 
a strategy for QSAR development, in which statistical experimental dcsign plays 
an important role. An often overlooked problem in QSAR is the selection of the 
compounds with which to calibrate the model, i.e. how to design the so-called 
training set. This is unfortunate and may result in an unbalanced test series, which 
in turn will give rise to QSARs of poor quality. The training set compounds must 
be representative of the class of compounds, from which they originate, that is, they 
must be chosen in such a way that they efficiently cover the physico-chemical domain 
of that class. One approach is to use statistical experimental designs, which are 
optimal schemes informationally for the selection of efficient training sets [2]. 

The goal of quantitative structure-activity modeling is to derive a mathematical 
model, having as good predictive capabilities as possible, of the biological effects 
of new compounds. However, first the model must be calibrated, using, for 
example, easily accessible physico-chemical descriptors and measured biological 
responses for the training set compounds. In order to adequately capture the often 
complex nature of many biological systems, it is necessary to use a series of scveral 
relevant physico-chemical descriptors. This view, the multivariate analogy approach 
to QSAR modeling, which was introduced by Wold and Dunn [3] and Hellberg [4], 
assumes that the factors governing the events in a biological system are represented 
by a multitude of physico-chemical descriptors. In other words, within a series of 
compounds, it is assumed that a small change in chemical structure will be 
accompanied by an analogous small change in biological activity, and that the 
multivariate physico-chemical description will reveal these analogies. 
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Analogy models can be rcgarded as linearizations of “real” complicated relation- 
ships between chemical properties and biological responses. Wold and Dunn [3] 
have shown that such analogy models typically have local validity only, that is, 
they can only encompass compounds having fairly similar structurcs, and which 
show commonality in chemical or biological mechanisms. Thus, a QSAR study 
should be based on a series of chemically and biologically similar compounds. It 
must be noted, however, that the compounds must be dissimilar enough to cause 
some systematic change in the biological activity. 

Besides being multivariatc, QSAR data are often crude, imprecise and strongly 
collinear. This implies that traditional regression techniques, like multiple linear 
regression, that assume the physico-chemical descriptors to be exact, 100% rclevant, 
and independent of each other, will not always work well. Thus, i n  situations where 
many strongly collinear physico-chemical descriptors and/or biological responses 
operate together, data analytical methods, other than the classical multiple linear 
regression technique, must be used. Partial least squares projections to latent 
structures (PLS) is a projection method, which is particularly well suited for handling 
these problems. For a more thorough discussion of thc data analytical method 
selection problem, s c c  C/7up 5.2. PLS is presented in detail in Chap. 4.4 and is well 
suited for data sets where the number of descriptor variablcs cxcccds thc number 
of compounds. PLS can also tolerate a moderate number of missing obscrvations. 

3.2.2 A Strategy for QSAR Development in Drug Design 

In  the preceding paragraph, some general, but important remarks on modern QSAR 
analysis were given. These considerations have been incorporated into a strategy for 
QSAR development, which is described in the next few sections. This strategy 
consists of six steps, which are closely linked to each other, and are based on the 
two principal methods of statistical experimental design and multivariatc data 
analysis [5].  Briefly these steps are: (1) Formulation of classes of similar compounds, 
(2) structural description and definition of design variablcs, (3) sclcction of the 
training set of compounds, (4) biological testing, ( 5 )  QSAR development, and (6) 
validation and predictions for non-tested compounds. In the next paragraph these 
steps are discussed in more detail. In thc cxamples in  paragraph 3.2.3, the emphasis 
is placed mainly on the statistical experimental design (Step 3), and the QSAR 
modeling (Step 5). 

3.2.2.1 Formulation of Classes of Similar Compounds (Step 1) 

Since the mechanism of biological action usually differs between different types of 
classes of compounds, one can not construct QSARs, which are based on compounds 
that are too diverse structurally. Thus, the first step of thc strategy consists of 
formulating classes of similar compounds, The ideal situation corresponds to classes, 
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where, within each class, all the compounds are structurally similar and function 
according to the same mode of action. In reality, this is difficult to achieve and 
some deviations can be expected. 

The formation of classes of similar compounds consists o f  dividing the series of 
compounds of interest into categories on the basis of their chemical structure. This 
may, for instance, be achieved according to their general backbone, their substitucnts, 
or perhaps according to crucial properties such as hydrophobicity or chemical 
reactivity, and knowledge of the biological mechanism. The subsequent multivariate 
data analysis (Step 2) may give information about deviations from the class similarity, 
provided that the majority of the compounds are, indeed, chemically and biologically 
similar. If the data analysis reveals that the investigated compounds do not form 
a homogeneous class, new classes should be formed. This means that this step is 
sometimes an iterative procedure. 

3.2.2.2 Structural Description and Definition of Design Variables (Step 2) 

Once a class of similar compounds has been compiled, the next question is how to 
appropriately describe the structural variation. Obviously, the demands on the 
structural description depend not only on the considered compounds, but also on 
the nature of the biological system under investigation. In general, the more 
complicated the system under observation is, then the more unlikely it is that a single 
descriptor variable will contain sufficient information about a given biological 
phenomenon. Thus, the structural description is multivariate, but to what extent, 
varies from case to case. The structural and physico-chemical descriptors can be 
categorized into two groups, viz. (1) global types and (2) substituent types [6]. Global 
variables, such as log P ,  are based on the whole molecule, whereas substituent 
descriptors correspond to a certain part or moiety of a molecule. Depending on the 
application, the two categories of descriptors can bc used indcpendently, or i n  
conjunction with each other. Regardless of which type of variable is chosen, i t  is 
usually difficult to predict in advance which descriptor variables will be useful. If  
no prior knowledge or information exists about the importance of certain factors, 
it is usually recommended that at least the hydrophobic, steric and electronic 
properties of the compounds are described. 

Prior to the selection of a series of compounds for synthesis according to a 
statistical experimental design scheme, it is necessary to decide on a set of independcnt 
design variables, which might have an influence on the biological effect. In  technical 
optimization applications, variables, such as time, temperature, pressure, pH, etc., 
usually can be varied independently of each other. In  the optimization of molecules, 
however, where substitution patterns or the whole molecular structure is changed, 
it is usually not possible to discern design variables that can be changed indepen- 
dently of each other. For example, if size and lipophilicity of the varied substituents 
are used as design variables, they are rarely independent of each other. I f  the sizc 
of the side-chain is varied, the lipophilicity is also altered. Furthermore, changes in 
molecular structures are discrete in nature, which means that it is not possiblc to 
find combinations of substituents that exactly match a statistical design. 
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By analyzing the multivariate physico-chemical data table with principal com- 
ponent analysis (PCA), the original number of descriptors are contracted into a 
few and information-rich principal components. (For a thorough presentation of 
PCA see Chap. 4.1). The term principal components shall be used interchangeably 
with design variables in this context, because they can be used a s  variables in 
statistical experimental designs, or “principal properties (PPs)”. This is simply 
because they can be assumed to reflect the most important features of the compounds 
that are hidden in the total variation of all descriptors. The use of PPs in connection 
with statistical experimental design is discussed further in  Chap. 3.4. The concept of 
using PPs as variables in statistical experimental designs has also been useful, for 
example, in the selection of solvents, catalysts, etc., in organic synthcsis [7]. 

3.2.2.3 Selection of the Training Set of Compounds (Step 3) 

The purpose of the third step is to select a training set of compounds for biological 
investigations. Unfortunately, this step is often ignored in QSAR research. It is of 
crucial importance for any QSAR model, irrespective of its origin and future use, 
that the set of chemicals used to calibrate the model exhibits a well-balanced 
distribution and contains representative compounds. This can only be attained by 
a systematic selection of the training set of compounds, where the major structural 
features are varied systematically and simultaneously. Hcrc, statistical experimental 
designs are invaluable. This stems from the fact that they generate the training set 
by introducing systematic variation in all the variables or PPs simultaneously, and 
not just in one design variable at a time. There are different categories of statistical 
experimental designs, which are of great practical importancc, such as factorial 
designs (FD), fractional factorial designs (FFD), and D-optimal designs [8 ~ 101. 
The resulting models are easy to interpret, and, with regard to the FDs and FFDs, 
they are easy to construct and modify. 

In an FD or FFD (see Chap. 4.1), each PP (Design variable or factor) is usually 
given two fixed levels. With more than three design variables (or PPs), FDs usually 
require too many experiments (in this case compounds). In such situations, FFDs 
are more attractive, because the number of compounds needed for biological testing 
is drastically decreased with little loss of information. FDs and FFDs only allow 
linear and interaction terms to be estimated. However, if FDs and FFDs are 
complemented with interior centerpoints, they also permit a rough estimation of 
the quadratic terms, which reflect curvature. Thcse designs may also be com- 
plemented to form central composite designs, which allow a more rigorous 
quantification of curved phenomena. The principles behind the use of PPs for 
constructing FDs and FFDs are discussed and exemplified in more detail in 
Chap. 4.1. In the selection oftraining sets for QSAR applications, so-called D-optimal 
designs are also of interest. Such designs are particularly attractive in situations 
where constraints exist in the physico-chemical domain of possible compounds. 
With a D-optimal design, a subset of a given larger set of compounds which fulfill 
these restrictions are selected, so that they span the physico-chemical space as well 
as possible. For a discussion of D-optimal designs and a review of subset selection 
algorithms, see Carlson [7] and Baroni et al. [8]. 



3.2.2.4 Biological Testing (Step 4) 

One of the core concepts underlying this QSAR strategy, i 4  that the biological 
testing should be minimized as far as possible. Thus, the basic idea is to merely subject 
the representative training set compounds to extensive testing, in order to obtain a 
broad and stable picture of their biological properties. This implies that a largc 
number of biological measurements should be undertaken, so that the response 
matrix contains biological variables that span as many aspects of the biological 
profiles of the investigated compounds as possible. The more biological tests that 
are performed for each compound, the better is the stability of the resulting QSAR 
model, and this will likely also lead to an improved predictive capability. Bcsides 
economic considerations, the testing of a few representative compounds also saves 
time, and adheres to the principles of animal welfare. 

Another general remark about the biological testing, is that such measurements 
are commonly recorded as dose-response curves, showing the relationships between 
the administered doses and the responses that they elicit. Typically, the information 
content of such curves is summarized in a single value, such as LDT0, ECS0,  etc. 
This need not be a problem if the curves are congruent and exhibit the same general 
features. Then in such a case, a single value will adequately reflect the existing 
information. However, if the curves are incongruent, i.e., they are influenced by 
more than one factor, summarizing a dose-response curve with only a single value 
may lead to a loss of valuable information. It is, therefore, recommended that the 
whole (multivariate) dose-response curves are used, whenever possible, in QSAR 
analyzes. 

3.2.2.5 QSAR Development (Step 5) 

In the fifth step of the strategy, the main objective is to calculate the best mathematical 
expression linking together the physico-chemical descriptors and biological re- 
sponses. During this procedure, information, regarding the essential features of thc 
chemical and biological data structure, is obtained. There may, for instance, be a 
need to transform some of the descriptor variables, or delete compounds, exhibiting 
deviating chemical and/or biological properties. The QSAR analysis also provides 
information on whether a descriptor variable is relevant for a certain application. 

In practice, there are two ways, in which the physico-chemical variation of thc 
studied compounds may be represented. One way is to use the PPs for the QSAR 
development as well. If these are few, and provided that they are information-rich, 
the calculated QSAR is easy to interpret. The problem might arise, however, that 
the PPs are not sufficiently adequate for QSAR development. Although the PPs 
are derived by a maximum variance projection in PCA, some of the residual variancc 
might be essential to QSAR development. In the situation, where the PPs are found 
insufficient for QSAR analysis, it is recommended that one returns to the use of 
the original physico-chemical descriptors. These might lead to an improvement of 
the model. 
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In QSAR development, we recommend the use of multivariate partial least squares 
projections to latent structures (PLS). This is because PLS is a projection-based 
method and estimates the correlation structure among the colliiiear descriptors in 
terms of a limited number of latent variables. This means that PLS can analyze 
any number of variables, regardless of the number of compounds in the training 
set, which is beneficial, since the projections to latent structures become more stable 
as more informative variables are included. The statistical significance of the QSAR 
is then assessed by means of cross-validation [l l] .  A measurc of the predictive 
capability of a model, based on cross-validation, is Q 2  (sometimes denoted as R&, 
describing the amount of variance in y that can be predicted). This can be compared 
with the R2 value, expressing the variance modeled in y .  Both these statistical 
measures vary between 0 and 1, where 1 signifies a perfect model, and 0 a model, 
which has no relevance. The percent variance predicted or explained is expressed 
as lOO*Q’ or 100*R2. A large discrepancy between R 2  and Q 2  might indicate an 
overfitting of the QSAR model. Cross-validation is sometimes referred to as an “inter- 
nal” procedure to ascertain the predictive capability of a QSAR. Cross-validation is 
discussed in more detail in Chaps. 5.1 and 5.2 and briefly in the next paragraph (3.2.2.6). 

3.2.2.6 Validation and Predictions for Non-Tested Compounds (Step 6) 

The final purpose of a QSAR is to predict the biological activities of non-tested 
compounds, which belong to the class under investigation. However, first i t  is 
important that the predictive ability of the model is verified experimentally. This 
is accomplished by biological testing of some additional compounds i n  the same way 
as the training set, and then comparing the experimental findings with the values 
predicted by the QSAR. If the QSAR predicts within acceptable limits, i t  inay be 
used for a more extensive prognostication. The prediction errors should be compared 
with the precision and range of the biological measurements obtained. 

It is desirable that the compounds in the validation set adequately span the 
physico-chemical domain and the biological activity range of interest. Conveniently, 
the validation set may be selected according to a statistical experimental design in 
order to result in a series of representative compounds. In fact, the validation set 
can be selected already at the third stage of the strategy, simultaneously with selection 
of the training set. It also seems relevant to stress that the cross-validation procedure 
(internal validation) and the verification of the validation set (external validation), 
are not mutually exclusive. On the contrary, these methods should be regarded a s  
being complementary and, which can be used to obtain an estimate of the precision, 
with which the biological activity can be predicted with the QSAR model. 

3.2.3 Examples of Design and PLS Modeling 

In this section eight examples are given with the aim of illustrating the concepts of 
experimental design and PLS analysis in the development of QSARs. The examples 
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concern a diverse series of peptides or peptoids (Secs. 3.2.3.1 to 3.2.3.4), halogenated 
alkanes (Sec. 3.2.3.5), dibenzofuranes (Sec. 3.2.3.6), aromatics (Sec. 3.2.3.7) and 
corrosive carboxylic acids (Sec. 3.2.3.8). In  the examples given in Secs. 3.2.3.1 to 
3.2.3.4, the statistically designed training sets were constructed in retrospect from 
earlier and more or less systematically varied series of compounds, but for which 
QSARs were developed. In the examples given in Secs. 3.2.3.5 to 3.2.3.8, on the other 
hand, a class of interesting compounds was defined prior to the biological testing. 
Then, a limited set of compounds was selected by statistical experimental design. 
Models were then developed, and the validity of the models was tested by separate 
validation sets. 

3.2.3.1 Bradykinin Potentiating Pentapeptides 

A series of 30 pentapeptides with bradykinin potentiating activity, which had variable 
amino acid sequences, was reported by Ufkes et al. [12, 131. The biological activity 
was expressed as a relative activity index, RAI, relative to one of the peptides. A 
QSAR was developed using PLS based on a numerical description of each of the 
varied positions on the peptides in terms of three PPs, denoted as zl, z 2  and z 3  
(see below), for the 20 coded amino acids. Thus, each pentapeptide was described 
by 15 variables. 

The three z scales for the amino acids were calculated by PCA from an autoscaled 
and mean centered multiproperty matrix of 29 physico-chemical variables [ 141. The 
scales or PPs of the amino acids are listed in Table 1, and plotted against each 
other in Fig. 1. These PPs have been shown to be relevant in the development of 
numerous peptide QSARs [6, 15 - 171. Moreover, they have been extended also to 
comprize a large number of non-coded amino acids [18]. 

The PLS analysis resulted in a model with two significant components, where 
R 2  = 0.82, i.e. the model described 82% of the variance i n  the data, and Q 2  = 0.70, 
i.e. 70% of the variance in the biological activity was predicted by cross-validation. 
A plot of the observed values against the calculated values is shown in Fig. 2a. In 

Table 1. PPs or descriptor scales, z l r  z 2  and zj, for the coded amino acids (AA) 

I .1 AA -71 z2 AA z1 - 2  -73 

Ala(A) 
Val(V) 
Leu(L) 
Ilc(1) 
Pro(P) 
Phc(F) 
T W W )  
Met(M) 
Lys(K) 
A r d R )  

0.07 
- 2.69 
-4.19 
- 4.44 
- 1.22 
- 4.92 
-4.75 
- 2.49 

2.84 
2.88 

- 1.73 
-2.53 
- 1.03 
- 1.68 

0.88 
1.30 
3.65 

-0.27 
1.41 
2.52 

0.09 
- 1.29 
-0.98 
~ 1.03 

2.23 
0.45 
0.85 

- 0.4 I 
-3.14 
- 3.44 

2.4 I 
2.23 
1.96 
0.92 
0.7 I 

- 1.39 
3.22 
2.18 
3.64 
3.08 

I .74 
- 5.36 
- 1.63 
- 2.09 
- 0.97 

2.32 
1.45 
0.53 
1.13 
0.39 

1 . 1  I 
0.30 
0.57 

- I .40 
4.13 
0.0 I 
0.84 

- 1.14 
2.36 

- 0.07 
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Figure 2. a) A plot of the observed activities against the calculated activities for ;I PLS model. 
based on 30 pentapcptides. b) The observed activities plottcd against the predicted activities (open 
circles) for a PLS model, based on a designed training set (Killed circles) for il at position 3 and 4 
(SCC Table 1). 
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Figure 3. a) PLS weights for the model based on all 30 pentapeptides, and b). based on the dcsigncd 
training set. The numbering refers to the amino acid position and the scale used, i.c. 1-3 (2, - z 3 )  
at position t, 4-6 (zl - z 3 )  at position 2, 7-9 (z, - z 3 )  at position 3, etc. Variablc 16 is the weight 
of thc biological activity. 

Fig. 3a, the PLS weights are plotted against each other. The plot in Fig. 3a shows 
that the weights for the variables 7, 8 and 9, corresponding to position 3, have the 
largest absolute values for the first model dimension. Thus, position 3 is the most 
influential for regulating the R A I .  

The present 30 peptides were not synthesized according to a statistical design. 
In retrospect, however, we have investigated to determine whether the apparent 
success of the QSAR is due to an intrinsic design among the 30 pentapcptides. 
Indeed, an approximate full factorial design in just z ,  in the most varied positions 3 
and 4, was present among the 30 pentapeptides (see Table 2). A PLS model based 
on this set of four peptides, as a training.set, results in a model yielding satisfactory 
predictions, as shown in Fig. 2b. This shows that a design with few compounds can 
be valuable for screening purposes even if not all of the design variables are informative. 
We also noted that the PLS weights are quite similar in the model, based on the 
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Figure 4. a )  The observed activi- 
ties plotted against the calculated 
activities (open circles) for the 
QSAR model, based on a designed 
training set with nine dipcptides 
(filled circles) in zI and z 2  at 
positions I and 2 (see Table 3). 
b) The observed activities plotted 
against the predicted activities 
(open circles) for a COST designed 
training set with 34 dipeptides 
(fillcd circles) and a PLS model. 
based on linear terms only. c) The 
plot shown is similar to the one 
in b), except that it is ii PLS 
model, based on linear, quadratic 
and cross terms. d) The observed 
activities plotted against the 
calculated activities for ;I PLS 
model, based on all 58 dipeptides. 

design, as well as for the model, based on all 30 peptides (compare Figs. 3a and 
3 b). For example, the variables, 7, 8 and 9, have high absolute values of their weights 
for the first dimension in Fig. 3a and exhibit a similar size and sign as the 
corresponding weights plotted in Fig. 3 b. 

Table 2. 
variable for both positions 3 and 4 (amino acids in bold letters) 

The 2' FD for the selected training set of the pentapcptidcs. PPI, i.c. zI, is used as design 

F D  no.' Pentapeptide Setting in PPI 

i l ( 3 )  21(4) Z I ( 3 )  r, (4) 

~ - 

- + 
+ 

+ + 
- 

21 VEWVK 
23 VAAWK 
28 PGFSP 
13 VGGGK 

-4.75 -2.69 
0.07 - 4.1 5 

- 4.92 1.96 
2.23 2.23 

The numbers correspond to those plotted in Fig. 2 b  and to the data given by Hcllberg et al. [15]. 
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3.2.3.2 Dipeptides (Inhibiting the Angiotensin Converting Enzyme) 

In this section, we will show that the predictive capability of a QSAR model is 
strongly dependent on the strategy used for selecting the compounds in  the training 
set. Thus, we have, in retrospect, compiled two training sets, one based on a statistical 
design, and one on a change-one-separate-feature-at-a-time (COST) design from a 
series of 58 dipeptides which inhibit the angiotensin converting enzyme. The activity, 
A ,  is expressed as 6 + log (l/Iso), where I, , ,  is the concentration (in VM), which 
inhibits 50% of the angiotensin converting enzyme. The biological data was compiled 
by Cheung et al. [19]. The results from the statistical design and the COST approaches 
are compared to the result of a reference QSAR model with all 58 dipeptides included 
(see page 14). 
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Table 3. The 2"- FFD for z ,  and z 2  for a peptide varied at two positions (I and 2). The design 
is cornpleinentcd with a centcr point. Dipeptidcs (DP) corresponding approxiniatcly to the settings 
of the angiotcnsin data are givcn 

FFD no.' D P  Scttings in PPs 

Z l ( I )  .?,(I) Z , ( 2 )  z2Q.1 Z l ( 1 )  z 2 ( l )  z1(2)  3?(2 )  

- - - + 1 vw -2.7 -2.5 -4.8 3.7 
- - 22 GI 2.2 -5.3 -4.4 - 1.7 + 

55 YA - 1.4 2.3 0.0 - 1.7 
+ + - + 5 RW 2.9 2.5 -4.8 3.7 

20 VG -2.7 -2.5 2.2 -5.4 
+ - + + 29 GR 2.2 -5.3 2.9 2.5 
- + + + 55 FR -4.9 1.3 2.9 2.5 
+ + + - 48 DG 3.6 1.1 2.2 -5.4 
0 0 0 0 54 AA 0.'0 - 1.7 0.0 -1.7 

- 

- - + - 

- + - - 

~ ~ ~ ~ ~ ~~~~~~~~~~ 

" The numbers correspond to those plotted in Fig. 4a and to the data givcn by Hellberg ct al. [17]. 

The Statistical Design Approad? 

Prior to the construction of a statistical design, it was necessary to decide which 
descriptor variables might be of importance for biological activity. Here again, we 
have used the z scales for the amino acids (Sec. 3.2.3.1) as design variables, as they 
are independent of each other and summarize the information content of many 
different types of physico-chemical variables. We constructed a 24- ' fractional 
factorial design for each of the two dipeptide positions, using only z 1  and z 2  as 
design variables (see Table 3). It was not possible to find dipeptides corresponding 
to a design with all three z variables. The design was also complemented with a 
center point. The nine dipeptides, which best corresponded to the settings in the 
FFD, were then selected. The training set of the nine peptides was modeled using 
PLS, including all cross and quadratic terms in the six variables, i.e. 27 descriptor 
variables (6 linear + 6  quadratic + 15 cross terms). The QSAR model ( R 2  = 0.97 
and Q2 = 0.53) was then used to predict the biological activity of the remaining 49 
dipeptides. In Fig. 4a, the observed activities are plotted against the activities 
predicted. The predictions can be compared with the results, when all dipeptides 
are included in the model. 

The COST Approach 

Among the 58 dipeptides, 34 contained glycine at either the first oI the second 
position. Thus, these 34 compounds represent a training set, compiled according 
to the strategy to "systematically" change one separate feature at a time, i.e. the 
COST approach. 

A QSAR for this training set was calculated ( R 2  = 0.64 and Q2 = 0.52), which 
was based on the three z scales for each one of the dipeptide positions. The cross 
and quadratic terms were not included. This QSAR was then used to predict the 
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Fig. 5. a) PLS weights for the model, based on all 58 dipeptides, and in b), based on the designed 
training set. The numbering refers to the amino acid position and thc scalc uscd, i.e. 1-3 (2,  - z 3 )  
at position 1, 4-6 ( z ,  - z 3 )  at position 2, 7- 12 square terms and 13 -27 cross terms. Variablc 28 
is the weight for the biological activity. 

biological activity for the remaining 24 compounds. The predicted activitcs arc 
plotted against the observed activities in Fig. 4b. A comparison of Fig. 4 b  with 
Fig. 4a, shows that the predictions from the COST design are much worse compared 
to the predictions from the FFD. The predictions from the COST design are even 
worse, if cross terms and quadratic terms are included (Fig. 4c). 

Morlrl Based on all 58 Contpounds 

In order to obtain a reference model, a QSAR was calculated based on the complete 
set of 58 dipeptides. As before each of the dipeptides was described by the three 
descriptors z , ,  z2  and z 3  at each amino acid position. In addition, to account for 
a weak non-linear behavior between the biological data and the physico-chemical 
characterization, quadratic and cross terms were added. PLS analysis resulted in a 
model with two significant latent variables (R2  = 0.78 and Q' = 0.68). In this case, 
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Table 4. 
to thc design matrix, were selected from the set of 48 bitter dipcptidcs 

T h e  24 FD for z ,  and z2 at position 1 and  2. Peptide analogs, approximatcly corresponding 

FDh no.' DP Settings in PPs 

Z I ( l )  ZZ(1) Z , ( 2 )  %(2) 2,(1j ZZ(Ij 1,(2j z 2 ( 2 )  

+ + + + c 
+ + + c 

+ + + C 
+ + C 

+ + + c 
+ + c 

+ - - + 18 GW 2.23 -5.36 -4.75 3.65 
+ - - - 62 SL 1.96 - 1.63 -4.19 - 1.03 
- + + + 59 WE -4.15 3.65 3.08 0.39 
- + + - 54 FG -4.92 1.30 2.23 -5.36 
- + - + 60 W W  -4.15 3.65 -4.15 3.65 
- + - - 55 FL -4.92 1.30 -4.19 -1.03 
- - + + 45 IE -4.44 - 1.68 3.08 0.39 
- - + - 47 IS -4.44-1.68 1.96-1.63 
- - - + 41 IW -4.44 - 1.68 -4.75 3.65 
- - - - 39 I 1  -4.44 - 1.68 -4.44 - 1.68 

- 
- 
- - 

- 

- - 

" T h e  FD settings are not in the standard order. 
The numbers correspond to those plotted in  Fig. 6a  and to thc data givcn by As;w ct al. [20]. 
Combinations of amino acid properties, which were not found in thc set of 48 dipcptidcs. 

all, except one of the dipeptides, were well described by the modcl (see Fig. 4d). 
The PLS weights for the two model dimensions are plotted against each other in 
Fig. 521. A comparison with the corresponding plot for the FFD (Fig. 5b) revcals a 
general similarity of the weights for the two models. This strongly underlines the 
stability of the model obtained from the designed training set. 

To conclude, we have, in practice, demonstrated the superior predictive capabilities 
of a QSAR model, which is based on an approximate statistical design, compared 
to a QSAR model, which is based on a poorly balanced design - the COST design. 
This is despite the fact that the COST design is based on 34 combinations of 
19 different amino acids and the FFD design only consists of nine combinations of 
9 amino acids. We have also noted that the model composed of all 58 dipeptides, is 
similar to the one based on a designed training set with only 9 dipcptides. Thus, 
we propose that the training set analogs for QSAR studies should o/iiwj..s be selected 
according to an experimental plan. This should increase the information content 
in the training sets in comparison to arbitrary or  COST designs. This example also 
shows that PPs are well suited as design variables in F D  or FFD. 

3.2.3.3 Dipeptides (Bitter Tasting) 

Similarly to the example discussed in Sec. 3.2.3.2, we have investigated 48 bitter 
tasting dipeptides, which were compiled by Asao et al. [20]. A 2" factorial design, 
with z 1  and z 2  as design variables, was constructed, resulting in 16 different 



3.5 4 
=. 2.5 
0) 
0 - 
ui 

1.5 
0 0  

0 6 0  

00 

0.5 ! I I I 

0.5 1.5 2.5 3.5 
Calc./pred. log ( l /T )  

3.5 4 
h 

k 
=. 2.5 

ui 

0) 
0 - 

1.5 
8 

0.5 I I I I 

0.5 1.5 2.5 3.5 
Calc. log ( l /T )  

Figure 6. a) The observed bitterness thrcshhold activities plotted against the predicted bitterness 
threshold activities (open circles) for the QSAR model, based on a designed training set with tcn 
dipeptides (filled circles) in i, and z 2  at position 1 and 2. b) The observed bitterness activities 
plotted against the calculated bittcrncss activities for a PLS modcl, based on all 48 dipcptides (see 
Table 4). 

combinations for the two amino acid positions. In ten of these combinations, 
dipeptides were found (see Table 4). The missing dipeptides mainly corresponded 
to those with polar amino acids such as aspartate and arginine in the first N-terminal 
position. A QSAR based on all three z scales, with two PLS components, was able 
to predict the bitterness threshold (log 1/T) for the remaining 38 dipeptides (Fig. 6a)  
with good accuracy (R2  = 0.82 and Q 2  = 0.54). This plot can be compared with 
the corresponding relationship, (Fig. 6 b) based on a two-component PLS modcl, 
with all 48 dipeptides included (R2  = 0.82 and Q 2  = 0.76). Indeed, the training set, 
which was selected according to an approximate experimental design, was in- 
formative, and the loss of information was marginal with the designed set compared 
to the model, based on all of the dipcptides. 



78 Miclinel Sjiistriim crnd Ltwrinrt Erikssoti 

0.2 - 

2 -0.2 

-0.4 

7 0  

2. 

-0.6 1 O 4  

f 5  0 6  

3 . 
-0.8 I I I I I 

0 6  
3. -0.4 

-0.6 1 5 . .’ 
-0.8 ! I I I I 

-0.8 -0.4 0 0.4 0.8 1.2 
wl 

Figure 7. a) PLS weights for the model, based on all 48 dipcptidcs, and b) based on the designed 
training set. The numbering refers to the amino acid position and the scalc uscd, i.c. 1-3 (z, - z 3 )  
for position I ,  4-6 ( 2 ,  - z 3 )  for position 2. Variable 7 is the weight for thc biological activity. 

A comparison of the PLS weights for the model with all the dipeptides included 
with the PLS weights for the designed set, also revealed similarities (Fig. 7a and 
7b). Thus, the designed set summarizes information about the most important 
variables, and this information is scarcely affected by increasing the number of 
compounds in the training set. 

3.2.3.4 Mimetics 

The complex process of forming a non-peptide molecule from a peptide is also of 
considerable interest in drug design. One possibility would be to substitute one or 
more of the peptide bonds with so called isosteres (e.g. -CH,CH,-), to give a 
peptidomimetic, which would be more resistant to hydrolysis. There are few 
systematic QSAR studies involving the physico-chemical characterization of mime- 
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Figure 8. Scatter plot of the PPs Tor the peptidomimetics. Filled circlcs correspond to thc training 
set and shaded circles correspond to the test set for the cholecystokinin antagonists (CCK-A and 
CCK-R). The mimetics are: I ,  -COCH-; 2, -CH,O-; 3, -COO-; 4, -CH,NH-; 
5, -COCH, - ; 6, -CH =CH - (c;.?); 7. -CH =CH - ( t r u n ~ ) ;  8. -CH,CH, - ; 9, -CHOHCH2 - 
(d S) ;  10, -CHOHCH,-(l, R);  11, -CHNH,CH,-(d, S); 12, -CHNH,CH,-(I, R ) ;  13, pCH2S-i 
14, - CSNH - ; 15, -CONCH, - ; 16, - COS - ; 17, - CH (0)CH - (trCm.v); 18, - CH (0)ClI  - ( c ' i ~ ) ;  
19, -CH,NOH-; 20, -CH,C(NOH)-; 21, -CHN(COCH,)-. 

tics. One exception is the work of Fincham et a]., [21] where a physico-chemical 
characterization of mimetics was used in structure-activity studies for a series of 
dipeptoids. Here, the amide bond was replaced with a series mimics. The biological 
effects studied for the dipeptoids were the ZCSo values for cholecystokinin (CCK-A 
and CCK-B) antagonism. Recently, we extended their study, see Berglund et a]., 
[22], by describing 21 mimetics with 26 physico-chemical variables. The physico- 
chemical characterization was then used to calculate three PPs for the mimetics. 
The PPs, plotted in Fig. 8, were used to construct a 23- '  FFD (see Table 5) ,  and 
dipeptoids approximately matching these specifications were found among the 
reported CCK antagonists. The design was complemented with an approximate 
center point. The series of five compounds was used to construct two QSAR models 

Table 5. 
uscd as design variablcs 

The 2,- ' F F D  Tor the mimetic example. The PPs for thc mimetics shown in Fig. 8 wcrc 

FFD" no." Mimetic Settings in PPs 

PPI P P 3  PP3  P P  1 PP2 PP3 

- - + I -COCH- -3.27 -2.94 1.08 
- + - 21 -CHN(COCH,)- -5.35 3.21 - 1.45 + - - 8 -CH,CH2- 4.29 -0.51 - 1.76 
+ + + 7 -CH =CH-(ci.\) 4.96 2.19 2.IX 
0 0 0 4 -CH,NH- 2.81 -0.85 0.57 

* The F F D  settings are not in the standard order. 
" The numbers correspond to those plotted in Fig. 8 



80 

4- 

0 

g3- 
0) 
0 - 
i 

2- 
8 0 

1 

8 .  

7 

. 4  

16 

14 oo 
3 21 

15 0 

I !  I I I 

1 2 3 4 
Calc./pred. log /C5, 

0 4.3] 

9 

2 3.3 
0 

8 
0 

16 

0' 14 
3 0  

21 

2.3 L 
2.3 3.3 4.3 

Calc./pred. log IC,, 

Figure 9. The observed activities plotted against the prcdicted aclivitics (opcn circlcs) for thc two  
mimetic test sets. The QSARs are based on thc designcd training set (fillcd circles) for thc dipcptoids 
a) cholecystokinin (CCK-A) and b) (CCK-B). 

which were used to predict the remaining reported CCK antagonists. Plots of the 
observed versus the predicted biological effects for the designcd training set, indeed, 
showed good predictions for the remaining dipeptoids with known biological 
activites (see Figs. 9 a  and 9b). 

3.2.3.5 Haloalkanes 

In contrast to our first four examples, where the training sets were generated in 
retrospect, based on the existing literature data, the training sets in the following 
examples were generated before the biological testing. I n  the first example, the 
application of the QSAR strategy to a class of halogenated aliphatic hydrocarbons 
is discussed. This group of chemicals is of relevance for QSAR investigations 
from an environmental point of view. The class under consideration comprised 
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58 compounds with up to four carbon atoms and a varying degrcc of halogenation 
[5].  Interestingly, this class contained many chlorinated chemicals that arc uscd on 
a large scale in industrial applications (as solvents, etc.), and also several chlorinated- 
fluorocarbons (CFCs). 

In order to accomplish a multivariate characterization of the structural and 
physico-chemical properties of the 58 haloalkanes, a series of 13 descriptor variables 
was compiled [5] .  These variables were subjected to PCA, and four significant 
principal components described 87% of the total variance. The scores of the first 
two PPs are plotted against each other in Fig. 10. These scores represented the PPs 
of the halogenated aliphatics and were used to construct a 2 4 p '  FFD, which is 

Table 6. The 2"- ' FFD for the training set (top) and the 2'- ' FFD for the validation set (bottom). 
The haloalkane example 

FFD no. Compound Settings in PPs 

PPI PP2 PP3 PP4 PPI PP2 PP3 PP4 

- + -  + 
- + -  + + + -  - 

+ +  
+ -  + -  
- + + -  
+ + + +  
0 0 0 0  
0 0 0 0  

- - 

+ -  - 
- + -  
+ + +  
0 0 0  
0 0 0  

52 
48 
33 
30 
15 
7 

39 
2 
3 

1 1  

23 
41 
19 
31 
12 
6 

CH 3 (CH 212 Br 
CH,CHCICH, 
CH,CHBr, 
CH,CH,Br 
CHCI,CHCI, 
CCI,F 
CBr,F 
CH,CI, 
CHCI, 
CH,CICH,CI 

CH,CICHCICH,CI 
CH ,CH , C H ,CI 
CH,BrCH,Br 
CH,BrCl 
CH , BrCH,CI 
CCI, 

-0.72 
1.96 

- 1.77 
1.20 

- 1.69 
1.14 

- 3.20 
1.92 
0.52 
0.56 

- 2.00 
1.77 

- 2.56 
0.28 

- 0.98 
- 1.14 

- 1.26 
-0.86 

1.22 
0.89 

-0.83 
- 0.40 

I .68 
0.79 
0.22 
0.03 

- 1.25 
-0.89 

1.39 
I .78 
0.83 

- 0.40 

- 1.29 -0.51 
-0.81 0.15 
-0.14 -0.08 
-0.90 -0.12 

0.92 0.70 
0.95 - I .  10 
1.07 - 1.90 
0.13 0.70 
0.70 0.48 
0.28 1.54 

0.28 
- 0.90 

0.67 
-0.14 

0.32 
1.58 
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Figure 11. Correlation plot showing 
obscrvcd cytotoxicity ( J C 5 ( ] )  plotted 
against the corresponding calculated 
(training set) and predicted (valida- 
tion set) values. Training sct com- 
pounds arc  marked with filled circles 
and validation sct compounds with 
open circles. Notation a s  in Table 6 .  

summarized in Table 6. This design encodes eight compounds, which was supple- 
mented with two compounds located in the interior part of the design. Thus, a 
training set, consisting of ten chemicals, was selected. In an analogous manner, a 
validation set of six chemicals was chosen (Table 6). This set was generated by a 
2" 1 FFD, augmented with two center points. 

The 16 compounds (training + validation sets), which were preferred as 
representatives for the whole class of halogenated aliphatics, were subjected to a 
broad range of biological tests, e.g. for acute and subacute toxicity, mutagenicity 
and cytotoxicity [5] .  Here, we discuss the recent results that were obtained from 
cytotoxicity tests with human HeLa cells [23]. The cytotoxicities of the 16 compounds 
were expressed as the concentration, which inhibits cell growth by 50%, and is 
termed the IC50.  In order to account for the variation in cytotoxicity among the 
tested compounds, we found a subset of five predictor variables, which could 
sufficiently describe the biological endpoint. These five highly correlated descriptor 
variables were the molecular weight, the van der Waals volume, the octanol/water 
partition coefficient, and the log retention times from two HPLC systems. The PLS 
analysis, based on these five predictors, gave a one-dimensional model with 
R 2  = 0.89 and Qz = 0.88. As seen in Fig. 11, the QSAR accurately predicts the 
cytotoxicity for the compounds in the validation set. Thus, this QSAR may also be 
useful for predicting the cytotoxicities of the 42 non-tested halogenated aliphatic 
hydrocarbons. 

3.2.3.6 Dibenzofurans 

This example refers to a series of 87 polychlorinated dibcnzofurans (PCDFs), for 
which a biological response concerning a rat enzyme induction potency was 
determined. Tysklind [24] first compiled a multivariate characterization of these 
compounds, consisting of 18 chemical descriptor variables. These descriptors were 
summarized by PCA (see score plot in Fig. 12). The resulting four PCs were used 
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Figure 12. Scatter plot of P P 2  vs PPI 
for thc 87 PCDFs. Compounds 
belonging to the training and valida- 
tion sets arc marked with fillcd circles 
and arc numbered as  in Table 7. 

to construct a 2 4 p '  FFD, encoding ten compounds (eight coriicr compounds and 
two center points). A similar design, i.e. the other half-fraction of the full factorial 
design, was also formed to aid the selection of ten congeners for the validation set. 
In the validation set, an additional center point and octachlorodibenzofuran (OCDF) 
were included. OCDF was included, because it exhibited atypical chemical propcr- 
ties. In total, 20 compounds were selected out of the 87 PCDFs for biological testing 
(Table 7). The compounds were tested for ethoxyresorufin-0-deethylase (EROD) 

Table 7. The 24- '  F F D  for the training sct (top) and thc 2"-' FFD for the validation sct (bottom). 
The dibcnzofuran example 

FFD no. Compound Settings in PPs 

PPI  PP2 PP3 PP4 PPI PP2 PP3 PP4 

+ + -  - 
+ -  + 

+ + -  
+ +  

+ -  + -  
+ + -  

+ + + +  
0 0 0 0  
0 0 0 0  

- 

- 

- - 

- 

- 

+ 
+ 
+ 
+ t  

0 

- 

- 

+ -  
+ -  + 

+ -  
+ +  

+ + +  
+ + -  
+ 0 0  
0 0 0  

- 

- 

- 

52 
1 15 
61 

135 
86 

I29 
76 

I28 
104 
I13 
83 

125 
91 

103 

126 
60 

127 
136 
88 

70 

1,2,3,7-TCDF 
2,3,4,7,8-PcCDF 
1,2,6,9-TCDF 
1,2,3,4,7,8,9-HpCDF 
2,4,6,8-TCDF 
1,3,4,6,7&HxCDF 
1,4,6,9-TCDF 
1,2,4,6,8,9-HxCDF 
1,2,6,7,8-PeCDF 

2,3,6,8-TCDF 

I ,2,3,4,9-PeCDF 
1,2,4,8,9-PeCDF 

2,3,4,6,7-P~CDF 

1,2,3,7,8,9-HxCDF 

1,3,6,8-TCDF 
1,2,4,6,7,8-HxCDF 
I ,2,6,8-TC DF 
1,2,4,6,7,9-HxCDF 
1,2,3,4,6,7,8,9-OCDF 
1,2,3,4,6-PeCDF 

- 2.40 
I .82 

- 2.78 
6.17 

- 1.68 
2.60 

- 3.46 
2.84 
0.63 
0.36 

-0.21 
3.79 

-0.71 
0.30 

- 1.62 
2.79 

-2.12 
2.6 I 
8.64 

-0.73 

- 1.5 -1.43 - 1 . I X  
-2.43 -0.82 1.23 

2.59 -0.29 0.22 
1.22 - 1.07 -0.19 

-0.57 1.46 2.94 
- 1.34 1.97 -0.86 

2.17 I 60 -0.98 
2.21 1.43 1.13 

-0.07 0.67 0.46 
- 1.05 -0.27 0.70 
-3.01 - 1.43 2.14 
-0.48 -3.27 -0.40 

2.50 - 1.82 -0.22 
2.50 -0.41 1.30 

-1.37 1.43 -0.16 
-0.42 2. I9 0.70 

0.26 1.06 1.66 
1.38 1.46 -0.90 

0.76 0.38 0.20 
I .09 0.17 -0.36 
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Figure 13. Observed toxic cqui- 
valency factor (-log T E F )  plotted 
against calculatcd (filled circles) and 
predicted (open circles) T E F  values. 
Notation ;IS in Fig. 7. 

induction in the H411E rat hepatoma cell bioassay [24]. The measured EROD 
induction potencies were converted to toxic equivalency factors ( T E F )  by calibration 
against the corresponding biological activity of the most potent known compound 
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the QSAR analysis, the negative 
logarithm of this T E F  scale was used. 

By means of PLS and using 37 chemical descriptors [25], a multivariate QSAR 
for the T E F  scale was calculated, which was based on the ten training set compounds. 
This QSAR was effective in describing and predicting the variation in EROD 
induction potencies (R2  = 0.84 and Q2 = 0.69). Using the QSAR for predicting the 
biological activities of the validation set chemicals, resulted in an external Q 2  = 0.8 1,  
which strongly underpins the good predictive capability of this QSAR. Fig. 13 
illustrates the relationship between the observed and calculatcd/prcdicted T E F  
values. It is evident that the model may be useful for predicting T E F  values for the 
67 non-tested congeners, which belong to this class of compounds. 

3.2.3.7 Monosubstituted Benzenes 

Skagerberg et al. [26] have determined PPs for one hundred monosubstituted 
aromatics. The compounds, which cover four types of electronically different 
substituents, i.e. electron acceptors and donors, alkyl groups and halogens, were 
multivariately characterized by means of nine physico-chemical descriptors. The 
descriptors used were n, M R ,  om, op, the Verloop parameters L and B 1 ~  84. PCA 
of the resulting 9 x 100 data matrix gave four principal components (PPs), reflecting 
76% of the variance (Fig. 14). Tosato et al. [27] have used these PPs in statistical 
experimental design for setting priorities and conducting hazard assessments for 
monosubstituted benzene derivatives. The three first PCs were considered the most 
important and were used in a 23 full factorial design. This scheme encoded eight 
training set compounds as good representatives of all the other compounds (Table 8). 
Moreover, to allow for a verification of the QSAR models developed, a set of 1 1  
additional compounds was selected to constitute the validation set. The validation 
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Figure 14. Scatter plot for the PPs of 
the 100 monosubstituted bcnzcnes. 
Compounds, which have bccn 
biologically testcd for E C S o  values. arc 
depicted with rillcd circlcs and are 
numbered according to Table 8. 

set compounds were selected in such a way as ". . . to allow evaluation of the range 
of validity of the model and of its actual predictive capacity" [27]. Both the training 
set compounds and the validation set compounds were tested in the laboratory of 
Tosato and coworkers, using an assay called the Daphnia immobilization test 
(adjusted according to the relevant OECD guideline). The endpoint dctermincd was 
the concentration causing a 50% effect (EC50)  and in the QSAR analyzes, the 
transformation log l/EC50 was used. A PLS analysis of the training set, characterized 
by the nine aromatic descriptors, gave four latent variables with R 2  = 0.99 and 

Table 8. 
The monosubstituted bcn7enes example 

The 2, FD for the training set (top) and the compounds in the validation set (bottom). 

FD no. Compound Settings i n  PPs 

PPI PP2 PP3 PP I PP2 PP3 

+ 
- + + 
f 
+ + 

+ + 
+ + + 

- - 

- 

- 

8 
65 
10 
82 

5 
93 
33 
80 

41 
56 
68 
69 
20 
I I  
3 

62 
17 
36 

Ph-NO2 
Ph-CO2CZHy 
Ph-H 

Ph-Br 
Ph-COC,H, 
Ph-CH 

Ph-OC,H, 

Ph-/~-C,Hq 

Ph-SCH, 
Ph-CZH, 
Ph-CH (CH 3 ) 2  

Ph-C,H, 
Ph-CN 
Ph-OH 
Ph-F 
Ph-N(CHJ2 

Ph-OCH , 
Ph-CF, 

- 1.80 
0.79 

- 2.88 
1.93 

-0.47 
0.62 

- 1.66 
1.42 

-0.50 
- 0.60 
- 0.09 

0.33 
- 1.43 
- 2.30 
- 2.48 
- 0.66 
- 1.57 
- 1.02 

- 1.60 
- 1.16 

1.49 
0.86 

- 1.80 
- I .09 

1.28 
I .04 

0.42 
1.16 
0.60 
1.06 

- 1.09 
I .34 
0.48 
I .89 

-0.86 
1 .00 

- 0.03 
-0.23 
-0.54 
-0.31 

0.87 
I .70 
0.28 
0.3 I 

0.17 
0.26 
1.38 
0.28 

-0.85 
-0.60 
-0.34 

0.47 
0.83 

-0.34 
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showing observed log ( l/EC50) 
plotted against the corresponding 
calculatcd/prcdictcd values. Thc 
compounds are numbered as in 
Table 8. Open circles correspond to 
the validation sct compounds, 
whereas filled circles correspond to the 
compounds used for model-building 
(training set). 

Scatter plot for the QSAR 
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Q2 = 0.64. Fig. 15 shows the correlation plot between the observed and calculated/ 
predicted biological activities. Evidently, the model predicts rather well, even though 
some of the validation set compounds were chosen deliberately, so a s  to rigorously 
test the predictive capability of the model. 

3.2.3.8 Corrosive Carboxylic Acids 

Our last example deals with a series of 45 aliphatic carboxylic acids and thcir 
corrosive effects towards rabbit skin. This study is of interest, because skin effects 
caused by corrosive chemicals are a frequently reported occupational hasard, and 
because many, suspectedly corrosive, compounds are commonly involved in 
industrial handling and transportation. Furthermore, this study is of relevance, 
because, lo our knowledge, QSAR techniques have only been applied to a limited 
extent to modeling corrosivity endpoints [28]. In  this particular investigation, the 
corrosive effects towards rabbit was selected as a representative biological model 
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Figure 16. ScatterplotofPP2vsPPI 
for the corrosivc cnrboxylic acids. The 
training and validation set cnrboxylic 
acids arc designated by filled circles. 
Notation as in Tablc 9. 
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Table 9. 
The carboxylic acids example 

The 23 F D  for the training set (top) and the compounds in the validation set (below). 

F D  no. Compound Settings in PPs 

PPI PP2 PP3 PPI P P 2  PP3 

31 
1 
6 

35 
4 

15 
2 

10 
13 

29 
5 

14 
27 
16 

Malcic acid 
Acetic acid 
Trichloroacetic acid 
4-Chlorobutyric acid 
Chloroacetic acid 
Butyric acid 
Bromoacetic acid 
Mercaptoacetic acid 
3-Chloropropionic acid 

Malonic acid 
Dichloroacetic acid 
Mcthacrylic acid 
2-Hydroxybutyric acid 
Vinylacctic acid 

- 3.74 
2.22 

- 3.9 1 
0.93 

- 0.79 
2.30 

- 2.26 
1.37 
0.80 

- 1.49 
-2.10 

I .46 
1.16 
2.92 

- 1.14 
- 1.74 

0.74 
0.86 
0.63 

-0.18 
0.92 
2.19 

-0.33 

- 2.56 
0.69 
I .20 

- 0.80 
1.04 

I .Oh 
-0.14 
- 1.55 

0.26 
0.09 

-0.75 
0.6 I 
2.2 I 

- 0.07 

1.17 
- 1.1 1 

0.37 
0.53 
0.44 

system. Initially, we described the 45 acids with a multivariate set of nine variables 
(molecular weight, melting point, density, refractive index, octanol/water partition 
coefficient, pK,, energy of highest occupied and lowest unoccupied molecular orbital, 
and electronegativity). PCA of this multiproperty matrix yielded three PPs describing 
74% of the variance, which were used to derive a z3 FD, supplemented with one 
interior point. In Fig. 16, the two first PPs are plotted against each other. Moreover, 
five compounds were selected for the verification set. The nine acids in the training 
set and the five acids in the validation set (Table 9) were tested biologically, to 
determine the lowest concentration at which signs of cutaneous corrosion could be 
found, i.e. the lowest-observed-effect-concentration (LOEC). Since strong non- 
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Figure 17. Observed I>OEC 
plotted against calculatcd/predictcd 
values for the corrosivity QSAR.  
The compounds used to calibrate 
the model (training set) arc marked 
with filled circles, and thc v n l i d a t i o n  
set is marked with open ones. Scc 
Table 9 for the numbering. 
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linearities were found in the existing relationship between the chemical structure 
and the biological activity, linear am/ quadratic terms (in total I8 variables) were 
used as predictor variables in the PLS modeling. This resulted in a QSAR with 
R2 = 0.83 and Q’ = 0.59. In Figure 17, the agreement between the obscrvcd and 
calculated/predicted LOEC values for the 15 tested compounds is shown. The 
external Q’ = 0.60 is based on the performance of the validation set compounds. 
It is interesting to note, that in the ideal situation, both the external (validation set) 
and internal (cross-validation) Q’ should be of a similar magnitude, since they 
mirror the same unknown predictive capability statistic. The conclusion from this 
study, is that it is possible to derive multivariate QSAR models which provide useful 
predictions for endpoints related to skin corrosion. 

3.2.4 Discussion and Conclusions 

Quantitative structure-activity relationships arc valuable tools for modeling and 
predicting the biological responses of chemical compounds, and for the identification 
of potential structures with optimized biological properties. I t  is important to realize 
that QSAR modeling is not only restricted to small and semi-rigid molecules, but 
as shown here, it can be applied to long-chain and highly flexible chemical structures, 
such as peptides. Thus, QSAR modeling of flexible peptide sequences need not 
necessarily require a knowledge of the 3D structure of the compounds. 

The use of projection methods, such as PLS, which can deal with multivariate 
data, will result in models with few descriptive components that arc easy to interpret. 
However, the process, leading to useful models, consists of a number of important 
stages. Those aspects that deserve special attention were discussed in each one of 
the six consecutive steps of the multivariate strategy for QSAR. Here, it is particularly 
important that the compounds, which are used to calibrate the model, i.e. the 
training set, and the chemicals used to verify the predictive capability of the QSAR 
experimentally, are selected at least by approximate statistical experimental design. 
Such design can be achieved by using principal variables or PPs, defined for the 
class of compounds of interest. Finally, the compiled data, both chemical and 
biological, can be analyzed preferably using multivariate projection methods, such 
as PLS, which provides information about the structure of the data and the range 
of validity of the model. In this contribution, the main emphasis has been placed 
on demonstrating the benefits of using statistical experimental design in the selection 
of test series. This was discussed in connection with the dipeptide example in 
Sec. 3.2.3.2, where the quality of QSAR models, based on either a statistically or a 
COST-designed training set, are in sharp contrast to each other. The QSAR, based 
on the statistical design approach, was superior from the point of view of predictive 
capability. These results also revealed the consequences of not using statistical 
experimental designs in the compilation of the training set. Statistical experimental 
designs guarantee that many latent variables are varied systematically - in a 
balanced manner - and simultaneously, which is not the case if only one latent 
variable is modified at a time. 
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Since the main objectives of this chapter have been to shed some light on the use 
of statistical experimental design and PLS analysis, examples have bccn sclcctcd 
that best illustrate these important steps. Thus, the QSARs have been introduced 
and discussed, mostly from a statistical and technical point of view, and pcrhaps 
not so much in detail as regards to the interpretation of their meaning. I t  is, however, 
appropriate to stress that once a QSAR has been developed, it is important to 
interpret the significance of this relationship. Since QSARs can be interpreted a s  
mathematical approximations of underlying fundamental relationships, their coeffi- 
cients sometimes provide clues for mcchanistic interpretations. A QSAR is well- 
founded, when the feature of the model is consistent with the mechanistic 
interpretation. As regards to the interpretations of the QSAR examples presented, 
the reader is referred to the original literature. 

We regard QSAR modeling as a special case of semi-cmpirical modeling, typically 
leading to linear or low order polynomial expressions. Simple statistical rules for 
the validity of semi-empirical models, thus, also apply to QSARs, and can be used 
as guidelines to construct QSARs with valid predictive capabilities. These conditions 
have bccn considered in the development of the QSAR framework discussed in this 
chapter. To conclude, we propose that the training set of compounds for screening 
purposes and QSAR modeling should always be constructed according to a statistical 
experimental design. This, together with a multivariate representation of the chemical 
and biological properties of the studied substances, will strongly increase the 
information content in the training set series and will increase the efficiency, and 
the chances of success in drug development. 

Software Used 

In  all the calculations SIMCA-4.41 for PC was used. SIMCA is available from 
Umetri AB, Box 1456, S-901 24 Umed, Sweden. 
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3.3 Total Response Surface Optimization 

Lo~vcll H. Hull 

Symbols 

m v  
X r  

PC 

ui 
C.l-0 
A.l-0 

CU 1 
A.Y 1 

Molecular connectivity chi index of order, in,  and type, t ;  with the 'v' 
supercript, the valence type index is meant; without the 'v', the simple 
index is intended 
Negative logarithm of the concentration required to achieve a standard 
biological effect, commonly stands for activity 
Any structure descriptor which may be used in a QSAR equation 
= O z  + O x v ,  the sum of zeroth order chi indexes 
= O x  ~ O x v ,  the difference between zeroth order chi indexes; called delta 
chi zero 
= ' X  + 'x", the sum of first order chi indexes 
= x ~ 'x", the difference between first order chi indexes; called delta 
chi one 

I 

3.3.1 Background 

It has been observed, that, for a series of biologically active molecules, the difference 
in structure from one molecule to another corresponds to a change in the biological 
response. When there is systematic variation in molecular structure, there is also 
systematic variation in biological activity. The QSAR paradigm is based on the 
assumption that there is a relationship between molecular structure and bio- 
logical activity, which arises from this systematic variation. This relation is a 
specific manifestation of the form-function relation which is well-known in  science. 
Capturing the meaning of systematic variation has been the chief problem in QSAR 
pursuits. 

There are two broad classes of QSAR approaches. In one class, thc relationship 
is derived from linear free energy relations. In this approach physical properties are 
used to represent molecules and to relate to an experimental measure of the activity 
in a linear fashion [l]. In a methodology developed over the past 18 years, more 
direct representation of the molecular structure have been achieved. In this 
structure-based approach, descriptors represent important features of molccular 
structure. A set of structure indexes has been developed from chemical graph theory 
and will be described in a subsequent section [2 - 61. 



In the usual Q S A R  method, a structure variable, ui (physical property or structure 

p c  = a l u ,  + C’ (1) 

It has been observed, however, that the relation betwecn biological activity and 
structure is not always linear, especially over a wide range of activity. As molecular 
size increases, for example, the biological effect often increases to a maximum value, 
and then decreases. This effect may be attributed to several phenomena, including 
decreasing solubility and chemical activity, differential lipid transport, or size effects 
at the receptor or enzyme active site. Such non-linear effects are often represented 
by a simple quadratic expression: 

(2) 

descriptor) is assumed to have a linear relation to activity: 

p c  = U l U ,  + a214 + c 

Many useful non-linear equations of this type have been reported [ I ,  7, 1 I]. 

3.3.2 Representation of a Response Surface 

When two or more structure variables are required to represent the variation in 
the list of molecules, the non-linear equation becomes more complicated. In addition 
to linear and squared terms, there are cross terms in the structure variables. For a 
two-variable case: 

(3) 

The term “response surface” arises because of the contours generated in a plot of 
u1 versus u2. The right hand side of Eq. (3) expresses a general parabolic surface; 
one can draw contours at levels of constant activity. Examples are given in Fig. 1 
and 2. The contours are clliptical in shape; each ellipse may be described by two 
axes. Because Eq. (3) represents a parabolic shape, the surface posscsses either a 
maximum or minimum, corresponding to the extremum valuc of pC. I n  general, 
the extremum point does not coincide with the u l ,  u2 origin. Further, the ellipse 
axes are not parallel to the ulr u2 axes. The investigator may choose either to 
transform the data or to change the origin and to align the axes; such changes are 
not necessary for some aspects of QSAR,  but do provide some additional 
information. 

If it is desired to put the contour ellipses into a standard form, i t  is possible to 
perform two transformations on the general quadratic form of Eq. (3). By obtaining 
the position of the extremum (maximum or minimum), one can translate the origin 
to the location of the extremum point. The mathematical consequence of this 
transformation, is that the linear terms disappear from the equation. Let u , , ~ ~ ,  be 
the position of the optimum activity (extremum point) for variable I ,  and for 
variable two, u2,ext. Then, let the transformed variables be q ,  = u ,  - i ~ ~ . ~ ~ ,  and 
q,  = u ,  ~ u ~ . , , ~ .  It, thus, follows that, 

pC = u l u l  + h2u? + ~ 2 ~ 2  + h l u i  + C L / ~ Z / ~  + d 
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0.65 -.- 0.63 -- 4.49 ----- 5.78 1.92 -.._ 3.20 ......... -1.94 -.-.- - PD - 
Figure I .  A plot of A i l  (labeled D-I) versus Z.xI) for the ncurotoxicity data showing the relation 
between the incasurc of molecular s i x  ( 1 . ~ 1 )  and molecular clcctronic structure ( A s l )  with contour 
intervals for pD. The contours intervals are for pD = - 1.94, -0.65, 0.63, 1.92, 3.20, 4.49, and 5.78 
(for the smallest oval). The points arc labeled for the compounds as shown under plot symbol in 
Table I. The point of maximum activity is labeled with a + sign. 

Finally, the gencral parabolic surface is characterized by the axes of the elliptical 
contours. In general, the axes are not parallel to the u l ,  u 2  axcs. Thcsc axcs arc 
rotated by an angle 8. It is possible to find a rotation matrix in order to rotate this 
surface, so that the axes are parallel to the u , ,  u2 axes. This transformations B is 
based on thc cigcnvcctors of thc matrix of coefficients in Eq. ( 5 ) :  

The mathematical consequence of this operation, is that the cross term disappear. 
The final form is then: 

( 5 )  

in which q’l and q$ are the rotated coordinates with the origin at the surface 
extremum point. 

This analysis permits a simplified representation on the data space. The structure- 
activity relationship under consideration, which is assumed to be quadratic in  
two variables, actually has the appearance oftwo squared variables, shown in Eq. ( 5 ) ,  
as compared to the more complicated form in Eq. (3). This analysis may seem 

PC = hlq’t + h2q$2 + d 



ACT - -8.20 -.-.-- 6.13 --- -4.06 ----1.99 -*.- 2.16 ----- 4.23 0.09 . . . . . . . . . 
Figure 2. A plot oP ArO (labelcld DxO) versus G r O  (labcleld SsO) Poi- thc bioconcentration data. 
showing the elliptical contours for pBCF with thc contour intcrvals shown at  -X.20, -6.13, -4.06. 
-1.99, 0.09, 2.16, and 4.23 (the smallest oval). The data points are shown BS lowcr casc letters 
corresponding to the plot symbol in Table 2. The maximum point is labeled iis '+'. Thc pair of 
points for i and j occur at the same coordinates a s  k and 1 as well a s  q and v. 

to be rather cumbersome and, if it must be undertaken manually, it may not appear 
worth the effort. Fortunately, most current statistical packages offer routines which 
perform the complete analysis along with other diagnostic information. For example, 
SAS carries out all the necessary operations in what is called proc RSREG [8]. This 
algorithm determines whether the optimum point is a minimum or a maximum 
point. Further, the eigenvectors may also be given along with the transformation 
equations. The statistical package may also warn the user, when the extremum 
point is actually a saddle point, or that there is insufficient information to establish 
the extremum point. All this information is determined, along with the usual 
statistical information, including regression coefficients, correlation coefficients, 
standard deviation and, so forth. 

3.3.3 Structure Descriptors from Chemical Graph Theory 

In the analysis of a response surface, any of the indexes from chemical graph theory 
can be used as the structure variables, including molecular connectivity chi indexes, 
kuppa shape indexes (See Chap. 2.1), electropological state indexes (See Chapt. 2.2), 
and others [lo]. For this present discussion, we shall be using molecular con- 



nectivity chi indexes. There are several detailed presentations of the development 
of these indexes and reviews of their uses [2, 3, 5 ,  61. A very brief presentation is 
given in Chap. 2.1. 

3.3.4 Examples 

3.3.4.1 Neurotoxicity of Fluorophosphorous Compounds 

Mager [ 101 has reported the neurotoxicity of 21 fluorophosphates, fluorophos- 
phonates and fluorophosphorodiamides. In this data set, there are cyclic and 
non-cyclic alkyl portions of esters and amides along side one aromatic substituent. 
The activity to produce ataxia in adult white hens was reported as mg/kg. The 
doses were expressed on a molar basis and converted to the negative logarithm, 
pD, which ranges from 3.20 to  5.92. The data are shown in Table 1. The molecular 
connectivity indexes were computed in the standard manner with the aid of the 
computer program Molconn-X, Version 2.0 [9]. All statistical analyzes were carried 
out using the SAS statistical system [8]. 

gave an excellcnt QSAR 
equation: 

The first order simple and valence chi indexes, 'X and 

pD = 1 .265 '~  ~ 0 . 2 8 6 ( ' ~ ) ~  + 1.124 '~ '  ~ O.188('xv)' + 0.275 '1 '~ '  + 0.661 
r2  = 0.959 s = 0.177 F = 70 11 = 21 

(6) 

The observed, calculated and residual toxicities are given in Table 1. A partial report 
on this analysis has already been given [ll]. 

It is important to be able to obtain significant structure information from the 
QSAR equation. It was possible to give a structure interpretation for this data sct 
directly from the two first order chi indexes. In this case, however, a somewhat 
different form of analysis will be developed. The 'X and 'x" variables encode 
information about both molecular size and molecular electronic structure. At this 
point in the analysis, it is useful to separate these two types of information. Such 
a separation may bc accomplished by a simple transformation: 

These sum and diffierence variables have the following properties [5].  In simple 
molecules, such as alkyl alcohols, halides, amines, etc., it can be shown that '1' may 
be partitioned into two terms, one arising from the functional group Xf,, and the 
other from the alkyl portion, Xdg. Such a partition is possible because of the additivc 
nature of the chi index. In the '1 index, on the other hand, all the terms are calculated, 
as if the whole molecule were an alkane. Thus, ' j !  can be written as a sum of two 
terms, XClg, for the skeletal portion ofthe functional group, and XCllk, for the remainder 
of the molecule. The term, Xdlk is the same for the two indcucs. 
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Table 1. 
phosphate compounds 

The observed, calculated and residual neurotoxicity values for the data  sct of lluoro- 

0 

Obs. Compound substitutents ( R l ,  / I , )  Plot ljlh pD'l C o / P  Rcs' Pws' 
Syin bold 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Di(propy1amino) 
Di( butylamino) 
Di(propoxy) 
D i bu to x y 
Diisopropoxy 
Di-src-pen toxy 
Diethy lamino) 
Dipcntoxy 
N,N'-dinicthyl, cthoxy 
Dicthoxy 
Dicyclohcxoxy 
Isopropoxy, methyl 
Ethoxy, methyl 
N,N'-Dimethyl, mcthoxy 
Dicyclohcxamino) 
Di(methylamino) 
Dimethoxy 
Di(2-Methylphenylamino) 
Isopropoxy, ethyl 
Isopropoxy, cthoxy 
Hydroxy, mcthoxy 

a 
b 

d 

f 
g 
h 

C 

e 

I 

j 
k 
I 
rn 
n 

P 
q 
r 

t 

0 

S 

U 

5.121 5.518 5.86 5.76 0.10 0.12 
6.121 6.518 5.92 5.87 0.05 0.06 
5.121 5.142 5.66 5.56 0.10 0.12 

4.833 4.931 5.57 5.49 0.08 0.09 
6.909 7.007 5.43 5.58 -0.15 -0.18 
4.121 4.518 5.11 5.25 -0.14 -0.15 
7.121 7.142 5.26 5.46 -0.20 -0.26 
3.887 4.044 5.00 4.92 0.08 0.09 
4.121 4.142 5.07 5.01 0.00 0.07 
8.157 8.255 5.20 4.81 0.39 0.82 
3.417 4.335 4.94 4.92 0.02 0.03 
3.061 3.940 4.62 4.55 0.07 0.13 
3.504 3.505 4.67 4.45 0.22 0.25 
8.157 8.607 4.72 4.88 -0.16 -0.68 
3.121 3.397 4.09 4.25 -0.16 -0.22 
3.121 2.967 4.03 3.91 0.12 0.21 
8.978 7.551 3.23 3.25 -0.002 - 1.60 
3.977 4.649 5.29 5.28 0.01 0.01 

6.121 6.142 5.63 5.71 -0.08 -0.09 

4.477 4.536 5.07 5.27 -0.20 -0.93 
2.561 2.611 3.20 3.38 -0.18 -0.31 

Symbol used in plot in Fig. 1. 

First order valence molecular conncctivity index. 
Negative logarithm of the ncurotoxicity (nig/kg) [9]. 

pD - CNIC. 
The predicited residual, obtained by deleting the observation and then predicting its value from 
the remaining n - 1 observations. 

I' First order molecular connectivity index. 

' pD calculated from Eq. (6) or Eq. (10). 

Using the sum and difference variables and the partitions, described above, we 

(8) 

have the following equations 

C.Xl = I X  + ' X "  = w a g  + XdN) + (Xf, + X,,,) = 2Xdk + (Xctg + XI,) 

These two transformed structure variables may be understood as follows. First, 
consider the difference variable, A x l .  The terms for the saturated portions of a 
molecule, Xalk, disappear entirely from the Ax1 variable. Furthermore, any functional 
group or unsaturated portion is represented by X , ,  - XI,. This difference accen- 
tuates the electronic contribution of heteroatoms or non-sigma bonding. arises 
from the calculation of '1, as if the atoms were saturated carbon atoms, that is, as 



if they possessed only sigma electrons. Since X f g  encodes both the sigma and thc 
non-sigma eletrons, the difference between X , ,  and Xf,, the Ax 1 variable, encodes 
only the presence of lone pair and pi electrons. Thus, the difference term encodes 
electronic effects due to hcteroatoms and unsaturation i n  the moleculc. 

Now, let us consider the sum variable, Cx l .  I n  the sum variablc 1x1,  the conitnoti 
portion of the two chi indexes, Xnlk, is emphasized by a multiplication by 2, and 
the functional group portion, Xf,, is augmented by X:lg. These terms encode much 
size information and, augmented as they are in contrast to A.xI, this variablc is 
largely a measure of the molecular size. The heteroatom contribution to size is 
expressed by 'zv i n  the XC, term. Skeletal size is encoded in both XGllk and XL,g. 

In terms of molecular electronic structure, the differcnce between sp" carbon 
atoms and heteroatoms or unsaturated carbon atoms, is in the nature of the electron 
distribution. In saturated carbon atoms, valence electrons are found in only 
sigma-type orbitals, whereas in the functional groups, valence electrons are also 
involved in pi and lone pair orbitals. The difference variable, A s l ,  is a descriptor of 
the structural contribution of the electrons in pi and lone pair orbitals. 

The sum variable, Xxl, encodes the whole molecular skeleton, including functional 
groups. Based on the summation of all skeletal contributions and reflecting contribu- 
tions ofall atoms, Ex1 is expected to correlate with molecular size. To whatever extent 
size is an important factor in biological relationships, such a sum variable was found 
to be important. The difference variable encodes non-sigma electrons, which are 
those electrons, which exert a major influence on chemical interactions. For singly 
bonded nitrogen, oxygen and fluorine, Ax1 encodes lone pair electrons. 

For multiply bonded nitrogen, oxygen, phosphorous and for aromatic rings, A r l  
encodes electrons in pi orbitals. Thus, use of these two variables permits thc factoring 
of structure information into molecular size effects and molecular electronic effects. 

There is another important characteritic of these two transformed variables: 1.~1 
and Ax1 are orthogonal. Orthogonality here depends upon two factors. The original 
variables, the chi indexes, must not be collinear, and they must be of a similar 
magnitude. A simple scaling factor can always ensure that the two chi indexes are 
approximately of the same magnitude. This orthogonality is very useful in QSAR 
because it eliminates some statistical problems. A similar transformation can bc 
performed on physical property variables such as log P and M R  (molar refraction), 
as was achieved by Mager in his analysis of this neurotoxicity data set. However, 
the transformed variables, linear combinations of log P and M R ,  have no physical 
meaning. Thus, use of this sum and difference transformation aids the statistical 
analysis, but confuses the interpretation. Chi indexes enhance both statistical analysis 
and structure interpretation. 

The biological activity may be regressed against the two transformed structure 
variables in the full quadratic model, which represents the biological response surface. 
Since the transformation is linear, the statistical results are the same, but the 
coefficients are different: 

pD = 1.195 2x1 ~ 0.049 1x1' + 0.071 A . Y ~  ~ 0.187 A.xl' 

- 0.049 Cxl A x 1  - 1.477 
r2  = 0.959 s = 0.177 F = 70 IZ = 21 

(10) 
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Table 1 lists the compounds along side the observed, calculated and residual pD. 
These results clearly indicate the quality of the analysis. The largest residual occurs 
for compound 11 which contains one of the two cyclic substituents. N o  residuals 
are greater than two standard deviations. 

This equation represents a parabolic surface with an extremum point, either a 
maximum or minimum in the activity and the analysis of the response surface can 
now be performed. Of course, this analysis could also be performed on the equations 
obtained by directly using the chi indexes. We were analyzing the equation based 
on Cxl and Axl,  because we wished to emphasize the usefulness of these two 
variables. The response surface equation is simplified by moving the origin to the 
coordinates of the extremum point. That point corresponds to the point at which 
the first derivatives are zero. The expressions for C x l  and Ax1 at the extremum 
point are as follows: 

(11) 

(12) 

The symbols u, h, and c refer to Eq. (3). 
In this prepsent study, Cxl,,, = 12.757, and A.xIexl = - 1.491, In the new 

coordinate system, with the origin shifted, ql = C x l  - Cxl..,, and 4 2  = A . Y ~  
- AxleXl. When this substitution is made, the linear terms disappear and the 
remaining equation has only three terms. If one uses ordinary regression on this 
three-variable equation, essentially the same statistics result, but with a higher F 
value, due to a reduced number of variables: 

(13) 

This QSAR analysis can be discussed in terms of the variables, Cx l  and A . Y ~ .  Xxl 
is much larger than Ax1 as shown in Table 1, as a direct result of its definition. X . Y ~  
also spans a wider range of values, from 2.992 to 15.058, compared to 1.099 to 3.132 
for Axl. Ax1 does not have as large a variance as C x l ;  many compounds lie in a 
narrow range, because they possess only two heteroatonis ( i n  addition to the 
phosphate group), either nitrogen or oxygen (See Fig. I).  Two compounds are 
significantly different. Compound 18 is the only one with an aromatic ring and 
compound 21 is the only phosphinic acid. It can easily be seen that the electronic 
structure in this data set does not vary much. This electronic variation is directly 
represented by the variation in Axl. 

On the other hand, there is significant variation i n  molecular size in this data 
set. This variation, encoded by Cxl ,  is largely responsible for the toxicity variation, 
with the exception of compounds 18 and 21, which possess the lowest v' 'I 1 ues. 

I n  a plot of the data on the 2 1 ,  Ax1 axes (Fig. l), most compounds fell within 
a band, but compounds 18 and 21 were exceptions. Furthermore, it was noted that 
compounds with an alkyl substituent, directly on the phosphorus, were situated in 
the region around Ax1 = -0.8 to -0.9, amides around -0.4, and esters near 
Ax1 = -0.1. Using this Cx l ,  Ax1 form of analysis, it could clearly be seen that 
size variation was very important in this data set. Some useful clustering of 
compounds can be achieved with chi index plots based on Cx I and A x  I ,  or '1 and '1'. 

Cxl.., = (2~2h l  - C L ~ ~ ) / ( C ~  - 4hlh2) 

Ax1,,1 = ( 2 ~ l h 2  - C L I ~ ) / ( C ~  - 4hlh2) 

PD = -0.0497l1: - 0.187qZ - 0.0493qi~12 + 6.090 



Based on the regression model, the maximum toxicity and the values for the 
variables at the maximum point may be obtained from the condition, q ,  = q ,  = 0. 
This extremum point is a maximum in this data set, with pD,,,.,, = 6.09, CSI,,,:~~ 
= 12.76, and Axlmax = - 1.49. Based on the definition ofCxl and A.YI, the chi index 
values at the maximum are, 'xmax = 5.63, and 'xL,~ = 7.13. N o  compound in the 
data set corresponds to these values although compound 2 is the closest. In  fact, 
the maximum point does not lie within the actual data set but just outside as shown 
in Fig. 1. If one wishes to use this data set as an aid i n  designing compounds of 
lower toxicity, then one should design compounds with chi values, which are far 
from these values at the maximum. Based on the significance of Cxl and Dul,  one 
would look for a greater sizc, rcsulting from increased alkyl portions, or for smallcr 
molecules with a greater electronic contribution from heteroatoms. Also, introducing 
more size, with a much greater contribution from pi and lone pair clcctrons, would 
result in a molecule being further away from the maximum point on the response 
surface. Compound 18 illustrates this point. 

3.3.4.2 Bioconcentration of Chlorinated Phenyls and Biphenyls 

Another area of significant interest, besides the toxicity of chemicals, is the ability 
of chemical substances found in the environment to accumulate in organisms. This 
concern is especially important for aquatic organisms. Sabljit and Protic [ 121 have 
published an analysis of a set of chlorinated organic molecules, using molecular 
connectivity indexes. The measured bioconcentration values were expressed on a 
molar basis and then converted to the negative logarithm pBCF. 

In  their analysis, Sabljit and Protit used a simple quadratic relation between 
bioaccumulation and structure, which was based on the second order valence ch i  
index. They included 17 compounds in their test set an then predicted four other 
compounds. Their chi equation gave predictions which was in very good agrccmcnt 
with experimental values. 

We expanded thc investigation of this data set to a full two-variable parabolic 
relation, so that a response surface could be generated and analyzed, and we included 
all 21 compounds. We examined the zero, first, and second order valence chi indexes. 
The chi indexes were computed using Molconn-X [9]. We found that a very good 
full quadratic relation could be built using both the simple and valence zero order 
chi indcxes, as follows: 

log BCF = -0.464'~ - 0.560( '~)~ + 1.872'1' ~ 0.788( '~")~ + 1.327°;y0~' - 3.833 

y2 = 0.972 s = 0.21 F = 110 t~ = 22 (14) 

When the sum and difference transformations were performed, similar to Eqs. (8) 
and (9), the following relation was obtained: 

log BCF = 0.704 CXO - 0.01 5 (CXO)~ - 1.168 Ax0 ~ 0.678 ( A x O ) ~  
+ 0 . 0 9 4 C ~ O A ~ 0  - 3.833 (15) 

r2  = 0.972 s = 0.21 F = 110 n = 22 
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Table 2. The observed, calculated and  residual biconccntration factors for the data set of 
chlorinated organic compounds 

0.  h " f C  IogBCF'I Ctrk' l irsf P r c s ~  Obs. Compound Name PI01 
Symbol" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 
I8 
I9 
20 
21 
22 

Chlorobenzene 
1,4-Dichlorobcnzcnc 
I ,2,3-Trichlorobenzene 
I ,2,4.5-Tetrachlorobenze~ic 
Pcntachlorobenzene 
Hcxachlorobenzene 
Biphenyl 
4-Chlorobiphenyl 
2,4,4'-Trichlorobiphenyl 
2,2',5-Trichlorobiphcnyl 
2,2',4,4'-Tctrachlorobiphenyl 
2,2',5,5'-Tctrachlorobiphenyl 
2,2',4,5,5'-Pentachlorobiphenyl 
2,2',4,4',5,5'-Hcxachlorobiphenyl 
Diphenyloxidc 
4-Chlorodiphcn yloxide 
Endrin 
Mcthoxychlor 
Heptachlor 
DDT 
DDD 
Dieldrin 

a 
b 

d 
e 
f 
?4 
h 

C 

I 

.i 
k 
I 
m 
n 

P 
q 
r 
S 

t 
U 
V 

0 

5.1 13 4.521 
5.983 5.577 
6.853 6.634 
7.724 7.690 
8.594 8.747 
9.464 9.803 
8.226 6.773 
9.096 7.830 

10.836 9.943 
10.836 9.943 
I 1.707 1 1 .000 
1 1.707 1 1.000 
12.577 12.056 
13.447 13.1 13 
8.933 7.182 
9.803 8.238 

13.533 13.883 
15.458 13.914 
1 I .878 12.267 
14.044 13.366 
13.121 12.309 
13.533 13.883 

I .08 
2.33 
2.69 
3.65 
3.70 
3.93 
2.53 
2.77 
4.69 
4.69 
4.86 
4.86 
4.66 
4.66 
2.29 
2.87 
3.6 I 
4.79 
3.76 
4.79 
4.8 1 
3.76 

1.16 -0.08 -0.19 
2.16 0.1 7 0.24 
2.93 -0.23 -0.29 
3.47 0.18 0.23 
3.78 -0.08 -0.1 I 
3.87 0.06 0.09 
2.27 0.26 0.35 
3.23 -0.46 -0.54 
4.48 0.2 I 0.25 
4.48 0.21 0.25 
4.76 0.10 0.1 I 
4.76 0.10 0.1 1 
4.82 -0.16 -0.19 
4.66 0.00 0.00 
2.14 0.15 0.27 
3.14 -0.27 -0.36 
3.63 -0.02 -0.03 
4.75 0.04 0.54 
3.90 -0.14 -0.19 
4.84 -0.05 -0.07 
4.92 -0.1 I -0.12 
3.63 0.13 0.20 

Symbol used to identify compound in the plot in Fig. 2. 
Zero order niolccular connectivity index. 
Zero order valence molecular connectivity index. 

'I logarithm of the experimental bioconccntration factor [ 121. 
' pBCF calculated from Eq. (14) or Eq. (IS).  
f pBCF - C&. 

The predicted residual. obtained by deleting the observation and then prcdicting its value from 
the remaining n - I observations. 

The observed, calculated and residual log BCF values are given in Table 2 along side 
the compound names. The QSAR model is very good; there is only one observation 
having a residual greater than two standard deviations. There are no trends i n  the 
plots of residuals versus the observed log BCF values. Analysis of the response surface 
revealed that the extremum point is a maximum and the coordinates of the maximum 
are CxOex1 = 26.530, and A.xOex1 = 0.971. In the original chi index the values are 
Ozext = 13.750, and "& = 12.780. A contour plot of the response surface is given 
in Fig. 2 along with the positions of the 22 compounds in the data set. 

In the contour plot, the families of compounds are clearly visible. The biphenyls 
are arrayed along a straight line, as are the phenyls, which are parallel to the line 
of biphenyls. Furthermore, the two diphenyloxides are on an adjacent parallel line. 
These lines follow a direction, in which size is increasing due to the addition of 
chlorine atoms, and the line also follows along a direction of increasing number of 
lone pair electrons, due to the increase of chlorine atoms. As number of chlorine 
atoms increases, AxO, becomes more negative, because becomes larger relative 



to O x :  Oj l"  > O x  for atoms beyond fluorine in the periodic table. The four compounds 
which do not clearly fall into these three structure classes, fall in to ii somewhat 
different part of the plot, depending upon their size and numbcr of lone pair 
electrons. This display of molecular structures gives a clear picture of the structure 
attributes which influence the bioconcentration property. 

3.3.5 Conclusions 

Representation of biological data on a parabolic surface is possible, when the data 
set reveals quadratic non-linearity. In this case, i t  is useful to analyze the data, in 
order to determine the extremum point. The analysis leads to the determination of 
the extremum point in a straightforward manner, determining whethcr the extremum 
is a maximum or minimum. 

When the data are displayed as a contour plot, as in Fig. I and 2, the structure 
information is more clearly visible. Further, i t  is easier to discern just how the 
structure descriptors relate to the biological activity, so that molecular design 
information may be obtained. It is not usually necessary to actually carry out the 
transformations described above, in order to obtain the equation i n  the simplified 
form. The typical computer output provides the information necessary for analysis. 
If a particular computer program does not include a response surface feature, the 
same information may be obtained by ordinary multiple linear regression. 

I t  should be pointed out, that the number of observations in these two data sets, 
21 and 22, is somewhat small for the five variables in the QSAR models, Eqs. (6) 
and (14). As ii general rule, it is desirable to have at least five compounds for each 
variable. The QSAR equations contain five variables, including the linear, squared 
and cross terms. There is a somewhat higher possibility for chance correlation in 
these cases. If more data is available, these models could be improved by the addition 
of such data. We have included the predicted residual for both cases, that is, the 
residuals predicted for a given observation, when that observation is deleted from 
the data set and then predicted from the remaining observations. As can be secn 
in Tables 1 and 2, the predicted residuals (pres) are not poorly behaved, suggesting 
that these models may still have predictive power, despite the less than ideal number 
of observations. 

In this presentation, we have included an additional strategy for structure analysis. 
The use of the chi  indexes, especially in the sum/difference transformation, reveals 
important structure features. The two examples described here make use of the zero 
and the first order simple and valence chi indexes. Further, an enhancement i n  
structure information is developed with particular linear combinations of these 
simple and valence indices. The sum variables (Zx-0, Cxl) are highly, related t o  
molecular size. The difference variables (AxO, A x  I )  are strongly related to molecular 
electronic structure, especially the role of the pi and lone pair electrons. We have 
described these difference indices also as delta chi indices [3, 5, 13, 141. Higher order 
indexes may also be used in this same manner. This form of structure analysis 
provides a basis for further design of molecules, to improve activity or diminish 
undesirable effects, such as toxicity or bioconcentration. 



102 Lowell H .  Hall 

References 

[I] Van Valkcnburg, W., ed., Biologiccrl Corrc1ufion.r - Tlic HririscA A p / ~ r ~ t i ~ l i  (Advances in 
Chemistry Series 114). American Chemical Socieiy. I972 

[2] Kier, L. B., and Hall, L. H., MO/lY'l4/Ut' ('or7r2ec~ti0ity 67 S/rirc~trr,.e-A(./ii.i/j. A/ui/ i , .c  
& Sons. Research Studies Press Chichcster, England, I986 

[3] Hall, L. H., Compututiotial Aspects of'Molcmdtrr C'orinc~tiritJ. cuirl its Rolcz iri .Strric, trir .e-P/~o/)crt~. 
Mod~l ing .  In:  Computational C/icriiii~rr/ Grcrpli T/7~wrj.  Rouvi-;iy, D. l i . ,  ed.. Nova Prcss. 
New York (1990) p. 202-233 

[4] Kier. L. B., lndcxcs of Molccular Shapc from Chcmical Graphs. 111: C'oi , rp i i t [ i / io / i t r l  Cluwric,tr/ 
Gruph Tlicory, Rouvray, D. ti. ,  ed., Nova Prcss, New York, 1990. p. 157- 174 

[5]  Hall, L. H., and Kier, L. B., T / w  Mo/c~c*ulur C'on/7i~c./i~~i!,. Clii Inc/c,.\-c.c ruul Ktrpptr Shtrpc Itir/c~.\-c,s 
in Struc,turP-Propcrty R~~lutiotz,s. In: Rci:im..s of C'o~~7~~rrtrrtior7rrl C'/icvtii.str.i,. Boyd. D.. and 
Lipkowit7, K.. cds., VCH Publishers (1991) p. 367-422 

[6] Kier, L. B., and Hall, L. H., A n  Atorn-C'entcrd 1tickJ.Y fbr Drug Q S A R  Motk/ .r .  In: At/r~rr7c~~.s 
b i  Drug Rcseurch, Vol. 22, Testa, B., ed., Academic Press, 1992, p. 2-38 

[7] Cavallito, C. J. ,  ed., Stlueture-Acti~iity Rc/utioii.s/ii~~.c, Vol. I ,  Pergumon Press. Oxl'ord, 1973 
[ X I  SAS Institute, Cary, NC 
[9] Molcoiin-X Version 2.0 from Hall Associates Consulting, Quincy, MA. 021 70 USA 

[ I O ]  (a) Magcr, P. O., in The MASCA Modcl of Pharniacochemistry. I n :  Drrr<q Di,.ri,q~. Ariens. 
E. J., ed., Academic Press, New York, Vol. IX, 187-236; Vol .  X,  343-401. 1980. 
(b) Mager, P. O., Toxicol. L ~ f t . ,  i i ,  67 (1982) 

[ I  I ]  Hall, L. H., and Kier, L. B., .I .  MoIcc. S t tw t .  (Tl~coc~hcr i i i  134, 309-316 (1986) 
[I21 Sabljii-, A., and Protit, M.. Clwn.-Bio/. 1rztcwrc~rion.c 42, 301 -310 (1987) 
[I31 Kier, L. B., and Hall, L. H., Plicr,m. Res. 6 ,  497-500 (1989) 
[I41 Kier, L. B.. and Hall, L. H.,  Quunt. Struc/.-Act. Relut. 10, 134- 140 (1991) 
[ I51 Van de Waterbecmd, H., ed., Acli~unced C'on~put~r-Assistcti Tc~h/7ic/rrc,.t it7 Driin. Di.sc,oiyj.. 

Mcthods and Principles in Medicinal Chemisiry, Vol. 3, R .  M;innhold. P. Krogsgaard-Larsen. 
H. Timmernian, eds., VCH. Weinheim. 1995. 



3.4 Disjoint Principal Properties 
of Organic Substituents 

Hurl GUH de Watesbeemd, Gahsiele Costantino, Sergio Clenzetiti, Guhsiek Csuciarii 
arm' Rohesta Valigi 

Abbreviations 

CCD 
COMFA 
DOD 
DPPs 
FD 
FFD 
GOLPE 
MLR 
PC 
PCA 
PLS 
PPS 

Symbols 

SO 

Central composite design 
Comparative molecular field analysis 
D-optimal design 
Disjoint principal properties 
Factorial design 
Fractional factorial design 
Generating optimal PLS estimations 
Multiple linear regression 
Principal component 
Principal component analysis 
Partial least squares 
Principal properties 

Dose at which 50% effect is observed 
Hammett constant for para substitution 
Steric constant related to molar volume 
Number of compounds 
Correlation coefficient 
Explained variance 
Cross-validated correlation coefficient 
First principal component from w-scales 
First D P P  from set of lipophilic descriptors 
First DPP from set of electronic descriptors 
First D P P  from set of steric descriptors 
First DPP  from set of H-bonding descriptors 



3.4.1. The Design of Molecular Diversity 

3.4.1.1 Combinatorial Chemistry 

The strategy of structure-based molecular design has been proven to be very 
successful in the pharmaceutical industry [l]. However, when structural information 
about the biological target is lacking, the strategy of lead finding involves the 
synthesis and testing of widely diverse compounds. In the field of peptide chemistry 
the generation of large peptide libraries has given new impetus to lead finding 
programs [2]. Increasingly, the interest is being focused on non-peptidic small 
molecules in combinatorial chemistry projects. Therefore, the definition of structural 
diversity is of considerable interest. 

The systematic variation of substituents in a molecule has been the subject of 
various studies in the past. Besides synthetic feasibility and economic considerations, 
substituents are chosen on the basis of properties, such as polarity, size and 
H-bonding capacity. Although quantitation vcales have been developed for such 
substituent properties, it is still not straightforward to select a representative subset of 
substituents that adequately covers the multidimensional parameter space. I n  this 
chapter, we will illustrate how principal properties (PPs) and disjoint principal 
properties (DPPs), derived from a large set of property descriptors, can be used to 
make rational choices. Using an experimental design approach, we have also 
introduced a set of twelve representative organic substituents. 

3.4.1.2 Statistical Experimental Design 

As described in the previous Chap. 3.1 and 3.2, statistical experimental designs 
should be used for complete coverage of the descriptor space by a minimum number 
of compounds. Such strategies include factorial designs (FD), fractional factorial 
designs (FFD), central composite designs (CCD), or D-optimal designs (DOD) [3,4]. 
The scope of such design plans is to limit the number ofcompounds to be synthesized 
and to guarantee statistically sound structure-property correlations. Rcccntly, some 
of the authors of this paper have reported on the use of D-optimal design schemes 
in QSAR studies [4]. Briefly, D-optimal designs are more general than FD and are 
particularly appropriate for handling constraint problems, such as reducing of 
polysubstitution on an aromatic ring to only a few sites. 

3.4.2 Substituent Descriptors 

Several important compilations of aliphatic and aromatic substituent descriptors 
have been made [5  - 111. These collections contain experimental and calculated 
substituent descriptor values. Van de Waterbeemd et al. [5  - 7, I I ]  at the University 
of Lausanne have compiled up to 121 variables for a set of 59 selected substituents. 
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many many 
amino acid descriptors substituent descriptors 

I principal PCA properties 1 
z-scales w- or t-scales n a 

experimental design and structure-property correlations 

Figure 1. The use of principal properties in the design and i n  structure-property corrclntions oC 
pcptidcs and non-peptidic bioactive compounds. 

[5 - 7, 111 while Clementi et al. [8,9] at the University of Perugia evaluated a longcr 
list of substituents, but for only 9 descriptors. Both approaches have their limitations. 
The larger set of substituents is described by only a few descriptors and, thus, only 
partly covers the descriptor space. The smaller set of substituents adequately covcrs 
the descriptor space, but offers limited choices for substitution. 

3.4.2.1 Principal Properties (PPs) 

The information content of large data tables can be reduced to less dimensions by 
pattern recognition techniques, such as principal component analysis (PCA) (see 
Chap. 4.1). The latent variables, obtained as statistical scores of a PCA, are called 
principal properties (PPs). These have been derived for amino acids, called :-scales 

PPs (t-scales) 

PPs (w-scales) 
- _  - _  

86 descriptors - -  lipophilic _ _ _ _  steric 
_ _ _ - - - -  electrostatic 

H-bondina _ _ _ - - - -  _ _ - -  
PCA I disjoint k--- 

(topological) 
(field) 

8 DPPs 

Figure 2. 
from a set of 86 descriptors for 40 common organic substituents. 

Stratcgies to dcrive principal propcrtics (PPs) and disjoint principal propcrtics (DPPs) 
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Figure 3. 
data set. Descriptor numbering according to van de Waterbcemd et itl .  [6,7]. 

Loadings plot of the first two principal propcrties using thc 86 descriptor 40 substitucnt 

(see Chap. 3.2), as well as for organic substituents, called ~+xalcs  [5, 61 or f-scales 
[8,9]. Such PPs can be used to describe the substituents or amino acids in 
structure-property correlation studies. Furthermore, they arc of great interest in 
experimental design strategies (Fig. 1). They have the interesting property, in that 
they are orthogonal and can, thus, be used in multiple linear regression (MLR) 
studies. The w,  and t ,  scales, already mentioned, describe mainly steric features, 
and w2 and t ,  encode electronic aspects of the substituents. However, these PPs 
contain the generally recognized substituent properties (lipophilic, steric, electronic, 
and H-bonding) with contributions of each in each PP. 



Recently we have reconsidered these data sets and performed a study, which is 
aimed at obtaining a unique set of PP scales for use in physical organic and medicinal 
chemistry [12]. The strategy described below is outlined in Fig. 2. These studies 
include the set of 86 descriptors, described by van de Waterbeemd et al. [7] with slight 
modifications to the Verloop parameters, B2- B4. The analyzes were restricted to 
a selected set of 40 substituents, for which most experimental data were available. 
The PC scores or PPs for the other 19 substituents were obtained by projection 
to the models of the training set. PCA on the autoscaled data yielded five principal 
components, describing 32%, 27%, lo%, 8% and 4% (cumulative 81 Yn) of the data 
respectively. It might be questioned as to whether this is, indeed, sufficient for the 
calculation of significant and informative PPs. The loadings plot of the first two 
components (PPs explaining 59% of the variance) are reported in Fig. 3. In this 
plot five groups of descriptors were identified, which is partly consistent with our 
previous findings. These include the already mentioned lipophilic, steric, elec- 
tronic/electrostatic and H-bonding properties of the substituents, as well as a diffuse 
group of topological descriptors, which are difficult to interpret. The previously 
mentioned w-scales were obtained in the same way [5,  61, which also include 3D 
CoM FA-derived field properties [7]. 

In  order to eliminate the effect of the different size ofeach group, blockscaling of the 
descriptors can be applied, using an approach, which has previously been used to 
derive t-scales [9, 131. Since PPs, derived either by autoscaling or blockscaling, 
include mixed contributions from all five main groups of variables, we followed a 
conceptually different approach by considering disjoint descriptor matrices. 

3.4.2.2 Disjoint Principal Properties (DPPs) 

Leaving out the topological descriptors, PCA was performed on four sets of 
descriptors. The first two significant components of each, called disjoint principal 
properties (DPPs), are reported in Table 1. In contrast to PPs, these DPPs are not 
orthogonal to each other, and are partly intercorrelated (see Table 2). In particular, 
the first lipophilic and H-bonding DPPs are collinear, which can be understood in 
the light of recent work on the information content in log P values [14, 151. 
Orthogonality of DPPs is not a problem, as long as partial least squares (PLS) is 
used for data analysis instead of multiple linear regression (MLR). 

3.4.2.3 Selection of Representative Substituents 

In Table 3, the substituents are grouped according to their subspace in the DPP 
space. The sequence of signs, defined with respect to the mean value of each column 
in Table 1 for the training set, is steric (s), electronic (e), lipophilic (I)  and H-bonding 
(h), and refers to the first property only. Owing to the collinearity among some of the 
scales, several subspaces are void and some subspaces are more populated than 
others. Thus, although the selected 59 substituents seem to be optimally chosen, 



Table 1. Disjoint principal properties of common organic substituents 

Explained 62 13 77 I 8  94 2 60 10 

DPP ,\ I s , el 1' 1 I ,  I 2  11 I I1 1 

viiriiince ' X  

1 -RI 
2 -CI 
3 -I-  
4 - 1  
5 -NO2 
6 - H  
7 -OH 
9 -NH2 

10 -S02NH2 

13 -S02Ct. ,  
15 -CN 
17 -NCS 
18 -CHO 
19 -COOH 
20 -CONHz 
22 -CH, 
23 - 0 C H i  
24 -CH,OH 

28 -NHCH, 
32 -COCH, 
33 -COOCH, 
39 -C,H, 
41 -NlCH,), 
42 -C3H, 
43 -COOCLH, 

45 -CH(C'H,), 

I 1  -CP, 

26 -S0,CH3 

44 -C3H7 

4x -c,H, 
49 -C(CH,), 
SO -OC4H, 

52 -N(C?H,)z 
51 -NHC,H, 

53 -C,H, ,  
54 -C,H, 
55 -OC,H, 
57 - C , H , ,  
58 -COC,H, 
59 -CH2CH,Ph 

8 -SH 

14 -SCt., 
16 -3CN 
21 -OCONH, 
25 -NHCONH, 
27 -SCH, 
29 -C2H 

31 -C,H, 

12 -OCl+, 

30 -CH2CN 

34 - O C O C H .  
35 -CH,COOH 
36 -OCH2COOH 
37 -NHCOCH, 
38 -NHCOOCH, 
40 -OC2H, 

47 -OCH(CH,), 
46 -OC3H- 

7.308 
5.344 
2.935 
9.859 
8.622 
0.000 
3.840 
4.519 
2.765 

10.13x 
16.950 
6.003 

10.212 
6.764 
8.541 
9.356 
5.217 
7.352 
7.235 

13.825 
7.477 

10.033 
12.236 
8.660 

10.572 
1 1.076 
14.572 
11.350 
12.263 
14.330 
15.305 
15.554 
16.283 
17.66 1 
16.652 
16.333 
17.396 
18.812 
19.703 
20.01 8 

6.428 
1 1.299 
13.233 
10.13x 
10.530 
I 1.396 
9.575 

9.580 
7.902 

10.X9Y 
11.514 
12.550 
12 149 
14.053 
10 100 
12.927 
13.233 

6379 

56 -NHPh 17863 

-4.285 
-3.553 
-2.385 
-4.859 
-5.375 

0.000 
- 2.066 
-2.110 
-6.756 
- 7.693 
-8.764 
-2.385 
- 1.801 
-3.235 
-3.910 
- 3.653 
-2.336 
- 1.812 
-2.300 
-6.616 
- 1 ,542 
-4.151 
-4.746 
- 1.877 
- 2.640 
-3.71 1 
- 3.697 
- 1.278 
-4.399 
-0.254 
-6.877 

0.962 
0.9 17 

-4.007 
0.907 

- 2.924 
- 1.283 
- 1.00') 
-2.742 

0.251 

-2.899 
- 3.682 
-4.157 
- 2.65 1 
-2.121 
- 2.970 
-2.388 
- 2.29 I 
-2.521 
- 2.388 
- 1.694 
- 2.723 
- 1.575 
- 2.341 
-2.832 
- 1.099 
-0.134 
- 1.690 
-1.159 

- 4.853 
- 4.828 
- 4.364 
- 4.479 
- 9.929 

0.000 
- 0.528 

1.976 
- 7.014 
- 6.288 
- 11.121 
- 8.476 
- 6.954 
- 5.343 
- 5.08 I 
- 5.014 

1.035 
- 1.103 
- 0.203 
- 8.994 

3.527 
- 5.426 
- 5.125 

1.042 
2.687 
0.982 

- 5.140 
0.845 
I .000 
1.064 
1.354 

- 0.895 
4.063 
3.734 
1.166 

- 0.763 
- 2.625 

1.201 
- 5.321 

0.929 

- 3.677 
-3.699 
- 5.045 
-3.315 
- 3.029 

0.000 
- 5. I 7 0  
- 5.203 
- 1.380 
-1.415 
-3.140 
- 2.406 
-4.035 
-1.117 
- 0.904 
-0.789 
-0.686 
-4.761 
-0.499 
-2.657 
- 5.08 I 
- 0.628 
-0.959 
-0.515 
- 6.346 
-1.215 
- 1.023 
-0.516 
-0.646 
-0.621 

- 5.077 
- 0.49 2 
- 5.862 
-0.307 
- 1.067 
-4.704 
- 0.634 
- 1.292 
-0.994 

-0.528 

b) 
- 3.070 -2.390 
- 5.3% -2.681 
- 6.275 - 1.935 
- 7.318 -3.069 
- 3.003 -0.946 
- 0.313 -3.547 
- 1.694 -3.296 
- 3.014 - 1.177 
- 2.554 -2.594 
- O.XO9 - 1.042 
- 4.561 -2.969 
- 2.577 - 1.060 
- 1.464 -0.770 
- 2.794 -4.039 
- 0.895 -2.997 
- 1.278 -4.198 
- 1.193 -4.448 
- 0.58X -6.218 

I.082 -4.848 

1.159 
0.8 10 

-0.266 
1.810 

-1.318 
0.000 

- 2.0x0 
-2.623 
- 33x5 

1.321 
0.1 I 1  

- 1.621 
1.612 

- 1.713 
- 1.254 
-3.443 

1.125 
-0.91 I 
- 2.267 
-3.159 
- I .494 
- 1.343 
-0.490 

1.970 
-0.370 

2. I64  
0.496 
2.968 
2.919 
3.905 
3.x4x 
2.335 
1.34x 
1.61 1 
5.001 
3.626 
1.649 
5.1 I ?  
0.944 
5.024 

0.351 
- 0.00') 

1.24X 
O.OX6 

-2.526 
-2.987 

0.655 
0.478 

- 1.506 
1.240 

-1.715 
- 1.396 
- I .'J?X 
-2.421 
-0.838 

0.209 
1.267 
0.095 
0.829 

0.776 
0.724 
0.550 
O X I X  
0.546 
0.000 
0.030 
0. I78 
0.  I94 
0.540 

-0.536 
0.4'18 
0.744 
0.40 I 
0.556 
0.3 I 1 
0.064 
I .004 

-0.17X 
~ 0 054 

0.55x 
0.463 
0.565 

-0038 
0.7x I 
0.022 
0.632 
0.036 
0.07x 
0.  I32 
0.  I77 
1.043 
0 . 9 O X  
0 04x 
0.2 I I 
0.545 
1.260 
0. I36 
0 x44 
0 249 

(1 607 
1.321 
0.873 
0.767 
0.248 
0 494 
0.514 
0.283 

- 0.0')6 
0.034 
0.x55 

-0. I 9  I 
0.235 
0.523 

-~(1.063 
0.x 12 
0.1132 
0.78X 
0.9x I 

0.659 -0.40x 
0.625 -0,400 
0.276 0.034 
0.696 -0.4 I I 
3.804 - 1.121 
0.000 0 000 
4.200 1.573 
4.919 1.506 
x.300 0.297 
0 8 I6 ~~ I 0'19 
6.377 ~- 2.997 
3.045 -0 .582  
2.354 -0.73') 
3.247 -0.673 
5.041 1.343 
7 042 I.OX4 
0.01 3 -0.055 
i.OX4 -0.641 
4.228 1.547 
6.147 - 1,910 
4.XW 12x4 
3 756 -0.826 
4.10X -0.953 

-0.154 -0.072 
3.640 -0.905 

-0.292 -0,002 
4.124 -0.X96 

-0.237 -0.030 
-0.209 -0.044 

0 0 2 3  -0.034 
- 0.  I06 0 03 I 

3.660 -0.7XJ 
5.231 1.206 
4.366 - 1.0.35 
0.023 -0.034 
0.349 -0.21 1 
2.x93 -0 473 

~ 0.095 0.215 
4.30x -0.999 
0.004 - 0.025 

1.745 1.460 
3.x07 -2.057 
2.454 - 1.942 
3.23') -0.981 
6.9 I 2  1 .O26 
7.314 1.250 
1.2')h -0.728 
0.420 0.236 
3.590 -0.812 

0 005 - 0. I 1 x 
5.473 - 1.201 
5.615 1.031 
0.932 0.70x 
h.450 0.827 
(1.204 0.872 
3.302 -0.6X6 
3.454 - 0.72 1 
3.454 -0.721 
5.120 1.242 

a )  Calculated; (b) Projected. Substiruent numbering as given by v a n  de W;ilerheemd el ~ l .  16. 71 



Table 2. Correlation matrix ( r )  of disjoint principal properties 

,’ I 
s 2 0.02 
6) I 0.12 0.58 
‘ j  2 0.07 -0.08 -0.05 
1 1  0.46 0.27 0.38 0.20 

11 1 0.14 -0.17 -0.27 -0.24 -0.77 0.08 
12 0.12 0.2 1 -0.04 -0.54 0.06 

I1 2 -0.23 0.37 0.5 I 0.12 -0.20 -0.19 0.14 

we were quite confident that they would cover a large part of  the descriptor space. 
Using D-optimal design implemented in the DESDOP program [4], a selection of 
twelve representative substituents were made [12]. These included: H, Br, OH, CN, 
COCH,, CH,, S02CH,, N(CH,),, C(CH,),, C,H,, COC,H, and OC,H,. Alternatives 
may be selected from the various subgroups in Table 3. 

3.4.3 An Example of DPPs in Design and Analysis 

In a previous study on  substituent descriptors the potential use of ui-scales (PPs) 
was illustrated with a series of tricyclic neuroleptics [7] (Fig. 4). Using M L R  and 
the classical Hansch approach the following equation bctwccn ataxia i n  mice and 
a steric (V,)  and a n  electronic descriptor (oP) was found: 

pED,, = 0.5330, + 0.03667/, - 0.00062Vf. 

11 = 16;  r2  = 0.76; Q 2  = 0.42 ( 1 )  

Using the PPs, obtained as w-scales, and  again MLR for the analysis, a significant 
equation was obtained, but which was difficult to interpret, 

( 2 )  pED,, = -0.085 ( w ~ ) ~  + 0 . 1 3 4 ( ~ , ) ~  -0.297(\i’,)2 + 1.343 
II  = 16; r2  = 0.79 ; Q’ = 0.59 

where Q 2  is the cross-validated correlation cocfficient ( r&) .  

Figure 4. 
using thc DPP approach. R = Mc, Et, i-Pr. /-Bit,  H, OH. 
- N H 2 ,  F, CI, Br. -CF,, - -OMe,  -COMc o r  -SMc. 

Dcsign and da ta  analysis or tricyclic ncurolcptics 

CH, 



Table 3. Classification of substituents in the DPP space. The signs rcprescnt deviations from the 
mean values in Table  1 for s l ,  e l .  I , ,  h , ,  respectively. The  underligncd substituents form a 
representative set of substituents with broad coverage of substituent propertics 

-F - NO2 - Br - H  -OH - C H I  
-SH -CN - CI - N H ,  -C,H, 
-C,H -CHO - I  - O C H ,  - S C H ,  

-COOH -CF, - C H , O H  -CZHT 
- C O N H l  - N C S  - N H C H ,  
- COCH, -N(CH,), 
- SCN -OCZHi  
- O C O N H ,  
-CH,CN 
-OCOCH, 

By reanalyzing these biological data, using a PLS modcl obtaincd by GOLPE 
[16] with the present DPPs, and after transformation to pseudo-regression coeffi- 
cients [I 71, one obtains the following: 

pED=jo = -0.336 12h2 ~ 0.081 h2 + 0.032 11.52 ~ 0.030 1111.12 ~ 0.004 h z . ~ l  + 1.021 

r~ = 16; Q 2  = 0.75 ( 3 )  

It is remarkable that there are mainly cross terms in this equation, and furthermore. 
that H-bonding properties are quite important. This was not apparent from 

By using a D-optimal design approach it can be shown that ;I similar equation 
can be derived by using only nine substituents, namely, f-Bu, OH, NH2,  H, CH,. 
F, SCH,, C1 and COCH,. This illustrates the way, in which the number of 
compounds in a series can be reduced to the strict minimum, thus, saving on 
resources for other subseries of compounds. 

Eq. (1). 

3.4.4 Conclusions 

The present chapter describes a set of 8 new descriptors for 59 common substituents, 
which have been derived from 86 original experimental and calculatcd variable sets. 
These new descriptors are obtained from a disjoint analysiq of four blocks of different 
aspects of substituent effects, namely lipophilic, electronic, steric and H-bonding 
effects. For each block, two new significant descriptors wcre derived. Applying a 
D-optimal design strategy, these four pairs of disjoint principal properties (DPPs) 
have been used to define a well-balanced set of substituents, covering thc descriptors 
space as well as possible. These include H, Br, OH, C N ,  COCH,, CH,, S02CH,, 

It must be stressed that these DPPs are not orthogonal to each othcr and cannot 
be used in multiple linear regression (MLR) data modeling, whcrcas thcy can be 

N(CH,),, C(CH,),, C,H,, COChH, and OC,H,. 
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t--+ C t  + - + +  + + - -  i t  t + + +  + + + +  

-SO,NH, -OC,H=, -NHCONH, -C,H, -OC4HU 
-SOZCF, - COCGHs -0CH2COOH -C,H, - NHC,H, 
-SO,CH, - SCF, -NHCOOCH3 -CH(CH 1 ) Z  - N(C2H5) 
-COOCH, -C,Hq -OC%H, 
-COOC,HS -C(CH,), -OCH(CH ,)2 

-0CFT -C,H,I -NHPh 
-CH,COOH -C,H, 
-NHCOCH, -C,H,,  

-CH2CH,Ph 

used, without any problem, in PLS modeling. The DPP approach might not be 
considered satisfactory from a rigorous chemometric point of view. However, work 
is in progress to explore how the present DPPs will compare with some rotations 
of the w-scales, which cover the four main substituent effects. 
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4 Multivariate Data Analysis of Chemical 

4.1 Principal Component and Factor Analysis 

and Biological Data 

Rr//ttcl Ft L / j l h < J  ~ ~ l d  At~tl~c?u\ Gi.u,hu 

Abbreviations 

A 
B 
BA 
R. 11.. 

CNS 
DBH 
E cl. 
E. L‘O. 

K .  /)ti. 
M .  1110. 
N B  
P 
PA A 
P. LIC. 

PC RA 
PCMM 
PhAA 
PhOAA 
P.  nii. 
PP 
s. 1111. 

s. t11LI. 

TMIC 

E. / ( I .  

s. p. 

Anilines 
Benzencs 
Benzoic acids 
Bacillus ,frugilis A 22 8 62 
Central nervous system 
Dopamine /I- iydroxylase 
Etito-ohoctc~r~ clotrcrrc A 9656 
E.vclic~ricIiiu c d i  A 1 5 1 19 
Eli to-oc~occiis , fbccu1i.s A 9809 
Klc4sc~lliri jmwmoitioc A 9664 
Morgutwllu ttzorLqonii A 15 I53 
Nitro benzenes 
Pheno Is 
Pi peridinoacetanilides 
Psc~~~l~)tiiorirrs ncrirgiiiosu A 9843 
Principal component regression analysis 
Principal component analysis and iuultidimensional mapping 
Plienylacetic acids 
Plienoxyacctic acids 
Pt.otc1ii.y n i i rd~i l i s  A 9900 
Principal property 
Stctpli~~loc~oc~c~ii,~ C I I I ~ ~ ~ L ~ S  A 9537 
Srrrutiu r m i r w s w m  A 200 19 
S~~ .~~I I )~O( .OL .L’ I IS  pticwniorziae A 9585 
Two -d i in e n s i o n a I in a p pi 11 g of i 11 t I-ac 1 ass co 1- re 1 a t  ion m at r i ces 

1 

Symbols 

A 
“ h i  

’ k  Corresponding normalized eigeiivector 
B C ( D E F )  PPs for organic compounds 
BRDLI Decrease ofdiastolic (D) blood pressure in Wistar rats at dose a (alter 

logarithmic transformation) 

Loading matrix (also factor pattern) 
Loading of the j-th variable in  the k-th principal component or factor 
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BRDh 

BRSu 

BRSh  

CSA 
E 

Ch 

F 
F 

h; 
I N D  
log k‘ 

ek 

hi 

t2 

t3 

t4 

t 5  

Decrease of diastolic (D) blood pressure in Wistar rats at dose b (after 
logarithmic transformation) 
Decrease of systolic (S) blood pressure in  Wistar rats at dose a (after 
logarithmic transformation) 
Decrease of systolic (S) blood pressure in Wistar rats at dose b (after 
logarithmic transformation) 
Cavity surface area 
Matrix of the ek 
Basic effects operating in a system of biological tests 
Error of data reproduction 
Fisher’s F value 
Inductive electronic substituent constant 
Scorcs of the k-th factor 
Communality of the ,j-th variable 
Indicator function 
Hydrophobicity parameter from HPLC 
Eigenvalue of the k-th principal component 
Maximal potency = log (l/ZDso),,,,x 
Minimal inhibitory concentration 
Molar refractivity 
Dipole moment 
Partition coefficient rz-octanollwater 
Scores of the k-th principal component 
Inhibition of DBH, Cu2 excess 
Inhibition of DBH, no Cu2+ excess 
pK, value of fusaric acids 
pK, value of fusaric acids 
Hydrophobic substituent constant 
y value according to Exner 
Correlation matrix 
Resonance polar electronic substituent constant 
Correlation coefficient 
Reduced correlation matrix 
Real error 
Standard deviation 
Hammett constant 
Analgesic potency log = (I/ID,,,) of fentanyl derivatives measured after 
t = 1/32 h 
Analgesic potency log = ( l / I D 5 0 )  of fentanyl derivatives measured after 
t = 1/16 h 
Analgesic potency log = ( 1 / I D S 0 )  offentanyl derivatives measured after 
t = 118 h 
Analgesic potency log = ( 1 / I D S 0 )  offentanyl derivatives measured after 
t = 114 h 
Analgesic potency log = ( l /IDso) of fentanyl derivatives measured after 
t = 112h 
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t6 

t7 

t8 

r9 

t10 

[ I  - 1.3 
W 
M'h 

Y 

z, - z 3  

1'. . 
. 1J 

2, - z ;  

Analgesic potency log = ( l/IDs,,) of fentanyl derivativcs measured after 

Analgesic potency log = ( 1/ID5") of fentanyl derivatives measured after 

Analgesic potency log = ( l / I D s o )  offentanyl derivatives measured after 

Analgesic potency log = ( l/ZDso) of fentanyl derivatives measured after 

Analgesic potency log = ( l / I D s o )  of fentanyl derivatives measured after 

PPs for amino acids 
Matrix of the wk 
Corresponding weight for the k-th test 
Matrix of biological data 
Measurement for the i-th compound in the j-th test 
PPs for amino acids 
PPs for amino acids 

t = l h  

t = 2 h  

t = 4 h  

t = 6 h  

t = 8 h  

4.1.1 Introduction 

If measurements are made on a number of objects, the results are usually arrangcd 
into a matrix, which is called a data table. The measurcments arc traditionally 
placed in the columns of this matrix and called variables, and the objects are 
associated with the rows. We shall follow this convention, although, from a purely 
mathematical point of view, there is no need for such a decision and, i n  addition, 
objects may be regarded as variables in the same right as measurcments. 

As long as data tables are two-dimensional (two rows or two columns), they can 
be quickly visualized using, for example, two-dimensional plots in a Cartesian 
coordinate system. For multidimensional data tables, this is no longer possible, not 
only because of the abundance of entries, but also due to the complexity of data 
structure, as these entries depend on variables, objects, and thc interactions betwccn 
them. In order to understand such data in their entirety and to adequately deal 
with their mathematical properties, methods of multivariate statistics are required. 
Factor analysis methods, such as principal component analysis, factor analysis, 
canonical correlation and (multiple) correspondence analysis, which all have been 
applied to biological or chemical problems, (for reviews, see [ 1 ~ 131) play an 
important role here. Their main objectives are to display multidimensional data in 
a space of lower dimensionality with a minimal loss of information, to cxtract thc 
basic features "behind" the data, and to visualize data tables into some pictorial form, if 
possible, with the ultimate goal of interpretation and/or prediction. I n  this chapter, 
principal component and factor analysis and their application in the field of medicinal 
chemistry will be considered. Emphasis will be placed on practical aspects, which 
will be demonstrated with selected examples; additional basic mathematical treat- 
ments can be found, for example, in [ 14 - 201. Some typical applications of principal 
component and factor analysis in medicinal chemistry are summarized i n  Table I .  



A number of regression equations will be presented in the following text. The 
terms in  brackets after the regression coefficients ;ire the 95% confidence intervals. 
n is the number of data points, r the correlation coefficient, s the standard dcviation. 
and F is Fisher’s F value. 

4.1.2 Basic Principles 

4.1.2.1 Principal Component Analysis 

If for n chemical compounds (i = I ,  ..., 11)  biological potcncics are measured in i l l  

biological tests ( , j  = 1,  ..., 177) the results can be arranged in a matrix which wc shall 
call the biological data matrix. If the tests are put into the columns (variables) 
and the compounds into the rows (objects), then the matrix has the following form: 

Y = (~!i, j) it .  ni ( 1 )  

where yi j  is the biological potency of the i-th compound i n  the ,j-th test. I n  order 
to give all variables (which may be on quite different scales) the same importance. 
they are usually standardized by autoscaling according to, 

(2 )  

where the index “original” refers to the original measurements which have a standard 
deviation of s ~ , ~ ~ ~ ~ ~ ~ ~ ~ ,  and a mean of 2;j.original. 

Autoscaled variables have a mean of zero and un i ty  variance. If  we refer 
to measured values or measurements i n  this chapter, it is always tacitly assumed 
that the measurements have already been autoscaled according t o  Eq. (2). 

If the biological tests considered are similar from a biological point of view, the 
following assumptions can be made: 

I .  The observed biological response in each test dcpends on a number of fundamental 
effects, termed here “basic effects”, for example, transport through ii membrane. 
binding to a biological target, etc. 

! ’ j  = (yj .origin;i~ - 2;j.oriRinal)ISj.oriQin;ll 

2. These basic effects are present i n  all tests, but to varying dcgrecs. 
3. The biological response, yi, may be expressed 21s a linear combination of these 

If  there are p such effects, el ,  ( k  = I ,  . ._ ,  p ) ,  we then obtain: 

effects. 

or, in vector and matrix notation, 



whcrc the variable, y ,  represents the results from the j - th  test, and Y 1-cpi-cscnts 
the biological data matrix. The value of eiA reflects how strongly the li-th basic cffcct 
is affected by the i-th compound. Thus, ck is characteristic of the compounds and 
their properties. The weights, bykj ,  are a measure of how important the corresponding 
ek are in each biological test. They are characteristic of the biological tests, since 
i t  depends on the properties of the biological systcms, which basic effects operate 
and to what extent they in operation. 

Let us consider a simple example, whcrc only two basic effects ( y  = 2) opcratc 
in three biological tests (171 = 3). Then, Eq. (3) takes the following form, 

y ; ,  = e i l w ’ l l  + ej21v21 

and the matrices W and E become: 

e 
b f  

c t  
S 

With the matrices W and E, the features of the chemical compounds arc complctcly 
separated from those of the biological tests, since E solely depends on the propcrtics 
of the molecules, and W solely on the characteristics of thc tests. Such a separation 
may provide a much deeper insight into the data structure and its undcrlying cffccts. 
than would be obtained from the global response data. In addition, the dinicnsionali- 
ty of the data space is reduced. While the original data matrix has I I  rows and 3 
columns, thc matrices E and W have only two columns or two rows, respectively. 
Geometrically, the objects and test systems can now be representcd i n  two- 
dimensional coordinate systems, spanned by the column vectors of E or the row 
vectors of W ,  respectively, while, originally, the respective coordinate systems would 
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have had 3 (columns of Y) or n (rows of Y) axes. If, in addition, the two effects 
could indeed be labeled “transport” and “target binding” by a suitable procedure, 
we would have gained considerably more information about the data and would 
have actually obtained information about the basic effects, which are operating and 
which underly the entirc data, without having measured them. 

The model underlying principal component analysis exactly corresponds to 
Eqns. (3) and (4): the elements of the (standardized) data matrix Yare described by 
a sum of product terms where, in each term, one factor is characteristic of the 
objects (compounds), and the other factor is characteristic of the variables 
(measurements, such as for example, from biological testing). I n  thc terminology of 
principal component analysis this model becomes: 

(9) 

The f i k  in Eqn. (9) are called principal components (PCs) and are sometimes also 
referred to as “scores”. They correspond to the eik in  Eqn. (3) and characterize the 
features of the compounds. Mathematically speaking, the P,  are orthogonal vectors, 
which are so determined that the original data matrix is reproduccd. Analogously, 
ukj  in Eqn. (9) corresponds to the weight, wk,, in Eq. (3) and characterizes the test 
systems. The “weight”, a k j ,  is a measure of the contribution of the k- th  PC to the 
,j-th variable, y i  (j-th column of Y). As a consequence, a high valuc of Iukil 
signifies a high importance of the k-th PC for the j-th variable. Thc j - th  variable is 
then said to be highly “loaded” in the k-th PC, and thc u k j s  are, thercforc, also 
called “loadings”. 

Mathematically, the number of PCs, which can be extracted from a data matrix, 
is usually equal to nz, the number of original variables, yj. With this number of 
components, the data matrix can be exactly reproduced. This, however, is not a 
desired rcsult, since i t  would not lead to a reduction of thc dimensionality of the 
data space. What one wants to find is the minimum number, p ,  of components, 
such that, in the space which they span, the original variables caii be rcprcsented 
without loss of relevant information. It is only then that the components will truly 
reflect the basic effects “behind” the data, in keeping with Eq. (3). These p components 
are represented by the first term in Eq. (9), while the components with thc superscript 
“0” in the second term represent “irrelevant” or “residual” information comprising 
errors of measurement and, possibly, some error in thc model. The objective of 
principal component analysis is to only evaluate the first sum i n  Eq. (9); the 
resulting components will then reproduce the data matrix, Y, within residual error. 
The following relation, which will not be derived here, serves a s  a starting point for 
evaluating the loadings and components: 

R = A A r  (10) 

A = ( U k j ) p , m  (1  1) 

R denotes the corrclation matrix of the data, and A is the loading matrix: 

In order to solve Eq. (lo), an additional condition is introduced, whereby the 
components are determined in sequence, in such a way that the first component 



accounts for the largest amount of correlation in R, the second component for 
the next largest amount of correlation in R, and so on. An eigenvalue problem, 
then, ensues according to the following, 

Rak = Akak (12) 

where iLk are eigenvalues, and xk the corresponding orthonormalized eigenvectors. 
This equation is solved by diagonalizing R using standard procedures [21, 221. Scores 
and loadings are obtained from the resulting eigenvectors and eigenvalues. The 
eigenvalues represent the variance contributions of the components. As a conse- 
quence of the procedure, the first component will have the largest, and the last 
component the smallest eigenvalue. Variances and correlations in the principal 
component model are related to the loadings and are defined as follows: 

1. Variance of variable y j ,  extracted by the k-th principal component, is equal 

2. The variance of y j  extracted by p components is equal to 
to U i j  

3. The variance contribution of the k-th principal component is equal to 

4. The total variance extracted by p components is equal to 

5.  The correlation between variables y, and y, is given by the following: 

rqr  = c l%kyakr 
I 

In order to find the minimum number of components, p, necessary for data 
reproduction within residual error, the components are added step by step to the 
model according to Eq. (12). After each step, the data matrix is reproduced, and 
the procedure is continued until only non-systematic “noise” remains. A criterion, 
which was sometimes used to recognize this salient fcature was to kccept only 
components with eigenvalues > 1. However, this criterion seems to be much too 
narrow [23,24] and may lead to the rejection of components, which are important 
for explaining the data. A better alternative is the Scree plot [25],  where the residual 
percent variance (or simply the eigenvalues) are plotted against the number of 
components. The resulting curve should descend steeply and level off, if a limit 
corresponding to residual variation is approached. This point is used to deduce 
the number of components. Some other useful criteria are given in the following 
points. 



1 .  So many components are extracted that the average error of the reproduced data 
of data becomes equal to the average experimental error. The average error, 

reproduced using lz principal components is: 

This criterion requires that the averagc experimental error of the variables is 
known and that there is no model error. 

2. If the experimental error is not known, the so-called 111 value, according to Exner 
[26], can be used: 

(Pi, = 
_ _  

(I’ij  - 

where JJ., is the total mean. For precise chemical or physical measurements. so 
many components should be added that yir < 0.1. I n  the case of less precise 
biological data, 

3. The indicator function, I N D ,  introduced by Malinowski [4, 37, 281, is also very 
useful: 

I N D  = RE/(r?l - 11)~  (15) 

should be within the range of about 0.2 to 0.3. 

R E  is the so-called “real error” and is given by thc following equation 

The indicator function passes through it minimum for the correct number of 
components (11 = p ) .  The occurrcnce of a minimum also proves that the data 
analyzed can be correctly expressed by the model of principal component analysis. 

4. Cross-validation is strongly recommended and is extensively used. especially by 
Wold et al. [29]. Tn this technique modified data sets are generated by eliminating 
small groups of objects, until each object has been left out once, and only once. 
For each modified set a principal component model is gcneratcd, which is then 
used to predict the value of the left out compounds. Then the quantity “PRESS” 
(prediction error sum of squares) is computed: 

PRESS = 2 2 ( J : ~ ~  - y i j  (predicted))’ (17) 
i i  

Thc number of components is choosen so that PRESS is minimized. 

If the minimum number of principal components, ncccssary to rcproducc the data 
within experimental error, has been found, the principal component analysis. as 
such, is essentially complete. The practical gains so far is a reduced dimensionality 
of data space and that the number of relevant components reflects the true 
complexity ofthe data in terms of basic effects. Further evaluation and interpretation 
of the results can be achieved in several ways: 



I .  Matrix A will give information about the internal relatedncss of the variables 
(c.g. biological tests). Variablcs, having the same information content. will give 
high values for \ukj\ in the same component. A grouping of variablcs is, thus, 
obtained. If  the first two components already account for a sufficiently high 
proportion of the data variance, this can then be visualized by a simple 
two-dimensional plot with the loadings of the first two components, a, and ar,  
as axes (loading or factor weight plot). In such a plot each variable appears 21s 
a point, the points of related variables being close together (correlation coefficient 
r approaches 1) or symmetrical with respect to the center of the.plot ( r  approachcs 
- 1) ’ .  To obtain a numerically comprehensive picture of the relatedness of 
the variables, the loading matrix A can be rotated by multiplying with ;I rotation 
matrix. This corresponds to a rotation of the axes of the original plot, so that 
they pass through clusters of points, representing closely related variablcs and, 
thus, basic effects (sce Fig. 1). Usually, an orthogonal rotation ( V A R I M A X  
rotation) is used, where all axes are rotated about the same angle. For mechanistic 
reasons, the basic effects need not necessarily be uncorrelated, i.c. in somc ciiscs, 
oblique rotations (different angles of rotation for different axes) can produce the 
simplest and most interpretable structure of the loadings. 

3. The objects (compounds) can be plotted in a coordinate system with P,  as iixcs 
(score plot). If the two first principal components account for a sufficicntly large 
proportion of the data variance, this plot is then two-dimensional. Ob-jects may 
be clustered with respect to a certain property (which allows classification) or 
other characteristic patterns. 

3. Identification of the “abstract” components with physically meaningful paranic- 
ters will give an indication about the physical nature of the basic effects which 
underly the components and will eventually lead to multivariate RSARs.  To this 
end, a special target rotation procedure introduced by Weiner and Malinowski 
(for details, see Rcf. [4]) can be used. First, the parameters which arc believed to 
be related to the components must be selected, either from a theoretical model, 
or from educated guesses (analogous to the Hansch analysis). The components are 
then rotated into vectors of these parameters (e.g. n,o, etc.), also autoscaled, which 
are called test vectors; the elements of the test vectors are the values of the 
corresponding parameters for the objects (compounds) of the data matrix. I f  the 
target rotation has been successfully performed, the data can be reproduced by 
the test vector t,. Eq. (9) is then transformed into, 

y l i  = f + C i j  (18) 
k =  1 

where t i k  is the value of the k-th vector for the i-th compound, t : i j  is the rcsidual 
including the second term of Eq. (9) plus the error of the target rotation, and ( i f i  

arc thc elements of the rotated loading matrix, A R ,  obtained from: 

A = (LI;~)~.,~ = A Q ’ (19) 

’ Such correlations m a y  be difficult to dctect. I t  is, thercforc, rccomincndcd t o  calculatc ;I 

correlation matrix, prior to factor or principal component analysis, in ordcr to obtain ii clcar 
pictiirc of a l l  pairwise correlations to start with. 
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The elements of the rotation matrix, Q, are the results of least squares fits as in 
multiple regression analysis, in which the test vectors are dependent variables, and 
the components P, are independent variables. Eq. (19) represents a system of 
“multivariate” equations (QSARs) as in multivariate regression analysis, with the 
original variables, y j  (autoscaled measurements in the biological tests) as 
dependent variables and the test vectors as independent variables. 

In many cases, the primary objective is not a complete replacement of all 
components by test vectors, but rather the interpretation or identification of 
individual components with physico-chemical parameters. A much simpler 
approach can then be used. The components (dependent variable), are correlated 
with descriptor variables in a standard regression procedure. As a result. 
regression equations, for each of the components considered, are obtained. 

4. Principal components may also be used within the framework of more complex 
methods such as PLS or  SIMCA. Such methods will not be dealt with i n  this 
text; instead the reader is referred to Chaps. 4.3 and 4.4. 

4.1.2.2 Factor Analysis 

Factor analysis (FA) is very similar to principal component analysis (for reviews. 
please refer, for example, to Lewi [l], Rummel [ 141 and Harman [ 1.51). The only but 
essential difference is that in FA only a proportion of the data variance is considered 
to be common to all variables. The remaining proportion is attributed to unique 
properties of one variable at a time. With this in mind, Eq. (9) may be rewitten as 
the following in order to obtain the model for FA. 

P 

!’ij = f r k a k j  + qi jd j  (20) 
k =  I 

In this equation, the so-called common factors, j , ,  which span the common factor 
space, replace the components in Eq. (9), and the uk.i are, once again, the loadings, 
representing the relations between factors and original variables. The qj are called 
unique factors; their squared loadings, ds, which are called uniquenesses, comprise 
the proportion of the data variance, which can be attributed to the unique variable 
properties not involved in the common correlation structure. Factor analysis is the 
method of choice in all cases, where such unique properties of variables occur, and 
this is to be expected, when a data matrix contains variables, which are quite 
different in nature and meaning and which are only loosely interrelated. In such 
matrices, error variances differing in size are to be expected, even for autoscaled 
data, which is another reason for applying factor analysis instead of principal 
component analysis. 

The common features (the basic effects), sought after in the data space, are 
represented by the factors, f k .  Their extraction from the given data is based on the 
general assumption that only a certain proportion of the variability of, for example, 
a biological test can be explained by the basic effects also present in the other 
variables under consideration. As a consequence, only so much of the variance is 
considered that a minimum of common factors results. 
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The first objective of factor analysis is the evaluation of the loading matrix, 

which is also called factor pattern in FA. This procedure is nearly the same as in 
principal component analysis, with the only difference being, that instead of the 
correlation matrix, R, the so-called reduced correlation matrix, R +, is diagonalizcd. 
R +  differs from R in that the 1’s in the diagonal of the latter have been replaced 
by the communalities h:. As a result, the reduced correlation matrix only contains 
that proportion of the data variance, which can be assigned to the common factor 
space. Representing this proportion of the data variance, the communality for the 
j-th variable is defined as, 

12; = fl 
k =  1 

and the variance of the j-th standardized variable then becomes, 

where 11; represents the uniqueness. The uniqueness consists of the error variance 
and the so-called specificity, the latter representing mechanistically meaningful 
specific properties and systematic divergencies of the ,j-th variable. 

Communalities must be estimated prior to the analysis. This can be accomplished 
in several ways which will not, however, be discussed here. During the computations, 
these estimates can be improved through iterative cycles. The number of relevant 
factors, p ,  is usually determined from the corresponding eigenvalues. Only those 
factors are considered significant, whose eigenvalues exceed a given borderline value 
and which, therefore, account for more than a given minimum variance. The 
borderline value is usually taken as representing an eigenvalue 2 5% of the sum of 
all positive eigenvalues. 

Prior to interpretation, the factors are usually rotated in such a way that the 
factor pattern simplifies as much as possible (Thurstone’s simple structure). This 
structure is characterized by the property that a maximum number of variables lies 
close to the coordinate axes when presented in common factor space (axes = 

loadings), so that the largest possible number of factor loadings becomes zero 
(Fig. 1). Thus, in the presence of a simple structure, the variables are divided into 
mutually exclusive groups with, in an ideal case, non-zero loadings only in one 
factor. Whereas the original factors are always orthogonal due to the method of 
their extraction, the rotation can be orthogonal (VARIMAX rotation) or oblique. 
In some cases, a simple structure is achieved only by oblique methods, which arc 
also justified by the fact that the “basic effects”, underlying the data, must not 
necessarily be uncorrelated. 

Results from factor analysis can be evaluated and interpreted in much the same 
way as outlined above for principal component analysis. The evaluation of the 
factor scores, ,Ak, however, is not as straightforward as in  principal component 
analysis. Since the rank of the factor matrix (common + unique factors) gcncrally 
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exceeds the number of variables, the . f ik  must be estimated in an indirect way (see. 
e.g. Harman [15]). Although it is somewhat laborious to estimate ,f&, i t  is worthwhile. 
since the factors (scores) characterize the features of the objects of the data matrix 
and can be handled in much the same way as the principal components (provided 
that the proportion of the data variance, represented by the common factor space. 
is large enough). 

The decision as to whether principal component aiialysis or factor analysis is to 
be used, depends on the nature of the data. If the variables arc of a similar nature 
and reflect the same mechanisms of interactions between objects and systems, and 
if, in addition, the error variance of all  variables is uniform and of comparable size, 
principal component analysis can be applied. Factor analysis is the method of choice. 
if the variables reflect very different processes with error variances of different sizes. 
From a chemical or biological point of view, principal component analysis can be 
used, if there is good reason to assume that the data can be described by Eq. (9) 
with no unique contributions of single variables; this requires that :I corresponding 
theoretical model exists or that i t  is possible to derive one. If  such a model does 
not exist and nothing is known about the behavior of variables, factor analysis 
probably is a good first move, which then operates as ;I model generator. 
If then the communalities of all variables are grater than approximately 0.8, principal 
component analysis can also be applied, which has the advantage that the scores 
can be exactly calculated [30]. 

4.1.3 Applications of Principal Component and Factor Analysis 
in Medicinal Chemistry 

Some typical situations for the application of factor and principal component 
analysis in medicinal chemistry are summarized in Table 1 .  The examples, to be 



Table 1. Selected applications of factorial methods in medicinal chemistry 

Objects Measurements Applicatons 

Compounds Potency in il set of parallel 
biological tests with similar 
objects (e.g. bacteria. rungi) 

Compounds Potency i n  biological tests, 
bclicvcd to bc incchanistically 
related 

Compounds Potency in a biological screen 

Compounds Potency at different times 

Compounds 

Com 1x3 LI nds 
S ii bst i t iicn t s 

CompoLlnds: 
Substitucnts 

Compounds/ 
Substitucnts 

Compounds 
Substitucnts 

V a ri o LI s p h a r ni aco k i net ic 
pararnclcrs 

Various physico-chcmical 
parainclcrs 

Various physico-chemical 
parameters 

Various physico-chemical 
parameters 

Various physico-chemical 
parameters 'measuremen t s  

Relations between tests: recognition or 
redundancies and of tests with high in- 
fo r  mat ion con tent 

Relations between tests (especially: i i i  

vivo;iii vitro): test of mcchanis(ic hypo- 
theses. relevance o f  iii vitro tests. scpa- 
ration of pharmacodynamic and pliarina- 
cokinctic cffccts 

Relations between tests: rcdundancy, sc- 
lcctivity and mapping with rcspcct to ptiar- 
macological profiles 

Separn ti on of di ffcrcnt pharmnco h i iiclic 
processes (c.g., distribiition;cliiiiiii~ition); 
Separation of I.ili~umacokinctic and phar -  
macodynamic cffccts 

Separation of diffcrcnt pliarmacokinctic 
processes 

Relations bctwccn parameters o r  between 
properties of coinpounds,substitients 

Dcsign o f  optiinal training sci-ics 

Mapping:classii'ic~ition with rcspcct to bio- 
logics I properties 

Derivation of  principal properties 

discussed in the following subsections, have been selected to dernonstratc the u t i l i t y  
of thcsc methods in practical applications to real data and problems in mcdicinal 
chemistry. 

4.1.3.1 Data from Parallel Biological Tests 

Frequently, a series of compounds is investigated in a battcry of pal-allel tests with 
similar organisms, looking for the same type of biological activity. The iiiain issues 
in this casc concern redundancy and specificity. If redundancy is large, certain tests 
can bc dispensed with to save experimental work, while tests with ;I high specific 
information content must be retained. In addition, if QSARs are to be derived. 
i t  is usually not neccssary to consider all tests, if ;I well-defined data structure 
exists. One can then select rcprcsentative key tests, or perform QSAR analyscs 
directly with principal components or  factors. A typical situation would be the 
screening of potential antibacterial agents against several bacterial strains; other 
examples are the screening for pesticides or for antitumor compounds. Antibacterial 
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data have been successfully treated by principal component or factor analysis, 
usually showing high redundancy and a well-defined data structure [30 - 401. 
Principal component analyses of herbicidal piperidinoacetanilides [42] and benzoni- 
triles [43a] showed in both cases a distinct grouping of tests in accordance with 
the biological properties of test objects. A principal component analysis of allylamine 
antimycotics, which were screened against seven strains of fungi, revcaled three 
significant components, which could then be submitted to a subsequcnt QSAR 
analysis [43 b]. Examples for the application of principal component analysis 
to antitumor tests can be found in [44] and [45]. The use of simple model 
organisms to evaluate the toxic, carcinogenic, and mutagenic potential of chemical 
compounds has become a very important issue, in order to be able to cope with 
the ever increasing number of chemicals in the human environment. The resulting 
batteries of parallel tests can also be effectively investigated by principal component 
or factor analysis. Systematic multivariate analyses of mutagenicity short term tests 
have been performed by Benigni and coworkers [46-491. In one of the analyses, 
it was found, for example, that the results from 20 tests (42 cgmpounds tested) 
could be described by 6 factors. The first factor, accounting for 58% of the data 
variance, was interpreted to represent “intrinsic genotoxicity” [47]. Nendza and 
Seydel [50, 5 I ]  investigated the toxic effects of phenols and anilines, measured in 
I 1  in  vitro tests (bacteria, yeast, protoplasts and algae), by means of principal 
component analysis. The first principal component extracted almost 80% of data 
variance (indicating high redundancy) and correlated with lipophilicity. A similar 
result was obtained by factor analyzing cytotoxicity data (9 cell lines) and in vivo 
toxicities (LD, ,  in rats and mice) of a structurally heterogeneous set of 19 
compounds: two factors accounted for 90% of the data variance (Gruska, A., Halle, 
W., and Franke, R., unpublished results). In a similar investigation for 9 endpoints, 
Eriksson et al. [52] obtained 3 significant principal components from principal 
component analysis. Redundancy was also found for the acute toxicity of 267 
chemicals on six species of biota [53]. Two principal components were obtained 
from a series of 30 structurally diverse compounds screened in 4 tests, which were 
related to the induction of anesthesia and spindle disturbances 1541; the first 
component showed a correlation with log P. 

Frequently, a certain pharmacological effect is investigated in different models, 
with the assumption that each model reflects the desired potency under more or 
less specific conditions. Typical cases are receptor binding assays in vitro (receptors, 
enzymes) in combination with pharmacological in vivo tests. The fundamental 
problem in this case would be to prove the internal relationship between the models 
(whether they have the same mechanism of action), and/or to separate pharmacodyna- 
mic and pharmacokinetic factors. A simple example of this type was provided by 
a principal component analysis of the inhibitory potency of a series of nine 
4-hydroxyquinoline-3-carboxylic acids against respiration of Ehrlich ascites tumor 
cell suspensions and three respiratory enzymes in vitro (muscle lactate dehydro- 
genase (M4-LDH), pig heart cytoplasmic malate dehydrogenase (s-M DH) and pig 
heart mitochondria1 malate dehydrogenase (m-MDH) [55]. Two components 
accounted for 91 ’% of the data variance. The first principal component was loaded for 
the three enzymes, which had loadings close to zero in the second one, while the ascites 
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test was highly loaded in the second, but not in the first component. It, thus, follows 
that the enzyme tests are closely interrelated and the ascites test is completely 
separated, so that the enzyme inhibitory potency is not connected with the inhibition 
of Ehrlich ascites respiration. As the first component obviously reflects enzyme 
inhibition in vitro, it may be regarded as an average expression for the inhibition 
of all three enzymes. Correlating PI (the first principal component) with molecule 
parameters yielded the following relationships (the SO; derivative was not included 
because of difficulties in calculating p ) :  

(24) PI = 0.34(*0.7)~ + 1.38(*0.78)B, - 4.86(f2.22) 
n = 8 r = 0.902 s = 0.520 

In this equation, p is the dipole moment, and B, is Verloop’s width parameter. I t ,  
thus, follows that enzyme inhibition depends on both steric and electronic effects, 
with inhibitory potency increasing with increasing dipole moment or electron- 
donating power of the substituents as well as with increasing substituent width. In 
the case of the second component for the Ehrlich ascites test, the following relation 
was obtained (z = hydrophobic substituent constant calculated from apparent 
partition coefficients): 

(25) P ,  = 0.79(*0.24)~~ + 0.51(*0.33) 
IZ = 8 r = 0.931 s = 0.415 

In this case, potency is dominated by hydrophobicity; no relationships with 
significant contributions by steric or electronic parameters could be found. As a 
result of principal component analysis, a clear picture of the data structure, as well 
as of the physical nature of the two “basic effects” as reflected by the two components 
(QSARs), were obtained. A further example of this type will be discussed in somewhat 
more detail on page 130. 

Sometimes compounds are also investigated in parallel tests with quite different 
biological actions. This may happen, for example, with a general screening in a 
pharmaceutical company, or if a synthetic chemist wants to obtain as much biological 
information about new compounds as possible. In addition to redundancy and the 
general interrelatedness (grouping) of tests, aspects which may be of importance 
here, are selectivity (separation of desired effect(s) from undesired toxic or side 
effects) and the evaluation of pharmacological profiles. For such data, factor analysis 
will often be the method of choice. A typical example is provided by the work of 
Weiner and Weiner [56], who introduced principal component analysis into QSAR 
work and investigated the results of a series of diphenylaminopropaiiols, screened 
in 11 different pharmacological tests. As these tests are related to quite different 
mechanisms of action high uniquenesses are to be expected. It was, thus, not 
surprising that principal component analysis yielded as many as 8 components, so 
that the dimensionality reduction achieved was not very impressive. If, however, 
the same data was submitted to factor analysis, only 3 relevant factors were obtained, 
accounting for 80% of the data variance [30]. A clear grouping of tests resulted, and 
factor scores could be related, to physico-chemical parameters. The effect of ortho-,  
metu- and pnra-substituted phenyls (12 substituents in each set) on 24 biological 



activities, such as antibacterial, antitumor, enzyme inhibition, and others was 
investigated by Codarin et al. [41]. Considering the first two components the authors 
concluded “that the major behavior of the activity data, expressed by the first two 
components, is related to the known descriptors n, c, and E,”. Results for the 
induction of various enzymes by polychlorinatcd biphenyls have been presented by 
Franke et al. [57]. 

A central issue in drug research is to decide whether, within a given series of 
compounds, toxic effects can be minimized, while maintaining a desired potency. 
How factorial methods can aid i n  such cases can be demonstrated with a simple 
example, concerning a series of antiinflammatory phenylglycin esters with branchcd 
and unbranched alkyl groups i n  the alcoholic part. The compounds wcrc synthesizcd 
and tested fo r ant iinflamma t o r y potency (against car rageen i n and d ex t ra n cd e in a )  
as well as for anticonvulsant potency (antagonism against histamine, BaClz and 
acetylcholine) and for toxicity by Schulz and coworkers [58 - 601. Principal com- 
ponent analysis afforded 2 components [30], accounting for 93% of the data variance. 
As, in a loading plot, toxicity is not separated from the other tests, i t  was to  be 
concluded that with the type of structural variation present i n  the series, 11 

pronounced decrease in toxicity, while maintaining the desired effects, is not 
possible. The first component could be related to TC probably reflccting the 
transport to the site of action [30]: 

( 2 6 )  P ,  = -0.79( k0.1 1)z2 + 6.87( k 0 . 8 8 ) ~ ~  - 13.95( i 1.66) 

/ I  = 13 I’ = 0.984 s = 0.193 

Another interesting aspect of such an analysis is t o  derive I.,liarmacological profiles 
by mapping substances according to measurements i n  relevant biological tests. A 
number of representative examples, mostly concerning CNS active drugs, have been 
published by Lewi [l -31. 

Drug interactions in model systems have also been investigated by principal 
component analysis. Seydel et al. [61] extracted one component from data of 
betizylamines interacting with phospholipids, which showed a non-linear dependence 
on T C ;  if  more tests were incorporated, then a second component was obtained. The 
interaction of monoamino oxidase (MAO) inhibitors with amino acids, studied by 
charge-transfer chromatography, led to 3 principal components and the conclusion 
that M A 0  inhibitory drugs interact only with dicarboxylic acids via electrostatic 
forces [62]. 

E.~~rniplc: Aritilm~teriul Ny~lith~~I’i~~iriinL~s in Diffiwvit Biic~lcr.irr1 Slroiiis 

Data on the antibacterial potency of naphthyridines (structure see Fig. 2) taken 
from the literature [63] were submitted to factor analysis (Franke et al. [63a]) 
using the statistical program package STATGRAPHICS [h4]. The data presented 
in Table 2 yielded three significant factors accounting for 82.7%. 7.90/0, and 4.9% 
of the variance in common factor space, respectively. As the first two factors 
together already represent 90.6% of the variance, a weight plot of’ these lactors 
can provide enough information about the relatedness of tests. Such a plot is shown 
in Fig. 3. Although an ideal simple structure was not achieved, even after VARIMAX 
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rotation of the axes, a distinct clustering of points can still be sccn. Thc largcst 
cluster contains the tests, P. (w., P.  mi., E. d., K. pi., E. co., M .  1 1 1 0 .  and S. I ~ I ( I .  (see 
Table 2 for abbreviations). Obviously, these tests arc very similar. at  least with 
respect to the substances investigated. Situated fairly close to this cluster is anothcr 
cluster with the tests E.,fu. and S. uu., again indicating similarity, but a t  the same 
time, suggesting that these two tests show some special behavior. The tests S. 1111. 

and B.,f i .  are situated much further away and the distance of B.,fi.. is, i n  fact. 
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Table 2. 
scores of the first factor (f1) 

Antibacterial potency of naphthyridines (log I,'M/C. MIC values taken from Bourard et al. [63]) against various bacterial strains ', and 

log I'MIC 

No. S. prz. E.fu. S. air. E. co. K. pi?. E. el. P. mi. M. 1170. S. nza. P. NE. B.jk. fi 

6 0.30 
7 0.30 
8 0.00 
9 0.00 

10 0.88 
11 0.60 
12 2.09 
13 0.60 
14 1.52 
15 -0.30 
16 - 0.90 
17 0.00 
18 0.60 
19 
20 0.88 
21 0.88 
22 0.60 
23 0.88 
24 0.00 
25 - 0.90 
26 0.30 
21 0.60 
28 0.60 
29 1.22 
30 1.22 
31 1.22 
32 1.22 
33 1.52 
34 1.22 
35 I .52 

-0.30 
0.30 
0.00 

-0.30 
0.30 
0.30 
1.22 
0.88 

- 0.60 
-0.30 

0.60 
0.00 

- 1.20 
0.00 
0.88 
0.88 
0.60 
0.88 

- 1.20 
- 1.80 

0.00 
0.00 
0.30 
0.88 
0.60 
0.88 
0.60 
1.22 
0.60 
1.22 

1.79 
2.69 
1.22 
1.52 
2.52 
1.69 
2.39 
2.39 
1.52 
0.60 
1.52 
1.52 
0.30 
0.88 
2.69 
1.52 
1.79 
2.39 
0.00 
0.30 
1.52 
1.79 
1.79 
2.09 
2.09 
2.09 
1.79 
2.69 
2.09 
2.39 

2.69 
3.00 
I .69 
1.22 
2.09 
1.52 
1.69 
2.39 
1.52 
1.79 
1.22 
2.09 
0.30 
1.22 
2.69 
2.09 
2.69 
2.69 
0.60 
0.00 
I .79 
1.79 
2.39 
2.09 
2.09 
2.09 
2.39 
2.69 
1.79 
2.69 

1.79 
2.69 
1.52 
1.22 
1.69 
1.22 
1.52 
1.52 
1.52 
1.52 
1.22 
1.69 
0.00 
1.22 
2.69 
1.79 
2.39 
2.39 
0.60 

-0.30 
1.52 
1.52 
2.09 
1.22 
2.09 
2.09 
1.79 
2.69 
1.79 
2.69 

2.09 0.88 
2.69 1.52 
1.22 0.88 
0.60 0.30 
1.69 1.22 
0.88 0.60 
1.52 0.88 
1.52 1.22 
0.88 0.30 
0.60 0.30 
0.60 1.22 
1.52 0.88 
0.00 -0.90 
1.52 1.22 
2.69 1.79 
1.22 0.88 
1.79 1.52 
2.69 2.09 
0.60 -0.30 
0.30 -1.20 
1.52 1.22 
1.52 0.60 
1.79 I .52 
1.52 1.22 
2.09 0.88 
1.79 1.52 
I .52 1.52 
2.69 2.09 
1.52 0.88 
2.69 2.09 

1.52 
1.79 
1.22 
0.60 
1.22 
0.88 
0.88 
1.22 
1.22 
0.30 
0.60 
1.22 

- 0.60 
1.22 
1.82 
1.22 
2.39 
1.79 
0.30 

- 0.90 
0.88 
0.88 
1.22 
0.88 
0.88 
1.22 
1.22 
1.52 
1.22 
2.09 

0.88 0.00 
1.79 0.60 
1.22 0.30 

1.22 0.60 
0.88 -0.30 
0.60 0.60 
0.88 0.00 
0.60 0.00 
0.30 -0.30 
0.30 
0.88 0.30 
0.00 - 1.20 
0.60 0.60 
1.52 0.60 
0.88 0.30 
1.79 0.60 
2.39 0.60 
0.30 -0.60 

-1.20 - 1.50 
0.88 0.30 
0.60 0.00 
1.22 0.60 
0.88 0.30 
0.30 0.30 
1.22 0.60 
0.88 0.60 
1.52 0.60 
0.60 0.00 
1.52 0.60 

0.60 -0.60 

-0.30 1.074 
- 0.90 -0.215 

- 0.60 0.4 1 
- 1.50 -0.50 

0.00 0.39 
- 0.60 0.25 
- 1.20 - 0.44 
- 0.30 - 0.90 

- 1.50 -0.15 
0.00 - 2.05 

0.00 1.20 
- 1.20 0.07 
-0.30 0.90 

0.60 1.36 
0.00 - 1.52 

- 2.09 - 3.09 
-0.30 - 0.08 
-0.60 - 0.24 

0.00 0.50 
- 0.60 0.20 
- 0.60 0.24 

0.30 0.68 
0.00 0.47 
0.60 1.38 

- 0.30 0.13 

~ 

S. p7., Str-eptomccir.y pizelirizoiziar A 9585; E.,fu,, Enterococeu.c faeculis A 9809; S. uit., Stirl,h!.lococcLrs uureir.y A 9537: E. co.. Eschrricliiu coli 
A 15 119; K. pi7., Klrhsc.lliu pizeuriioniuc A 9664; E. cl., Ei7terohucter clocrcae A 9656; P. n7i., Proteirs iwiruhi/i,s A 9900; M. ii7o.. Mo,;~cii?ella ii7orgunii 
A 151 53; S. mu., Serroriu incircedcens A 20019; P. ue., Pscwdomonus ucruginosu A 9843; B. fi., Bucillus frugi1i.c A 22862. 
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greater than is shown on the two-dimensional plot in Fig. 3, a s  this test is the 
only one which also has a high loading in the third factor. This clustering 
is in good agreement with phylogenetical properties of the bacterial strains 
considered. The conclusions, with respect to the compounds investigated, thus, are: 
(i) the set of tests is redundant, so that the same information could have been 
obtained with less bacterial strains; (ii) the tests S .p? .  and B.,/i.. yield specific 
information, not contained in any other test and cannot, therefore, be dispensed 
with; ( i i i )  it is sufficient to consider one test from each of the two clusters 
and, in addition, the tests S.pn. and B. f r .  for SAR considerations or QSAR 
analyses. 

The first factor mainly represents the tests in the large cluster (with some influence 
of the two tests in  the smaller cluster). This factor may, thus, be regarded a s  an 
average representation of the results in these tests and can be directly submitted to 
a QSAR analysis, providing an overall SAR picture in these tests (factor scores arc 
included in Table 3). Using Free-Wilson analysis [65] in the Fujita-Ban variant [66] 
(standard substituents: R ,  = t-Bu; R, = H; R, = ring Ril; see also Fig. 2), a 
statistically high significant result was obtained, which is represented in Table 3 
together with the Free-Wilson results for S.pn.  and B.fr.  As was to be expected 
from the results of the factor analysis, the de novo activity contributions for these 
two strains differ markedly from those obtained for the first factor. When 
Free-Wilson analysis was applied to the original activity data of the tests, residing 
i n  the large cluster, the results (not shown) were compatible with the activity 
contributions from the first factor, as would be expected. 

Table 3. 
well 21s for S. pi?. and B. fi. (P = 95%; for the scores in italics, 90% < P < 95u/o) 

Significant activity contributions from the Free-Wilson analysis of the factor I scores ;IS 

Substituent f l  S. p n .  B. , f i  

const. 0.40 0.43 1.1 1 
t -Ru ( R , )  standard 
Et ( R l )  
FEt ( R l )  0.75 

FZPh ( R J  
FPh ( R l )  
F-t-Bu ( R , )  - 1.02 

Mc ( R s )  

Ph (Rs)  -4.21 -2.12 

Ri2 (R,) -0.88 -0.78 
Ri3 (R, )  -0.5/ 

- - 

cPr ( R , )  0.73 
0.43 0.67 
- - 

H (Rs) standard 

Et ( R s )  - 2.48 

R i l  (R,) standard 

Ri4  (R,) -0.74 - 1.03 
KilMe (R,) 

r 0.965 0.788 0.838 
S 0.271 0.403 0.36 1 
F 16.2 1.8 2.8 

- 1.89 

-0.72 



The use of principal components or factors as dependent variables in  QSAR i n  
order to represent a set of biological tests is very convenient, if the data structure 
enables this (see also Eqs. (24)-(26) and (29)). Other examples where this has 
been achieved for antibacterial potencies have been presented the literature [34,40]. 

E v u i n p k :  Aiitilr~.pertcrz,vii:c Fusaric Acids In  V i m  and I n  Vivo 

Another typical example, which will be discussed briefly here, concerns anti- 
hypertensive fusaric and picolinic acids (Fig. 4). These compounds are believed 

to act by inhibiting catecholamine biosynthesis, via blockade of the enzyme 
dopamine [j-hydroxylase (DBH) that converts dopamine into noradrenaline. However, 
other mechanisms of action have also been discussed, and the question that remains 
to be answered, is whether the blood pressure decreasing effect of these compounds 
is due to DBH inhibition or not (see, e.g. Dove et al. [67] and references cited 
therein). The following measurements have been made for a number of analogs [6X, 691: 

- Inhibition of DBH in vitro: 
plso(I):  incubation with an excess of Cu2+ ions (coppcr complex formation 

plSo(II):  without Cu2+ excess, 
- Decrease of systolic (index “S”) and diastolic (index “D”) blood pressure in 

male Wistar rats with renal hypertension at doses of 0.25 mniol/kg (index ”a”) 
and 0.5 mmol/kg (index “h” ) :  BRSu, BRSh, BRDrr and B R D h  (transformcd into 
logarithms), 

may play an important role), 

- p K ,  and pK, values. 

All data (taken from Ref. 1671) are summarized in Table 4 together with thc values 
of C 71 and C 0. In addition, a classification of compounds with regard to their in 
vivo potency is also included [67]: class 0 = “inactive” compounds; class I = “acti- 
ve” compounds. Missing pK, and pK, values were estimated from the following 
relationships, obtained from experimentally available values and Swain-Lupton‘s F 
and R values: 

(27) p K ,  = -6.77(+ 1.39)R(R,) - 4.06( & 1.17)F(R,) 
- 0.91 (+_0.86)R(R5) + 5.33( +O.SO) 

= 15 r = 0.977 s = 0.291 F = 52.9 

pK, = 2.S3(+1.00)F(R4) + 1.81(t0.46)F(RS) 
+ I.41(&0.30)R(Rs) + 13.01($-0.19) 

n = 18 r = 0.974 s = 0.126 F = 60.8 



Table 4. Pharmacological data of antihypertensive fusaric and picolinic acids. pfjo = inhibition of DBH in vitro (I: incubation with 011 excess of 
Cu" ions; 11: no excess of Cu2+ ions), BR = log (decrease blood pressure), male Wistar rats with renal hypertension: S = systolic. D = diastolic. 
LI = 0.25 mmol'kg, h = 0.5 mmol kg; class. = classification for in vivo activity (0 = inactive. I = active) 

No. R, Rj pISo(I) pfj,,(II) BRSrr BRDo BRSb BRDh class. In 20 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
H 
OMe 
OEt 
c1 
NO, 

H 
Et 
n-Bu 
OH 
OMe 
0-n-Pr 
0-n-Bu 
0-Benzyl 
COOH 
c1 
Br 
I 
NH2 
NHOH 
NHCOMe 
NHCOEt 

CN 
II-BU 
il-RLl 

/I-Bu 
rl-Bu 

NO, 

5.35 
5.59 
6.05 
5.77 
- 
- 

6.60 

4.92 
5.62 

5.35 

4.88 
7.00 

3.30 
3.30 
5.00 
5.02 
6.02 
5.10 

- 

- 

- 

- 

5.35 
4.77 
5.96 
5.74 
5.64 
5.89 
5.76 
6.28 
5.28 
4.39 
4.80 
4.96 
5.06 
4.74 
5.14 
5.47 
4.05 
3.39 
5.04 
5.47 
6.82 
4.96 

0.98 

1.39 
0.94 
1.20 
1.42 
1.60 
0.63 
0.92 
0.94 
1.56 
0.58 
1.10 

1.02 
0.57 

1.44 
1.49 
1.31 
1.09 

1.02 

1.35 
0.93 
0.78 
0.98 
1.48 
0.97 
0.54 
1.07 
1.46 
0.74 
0.89 

0.70 
0.36 

1.50 
1.24 
1.22 
0.96 

0.63 1.17 
1.87 1.60 

1.23 0.94 
0.92 0.94 
1.37 1.39 
1.33 0.79 
1.51 1.26 

0.98 
1.48 1.1 1 
1.11 1.24 
1.67 1.72 
1.26 1.16 
1.17 0.70 

0.72 

1.77 1.76 
1.70 1.54 
1.16 1.03 

0.86 

0 
1 
1 
0 
0 
1 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 

1 
1 
1 
1 

0.00 0.00 
1.02 -0.15 
1.98 -0.20 

-0.67 -0.37 
-0.02 -0.27 

1.05 -0.25 
1.55 -0.32 
1.66 -0.33 

-0.32 0.45 
0.71 0.23 
0.86 0.23 
1.12 0.18 

-1.23 -0.66 
- 1.34 -0.34 
-0.97 0.00 
-0.43 0.00 
-0.28 0.78 
-0.57 0.71 

1.96 -0.08 
2.36 -0.10 
2.69 0.17 
1.70 0.51 
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A factor analysis of the 6 biological potencies extracted 93.3% of the data variance 
with two factors (factor 1 :  il = 2.99, Yn variance = 61.5; factor 2: i2 = 1.55, Yn 
variance = 31.8). The loading plot in Fig. 5 shows that the in vivo results afford 
factor one, while factor two is mainly afforded by the two in vitro tests. I t  then 
follows that there is no simple correlation between in vivo and in vitro tests so 
that the in vivo potency does not reflect DBH blocking activity in vitro. The 
classification into classes 0 and 1, however, can be described by a discriminant 
function with C 7c and pZs0(II) as variables [67], which can be interpreted to mean 
that the compounds are active in vivo, if the DBH inhibition is sufficiently high, 
and hydrophobicity allows for efficient transport to the site of action. 

Fig. 6 shows a scatter plot of compounds obtained from a principal component 
analysis with the variables pK,, pK,, C 7c and (C n)'. This analysis afforded two 
significant components accounting for 65.4% (il = 1.83) and 34.6% ( A 2  = 0.97) of 
the data variance, respectively, (total: 100%). Compounds were labeled according 
to their class membership for in vivo potency, and as can be seen, the two classes 
are clearly separated. Thus, scatter plots, obtained from principal component (or 
factor) analysis of physico-chemical variables, can produce patterns, in  which 
compounds are clustered according to some biological property which is not 
included in the analysis. This is of some practical importance, as such plots may 
be of use in selecting compounds for further investigations. If in such an analysis 
compounds with known biological properties and new compounds with unknown 
biological properties are included, those new compounds which are in the vicinity 
of (or within) clusters containing the already tested analogs possessing thc desired 
property, are the best candidates for synthesis (or testing, if already synthesized). 
This problem can, of course, also be solved by applying classification methods, 
including classification, which IS based on principal components (SIMCA; see 
Chap. 4.3). However, such scatter plots have the advantage, in that they not only 
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Figure 6. 
Variables: pK,, pK,, C 71. (C 71)'; 0 = inactive compounds; 1 = active compounds. 

Scatter plot of fusaric acids in the space spanned by thc first two principal componcnts. 

allow a selection of compounds with respect to a desired potency but that aspects 
of a series design can also be included (see page 153). 

The application of principal component analysis in QSAR work often ends at 
the stage of such clustering, i.e. the method serves as a cluster analysis approach. 
In order to  obtain a clearer picture, cluster analysis can subsequently be applicd 
to further analyze such scatter plots [70]. Some examples of using simple principal 
component analysis for cluster analysis are given in the literature [71 -741. The 
objective is similar to that of classification methods (pattern recognition). If classes 
of compounds are known before the analysis, however, this approach works better 
with a separate PC model for each class as in the SIMCA method of Wold et al. 
(see Chap. 11). A special classification procedure based on principal component 
analysis has been recently proposed by Rose et al. [75]. A somewhat different 
application of principal component analysis can be found in the work of Cammarata 
and Menon [76, 771. They derived a data matrix for compounds with different modes 
of action, by coding the presence or absence of groups at designated positions and 
weighing these codes by the molar refractivity of the groups present. A coordinate 
system, with the resulting components as axes, was then used to plot the data, 
leading to a certain clustering of compounds with similar types of biological 
action. 

The antibacterial effects of 17 4'-substituted 4-aminodiphenylsulfones in 7 cell-free 
folate synthesizing enzyme extracts and in 2 whole cell cultures of various 
mycobacterial strains and strains of E. coli sensitive and resistant to sulfones, 
have been determined by Seydel and coworkers [34] and submitted to principal 
component analysis. Missing data 19% were estimated in an iterative process 



Figure 7. Loading plot of variahlca related 
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w i t hi  n principal co m po ne n t an a 1 ys i s. Two sign i fica n t pri nci pa 1 com po n c n t s w c re 
obtained ( 2 ,  = 6.94 and 22 = 1.45), accounting for 77.1% nnd 16.1% of the 
data variance, respectively (total : 94.2%). 

The loading plot in Fig. 7 shows that the cell-free test systems essentially afford 
the first component, while the second component represents whole cell activities. 
This means that potency i n  cell-free and whole cell systems are govcrned by different 
factors. The first component obviously reflects an “average” of enzyme inhibition, 
while the second could be related to transport through the cell mernbrnnc. I f  this 
is true, scores of the first component should be related to  physico-chemical 
parameters in the same way :is found for the cell-free system data, whilc thc sccond 
component should show a relationship to hydrophobicity, a s  would be typical for 
transport processes. This is indeed the case, a s  P ,  correlates with thc clcctronic 
demand of substitiients and with the fraction ionized, while P ,  shows :i bjlincar 
dependence on lipophilicity, which is expressed by the H PLC parameter, log li‘: 
with the optimum at log k’ = 0.83: 

P ,  (rotated) = 1.40(+_0.52) log k‘ - 3.49( -t 1.32) log [0.09X( kO.173)k‘ + I ]  (29) 
+ 0.507( 20.726) 

I I  = 17 I’ = 0.034 s = 0.396 F = 22.21 

This is another example of how principal component analysis can be of use to order 
data, so tha t  the intrinsic potency at the site of action can be separated from transport 
phenomena. 

4.1.3.2 Pharinacokinetic Data and Time Series 

Pliainiacol<inctic properties are characterized by i i  varicty of parameters, which 
reflect different aspects of pharinacokiiietics. Many of these parameters are 
intercorrelated and, thus, lend themselves to multivariate analyses, such a5 



principal component and factor analysis, with the aim of finding components 
(factors), characteristic of fundamental pharmacokinetic processes. I f  pharmacoki- 
netic and response data are combined, there is thc opportunity to scparate 
pharmacodynamic and pharmacokinetic effects. The same goal may be achicvcd, 
furthei-more, if time series of pharmacological response measurements arc subjcctcd 
to principal component or factor analysis. In any case, data will be simplified and, thus, 
bc easier to interpret and subsequent QSAR analyses are made considerably casicr. 

Illustrative examples for applying principal component analysis to pharniacokine- 
tic data can be found in a paper by Schaper and Seydel [78]. Considering fivc 
examples, it was possible to represent complex dala by relatively siinplc principal 
component models. The components could be identified with basic processes such 
as elimination, protein binding, and distribution and also showed correlations with 
hydrophobicity, as was to be expected for these processes. Pharinacodynuiiiic cKccts 
could be separated from pharmacokinetic effects for I 1 morphine-like analgesics 
by analyzing the following variables using principal component analysis (after 
logarithmic transformation): the timcs f'or the onset of maximum activity and 1 / E D ,  
values, respectively, after intravenous and intraventricular administration, I/ED,,, 
in  the hot plate assay, and binding to rat brain homogenates. The first of two 
significant components represented intrinsic activity, while the second could 
be attributed to pharmacokinetic processes and showed a bilinear relationship with 
log P. Similar results were reported for pyrethroids in  insects by Ford et al. [79, 801 
using canonical correlation analysis. 

The first principal component analysis of a time series was performed by Frankc 
and co-workers [Xl, 821 with data for the antiinflammatory potency of 14 disubstituted 
salicylic acids (against carageenin edema in Wistar rats; data supplied by Bekemeyer 
[83]) measurcd 3,4, and 5 hours after administration. Two components wcrc obtaincd, 
with the first component reflecting the pharmacodynamic part of the observed effect 
and the sccond, pharmacokinetics. The first component could be rclatcd to 
substituent constants, indicating that stcric effects and the presence of 21 free carboxyl 
group arc important for antiinflammatory potency. This cxamplc shows the potential 
of such an analysis, but suffers from the limited number of times considered and 21 

low data variance. One cannot expect that a separation of pharmacokinetic and 
pharmacodynamic effects will always be possible by analyzing a time series. If, for 
example, pharmacokinetic and pharmacodynamic effects depend similarly on 
hydrophobicity (which may frequently happen for unspecific effects), principal 
compoiicnt analysis of a time series may simply producc onc component which 
represents both effects. An example for this is given by Schaper and Seydel [78] in  
the non-specific cardiodepressive effects of /)-blockers: 

Analysis of a time series can aid in  dissecting more complex pharmacological 
processes into components, with the final objective being to derive complcx 
quantitative structure-time-activity relationships (QSTAR); a further example will 
be presented in the next section. If, in a series of compounds, the concentrations a t  
the site ofaction at different times all relate similarly to log P according to the bilinear 
model of Kubinyi [84], or as a parabolic relationship [85] ,  and pharniacodynainic 
effects are absent, only one component will be obtained. 
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Table 5. 

A4tr.x = maximal potency = log (I/IDS,,),,,.ix. ,f, : factor scorcs of factor I ; . f2 :  factor scores 

Analgesic potencies (log (I/IDs,,) in rats, tail withdrawal tcst [86]; / I  - 110) of fcntanyl 
t = 1/32 h; t2: t = 1/16 h ;  13: t = 1/8 h; 14: / = 1/4 11; r5: I = 1/2 11; t 6 :  / = I h; 17: / = 2 h ;  1 8 :  

No. R ,  R, R, R4 RS t l  12 r .7  r4 

I H  H CH,OCH, 
2 H  H CH,OCH, 
3 H  H COOCH, 
4 H  H COOCH, 
5 CH, H COOCH, 
6 H  H COOCH, 
7 H  C H ,  COOCH, 
8 H  H COCH, 
9 H  H COCH, 

10 H H COC,H, 
I 1  H H COCzHs 
12 H H H  
13 H -CH,H 

8.46 8.72 8.70 8.66 
8.54 8.64 8.76 8.64 
8.72 9.00 9.00 9.03 
8.77 8.95 9.06 8.96 
8.25 8.66 8.70 8.76 
8.77 8.46 8.61 8.67 
8.27 8.57 8.62 8.72 
8.54 8.68 8.75 8.78 
8.44 8.69 8.64 8.71 
8.34 8.45 8.48 8.48 
8.45 8.79 8.77 8.72 
7.41 7.45 7.48 7.38 
8.65 8.73 8.75 8.75 

E.vnnzple : Dcconzposition of Time- Dependmt Rcsponsc D L ~ ~ L :  17). F w f o r  Antrlj-sis 

For analgesic potencies of a series of fentanyl derivatives (for structure see Fig. 8), 
measured after 10 different times [86] (see Table 5), Balaz et al. [87] derived 
the following relationship starting from a model-based disposition function: 

log (l/ID50) 1 - log ( B P  + 1)  - D t / ( B P  + 1) + A (30) 
A = 8.923, B = 1.492. D = 5.461 

Eq. (30) is statistically highly significant and describes the entire data (compounds 
6 and 16 not included). The first term is supposed to describe transport and the 
second term is supposed to describe elimination. Both transport and climination 
depend on hydrophobicity. 

As an alternative to starting from a well-defined model, the same data (taken from 
Ref. [87]) were submitted to factor analysis [87a] using the statistical program 
package STATGRAPHICS [64]. 

Two significant factors were obtained with eigenvalues of i, = 7.22 and A, = 1.60, 
accounting for 80.6% and 17.9% of the variance, respectively (total: 98.5%). Factor 
scores (VARIMAX rotated) are included in Table 5. All vatriables have high 
communalities and are, thus, well represented in common factor space. A plot of 

0 
II 

R* Figure 8. Fentanyl dcrrvalivcs 
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derivatives (structure see Fig. 8) measured at different times, data taken from B a l ~ u  et al. [87]. i 1 : 
t = 4 h:  t9: f = 6 h ;  110: I = 8 h. Log P values and values of Mux Balaz ct al. [87] of 
factor 2 

+ 
~ 

0 

+ 
- + 

15 t6 t7 18 r9 f I0 log P Ma\- .f; .f; 

8.58 8.24 7.61 6.87 6.07 2.74 8.74 -0.04 -0.61 
8.54 8.12 7.59 6.67 6.21 2.39 8.73 -0.08 -0.69 
8.97 8.78 8.36 7.34 6.55 6.04 2.54 9.09 0.90 -0.55 
8.89 8.65 8.19 7.28 6.42 5.95 2.19 9.03 0.79 -0.73 
9.69 8.50 8.31 7.57 6.86 6.46 2.85 8.80 0.32 0.57 
8.66 8.53 8.43 8.33 8.2 1 7.96 2.65 8.66 0.45 1.86 
8.73 8.72 8.69 8.46 8.43 8.19 2.94 8.76 0.68 2.04 
8.74 8.43 7.86 6.64 6.06 2.26 8.82 0.16 -0.75 
8.65 8.41 7.92 6.89 6.25 2.37 8.74 0.09 -0.34 
8.27 8.06 7.39 6.39 5.95 2.79 8.15 -0.57 -0.51 
8.56 8.03 7.28 6.48 6.03 2.44 8.85 -0.16 - 1.05 
7.14 6.86 6.29 5.56 5.03 2.35 7.48 -3.03 0.59 
8.72 8.54 8.05 7.56 7.07 6.76 2.75 8.78 0.48 0.18 

the factor loadings against time of measurement is presented i n  Fig. 9. As can be 
seen, the proportion of variance, accounted for by the first factor, decreases with 
increasing time of measurement (squares), while the variance explained by the second 
factor increases with time (crosses). According to Balaz et al. [87], the data arc 
primarily dependent on pharmacokinetics, with transport being much faster than 
elimination, while differcnces with respect to receptor affinity were regarded to be 
very small. As the first factor reflects those effects common to all measurements, 
while the second factor reprcsents differences, it is, thus, tempting to speculate that 
the first factor is primarily related to the pharmacokinetic processes (which will losc 
in importance as time increases) while the second factor can be attributed to receptor 
affinity (pharmacodynamic effect). 

1 .o I.; - t u  + 
-1 

-1 

Figure 9. 
(VAKIMAX rotatcd) against timc of 
measurement. Squarcs: factor 1 : 

Plot of factor loadings 

_ I .  I- crosses: factor 2 o.2L 0 -  0 1 2 3 4 5 6  A 
Time 



I f  this were true, one would expect the following: 

Scorcs of factor 1 should be related to hydrophobicity, as this is the dominating 
property governing transport. 
With scores of factor 2 as independent variable, it should be possible to 
derive a QSAR for receptor affinity, if such a QSAR exists. 
A QSAR for receptor affinity can only be obtained with the original measurc- 
ment, if the pharmacokinetic effect is not a dominating feature. According to the 
factor loadings, this is true for t8 and t9  (see Fig. 9) .  
simple relationship exists between scores of factor 1 and log P after eliminating 

compounds 6 and 12, which behaved as pharmacokinetical outliers [87] and were 
also left out in  the derivation of Eq. (30) ( F A  1 = scores of factor 1 after VARIMAX 
rota t i o 11) : 

F A 1  = -0.63(*0.36) (log P)’ + 1.76(+0.95) log P (31) 
IZ = I 1  r = 0.851 s = 0.313 F = 11.8 

Eq. (31) is statistically highly significant. Compound 3 shows a rclativcly large 
deviation from the regression line for reasons unknown. If  this compound is also 
rcmoved Eq. (3) is thcn improved to give: 

( 3 2 )  FA1 = -0.60(&0.28) (log P)’ + 1.65( k0.74) log P 

/I = 10 r = 0.891 s = 0.236 F = 15.4 

A plot of the observed vcrsus predicted values of F A  I is shown in Fig. 10. A parabolic 
expression in log P is usually considered to be a good approximation to describe 
pharmacokinetic processes. Non-linear regression analysis does not result in a n  
improvement but provides a description which corresponds very well to the 
model in Eq. (30): 

( 3 3 )  FA1 = -log (0.0037P + 1) ~ 3.56/(0.0037P + 1) 

17 = 10 r = 0.888 s = 0.241 F = 14.7 

I --P 7 7  

1.1 

0.8 

-0.1 

-0.4 

Figure 10. 
prcdictcd (Eq. ( 3 2 ) )  viiltics of F A  I .  

Plol of ohscrvcd vci-siis 

-0.7 -0.4 -0.1 0.2 0.5 0.8 1.1 
FA1 Dred 



Figure 11. 
predicted values of r8 (from 

Plot of observed vcrsiis 

6.5 

I- ,- Frcc-Wilson analysis). 
6.5 7.5 8.5 9.5 

FA2pred. 

5.5 
5.5 

Eqs. (31) to (33) are, thus, in good agreement with the hypothesis that the first 
factor primarily represents the pharmacokinetic aspect of biological potencies. 

When Free-Wilson analysis was applied to the scores of the second factor ( F A 2 ;  
VARIMAX rotated) and to scores for t8 and t9, highly significant results were obtained 
(see also Fig. ll), which had the following statistical characteristics ( ~ i  = 13): 

FA2: r = 0.963, s = 0.270, F = 12.8 
t8: 
t9: 

I’ = 0.965, s = 0.208, F = 13.8 
r = 0.963, s = 0.250, F = 12.7 

As expected, a significant Free-Wilson solution does not exist for the other 
measurcments ( t l  - t7). 

It was very satisfying to see how the results of factor analysis could indicate which 
measurements could be employed to derive a QSAR.  The results obtained wcrc 
fully consistent with the hypothesis that factor analysis has achieved a separation 
of the pharmacokinetic and pharmacodynamic effects. 

4.1.3.3 Analysis of QSAR Descriptors 

In statistical QSAR analyses chemical compounds (or substituents) arc usually 
described by physico-chemical parameters and/or substituent constants as indcpcn- 
dent variables. These parameters can be divided roughly into three main groups: 
hydrophobic, electronic, and steric. A large number of such parameters coexists with 
many intcrcorrelations and rcdundancies. One way of gaining a better understanding 
would be to apply principal component or factor analysis to data matrices, in which 
descriptor variables or physico-chemical properties arc listed for a representative 
set of substituents or compounds. This has been done with the following objectives: 

1 .  Many parameters, as for example, hydrophobic and clcctroiiic substitucnt 
constants or log P,  arc determined by experimental measurements. Parameter 
values, which are obtained in this way, can be very sensitive to experimental 



conditions or the type of molecules investigated. Principal component or factor 
analysis can be used in this case in order to understand the underlying 
effects and/or to create unified scales of descriptor values. 

2. A grouping of descriptor variables can be obtaincd, leading to a bcttcr 
understanding of their nature and relatedness as well as to their information 
content, which can aid in the selection of variables for QSAR analyses. 

3. Principal components, extracted from a set of descriptors or nicasurements, can 
serve as new variables i n  QSAR. Such variables are often referred to as “principal 
properties”. 

4. Principal component or factor analysis of descriptor variables can be used as 
tools in the design of training series with high information content. 

These issues will be dealt with in the following sections. Only  such examplcs will 
be included, which are directly related to drug design; applications outside this field 
(e.g. as in general chemistry) will not be considered. 

VuriutioM of Descriptom u,itli E.xpcrinicntiil Conditiom 

The most important cases, which are related to drug design are: 
I .  Variation of electronic and hydrophobic substituent constants of substituent X 

with the nature a functional group Y in aromatic molecules, with the general 
structure shown in Fig. 12. 

2. Variation of log P ,  .n or chromatographic hydrophobicity parameters with 
organic solvent. 

Interactions between X and Y have led to a great number of modifications in the 
original Hammett equation and, thus, to many scales of (T values (see also e.g. 
Franke [6, 71). Using principal component analysis, Wold and Sjostriim [88 -911 
investigated a large number of reaction series and arrived at a unified, and later 
extended, o-scale. 

Franke and coworkers applied principal component analysis to aromatic 71 values 
[92,93] (see also Ref. [7]) for metu- and pura-substituents i n  phenyls with different 
functional groups, Y, and to log P values measured in different solvcnt/watcr systems 
[94, 951. The principal component analysis of 71 values resulted in two components, 
with the first component reflecting “intrinsic hydrophobicity”, and the second 
component reflecting electronic corrections. This example will be discussed in some 
detail in the next section. In the case of the log P values, which were determined 
with 18 structurally diverse solutes in 6 solvent/water systems, again two significant 
principal components were obtained, accounting for 71.7‘%1 and 24.5% of the data 
variance, respectively (total: 96.2%). The first component correlated with the cavity 
surface area, according to Hermann [96,97], and to the B and C values of Cramer 
[9X, 991 ( B  and C represent principal properties derived by principal component 

y-a X Figure 12. Disubstitiited bcnzcncs: X = substituent; Y = functiond group. 



analysis and will be discussed later on page 144) according to the following: 

P ,  = 1.18(?0.35)CSA - 2.61(& 1.90)C - 2.88(*0.92) (34) 
I I  = 18 r = 0.836 s = 0.294 

PI = 3.42(+0.71)B - 5.01(+ 1,69)C + 0.41(*0.26) ( 3 5 )  
= 18 I“ = 0.910 s = 0.223 

As C S A  and B are measures of bulk effects, and C represents polar effects, the first 
component represents an “average” of the hydrophobicity common to all partitio- 
ning systems, which can be attributed to the bulk contribution and, in addition, to 
a polar contribution, which accounts for more specific solute-solvent interactions. 
The second component is highly correlated with the hydrogen bonding parameters 
of the solute molecules, such as, for example, Seiler’s [loo] I,, value: 

P ,  = 0.28( +0.03)1, - 0.54( kO.07) 
n = 18 r = 0.964 s = 0.080 

Table 6. Aromatic n-values of 14 substituents ( i w t u  and parti positions) in 8 scrics of standard 
compounds; PhOAA = phenoxyacetic acids, P h A A  = phenylacetic acids, B = bcnzcncs, BA = 
ben-roic acids, P = phenols, A = anilines, P A A  = piperidinoacetanilides, N R  = nitrobenzenes 

No. R PhOAA PhAA B BA P A PAA NB 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
~ 

H 
in-F 
nt-CI 
in - I 
in - Br 

m-CF, 

in - O H  

1 ~ 1 -  CH 3 

WJ-OCH, 

tn - NO2 
n~ - COOH 
ni - CN 

in - C H 2O H 
111 - COCH, 

P-F  
p-CI 
P - I  

P - C H ,  
P-CF, 
P-OCH, 

P-NO, 
P-COOH 
P-CN 
p-  COCH, 
p -  CHZOH 

p-Br 

p-OH 

0.00 
0.1 3 
0.76 
1.15 
0.97 
0.5 I 
I .0? 
0.12 

-0.49 
0.1 1 

-0.15 
-0.30 
- 0.28 
-0.82 

0.15 
0.70 
I .43 
1.19 
0.60 
1.13 

- 0.04 
- 0.6 I 

0.24 
- 0.22 
-0.32 
-0.37 
-0.78 

0.00 
0.19 
0.68 
1.22 
0.9 1 
0.49 
1.16 
0.04 

-0.52 
0.01 

-0.32 
-0.28 
-0.36 
-0.76 

0.14 
0.70 
1.23 
0.90 
0.45 
0.87 
0.15 

-0.14 
- 0.04 

0.30 
0.0 I 

- 0.45 
- 1.32 

0.00 0.00 
0.14 0.28 
0.71 0.83 
1.12 1.28 
0.86 0.99 
0.56 0.52 
0.66 1.07 

-0.02 0.14 
-0.67 -0.38 
-0.28 -0.05 
-0.28 -0.19 
-0.57 -0.37 
-0.55 -0.34 
- 1.03 -0.84 

0.14 0.19 
0.71 0.87 
1.12 1.14 
0.86 0.98 
0.56 0.42 
0.66 0.83 

-0.02 0.08 
-0.67 -0.30 
-0.28 -0.02 
-0.28 -0.05 
-0.57 -0.31 
-0.55 -0.32 
- 1.03 -0.91 

0.00 
0.47 
1.04 
I .47 
1.17 
0.56 
1.49 
0.12 

-0.3 I 
0.54 
0.04 
0.24 

- 0.07 
- 1.02 

0.3 I 
0.93 
1.45 
1.13 
0.48 
I .24 

-0.12 
-0.67 

0.50 
0.12 
0.14 

-0.1 I 
- 1.26 

0.00 0.00 
0.40 0.39 
0.98 0.99 
2.08 1.46 
1.20 1.16 
0.50 0.56 
1.54 1.36 
0.03 0.17 

-0.73 -0.45 
0.47 0.45 

-0.18 -0.11 
-0.25 -0.18 
-0.27 -0.33 
-0.95 -0.84 

0.25 0.25 
0.93 0.89 
2.44 1.44 
1.36 1.12 
0.49 0.50 
1.72 1.30 
0.05 0.04 

-0.86 -0.36 
0.49 0.48 
0.20 -0.02 

-0.15 -0.05 
-0.36 -0.26 
- 1.30 -0.87 

0.00 
0.2 1 
0.6 1 
0.99 
0.79 
0.57 
0.87 
0.3 I 
0. I 5  

-0.36 
- 0.02 
- 0.6X 
- 0.43 
-0.65 

0.16 
0.54 
I .02 
0.70 
0.52 
0.80 
0. I8 
0. I 1 

-0.39 
0.03 

- 0.66 
-0.36 
- 0.60 



The second component, thus, reflects specific differences between the partitioning 
systems, which are related to hydrogen bonding. 

Principal component analyses of log P in disubstituted bciizenes and of a set of 
solutes in different solvent/water systems were also performed by Dunn and 
coworkers, who reached similar conclusions, but with a slightly different interpreta- 
tion [I01 - 1051. 

E.uuniplc: Fucror Ancilj..sis of' Aronzritic n Vuliies ,fionr D i f f k n t  Sor-icJs 
of' SturMrlurri C'onIpO""L/,r 

The principal component analysis presented by Franke et al. [92, 931 will be repcated 
here for the sake of illustrating factor analysis [64]. Investigations i n  [92, 931 started 
from a known physical model, which applied to principal component analysis, 
while, in  this section, i t  will be assumed that no model is known, and factor analysis 
is then used to create a model. In  addition nwtu- and 1~ar.a-substituents will be 
treatcd simulhneously, whereas previously they were analyzed separately in [92, 931. 

The 71 values for 14 substituents at the n?c/u and piir-r i  position (including H )  for 
8 series of standard compounds (different Y functional group, see Fig. 12) are 
summarized in Table 6. Factor analysis revealed two significant factors with 
eigenvalues of 2 ,  = 7.51 and i2 = 0.24, accounting for 96.2% and 3.0% of the data 
variance, respectively (total: 99.2%). The factor matrix, after VARIMAX rotation, 
is shown in Table 7, and factor scores (unrotated) are summarized iii Table 8. 

A plot of the factor scores is presented in Fig 13. The niofu- and pura-substitucnts 
are arranged in pairs in a pattern, which reflects their hydrophobicity and electronic 
properties: substituents are arranged according to their hydrophobicity from 
left to right and according to their electron withdrawing power from top to 
bottom. This suggests that the first component reflects basic hydrophobicity of 
substitucnts, while the second component represents electronic substituent proper- 

Y H - '  - r - - v -  
2.7 

m-CI 
-0.3 

m-COCH3 Figure 13. Score plot of substitucnts. 
Squarcs reprcscnt itrciti-su bstitucnts. 
crosses represent ptr,.tr-substitueiits and 
a s tar  represents hydrogen. Mcttr- and 

mCN o m-NOp pru-subst i tucnts  arc  arranged in pairs 

-1.3 

-2.3 Af..dj--. (labels only at  the rIrcttr-substitucnts). 
-1.9 -0.9 0.1 1.1 2.1 

Factor 1 



Table 7. Factor matrix (unrotated and a h  VARIMAX rotation) and conimunnlitics. PhOAA 
= phcnoxyacetic acids, P H A A  = phenylacctic acids, B = benzenes, BA = bcnroic acids. P = 
phenolcs, A = anilincs, PAA = pipcridinoacetanilidcs, N B  = nitrobcnzcncs 

Compound Factor 1 Factor 2 Comm II n 211 i t  y 
series 

Unrot .  V A R I M A X  Unrot .  VARIMAX 

PhOAA 
PhAA 
B 
BA 
P 
A 
PA A 
N B  

0.99 
0.97 
0.98 
0.99 
0.96 
0.97 
0.99 
0.90 

0.77 
0.73 
0.66 
0.70 
0.87 
0.83 
0.82 
0.45 

- 0.04 
- 0.00 

0.13 
0.08 

-0.22 
-0.15 
-0.12 

0.35 

0.63 
0.64 
0.74 
0.71 
0.46 
0.51. 
0.56 
0.85 

0.974 
0.940 
0.974 
0.995 
0.969 
0.967 
0.990 
0.930 

Table 8. Factor scorcs 

NO. Su bst it ucnt Factor 1 Factor  2 

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 
I t  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

H 
in-F 
m-CI 
f l l - I  

t i i -  Br 
m-CH 
rn-C’F, 
ni-OCH 
m-OH 

iwCOOH 
in-CN 
iii-COCH , 
ni-CH ?OH 

/ ? I -  N 0 2 

P-F 
p-CI 
P-I 

P-CH 3 

p-Br 

p-CF, 
p-OCH, 
p-OH 

p-COOH 
p-NOZ 

p-CN 
p-COCH 1 

p-CHZOH 

-0.35 
0.05 
0.90 
1.67 
1.18 
0.47 
1.39 

-0.16 
- 0.98 
-0.23 
-0.59 
-0 84 
-0.87 
- 1.67 
- 0.05 

0.84 
1.75 
I .20 
0.42 
1.24 

-0.28 
-0.98 
- 0.2 I 
-0.35 
- 0.74 
-0.89 
- 1.88 

0.43 
0.07 
0.20 
0.05 
0.4 I 
1.14 

- 0.3 1 
I .02 
I .46 

-2.21 
0.24 

- 2.05 
- 0.XO 

0. I 5  
0.29 
0.29 

- 0.2 1 
0.06 
I .ox 

-0.41 
1.06 
I .93 

- 3 79 

0.03 
- 1.99 
-0.50 

0.83 
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-0.9 1 
Figure 14. Plot of scorcs from the first 

0 factor ( F A  I )  against rc valucs lrom the 
, , , , , , , , , I ,  , , / 1 , 1 1  benzoic acid system (n(BA)).  

ties. This is, indeed, the case as indicated in Figs. 14 and 15. Fig. 14 shows a plot 
of the scores from factor I against n values for the benzoic acid series (z(BA) was 
selected, because this variable has a communality of 1 .OO). Fig. 15 shows the scores 
from factor 2 plotted against o of the substituents. Correlating factor scores 
with hydrophobic and electronic substituent constants leads to Eqs. (37) and (38): 

(37) f l  = 1.61(&0.07)n(BA) + 0.19(f0.14)~,n,p - 0.38(f0.05) 

M = 27 I' = 0.995 s = 0.099 F = 1225.0 

,f2 = -3.23(F0.77)am,, + 0.82( i0.30) (38) 

n = 27 r = 0.863 s = 0.557 F = 72.5 

1.7 L 
0 

2 B H  4 
C m 
u 0.7 

0 

0 
0 

00 
0 

R Figure 15. Plot of scorcs from the second 
LLu_L----d--dA i factor  FA^) against 0. 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 
0 (para) 



0.94 

0.84 

$ 
0.74 7 m 

s 

Eq. (37) shows that the first factor also contains a slight electronic correction in 
addition to basic hydrophobicity. 

Figs. (16) and (17) show plots of the factor weights for factors 1 and 2 against 
the o values of the functional groups Y (up used). Obviously, the loadings arc related 
to the electronic properties of the functional groups. The corresponding equations 
are : 

I '--, I - '  

o -OH 
- 

PAA - -NH2 

01 -0CHzCOOH 
- 0 -CH2COOH - 

0 -COOH - 

OH 

" 1  = -0.26(*0.14)0,(Y) + 0.72( k0.06) 

u2 = 0.24(fO.l4)0,(Y) + 0.64(f0.05) 

(39) 
n = 8 r = 0.868 s = 0.067 F = 18.3 

(40) 
n = 8 r = 0.871 s = 0.063 F = 18.9 

F 0.64 - - 
7 

0.54 - 

- 
- 0.44 - 

0 . 9 5 r '  ' I  " ' '  I '  ' I  " '4 

Figure 16. 
Factor ( u l )  against (T of the functional 

Plot of loadings from the first 

- 
$ 
Q10.75 

s 
?! 0.65 

7 

- 
5l 

0.55 
o'-NH2 1, , , :IOH, , , , , 0.45 

-0.7 -0.4 -0.1 0.2 
Q (para) 

OH 

-CHzCOOH 
' 

0 

-0CHzCOOH 
0 PAA - 

1 

Figure 17. 
second factor (02) against (r of the functio- 
nal groups. For abbreviations, see Table 6.  

Plot of loadings from the 

0.5 0.8 



Table 9. Kegi-ession coefficients from Eq. (41) with n,(Y,) = n(BA) 

NO. Group h ,  h 2 

1 OC‘H,COOH 1.03 0.17 
2 CH ,COOH 0.99 0.00 
3 H I .05 -0.18 
4 COOH - - 

5 - O H  I .Oh 0.66 
6 N H Z  1.38 0.49 
I PAA 1.07 0.42 
8 NO, 0.83 - 0.50 

I f  Eqs. (37) and (38) are back-translated into a factor model with two factors, it 
then follows that the following relationship must exist betwcen x values from 
series of compounds with different functional groups: 

(41) 

In this equation .n,(Yj) and n,(Y,) are x values for substituent X in an aromatic 
series with the functional groups, Y = Yi and Y = Y,, respectively; ci, is the o value 
of the substituent, and b,, h,, and b ,  are regression coefficients. A n  example of 
Eq. (41) is the following relationship derived from the x values given in Table 6: 

(42) 

xi,(YJ = h ,  + h,x,(Y,)  + h,a, 

x(B) = 1.05(_+0.07)x(BA) - 0.18(+0.15)ci - 0.12(+0.06) 
IZ = 27 I‘ = 0.986 s = 0.105 F = 449.1 

A further conclusion, which can be drawn from Eqs. (39) and (401, is that the 
coefficients h ,  and b,  in Eq. (41) should be related to o(Y,) (to o(Yj)),  if cquations 
with the same Y, (the same Yi) and different Yis (different Y,s) arc compared. The 
regression coefficients b ,  and h,, obtained when relating x values of all the series 
of compounds considered to n(BA) are summarized in Table 9. These coefficients 
do, indced, correlate with o of the respective functional groups according to: 

(43) h ,  = -0.31(_t0.22)0, + 1.02(&0.09) 
n = 7 r = 0.850 s = 0.087 F = 13.1 

h,  = - 0.8 1 ( 0.49)0,, (44) 
I I  = 7 I’ = 0.857 s = 0.227 F = 16.6 

The results compare very well with those obtained from principal component 
analysis (metu- and pcrru-substituents treated separatel) [92, 931 and arc in keeping 
with the bidirectional Hammett-type relationship, suggested by Fujita and coworkers 
[106, 1071, to describe .n values in disubstituted benzenes. 

Relationships according to Eqs. (41) and (42) have been long known and have 
been determined empirically (sec Franke [6, 71 and refercnces cited therein). The 
present example demonstrates the capability of factor analysis ;IS a “model 
generator”: with no assumptions to bcgin with, a physically mcaningful model has 
been obtained in an easy and straightforward way. 



The appropriate selection of descriptors is essentially at thc heart of QSAR work. 
However, this is not always an easy task, because of the great diversity of descriptors 
which are potentially available. In order to better understand the problems of 
similarity, redundancy, and information content, Van de Waterbeeind [ 1081 perfor- 
med a principal component analysis on 58 descriptors for 59 substituents, which 
was extended in a subsequent paper to includc 74 substituents [I091 (for earlicr 
work, see e.g. Alunni et al. [ I  101 and Tichy [ l l  I]) .  Five significant principal 
components explained 83.94% of the data variancc as follows: PC'I = 33.46'%), 
PC2 = 25.07%, PC3 = 13.120/0, PC4 = 7.48% and PC5 = 4.82%. Loading plots 
showed a clustering of lipophilic, steric and electronic parameters. A number of 
less well-defined descriptors were found around the origin and random numbers 
were also situated there. Obviously, parameters situated close to the origin 
(considering all significant components) provide little information. Thc score plots 
revealed a very interesting picture: substituents were arranged in the order of 
increasing bulk from left to right and increasing polarity from top to bottom, forming 
five groups. 

An even larger number of substitucnts, but with less parameters, was analyzed 
by Skagerberg et al. [112]. A hundred aromatic substituents were characterized by 
9 variables (71, M R ,  CT,,,, (T,,, and Verloop's STERIMOL parameters) and submittcd 
to principal component analysis. Four components were extracted, accounting for 
39%, 21%, 994, and 7% of the data variance, respectively (total: 76%). The first 
component was related mainly to steric bulk and hydrophobicity, the second 
component represents electronic properties, the third component again is mainly 
hydrophobicity with a contribution for shape, and the last component is believed to 
have no real chemical interpretation and to be of minor importance, even though 
it is statistically significant as determined by cross-validation. The first three 
components were then used for selecting substituents for a training series by factorial 
design (see next section). 

Principal components, derived from a set of descriptors or, to be more general, 
a set of property values for a given set of compounds, can be used a s  independent 
variables in QSAR analyscs. If the components are derived from a s  large 11 (but 
still meaningful) selection of physical and chemical properties as possible, then they 
represent so-called principal properties (PPs), which can be very useful, especially 
for substances which are difficult to parameterize by classical QSAR descriptors (e.g. 
amino acids in peptides, sugars, etc.). Thc first contribution in this field was madc 
by Cramer [98, 99, 1 13 - 11 51, who derived the so-called B C ( D E F )  parameters, as 
principal components, from a data matrix containing six physico-chemical propcrties 
(activity coefficient in water, log P, MR, boiling point, M V ,  and heat of vaporization) 
for 114 structurally diverse chemical compounds. The first two components ( B  and 
C) already explain 95.7% of the data variance, while the proportion of variance 
explained by the subsequent components amounted to 2.80/0,0.7%, 0.5'1/0, and 0.3'!4), 
respectively. The most important contribution to property description was, thus, 
contained in B and C, which were attributed to bulk and to bulk-corrected 



cohesiveness. The BC(DEF)  parameters can be (roughly) estimated from chcmical 
structure and have been shown to yield excellent descriptions and predictions of 
those physical properties of compounds, which are dominated by non-covalent 
interactions in a bulk fluid phase. In the case of non-specific biological effects, such 
as general anesthesia, nerve blockade, and erythrocyte stabilization, highly significant 
Q S A R  equations were also obtained. B C ( D E F )  certainly arc interesting parameters 
for Q S A R  purposes, but have not found much practical application for mainly two 
reasons: (i) they are difficult to compute, and (ii) more specific interactions in  a 
biological system would require that these global parameters are broken down into 
individual contributions for different parts of the molecules, which is not possible 
(or, at least, has not yet been attempted). 

Much work has been done to derive PP's for amino acids with the objective of 
creating parameters for peptide QSARs, especially by Wold and coworkers [ 1 16 - 1271 
following the earlier studies of Sneath [I281 and Kidera et al. [I291 (for monosac- 
charides, see Eriksson et al. [130]). In the first study [ I  161, a principal component 
analysis of 20 variables (molecular weight, PK~OOH, pK,H,, isoelectric point, van der 
Wads volume, 7 NMR measurements, and 8 parameters relating to hydrophobicity) 
for the 20 naturally occurring amino acids, yielded three components, which accounted 
for 58% of the data variance. Score plots revealed the relationships between the 
properties of the amino acids and the genetic code. The first component primarily 
reflected hydrophobicity, the second component reflected size, and the third com- 
ponent reflected electronic properties. The first application of these components, now 
referred to as z,, s2, and z 3 ,  as variables in a peptide QSAR,  has been reported by 
Hellberg et al. [117]. A PLS model, using these z-scales, was derived for bradykinin 
potentiating pentapeptides, which was shown to possess predictive capability. I n  later 
work, the z-scales were extended to include non-coded amino acids [119, 121, 123, 1241. 
New and extended z-scales, now designated as z',, z;, and z;, have now been derived 
for a total of 55 amino acids from a principal component analysis of the following 
variables: R, values from 7 different TLC systems, van der Waals volume, molecular 
weight, and 3 NMR measurements. Further QSAR studies using z variables can be 
found in the literature [118, 120, 121, 125-1271, An alternative to the 2-scales has 
been suggested by Norinder [13 11 who started from computed interaction energies 
of amino acids with 2016 grid points, taking into account non-bonded, charge-charge 
and hydrophobic interactions. Principal component analysis of the resulting data 
matrix resulted in 5 principal components, accounting for 81'70 of the data variance. 
When applied to a scries of biologically active pentapeptides, a good PLS model was 
obtained. This work was repeated and extended by Cocchi and Johansson [ 1321, who 
used interaction energies from 6 different probcs and obtained 7 significant principal 
components (f-scales), accounting for 72% of the total data variance. A PLS 
modeling of the z-scales by the t-scales gave only poor results, which was attributed 
to the fact that the z-scales are based on experimental measurements of intact amino 
acids, while the t-scales are only representative of the side-chains. When applied to 
the ACE inhibitory potency of 58 dipeptides, however, both scalcs led to compatible 
results. It is also possible to mix the two scales. 

Hemken and Lehmann [133] computed steric and electrostatic parameters (size, 
shape, and M E P  properties at the van der Waals surface) by scanning a grid placed 



around aromatic substituents. Principal components derived from these parameters 
correlated well with conventional steric and electronic substituent constants and 
could even be used to replace the latter in a few QSAR examples. I f  such 
parameters are not available, dispensing with tabulated data could make this 
procedure attractive in certain instances. This is, of course, also true for the electronic, 
steric and hydrophobic parameters, derived by Kim and Martin [ 134 ~ 1381 directly 
from 3D structures, using the CoMFA method [139] in a number of extensive studies. 
Again, part of this analysis involves principal component analysis, as implemented 
in the PLS part of CoMFA. Aromaticity scales derived by principal component 
analysis from other variables have been suggested as principal properties in QSAR 
work and series design for aromatic and heteroaromatic compounds [140- 1421. 

An interesting application of principal component analysis, as an aid to identifying 
a pharmacophore in amnesia-reversal compounds, has been presented by Cosentino 
et al. [143]. The result led to the identification of three interatomic distances, which 
were able to provide all the information necessary to  describe the relative spatial 
position of two key centers for interaction. 

Principal components, extracted from a matrix of x variables (descriptor matrix, 
x), can be used as independent variables in a regression model (principal component 
regression analysis; PCRA). In this context, these principal components are called 
latent variables. The model of PCRA (e.g. as in [144]) is as follows, 

k 

where J' is a single biological potency (measurements from one biological test), 
P k ( X )  is the k-th principal component, derived from the descriptor matrix X ,  h, arc 
regression coefficients, obtained from correlating y as dependent variable with the 
P k ( X ) .  Pk(X) will then be independent variables, and I: is the residual term. 

Moulton and Schultz [ 1451 used principal component regression to investigated 
structure ~ activity relationships for inhibiting the growth of the ciliate K ~ f r u h y w w  
pyrifbrmis by 20 para-substituted pyridines. They started form eight substituent 
constants, including n, two indicator variables to characterize H-acceptor and 
H-donor ability, M R ,  gP, Swain-Lupton's F and R constants, and the single bond 
fragment molecular connectivity index, 'xyUb, and extracted four principal com- 
ponents accounting for 95% of the variance. The first component expressed steric 
properties, the second component was related to hydrophobicity (including hydrogen 
bonding), the third component reflected resonance electronic effects, and, finally, the 
last component reflected electronic field effects. The first two components (after 
VARIMAX rotation) afforded a significant regression equation: 

log BR = 0.45P, ~ 0.25P2 - 0.59 

I I  = 17 r = 0.831 

The authors stated that the results were in good agreement with earlier investigations, 
performed with the original variables using multiple regression analysis. If this is 
true, then question arises as to why the investigation was repeated with principal 
components, which are more difficult to interpret. Turner et al. [I461 considered the 



toxicity of two groups of metal ions in mice. With thc variablcs “ionic radius”. 
“ionization potential”, “atomic weight”, “William’s softncss parameter”, and 
“electronegativity”, two components were extracted for each group of metal ions, 
accounting for 96% and 94% of variance, respectively, which arc related to toxicity. 
The statistical quality of the resulting equations, however, is o n l y  poor. A series of 32 
8-azastcroids was investigated by Sokolov et al. [ 1471. Two principal components 
derived from electronic densities at various atoms Icd to significant regression 
equations for the hemolytic and  cathepsin as well phosphatasc inhibiting potency. 
Domine et al. [ 1481 performed a principal component analysis on 5 physicocheinical 
properties of 64 pesticides. Two  components explained 9 I .7% of the total variance: 
a scorc plot showed a n  overall structure with rcspcct t o  thc membership of 
compounds in the families “hcrbicides” and “insecticidcs”. Investigating the 
neurotoxicity of pyrethroids Ford and  Livingstone [ 1491 extracted 8 significant 
components from a large variety of molecular descriptors. Thcir use as independent 
variables in a subsequent regression step led to highly significant relationships. The 
following equation for the neurotoxicity was obtained: 

N T  = -0.72P, - 0.49P2 + 1.37P4 + 1.04P, - 0.51P7 + 0.87 (47) 

/ I  = 19 i‘ = 0.970 I.‘ = 21.4 

Some additional applications of PCRA (see also [5]) are given i n  tlic litcraturc [ 150- 1531. 
In comparison with multiple regression analysis, PCRA has tlic xivantage that 

colliiiearities between .x variables are not a disturbing factor, and that tlic number of 
?i variables incliidcd i n  the analysis, may exceed the number of obscrvations. I n  
comparison with automated stepwise regression procedures (only t o  be recommended 
in exceptional cases), the danger of chance correlations [ 1541 is furthcr reduced. However. 
the principal component approach solves the collinearity problem only from a purely 
mathematical point of view. Nothing has been gained from the perhaps even more 
important chemical point of view. If, for a given case, certain pnrametcrs, ;is for cxample. 
n and M R ,  are correlated, they will remain so also after principal component analysis 
has been performed. Thus, a conclusion whether steric or hydrophobic cffects are 
operating, is still impossible. What is really necessary in such cases, is to introduce some 
carefully selected additional compounds in order to break the collinenrity. I n  the case 
of PCRA and similar methods the danger exists that, in  an uncritical way. too man) 
variables will, inadvertcntly, be included in the principal component analysis step, which 
(within certain limits) may be acceptable mathematically, but which will render chemical 
interpretation increasingly difficult. Benigni and Giuliani [ 1551 stated t h a t  “an analysis 
becomes fruitful when the correlation found can be explained within the context of 
physical-chemical and biological theories, or when it leads to formulating new hypo- 
theses”. This aspect is as important as the mathematical soundness and robustness of 
a result and must not be lost by overemphasizing the mathematical aspect alone. On11 
if, in particular cases, no reasonable assumptions about the sclection of descriptors are 
possible, o r  if  the coinpounds in question are difficult to parameterize i n  w straightforward 
way, then the principal component analysis step is very useful (e.g. use of --scales for 
peptides). In such cases, however, PLS (see Chap. 4.4) is the preferred method over 
principal component regression. 



The principal problem of QSAR is to understand which properties affcct biological 
potency and why they do  so. Even with the great number of x variables availablc, which 
may be included into PCRA or PLS, this problem is by no means solved, but is only 
shifted to a different level. I f  a single y variable is to be analyzed, multiple regression 
analysis (MRA) is not performed as automatic procedure, and descriptors are selected mid 
screened according to the state-of-the-art methodology, then there is no rcasoii to replace 
MRA by PLS or PCRA. 

A better alternative to  PCRA i n  many casts is the application o f  principal componcnts 
or Factors for the preselection of parameters in a given QSAR problciii o r  for the design 
of ;I training series. 

A good training series should provide maximum information with a miniinuin 01’ 
compounds. For this reason, the following conditions must be fultillcd : 

I .  All important properties must be varied over a sufficiently large range (sufficicnt 
variance in descriptor variables). 

3. The parameter space must be covcrcd systeinatically in order t o  avoid situations, 
such as is shown in Fig. 18. In such a situation there is too much redundancy in the 
two point clustcrs (one analog in each cluster would have provided the siiiiic 
information), and there is no way of determining what is occurring in  the range 
between thc two clusters. Moreover if, for some reason, i t  is decided that a straight 
line should be fitted to the data, the nuinber of degrees of  freedom will be 
overestimated, as the two poinl clouds can be regarded a s  two supcrpoints. Statistical 
tests would then provide a much highcr level of significance than would be j ustil’ied 
by the structure of the data. 

3. Different properties (electronic, hydrophobic, and steric) must be varied indcpen- 
dently of each other, sincc, otherwise, a mechanistic interpretation of latcr derived 
QSARs would become impossible (no collinearities between descriptor variables). 

I n order to filfil these conditions simultaneously is no easy task and requircs special 
mathematical methods of series design (see, e.g. references [6, 7, 156- 1591; the 
advantage is a pronounced increase ol‘ information per compound synthesized (see 

log BR 
* * *  * * * *  * * * *  * *  ? 

* *  * * * *  
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e.g. Martin [ 1571, and Unger et al. [ 1601). Among a variety of diffcrent approaches 
[ 1581, principal component analysis has also been applied for this purpose. 

Franke and coworkers introduced the PCMM and the TMIC method [I61 - 1651 
(see also [6, 71). PCMM is a combination of principal component analysis and the 
multidimensional mapping technique of Wootton et al. [ 1661. The miiltidiiiicnsion~11 
mapping technique starts from a presentation of all possible substitucnts in 
parameter space. In a stepwise procedure a substituent, which is closest to the center 
of gravity of all hitherto selected points in parameter space but further apart than 
a predefined minimal Euclidean distance, DMin, is selected in each step. I n  this way 
the variance of variables is maximized and a set of well-spread derivatives is selccted. 
Multicollinearities, however, are not dealt with by this approach and are, thus, not 
necessarily eliminated. If collinearities exist, a hyperplane can be fitted to substituent 
points in parameter space and collinearities are mainly due to those points, which 
are close to the hyperplane. First substituents are divided into two sets, such that 
Set 1 contains the objects close to the hyperplane and Set 2 contains the substituents 
which are distant from the hyperplane, a s  judged by the Euclidean distances between 
substituents and hyperplane. These distances are computed with the help of principal 
component analysis. The multidimensional mapping technique of Wootton et al. is 
tiow applied separately to each of the two sets, in such a way that ii higher percentage 
of substituents is selected from Set 2. Since the hyperplane changes its position 
during the selection procedure, this procedure is performed in a stepwise iterative 
manner, where the hyperplane position is adjusted after each step. This technique 
yields series with high data variance and minimized collinearities. 

The TMIC method was devised for less than 50 substituents and is somcwhat 
closer to the applications of principal component analysis, which have been discussed 
so far in this chapter. I t  is based on a score plot of substitucnts derived from an 
intraclass correlation matrix (two-dimensional mapping of intraclass correlation 
matrices). The intraclass correlation coefficient, T, ,  is related to Euclidean distances 
and can be used to characterize the interrelatedness of two substituents X and Y 
with respect to MI (standardized) descriptor variables, xi (i  = I ,  ..., ! T I ) :  

(48) 2 
T I ( X . Y )  = 2 1 ( X i Y  = x.) ( X i X  - x.)/C ( X j Y  - x.) + ( r ix  - s.)z 

1 i 

with 
x, = (1 /2m)  C ( x i Y  + xix) 

- 1  I I ]  5 1 

1 

and 

A series with low collinearities is characterized by low values of IrII for all possible 
pairs of substituents. In a score plot of principal components, derived from an 
intraclass correlation matrix, substituents interrelated with respect to the considered 
x i  will be close together (high positive values of r I ( X . y J ,  or i n  positions which are 
symmetrical with respect to the origin (high negative values of i . lcx.u,);  substituents, 
which are placed close to the origin bear little information. If the first two components 
extract a sufficient amount of information, the plot is two-dimensional and a good 
training series with high xi variances and low collinearities can now be obtained by 
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simple visual inspection. Substituents which are distant from each other, are selected 
in such a way that the whole space is systematically covered, while not including 
points which have a symmetrical position with respect to the origin. A TMlC map 
for 40 substituents (parameter space: 7c, F ,  R, M R )  is shown in Fig. 19. A distinct 
clustering of substituents, similar with respect to the properties considered, becomes 
evident and is very reasonable from a chemical viewpoint. 

I n  the last few years, 2" factorial design with principal properties (see above) has 
frequently been used in series design [112, 120, 125, 126, 167-1731 with the aim of 
performing PLS analyses on the data of the training series. Factorial design for the 
purpose of series selection in the QSAR field was introduced by Austel [ 174 - I781 
using design variables based on substituent descriptors. This technique is discussed 
in more detail in Chap. 3.1. PPs are highly suitable for factorial design as 
they are independent, orthogonal and represent a reduction of dimensionality. Thus, 
this is the method of choice, if the data are to be analyzed by PLS. If, however, a 
multiple regression analysis (Hansch analysis) is planned, series designed in this 
way are not necessarily optimal. For example, the following substituents were selected 
by Skagerberg et al. [112] by a factorial design based on principal components, which 



was derived from a data table of 100 aromatic substituents (variables: TI,  M R ,  o,,,, 
o,,STERlMOLparameters): H, -CH,,Br, -NO2,  -C,H,,  -OC,H,, -COC,H,, 
- CO,C,H,. For multiple regression analysis, this would not be a very good selection 
for the following reasons: 

- Collinearities are not eliminated. There is a significant correlation between n 
and M R  ( r  = 0.735) and a multicollinearity between TI,  M R ,  and cr (o-term 
significant at 94%): 

TI  = 0.058( i 0 . 0 2 0 ) M R  - 0.88( +0.93)~,  (49) 
I I  = 8 I^ = 0.942 s = 0.336 F = 23.8 

- variances and ranges covered by, especially, o,,, and of, arc not optimal. 

Prcsclcc~ioii of' Vwiahlcs ,fbr Rcgrc>.vsioti Anci1j~si.s 

I n  practice, a drug designer is frequently confronted with data of series, which have 
not been designed according to the principles outlined in  the previous section. If  
then a Hansch analysis is attempted, two problems have to be solved: 

1 .  Selection of variables connected with biological potency from a, sometimes, very 
large pool of potential descriptors [108]. 

2. Investigation of (multiple) collinearities in order to understand which effects 
cannot be separated (important for interpretation), and i n  order to avoid 
(mu1ti)collinear variables in the same equation (necessary for statistical reasons). 

Factor analysis can serve as a data preprocessing step for both these objectives 
[6, 7, 82, 157, 179 - 1821. If  a factor analysis is performed on a data matrix, containing 
the variable log BR ( B R  = biological response) and all descriptor variables which 
are to be considered, the resulting factor pattern (after VARIMAX rotation) will 
yield the following information: 

1. Only those factors are connected with biological potency (variable log BR) ,  where 
log B R  has a loading, which is not equal to 0. The number of terms to be expected 
in a regression equation should, therefore, be equal to the number of factors with 
non-zero loadings for log BR. 

2. Variables with a high loading in the same factor arc interrelated (the higher the 
loadings the higher the correlation), Variables with non-zero loadings in different 
factors only are unrelated. 

3. As follows from 1. and 2., only variables with non-zero loadings i n  those factors, 
where log B R  also has non-zero loadings, are important for the description of 
log BR. 

4. Another consequcnce of 2. is that only variables with non-zero loadings in 
different factors may be combined in one regression equation, in  order to avoid 
collinearities. 

5. The results of factor analysis indicate whether or not a satisfactory description 
of log B R  can be achieved in the parameter space considered. I f  not, one can 
imrncdiately choose a different variable space, thus preventing the calculation 
of useless regression equations. 



One example is given by Franke [7], where data concerning thc inhibition of the 
NADH oxidase system from ETP for 17 ring-substituted phcnoxyacctic acids werc 
analyzed. Factor analysis provided three significant factors for the variable spacc 
considered with non-zero loadings for the biological potency (pZs,,) i n  f. x t o r s  onc 
and three. The descriptor variables had non-zero loadings as follows: 

Factor 1 : C, g2, C-, gP2,  S 
Factor 2: 71, n2, P 
Factor 3: E,, E:. 

It, thus, follows that biological potency depends on electronic and stcric cffccts, 
while hydrophobicity has no  significant role. In regression analysis, one of the 
electronic substituent constants from factor 1 should be combined with E,, (factor 3); 
thcrc is no reason at this stage to preferably use squared variable terms. Such 
combinations do, indeed, lead to a satisfactory description as follows, for example, 
from Eq. (50): 

P I S ,  = 0 . 7 5 ~ -  - 0.23E, + 3.34 
/ I  = 17 r = 0.923 s = 0.249 

The result was checked by screening all conceivable combinations of dcscriptor 
variables using regression analysis (a strategy, which is frequently employed in the 
Hansch analysis). In comparison with this strategy the use of FA as a preprocessing 
step, saves on more than 90% of computations made and gives a clcar picture of 
the steps being undertaken. 

The gcneral strategy of applying factor analysis as a preprocessing step in regression 
analysis, is similar to that in principal component regression analysis (PCRA). As 
in PCRA, relationships of biological y variables and “factors” (“patterns”) inherent 
in the .Y variables are investigated. The difference is, that i n  PCRA all descriptors 
arc assumed to be important, while the aim of factor analysis is to find out thc 
relevant descriptors. With FA as preprocessing step before regression analysis, some 
of the drawbacks of “latent variable” models (low interpretability) and o f  “pure” 
regression models (disturbing effects of collincarities) can be avoided. I n  addition, 
the probability of obtaining chance correlations is reduced. Unfortunately, the factor 
analysis approach, as described above, has been seldom used in QSAR work. A 
variation of factor analysis, which is more frequently applied (see literature for 
examplcs [149, 183- 185]), is to subject only descriptor variables to FA and to thcn 
correlate biological activity with one highly loaded variable from each factor. I n  
this way, collinearities are avoided, but one cannot ascertain how many tcrms t hc 
final regression equations should have, and which of the molecular parameters are 
connected with biological potency. 
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4.2 Graphical Analysis as an Aid in Medicinal Chemistry 

Abbreviations and Symbols 

CFA 

M E M  
PBS 
PCA 
PCS 
PLS 
QSAR 
SA R 

log P 
Correspondence factor analysis 
/z-oclanol/water partition coefficient 
Minimum essential medium 
Phosphate buffered saline 
Principal components analysis 
Principal components 
Partial least squares 
Quantitative structure-activity relationship 
Structure-activity relationship 

4.2.1 Introduction 

Despite the fact that graphical techniques in connection with official statistics can 
be traced back more than two centuries [2, 31, until the mid-1 97O’s, routine largc- 
scale use of graphs in data analysis was not feasible since computcr graphics 
facilities were not available at a reasonable cost. Since this period, graphs have 
provided very powerful tools, both for analyzing scientific data and for com- 
municating qualitative and quantitative information [4, 51. Indccd, graphical me- 
thods enable the data analyst to explore data thoroughly, to look for patterns and 
relationships, to confirm or disprove hypotheses, to discover new phenomena, to 
serve as a mnemonic device for remembering major conclusions, and to communicate 
these conclusions to others [6, 71. Therefore, in most cases, graphs enhance thc 
different numerical methods used in classical data analysis. This fact can be 
casily illustrated in medicinal chemistry, where regression models are widely used 
to describe how a response variable {i.e. biological activity) is related to, or can be 
explained by one or more explanatory variables (i.e. physico-chemical descriptors 
or topological indices). Indeed, it is now well accepted that in regression analysis, 
graphs provide powerful diagnostic tools for conveying properties of fitted reg- 
ressions, assessing the adequacy of the fits, detecting outliers, and suggesting 
improvements [6, 8, 91. Conversely, even if chemometric methods are now well 
established in medicinal chemistry for the rcduction of the dimensionality of data 
matrices or for classification problems, the usefulness of graphical methods for 
optimizing the use of these approaches is rarely emphasized [lo]. Under these 



circumstances, the scope of this paper is first to briefly review some of the basic 
principles of graphics, and then to illustrate them from a case study, dealing with 
the co-inertia analysis [ l l ,  121, which can be particularly suitable in medicinal 
chemistry to detect the co-structure between two data tablcs (e.g. biological activities 
and molecular descriptors). 

4.2.2 Graphical Displays 

In this paragraph, our intention is to formulate some of the basic principles, which 
allow graphs to be employed more incisively in medicinal chemistry. Indeed, the 
study of the theory of data graphics is beyond the scope of this paper and can be 
found in numerous reference textbooks [e.g. 2, 13, 141. 

4.2.2.1 Overall Strategy 

When a graph is drawn up, quantitative and categorical information is encoded 
chiefly through the combined use of points, lines, numbers, symbols, words, scales, 
and/or colors. This graph should deliver true messages without artifacts linked to 
the display technique itself (e.g. the Rorschach effect [6]). I t  should be ablc to 
reveal the data at several levels of detail with precision, lack of distortion, com- 
pactness and comprehensiveness [15]. Lastly, i t  is important to note that the most 
valuable graphical approaches are flexible enough to be applied to a wide variety 
of data [6]. 

4.2.2.2 Techniques in Graphical Design 

Numerous publications deal with techniques of plot constructions [e.g. 2, 13, 141. 
On a more basic level, some elementary, but important suggestions for the 
design of efficient graphs have to be followed. The amount of uninformative 
detail (e.g. the logo of a laboratory) and clutter (e.g. grid lines) in a plot must be 
minimized. Conversely, explanations, which highlight the richness of the data, must 
be encouraged, since they make graphical displays more attractive. Thus, i t  is always 
useful to write short messages on the plot to explain the data, characterize the 
outliers or some interesting data points, write QSAR equations and/or display 
molecular formulae on the graph itself, and to integrate the caption and legend 
into the design, so that the reader does not have to dart back and forth between 
the text and the graph. However, the combined use of words and graphs requires 
the adoption of some typographical conventions. Thus, for example, words used 
in a graph must not be abbreviated and elaborate coding avoided. Due to the usual 



reading direction in western languages, words must run from left to right. The 
typeface must be clear and precise, using upper-case and lower-case letters with 
serifs [2]. 

Ploportioris mcl Scales 

A common task in constructing graphs is rescaling the data. This fundamental step 
has been widely discussed by Tukey [ I  I ] ,  Thus, for example, it is generally well 
accepted that choosing scales to reduce curved configurations of points i n  a graph 
is highly recommended. However, we have to mention that the choice of a scaling 
procedure basically depends on the type of data to be represented and thc aim of the 
study. Tufte [2] emphasized that graphs should tend toward the horizontal rather 
than the vertical and mentioned rules of thumb (p. 189) for drawing up ideal 
rectangles for graphical purposes. One of them these rectangles, the Golden Rec- 
tangle, finds its origin five centuries B.C. and has a length/width ratio of 1.618 
(i.e. ( I  + /,/3)/2). 

Displuy of' Siippltmentary Infi,n?lation 

The display of supplementary information on a graph is crucial for successful 
interpretation. It is also a convenient tool for easily communicating results and for 
adding a new dimension to the graph. To reach this goal, we can, for example: 

~ replace a point on a graph by a word, a symbol or a shape encoding qualitative 
and/or quantitative information [ 16 - 181, 

~ use lines of different weights [2] or various lengths, which emanate from a point 
in different directions [3], 

- employ isometric plots [3], 
- add colors (especially blue which can be distinguished from other colors by 

most color-deficient people who represent 5 to IOYi of the population [2]), 
- use stereographic and cinematographic techniques [3]. 

Numerous illustrative examples have been given by Tufte [2], Bertin [14], and 
Gnanadesikan [19]. 

4.2.2.3 Visual Perception 

We can consider a graphical method to be successful, only if it can bc effectively 
decoded visually [5] .  Even if our eye-brain system is a particularly sophisticated 
device, the study of how we perceive graphs shows that there are some limitations 
in our perception of graphical displays. Thus, for example, our visual system is 
able to perceive : 

- angles more easily than slopes and straight lines more clearly than curved 
lines, 

~ simple patterns more easily than complex ones, 



- large or dark objects (or clusters) with greatcr impact than small, light, or 
isolated ones, 

- a log, scale with less difficulty than a log,, scale [5, 6, 201. 

lt is obvious that these aspects must be taken into account when constructing a 
graph . 

4.2.2.4 Software Availability 

Recent advances in computer graphics technology havc now made graphical software 
available on many microcomputers and workstations. Besides 2D and 3D systems, 
which are only available for multivariate exploratory graphics [21], some statistical 
packages now contain numerous multivariate analyses and sophisticated graphical 
tools to  facilitate presentation and interpretation of data [22 ~ 241. Thus, for example, 
the statistical analyses and graphical displays presented in this paper have been 
undertaken with ADE [22] running on a Macintosh I". 

4.2.3 The Key Role of Graphics in Co-Structure Analysis 

4.2.3.1 Background 

Expressed in statistical terms, SAR or QSAR studies consist in finding qualitative 
or quantitative relationships between two data tables, the former being constituted of 
thc biological activities (one or more columns) and the latter of the molecular 
descriptors ( i t .  physico-chemical properties and/or topological indices). If  the partial 
least squares (PLS) regression method [25] can be considered a s  the method of choice 
to obtain quantitative models, the co-inertia analysis [ I  I ,  121 appears to be the most 
suitable for emphasizing qualitative information from graphical displays. 

The co-inertia analysis allows the determination of the co-structure between two 
data tables [ll ,  121. The mathematical presentation of the co-incrtia analysis is 
beyond the scope of this paper (for more details see Refs. 1 1  and 12)  but is 
summarized in Fig. 1 using the classical formalism related to SAR and QSAR 
studies. In this context, a co-inertia analysis consists of the separate and matched 
analyses of a matrix of biological activities ( Y )  and a matrix of molecular descriptors 
( X ) .  It can be viewed as a general method allowing to relate any kind of data set, 
using any standard multivariate analysis (e.g. PCA, CFA). Thus, for example. it is 
interesting to note that the Tucker's inter-battery analysis [26] is actually the 
co-inertia analysis of two standardized PCA. The canonical analysis on categorical 
variables [27] is actually the co-inertia analysis of two multiple correspondence 
analyses. The PLS method [25] consists mainly of using the axes derived from 
co-inertia analysis in a regression analysis procedure, in order to obtain QSAR 
models for predictive purposes. 
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Figure 1. Flow diagram or  co-incrtia analysis in  thc contcxt of SAK atid QSAK studics 

4.2.3.2 Example : Structure-Reactivity Relationships 
for Unsaturated Dialdehydes 

Cliwiiccil Stuhilitp of Sc ,cyui te l . j~e t~~) i~~ Unsutumtcd Didddij&\ 

A large number of terpenoids with an unsaturated dialdehyde functionality group 
have been isolated from various organisms, which occupy different trophic levels 
in the environment (e.g. the Basidiomycete, Luctarius cr l lc~rr~us [28]. and the 
Nudibranch, Dcmdrotloris glnnr/z/Zora [29]). Their potent activity 21s antifeedants, 
antibiotics, mutagens, and so on [30 - 321, has stimulated both biological and 
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Figure 2. Structure of the nine scsquiterpenoid unsaturated dialdehydcs tindcr s tudy.  

chemical investigations. These studies have shown that sinall structural variations 
in the molecules can considerably change their activity [32, 331. The have also 
stressed numerous contradictory results, certainly in relation with the instability of 
some of these chemicals in  assay media [34]. In order to confirm this hypothesis. 
we have tried to find the co-structure between a data matrix (similar to Table Y 
in Fig. l ) ,  describing the stability of nine sesquiterpenoid unsaturated dialdehydes 
(Fig. 2) in three different in vitro assay media [34] and another data matrix (similar 
to Table X in Fig. l), characterizing these molecules by means of the five following 
molecular descriptors [35]:  

- angle: the dihedral angle (") between the two aldehyde groups, 
- distance: the distance (A) between the two aldehyde carbons, 
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l b  I 
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c1 

Figure 3. Ccntcrcd PCA of the chcmical stability data table. a) Eigenvalucs. b) Biplot. A. B, and 
C stand for medium A (Dulbecco's phosphate buffered saline (PBS), pH 7.3, without Cn", MgZ ' 
o r  bicarbonate), medium B (Eagle's minimum csscntial medium ( M E M )  with L-glutamine and 
Ham's F12). and medium C (medium B supplcnicntcd with 10% fetal calf serum), respectively. 

- dipole X :  the dipole moment in debyes (obtained by CNDO calculatioiis) along 
the C,-C, double bond in compounds 1-4, and 7, the C,-C, double bond 
in compounds 5 and 6, and the C, - C, double bond in compounds 8 and 9, 

- dipole: the dipole moment in debyes (obtained by CNDO calculations), 
~ log P :  the n-octanollwater partition coefficient. 

S ~ p r a t r  Anulj',rcs 

Table Y (Fig. I ) ,  containing the amounts (in Yo) of the nine chemicals under study 
(Fig. 2) remaining after 2, 8, and 24 hours of incubation in the three media [34], 
was analyzcd by means of a centcred PCA. The graphical display of the eigenvalues 
(Fig. 3 a )  shows that the inain information is carried by the first principal component 
( P C I ) ,  but that PC2 can be also considered for the interpretation of the data. Thus, 
the biplot [36] displayed in Fig. 3b  reveals that only the two cell culture media B 
and C participate in the analysis. It also clearly underlines the effects of the media 
on the chemical stability of the molecules. Compounds located on the right-hand 
side of the map are more stable than those located on the left-hand side. Thus, 
9-x-hydroxymerulidial appears as an outlier on the right-hand side since it  is not 
reactive in media A, B, and C. Conversely, polygodial is very unstable, especially in 
media B and C. It is also interesting to note that small structural changes can 
considerably affect the reactivity of these chemicals. Thus, for example, isovelleral 
is distant from its stereoisomer (iso-isovelleral), and polygodial is opposed to its 
epimer (epipolygodial). 

The different degrees of correlation between the molecular descriptors [35] are 
shown on Fig. 4 which can be easily interpreted due to the combined use of numerical 
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Figure 4. Correlation matrix or the rive physico-chemical variables tindcr s tudy 

data and scatter plots. The data matrix of molecular descriptors (Table X ,  Fig. 1)  
was processed by a standardized PCA. According to the eigenvalues (Fig. S a ) ,  PCl 
and PC2 enable a graphical interpretation of the data. Fig. 5b shows that PCI is 
mainly explained by the angle, distance and dipole X variables, which are negatively 
corrclated to the dipole variable, and PC2 is principally dcpendcnt on log P. 
They principally govern the distribution of the compounds (Fig. Sc) and show 

1 

rnarasm'ate Y-p-nyui uryisuvaiiar di I I 
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9-a-Hydroxyrnerulidial 

Figure 5. 
circle. c) Factorial plane (PCI -I-'C2) of the compounds. 

Standardized PCA of the physico-chemical data tablc. a)  Eigcnvalucs. b) Correlation 
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Figure 6. Plots of standardixd physico-chemical variables vs PCl coordinates 

that 9-x-hydroxymerulidial is an outlier. These relationships are illustrated in 
Fig. 6, which clearly emphasizes the atypical log P value of 9-x-hydroxymerulidial. 

The projection of the chemicals, as defined by their physico-chemical properties on 
the first factorial plane resulting from the co-inertia analysis, shows (Fig. 7a) that 
their distribution is similar to that obtained from the separate analysis (Fig. 5 ) ,  
disregarding a rotation (Fig. 7b). This is confirmed by the comparison of Fig. 5c 
and 7a. Fig. 7c represents the weights of the physico-chemical parameters in the 
equations of scores of the chemicals on the first co-inertia plane. Fig. 7d gives the 
correlations between the physico-chemical parameters and the scores of the 
chemicals on the co-inertia axes. They emphasize the key role of distance, angle, 
and dipole X variables on the first axis and that of log P on the second axis. 
Furthermore, as previously mentioned, a “distortion” is introduced by 9-x-hydroxy- 
merulidial, which suggests that the role of distance and angle variables is more 
important. I n  the same way, the projection of the nine sesquiterpenoid unsaturated 
dialdehydes, as defined by their chemical stability data on the factorial plane resulting 
from the co-inertia analysis, shows (Fig. 8) that the distribution of the chemicals is 
similar to that obtained from the separate analysis (Fig. 3) .  To compare the graphical 
displays in Figs. 7a and 8a, it is also possible to plot their respective scores after 
normalization and to link the two positions of a given chemical by an arrow (Fig. 9). 
This procedure emphasizes the correlations between the scores on the axes of the 
co-inertia analysis (designated as r ,  and r2 on Fig. 9). 

Figs. 7 to 9 clearly demonstrate the existence ofa co-structure between the chemical 
stability of the nine compounds studied and the selected molecular descriptors. This 
is not surprising, if we consider that the main difference between the three media 
is that medium A is inorganic, while media B and C contain amino acids. Under 
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Figure 7. a) Representation of the compounds, as defined by their physico-chcmical data on the 
first co-inertia plane. b) Projection of the PCs obtained from the separate analysis (Fig. 5 )  on the 
co-inertia axes of the physico-chemical data table. c) Weights of the physico-chcmical parameters 
in the equations of scores of the chemicals on the first co-inertia plane. d) Correlations between 
the physico-chemical parameters and the scores of the compounds on the co-inertia axes. 

these conditions, as already mentioned in the literature [37, 381, we can advance that 
some sesquiterpenoid unsaturated dialdehydes can react with amines contained in 
media B and C to form pyrrole derivatives. As this type of reaction obviously 
depends on the distance and angle between the two aldehyde groups, it is not 
surprising to observe a co-structure between the two data tables and to find that 
the two above molecular descriptors play a key role in the analysis. 

4.2.4 Conclusion 

The aim of this study was not to give a catalogue raisonni: of all the graphical 
methods, which can be used in medicinal chemistry to enhance the statistical results 
produced by SAR and QSAR studies. Indeed, our intention was only to present 
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Figure 8. a) Representation of the compounds, as defined by their chemical stability on  thc first 
co-inertia plane. b) Weights of the chemical stability parameters in the equations of scores or thc 
chemicals on the first co-inertia plane. c) Projection of the PCs obtained from thc separatc analysis 
(Fig. 3) on the co-inertia axes of the compound stability data table. 
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Figure 9. 
correlation coefficients between the scores on the axes of the co-inertia analysis are r ,  and r 2 .  

Matched display of Figs. 7a and 8a  after normalization of their respectivc scorcs. Thc 
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some basic principles of graphics and to try to illustrate them in the particular case 
dealing with the study of the co-structure between two data tables. Furthermore, 
it is obvious that these principles must be only considered as guides and not as 
rigid laws. Indeed, as mentioned by Tufte [2],  with regards to graphical analysis, 
“The principles should not be applicd rigidly or in a pecwish spirit; they arc not 
logicully or niathcmatically certain ; and it is better to violate any principle tliurr to 
place graceless or inelegant marks on paper”. 
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4.3 SIMCA Pattern Recognition 
and Classification 

William J .  Dunn III and Svante Wold 

Abbreviations 

As given in Chapter 4.4 on PLS and: 
CND0/2 
ECI Electronic charge index 
ISA Isotropic surface area 
MMFF Molecular mechanics force field 

Complete neglect of differential overlap 

Symbols 

A 
c u ,  j 

d 
d* 
dlMS 

d n  
dOMS 

ei, k 
K 

M 
N 
P u ,  k 

Rk’ 
seps 

t i , a  
ti 
4 . a  

wa, k 
X 

x i ,  k 
Y 
Y i ,  j 

Z I , Z 2 ?  z3 

The number of latent variables in principal components or PLS models 
ath PLS loading for biological activity, j 
Orthogonal projection distance of a compound to the class model 
Degrees of freedom corrected distance 
Inside model space distance 
Revised SIMCA classification distance 
Outside model space distance 
Residual for compound, i, variable, k 
Number of physico-chemical descriptors or independent variables in a 
data set 
Number of biological activities or dependent variables in a data set 
Number of compounds in a data set 
ath principal component or PLS loading for variable, k 
Cross-validated R2 (often referred to as Qz) 
Residual standard deviation 
uth principal component or PLS score for compound, i 
Estimated PLS loading from the inner relation 
uth PLS loading for compound, i 
ath PLS weight for compound, k 
Physico-chemical descriptor or feature matrix, independent variable 
data matrix 
Physico-chemical descriptor or feature k for compound, i 
Biological activity data or dependent variable data matrix 
Biological activity, j ,  for compound, i 
Principal properties of the amino acids 
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4.3.1 Introduction 

The SIMCA method of pattern recognition and classification (hence, abbreviated 
PARC) was first described in 1976 111 and as a tool in drug design, it was last 
reviewed by the authors in 1990 [2]. Initially, SIMCA was an acronym for SIMple 
Classification Analysis, but was soon reinterpreted by Dave Duewer as Soft 
Independent Modeling of Chemical Analogy. 

While other methods of PARC have been applied to drug design problems, 
SIMCA remains the method of choice, and a number of recent quantitative 
structure-activity relationship (QSAR) studies have been published using the SIMCA 
method. Rather than focusing on these, the subject of this chapter is recently reported 
improvements and extensions of existing methods. Before discussing these, some 
ideas about PARC will be presented. 

The use of PARC to solve QSAR problems was stimulated by the fact that the 
traditional Hansch [3 ]  analysis could not solve the active vs inactive problem. I t  
could only deal with structure-activity relationships of active compounds. A method 
was necessary to estimate the probability that a compound may be inactive and 
PARC was well suited for this problem. The objective of PARC is classification, 
making it ideal for application to the active vs inactive case. Analogous to traditional 
QSAR methods, features or variables are used to describe objects (compounds) 
quantitatively. The resulting data (the training set) are used to derive structure-based 
models, which can then be used to classify new objects of unknown class (the test 
set). Here, since we are discussing QSAR, the objects are compounds and the features 
or  variables are generally measured physico-chemical descriptors or other variables, 
which can be computed from the structures of the compounds. In most cases, 
continuous variables are used but in some exceptional cases, discrete variables are 
used. The variables must be relevant to  the investigated activity. If the design of 
new compounds is the objective, then variables must be two-way predictive. This 
means that (i) they must be derivable from the structure of a compound without 
actually synthesizing it, and (ii) one must be able to derive a compound structure 
from a profile of structure descriptor variables, which correspond to promising 
activity levels, as indicated by the model. 

The information obtained from a PARC study is categorized in to what is now 
known as “the three levels of PARC” [4]. Hence, it is important to use a PARC 
method that corresponds to the information required from the analysis. 

At  the lowest level, level I, the objective is just to classify an unknown into one 
of several specified classes. The limitation of working at this level is that the unknowns 
are assumed to be members of these specified classes. However this is seldom the 
case. Considering, as an example, the problem of classifying chemical pollutants as 
carcinogens vs non-carcinogens, this is equivalent to assuming that all of the 
mechanisms by which a compound can be a carcinogen are known. 

At level 11, the assumption above is not strictly adhered to and the result “none 
of the specified classes” is allowed. Here it is possible to predict that a compound 
could be a non-carcinogen, but might alternatively be a member of a new class of 
carcinogens. This is the lowest level at which SIMCA works. At  levels I and 11, the 
structure-activity relationships are qualitative, providing only classification. 
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Compound Biological 
activity 

Structure relaied 
descriptors 

1 2  . . . . . . .  k . . _ _ _ _ _  K 

Class 1 

Class 2 

_ _ _ _ _  

_ _ _ _ _  

_ _ _ _ _  
1 Test set 

Figure 1. Standard pattern recognition data matrixes. 

At level 111, in addition to classification, the level of activity in one or more assays 
of a compound is estimated. This is similar to Hansch analysis [3] combined with 
discriminant analysis, but SIMCA gives a more robust and stable solution. 

4.3.2 SIMCA Pattern Recognition 

All classification studies begin with a data set as shown in Fig. 1. The Y-block 
contains the biological activities and the X-block contains the descriptors. At levels 
I and 11, the analysis is performed only on Xi, k ,  and a separate Y-block often does 
not exist. At level I11 a predictive relationship between the X -  and Y-blocks is derived. 

Principal components analysis is used at the first two levels to derive a separate 
model for each “proper” class (see the asymmetric case below). Before the analysis, 
the data are scaled, usually to unit variance (autoscaling) within each class. The 
principal components model is given in Eq. (1): 

Here .k is the mean of column k ,  ti ,a is the ath score for compound i, P a , k  is the uth 
loading for variable k ,  and e i , k  is the residual. The A components are calculated to 
make the es as small as possible in the least squares sense. The number of components 
is determined by cross validation [6]. 

SIMCA works by deriving a model for each class. Thereafter, classification is 
accomplished by projecting the data of the test compounds onto each of the training 
sets via the class models in the descriptor space, and classification is determined 
from the magnitude of the resulting residual standard deviation of the es. This is 
shown graphically in 3-dimensions in Fig. 2. 

Since similar compounds cluster in the same regions of descriptor space, 
compounds with similar biological activities will also have similar score values, ti,a, 
in Eq. (1). However, the principal component scores, or t i , a ~ ,  are not optimal for 
estimation of dependent variables at  level 111. Instead, PLS is used for classification 
and prediction at level I11 (see also the chapter on PLS, Chap. 4.4). 
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Figure 2. 
classification rules. 

Graphical description of SlMCA 

The form of the PLS model is given in Eqs. 2-4, below: 

O = b . t  (4) 

The variables, t s  and us, are latent variables calculated along the axes of greatest 
variation in X and Y .  The latent variables make the x-residuals and y-residuals as 
small as possible and are maximally correlated. They are related through the inner 
relation, expressed by Eq. (4). The PLS model is shown graphically in Fig. 3. 

Yl 

Figure 3. Graphical representation 
of the PLS model. 

t 
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4.3.3 Steps in a Pattern Recognition Study 

PARC studies are carried out in defined steps which are: 1) selecting the training 
set compounds and developing the training data set (Fig. l), 2) data preprocessing 
(transformation, scaling, centering), 3) developing, optimizing and validating the 
classification models, and 4) classification of the test set compounds. 

Step 1, ideally, should involve experimental design if the training set is to span 
the descriptor space. This topic is discussed by others in this volume. Data 
preprocessing, Step 2, is data set dependent and will not be discussed here. SIMCA 
is unique in that it derives separate class models in Step 3 making it work at level 11, 
if classification is the sole objective. Step 4 is a matter of fitting data for the unknown 
or untested compounds to the class models from Step 3. A number of recent 
developments have been made in the areas above, especially in Steps 1 and 3. 

4.3.4 Establishing the Training Sets 

The training set refers to the set of compounds, whose relevant descriptors or 
features are to be used in the learning phase. Historically, training sets are designed 
from a lead compound. The result is a group of compounds, which are “similar” 
to the lead compound and, for the most part, those that should be most easily 
synthesized. As mentioned above, training sets should be established from experi- 
mental design methods, but this is seldom the case. Even though far from ideal, 
such data can be, and have been shown to be, very useful. 

The most difficult aspect of a QSAR study is finding the relevant descriptors. 
Traditionally, the Hansch method uses linear free energy related parameters. These 
are what are termed macroscopic variables or properties of the system, in that they 
are Boltzmann averages of the properties of the many states of the system. Such 
data are log P, pKa, etc., and may have minimal information about the active state 
of the system if multiple states are possible. With the advent of molecular modeling, 
it is now possible to generate descriptors for compounds in discrete states, thus, 
adding additional dimensions to the QSAR problem. An example of such methods 
is the CoMFA method [7] which generates descriptors according to a user-specified 
conformation and alignment. 

4.3.4.1 Consideration of Conformation and Alignment 
of Flexible Compounds 

An important, unsolved problem in modeling the changes in biological activity with 
differences in chemical structure within a series of flexible molecules, e.g. peptides, 
is finding the optimal conformation and alignment for the series (if it exists). 
Conformations of a molecule, as defined by Eliel et al. [8] are the non-identical 
arrangements of the atoms in a molecule obtained by rotation about one or more 
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Figure 4. MATRIX analysed by PLS to find a Conformation similar to a reference, v. 

single bonds. A common conformation for a series of compounds would be one, in 
which a common set of atom positions or torsion angles is specified. An alignment 
of conformations is the arrangement of two or more molecules, in which a common 
set of atoms, substructures or features is superimposed. Currently, the active 
conformation and alignment must be known a priori. Recently, a general solution 
for finding the conformation/alignment responsible for biological activity of flexible 
compounds has been proposed 193 and applied to the structure-activity data for a 
series of twenty-one flexible tricyclic pyridodenzodiazepinone (I) inhibitors of the 
muscarinic receptors [9], M2 and M3. In this case, the alignment was known and 
each analog could exist in as few as 9, but also in as many as 706 conformations 
with energies 6 kcal/moI or less. Each conformer was represented by 29 variables, 
most of which were conformationally dependent [lo]. It was assumed that the lowest 
energy conformation of the most active compound was the active conformer. To 
find the conformation of each analog most similar to that of the reference compound, 
a PLS analysis of the matrix in Fig. 4 was carried out. 

The X-block is the physico-chemical data for all low energy conformers of 
compound, u. In this case, N ,  = 29 variables, most of which are conformationally 
dependent. The dependent variable was the vector of variables for the reference 
compound, u, in the active Conformation. The conformation in X was selected that 
was most “similar” to  the reference compound in the PLS sense. A scoring system 
was devised [9] to score each conformer for each compound. Then the features of 
this conformer for each compound were used to construct a regular data matrix, 
as shown in Fig. 1, for QSAR development. The result was a predictively significant 
3D QSAR. 

4.3.4.2 Novel Descriptors for Peptide QSAR 

There have been recent developments in the QSAR of peptides using newly developed 
structure-based descriptors and PLS [l l] .  Hellberg and coworkers [12] were the 
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Descriptors for bitter tasting dipeptides, H , N - C H ( R , ) - C (  = O ) N H  - C H ( R 2 ) C O O H  Table 1. 

No. Peptide Isotropic surface area Electronic charge index 

R,  R2 R ,  R2 

1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
21 

29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

n 

28 

4n 

GV 
G L  
GI  
G P  
GF 
GW 
GY 
AV 
AL 
A F  
VG 
VA 
vv 
VL 
LG 
LA 
LL 
LF  
LW 
LY 
IG 
I A  
IV 
IL 
I 1  
IP 
IW 
IN 
ID  

I E  
IK 
IS 
IT 
PA 
PL 
PI 
PY 
P F  
FG 
F L  
FP 
FF 
F Y  
WE 
ww 
YL 
SL 

IQ 

19.93 
19.93 
19.93 
19.93 
19.93 
19.93 
19.93 
62.90 
62.9 
62.90 

120.91 
120.9 1 
120.9 1 
120.9 1 
154.35 
154.35 
154.35 
154.35 
154.35 
154.35 
149.77 
149.77 
149.77 
149.77 
149.77 
149.77 
149.77 
149.77 
149.77 
149.71 
149.77 
149.77 
149.77 
149.77 
122.35 
122.35 
122.35 
122.35 
122.35 
189.42 
189.42 
189.42 
189.42 
189.42 
179.16 
179.16 
132.16 

19.75 

120.91 
154.35 
149.77 
122.35 
189.42 
179.16 
132.16 
120.91 
154.35 
189.42 

19.93 
62.90 

120.9 1 
154.35 

19.93 
62.90 

154.35 
189.42 
179.16 
132.16 

19.93 
62.90 

120.9 1 
154.35 
149.77 
122.35 

17.87 
17.87 
18.46 
19.53 
30.19 

102.78 
19.75 
59.44 
62.9 

154.35 
149.77 
132.16 
189.42 
154.35 
154.35 
122.35 
189.42 
132.16 
30.19 

179.16 
154.35 
154.35 

0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.05 
0.05 
0.05 
0.07 
0.07 
0.07 
0.07 
0.10 
0.10 
0.10 
0.10 
0.10 
0.10 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.09 
0.16 
0.16 
0.16 
0.16 
0.16 
0.14 
0.14 
0.14 
0.14 
0.14 
1.08 
1.08 
0.72 
0.56 

0.07 
0.10 
0.09 
0.16 
0.14 
1.08 
0.72 
0.07 
0.10 
0.14 
0.02 
0.05 
0.07 
0.10 
0.02 
0.05 
0.10 
0.14 
1 .0 
0.72 
0.02 
0.05 
0.07 
0.10 
0.09 
0.16 
1.08 
1.31 
1.25 
1.36 
1.31 
0.53 
0.56 
0.65 
0.05 
0.10 
0.09 
0.72 
0.14 
0.10 
0.16 
0.16 
0.14 
0.72 
1.31 
1.08 
0.10 
0.10 
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first to successfully develop a strategy for deriving QSAR for these important 
compounds. By tabulating a large number of measured and theoretical properties 
of amino acids and their derivatives, principal components analysis was used to 
derive three principal properties, zl, z2 ,  and z3 ,  for each amino acid. The principal 
properties are linear combinations of the primary data and were proposed to model 
the hydrophilic, bulk and electronic nature of the side-chain substituent, respectively. 
In QSAR studies, the principle properties, z1 -z3,  are used as substituent constants 
for each amino acid as it appears in the peptide sequence, and PLS is applied to 
the resulting data matrix to derive the QSAR. This approach has been applied to 
a number of peptide structure-activity studies, but has been criticized for being 
difficult to interpret, because of the linear combination problem and for not 
considering the conformational state of the peptides in the derivation of the principle 
properties, z, - z3.  This interpretation question can be resolved by attempting to 
correlate z l ,  z2 and z3  with variables which can be computed from the structure. If 
the primary variables can be identified, and if conformation of the peptide is 
considered in the computation of the variable, the drug design process will be much 
more straightforward. 

In order to identify the underlying primary variables of z l ,  z2  and z3,  features 
related to the two most significant, z1 and z2 ,  were explored. These are hydrophilic 
in character, or inversely hydrophobic in character, and electronic in character, 
respectively. It has been shown that the isotropic surface area of a solute is highly 
correlated with hydrophobicity [ 13, 141. This parameter, defined as the solvent- 
accessible surface area associated with the nonpolar portion of the supermolecule 
solute structure, was found to be highly correlated with zl. The isotropic surface 
area is computed on the free amino acid structure which results from its optimization 
with the AMBER force field with Molecular Mechanics Force Field, MMFF. 

In order to model the electronic nature of the a-carbon of the amino acid, the 
sum of the absolute values CND0/2 charges of the atoms in the substituents of 
the a-carbon were used. This variable, which models the charge separation, is termed 
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Figure 5. 
surface area, ISA, and the electronic charge index, ECI. 

A comparison of the predicted activity of bitter dipeptides using the z-scales and isotropic 
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the electronic charge index, or ECI. In both cases the variables are conformationally 
dependent. Data for bitter dipeptides, analyzed by Hellberg et al. [15], are given in 
Table 1. 

When used as side-chain or substituent constants for the a-carbon for amino 
acids in peptides, these two variables worked as well as z ,  - z 3 ,  as determined by 
R2 or the variance explained. Fig. 5 is a plot of the observed and predicted activities 
for bitter dipeptides, analyzed previously by Hellberg et al. [15]. The same number 
of PLS components was used in both cases, but only two variables were used per 
amino acid residue in the peptide. 
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4.3.5 Symmetric and Asymmetric Data Structures 

The problem of predicting that some compounds will be biologically active and 
others will be inactive stimulated much of the early applications of PARC to 
structure-activity data. Such applications lead to our proposal that QSAR problems 
lead to two types of data structure: 1) symmetric data and 2) asymmetric data 
[4, 161. Fig. 2 is an example of symmetric data structure. Two or more classes form 
well-defined clusters in descriptor space. This results in classification studies of 
antagoniste vs. agonists, substrate vs inhibitor, etc. This contrasts with another 
notation for asymmetric data structure, namely embedded structure, which is 
discussed in recent article by Rose et al. [17]. 

However, in studies of active vs inactive, carcinogen vs non-carcinogen, for 
example, the data structures are often asymmetric. Here, only one of the classes, 
usually the one with active compounds has a data structure that can be modeled; 
only this class contains compounds that are similar to each other (biologically and 
structurally). The other class, usually the one with inactiues, is not a proper class, 
and thus, has no inherent similarity and cannot be modeled. This is because a 
compound can be inactive for many different reasons, but activity needs a 

Figure 6. 
azobenzenes. 

Plot of asymmetric data for carcinogenic (m) and noncarcinogenic (0 )  dimethylamino- 
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well-defined structure. This is analogous to control theory, where a process under 
control occupies a small regular part of the multivariate space, while the process 
can be anywhere in this space when it is out of control. 

An example of asymmetric data structure is given in Fig. 6. The data are sum pi, 
which is the sum of the Hansch n constants for the substituents on the x-axis, and 
sum sigma, which is the sum of the Hammett constants for the substituents on 
the y-axis for substituents in the substituent (’) ring of dimenthylaminoazobenzenes 
(11). They were analyzed with SIMCA by Miyashita et al. [18] using the original 
data of Hansch [19]. 

The asymmetric nature of the data in Fig. 6 is striking and illustrates the power 
of the SIMCA method. It is the only method, which is routinely used in QSAR 
studies, that can handle this type of data structure. 

4.3.6 Variable Selection 

As discussed previously, SIMCA is the method of choice for classification problems 
that require results at levei 111. It must be realized, however, that each data set is 
unique, and to obtain the best results from a method, care must be taken to insure 
that the prediction rules are optimal for that data set. One aspect of optimizing 
the classification rules is variable selection. In SIMCA and PLS one can select 
X-variables on the basis of their residuals, i.e. R: (or the similar MPOW of early 
SIMCA papers), their discriminating power (importance for distinguishing between 
classes), and, on level 111, their importance for predicting Y. Here, a number of 
methods have been recently developed by Clementi (see the chapter on GOLPE in 
Vol. 3) ,  Marsili [20], and others. These are based on cross-validation and are 
computationally extensive. The VIP statistic of Wold et al. (see the chapter on PLS), 
which is a measure based on the weighted PLS coefficients ( w , , ~ )  in significant model 
components VIP,  seems to form a reasonable basis for variable selection, and has 
the advantage of not demanding additional computations beyond the model 
estimation. There is a clear need to evaluate these measures of variable relevance 
before any strong recommendations can be made. 

4.3.7 Determining the Model Complexity 

An important point to stress is the difference in prediction error and fitting error 
[lS]. Fitting error is based on predicting the training objects and decreases with 
model complexity (adding components). Prediction error is based on estimation of 
compounds not included in model development. It decreases, goes through a 



4.3 SIMCA Pattern Recognition and Classificutioti 189 

minimum and then generally increases with model complexity. Selection of 
components based on cross-validation [6] gives models with optimal prediction 
capability. Indeed, predictive capability is identical to the cross-validated R2 statistic 
(often denoted as Q2) used by Cramer et al. [7] for selecting of the optimal PLS 
model in their CoMFA '" method. 

4.3.8 Developing, Optimizing and Validating Classification Rules 

SIMCA classification rules are geometric structures in descriptor space. They are 
(for 3 or more variables) a sphere or hypersphere for A = 0 ( A  is the number of 
components or product terms in Eq. l), a cylinder or hypercylinder for A = 2, and 
a parallelepiped or hyperparallelepiped for A = 3 or more. Attempts to improve 
classification by adjusting the SIMCA classification rules have been limited in 
number. An early report by Forina and Lanteri [21] suggested that SIMCA models 
be modified to hyperellipsoids to classify Italian wines according to their region of 
origin. There seemed to be little improvement in classification results with this 
variation, however. 

A more recent variation of the SIMCA models was more successful [22]. Even 
though the method was developed for application to mass spectral data, i t  is a general 
approach which can be applied to any type of data to improve classification results 
with SIMCA. In an effort to develop an automatic scheme for identification of 
members of a target list of five classes of airborne environmental pollutants, based 
on their mass spectral data, it was observed that SIMCA worked well. Also, an 
important aspect of environmental analysis is the detection of non-target compounds, 
as these may become important later. At present, no effort for this undertaking has 
been made. Thus, one objetive of the study was to obtain a class assignment for an 
unknown mass spectrum, if it was not a member of the target list. The mass spectra 
were converted in to their autocorrelated transformed spectra. SIMCA rules were 
derived and variables were deleted using modeling power, MPOW [l]. Variable 
selection was done so that the analysis of each class was performed on the same 
subset of variables. Using this strategy, classification results were 99% when applied 
to the training set data and the results were verified by visual interpretation. 
Classification accuracies were considerably diminished, however, when the rules 
were applied to true unknown spectra. 

The SIMCA classification rule, shown in Fig. 7, determines class membership by 
the orthogonal projection distance, d, of the unknown to the class models. In the 
case where the unknown is beyond the class window, as determined by the extreme 
principal component scores for the training data, the distance, d*, is calculated from 
the unknown to the edge of the classes. The distances, d and d", when corrected 
for differences in degrees of freedom, can be directly compared with the class residual 
standard deviation, sePs, as defined in Eq. (5 ) .  The e l k  are those given by Eq. (1) :  

1 1 c e?k]1'2 ( N  - A )  ( M  - A - 1) i = l  k = l  
seps = [ ( 5 )  
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Geometric interpretation of the 
assification rule. 

If the unknown is “similar” to the class of training compounds, d or d* will be 
approximately equal to seps. An approximate F-statistic can be calculated to 
determine the level of significance of similarity and, therefore, of the classification 
result. This similarity rule has been discussed elsewhere [23] and a variation of it 
has been proposed [24]. 

The original SIMCA classification rule gives equal weight to objects with 
projections near the extremes of the class and to those near the geometrical mean 
or centroid of the class. Principal component scores, t i , a ~ ,  in Eq. (l), are the positions 
of the compounds in the models. In Fig. 7, the distances of two objects to the same 
class model are compared and under the usual classification rule, they are equidistant 
from the model. SIMCA, thus, gives them the same classification result. 

However, the ts also contain information about class assignment. In order to 
have the t s  considered in the classification rule, a variation of the usual SIMCA 
classification rule was proposed and used in this study. 

PARC or feature space can be divided into two subspaces [24]. The subspace 
defined by the p s ,  the loading vectors in Eq. (2), is the inside model space, or IMS. 
The remaining axes are referred to as the outside model space axes, or OMS axes. 
The root-mean-square variance, s,, along each p a  vector is given in Eq. (6). Here, 
t i , a  is the principal component score for a compound ( i )  in component a, which 
measures the distance from the center of the class model to the point of projection 
of the object onto the class model. N is the number of compounds in the class. 
Thus, s, is the standard deviation of the of the ts  along axis, a:  

The remaining root-mean-square variance, of OMS distance, is sep, from Eq. (5). 
The summation is taken over both compounds and variables. 



4.3 SIMCA Pattern Recognition and Classification 19 1 

In the revised SIMCA classification study, class models are derived, and unknowns 
are then fitted to the various class models. An unknown compound, when fitted 
to an A-component model, will have scores, f i f ,  t i 2 ,  ... and an OMS distance, 

Of, 

and an IMS distance, d,,, of, 

and a total distance: 

d = adoMs + (1 - a) dI,s (9) 

The OMS distance is calculated as in SIMCA. If the unknown actually belongs 
to the class, whose model it is being fitted to, then doMs z seps. Otherwise, doMs 9 sep4. 
The residuals are smallest when the unknown is fitted to its correct class. The IMS 
distance, d,,,, is different from that calculated by the ordinary SIMCA. With ordinary 
SIMCA, a class window is defined by the class model. If the projection of the 
unknown spectrum lies within this window, then its d,,, is set to zero. If its projection 
lies outside the class window, its sia is equal to the edge of the window. In practice, 
the projections of nearly all of the unknowns lie within the SIMCA class windows, 
hence, the dIMS = 0. Therefore, the ordinary dIMs provides less than optimal class 
discrimination in SIMCA. 

The modified d,,, as given in Eq. 8, with a = 0.75 and f i  = 2, has been found to 
be useful in improving class discrimination, particularly by reducing the number of 
false positive classifications [24]. In the classification step, a new distance d,, for a 
compound is computed for each of the class models. This is shown in Fig. 8. The 
unknown is then assigned to the nearest class. 

The revised SIMCA rule was an improvement, with a classification accuracy of 
unknowns of 221/230 (96%) compared to 209/230 (900/) for the regular SIMCA 
model. It actually was a poorer classifier of the training compounds, but gave only 
4 false positives. 

This revised SIMCA rule can be further adjusted with the parameters a and p. 
In  this way SIMCA can be based on Mahalanobis distances (E = 0.5, p = 0) and 
other variants. The "standard" SIMCA has a z 1 and f i  = 2. A value of fl less 
than 2.0, say 1.0, seems reasonable, since it gives more weight to the initial more 
important components in the classification rule. A value for a of between 0.5 and 
I, say 0.75, also seems reasonable. Again, more experience must be obtained before 
any generalizations can be made. 
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Figure 8. 
revised SIMCA classification rule. 

Geometric interpretation of the 

4.3.9 Discussion 

In QSAR, classification is a common problem due to the strong non-linearity of 
the interaction between chemical compounds and biological systems-receptors, 
membranes, enzymes, etc. Since most QSAR models are approximately linear, 
separating the compounds into distinct classes, each with a fairly linear behavior, 
is the best approach. 

Among all available classification methods, e.g., linear discriminant analysis, 
quadratic discriminant analysis, ALLOC, UNEQ,  K-nearest neighbors, etc., SIMCA 
is unique, in that it gives models of the classes. These models improve our 
understanding of the structural requirements for activity, etc., and are best interpreted 
graphically by score plots (plotting ti, against ti, 2, etc.) for each class, loading plots 
of pa.k, and so on (see, e.g. the PLS chapter). 

The score plots give an indication of the data homogeneity in each class. If there 
are strong clusters in one of the score plots, this indicates that such a class should 
be further divided into subclasses. 

The fact that SIMCA is based on principal components (PC) or  PLS models 
makes it applicable also when the number of structural descriptor variables ( K )  is 
large compared to the number of compounds (N) .  With the masses of variables 
derived from quantitative molecular modeling, this becomes an important asset. 
Also, these PC and PLS models tolerate moderate amounts of missing data, which 
is often important in practice. 

As in any modeling, SIMCA results must be validated before they are used for 
interpretation or prediction. Cross-validation, randomized training sets, and external 
prediction sets are available approaches, as discussed further in the chapter 
concerning validation in this volume. 
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Sum te Wold 

Abbreviations 

AA 
cv 
DModX 
LV 
MLR 
N N  
PCA 
PCR 
PLS 
P R E S S  
QMM 
QSAR 
RSD 
S D  
ss 
V I P  
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Y 
Z’ 

B 
(‘n 

C 
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F 
P O  

P 
R2 
Q’ 
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m 

h m  

f m  

Amino acid 
Cross-validation 
Distance to model in X space 
Latent variable 
Multiple linear regression 
Neural networks 
Principal components analysis 
Principal components regression 
Partial Least Squares Projections to Latent Structures 
Predictive residual sum of squares 
Quantitative Molecular Modeling 
Quantitative structure-activity relationship 
Residual SD 
Standard deviation 
Sum of squares 
Variable influence on projection 
Multiplication 
Index of components (model dimensions); (a = 1,2,  ..., A )  
Index of objects (molecules); (i = 1,  2, . . . , N )  
Index of X variables (k  = 1, 2, ..., K) 
Index of Y variables (m = 1, 2, ..., M) 
Matrix of structure descriptors, size ( N  * K )  
Matrix of activity variables, size ( N  * M )  
The transpose of a matrix Z 
Regression coefficient vector of the mth y. Size (K * 1) 
Matrix of regression coefficients of all Ys. Size ( K  * M) 
PLS Y weights of component a 
The ( M  * A )  Y-weights matrix; c, are columns in this matrix 
The ( N  * K )  matrix of X residuals 
Residuals of mth y variable; ( N  * 1) vector 
The ( N  * M )  matrix of Y residuals 
PLS X loadings vector of component a 
Loadings matrix; p a  are columns of P 
Multiple correlation coeofficient; the amount of Y “explained” 
Cross-validated R 2 ;  the amount of Y “predicted” 
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X scores of component a 
Score matrix ( N  * A), where the columns are f a  
Y scores of component a 
Score matrix ( N  * A), where the columns are u, 
PLS weights of component a 
The ( K  * A )  X weights matrix; wu are columns in this matrix 
PLS weights transformed to be independent between components 
( K  * A )  matrix of transformed PLS weights; are columns in W* 

Notation 

Vectors are denoted by lower case characters and are column vectors, unless 
otherwise shown transposed (eg. u'). Matrices are denoted by upper case characters, 
e.g. X .  

4.4.1 Introduction 

QSAR is an approach to understanding how structural variation affects the biological 
activity of a set or structural class of compounds. This approach is also useful for 
studying properties of chemical compounds other than their biological activity, e.g. 
solubility, retention times in various chromatographic systems or  catalytic properties. 
Such applications are often called Quantitative structure-property relationships) 
(QSPR). As has already been set out in this volume, QSAR can be roughly divided 
in to the following steps: 

1. Problem formulation, i.e. selection of the biological activities of interest, choice 
of structural domain (structural class) and the choice of structural features to 
be varied, 

2. quantitative description of the structural variation, 
3. choice of model for the QSAR, i.e. either a linear, quadratic polynomial, 

4. selection of compounds (series design), 
5 .  synthesis and biological testing, 
6. data analysis, and validation, 
7. interpretation of results, 
8. proposal of new compounds. 

I n  reality, any QSAR development is an iterative cycle, in which the above 
steps are repeated a number of times, until sufficient knowledge about a 
class of compounds has been obtained in order to either design compounds 
with the desired activity profile, or to conclude that such a profile cannot be 
attained. 

hyperbolic or exponential model, etc., 
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Although QSAR can not really be separated into several distinct steps, we shall 
nevertheless adhere to this breakdown and be concerned here mainly with Steps 
6 to 8, i.e. data analysis, validation, interpretation, and use of the results 
obtained. Some of the consequences of the newer methods of data analysis in Steps 1 
to 5 will also be discussed, however. 

PLS (Partial Least Squares projections to latent structures) is a generalization 
of regression, which has been recently developed [ 1 - 61. PLS is of particular interest 
in QSAR because, unlike Multiple Linear Regression (MLR), data with strongly 
correlated (collinear) and/or noisy or numerous X variables (structural descriptors) 
can be analyzed, and several activitiy variables, Y,  i.e. profiles of activity, can be 
modeled simultaneously. 

Being a generalization of MLR, PLS contains MLR as a special case when a 
MLR solution exists, i.e. when the number of X and Y variables is fairly small. 
This will be shown in the example below, where it will be seen that in such cases 
PLS gives a “reduced” solution, which is statistically more robust than the MLR 
solution, and hence, gives better predictions than MLR. PLS gives results analogous 
to MLR, such as PLS regression coefficients, Y residuals, R2, and cross-validated 
R 2  (denoted here as Q’). PLS, in addition, gives a set of plots (scores and loadings) 
that provide information about the correlation structures of the variables and the 
structural similarities/dissimilarities between the compounds. These plots are most 
useful for interpreting the model. 

A recent development in QSAR is “Quantification of Molecular Modeling” 
(QMM) with methods such as CoMFA [7] and (GRID) [8]. With QMM, the number 
of X variables is large, often exceeding 10000, while the number of compounds is 
still moderate, for instance, between 10 and 100. PLS is a suitable tool for data 
analysis in Q M M  as discussed in the next volume of this series. Thus, being able 
to handle numerous collinear X variables, and activity profiles ( Y ) ,  PLS allows us 
to investigate more complex and interesting structure-activity problems than 
previously, and to analyze the available data in a more realistic way. However, PLS 
still warrants some caution and we are still far from a good understanding of how 
molecular structure influences biological activity. Multivariate analysis methods 
such as PLS, principal component analysis (PCA), correspondence factor analysis 
(CFA), linear discriminant analysis (LDA) and neural networks (NN)  are still in 
their in fancy, particularly in applications where there are many variables and few 
observations (in this case compounds). 

4.4.2 Objectives and Data Homogeneity 

Data analysis is very much like chemical analysis: one must know what one is 
looking for in order to select an appropriate analytical method, and a given problem 
can be solved by a variety of methods. Moreover, for a given problem, not all of 
the data is of interest, just as a chemical sample contains constituents of little interest. 
We shall refer to the uninteresting parts of the data as noise, and the data of interest 
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as information. In this context, we must remember that noise is only partly 
random, but also systematic due to inadequacies in X (the structure descriptors) 
as well as to deficiencies in the model. To illustrate this, QSAR models are often 
linear, while the real world always is non-linear but in a way that is usually not 
well known. 

In order to analyze data, one must have a specific objective or uim, which can 
be rather vague, such as obtaining an “overview” of a data set, or more specific, 
such as finding the relationship between given sets of variables, X and Y ,  which 
must be then elaborated. The objective is then translated in to a model, taking into 
account the expected relationships between variables, and the type of noise. The 
first part of the data analysis then consists of using the data to determine values 
of parameters in the model so that the model fits the data well. 

Data analysis, as in any scientific investigation, is based on an assumption of 
homogeneity. In the present context of QSAR, this means a similarity in the biological 
mechanism with all the investigated compounds, which in turn, corresponds to 
having some limits on structural variability and diversity. These limits may be wide 
ranging if the biological activity is not specific such as anaesthetic activity, or the 
limits may be narrow, if the biological activity involves binding to a structurally 
well-defined receptor. 

Since the results of the analysis depend on that, among other things, those critical 
assumptions concerning model shape and data homogeneity are fulfilled, i t  IS 

essential that the analysis provides diagnostics about how well these assumptions 
indeed are, fulfilled. Much of the recent progress in applied statistics has concerned 
diagnostics [9], and many of these diagnostics can be also used in PLS modeling, 
as discussed below. PLS also provides additional diagnostics outside of regression- 
like methods, particularly those which are based on modeling X (score and loading 
plots and X residuals). 

In the example below, the first PLS analysis indeed indicates that the data set 
analyzed is inhomogeneous: three aromatic amino acids (AAs) exert a different 
type of effect on the modeled activity in comparison to the other amino acids. 
This type of information is difficult to obtain in ordinary regression modeling, or 
indeed in most data analysis methods used in the QSAR field. 

In fact, PLS can be used for classification (pattern recognition, discriminant 
analysis), similar to the Soft Independent Modeling Class Analogy method (SIMCA) 
which is based on disjoint principle component (PC) models of each class. If response 
data bi) also exist within each class, a PLS model instead of a PC model can be 
used. An example is given in the chapter on SIMCA by Dunn and Wold (Chap. 4.3). 

An Example 

In order to  illustrate PLS modeling and the interpretation of the results, we shall use 
a small example form the literature with one Y variable and seven X variables. The 
example chosen is simple, and yet illustrative of most aspects of PLS and regression 
modeling. It must be emphasized however, that the present analysis is in no way 
a criticism of the work by El Tayar et al. [lo], who carried out another type of 
analysis with the aim of obtaining a more detailed molecular interpretation. 
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Table 1. Raw data for the A A  example. The lower half of the table shows the pairwisc correlation 
coefficients of the data. P I E  and P I F  are the lipophilicity constant of the AA side chain according 
to El Tayar [lo], and Fauchcrc and Pliska, respectively, DGR is the free energy of transfer of a n  
AA sidc chain from the protein interior into water according to Radzicka and Woldenden. 
SAC is the water-acccssiblc surface area of AAs calculated by M O L S V ,  M R  is the molecular 
refractivity (Daylight data base), Lam is a polarity parameter according to El Tayar [lo]. Vol is 
thc molecular volume of the AAs calculated by M O S L V .  All the data, except M R .  were taken from 
the data rcportcd by El Tayar ct al. [lo] 

P I E  P I F  DGR SAC M R  Lain Vol DDGITS 

1 Ala 
2 Asn 
3 Asp 

5 Gln 
6 Glu 

8 His 
9 Ilc 

10 Leu 

12 Met 
13 Phe 
14 Pro 
15 Ser 
16 Thr 
17 Trp 
18 Tyr 
19 Val 

P I E  
P I F  
DGR 
SAC 
MR 
Lam 
V o l  
DDGT 

4 c y s  

7 Gly 

I 1  Lys 

0.23 
-0.48 
-0.61 

0.45 
-0.1 1 
- 0.5 I 

0.00 
0.15 
I .20 
1.28 

-0.77 
0.90 
1.56 
0.38 
0.00 
0.17 
1.85 
0.89 
0.71 

1 .000 
0.967 

- 0.970 
0.518 
0.650 
0.704 
0.533 
0.645 

0.31 
- 0.60 
-0.77 

1.54 
- 0.22 
- 0.64 

0.00 
0.13 
1.80 
I .70 

1.23 
1.79 
0.49 

- 0.04 
0.26 
2.25 
0.96 
1.22 

0.967 
1.000 

-0.968 
0.416 
0.555 
0.750 
0.433 
0.71 1 

-0.99 

-0.55 
0.5 1 
1.20 

- 1.40 
0.29 
0.76 
0.00 

- 0.25 
-2.10 
- 2.00 

0.78 
- 1.60 
-2.60 
- 1.50 

0.09 
-0.58 
- 2.70 
- 1.70 
- I .60 

-0.970 
-0.968 

1.000 
-0.463 
-0.582 
- 0.704 
- 0.484 
- 0.648 

254.2 
303.6 
281.9 
282.9 
335.0 
31 1.6 
224.9 
337.2 
322.6 
324.0 
336.6 
336.3 
366.1 
288.5 
266.1 
283.9 
401.8 
377.8 
295.1 

0.518 
0.416 

- 0.463 
1.000 
0.955 

-0.230 
0.99 1 
0.268 

2.126 
2.994 
2.994 
2.933 
3.458 
3.243 
1.662 
3.856 
3.350 
3.518 
2.933 
3.860 
4.638 
2.876 
2.279 
2.743 
5.155 
4.791 
3.054 

0.650 
0.555 

-0.582 
0.955 
1 .000 

- 0.027 
0.945 
0.290 

- 0.02 
- 1.24 
- 1.08 
-0.11 
- 1.19 
- 1.43 

0.03 
- 1.06 

0.04 
0.12 

- 2.26 
-0.33 
- 0.05 
-0.31 
- 0.40 
-0.53 
-0.31 
- 0.84 
-0.13 

0.704 
0.750 

- 0.704 
-0.230 
- 0.027 

1.000 
- 0.22 1 

0.499 

82.2 8.5 
112.3 8.2 
103.7 8.5 
99.1 11.0 

127.5 6.3 
120.5 8.8 
65.0 7.1 

140.6 10.1 
131.7 16.8 
131.5 15.0 
144.3 7.9 
132.3 13.3 
155.8 11.2 
106.7 8.2 
88.5 7.4 

105.3 8.8 
185.9 9.9 
162.7 8.X 
115.6 12.0 

0.533 0.645 
0.433 0.71 I 

0.991 0.268 
0.945 0.290 

1.000 0.300 
0.300 1.000 

- 0.484 - 0.648 

-0.221 0.499 

The data in question concerns modeling the energy for unfolding a protein 
(tryptophane synthase alpha unit of bacteriophage T4 lysozome), where each of the 
19 coded amino acids (AAS), except arginine (Arg), had been introduced into position 
49 [lo]. The AAs are described in terms of x1 = PIE  and x2 = P I F  (two measures 
of side chain lipophilicity), x j  = DGR = A G  of transfer from protein interior to 
water, x4 = SAC = surface area, x5 = M R  = molecular refractivity, x6 = LAM 
= side chain polaritiy, and x, = Vol = molecular volume. Computational and 
other details are given by El Tayar et al. [lo]. The X data are highly correlated, 
with u2(xZ,  x2, x3) > 0.964, and v2(x4,  x5, x7) > 0.945. The raw data are given in 
Table 1 together with their correlation coefficients. In summary, the data comprise 
one activity variable Cy) and seven correlated structure descriptors, x, to x,, for 19 
coded AAs. The individual correlations between the response ( D D G T S )  and each 
of the X variables were between 0.268 (x4 = SAC) and 0.711 (x2 = PIF) .  
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4.4.3 The QSAR model 

Any scientific model consists of several stages, starting with the philosophical 
viewpoint, conceptualization to the execution. All aspects are essential in order to 
comprehend the model and its underlying concepts. 

4.4.3.1 The Conceptual Model 
Our way of thinking in chemistry consists of translating the influence of structure 
on activity in terms of “eljects”, such as lipophilic, steric, polar, hydrogen bonding, 
and possibly other “effects”. Some of these can be “localized” to a part of a molecule, 
for instance, a part that fits into a “lipophilic pocket” of a receptor. They may also 
be “global”, such as global lipophilicity that may be related to the transport of the 
compound across lipophilic/polar boundaries. Much of the efforts in QSAR involves 
the translation of structural variation into reasonable scales, corresponding to these 
effects, both for localized parts of the molecules as well as for “global” whole 
in0 lecules. 

Although this formulation of how chemical structure influences biological and 
other properties of our molecules is of no immediate concern as regards to the 
technicalities of PLS, it is still of interest in that PLS modeling is consistent with 
seeing structural influences, mediated by “effects”. The concept of lufcnt vuriuh1c.s 
in PLS may be seen as directly corresponding to these effects in QSAR-PLS models. 
In order to be able to estimate the influence, structure + “effects” + activity, each 
effect must be parametrized by at least one X variable (structural descriptor), 
preferably several. In simple situations, such as in the present example, with 
compounds having the same structural “backbone” and just changing substituents 
at specific “sites”, the X variables are few- one X variable (substituent scale) for 
each “effect” and “site”. In CoMFA and GRID paramerizations of more complicated 
sets of molecules, the X variables are numerous and the derivation of the “effects” 
is done as an integral part of the modeling and data analysis. 

x -  variables ic Y 

1 I ?  
objs - 

i 

P ’  

W’ 

1 2 3  k K T  U I m M  

h k  

u1 u2 u3 

Structure descriptors Activity 
measurements 

Figure 1. Data ofa Q S A R  model can 
be arranged into two tables, matrices, 
X and Y .  Note that the raw data may 
be transformed (e.g. logarithmically), 
and are usually centered and scaled 
before the analysis. 
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In the example, the side chains of the AAs are modeled using three lipophilicity 
parameters ( P I E ,  PZF, and DGR), three steric parameters (SAC,  M R ,  and V o l ) ,  and 
one polar parameter (Lam). Some are highly correlated (see Table 1). 

Having translated the structural variation of N compounds in to a number of 
structure descriptor variables, as denoted by xk ( k  = 1,  ..., K ) ,  and measured the 
biological activity of these compounds by a number of variables, y ,  (112 = 1,2,  
..., M ) ,  we can collect the data into two matrices X and Y ,  of dimensions ( N  x K )  
and ( N  x M ) ,  respectively, as shown in Fig. 1. In this example N = 19, K = 7, and 
M = 1. 

4.4.3.2 Transforma tion, Scaling and Centering 

Before the analysis, the X and Y variables are often transformed, so that their 
distribution is consistent with chemical and biological theory. Thus, activity 
variables, with a range covering more than one order of magnitude of ten, are often 
logarithmically transformed, and the same applies to structure descriptor variables. 
If the variable has zero value, the fourth root transformation is a good alternative 
to the logarithm. The response variable in the example has ahead been logarith- 
mically transformed, i.e. expressed in thermodynamic units. 

The results of projection methods, such as PLS, depend on the scaling of the 
data. This is an advantage, because with appropriate scaling, one can focus on the 
more important Y variables in the model, and use one’s experience to increase the 
weights of informative X variables. 

In the absence of knowing the relative importance of the variables, the standard 
PLS procedure consists in scaling each variable to unit variance, the so-called 
autoscaling. The software calculates the standard deviation ( S D )  of each colum of 
the data, and thereafter divides each column by the corresponding SD.  This 
corresponds to assigning each variable with the same weight, and, thus, importance 
prior to the analysis. 

In the example given, the autoscaled weights of the three lipophilicity variables 
and the three steric variables have been divided by 1.5, so that the single polarity 
variable does not become masked (so-called blockscaling). 

In CoMFA and GRID-QSAR, however, autoscaling is often not the best method 
of scaling X ,  but non-scaled X data or some X-data, which has been subjected to 
same form of intermediate scaling between autoscaling and non-scaling, may still 
be appropriate. This has been discussed in detail recently [6]. 

For ease of interpretation and numerical stability, it is recommended that the 
data are centered before the analysis. This is done - either before or after scaling - by 
subtracting the column averages from all data in the X and Y columns. Hence, the 
analysis concerns the deviations from the means, and how these deviations are 
correlated. This centering does not lead to changes in the coefficients or weights of 
variables, and hence does not alter the interpretation of the results. 
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4.4.3.3 The PLS Model 

The linear PLS model finds “new” variables, A latent variables, also called 
X scores and which are also denoted by t ,  (u  = 1, 2, ..., A ) .  These scorcs are 
linear combinations of the original variables, xk with “weights” of the coefficients, 
w;, (a  = 1,2, ...) A).  

t i ,  = Ckwk*,xik 

These X scores ( tas)  have the following properties: 
(a) They are good predictors of Y ,  so that 

Yim = C a C m a t i a  + f i m  

Y = TC‘ + F 

In Eq. (2a) the model is expressed in matrix form. The residuals, f i m  express 
the deviations between the observed and modeled data, and comprise the 
elements of the Y residual matrix, F in Eq. (2a). The index i is used for 
compounds, i.e., i = 1, 2, ..., N .  

Because of the relationships expressed in Eqs. (1) and (2), the latter can be 
rewritten in the form of a regression model: 

( 3 )  y .  im = C,C,, C,W,*,X~~ + J m  = CkhmkXjk + f im 
The “PLS regression coefficients”, bmk, can be written as: 

hmk = CaCmaw& (4) 

(b) They are few in number ( A )  and orthogonal; the summations in Eqs. (2) and ( 5 )  

(c) They are good “summaries” of X ,  so that the residuals, eik, in Eq. ( 5 )  are 
are made over the component index, a (a  = 1,2, ..., A).  

“small” : 

X i k  = C a t i a P a k  + eik 

X =  T P ’ +  E 

Eq. (5a) is the X-model in matrix form. 

With multivariate Y (when M > l), the corresponding “ Y  scores‘’ (u,) are good 
“summaries” of Y, so that the residuals, gim, in Eq. (6) are “small”: 

Eq. (6a) is the Y-model in matrix form. 

After each dimension, a, the Xmatrix is “peeled off’ by subtracting ti, * pku from 
the element xik. This allows the PLS model to be expressed in weights, w,, 
with reference to the residuals according to the previous dimension, E,- instead 
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of relating to the X variables themselves. Thus, instead of Eq. (l), we have 
Eq. (7): 

= C k W k a e i k , a - l  (7)  

e i k , a - 2  = e i k , a - I  - t i , u - I P a - 1 , k  

e ik ,O = X i k  

However, the weights, w ,  can be transformed in to w * ,  which directly relate to X ,  
giving Eq. (1) above. The relationship between w and w* is given by [6]: 

w* = w(P’w)-’ (8) 

4.4.3.4 Interpretation of the PLS Model 

One way of looking at PLS is that it forms “new x variables”, t,, as linear 
combinations of the old ones, and then uses these new t s  as predictors of Y .  Only 
as many new rs are formed as are required to be predictively significant, and this 
is discussed below. 

The parameters, t ,  u, w (and w*), p ,  and c (see Fig. l), are determined by a PLS 
algorithm as described below. For the interpretation of the PLS model, the scores, 
t and u, contain information about the compounds and their similarities/dissimilari- 
ties with respect to the given problem and the model. 

The weights w, (see below), and c, provide information about how the variables 
can be combined to form a quantitative relation between X and Y .  Hence, these 
weights are essential for understanding which X variables are important (numerically 
large w values), which X variables provide the same information (similar profiles 
of w, values), the interpretation of the scores, t ,  etc. 

The part of data that are not explained by the model, that is, the residuals, are of 
diagnostic interest. Large residuals of Y indicate that the model is poor, and a normal 
probability plot of the residuals of a single Y variable are useful for identifying 
outliers, just as in MLR. In PLS residuals for X, the data not used in the modeling 
of Y ,  are also obtained. These X residuals are useful for identifying outliers in 
X-space, i.e. molecules with structures that are not consistent with the model. 

Geometric Interpretation 

PLS is a projection method and, thus, has a simple geometric interpretation with 
a projection of the X matrix (a swarm of points in a K-dimensional space) on to 
an A-dimensional hyperplane, in such a way that the coordinates of the projection 
(r,, a = 1,2, ..., A) are good predictors of Y .  This is indicated in Fig. 2, and the 
scores, t ,  are explained below. 

The direction of the plane is expressed in terms of the slope, pak, of each 
principal direction of the plane (each component), with respect to each coordinate 
axis, xk. This slope is the cosine of the angle between the principal direction and 
the coordinate axis. 
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t Plane, 

defining best 
correlation with Y 
(c1 tl + c2 t2 + . . .) 

Figure 2. The gcomctric representation of PLS. Thc X (structural descriptor) matrix can bc 
represented as N points in K-dimensional space where each column of X(.x,) defines a coordinate 
axis. The PLS model defines an A-dimcnsional hyperplane, which in turn, is dcfined by a line in 
one direction per component. The direction coefficicnt of the line is given by puk .  The coordinatcs 
of each compound, i, when its structural descriptor data (row i in X )  are projectcd down on to this 
plane, are given by t,u. The corresponding positions are related to Y ,  so that projcctions of all 
points onto a line in this plane correlate with the values of Y .  

Thus, PLS develops an A-dimensional hyperplane in X-space such that this plane 
is a good approximation of X ( N  points, row vectors of X ) ,  and at the same time, 
the positions of the projected data points onto this plane, described by the scores 
tiu, are closely related to the values of the responses: activities, Yi, (see Fig. 2). 

Inconipkte X and Y Matrices (Missing Data) 

Projection methods such as PLS tolerate certain amounts of missing data both in 
X (structural descriptors) and in Y (activities). In order to have missing Y data, 
the Y data must be multivariate, i.e. have at least two columns. The larger the 
matrices X and Y are, the higher the proportion of missing data can be tolerated. 
For the normal sizes of QSAR data, with around 20 compounds, 10 to 20% missing 
data can be tolerated, provided that they are not missing as the result of some 
systematic procedure. 

The PLS algorithm, in principle, automatically accounts for the missing values 
by iteratively substituting the missing values with predictions given by the model. 
This corresponds to assigning the missing data with values that have zero residuals 
and, thus, have no influence on the model parameters. 

One Y Variuhle at a Time, or  all Y Vuriahles in the Same Model? 

PLS can model and analyze several Y s  simultaneously, which has the advantage 
of providing a much simpler picture than if a separate model were employed 
for each Y .  In general, when the Y s  variables are correlated, it can be recom- 
mended that they be analyzed simultaneously. If, however, the Y variables really 
measure different activities and are fairly independent, one gains very little by 
analyzing them with in the same model. On the contrary, with uncorrelated Y 
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variables, the PLS model tends to have many components and may be difficult to 
interpret. Modeling the Y variables separately, thus, gives a set of simpler models 
with fewer dimensions, are hence, easier to interpret. 

In order to ascertain whether the Y variables are correlated or not, it is 
recommended that the analysis is started with a separate PCA of the Y matrix. 
This will give information about the rank of Y in practice, i.e. the number of 
components in the PC model, A .  If A is small compared to the number of Y variables 
( M ) ,  and if we can interpret the resulting components, we can conclude that the 
Ys are correlated, and that a PLS model of all the Y s  together in combination is 
warranted. Often, however, one finds from the PCA that the Y s  cluster in to two 
or three groups according to the nature of the activity being measured. Thus, this is an 
indication that a separate PLS model for each group of Y s  is warranted. 

4.4.3.5 The Number of PLS Components, A 

With any empirical modeling, it is essential to determine the correct complexity of the 
model. In the case ofcorrelated X variables, there is a substantial risk of “overfitting”, 
i.e. obtaining a well-fitted model, with little or no predictive capability. Hence, a 
strict test for thc significance of each consecutive PLS coniponent is necessary, and 
then stopping when components are non-significant. 

Cross-validation (CV) is a practical and reliable method for testing this significance 
[2-61, which has become the standard in PLS analysis, and is incorporated in one 
form or another in all available PLS software. A good discussion of cross-validation 
was given recently by Wakeling and Morris [l l] ,  and Clark and Cramer [12]. In 
principle, CV is performed by dividing the data in to a number of groups, say, 
between five and nine, and then developing a number of parallel models from the 
reduced data with one of the groups omitted. It should be noted that having the 
number of CV groups equal to N, i.e., the so-called “leave-one-out” approach, is 
not recommended [ 131. 

After developing a model, the omitted data is used as a test set, and differences 
between actual and predicted Y values are calculated for the test set. The sum of 
squares of these differences are computed and assembled from all the parallel models 
to form P R E S S  (Predictive Residual Sum of Squares), which is a measure of the 
prepdictive capability of the model. 

When CV is used in the sequential mode, PRESS, ISS , - ,  is evaluated for each 
component, and a component is considered to be significant if this ratio is smaller 
than around 0.9 for at least one of the y variables (sharper bonds can be obtained 
from the results of Wakeling and Morris [ll]). Here SS, - ,  denotes the (fitted) 
residual sum of squares hefore the current component (index u). The calculations 
continue until  a component is found to be non-significant. 

Alternatively, one can calculate PRESS for each component for up to say 10 or 
15, for instance, and use the model which gives the lowest P R E S S / ( N  ~ A - I ) .  
This “total” approach is computationally much more demanding, and is, therefore, 
used less often. Although it may in theory be prefcrable to the sequential approach, 
in practice, the difference seems to be small. 
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With both the sequential mode and the “total” mode, a PRESS  is calculated for 
the final model with the estimated number of significant components. This is often 
expressed as Qz (“cross-validated R2”)  which is (1 - P R E S S / S S )  where SS in the 
sum of squares of Y corrected for the mean. This can be compared with 
R2 = (1 - RSSjSS) ,  where R S S  is the residual sum of squares. In models with 
several Y variables one also obtains R i  and Qi for each Y-variable, y,. 

These measures, of course, can be also expressed as RSDs (Residual S D s )  and 
PRESDs (Predictive Residual SDs).  The latter is often called S D E P  (standard Error 
of Prediction). If any knowledge of the noise in the system under investigation can 
be obtained, for example k0.3 units for log (l/C), these SDs should, of course, be 
similar in size to the noise. 

4.4.3.6 Model Validation 

Any model needs to be validated before it can be seriously used to “comprehend” 
or predict biological activity. It would seem that there are two reasonable principles 
of validation: validation based on predictions, and validation based on fitting to 
random numbers. The best validation method for a model is, of course, that which 
precisely predicts the activity of new compounds consistently. An independent 
validation set of several compounds (at least 4 or 5 with varying activity) is, however, 
a rare luxury. 

In the absence of a real validation set, two interesting and powerful ways of model 
validation are available: cross-validation (CV) simulates how well the model predicts 
new data, and data randomization estimates the chances (probability) to of obtaining 
a good fit with randomly reorganized response data. C V  has been described above, 
and will be discussed more in conjunction with randomization methods in the 
chapter on model validation (Ch. 5.1). 

4.4.3.7 PLS Algorithms 

The algorithm for calculating the PLS model is mainly of technical interest here, 
and we would just like to point out that several variants have been developed for 
different shapes of data [13, 141. Most of these algorithms calculate one component 
at a time with cross-validation, testing the significance of each component. The 
calculations stop when a component is found to be insignificant. Most of these 
algorithms also allow for moderate amounts of missing data. 

4.4.4 The first PLS Analysis of the AA Data 

The first PLS analysis of autoscaled and centered AA data gives one significant 
component accounting for 43% of the Y variance (R2  = 0.435, Q’ = 0.299), with 
the second component being far from significant ( Q 2  = -0.130). ln  contrast, MLR 
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Figurc 3. The PLS scores, u ,  and t , ,  for the N = 19 AA example (first analysis). 

gives an R 2  of 0.788, which apparently is a much better solution. This is equivalent 
to the PLS solution with A = 7 components. The full MLR solution, however, has 
a Q2 of -0.215, indicating that the model is of low quality and cannot predict 
much better than chance. A MLR model with just x2 and x4 gives R 2  = 0.501 and 
Q 2  = 0.248 which is comparable with the two-component PLS model. 

4.4.4.1 Score Plots 

With just one PLS component, the only meaningful score plot is one of y (or of 
the equivalent, u , )  against t .  This plot shows the correlation betwcen X ( t )  and Y ,  
and is given in Fig. 3. We can see that the aromatic AAs, Trp, Phe and Tyr, show 
a much worse fit than the other amino acids. This is a clear indication of the lack 
of homogeneity in the data, which has a detrimental effect on the model. 

4.4.4.2 PLS Weights w and c 

For the interpretation of PLS models, the standard procedure is to plot the PLS 
weights, w, of one model dimension against another. Alternatively, one can plot the 
w*s to give similar results and a similar interpretation. 

The plot of w 1  versus w 2  values for the AA example is shown in Fig. 4. We sec 
that the first dimension consists mainly of P I F ,  P IE ,  and Lam at the positive end, 
and DGR at the negative end. Considering the correlations between P I F ,  P I E ,  and 
Lam, this is not surprising; the first dimension is mainly a mixture of lipophilicity 
and polarity. The second insignificant dimension is mainly M R .  The c values of the 
response, y ,  are proportional to the linear variation of Y explained by the 
corresponding dimension, i.e. fl. They define one point per response, and in the 
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Figure 4. 
dimension was found to be insignificant, but is included for plotting purposes. 

The PLS weights, 12: and c for the first two dimensions of thc first AA model. The second 

example with a single response, this point ( D D G 7 S )  is situated in the far upper 
right-hand quartile of the plot. 

The importance of a given X variable for a Y response is obtained by drawing 
a line from the response "point" in the (correctly scaled) plot through the origin 
(0,O) and through to the other side of the axis of origin, see Fig. 5. We shall call 
this the Y line. A perpendicular line drawn from a X variable on to this line projects 
the X point onto the Y line. The length of the projection to (0,O) is proportional 
to the importance of this X point for a particular Y point and is shown in Fig. 5 

0.4 1 
1 DDGTS /. 

-0.4 I 

-0.8 - O ' I  

Figure 5. 
with thc line from Y = DDG'TS going through 
the origin as shown in the plot. together with 
the projections of X = MR and X = DGR o n  
to this Y h c .  The plot has been rcscalcd to the 
bilme length as both I axes. 

PLS weighting plot as in Fig. 4 
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Figure 7. 
numbcr of components, A .  The M L R  coefficients are identical to those obtained when A = 7. 

The PLS regression coefficients (b) from thc AA example shown as functions of thc 
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Figure 6. PLS rcgrcssion cocfficients for A = 2 components 

for X = M R  and X = V d .  We can see that M R  has a slight ncgative influence 
and Vol has a somewhat greater positive influence on Y .  These correspond closely 
to the PLS regression coefficients for A = 2 dimensions (Fig. 6). 

4.4.4.3 A Comparison of PLS with Multiple Linear Regression (MLR) 

In Fig. 7 we see how the PLS regression coefficients (hmk) change when the 
number of components increase up to A = 7, when they are identical to the MLR 
coefficients. The coefficient ofx, (DGR) changes sign between the PLS model ( A  = 1 )  
and the MLR model ( A  = 7). Moreover, the coefficients of x4, xs, and x, which 
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are almost zero in the PLS ( A  = 1) model, are large and have opposite signs in the 
MLR model ( A  = 7), although they are highly correlated to each other. 

It is clear that the coefficients in the MLR model are misleading and difficult 
to interpret, and are very much as a result of the strong correlations between the 
X variables. PLS, however, stops at A = 1, and gives reasonable coefficient values 
both for A = 1 and A = 2. Due to the negative correlations between x I ,  x2 and 
xj, their coefficients have the same values, but with opposite signs. I t  is essential 
to understand that with correlated variables, it is impossible to assign “correct” 
values to the coefficients, we can only estimate their joint contribution to y. 

The usual approach taken with MLR and correlated X variables is to select a 
subset of variables that are not so well correlated. However, this can lead to a 
misinterpretation of the results, and one tends to forget the non-selected variables 
in the final model interpretation, although the are usually just as good as candidates 
for important variables as the ones already selected. 

4.4.4.4 Conclusion of the First Analysis 

Interpretation of the first round of results is that the PLS model is poor, with an 
R 2  of only 0.435. A tentative explanation might be that aromatic AAs are different 
from the other amino acids and that data are, thus, inhomogeneous. To investigate 
this, a second analysis was undertaken with a reduced data set, N = 16, without 
the aromatic AAs. 

Alternatively, like El Tayer et al. [lo]. we tried to include a quadratic term in the Vol 
parameter in the model. This gave a slightly better model with A = 2 and R 2  = 0.684, 
Q’ = 0.540, but the score plots still indicated groupings in the data set (inhomogenei- 
ties), as shown in Fig. 8. 

E .- -, 
LI 9- 7- -1 

.Tyr I 

Figure 8. Score plot of t ,  vs t ,  for the PLS model of N = 19 AAs with a squared Vol term 
includcd. The large aromatic AAs arc seen to dcviate from the other amino acids, as wcll as from 
the very small (Gly). 
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Figure 9. 
points in the right hand corner are Ile and Leu. 

The PLS scores t ,  and t ,  for the N = 16 AA example (second analysis). The overlapping 

4.4.4.5 Conclusion of the Second Analysis 

The modeling of N = 16 AAs with the same linear model as before produced a 
substantially better result with A = 2 significant components and R2 = 0.783, 
Q2 = 0.706. The MLR model for these 16 objects gave an R2 of 0.872, and a Q2 of 
0.608. With only x2 and x4 included in the model, MLR gave R 2  = 0.791 and 
Q' = 0.684, which was very similar to the PLS model ( A  = 2). This marked 
improvement indicated that the data set was now, indeed, homogeneous and could 
be properly modeled. 

The plot of the X scores (tl vs t,, Fig.9) shows the 16 amino acids grouped 
according to polarity from the upper left of the plot to the lower right side, and 

P -0.21 

-0 6 Lam 
- 0 4 1  - 0 T  

-0 2 0'4 ' 0 '6 ' 

wc 111 

Figure 10. The PLS weights, w and c, for the first two dimensions of the second A A  model 
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U 

Figure 11. The PLS scores, u1 and t , ,  of the A A  example, (second analysis). 

according to size and lipophilicity within each grouping. This is consistent with the 
loading plot (Fig. lo), where we can see the first PLS dimension dominated by 
lipophilicity and polarity, and the second dimension being a mixture of size and 
polaritiy, and is similarly to the previous model. 

The plot in Fig. 1 1  of u,  ( y )  vs t ,  shows, however, a fairly strong curvature, 
indicating that squared terms in the lipophilicity parameter and, may be also in the 
polarity parameter, are warranted. In the final analysis, the squares of these four 
variables were included in the model, which indeed gave better results. Two 
significant PLS components and one additional component of borderline significance 
were obtained. The resulting R' and Qz values were 0.90 and 0.80 for A = 2, and 
for A = 3, 0.925 and 0.82, respectively. The A = 3 values corrcspondcd to 
R S D  = 0.92, and P R E S D  ( S D E P )  = 1.23, since the S D  of Y was 2.989. The full 
MLR model gave R' = 0.967, but with a much worse a Q' valuc of 0.09. 

Finally, the model was tested with the parameters squared for the size (volume), 
lipophilicity and polarity descriptors for all the N = 19 compounds. This gave a 
PLS model with A = 2 or 3, and R2 = 0.79 and Q' = 0.47, and still the same 
groupings in the score plots. Hence, it was concluded that the model of the above 
N = 16 AAs, with the parameters squared for the lipophilicity descriptors was the 
best one. 

In order to obtain a picture of the relationship between Y and lipophilicity, 
polarity, and size of the AAs, a model with just one descriptor per class was 
devcloped, plus the lipophilicity parameter was squared. The variables with the 
largest rcgression coefficients in the final model were selected as representatives, i.e. 
x2 = P I F ,  x, = Lam, x, = V d ,  and PIF"2. This model was then used to show 3D 
plots as in Fig. 12. 
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Figure 12. 3D plot of the response 
D D G E  (4) as a function of P I F  and 
Lam with V o l  fixed at its '+verage value E, 

J of 112925 

4.4.5 Selection of Important Variables 

In PLS modeling a variable ( x k )  may be important for the modeling of Y .  Such 
variables are identified by large PLS regression coefficients, bmk. However, a variable 
may also be important for the modeling of X ,  which is identified by large loadings, 
P a k .  A summary of the importance of an X variable for both Y and X is given by 
VIPk (variable importance for the projection, Fig. 13). This is a weighted sum of 
squares of the PLS weights, W,k, with the weights calculated from the amount of 
Y variance of each PLS component, a. 

Figure 13. V I P  of the X variables of the 3 component PLS model, (third analysis). The squares 
of x, = P I E ,  x2 = P I F ,  x 3  = DGK, and x6 = Lain are denoted by Sl*l ,  S2*2, S3*3 and S6*h, 
rcspcctivcly. 
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In data containing a large number of X variables, i t  is essential to select a subset 
of variables that really are important. The deletion of variables from the model 
which have both small PLS regression coefficients and small V I P  values furnishes 
a pruned model with decent properties. More elaborate strategies, such as GOLPE, 
are described by Clementi in Chap. 2.3 in [16]. 

In the final model of the AA example, only one X variable has both small V I P  
values and small h values, namely the square term of Lam (the polar descriptor). 
When this is deleted, a PLS model of Y and the remaining X variables gave almost 
identical results as the model including Lam-2, and the results are, therefore, not 
shown. 

0.5 

0 1  "L r,'I'-i--'I'-- 

4.4.6 Residuals 

The residuals of Y and X are of diagnostic value in determing the quality of the 
model. A normal probability plot of the Y residuals (Fig. 14) of the final AA model 
shows a fairly straight line with all values within k3 SDs.  In order to be a serious 
outlier, a point must clearly deviate from this line and be outside of the limit of 
f 4  SDs.  

Since there are many X residuals ( N  * K ) ,  onc needs a summary for each 
compound in order not to be cluttered with unnecessary detail. This is provided 
by the residual S D  of the X residuals of the compound. Because this S D  is 
proportional to the distance between the point for the compound and the model 
plane in X space, it is also often called DModX (distance to the model in X-space). 
A DModX larger than around 2.5 times the overall S D  of the X residuals 
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Figure 15. RSDs of the X residual (DModX) for each compound (third analysis). 

(corresponding to an F-value of 6.25) indicates that the compound is an outlier. 
Fig. 15 shows that none of the 19 compounds in the example given has a large 
DModX. Here the overall SD = 0.34. 

4.4.7 Conclusions 

PLS analysis gave diagnostics (score plots) that indicated inhomogeneity in the 
data. This was confirmed by the much better model obtained for the N = 16 
non-aromatic AAs. A remaining curvature in the score plot of uI vs t ,  led to the 
inclusion of squared terms, which gave a very good final model. Only the squared 
terms for the lipophilicity variables were found to be significant in the final model. 

If additional aromatic AAs had been present, a second separate model could have 
been developed for this type of AAs providing an insight in to how this class differs 
from non-aromatic AAs. This in a way, corresponds to non-linear modeling; the 
changes in the relationship between structure and activity, when going from 
non-aromatic to aromatic AAs, are too large and too non-linear to be modeled by 
a linear or low degree polynomial model. The use of two separate models which 
do not directly model the change from one class to another provides a simple 
approach to deal with these non-linearities. 
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4.4.8 Summary How to Develop and Interpret a PLS model 

1. One must have a good understanding of the given problem, in particular, which 
biological properties of interest are to be measured and modeled, and which 
structural fcatures should be varied. 
2. Good data, both Y (activity) and X (structural descriptors) must be obtained. 
Multivariate Y variables provide much more information, because they can first be 
analyzed separately by PCA. This gives a good idea about the amount of systematic 
variation in Y, and which Y variables should be analyzed in combination, etc. 
3. At the bcginning in PLS modeling, the first information obtained is the significant 
number of components, A ,  which is an indication of the complexity of the QSAR. 
This number of components gives the lower bound of the number of structural 
eff icts that are to be postulated in the system. 
4. After obtaining A (see above), the second consideration is how well the model 
fits the data, i.e. the amount of Y variance (R’) that is accounted for. If there are 
several Y variables, one can also obtain an R i  value for each Y variable. For each 
of these values, there is a corresponding Q’ value (“cross-validated R’”). The R2 
values give the upper bound of how well the model explains the data and predicts 
activities for new compounds, and the Q’ values give the lower bounds for the model. 

These parameters, of course, can be also expressed as R S D s  and P R E S D s  
(Predictive Residual SDs).  If there is any knowledge of the noise in the system being 
investigated, for example, kO.3 unitis for log (1,’C). These SDs,  should of course, be 
similar to the order of magnitude of the noise. 
5. The first two or three model dimensions in the score plots (u ,  t )  should be 
investigated to highlight outliers, curvatures, groupings in the data, or any other 
problems. 

Then, the score plots ( l ,  t )  - the windows in X space - should be inspected, again 
to look for indications of inhomogeneities, groupings, or other patterns. In 
conjunction with this the weightings plots ( w , c )  should be used to interpret the 
patterns and trends seen in the ( t ,  t )  plots. 
6a. I f  problems are apparent, i.e. such as too small R2 and Q’ values, with outliers 
or groupings in the score plots, one should try to find a solution. First, plots of 
residuals (normal probability and DModX and DModY) may give an indication 
of the source of such problems. 

Single outliers should be inspected to assess the accuracy of the data, and if this 
is of no use, be excluded from the analysis, but only if they are non-interesting (i.e., 
of low activity). 

Curvature in plots (u, t )  may be improved by including selected squared terms 
and/or cross-terms in the model. 

Then, one returns to point 1 after either, possibly, having transformed the data, 
modified the model, divided the data into groups, deleted outliers or takcn whatever 
action is warranted. 
6b. If no problems are apparent, i.e. R2 and Q 2  are of the correct magnitude, and 
the model can be interpreted, one should try to prune the model by deleting 
unimportant terms, i.e. small regression coefficients and low V I P  values. Then, a 
final model is developed, which is interpreted, validated, and for which predictions 
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are made, etc. For the interpretation the weight plots (w, c), coefficient plots, 
and contour or 3D plots with dominating X variables as the plot coordinates, are 
invaluable. 

4.4.9 Conclusions and Discussion 

PLS is an approach to quantitiative modeling of the often complicated relationships 
between chemical structure and biological activity which is more realistic than MLR, 
including stepwise selection variants. The reason is that the assumptions which 
underly PLS ~ correlations between the X variables, noise in  X and model errors 
- are more in line with reality than the assumptions which underly regression of 
independent and error free X variables. 

The diagnostics in PLS, notably cross-validation and score plots (u / t ,  and t i t )  
with the corresponding loading plots, provide information about model complexity 
and the structure of X data that can not be obtained with ordinary MLR. It will 
take time for the QSAR community to get used to this additional information and 
obtaining experience in how to interpret and use this information in QSARs. In 
particular, a fairly common result in PLS modeling is that the data are inho- 
mogeneous (see the AA example given here), which is rarely observed in MLR. 
This is mainly because MLR lacks the diagnostic tools for highlighting inhomogcnci- 
ties in the data. Consequently, there is still the common, but wrongly, hold view 
that one should always try to squeeze all the data into a single model. With the 
strong non-linearities that exist in complicated chemical-biological systems, it is 
warranted to use more than one model to obtain a more accurate picture; 
non-linearities are typical and sometimes so strong that a single polynomial model 
could not be constructed. Hence, a flexible approach to QSAR modeling with 
separate models for different structural classes of compounds is often required, there 
is no loss of information with this approach in comparison with the single model 
approach. A new compound is first classified with respect to its X values, and 
predicted activity values are then obtained by employing the appropriate class model. 

A consequence of the greater flexibility and power of PLS in comparison with 
traditional (stepwise) MLR is that other aspects of the QSAR development are 
facilitated. Thus, the ability of PLS to analyze profiles of activity, makes it easier 
to devise activity measurements that are relevant to the stated objectives of the 
investigation; it is easier to assess biological activity by a series of measurements 
than by a single activity variable. 

Similarly, the ability of PLS to handle many collinear structure descriptor variables 
( X )  makes it easier to quantify the variation of structure between compounds, 
CoMFA and GRID are semi-automated approaches for the quantification of 
structural variation based on the calculation of thousands of descriptors. 

And, finally, the possibility of graphical reprepsentation of PLS parameters and 
residuals makes it possible to interpret and use the results also in complicated 
models, thus making QSAR of interesting systems, such as peptides, proteins, nucleic 
acids, and polysaccharides, accessible to everybody. 
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4.5 Spectral Mapping of Drug-Test Specificities 

Paid J. LeLvi 

Abbreviations 

APL 
apo 
ATN 

CFA 
CPZ 
D 
G 
ha1 
5HT 
nep 
PCA 
SMA 
SVD 
RC 

R 

A Programming Language, Iverson’s notation 
Apomorphine test 
Apomorphine, tryptamine and norepinephrine test 
alpha-adrenergic (norepinephrine) receptor 
Correspondence factor analysis 
Chlorpromazine 
Dopamine receptor 
Guanosine 
Haloperidol 
Serotonin receptor 
Norepinephrine test 
Principal components analysis 
Spectral map analysis 
Singular value decomposition 
Rows and columns 

Symbols 

x Factor scaling coefficient for rows (compounds) in the context of factor 
analysis 
Factor scaling coefficient for columns (tests) 
Global variance of 2 
Diagonal matrix of singular values 
Cronecker delta, 1 if k = k‘ and 0 otherwise 
50 percent effective dose 
Factor axes 
Accuracy of reconstruction of Z using r* factors 
50 percent inhibitory concentration 
Indices for compounds 
Indices for tests 
Constant 
Indices for factors 
Loading of test ,j onto factor k 
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Contribution of factor k to the global variance, c 
Number of compounds 
Number of tests 
Potency of compound i 
Number pif factors of Z 
Number of structural factors of 2 
Score of compound i on factor k 
n-dimensional coordinate space of compounds 
n-dimensional coordinate space of tests 
r-dimensional coordinate space of factors 
Sensitivity of test j 
Matrix of normalized scores, left singular vectors 
Matrix of normalized loadings, right singular vectors 
Normalized weight coefficients for row (compound) i 
Normalized weight coefficients for column (test) j 
Table of observed activities 
Global mean of X over all compounds and tests 
Geometric global mean of X over all compounds and tests 
Base value for non-positive substitution 
Row mean of X for compound i 
Geometric row mean of X for compound i 
Activity of compound i in test j 
Small positive value substituting a non-positive value x,, 
Column mean of X for test j 
Geometric column mean of X for test j 
Table of transformed activities, specificities 
Norm of row (compound) i of Z 
Specificity between compound i and test j 
Contrast between rows (compounds) i ,  i‘ of Z 
Norm of column (test)j  of Z 
Contrast between columns (tests) j ,  j ‘  of 2 

z,./I 

z,. 1 1  

4.5.1 Activity, Potency, Sensitivity and Specificity 

Spectral mapping is an unsupervised multivariate QSAR method. The term 
multivariate indicates that the method is applicable in the case when several 
compounds are studied simultaneously in multiple tests. The term “unsupervised” 
implies that the method does not rely on a specific model for structure-activity. 
In contrast, supervised methods, such as those based on regression and discriminant 
analysis, rely on a training set of compounds in order to determine the parameters 
of the model. Such a specific model is then used for the prediction of the results of 
newly synthesized compounds, usually within a series of homogeneous chemical 
structures. In Spectral Map Analysis (SMA), however, no such distinction between 
the training and prediction set is made, as the method is primarily designed for 
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classification of heterogeneous compounds and for the discovery of structure within 
a battery of tests, rather than for prediction of biological activity or clinical effects 
(although it would be possible to use the method for this purpose if it were so 
required). 

Spectral mapping is an exploratory method of analysis, which may help in raising 
relevant questions about the data, rather than in providing answers to specific 
questions. As such, it is to be regarded as a preliminary stage in the study of QSAR. 
The only requirement of the method is that the data are presented in the form of 
a rectangular table, for example, with rows referring to compounds and with columns 
denoting tests. (The assignment of rows to compounds and of columns to tests is 
arbitrary and can be interchanged if so desired.) Each element in the table then 
expresses the corresponding pharmacological activity of a compound that is 
produced in a particular test, or vice versa, the activity of a test with a particular 
compound. Note that the symmetry between compounds and tests is fundamental 
to the definition of spectral mapping, which is symmetrical with respect to 
compounds and tests. The numbers in a particular row of the table define the 
spectrum of the corresponding compound. The numbers in a particular column of 
the table constitute the spectrum of the corresponding test. From the point of view 
of an industrial pharmacologist, one may look at the table as describing each 
compound by means of its spectrum of activities that are produced in a battery of 
standard tests. From a more academic view point, one can also regard the table as 
describing each test by means of its spectrum of activities that are obtained in a 
set of reference compounds. The symmetry dictates that the roles of compounds and 
tests are interchangeable. 

In this context, we define activity as the reciprocal of the effective dose (ED,,,), 
e.g. in milligrams of substance per kilogram of bodyweight that is required to 
produce a stated effect, such as the inhibition of an induced pattern of behavior in 
half of the animals that received the dose. Spectral mapping, however, is invariant 
with respect to the units that are chosen for the individual tests. In another context, 
one may define activity as the reciprocal of the inhibitory concentration ( lCs0) ,  
e.g. in nmoles that is required to inhibit a previously induced effect in half of 
the test specimens. In general, spectral mapping can be applied to data that are 
defined on ratio scales, i.e. data that allow for meaningful ratios between them. 
In particular, one may multiply any column of the table with any positive constant 
without affecting the result of the analysis. Hence, columns of the table may be 
defined in different units, although in this context we assume that the units are 
the same. Missing data are represented by their expected values. In the context 
of Spectral Map Analysis (SMA), and as will be explained later in Sec. 4.5.3, the 
expected value for the element at the intersection of a particular row and column 
of the table is defined as the product of the geometric means of the elements in the 
corresponding row and column, divided by the geometric global mean over all 
elements. 

Potency of a compound is defined here as the geometric average of the activities 
produced in all available tests. Similarly, sensitivity of a test is the geometric average 
of the activities obtained from all available compounds. The potency of a compound 
and the sensitivity of a test are absolute quantities, which express a notion of size 
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or elevation of a spectrum of activities. Specificity is a relative quantity which is 
related to the shape or "peakedness" of a spectrum of activities. Two compounds 
are said to be similar, when they have similarly shaped activity spectra, irrespective 
of the difference in potency of the two compounds. Two tests are termed as similar, 
when they also possess similarly shaped activity spectra, irrespective of the difference 
in sensitivity of the two tests. This means that two compounds are similar, when 
they have the same specificities for the various standard tests. By virtue of symmetry, 
two tests are similar when they exhibit the same specificities for the various reference 
compounds. Specificity is a bipolar (or differential) measure of association between 
a compound and a test. Specificity is positive, when the association is in the same 
direction, i.e. when the compound possesses more than an average specificity for 
the test (and vice versa). It is negative when the association is in  opposite directions, 
i.e. when the compound has less than average specificity for the test (and vice versa). 
In the former case, the compound and test can be said to attract each other, while 
in the latter, they repel each other. Spectral mapping is directed towards the analysis 
of specificities between compounds and tests. In the following section we will define 
specificity in mathematical terms as the log of the observed activity minus the log 
potency of the compound and minus the log sensitivity of the test. The distinction 
between potency, sensitivity and specificity is similar to the one that is made in 
biology between the size and the shape of animals [I]. 

Spectral mapping is primarily a graphic method. As its name indicates, it provides 
a visual display, in the form of a map, of all the specificities between compounds 
and tests (positive or negative) that are contained in their activity spectra. I n  the 
next sections, we will provide a historical account, a case study, and a mathematical 
description of the method. Because of our background, our point of view is influenced 
by the design of new therapeutic compounds in a battery of standard tests, but 
because of the symmetry property, spectral mapping can also be equally applied to 
the development of a new test using a set of reference comounds. 

4.5.2 Historical Background 

Spectral mapping has been proposed by the author as a multivariate QSAR method 
in 1975. The design of the method was the result of favorable circumstances. I t  first 
came about at the research laboratory at Janssen in Beerse, which at that time had 
implemented a number of simple, but highly effective ideas for the statistical analysis 
of the results of its screening tests. The procedures that resulted from these ideas 
relied heavily on graphical displays, as will be shown later on. Secondly, the need 
for a multivariate analysis of the screening results appeared at an auspicious time, 
when major developments had occurred, notably the biplot graphic for Principal 
Component Analysis (PCA) by Gabriel [2] and the publication of Correspondence 
Factor Analysis (CFA) by Benzecri and a group of French data analysts and 
statisticians [3]. Finally, the availability of APL, a notation for interactive com- 
putation designed by Iverson [4], greatly facilitated the formulation and implementa- 
tion of an alternative method, which embodies the ideas referred to above, but 
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which is more appropriate to pharmacological data. Initially, this approach was 
called spectral mapping, but was renamed later as Spectral Map Analysis (SMA). 
when applied to other types of data, especially in the field of marketing (for a 
more competitive position in the market place) and finance (for performance 
evaluation). Eventually, the method proved to be fairly general and was applicable 
to a variety of data that can be produced in the form of a rectangular data table. 
How this came about is related below. 

The starting point of Janssen’s research program in 1953 was the search for 
synthetic opiates, anticholinergics and antihistaminics. In 1957 this led to the 
screening of a series of propiophenones for morphine-like analgesic activity. The 
prototype R951 has strong morphine-like properties and is shown in Fig. 1, adapted 

R 951 

morphine4 ke 

activity 

R 1187 

morphine- and 

chlorpromazine-like 

activity 

haloperidol 

iutyrophenone-class 

neuroleptic 

chlorpromazine 

phenothiazine-class 

neuroleptic 

chlorprothixene 

thioxanthene-class 

neuroleptic 

Figure 1. Change of morphine-likc activity of propiophenones into ncurolcptic activity of 
butyrophenones, with haloperidol as the prototypc. The structures of chlorpromazine and 
thioxanthene are shown for comparison (after van Wijngaarden [5 ] ) .  



224 P d  J .  Lrwi 

from a publication on the early history of the research within Janssen Pharmaceutica 
[5]. Subsequently, when the length of the alkyl chain between the phenone and the 
piperidine ring was increased from two to three carbons, this resulted in the formation 
of the butyrophenone, R 1187. The lengthening of the alkyl chain caused a reduction 
of analgesic activity, but at the same time a new type of activity appeared. I t  was 
recognized as being similar to the effect produced by chlorproma7ine, a pheno- 
thiazine derivative synthesized at RhGne-Poulenc and found by Delay et al. [6] in  
1952, to possess antipsychotic properties. Chlorpromazine and related pheno- 
thiazines were called neuroleptics by Delay and represented a breakthrough in the 
treatment of mental illness. This serendipitous discovery at Janssen led in 1958 to 
the synthesis of the butyrophenone analogue haloperidol which was completely 
devoid of morphine-like activity and which turned out to be a highly potent and 
highly specific neuroleptic. Haloperidol is the prototype of the butyrophenone class 
of neuroleptics, which is structurally distinct from the phenothiazine class as shown 
in Fig. 1. 

In 1961 several different chemical classes of neuroleptics had been discovered, 
including the thioxanthenes, with chlorprothixene as the prototype, and other minor 
classes in addition to the previously mentioned phenothiazines and butyrophenones. 
These neuroleptics were found to antagonize, to varying extents, the effects of 
apomorphine, amphetamine, tryptamine, norepinephrine and epinephrine (adrcna- 
lin) in rats. They also inhibited spontaneous and conditioned motility and produced 
catalepsy in various degrees [7]. It, thus, appeared as if each neuroleptic possessed 
a typical pharmacological activity spectrum, which would be analogous to possessing 
a particular light absorption spectrum. Compounds could, thus, be classified on the 
basis of their pharmacological activity spectra. Two compounds are thought to be 
similar if they possess similarly shaped activity spectra, irrespective of their potencies. 
The process of classification is similar to that of comparing the light absorption 
spectrum of an unknown compound with the spectra produced by a collection of 
referencc compounds. Similarity of these spcctra is assessed on the basis of their 
shape, irrespective of their average absorption, which is a function of the concentra- 
tions of the unknown and reference compounds. Such a continuous classification 
implies a spatial arrangement of the compounds, such that similar compounds 
appear close together and, such that dissimilar compounds are at a distance from 
one another. The arrangement is not necessarily one-dimensional. In fact, in  1961, 
the classification of the neuroleptics on the basis of the activity spectra was 
two-dimensional (Fig. 2). Haloperidol shows high specificity for the apomorphine 
and amphetamine tests; fluanisonc, a derived butyrophenone, was found to be 
specifically active in the norepinephrine and epinephrine tests; floropipamide, also 
a butyrophenone, now called pipamperone, is specific for the tryptamine test. 
Regarding the three butyrophenones as vertices or poles of an equilateral triangle, 
it is possible, on the basis of their spectra, to visually classify chlorpromazine between 
fluanisone and floropipamide, and to position the phenothiazine derivative, perphen- 
azine, between haloperidol and fluanisone [7]. Note that in 1961 there was still no 
compound, which could be positioned between haloperidol and floropipamide. 

The empirical arrangement of the neuroleptics in Fig. 2 is a tripolar classification 
on the basis of the shapes of the activity spectra. The colors of the visible spectrum 
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Figure 2. Tripolar empirical classification of the neuroleptics with respect to their specificities i n  
the amphetamine and apomorphine tests (right), the tryptamine test (top) and the norepincphrinc 
and epinephrine tests (left) (after Jansseii [7]). 

can also be represented in a similar tripolar (or trichromatic) diagram on the basis 
of their compositions of red, blue and green, as has been already shown by Thobias 
Mayer [8] in 1758, long before the discovery of the three types of cone cells in the 
retina of the eye, each with different light absorption characteristics. Such a tripolar 
classification can be regarded as a form of “avant-garde“ spectral mapping. This 
suggests that geometric thinking about compounds and tests (or more generally 
about objects and their properties) as points in space is a fundamental thought 
process. Empirical classifications do not necessarily require coordinate axes for their 
construction, and often the underlying dimensions are discovered much later. 
Perhaps the most famous illustration of this is the two-dimensional periodical 
classification of the chemical elements by D. Mendeleev in 1869, which was based 
on atomic weight and chemical properties [9]. The modern interpretation of the 
two dimensions in terms of atomic number and valence electrons was only possible 
after the development of quantum mechanics. A similar epistemological process 
took place in the case of the classification of the neuroleptics. However, the time 
span between the empirical classification and the biological interpretation of its 
dimensions was much shorter than in the case of the trichromatic classification of 
colors and of the periodical classification of the elements. 

In 1965 Janssen had completed a comprehensive study of 40 neuroleptics in 
12 pharmacological tests in rats. Effective doses were determined at 10 consecutive 
hourly intervals after (subcutaneous) administration of the compounds. The results 
were published in a seminal paper by Janssen, Niemegeers and Schellekens [lo] 
with the title: “Is it possible to predict the clinical effects of neuroleptics (major 
tranquilizers) from animal data, part I, neuroleptic activity spectra for rats“. The 
data are reproduced in Table 1 as reciprocal effective doses (kg/mg). The paper of 
1965 was declared a citation classic by Current Contents [ll]. It contains the basic 
ideas developed by Janssen at that time for the graphical statistical analysis of 



Table 1. Pharmacological activities, defined as reciprocal effective doses (ED,, in mg/kg) of 40 neurolcptics in 12 pharmacological tests in rats 
after subcutaneous administration and including antagonism of the effects of amphetamine, apomorphine, norepinephrine, epinephrine and tryptamine; 
inhibition of conditioned motility in the jumping box; depression of rearing and ambulation; prevention of traumatic shock; observations of catalepsy 
and ptosis and inhibition of weight gain [lo]. Zero values that appear in this table are random zeros and are due to rounding of the data. The 
latter can be replaced by small positive values of the order of magnitude of 0.001. 

Cata- Amphe- Jumping Apomor- Weight Rea- Ambu- Norepi- Epi- Tryp- Ptosis Trduni. Geom. 
lepsy tamine Box phine Gain ring lation nephrine nephrine tamine Shock Mean 

Aceperone 
Acepromarine 
Acetophenazine 
Amiperone 
Anisoperidone 
Anisopirol 
Benperidol 
Butropipazone 
Butirylperazine 
ChlorpromaLine 
Chlorprothixene 
Dixyrazine 
Droperidol 
Floropipamide 
Fluanisone 
Fluphenazine 
Haloperidide 
Haloperidol 
Isospirilene 
Levomepromazine 
Methopromazine 
Methylperidide 
Moperone 
Perphenazine 
Pipamazine 
Prochlorperazine 
Promazine 
Prothipendyl 
Reserpine 
Spiramide 
Spiroperidol 
Tetrabenazine 
Thioperazine 
Thiopropazate 
Thioridazine 
Trabuton 
Trifluperazine 
Triflupromazine 
Trimeprazine 
Triperidol 
Geom. Mean 

0.22 
0.13 
0.67 
0.56 
0.04 
1.18 
4.17 
0.13 
0.50 
0.13 
0.56 
0.14 
2.78 
0.03 
0.56 
6.25 
2.00 
5.00 
4.55 
0.20 
0.15 

1.33 
3.23 
0.63 
0.25 
0.03 
0.03 
1.11 
1.67 

22.22 
0.25 
0.77 
2.78 
0.08 
0.13 
2.50 
0.56 
0.04 
6.25 
0 55 

1.67 

0.00 
0.48 
4.55 
9.09 
1.11 

12.05 
37.04 
0.77 
2.56 
0.91 
0.67 
1.20 

27.78 
0.20 
3.70 

10.00 
11.11 
26.32 
32.26 
0.45 
0.17 

10.53 
43.48 
6.25 
0.9 I 
2.13 
0.03 
0.03 
0.03 

62.50 
50.00 
0.15 
7.69 

11.36 
0.14 
1.1 1 
4.00 
3.45 
0.03 

40.00 
1.79 

0.08 
1.43 
3.23 
6.25 
0.26 
9.09 

14.29 
0.67 
1.47 
1 .ox 
2.50 
0.50 

33.33 
0.09 
3.33 

40.00 
5.26 

17.24 
35.71 

1.25 
1.11 
9.09 

10.53 
10.00 
1.54 
1.25 
0.10 
0.40 
5.00 

20.00 
83.33 
0.7 I 
5.88 
9.09 
0.05 
0.83 
x.33 
3.85 
0.25 

40.00 
2.63 

0.00 
0.07 
4.55 
8.33 
0.00 
0.53 

22.22 
0.10 
4.00 
0.15 
0.04 
0.24 

14.29 
0.00 
0.45 
7.69 
5.8X 
5.00 

35.71 
0.04 
0.02 

14.93 
4.00 
3.13 
0.10 
0.50 
0.00 
0.00 
0.03 

33.33 
14.29 
0.01 
2.13 
6.67 
0.00 
0.11 
1.82 
0.56 
0.00 

33.33 
0.37 

0.01 
0.40 
1.02 
1.54 
0.09 
1.54 

16.67 
0.38 
1.06 
0.43 
0.24 
0.22 
5.56 
0.10 
1.08 
3.70 
3.45 
3.70 

10.53 
0.42 
0.22 
3.33 
5.56 
5.56 
0.38 
0.3 1 
0.07 
0.07 
0.67 
9.09 

12.50 
0.67 
1.43 
3.45 
0.03 
0.34 
2.78 
1.18 
0.11 

12.50 

0.03 
0.26 
0.71 
1.43 
0.20 
0.9 1 
2.86 
0.40 
0.83 
0.27 
0.X3 
0.18 
1.67 
0.07 
1.43 
7.14 
3.45 
7.69 
6.67 
0.20 
0.16 
4.35 
3.85 
6.67 
1 .OO 
0.77 
0.04 
0.03 
1.00 
2.00 

18.18 
0.22 
1.67 
7.69 
0.03 
0.28 
3.33 
1.14 
0.06 

20.00 
0.86 0.80 

0.01 
0.29 
0.67 
1.54 
0.19 
0.50 
2.50 
0.22 
0.67 
0.22 
0.50 
0.14 
0.77 
0.04 
0.50 

10.00 
4.55 
4.76 

12.50 
0.13 
0.19 
4.35 
1.28 
4.55 
0.63 
0.63 
0.02 
0.03 
0.83 
2.86 
9.09 
0.31 
2.70 
4.55 
0.08 
0.38 
2.56 
0.77 
0.06 

11.11 
0 65 

2.50 
21.74 
6.25 
0.14 
2.70 
9.09 
5.00 
7.14 
1.41 
1.92 
4.17 
0.06 

10.00 
0.40 

14.29 
1.08 
0.11 
0.48 
0.09 
2.13 
7.69 
0.19 
0.9 1 
2.00 
3.57 
0.14 
1.43 
0.50 
0.03 
0.11 
0.83 
0.0 1 
0.40 
0.91 
1.82 
5.26 
0.14 
3.70 
0.12 
3.33 
0.96 

1.25 
10.00 
1.59 
0.03 
0.91 
2.50 
0.83 
3.57 
0.45 
0.63 
1.82 
0.04 
5.00 
0.14 
2.70 
0.43 
0.06 
0.07 
0.01 
0.77 
1.59 
0.06 
0.40 
0.63 
1.11 
0.06 
0.59 
0.33 
0.03 
0.02 
0.23 
0.01 
0.20 
0.23 
0.63 
3.13 
0.05 
1.33 
0.04 
2.00 
0.34 

0.02 
0.17 
0.04 
0.07 
0.10 
0.20 
0.20 
0.17 
0.03 
0.77 
4.55 
0.14 
0.10 
0.37 
0.1 7 
0.40 
0.83 
0.59 
0.83 
0.20 
0.12 
0.28 
0.22 
0.9 1 
1.14 
0.43 
0.05 
0.05 
0.03 
1 .00 
I .59 
0.06 
0.05 
0.Y 1 
0.06 
0.22 
0.12 
1.14 
0.22 
1.59 
0.22 

0.59 
0.83 
0.71 
0.20 
0.10 
1 .OO 
0.22 
0.20 
0.31 
0.10 
0.33 
0.07 
0.29 
0.10 
0.83 
0.83 
0.20 
0.83 
0.40 
0.20 
0.25 
0.20 
0.22 
0.56 
0.83 
0.10 
0.03 
0.02 
2.22 
0.40 
1.43 
0.08 
0.13 
0.59 
0.20 
0. I3 
0 20 
0.33 
0.05 
0.83 
0 27 

5.00 
62.50 

I .43 
0.13 
5.00 
3.33 
2.00 

16.67 
0.50 
1.25 

16.67 
0.20 

12.50 
0.50 
2.00 
1.00 
0.14 
0.50 
0.25 

16.67 
12.50 
0.13 
1 .OO 
0.33 
8.33 
0.17 
2.00 
1.43 
1.54 
0.33 
1.59 
0.13 
0.50 
1 .OO 
2.00 
0.83 
0.08 
7.14 
3.33 
1.67 
1.35 

0.06 
0.92 
1.19 
0.66 
0.21 
1.73 
3.37 
0.62 
0.71 
0.45 
0.97 
0.17 
3.60 
0.10 
1.31 
3.10 
1.16 
2.20 
2.11 
0.44 
0.40 
1.23 
1.81 
2.30 
0.97 
0.35 
0.08 
0.07 
0.26 
1.77 
5.92 
0.09 
0.84 
2.33 
0.1 1 
0.49 
0.7X 
1.40 
0.08 
6.99 
0 69 
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Figure 3. Activity spectra of haloperidol and chlorpromazine in 12 pharmacological tests. The 
vcrtical axis represents log reciprocal effective dose, the horizontal line shows the 12 tests in  the 
order as they appear in Table I .  

pharmacological data. Of most importance to our discussion of spectral mapping 
are the “activity spectra” and the “double-log charts“. 

In Fig. 3 we have reproduced the activity spectra of haloperidol and chlor- 
promazine. The vertical scale represents the reciprocal effective doses for each of 
12 pharmacological tests: antagonisms of amphetamine, apomorphine, norepine- 
phrine, epinephrine and tryptamine; inhibiton of motility in the jumping box, rearing 
and ambulation tests; observations of catalepsy (rigid postures) and ptosis (closing 
of eyelids); reduction of weight gain and prevention of traumatic shock. The order 
of the tests along the horizontal axis is the same as the ordering in Table 1. This 
ordering was chosen deliberately and is outlined below. It was observed that the 
spectra could be arranged along a bipolar (or differential) axis with haloperidol-like 
compounds at  one end and chlorpromazine-like compounds at the other. In fact, the 
40 spectra were ordered along this bipolar haloperidol-chlorpromazine contrast. 
(This contrast can be regarded as a difference of specificities and, in the case of 
logarithmic transformation of the data, as a log ratio of effective doses. This will 
be defined more precisely later on.) At the same time, the tests were ordered in 
Table 1 and in Fig. 3, such that haloperidol-specific tests (such as apomorphine) 
were on the left side and chlorpromazine-specific ones (such as norepinephrine) 
appeared on the right side. The concept of symmetry between compounds and tests 
in spectral mapping was already apparent in this empirical bipolar classification, 
as both the 40 compounds and the 12 tests were ordered along the same criterion. 

In the double logarithmic chart of Fig. 4, neuroleptics are defined as points, which 
represent their activities in the apomorphine (apo) and norepinephrine (nep) tests. 
The latter define the coordinate axes of the diagram. A diagonal line is constructed 
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Figure 4. Double-log chart representing (schematically) compounds as points defined by their 
activities produced in two tests. The diagonal line through the centcr of the pattcrn (average 
compound) reprcscnts the axis of potency of the compounds. The axis perpcndicular to the latter 
is the axis of specificity between compounds and tests. The projections of the compounds onto 
this axis of specificity dcfine their contrasts with respect to the two tcsts. Haloperidol has a positive 
contrast, as it is morc specific for antagonism of apomorphine than of norcpincphrine. Chlor- 
promazinc has a negative contrast. (Data are taken from Table I.) 

through the geometric average of the two tests (indicated by a small cross). It can 
also be understood that the diagonal represents an axis of potency. Compounds 
that are projected quite high along this axis tend to possess high activity in both the 
apomorphine and norepinephrine tests. Those that are projected at the lower end 
tend to have low activity in both tests. There may be exceptions, however. For 
example, accperone is active in the norepinephrine test, but almost devoid of activity 
in the apomorphine test, as can be seen from the data in Table 1. The projections 
of the 40 compounds upon the potency axis appear in the order of their potency 
(or average activity) in the two tests. Compounds below the diagonal possess apo/nep 
ratios that are larger than average; they are more specific for apomorphine than 
for norepinephrine. Compounds that lie above the diagonal have apo/nep ratios 
that are smaller than average; they are more specific for norepinephrine than for 
apomorphine. It is evident from the geometrical construction in Fig. 4 that the line 
drawn perpendicularly to the potency axis represents an axis of specificity. 
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Compounds that are projected at the higher end of this axis have a positive apo/nep 
contrast. Those that are projected at the lower end have a negative contrast. The 
original coordinate axes (representing reciprocal effective doses in the apo and nep 
tests) can be rotated towards a new frame that is defined by the potency axis and 
the specificity axis. This transformation is an essential operation in spectral mapping. 
I t  can be understood that in the case of three tests, we will still obtain a single 
potency axis (a diagonal line which forms identical angles with all three coordinatc 
axes) and a plane of specificities, which is drawn perpendicularly to the potency 
axis. The procedure can be generalized for multiple tests, resulting always in a single 
potency axis and a hyperplane of specificities, which is perpendicular to this axis. 
The number of dimensions of this hyperplane is one less than the number of tests. 
Spectral mapping can, thus, be understood to be a decomposition of the activity 
data into a potency component and one or more components of specificity. 

A similar geometrical decomposition can be applied in a double-log diagram, in 
which the 12 tests are represented as points based on the activities of haloperidol 
(hal) and chlorpromazine (cpz). The latter form the coordinate axes of the diagram 
(Fig. 5).  The diagonal line then represents the axis of sensitivity, as the projections 
of the 12 tests upon this axis are represented in the order of their sensitivity (or 
average activity) for the two compounds. The projections upon the line drawn 
perpendicularly to the sensitivity axis also represent specificities. Tests that are 
projected high upon the axis of sensitivity have greater than average ratios of 
hal/cpz and have positive contrasts. Those at the lower end of the specificity axis 
have less than average ratios and have negative contrasts. Because of the symmetry 
requirement of spectral mapping, one cannot dissociate the two diagrams (Figs. 4 
and 5). For this reason they are referred to as dual representations. Both should 
be understood in multiple dimensions rather than in the two-dimensional simplifica- 
tions, which we have used here. The general multivariate case, however, can only 
be treated properly in algebraic terms as will be shown below. 

The apomorphine/norepinephrine contrast is one of the strongest that can be found 
in the pharmacological data on the neuroleptics (Table 1). The degree of contrast 
can be measured by the spread of the projections upon the axis of specificity. If the 
spread is zero, then all compounds possess the same apo/nep ratio, and, hence, the 
contrast is zero. The largcr the spread, the more variety there is among the apo/nep 
ratios, and hence, the compounds will show widely varying specificities for cithcr 
of the two tests. Here, the apo/nep contrast produces a bipolar classification of the 
compounds, from being highly specific in the apo test towards being highly specific 
in the iiep test. The former compounds are also referred to as being haloperidol-like 
and the latter chlorpromazine-like. The relevance of this finding was that the bipolar 
pharmacological classification obtained in rats agreed to a large extent with the 
bipolar clinical classification of the neuroleptics. The latter was based upon a contrast 
between the antipsychotic and the tranquilizing properties of the neuroleptics, which 
were described by Lambert and Revol [12]. In clinical tests was observed that the 
haloperidol-type compounds were specific for the treatment of delusions and manic 
states, while the chlorpromazine-type compounds were specific for cases of extreme 
agitation and confusion. It, thus, appeared to be possible, as claimed by Janssen, 
et al. [lo], to predict the clinical effects of the neuroleptics from their pharmacological 
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Figure 5. Doublc-log chart (schematically) representing tests as points defiiied by thcir activities 
exhibited by two compounds. The diagonal line through the center or the pattcrn (avcrage test) 
represcnts the axis of specificity of the tests. The axis drawn perpendicularly to it  is the axis of 
specificity between tests and compounds. The projections of the tests onto this axis of specificity 
definc their contrasts, with respect to the two compounds. The apomorphine test has a positive 
contrast, as it  is more specific for haloperidol-type compounds than for chlorpromazinc-type 
compounds. The norepinephrine test has a negative contrast. (Data are taken from Table I . )  

activity spectra, since the antipsychotic/tranquilizing contrast observed in the clinic 
correlated well with the apomorphine/norepinephrine contrast in rats. So far, no 
clinical equivalent could be detected for the tryptamine/norepinephrine or tryptami- 
ne/dopamine contrasts that were also apparent on the pharmacological activity 
spectra (Fig. 2). 

The agreement between pharmacological measurements and clinical observations 
led to speculation about the causes of psychosis and about the mechanism of action 
of neuroleptics in the brain. It has been known since the early sixties that 
apomorphine acts as a dopamine agonist, i.e. it mimics the effects of dopamine. 
Similarly, tryptamine was known as a serotonin agonist. These considerations led 
to hypotheses that postulated the existence of dopamine and serotonin receptors 
in the brain, which are implicated in psychosis and which can be blocked by 
neuroleptics [ 13, 14, 151. The concept of receptors, intermediates between drugs and 
the organisms in which they produce an effect, has been postulated by Emil Fisher 
[16] as early as 1894. The existence of receptors in the brain that could be blocked 
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by neuroleptics was in 1963 corroborated by the discovery of highly specific 
apomorphine-blocking neuroleptics in the class of the diphenylbutylamines by 
Janssen et al. [17]. A great advance was made in the mid-seventies, when 
i t  became possible by means of radioactively-labeled compounds, to identify 
receptors in the brain that bind specifically to dopamine [18, 191, serotonin [20] or 
norepinephrine [21], and which can be blocked by neuroleptics. These radioactive 
ligand studies not only provided a biochemical basis for the study of psychosis, 
thcy also created the new field of biochemical pharmacology. The neuroleptic 
receptors arc known to be G-coupled proteins that are located in the postsynaptic 
membranes in the striatum and frontal cortex. In addition to the spectra from 
animal studies and from clinical observations, biochemical spectra of receptor 
binding of the neuroleptics became available. It was soon realized that neuroleptics 
vary considerably in  their affinity for the dopamine (D), serotonin (5HT) and 
norepinephrine (a) receptors. Nowadays, these receptors are known to occur as 
various types (DI, D2 up to D5, 5HT1, 5HT2 up  to 5HT7 and a l ,  a2), which in 
turn, can be divided into several subtypes. Furthermore, i t  was established that 
occupation of these receptors ;M vitro correlated well with the in ziiuo antagonism 
of the effects produced by apomorphine, tryptamine and norepinephrine in rats. 
Concurrently with these developments, the Janssen screening tests for neuroleptics 
was reduced to a single test (AT"), in which the agonists apomorphine, tryptamine 
and norepinephrine were given sequentially following administration of a neuroleptic 
[22]. These developments provided a rational interpretation of the three poles or 
vertices in the initial classification of the neuroleptic spectra (Fig. 2) in terms of 
experimentally confirmed receptors. 

An analogy exists between the tripolar classification of the neuroleptics based on 
their 'iffinities for the apomorphine, tryptamine and norepinephrine receptors, and 
the afore mentioned trichromatic diagram, which is defined by the three primary 
colors red, blue and green. Both represent contrasts between the effects produced by 
receptors (G-protein coupled receptors in the brain and photoreceptors in the 
cone cells of the retina, respectively). In both cases, the contrasts have been detected 
before the underlying biochemical mechanisms were discovered, by careful explo- 
ration and interpretation of the empirical data. In the case of the neuroleptics as 
well as in that of the colors, latent (or hidden) variables are responsible for the 
multivariate contrasts that are experimentally observed. Latent variables are 
computed from the manifest (or observed) variables by methods which are related 
to factor analysis. These are usually few in number and their combination enables 
the reconstruction of the original manifest variables [23]. The tripolar classification 
of the neuroleptics and the trichromatic diagram were the result of an empirical 
factor analysis, which did not require multivariate analysis and computers. Not all 
research programs, however, can be concluded by empirical factor analysis, in 
which the hidden variables are detected by careful interpretation and graphical 
analysis, as will be shown below. 

In 1974, our laboratory completed a comprehensive study involving 35 reference 
compounds with antiepileptic properties, based on the following five observations in 
rats: induction of ataxia and loss of righting, suppression of metrazol-induced tonic 
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extension of the hind and forelegs and clonic seizures [24]. The corresponding activity 
spectra (such as in Fig. 3) were drawn on cards and spread out on a tablc. This 
time, however, it proved to be difficult to classify the spectra along a bipolar line 
or a tripolar plane, as has been done in the case of the neuroleptics (Fig. 2). 
Pharmacologists differed in opinion about the similarities and dissimilarities of the 
spectra and arranged them accordingly in different ways. Indeed, there was no a 
priori indication as to the nature and the number of underlying factors in this case. 
Eventually, it was realized that only multivariate analysis could produce an objective 
mapping of the antiepileptics, with which everybody could agree and which could 
be used as a starting point for further interpretation. 

Rather than attacking the antiepileptic problem immediately, it was decided 
that we would tackle the case of the neuroleptics first. As the solution had already 
been derived empirically, it would be easier to determine whether the results of 
multivariate analysis made sense or not. At that time, in 1974, two basic methods 
for multivariate analysis of tabulated activity data (such as in Table 1) were available 
as a first choice. First, one could use Principal Components Analysis (PCA), a well 
established proven method [25, 261. PCA produces a graphic display of the 
compounds (called scores plot) which shows their similarity on the basis of the 
observed activities in the various tests. This, however, was rather irrelevant to our 
problem, as we wanted to classify compounds with respect to their specificities in 
thc various tests, i.c. independently of their potencies. Furthermore, PCA also yields 
a graphic display of the tests (called a loadings plot) which shows the structure of 
their intercorrelations. This could give us some indication as to the number of 
structural factors (or hidden variables), which could explain most of the variation 
in the data. Clearly, PCA does not show specificities between compounds and tests. 
I t  is also not symmetric with respect to compounds and to tests. The other method, 
Correspondence Factor Analysis (CFA), had only recently been described by 
Benzkcri in 1973 [3] and was at that time mainly known by French data analysts 
and statisticians. Fortunately, we were introduced to CFA by Lacourly [27], a 
member of Benzecri’s group. The revolutionary aspect of CFA was that it showed 
the specificities between the rows and columns of a table, when in the form of a 
cross-tabulation (representing parts of a whole) or contingency table (representing 
counts). The method makes use of the biplot graph developed by Gabriel, [2] in 
which both the rows and columns are displayed in one and the same graph. The 
name biplot is derived from the superposition of the scores plot and the loadings plot. 

The reading rules of the CFA biplot are simple. A row and a column that are 
positioned in the same direction, as viewed from the center are considered to have 
positive specificity. A row and a column viewed from the center in opposite directions 
have negative specificity. Rows and columns that are at a distance from the center 
have high specificity, and those that are close to the center are nonspecific. In  the 
case of the pharmacological data of the neuroleptics (Table I) ,  the CFA biplot 
produces a classification of the compounds in the form of Fig. 2 and reveals the 
tripolar structure of the tests. Hence, it supports the three-receptor theory. The 
problem, however, in a pharmacological application, is that the contrasts that are 
seen on the CFA biplot cannot be readily interpreted in terms of the ratios betwccn 
observed effective doses. This follows from the fact that dissimilarities between 
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compounds and between tests are to be interpreted in CFA as distances of chi 
square. The latter is a measure of the relative deviation between the observed and 
expected values. This follows from a particular transformation in CFA, in which 
pharmacological activities are transformed into a kind of specificities. We denote 
the table of observed activities (i.e. reciprocal effective doses) by X ,  and the 
corresponding table of transformed values by Z. The transformation by CFA is then 
defined by: 

where x i j  and zi i  represent the elements corresponding to row i and column j in the 
tables X and 2, and where xi, is the (arithmetic) mean of row i, x , ~  is the (arithmctic) 
mean of column j ,  and x., is the global (arithmetic) mean over all rows and columns 
of x. 

The transformation by CFA in Eq. 1 is symmetric with respect to compounds 
and tests, i.e. they are interchangeable. Note that the quantity X, .X,~/X. ,  is called the 
expected value of x i j  under the assumption that the observed activities X are 
multinomially distributed. (The assumption is, in the strictest sense, not fulfilled 
here, since the observed activities do not represent counts, nor can they be considered 
as parts of a whole.) In a broader sense, one may consider the transformed values 
z i j  as representing a kind of specificity, since the observed activities xij are divided 
by a type of potency, xi, and by a type of sensitivity, x , ~  The problem that arose, 
however, was that in the context of CFA, potency and sensitivity are defined as 
arithmetic means rather than as geometric means of the observed activities, which 
is incompatible with the idea that biological response is related to the logarithm of 
the observed effective dose, rather than to the dose itself. This idea stems from early 
psycho-physical observations and is embodied in the Weber-Fechner law [28], which 
postulates an approximately linear relationship between response and the logarithm 
of the stimulus. This law is reflected in the decibel scale for sound energy, the 
magnitude scale for luminosity, etc. It has also been observed that effective doses 
are usually more normally distributed on a logarithmic scale than on a linear scale 
~ 9 1 .  

4.5.3 Spectral Map Analysis 

Spectral Map Analysis (SMA) is a straightforward multidimensional extension of 
the two-dimensional geometrical constructions in Figs. 4 and 5. The original idea 
was to define a transformation which would transform the observed log X data 
into specificities, Z, and which would have the geometrical effects such as is 
illustrated in Figs. 6 and 7. In the first of these, we consider each of the n compounds 
to be represented as points in a p-dimensional coordinate space, S,, by means of 
their log activities produced in p tests (Fig. 6). The diagonal line, which forms an 
equal angle with all p coordinate axes, represents the axis of potency of the 
compounds, and the plane drawn perpendicularly to this axis, represents the plane 
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plane of specificities 
between compounds and tests 

Figure 6. Extension of the double-log chart of Fig. 4 for multiple dimensions. Thc P I  compounds 
arc represented as points in p-dimensional space, S,, spanned by p tests. The diagonal linc represents 
the potcncies of the compounds, and the (hyper)plane pcrpendicular to it defines the specificitics 
bctween compounds and tests. Spectral mapping performs a Principal Components Analysis (PCA) 
of the specificities in the (hyper)plane. 

of contrasts. For the convenience of the illustration, we have only represented three 
tests, but in the general case, the plane of contrasts will be a multidimensional 
(hyper)plane. In the dual representation (Fig. 7) we represent each of the p tests as 
points in an n-dimensional coordinate space, S,, by means of their log activities 
obtained from IZ compounds. The diagonal line, which forms equal angles with all 
n coordinate axes, represents the axis of sensitivity of the tests. The plane drawn 
perpendicularly to this axis represents the plane of specificities. For convenience, 
we have only considered three compounds, but in the general case, the plane of 
specificities will be a multidimensional (hyper)plane. It should be understood that 
the geometrical procedure can be extended to any number of compounds and tests. 
The two spaces S ,  and S ,  are referred to as being dual, since one cannot exist without 
the other. A change in one will automatically result in  a change in the other. The 
geometrical projection can also be defined in the form of an algebraic transformation 
of the data [30], which in its simplest form can be defined by: 

where xij and zi,! represent the elements corresponding with row i and column , j  of 
the tables X and 2, where l i .  is the (geometric) mean of row i, 2.j is the (geometric) 
mean of columnj and 2.. the global (geometric) mean over all rows and columns of X .  
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Figure 7. Extension of the double-log chart of Fig. 5 for multiple dimensions. Thc p tests are 
represented as points in n-dimensional space, S,, spanned by n compounds. The diagonal line 
represents the sensitivities of the tests, and the (hyper)plane perpendicular to it  defines the specificities 
between compounds and tests. Spectral mapping performs a Principal Components Analysis (PCA) 
of the specificities in the (hyper)plane. Figs. 6 and 7 are dual geometrical represcntations of one 
and the same table of data. 

The transformation of SMA by Eq. (2) is symmetrical, with respect to the 
compounds and the tests, i.e. they can be interchanged. Technically, the transforma- 
tion is referred to as a log double centering of the observed activities, i.e. a 
simultaneous correction of the data for differences between the corresponding row 
and column means. The term 2;. can be regarded as an estimate of the poteiicy 
of compound i. Likewise, the term 2.j can be considered as an estimate of the 
sensitivity of test j .  The term 2.. is a constant for the table. Consequently, the 
expression applies a correction to the log activities for differences in potency of 
the compounds and for differences in sensitivity of the tests. The result can, thus, 
be interpreted as specificities between compounds and tests, according to our earlier 
definition. 

We now define contrast as the difference between two specificities, and by virtue 
of the symmetry principle, we obtain two types of contrasts. The contrast between 
compounds i and i’ with respect to  test .j follows from Eq. (2): 

and all the other terms cancel out. This shows that contrasts can be defined in 
terms of log ratios of effective doses. 
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Similarly, the contrast between tests j and j ‘ with respect to compound i also 
follows on from Eq. (2): 

and all the other terms cancel out. Again, this shows that contrasts can be defined 
i n  terms of log ratios of effective doses. 

We can define the root mean square (rms) contrast between compounds i and i’ 
as the norm of the individual contrasts ofcompounds i and i’, with respect to all tests: 

where zi and z i .  denote vectors of p elements with the general element i,, and z , , ~ .  
Similarly, we define the rms contrast between testj andj’ as the norm of the individual 
contrast of tests j and j ’  with respect to all n compounds: 

where z j  and zj .  denote vectors of n elements with general element zij and zij,. For 
the sake of completeness, we define the rms specificity of compound i as the norm 
of the individual specificities of compound i for all p tests j :  

In a similar fashion, we define the rms specificity of a test j as thc norm of the 
individual specificities of test .j for all n compounds i :  

The reason why root mean square (rms) values are taken, rathcr than mcan values, 
is that the mean specificities over all compounds, or over all tests, are zero, as 
follows from the definition of specificities in Eq. (2). The samc applies to contrasts, 
since a contrast has been defined as the difference between two specificities. Since 
the (hyper)planes containing the projections of the compounds and tests arc usually 
multidimensional, one may attempt to reduce the apparent high dimensionality by 
means of Principal Component Analysis (PCA). Hence, one can describe SMA as 
a log double centered PCA, or as PCA of specificities. In the present context of 
SMA, we will refer to a principal component of specificity by the more general term 
of factor. This avoids confusion with the results of the more usual PCA, which is 
applied to column standardized data. 

Fig. 8a is a schematic representation of the projection of the 11 compounds (rows) 
in the (hyper)plane of specificities within the coordinate space, S,, as defined by the 
p tests (columns). Fig. 8 b  shows the projections of p tests (columns) in the 
(hyper)plane of specificities within the dual coordinate space, S,, as defined by 17 
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Figures. Illustration of the dual gcoinetrical representation of thc data in an ~7x1) tablc of 
transformed data (specificities). Panel a shows n compounds in test space, S,. Panel b shows p tcsts 
in compound space, S,. The axcs (f, and f 2 )  represent the principal components or factors of the 
patterns. Corresponding factors are common in the two spaces. The elliptic contours arc a schematic 
representation ofthe probability density contours ofthe patterns of points. The diagram corresponds 
to the plancs or specificity in Figs. 6 and 7. Panels c and d show the compounds and tcsts in the 
rotated space, S,, spanned by the common factors. The projection of compound i onto factor 1 
defines the score s i l .  The projection of tcst.j onto the same factor 1 defines the loading sJ,. In panel 
e, the scores and loadings plots are combined into a single biplot. 

compounds (rows). By convention, we represent compounds (rows) by circles, and 
tests (columns) by squares in our graphical representations. The factors are the axes 
of inertia of the patterns of the points in the dual (hyper)planes. In the case of an 
ellipsoidal structure, these factors can be regarded as axes of symmetry of the 
patterns. It is important, although not easy, to realize that corresponding factors 
in the dual representations are common. For example, factor 1 of the pattern of 



compounds is the same as factor 1 in the pattern of tests, etc. (We will show in the 
mathematical section how to extract factors from tabulated data.) The importance 
of a factor is measured by its variance (dispersion). Factors are ordered in decreasing 
order of their contribution to the global variance of the transformed data, i.e. 
of the specificities between compounds and tests in Z. The global variance, c, 
which in this context is also referred to as global interaction, is defined by the 
expression: 

The number of factors that can be extracted from the transformed data is equal 
to the minimal number of dimensions that are required to represent the compounds 
and the tests in the (hyper)planes of specificity. This minimal number of dimensions 
is called the rank, r,  of the transformed data matrix Z. It is, at the most, equal to 
the smallest of the number of rows or number of columns minus one. (The loss of 
one dimension is due to the removal of the potency and sensitivity from the observed 
activities). The factors are, by construction, orthogonal which implies that they are 
uncorrelated. As a consequence, the sum of the variances contributed by all r factors 
is equal to the global variance, c, in the transformed data. If 2; denotes the 
contribution of factor k to the global variance, then we obtain: 

Once the orientations of the factors are known, it is possible to rotate the 
(hyper)planes of specificity towards the orthogonal factors, as is shown in Fig. 8c 
and d. The net result is that the original spaces, S, and S,, are rotated into a common 
factor space, S,. The coordinates of the n rows (compounds) along r common factors 
in S ,  are conventionally called factor scores and are compiled in the n x r matrix 
of factor scores, S. A plot, such as in Fig. 8c, of the n rows (compounds) in 
a low-dimensional factor space is referred to as a scores plot. In a similar manner, 
one refers to the coordinates of the p column (tests) along the r common factors 
by the conventional name of factor loadings, which are compiled in the p x r matrix 
of factor loadings, L. A plot, such as in Fig. 8d, of the p columns (tests) in a 
low-dimensional factor space is referred to as a loadings plot. Since the factors are 
common to both the scores and loadings plots, it is feasible to combine the two 
into a so-called biplot as shown in Fig. 8e. The biplot derives its name from the two 
entities (rows and columns) that are represented in one and the same plot, spanned 
by common factors [2]. The scaling of the factor coordinates in S and L is such 
that they are related to the specificities in Z by the matrix product: 

I 

zij = c S i k l j k  
k =  1 

where sik is the coordinate (score) of compound i along factor k ,  and where l jk is 
the coordinate (loading) of test j along factor k .  The above formula also defines the 
singular value decomposition ( S V D )  of table Z [31]. From the relation in Eq. (1 l ) ,  
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follow two expressions for contrasts in terms of the factor coordinates: 

z . .  - 
I J  

S i ' k )  I j k  

We will now briefly provide a geometrical interpretation of the double centered 
PCA biplot (or biplot of specificities). A salient feature of the double centered biplot 
is that both the pattern of rows (compounds) and the pattern of columns (tests) 
are centered about the origin of factor space. In the usual column-standardized 
PCA biplot, only the pattern of the rows is centered about the origin. (In the 
illustrations of Fig. 8 the origin of factor space is indicated by a small cross.) 

The distance of a compound or test from the center of the plot is proportional 
to their rms specificity, as defined by Eqs. (7) and (8). A compound that is at a 
distance from the center has specificities (positive and negative) for two or more 
tests. A test that is at a distance from the center also has specificities (positive and 
negative) for two or more compounds. The center itself represents thc aspecific 
compound and test. The distance between two compounds, or between two tests, 
is proportional to the rms contrasts between them, according to Eqs. ( 5 )  and (6). 
Two compounds that are at a distance from one another have contrasts (positive 
and negative) for two or more tests. Two tests that are at a distance from one 
another exhibit Contrasts (positive and negative), with respect to two or more 
compounds. Compounds that are coincident on the plot have zero contrast; their 
spectra of activity are similarly shaped (although they may be different in potency). 
Likewise, tests that are coincident on the plot have zero contrast; their spectra of 
activity are similarly shaped (although they may differ in sensitivity). 

The projection of a point, representing a test j ,  onto an axis through the center 
and through a compound i is proportional to the specificity zlJ between the 
compound and test. The same is true for the projection of a point representing a 
compound i onto an axis through the center and a test j (Figs. 9a  and 9b). This 
follows from Eq. (11). An axis through the center and through a point, representing 
a compound or test, is called a unipolar axis. It reproduces the specificities in the 
table of transformed data, Z. 

The projection of a point, representing a test j ,  onto an axis through two 
compounds i and i', reproduces the contrast between them. The samc property 
holds for the projection of a point, representing a compound i, and an axis through 
two tests j and j' (Figs. 9c and 9d). This follows from Eqs. (12) and (13). A n  axis 
through two compounds or through two tests is called a bipolar axis. It reproduces 
contrasts in the form of differences between specificities in the table of transformed 
data, 2. It should be remembered that a contrast is defined here as a difference of 
specificities, and that because of the logarithmic reexpression, these can be interpreted 
as log ratios in accordance with Eqs. (3) and (4). 

A fundamental problem with the biplot is its impossibility to exactly reproduce 
the distances between rows and between columns, and at the same time, allow 
projections between the rows and columns. In other words, it is not possible to 
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Figure 9. 
a) projection of a test j onto a unipolar axis through a compound i and the ccntcr (+)  reproduces 
the specificity ziJ, 
b) projcction of a compound j onto a unipolar axis through a test,j and the ccntcr (+)  reproduces 
the specificity zii, 
c) projection of test j onto a bipolar axis through two compounds i and i' reproduccs the contrast 
z , ,  - z i , j  
d) projcction of a compound i onto a bipolar axis through two tests j andj '  rcproduces the contrast 
z r ,  - zit.. 

Reading rules of the spectral map. 

exactly reproduce simultaneously the rms specificities (or r i m  contrasts) and the 
specificities (or contrasts) themselves. What is exactly reproduced depends on the 
choice of two so-called factor scaling coefficients, CI and /3, one for the coordinates 
of the rows and the other for the coordinates of the columns in factor space. In 
SMA we opted for the exact reproduction of specificities at the expense of the 
reproduction of the rms specificities. Our choice of factor scaling coefficients for 
row and column coordinates is symmetric and is defined by CI = /3 = .5, as explained 
in the mathematical section. In a two-dimensional biplot, the degree of distortion 
is proportional to the quartic root of the ratio of the contributions ( l : /A : )  to the 
global variance of the two factors that span the biplot. The effect of this distortion 
is to increase the spread along the second factor of the spectral map. The distortion 
is minimal when A ,  is close to ?,,, but increases when 2, is much smaller than A,. 
(It is assumed here that factors are arranged in decreasing order of the magnitude 
of their contribution to the global variance, hence A 1  2 A2.) 

Often one finds that only the first few factors account for the structure in the 
data. The remaining factors then represent noise, artifacts or information that is 
not relevant to the problem at hand. If there are r* structural factors and r - r* 
residual ones, then the accuracy y of the representation in the reduced factor 
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space, S,*, is given by: 
I* 

y = 1 i z /c  
k =  1 

where A? has been defined before as the contribution of factor k to the global 
variance, c, of the transformed data, Z.  

4.5.4 Spectral Map of the Neuroleptics 

Fig. 10 shows the spectral map derived from Table 1.  The horizontal axis represents 
the first structural factor which accounts for 73% of the global variance of the 
transformed data (specificities), the vertical axis represents another 12% of the global 
variance. The third factor, which is perpendicular to the plane of the map, contributes 
only 6% and is, therefore, not regarded as being relevant. Hence, the two-factor 
SMA biplot represents 8 5 %  of the global variance, with the residual 15% being in 
higher dimensions of factor space. In this case, we have, at the cost of 15% residual 
variance, the advantage of representing the specificities between compounds and tests 
in a planar representation with sufficient accuracy. Not all cases are as straightfor- 
ward as this one, however, and some may require the inclusion of the third factor 
for a 3-dimensional perspective. In more complicated cases, it may be necessary to 
split the table and perform two or more separate analyses, such that each produces 
a two- or three-dimensional spectral map which accounts for a sufficient amount 
of variance in the subdivided table. 

The reading rules of this SMA biplot are as follows. First, circles represent 
compounds and squares represent tests, according to an earlier convention. 
Secondly, the areas of the circles and squares are related to the potency and 
sensitivity of the compounds and tests, respectively, as defined by the geometric 
means of the rows and columns of Table 1. The third rule defines the positions of 
the compounds and tests on the biplot. Compounds that are close together on the 
map possess similar activity spectra, irrespective of their differences in potency (c.g. 
haloperidol and spiroperidol; chlorpromazine and triflupromazine). These com- 
pounds exhibit little contrast in the various tests. Tests that are close together on 
the map have similar activity spectra, irrespective of their differences in sensitivity 
(e.g. amphetamine and apomorphine; norepinephrine and epinephrine). These tests 
produce no contrasts in the various compounds. Compounds and tests that appear 
in the same direction from the center (which is indicated by a small cross) have 
positive specificity for one another (e.g. benperidol and apomorphine; fluanisone 
and norepinephrine; floropipamide and tryptamine). These compounds and tests 
are said to attract each other. Compounds and tests that appear on opposite sides 
of the center have negative specificity. These compounds and tests are said to repel 
each other. 

The horizontal factor, which accounts for 73% of the specificities, is determined 
by the contrast between amphetamine and apomorphine, on the one hand, and 
epinephrine, norepinephrine and traumatic shock, on the other hand. The vertical 
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Figure 10. Spectral map of pharmacological activities of 40 neuroleptics in 12 pharmacological tests. as defined by Table 1. Circles represent 
compounds and squares represent tests. Areas of circles are proportional to the geometric mean activity (potency) of the compounds, as shown in 
the marginal column of Table 1. Areas of squares are proportional to the geometric mean activity (sensitivity) of the tests, as shown in the marginal 
row of Table 1. Distances of circles and squares from the center (+) of the biplot are related to their root mean square specificity. The interpretation 
of this spectral map is given in the text. The three poles of the map are formed by the amphetamine and apomorphinc tests, the epinephrine and 
"orePinePhri"e tests. and the tryptamine and PtOfiF tests. rcsyrrctively. 
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factor, which only contributes 12%, is determined by the contrast of the former 
ones with tryptamine and ptosis. This interpretation of the spectral map agrees, to 
a large extent, with the result of empirical factor analysis undertaken in 1961 [7] 
and is reproduced schematically in Fig. 2. As predicted, chlorpromazine lies between 
fluanisone and floropipamide, and perphenazine lies between haloperidol and 
fluanisone. The spread along the vertical direction is exaggerated, however, due to 
the large discrepancy between the contributions of the first and second factors. The 
apparent spread is inflated by an amount which is equal to the quartic root of 
73/12, or about 157% of the real spread. As already stated, this is caused by the 
particular choice of scaling coefficients of the factor coordinates (x = f i  = .5) which 
favors projections (specificities) rather than reproductions of distances (rms specifici- 
ties). A prominent feature on the map is the similarity of the motility tests, including 
ambulation, rearing, jumping box and catalepsy. Together with the other similarities 
(amphetamine and apomorphine; norepinephrine and epinephrine; ptosis and 
tryptamine), this redundancy in the data suggests that a large part of the information 
on the map could have been produced with fewer tests. In the case of a two-factor 
biplot, the minimal number of tests is three. Hence, we have to select three tests 
which each have maximal specificity (distance from the center), and which also have 
maximal contrast between them (distance between their representative points on 
the map). If a selection is to be made between one or more equivalent tests (e.g. 
epinephrine and norepinephrine), the one with the greatest sensitivity is taken. A 
justifiable choice comprises apomorphine, norepinephrine and tryptamine. These 
are precisely the specific agonists of the three receptors that have been identified in 
brain tissue and that bind to neuroleptics, namely the dopaminergic, serotonergic 
and adrenergic receptors. Although there were no highly specific neuroleptics among 
the 40 that have been studied in 1965 by Janssen, et al. [lo], the three-receptor 
model that emerged from this analysis was in agreement with the knowledge to 
date (Fig. 2). The three tests (apomorphine, norepinephrine and tryptamine) that 
are defined as the minimal set are called poles of the map. They are also referred 
to as marker variables [32]. A reanalysis of Table I ,  using only these three poles, is 
shown in the SMA biplot of Fig. 11. The horizontal and vertical factors account 
for 81 and 19% of the global variance of the transformed data (specificities), which 
amounts to 100% in total. The reading rules of this spectral map are the same as 
those of the previous one, except for the addition of three bipolar axes. Each of 
these bipolar axes defines a contrast, namely, apomorphine/norepinephrine (horizon- 
tal), tryptamine/norepinephrine (pointing upwards) and apomorphineltryptamine 
(pointing downwards). The axes are provided with tick marks and logarithmically 
spaced scale values, which express the corresponding ratios of effective doses. By 
perpendicular projection onto a bipolar axis, one can read off the corresponding 
contrast of each compound. For example, the contrast of isospirilene in the 
apomorphine and norepinephrine tests amounts to about 400 (exactly 393). This 
means that isospirilene is about 400 times more active in the apomorphine test, 
when compared to the norepinephrine test. The contrast of floropipamide in the 
tryptamine and norepinephrine test is about 1 (exactly 1.08), which means that the 
compound is about equally active in both tests. But since the norepinephrine test is 
about 4.4 times more sensitive than the tryptamine test (Table 1 j, floropipamide 
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has a highly positive contrast with respect to the tryptamine and norepinephrine 
tests. Note that the perpendicular projection of the center (+) onto a bipolar axis 
defines the point of zero contrast. This point separates the regions of positive contrast 
(in the direction of the arrow) and of negative contrast (in the opposite direction 
of the arrow). The agreement between the complete analysis based on  12 tests 
(Fig. lo), and the selective analysis using three poles (Fig. 1 l) ,  is fair, with a few 
exceptions (e.g. reserpine and aceperone). This analysis by SMA also supports the 
three-receptor model suggested by the earlier empirical factor analysis (Fig. 2). Both 
analyses have been produced by SPECTRAMAP [33], a program for multivariate 
data analysis with emphasis on graphical representation of the results.* 

4.5.5 Mathematical Description of SMA 

Let X be an n x p table of activities (reciprocal effecitive doses or inhibitory 
concentrations) with the general element, xi j ,  at the intersection of row i with column 
j .  By convention, the row index, i, refers to one of the n compounds, and the 
column index, j ,  labels one of the p tests, although the compounds and tests can be 
interchanged. 

The first step in the analysis is a transformation of the observed activities X into 
specificities by means of logarithmic reexpression followed by double centering. The 
choice of the base of the logarithms is not relevant, and for the sake of simplicity 
we adopted natural logs (base e). The result is an n x p table of specificities between 
compounds and tests, 2, with the general element, z i j :  

or equivalently: 

where Zi., Z.j and 2, .  represent the geometric row, column and global means of the 
elements in X .  

The second step involves the application of Singular Value Decomposition ( S V D )  
to the table (np)-'"Z, which yields the n x r matrix, U, of normalized scores, 
the p x r  matrix, V, of normalized loadings, and the r x r  diagonal matrix, A ,  
which contains the associated singular values. The decomposition is defined by 
means of: 

* SPECTRAMAP is a commercial P C  software product and a registered trademark of Janssen 
Pharmaceutica N.V. 
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where r is the number of singular values that are different from zero, where U i k  and 
l j j k  are general elements of U and V, and where &k represents a diagonal element of A .  
The columns of U and V are mutually orthogonal, which implies the following: 

where the Cronecker symbol, b k k ' ,  represents 1 if k = k', and 0 otherwise. The 
columns of U and V are arranged in decreasing order of their associated singular 
value in A .  The corresponding columns of U and V represent the orientations of 
the common factors in row and column space, respectively. Hence, SVD defines an 
r-dimensional common factor space. The contribution of each factor to the global 
variance c of Z can be shown to be equal to the square of the associated singular 
value. Since factors are uncorrelated we have the following: 

The normalized factor scores, U, and the normalized factor loadings, V, are 
also referred to as left- and right-singular vectors, or as normalized row and 
column principal components. ST/D of a rectangular table can be computed by means 
of the Golub and Reinsch algorithm [31]. If only a small number of dominant factors 
are required, then use can be mase of the iterative NIPALS algorithm, designed by 
Wold [34]. 

The coordinates of the y1 rows (compounds) along the r factors are compiled in 
the M x r factor score matrix, S, with general elements S l k .  Likewise, the coordinates 
of the p columns (tests), along the same r factors, are compiled in the p x r factor 
loadings matrix, L, with general element I l k .  The factor scores and loadings, S and 
L, are derived from the normalized scores and loadings, U and V ,  by means of 
appropriate scaling: 

S r k  = y11'12U rk 2" kk  (20) 

l j r  = p ' / 2 v , k r k E k  (21) 

where !Y and p are the factor scaling coefficients for the scorcs and loadings, 
respectively. 

It should be noted that we employed here a generalized notation, which requires 
the introduction of the constant weights, n'" and p 1 l 2 ,  for rows and columns of Z 
in the definition of SVD.  The reason for our choice is that this notation can be 
more readily generalized to variable weighting of rows and columns, as will be 
shown below in the discussion of generalized SVD.  In the usual case of constant 
weighting, one may omit the constants related to M ' / ~  and pl / '  without violating 
the validity of the expressions. In this way, one obtains the usual formulas for 
ordinary SVD.  



A plot of the rows (compounds) in a low-dimensional factor space is called a 
scores plot. A plot of the columns (tests) in the same low-dimensional factor space 
is called a loadings plot. The joint representation of both rows and columns in a 
common low-dimensional factor space is called biplot [2]. The interpretation of the 
biplot depends largely on the choice of the factor scaling coefficients, CI and [j. Briefly, 
if x = 1, then distances between points representing rows and the origin of space 
can be interpreted as root mean square (rmsj values of the rows in the table Z.  If 
/j = 1, then distances between points representing columns and the origin of space 
can be interpreted as root mean square (rrns) values of the columns of the table Z. 
If a + B = 1, then perpendicular projections of points, representing rows, upon 
unipolar axes through the columns and the origin reproduce the values in the table Z.  
It is not possible to find a pair (a, /?), which allows an interpretation of the 
distances between rows and between columns, and at the same time, of the 
projections. In SMA we define the factor scaling coefficients symmetrically a s  
a = f i  = .5, which is in favor of the projections at the expense of the distances. The 
reproduction of the specificities in Z by perpendicular projection can be verified by 
means of the matrix product of S with (the transpose of) L :  

using Eqs. (20) and (21), and the assumption that a + /? = 1. 
The distortion introduced on the biplot by our choice of factor scaling coefficients, 

a = /? = .5, is most prominent in the direction of the lower order factors. The degree 
of distortion can be quantified as follows. Let us assume a biplot which is spanned 
by the first two factors, with contributions to the global variance A: and 2:. The 
apparent spread along the second factor is then (3L2/A,)/1’2, while the exact spread 
should be ?w2/?u,. The degree of distortion is then (3L1/A2j”2, or (Af/A:)1’4. 

In this section, we assumed that all compounds and all tests carry an equal 
weight in the analysis. If a total weight (or mass) of one is assigned to all compounds 
and to all tests, then each compound carries a constant weight equal to l/n, and 
each test is given a constant weight equal to l/p. In the general case of variable 
weighting, we assigned to each row (compound) a variable weight, w,, and to each 
column (test) a variable weight, wJ, such that: 

n c w i  = 1 and f w i  = 1 
I i 

These substitutions lead to the definition of generalized SVD. In our application, 
one may choose the weights wi to be proportional to the potency of compound i, 
and the weight w j  may be made proportional to the sensitivity of test , j . A weighted 
SMA is then defined by substitution in the previous Eqs. (15) to (22) of the constant 
l /n  by wi, and of the constant l/p by wi. (Care should be taken that the variable 
weights wi and wj are within the control of the summations over rows and columns, 
respectively.) Because of the logarithmic reexpression in SMA, data must be positive. 
A small number of random zeros can be tolerated, however. (Random zeros arise 
from the lack of precision of measurements, or from limitation of the sample size. 
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Figure 12. Diagram showing the procedure for obtaining the base number .yo which ia used in 
the calculation of small positive substitution values for random zeros in a. rectangular data  table X .  
The value x,,~,, is the smallest positive valuc in the table and  P,,~,, is the corresponding percentage 
with respect to the total number of elements in the tablc. 

They contrast with structural zcros, such as in binary or presence/absence data.) 
The procedure for replacing random zeros is outlined below. 

In order to determine substitution values for random zeros, we first constructed 
the distribution of all values in the original table X on a logarithmic scale (Fig. 12). 
This distribution is truncated at the lower end, since we assumed the presence of 
a number of zero values in the table. Let us assume that xmin is the smallest positive 
value in the table and that the corresponding ordinate value is pmi,,. (In Fig. 12 it 
is assumed that about 20% of the data are non-positive.) The next step is to 
extrapolate the lower tail of the distribution by means of a linear regression applied 
between pmin and the point with an ordinate value at 50 + pl,,in/2, halfway between 
pmin and 100 percent. Next, a point q is determined on the regression line with 
an ordinate value at pmin/2. The abscissa which corresponds to this point q 
represents the base value, xo, of the zero substitution. In the final step one 
computes the substitution value x$ at the intersection of a particular row i and 
column ,j from: 

where Ti,, T.j and 2.. are the geometric row, column and global means of the data 
table X ,  respectively. It is required further that the substitution value x t  is not 
larger than the smallest positive value xmin in the table divided by 2. Thc effect of 
this operation is that random zeros are substituted automatically in a consistent 
way such that: 

for all i, i' a n d j , j '  
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4.5.6 Discussion 

Spectral mapping is based upon a general model, which relates the observed 
biological activities to the potency of a compound, the sensitivity of a test and the 
specificity of the compound for that test. In general terms, this relationship can 
be written as: 

(26) log xij = " i j  + log 77; + log " j  + k 

where ni represents the potency of compound i, oj the sensitivity of test ,j, xil and 
zii the activity and specificity of compound i in  test , j ,  and where k is a constant. 
The potency, n, when measured in binding studies (in aitro),  depends upon the 
availability of the compound in the immediate vicinity of the receptors. In animal 
tests (in u i u o ) ,  the potency is also a function of the pharmacokinetic properties of 
the compound, i.e. its bioavailability, rate of transport into the target tissue, rate of 
accumulation in fat, adsorption to circulating proteins, metabolism and elimination. 
A particular compound may be more efficient than others in reaching the appropriate 
receptors, to which it can bind. In this case, a smaller dose of this compound is 
required to produce a pharmacological effect, which in turn makes the particular 
compound more active in the battery of tests. The sensitivity, o, depends upon the 
intensity of the response by an organism following the activation of a receptor to 
which it is coupled. A particular effect may be readily produced, while others require 
much more stimulation. In this case, a lesser dose of this compound will be required 
to produce the given effect. As a consequence, this increases the activities of the 
various compounds in the particular test. The general model is represented 
schematically in Fig. 13. 

The potency, xi, of compound i is estimated as the geometric mean activity 2;. of 
row i in the table of observed activities, X .  Similarly, the sensitivity, uj. of test j is 

I I 
I receptor complex k I 

h I I 

drug i effect j 

I 
I 

potency specificity between sensitivity 
of drug i drug i and effect j of effect j 

Li zij 9 

activity of 
drug i in test j 

X- 1 

Figure 13. 
lies thc procedure of spectral mapping. The 
potency n, or a compound i is determined 
by thc physico-chemical and pharmaco- 
kinetic properties of the compound i .  The 
sensitivity oi of a test j is govcrncd by the 
physiological and psychological propcrtics 
of the organism in which the effcct is 
observed. The scores .sik are the coupling 
coefficients between compound i and rcccp- 
tor complex, k .  The loadings I ,  are the 
coupling cocfricients between test ,j and 
receptor complex, k .  

Gcncral model which under- 
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estimated from the geometric mean activity 2 . j  of column j in the same table X .  
Finally, the constant k turns out to be related to the global geometric mean Y... In 
addition, we can decompose the specificities Z between n compounds and p tests 
into n scores, S, of compounds, along r* structural factors, and into p loadings, L, 
of tests along the same r* structural factors. This has been explained before. 
Substitutions of these relations into Eq. (26) leads to an expression for the general 
model in terms of observed activities: 

r* 

log xjj % Sih!!jh + log i i ,  + log .?,j - lo& .?,, (27) 
h 

The number of structural factors, r*,  has been shown to be equal to the number of 
operative receptors minus one. It is not possible, therefore, to associate the factors 
directly to the individual receptors that bind to the compounds and that trigger 
the responses in the tests. In the neuroleptic case of Table 1, we found that the first 
factor of the biplot (Fig. 10) is determined by the dopamine and norepinephrine 
receptors, while the second factor receives contributions from the three receptors, 
i.e. dopamine, norepinephrine and serotonin. A factor can, thus, be seen as a complex 
of receptors, each of which contributes to the factor in varying degrees. One can 
interpret the score Sjk as the degree of coupling of compound i with receptor com- 
plex k. The degree of coupling, s ik ,  depends on the ability of the compound to fit to 
the receptors of complex k,  and this, of course, depends upon its steric and electronic 
properties. In a similar fashion, one can associate the score I ,  as the degree of 
coupling of receptor complex k with test j .  The degree of coupling, is determined 
by the biochemical and neurological pathways that link the receptor complex k to 
the organ that produces the observed effect of test j .  The varying degrees of coupling 
are incorporated in the general model of Fig. 13 by means of connecting lines of 
variable thickness. 

It is difficult to assess how original the idea of spectral mapping really was when 
it  was first applied in 1975 to pharmacological data. The method of double centering 
had been known by psychologists as a combination of R-mode and Q-mode factor 
analysis (the distinction being related to column centering or row centering of the 
data table). The effect of double centering was already recognized by Cronbach and 
Gleser [35] as a removal of the size component of spectra, but they did not make 
use of logarithms. A logarithmic double centered transformation has been proposed 
by the Danish statistician Georg Rasch in 1963 [36] but without a factor analysis 
of the resulting specificities. Factor analysis has been applied to log double centered 
data in the social and psychological fields according to Andersen [36] as early as 
1966, which is before the discovery of the biplot by Gabriel [2]. Kazmierczak [37], 
who referred to the method as logarithmic analysis, pointed out that the idea of the 
log double centered approach was first proposed by the English statistician Udny 
Yule in the form of an invariance principle. (Every row or column of the data table 
can be replaced by one that is proportional to it, without affecting the result of the 
analysis.) Goodman [38] in a review of factor analytic methods of contingency tables 
and cross-tabulations referred to the log double centered approach as the saturated 
RC (rows and columns) association model and as the log bilinear model, which is 
contrasted with Correspondence Factor Analysis (CFA). The analogy between the 
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estimated from the geometric mean activity 2., of column ,j in the same table X .  
Finally, the constant k turns out to be related to the global geometric mean f,.. In 
addition, we can decompose the specificities Z between n compounds and p tests 
into n scores, S, of compounds, along r* structural factors, and into p loadings, L,  
of tests along the same r* structural factors. This has been explained before. 
Substitutions of these relations into Eq. (26) leads to an expression for the general 
model in terms of observed activities: 

log xij % i: S i k l j k  + log 2;. + log x1.j ~ log 2.. 
k 

The number of structural factors, r * ,  has been shown to be equal to the number of 
operative receptors minus one. It is not possible, therefore, to associate the factors 
directly to the individual receptors that bind to the compounds and that trigger 
the responses in the tests. In the neuroleptic case of Table 1 ,  we found that the first 
factor of the biplot (Fig. 10) is determined by the dopamine and norepinephrine 
receptors, while the second factor receives contributions from the three receptors, 
i.e. dopamine, norepinephrine and serotonin. A factor can, thus, be seen as a complex 
of receptors, each of which contributes to the factor in varying degrees. One can 
interpret the score sik as the degree of coupling of compound i with receptor com- 
plex k. The degree of coupling, sik, depends on the ability of the compound to fit to 
the receptors of complex k ,  and this, of course, depends upon its steric and electronic 
properties. In a similar fashion, one can associate the score l j l  as the degree of 
coupling of receptor complex k with test J .  The degree of coupling, l,, is determined 
by the biochemical and neurological pathways that link the receptor complex k to 
the organ that produces the observed effect of test j .  The varying degrees of coupling 
are incorporated in the general model of Fig. 13 by means of connecting lines of 
variable thickness. 

It is difficult to assess how original the idea of spectral mapping really was when 
it was first applied in 1975 to pharmacological data. The method of double centering 
had been known by psychologists as a combination of R-mode and Q-mode factor 
analysis (the distinction being related to column centering or row centering of the 
data table). The effect of double centering was already recognized by Cronbach and 
Gleser [35] as a removal of the size component of spectra, but they did not make 
use of logarithms. A logarithmic double centered transformation has been proposed 
by the Danish statistician Georg Rasch in 1963 [36] but without a factor analysis 
of the resulting specificities. Factor analysis has been applied to log double centered 
data in the social and psychological fields according to Andersen [36] as early as 
1966, which is before the discovery of the biplot by Gabriel [2]. Kazmierczak [37], 
who referred to the method as logarithmic analysis, pointed out that the idea of the 
log double centered approach was first proposed by the English statistician Udny 
Yule in the form of an invariance principle. (Every row or column of the data table 
can be replaced by one that is proportional to it, without affecting the result of the 
analysis.) Goodman [38] in a review of factor analytic methods of contingency tables 
and cross-tabulations referred to the log double centered approach as the saturated 
RC (rows and columns) association model and as the log bilinear model, which is 
contrasted with Correspondence Factor Analysis (CFA). The analogy between the 
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two approaches has been underlined by Escoufier and Junca [39] and Greenacre 
[40]. In the case of contingency tables, one can show that the results of SMA and 
CFA converge, if the specificities in the data are small and provided that the potencies 
and sensitivities are homogeneous. This follows from the fact that Eq. (1) appro- 
ximates Eq. (2): 

provided that xi j  = X ~ , X . ~ / X , .  = fi,f,i/f,.. 
A comparison between the performance of SMA and CFA 

(28) 

has been made by 
Thielemans, et al. [41] in the context of epidemiological contingency tables. The scope 
of SMA, however, is not limited to contingency tables and cross-tabulations, and 
can be extended to so-called measurement tables. In the latter, columns may be 
expressed in different units, and the data need not be parts of a whole, i.e. must not 
add up to meaningful totals, such as in Table 1. Perhaps, the originality of SMA 
lies in the interpretation of the biplot in terms of bipolar axes, which represent 
contrasts between rows and between columns and which can be expressed as ratios 
of elements in the original data table, such as in Fig. 11  [33, 42, 43, 441. 

The question that arises is whether these tools of analysis and computation can 
provide fundamental knowledge that would not be obtainable from careful observa- 
tion and interpretation. Perhaps they may not, but in any case, they can speed up 
and enrich the process of interpretation by pointing towards unexpected contrasts, 
by stimulating relevant questions and by identifying blind alleys. If the biplots 
indicate that there is little structure in the data then, probably, keen and diligent 
interpretation will add little to this. On the other hand, if a striking pattern is 
observed on the biplot, this may point toward an interesting hypothesis which must 
be confirmed by collateral information and subsequent testing. A n  illustration of 
this is given below. 

I n  our virology department an unexpected discovery was made by SMA when 
analyzing a table of inhibitory concentrations of 15 antiviral compounds in cultures 
of 100 rhinovirus subtypes (responsible for the symptoms of common cold). The 
biplot revealed two neatly separated groups of serotypes, each with different 
specificity for either compounds with aliphatic or for compounds with polycyclic 
structural fragments. This led to the hypothesis of two structurally different proteins 
on the viral envelope, which form so-called grooves or canyons, and which function 
as receptors for antiviral compounds. Once a compound docks into the groove (like 
a key in a lock), the viral envelope cannot open properly and, hence, the genetic 
material cannot be used to replicate the virus inside the host cell. Antiviral 
compounds must, of course, be able to “lock-up” both groups of rhinoviruses in 
order for the infection not to spread further. As a consequence, they must possess 
an aliphatic element on one side and a polycyclic structure on the other in order 
to function as a double key [45, 461. Of course, the success of the application of 
SMA depended to a large extent on the interpretation by the virologist of the main 
factor in terms of a contrast between two distinct receptors. 

The approach of SMA can also be extended to multiblock analyses, for example, 
when the same set of compounds has been studied in different settings such as in 
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animal pharmacology, in radioactive ligand binding experiments and in the clinic. 
In such a situation, one may be interested in correlations between the different test 
situations and their predictive capability [47]. 

In summary, we state that SMA is an effective method for discovering contrasts 
in pharmacological ease-response data, provided that these are related to specific 
biological pathways (such as receptors) that mediate between the administration of 
a drug and the observed effects. 
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4.6 Display of Multivariate Data 
Using Non-Linear Mapping 

Abbreviations and Symbols 

CFA 
ci 
di j 
d; 
( d;j)f' 

Ei 

p c  (s) 

E 

NLM 

PCA 
QSAR 
SAR 

Correspondence factor analysis 
Individual contribution to the distances in the non-linear map 
Euclidean interpoint distance in the display space 
Euclidean interpoint distance in the original space 
Weighting factor 
Mapping error 
Individual mapping error 
Non-linear mapping 
Principal component(s) 
Principal components analysis 
Quantitativc structure-activity relationship 
Structure-activity relationship 

4.6.1 Linear and Non-Linear Methods in SAR and QSAR studies 

Linear multivariate methods such as principal components analysis (PCA) and 
correspondence factor analysis (CFA) are now widely used in medicinal chemistry 
and related disciplines for deriving structure-activity relationships (SAR), [sce e.g. 
Refs. 1-41. However, it is obvious that biological activities of molecules may not 
be just related to topological and/or physico-chemical descriptors by means of 
linear relationships. Therefore, non-linear multivariate methods can also lead t o  
interesting SAR conclusions [5-71. Besides the linear methods, they can be an 
additional or complementary source of information about the relationships in the 
data. Among the non-linear methods available for multivariate data analysis, [see 
e.g. Refs. 8, 91, the non-linear mapping (NLM) method [lo] is very useful for the 
reduction of dimensionality and visualization of multivariate data [1 1 - 151. Under 
thcse conditions, the aim of this paper is first, to present the statistical principles 
of the NLM method, and then to underline the heuristic capability of this 
particular statistical analysis in medicinal chemistry. 



4.6.2 Non-Linear Mapping Algorithms 

The non-linear mapping (NLM) method was designed by Sammon [lo] to visually 
represent a set of points defined in an n-dimensional space by a configuration of thc 
data in a lower d-dimensional display space (d = 2 or 3). The principal feature of 
this method is that it tries to preserve as much as possible the distances between 
the points in the display space similar to the actual distances in thc original 
space. The procedure for performing this transformation can be summarized a s  
follows. 
A. 
Interpoint distances in the original space are computed. The Euclidean distance is 
the most widely used, but any distance measure is suitable for NLM, as long as i t  
is monotonic and the derivative of the mapping error ( E )  exists (e.g. the Hamming 
distance which can save valuable time [16]). 
B. 
An initial configuration of the points (generally random) in the display space is 
chosen. Several authors have proposed to use thc co-ordinates of points of the first 
principal components (PCs) as the initial configuration [ 12, 171. However, it is always 
highly recommended to perform several trials, either with random configurations, 
or with the other P C  co-ordinates [12]. 
C. 
A mapping error ( E )  is calculated from the distances in the two spaces. The original 
mapping error ( E )  calculation for NLM, devised by Sammon [lo] on the basis of 
the Euclidean distance, is stated as follows (Eq. (1)): 

where d; and di j  are the Euclidean interpoint distances in the original and display 
spaces, respectively. The procedure proposed by Sammon [ lo] has been significantly 
modified by Kowalski and Bender [IS]. They defined the mapping error function, 
E ,  as shown in Eq. (2), where (d;)” is a weighting factor: 

Indeed, the p value may be adjusted so as to underline particular features in the 
data set. A value of p = 2 corresponds to an equal weighting of small and large 
distances. When p = -2, the larger distances are preserved at the expense of the 
smaller distances [18]. The above equation, Eq. (2), with p = 2 is one of the most 
widely used equations. However, other types of mapping errors have been used [ 121. 
D. 
Co-ordinates of points in the display space are iteratively modified by means of a 
non-linear procedure, so as to minimize the mapping error. Various minimization 
algorithms can be used. Thus, for example, Sammon [lo] preferred the “steepest 
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descent procedure", Kowalski and Bender [18] adopted the Polak-Ribiere method, 
and Klein and Dubes [19] proposed simulated annealing. The algorithm terminates 
when no significant decrease in the mapping error is obtained over the course of 
several iterations [12, 19, 201. 

Additional information on the conceptual and theoretical aspects of the NLM 
method can be found in an earlier paper by the author and coworkers [12]. 

4.6.3 Interpretation of Non-Linear Maps 

The problem of the quality of the representation of each observation holds for a l l  
linear (e.g. PCA) and non-linear mapping methods. It is obvious that the interprcta- 
tion of the maps must always be accompanied by an inspection of some valuable 
statistical parameters (e.g. absolute and relative contributions in the case of CFA [3]). 
For the interpretation of non-linear maps, two statistical parameters describing the 
quality of the representation (Ei) and the contribution to the distances of each point 
(C,) were recently proposed [12]. 

In the case of Sammon's error [lo], E,, which estimates the goodness of fit for 
each observation, is calculated from Eq. ( 3 ) :  

By definition, the sum of all the individual mapping errors equals the total mapping 
error, E.  

The statistical parameter, C,, can be defined (Eq. (4)) as the sum of all distances 
between a point i and all the others in the display space, divided by the sum of all 
distances between all points in the display space [12]. The sum of the C, values 
equals one. 

l N  

d,, ' 
C. = __ C d i j  

l N  (4) 

i .  j 

4.6.4 Drawbacks and Limitations 

The NLM method has two major drawbacks. First, the maps obtained are unique. 
This means that new objects cannot be directly plotted onto the map without 
recomputation, since interpoint distances are interdependent. Furthermore, maps 
depend on the initial configuration, in the display space, since the minimization 
process finds the nearest local minimum rather than the global minimum. Second, 
even if the cost of computation is constantly decreasing, i t  is important lo  stress 
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Figure 1. a) Non-linear map of the 166 aromatic substituents described by six substitucnt constants 
(x, H B A ,  H B D ,  M R ,  F ,  and R). b) to g) Plot of the scaled values of the six  parameters used to 
describe the substituents on each point of the non-linear map. Squares (positive values) and circles 
(negativc values) arc proportional in size to thc magnitude of the parameters. I n  Fig. I c and 1 d 
the dots indicate the substituents which do not have the ability to acccpt and donate H-bonda, 
respeclively. See Table 1 for the numbering of substituents. 
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that the computation time to obtain a good NLM configuration using micro- 
computers, can be long, when the number of objects considered is large. 

Some solutions have been devised to overcome the above two problems. Thus, 
for example, it has been proposed to use PC scores as an initial configuration for 
solving the problem of uniqueness of the maps obtained. I t  has also been shown 
that when new objects, not too dissimilar from the original training set, werc 
introduced, the maps obtained tended to be quite stable [ I  11. In order to reduce 
the time for computation, procedures, using two or more base points as reference 
for the map, have been devised [21-231. 

4.6.5 An Illustrative Example in Medicinal Chemistry 

In medicinal chemistry, the selection of optimal test series is essential, since the 
design of a new drug is extremely costly (ca. $ l00million [24]). A considerable 
amount of work has been directed towards this aim and many authors have 
proposed different methods, based on simple 2D plots, decision trees or multivariate 
analyses (for a review of these methods see Ref. 24). Recently [25], we have shown 
that the NLM method was particularly suitable for the rational selection of test 
series and for deriving structure-activity relationships from graphical representations. 
Fig. I a clearly illustrates this principle and represents the non-linear map of 166 
aromatic substituents (Table l), described by six substituent constants (i.e. n, H B A ,  
H B D ,  M R ,  F and R), encoding hydrophobic, steric, and electronic effects [26]. 
With a low mapping error (Le. 6.4e-2), we can advance that the main information 
contained in the original data matrix (166x6) is summarized on Fig. l a .  This 
can also be shown by calculating the E,  values (not given here) and by plotting 
the values used for the NLM analysis (i.e. centered and reduced for 71, M R ,  F 
and R ;  reduced for H B A  and H B D )  onto the non-linear map by means of squares 
(positive values) and circles (negative values), whose sizes are proportional to the 
magnitude of the parameters studied. Indeed, Fig. l b  to I g  allow a clear inter- 
pretation of the location of the points in Fig. l a .  It is important to note that 
a PCA performed on the standardized data does not allow all the information 
contained in the original data matrix to be summarized in one plane only. Thus, 
for example, Fig. 2a, which represents the PC1- PC2 plane, shows substituent 7 as 
being near to substituent 8, whilc they are actually different and should be distant 
from each other as shown on Fig. 1 a. The same remark can be made for substituents 
21 and 166 as well as for the series 13/42, 71, 98, and 127/93 and 124 (comparc 
Fig. 2a with Fig. I a). 

From these results, it is obvious that for selecting test series with high information 
content, the use of Fig. l a  can be particularly suitable, since this selection can be 
performed by a simple visual inspection of the map. 
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Table 1 .  

N'  substituent N"  substituent N" substituent 

List of the 166 aromatic substitucnls [26] 

1 
4 
7 

10 
13 
16 
19 
22 
25 
28 
31 
34 
37 
40 
43 
46 
49 
52 
55 
58 
61 
64 
67 
70 
73 
76 
79 
82 
85 
88 
91 
94 
97 

100 
103 
106 
109 
112 
115 
118 
121 
124 
127 
130 
133 
136 

Br  
SO,F 
1 0 2  
NNN 
SH 
NHOH 
5-CI-1 -Tetraiolyl 
OCF, 
CN 
CO, 
CHO 
CH2CI 
CONH, 
NHCONH, 
CH,OH 
OS02CH,  
NHCH, 
C-CH 

COCH, 
C 0 2 C H 3  

CH =CHNO2-(lra/t.~) 

C =O(NHCH,) 
CH =NNHC=S(NH2)  
C H 2 0 C H  , 
SC,H, 
SO,C,H, 
P(CH,)2 
CH =CHCN 
SCOC2H, 
CH2CH,C02H 
NHCOC2H , 
C H ( C H 3 ) 2  

OCH (CH 312 

SOC,H, 

N(CH,): 
SeC,H, 

1 -Pyrryl 

SCOC,H, 
CH=CHCOCH, 

(CH2)3C02H 
NHC = OCH(CH,), 
NHC = S (C, H ,) 
OC,HY 
NHC,Hy 
CH2Si(CH3)3  
CH = NOC,H, 

139 C,H, 
142 S02C,H, 
145 NHSO,C,H, 
148 CH=CHC02C,H,  
151 COC,H, 
154 N=CHC,H, 
157 CH,C,H5 
160 CH=NNHCOC,H, 
163 CH=CHCOC,H, 
166 P=O(C,H,), 

2 CI 
5 SF, 
8 N O  

11 H 
14 B(OH), 
17 S 0 2 N H ,  
20 N = CC1, 
23 S02CF3 
26 NCS 
29 I-Tetrazolyl 
32 CO,H 
35 CH,I 
38 C H  = N O H  
41 NHC=S(NH,j 
44 SOCH, 
47 SCH, 
50 NHSO,CH, 
53 NHCOCF, 
56 CH=CH,  
59 SCOCH, 
62 NHCOCH, 
65 CH =NOCH, 
68 CH2CH, 
71 OCH,CH, 
74 SeC,H, 

80 PO(OCH3), 
83 Cyclopropyl 
86 C02C2H,  
89 NHCO,C,H, 

95 C3H, 
98 OC3H, 

101 S02C,H, 
104 NHC,H, 
107 Si(CH,), 
110 2-Thienyl 

116 OCOC3H, 
119 CONHC,H, 
122 NHCO,C,H, 
125 C,H, 
128 CH,OC,H, 

134 CH=CHCOC,H, 
137 C ,H, ,  
140 N=NC,H, 
143 OSO,C,H, 
146 2,5-Dimcthyl-l -pyrryl 
149 Cyclohcxyl 
152 C02C,H, 
155 CH=NC,H, 
158 CH20C,H, 
161 CH,Si(C,H,), 
164 Ferrocenyl 

77 N ( C H 3 ) 2  

92 CH=NOC,H, 

113 C H = C H C 0 2 C H 3  

131 P(C,H,), 

3 F  
6 1  
9 NO2 

12 OH 
15 NH, 
18 NHNH, 
21 CF, 
24 SCF, 
27 SCN 
30 NHCN 
33 CH2Br 
36 NHCHO 
39 CH, 
42 OCH, 
45 S02CH,  
48 SeCH, 
51 CF2CF, 
54 CH2CN 

60 OCOCH, 
63 NHCO,CH, 

57 NHC=O(CH,CI) 

66 NHC=S(CH, )  
69 CH =NNHCONHNH, 
72 SOCzHi 
75 NHCZH5 
78 NHSOZC2H, 
81 C(OH)(CF,), 
84 COCzHs 
87 OCOC2Hs 
90 CONHCzHs 
93 NHC=S(C2H,) 
96 NHC=S(NHC2H,) 
99 CH20C2H,  

102 SC,H, 
105 NHS02C3H, 

1 I 1  3-Thienyl 
114 COC3H, 
117 CO,C,H, 
120 NHCOC,H, 

126 C(CH,), 

132 PO(OC,H,), 

138 CH,OC,H, 
141 OC,H, 
144 NHC,H, 

150 2-Benzthinzolyl 
153 OCOC,H, 
156 NHCOC,H, 
159 C-CC,H,  

108 CH=C(CN),  

123 CH =NOC,H, 

129 N(C2H4, 

135 CH=CHCO,C,H, 

147 CH=CHCOC,H, 

162 CH=CHC,H,-(/ / t / / l \)  
165 N(C6H42 
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93 124 
n 0.12 0.66 
HBA 1 1 
HBD 1 1 
MR 28.05 32.70 
F 0.27 0.27 
R -0.13 -0.13 

81 39 6 i3  94 

13 
n 0.39 
HBA 0 
HBD 1 
M R  9.22 
F 0.28 

469 

11 144 R -0.11 
1216 

129 
13 

49 I \ 
0 

42 71 98 127 
n -0.02 0.38 1.05 1.55 
HBA 1 1  
HBD 0 0 0 0 

/ 15 75 104 \ 
I I 

l!$9 
165 

Hidden 1 visible points 
62 / 36 
64 1 37 
72 1 29 
95 I 94 
96 1 38 
109 1 26 
116 I 22 
139 / 111 
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155 1 86 

I 
Figure 2. a )  Score map (PC'I -PC2 plane). PC'I and PC2 account for 32% and 26% of t h e  total 
variancc, respectively. b) Correlation circle. See Table 1 for the numbering of substitucnts. 

4.6.6 Software Availability 

The number of statistical packages, including the NLM method, is rathcr small. 
Among them, we can cite ARTHUR [27], DISCLOSE [28], TSPAHAN [29], and 
STATQSAR [30]. This last package integrates a special module which is dedicated 
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to the use of NLM techniques in SAR and QSAR studies. Besides these computer 
programs, some easily implementable algorithms are available in the literature [ 10, 
121. Similarly, Zitko [31] published the listings of two programs written in H P  3000 
BASIC. 

4.6.7 Concluding Remark 

Numerous studies deal with the comparison of the performances of the N L M  
method with other non-linear and/or linear mapping techniques [ 10, 29, 32 ~ 341. 
From the published results, it is often difficult to obtain a fair estimation of their 
relative efficiency and usefulness, since they are most often presented from artificially 
generated data sets or from well-known real data sets (e.g. iris data [35]).  In all 
cases, from a practical point of view [e.g. 12-15, 251, we think that the NLM 
method should be seen as a valuable additional tool in the kit of the classical 
multivariate analyses available for deriving structure-activity and structure-property 
relationships. 
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Abbreviations 

Canonical correlation analysis 
Canonical variate 
Multiple regression analysis 
Principal component analysis 
Quantitative structure-activity relationship 

Coefficient of the j-th response variable in the i-th CV 
Verloop steric parameter (breadth 1) 
Verloop steric parameter (breadth 4) 
Coefficient of the 1-th descriptor variable i n  the i-th CV 
Correlation matrix between descriptor and response variables 
H-nmr chemical shift of the benzylic methylene 
i-th canonical variate first set 
i-th canonical variate second set 
Dose required to affect 50% of treated insects 
Elimination rate constant 
Penetration rate constant 
Dose required to knock down 50%) of treated insects 
Livingstone's charge transfer constant 
Verloop steric parameter (length) 
Dose required to kill 50% of treated insects 
Proportion of cis-isomer in the mixed ester 
Pharmacokinetic distribution coefficient 
i-th largest eigenvalue of C X y  
Molar threshold concentration 
Number of descriptor variables 
Partition term 
Number of response variables 
Coefficient of determination 
Redundancy coefficient 
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Canonical correlation between w. and Zi 
Proportion of variance in descriptor variables accounted for by the 
j-th CV 
Canonical loading of the ith descriptor variable onto the j-th CV 
Proportion of variance in response variables accounted for by the 
j-th CV 
Canonical loading of the i-th response variable on the ,jth CV 
The smaller of p and q 
Steric effect 
Steric parameter describing esterification of the substituted benzyl 
alcohol 
Hammett constant 
i-th canonical variate first set 
i-th descriptor variable 
j-th test statistic for Bartlett’s test 
i-th value of the j-th descriptor variable 
i-th response variable 
i-th canonical variate second set 

4.7.1 Introduction 

In studies of structure/activity relationships, several biological responses may be 
measured. For example, different potencies, each related to a different biological 
response (e.g. l/ED,,, l/LD,,, l/KD,,,, etc.) could be estimated for each test 
compound, examined during the development of a new drug or agrochemical. I t  
may then be necessary to determine whether relationships cxist betwcen two sets 
of variables, the biological potencies (Set 1) and the chemical/molecular properties 
(Set 2). 

One approach is to employ canonical correlation analysis (CCA). CCA is a 
technique which determines the linear combination of the response variables that 
is maximally correlated (ordinary product moment) with a linear combination of 
the predictor variables. Unlike multiple regression, where the potencies are analyzed 
independently with one model for each response, thus ignoring any correlation 
structure amongst the different potencies. CCA utilizes this shared information and 
affords an analysis of all response variables simultaneously. 

4.7.2 Formulation of the Problem 

The variables in the response group are designated as Y,, Y2, . . . , Y, and the variables 
in the descriptor group as X , ,  X,, ..., X,. The principle of the method is to calculate 
a linear combination of the q response variables: 

(1) w, = a1,Y1 + u12Y2 + ... + UlYYY 
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and a linear combination of the p predictor or descriptor variables: 

2, = h l l X l  + h ,2X ,  + ... + h, ,X,  ( 2 )  

where the coefficients u I 1 ,  a,,, ..., u l q  and b ,  ,, b,,, ..., h , ,  are estimated from the 
data. These coefficients are chosen, so that the pairwise correlation between W,  and 
Z ,  will be as large as possible. The idea is that if this maximum correlation, R,,, 
is significantly large, then there is evidence of an association between the two sets 
of variables. W, and Z , ,  given by Eqs. (1) and (2),  are referred to as canonical 
variates (CV), and the (maximum) correlation between them (Rcl) is known as the 
canonical correlation. These canonical variates are equivalent to the principal 
components (PCs) produced in principal component analysis (PCA), or the latent 
variables produced in PLS, with the exception that the criterion for their selection 
has altered. Whereas all three techniques produce linear combinations of the original 
variables, CCA does so not with the object of accounting for as much variance as 
possible within one set of variables (PCA) or maximising the covariance X ' Y  of 
the data (PLS), but in order to maximize the correlation between the two sets of 
variables, X and Y 

The techniques of CCA, PCA and PLS are analogous in several other respects. 
PCA, for example, selects a first PC that accounts for a maximum amount of 
variance in a given set of variables, and then computes a second PC accounting for 
as much a s  possible of the variance left unaccounted for by the first PC, and so 
forth. PLS selects successive pairs of latent variables, one member of each pair being 
constructed from the X and Y sets, respectively, to have maximum covariance. CCA 
follows a similar procedure. The first pair of CVs, W, and Z ,  (Eqs. (1)  and (2)), are 
selected so as to give the highest intercorrelation possible, given the nature of the 
variables involved. A second pair of CVs, (W,, Z,) is then selected to account for 
a maximum amount of the relationship between the two sets of variables left 
unaccounted for by the first pair of CVs, and so forth. In practice, the number of 
pairs of canonical variates (w, Z,), extracted by the analysis, will be equal to the 
smaller of q and p. Thus, the linear relationships, 

w, = U l l Y 1  + U,,Y2 + ... + u,,Y, 

w2 = u2,Y, + u22Y2 + ... + u2,Yq 

. . . . . . . . . . . .  

w, = U , l Y l  + as*Y2 + ... + U\,Y, 

and 

. . . . . . . . . .  
Z ,  = b , l X ,  + h,,X2 + ... + h,,X, ( 3 )  

can be found, where s is the smaller of q and p.  The pairs of canonical 
variates are derived in decreasing order of importance, so that the (canonical) 
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correlation R,, between the first pair of CVs (W, ,  2,) is a maximum; the correlation 
R,, betweeen the second pair (W2,Z2)  is a maximum, subject to these variables 
being uncorrelated with (W, ,  Z , ) ,  and R,, < R c l ;  the correlation R,., between W, 
and Z ,  is a maximum, subject to (W3, Z,) being uncorrelated with W,, Z , ,  W2 
and Z,, and R,, < R,,, and so forth. 

4.7.3 Features of Canonical Correlation Analysis (CCA) 

4.7.3.1 Procedure for CCA 

CCA takes, as its b asic input, two groups of variables (standardized to zero mean and 
unit variance), each of which can be given theoretical meaning as a group. These two 
groups will generally comprize y1 observations on a set of response variables 

so that the data matrix will look like the following 
( y ,  i = 1, 2, .... q), and a set of descriptor/predictor variables ( X , ,  i = 1,  2, .... p ) ,  

X I 1  X I 2  ... X l p  1'11 Y 1 2  ... J ' l y  

x21 x22 ... xzp 1'21 Y22 ... 1 '2y  

I . . . . . . . . . . . . . . . . . . . . . . . .  

The method of extracting the successive pairs of CVs involves an eigenvalue- 
eigenvcctor problem, which has some similarity with that for obtaining the PCs in 
PCA. The eigenvalues (R;) and associated eigenvectors constructed by the CCA 
are based on the combined ( p  + 4)  x ( p  + 4 )  correlation matrix, C,,, between the 
descriptor variables and the response variables, where 

R?] . 
p x p matrix R,, f p x q matrix 

q x p  matrix R;, f q x 4 matrix R,, 
c,, = ... ... ... ... ... 

From this matrix an s x s matrix R;y'R;,R,$ R,, can bc constructcd, and the 
eigenvalues of this matrix A 1  > i, > ... > 2 ,  are the squares of the canonical 
correlations between the pairs of canonical variates, i.e., R,, = qz, and represents 
the amount of variance in the canonical variate, M/T, that is accounted for by the 
other canonical variate, Z,. The corresponding eigenvectors allow the canonical 
variate coefficients (a,, and b,, in Eq. (3)) to be calculated. 

4.7.3.2 Canonical Weights and Canonical Loadings 

Interpretation of the canonical variates is necessary, if a picture of the association 
between the two variables sets is to be formulated. Canonical weights and canonical 
loadings have been used to assess the relationship between the original variables 
and the canonical variates. Canonical weights, a,, and h,,, in Eq. ( 3 ) ,  are analogous to 
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the coefficients in multiple linear regression analysis (MRA) and indicate the 
contribution of each variable to the variance of the respective canonical variate. 
They, therefore, define the location and direction of the canonical vector, and identify 
the variables used in its construction. However, as in MRA, the canonical weights 
may be highly unstable due to multicollinearity. Thus, some variable may have a 
small or negative weight because it is strongly correlated to some other variable(s) 
in the model. Canonical loadings are thought by many to be more useful in identifying 
the nature of the canonical relationships. Canonical loadings give the simple product 
moment correlation of the original variable and its respective CV, and reflects the 
degree to which the variable is represented by a CV. The canonical loadings can 
easily be found by correlating the raw variable scores with the canonical variate 
scores. Canonical variate scores are analogous to PC scores in PCA. 

4.7.3.3 Proportion of Explained Variance 

A large canonical correlation between pairs of variates does not necessarily indicate 
a useful and interpretable solution. For example, if only one or two variables have 
a high association with the canonical variable, and, thus, have high loadings, the 
total amount of variance in the response set of variables ( Y ) ,  accounted for by the 
canonical variate, can be small. In such cases, there is generally no relationship 
between the two sets of variables, since the canonical structure indicates only a 
specific relationship between one or two prediction and response variables. 

The proportion of explained variance in the Y set that is accounted for by a 
particular variate is given by the average squared loading of the response variables 
on that particular variate, i t . ,  

i =  1 

where [RY(j)I2 denotes the proportion of variance in the response set variables 
accounted for by the j-th canonical variate, and r y , ( j )  is the canonical loading of the 
i-th response variable on the j-th canonical variate. Similarly, the proportion of 
variance in the predictor set of variables ( X )  accounted for by the j-th canonical 
variate is given by: 

i =  1 

4.7.3.4 Redundancy Coefficient 

In many QSAR studies, it is useful to know how much of the variance in the response 
set is accounted for by the predictor set. One might think that R,$ provides this 
information. However, atthough the squared canonical correlation coefficients do 
have some interpretations of the variance, they give the variance shared by the CVs 
and not the variance shared by the original X and Y variables. 
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Stewart and Love [ l ]  have proposed an index, called the redundancy coefficient, 
which represents the amount of variance in the response set that is redundant 
to the variance in the predictor set. This redundancy coefficient, denoted by R,, ,, 
is given by 

and is the sum of the product of the proportion of explained variance i n  the Y set 
that is accounted for by a particular CV with its associated eigenvalue (= (R$)). 
Stewart and Love showed that R,, is equivalent to regressing each Y variable, in 
turn, on all the X variables, and then averaging the q resulting square multiple 
correlation coefficients. Thus, Rcy , ,  expresses the proportion of variance in the Y 
set, which is explained by the X set. A redundancy coefficient, R,, y ,  can also be 
constructed and represents the amount of variance in the X set of variables that is 
redundant to the variance in the Y set. 

4.7.3.5 Hypothesis Testing 

Bartlett [2] has outlined a procedure for testing the statistical significance of the 
canonical correlations, when the sample size is large, and so determined how many 
significant relationships exist between the two sets of variables. 

To  test if there is at least one significant canonical correlation, the following test 
statistic is calculated, 

where n is the number of observations, for which data are available. The distribution 
of xo is approximately chi-squared, so that if xo is greater than a selected percentage 
point of the chi-squared distribution with p q  degrees of freedom, then it may be 
concluded that at least one of the canonical correlation coefficients is significantly 
large. However, if xo  is not significantly large, then there is no evidence of any 
relationship between the X and Y variables. 

If xo is significantly large, then the following test statistic is calculated: 

x, has the effect of the first canonical correlation removed, and is approximately 
chi-squared distributed with ( p  - 1) (q  - 1) degrees of freedom. This process 
continues, until it is found that the remaining correlations are no longer significant. 
The test statistic to examine the significance of all, but the first j canonical 
coefficients is: 

(9) 

and has ( p  - j )  (q  - j )  degrees of freedom. 



4.7.4 The Application of CCA to QSAR Problems 

Compared with other multivariate procedures, CCA has been used in relatively few 
QSAR studies. A search of the Science Citation Database, for example, identified 
only one publication, describing the use of the technique to investigate the 
structure/activity relationships of drugs. Nevertheless, a number of studies have 
been undertaken in this laboratory, some of which will be described to indicate the 
potential of the method as a tool for investigating structure/activity relationships. 
There are no examples of the use of CCA, which establish its value for predicting 
the biological activity of drugs or agrochemicals, although at least one preliminary 
investigation has been undertaken [3]. 

4.7.4.1 Pharmacokinetics of Pyrethroid Insecticides in Insects 

A mathematical model describing insect pharmacokinetics [4] was used to generate 
data, describing the penetration and elimination of a series of pyrethroid analogues, 
the ( & )-cis/trans-methylbenzyl-chrysanthemates, applied to mustard beetles. The 
three parameters of the model, k ,  (penetration rate constant), he (elimination rate 
constant) and i (a parameter describing the relative affinities of the compound for 
the outside and inside of the organism) were estimated for each compound using 
pharmacokinetic profiles (mass of insecticide vs time), based on experimcntal results 
obtained by rinsing applied insecticide from the surface of treated insects, and 
grinding and extracting the washed insects with a suitable solvent a various times 
after treatment [5 ] .  

The physico-chemical properties of the compounds were described by four 
variables, viz. n (partition term), cr (Hammett constant), S, (a steric effect) and log cis 
(the proportion of cis-isomer in the mixed esters). The influence of chemical 
structure on pharmacokinetics was investigated using canonical correlation analysis 
with log k,, log k ,  and log 1, as the first set of variables, and n, 0, S, and log cis 
as the second set. The correlation matrix for this analysis is presented in Table I ,  
and is based on data for 14 of the 22 possible compounds, plus the parent 

Table 1. Interparameter correlations, describing the inolccular properties of the niethylbcn/yl- 
( i )-c.Ls/rrans-chrysantheniatcs and their pharinacokiiietic bchavior, following topical application 
to mustard beetles. Pliucdon c,ocNcwirie Fab. 

l ogk ,  log k, l o g i  71 (T s2 log c i s  

log k, 1.000 
log k, 0.359 1 .000 
log i - 0.090 - 0.590 1.000 
71 -0.567 0.088 -0.598 1.000 
f7 0.565 -0.040 0.415 -0.948 1 .000 
S 2  - 0.29 I - 0.078 - 0.45 1 0.356 -0.1 12 1.000 
log cis - 0.271 - 0.319 0.123 0.134 -0.122 0.185 1.000 
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Table 2. The standardized coefficients and correlations (loadings) of the pharmacokinetic and 
molecular properties of the methylbenzyl-( ~)-cis/trrms-chrysanthemates with the canonical variates 

Variable Standardized Canonical 
coefficients loadings 

Canonical Variate Canonical Variate 

Set I CNVRFl CNVRF2 CNVRF3 CNVRFl CNVRF2 CNVR3 

log k ,  0.597 0.028 - 0.906 0.634 0.378 - 0.674 
1% k, 0.336 0.970 0.861 0.005 0.999 0.034 
log 2 0.923 -0.0333 0.850 0.671 - 0.609 0.423 

Set 2 CNVRSI CNVRSI CNVRSI CNVRSI CNVRS2 CNVRS3 

n -0.121 3.287 -0.160 - 0.925 0.179 0.323 
CT 0.643 2.859 -0.783 0.8 19 -0.079 -0.565 
s2 - 0.547 -0.858 -0.800 - 0.662 -0.137 - 0.734 
log cis 0.004 -0.687 0.189 -0.193 -0.755 0.1 14 

Can. 0.930 0.503 0.254 
Corr. 
Eigenvalue 0.866 0.253 0.065 

compound benzyl-( 
performed using the BMDP program 6M, are summarized in Table 2. 

)-cisltrans-chrysanthemate. The results of the CCA, which was 

Applying Bartlett's test (Eq. (7)) we have: 

xo = -[15 - 1 - (4 + 3 + 1)/2] [In (1 - 0.866) 

+ In (1 - 0.253) + In (1 - 0.065)] = 23.65 (7) 

which, with 4 x 3 = 12 degrees of freedom, is significant at the 5% level. Conse- 
quently, there is evidence to suggest that there is a relationship between the two 
variable sets. We can now test whether a significant relationship exists between the 
two sets of variables after the effect of the first canonical variate pair have been 
removed. Using Eq. (8) we find that x1 = 3.59, which, with (4 - 1)(3 - 1) = 6 
degrees of freedom, is not significant. Similarly, x, = 0.67 (with 2 degrees of freedom). 
We can conclude, therefore, that only one canonical correlation is significant. 

From Table 2 it can be seen that log k,  and log 3, from the first set, and TC, CJ and 
S ,  from the second set, load fairly strongly onto the first CV. The signs of the 
coefficients indicate that an increase in the value of this variate is associated with 
a) a decrease in TC, b) an increase in CJ, and c) a decrease in S,. A plot of the canonical 
scores for W,(CIVVRFl) and Z, (CNVRSl )  are given in Fig. 1, where the pattern 
of points reflects the canonical correlation of 0.930(&,). 

An increase in the size of k,  and A would result in a faster net flow of material 
through the two compartments of the pharmacokinetic model. Thus, an increase 
in the magnitude of the first CV describes a reduced residence time within the insect, 
which would then be exposed to a high level of internal toxicant (large A) for a reduced 
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Figure 1. A plot of the canonical scores for W , ( C N V R F l )  and Z , ( C N V R S I ) ,  extracted from data 
describing the relationship between the pharmacokinetic and the molecular properties of the 
methylbenzyl-( f )-cis/truns-chrysanthcmates ( R c l  = 0.93). 

elapsed time (high rate of elimination, ke). Although the other two pairs of CVs are 
not significant, careful interpretation of Bartlett’s xo  statistic is necessary if Type I1 
errors (acceptance of false null hypotheses) are to be avoided. Thus, it is interesting 
to note that the second CV associates log k ,  (with a loading of 0.999) almost entirely 
with log cis (loading = 0.755). This result suggests that the second C V  may represent 
the conductivity of the insect cuticle to movement of insecticide across this barrier, 
and that the rate cuticular penetration increases in proportion to the relative amount 
of trans-isomer applied. 

The redundancy calculations using Eq. (6) show that despite the high canonical 
correlation linking the two variable sets, only 38.7% of the variance in the 
pharmacokinetic parameters is accounted for by the physico-chemical variables. 

4.7.4.2 The Relationship between the Physico-Chemical Properties 
of Pyrethroids and Pharmacokinetics, Pharmacodynamics and Toxicity 

In a subsequent study from the same laboratory, CCA was used to investigate the 
structure/activity relationships of a second series of substituted benzyl ( + )-cis/trans- 
cyclopropane-1-carboxylates, the QSAR compounds [3]. These compounds were 
selected using procedures, designed to produce a training series with good distri- 
butional properties and low interparameter associations, and were, therefore, well 
suited to a QSAR study. Because pyrethroids have a rapid knockdown (Kd) 
effect in insects followed much later by lethality (L), two potencies (l/KD,, and 
l/LD,,) were determined for each compound in the series. These are respectively 
the estimates of the inverse of the dose required to knockdown and kill 50% of the 
treated insects. 

The association between the set of variables describing knockdown and insecticidal 
activities (log KD,, and log LD,,: Set 1) and the physico-chemical properties of the 
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QSAR pyrethroids were investigated. The physico-chemical properties of the 
pyrethroids were the following: five Verloop steric parameters, viz. 2L,  3B1,4BI,  4B4, 
5B1, where the numeral prefix indicates the position of a substituent on the benzyl 
ring; Livingstone's x parameter, derived from NMR studies and describing charge- 
transfer interactions 131; Hammett's o constant; a dummy variable, s,, describing 
the sterification of the substituted benzyl alcohol with an acid moiety, S, = 0 for 
chrysanthemates or 1 for chlorsanthemates; and CH,, the NMR chemical shift (ppm) 
of the benzylic methylene protons (Set 2). Two significant pairs of canonical variates, 
C N V R F l / C N V R S l  and C N V R F 2 /  C N V R S 2 ,  were identified (Bartlett's test, 
p < 0.00001), and used [3] to identify associations between the response variables 
(Set 1 )  and the descriptor variables (Set 2). 

The first pair, C N V R F l / C N V R S I ,  is based on the sum of the weighted log LD,, 
and log K D , ,  estimates, whereas the second pair, CNVRF2ICNVRS2 ,  is based on 
a difference between these estimates, i.e. a contrast between the two sets of potencies. 

The canonical variates C N  V R F l / C N V R S l  were correlated with experimental 
estimates of the threshold concentration (log M T C )  of pyrethroid required to elicit 
abnormal activity in an isolated nerve preparation, the crayfish stretch receptor, 
and is, therefore, related to the pharmacodynamic activity of the pyrcthroids 
(Eqs. (10) and ( I  1)). 

I I  r F 
C N V R F I  = 5.38 + 0.85 log M T C  16 0.80 25.4 (10) 
C N V R S 1  = 6.59 + 1.03 log M T C  6 0.91 20.4 ( 1  1) 

The second pair ofvariates (CN C'RF2ICN VRS2)  were correlated with the pharmaco- 
kinetic parameters, k,, k ,  and %, estimated for these compounds following topical 
application ( 4  pg/insect) to mustard beetles, Plzaedon coclzleariue. 

I? r F 
C N V R F 2  = 2.20 - 2.74k, ~ 0.05k,, - 0.70/1 16 0.91 20.4 (12) 
C N V R S 2  = 1.77 - 2.31kC - 0.05kP - 0.58A 6 0.95 5.6 (13) 

This interpretation of the two pairs of variates enabled Szydlo [3] to identify 
relationships between the physico-chemical properties of the QSAR compounds 
and their pharmacokinetic behavior and pharmacodynamic activity, PA (Table 3). 

Table 3. 
insecticidcs and their pharmacokinetic and pharmacodynamic behavior identified by CCA [3] 

Examples of' the relationships between the physico-chemical properties o f  pyrethroid 

Propcrty Pharmacokinetics Pharmacod ynaniics 

4B1 An increase in 4B1 reduces flow through 
the insect 

or i 

duccd k , ,  k ,  or i 

Large dimensions correlate positively 
with pharmacodynamic activity (PA) 

k' Electron donation reduces reduced k,,  k ,  Relatively unimportant 

s4 Dichlorovinyl substitution results in a re- Dichlorovinyl substitution cnhanccs 
pharmacodynamic activity (PA)  
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4.7.4.3 Variable Deletion Procedures and CCA 

In order to obtain a parsimonious QSAR model, based on CCA, Szydlo [7] developed 
a procedure for deleting descriptors in a stepwise manner by using an approach 
commonly employed in multiple regression. His search for a reduced set of 
descriptors was undertaken using an initial set of 22 physico-chemical variables. 
This set was characterized by substantial multicollinearity, but could be reduced to 
eleven variables without loss of information using the coefficient of determination 
( R 2 )  as a diagnostic to identify those variables which could be deleted from the set 
because they contained no unique information (i.e. R2 is equal to unity) and are, 
therefore, redundant. Each descriptor was regressed on all other descriptors in the 
set (Set 2), and those with R 2  values equal to unity were eliminated. The remaining 
11 variables, therefore, contained some unique information which could be related 
to insecticidal and knockdown activities. 

The association of this reduced set, with the two toxicity parameters log K D , ,  
and log LD,,, was investigated using CCA. An initial canonical correlation resulted 
in two toxicological canonical variates (TF1 and T F 2 ) ,  which summarized the 
relationship between the biological and molecular properties of the training series. 
However, severe multicollinearity still characterized the physico-chemical variable 
set, indicating the presence of redundant variables. In order to  reduce the complexity 
of the predictor set, whilst retaining its association with the two toxicological 
potencies, backward stepping was employed as follows. The variable, whose removal 
resulted in the smallest reduction in the CCA eigenvalue, R;, was discarded and 
the process repeated in a second step using the remaining variables. Stepwise deletion 
was stopped, when the reduction in R; was considered to indicate a significant loss 
of information on the basis of an F-statistic. The F-test employed compares the 
change in variance explained, after removing a variable, with the residual variance 
before deletion of a variable, 

Table 4. Summary of thc backward stepping procedure to identify thc most parasimonious 
canonical variates, describing the relationship between thc toxicity and physico-chemical properties 
or the QSAR pyrethroids [7] 

Number of Variable Eigenvalue P Eigenvaluc F 
variables removed of thc 1" of the 2'Id 

canonical canonical 
variate variate 

I t  0.969 0.904 
10 F 0.969 0.899 
9 5L 0.964 0.897 
8 R 0.945 0.886 3.20 
7 3B1 0.941 1.73 0.814 19.58 
6 log M W 0.934 3.25 0.733 
5 4L 0.896 19.80 0.687 
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Table 5. Squared mulliple correlations of each variable in the 
predictor set with all other variables in that set, before and after 
backward stepping [7] 

Variable Original 11 “Best” 6 
variables variables 

R2 R2 
~ 

3B1 
3 84 
4L 
4B1 
5L 
6L 

F 
R 

K 

s4 

~~~~~ 

0.996 
0.992 0.383 
0.993 0.709 
0.993 0.733 
0.997 
0.996 0.191 
0.995 0.270 
0.995 
0.998 
0.991 0.090 

where k ,  is the number of variables at the present step, and k ,  is the number after 
the next step when one further variable has been deleted. Thus, this F-statistic 
measures whether deletion of a particular variable produces a significant change in 
the variation shared between the response and descriptor sets. 

This procedure was carried out for each of the canonical variates to yield the 
“best” equation based on the following six descriptors viz. 3B4, 4L, 4B1, 6L, K and 
S,. A summary of this procedure is presented in Table4. The squared multiple 
correlations of each variable in the second set, with all other variables in that set 
computed before and after backward stepping, reflecting both the degeneracy and 
multicollinearity of this data, is described in Table 5. Table 6 presents loadings and 

Table 6. Standardized coefficients and correlations (loadings) of the original variables with the 
canonical variates estimated for the QSAR pyrethroids, topically applied to mustard beetles, 
Phuedon cochleuriue Fab. [7] 

Variable Loadings Standardized coefficients 

TFI TF2 TF I TF2 

0.998 -0.055 
0.71 1 0.703 

0.949 -0.960 
0.074 1.348 

TSl  TS2 TSl  TS2 

3 84 
4L 
4B1 
6L 
K 

s4 

- 0.347 
-0.134 
-0.332 
-0.318 - 

-0.582 
0.263 

0.117 
0.389 
0.492 

0.704 
0.077 

- 0.062 

- 0.744 - 0.045 
0.414 -0.416 

-0.759 1.086 

0.517 0.862 
-0.552 0.087 

-0.331 -0.355 

Entries in bold indicate significant loading ( p  < 0.05) 
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Figure 2. A plot of the canonical scores for TFl,  T n ,  TSI and TS2 extracted from QSAR data, 
describing the insecticidal activity of the aromatic substituted benzyl-( +)-cis/trans-cyclopropane 
carboxylates. 
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standardized coefficients for the “best” equations for T 1 and T2, and Fig. 2 shows 
the observed canonical associations. 

Bartlett’s test for the significance of the canonical variates obtained for the six 
predictor variables gave the following results: 

1st canonical variate (Tl ) :  
Chi-squared = 139.48 (12 d.o.f.), 

2nd canonical variate (T2): 
Chi-squared = 45.52 (1 2 d.o.f.), 

eigenvalue = 0.934 
tail probability < 0.001 

eigenvalue = 0.733 
tail probability < 0.001 

Thus, two significant variates are obtained using a reduced set of six physico- 
chemical properties. It should be noted that different combinations of the response 
and descriptor variables load (Table 6) onto the two variates, T1 and T2; some 
variables, e.g. log K D S o  and 4B1, are associated with both variates, while others, 
e.g. log LDso and 6L, are associated with only one variate. Elimination of redundant 
variables, including many of the Verloop parameters, wich for the QSAR pyrethroids 
are highly correlated has reduced, though not eliminated, the problems of degcncracy 
and multicollinearity (Table 4) and identified a parsimonious set of variates to 
describe the structure/activity relationships of these insecticides. 

Because the above procedure can be applied to each of the canonical variates 
under review, decisions on variable deletion will need to take account of the influence 
of a variable on the set of significant variates. It may well be that a variable which 
makes no real contribution to the first variate, has a major influence on the second 
or third. Thus, sets of canonical variates have to be considered if type I1 errors are 
to be avoided. It is also advizable to keep a check on the redundancy, within and 
between the data sets, during the deletion procedure. The coefficient of variation 
for each variable regressed on all other variables within a set (Sec. 4.7.4.3), and the 
redundancy coefficient of Stewart and Love [l] (Sec. 4.7.3.4) can provide useful 
diagnostics for this task. 

4.7.4.4 Mapping the Toxicological and Physico-Chemical Hyperspaces 

Szydlo [7] obtained bivariate maps of the toxicological and physico-chemical 
hyperspaces ofthe QSAR pyrethroids by plotting TF1 against TF2, and TSI against 
TS2, respectively. There are more points in the toxicological space compared with 
the physico-chemical space, reflecting the replication of the toxicity estimates, usually 
3 per compound. Because the set of toxicological estimates, KD,, and LD,,, is of 
low dimensionality and is common to both analyzes, the maps based on the canonical 
variates TF1, T F 2 ,  7S1 and 7S2 (Fig. 3) [3] are very similar to those (CNVRFI, 
CNVRF2, CNVRSI and CNVRS2) reported by Szydlo et al. [3]. They can be used 
to identify the contributions of pharmacodynamics (TF l ITS l ;  CN VRFl/CNVRSl) 
and pharmacokinetics (TF2/TS2; CN VRF2ICNVRS2) to the overall knockdown 
and killing potencies of each compound in the series [3,6]. Eqs. (10) and (1 l), and the 
associated CCA loadings (Table 6), for example, suggested that low values of 
T F  1/TS1 corresponded to high pharmacodynamic (-log M T C ) ,  knockdown 
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Figure 3. Bivariate maps of the toxicological and physico-chemical hyperspaccs, showing the 
relationships between pharmacodynamics and pharmacokinetics, and a )  thc toxicity and b) thc 
molecular properties of the aromatic substituted (~)-cis/tru~s-ben7ylcyclopropane carboxylates. 
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(log ( ~ / K D s o )  = -log KD50)) and killing (log l / L D s o  = -log LD50) potencies. In 
contrast to this, high values for T F 2 / T S 2  corresponded to small k,, k ,  and A values 
(Eqs. (12) and (13)), i s .  slow flow through the insect, and consequently decreased 
knockdown activity (-log KD50), but increased killing activity (-log LD50) [3, 61. 
The maps (Fig. 3) also suggested [3] that the QSAR compound 4 (o), with a low 
value for T F l / T S l  and a high value for T F 2 / T S 2 ,  has a relatively good killing 
activity, but poor knockdown activity as a consequence of its slow penetration and 
elimination by mustard beetles. QSAR compound 13 (m), which has a low value of 
T F 2 / T S 2 ,  penetrates rapidly, but is quickly eliminated from the insect body. As a 
result, it is a relatively effective knockdown compound, but only has average 
insecticidal activity ( T S 1  = 0.42). Thus, although the overall potency of these 
pyrethroid insecticides is related to T F l I T S l ,  and therefore, C N V R F l / C N  VRSl  
and, hence, to neurotoxicity, the balance between knockdown and killing activity 
depends on the rate of movement into, elimination from, and distribution within 
the insect [3, 61. 

The bivariate spaces obtained by plotting each variate against the response 
variables, log KD,, and log LD50, can identify further relationships between 
molecular properties, pharmacokinetics and toxicity [6]. 

4.7.5 Useful Features of CCA for the Design 
of Biologically Active Compounds 

Canonical correlation can be regarded as a generalized regression procedure. Unlike 
linear and multiple regression, it is not limited to problems concerning only 
univariate y ;  CCA can consider both multivariate X and Y blocks of data. CCA is 
susceptible to many of the problems, e.g. assumptions of independance of the X 
variables, homoschedasticity and normality of the variance of which are associated 
with the simpler regression procedures, based on univariate y .  Furthermore, because 
two sets of associated variables are under investigation, the strength of these 
associations, which can appear large when comparisons are made between canonical 
variates (e.g. CNVRFi  with CNVRSi),  may appear to be quite small when the 
loadings of the original variables are considered (see Sec. 4.7.3.2). This can be a 
problem, both for interpretation and prediction. Nevertheless, the technique has 
advantages and may be useful for investigating the relationship between biological 
activity and molecular structure. 

One obvious benefit is that several biological responses can be considered for 
the same series of compounds. This is important because it changes the unfortunate 
emphasis placed in most QSAR studies on large numbers of physico-chemical 
properties, relative to the biological data. Because of the significantly larger variances 
in biological data compared with chemical data, application of multiple regression 
can, therefore, lead to QSAR models which are overdefined and non-general. Such 
models are of no value for identifying novel compounds of high activity. Techniques 
such as CCA, which take account of multivariate y ,  can overcome these limitations 
by, I) weighting the Y block variables (the biological activities) relative to the X 
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block (the molecular properties), and 2) constraining the possible models to 
constructs, which reflect the associations not only between the X and Y variables, 
but also those within both the X and Y sets. This latter feature represents a constraint 
which may reduce the chance of a spurious correlation. 

4.7.6 Predicting Biological Activity 

There are several ways, in which the results of a CCA can be used to obtain a 
prediction for the design of a new flavor, drug or agrohemical. One strategy is to 
regress each of the original biological potencies on the appropriate set of canonical 
variates which have been constructed. Because each variate is a new, orthogonal 
variable with a known functional relationship to the original variables, the procedure 
is straightforward. Each original y variable is regressed on the set of canonical 
variates (i.e. CNI/liSs), constructed from the molecular desciptors (the X block), 
using a standard multiple regression procedure. The assumptions of this procedure 
are now satisfied and a reliable prediction model should result, so long as other 
considerations, such as sampling and design criteria have been satisfied. Only those 
canonical variates which have a significant t-value should be retained in any model, 
however. Non-significant canonical variates can be removed, without having to 
re-estimate the regression because the /3-coefficients are stable and have been 
estimated using an orthogonal set of X variables. 

A second approach is to base prediction on a method analogous to that used to 
solve simultaneous equations. The various canonical variates are regarded as i 
equations in i unknowns, which can be solved analytically; i is the number of 
variables in the smallest set. This approach, developed at the University of 
Portsmouth, has considerable potential, particularly if the associated canonical 
correlation coefficients (R,s) are high. Its validity as a drug design strategy, however, 
requires further evaluation. 

4.7.7 The Advantages and Disadvantages of Using CCA 
in QSAR Studies 

Canonical correlation is a procedure for analyzing data, which comprizes more than 
one set of variables. This is useful in QSAR studies, where biological and chemical 
properties have both been measured using more than one variable. The advantages 
of multivariate X and Y blocks in QSAR include a better balanced analysis, which 
makes use of more structure/activity information, e.g. the within and between set 
covariances, and a lower chance of spurious correlation, since there are more 
constraints to model specification. Furthermore, predictions can be made using two 
strategies, one based on regression and the other on an analytical approach. However, 
failure to satisfy assumptions about the data will have similar disadvantages to 
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multiple regression under the same conditions. These include multicollinearity, and 
further study is required to assess the sensitivity of CCA to this effect. 

Many of the problems which are likely to be encountered, when using CCA in 
drug design, can be avoided by adopting the following procedures: 

(1) Use the redundancy coefficient of Stewart and Love [l] to check that a 
substantial amount of variance is shared between the X and Y variable sets. 

(2) Ensure that a high correlation does not exist between one of the Y variables 
and one of the X variables, since this could result in a spuriously high canonical 
correlation. 

( 3 )  Exclude non-significant descriptor/predictor variables by using a backward 
stepping procedure. This may also reduce the influence of multicollinear variables. 

(4) Compare the weights and loadings to identify any discrepancies such as 
reversal of sign or differences in rank order. 

Adoption of these guidelines should facilitate the use of CCA to provide a concise 
and reliable summary of any multiple associations between two sets of properties, 
which are observed during a QSAR study. 
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Abbreviations 

ALS 
ANN 
CSA 
K N N  
LDA 
M A 0  
MLR 
PC A 
QSAR 
SCD 
SIMCA 
SPC 

Adaptive least squares 
Artificial neural networks 
Cluster significance analysis 
k-nearest neighbor 
Linear discriminant analysis 
Monoamine Oxidase 
Multiple linear regression 
Principal component analysis 
Quantitative structure-activity relationships 
Single class discrimination 
Soft independent modeling of class analogy 
Structure-property correlations 

Symbols 

I l k  

(c I A2 
S[-3 < E P  < +3] 

Binding affinity (50% inhibition) 
Effective dose (50% effective concentration) 
Linear discriminant function 
Chemical or biological data used in classification 
Mean of descriptor k in class 1 
Variance of class 1 
Measure for the hydropholicity 
Swain-Lupton field parameter 
Variance-covariance matrix 

4.8.1 Theoretical Background 

The quality and type of biological data are important factors for selecting the 
appropriate statistical method to develop quantitative structure-activity relations- 
hips. Quite a number of biological tests produce discrete results, e.g. active or 
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inactive, or + +, +, 0, -, - -. Such data are more difficult to deal with than 
continuous values, such as IC50  or E D 5 o  values. The problem in this case is how 
to correlate qualitative biological data to quantitative chemical data [l]. Techniques 
to handle such cases include adaptive least squares ALS [37], cluster significane 
analysis CSA (see Chap. 4.9) and linear discriminant analysis LDA. The function 
of discriminant analysis is to find a linear combination of factors (descriptors) that 
will best discriminate between two or more groups. Principal component analysis 
and cluster analysis deal with finding groups among objects, such as chemical 
compounds, while discriminant analysis deals with objects which are known to 
belong to different groups. In principle, the number of groups that can be considered 
can be any number. The maximum number of possible classes equals the total 
number of compounds. However, in molecular design problems, a rough separation 
into two groups, active vs inactive, is often considered. Therefore, the problem 
discussed here is the following. Given a data table with various chemical and/or 
biological data, Xi, two groups of compounds should be formed. Group classification 
functions, D ,  and D,, have two be calculated, such that for compounds 1 to n the 
discriminant score D ,  > D,, and for the rest of the compounds D ,  < D,. 

D ,  = a , X ,  + a,X, + a 3 X 3  + ... 
D ,  = b , X ,  + b 2 X ,  + b 3 X 3  + ... 

(1) 

(2) 

A 

Figure 1. Discriminant functions representing a line or 
plane (A) or a hypersurface (B). Function I gives correct 
classifications, while function I I has misclassifications. 
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The coefficients, ai and bj, are called discriminant weights and are obtained by a 
multiple regression procedure. These functions describe a line, plane or, in general, 
a surface (hyperplane) between the groups (see Fig. 1). The difference between the 
two group classification functions is called the linear discriminant function, D 1 2 .  

D l 2  = D1 - 0 2  (3) 

This function defines a hyperplane, separating the two groups of compounds. When 
the condition for the equality of covariance matrix for the multivariate normal 
distribution between two observation groups is not fulfilled, a modified procedure 
may be used [ 2 ] .  The basic assumptions for linear discriminant analysis (LDA) also 
include a normal distribution of the descriptor populations and equal covariance 
matrices [5] for the classes. In principle, also non-linear discriminants, e.g. quadratic, 
can be used. But these are more complicated to deal with. 

The hyperplane represented by a LDA is not unique and may be quite different 
from a plane calculated by multiple linear regression [31]. 

LDA works well if the groups of active and inactive compounds are well separated 
in space. In the case of embedded or asymmetric data (see Fig. 2), other strategies 
should be preferred, such as SIMCA (see Chap. 4.3) and single class discrimination 
SCD [37]. 
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0 
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Figure 2. 
asymmetric data (B). 

Ovelapping classes (A) and embedded or 
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Discriminant analysis can also be performed by artifical neural networks, [3, 4, 
371 or as PLS discriminant analysis [35]. A further development of linear discriminant 
analysis is the adaptive least squares (ALS) method [37], which allows the separation 
of several activity classes by a single discriminant function. LDA is further related 
to techniques such as Bayesian discriminants [5], non-parametric linear learning 
machines (LLM) [5] and k-nearest neighbor (kNN) classification. The latter strategy 
is rather simple, in that one looks for similar compounds in a multidimensional 
space [37]. 

4.8.2 Descriptor Selection 

To answer the question as to which properties are best suited to separate molccules 
into classes, we may refer to Sec. 2 of this volume and to Vol. 1 of the present series 
[6]. N o  rules can be given here. As in ordinary Hansch analysis, any property which 
seems to be relevant to the problem may be analyzed. Physico-chemical properties, 
such as log P,  are believed to be more useful in discriminant studies than structural 
descriptors [7]. A large collection of potential descriptors has been reported [8]. In  
order to give all descriptors the same weight, autoscaling is often performed before 
the analysis. In this step, the descriptor is normalized by substracting the mean value 
of the descriptor and dividing by its standard deviation. Thus, each descriptor has 
a mean value of zero and a standard deviation of one. 

Using feature selection techniques, i.e. elimination of non-significant descriptors, 
the final discriminant analysis may be more successful. Cluster analysis or principal 
component analysis are often used for descriptor selection. However, some interesting 
alternatives may also be attempted. Jurs and coworkers [5] have used a variance 
method, while Takahashi et al. [9] have used the Fisher ratio. The Fisher ratio is 
a quantitative estimate of the significance of a given parameter for separating two 
classes. The Fisher ratio of the descriptor, k ,  ( F k )  is calculated from, 

where ilk and iZk are the mean values of descriptor k in classes 1 and 2, respectively, 
and crlk and oZk are the standard deviations of those classes. 

4.8.3 Chance Correlations with Discriminant Analysis 

When data sets having many variables are analyzed, there is the danger of finding 
chance correlations by fortuitous combinations of variables [lo]. Stouch and Jurs 
[1  1 - 131 have examined the risk of change correlations in  linear discriminant 
analysis. They concluded that the number of examined variables should be kept to 
below one half of the number of observations. 
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4.8.4 Validation 

The statistical significance of discriminant functions should be tcstcd by, e.g. it 
chi-square test [ 141 or by the "jackknifed" leave-one-out technique [ 151. According 
to Kier [16], the quality of the discriminant function may be assessed in three ways: 
comparison of the F-value to tabulated values, determination of the percentage of 
correctly classified molecules, and prediction of the classification of a test set not 
included in the original training series. Another approach was followed by Ogino 
et al. [2]. The best set of discriminant functions was selected, in such a way that 1) 
a combination of variables, which minimizes the number of misclassified compounds 
is best, 2) the smallest number of independent variables is used, and 3) the collinearity 
among the independent variables is minimized. 

4.8.5 Examples 
Discriminant analysis has been used in various SAR studies, e.g. as in  the following: 

M A 0  inhibitors [15, 171 
Antitumor naphthoquinones [ 181 
Pyrimidine folic acid antagonists [19] 
Phenylalkylamines [20] 
CNS drugs [21] 
Sweet or bitter aldoximes [16] 
Antiulcer and antiinflammatory drugs [2] 
Mitomycin derivatives and steroids [22] 
Carcinogenic aromatic amines [23] 
N-nitrosoamines [24] 
Perillartine derivatives as sweeteners [9] 
Non-narcotic analgetics [25] 
Fungicidal 2-antilinopyrimidines [26] 
Antiviral N-quinolin-4-yl-N'-benzylidenehydrazines [27] 
Antiinflammatory steroids [7] 
Calmodulin inhibitors [28] 
Olfactory stimulants [29, 301 
Biodegradation [ 141 
Genotoxic activity [3 11 
Anticancer retinoids [36] 
In the overview given here, we have selected a few representative examples, which 
will be discussed below. 

4.8.5.1 Mode of Action of Pyrimidine Folic Acid Antagonists 

The inhibition of dihydrofolic acid reductase (DHFR) as been subject to many 
traditional Hansch-type QSAR studies. Part of the differences between the various 
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Figure 3. Structures used in discriminant analyzes studies. ( I )  Antibacterial pyrimidines [ 191, 
(2) Antiulcer benzoguanamines [2], (3) Calmodulin inhibitors [28] and (4) Monoaniine oxidase 
inhibitors [ 151. 

compounds are based on their selectivity towards specific of species DHFR, as well 
as on the differences in cell penetration and metabolism. For a series of 175 
pyrimidines (Fig. 3, Structure 1) studied in an antimalaria program growth, 
inhibition of S.,fuecium has also been studied [19]. Of these, 155 were classified as 
reversible or irreversible in their mode of action; the other 20 were inactive. These 
data were submitted to regression analyzes [32], which gave regression equations 
describing the structural features responsible for reversible and irreversible inhibition 
of several bacterial systems (S.Juecium, L. cusei and P. cerevisiap). However, it was 
not clear in quantitative terms, which factors were related to the mode of action. 
Therefore, the same data were subjected to discriminant analysis. Using 123 
molecules as the training set, while retaining 32 for prediction purposes, the following 
classification functions were determined, 

reversible = 2 . 5 6 ~ ~  + 14.2112 + 5.9615 + 5.40I11 + 9.57113 - 7.22 ( 5 )  
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irreversible = 4.14712 + 9.3412 + 10.571s + 11.51111 + l6.62lI3 - 8.23 

O l 2  = - 1 . 5 7 ~ ~  + 4.87Z2 - 4.61lS - 6.11111 - 7O.5ll3 + 1.02 (7) 

where x2 is the lipophilicity of the substituent at the 2-position, 12, I s ,  I I  and I l3  
are indicator values described by Coats et al. [32]. These functions correctly classify 
71 of the 78 reversible inhibitors (91%), and 41 of the 45 irreversible inhibitors 
(91%). For the prediction set, 20 out of 20 reversible inhibitors (100%) and 9 out 
of 12 irreversible inhibitors (76%) were grouped correctly. The negative coefficient 
for x2 in the discriminant function 0 1 2  indicates that lipophilic substituents at the 
2-position of the pyrimidine ring gave rise to irreversible inhibition, with respect 
to folic acid. The misclassifications could, thus, be rationalized by comparing 
structural features to the discriminant function. 

(6) 

4.8.5.2 Antiulcer Benzoguanamines 

A set of 34 benzoguanamines were tested for their antiulcer activity, expressed as 
the percent inhibition of the control [2]. Physico-chemical descriptors used in the 
discriminant analysis include the following: log P values for the unionized form, 
Hammett constants, a, and the Swain and Lupton field parameter, 9. In discriminant 
analysis the groups are preestablished, mostly from their natural grouping based 
on the frequency distribution of the response level. In this particular example, three 
groups of ca. equal size were formed: the most active, of intermediate actively, and 
the least active. Three-group and two-group analyzes were performed, and the 
three-group model gave the following equations: 

(8) 

(9) 

(10) 

Z(1) = 14.00 log P + 7.65Ca + 6.828 - 17.40 

Z(2) = 11.75 log P + 5.83C0 + 6.699 - 12.23 

Z(3) = 7.01 log P + 1.09.Z~~ + 7.179 - 4.56 

where Ca is the sum of the Hammett constants of all substituents in the ring. 
Two-group discriminant functions give similar equations, e.g., 

Z(l) - Z(2) = log P + 0.658Ca + 0.258 - 2.28 

The predictability in the two-group analysis (ca. 80%) appears to be better than 
by dividing into three groups (60-80%). A certain level of error must always be 
expected, since better defined categorizations are not possible with biological data. 
A further improvement in two-group classification was attempted by using “ad- 
missible” discriminant functions. These are slight modifications of the usual 
discriminant method. In this particular case, no improvement was found. 

(11) 

4.8.5.3 C almodulin Inhibitors 

Calmodulin is an intracellular calcium binding protein, involved in the activation 
of various enzyme systems, such as phosphodiesterase (PDE) and myosin light chain 
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kinase (MLCK). Inhibitors of calmodulin have been classified into four groups [33].  
The first three of these groups have been characterized by a discriminant analysis 
study, in which the following descriptors, among other descriptors, of the structure 
type 3 were considered [28]: 

Geometrical parameters: 

All molecules consist of a ring with a chain part connected to atom, Z. 

S,  (solvent accessible surface ( S A S )  of the ring), 
No,  (number of OH groups in a ring) 

Qz (atomic charge of atom Z), 
E P  surface areas (SAS  divided by the level of electrostatic potential), where 
S[ - 3 < E P  < + 31 is a measure of the hydrophobicity of the molecule 

Because most of the parameters chosen here are based on the three-dimensional 
molecular structure, a low-energy conformer for each compound had to be selected. 
As far as possible, X-ray structures were used, and others were estimated by MNDO 
calculations. 

Discriminant analysis produced a set of three discriminant functions giving rise 
to a complete separation of the 22 compounds into three groups: 

Electronic parameters: 

Y (I) = - 4.45SC[EP > + 31 + 43.7S1 + 4.14S,[ - 3 < E P  < + 31 - 90.36 

Y(l1) = - 6.05SJEP > + 31 + 44.8S, + 12.76Sr[ - 3 < E P  < + 31 ~ 1 11.65 

Y(II1) = ~ 1.7OSC[EP > + 31 + 28.1S1 + 3.O3Sr[ -3 < EP < + 31 - 39.85 

( 1  2) 

( 1  3) 

(14) 
where the subscripts r and c stand for contributions of the ring and side-chain, 
respectively. The interpretation of these functions is as follows: 
Group I1 shows a smaller SAS area, with the ring having a positive potential and 
a larger hydrophobic area than Groups I and 111; Group 111 has a larger S A S  area, 
with the side-chain having a positive potential and the ring having a smaller total 
area than Groups I and 11. Based on this model, twenty-nine additional inhibitors 
have been classified. The compounds of Group I have also been studied by a QSAR 
analysis, using adaptive least squares (ALS), showing that hydrophibicity is 
important for the ring, but not for the side-chain. The negative potential S A S  of 
thc side chain is required for activity. In this QSAR analysis, conformation-dependent 
parameters were used for sets of conformers. Thus, a simultaneous selection of the 
best set of conformers and the best subset of structural parameters was attained. 

4.8.5.4 M A 0  Inhibitors 

Monoamine oxidase (MAO, EC 1.4.3.4) is an enzyme, bound to the mitochondria1 
membrane, involved in the desamination of biogenic and xenobiotic monoamines, 
particularly of various neurotransmitters. Two forms of this enzyme. MAO-A and 
MAO-B, have been characterized. MAO-B inhibitors are of interest for the treatment 
of Parkinson’s disease, while inhibitors for the MAO-A form, such as moclobemide, 
are used as antidepressants. 
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Discriminant analysis has been used to develop relationships between physical 
properties and M A 0  inhibition by aminotetralins and aminoindans [17, 341. More 
recently the selectivity of a series of indole inhibitors of MAO-A and MAO-B was 
studied [15] (Structure 4 in Fig. 3). The discriminant method LDA was compared 
to the non-discriminant method, kNN (k-nearest neighbors [37]). Using the full data 
set based on a Free-Wilson matrix, a total of 93.4% correct predictions could be 
attained. The predictive capability of the method is seen by a “jackknifed” 
classification, giving 87.9% correct predictions for selective and non-selective 
compounds. A problem arises in the visualization of the selective and non-selective 
groups in the 16-dimensional space. The distance between points can be calculated 
by the Euclidean distance, while the distance between groups can be expressed by 
the generalized or Mahalanobis distance [38]. A useful graphical representation of 
the separation of both classes was obtained by plotting the Mahalanobisdistance 
of a compound of the first class mean against the corresponding distance of the 
same compound to the second class mean. The Mahalanobis distance between the 
objects i and j is calculated as follows, 

d 2 ‘  ( I , ] )  ’ = (.Xi ~ Xi)’ (x’x)-’ (Xi  - X i )  

where (.Y’.Y)- ’ is the variance-covariance (or correlation) matrix. When the variance 
matrix is the unity matrix, this distance coincides with the Euclidean distance. I t  
was observed further that the non-selective compounds are much more widely 
distributed. This is to be expected, since non-selectivity may arise from various 
origins. With the k N N  method, 100% of the tightly clustered selective compounds, 
and 85% of the non-selective are correctly predicted. The kNN method was superior 
in this case, since it is less sensitive to asymmetrical distribution of the compounds 
in the variable space. 

4.8.6 Conclusions 

Discriminant analysis is a simple pattern recognition tool for quickly elucidating 
structure-property correlations in data sets with categorized biological data [35].  
The following steps are involved: 
- grouping of biological data 
- definition of the groups (usually two or three) 
- generation and/or measurement of (physico-)chemical data 
- autoscaling of all data to remove unequal weights 
~ feature selection (= selection of the final descriptor set) 
~ calculation of the LDA hyperplane 
- validation of training and test set by various methods 
- prediction of activities of new compounds 
The advantage of LDA is that the discriminant functions can be easily understood 
in terms of the available variables. The disadvantage is that it does not work with 
embedded or asymmetric data. It is good practice to combine discriminant analysis 
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with other pattern recognition methods, particularly when the number of activity 
classes is not known or can only be loosely defined, such as agonist-partial 
agonist-antagonist. 
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4.9 Cluster Significance Analysis 
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Abbreviations and Symbols 

CL 
CSA 
ICSO 
LDA 
M R  
MSD 

P 
SARs 

n 

Confidence limits 
Cluster significance analysis 
50% inhibitory concentration 
Linear discriminant analysis 
Molar refractivity 
Mean squared distance 
Hansch-Fujita hydrophobic substituent constant 
Probability 
Structure-activity relationships 

4.9.1 Introduction 

Medicinal chemists have diverse interests, but one of the more common is to 
understand how changes in chemical structure relate to changes in biological 
activity. For a chemist attempting to discover a better drug, such an understanding 
would greatly ease his or her task. Unfortunately, such knowledge is hard to obtain. 
The reason for this is that a single change in the structure leads to many changes 
in the properties of the compound. For example, substituting a methyl group on a 
basic nitrogen may alter not only the compound’s potency, but also its pK,, hydrogen 
bonding capacity, lipophilicity, and extension in space. When many such analogs 
are considered together, it is difficult to see the structure-activity relationships 
(SARs) in so many dimensions. 

This volume describes a number of statistical methods for detecting such 
relationships in multivariate space. Cluster Significance Analysis (CSA) [ 1, 21 is 
another, but one that can be used in the important case of biological data 
expressed as one of two responses, for example: “active-inactive” or “agonist- 
antagonist”. While the biological data must be binary, the descriptors can be 
continuous variables. In this regard, CSA resembles one important aspect of Linear 
Discriminant Analysis (LDA; see Chap. 4.8). However, it differs from LDA in that 
it can treat data sets in which the compounds giving the biological response of 
interest are clustered in the descriptor space, with the non-responders scattered in 
all directions from this group. Such data distribution has been termed “asymmetric” 
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by Dunn and Wold [3 ]  and is also known as “embedded data” (see Chap. 4.5 in 
[15]). LDA can not treat situations of this type. 

The purpose of CSA is to identify among many possible descriptors those 
that truly influence activity. CSA can be used to identify such descriptors in 
asymmetric data and give a general idea about what the optimal descriptor values 
are; however, it does not furnish a precise classification rule. Nevertheless, CSA 
can give insights that are valuable when trying to discover SARs. 
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4.9.2 Theoretical Background to CSA 

4.9.2.1 Parameter Focusing 

CSA was derived to complement a graphical concept called “parameter focusing”, 
originated by Magee [4]. Fig. 1 illustrates the basic idea of this concept. It presents 
hypothetical biological test results on six compounds that are characterized by 
the physical properties, X and Y. Compounds 1-3  are active (A), while 4-6  are 
inactive (0). It appears that the actives are clustered in the midst of the inactives, 
and can be considered as “focused”. From this arrangement, we can judge that 
X and Y ,  or at least one of them, are determinants of biological activity. 

How did we decide this? The logic is as follows. If X and Y had no influence on 
biological activity, we would expect the “actives” to be distributed randomly 
throughout the graph (the null hypothesis). If, instead, the actives arc localized in 
one region (the alternative hypothesis), so that they are not scattered, then we may 
infer that these descriptors are related to the biological response. “Focused” clusters 
indicate non-random, i.e. informative, descriptor patterns. The problem is deciding 
when a group is indeed focused. How can we tell that the “focused” group did not 
simply arise by chance? CSA addresses this question. 

Figure 1. Hypothetical case for CSA. Active 
(A) and inactive (0) compounds plotted in the 
space of the physical properties X and Y .  
Reprinted with modification and permission 
from Ref. 111; Copyright 1986 Amcrican 
Chemical Society. 

- 1 0 1 2 3 4 5  

X 
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4.9.2.2 A Graphical Explanation 

Before getting to the mathematics, it would be helpful to illustrate these ideas by 
continuing with the example of Fig. 1. There are six compounds; of these, three are 
“active”. From the formula for combinations, there are 20 possible sets of six things 
taken three at a time. If it is chance alone that isoperating, the three active compounds 
could have appeared as any one of the 20 sets with equal likelihood. That is, the 
observed placement of the three actives in Fig. 1 could have arisen by accident with a 
probability of 0.05. However, we would be as or more convinced that the actives 
were “focused” if they appeared in a set which was as or more compact. Therefore, 
a significance probability or p-value for testing the null hypothesis of randomness 
is the ratio formed by the number of all such compact sets divided by the total 
number of possible sets. 

In Fig. 1, how many sets of three are as compact or smaller than the observed 
active group‘? This case is so simple that one can easily obtain an answer by 
inspection. The active group itself, compounds 1-3, is of course one set satisfying 
the condition, but compounds 2-4  form an even smaller set. The Sets 1, 2 and 4, 
and 1 , 3  and 4 are close in size to the active group, but the members are somewhat 
farther apart from each other. All other groups include compounds 5 and/or 6 and 
are, therefore, much more loosely associated. Thus, there are only two sets that are 
as or more compact than the observed group of actives. Therefore, the probability 
that this degree of clustering would occur by chance alone is: 

p = 2/20 = 0.10 (1) 

The p-value of Eq. (1) exceeds the usually accepted maximum of 0.05 for 
significance. However, with so few compounds in this data set we can at least 
suspect that the null hypothesis may be false, and that the active compounds are 
“focused”. 

4.9.2.3 Calculations 

Mean Squared Distances 

Cases which are this simple are rare. A more rigorous mathematical treatment, one 
that can be programmed for a computer, is needed to handle larger and more 
complex situations. However, the same basic principle remains unchanged: with 
sets containing the same number of compounds as the observed active set, count 
those that are as compact or smaller than the observed active set, and divide that 
count by the total number of allowed possible sets. 

We will begin by defining the compactness of a group as the mean squared 
distance ( M S D )  between compounds as represented by points in a multidimensional 
space. It is calculated by summing the squared distances between all pairs of points 
and dividing that total by the number of pairs. Thus, the M S D  of the active group 
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in Fig. 1 would be computed as follows: 

total squared distance = (x, - x2)2 + (y, - Y , ) ~  + (x, - x3)2 

+ (Y, ~ Y d 2  + (x2 - xJ2 + ( Y 2  ~ Y J 2  (2) 

(3) M S D  = (total squared distance)/3 

We recommend autoscaling (transforming linearly to unit variance) all descriptors 
before the distancc computations are made. CSAl and CSA2 are two computer 
programs (see below) that autoscale automatically. 

Tlic FORTRAN Computer Progrums CSAl  and CSA2 

With this definition of M S D  in hand, we can proceed to compare the compactness 
of each allowed set to that of the observed active group, counting those at least as 
compact, and computing the p-value. The program CSA 1 does this exhaustively 
over all allowed sets. However, this process is computationally demanding and can 
take a long time for some problems. For example, a set of 20 compounds with 
9 actives requires 167,960 MSDs  to be determined. A VAX computer can handle this 
in just a few minutes. However, with the addition of more compounds, the 
computation becomes increasingly time-consuming. A set of 24 compounds with 
13 actives entails the calculation of 2,496, 144 M S D s .  While this is still possible to 
calculate with CSAl, the C.P.U. time rapidly increases. 

The program CSA2 was created to handle larger data sets. I t  operates on the 
same principles as CSA1, but instead of e.x-haustivelq. calculating all possible MSDs, 
it samples at random a predetermined number of allowed sets. The p-value is 
estimated from the number of randomly chosen sets that have M S D s  equal to or 
smaller than that of the observed active set. Because this approach is stochastic, 
there will be some uncertainty in the probabilities estimated in this way. The program 
also calculates 95% confidence limits for the actual p-values. 

These two FORTRAN programs are discussed further in Sect. 4.9.3.1. 

4.9.2.4 Choosing among Sets of Parameters (Sequential CSA) 

Up to this point we have been discussing CSA as if all descriptors under 
consideration must either all succeed or all fail to be true determinants of activity. 
Realistically, when there is more than one descriptor, the problem becomes more 
complex: even if there is genuine clustering, not all the descriptors need be 
contributing. A feature of CSA is that it can help separate relevant dcscriptors from 
irrelevant ones. Sequential CSA is an efficient means to achieve this. 

When only a few descriptors are under consideration, they can be evaluated in 
various combinations in order to arrive readily at a conclusion. Howevcr, as 
descriptors increase, the number of possible combinations expands rapidly. This 
number is 2k - 1, where k is the number of descriptors. With k only 5,  there are 
already 3 1 combinations; the task of discovering the biologically relevant ones 
becomes tedious. To reduce the labor involved, we proposed [5]  a sequential 



approach to CSA, one which allows satisfactory conclusions to be drawn, without 
having to consider all possible combinations. 

In the absence of an equivalent to the partial F-test in multiple regression analyses, 
we suggested that a descriptor’s importance may be quantified by considering its 
effect on the overall p-value, when it is added or deleted. We proposed the following 
operational rules as guidelines for deciding whether to include a descriptor in the 
model : 
0 the addition of a relevant descriptor to the model lowers the p-value for the 

0 the addition of a non-relevant descriptor increases the p-value; 
0 the subtraction of a relevant descriptor increases the p-value; 
0 the subtraction of a non-relevant descriptor lowers the p-value. 

These rules are somewhat heuristic, but they are inspired by the notion of 
“information” or “noise” being added to or subtracted from the data set, and have 
an intuitive appeal. Thus, relevant descriptors can be identified rapidly by the 
following steps: 
1. Determine the p-value of each descriptor when used alone. 
2. Arrange the descriptors, k in number, in a list with increasing p-value. Analyze 

this list sequentially by CSA, first considering k descriptors. Next, omit the 
descriptor with the highest p-value, i.e. the last descriptor, and analyze the h - 1 
remaining descriptors. Continue in this manner until only the first descriptor 
(the one with the lowest p-value) remains. 

3. Using the selection rules above, decide which of these descriptors are contributing 
positively to the model and which are not. At this point leave out those variables 
which are not contributing. 

If ambiguities remain, repeat the sequence of steps with those descriptors that 

“active” cluster; 

are still viable possibilities. An example of this process is given in Sec. 4.9.4.3. 

4.9.3 Practical Considerations 

4.9.3.1 Software Availability 

A Conzmercially Available Program 

Oxford Molecular (Oxford, U.K.) offers a version of CSA as part of its software 
package TSAR (Version 2.1). TSAR requires 16 MB of RAM and 24 MB of disk 
space on Silicon Graphics, Hewlett-Packard 700 series, or IBM Risc 6000 worksta- 
tions. The CSA part of the package has a convenient interface for entering data, 
and for selecting the independent variables for analysis. 

Do-It- Your.Yt’lf 

In an earlier publication [I], we presented efficient mathematical algorithms in 
enough detail to enable users who so wish to write their own computer programs 
to implement CSA. Many, however, will prefer to start from existing FORTRAN 
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code for CSAl and CSA2, given in Ref. [2]. From our contacts with many people 
who have expressed an interest in CSA, we are aware that these programs have 
been implemented successfully on VAX and IBM mainframes, IBM PCs and their 
clones, and, as indicated above, various workstation systems. At Pfizer we have 
even adapted CSA for a Cray supercomputer. Thus, CSA can be used on a variety 
of hardware and operating systems. FORTRAN is not indispensable: the algorithms 
in Ref. [ l]  are independent of language, and CSAl and CSA2 have been written in 
PASCAL and RPL [the programming language of RS/1 (BBN, Cambridge MA, 
USA)]. Thus, CSA can be used on almost any reasonably fast computer system. 

Although the information given in Refs. [l] and [2] is complete in all necessary 
respects, to help those interested in creating their own CSA programs we have 
written a few pages of additional suggestions on organizing and manipulating data 
files. We will send this document and, if desired, the FORTRAN codes for CSAl 
and CSA2 on request (to J.W.M.). 

4.9.3.2 Dividing the Dependent Variable into Two Categories 

Biological test results for a series of compounds are sometimes presented qualitativ- 
ely, such that they can be divided readily into two classes of responses, e.g., “+” 
for “mutagenic” and “-” for “non-mutagenic”. Data of this type present no 
difficulties. 

When the results are given in a graded manner ( -, &, + and + + , for example) 
those familiar with the test may see a natural division between f and +, and divide 
the data into two classes at this point. Other divisions are possible, of course, but 
they should be decided on the basis of the analytical objective in mind. For instance, 
one might really only be interested in the factors leading to strong activity. In this 
case the “+ +” compounds would be the group of interest and all the others would 
constitute the non-responders. 

In some cases the compounds differ only in degree of potency; that is, there are 
no inactives. One may find that when the compounds are ordered in decreasing 
potency, there may be a large step in the middle of the list; this then could be a 
natural division point to generate the two classes necessary. When this does not 
occur, then an arbitrary division may succeed. An example of this type is given in 
Sec. 4.9.4.2. 

Table 1. The hypothetical example: data used to generate Fig. 1 

Compound Activity” X Y 

1 1.0 2.3 1.2 
2 1 .o 3.3 1 .o 
3 1 .0 3.1 1.7 
4 0.0 3.8 1.6 
5 0.0 1.5 0.0 
6 0.0 0.0 3.8 

“ Active = 1.0: inactive = 0.0. 
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4.9.4 Examples 

4.9.4.1 CSAl : The Hypothetical Example 

In Sec. 4.9.2.2 we inspected Fig. 1 in order to obtain an indication (with p = 0.10) 
that the “active” compounds are clustered. Because of the small number of 
compounds involved, we accepted this result as suggesting that at least onc of X 
and Y is a determinant of biological activity. The two dimensional nature of Fig. 1 
allows one to see this readily. However, a more difficult question would be: are 
both X and Y determinants? The answer to this is not so straightforward. If you 
project the six points in Fig. 1 onto the X and Y axes, it is not clear just by 
inspection what the respective p-values in each dimension will be. The solution to 
this problem can be obtained by applying CSA1. 

Table 2. 
and alkylthio derivatives of rnethacycline” 

Chemical structure, inhibitory potencies and physico-chcrnical descriptors for arylthio 

RS 

Compound R 
No. 

1 
2 
3 
4 
S 
6 
7 

10 
I I  
12 
13 
14 
IS 
16 
17 
18 
19 
20 
21 
24 
2s 
27 

phenyl 
4-chlorophcn yl 
4-bromophcnyl 
4-methox y phen yl 
benzyl 
4-chloro benzyl 
3,4-d1chlorophenyl 
methyl 
ethyl 
n-propyl 
i-propyl 

i-butyl 

n-hexyl 
cyclohexyl 
cyclopentyl 
i-pcntyl 
n-decyl 
2-hydroxyeth yl 
2,3-dihydroxypropyl 
3-chloropropyl 

n-butyl 

t-butyl 

-0.838 
-0.204 
-0.146 
-0.079 
-0.146 
- 0.322 
-0.716 
-0.898 

0.222 
0.222 
0.222 
0.155 
0.255 
0.301 

0.222 
0.533 
0.533 

- 1.017 
- 0.672 
-0.755 

0.222 

- 0.643 

6.28 1.71 3.1 1 
7.74 1.80 3.1 1 
8.05 1.80 3.1 I 
8.20 1.80 3.1 I 
3.63 1.52 6.02 
4.42 1.52 7.44 
4.42 1.52 7.44 
3.00 1.52 2.04 
4.1 1 I .52 2.97 
5.05 1.52 3.49 
4.1 1 2.04 3.16 
6.17 1.52 4.42 
5.05 1.90 3.49 
4.1 1 2.59 2.97 
8.22 1.52 5.87 
6.17 2.04 3.49 
4.97 2.04 3.98 
6.17 1.52 4.42 

12.32 1.52 8.80 
4.79 1.52 3.38 
5.73 1.52 3.38 
6.82 1.52 3.49 

2.13 
2.83 
3.32 
2.09 
2.63 
3.33 
4.03 
0.50 
1 .OO 
1 .50 
I .30 
2.00 
I .80 
2.00 
2.50 
2.50 
2.14 
2.30 
5.50 
0.39 
0.29 
2.20 

* Reprinted with modification and permission from Ref. [6]; Copyright 1993 Amcrican Chcmical 
Society. 
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The data used to generate Fig. 1 are listed in Table 1. Of course, CSAl gives the 
p-value of 0.10 when both X and Y are included in the analysis. When we chose 
just the X parameter, the p-value remained unchanged at 0.10. Thus, the parameter 
X may be all that is necessary to account for the clustering. When we assessed the 
contribution of Y alone, however, the p-value was now 0.15, greater than that of 
X ,  or the X -  Y combination. We conclude that adding Y to X provides no 
improvement, while adding X to Y does. This suggests that X is a possible 
determinant of activity, while Y is probably not. The good p-value observed for 
the X -  Y combination appears to be due solely to the contribution of X .  

4.9.4.2 CSA2 : Inhibition of Tetracycline Efflux Antiport Protein 

Recently, Nelson et al. [6] published a set of data that affords an instructive example 
of CSA, using the random sampling technique (CSA2). The problem concerns a set 
of 27 arylthio and alkylthio derivatives of methacycline that inhibit a tetracycline 
efflux antiport protein isolated from a tetracycline-resistant bacterium. Twenty-two 
of the compounds considered and some of their properties are presented in Table 2. 
Five of the tetracyclines in the original work were omitted, because they had 
structural features that did not permit meaningful values of TC to be assigned to 
them. These were beyond the scope of the general structure given at the top of Table 2. 

11.0 ::::i 
0 0 0  

0 

A 

AOA A 
0 

6.0 

A A  A 5.0-1 0 

0 

3.0 0 
I I I I I ~ ~ ~ ~ ~ ~ ~ ~ ~  

0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 

a 
Figure 2. A plot of 22 arylthio and alkylthio derivatives of methacycline in the dimensions of L 
and z. The more potent compounds (A) inhibit a tetracycline efflux antiport protein isolated from 
a tetracycline resistant bacterium. The less potent compounds are designated by (0). 
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Table 3. 
derivatives 

CSA2 results for various combinations of descriptors in the series of methacyclinc 

# “  L B ,  B, n p-valuc Number of 
subsets 

estimate 95% CLb samplcd 

4 1  1 1 1  0.071900 fO.003580 20000 
3 1 1  I 0  0.219050 f 0.005732 20000 

1 1 0 1  
1 0 1 1  0.0000 1 8 f 0.0000 12 500 000 
0 1 1 1  

2 1  1 0 0  
1 0 1 0  0.000650 ,0.000158 I00000 
1 0 0 1  0.000042 f 0.0000 1 8 500000 
0 1 1 0  
0 1 0 1  
0 0 1  1 0.000330 f0.000113 100000 

I 1 0 0 0  0.009400 &0.001337 20000 
0 1 0 0  0.977350 f 0.002062 20 000 
0 0 1 0  0.01 2740 k0.000983 50000 
0 0 0 1  0.00241 0 - + 0.000304 100000 

Number of descriptors in set. 
Uncertainty (still at  the 95% Confidence level) in the difference between two estimatcd p-valucs 
is given by the square root of the sum of the squares of the two individual uncertaintics (i.e. the 
values following the “f” symbols). 

The biological response of interest is the ZCs0 ( p ~ )  and expressed in Table 2 as 
log (1/IC5& which results in ten compounds with positive values. We used these 
as the group of interest (i.e. the “actives”). The physical properties are the Verloop 
STERIMOL parameters L, B,,  and B, [see Chap. 2.11, and the Hansch-Fujita 
hydrophobic substituent constant TC [see also Chap. 2.11. Fig. 2 indicates that the data 
are asymmetric in the dimensions of L and T C ;  in similar plots the actives appear 
clustered in B, but not in B ,  space. 

Table 3 shows the 15 possible combinations of the four descriptors. Each row 
represents one potential CSA2 run. A “1” in a physical property column indicates 
the presence of that variable in the combination. The estimated p-value with its 
95% confidence limits (95% CL) and the number of random subsets used are also 
given. As the results illustrate, i t  is not necessary to run all the combinations for a 
satisfactory picture to emerge. The last four rows give the p-values for each of the 
descriptors separately. Clearly, B ,  is not a likely determinant of activity. However, 
the other three are good candidates, with 71 being perhaps the most important, 
followed by L, and then lastly, B,. 

The first row shows that when all four variables are included, the p-value is just 
short of being statistically significant. However, when TC is removed from the set, 
the p-value becomes considerably higher. From the rules given in Sec. 4.9.2.4, we 
conclude that TC is a relevant determinant. On the other hand, when B, is removed 
from the set of four parameters, there is a dramatic improvement in the p-value. 
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Table 4. Chemical structures, sweetness and descriptor valucs for the R group of carbosulfainates" 

R - N H  -SO:Na+ 
~ ~ ~~ 

Tasteh M R  L B ,  B ,  B ,  B ,  o* 

n-propyl 
n-butyl 

isopentyl 
isobutyl 
neopcntyl 
c-hcx yl 
2-Me-c-hexyl 
3-Me-c-hcxyl 
c-pentyl 
2-Me-c-pcntyl 
3-Me-c-pentyl 
c-pent ylmeth yl 
phenyl 
ethyl 
n-pentyl 
isohexyl 
2,3-Me2-c-hexyl 
2,5-Me2-c-hexyl 
2,6-Mc2-c-hexyl 
3,3,5-Me3-c-hexyl 
2- Et-c-hex yl 
4-t-Bu-c-hexyl 
4-t-pentyl-c- hexyl 

c-hexylmethyl 
4-vin yl-c-hex yl 
bcnzyl 
I -adamantyl 
methyl 
n-hexyl 
n-heptyl 
n-octyl 
isopropyl 
I-Me-propyl 
I-Me-butyl 
1 -Me-pentyl 
I-Me-hcxyl 
I ,2-Mc2-hexyl 
1 ,3-Mc,-hexyl 
I ,4-Me2-hcxyl 
1 ,2,2-Me3-propyl 

1,1 -Me,-propyl 
1,1,3,3-Mc4-butyl 
c-propyl 
I -Me-c-pentyl 
1-Me-c-hexyl 
phenethyl 
3-phenylpropyl 

2-Mc-butyl 

c-butyl 

t-butyl 

I .0 
I .0 
1 .0 
1 .0 
1 .0 
1 .0 
I .0 
I .0 
1 .0 
I .0 
1 .0 
1 .0 
I .0 
1 .0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

15.0 
19.6 
24.2 
24.3 
19.6 
24.3 
26.7 
31.3 
31.3 
21.5 
26.1 
26.1 
26. I 
25.4 
10.3 
24.3 
28.9 
35.9 
35.9 
35.9 
40.6 
40.6 
40.6 
49.9 
17.9 
31.3 
35.4 
30.0 
40.6 

5.7 
28.9 
33.6 
38.2 
15.0 
19.6 
24.3 
28.9 
33.6 
28.9 
28.9 
28.9 
33.5 
19.6 
24.2 
38.2 
13.5 
26.1 
31.3 
34.6 
39.3 

4.92 
6.17 
6.17 
6.17 
4.92 

4.92 
6.06 
6.06 
6.15 
4.90 
4.90 
5.91 
6.05 
6.28 
4.11 
6.97 
6.97 
6.15 
6.06 
6.06 
6.26 
6.06 
8.20 
8.98 
4.77 
6.12 
8.28 
4.62 
6.17 
2.87 
8.22 
9.03 

10.27 
4.1 I 
4.92 
6.17 
6.97 
8.22 
6.17 
6.17 
6.97 
4.92 
4.1 1 
4.92 
6.17 
4.14 
4.90 
6.06 
8.33 
6.67 

1.52 
1.52 
1.52 
1 .52 
I .52 
1.52 
1.91 
1.91 
1.91 
1.90 
1.90 
I .90 
1.52 
1.71 
1.52 
1.52 
1.52 
1.91 
2.14 
1.91 
1.91 
1.91 
1.91 
1.91 
1.77 
1.52 
1.91 
I .52 
3.16 
I .52 
1.52 
1.52 
1.52 
1.91 
1.91 
1.91 
1.90 
1.91 
1.91 
1.91 
1.91 
1.91 
2.77 
2.77 
2.60 
I .55 
2.66 
2.73 
1.52 
1.52 

3.49 
4.43 
4.43 
4.43 
4.2 I 
4.22 
3.24 
3.24 
4.47 
4.06 
4.06 
4.06 
4.1 I 
1.71 
2.98 
4.94 
5.66 
4.47 
3.56 
3.24 
4.47 
4.29 
4.59 
4.59 
3.18 
5.30 
4.01 
6.02 
3.16 
2.04 
5.88 
6.39 
7.33 
3.16 
3.16 
4.39 
4.94 
5.63 
4.39 
4.42 
4.39 
4.40 
2.98 
3.49 
4.22 
3.08 
3.24 
3.48 
3.16 
7.47 

1.91 
1.92 
3.16 
3.15 
3.16 
3.16 
3.59 
3.77 
3.59 
3.42 
3.62 
3.42 
2.86 
3.1 I 
1.91 
1.92 
3.17 
3 77 
4.42 
4.50 
4.50 
4.66 
3.52 
3.52 
3.20 
3.26 
3.59 
3.13 
3.49 
1.90 
I .92 
1.92 
1.93 
2.98 
3.49 
3.54 
3.16 
4.30 
3.14 
3.49 
4.50 
3.74 
3.16 
3.16 
3.16 
3.24 
4.09 
3.30 
3.12 
3.14 

1.91 -0.12 
1.90 -0.13 
1.90 -0.16 
1.92 -0.16 
1.90 -0.13 
3.15 -0.17 
2.81 -0.15 
3.59 -0.15 
3.35 -0.15 
2.58 -0.20 
3.42 -0.20 
2.58 -0.20 
2.86 -0.13 
3.1 I 0.60 
1.90 -0.10 
1.90 -0.16 
1.90 -0.16 
3.59 -0.15 
4.29 -0.15 
3.77 -0.15 
3.44 -0.15 
3.59 -0.15 
2.72 -0.15 
2.72 -0.15 
2.04 -0.15 
3.14 -0.13 
2.81 -0.15 
3.10 0.22 
3.49 -0.26 
1.90 0.00 
1.90 -0.17 
1.90 -0.17 
1.90 -0.15 
2.76 -0.12 
2.76 -0.21 
2.99 -0.23 
2.76 -0.26 
2.99 -0.27 
2.99 -0.23 
2.98 -0.26 
2.99 -0.26 
2.99 -0.29 
3.15 -0.30 
3.15 -0.31 
3.15 -0.36 
1.81 -0.15 
3.17 -0.30 
3.16 -0.44 
3.1 1 0.08 
3.10 0.02 

~ ~ ~~ 

Reprinted with modification and permission from Ref. [7]; Copyright 1986 Elscvier Science 
Publishers, BV. 
Sweet = 1.0: not sweet = 0.0. 
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Thus, our first impression was confirmed, and B ,  could be eliminated as a deter- 
minant. When the remaining three descriptors are considered in pairs, the p-value 
is, in each case, statistically greater than when all three descriptors are treated 
together. Hence, the conclusion is that TC, L, and B,  appear to be genuine detcrrninants 
of tetracycline efflux antiport protein inhibition. From Fig. 2, we can by inspection 
obtain the approximate ranges in TC and L, where the most potent activity will be 
found; with a similar plot using B,, the range for good activity in that dimension 
can also be estimated. 

4.9.4.3 Sequential CSA : Sulfamate Sweetening Agents 

In the previous example there were only 15 possible combinations of the four 
descriptors. By first considering the descriptors one-at-a-time we were able to select 
combinations such that we arrived at a satisfactory answer by using only ten of 
the 15; in fact this task could have been accomplished with nine had we followed 
a strict sequence of events. We really did not need to exclude just T C ;  this was done 
merely to show the effect on the p-value when a relevant descriptor was removed. 

To illustrate the sequential approach in more detail, let us consider a set of 
sulfamate sweetening agents. Miyashita and coworkers [7] first introduced this 
problem. Seven physical descriptors were considered : molar refractivity ( M R ) ,  Taft’s 
o*, and the STERIMOL parameters L, B , ,  B,, B, and B, (see Chap. 2.1). According 
to the discussion in Sec. 4.9.2.4, there are 127 possible combinations. By plotting the 
data in the space of their first two principle components, Miyashita et al. [7] showed 
that the sweet compounds were clustered in the midst of the their non-sweet 
congeners. However, it was not possible to relate sweetness directly to the original 
properties. We recently published an analysis of these same data using CSA [5] .  
The following is a summarized discussion of our previous work. 

Table 4 presents the Miyashita data. It consists of properties for 50 sulfamic 
acids substituted on the nitrogen atom with various alkyl, cycloalkyl, and phenylalkyl 
groups, and a phenyl group. Sweetness is the biological response of interest; 
14 compounds fell into this category. Because there are nearly 1012 combinations 
of 50 things taken 14 at a time, we used the CSA2 program. 

We began by evaluating the descriptors one-at-a-time; the results are shown at 
the bottom of Table 5. From this we found that L is the most likely determinant 
of sweetness among these sulfamates. After L in decending order of importance are: 
M R ,  B , ,  B,, B,, B,, and o*. Of these, only L, MR, and B ,  are each statistically 
significant. When all of the descriptors are considered together (top row of Table 5) ,  
the cluster of actives is statistically significant. However, when the least significant 
variable (o*) is omitted, the p-value becomes dramatically smaller. Hence, o* need 
not be considered further. We then eliminated the next least significant descriptor 
(B,) and found a still further decrease in p-value. Proceeding in this manner, we 
arrived at a p-value of only 0.00002 ? 0.000003, with just those descriptors found 
on an independent basis: L, MR, and B, .  
’ As a final step, as with the Nelson problem, we deleted each descriptor i n  t u r n  

from this collection of three descriptors. Thus, we investigated whether further 
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Table 5. 
agents' 

CSA2 rcsults for various combinations of descriptors of carbosulfamatc sweetening 

# b  L M R  B ,  Bo B, B, (T* p-value Numbcr of 
subsets 

estimate 95Y" CL" sampled 

7 1 1 1 1 1 1 1  0.039600 f0.005400 5 000 

6 1 I I 1 1 1 0 0.000600 i0.000215 50000 

5 I 1 I 1 I 0 0 0.000050 - + 0.00003 I 200000 

4 1 I 1 1 0 0 0 0.000010 - + 0.000006 1000000 

3 I I I 0 0 0 0 0.000002 f 0.000003 I 000000 

2 1 1 0 0 0 0 0 0.000027 * 0.0000 I0 I000000 
1 0 1 0 0 0 0 0.000058 - + 0.00002 I 500000 
0 1 1 0 0 0 0 0.000115 f 0.000047 200000 

1 1 0 0 0 0 0 0 0.000900 f 0.0001 3 1 200000 
0 1 0 0 0 0 0 0.001260 f 0.0003 I 1 50000 
0 0 1 0 0 0 0 0.045400 f 0.005770 5 000 
0 0 0 1 0 0 0 0.061400 f 0.006654 5 000 
0 0 0 0 I 0 0 0.125600 0.009 186 5 000 
0 0 0 0 0 I 0 0.578600 f0.013687 5 000 
0 0 0 0 0 0 1  0.720200 k0.012443 5 000 

a Reprinted with modification and permission from Ref. [ 5 ] ;  Copyright 1990 Drug Information 
Association. 
Number of dcscriptors in set. 
Uncertainty (still at thc 95% confidence level) in the difference between two estimated p-values 
is givcn by the squarc root of thc sum of the squares of the two  individual unccrtaintics (ix. the  
values following the '' & " symbols). 

improvement could be found in combinations taken two-at-a-time. The next entries 
in Table 5 show that none of these subcombinations of two descriptors is better 
than all three descriptors together. Thus, by considering only 15 out of 127 possible 
descriptor combinations, we arrived at a reasonable identification of the determinants 
of sweetness among sulfamates. 

4.9.4.4 Literature Examples 

Other examples of CSA may be found in the literature, and Table 6 gives reasonably 
complete list of such examples. 
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Table 6. Literature references of other examples of CSA 

Ref. Host (system) Activity Compound class Detcrminants found 

[l]  mousc 

[ l ]  (Ames test) 
[XI (in vitro) 

[8] duck 
[8] rodent 

[9] rat 
[9] chicken 

[lo] rodent 

[113 (not stated) 

[12] mouse 

[13] adult female 
filaria 

[14] (steroid- 
binding 
globulins) 

monoamine 
oxidase 
inhibition 
mutagenicity 
antibacterial 

antimalarial 
carcinogenicity 

antihyperptensive 
an ticoccidial 
solid tumor 
inhibition 
/I-adrenergic: 
agonists vs 
antagonists 
antitrematodal, 
anticestodal 
cidal 

receptor binding 

aminotetralins 

aminoacridines 
lasalocid 
derivatives 
naphthaquinones 
pol ycyclic 
aromatic 
hydrocarbons 
prazosin analogs 
acridinediones 
diar ylsulfon yl- 
ureas 
phenethyl- 
amincs 

pyrazinoisoquin- 
olines 
antimycin 
analogs 
corticostcroids, 
testosterones 

E ,  (steric 
parameter), I7 

log K ,  R,,, pK,, P 
log P 

LUMO cnergy, 
excited energy 
statcs E ,  and Es, ,  

n, fl 
Swain-Lupton F 
n, volume 

hydrogen bond 
descriptors 

I _  v L ? I1  

ATCH5, ATCH4, 
D I P V - X  
similarity indices 
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5 Statistical Validation of QSAR Results 

5.1 Validation Tools 

Svunte Wold and Lennart Eriksson 

Abbreviations and Symbols 

cv 
G 

LOO 
LSO 
MLR 
NBP 
PCA 
PLS 
PRESS  

IC50 

Q’ 

ss, 

R 2  
RSD 

X matrix 

Cross-validation 
Number of CV groups 
Concentration needed to lower cell viability by 50% 
Leave-one-out 
Leave-several-out 
Multiple linear regression 
4-nitro benzylpyridine 
Principal components analysis 
Projection to latent structures 
Prediction error sum of squares or 
Predictive residual sum of squares 
Amount of predicted (CV) variance 
Amount of modelled sum of squares (variance) 
Residual standard deviation 
The sum of squares of the response values 
Table of N compounds x K structure descriptors 

5.1.1 Introduction 

The procedure for establishing reliable quantitative structure-activity relationships 
(QSAR) involves a number of important steps that are closely related. Notably, 
the most significant of these steps are: (a) the selection of representative compounds 
with which to calibrate and validate the QSAR (i.e the training set and the validation 
set), (b) the multivariate chemical characterization of these sets, (c) the biological 
profiling of these compounds, (d) the QSAR modeling, and (e) the validation of 
the resulting QSAR model. Some of these steps are usually considered, whereas 
others are largely neglected, and, in particular, model validation [l -31. This is 
unfortunate, because a practical consequence is that a QSAR model can not be 
taken seriously, until its performance in a real situation has been adequately 
checked. 

Any QSAR model needs to be properly validated prior to its use for interpreting 
and predicting biological responses of non-investigated compounds. But the 
question arises, how do  we assure ourselves that a specific QSAR is valid, and what 
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do we mean by model quality? There exists a number of ways of expressing the 
performance of a model. The conventional approach adopted in QSAR analysis, 
based on multiple linear regression (MLR), is to consider R2,  the “explained 
variance” or (multiple) correlation coefficient, and, s, the residual standard deviation 
(RSD) .  The former quantity varies between 0 and 1, where 1 means a perfect model, 
explaining 100% of the response data ( Y ) ,  and 0 a model without any explanatory 
power at all. Thus, a high R 2  (close to 1) and a low R S D  are necessary conditions 
for model validity. However, excellent values of R 2  and RSD are not sufficient 
indicators of model validity. This depends on the property of regression models 
(including PLS and PCR) to give a closer fit - the better the replicative capability of 
the model to the data, the more parameters and terms are incorporated to the model. 

Furthermore, if we have many chemical and structural descriptors ( X )  to choose 
from, we may construct a QSAR which produces an apparently good relation 
between calculated and observed response data, even with few descriptor variables, 
provided that these are selected from the larger set according to their apparent 
contribution to the fit. Remarkably, this can be achieved, even when a set of descriptor 
variables has been altogether constructed by means of random numbers, and have 
no correspondence whatsoever to the biological problem under scrutiny [4,5]. This 
risk of coincidental correlations is one main reason why stepwise MLR is not to be 
recommended for data sets composed of a multitude of descriptor variables. 
Other methods of model fitting, such as PLS, [6-81 should then be used, and this 
is discussed in other parts of this volume. 

Since a high R2 and a small RSD are not sufficient as model validity indicators, 
alternatives must be provided. In principle, two reasonable approaches of validation 
can be envisaged, one based on predictions and the other based on the fit of the 
predictor variables to randomized rearranged response variables. Ideally, of course, 
the best option would be a comprehensive validation set of representative com- 
pounds, which enables predicted values to be compared to the actual observed values, 
and which allows a reliable estimate of Q 2 ,  the “predicted variance”, to be calculated 
(see below). Obviously because of time and resources, however, adequate validation 
sets are not common. In the light of this fact, other techniques have been devized, 
and the objective of this chapter is to outline these techniques. 

In essence, four tools of assessing the validity of QSAR models can be differentiated. 
These are: (i) randomization of the response data into reordered response vectors, 
(ii) cross-validation, (iii) splitting of the chemical compounds into a training and 
a validation set, and (iv) confirmation using an independent external validation set. 
Without the luxury of an independent validation set, which is regarded as the 
most reliable of these tools, the soundness of the model may, thus, be checked by 
either of the other three procedures. 

5.1.2 Examples 

In order to illustrate the four methods of assessing QSAR reliability, we shall 
consider two examples from the literature. The first example is taken from 
environmental chemistry and concerns a series of 15 epoxides and a model of their 
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chemical reactivity, which strongly influences the mutagenicity of these compounds 
[9]. For six of the epoxides, chemical reactivities are available from two different 
chemical model systems, involving the standard nucleophile 4-nitrobenzylpyridine 
(NBP). Thus, simultaneous QSAR modeling of two dependent variables ( Y )  is 
possible. In the second example, statistical experimental design has been used to 
create representative training and validation sets among a series of halogenated 
aliphatic hydrocarbons. Ten chemicals were allocated to the training set, and six to 
the validation set, and these compounds were subsequently investigated for their 
cytotoxicity to human cells (expressed as ZC,o values). Computational and other 
experimental details of this example have been described by Sjostrom et al. [lo] 

The QSAR models for these two data sets will be reexamined by means of the 
randomization technique and by cross-validation. Moreover, the epoxide data set 
gives the possibility of experimental validation using split data sets, whereas the 
haloalkanes provide the opportunity of demonstrating external validation using a 
designed validation set. We have also noted that the data analysis was carried out 
using PLS [6]. 

5.1.3 Four Tools for Model Validation 

5.1.3.1 Tool 1 : Randomization of the Responses into an Array 
of Reordered Variables 

The first of the four tools is based on repetitive randomizations of the response 
data (Y)  of N compounds in the training set. Thus, a random number generator 
is used to allocate the integers between 1 and N to sequences of N numbers. In 
each cycle, the resulting arrangement of random integers is employed in order to 
reorder the Y data - leaving the X data intact - and then the full data analysis 
is carried out on these scrambled data. Every run will yield estimates of R 2  and 
Q2, which are recorded. If in each case the scrambled data give much lower R 2  and 
Q2 values than the original data, then one can feel confident about the relevance 
of the “real” QSAR model. Randomization of the Y data a number of times (at 
least ten) gives a fairly good idea of the significance of the real QSAR, but in order 
to enhance the precision of the probability level, some hundreds of runs of 
rerandomized data are usually required. When hundreds of trials have been 
performed, histograms of R2 and Q2 can provide a precise estimate of the significance 
level of the real QSAR model. 

We realize, however, that hundreds of repetitions of the QSAR calculations might 
be tedious and time-consuming. Fortunately, our experience shows that already at 
around ten trials, the essential features of the R2 and Q’ histograms are already 
discernible. Moreover, sometimes rather high R 2  and Q2 are to be expected, because 
the randomized response variable may be highly correlated to the parent response 
variable. Thus, it is recommended that one always keeps a track on the inter- 
relationships among the original and reordered data, so that misinterpretations can 
be avoided. 
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5.1.3.2 Tool 2 : Cross-Validation 

In contrast to the previous method, cross-validation (CV) is based on predictions 
[ l l ,  121. CV operates by making a number (G) of slightly reduced modifications to 
the parent data set, estimating parameters from each of these modified data sets, 
and then calculating the precision of the predictions by each of the resulting models. 
Thus, CV creates G modified data sets by taking away one or a small group of 
compounds from the data in such a way that each observation (here: compound) 
is taken away once, and only once, over the total number of CV cycles, G. The model 
is then fitted to the data, devoid of the omitted part, and is then used to compute 
predictions based on the response data of the left out compounds. This is repeated 
for each modified data set, whereupon the squared differences between predicted 
and actual response values are summarized to form PRESS  (Predictive REsidual 
Sum of Squares, or, alternatively, PRediction Error Sum of Squares). In the end, 
PRESS will contain one contribution from each observation and is, thus, a good 
indicator of the real predictive capability of the model. Next, P R E S S  is compared 
to the sum of squares of the response values (SS,), and if the former is smaller than 
the latter, the QSAR predicts better than chance and can be regarded as “statistically 
significant” [13]. This because the best “estimate” for the activity of each compound 
is j, giving the “estimate error” equal to SS,. The predictive performance of the 
QSAR model can be reexpressed as Q2, the predicted or cross-validated variance, 
which is ( l -PRESS/SS , )  and accompanies the parameter R2. For more discussion 
on CV in the context of PLS, we refer to Wold [6] in this volume. 

In certain situations CV may not work as one wishes. The first is when the 
compounds are grouped considerably and, hence, are not independent. This may, for 
instance, occur when two or more different types of compounds are incorporated 
into the same model, and the activity of these compounds differs only according to 
this grouping. Any model will then primarily account for this difference in activity 
between the groups, and CV as well as any other significance test (except 
randomization), will identify this triviality. Another situation where CV is misleading 
occurs when CV is applied uftev variable selection in stepwise MLR. Here, the 
problem is that the final model is based on descriptors that have been selected 
according to their correlation with the response values, and the resulting apparent 
correlations are also, in retrospect, stable in CV. Finally, CV may yield too 
conservative results if the X matrix is generated from an orthogonal statistical 
cxperimental design, but this is exceptionally rare in QSAR. 

Leave One or Severul Out? 

Intuitively, we may feel that CV gives better precision, the larger the number of 
CV groups and, hence, G cycles. This has led most users to have one compound 
in each CV group, which gives, of course, N groups. The CV procedure is then 
often called “leave-one-out’’ (LOO). For computational reasons, however, CV with 
multivariate models (PLS, PCA, etc) has usually been performed with much fewer 
groups, typically between five and ten. Interestingly, Shao [ 141 has recently shown 
that both theoretically and practically, that this “leave-several-out’’ (LSO) approach 
is preferable to LOO. This result can be understood when we consider what 
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happens when the number of compounds, N ,  increases. The LSO technique always 
leaves out a certain portion of the data, thus, creating a constant perturbation in 
the data structure. The LOO approach perturbs the data structure by removing 
l /Nth in each CV round, thus, accomplishing an increasingly smaller perturba- 
tion with increasing N. Hence, in the limit, the Q’ of LOO approachcs R2, which 
is highly unsatisfactory. In short, we recommend setting G around 7 with CV. 

5.1.3.3 Tool 3: Splitting of Parent Data Set into Training 
and Validation Sets 

Cross-validation provides a reasonable approximation of the ability with which the 
QSAR predicts the activity values of new compounds. Usually, this is termed intwiul 
validation because all the considered chemicals belong to the same data set. However, 
should the number of available compounds be large enough, they can be divided 
to form a separate training set and a separate validation set, thus, enabling cxtcmul 
validation. This subdivision of the data set can be accomplished in many ways, but 
it is desirable that the two series of compounds span approximately similar ranges 
of the biological responses and the structural properties. 

5.1.3.4 Tool 4: External Validation Using a Designed Validation Set 

An often overlooked stage in QSAR is the selection of appropriate training and 
validation sets, i.e. how to select the sets to meet the fundamental statistical criterion 
of representativity. The training set and validation set compounds must be 
representative for the class of compounds from which they originate, which means 
that they must be chosen in such a manner that they adequately span the chemical 
and structural properties of the compounds considered. One practical way of 
attaining such sound sets of chemicals is to use statistical experimental design, which 
has already been discussed by Sjostrom et al. [lo] in this book. 

The use of statistical experimental design to generate well-balanced training and 
validation sets of representative compounds is infrequent in QSAR [lo]. Howevcr, 
in the case where this has been done, a validation set will exist that spans the entire 
X-space evenly and is independent of the training set. Provided that analogies and 
relationships prevail between the chemical and structural properties and the biological 
responses of these chemicals, this type of high quality validation set would enable the 
QSAR to be experimentally validated across the entire range of biological activity. 

5.1.4 Results 

The QSAR models, calculated in the following section were all obtained by PLS 
using the SlMCA package [15] with cross-validation. Thus, in  every model described 
below, values of R 2  and Q’ from CV will be quoted. 
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Figure 1. Scatter plots for the obscrved and calculated (training set, solid triangles)/predicted 
(validation set, open triangles) values of a) log kNP,, and b) log k,,,,,. Thc cpoxides are: propylene 
oxide (l), glycidol (2), epichlorohydrin (3), epibromohydrin (4), 1,2-epoxybutane (5) ,  1,2-epoxy- 
hexane (6), 1,2-epoxyoctane (7), 1,2-epoxydecane (8), 1,2-epoxydodecane (9), styrene oxide (lo), 
butadienediepoxide (1 1), 1,2,7,8-diepoxyoctane (12), epifluorohydrin ( 1  3), 3,3,3-trichloropropylene 
oxide (14), butadiene monoxide (1 5).  

5.1.4.1 The Epoxide Example 

The 15 epoxides studied were chemically and structurally characterized using nine 
theoretical quantum chemical descriptors, such as bond orders, atomic charges, 
delocalizabilities, electronegativities, and so forth [9]. For six of the compounds, 
chemical reactivities originating from two related chemical model systems, log k,,,, 
and log k,,,,,, were accessible. The PLS modeling, using these six compounds as 
the training set, gave the “real” QSAR with R 2  = 0.94 and Q2 = 0.92 (obtained with 
Tool 2), which was further validated using Tool 3. Fig. I shows the relationships 
between the observed and calculated/predicted chemical reactivities for the two 
endpoints. Evidently, the QSAR is able to adequately forecast the chemical 
reactivities of the epoxides in the validation sets. What is particularly remarkable 
is the prediction of log kNsPll of epoxide 14, which corresponds to an extrapolation 
of nearly 100% outside the range of reactivity of the training set. 
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Table 1. Observed R’s (unadjusted) and Q2s using Tool 1 
~~~~~ 

Epoxides Haloalkancs 

Trial R2 Q’ Trial R 2  QZ 

“Rcal” 
I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.94 
0.58 
0.14 
0.27 
0.27 
0.09 
0.1 1 
0.39 
0.05 
0.65 
0.06 

0.92 
0.42 

- 0.92 
- 1.15 
-0.99 

-0.86 

-0.58 
- 0.62 
-1.15 

0.54 
~ 0.90 

“Real” 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.90 
0.23 
0.12 
0.60 
0.24 
0.06 
0.40 
0.1 1 
0.28 
0.20 
0.14 

0.88 
0.07 

- 0.0 1 
0.53 
0.07 

-0.14 
0.32 

- 0.03 
0.14 

- 0.08 
0.04 

Next, the validity of this QSAR was tested using Tool 1. Thus, ten randomized 
and reordered pairs of chemical reactivity variables were constructed and were 
modeled pairwise. Table 1 lists the resulting explained and predicted variances, 
which are also shown in Fig. 2. As can be seen, the majority of the R2s lie in the 
range of 0.0 to 0.4, and in only two cases ( I  and 9 with 0.58 and 0.65, respectively) 
is this interval exceeded. Similarly, the Q2s of trials 1 and 9 are the only ones of 
notable quality, whereas the other values are negative and indicate nonsense models. 
Moreover, it is of relevance to explore why cases 1 and 9 have such comparatively 
good values. The explanation is that the two artificial response variables are 
rather strongly correlated with the response of the parent model, with correlation 
coefficients of0.89 ( Y  1, case l), 0.92 ( Y  1, case 9), 0.65 ( Y  2, case 1) and 0.73 ( Y  2, case 9). 
Thus, the data structure of the synthetic variables 1 and 9 considerably resemble 
the systematic variation in the observed log ks ,  and consequently, the nine structural 
descriptors utilized are able to encode the dominant features in the random variables. 
In  summary, the result of Tools 1-3 is, thus, compelling evidence that the real 
QSAR was well founded. 

-11 4AA A 
A A 

-1.5 I 
Figure 2. 
Q’s and R 2 s  for the epoxide cxamplc. Thc 
open triangle corresponds to the “rcal” 
QSAR model. 

Scatter plot of thc recorded 

0 0.2 0.4 0.6 0.8 1 
R2 
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5.1.4.2 The Haloalkane Example 

In contrast to the epoxide example, this illustration is a case in which both the 
training set and the validation set have been generated by means of statistical 
experimental design. All the details pertaining to this example can be found elsewhere 
in this volume [lo]. In this instance, we will only show that five chemical descriptors 
reflecting hydrophobicity and molecular size, were used to parameterize the 
properties of the 16 tested halogenated aliphatics. These chemicals were tested for 
their cytotoxic potential and the endpoint determined was the inhibitory concentra- 
tion, which lowered cell viability by 50% (ZC,,). 

The PLS modeling based on the ten training set compounds and with the aim to 
establish the parent QSAR, gave a model with R 2  equal to 0.90 and Q’ equal to 0.88 
(according to CV, Tool 2). In order to externally validate (Tool 4) the predictive 
behavior of this QSAR, the cytotoxicities of the six validation set cOmpounds were 
predicted and compared with the experimentally determined IC,, values. In Fig. 3,  
a scatter plot, representing the agreement between the observed and calculated/ 
predicted cytotoxicities, is shown. Obviously, Tool 4 shows that the QSAR is able 
to predict the biological activities of the validation set compounds in a sound way. 

Furthermore, the quality of this QSAR was tested using Tool 1. Analogously to 
the above example, ten repetitive randomizations of the response data were carried 
out. The PLS modeling, treating the simulated response variables one by one, yielded 
the explained and predicted variances printed in Table 1 and those plotted in Fig. 4. 
Interestingly, two cases (3 and 6) occur where there were rather high scores of R’s 
and Q’s. This can be understood differently when considering the underlying 
correlation structure between the original response and the two artificial constructs. 
The correlation coefficients in question amount to 0.6 (Case 3) and 0.4 (Case 6), 

0 2 4 6 a 10 
Calc./pred. /Cso 

Figure 3 Observcd IC,, values plottcd versus the corrcsponding calculated (training set, solid 
triangles) and predicted (validation set, open triangles) values. The compounds are: dichloro- 
methane (2), trichloromethane (3) tetrachloromcthane (6),  fluoro-trichloromethane (7), 1,2-dichloro- 
ethane ( I  l),  1-bromo-2-chloroethane (12), 1,1,2,2-tetrachloroethane (15), 1,2-dibromoethane (19), 
1,2,3-trichloropropane (23), bromo-ethane (30), 1 , 1  -dibromoethane (33), bromochloromethane (37), 
fluorotribromo-methane (39), I-chloropropane (47), 2-chloropropane (48), I -brornobutanc (52).  
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and hence Cases 3 and 6 have comparatively much in common with the measured 
response variable. Apart from these two cases, no other trial has produced R2s and 
Q’s in the proximity of the corresponding values of the real QSAR. Thus, the 
conclusion is that Tools 1, 2 and 4 all point to the same conclusion and indicate 
the sound predictive capability of the haloalkane QSAR. 

5.1.5 Concluding Remarks 

A QSAR model should, in general, be viewed with caution until its validity and 
predictive power has been properly assessed. As discussed and illustrated above, a 
number of alternative procedures exist for such purposes. Ideally, the four tools 
mentioned should not be used in isolation, but rather in combination with each 
other, due to their complementary character. The absolute minimum requirement, 
when developing QSAR, is to test the validity with the randomization technique 
(Tool l), but CV (Tool 2) ought to be carried out as well. However, the external 
validation (Tool 4), with a designed validation set, clearly produces the most 
trustworthy result. 

To some people our emphasis on model validation may seem to be an overly 
cautious attitude, but in QSAR modeling, this is far better than being totally 
accepting of the results. Usually, it is objected that the purpose of developing a 
QSAR is to lay the ground for a better understanding of the mechanisms of biological 
action, and not prediction or optimization. However, a QSAR model that cannot 
predict better than chance is a poor basis for comprehending relationships between 
chemical and biological properties. 
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Abbreviations 

ACC 
ACE 
ALS 
CFA 
CoMFA 
D O F  
F D  
FFD 
GA 
GOLPE 
IVS 
LDA 
LOO 
LOT 
MLR 
NLM 
N N  
0 LS 
PCA 
PCR 
PLS 
PPS 
PRESS 
RR 
RS D 
QPLS 
QSAR 
SAMPLS 
SDEP 
SIMCA 
SMA 
SPLS 
ss Y 
V l P  
vss 

Auto and cross covariance 
Alternating conditional expectations 
Adaptive least squares 
Correspondence factor analysis 
Comparative molecular field analysis 
Degrees of freedom 
Factorial design 
Fractional factorial design 
Genetic algorithm 
Generating optimal linear PLS estimations 
Interactive variable selection 
Linear discriminant analysis 
Leave-one-ou t 
Level of triviality 
Multiple linear regression 
Non-Linear mapping 
Neural networks 
Ordinary least squares 
Principal components analysis 
Principal components regression 
Partial least squares 
Principal properties 
Predictive residual sum of squares 
Ridge regression 
Residual standard deviation 
Quadratic partial least squares 
Quantitative structure-activity relationship 
Sample distance partial least squares 
Standard deviation of error of predictions 
Soft independent modeling of class analogy 
Spectral mapping analysis 
Spline partial least squares 
Sum of squares of response value 
Variable influence on the predictions 
Variable subset selection 
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5.2.1 Introduction 

We all remember that, having got lost in the wonderland, little Alice met the Cat. 
She asked him: “Would you tell me, please, which way 1 ought to go from here?” 
,,That depends a good deal on where you want to got to”, said the Cat. ” I  don’t 
much care where -”, said Alice. “Then it  doesn’t matter which way you go”, said 
the Cat. “- so long as I get somewhere”, Alice added as an explanation. ,,Oh, you 
are sure to do  that if you only walk long enough”, concluded the Cat [l]. This little 
excerpt stresses the point that, in order to answer properly the question which is 
the title of this chapter, one should clearly specify the goals of a QSAR study, 
otherwise any kind of statistics could be used. 

The purpose of developing a QSAR for a given problem is that i t  gives us 
information on how changes in the structure of the actual compounds influence 
their biological activity. This, in turn, allows us to modify the structure in order to 
improve the biological response and to improve our understanding of the actual 
biological mechanism [2]. In other words, there are two main objectives in QSAR 
studies: interpretation, i.e. understanding which structural features affect the 
response, and prediction, i.e. estimating the activity of new compounds before they 
become available. The requirements of a chemometric tool, aimed at meeting these 
objectives, have been described and updated several times over the past ten years 

The variety of chemometric methods reviewed in this, and in the other books of 
the series [9, 101 may be daunting for the QSAR enduser or the newcomer, who 
wishes to select the proper method for his or  her own problem. However, wc still 
wish to encourage such people: the statistical method used is not the most important 
step in solving a complex problem. A correct problem formulation and the fact that 
the collected data do contain information relevant to the problem itself are, by far, 
morc important. 

The idea that in QSAR research “statistics frequently become merely a tool to 
confirm hypotheses, and is not used as a language to describe phenomena” was 
also pointed out by Benigni and Giuliani [ l l] .  They also claimed that often 
“researchers apply statistics in an exclusively procedural way, as a set of formalized 
rules aimed at obtaining a reliable result, which generates a real cult for statistical 
indices. Many researchers feel very comfortable with statistical software packages 
specifically designed to obtain quick and reliable correlations, while the deep 
involvement of statistics with QSAR requires that researchers use it in a very active 
and conscious way”. 

We agree entirely with these statements and also with their conclusion that “a 
greater importance should be given to descriptive analysis”, namcly principal 
components analysis (PCA), “instead of dwelling almost entirely on statistical 
significance”. However, we cannot agree with their other conclusion that “the present 
use of statistics does not help to understand the role of chemical parameters in 
biological activity”. If this were true, we could attribute possible drawbacks, not to 
the statistical tool, but to an inappropriate problem formulation. 

In fact there are two souls in chemometrics, which can be referred to as the 
multimethod and monomethod philosophies [ 121. The first one was developed 

[2 - 81. 
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mainly by analytical chemists and led to software packages which contain a variety 
of multivariate statistical methods: it is recommended that several methods are used 
in order to find confirmation of the findings. The second one is based on a physical 
organic chemistry background and uses, within a unique framework, projection 
methods, such as PCA and PLS, plus design criteria: the SIMCA (soft independent 
modeling of class analogy) philosophy. In principle, choosing a philosophy is like 
choosing a religion as one is usually happy with the religion that he was born 
into. Similarly, one is usually content with the most familiar method. However, we 
believe that working with a single method is simpler for the newcomer and permits 
a better understanding of this unique chemometric tool when known in great detail. 

Furthermore, all the methods of multivariate statistics are based on one of the 
two similarity criteria, either the Euclidean distance or the mathematical models 
[13]. The former can only be used to look at molecules in the light of their descriptors, 
but they are not aimed at discovering any cause-effect relationship; consequently 
these methods, particularly LDA (linear discriminant analysis), SMA (spectral 
mapping analysis), NLM (non-linear mapping) or CFA (correspondence factor 
analysis), which is similar to PCA, can only be aimed at classification studies. On 
the contrary, QSAR studies need a chemometric method aimed at finding the 
quantitative relation between activity and structural descriptors: these are called 
regression methods and among these we prefer PLS. Mixing together methods 
coming from different criteria, e.g. using principal components scores for a 
discriminant analysis, leads to a logical stepwise modification in the problem 
formulation. The combined methods, PCA/PLS, seem to be particularly appropriate, 
both for the exploratory analysis of the structural data and for establishing the 
quantitative relationship in  the same descriptor space. 

5.2.2 Problem Formulation 

In the QSAR literature, the statistical models which are generally reported, express 
the biological response in terms of a few structural parameters, usually the traditional 
substituent constants. The apparent goodness of the model is derived thereafter by 
checking the goodness of fit of the simple linear regression between calculated and 
experimental y values. The QSAR equations usually contain only some of the 
available analogy factors and have the form of an ordinary multiple regression 
model, either linear or with some squared terms. However, the way in which these 
equations have been derived is seldom discussed. 

Therefore, it seems appropriate to illustrate briefly the questions that should be 
answered by step, with a definition of the procedure which leads to informationally 
sound QSAR models. 

5.2.2.1 Parameter Selection 

The most important question in a QSAR study, is "which parameters, i.e. which 
structural factors, do really affect the response?" To answer this question, we should 
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first define which parameters are to be used. The way of detecting the important 
ones will be dealt with in the next section. 

In the traditional QSAR approach (Hansch analysis, see vol. 1 [9]), one uses 
substituent parameters which measure the substituent behaviour in some reference 
reactions or systems. Therefore, they are “analogy” parameters and their use implies 
the implicit assumption that the substituent effect is somehow proportional in the 
system under investigation. Since the number of such parameters, proposed so far, 
is fairly large, and continues to increase [14], how can we select the parameters to 
be used? 

Moreover, since QSAR models are likely to be non-linear, most equations contain 
some descriptors expressed to the second power, and even reciprocal values have 
been used. However, the cross-terms, indicating the interaction between two distinct 
effects, seem to be far less popular. Therefore, how many terms should be taken 
into account initially in the regression equation before starting any variable choice? 
The underlying assumptions involve our desire to describe the activity data either 
in terms of a linear model, or in terms of a response surface. 

Although traditional descriptors are numerous, PCA provides a tool for grouping 
systematic patterns of behavior into a few orthogonal scales. In fact, it is possible 
to apply the strategy of experimental design [15] also to discrete systems, provided 
that these are multivariately characterized by a principal components analysis of 
some selected data. The latent variables obtained as statistical scores arc called 
principal properties (PPs) and represent in an appropriate way each system by few 
(usually three) “constants”, which condense the systematic behavior of the original 
data. These have been applied to describe amino acids (AAs) in peptides, [16- 171 
or aromatic substituents in general organic series [14, 181. A chapter in this series 
is devoted entirely to this topic [19]. 

A QSAR table is then prepared, describing each amino acid in a peptide sequence, 
or each substituent in a polysubstituted organic skeleton, by their PPs in triplets 
or pairs: the descriptor matrix. This table is then submitted to the chemometric 
analysis, in order to find out the relationship between the y vector, or  the Y matrix, 
and the descriptor, X matrix. 

5.2.2.2 Regression Methods 

When talking about regression methods, one should first divide them into two main 
groups depending on the underlying assumptions. On the one hand, one should 
group together multiple linear regression (MLR), also called ordinary least squares 
(OLS), adaptive least squares (ALS), ridge regression (RR), variable subset selection 
(VSS) and other stepwise methods, where the underlying assumption is the 
independence between variables. Accordingly, they are only appropriate when there 
are few descriptors, many compounds, and no variable selection is attempted. On 
the other hand there are the projection methods, namely partial least squares (PLS), 
also called projection to latent structures, and principal components regression 
(PCR), where the underlying assumption is that there are few “underlying” latent 
variables. 
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Among the methods used in QSAR, [4, 7, 8, 201 we shall restrict our selves here 
to the two more commonly used methods: MLR and PLS. It was only a few years 
ago [3] that the conditions for the applicability of statistical methods to QSAR werc 
first reviewed. The most important condition to be fulfilled was based on the simple 
fact that for a model to have predictive value, the number of estimated parameters, 
P,  should be appreciably smaller than the number of degrees of freedom i n  the data 
set (DOF). Accordingly, one can define a level of triviality (LOT) as the point when 
P = DOF. At this point and beyond, ( P  > DOF), the predictions of the model, 
with the calculated parameters, are no better than random, even if the fit of the 
model to the training set looks good. Thus, such results are spurious, trivial and 
fortuitous. 

The comparison between MLR and PLS has been reported several times [4, 7, 
8, 211. There are at least three weak points in using MLR in the area of QSAR: (a) 
the number of objects should be much larger than the number of variables; (b) 
MLR is based on the assumption that each variable is important for the problem, 
in other words, the model dimensionality is fixed a priori; (c) the regression coef- 
ficients become unreliable if there are significant correlations among the descriptor 
variables, multicollinearity. On the contrary, in PLS the ratio between variables 
and objects is not limited, the relevance of individual variables results from the 
analysis and their correlations are just used to find out the numerical solution. 
Consequently, if the question is “which parameters do really affect the response’?”, 
the most appropriate answer seems to be obtainable by PLS. 

Furthermore, the results of PLS are usually presented as plots, so that groupings, 
if any, are easily detected, whereas in MLR, in which the results are usually given 
only numerically, this is never observed. Since substituents are grouped [22], MLR 
results often appear to be deceptively excellent, as a result of the dramatic dccreasc 
in the real degrees of freedom due to the groupings not being taken into account. 
On the other hand, the traditional stepwise procedure [23] cannot strictly speaking 
be considered as a multivariate approach, as it does not take into account the 
interactions among substituents. 

Finally, it is appropriate to point out that a recent statistical report claims 
ridge regression (RR) is the method which gives the best predictions [20]. Howcvcr, 
it seems reasonable to presume that the assumptions underlying PLS are much 
closer to the requirements of a real problem formulation in QSAR [S]. Also, a simple 
refinement of the PLS method gives as good, or better predictions than RR [65]. 

The last question, regarding regression methods, takes us back to the problem 
left open in the previous section, i.e. the choice of the parameters to be used in the 
equation. Should we start from all possible descriptors, or should we consider only 
a few of them, and in this latter case, how should we choose them? 

A further point should be made in that the obvious way for finding out the “best 
subset of variables”, giving the best model in MLR, is to test all possible variable 
combinations. However, this may easily become impractical due to the increase in 
the number of variables. Consequently, two alternative procedures are commonly 
used, namely, forward selection and backwards elimination [24, 251. However, we 
have examples [26], which shows that the selected variables are different depending 
upon the method chosen. In other words, there might be several equations which 
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give almost the same predictivity, based on quite different groupings of structural 
descriptors. Since different variables, which are retained in the model, have a different 
interpretation, it is clear that such methods cannot be accepted as a reliable tool in 
order to understand/interpret QSAR equations. Unfortunately, it seems that quite 
a number of scientists, involved in QSAR studies, find their best equation as end-users 
of some “general-purpose” statistical package, which is numerically based only in 
terms of goodness of fit, and pays no attention to the problem formulation, model 
predictivity, interpretation of the results, plots showing homogeneity of the data set, 
and in general, to any method derived for understanding why things happen. 

Accordingly, since PLS has no limitations concerning the number of variables to 
be used from the beginning, we would suggest that all possible variables should be 
taken into account, and then to allow the chemometric method to select only the 
important variables. In this context, the description using PPs seems to be 
particularly suitable. Proposals on how to carry out variable selection are given in 
Sect. 5.2.3.2. However, it seems that most equations reported in the literature, which 
contain only few traditional descriptors, have been simply derived by forward 
selection. 

5.2.2.3 Model Evaluation 

Only if a QSAR model were valid, may we use the model with its parameter values 
to predict what would happen, when the factors were changed. However, how do 
we judge that a QSAR model is valid? Using ordinary regression or PLS regression, 
we can calculate values of the variable parameters, coefficients or  loadings, in such 
a way that the residuals are small. A measure of the size of the residuals is given 
by the residual standard deviation (s or RSD).  Likewise, R2,  the multiple correlation 
coefficient, measures the “explained” y variance. 

Therefore, the first necessary condition for model validity is that R 2  is close to 
1.0, and s is small. However, a large R2 and a small s are not sufficient for model 
validity due to the unfortunate property of regression models to give a closer fit, 
the larger the number of parameters and terms in the model. And, what is even 
worse, if we have many structure descriptor variables to select from, we can make 
a model fit data very closely, even with few terms, provided that they are selected 
according to their apparent contribution to the fit. This is true, even if the variables 
we choose from, are completely random and have nothing whatsoever to do with 
the problem being investigated! This is one reason why stepwise regression is 
impractical with data sets containing many collinear predictor variables. 

Although the risk for these chance correlations with variable selection has been 
pointed out [3, 271, it seems that this risk is not sufficiently recognized by the 
chemical and biological communities. The big problem with chance correlations is 
that predictions for new compounds of such models are very poor: the model fits 
the training set data well, but is useless for predicting and understanding. 

In order to evaluate the validity of a model, the best approach would be to have 
a fairly large and representative validation set of compounds, for which the predicted 
activity values can be compared with the actual values. In the absence of a real 
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validation set, we can use a simulated one, since recent developments in statistics 
provide us with a new interesting set of measures of validity that are based on 
simulating the self-consistent predictive power of a model. Nowadays, cross- 
validation and bootstrapping [28, 291 constitute the basis of the modern statistical 
philosophy of “replacing standard assumptions about the data with massive 
calculations”, for assessing the generality of a relationship found from a sample 
data set [30]. These tools operate by creating a number of slight modifications of 
the original data set, estimating parameters from each of these modified data sets, 
and then calculating the variability of the predictions by each of the resulting models. 

In cross-validation, the data set is divided into a number of groups. The model, 
of a given complexity, is fitted to the data set, reduced by one of the groups. Predic- 
tions are calculated with the fitted model for the deleted data and the sum of squares 
of predicted minus observed values for the deleted data is formed. Then, in  the 
second round, the same procedure is repeated, but with the second group left out. 
Then a third round is performed, etc., until each data point has been left out once 
only. The total sum of squares of predictions minus observations then contains one 
term for each point. The sum, abbreviated PRESS,  is a measure of the predictive 
power of the model of a given complexity for the given data set. In the end PRESS 
(Predictive REsidual Sum of Squares or PRedicition Error Sum of Squares) will 
contain one contribution from each observation. 

PRESS  is a good estimate of the real prediction error of the model, provided 
that the observations (compounds) are independent. If PRESS is smaller than the 
sum of squares of the response values ( S S Y ) ,  the model predicts better than chance 
and can be considered to be statistically significant. In a reasonable QSAR model, 
PRESSISSY should be smaller that 0.4, whereas a value smaller than 0.1 for this 
ratio indicates an excellent model. If the PRESS  value is transformed in a 
dimensionless term by relating it to the initial sum of squares, one obtains Q 2 ,  i.e. 
the complement to the fraction of unexplained variance over the total variance 
(Q2  = 1 - PRESSjSSY).  PRESS and Q’ have good properties which render them 
appropriate for statistical testing with critical distributions. 

To  sum up, a model can be considered reliable when (a) PRESS  has been calculated 
and PRESSjSSY  is lower than 0.4, (b) there are plots of the data patterns, and (c) 
a clear description is given of the candidate set of variables and of the variable 
selection procedure, if applied. Someone may object in that the purpose of developing 
a QSAR is to achieve a better understanding, not for prediction or optimization. 
However, a model that cannot predict better than chance is a really poor basis for 
understanding chemical-biological interactions. 

5.2.3 The SIMCA Philosophy 

The SIMCA philosophy is based on three main methods: PCA, PLS and design, 
and all these three topics have been covered in more detail in previous chapters. 
Its peculiar characteristics, which make it particularly suitable for QSAR modeling, 
will only be briefly illustrated here in order to suggest an overall chemometric 
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strategy for molecular design studies. This stategy relies on two major steps: design 
in latent variables and PLS modeling, the latter being refined by taking into account 
validation and variable selection. The PLS algorithm, already discussed in Sec. 
5.2.2.2, is the most appropriate tool for establishing quantitative relationships 
between a biological activity vector and a matrix of structural descriptors, and it 
has illustrated its capability in detecting the structural features, which affect the 
biological activity as well as in providing reliable predictions [4, 311. 

PCA is only used for classification purposes, and gives reliable results in terms 
of confidence values, also in QSAR studies, where the objective of discriminating 
active from inactive compounds cannot, in principle, be obtained by methods, based 
on the Euclidean distance. In fact, while active compounds can be described by a 
statistical model and, therefore, constitute a homogeneous class, inactivity may have 
originated due to the lack of any of several different structural features and, therefore, 
cannot form another separated homogeneous class. On  the contrary inactives are 
spread all over the descriptor space, thus, defining an asymmetric problem [32]. 
Even the use of PLS as discriminant function, which is sometimes used here [33], 
is not to be recommended in this context. 

5.2.3.1 Factorial and D-Optimal Designs in PPs 

In order to  develop sound QSARs, it is essential that the chemical compounds, on 
which the model is to be based, are selected by a design technique. Only when such 
requirements are fulfilled, will QSARs permit sound predictions for other molecules. 
Design means a computer-assisted strategy, which is able to span the operational 
space in the best possible way. The operational space is the space containing the 
object under control, and is described by numerical values. These object descriptors 
define the operational space, which is usually called variable space. 

The importance of design has not yet been fully recognized: new structures are 
usually derived on changing one substituent at a time for each substitution site. 
Sets of molecules, obtained in this way, do not contain enough information for 
ranking the importance of individual features which affect biological activity and 
for providing stable models to be used in predictions. The message that there are 
strategies and tools to handle complex data has not yet reached all research teams. 
Reliable models can be obtained only by a designed training set, or with available 
data, by a well balanced data set, containing structures selected by a design strategy 
in the latent variables space, which has been derived from raw data, contained 
structural descriptors for all the available compounds [16, 341. 

Experimental designs provide a strategy for selecting the few most informative 
molecular structures in a homologous series. In fact, it is also possible to apply the 
strategy of experimental design to discrete systems after a multivariate characteriza- 
tion of some selected data, which generate PPs. The strategy of fractional factorial 
designs can be applied afterwards by (a) using blocks of three PPs for defining each 
item at each site to  be varied and (b) selecting a representative item for each position 
of the PP space. 
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Factorial designs (FDs) and fractional factorial designs (FFDs) are simple, 
straightforward, and, therefore, good in facilitating an understanding of the concept 
of design by spanning the variable space. The set of possible substituents is divided 
into subsets according to their relative position in the PP space. A substituent, 
representing each subspace, (quadrants or octants) is selected thereafter, and labeled 
by the pair or triplet of signs corresponding to that subspace. Each “experiment” 
of a factorial design matrix can be transformed into a molecule, if we assign a pair 
of triplet of columns of the sign matrix to define the substituent corresponding to 
each site. 

However, with this approach a polysubstituted molecule should bear as many 
substituents as many substitution sites. Therefore, the FD approach might not be 
easy to apply when a synthetic chemists wants to keep under control a number of 
different substitution sites at the same time. It is clear that FDs give a synthetic plan in 
which the most informative compounds are difficult to synthesize, because they 
contain too many substituents. Because of these reasons we later investigated [6, 
351 the effect of using D-optimal designs instead of FDs with PPs in QSAR, since 
D-optimal designs can be used as a general alternative to FDs in constrained 
situations, e.g. when some regions of the variable space are excluded, or when the 
data set is discrete, as with molecular structures. 

The D-optimality criterion to evaluate the goodness of experimental designs has 
been dealt with by several authors [15]. It consists of determining the n experiments 
which minimize the volume of the ellipsoid of the conficence intervals of the estimated 
parameters for the coefficients in a multiple linear regression equation. An 
experimental design with n-points is D-optimal if the value of its determinant is 
maximum compared with all the other possible designs with n-points, which can 
be constructed in the experimental domain. Since the number of coefficients to be 
computed is equal to the number of the variables plus one, the experimental design 
should contain an equal or greater number of points. In particular, the Mitchell 
algorithm [36], which we selected [35], works by starting from an arbitrary initial 
design, and adding one point of the experimental domain to the starting design in 
such a way as to increase as much as possible the value of the determinant. 

FDs are D-optimal when each substitution site is controlled by a single parameter. 
On using two PPs, the goddness of D-optimal and factorial designs is comparable. 
However, on increasing the number of PPs for describing each substitution site, 
the efficiency of D-optimal designs increases much more. Suppose that the problem 
formulation is one of 6 variables generated by controlling 2 sites by triplets of PPs, 
the total number of possible molecules, allowing our weight selected substituents 
for each site, is 8’ = 64. The FFD approach would first generate a design matrix 
with 8 rows and 6 columns and then assign substituents to the two triplets of signs 
according to the subspace codes. 

On the contrary, the D-optimality approach works in a 6-dimensional space with 
the actual values of the PPs. The D-optimality criterion then results in the selection 
of the seven or more points out of the 64, which meet the requirement of maximizing 
the quoted determinant, i.e. roughly by spanning the domain in the 6-dimensional 
space in the best possible way. It is not appropriate to include all possible substituents 
in the D-optimality search, because of the large number of possible candidates. 
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Consequently, the use of the substituents, which are representative for each octant 
according to FD theory, is highly recommended for reducing the number of 
candidates to eight to the power of the number of sites. 

The advantages of using D-optimal designs instead of fractional factorial designs 
i n  principal properties can be summarized as follows. I t  is possible (a) to reduce the 
number of required structures; (b) to reduce polysubstitution, and even controlling 
several sites; (c) to exclude molecules, which are too difficult to synthesize; (d) to 
include molecules, which are already available and/or have been tested. 

5.2.3.2 Validation and Variable Selection 

In sect. 5.2.2.3 the importance of validating regression models according to their 
predictivity has been illustrated, and a whole chapter of this volume is devoted to 
this topic [37]. When the relevance of individual variables has been derived by 
models, obtained in the usual way (fitting), the physical meaning of the results might 
be misleading, if the model happens to be anchored to points of much higher or 
much lower activity. Only when a variable has been proved to be useful in  increasing 
model predictivity, can it also be judged to be relevant to the response and, therefore, 
to be used for interpreting the relationship from a chemical viewpoint. 

In cross-validation, P R E S S  values are calculated for different subgroups of the 
training set, until each object has been withdrawn and predicted once, and the total 
PRESS is formed by summing all partial P R E S S  values [2]. Nevertheless, for practical 
reasons in various branches of chemistry, the use of the square root of PRESSIN 
seems to be more directly related to the uncertainty of the predictions, since it has 
the same units as the actual y values. Accordingly, we suggested [31, 381 that the 
term S D E P  (Standard Deviation of Error of Predictions: S D E P  = ( P R E S S / N ) ’ / ’ )  
be used. 

This equation, however, has yet to define a unique way of computing the parameter 
S D E P ,  since the way the predictions are made should also be selected. For example, 
in defining the cross-validation procedure, the data set should be divided into a 
number of groups, but one can also increase the number of groups until  it equals 
the number of data points, thus obtaining the leave-one-out (LOO) procedure. 

LOO should theoretically be the best approach provided data are randomly 
distributed or designed, but LOO gives S D E P  values lower than the approach using 
groups, when data are clustered. Since in QSAR the descriptor variables usually 
generate grouped data, owing to  the discrete nature of substituents at the various 
substitution sites, the prediction capability of a model should be evaluated in a 
non-favorable cross-validation technique, i.e. by the formation of the lowest 
reasonable number of groups. 

Moreover, one should not just be satisfied with using a cross-validation technique 
that forms groups in one particular way, and we computed S D E P  several times on 
groups formed in a random way [38]. This definition of S D E P  places i t  halfway 
between cross-validation and bootstrapping. In fact, the computation was repeated 
several times, as in bootstrapping, but each point was excluded just once in each 
run, as in cross-validation. We showed that the higher the number of random 
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pathways of forming groups, the more stable is the S D E P  value, which is to be 
regarded as the mean value of the individual “sdep” values obtained by each 
computation. 

The S D E P  parameter can be logically associated with the uncertainty of any new 
prediction made by that model. However, being dependent on the parameter scale, 
it is obvious that the “absolute” drediction capability of the model should be 
evaluated by Q’. 

Procedures for variable selection have long been used with ordinary least squares 
regression methods [24]. However, almost all previous work in variable selection 
was undertaken exclusively for describing data sets (fitting), and it was shown in 
Scc. 5.2.2.3 that all regression models increase their fitting capability with increasing 
number of variables. In order to evaluate the relevance of individual variables in 
validated regression models, investigation of model predictivity is, therefore, needed. 

By means of the S D E P  parameter, it was possible to compare the prediction 
capability of different regression methods [38], or to select groups of variables, 
capable of giving the best prediction capability of a single model [39]. In the latter, 
we suggested a preliminary outline of a procedure called GOLPE (Generating 
Optimal Linear PLS Estimations), aimed at obtaining the best predictive PLS 
models, which allowed us to show that: (a) in PLS modeling all variables are relevant 
for fitting but some of them may be detrimental to predictivity; (b) the GOLPE 
procedure is a method for detecting variables, which increase predictivity ; (c) the 
PLS models, obtained by using only variables selected by GOLPE, are more 
predictive than the PLS model obtained by using all variables; and (d) PLS models 
with variable selection are more predictive than similar models [26] obtained by 
ordinary least squares. 

The procedure was based on statistical designs, as design matrices used in 
fractional factorial designs (FFDs) are a suitable tool for finding an efficient way 
of selecting the best combination of variables [15]. The strategy was developed by 
using combinations of variables according to a FFD, where each of the two levels 
(1, - 1) corresponded to the presence and absence of the variable. The design matrix, 
including only the “plus” and excluding the “minus” variables, suggested that only 
the prediction capability of these reduced models should be tested. Each model had a 
different combination of variables and was all in all a good presentation of all the 
possible combinations. For each such combination, the prediction capability of the 
corresponding PLS model could be evaluated by means of S D E P .  Accordingly, a 
response vector was obtained, indicating the model predictivity for each combination 
of variables as the lowest S D E P  value corresponding to the dimensionality for which 
S D E P  assumes the minimum value. 

Variable selection procedures can find apparent good models that do not give 
reliable predictions. This means that the presence of chance correlations may mask 
the true effects of individual variables [2, 401. In fact, when the objects/variables 
ratio is far smaller than unity, the biased regression methods may also fail in terms 
of predictions. In order to avoid the risk of chance correlations, one should provide 
some general rules for obtaining a reliable variable selection. These criteria should 
take into account the ratio between variables and objects, the existence of some 
structure in the data, and the presence of some initial predictivity, e.g. P R E S S  being 
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smaller that SSY Only when at least one of these criteria, namely the latter, is met, 
should the variable selection procedure be allowed and its results should give much 
better predictions. 

In order to estimate as precisely as possible the significance of a single variable 
effect on predictivity, the GOLPE procedure was later refined by introducing a 
number of dummy variables into the design matrix [41]. These dummy variables 
were not actual numbers and we labelled some columns in the design matrix (say 
one out of four) as dummy (or ghost) variables, which were inserted among the 
true ones. These dummy variables were not involved in the variable Combinations 
which evaluate the predictivity of each row of the design matrix. They are only 
used to compute the apparent effects on predictivity given by a non existent variable 
by means of the Yates algorithm, so that a decision on the positive or the negative 
effects of individual true variables can be taken on the basis of a Student-r tailoring. 
Variables with a positive effect on predictivity can be fixed within the variable 
combinations, while variables with a negative effect on predictivity can always be 
excluded from the variable combinations. If variable selection proceeds in an iterative 
manner, it increases the stability of the results, thus furnishing the complete list of 
selected variables. 

The GOLPE procedure appears, therefore, to be a powerful and efficient tool for 
variable selection. However, we should note that it can only be properly applied 
provided that the regression model on the whole data set have at least some initial 
predictive ability (Q’ greater than 0.1 -0.3). In such cases GOLPE can take away 
the noise and improve considerably the Q’ value. If this is not the case, variable 
selection can still be allowed, provided that there is some structure in the X data, 
e.g. design has been used, implying that the dimensionality of the problem is lower 
than the number of variables. 

An independent measure of the relative importance of the x variables can be 
calculated as V I P  (variable influence on the predictions). V I P  is derived from the 
PLS weights, taking into account the fraction of variance explained in  each model 
dimension [7]. In addition to V I P ,  the regression coefficients are also useful for 
assessing the importance of x variables: only those with h values larger than about 
half the maximum h value are seen to be important. A further development of VIP 
led to the proposal of the Interactive Variable Selection (IVS) method for PLS 
studies [65]. There is still no comparison between the selection of important s 
variables by GOLPE and by V I P  and h values or by IVS. 

Selecting variables according to both their V I P  and h values gives good results, 
provided that some caution is taken, since selecting variables is difficult and risky. 
In  order to avoid pruning, the elimination of variables should be undertaken to 
simplify the model, and not be influenced by the degree of fit or the prediction 
error. The latter usually leads to a partly spurious model that overfits the data 
considerably. 

According to a chapter in one of the previous volumes in this series [42], variable 
selection was performed by an iterative procedure, based on the cross-validated R 2  
of PLS models. At each step, the amount of information carried by each variable 
was assessed by its standardized regression coefficient, and the elimination of the 
variable with the lowest coefficient improved the model. This improvement was 
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again quantitatively estimated by cross-validation, and was shown to go through 
a maximum, after which any further elimination caused a decrease in R&, so that 
the iterative procedure was stopped. The reliability of this procedure sounds a little 
doubtful, both because of the risk of pruning (cross-validation is made in leave- 
one-out (LOO), and because the relative ranking of the regression coefficients is 
considerably dependent upon the number of significant dimensions of the PLS model. 

Alternative strategies, which have been suggested for variable selection, include 
genetic algorithms [43,44] and forward/backward methods [25]. However, we should 
warn against evaluating predictive performance by LOO. It has been claimed that 
ordinary regression, using reduced models, obtained by such selection techniques, 
behaves better than the biased regression methods, RR and PLS [26]. Here it is not 
difficult to illustrate that PLS behaves even better with selected variables [39]. It is strik- 
ing that the two methods of variable selection, forward selection and backwards 
elimination, selected totally different groups of variables, thus casting serious doubts 
on the reliability of the interpretation of the final model. Once again, the attention 
given to predictivity overshadowed other aspects of the regression analysis. 

5.2.4 Other PLS Codes 

Non-linear variants of PLS modeling have been developed that are very similar to 
ordinary PLS models, except that they have a curved inner relation. Thus the y 
scores are modeled as a quadratic (QPLS) [45], or cubic polynomial or spline (SPLS) 
[46] in the corresponding x scores. 

Alternatively, the use of neural networks (NN) [47] has been advocated for 
multivariate non-linear modeling. It is clear, however, that NNs, with their non-linear 
regression-like formalism, do not work with many variables and few cases. Therefore, 
some kind of variable reduction, preferably by projections, is appropriate and a 
PLS-projected version of NNs, which is very similar to non-linear PLS, was recently 
developed [48]. 

Other non-linear methods, suggested over the last few years, are alternating 
conditional expectations (ACE) [49- 511 and some genetic algorithms (GA) [52]. 
However, the experience with these non-linear models in QSAR is still limited, and 
the benefits of non-linearity may not always compensate the drawbacks of more 
complicated estimation and interpretation. 

In addition, non-linear models seem to have considerable problems with over- 
fitting. In fact, non-linear models are likely to give a better fit to the training set 
data, but are unable to give better predictions. This was shown, at least for QPLS 
and ACE, with five QSAR data sets [31]: In principle, it should be obvious that the 
smoother the algorithm, the closer the model fits the available points, and optimizing 
predictions is not a main objective in this context. Accordingly, the interpretation, 
which is already somewhat obscure, is also greatly dependent upon the representa- 
tivity of the training set compounds. 

A few years ago a geologist, at a workshop on chemometrics in geochemistry, 
proposed the use of a method called Similarity Correspondence Analysis, which 
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he wanted to call SIMCA: the time of cloning was upon us [53]! Nowadays we can 
see that PLS, having already taken some ten years to be rccognizcd, has become 
popular and is accepted as a new, and perhaps better, regression method as compared 
to ordinary least squares. As a consequence, several people have written their own 
codes and started to use PLS for their QSAR studies. However, it seems to us that 
quite often the poor experience of such people in handling PLS models may lead 
to some misleading problem formulation, generating, in turn, some misunderstanding 
in the interpretation. 

A notable example of such a behavior is given in the recently published paper 
on SAMPLS [54]. Here the authors, Bush and Nachbar, wrote their own new code 
in such a way that the PLS implementation was sample-based instead of property- 
based. SAMPLS reduced all explanatory data to the pairwise distances among 
samples (molecules), that can be subsequently used to fit the PLS components under 
cross-validation (LOO) conditions. They showed that SAMPLS exactly reproduced 
conventional PLS analyses, being by far faster. 

Even if they are numerically correct, we should point out that transforming a mole- 
cular descriptor matrix into an intermolecular distance matrix is not appropriate at all, 
sincc all the information needed for interpretation is lost completely. In a distance 
matrix, rows and columns are equal and this makes the problem formulation less clear. 
Projections methods highlight the differences between samples because of the variables: 
if samples and variables are the same, there can be no way of formulating a relation 
from a chemical viewpoint, even if the equation is correct and execution of the model 
fast. Deliberately “SAMPLS does not calculate any statistical quantities related to 
the explanatory properties“ [54], which is the real goal of QSAR. 

It is not surprising that Bush and Nachbar [54] stated that using groups in cross- 
validation, instead of using a full LOO procedure, is a short cut needed for sav- 
ing computational time: their method cannot work with groups. Furthermore, they 
quote another disparaging claim made by the authors of the chemometric system 
SPECTRE [55]: “the main disadvantage of the PLS method is that the latent variables 
are abstract and difficult to interpret“. Therefore SAMPLS was claimed to be “ideally 
suited to structure-activity analysis based on CoMFA fields”, that “expresses its pre- 
dictions in terms of displacements between real chemical groups, e.g. halfway bctwecn 
cyclohexyl and phenyl” in order to avoid the use of latent variables, that are so 
abstract and complicated. We really have to admit how surprising it is that PLS is 
nowadays so widely and successfully used, even despite the fact that it is not thoroughly 
understood [20]. Much better than SAMPLS are the kernel algorithms for PLS, which 
were proposed both for Tall [56] and wide [65] x-matrices, since they involve the 
y-vector. The Kernel algorithm is fast and memory saving and still retains the total 
information carried by the variables, describing the structural features [56]. 

5.2.5 3D QSAR 

In a CoMFA study [57], or on applying PLS to the energy field computed by GRID 
[58],  the rigorous procedure suggested by GOLPE may be impractical, since the 
variables in 3D QSAR are in the order of hundreds or thousands. Therefore, a 
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strategy providing a reduced number of variables from the beginning and, therefore, 
a reduced number of combinations, would be highly desirable. 

In Sect. 5.2.3.1, we showed that D-optimal designs are more efficient than FFDs 
in constrained problems. Accordingly, in 3D QSAR, the D-optimality criterion 
may be used for a preliminary selection of variables in the loading space according 
to a D-optimal design. In fact, with so many variables, the information is largely 
redundant, and D-optimality is an appropriate criterion to select variables in  such 
a way as to retain almost all the information by a much smaller number of variables, 
which are spread as much as possible in the principal components space. 

This preselection ends up by taking away redundancy without destroying 
collinearities, since it is recommended that the D-optimality criterion is used to 
retain not less than a half of the variables at  a time, in an iterative manner, and 
stops as soon as the model predictivity begins to change. Of course, this may not 
be the only, or the best way of reducing redundancy, but at present it seems to 
work quite satisfactorily. However, after cleaning the x-matrix by removing all small 
values, all variables at two levels with skewed distribution, and all variables with 
a small variance, the number of active variables becomes in the order of hundreds 
and the D-optimal preselection is not needed any more [66]. 

However, while we are trying to develop better chemometric tools and procedures 
for handling 3D QSARs, we can see several examples of poorly formulated 
problems. Typically, on the one hand, there is the risk of obtaining trivial results, 
as shown by a series of papers by Kim [59], who implemented PLS to determine 
obvious dependencies between CoMFA or GRID fields and the traditional analogy 
constants. 3D QSARs represent a highly appealing area for researchers, where one 
is dealing with really important problems, to which one can apply the most advanced 
computational tools. Their special features are (a) updating current QSAR studies 
in keeping with the Hansch trandition and (b) combining chemometrics and 
modeling techniques in order to develop a procedure that we would like to call 
(mc)2, an acronym for Modeling and Chemometrics in Medicinal Chemistry. 

There are very few examples of (mc)2 outside of the 3D QSAR area. We are 
pleased to announce that the procedure undertaken by the research group 
of Pitea and Todeschini [42] represents another good example of this kind, where 
chemometric methods and information, derived from modeling, are used in logical 
sequence to solve real problems, although strictly speaking, i t  is not a QSAR method. 
Furthermore, although it seems to us that there are a couple of slightly weak 
points in the procedure, both in using a classification tool at the beginning in a 
fashion similar to the active analog approach for a case that ought to be asym- 
metric, and in the variable selection strategy, that we discussed earlier, we are 
pleased to see that the procedure has been successfully applied to solve several real 
problems. 

The real drawbacks in 3D QSAR are different, as they are strictly linked to the 
continuity and congruency requirements of such models. Auto- and cross-correlation 
and covariance (ACC) transforms are suitable tools for recognizing the information 
contained in the 3D fields, generated by CoMFA in such a way that they appear 
to be more appropriate for 3D QSAR. This rearrangement provides new data that 
have two favorable properties: they take into account neighbor effects, and, therefore, 
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the required continuity between grid nodes, and they are independent of alignment 
within the grid lattice [60]. 

Indeed, present day 3D QSAR models depend almost exclusively on the alignment 
criterion used, so that it is sometimes customary to realign molecules after the first 
analysis in order to improve the model. On the contrary, we would like to find a 
molecular description independent of the alignment, and this could be obtained, if 
we succeed in describing the molecule in a way that is independent of its location 
within the grid space. Using our ACC transformation, data descriptions derived 
by CoMFA or GRID can be modeled by PLS without any need for alignment, 
thus meeting both the congruency and continuity requirement. The 3D ACC trans- 
forms, developed so far, allow a unique and congruent description of “degenerate” 
numbering of molecules [60]. At present, we can only satisfactorily deal with planar 
molecules, but cannot yet properly describe flexible molecules. The improvements 
under investigation will hopefully help us to reach our other objectives. 

Another aspect which we would like draw attention to is the relative importance 
that should be expected (or given) to the different fields in CoMFA, or to the 
different probe energies in GRID. In principle, we agreed [7, 411 that the row data 
should be blockscaled in order to give the same initial importance to each 
“fundamental” effect. Their relative importance is then derived from the results, 
often depending upon the absolute values of the fields, and discussed in order to 
interpret the biological mechanism and to design new parent molecules. 

It might be the case that we would have to change our problem formulation, if 
we could dissect a ligand-receptor interaction into sequential steps, each depending 
upon specific properties: (a) first, the capability of crossing a membranc, presumably 
linked to some molecular hydrophobicity parameter, which produces the actual 
concentration in the cell; (b) second, the molecular recognition phase, which is 
presumably an electrostatic interaction across large distances, and driven, therefore, 
by molecular electrostatic potentials; (c) finally, the real binding, which is namely 
due to H-bonding and steric/lipophilic interactions. If this were true, assigning 
the same importance to all the aspects in the PLS analysis might not be the best 
choice. 

5.2.6 Conclusions 

We have tried to give an overall view of the problems concerning the title of this 
chapter, “how to choose the proper statistical method”, highlighting either some 
philosophical aspects and some good or bad examples of applications of chemometric 
methods in molecular design. 

Obviously, as we have already remarked, the SIMCA philosophy provides a 
unique framework of multivariate tools that seem to be particularly suitable for 
QSAR studies. Anyway, we focused on the importance of an appropriate problem 
formulation with respect to the statistical method used. Nevertheless, whatever the 
method, it should depend on design, validation, variable selection and inspection 
of plots, in order to obtain informationally sound QSAR models. 
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Design has already been discussed thoroughly in this volume [19, 611. We would 
just like to emphasize once more that the common strategy of constructing a training 
set of compounds by changing one structural feature at a time does not work well, 
mainly because it does not provide information about the combined influence of all 
the varied structural elements which affect the biological activity. In contrast, multi- 
variate statistical designs allow the selection of a training set of compounds that is 
informationally sound, i.e. that gives data with good predictive power. Furthermore, 
it seems appropriate that a QSAR study is carried out in two phases: the first one for 
a preliminary screening, typically by fractional factorials, and a second one with a 
finer control on substituents, which lie within the good subspaces, for the final re- 
sponse surface modcl, by means of composite design or D-optimal design. Quadratic 
models can be derived either by the CARS0 procedure [62] or by QPLS [45]. 

PLS is based on the projection of the structural descriptor variables ( X )  down 
onto a low dimensional subspace simultaneously with the projection of the biological 
activity variables onto the same subspace. PLS is not based on assumptions of 
independence or exactness or relevance of the X variables, and is, therefore, suitable 
for the analysis of the typical QSAR data set with many variables in both X (the 
structural description) and Y (the biological activity), even when the number of 
investigated compounds is fairly small. 

When cross-validation is used to estimate the prediction errors of a model, the 
cross-validation must start anew with each deleted group or deleted compound. 
Thus, it is wrong to use a stepwise selection of variables to  develop a model for 
the whole training set and thereafter delete one compound at a time and reestimate 
the model with the reduced set of variables. The correct way is to leave one group 
of compounds out from the beginning, apply the variable selection and model 
development, based on the remaining data, and thereafter predict the left out 
compounds. Then, a second group of compounds is left out, a new variable selection 
and model development is undertaken, the left out compounds predicted, and so on. 
If  it is not done in this way, the cross-validation gives a much too optimistic view 
of the predictive power of the final model. 

It is appropriate to recall that some QSAR endusers have raised some doubts 
about the efficacy of cross-validation techniques. It is our pleasure to state that 
professional statisticians do believe that cross-validation is, nowadays, a totally 
reliable tool [20]. Moreover, it was recently claimed that better theoretical and 
practical results could be obtained with cross validation, when several samples are 
deleted together groupwise instead of one at a time [63]. There are only two situations 
when cross-validation does not work well. The first is when compounds are strongly 
grouped and, hence, not independent. The second situation occurs when cross- 
validation is applied after variable selection in stepwise multiple regression. 

The final point was raised in the question about the capability of the PLS algorithm 
to determine the few variables which are really related to the response among a 
large number of noisy ones [64]. Although this was probably true for the original 
PLS algorithm, it is not true any more, if an appropriate validated procedure of 
variable selection is used [Clementi, S., unpublished; Wold, S., unpublished results]. 
Consequently, little Alice can really be helped to proceed securely in the “wonder- 
land” of QSAR modeling, possibly with the aid of the SIMCA philosophy. 
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- H-bonding 6 
- hydrophobic 6 
- in a QSAR expression 
- ionic forces 6 
- van der Waals 6 
bootstrapping 325 
bradykinin potentiating penta- 

branching 23 
branching degree 27 
broad classes of QSAR approaches 91 
- linear free energy relations 91 
- structure-based approach 91 
bulk 149 
bulk-corrected cohesiveness 149 f. 
butyrophenones 224 
- neuroleptic 223 

6 

peptides 150 

calcium binding protein 289 
calculation of 'x" 29 
calculation of log P from molecular 

- atomic contributions 22 
- molecular properties 22 
- solvatochromic parameters 22 
- substituent additivity 22 
- surface area 22 
calibration of the model, selection of 

compounds 63 
calmodulin inhibitors 287, 289 
canonical analysis, categorical 

canonical correlation 267 f. 
- as a generalized regression 

- comparison to linear and multiple 

- test for significance 270 
canonical correlation analysis 

- application 271 
- difference with multiple 

regression 266 

structure 22 

variables 168 

procedure 280 

regression 280 

(CCA) 266 

- features of 268 
- for the design of a new flavor 281 
- objective 267 
- variable deletion procedures 275 
canonical loadings 268 
canonical scores, plot of 272f. 
canonical variate, amount of variance 

canonical variate coefficients 268 
canonical variates 267 
canonical vector, location and direction 

of 269 
canonical weights, analogous coefficients 

in multiple linear regression analysis 
(MRA) 268f. 

in 268 

carbolsulfamates 304 
a-carbon of amino acid, modeling of 

carcinogenic aromatic amines 287 
carrageenin 128 
CARS0 procedure 335 
CASE program 26 
catecholamine biosynthesis, inhibition 

electronic nature 186 

of 132 
categorized biological data 291 
cause-effect relationship 321 
cavity surface area 142 
CCA, see canonical correlation anal 
CCA in QSAR studies 
- advantages and disadvantages 28 
- disadvantages to multiple 

cell-free folate synthesizing enzyme 

cell penetration 288 
chance correlation 101, 152, 324 
- avoidance of the risk 

regression 281 f. 

extracts 135 

329 

rsis 

change-one-separate-feature-at-a-time 

charge-transfer chromatography 130 
charged partial surface area 

(CPSA) 34 
- descriptors 35 
Charton's steric constant, v 23 
chemical graph theory 94 
- electropological state indexes 94 

(COST) 73 
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- kappa shape indexes 94 cluster significance analysis (CSA) 295 
- molecular connectivity chi indexes 94 - active compounds are ,,focused" 297 
chemical reactivities 311, 314 
chemical substances found in the 

environment, accumulation in 
organisms 99 

chemistry, experimental science 3 
chemometric strategy 325 f. 
chemometric tool, requirements 320 
chemometrics 2 
- application in analytical chemis- 

try 3f. 
-books 3f. 
-QSAR 2 
- specific journals 3 f. 
chlorinated chemicals 81 
chlorinated fluorocarbons 81 
chlorinated organic compounds 99 f. 
chlorpromazine 223, 241 
chlorpromazine-type compounds, for 

cases of extreme agitation and 
confusion 229 

chlorprothixene 223 
chlorsanthemates 274 
choice of appropriate software 8 
cholecystokinin (CCK-A and CCK-B) 

chrysanthemates 274 
cinematographic techniques 167 
( +)-cis/truns-methylbenzyl- 

class membership by the orthogonal 

classical QSAR descriptors 149 
classification methods, comparison 192 
classification of compounds, with 

respect to their specificities 232 
classification of substituents, in the DPP 

space 110 
classification of the chemical elements, 

based on atomic weight 225 
classification of the neuroleptics 224 
classification studies 134, 321 
classifying parameters 61 
cluster analysis, in order to group 

antagonism 79 

chrysanthemates 271 

projection distance 189 

- biological data must be binary 295 
- categorical data 300 
- compactness of a group 297 
- degree of clustering 297 
- descriptor selection 299 
- descriptors can be continuous 
- examples 301 ff., 307 
- purpose of 296 
- random sampling technique 302 
- resemblance and difference to 

- rigorous mathematical treatment 297 
- significance probability 297 
- software 299 
- theoretical background 296 
clustering of compounds with chi index 

CNDO calculations 171 
CNS drugs 287 
co-inertia analysis 168 
-flow diagram 169 
co-structure analysis 168 
coded amino acids (AA), PPs or 

descriptor scales, 21, z2 and 23 69 
collinearities between x variables 152 
combinatorial chemistry 8, 104 
CoMFA and GRID parameterizations 

CoMFA or GRID fields, dependencies 

communalities, among variables 138 
comparative molecular field analysis 

-PLS 7 
comparison between MLR and 

PLS 323 
compounds with antiepileptic 

properties 231 
comprehensive study of 40 neuroleptics 

in 12 pharmacological tests 226f. 
computed descriptors 17 
computer-assisted medicinal chemis- 

295 

LDA 295 

plots 98 

200 

between 333 

(CoMFA) 7, 151 

try 3 - -  
substituents 54 computer-assisted molecular design 3 
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concept of receptors by 
Emil Fisher 230 

conformational properties 53 
connection table 25 
constrained search 3 
contingency table 232 
continous classification 224 
continous values 284 
contour plot 101 
- of the response surface 
contractility of the heart 59 
contrast 
- between amphetamine and 

apomorphine 241 
- between the antipsychotic and the 

tranquilizing properties, of the 
neuroleptics 229 

- with respect to two tests 228 
copper complex formation 132 
correct classifications 284 
(multiple) correlation coefficient 310 
correspondence factor analysis 

(CFA) 222, 232 
corrosive carboxylic acids 69, 86 
COST approach 74 
COST approaches, compared with 

COST design, poorly balanced 

COST designed training set 73 
covariance X Y  of the data 267 
Craig plot 54, 56 
crayfish stretch receptor 274 
cross-conjugation 18 
cross-tabulation 232 
cross-terms 322 
cross-validated R2 (denoted as Q2) 
cross-validation (CV) 68, 120, 310, 

- doubts about the efficency 335 
- modified data sets 312 
- situations where CV may not 

-when CV is applied after variable 

CSA, see cluster significance analysis 

100 

statistical design 73 

design 76 

197 

325, 328 

work 312 

selection 312 

curvature in plots 216 
cytotoxic potential 316 
cytotoxicity 82 

3D ACC 334 
3DQSAR 7 
- drawbacks 333 
-PLS 7 
D-optimal design 54, 66, 327 
- DESDOP program 109 
- review of subset selection 

D-optimality criterion, to evaluate the 
algorithms 66 

goodness of experimental 
designs 327 

Daphnia immobilization 85 
data 
- centering by subtracting the column 

-fitting 329 
- homogeneity 197 
- preprocessing 183 
- transformation, logarithmic 201 
data of a QSAR model 
- arranged into two tables 
- transformed, centered and scaled 200 
data scaling 
- autoscaling 201 
- to  unit variance 201 
decision trees 259 
decomposition of time-dependent 

response data, by factor analysis 138 
definition 
- of SDEP between cross-validation and 

- of structural diversity 104 
degree of distortion in a two- 

dimensional biplot 240 
degrees of freedom in the data 323 
delocalizabilities 314 
delta values, definition 28 
Dendrodoris grundifloru 169 
descriptive analysis 320 
descriptor space 181 
descriptors 16 
- appropriate selection of 149 

averages 201 

200 

bootstrapping 328 



344 Index 

- continuous 61 
- electronic 16 
- geometric 16 
-nature 16 
- physico-chemical parameters 16 
- relevance of 61 
- structural 16 
- topological 16 
design 
- chemical intuition 7 
- criteria 321 
- of efficient graphs 166 
- and PLS modeling, examples 68 
- of a series of compounds based 

on availability of chemicals 7 
- synthetic feasibility 7 
-time 7 
designing test compounds 49 
dextran edema 128 
diagnostics in PLS 
- cross-validation 217 
- loading plots 217 
- modeling 198 
- score plots 217 
diagonalizing 119 
diastolic blood pressure 132 
dibenzofuranes 69 
difference variable, Ax1 97 
difference variables (Ax0, Axl) 
- as delta chi indices 101 
- related to molecular electronic 

- role of the pi and lone pair 

dipeptide, bitter tasting 76 
dipeptides inhibiting the angiotensin 

converting enzyme 73 
dipeptoids 79 
diphenylaminopropanols in 11 different 

diphenylbutylamine 231 
diphenyloxides 100 
dipole moment 171 

direct lead optimization 
- operational schemes 51 

structure 101 

electrons 101 

pharmacological tests 127 

--/A 127 

- Topliss trees 51 
direct optimization, methods aimed 

discrete results 283 
discriminant analysis 
- conclusions 291 
- examples 287 
- function of 284 
- pattern recognition tool 291 
- performed by artificial neural 

discriminant functions 284 
- chi-square test 287 
- hyperplane 285 
- leave-one-out technique 287 
discriminant score 284 
discriminant weights, obtained by a 

discriminating power 188 
disjoint principal properties 

- an example in design and analysis 

- correlation matrix 109 
- covering the descriptor space 110 
- four pairs of 110 
- not orthogonal to each other 107 
display 
- of multidimensional data with a 

minimal loss of information 115 
- of supplementary information 167 
disubstituted benzenes 142 
docking 34 
dopamine-P-hydroxylase (DPH) 132 
dose-response curves 67 
double log centered approach, first 

approach by Udney 250 
double-centered PCA biplot, 

geometrical interpretation 239 
DPPs, see disjoint principal properties 
drug design, economical design of 

drug research 
- central issue 128 
- factorial methods as an aid 
drug test specifities 219 

at 51 

networks 286 

multiple regression procedure 285 

(DPPs) 104 

109 

synthetic experiments 62 

128 
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drug transport 34 
dual geometrical representation of the 

dummy variable 274, 330 
data 237 

E-state indices 
- strategies for use 44 
- summation of 46 
E-state QSAR, examples 44 ff. 
efficient training sets 63 
Ehrlich ascites respiration 127 
Ehrlich ascites tumor cell 

eigenvalue problem 119 
eigenvalue-eigenvector problem 268 
eigenvalues 119 
eigenvectors 119 
electric dipole moments 31 
electron whole molecule descriptors 31 
electron-releasing groups 19 
electron-withdrawing groups 19 
electronegativities 314 
electronegativity of atoms in higher 

quantum levels 42 
electronic charge index (ECI) 
electronic contribution of 

heteroatoms 96 
electronic densities 152 
electronic parameters 
- atomic charge 290 
- EP surface areas 290 
electrophile 32 
electrophilic and nucleophilic frontier 

electrophilic frontier orbital density 32 
electrophilic superdelocalizability 32 
electrostatic molecular surface 

interaction terms 34 
electrotopological state 
- calculations for alanine 53 
- indices, development 40 
-si 44 
elimination 249 
- of redundant variables 278 
- rate constant 271 
embedded data 296 

suspensions 126 

186 f. 

orbital densities 32 

embedded or asymmetric data 285 
empirical factor analysis 231 
encoding organic structures 25 
epinephrine 224, 241 
- test 225 
epipolygodial 171 
epoxides 310 
-example 314 
ethoxyresorufin-0-deethylase (EROD) 

ethyl benzylacetates, alkaline 

ethyl phenylacetates, alkaline 

Euclidean distance 154, 291, 321 
experimental design 49, 183, 322 
- good chemistry experiment 7 
- in medical chemistry 49 
- strategies SO 
- synthesis of biologically active 

compounds 7 
experimental design methods SO 
- categories 50 
extended z-scales 150 
external validation set 310, 313 
extrathermodynamic relationships 6 

induction 83 f. 

hydrolysis 19 

hydrolysis 19 

factor analysis (FA) 122f. 
- as a data preprocessing step 
- as a good preliminary method 
- as a model generator 148 
- difference to PCRA 157 
- essential difference to PCA 
- if the variables reflect very different 

processes 124 
- in 11 different pharmacological 

tests 127 
- plotting of the objects 

(compounds) 121 
- variation of 157 
factor analysis methods 
- extraction of the basic features of the 

- related to 231 
factor analysis of aromatic TC values 
- plot of factor scores 145 

156 
124 

122 

data 115 

145 
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factor analytical methods, review 

factor scaling coefficients 247 
- choice of 240 
factorial design 59, 66, 327 
- based on principal components 
- properties in binary terms 55 
2n factorial design, with principal 

properties in series design 155 
factorial methods in medicinal 

chemistry, selected applications 
of 125 

factorial plane from the co-inertia 
analysis 173 

2’-factorial scheme 55 
2n-factorial scheme, general form 55 
feature selection 
- cluster analysis 286 
- Fisher ratio 286 
- principal component analysis 286 
- variance method 286 
fentanyl derivatives 138 
field and mesomeric representation 

of the substituent constant 20 
field effect on each atom 
field of information 40 
field perturbation of the intrinsic 

state 44 
first co-inertia plane, representation 

of compounds on 174 
first order molecular connectivity 

index 96 
first order valence molecular 

connectivity index 96 
fitting error 188 
floropipamide 224, 241 
fluanisone 224, 241 
fluorophosphates 95 
fluorophosphonates 95 
fluorophosphorodiamides 95 
folic acid 
- irreversible inhibition 289 
- reversible inhibitors 289 
formation of classes 64 
forward selection 323 
forwardhackward methods 331 

of 250 

155 

43 

fractional factorial designs (FFDs) 56, 

fragment addition method 22 
- Leo and Hansch 22 
- Rekker and Nys 22 
Free-Wilson analysis 141 
- Fujita-Ban variant 131 
Free-Wilson matrix 291 
Free-Wilson method 61 
F-statistic 275 
full quadratic relation 99 
fungi 126 
fungicidal 2-antilinopyrimidines 287 
fusaric and picolinic acids 132 

66, 327 

G-protein coupled receptors 231 
genetic algorithms 331 
genotoxic activity 287 
geometric global mean 221 
geometric mean activity 249 
geometric projection in form of an 

algebraic transformation 234 
geometric thinking about compounds 

and tests 225 
geometrical decomposition in a double 

log diagram 229 
geometrical parameters, solvent 

accessible surface 290 
global variance 238 
golden rectangle 167 
GOLPE (Generating Optimal Linear 

PLS Estimations) 
- aims of 329 
- based on statistical design 
-in 3D QSAR 332 
Golub and Reinsch algorithm 246 
graph distance 43 
graph theoretical indices, developed 

by Kier 29 
graphical design 
- elementary principles 166 
- techniques in 166 
graphical representation of the data, 

selection of new substituents from 53 
graphical statistical analysis, pharma- 

cological data 225 

329 
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graphical techniques 
- for analyzing scientific data 
- in data analysis 165 
- to look for patterns 165 
graphical tools 10 
graphics, principles of 166 
grid nodes, continuity between 334 
GRID, probe energies in 334 
grooves or canyons as receptors for 

antiviral compounds 251 
group classification functions 284 
groupings in the data set 

165 

210 

H-acceptor and H-donor ability 151 
haloalkanes 
- anesthetic effect 45 
-example 316 
halogenated aliphatic hydrocar- 

halogenated aliphatics 316 
halogenated alkanes 69 
haloperidol 223, 241 
haloperidol-type compounds, for the 

treatment of delusions and manic 
states 229 

bons 311 

Hammett o constant 6, 271, 274, 289 
Hammett u constants 52 
Hammett urn and up values 18 
Hammett equation 16f. 
- ionization of phenols and anilines 18 
- limitation 18 
- ortho effect 18 
Hansch analysis, problems to be 

Hansch approach 5f. 
Hansch equation 6 
Hansch-Fujita sc values 52 
Hansch-Fujita hydrophobic substituent 

constant 7c 303 
,,hard" model 4 
hemolytic potency 152 
Henry's law constants 35 
herbicidal piperidinoacetanilides 126 
herbicides 152 
heterocyclic systems 54 
histograms of R2 and Q2 311 

solved 156 

HOMO energy, related to the ionization 

homologous series, substituent 

homoschedasticity and normality of the 

Huckel molecular orbital (HMO) 

hydrogen bonding 31 
- quantitative scales 31 
- use of an indicator variable 31 
hydrophobic substituent constant, 

- variation in lipophilicity 21 
9-a-hydroxymerulidial 171 
4-hydroxyquinoline-3-carboxylic 

hyperplane in X-space 204 
hypersurface iterative projection 

potential 32 

parameters 16 

variance 280 

method 32 

7c 127 

acids 126 

(HIP) 53 

ideal number of observations 101 
important variables, selection of 213 
in computro methods 3 
indicator function IND introduced by 

indicator variables 26, 61 
induction 
- fundamental components of 20 
- of anesthesia and spindle 

information, data of interest 197 f. 
information content in training sets in 

comparison to arbitrary or COST 
designs 76 

variables 95 

Malinowski 120 

disturbances 126 

information content, 'x and 'x" 
- simple transformation 95 
- sum and difference variables 
Ingold's hypothesis 18 
inhibition 
- of carbonic anhydrase 53 
- of dihydrofolic acid reductase 

95 

(DHFR), traditional Hansch-type 
QSAR studies 287 

- of S. fuecium 288 
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- of tetracycline efflux antiport 

- of the NADH oxidase system 
inner relation 182 
insect pharmacokineh 271 
insecticides 152 
inside model space (IMS) 190 
intermolecular forces, commonly 

recognized 31 
intermolecular interactions, descriptors 

related to 32 
internal validation 68, 313 
interpoint distances 
- Euclidean distance 256 
- Hamming distance 256 
intrinsic design 71 
intrinsic state of an atom 41 
intrinsic state values, examples 42 
ionic interactions 31 
iso-isovelleral 171 
isolated carbon 23 
isometric plots 167 
isospirilene 243 
isotropic surface, correlated with 

isotropic surface area (ISA) 186 
isovelleral 171 

protein 302 
157 

hydrophobicity 186 

Jackknifed" classification 291 

k-nearest neighbors 291 
kappa indices 30 
kappa shape indices 39 
Kernel algorithm 332 
Kier/Hall electronegativity 41 
Kronecker symbol 246 

L ,  B1, and B5 values, table 25 
L. casei 288 
lack of homogeneity in the data, 

Lactarius vellereus 169 
latent variable techniques 4 
latent variables 
- called X scores 202 
- concept of 200 

detrimental effect on the model 207 

151, 182, 231, 322 

KAO-MO coefficient 32 
LDA, see linear discriminant analysis 
lead discovery 8 
leave one or several out 
leave-one-out (LOO) 312, 328 
length parameter L 24 
level of triviality 323 
linear discriminant analysis (LDA) 
- advantage of 291 
-basic assumptions 285 
- disadvantage of 291 
- risk of chance correlations 
linear free-energy relationships 

linear multivariate methods 
- correspondence factor analysis 255 
- principal components analysis 

(PCA) 255 
lipophilic character of drugs 
- absorption 21 
- distribution 21 
- excretion 21 
lipophilic pocket 200 
Livingstone's x parameter 274 
loadings plot, structure of inter- 

correlations of variables 232 
loadings 118 
log bilinear model in contrast with 

correspondence factor analysis 
(CFA) 250 

312 

286 

(LFER) 6 

log P 21 
- correlation with a diversity of 

- measurement 22 
- 1-octanol 22 
- operational definition of 

- organic phase used most frequently 

- other lipid phases 22 
-values 289 
lone pair orbitals 97 
lowest-observed-effect-concentration 

LUMO energy, related to the electron 

biological activities 21 

lipophilicity 21 

22 

(LOEC) 87 

affinity 32 
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macroscopic variables 183 
Mahalanobis distance 191, 291 
major tranquilizers 225 
MA0 inhibitors 287, 290 

- inhibitors, use as antidepressiva 290 

- inhibitors for the treatment of 

mapping of antiepileptics 232 
mass spectral data, autocorrelated 

matched display after normalization 

measured log P values 
-database 22 
- Pomona College MedChem 

project 22 
MEP properties 150 
metabolism 249, 288 
methacycline 
- alkylthio derivatives 301 
- arylthio derivatives 301 
methods of model fitting 310 
minimum number of components 119 
- eigenvalues >I 119 
- finding the 119 
- rejection of components 119 
- scree plot 119 
misclassifications 284 
missing data 
- estimation in an iterative process 

MAO-A 290 

MAO-B 290 

Parkinson’s disease 290 

transformed spectra 189 

175 

within principal component 
analysis 135 f.  

- in PLS 204 
Mitchell algorithm 327 
mitomycin derivatives and steroids 

MLR, lack of diagnostic tools 217 
MNDO calculations 290 
model evaluation 324 
model quality 310 
model validation, four tools for 311 
model validation in PLS 206 
- cross-validation (CV) 206 
- data randomization 206 

287 

modeling and chemometrics in 
medicinal chemistry 333 

modern alternative to MLR 7 
- cross-validation 7 
- partial least squares regression in 

latent variables (PLS) 7 
modern QSAR analysis 64 
molar refractivity (MR) 31, 305 

molecular concepts 1.5 ff. 
molecular connectivity delta values 41 
molecular connectivity indices 
- RandiC branching index 28 
- software for calculating 29 
molecular descriptors 39 
- choice of 61 
- molecular connectivity 39 
- non-empirical 39 
molecular design strategies 2 
molecular diversity 8 
molecular flexibility 23 
molecular modeling 2, 8 
- descriptors for compounds in discrete 

molecular orbital (MO) calculations 32 
molecular orbital parameters 44 
molecular polarizability 31 
molecular representations, basic 

molecular size 316 
molecular structures, represented as 

molecular surface area 33 
molecular volume 33 
monoamine oxidase (MAO, EC 1.4.3.4) 
- desamination of biogenic and 

xenobiotic monoamines 290 
- neurotransmitters 290 
monoamine oxidase (MAO) 

- interaction with amino acids 
monosubstituted aromatics, multi- 

variately characterized 84 
monosubstituted benzenes, scatter plot 

for the PPs 8.5 
morphine-like analgesic activity 223 

MOLCONN-X 43 

states 183 

concepts 17 

graphs 26 

inhibitors 44 
130 
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morphine-like analgesics 137 
Mulliken-Jaffe valence state electro- 

negativity 41 
multicollinearity 275 
-in CCA 269 
multidimensional (hyper)plane 234 
multidimensional data tables 
- abundance of entries 115 
- complexity of data structure 
multidimensional mapping 

multiple linear regression (MLR) 197, 

- comparison to PLS 197 
multivariate analogy approach 63 
multivariate data analysis 4 
- iterative procedure 65 
multivariate exploratory graphics 168 
muscle lactate dehydrogenase 

mustard beetles 271 
mutagenic potential of chemical 

compounds 126 
mutagenicity short term tests, 

multivariate analyses 126 
mutagenicity 82, 311 
mycobacterial strains 135 
myosin light chain kinase 

115 

technique 154 

322 

(M4-LDH) 126 

(MLCK) 289f. 

N-nitrosamines 287 
NADH oxidase system, inhibition 

naphthyridines, antibacterial potency 

natural grouping 289 
negative chronotropic drugs 61 
neighbor effects 334 
neural networks (NN) for multivariate 

neuroleptics 224 
- empirical arrangement of 224 
neurotoxicity 95 
newer methods of data analysis 197 
nicotinic acid derivates, conformational 

of 157 

of 129 f. 

non-linear modeling 331 

properties 60 

NIPALs algorithm 246 
nitrobenzenes 143 
4-nitrobenzylpyridine 31 1 
NLM method 
- as an additional tool 262 
- capability 255 
- drawbacks 257 
- for deriving structure-activity 

- for the rational selection of test 

- in medicinal chemistry 255 
- statistical packages 261 
- statistical principles 255 
NMR chemical shift, as parameter 274 
noise, uninteresting parts of the 

non-coded amino acids 69 
non-discriminant method 291 
non-linear behavior between the 

relationships 259 

series 259 

data 197 

biological and the physico-chemical 
data 75 

non-linear discriminants 285 
non-linear equations, description of 

non-linear map of 166 aromatic 

non-linear mapping method, principal 

non-linear maps, interpretation of 257 
non-linear methods 
- alternating conditional expectations 

- genetic algorithms (GA) 331 
- neural networks (NN) 331 
non-linear modeling 215 
non-linear multivariate methods, 

non-linear mapping (NLM) 255 
non-linear regression analysis 140 
non-narcotic analgetics 287 
non-parametric linear learning 

non-parametric statistics 4 
non-sigma bonding 96 
norepinephrine 224, 241 
- test 225 

non-linear effects 92 

substituents 258 

feature 256 

(ACE) 331 

machines 286 
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norm of the individual contrasts of 

normalized factor loadings 246 
normalized factor scores 246 
nucleophile 32 
nucleophilic frontier orbital density 32 
nucleophilic superdelocalizability 32 

compounds 236 

odor 
- intensities 35 
- threshold analysis 46 
- thresholds 3.5 
olfactory stimulants 287 
operational scheme 
- for modifications of aliphatic 

- for the optimization of aromatic 

operational space 326 
opiates 223 
optimization SO 
- discovery of new leads SO 
- of substitution patterns of aromatic 

- on a more abstract level SO 
- routes for a lead SO 
ordinary least squares (OLS) 4, 322 
ordinary multiple regression, QSAR 

equations 321 
organic synthesis 
- selection of catalysts 66 
- selection of solvents 66 
orientations of the factors, rotation of 

the (hyper)planes 238 
ortho effects 23 
ortho substituent SO 
ortho-, meta- and para-substituted 

phenyls, 24 biological activities 127 f. 
orthogonal vectors 118 
orthonormalized eigenvectors 119 
outside model space (OMS) 190 
overlapping classes 28.5 

chains 52 

substitution patterns 52 

rings SO 

f? cerevisiae 288 
parabolic model of Fujita-Hansch, 

for complex in vivo systems 6 

parabolic relationship 137 
parabolic surface, extremum 101 
parallel tests 
- general screening 127 
-with quite different biological 

parameter focusing 296 
parameter selection 321 
parameter space 51 
- systematic investigation of 53 
parametric statistics 4 
PARC 
- applied to drug design problems 
- methods of 180 
- objective 180 
- studies in defined steps 
- three levels 180 
PARC or feature space, divided into 

subspaces 190 
parsimonious set of variates 278 
partial least squares projections to latent 

- comparison to MLR 197 
- generalization of regression 197 
- projection method 64 
partition coefficient P 21 
-between l-octanol and water 21 
partition coefficients, drug transport 

and distribution 6 
pattern recognition 4 
pattern recognition study, steps in 
PC-based programs 8 
PCA 
- for classification purposes 326 
- orthogonal scales 322 
- tool for grouping systematic 

PCRA, see principal component 

penetration rate constant 271 
pentapeptides, bradykinin 

peptide QSARs, parameters for 150 
peptides 69 
peptidomimetic 78 
peptoids 69 

actions 127 

180 

183 

structures (PLS) 197 

183 

patterns 322 

regression analysis 

potentiating 69 
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perillartine derivatives as 

pesticides 152 
Phaedon cochleariae Fab 271 
pharmacodynamic effects, separated 

from pharmacokinetic effects 137 
pharmacodynamics 274 
pharmacokinetic and response data, 

combination of 137 
pharmacokinetic data, examples for 

applying principal component 
analysis 137 

pharmacokinetic processes 140 
pharmacokinetic properties 136, 249 
phar m acoki n et ics 274 
pharmacological profiles, by mapping 

substances according to measure- 
ments 130 

phenols 143 
phenols and anilines 
- in vitro tests 126 
- toxic effects 126 
phenothiazine derivatives 224 
phenothiazines, neuroleptic 223 
phenoxyacetic acids 143 
phenylacetic acid, ionization 19 
phenylacetic acids 143 
phenylalkylamines 287 
phenylglycine esters, antiinflamrna- 

3-phenylpropionic acid, ionization 

phenyls 100 
philosophies in chemometrics, 

phosphatase inhibiting potency 152 
phosphinic acid 98 
phosphodiesterase (PDE) 289 
photoreceptors 231 
physical property variables 97 
physico-chemical descriptors, 

categorized into two groups 65 
physico-chemical hyperspace 278 
pi orbitals 97 
pig heart cytoplasmic malate dehydro- 

sweeteners 287 

tory 128 

of 19 

multimethod and monomethod 320 

genase (s-MDH) 126 

pig heart mitochondria1 rnalate dehydro- 
genase (m-MDH) 126 

pipamperone 224 
piperidinoacetanilides 3 43 
PLS 7, 197 
- analysis of any number of varia- 

bles 68 
- comparison with multiple linear 

regression (MLR) 209 
- geometric representation 204 
- modeling and analysis of several Y5 

- optimization in organic sythesis 7 
- problems of analytical calibration 7 
- projection-based method 68 
- set of plots (scores and loadings) for 

interpreting model 197 
- use for classification 198 
PLS algorithm, automatic account for 

PLS components 
- cross-validation (CV) 205 
- leave-one-out approach is not 

- number of 205 
-PRESS (Predictive REsidual Sum of 

Squares) 205 
PLS discriminant analysis 286 
PLS implementation, sample- 

PLS model 
- dimensions 202 
- expressed in weights 202 
- geometric interpretation 204 f. 
- graphical representation of 182 
- how to develop and interpret 216 
- interpretation 203 
PLS modeling 
-based on the training set 
- non-linear variants 331 
PLS parameters, graphical represen- 

PLS regression coefficients 202 
PLS weighting plot 208 
PLS weights 71 
-example 207 

simultaneously 204 

missing values 204 

recommended 205 

based 332 

316 

tation 217 
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Polak-Ribikre method 257 
polar fragment interaction factors 23 
poles of the map 242 
- defined as the minimal set 
polychlorinated biphenyls, induction 

of various enzymes 128 
polychlorinated dibenzofurans 

(PCDFs) 82 
polygodial 171 
potency 249 
- of a compound 221 
- sensitivity and specificity, distinction 

PPs, see principal properties 
predicted or cross-validated variance 

prediction error 188 
predictive behavior of a QSAR 316 
predictive power 101 
preliminary stage in the study of 

P R  ESDs (Predictive Residual 

preselection of variables 156 
PRESS (Predictive REsidual Sum 

- for the final model 
- minimization 120 
primary variables 186 
principal component analysis 
- advantage 124 
- as a cluster analysis approach 
- in 11 different pharmacological 

- physical nature of the ,,basic 

- picture of the data structure 
- practical gains 120 
principal component and factor 

- application in the field of medicinal 

- basic mathematical treatments 

- practical aspects 115 
- selected examples 115 

243 

between 222 

(Q2> 312 

QSAR 221 

SDs) 216 

of Squares) 312, 325 
206 

135 

tests 127 

effects" 127 
127 

analysis 115 

chemistry 115 

115 

principal component analysis or factor 

principal component regression analysis 

- advantage 152 
principal components (PCs) 118 
- design variables 66 
principal components analysis 

(PCA) 232 
principal properties (PPs) 66, 104 f., 

142, 149, 322, 326 
- for each amino acid 
- interest in experimental design 

- use in structure-property correlation 

principal quantum number 42 
probability density contours of the 

patterns of points 237 
probability plot of the residuals 203 
problem formulation 320 f. 
profiles of activity 197 
projecting the data of the test 

projection methods 4, 321 
- partial least squares (PLS) 322 
- principal components regression 

(PCR) 322 
projections of p tests in the (hyper)- 

plane of specifities 236 
property descriptors 104 
proportions and scales 167 
propriophenones 223 
protein crystallography 2 
protoplasts 126 
psychosis 
- mechanism of action of 

- speculation about the causes 
pyrazines, odor sensitivity of 46 
pyrethroid analogues 271 
pyrethroids 
- canonial correlation analysis 137 
- knockdown 273 
- lethality 273 
- neurotoxicity of 152 

analysis, choice of 124 

151 

186 

strategies 106 

studies 106 

compounds 181 

neuroleptics 230 
230 
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pyridazinylbenzimidazoles, 

pyrimidine folk acid antagonists, mode 
cardiotonic 57 

of action 287f. 

Q-mode factor analysis 250 
Q2 value 216 
QPLS 331 
QSAR 
- based on the three z scales 74 
- division in steps 196 
-equations 2 
- modeling 309 
-paradigm 91 
- purpose of developing 320 
- two main objectives 320 
QSAR descriptors, analysis of 141 
QSAR development 68 
- as an iterative cycle 
-strategy 64 
- use of multivariate partial least 

196 

squares projections to latent structures 
(PLS) 68 

QSAR investigations 80 
- environmental chemicals 80 
- environmental haloalkanes 80 
QSAR model 
- conceptual model 200 
- non-linear models 322 
QSAR of peptides, structure-based 

QSAR problems 
- traditional Hansch analysis, 

limitation 180 
- use of PARC 180 
QSAR studies 
- finding the relevant descriptors 183 
- need of a chemometric method 321 
- objective 16 
- use of hydrogen bonding 

QSAR table, submitted to chemometric 

QSPR investigations 31 
quadratic models, response surface 

descriptors 184 

parameters 31 

analysis 322 

model 335 

quadratic non-linearity 101 
qualitative biological data 284 
qualitative prediction 4 
quality of a MLR 6 
- normalizing the equation 6 
- 95 % confidence intervals 6 
- standard deviations 6 
- use of regression coefficients 
quantification of molecular 

quantitative chemical data 284 
quantitative multivariate analysis 

quantitative prediction 4 
quantitative structure-activity 

relationship (QSAR) 2 
- general formula 2 
- most significant steps 309 
quantitative structure-activity 

quantitative structure-property 

quantitative structure-time-activity 

quantum chemical descriptors 314 
quantum mechanical parameters 61 
quick optimization of lead 

6 

modeling 197 

methods 197 

relationships 29 

relationships 196 

relationships (QSTAR) 137 

compounds 50 

radioactively-labeled compounds 231 
random variables 315 
randomization 310 
- of the response data 311 
rank, minimal number of 

rank of E: number of components in the 

rate of transport 249 
ratio scale 221 
rational drug design, molecular 

design 3 
reactivity indices 32 
-EHOMO 32 
-ELUMO 32 
receptor affinity 139 
reduced correlation matrix 123 

dimensions 238 

PC model 205 
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reduced data set 210 
redundancy coefficient 270, 278 
regression 4 
regression methods 
- adaptive least squares (ALS) 
- multiple linear regression 

- ordinary least squares (OLS) 322 
- other stepwise methods 322 
- ridge regression (RR) 322 
- variable subset selection (VSS) 
regression models 310 
relationship between bilinear and 

parabolic model 6 
relative perturbation by each atom 43 
renal hypertension 132 
representation of molecules 15 ff. 
residual error 119 
residual standard deviation 310 
residual variance 275 
residuals, data not explained by the 

model 203 
resonance 19 
- fundamental components of 20 
resonance effects 54 
resources for chemical synthesis 49 
response surface 
- contours of 92 
- transformations 92 
reversed-phase high performance liquid 

chromatography (RP-HPLC) 22 
- lipophilic stationary phase 22 
- method of choice for measuring log 

- mobile phase 22 
revised SIMCA classification rule, 

geometric interpretation 192 
revised SIMCA rule 191 
rhinoviruses 251 
ridge regression (RR) 322 f. 
ring-substituted phenoxyacetic 

R-mode factor analysis 250 
root mean square (rms) contrast 

between compounds 236 
Rorschach effect 166 

322 

(MLR) 322 

322 

P 22 

acids 157 

RP-HPLC method, advantages over the 
shake-flask method 22 

S. faecium 288 
salicylic acids 137 
SAMPLS 332 
SAREA 34 
SAVOL 35 
scatter plot in selecting com- 

scores 118 
scores plot, graphic display of the 

compounds 121, 232 
SDEP (Standard Deviation of Error of 

Predictions) 328 
Seiler’s ZH value 143 
selecting the appropriate statistical 

pounds 134 

method, quality and type of biological 
data 283 

selection 
- of a representative subset of 

substituents, set of twelve represen- 
tative organic substituents 104 

- of a series of compounds, according to 
statistical experimental design 
scheme 65 

- of substituents, for an aromatic 
ring 57 

- of the training set 5 
semi-empirical modeling, QSAR 

modeling as a special case of 89 
sequential CSA 298 
sequential simplex technique 53 
- in an n-dimensional parameter 

space 53 
- modification suggested by 

Gilliom 53 
serendipitous discovery 224 
serendipity 2 
series design 
- conformation of test compounds 
-examples 59 
- mathematical methods 153 ff. 
- PCMM and the TMIC method 154 
serotypes 251 
shake-flask method 22 

59 
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Shannon equation 40 
shape index 30 
side chains of AAs, modeling of 201 
sigma electrons 97 
sigma-type orbitals 97 
SIMCA 
- deriving a model for each class 

181 
- method of choice for classification 

problems 188 
- method of pattern recognition and 

classification 180 
- pattern recognition 181 
- philosophy 325, 334 
- tool in drug design 180 
SIMCA classification, similarity 

SIMCA classification rules 
- geometric interpretation of 190 
- geometric structures in descriptor 

SIMCA classification study 
- IMS distance 191 
- OMS distance 191 
- total distance 191 
simulated annealing 257 
simulated validation set 325 
simultaneous QSAR modeling of two 

dependent variables 311 
singular value decomposition 

(SVD) 238, 245 
skin corrosion 86 
SMA, see spectral map analysis 
,,soft" modeling 4 
software products, reviews of new 

solvent-accessible surface area 34 
solvolysis of t-cumyl chlorides 19 
sophisticated statistical packages 9 
sound QSARs by a design 

technique 326 
space filling 54 
SPC methods, overview 5 
specificity 222 
spectral map 
- interpretation 243 

rule 190 

space, hyperellipsoids 189 

products 10 

- of pharmacological activities 

- reading rules 240 
spectral map analysis (SMA) 233f. 
- and CFA, comparison between the 

- as a log double centered PCA 236 
- biplot, reading rules 241 
- for classification 220 f. 
- for the discovery of structure in data 

- mathematical description 245 ff. 
- missing data 221 
- originality of 251 
spectral mapping 
- as a graphic method 222 
- decomposition of the activity 

- essential operation 229 
- general model which underlies the 

- general multivariate case 229 
- renamed as spectral map analysis 

(SMA) 223 
spiroperidol 241 
SPLS 331 
stabilization of an intermediate 

carbocation 19 
standardization 116 
statistical analysis of the results of 

statistical experimental designs 104. 311 
-benefits 88 
- central composite designs (CCD) 104 
- D-optimal designs (DOD) 104 
- different categories 66 
- factorial designs (FD) 104 
- fractional factorial designs (FFD) 
- in QSAR, basis of 53 
- selection of test series 
statistical method, how to choose 

statistical tools 10 
statistics, recent developments 325 
steepest descent procedure 256 f. 
stereographic techniques 167 

of 40 neuroleptics 242 

performance 251 

sets 221 

data 229 

procedure 249 

screening tests 222 

104 

88 

319 
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steric parameter E,  23 
- applied to biological activity 

- derived for physical organic 

- developed by Taft 23 
steric substituent constants 23 
STERIMOL, computer program 24 
STERIMOL parameters 24, 305 
- multiparametric method by 

strategy of lead finding, synthesis and 

- combinatorial chemistry 104 
strongly electron withdrawing 

structure-activity relationship studies 2 
- physico-chemical properties 2 
- statistical methods 2 
structure-based molecular design 8, 
91, 104 

structure-property correlations 
(SPC) 291 

- concept of 2 
- studies, definition of 3 
subgraphs 
-clusters 27 
- path-clusters 27 
substituent constant o*, Taft 18 
substituent constants, electronic 17 
substituent properties 106 
- electronic bonding 106 
- H-bonding 106 
- lipophilic bonding 106 
- steric bonding 106 
4'-substituted 4-aminodiphenyl- 

sulfones 135 
substituted benzyl( +)-cisltruns-benzyl- 

cyclopropane-1-carboxylates 273 
substructure-based counts 26 
substructure-based descriptors 25 
sulfamate sweetening agents 304 
sum variable, 2x1 97 
sum variables (2x0, 2x1), related to 

molecular size 101 
sumldifference transformation 101 

problems 23 

chemistry 23 

Verloop 24 

testing 104 

groups 50 

supermolecule 186 
supervised methods 4, 220 
- backpropagation artificial neural 

networks 4 
- multiple linear regression 4 
surface area 33 
surface area approximation 

techniques 33 
-Hermann 33 
- Lee and Richards 33 
-Pearlman 33 
Swain and Lupton 
- F and R values 132 
- field parameter 289 
- linear combination of the Hammett 

sweet or bitter aldoxines 287 
symmetric and asymmetric data, two 

types of data structure 187 
synthetic accessibility 54 
synthetic feasibility 2 
systemic variation 91 
systolic blood pressure 132 

om and op constants 20 

Taft steric substituent constant 16 
Taft's u 305 
Taft's steric descriptor 6 
target rotation procedure by Weiner and 

terpenoids 169 
test 
- for significant canonical 

correlation 270 
- set 180 
- validation set 4 
test compounds 49 
-design 49 
- uneconomical set of 49 
2,3,7,8-tetrachlorodibenzo-p-dioxin 

Tetruhymenu pyriformis 1.51 
therapeutic target 3 
thioxanthene 223 
three-group analyses 289 

topological descriptions 25 

Malinowski 121 

(TCDD) 84 

TMIC plot 155 
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topological indices 26 
- RandiC topological index 26 
-Wiener number 26 
total variance 119 
toxicity of metal ions in mice 152 
toxicological estimates 278 
traditional QSAR approach, use of 

training (modeling or calibration) set 
training series 273 
training set 63, 180, 309f., 326 
- selection of 66 
- strategy of constructing a 335 
- use of statistical experimental 

training sets from experimental design 

transformation of SMA, log double 

transformations in current statistical 

translation of structural variation 

transport 139 
- phenomena 136 
- rates 29, 249 
- through a membrane 116 
- to the active site 
trichromatic diagram 225 
- analogy between the tripolar 

tricyclic pyridobenzodiazepinone, 

substitueiit parameters 322 
4 

design 313 

methods 183 

centering 235 

packages 94 

200 

128 

classifications 231 

inhibitors of muscarine receptors 
184 

triflupromazine 241 
tripolar classification 224 
tryptamine 224, 241 
- test 225 
tryptophane synthase 199 
t-scales for organic substituents 106 
Tucker’s inter-battery analysis 168 
twelve representative substituents, 

two-group analyses 289 
two-variable parabolic relation 99 
typographcal conventions 166 

selection of 109 

uneconomical set of test com- 

unique set of PP scales 107 
unnamed science, QSAR 5 
unsaturated dialdehydes 169 
- as antibodies 169 . 
- as antifeedants 169 
unsupervised methods 4, 220 
- cluster analysis 4 
- non-linear mapping 4 
- principal component analysis 4 
unsupervised multivariate QSAR 

method, spectral mapping 220 
using MLR, three weak points 

323 
usual QSAR method 92 

pounds 49 

valence electrons 97 
valence molecular connectivity, 

correlated with physico-chemical 
properties 28 

validation 
- approaches of 310 
- of the QSAR model 309 
validation set 68, 206, 309, 313, 325 
- external 310 
validity 
- of a model 324 
- of QSAR models, tools 310 
ly value according to Exner 120 
van der Waals radius 24 
variable, significance of 330 
variable selection 188 
- alternative strategies 331 
- procedures for 329 
-technique 4 
variable subset selection (VSS) 322 
variance 
- of an extracted factor 238 
- of a variable 119 
variance-covariance matrix 29 1 
VARIMAX rotation 121 f . ,  145 
Verloop steric parameters 274 
Verloop STERIMOL parameters L ,  B1, 

Verloop’s width parameter B4 127 
and B4 303 
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VIP (variable influence on the whole cell cultures 135 

- statistic of Wold, based on weighted 

viral envelope 251 
visual perception 167 yeast 126 
visual system, perception by 167 

w-scales, for organic substituents 106 - for amino acids 69, 105 f. 
Weber-Fechner law 233 

predictions) 330 whole molecule representations 25 

PLS coefficients 188 X-ray structures, use of 290 

z-scales 150, 186 
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