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IFMBE

The International Federation for Medical and Biological Engineering (IFMBE) was es-
tablished in 1959 to provide medical and biological engineering with a vehicle for inter-
national collaboration in research and practice of the profession. The Federation has a
long history of encouraging and promoting international cooperation and collaboration
in the use of science and engineering for improving health and quality of life.

The IFMBE is an organization with membership of national and transnational
societies and an International Academy. At present there are 53 national members
and 5 transnational members representing a total membership in excess of 120 000
professionals worldwide. An observer category is provided to groups or organizations
considering formal affiliation. Personal membership is possible for individuals living
in countries without a member society. The IFMBE International Academy includes
individuals who have been recognized for their outstanding contributions to biomedical
engineering.

Objectives
The objectives of the International Federation for Medical and Biological Engineering
are scientific, technological, literary, and educational. Within the field of medical, clini-
cal and biological engineering its aims are to encourage research and the application of
knowledge, to disseminate information and promote collaboration.

In pursuit of these aims the Federation engages in the following activities: sponsor-
ship of national and international meetings, publication of official journals, cooperation
with other societies and organizations, appointment of commissions on special prob-
lems, awarding of prizes and distinctions, establishment of professional standards and
ethics within the field as well as other activities which in the opinion of the General
Assembly or the Administrative Council would further the cause of medical, clinical or
biological engineering. It promotes the formation of regional, national, international or
specialized societies, groups or boards, the coordination of bibliographic or informa-
tional services and the improvement of standards in terminology, equipment, methods
and safety practices, and the delivery of health care.

The Federation works to promote improved communication and understanding in the
world community of engineering, medicine and biology.

Activities
Publications of the IFMBE include: the journal Medical and Biological Engineering and
Computing, the electronic magazine IFMBE News, and the Book Series on Biomedi-
cal Engineering. In cooperation with its international and regional conferences, IFMBE
also publishes the IFMBE Proceedings Series. All publications of the IFMBE are pub-
lished by Springer Verlag.

Every three years the IFMBE hosts a World Congress on Medical Physics and
Biomedical Engineering in cooperation with the IOMP and the IUPESM. In addi-
tion, annual, milestone and regional conferences are organized in different regions of
the world, such as Asia Pacific, Europe, the Nordic-Baltic and Mediterranean regions,
Africa and Latin America.

The administrative council of the IFMBE meets once a year and is the steering body
for the IFMBE. The council is subject to the rulings of the General Assembly, which
meets every three years.

Information on the activities of the IFMBE are found on its web site at:
http://www.ifmbe.org.
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Chapter 1

Introduction

1.1 Functional brain mapping

Functional brain imaging allows us to look inside the human brain and study the
neural mechanisms underlying human behavior. Functional brain imaging has
revealed the neural correlates of several behaviors, such as our ability to make
sense of and integrate large amounts of dynamic information in our environment,
understand language, learn new skills and remember important facts. Mapping of
normal and abnormal brain functions is also clinically important for patients with
brain tumors or pharmacologically resistant intractable epilepsy, where surgery is
often used in the management of patients. Generally, in such patients there is
a trade-off between the margin of excision used to ensure complete removal, and
the potential loss of function that may arise as a consequence of removing normal
surrounding brain tissue.

The earliest studies of functional brain imaging were performed using
positron emission tomography (PET), which is a nuclear-medicine-based imag-
ing method that can track metabolic activity in the brain. During the past two
decades, PET has largely been replaced by functional magnetic resonance imag-
ing (fMRI) for studies of human brain mapping, and fMRI has nearly become
synonymous with functional brain imaging in humans. fMRI is primarily based
on measurement of blood oxygenation level dependent (BOLD) signals. Although
extensive data relating to brain function has been obtained from fMRI and PET
studies, it is important to note that fMRI and PET use metabolic or neurovascular
activities; hence they do not directly measure neuronal activities. This fact po-
tentially limits the time resolution and makes real-time imaging difficult in these
brain-imaging methodologies.

Electrophysiological activity of neurons in the cerebral cortex generates both
electric potentials on the scalp, as well as weak but measurable magnetic fields
outside the scalp. Direct non-invasive measurements of these neuronal activities
in the sub-millisecond time scale can be achieved with magnetoencephalography
(MEG) [1][2] and electroencephalography (EEG) [3][4]. MEG measures tiny mag-
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netic fields generated by the human brain and EEG measures electric potentials
on the scalp due to brain activity. MEG is enabled by superconducting quan-
tum interference devices (SQUIDs), used in conjunction with flux couplers and
flux-locked loop circuitry, that have sensitivity on the order of tens of femto-Tesla
(seven orders of magnitude smaller than the earth’s magnetic field). Modern MEG
systems are now capable of whole-head coverage with simultaneous measurements
of more than 300 channels. EEG technology has matured to where modern systems
are capable of measuring simultaneously from 512 electrodes on the scalp.

The past decade has shown rapid development of whole-head MEG/EEG sen-
sor arrays that are capable of concurrent measurements of both EEG and MEG at a
high spatial resolution. Furthermore, advances in signal processing algorithms now
enable imaging of dynamic brain activity from MEG and EEG data – referred to as
electromagnetic brain imaging[5]. Electromagnetic brain imaging is unique among
functional imaging techniques for its ability to provide spatio-temporal brain ac-
tivation profiles that reflect not only where the activity occurs in the brain but
also when this activity occurs in relation to external and internal cognitive events,
as well as to activity in other brain regions. The most important contributors to
advances in electromagnetic brain imaging are algorithms that enable high-fidelity
reconstruction of neuronal activities from MEG and EEG data.

1.2 Electromagnetic brain imaging

Neural activities in the human brain generate coherent synaptic and intracellular
currents in cortical columns, which are thought to be major generators of MEG and
EEG signals. Electromagnetic brain imaging is capable of non-invasively mapping
these currents, and algorithms for electromagnetic brain imaging typically involve
two major components – forward modeling and inverse modeling. Forward model-
ing derives the sensor outputs from a known distribution of these neural generators.
Quasi-static approximations of Maxwell’s equations fundamentally allow compu-
tation of the sensor outputs if the three-dimensional distribution of conductivity
in a brain, referred to as the volume conductor, is known. Maxwell’s equations can
be solved analytically for special volume conductor geometries, such as a sphere.
Forward modeling is embodied in the idea of the sensor lead field, which represents
the sensitivity profile of a sensor array and describes a linear relationship between
sources and measurements. The scope of this book does not allow a detailed ex-
ploration of forward modeling. Nevertheless, for completeness, we include several
representative topics on forward modeling in the Appendix.

Inverse modeling refers to an algorithm or procedure that is used to re-
construct source distributions based on the sensor lead field and measurements.
The inverse algorithms attempt to solve the bioelectromagnetic inverse problem,
i.e., to estimate neural source spatio-temporal distributions from bioelectromag-
netic measurements obtained outside the human head. Inverse algorithms can be
broadly classified into two categories: Parameter-estimation and imaging meth-
ods. Parameter estimation methods assume that a small number of sources can
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adequately account for the observed sensor data. A typical example is the case in
which the source spatial distribution is assumed to consist of a small number of
point sources. In such a case, the locations, orientations, and strengths of these
point sources form a set of unknown parameters that are estimated using a non-
linear least-squares fit to the measured data. The model for such point sources is
called the equivalent current dipole (ECD). When only a single source is assumed
to exist, the method of estimating the source location, orientation, and strength is
called the single-dipole search, which has been widely used in MEG/EEG source
analysis. However, in parameter estimation methods, the estimation of the source
parameters not only requires knowledge of the number of sources but also requires
a 3Q-dimensional nonlinear search where Q is the number of sources. Thus, as
the number of sources increases, the search dimension becomes very high, and
there are no numerical methods that can effectively solve such high-dimensional
nonlinear optimization problems.

Imaging methods are an alternative approach. In contrast to the parame-
ter estimation methods, the imaging methods do not require prior knowledge of
the number of sources and can generally avoid the non-linear search in a high-
dimensional parameter space. Imaging methods are further classified into two
classes of algorithms: the tomographic reconstruction methods and spatial filters.
The tomographic reconstruction methods involve voxel discretization over the re-
construction region, and assume a fixed source at each voxel. These methods
estimate the amplitudes of the sources at voxels by the least-squares fit to the
measured data. Because the number of voxels is much larger than the number
of sensors, the tomographic reconstruction methods generally require some crite-
rion other than the least-squares criterion to provide additional constraints on the
source distribution. Various algorithms including the well-known minimum-norm
method have been proposed, and many tomographic reconstruction methods can
be reformulated as non-adaptive spatial filters. Typical tomographic reconstruc-
tion methods and their reformulation as non-adaptive spatial filters are discussed
in Chapter 3.

1.3 Spatial filters

The other class of imaging algorithm is the spatial filter, which is a linear operator
applied to the measured data, and is used to estimate the strength of activity
at a particular spatial location. We refer to this spatial location as the filter-
pointing location in this book. Since the filter-pointing location is a controllable
parameter when computing the spatial-filter weight, the pointing location can be
moved and scanned over the source space, simply by post-processing, to obtain
the three-dimensional reconstruction of the source distribution. The spatial filter
may be interpreted as a class of techniques that numerically control the sensor
array sensitivity to form a virtual sensor whose sensitivity pattern is “preferably”
localized around its pointing location. Quite often, the spatial filter is called the
beamformer in the field of signal processing. If spatial filters only depend on the
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geometry of the measurements, they are referred to as non-adaptive spatial filters.
In contrast to non-adaptive spatial filters, adaptive spatial filters depend not only
on the measurement geometry but also on the measurement covariance matrix.

Adaptive spatial filters, also known as adaptive beamformers, were originally
invented in the field of sensor-array signal processing in the 1960s. Seminal works
by Capon[6] and numerous other investigators have led to major advances in these
methods of array signal processing[7]. As a result, adaptive spatial filters continue
to be used in the field of array signal processing. Stephan Robinson conducted
some of the pioneering work in introducing adaptive spatial filters into the field
of electromagnetic brain imaging in the early 1990s[8]. Since then, he and his
colleague, Jiri Vrba, have made tremendous contributions to the application of
adaptive spatial filters to electromagnetic brain imaging. Subsequently, many
researchers, ourselves included, contributed to this research topic. Among these
researchers, Barry Van Veen and Michel Spencer should particularly be noted
for their efforts in developing the vector-type spatial filter, which is suitable for
reconstructing 3D vector source distributions[9][10].

In recent years, adaptive spatial-filter brain imaging is increasingly being
used both for basic human neuroscience studies and clinically for pre-operative
functional brain imaging. When combined with magnetic resonance imaging
(MRI) data, pre-operative functional localization with this brain imaging method
can be integrated with neuro-navigational systems to provide intra-operative guid-
ance to neurosurgeons. Such functional imaging has been shown to be important in
pre-operative planning and complements intra-operative mapping by delineating
retained areas of function non-invasively and in advance. As part of clinical rou-
tine, the somatosensory, auditory and motor cortices are mapped pre-operatively
to aid in surgical navigation. An example of such pre-operative localization of the
motor cortex is shown in Fig. 1.1.

Adaptive spatial filters are expected to finally realize the ultimate promise
of electromagnetic brain imaging, which is the spatiotemporal localization of cor-
tical networks involved in sensorimotor, language, memory, and higher cognitive
functions. One example of these advances is a study on mapping functional con-
nectivity which is described in Section 9.4. One example of an investigation toward
this direction is shown in Fig. 1.2. To obtain the results in this figure, resting-state
MEG was recorded from a patient with brain lesions. The hypothesis here is that
such a patient has decreased connectivity around pathologic regions, and such de-
creased connectivity can be detected by mapping the mean imaginary coherence.
In the results in Fig. 1.2, voxels showing decreased mean imaginary coherence
are indicated by white squares, and such voxels are found near the brain tumor.
Thus, mapping mean imaginary coherence can provide useful clinical information
on brain lesions.

The aim of this book is to describe the technical advances of adaptive spatial
filters in the context of electromagnetic brain imaging. This book integrates and
synthesizes available information on adaptive spatial filters for electromagnetic
brain imaging, and describes various aspects, including causes of performance
degradation such as lead-field errors, brain background interference, and source
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Figure 1.1: Results of adaptive spatial filter imaging of primary motor cortex. This
imaging experiment was done for pre-operative surgical planning. MEG measure-
ments were taken while the subject performed self-paced finger movements. Since
movement-induced brain activity is not precisely time-locked, we used the imag-
ing technique described in Section 8.4, and calculated covariance matrices from
the beta-band (15-25Hz) data. The image above was obtained by applying the
prewhitening adaptive spatial filter. The voxels indicated by gray squares show
a significant decrease in beta-band activity between the task window (-300 ms –
0 ms) and the control window (1000 ms – 1300 ms), where the time origin is set
to the onset of the finger movements.

correlations. The intended audience includes graduate students studying electro-
magnetic brain imaging, and researchers interested in the methodological aspects
of electromagnetic brain imaging.

1.4 Book chapter organization

In Chapter 2, we give the basic definitions for describing the relationship between
sensor outputs and sources in the brain, as well as several definitions needed to
discuss spatial filters. Chapter 3 describes the basics of conventional least-squares-
based tomographic reconstruction algorithms, which can be considered as non-
adaptive spatial filters. In Chapter 4, we give the various formulations for adaptive
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Figure 1.2: Results of imaging the mean imaginary coherence measured from a
patient with brain lesions. MEG recordings during the resting state were measured
and neural activity was estimated using adaptive spatial-filter imaging. The mean
imaginary coherence in the frequency band from 1 to 20 Hz between brain voxels
was calculated as an index of functional connectivity in the alpha-band. The voxels
indicated by the white squares show a statistically-significant decrease in the mean
imaginary coherence. Note that such voxels are located near the tumor.

spatial filters, and show the relationships among these formulations.
Two important properties for any inverse algorithm are the localization bias

and the spatial resolution. Chapter 5 discusses these properties for various adap-
tive and non-adaptive spatial filters. Chapter 6 presents arguments on the signal-
to-noise ratio (SNR) of the spatial filter output. Chapter 6 also discusses the
degradation of the output SNR caused by errors in the forward-field calculations,
and presents methods that are robust to these errors. Chapters 7 and 8 discuss
the effects of external interference on the performance of adaptive spatial filters.
In Chapter 9, we present an analysis on how adaptive spatial filters are affected
by source correlations. Chapter 9 also presents arguments on how adaptive spatial
filters can be used for imaging correlated activity across different brain regions.
Chapter 10 discusses the effects of using sample covariance matrices on the per-
formance of adaptive spatial filters.

Brain imaging studies often require statistical evaluation of the reconstructed
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results. In Chapter 11, we present non-parametric approaches to evaluating the
statistical significance of adaptive spatial-filter images. Chapter 12 presents sev-
eral algorithms that are closely related to adaptive spatial filters, and discusses
their relationship to adaptive spatial filters. Chapter 13 contains the Appendix.
The first six sections in the Appendix provide several supplementary discussions
related to the mathematical arguments used in the book. The final section in
the Appendix presents several selected topics on forward modeling for bioelectro-
magnetic measurements. It also presents the closed-form formulae for a spherical
volume conductor used to calculate the lead field for an MEG or EEG sensor array.
In addition, it briefly mentions how to extend the computation of the lead field
based on the spherical conductor model to one based on more realistic volume
conductor models.
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Chapter 2

Sensor array outputs and
spatial filters

In this chapter, we first define various quantities necessary for arguments in this
book, and then discuss several properties of the data covariance matrix and those
of low-rank signals. We introduce the basic formulations of spatial filters, and
explain how the spatial filter is extended in order to reconstruct vector sources.
The basic notion of resolution kernel analysis is also presented.

2.1 Neuromagnetic signals as sensor-array
outputs

2.1.1 Definitions

Let us define the magnetic field measured by the mth sensor at time t as bm(t),
and the column vector

b(t) =

⎡
⎢⎢⎢⎣

b1(t)
b2(t)

...
bM (t)

⎤
⎥⎥⎥⎦ , (2.1)

as a set of measured data where M is the total number of sensors. This column
vector b(t) is called the measurement vector, the data vector, or the array output.

A spatial location is represented by a three-dimensional vector r: r =
(x, y, z). A source vector at r and time t is defined as a three-dimensional column
vector s(r, t), i.e.,

s(r, t) =

⎡
⎣

sx(r, t)
sy(r, t)
sz(r, t)

⎤
⎦ , (2.2)
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where sx(r, t), sy(r, t), and sz(r, t) are the x, y, and z components of the source
vector s(r, t). The physical nature of the source vector for bioelectromagnetic mea-
surements is the electro-motive force generated by neuronal activities in the brain.
Additional discussion regarding the source nature is presented in Section 13.7 of
the Appendix. The magnitude of the source vector is denoted as a scalar s(r, t),
and the orientation of the source is defined as a three-dimensional unit vector
η(r) = [ηx(r), ηy(r), ηz(r)]T , where the superscript T indicates the matrix trans-
pose. Then, we have the relationship,

s(r, t) = s(r, t)η(r) = s(r, t)

⎡
⎣

ηx(r)
ηy(r)
ηz(r)

⎤
⎦ . (2.3)

We assume that the source orientation η(r) is time-independent throughout this
book.

2.1.2 Sensor lead field
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Figure 2.1: Sensor outputs when a unit-magnitude source directed in the x, y, and
z directions exists at r.

As depicted in Fig. 2.1, we assume that a single unit-magnitude source exists
at r. We denote the outputs of the mth sensor as lxm(r), lym(r), and lzm(r) when
the unit-magnitude source is directed in the x, y, and z directions, respectively.
Then, the three-dimensional row vector lm(r),

lm(r) = [lxm(r), lym(r), lzm(r)] (2.4)

indicates the sensitivity of the mth sensor to a source located at r. The column
vectors lx(r), ly(r), and lz(r) are defined as

lx(r) = [lx1 (r), lx2 (r), · · · , lxM (r)]T ,

ly(r) = [ly1(r), ly2(r), · · · , lyM (r)]T ,

lz(r) = [lz1(r), lz2(r), · · · , lzM (r)]T .
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These vectors express the sensor array sensitivity for a source located at r and
directed in the x, y, and z directions. Then, using these column vectors, the
sensitivity of the whole sensor array for a source at r is expressed using the M ×3
matrix

L(r) = [lx(r), ly(r), lz(r)]. (2.5)

This matrix L(r) is called the lead-field matrix. We also define the lead-field vec-
tor, l(r), that expresses the sensitivity of the sensor array in a particular direction
η(r), such that

l(r) = L(r)η(r). (2.6)

The problem of estimating the sensor lead field is referred to as the forward prob-
lem. The estimation of the sensor lead field is described in Section 13.7 of the
Appendix.

Using the lead-field matrix in Eq. (2.5), the relationship between the mea-
surement vector, b(t), and the three-dimensional source vector, s(r, t), is expressed
as

b(t) =
∫

Ω

L(r)s(r, t) d3r. (2.7)

Here, d3r indicates the volume element, and the integral is performed over a
volume where sources can exist. This volume is called the source space, which is
denoted Ω in this paper. Using the lead-field vector defined in Eq. (2.6), l(r), the
above equation can be rewritten as

b(t) =
∫

Ω

L(r)η(r)s(r, t) d3r =
∫

Ω

l(r)s(r, t) d3r. (2.8)

Note that, because the source orientation is included in l(r), the scalar s(r, t) is
used on the right-hand side of the equation above.

We define, for later use, an M ×M matrix called the gram matrix; its (m,n)
element is equal to the spatial similarity between the mth and the nth sensor lead
fields. The gram matrix is denoted G, and its (m,n) element is expressed as

Gm,n =
∫

Ω

lm(r)lTn (r) d3r, (2.9)

where lm(r) is defined in Eq. (2.4). Thus, G is expressed as

G =
∫

Ω

L(r)LT (r) d3r. (2.10)

The gram matrix plays an important role when formulating non-adaptive spatial
filters in Chapter 3.

2.1.3 Linear independence of lead-field vectors

We briefly argue that the lead-field vectors are linearly independent. The fact that
lead-field vectors at different locations or different orientations are linearly inde-
pendent is implicitly assumed throughout this book. For example, in Section 2.4.1,
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we discuss that the lead-field vectors, l(r1), . . . , l(rQ), span the Q-dimensional sig-
nal subspace, where r1, . . . , rQ are the locations of Q sources. The fundamental
assumption here is that the vectors l(r1), . . . , l(rQ) are linearly independent; i.e.,
none of them can be created by a linear combination of the other lead-field vectors.

This linear independence of the lead-field vectors is a direct result of the
superposition law. The lead-field vector, l(r0), represents a magnetic field created
by a unit-magnitude point source located at r0. That is, using Eq. (2.8), we can
write

l(r0) =
∫

Ω

L(r)η0δ(r − r0) d3r, (2.11)

where η0 represents the source-orientation vector for the source at r0, and δ(r)
is the delta function that takes a three-dimensional vector as its argument. Let
us assume that this lead field vector l(r0) can be expressed as a weighted sum of
other lead field vectors l(rj) where j = 1, . . . , J0 and J0 < M , such that

l(r0) =
J0∑

j=1

Ajl(rj). (2.12)

Here Aj is a scalar constant and l(rj) is the lead-field vector created by a point
source at rj , such that

l(rj) =
∫

Ω

L(r)ηjδ(r − rj) d3r, (2.13)

where ηj represents the orientation vector of the source at rj . We exclude “elec-
tromagnetically silent” sources from the argument here, i.e., we assume that the
lead-fled vectors, l(r1), . . . , l(rJ0), have a non-zero norm. Using Eqs. (2.11), (2.12)
and (2.13), we obtain

∫

Ω

L(r)η0δ(r − r0) d3r =
J0∑

j=1

Aj

∫

Ω

L(r)ηjδ(r − rj) d3r

=
∫

Ω

L(r)

⎡
⎣

J0∑
j=1

Ajηjδ(r − rj)

⎤
⎦ d3r. (2.14)

As a result, the relationship,

η0δ(r − r0) =
J0∑

j=1

Ajηjδ(r − rj) (2.15)

should hold. However, Eq. (2.15) never holds, because the point source at r0 is
never equal to a weighted sum of the point sources at the other locations, i.e.,
the delta function cannot be expressed as a sum of the other delta functions.
Therefore, Eq. (2.12) is not valid and the lead-field vectors for different locations
are linearly independent.
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The same discussion holds for the linear independence among the lead-field
vectors with linearly independent orientations. That is, we define three linearly
independent orientations as η0, η1, and η2, and, to indicate the orientation depen-
dence explicitly, we denote the associated lead-field vectors at the same location
(that is denoted r0) as l(r0,η0), l(r0,η1), and l(r0,η2). These lead-field vectors
are expressed as

l(r0,η0)=
∫

Ω

L(r)η0δ(r − r0) d3r = L(r0)η0, (2.16)

l(r0,η1)=
∫

Ω

L(r)η1δ(r − r0) d3r = L(r0)η1, (2.17)

and l(r0,η2)=
∫

Ω

L(r)η2δ(r − r0) d3r = L(r0)η2. (2.18)

According to the argument above, if the following relationship holds,

l(r0,η0) = A1l(r0,η1) + A2l(r0,η2), (2.19)

where A1 and A2 are some scalar constants, we have

L(r0)η0 = A1L(r0)η1 + A2L(r0)η2 = L(r0)(A1η1 + A2η2). (2.20)

Since the above equation holds for an arbitrary location, i.e., for an arbitrary r0,
the relationship

η0 = A1η1 + A2η2 (2.21)

should hold. However, the relationship above never holds, because of the linear
independence among the three orientation vectors. Therefore, the lead-field vec-
tors, l(r0,η0), l(r0,η1), and l(r0,η2), are linearly independent if η0, η1, and η2

are linearly independent.

2.2 Bioelectromagnetic inverse problem

Returning to the equations in Eq. (2.7) and (2.8), we restate these equations
with noise. We assume that additive noise exists and denote nm(t) as the noise
amplitude added to the mth sensor output. We define the noise vector n(t) such
that

n(t) =

⎡
⎢⎢⎢⎣

n1(t)
n2(t)

...
nM (t)

⎤
⎥⎥⎥⎦ . (2.22)

When such additive noise is taken into account, Eq. (2.7) and (2.8) respectively
become

b(t) =
∫

Ω

L(r)s(r, t) d3r + n(t), (2.23)
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and

b(t) =
∫

Ω

l(r)s(r, t) d3r + n(t). (2.24)

Equations (2.23) and (2.24) are the fundamental equations for measurements per-
formed with a sensor array.

The bioelectromagnetic inverse problem is the problem of estimating the
source-vector spatial distribution, s(r, t), from the measurements, b(t). Here, we
can assume that we know the sensor lead field L(r), although our knowledge of the
sensor lead field is to some degree imperfect because it should be estimated by using
an analytical model or numerical computations, as described in Section 13.7. The
spatial distribution of the source orientation, η(r), may be a known quantity, if
accurate subject anatomical information (such as high-precision subject MRI) can
be obtained with accurate co-registration to the sensor coordinate space. (In this
case, the inverse problem is one of estimating the source magnitude, s(r, t), instead
of the source vector, s(r, t).) However, it is generally difficult to obtain such
accurate anatomical information for each subject and the current co-registration
methods have only limited accuracy. Therefore, in this book, we treat η(r) as
an unknown quantity unless otherwise noted. When estimating s(r, t) from b(t),
s(r, t) is continuous in space, while b(t) is discrete in space. Thus, estimation of
s(r, t) is intrinsically an ill-posed problem, which cannot be solved unless some
constraints are imposed on s(r, t).

We therefore introduce the discrete source model, and assume that the bio-
electromagnetic signal is generated from a total of Q discrete sources. We retain
this discrete source model throughout the book. If the number of sources Q is
smaller than the number of sensors M , the signal is referred to as a low-rank sig-
nal. We have derived an interesting property of low-rank signals, and a discussion
regarding these low-rank signals appears in Section 2.4. We denote the locations of
the Q sources as r1, r2, . . . , rQ. Then, the source spatial distribution is expressed
as

s(r, t) =
Q∑

q=1

s(rq, t)δ(r − rq). (2.25)

Substituting the above equation into Eq. (2.23) and (2.24), we obtain the discrete
versions of the measurement equations, such as

b(t) =
Q∑

q=1

L(rq)s(rq, t) + n(t), (2.26)

and

b(t) =
Q∑

q=1

l(rq)s(rq, t) + n(t). (2.27)
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Let us define a Q × 1 column vector ν(t) such that

ν(t) =

⎡
⎢⎢⎢⎣

s(r1, t)
s(r2, t)

...
s(rQ, t)

⎤
⎥⎥⎥⎦ . (2.28)

We define a composite lead field matrix LC such that

LC = [L(r1),L(r2), . . . ,L(rQ)], (2.29)

where L(rq) is the lead field matrix at the qth source location, rq. Using the
orientation of the qth source, η(rq), we also define a 3Q × Q matrix Ψ such that

Ψ =

⎡
⎢⎢⎢⎢⎣

η(r1) 0 · · · 0

0 η(r2) ·
...

... · . . . 0
0 · · · 0 η(rQ)

⎤
⎥⎥⎥⎥⎦

. (2.30)

Then, we can derive a relationship equivalent to Eq. (2.26), such that

b(t) = LCΨν(t) + n(t). (2.31)

Let us define LD as a composite lead-field matrix whose columns are the lead-field
vectors, which is a function of both source location and orientation:

LD = LCΨ = [L(r1)η(r1), . . . ,L(rQ)η(rQ)] = [l(r1), . . . , l(rQ)]. (2.32)

We can obtain a relationship corresponding to Eq. (2.27), such that

b(t) = LDν(t) + n(t). (2.33)

Equations (2.31) and (2.33) are also the discrete versions of the measurement
equations.

2.3 Expressions of data covariance matrices

2.3.1 Data and source covariance relationship

We define the covariance matrix of measurements R such that

R = 〈b(t)bT (t)〉 =

⎡
⎢⎢⎢⎣

〈b1(t)2〉 〈b1(t)b2(t)〉 . . . 〈b1(t)bM (t)〉
〈b2(t)b1(t)〉 〈b2(t)2〉 . . . 〈b2(t)bM (t)〉

...
...

. . .
...

〈bM (t)b1(t)〉 〈bM (t)b2(t)〉 . . . 〈bM (t)2〉

⎤
⎥⎥⎥⎦ , (2.34)
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where 〈·〉 indicates the expectation operator. This matrix R is also called the data
covariance matrix. The matrix R is not exactly equal to the covariance matrix but
equal to the second-order moment matrix. However, R is customarily called the
covariance matrix because the relationship 〈b(t)〉 ≈ 0 holds in many applications.
In practice, the expectation is computed using a time average over a certain time
window. Therefore, in this book, 〈·〉 also indicates the time average. The data
covariance matrix, R, plays a key role in the adaptive-spatial-filter source imaging.

We next define the covariance matrix of the source activity Rν such that

Rν = 〈ν(t)νT (t)〉 =⎡
⎢⎢⎢⎣

〈s(r1, t)2〉 〈s(r1, t)s(r2, t)〉 . . . 〈s(r1, t)s(rQ, t)〉
〈s(r2, t)s(r1, t)〉 〈s(r2, t)2〉 . . . 〈s(r2, t)s(rQ, t)〉

...
...

. . .
...

〈s(rQ, t)s(r1, t)〉 〈s(rQ, t)s(r2, t)〉 . . . 〈s(rQ, t)2〉

⎤
⎥⎥⎥⎦ . (2.35)

Using Eq. (2.31) and assuming that ν(t) and n(t) are uncorrelated, we can derive
a relationship between the data covariance matrix, R, and the source covariance
matrix, Rν , such that

R = 〈b(t)bT (t)〉 = [LCΨ ]Rν [ΨT LT
C ] + Rn. (2.36)

Here, Rn is the noise covariance matrix, which is obtained as

Rn = 〈n(t)nT (t)〉. (2.37)

Using Eq. (2.33), we can derive the relationship equivalent to Eq. (2.36), as

R = LDRνLT
D + Rn, (2.38)

where LD is defined in Eq. (2.32).
If noise is generated by the sensor hardware, it can be approximated as zero-

mean white Gaussian noise uncorrelated between different sensor channels. In that
case, we have the relationship

Rn = σ2
0I, (2.39)

where σ2
0 is the variance of the noise and I is the identity matrix1. In deriving the

relationship in Eq. (2.39), we also assume that the noise variance is equal for all
sensor channels. Throughout this book, n(t) indicates sensor noise which has the
property expressed in Eq. (2.39). In bioelectromagnetic measurements, however,
in addition to the sensor noise, interference signals may arise from outside the
measurement hardware. These interferences with external origins often overlap
with the signal of interest and they may distort the final source imaging results.
The influence of these external interferences will be discussed later in Chapters 7
and 8. Using Eq. (2.39), Eqs. (2.36) and (2.38) are, respectively, converted to

R = [LCΨ ]Rν [ΨT LT
C ] + σ2

0I, (2.40)
1In this case, I is the M ×M identity matrix. The size of the identity matrix is not explicitly

stated in this book unless otherwise needed.
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and
R = LDRνLT

D + σ2
0I. (2.41)

Equations (2.40) and (2.41) are the basic equations for discussing the main prop-
erties of low-rank signals in Section 2.4.

So far, we explicitly describe pairs of mathematically-equivalent equations:
those using LC (e.g., Eq. (2.40)) and others using LD (e.g., Eq. (2.41)). Although
these two groups of equations are equivalent, we usually prefer to use the equations
with LD in the arguments in this book, because these equations facilitate simpler
mathematical argumentation.

2.3.2 Formulation for uncorrelated sources

We next assume that the source time courses are uncorrelated. Substituting
〈s(rp, t)s(rq, t)〉 = 0 for p �= q and σ2

q = 〈s(rq, t)2〉, where σ2
q represents the

power of the qth source, into Eq. (2.35), Rν is expressed as

Rν =

⎡
⎢⎢⎢⎣

σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

Q

⎤
⎥⎥⎥⎦ . (2.42)

Substituting the equation above into Eq. (2.41), the measurement covariance ma-
trix, R, is expressed as

R =
Q∑

q=1

σ2
q l(rq)lT (rq) + σ2

0I. (2.43)

The power of the measurements is given by:

〈‖b(t)‖2〉 = tr{R} =
Q∑

q=1

σ2
j ‖l(rq)‖2 + Mσ2

0 , (2.44)

where tr{·} indicates the trace operation applied to the matrix between the curly
braces. From Eq. (2.44), we can see that the ratio between the signal power and
the noise power,

σ2
q‖l(rq)‖2

Mσ2
0

, (2.45)

can be a measure of the strength of the qth source. In many signal-processing
literatures (for example, [11]), αq defined as

αq =
σ2

q‖l(rq)‖2

σ2
0

, (2.46)

is often called the input signal-to-noise ratio (SNR) (of the qth source), and this
αq is used as the measure of the strength of the qth source. Note that when the
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qth source is so weak that the average power of the magnetic field generated from
this source is equal to the average noise power, i.e., when the relationship

1
M

σ2
q‖l(rq)‖2 = σ2

0

holds, αq equals the number of sensors M . We assume in this book that sources
to be reconstructed have values of αq greater than M .

2.4 Low-rank signal modeling

A low-rank signal is a signal generated from Q discrete sources in which Q is
smaller than the number of sensors M [12]. The low-rank signal model plays an
important role in discussions of adaptive spatial filters. The assumption that
M > Q is fundamental, and we maintain it throughout this book. Here, we
present a major property of low-rank signals. Some related arguments are also
found in Section 12.2.

2.4.1 Definition of noise and signal subspaces

The important property of the low-rank signal is that the signal and the noise
subspaces exist; these subspaces play a key role in discussions of adaptive spatial
filters. Our arguments begin with Eq. (2.27), namely,

b(t) =
Q∑

q=1

l(rq)s(rq, t) + n(t) = bs(t) + n(t),

where bs(t), called the signal vector, is the signal part in the whole measurement
b(t). Using LD in Eq. (2.32), and denoting s(rq, t) as sq, the signal vector bs is
expressed as

bs =
Q∑

j=1

l(rj)sj = s1l(r1) + · · · + sQl(rQ)

= [l(r1), l(r2), . . . , l(rQ)]

⎡
⎢⎢⎢⎣

s1

s2

...
sQ

⎤
⎥⎥⎥⎦ = LDν, (2.47)

where ν = [s1, . . . , sQ]T , and the time notation is omitted for simplicity. Equa-
tion (2.47) indicates that the signal vector bs lies within a subspace spanned by
the linearly independent vectors l(r1), . . . , l(rQ), which is the column span of LD.
(The linear independence of these lead field vectors is argued in Section 2.1.3.)

This column span is called the signal subspace and is denoted ES , i.e.,

ES = span{l(r1), . . . , l(rQ)} (2.48)
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Thus, the relationship
bs ∈ ES (2.49)

holds. The left-hand null space of LD is called the noise subspace and is denoted
EN , i.e.,

EN = {x|xT LD = 0}. (2.50)

The dimension of the signal subspace is Q and that of the noise subspace is M−Q.
We can prove that ES and EN are the orthogonal complements, and that the
relationship

ES ∪ EN = 	M (2.51)

holds where 	M is the space of the M -dimensional real vectors[13].

2.4.2 Property of the data covariance matrix

We next discuss an important property of the measurement covariance matrix, a
property which is closely related to the noise and the signal subspaces. Unless
some source activities are perfectly correlated with each other, the rank of Rν is
equal to the number of sources Q. Therefore, according to Eq. (2.41), the M ×M
matrix LDRνLT

D (= [LCΨ ]Rν [ΨT LT
C ]) is a positive semi-definite matrix of rank

Q and has the form

LDRνLT
D =

[e1, . . . ,eM ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ′
1 0 · · · · · · · 0

0
. . . · · · 0

... · λ′
Q · ·

...
· · · 0 · ·
... · · · . . . 0
0 · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[e1, . . . ,eM ]T , (2.52)

where λ′
j and ej are the jth eigenvalue and its corresponding eigenvector of the ma-

trix LDRνLT
D. Here, these eigenvalues are numbered in decreasing order. Then,

the eigendecomposition of R is expressed as

R = LDRνLT
D + σ2

0I

= [e1, . . . ,eM ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · · · · · 0

0
. . . · · · 0

... · λQ · ·
...

· · · σ2
0 · ·

... · · · . . . 0
0 · · · · · 0 σ2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[e1, . . . ,eM ]T , (2.53)
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where λj is the jth eigenvalue of R and λj = λ′
j +σ2

0 . The equation above indicates
that R has Q eigenvalues greater than σ2

0 , and M − Q eigenvalues equal to σ2
0 .

The eigenvalues greater than σ2
0 are called the signal-level eigenvalues and those

equal to σ2
0 are called the noise-level eigenvalues. Equation (2.53) indicates that

ej is also the jth eigenvector of the matrix R, and because R is a real symmetric
matrix, the eigenvectors form an orthonormal basis.

Let us define the matrix ES as ES = [e1, . . . ,eQ] and EN as EN =
[eQ+1, . . . ,eM ]. We then show that the column span of ES is equal to the signal
subspace, and the span of EN is equal to the noise subspace. To show this, we
first rewrite Eqs. (2.41) as

(R − σ2
0I) = LDRνLT

D, (2.54)

and then multiply each side of this equation by one of the noise-level eigenvectors,
i.e.,

(R − σ2
0I)ej = LDRνLT

Dej , (2.55)

where j = Q+1, . . . , M . Considering the eigendecomposition in Eq. (2.52), and the
fact that the eigenvectors are orthogonal, the left-hand side of the above equation
is found to be zero, and we have

LDRνLT
Dej = 0, for j = Q + 1, . . . ,M. (2.56)

Since LD is a full column-rank matrix, and we assume that Rν is a full-rank
matrix, the above equation results in

LT
Dej = [l(r1), l(r2), . . . , l(rQ)]T ej = 0 for j = Q + 1, . . . ,M. (2.57)

This implies that the lead-field vectors at the true source locations are orthogonal
to the eigenvectors eQ+1, . . . ,eM , i.e.,

lT (rq)EN = 0 for q = 1, . . . , Q. (2.58)

This equation indicates that the columns of EN are the basis vectors of the noise
subspace. The fact that the column span of ES is the complementary subspace of
the column span of EN indicates that the columns of ES are the basis vectors of
the signal subspace. That is, we have the relationships

ES =span{e1, . . . ,eQ}, (2.59)
and EN=span{eQ+1, . . . ,eM}. (2.60)

When R is the sample covariance matrix, the column span of ES is the
maximum-likelihood estimate of the signal subspace of R, and the span of EN

is that of the noise subspace. (The proof for this is given in Section 13.1 of
the Appendix.) This orthogonality relationship in Eq. (2.58) is the basis of the
eigenspace-projection adaptive spatial filter described in Section 6.8, as well as
the basis of the well-known MUSIC algorithm[14][15][16], which is described in
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Section 12.2. In the low-rank signal model, the measurement covariance matrix R
can be decomposed into noise and signal subspace components, such that

R = ESΛSET
S + ENΛNET

N , (2.61)

where ΛS and ΛN are diagonal matrices defined as

ΛS = diag[λ1, . . . , λQ] and ΛN = diag[λQ+1, . . . , λM ], (2.62)

where diag[· · · ] indicates a diagonal matrix whose diagonal elements are equal to
the entries in the square brackets. Using the orthogonality between ES and EN ,
we can derive

R−1 = ESΛ−1
S ET

S + ENΛ−1
N ET

N , (2.63)

and
R−2 = ESΛ−2

S ET
S + ENΛ−2

N ET
N . (2.64)

These relationships are used in the arguments of Section 6.8.

(a) (b)

voxel grid filter sensitivity pattern

Figure 2.2: Conceptual view of tomographic-imaging methods and spatial-filters.
(a) Tomographic source reconstruction method, which introduces voxel discretiza-
tion and assumes a source at each voxel. The orientations and magnitudes of
the sources are estimated using the least-squares fit to the measured data with a
method-specific constraint. (b) Spatial-filter imaging. The spatial filter artificially
controls the sensor array sensitivity to form a virtual sensor whose sensitivity pat-
tern is expected to be localized at a specific location in the source space. This
focused sensitivity pattern is scanned, in a completely post-processed manner,
over the source space to obtain the three-dimensional reconstruction of the source
distribution.
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2.5 Spatial filters

2.5.1 Source reconstruction using a spatial filter

The spatial filter is a technique that numerically controls the sensor array sensi-
tivity to form a virtual sensor whose sensitivity pattern is expected to be localized
at the filter pointing location. The principle of spatial filter source imaging is
conceptually illustrated, in contrast to tomographic imaging, in Fig. 2.2. Using
the sensor array output, b(t), the spatial filter reconstructs the source magnitude,
s(r, t), by using

ŝ(r, t) = wT (r)b(t), (2.65)

where ŝ(r, t) is the estimated or reconstructed source magnitude at location r and
time t. (In this book, we use “̂ ” for estimated quantities in order to distinguish
them from their true values.) We may call the reconstructed source magnitude,
ŝ(r, t), the spatial filter output. In Eq. (2.65), w(r) is an M × 1 column vector
called the weight vector. The weight vector characterizes the properties of the
spatial filter. There are two types of spatial filters. One is the non-adaptive
spatial filter in which the weight vector depends solely on the lead field of the
sensor array. The other is the adaptive spatial filter in which the weight depends
on the measured data as well as the lead field of the sensor array. In this book, in
Chapter 3, we first describe several representative non-adaptive spatial filters used
for bioelectromagnetic brain imaging. We then introduce adaptive spatial filters
in Chapter 4, and discuss their properties in the following chapters.

Using Eq. (2.65), the power of the spatial-filter output is given by:

〈ŝ(r, t)2〉 = wT (r)〈b(t)bT (t)〉w(r) = wT (r)Rw(r). (2.66)

Assuming that the noise, n(t), is zero-mean white Gaussian noise with variance
σ2

0 and is uncorrelated between different sensor channels, the noise power of the
spatial filter output is given by:

wT (r)〈n(t)nT (t)〉w(r) = σ2
0wT (r)Iw(r) = σ2

0‖w(r)‖2. (2.67)

That is, the input noise power σ2
0 is multiplied by ‖w(r)‖2 in the spatial filter

output. Therefore ‖w(r)‖2 is called the noise-power gain or the white-noise gain
of the spatial filter. The signal-to-noise ratio (SNR) of the spatial filter output
can be defined as2

Z =
wT (r)Rw(r)
σ2

0‖w(r)‖2
. (2.68)

2The numerator of Eq. (2.68) contains the noise contribution, so the Z value is not exactly
equal to the SNR. The relationship between the Z value and the theoretical SNR is discussed in
Section 6.1
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2.5.2 Scalar and vector spatial filters

Scalar spatial filter

Because the bioelectromagnetic source is a three-dimensional vector quantity, we
need to know the source orientation η when deriving the weight vector w(r).
The source orientation may be predetermined if an accurate three-dimensional
anatomical information of the subject is available. Generally, however, the source
orientation η(r) should be estimated from the data. When η(r) is unknown, one
strategy for obtaining a reasonable estimate of η(r) is to first derive the weight
w(r,η) that depends on both the location r and orientation η(r). This weight
w(r,η) provides the source magnitude at location r projected in the direction η.
We denote the output of this weight ŝ(r,η, t), i.e.,

ŝ(r,η, t) = wT (r,η)b(t). (2.69)

The source orientation at r is estimated by maximizing the power of ŝ(r,η, t) with
respect to η. That is, the optimum source orientation ηopt(r) is obtained from

ηopt(r) = arg max
η(r)

〈ŝ(r,η, t)2〉 = arg max
η(r)

wT (r,η)Rw(r,η). (2.70)

Then, the weight vector w(r) is redefined as the weight associated with this opti-
mum orientation ηopt(r), i.e.,

w(r) = w(r,ηopt(r)). (2.71)

We use this w(r) to reconstruct the source intensity at location r such that

ŝ(r, t) = wT (r)b(t). (2.72)

The spatial filter that reconstructs source spatial distributions in this manner is
called the scalar spatial filter. The output power of the scalar spatial filter is
sometimes denoted P̂s(r) in this book, i.e.,

P̂s(r) = wT (r)Rw(r),

where the weight vector w(r) is obtained using Eq. (2.71).

Vector spatial filter

Another type of spatial filter used in bioelectromagnetic source imaging is the
vector spatial filter, in which a set of three weight vectors wx(r), wy(r), and
wz(r), respectively, detect the x, y, and z components of the source vector s(r, t).
That is, using the weight matrix W (r), defined as

W (r) = [wx(r),wy(r),wz(r)], (2.73)
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the source vector can be reconstructed by using

ŝ(r, t) = [ŝx(r, t), ŝy(r, t), ŝz(r, t)]T = [wx(r),wy(r),wz(r)]T b(t) = W T (r)b(t).
(2.74)

The source power matrix Σ̂s(r) is defined as

Σ̂s(r) = 〈ŝ(r, t)ŝT (r, t)〉 = W T (r)RW (r). (2.75)

In the vector formulation, there are two ways to compute the source power
estimate 〈ŝ(r, t)2〉. Probably, the most natural way is to calculate the trace of
Σ̂s(r), such that

〈ŝ(r, t)2〉 = tr{Σ̂s(r)} = 〈ŝx(r, t)2〉 + 〈ŝy(r, t)2〉 + 〈ŝz(r, t)2〉. (2.76)

This power estimate from the vector formulation is called the power estimate of
the first kind and is denoted P̂

(I)
V (r), i.e.,

P̂
(I)
V (r) = tr{Σ̂s(r)}. (2.77)

An alternative way is to compute the projection of the vector output onto the
direction that gives the maximum power output. The power estimate computed
in this manner is called the power estimate of the second kind, denoted as P̂

(II)
V (r).

To compute P̂
(II)
V (r), the optimal direction η̄opt is first obtained using

η̄opt(r) = arg max
η(r)

〈(ηT ŝ(r, t))2〉 = arg max
η(r)

[
ηT Σ̂s(r)η

]
, (2.78)

and the power estimate of the second kind is given by:

P̂
(II)
V (r) = η̄T

opt(r)Σ̂s(r)η̄opt(r) = 〈(η̄T
opt(r)ŝ(r, t))2〉. (2.79)

These two power estimates are generally not equal for given vector spatial filters.

Equivalence between scalar and vector spatial filters

The scalar and the vector formulations can be considered equivalent if the rela-
tionships

η̄opt = ηopt (2.80)

and
P̂s(r) = P̂

(II)
V (r) (2.81)

hold. Some types of spatial filters have this equivalence. For example, the
minimum-norm filter in Chapter 3 and the unit-gain constraint minimum-variance
filter in Chapter 4 are shown to have this equivalence. Nonetheless, the two types
of formulations are not equivalent for most adaptive and non-adaptive spatial fil-
ters. On the other hand, our numerical experiments show that practical differences
between the two formulations are generally small.
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2.5.3 Resolution kernel, point-spread function, and beam
response

Combining Eqs. (2.8) and (2.65), we derive (omitting explicit time notation t)

ŝ(r) =
∫

Ω

wT (r)l(r′)s(r′) d3r′ =
∫

Ω

R(r, r′)s(r′) d3r′. (2.82)

Here, we define R(r, r′) to be

R(r, r′) = wT (r)l(r′). (2.83)

This R(r, r′) is called the resolution kernel[17][18], and expresses the relationship
between the original and the reconstructed source distributions. There are two
ways to interpret the resolution kernel. One interpretation is to consider R(r, r′)
a point-spread function, which is very useful for evaluating the location bias and
the spatial resolution of various spatial filters. Assuming that a single point source
exists at r1 and substituting s(r′) = δ(r′ − r1) into Eq. (2.82), we derive ŝ(r) =
R(r, r1). Namely, if we plot the resolution kernel with respect to r (with a fixed
r1), this plot, defined as

�(r) = R(r, r1), (2.84)

expresses the reconstruction of the point source located at r1, and this �(r) is
called the point-spread function. In Chapter 5, we use the point-spread function
to analyze the properties of the source bias and the spatial resolution of various
types of spatial filters.

The other way of interpreting the resolution kernel is to consider R(r, r′) as
the beam response. In this case, the resolution kernel is plotted with respect to r′

(with a fixed r), i.e.,
H(r′) = R(r, r′). (2.85)

The beam response, H(r′), indicates the sensitivity of the spatial filter that is
pointing to r to a source located at r′. In other words, the beam response repre-
sents the gain for the unwanted leakage signal from sources located at places other
than the filter pointing location. In Section 5.4, we discuss the beam response
further, and present some numerical examples.
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Chapter 3

Tomographic reconstruction
and nonadaptive spatial
filters

This chapter introduces representative nonadaptive spatial filters used in elec-
tromagnetic source imaging. We first describe the minimum-norm least-squares
method, which is one of most popular methods in electromagnetic source imag-
ing. We then reformulate this minimum-norm method as a non-adaptive spatial
filter, and introduce two variants of the minimum-norm spatial filter: the weight-
normalized minimum-norm filter and standardized low-resolution electromagnetic
tomography (sLORETA). With the reformulation as a spatial filter, we can com-
pare these least-squares-based methods with the adaptive spatial filters using a
common basis, such as the point-spread function or output SNR. Such compar-
isons are presented in Chapters 5 and 6.

3.1 Minimum-norm method

3.1.1 Tomographic reconstruction formulation

As shown in Fig. 2.2 (a), tomographic reconstruction methods introduce voxel
discretization over the source space. By introducing the voxels, the source recon-
struction problem can be solved based on the linear least-squares inverse. Let
us define the number of voxels as N , and denote the locations of the voxels as
r1, r2, . . . , rN . Then, the discrete form of Eq. (2.7) is expressed as

b(t) =
N∑

n=1

L(rn)s(rn, t). (3.1)
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We introduce a composite lead-field matrix over all voxel locations as

LV = [L(r1),L(r2), . . . ,L(rN )]. (3.2)

We define a 3N × 1 column vector containing the source vectors at all voxel loca-
tions, νvox(t), such that

νvox(t) =

⎡
⎢⎢⎢⎣

s(r1, t)
s(r2, t)

...
s(rN , t)

⎤
⎥⎥⎥⎦ . (3.3)

Readers should not confuse the above νvox(t) with ν(t) in Eq. (2.28). The elements
of ν(t) are the source magnitudes at the source locations, whereas these of νvox(t)
are the source magnitudes at the voxel locations.

Equation (3.1) is then rewritten as

b(t) = [L(r1),L(r2), . . . ,L(rN )]

⎡
⎢⎢⎢⎣

s(r1, t)
s(r2, t)

...
s(rN , t)

⎤
⎥⎥⎥⎦ = LV νvox(t). (3.4)

Here, since the composite lead-field matrix LV is a known quantity, the only
unknown quantity is the 3N ×1 column vector, νvox(t), and this can be estimated
as the solution of the linear-least-squares inverse of Eq. (3.4). That is, defining
the estimate of νvox(t) as ν̂vox(t):

ν̂vox(t) =

⎡
⎢⎢⎢⎣

ŝ(r1, t)
ŝ(r2, t)

...
ŝ(rN , t)

⎤
⎥⎥⎥⎦ , (3.5)

and the least-squares cost function as

F = ‖b(t) − LV ν̂vox(t)‖2, (3.6)

the least-squares solution that minimizes the above cost function F is given by

ν̂vox(t) = L+
V b(t), (3.7)

where L+
V indicates the generalized inverse of LV . Since LV is an M × 3N ma-

trix and generally M < 3N holds, the system of linear equations in Eq. (3.4)
is underdetermined. In such a case, the generalized inverse L+

V is expressed as
L+

V = LT
V [LV LT

V ]−1, and ν̂vox(t) is given by:

ν̂vox(t) = LT
V [LV LT

V ]−1b(t). (3.8)
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In the above equation, LV LT
V is equal to the gram matrix defined in Eq. (2.10) if

we ignore the errors resulting from the voxel discretization. That is,

G =
∫

Ω

L(r)LT (r)dr ≈
N∑

n=1

L(rn)LT (rn) = LV LT
V . (3.9)

Therefore, Equation (3.8) can be expressed as

ν̂vox(t) = LT
V G−1b(t). (3.10)

The source reconstruction method represented by Eqs. (3.8) and (3.10) is called
the minimum-norm reconstruction method, which has been introduced into the
field of bioelectromagnetic imaging by Hämäläinen and Ilmoniemi[19] and is one
of the most popular methods.

Sensor coil

(a) (b)

X-ray source

Array of X-ray sensors

Figure 3.1: Schematic views of the sensitivity profiles of two types of sensor arrays.
(a) The sensitivity profiles of sensors in X-ray computed tomography. The sensi-
tivity profile of each sensor is the line connecting the sensor to the X-ray source.
(b) The profiles of sensors for biomagnetic measurements.

Many methods successfully used in digital image processing can be proven
to be equivalent to this minimum-norm method. For example, the filtered-back-
projection algorithm used in X-ray computerized tomography(CT) is one such
method[20][21]. The success of the minimum-norm method strongly depends on
the property of the gram matrix, which in turn depends on the sensitivity profile of
the sensor array. Figure 3.1 schematically illustrates the sensitivity profiles of the
sensors for X-ray CT and for the biomagnetic sensor array. In the sensor array for
X-ray CT, the sensitivity profile of each sensor consists of the line connecting the
sensor to the X-ray source as shown in Fig. 3.1(a). Therefore, the overlap between
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the sensitivity profiles of different sensors is very small, and the gram matrix
is close to the identity matrix. In such a case, the gram matrix is numerically
stable since it has a low condition number. On the contrary, the sensors for the
biomagnetic measurements have wide-spread sensitivity profiles and the sensitivity
profiles of different sensors are more or less similar, as depicted in Fig. 3.1(b). In
this case, the elements of G have similar numerical values and G is close to a
singular matrix. Thus, calculating G−1 generally introduces some errors.

The errors generated when calculating G−1 can be reduced by applying
a technique called regularization. The simplest form of regularization, called
Tikhonov regularization[22][23], calculates (G + εI)−1, instead of directly calcu-
lating G−1. Here ε is a user-controllable scalar constant. Using Tikhonov regu-
larization, the solution is expressed as

ν̂vox(t) = LT
V (G + εI)−1b(t). (3.11)

Interestingly, this solution minimizes the cost function, expressed as

F = ‖b(t) − LV ν̂vox(t)‖2 + ε‖ν̂vox(t)‖2. (3.12)

That is, Eq. (3.11) is the solution that minimizes both the norm of the solution
vector, ‖ν̂vox(t)‖2, as well as the squared error term ‖b(t)−LV ν̂vox(t)‖2. Because
of this property, the solution obtained from Eq. (3.11) is called the minimum-norm
solution.

Although the minimum-norm method is commonly used for electromagnetic
brain imaging, its performance is known to be poor when applied to reconstructing
three-dimensional source spatial distributions[24]. This poor performance prob-
lem can be overcome to some extent by using more sophisticated regularization
techniques. That is, the general form of the least-squares cost function can be
expressed as

F = [b(t) − LV ν̂vox(t)]T Υ−1
A [b(t) − LV ν̂vox(t)] + εν̂vox(t)T Υ−1

B ν̂vox(t). (3.13)

The solution that minimizes the cost function above is given by:

ν̂vox(t) = Υ BLT
V [LV Υ BLT

V + εΥ A]−1b(t). (3.14)

It is easy to see that the minimum-norm solution can be obtained by using Υ A = I
and Υ B = I in Eq. (3.14). The equation above uses the modified gram matrix,
G̃, which is defined as

G̃ = LV Υ BLT
V + εΥ A. (3.15)

We then have more freedom to improve the numerical stability of the gram matrix,
compared to the simple Tikhonov regularization. Therefore, if we use appropriate
choices for matrices Υ A and Υ B , we can improve the quality of the solution.
Generally, an appropriate Υ A should be chosen so as to reflect the property of the
noise contained in measurements and an appropriate Υ B should be chosen so as
to reflect the desired property of the source distribution.
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3.1.2 Nonadaptive spatial-filter formulation

The minimum-norm method described in the preceding section can also be formu-
lated as a non-adaptive spatial filter. Let us rewrite Eq. (3.10) as

⎡
⎢⎢⎢⎣

ŝ(r1, t)
ŝ(r2, t)

...
ŝ(rN , t)

⎤
⎥⎥⎥⎦ = LT

V G−1b(t) =

⎡
⎢⎢⎢⎣

LT (r1)
LT (r2)

...
LT (rN )

⎤
⎥⎥⎥⎦G−1b(t). (3.16)

Therefore, at each voxel location rn, the relationship,

ŝ(rn, t) = LT (rn)G−1b(t), (3.17)

holds. The equation above is equivalent to the vector spatial-filter formulation in
Eq. (2.74) where the weight matrix W (r) is given by:

W (r) = G−1L(r). (3.18)

When the source orientation at each voxel is predetermined by some means, (for
example by using the subject’s MRI, or by using the optimal orientation described
in Section 2.5.2,) we can derive the scalar form of the filter such that

w(r) = G−1l(r). (3.19)

The formula to compute the optimum orientation for the scalar spatial-filter weight
above is given in Eq. (13.18) in the Appendix. The spatial filter in Eqs. (3.18) or
(3.19) is called the minimum-norm filter1.

The general form of the solution in Eq. (3.14) is expressed as

⎡
⎢⎢⎢⎣

ŝ(r1, t)
ŝ(r2, t)

...
ŝ(rN , t)

⎤
⎥⎥⎥⎦ = Υ BLT

V [LV Υ BLT
V + εΥ A]−1b(t) =

⎡
⎢⎢⎢⎢⎢⎣

L̃
T
(r1)

L̃
T
(r2)
...

L̃
T
(rN )

⎤
⎥⎥⎥⎥⎥⎦

G̃
−1

b(t), (3.20)

where L̃
T
(rn) is an M×3 matrix whose three columns are equal to the 3(n−1)+1,

3(n−1)+2, and 3nth rows of the matrix Υ BLT
V . Also, G̃ is defined in Eq. (3.15).

The vector spatial-filter formulation of Eq. (3.20) is given by:

ŝ(rn, t) = L̃
T
(rn)G̃

−1
b(t) = W T (rn)b(t), (3.21)

where the weight matrix is expressed as

W (r) = G̃
−1

L̃(r). (3.22)
1In Eqs. (3.18) and (3.19), the use of regularization is not explicitly indicated. However,

Tikhonov regularization is generally applied when implementing these spatial filters.
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The corresponding weight for the scalar spatial filter is expressed as

w(r) = G̃
−1

l̃(r), (3.23)

where l̃(r) = L̃(r)η(r) and η(r) is the predetermined source orientation at r.

3.2 Variants of the minimum-norm filter

3.2.1 Weight-normalized minimum-norm filter

The weight-normalized minimum-norm filter has been proposed by Dale et al.
[25]. The idea is to normalize the minimum-norm weight with its norm to ensure
that the spatial distribution of the noise is uniform. The scalar form weight is thus
given by:

w(r) =
G−1l(r)
‖G−1l(r)‖

=
G−1l(r)√

lT (r)G−2l(r)
. (3.24)

The formula to compute the optimum orientation for the scalar spatial-filter weight
above is given in Eq. (13.20) in the Appendix. The idea of weight normalization
can be extended to derive the vector-form weight matrix, such that

W (r) =
G−1L(r)√

tr{LT (r)G−2L(r)}
, (3.25)

where tr{ · } indicates the trace operation. Using this weight matrix, the source
vector can be derived as

ŝ(r, t) = W T (r)b(t) =
LT (r)G−1b(t)√

tr{LT (r)G−2L(r)}
. (3.26)

3.2.2 sLORETA filter

A method called standardized low-resolution electromagnetic tomography
(sLORETA) has been proposed by Pascual-Marqui[26]. This method can be re-
formulated as a non-adaptive spatial filter. In this method, the minimum-norm
reconstruction results are normalized by the square root of the resolution kernel’s
peak value. The peak value of the resolution kernel of the minimum norm filter is
expressed as

R(r, r) = wT (r)l(r) = lT (r)G−1l(r), (3.27)

and the scalar version of sLORETA spatial filter is expressed as

w(r) =
G−1l(r)√

lT (r)G−1l(r)
. (3.28)
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The formula to compute the optimum orientation for the scalar spatial-filter weight
above is given in Eq. (13.22) in the Appendix. The resolution kernel of the vector
minimum-norm filter in Eq. (3.18) is obtained as the 3 × 3 matrix,

W T (r)L(r) = LT (r)G−1L(r), (3.29)

and the weight matrix for the vector sLORETA filter is expressed as

W (r) = G−1L(r)[LT (r)G−1L(r)]−1/2. (3.30)

Thus, the source estimate ŝ(r, t) is obtained as

ŝ(r, t) = W T (r)b(t) = [LT (r)G−1L(r)]−1/2LT (r)G−1b(t). (3.31)

The rationale of the sLORETA weight can be explained in the following
manner. We consider a family of spatial-filter weights, with a form expressed as

w(r) = ζ(r)G−1l(r), (3.32)

where ζ(r) is a scalar coefficient that depends on the filter-pointing location r. In
this book, we refer to this family of spatial filters as minimum-norm-based spatial
filters. We are looking for a coefficient ζ(r) that eliminates source location bias.
That is, designating two spatial locations as r and r′, when a single unit-magnitude
source exists at r, the filter weight should satisfy the relationship,

wT (r)l(r) ≥ wT (r′)l(r), (3.33)

for all r′ not equal to r. This relationship is equal to

ζ(r)lT (r)G−1l(r) ≥ ζ(r′)lT (r′)G−1l(r). (3.34)

When a single unit-magnitude source exists at r′, the filter weight should satisfy
the relationship,

ζ(r′)lT (r′)G−1l(r′) ≥ ζ(r)lT (r)G−1l(r′), (3.35)

Combining Eqs (3.34) and (3.35), we can derive a pair of bounds on the ratio
ζ(r)/ζ(r′), such that

lT (r′)G−1l(r′)
lT (r)G−1l(r′)

≥ ζ(r)
ζ(r′)

≥ lT (r′)G−1l(r)
lT (r)G−1l(r)

. (3.36)

One natural choice for ζ(r)/ζ(r′) that satisfies the above relationship is the geo-
metric mean of the bounds, in which

ζ(r)
ζ(r′)

=

√
lT (r′)G−1l(r′)
lT (r)G−1l(r′)

lT (r′)G−1l(r)
lT (r)G−1l(r)

=

√
lT (r′)G−1l(r′)
lT (r)G−1l(r)

. (3.37)
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This can be achieved if the coefficient has the form

ζ(r) = 1/
√

lT (r)G−1l(r). (3.38)

The resultant weight is exactly the same as in Eq. (3.28). The derivation here
shows that the sLORETA filter has no localization bias. This property is further
discussed in Section 5.1. The derivation also shows that the sLORETA weight is
not the only choice for an unbiased solution and that there are other values of ζ(r)
that satisfy Eq. (3.36).

As mentioned, the gram matrix G generally has a large condition number
for a typical sensor array used in bioelectromagnetic measurements, and this large
condition number can cause a performance degradation or unstable performance
particularly when the input data is noisy. This performance degradation can, to
some extent, be reduced by applying the regularization technique when calculating
G−1. The regularized versions of the weight-normalized minimum-norm filter and
the sLORETA filter are given, respectively, by:

w(r) =
(G + εI)−1l(r)√

lT (r)(G + εI)−2l(r)
, (3.39)

and

w(r) =
(G + εI)−1l(r)√

lT (r)(G + εI)−1l(r)
. (3.40)

When the regularization constant ε is large, both of these weights become

w(r) ≈ l(r)
‖l(r)‖ . (3.41)

The above weight is exactly equal to the spatial matched filter described in the
following section. Therefore, the regularized versions of the weight-normalized
minimum-norm and sLORETA filters give intermediate performance between their
non-regularized versions and the spatial matched filter. When the regularization
constant ε is increased, their performances approach that of the spatial matched
filter.

3.3 Spatial matched filter

The simplest non-adaptive spatial filter can be derived by simply using L(r) for
the weight matrix W (r), i.e.,

W (r) = L(r)/‖L(r)‖. (3.42)

The scalar form is expressed as

w(r) = l(r)/‖l(r)‖. (3.43)
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The formula to compute the optimum orientation for the scalar spatial-filter weight
above is given in Eq. (13.24) in the Appendix. This type of spatial filter is called
the spatial matched filter or the conventional spatial filter[27].

This spatial filter is almost equivalent to the technique called single-dipole
scanning or single-dipole search. In single-dipole search, the least-squares error
function defined as

F = ‖
[
I − l(r)[lT (r)l(r)]−1lT (r)

]
b(t)‖2 = ‖b(t)‖2 − [lT (r)b(t)]2/‖l(r)‖2

is computed at all voxel locations and the location that minimizes this F is selected
as the source location. (In actual implementation, the above-mentioned exhaus-
tive search is replaced by a more efficient search method to detect the source
location.) The cost function above obviously shows that the location that mini-
mizes the cost function is equal to the location that maximizes the inner product
|lT (r)b(t)|/‖l(r)‖. Namely, the peak location in the spatial-matched-filter map is
equal to the dipole location found by minimizing the least-squares cost function.

In the following chapters, we show that the spatial matched filter has some
desirable properties such as no location bias even in the presence of noise, and no
SNR degradation in the reconstruction process. Although its spatial resolution is
significantly lower than that of the other spatial filters, methods equivalent to the
spatial matched filter have been developed in various fields due to its simplicity.
Such methods include the delay-and-sum beamformer[28] used in radar applica-
tions and the backprojection operation used in X-ray CT image reconstruction[20].

3.4 Deriving the minimum-norm-based filters
using leakage minimization

In Section 3.1, we derive the minimum-norm and related filter methods based on
the least-squares principle. In Section 3.2, the weight-normalized minimum-norm
and sLORETA filters are derived along with some modifications of the minimum-
norm filter. In this section, we present different derivations for these spatial filters
based on leakage minimization[29][18]. The derivations here have a close similarity
to the derivations of the adaptive spatial filters described in Chapter 4. Therefore,
we recommend that readers first read Chapter 4, and then come back to this
section.

For a spatial filter pointing at r, the leakage from a source located at r1

is expressed using the beam response H(r1) = wT (r)l(r1), as mentioned in Sec-
tion 2.5.3. We then wish to derive a spatial filter that only passes the signal from a
source at the pointing location r and suppresses the leakage from sources at other
locations. Such a spatial filter may be derived by imposing a delta-function-like
property on the beam response. That is, we define a cost function F such that

F =
∫

Ω

[wT (r)l(r1) − δ(r − r1)]2 d3r1. (3.44)
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We wish to find the w(r) that minimizes this F , such that

w(r) = arg min
w(r)

F . (3.45)

To obtain the weight, we calculate the derivative ∂F/∂w(r) and set it to zero,
i.e.,

∂F
∂w(r)

= 2
∫

Ω

[
wT (r)l(r1) − δ(r − r1)

]
lT (r1) d3r1

= 2[wT (r)
∫

Ω

l(r)lT (r) d3r − lT (r)] = 2[wT (r)G − lT (r)] = 0. (3.46)

From this, we can derive the weight vector expressed as w(r) = G−1l(r), which
is exactly the same as the minimum-norm filter shown in Eq. (3.19).

Other minimum-norm-based filters presented in Section 3.2 can also be de-
rived by a similar minimization formulation. The derivations here are according
to Greenblatt et al. [30]. In these derivations, we first calculate the total leakage.
The total leakage for the filter pointing at r is given by:
∫

Ω

R(r, r1)2 d3r1 = wT (r)
[∫

Ω

l(r1)lT (r1) d3r1

]
w(r) = wT (r)Gw(r). (3.47)

The weight-normalized minimum-norm filter mentioned in Section 3.2 is derived
using

w(r) = arg min
w(r)

wT (r)Gw(r), subject to wT (r)w(r) = 1. (3.48)

Readers may notice a close similarity between the above formulation and that
for the unit-noise-gain minimum-variance filter in Eq. (4.11). The only difference
is that the former uses the gram matrix, G, in Eq. (3.48), instead of using the
covariance matrix, R, in Eq. (4.11). Therefore, using exactly the same derivation
as that for Eq. (4.15), we derive the weight in Eq. (3.24). Despite the superficial
similarity between these two types of spatial filters, their performance greatly
differs. The unit-noise-gain minimum-variance filter is able to obtain unbiased
estimates of the source locations, whereas the weight-normalized minimum-norm
filter cannot, as shown in Chapter 5.

The weight for sLORETA in Eq. (3.28) can also be derived using the mini-
mization:

w(r) = arg min
w(r)

wT (r)Gw(r), subject to wT (r)l(r) = τ,

and wT (r)Gw(r) = 1.
(3.49)

In the above formulation, the minimization problem is solved with the first con-
straint, wT (r)l(r) = τ , and the scalar constant τ is determined by the second
constraint, wT (r)Gw(r) = 1. It is easy to see that, using the derivation similar
to that in Section 4.1.3, the weight for the sLORETA filter in Eq. (3.28) can be
derived. However, in this derivation, the constraint wT (r)Gw(r) = 1 is not easily
understood so that the meaning of this constraint is not entirely clear.
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Chapter 4

Adaptive spatial filters

This chapter introduces adaptive spatial filters used in electromagnetic brain imag-
ing. We first describe basic formulations to derive minimum-variance spatial filters.
We then discuss prerequisites for formulating minimum-variance spatial filters,
concerned with the source correlation and signal rank. The scalar and the vector
formulations of minimum-variance spatial filters are also described.

4.1 Deriving weights for adaptive spatial filters

4.1.1 Minimum-variance spatial filter with the unit-gain
constraint

Let us derive the weight of the minimum-variance spatial filter [28][31][7], which
is the best-known adaptive spatial filter. The weight vector w(r) is derived as the
one which minimizes the output power wT (r)Rw(r) under the constraint that
wT (r)l(r) = 1, i.e.,

w(r) = arg min
w(r)

wT (r)Rw(r), subject to wT (r)l(r) = 1, (4.1)

where R is the covariance matrix of the measurements. The inner product
wT (r)l(r) represents the spatial filter output from a unit-magnitude source lo-
cated at r. Therefore, setting wT (r)l(r) equal to one guarantees that the spatial
filter passes the signal from r with the gain equal to one (i.e., a unit gain). The out-
put power of the spatial filter wT (r)Rw(r) generally contains not only the noise
contributions but also unwanted contributions such as the influence of sources at
locations other than r. Accordingly, by minimizing the output power with this
unit-gain constraint, we can derive a weight that minimizes such unwanted in-
fluence without affecting the signal coming from r, the pointing location of the
spatial filter.

Let us derive an explicit form of the weight vector by solving the minimization
problem in Eq. (4.1). This constrained minimization problem can be solved using
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the method of the Lagrange multiplier. We define the Lagrange multiplier as a
scalar κ, and the Lagrangian as L, such that

L(w, κ) = wT Rw + κ(wT l(r) − 1), (4.2)

where the explicit notation of (r) is omitted from w(r) for simplicity. Note that
because R is a positive definite matrix and vectors w and l(r) are real-valued,
the Lagrangian L(w, κ) is a real-valued function. The weight vector satisfying
Eq. (4.1) minimizes the Lagrangian L(w, κ) in Eq. (4.2) with no constraints.

The derivative of L(w, κ) with respect to w is given by:

∂L(w, κ)
∂w

= 2Rw + κl(r). (4.3)

By setting the right-hand side of the above equation to zero, we obtain

w = −κR−1l(r)/2. (4.4)

Thus, substituting this relationship back into the constraint equation wT l(r) = 1,
we get κ = −2/[lT (r)R−1l(r)]. Substituting this κ into Eq. (4.4), the weight
vector satisfying Eq. (4.1) is given by:

w(r) =
R−1l(r)

[lT (r)R−1l(r)]
. (4.5)

Using the above weight expression and Eq. (2.65), the spatial filter output is
expressed as

ŝ(r, t) =
lT (r)R−1b(t)
[lT (r)R−1l(r)]

. (4.6)

Using Eq. (2.66), the output power of this spatial filter is expressed as

〈ŝ(r, t)2〉 = wT (r)Rw(r) =
1

[lT (r)R−1l(r)]
. (4.7)

Substituting the weight expression in Eq. (4.5) into (2.68), the output SNR, Z, is
expressed as

Z =
1
σ2

0

lT (r)R−1l(r)
[lT (r)R−2l(r)]

. (4.8)

The adaptive spatial filter in Eq. (4.5) is derived with the unit-gain constraint.
In this book, this type of spatial filter is referred to as the unit-gain (con-
straint) minimum-variance spatial filter. This spatial filter is sometimes called
the minimum-variance distortionless spatial filter in the signal-processing commu-
nity.
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4.1.2 Minimum-variance spatial filter with the array-gain
constraint

The constraint wT (r)l(r) = 1 is somewhat ad-hoc, and there may be other pos-
sibilities, depending on the characteristics of the problem to be solved. For bio-
electromagnetic imaging, the norm of the lead-field vector ‖l(r)‖ has a spatial
dependence. When the spherical homogeneous conductor model1 is used for de-
riving the lead field, ‖l(r)‖ is zero at the center of the sphere. This causes a false
intensity increase around the center of the sphere in the source reconstruction re-
sults obtained using the unit-gain constraint minimum-variance filter, because the
weight becomes infinity at the center of the sphere. We refer to such false intensity
increases caused by the non-uniformity of ‖l(r)‖ as lead-field-norm artifacts. We
will show an example of these artifacts in Fig. 4.4 of our numerical experiments.

When ‖l(r)‖ has a spatial dependence, it is more reasonable to use the
constraint wT (r)l(r) = ‖l(r)‖, instead of using wT (r)l(r) = 1. Because ‖l(r)‖
represents the gain of the sensor array, we derive, by using wT (r)l(r) = ‖l(r)‖,
a spatial filter whose gain exactly matches the gain of the sensor array. Using
exactly the same derivation for Eq. (4.5), the weight vector in this case is obtained
as

w(r) =
R−1l̃(r)

[̃l
T
(r)R−1l̃(r)]

, (4.9)

where l̃(r) is the normalized lead-field vector defined as l̃(r) = l(r)/‖l(r)‖. In
Eq. (4.9), the weight is independent of the norm of the lead field, and we can avoid
the lead-field-norm artifacts. In this book, this type of spatial filter is referred to
as the array-gain (constraint) minimum-variance spatial filter . The output power
of this spatial filter is given by2:

〈ŝ(r, t)2〉 =
1

[̃l
T
(r)R−1l̃(r)]

=
lT (r)l(r)

[lT (r)R−1l(r)]
. (4.10)

The Z value is expressed in exactly the same way as in Eq. (4.8) because Z is
independent of the norm of the lead field.

4.1.3 Minimum-variance spatial filter with the unit-noise-
gain constraint

Another possible constraint is the unit-noise-gain constraint expressed as
wT (r)w(r) = 1. That is, the filter weight is obtained using

w(r) = arg min
w(r)

wT (r)Rw(r), subject to wT (r)l(r) = τ,

and wT (r)w(r) = 1,
(4.11)

1The spherical homogeneous conductor model is described in Section 13.7 in the Appendix.
2The output power obtained in Eq. (4.10) is sometimes called the neural activity index[9].
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where the minimization problem is solved with the first constraint, wT (r)l(r) = τ ,
and the scalar constant τ is determined by the second constraint, wT (r)w(r) = 1.
To obtain the weight vector derived from the above minimization, we first calculate
the weight using

w(r) = arg min
w(r)

wT (r)Rw(r) subject to wT (r)l(r) = τ. (4.12)

Following the same exact steps from Eq. (4.2) to (4.5), the weight satisfying
Eq. (4.12) is obtained as

w(r) = τ
R−1l(r)

[lT (r)R−1l(r)]
. (4.13)

Substituting this expression to wT (r)w(r) = 1, then, leads to

τ =
lT (r)R−1l(r)√
lT (r)R−2l(r)

, (4.14)

with the weight satisfying Eq. (4.11) given by:

w(r) =
R−1l(r)√

lT (r)R−2l(r)
. (4.15)

This weight vector again does not depend on the norm of the lead field ‖l(r)‖.
The output power of this spatial filter is given by

〈ŝ(r, t)2〉 =
lT (r)R−1l(r)
[lT (r)R−2l(r)]

. (4.16)

Comparing the above equation with Eq. (4.8), one can see that this spatial filter
gives σ2

0Z in Eq. (4.8) as its output power. This spatial filter was first proposed by
Borgiotti and Kaplan[32] and, in this book, it is referred to as the unit-noise-gain
(constraint) minimum-variance spatial filter .

4.2 Prerequisites for the adaptive spatial-filter
formulation

4.2.1 Uncorrelated source time courses

As described in the preceding section, the weight vectors of the minimum-variance
spatial filters are obtained by minimizing the output power wT (r)Rw(r) with a
constraint. Let us look at this minimization process in detail. We assume that
a total of Q sources are located at r1, r2, . . . , rQ, and that their time courses are
denoted s(r1, t), s(r2, t), . . . , s(rQ, t). Ignoring the noise term in Eq. (2.27) and
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assuming that the spatial filter is pointing at rp, the location of the pth source,
the output power of the spatial filter is given by:

wT (rp)Rw(rp) = 〈[wT (rp)
Q∑

q=1

s(rq, t)l(rq)][wT (rp)
Q∑

q=1

s(rq, t)l(rq)]T 〉. (4.17)

Considering the unit-gain constraint wT (rp)l(rp) = 1, we have

wT (rp)Rw(rp) = 〈s(rp, t)2〉 +
∑
q �=p

〈s(rq, t)2〉‖wT (rp)l(rq)‖2

+
∑

q1 �=q2

〈s(rq1 , t)s(rq2 , t)〉wT (rp)l(rq1)l
T (rq2)w(rp), (4.18)

where the notation
∑

i�=j indicates the summation over all combinations of the
indices i and j except for the case of i = j. We assume that source activities are
uncorrelated with each other, i.e.,

〈s(rp1 , t)s(rp2 , t)〉 = 0 for p1 �= p2.

Then, the third term on the right-hand side of Eq. (4.18) becomes zero, and we
have

wT (rp)Rw(rp) = 〈s(rp, t)2〉 +
∑
q �=p

〈s(rq, t)2〉‖wT (rp)l(rq)‖2. (4.19)

Therefore, the weight vector that minimizes the output power wT (rp)Rw(rp)
satisfies the relationship wT (rp)l(rq) = 0 where q �= p. Using such weight vectors,
we have

wT (rp)Rw(rp) = 〈s(rp, t)2〉. (4.20)

In summary, the weight vector obtained by minimizing the output power with the
unit-gain constraint has the property

wT (rp)l(rq) = δp,q, (4.21)

where δp,q is Kronecker’s delta, i.e., δp,q = 1 when p = q and δp,q = 0 when
p �= q. Equation (4.21) indicates that the weight vector does not pass signals from
sources at a location other than the filter pointing location, although it passes a
signal from the pointing location with a gain equal to 1. The weight vectors of
the adaptive spatial filter attain such performance without explicit information
regarding the locations of other sources. This is because the covariance matrix R
contains this information, and the adaptive spatial filters automatically utilize it.

We next consider the case where the spatial filter’s pointing location r does
not equal any of the source locations. Using the same derivation, the output power
is expressed as

wT (r)Rw(r) = 〈s(r, t)2〉 +
Q∑

q=1

〈s(rq, t)2〉‖wT (r)l(rq)‖2, (4.22)
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and therefore the weight vector obtained by minimizing wT (r)Rw(r) satisfies the
condition

wT (r)l(rq) = 0 (q = 1, . . . , Q). (4.23)

The output power obtained from this minimization is given by:

wT (r)Rw(r) = 〈s(r, t)2〉 = 0, (4.24)

because there is no source at r. In summary, the weight vector of the unit-gain-
constraint minimum-variance filter has the following property:

wT (r)l(rq)= 1 when r = rq,

and wT (r)l(rq)= 0 when r �= rq, (4.25)

where q = 1, . . . , Q, and rq represents one of the source locations. Including the
cases of other constraints, Eq. (4.21) changes to

wT (rp)l(rq) = τδp,q, (4.26)

and the weight property is summarized as follows:

wT (r)l(rq)= τ when r = rq,

and wT (r)l(rq)= 0 when r �= rq, (4.27)

where τ = 1 for the unit-gain constraint, τ = ‖l(rq)‖ for the array-gain constraint,
and τ has a value expressed in Eq. (4.14) for the unit-noise-gain constraint.

All these minimum-variance-based filters have null sensitivity on the source
locations other than the filter pointing location. The only difference in these
adaptive filters is the gain at the pointing location; the gain is determined by the
constraint. In other words, in formulating the minimum-variance spatial filters,
the value of the inner product wT (r)l(r′) is determined only when r′ is equal to
one of source locations, but no constraints are imposed on the value of wT (r)l(r′)
when r′ is equal to none of source locations, and wT (r)l(r′) can have a large
non-zero value in such cases. This is the reason why adaptive spatial filters have
a strange-looking beam response, which is discussed in Section 5.4.

Also, we should emphasize that the prerequisite for the weight vector to have
the property in Eqs. (4.27) is that the source time courses be uncorrelated, i.e.,

〈s(rq1 , t)s(rq2 , t)〉 = 0 (q1 �= q2). (4.28)

This is an essential condition for the formulation of adaptive spatial filters. If
this condition is not met, the output of the adaptive spatial filters is affected
by the source correlation. The influence of the source correlation is discussed in
Chapter 9.
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4.2.2 Low-rank signals

We have shown that when source time courses are uncorrelated, the weight vector
of the adaptive spatial filter satisfies the condition expressed in Eq. (4.27). Then,
the question arises as to whether this condition is always satisfied, regardless of the
number of sources. To answer this question, we return to the discussion regarding
the signal and the noise subspaces in Section 2.4.1. When the pointing location
is not the same as any of the source locations, the weight vector satisfies the
condition in Eq. (4.23). Taking a look at this equation in the light of the discussion
in Section 2.4.1, it is apparent that the weight vector lies in the noise subspace
when the pointing location is equal to none of the source locations, i.e.,

w(r) ∈ EN , when r �= r1, . . . , rQ. (4.29)

Therefore, in order for such a weight vector to exist, the dimension of the noise
subspace should be greater than one, and this in turn indicates that the relation-
ship M > Q should hold. In other words, the assumption of the low-rank signal
is essential for the adaptive spatial filter formulation.

The necessity of the condition that M > Q can also be discussed in a dif-
ferent manner. We present an alternative way of deriving the weight property in
Eq. (4.21), and show that this property cannot be derived unless the condition
M > Q is satisfied. Starting from Eq. (2.41), we rewrite this equation as

R = Rs + σ2
0I,

where the signal covariance matrix Rs is expressed as

Rs = LDRνLT
D,

and LD = [l(r1), . . . , l(rQ)] (defined in Eq. (2.32)). Let us consider the noiseless
limit where the relationship R = Rs holds. In this case, the rank of R is equal
to Q, which is less than M , and thus R does not have an inverse. The inverse
of Rs can be approximated with the pseudo-inverse of Rs. Denoting the non-
zero eigenvalues of Rs as λ′

j and the corresponding eigenvectors as ej , where
j = 1, . . . , Q, the pseudo-inverse of Rs, R+

s , is expressed as

R+
s =

Q∑
j=1

1
λ′

j

eje
T
j . (4.30)

Then, we can derive

R−1 ≈ R+
s = (LDRνLT

D)+ = (LT
D)+R+

ν L+
D = (L+

D)T R−1
ν L+

D. (4.31)

Here, L+
D indicates the pseudo-inverse of LD. In deriving Eq. (4.31), we assume

that Rν is nonsingular, and use the fact that the transpose and the pseudo-inverse
operations are interchangeable.
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When the condition M > Q holds, L+
D can be expressed as L+

D =
(LT

DLD)−1LT
D. Therefore, we have the relationship L+

DLD = I and we get the
formula

L+
Dl(rq) = 1q, (4.32)

where rq is one of the source locations and 1q is the Q × 1 vector that has all
elements equal to zero except for the qth element, which is equal to 1. Using this
formula and Eq. (4.31), we can obtain

wT (rp)l(rq) ≈
lT (rp)[L+

D]T R−1
ν L+

Dl(rq)
lT (rp)[L+

D]T R−1
ν L+

Dl(rp)
=

1T
p R−1

ν 1q

1T
p R−1

ν 1p

=
[R−1

ν ]p,q

[R−1
ν ]p,p

, (4.33)

where [R−1
ν ]p,q indicates the (p, q) element of the matrix R−1

ν . The above equation
was first derived by Zoltowski[33], and will be used for analyzing the influence of
the source correlation in Chapter 9. In this section, we assume that the sources
are uncorrelated. Thus, we have

R−1
ν =

⎡
⎢⎢⎢⎣

1/σ2
1 0 · · · 0

0 1/σ2
2 0 0

0 0
. . . 0

0 0 · · · 1/σ2
Q

⎤
⎥⎥⎥⎦ , (4.34)

where σ2
q is the power of the qth source. Using this matrix, we obtain

[R−1
ν ]p,p=1/σ2

p, (4.35)

[R−1
ν ]p,q=0 for p �= q, (4.36)

and we can derive the relationship

wT (rp)l(rq) = δp,q,

which is exactly the same as the relationship in Eq. (4.21). Note that the condition
needed to derive this relationship is that the signal be low-rank, i.e., that M >
Q. If this is not the case, the pseudo-inverse of LD, L+

D, has the form, L+
D =

LT
D(LDLT

D)−1, and we cannot derive the weight property expressed in Eq. (4.21)
because L+

Dl(rq) is not equal to 1q.

4.3 Scalar adaptive spatial filter: deriving the
optimum source orientation

Up to this point, we have presented adaptive spatial filters with the assumption
that the source orientation is known or predetermined at each location. However,
it is generally difficult to predetermine the source orientation and it must be es-
timated from the measured data. The source orientation can be estimated in the
following manner for the scalar-type adaptive spatial filter.
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The weight vector of the minimum-variance spatial filter that depends
both on the location and the source orientation is obtained using the following
optimization[34]:

w(r,η) = arg min
w(r,η)

wT (r,η)Rw(r,η) subject to wT (r,η)L(r)η = 1. (4.37)

The above optimization is the same as Eq. (4.1), except that the source orientation
η is now explicitly included. The resulting weight vector is given by:

w(r,η) =
R−1L(r)η

[ηT LT (r)R−1L(r)η]
, (4.38)

and the output power is given by:

〈ŝ(r,η, t)2〉 =
1

ηT [LT (r)R−1L(r)]η
. (4.39)

Therefore, according to the Rayleigh-Ritz formula in Section 13.3, the ori-
entation ηopt(r) that gives the maximum spatial-filter output power is obtained
as[35][36]

ηopt(r) = arg max
η(r)

[
1

ηT (r)LT (r)R−1L(r)η(r)

]

= arg min
η(r)

[
ηT (r)[LT (r)R−1L(r)]η(r)

]

= ϑmin{LT (r)R−1L(r)}, (4.40)

where ϑmin{ · } indicates the eigenvector corresponding to the minimum eigen-
value of the matrix in the curly braces. That is, the optimum orientation
ηopt(r) is given by the eigenvector corresponding to the minimum eigenvalue of
LT (r)R−1L(r)[13][37]. The explicit form of the weight vector for the scalar ver-
sion of the unit-gain minimum-variance spatial filter is expressed as

w(r) =
R−1L(r)ηopt(r)

[ηT
opt(r)LT (r)R−1L(r)ηopt(r)]

. (4.41)

The output power of this scalar spatial filter is given by

P̂s(r) = 〈ŝ(r, t)2〉 =
1

[ηT
opt(r)LT (r)R−1L(r)ηopt(r)]

=
1

λmin{LT (r)R−1L(r)}
(4.42)

where λmin{ · } is the minimum eigenvalue of the matrix in the curly braces.
For the array-gain constraint minimum-variance spatial filter in Eq. (4.9),

the optimum orientation is obtained from

ηopt(r) = arg max
η(r)

[
ηT (r)[LT (r)L(r)]η(r)

ηT (r)[LT (r)R−1L(r)]η(r)

]
. (4.43)

45



According to the Rayleigh-Ritz formula in Section 13.3, the optimum orientation
ηopt(r) is given by[36]:

ηopt(r) = ϑmin{LT (r)R−1L(r),LT (r)L(r)}, (4.44)

where ϑmin{·, ·} indicates the eigenvector corresponding to the minimum general-
ized eigenvalue of the matrices in the curly braces3. That is, ηopt(r) is equal to
the eigenvector corresponding to the minimum generalized eigenvalue of the ma-
trix [LT (r)R−1L(r)] with the metric [LT (r)L(r)]. Once ηopt(r) is obtained, the
weight vector is calculated using Eq. (4.9) with l(r) = L(r)ηopt(r). The output
power of this scalar spatial filter is given by:

P̂s(r) =
1

λmin{LT (r)R−1L(r),LT (r)L(r)}
, (4.45)

where λmin{·, ·} is the minimum generalized eigenvalue of the matrices in the curly
braces.

For the unit-noise-gain minimum variance spatial filter, the optimum orien-
tation is given by:

ηopt = arg max
η

[
ηT [LT (r)R−1L(r)]η
ηT [LT (r)R−2L(r)]η

]
. (4.46)

The orientation ηopt is obtained from[36]:

ηopt(r) = ϑmin{LT (r)R−2L(r),LT (r)R−1L(r)}, (4.47)

i.e., ηopt(r) is equal to the eigenvector corresponding to the minimum generalized
eigenvalue of the matrix [LT (r)R−2L(r)] with the metric [LT (r)R−1L(r)]. Once
ηopt(r) is obtained, the weight vector is calculated using Eq. (4.15) with l(r) =
L(r)ηopt(r). The output power of this scalar spatial filter is given by:

P̂s(r) =
1

λmin{LT (r)R−2L(r),LT (r)R−1L(r)}
. (4.48)

4.4 LCMV spatial filter

Although the adaptive spatial filters described so far are formulated with a sin-
gle constraint, an adaptive spatial filter can be formulated with multiple linear
constraints. An adaptive spatial filter obtained with such multiple constraints is
called a linearly-constrained minimum-variance (LCMV) spatial filter[38][7]. The
weight vector for an LCMV filter can be derived using

w(r) = arg min
w(r)

wT (r)Rw(r), subject to wT (r)l(r) = 1,

wT (r)l(r1) = 0,
...

and wT (r)l(rd) = 0.

(4.49)

3Additional arguments concerning the definition are found in Section 13.3 in the Appendix.
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The weight vector obtained above passes a signal from r with a unit gain but
imposes the null gain at the locations r1, . . . , rd. That is, the weight does not
pass any signal from these locations. The LCMV spatial filter derived above was
originally developed to suppress the influence of highly correlated interferences
with known locations. In the formulation above, r1, . . . , rd are the spatial locations
of the correlated interferences.

The explicit form of the weight vector for the LCMV spatial filter can be
obtained using a derivation similar to that of Eqs. (4.2)–(4.5). That is, to derive
the weight to satisfy Eq. (4.49), we define a (d + 1) × 1 column vector κ whose
elements are the Lagrange multipliers, and define the Lagrangian L(w,κ) such
that

L(w,κ) = wT Rw + κT (CT w − c), (4.50)

where we again omit the explicit notation of (r) from the weight vector. In this
equation, (the upper-case) C indicates the matrix

C = [l(r), l(r1), . . . , l(rd)],

and (the lower case) c indicates a vector expressing a response to the constraints,
such that

c =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ .

Calculating the derivative of the Lagrangian in Eq. (4.50) with respect to w and
setting the derivative to zero, we obtain

w = −1
2
R−1Cκ. (4.51)

Substituting this into the constraint equation CT w = c gives

κ = −2[CT R−1C]−1c, (4.52)

and substituting the above equation into Eq. (4.51), we finally obtain the weight
vector,

w(r) = R−1C[CT R−1C]−1

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ . (4.53)

The LCMV spatial filter is used to develop the vector-type adaptive spatial filters
in the next section.
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4.5 Vector adaptive spatial filter formulation

We next describe the extension of the minimum-variance filters to the vector for-
mulation. As described in Section 2.5.2, the vector spatial filter uses a set of three
weight vectors, wx(r), wy(r), wz(r), which detect the x, y, z components of the
source vector, respectively. How can we derive such adaptive weights? Let us
consider a simple case where a single source exists at r and its magnitude and
orientation are denoted s(r, t) and η = [ηx, ηy, ηz]T , respectively. Ignoring the
noise term, the array measurement b(t) is then expressed as

b(t) = s(r, t)ηxlx(r) + s(r, t)ηyly(r) + s(r, t)ηzlz(r). (4.54)

One important point here is that the array measurement is equal to that obtained
from three perfectly correlated sources whose time courses are equal to s(r, t)ηx,
s(r, t)ηy, and s(r, t)ηz. Therefore, to derive the weight for the adaptive vector
spatial filter, this virtual source correlation should be taken into consideration,
and this can be done by using the LCMV spatial filter described in the preceding
section.

4.5.1 Unit-gain constraint spatial filter

The weight vector to detect the x component of the source vector, wx, can be
derived using

wx = arg min
wx

wT
x Rwx, subject to wT

x lx(r) = 1,

wT
x ly(r) = 0,

and wT
x lz(r) = 0.

(4.55)

That is, the weight wx passes a signal from a source at r directed in the x direction
with a gain of unity, but does not pass a signal from a source directed in the y or
z direction. In exactly the same manner, we can derive wy, such that

wy = arg min
wy

wT
y Rwy, subject to wT

y lx(r) = 0,

wT
y ly(r) = 1,

and wT
y lz(r) = 0.

(4.56)

We can derive wz, such that

wz = arg min
wz

wT
z Rwz, subject to wT

z lx(r) = 0,

wT
z ly(r) = 0,

and wT
z lz(r) = 1.

(4.57)

In the equations above, we omit the explicit notation of (r) from the weight vector
expressions for simplicity.

48



Defining the weight matrix W (r) such that W (r) = [wx(r),wy(r),wz(r)],
Equations (4.55)–(4.57) can be rewritten in a compact form as[9][39]

W (r) = arg min
W (r)

tr{W T (r)RW (r)}, subject to W T (r)L(r) = I. (4.58)

It is easy to show that the solution for the weight matrix W (r) can be obtained
by substituting C in Eq. (4.53) with L(r), resulting in[9][10]

W (r) = R−1L(r)[LT (r)R−1L(r)]−1. (4.59)

Thus, the output of this vector-type minimum-variance spatial filter is given by:

ŝ(r, t) = [ŝx(r, t), ŝy(r, t), ŝz(r, t)]T = [LT (r)R−1L(r)]−1LT (r)R−1b(t). (4.60)

Using the above equation, the estimated source power matrix defined in Eq. (2.75)
is expressed as

Σ̂s(r) = 〈ŝ(r, t)ŝT (r, t)〉 =

[LT (r)R−1L(r)]−1LT (r)R−1〈b(t)bT (t)〉R−1L(r)[LT (r)R−1L(r)]−1

= [LT (r)R−1L(r)]−1. (4.61)

The source power estimate of the first kind is obtained by computing the trace of
the source power matrix

P̂
(I)
V (r) = 〈ŝ(r, t)2〉 = tr{[LT (r)R−1L(r)]−1}. (4.62)

4.5.2 Array-gain constraint spatial filter

When using the array-gain constraint, we use a formulation for the weight deriva-
tion in which

wx = arg min
wx

wT
x Rwx, subject to wT

x lx(r) = ‖lx(r)‖,

wT
x ly(r) = 0,

and wT
x lz(r) = 0,

(4.63)

wy = arg min
wy

wT
y Rwy, subject to wT

y lx(r) = 0,

wT
y ly(r) = ‖ly(r)‖,

and wT
y lz(r) = 0,

(4.64)

and

wz = arg min
wz

wT
z Rwz, subject to wT

z lx(r) = 0,

wT
z ly(r) = 0,

and wT
z lz(r) = ‖lz(r)‖.

(4.65)
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In the equations above, we again omit the explicit notation of (r) from the weight
vector expressions. Using the weight matrix W (r), Equations (4.63)–(4.65) can
be rewritten as

W (r) = arg min
W (r)

tr{W T (r)RW (r)},

subject to W T (r)L(r) =

⎡
⎣

‖lx(r)‖ 0 0
0 ‖ly(r)‖ 0
0 ‖lz(r)‖

⎤
⎦ . (4.66)

Using exactly the same derivation as used to derive Eq. (4.59), the vector-version
of the array-gain minimum-variance spatial filter is expressed as

W (r) = R−1L(r)[LT (r)R−1L(r)]−1

⎡
⎣

‖lx(r)‖ 0 0
0 ‖ly(r)‖ 0
0 ‖lz(r)‖

⎤
⎦ . (4.67)

The source-power matrix is given by:

Σ̂s(r) = 〈ŝ(r, t)ŝT (r, t)〉 =⎡
⎣

‖lx(r)‖ 0 0
0 ‖ly(r)‖ 0
0 0 ‖lz(r)‖

⎤
⎦ [LT (r)R−1L(r)]−1

⎡
⎣

‖lx(r)‖ 0 0
0 ‖ly(r)‖ 0
0 0 ‖lz(r)‖

⎤
⎦ .

(4.68)

This source-power matrix is expressed in a compact form as

Σ̂s(r) = [L̃
T
(r)R−1L̃(r)]−1, (4.69)

where L̃(r) is a matrix consisting of the normalized lead-field columns, i.e.,

L̃(r) =
[

lx(r)
‖lx(r)‖ ,

ly(r)
‖ly(r)‖ ,

lz(r)
‖lz(r)‖

]
. (4.70)

There is another possibility for formulating the vector-version of the array-
gain minimum-variance spatial filter, as shown below.

wx = arg min
wx

wT
x Rwx, subject to wT

x lx(r) = ‖L(r)‖,

wT
x ly(r) = 0,

and wT
x lz(r) = 0,

(4.71)

wy = arg min
wy

wT
y Rwy, subject to wT

y lx(r) = 0,

wT
y ly(r) = ‖L(r)‖,

and wT
y lz(r) = 0,

(4.72)
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and

wz = arg min
wz

wT
z Rwz, subject to wT

z lx(r) = 0,

wT
z ly(r) = 0,

and wT
z lz(r) = ‖L(r)‖.

(4.73)

The compact form of the formulation is

W (r) = arg min
W (r)

tr[W T (r)RW (r)],

subject to W T (r)L(r) = ‖L(r)‖I. (4.74)

The weight matrix, in this case, is expressed as

W (r) = ‖L(r)‖R−1L(r)[LT (r)R−1L(r)]−1 (4.75)

The source-power matrix is given by:

Σ̂s(r) = 〈ŝ(r, t)ŝT (r, t)〉 = ‖L(r)‖2[LT (r)R−1L(r)]−1 (4.76)

4.5.3 Unit-noise-gain constraint spatial filter

The vector-version of the unit-noise-gain constraint spatial filter is obtained using

wx = arg min
wx

wT
x Rwx, subject to wT

x wx = 1,

wT
x ly(r) = 0,

and wT
x lz(r) = 0,

(4.77)

wy = arg min
wy

wT
y Rwy, subject to wT

y lx(r) = 0,

wT
y wy = 1,

and wT
y lz(r) = 0,

(4.78)

and
wz = arg min

wz

wT
z Rwz, subject to wT

z lx(r) = 0,

wT
z ly(r) = 0,

and wT
z wz = 1.

(4.79)

We can derive the explicit forms of these weight vectors using a derivation similar
to that in Section 4.1.3. That is, to derive the weight vector wx, let us first define
the scalar constant θ such that wT

x lx(r) = θ, and rewrite Eq. (4.77) as

wx = arg min
wx

wT
x Rwx, subject to LT (r)wx = θ

⎡
⎣

1
0
0

⎤
⎦ . (4.80)
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The solution for the above optimization problem is expressed as

wx = θR−1L(r)[LT (r)R−1L(r)]−1

⎡
⎣

1
0
0

⎤
⎦ , (4.81)

where

wT
x wx = θ2Υ1,1 (4.82)

and Υ1,1 is the (1, 1) component of a matrix defined as

Υ = [LT (r)R−1L(r)]−1LT (r)R−2L(r)[LT (r)R−1L(r)]−1. (4.83)

Therefore, to impose the constraint wT
x wx = 1, the scalar constant θ should be

θ = 1/
√

Υ1,1.

We can derive wy and wz in a similar fashion, so that the solution for the weight
vectors is given by[40]:

wx(r) =
R−1L(r)[LT (r)R−1L(r)]−1

√
Υ1,1

⎡
⎣

1
0
0

⎤
⎦ ,

wy(r) =
R−1L(r)[LT (r)R−1L(r)]−1

√
Υ2,2

⎡
⎣

0
1
0

⎤
⎦ , (4.84)

wz(r) =
R−1L(r)[LT (r)R−1L(r)]−1

√
Υ3,3

⎡
⎣

0
0
1

⎤
⎦ ,

and the weight matrix is expressed in a compact form

W (r) = R−1L(r)[LT (r)R−1L(r)]−1

⎡
⎣

1/
√

Υ1,1 0 0
0 1/

√
Υ2,2 0

0 0 1/
√

Υ3,3

⎤
⎦ .

(4.85)
Then, we can derive the expression for the estimated source power matrix such
that

Σ̂s(r) = 〈ŝ(r, t)ŝT (r, t)〉 = [L̆
T
(r)R−1L̆(r)]−1, (4.86)

where L̆(r) is the modified lead-field matrix, which is expressed as

L̆(r) = [
√

Υ1,1lx(r),
√

Υ2,2ly(r),
√

Υ3,3lz(r)]. (4.87)
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4.5.4 Equivalence between the adaptive scalar and vector
formulations

We have presented general discussion regarding the equivalence between the scalar
and vector formulations in Section 2.5.2. These two formulations are generally
not equivalent for adaptive spatial filters. However, for the unit-gain minimum-
variance filter, we can show that the two formulations are equivalent, i.e., that the
following two conditions are met:

η̄opt = ηopt, (4.88)

and
P̂

(II)
V (r) = P̂s(r). (4.89)

For the following discussion, we define the eigendecomposition of LT (r)R−1L(r),
such that

LT (r)R−1L(r) =
3∑

j=1

φjzjz
T
j , (4.90)

where φj and zj are the jth eigenvalue and its corresponding eigenvector of the
matrix LT (r)R−1L(r). Here, the eigenvalues are numbered in decreasing order.
Then, using Eq. (4.61), we have

Σ̂s(r) = [LT (r)R−1L(r)]−1 =
3∑

j=1

1
φj

zjz
T
j . (4.91)

We first show that Eq. (4.88) holds for the unit-gain minimum-variance filter.
The optimum orientation defined in Eq. (2.78), η̄opt, is obtained as

η̄opt = arg max
η

ηT Σ̂s(r)η. (4.92)

According to the Rayleigh-Ritz formula, the right-hand side of this equation is
equal to the eigenvector corresponding to the maximum eigenvalue of the ma-
trix Σ̂s(r). Using Eq. (4.91) and recalling the relationship, φ1 ≥ φ2 ≥ φ3, the
maximum eigenvalue of Σ̂s(r) is 1/φ3 and we have

η̄opt = z3 = ϑmin{LT (r)R−1L(r)}. (4.93)

Comparing the above equation with Eq. (4.40), we can thus derive

η̄opt = ηopt.

To show that Eq. (4.89) holds, we calculate P̂
(II)
V (r) such that

P̂
(II)
V (r) = max

η

[
ηT Σ̂s(r)η

]
= λmax{Σ̂s(r)} =

1
φ3

. (4.94)

53



On the other hand, φ3 is equal to λmin{[LT (r)R−1L(r)]}, and thus we have

P̂
(II)
V (r) =

1
λmin{[LT (r)R−1L(r)]}

. (4.95)

Comparing the above equation with Eq. (4.42), we can derive

P̂
(II)
V (r) = P̂s(r).

Thus, we can see that the scalar and vector formulations are equivalent for the
unit-gain minimum-variance spatial filter.

For the minimum-variance filters with the other constraints, Eq. (4.88) does
not hold. This fact can easily be shown, for example, for the array-gain minimum-
variance spatial filter. For this filter, the source-power matrix Σ̂s is given in
Eq. (4.69), and thus the optimum orientation for the vector formulation, η̄opt, is
obtained as

η̄opt = ϑmin{L̃
T
(r)R−1L̃(r)}. (4.96)

Apparently, this η̄opt is different from the ηopt obtained in Eq. (4.44). For the
unit-noise-gain spatial filter, in the same manner, we can show that Eq. (4.88)
does not hold. Additionally, using the arguments in this section, for the two kinds
of the power estimates P̂

(I)
V and P̂

(II)
V , we can show the relationship

P̂
(II)
V =

1
φ3

<
3∑

j=1

1
φj

= P̂
(I)
V . (4.97)

It is clear that this relationship holds for the array-gain and the unit-noise-gain
minimum-variance filters.

4.6 Frequency-domain implementation

In this section, we describe an implementation of the adaptive spatial filter in the
frequency domain, and derive the frequency-specific weight. We first define the
Fourier transform of the measurement vector b(t) as a vector

g(f) =

⎡
⎢⎢⎢⎣

g1(f)
g2(f)

...
gM (f)

⎤
⎥⎥⎥⎦ , (4.98)

where gm(f) is the Fourier spectrum of the mth-channel recording bm(t), i.e.,

gm(f) =
∫ ∞

−∞
bm(t)e−2πftdt. (4.99)
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Figure 4.1: Three-dimensional view of the locations of the 148 sensors for the
whole-head sensor array used in the numerical experiments in this book. The
hatched plane indicates the plane x = 0 cm where sources are assumed to exist.
The posterior to anterior direction is defined as that from negative to positive x
coordinates, and the direction from the left to right hemispheres is defined as that
from negative to positive y coordinates.

We define the cross-spectrum matrix of the measured data as Γ (f):

Γ (f) = 〈g(f)gH(f)〉, (4.100)

where the superscript H indicates the Hermitian transpose, which is the matrix
transpose with the complex conjugate operation. Then, the frequency-selective
weight w(r, f) is obtained using,

w(r, f) = arg min
w(r,f)

wH(r, f)Γ (f)w(r, f), subject to wH(r, f)l(r) = 1.

(4.101)
The resultant weight is expressed as

w(r, f) =
Γ−1(f)l(r)

lT (r)Γ−1(f)l(r)
. (4.102)

The estimated source activity at r and for the frequency f , ŝ(r, f), is obtained as

ŝ(r, f) = wH(r, f)g(f). (4.103)
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Figure 4.2: The source and sensor configuration used in the numerical experiments.
The plane x = 0 cm is shown. The three filled circles show the locations of the three
sources, and a large circle shows the boundary of the sphere used for the forward
calculation. The square shows the reconstruction region used in the experiments
of Section 4.7.

The cross-spectrum matrix can be calculated for a specific frequency window
Fw, instead of a particular frequency f and in that case, the matrix is given by

Γ (Fw) =
∑

f∈Fw

〈g(f)gH(f)〉, (4.104)

where
∑

f∈Fw
indicates the summation over the frequency window Fw. The cor-

responding weight is expressed as

w(r, Fw) =
Γ−1(Fw)l(r)

lT (r)Γ−1(Fw)l(r)
. (4.105)

The output power at r in this case, 〈ŝ(r, Fw)2〉, is given by

〈ŝ(r, Fw)2〉 = wT (r, Fw)Γ (Fw)w(r, Fw) =
1

lT (r)Γ−1(Fw)l(r)
. (4.106)
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Using the array-gain constraint wH(r, f)l(r) = ‖l(r)‖, we can derive the weight
for the array-gain-constraint frequency-domain minimum-variance filter, such that

w(r, Fw) =
Γ−1(Fw )̃l(r)

l̃
T
(r)Γ−1(Fw )̃l(r)

, (4.107)

where l̃(r) is again the normalized lead-field vector. The output power in this case
is expressed as

〈ŝ(r, Fw)2〉 =
1

l̃
T
(r)Γ−1(Fw )̃l(r)

. (4.108)

Using the unit-noise-gain constraint wT w(r) = 1, we can derive the weight for the
unit-noise-gain constraint frequency-domain minimum-variance filter, such that

w(r, Fw) =
Γ−1(Fw)l(r)√

lT (r)Γ−2(Fw)l(r)
, (4.109)

and the output power in this case is expressed as

〈ŝ(r, Fw)2〉 =
lT (r)Γ−1(Fw)l(r)
lT (r)Γ−2(Fw)l(r)

. (4.110)

4.7 Numerical examples

Numerical experiments were conducted to illustrate some results of our arguments
in this chapter. For the numerical experiments throughout this book, (except the
last experiments in Section 8.5,) we assumed a whole-head sensor array where
148 sensors were arranged on a helmet-shaped surface as shown in Fig. 4.1. This
sensor array is the one used in Magnes 2500TM (4D Neuroimaging Inc., San Diego,
CA). The coordinate origin was chosen as the center of the sensor array, and the
x, y, and z directions are defined as shown in Fig. 4.1. The values of (x, y, z)
are expressed in centimeters. We assumed a single vertical plane (x = 0), which
is shown by a hatched plane in this figure. For the numerical experiments, we
assumed that three point sources existed on this plane of x = 0, as depicted in
Fig. 4.2. The locations and orientations of the three sources are shown in Table I.

Table I. Source parameter values used in the numerical experiments
Source number Location (cm) Orientation

1 (0, −1.0, −6.0) (1.0, 0.0, 0.0)
2 (0, 1.0, −6.0) (0.7, 0.7, 0.0)
3 (0, 1.6, −7.2) (0.0, 0.7, 0.7)

The assumed time courses of the three sources, s1(t), s2(t), s3(t), are shown in
Fig. 4.3(a). The sensor-array output, b(t), was then calculated at 400 time points
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using

b(t) =
3∑

q=1

sq(t)l(rq) + n(t), (4.111)

where l(rq), (q = 1, 2, 3), is the lead-field vector at the qth source location and
orientation. These lead-field vectors were calculated using the formula for the
spherical homogeneous conductor in Eq. (13.137), with the center of the sphere
set at (0, 0,−11). The noise, n(t), was generated using a Gaussian random-number
generator. The noise variance and the powers of the three sources were set so that
the SNR defined in Eq. (2.45) for the three sources was 8. (The corresponding
α values in Eq. (2.46), α1, α2, and α3, were all equal to 8M .) The calculated
sensor-array measurements are shown in Fig. 4.3(b). The theoretical covariance
matrix was obtained using

R =
3∑

q=1

σ2
q l(rq)lT (rq) + σ2

0I ∝
3∑

q=1

αq

‖l(rq)‖2
l(rq)lT (rq) + I, (4.112)

Using this covariance matrix, we first applied two types of scalar minimum-
variance spatial filters: the unit-gain and the array-gain minimum-variance spatial
filters. The results of (the square-root of) the source-power reconstruction are
shown in Fig. 4.4. The results of the unit-gain spatial filter are shown in (a), and
those of the array-gain spatial filter are shown in (b). Here, the three sources are
accurately reconstructed in both sets of results. However, the results in (a) show
that a false intensity increase, called an l-norm artifact, occurs around the center
of the sphere. The l-norm artifact is completely removed in the results of (b).

We next compare the array-gain and the unit-noise gain scalar spatial filters.
The results from the array-gain spatial filter are shown in Fig. 4.5. Here, the three
sources and their time courses are accurately reconstructed. The results from the
unit-noise gain spatial filter are shown in Fig. 4.6. The three sources and their
time courses are also accurately reconstructed. Moreover, compared to the results
in Fig. 4.5, we can see that the spatial resolution is much higher than that of
the results of the array-gain minimum-variance spatial filter. We will discuss the
spatial resolution of the adaptive spatial filters in Chapter 5.

The results of the array-gain constraint vector spatial filter are shown in
Fig. 4.7 and those of the unit-noise-gain vector spatial filter are in Fig. 4.8. In
these reconstruction results, because the spherical homogeneous conductor was
used, the two tangential components of the source vector were obtained. We then
calculated ŝ‖(r, t) and ŝ⊥(r, t), which respectively represent the source component
in the η̄opt direction and in the direction perpendicular to η̄opt. In Figs. 4.7 and 4.8,
we used ŝ‖(r, t) and ŝ⊥(r, t) when displaying the estimated source time courses.
These results show that the scalar and the corresponding vector version of spatial
filters give almost identical results.

58



0

0

0 100 200 300 400

0

time point(a)

0 100 200 300 400
time point

re
la

tiv
e 

va
lu

e

(b)

Figure 4.3: (a) The time courses of the three sources assumed in the numerical
experiments. Time courses from the first to third sources are shown from the
top to bottom row, respectively. Each time course is normalized by its maximum
value. (b) The simulated sensor-array measurements calculated at 400 time points
using the source parameters in Table I.
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(b) Array-gain-constraint spatial filter used.
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Figure 4.5: Results of the scalar array-gain minimum-variance spatial filter source
reconstruction. (a) The time courses of the three sources obtained as the spatial
filter outputs at the first to third source locations. (b) Square root of the source-

power reconstruction,
√

P̂s(r).
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Figure 4.6: Results of the scalar unit-noise-gain minimum-variance spatial filter
source reconstruction. (a) The time courses of the three sources obtained as the
spatial-filter outputs at the first to third source locations. (b) Square root of the

source-power reconstruction
√

P̂s(r).
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Figure 4.7: Results of the vector array-gain minimum-variance spatial filter source
reconstruction. (a) The time courses of the three sources obtained as the spatial-
filter outputs at the first to third source locations. The two time courses corre-
spond to ŝ‖(r, t) and ŝ⊥(r, t). (b) Square root of the source-power reconstruction√

P̂
(I)
V (r).

62



0 100 200 300 400
time point

(a)

−4 −2 0 2 4
−8

−7

−6

−5

−4

−3

−2

y (cm)

z 
(c

m
)

(b)

Figure 4.8: Results of the vector unit-noise-gain minimum-variance spatial filter
source reconstruction. (a) The time courses of the three sources obtained as the
spatial filter outputs at the first to third source locations. The two time courses
correspond to ŝ‖(r, t) and ŝ⊥(r, t). (b) Square root of the source-power recon-
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Chapter 5

Location bias, spatial
resolution, and beam
response

In this chapter, we discuss the location bias and the spatial resolution of adaptive
and non-adaptive spatial filters introduced in the previous chapters. We first ana-
lyze the location bias for several representative adaptive and non-adaptive spatial
filters, and then compare the spatial resolution for several spatial filters having no
location bias. The point-spread function plays a key role in these analyses. We
then discuss the beam response of the spatial filters, which characterizes the gain
on the leakage of sources located elsewhere from the filter pointing location.

5.1 Bias properties of various spatial filters

5.1.1 Definition of source location bias

Here we consider whether the various types of non-adaptive and adaptive spatial
filters introduced in the previous chapters have a bias in their estimated source
locations. As mentioned in Section 2.5.3, assuming that a single point source
exists at r1, the point-spread function is defined in Eq. (2.84), which expresses the
reconstruction of the point source located at r1. The most desirable property of
the point-spread function is that it has a maximum value at the source location r1.
If this condition is not met, the spatial filter will reconstruct a source at a location
different from the true source location. The difference between the true and the
reconstructed source locations is called the location bias. A conceptual view of a
point-spread function is given in Fig. 5.1. A case where the reconstruction suffers
from source location bias is given in Fig. 5.1(a). A case where a point-spread
function has its maximum at the true source location r1 is shown in Fig. 5.1(b).
Naturally, when the bias is large, the reconstruction results become meaningless.
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Figure 5.1: Conceptual view of two point-spread functions. (a) The case where
the point-spread function does not have its maximum at r1, and the spatial filter
output has a location bias. (b) The case where the point-spread function has
its maximum at r1, and the filter output has no location bias. In this case, the
full-width-at-half-maximum is used as a measure of the spatial resolution of the
reconstruction results.

Therefore, in this section, the bias for the estimated source location is evaluated
by checking whether the point-spread function has its maximum at the source
location r1, i.e., whether the condition

�(r1) > �(r) (5.1)

holds for any r (r �= r1) for various spatial filters. Note that this is equivalent to
evaluating the source location bias using a simple scenario where a single source
exists in a noiseless environment.

When a point-spread function has its maximum at the true source location,
the reconstructed results are the smoothed version of the true source distribution.
The width of the point-spread function’s main lobe is a measure of the spatial
resolution. To evaluate the spatial resolution, we introduce the normalized point
spread function �N (r), which is defined as

�N (r) = �(r)/�(r1). (5.2)

5.1.2 Bias for the spatial matched filter

We first check whether the relationship in Eq. (5.1) holds for the spatial matched
filter, which is the most basic non-adaptive spatial filter. We denote the lead-field
vector at the source location and the source orientation as f , i.e., l(r1) = f . The
point-spread function is expressed using the weight in Eq. (3.43) as

�(r) = wT (r)l(r1) =
lT (r)l(r1)
‖l(r)‖ = ‖f‖ cos(l,f), (5.3)
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where the explicit notation of (r) is omitted from l(r). The generalized cosine is
defined in Eq. (13.39) in the Appendix, and we have �(r1) = ‖f‖. Thus, from
Eq. (5.1), the condition for the spatial matched filter to have no bias is given by:

cos(l,f) < 1. (5.4)

According to the arguments in Section 13.4, the relationship in Eq. (5.4) holds for
any pair l and f (where l �= f), and the spatial matched filter is found to have no
location bias in the noiseless case.

5.1.3 Bias for the minimum-norm filter

For the minimum-norm filter, the point-spread function is given by:

�(r) = wT (r)f = lT (r)G−1f , (5.5)

and the condition in Eq. (5.1) is expressed as

fT G−1f > lT G−1f . (5.6)

Since the norm of l may become larger than the norm of f in a region close to the
sensors, the above inequality obviously does not always hold. Actually, it is well
known that the source reconstruction of the minimum-norm filter is severely biased
toward the sensor array[24]. We give an example of such a biased reconstruction
in our numerical experiments.

5.1.4 Bias for the weight-normalized minimum-norm filter

For the weight-normalized minimum-norm filter in Eq. (3.24), the point-spread
function is expressed as

�(r) =
lT G−1f√
lT G−2l

. (5.7)

Thus, the condition in Eq. (5.1) is expressed as

fT G−1f√
fT G−2f

>
lT G−1f√
lT G−2l

. (5.8)

It is not straightforward to see whether this inequality holds for any pair of l and
f . However, we can theoretically and numerically show that it does not generally
hold. The theoretical proof is given in [30], and we give a numerical example of a
biased source-reconstruction obtained from this weight-normalized minimum-norm
filter in Section 5.5 of this chapter.
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5.1.5 Bias for the sLORETA filter

For sLORETA, the point-spread function is given by:

�(r) =
lT G−1f√
lT G−1l

=
√

fT G−1f cos(l,f |G−1), (5.9)

where the generalized cosine with the metric G−1 is defined in Eq. (13.37) in the
Appendix. We have

�(r1) =
fT G−1f√
fT G−1f

=
√

fT G−1f .

Thus, the condition in Eq. (5.1) is expressed as

cos(l,f |G−1) < 1. (5.10)

Since G−1 is a positive definite matrix, this condition holds for any pair f and
l, as mentioned in Section 13.4. It is empirically shown that sLORETA has no
location bias for a single source by Pascual-Marqui[26], and the analysis presented
here validates such empirical findings.

5.1.6 Bias for the unit-gain minimum-variance spatial filter

For the unit-gain minimum-variance spatial filter, the point-spread function is
given by:

�(r) =
lT R−1f

lT R−1l
. (5.11)

We have

�(r1) =
fT R−1f

fT R−1f
= 1.

Thus, the condition for having no location bias is that

lT R−1f

lT R−1l
< 1. (5.12)

Using Eqs. (13.46) and (13.47) in Section 13.4 in the Appendix, the above condition
can be rewritten as

‖f‖
‖l‖

cos(l,f)
1 + α[1 − cos2(l,f)]

< 1. (5.13)

In the above equation, α = (σ2
1/σ2

0)‖f‖2 is the input SNR defined in Eq. (2.46).
It can be seen that the inequality in Eq. (5.13) may not hold when ‖l‖ is small.
This can happen in a region near the center of the sphere when the spherical
homogeneous conductor model is used to compute the lead field. As a result,
severe artifacts appear near the center of the sphere, as shown in Fig. 4.4(a).
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5.1.7 Bias for the array-gain minimum-variance spatial filter

For the array-gain-constraint minimum-variance spatial filter, the point-spread
function is given by:

�(r) =
l̃
T
R−1f

l̃
T
R−1l̃

= ‖f‖ cos(̃l,f)

1 + α[1 − cos2(̃l,f)]
. (5.14)

We have

�(r1) =
f̃

T
R−1f

f̃
T
R−1f̃

= ‖f‖,

where f̃ = f̃/‖f‖. Thus, the condition for no location bias in this case is expressed
as

cos(̃l,f)

1 + α[1 − cos2(̃l,f)]
< 1. (5.15)

Since α is positive, it is clear that this inequality is always fulfilled for any f and l̃
(where f �= l̃). Thus, we can conclude that the array-gain constraint spatial filter
has no location bias.

5.1.8 Bias for the unit-noise-gain minimum-variance spatial
filter

For the unit-noise-gain minimum variance spatial filter, the point-spread function
is expressed as

�(r) =
lT R−1f√
lT R−2l

. (5.16)

Using Eqs. (13.45) and (13.48), we have

�(r1) =
fT R−1f√
fT R−2f

= ‖f‖, (5.17)

and using Eqs. (5.16), (13.47), and (13.49), the condition for the point-spread
function having the maximum at the source location is finally given by:

cos(l,f)√
1 + α(α + 2)(1 − cos2(l,f))

< 1. (5.18)

Because α is positive, the above condition obviously holds for any l and f , and we
can conclude that the unit-noise-gain spatial filter does not have source location
bias.
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5.2 Effects of noise on the location bias

In the preceding section, the source location bias was analyzed using the point-
spread function and such analysis should be valid when the SNR is sufficiently
high. However, when the SNR is low, the noise may cause bias in the estimated
source location even though the point-spread function has its maximum at the true
source location. We here investigate the effects of noise on the source location bias,
assuming that the noise is uncorrelated white Gaussian noise. The output signal
power at a pointing location r is equal to σ2

1R(r, r1)2 where R(r, r1) indicates the
resolution kernel when a source is located at r1. The output noise power is equal
to σ2

0‖w(r)‖2. Therefore, when the noise is taken into account, the condition for
no location bias is:

σ2
1R(r1, r1)2 + σ2

0‖w(r1)‖2 > σ2
1R(r, r1)2 + σ2

0‖w(r)‖2. (5.19)

For the spatial matched filter, since the weight norm is always equal to 1, i.e.,
‖w(r)‖ = ‖w(r1)‖ = 1, by substituting Eq. (5.3) into Eq. (5.19), we derive the
condition for no location bias in this case such that

cos2(l,f) < 1. (5.20)

This condition is equivalent to that for the no-noise case in Eq. (5.4), and the
above relationship always holds, indicating that the spatial matched filter does
not have a source location bias even when the noise cannot be ignored.

For other spatial filters, this condition in Eq. (5.19) can be rewritten as

R(r, r1)2

R(r1, r1)2
[1 + Φ(r)/α]
[1 + Φ(r1)/α]

< 1, (5.21)

where α is again the input SNR and Φ(r) is given by:

Φ(r) =
‖f‖2‖w(r)‖2

R(r, r1)2
. (5.22)

Note that since Φ(r) does not depend on the input noise or signal power, when
α is very large, the condition in Eq. (5.21) becomes identical to the condition for
no-noise cases in Eq. (5.1).

In the case of sLORETA filter, Eq. (5.21) can be rewritten as

1 + Φ(r)/α

1 + Φ(r1)/α
cos2(l,f |G−1) < 1 (5.23)

It can be seen in Eq. (5.23) that when α is very large, this condition becomes iden-
tical to Eq. (5.10), and as a result, this condition holds. However, in general, the
value of α determines whether the condition in Eq. (5.23) is satisfied for any l and
f . In our numerical experiments, we present both examples, in which Eq. (5.23)
is either fulfilled or not.
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For the array-gain minimum-variance spatial filter, noting that l̃ = l/‖l‖,
the condition for no location bias in Eq. (5.21) is rewritten as

[1 + Φ(r)/α]
[1 + Φ(r1)/α]

cos2(̃l,f)

[1 + α(1 − cos2(̃l,f))]2
< 1, (5.24)

where Φ(r), in this case, is given by:

Φ(r) =
‖f‖2 [̃l

T
R−2l̃]

[̃l
T
R−1f ]2

. (5.25)

Substituting Eq. (5.25) into Eq. (5.24), and using Eqs. (13.47) and (13.49), the
condition in Eq. (5.24) can be simplified to

1

1 + α sin2(̃l,f)
< 1. (5.26)

Since α > 0, this relationship holds for any l̃ and f , and this fact indicates
that the array-gain constraint minimum-variance spatial filter has no location bias
even when the SNR is low. For the unit-noise-gain spatial filter, the condition in
Eq. (5.21) is simplified to

1 + α sin2(l,f)
[1 + α sin2(l,f) + α(α + 1) sin2(l,f)]

< 1. (5.27)

It is again clear that this condition holds for any l and f , and the unit-noise-gain
minimum-variance filter does not have a location bias even when the SNR is low.

5.3 Spatial resolution

When the point-spread function has its maximum at the source location, the re-
constructed source distribution can be interpreted as the smoothed version of the
true source distribution, and the main-lobe width of the point-spread function can
be a measure of the spatial resolution. To compare the main-lobe width of the
point-spread function, the normalized point-spread function, �N (r), is derived for
the spatial filters with no location bias. For the spatial matched filter, �N (r) is
expressed as

�N (r) = cos(l,f). (5.28)

For sLORETA, we have
�N (r) = cos(l,f |G−1). (5.29)

For either the array-gain or the unit-gain minimum-variance spatial filter, the
normalized point-spread function is expressed as

�N (r) =
cos(̃l,f)

1 + α[1 − cos2(̃l,f)]
=

cos(l,f)
1 + α[1 − cos2(l,f)]

. (5.30)
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For the unit-noise-gain spatial filter, it is expressed as

�N (r) =
cos(l,f)√

1 + α(α + 2)(1 − cos2(l,f))
≈ cos(l,f)√

1 + α2(1 − cos2(l,f))
, (5.31)

where we use the fact that α � 1.
The major difference between the point-spread functions of the non-adaptive

spatial filters and those of the adaptive spatial filters is that the spread functions of
the adaptive spatial filters strongly depend on the input SNR, α. This dependency
has been reported previously[11]. Because α usually has a value greater than the
number of sensors M , the denominators in Eqs. (5.30) and (5.31) cause a rapid
decay, and consequently, the spatial resolution of the adaptive spatial filters is
usually much higher than that of the non-adaptive spatial filters. In Section 5.5,
numerical examples of the point-spread functions are presented to demonstrate
the high spatial resolution of the adaptive spatial filters. Also, we can see that
the denominator of Eq. (5.31) contains α2, so that the unit-noise-gain spatial filter
can attain a significantly higher spatial resolution than the array-gain spatial filter.
We have already seen this high spatial resolution of the unit-noise-gain filters in
the numerical experiments in Section 4.7.

5.4 Spatial-filter beam response

We next discuss the beam response of spatial filters. The beam response of the
adaptive spatial filters has a very interesting property. The beam response, as
briefly discussed in Section 2.5.3, expresses the sensitivity of a spatial filter to
sources located elsewhere from the filter-pointing location. For an ideal spatial
filter1, the beam response of the filter should have the shape of the delta function.
When the beam response is different from the delta function, as is typical, the
beam response represents the gain for the unwanted leakage signal from sources
located elsewhere from the filter-pointing location.

Assuming that r0 is the spatial-filter pointing location, according to
Eq. (2.85), the beam response H(r) is defined as

H(r) = R(r0, r) = wT (r0)l(r). (5.32)

For the spatial matched filter, substituting the weight vector in Eq. (3.43) into
Eq. (5.32), we derive

H(r) =
lT (r0)l(r)
‖l(r0)‖

= ‖l(r)‖ cos (l(r0), l(r)) . (5.33)

The above equation shows that, in the case of the spatial matched filter, the beam
response and the point-spread function have the same form. Consequently, if we
implement spatial filter scanning using the spatial matched filter, the reconstructed
source distribution has a blur represented by the point-spread function.

1Of course, such an ideal spatial filter never exists.
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In contrast to the case of the spatial matched filter, the point-spread function
and the beam response are generally different for most spatial filters. Let us look
into the beam response of adaptive spatial filters, and calculate the beam response
of the unit-gain minimum-variance spatial filter. Using Eqs. (4.5) and (5.32), the
beam response is obtained as

H(r) =

[
lT (r0)R−1l(r)

[lT (r0)R−1l(r0)]

]
. (5.34)

We assume here the same simple scenario as used in the previous sections in which
only a single source with a power of σ2

1 exists at r1. Substituting Eq. (13.43) into
the above expression and letting l0 = l(r0), we derive

H(r) =
[cos(l0, l) + α(cos(l0, l) − cos(l0,f) cos(l,f))]

[1 + α sin2(l0,f)]
, (5.35)

where l = l(r), which is the lead-field vector for an arbitrary location and orienta-
tion, l0 is the lead-field vector for the filter pointing location and orientation, and
f is the lead-field vector for the source location and orientation, i.e., f = l(r1).

It is not straightforward to interpret the actual shape of H(r) because of
its complex dependency on cos(l0, l), cos(l,f), and cos(l0,f). Let us check the
sensitivity at the source location r1 while the filter is pointing at r0. Substituting
f for l in Eq. (5.35), we have,

H(r1) =
cos(l0,f)

[1 + α sin2(l0,f)]
. (5.36)

When the pointing location is equal to the source location, by setting l0 equal
to f , we obtain H(r1) = 1. This corresponds to the fact that the value of the
beam response at a source location is equal to the filter gain. When l0 �= f , i.e.,
when the pointing location is different from the source location, from Eq. (5.36) we
generally have H(r1) 
 1 because 1 + α sin2(l0,f) � 1. (Note that α is generally
much greater than M , the total number of sensors.) Thus, in summary, we can
see that the weight vector has the property

wT (rp)l(rq) ≈ δp,q.

This weight property is consistent with the discussion in Chapter 4. Equa-
tion (5.35) also reveals the interesting fact that the beam response generally has
a non-zero value when l �= f . That is, the weight vector has non-zero sensitivity
and wT (r0)l(r) �= 0 at arbitrary r not equal to the source location. This property
of the weight vector was already pointed out in Section 4.2.1. Accordingly, H(r)
of the minimum-variance filter does not form a peak at the pointing location, as is
the case for the beam response for the spatial matched filter. In other words, the
minimum-variance filter does not form a virtual sensor with sensitivity localized
around the pointing location; an ideal spatial filter forming such a virtual sensor is
depicted in Fig. 2.2(b). In our numerical experiments we show, in Fig. 5.10, some
numerical examples of the beam response of the minimum-variance spatial filter
for a case where three sources exist.
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5.5 Numerical examples

We give numerical examples of the results of our arguments in this chapter. We
used the same computer simulation scheme in Section 4.7, except that a single
point source existed at r1 = (0,−1.5,−6). The source and the coordinate system
are shown schematically in Fig. 5.2.

-5 0 5
-20

-15

-10

-5

y (cm)

sensor array

z

y

z 
(c
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Figure 5.2: The geometry of the numerical experiments used for plotting point-
spread functions in Section 5.5. A single source located at (0,−1.5,−6) is shown
by a gray circle, and the square shows the region for plotting the point-spread
function in Figs. 5.3–5.6.

We first calculated the square of the point-spread function �(r)2 using the
four types of non-adaptive spatial filters: (1) the spatial matched filter, (2) the
minimum-norm filter, (3) the weight-normalized minimum-norm filter, and (4)
sLORETA. The point-spread functions plotted on the plane x = 0 are shown in
Fig. 5.3. When deriving the weight vectors for these non-adaptive spatial filters,
the gram matrix G was obtained by using Eq. (2.10) by numerically integrating
over the assumed source space, defined as −4 ≤ x ≤ 4, −4 ≤ y ≤ 4, and −12 ≤
z ≤ −3.

These results show that the point-spread functions of the spatial matched
filter and sLORETA have their maximum at the source location. The point-
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Figure 5.3: The plot of the square of the point-spread function on the plane
x = 0 for four types of non-adaptive spatial filters. The single source located at
(0,−1.5,−6); this location is indicated by the cross mark ×. The results of (a)
the spatial matched filter, (b) the minimum-norm filter, (c) the weight-normalized
minimum-norm filter, and (d) the sLORETA filter.

spread function for the minimum-norm filter shows a severe location bias toward
the sensors. The point-spread function for the weight-normalized minimum-norm
spatial filter has its maximum at an incorrect location, although the bias is not
as large as that of the original minimum-norm filter. These results are consistent
with the arguments of Section 5.1.

We next calculated point-spread functions for three types of minimum-
variance spatial filters: the unit-gain-constraint filter, the array-gain-constraint
filter, and the unit-noise-gain filter. The point-spread functions plotted on the
plane x = 0 are shown in Fig. 5.4. In these experiments, the covariance matrix R
is obtained using

R = σ2
0I + σ2

1ffT , (5.37)

and the input SNR (α = (σ2
1/σ2

0)‖f‖2) is set to M . (M is the number of sensors
and M = 148 in these numerical experiments.) The point-spread function for
the unit-gain minimum-variance spatial filter has two peaks: one at the source
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Figure 5.4: The plot of the square of the point-spread function on the plane
x = 0 for three types of adaptive spatial filters. The single source is located
at (0,−1.5,−6). The results of (a) the unit-gain-constraint minimum-variance
spatial filter, (b) the array-gain-constraint minimum-variance spatial filter, and
(c) the unit-noise-gain-constraint minimum-variance spatial filter.

location and the other at the sphere origin, which is located at (0, 0,−12). The
peak intensity at the sphere origin is higher than that at the source location. The
point-spread function of the array-gain minimum-variance spatial filter and the
unit-noise-gain spatial filter have their maximum at the source location. These
results are consistent with the arguments of Section 5.1.

We next show the results of point-source reconstruction when a significant
amount of noise exists. Assuming that a point source exists at (0,−1.5,−6),
the reconstructed source power, 〈ŝ(r)2〉, of the single source is calculated with
the three input SNRs: α = 8M , α = 4M , and α = M The results from the
spatial matched filter and sLORETA are shown in Fig. 5.5. Here, sLORETA
can reconstruct the source at the correct location for the two higher-SNR cases.
However, it cannot reconstruct the source when α = M , i.e., when the input SNR
is the lowest among the three cases. On the contrary, the spatial matched filter
reconstructs the source at the correct location, regardless of the input SNR. We
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conducted the same experiments using the array-gain minimum-variance spatial
filter and unit-noise-gain minimum-variance spatial filter. The results are shown
in Fig. 5.6. The results show that these spatial filters reconstruct the source at
the correct location, regardless of the input SNR. These results are consistent with
the arguments in Section 5.2.
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Figure 5.5: The results of experiments on the effects of noise on location bias.
Results of point-source reconstruction from (a) the sLORETA filter and (b) the
spatial matched filter. The point source is located at (0,−1.5,−6) cm; this location
is indicated by the cross mark ×. The contour plots from top to bottom show,
respectively, the results when the input SNR, α, equals 8M , 4M , and M .

We then compare the spatial resolution by plotting the cross-sectional view
of the normalized point-spread function. The point-spread functions for the spa-
tial matched filter, sLORETA, the array-gain minimum-variance spatial filter, and
the unit-noise-gain spatial filter are plotted in Fig. 5.7. In these plots, the recon-
structed results of the point source at (0,−1.5,−6) are plotted with respect to the
y direction. We used Eqs. (5.28) – (5.31) to calculate the point-spread functions,
and the input SNR, α, was set to M when calculating the adaptive spatial-filter
point-spread functions. The plots here clearly demonstrate that the adaptive spa-
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Figure 5.6: The results of experiments on the effects of noise on location bias. Re-
sults of point-source reconstruction from (a) the array-gain-constraint minimum-
variance spatial filter and (b) the unit-noise-gain minimum-variance spatial filter.
The point source is located at (0,−1.5,−6) cm. The contour plots from top to
bottom show, respectively, the results when the input SNR, α, equals 8M , 4M ,
and M .

tial filters attain much higher spatial resolution than the non-adaptive spatial
filters.

We compare the point-spread functions of the array-gain minimum-variance
spatial filter and the unit-noise-gain minimum-variance spatial filter for three SNR
cases, α = 8M , 4M , and M . The results are shown in Figs. 5.8(a) and (b).
These plots illustrate the fact that the spatial resolution of these minimum-variance
filters depends on the input SNR, and that the unit-noise-gain spatial filter attains
a significantly higher spatial resolution than that of the array-gain minimum-
variance spatial filter.

Numerical examples of the beam response are shown next. We assume three
sources located at (0,−3.5,−4.75), (0, 2.5,−5.5), and (0,−1,−6.5) on the plane
x = 0. We first plot the square of the beam response, H(r)2, of the spatial
matched filter in Fig. 5.9. In these results, the spatial-filter pointing locations
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Figure 5.7: Cross-sectional view of the point spread functions. The point-spread
functions of the spatial matched filter (broken line), sLORETA (dotted line), the
array-gain constraint minimum-variance spatial filter (solid line), and the unit-
noise-gain constraint minimum-variance spatial filter (dash-dot line). The input
SNR, α, is set to M for the adaptive spatial filters. The point source was assumed
to exist at (0,−1.5,−6), and the abscissa indicates the distance from the source
location in the y direction.

r0 are indicated by the cross mark ×, and the source locations are indicated by
the circles. The plotted beam response in (a) shows a case in which the pointing
location r0 is not equal to any of the source locations. The beam responses in
(b), (c), and (d) show the cases in which the pointing location r0 is equal to the
locations of the first, second, and third source, respectively. These plots confirm
our arguments that for the spatial matched filter, the beam response and the point
spread function have the same form.

Next, we plot the square of the beam response of the unit-gain constraint
minimum-variance filter. The square of the beam response, H(r)2, is calculated
using Eq. (5.34), and the results are shown in Fig. 5.10. The plotted beam response
in (a) shows a case in which the pointing location is not equal to any of the source
locations. The beam responses in (b), (c), and (d) show the cases in which the
pointing location r0 is equal to the locations of the first, second, and third source,
respectively. In these results, the gray-colored area indicates the region in which
the beam response is nearly equal to zero and such a region is called the null
sensitivity region. In the plot in (a), the null sensitivity region covers the locations
of all three sources, whereas in the plots in (b)–(d), the null sensitivity region covers
the two sources that are not equal to the filter pointing location. These results
indicate the interesting fact that the minimum-variance spatial filters extract the
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Figure 5.8: Cross-sectional view of the point spread functions. (a) The point-
spread functions of the array-gain constraint minimum-variance spatial filter for
the three values of α. (b) The point-spread functions of the unit-noise-gain con-
straint minimum-variance spatial filter for the same three values of α. The point
source was assumed to exist at (0,−1.5,−6), and the abscissa indicates the dis-
tance from the source location in the y direction.

signal from a source at the filter pointing location by suppressing the signals from
other sources, i.e., by enforcing the null sensitivity on the locations of other sources.
These plotted beam responses show this property of the minimum-variance spatial
filters. The minimum-variance filter can do this without using explicit information
on the locations of these sources, because it automatically uses the information on
the source locations implicitly contained in the data covariance matrix.
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Figure 5.9: The plot of the square of the beam response, H(r)2 of the spa-
tial matched filter. Three sources are assumed to exist at (0,−3.5,−4.75),
(0, 2.5,−5.5), and (0,−1,−6.5) on the plane x = 0. The spatial-filter pointing
locations r0 are indicated by the cross mark ×, and the source locations are indi-
cated by the circles. (a) The case where the pointing location is not equal to any
of the three source locations. (b) The case where the pointing location is equal to
the first source location. (c) The case where the pointing location is equal to the
second source location. (b) The case where the pointing location is equal to the
third source location.
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Figure 5.10: The plot of the square of the beam response, H(r)2 of the
minimum-variance filter. Three sources are assumed to exist at (0,−3.5,−4.75),
(0, 2.5,−5.5), and (0,−1,−6.5) on the plane x = 0. The spatial-filter pointing
locations r0 are indicated by the cross mark ×, and the source locations are indi-
cated by the circles. The gray area indicate the region in which the beam response
is nearly equal to zero (null sensitivity region). (a) The case where the pointing
location is not equal to any of the three source locations. (b) The case where
the pointing location is equal to the first source location. (c) The case where the
pointing location is equal to the second source location. (b) The case where the
pointing location is equal to the third source location.
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Chapter 6

Output SNR and array
mismatch

This chapter discusses the signal-to-noise ratio (SNR) in the outputs of spatial
filters. We first show that the adaptive spatial filters attain the maximum signal-
to-interference-plus-noise ratio among all types of spatial filters. We next derive
the SNR transfer factor, which is the ratio between the input and output SNRs,
for several representative non-adaptive and adaptive spatial filters. We then show
that a significant SNR degradation is caused in adaptive-spatial filter outputs by
the array mismatch, which indicates a situation where the lead-field used for com-
puting the spatial filter weight is different from the true lead field. We describe two
kinds of techniques, diagonal loading and eigenspace-projection, that can reduce
the SNR degradation caused by the array mismatch.

6.1 Output SINR

Let us consider the case where Q uncorrelated sources exist and the measured data
contains external interference in addition to the sensor noise. Assuming that this
interference is uncorrelated with the signal of interest, the measurement covariance
matrix R is given by:

R =
Q∑

q=1

σ2
q l(rq)lT (rq) + Ri+n, (6.1)

where Ri+n indicates the interference-plus-noise covariance matrix, which is the
covariance matrix only for the interference and the sensor noise. Let us next con-
sider the case where, among the Q sources, we are attempting to reconstruct the
first source, which is located at r1. In such a case, the source at r1 is the signal
source or the source of interest and all other sources should be considered inter-
ference sources. Therefore, in such cases, the interference-plus-noise covariance
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matrix should include the contributions from the sources located at r2 to rQ. The
contribution is equal to

∑Q
q=2 σ2

q l(rq)lT (rq), and equation (6.1) is rewritten as

R = σ2
1l(r1)lT (r1) + Rex

i+n(r1), (6.2)

where

Rex
i+n(r1) =

Q∑
q=2

σ2
q l(rq)lT (rq) + Ri+n. (6.3)

Here, Rex
i+n is called the extended interference-plus-noise covariance matrix. Note

that this Rex
i+n depends on the spatial-filter pointing location, which is r1 in

Eqs. (6.2) and (6.3), and we write Rex
i+n as Rex

i+n(r1) to express this spatial-
location dependency explicitly. When the pointing location r is equal to none of
the source locations, Rex

i+n(r) is equal to the covariance matrix R.
When a source is located at r1 and the spatial filter is pointing at this

location, substituting Eq. (6.2) into (2.66) produces the power of the output of
the spatial filter, which is expressed as

〈ŝ(r1, t)2〉 = wT (r1)Rw(r1) = σ2
1‖wT (r1)l(r1)‖2 + wT (r1)Rex

i+n(r1)w(r1).
(6.4)

The first term on the right-hand side represents the power of the signal at r1 and
the second term represents the contribution from noise, interference, and other
sources. The ratio between the first and the second terms on the right-hand side
of Eq. (6.4) is denoted Z0, i.e.,

Z0 =
σ2

1‖wT (r1)l(r1)‖2

wT (r1)Rex
i+n(r1)w(r1)

. (6.5)

This Z0 is called the signal-to-interference-plus-noise ratio (SINR), which plays
an important role in the performance analysis of adaptive spatial filters. In Sec-
tion 6.2, we show that the minimum-variance spatial filters maximize this signal-
to-interference-plus-noise ratio.

This Z0 can be used for theoretical analysis. However, we cannot use Z0

to evaluate the SNR of the spatial filter output in actual measurements, be-
cause σ2

1 and Rex
i+n are unknown. The numerator in Eq. (6.5) can be replaced

with wT (r)Rw(r), assuming that σ2
1‖wT (r1)l(r1)‖2 � wT (r1)Rex

i+nw(r1) in
Eq. (6.4). In the denominator of Eq. (6.5), the noise and interference covariance
matrix, Rex

i+n, is replaced with σ2
0I when no information regarding Rex

i+n is avail-
able. We then derive

Z =
wT (r)Rw(r)
σ2

0‖w(r)‖2
,

which is equal to Eq. (2.68). This Z can be computed from measurements, al-
though we should estimate the variance of the input noise σ2

0 .
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6.2 Adaptive spatial filters that attain
the maximum SINR

The weight vectors in Eqs. (4.5), (4.9), and (4.15) have the form expressed as

w(r) = ξR−1l(r), (6.6)

where ξ is a scalar constant, which is equal to ξ = 1/[lT (r)R−1l(r)], ξ =
‖l(r)‖/[lT (r)R−1l(r)], and ξ = 1/[lT (r)R−2l(r)]−1/2 for the unit-gain, array-
gain, and unit-noise-gain minimum-variance filters, respectively. We show in this
section that this family of weight vectors attains the maximum output signal-to-
interference-plus-noise ratio (SINR) at each source location. We assume that a
source exists at r1, and derive a weight vector w(r1) that detects this source
with the maximum SINR[11]. For this purpose, we define the modified weight
vector w̃(r1) such that w̃(r1) = (Rex

i+n)1/2w(r1). Here, Rex
i+n is the the extended

interference-plus-noise covariance matrix defined in Eq. (6.3), and we omit the
explicit notation of (r1) for simplicity. We decompose it such that

Rex
i+n = (Rex

i+n)1/2(Rex
i+n)1/2. (6.7)

Because Rex
i+n is a positive definite matrix, we can apply this decomposition to

Rex
i+n. The signal-to-interference-plus-noise ratio, Z0, defined in Eq. (6.5) is then

expressed as

Z0 =
σ2

1‖wT (r1)l(r1)‖2

wT (r1)Rex
i+nw(r1)

= σ2
1

‖w̃T (r1)(Rex
i+n)−1/2l(r1)‖2

w̃T (r1)w̃(r1)

≤ σ2
1

‖w̃(r1)‖2‖(Rex
i+n)−1/2l(r1)‖2

‖w̃(r1)‖2
= σ2

1‖(Rex
i+n)−1/2l(r1)‖2, (6.8)

where we use the Schwartz inequality,

‖w̃T (r1)(Rex
i+n)−1/2l(r1)‖2 ≤ ‖w̃(r1)‖2‖(Rex

i+n)−1/2l(r1)‖2.

In Eq. (6.8), the equality holds and Z0 has its maximum value when the following
relationship holds:

w̃(r1) = ξ(Rex
i+n)−1/2l(r1) or w(r1) = ξ(Rex

i+n)−1l(r1), (6.9)

where ξ is an arbitrary constant.
According to Eq. (6.8), the value of Z0 does not depend on the norm of the

weight vector, i.e., Z0 does not depend on the value of ξ. Thus, this constant
should be determined by some criterion other than maximization of Z0. Using the
unit-gain constraint wT (r1)l(r1) = 1, we have

ξ = 1/[lT (r1)(Rex
i+n)−1l(r1)],
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and the weight vector is given by:

wi+n(r1) =
(Rex

i+n)−1l(r1)

[lT (r1)(Rex
i+n)−1l(r1)]

. (6.10)

Using the array-gain constraint wT (r1)l(r1) = ‖l(r1)‖, we get

ξ = 1/[̃l
T
(r1)(Rex

i+n)−1l̃(r1)],

and the weight vector1 is given by:

wi+n(r1) =
(Rex

i+n)−1l̃(r1)

[̃l
T
(r1)(Rex

i+n)−1l̃(r1)]
. (6.11)

Also, using wT w = 1 leads to

ξ = 1/

√
lT (r1)(Rex

i+n)−2l(r1),

and the weight vector is given by:

wi+n(r1) =
(Rex

i+n)−1l(r1)√
lT (r1)(Rex

i+n)−2l(r1)
. (6.12)

The only difference between the weight vectors derived above from those derived
in Section 4.1 is that the interference-plus-noise covariance Rex

i+n is used instead
of the measurement covariance R. To indicate this explicitly, we use the notation
wi+n(r) for the weight vectors in (6.10)–(6.12).

Next, we show that w(r) is equal to wi+n(r) at each source location. That
is, the weight vectors in Eqs. (4.5), (4.9), and (4.15) also maximize the signal to
interference-plus-noise ratio, Z0, at the source locations. This can be shown in
the following manner. First, we show that w(r) in Eq. (4.5) is equal to wi+n(r)
in Eq. (6.10) at the source location, r1. Denoting f = l(r1), Eq. (6.2) can be
rewritten as

R = σ2
1ffT + Rex

i+n. (6.13)

(Here, we assume that the source at r1 is uncorrelated with all the other sources.)
Applying the matrix inversion formula in Eq. (13.51), we get

R−1 = (Rex
i+n)−1 − (Rex

i+n)−1 σ2
1ffT

1 + σ2
1fT (Rex

i+n)−1f
(Rex

i+n)−1. (6.14)

By multiplying f from the both sides of the equation above, we get

fT R−1f =
fT (Rex

i+n)−1f

1 + σ2
1fT (Rex

i+n)−1f
. (6.15)

1 l̃(r1) again indicates the normalized lead-field vector defined as l̃(r1) = l(r1)/‖l(r1)‖.
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By multiplying f from the right-hand side of Eq. (6.14), we get

R−1f =
(Rex

i+n)−1f

1 + σ2
1fT (Rex

i+n)−1f
. (6.16)

Then, using Eqs. (6.15) and (6.16), we have the relationship,

w(r1) =
R−1f

fT R−1f
=

(Rex
i+n)−1f

fT (Rex
i+n)−1f

= wi+n(r1). (6.17)

We can show the equivalence between the weight vectors in Eqs. (4.9) and (6.11)
and the equivalence between those in Eqs. (4.15) and (6.12) in exactly the same
manner. Although the weight vectors w(r) and wi+n(r) are equal at each source
location, these two weight vectors perform very differently at locations where no
sources exist[11]. In the field of electromagnetic brain imaging, the weight vectors
wi+n(r) in Eqs. (6.10)–(6.12) have never been used because it is difficult to obtain
Rex

i+n. Therefore, we do not discuss the properties of these weight vectors further
in this book.

6.3 SNR transfer factor

We next argue how much SNR is maintained in the spatial filter reconstruction
process, and compare the performances of the adaptive and non-adaptive spatial
filters introduced in the previous chapters in this regard. For this argument, we
again assume the same simple scenario in which a single source with its power of
σ2

1 exists at r1 under the uncorrelated Gaussian noise with its variance σ2
0 . Thus,

we can write Ri+n = σ2
0I. Denoting again f as f = l(r1), the output SNR of the

spatial filter2, Z0, which was defined in Eq. (6.5), is expressed as

Z0 =
σ2

1‖f‖2

σ2
0

[wT (r1)f ]2

‖f‖2‖w(r1)‖2
= αΘ, (6.18)

where α is again the input SNR, and Θ is defined as

Θ =
[wT (r1)f ]2

‖f‖2‖w(r1)‖2
. (6.19)

It can be seen in Eq. (6.18) that Θ represents the ratio between the input and
output SNRs, and it indicates how much SNR is preserved through the spatial
filter reconstruction process. Because of this property, Θ is called the SNR transfer
factor.

Under this single-source scenario, we can also derive the relationship between
Θ and Z defined in Eq. (2.68). That is, using Eq. (13.42), we have

wT Rw = σ2
1wT ffT w + σ2

0wT w = σ2
1 [wT f ]2 + σ2

0‖w‖2, (6.20)
2Z0 is called the output SNR here, because there is no interference in this argument.
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and thus we have

Z =
wT Rw

σ2
0‖w‖2

=
σ2

1‖f‖2

σ2
0

[wT f ]2

‖f‖2‖w‖2
+ 1 = αΘ + 1 = Z0 + 1. (6.21)

Let us first derive a value of Θ for representative non-adaptive spatial filters.
For the spatial matched filter, the weight vector should have the following form at
the source location: w(r1) = f/‖f‖. Substituting this into Eq. (6.19), we get the
relationship

Θ = 1. (6.22)

The spatial matched filter preserves SNR, and there is no SNR loss in the recon-
struction process.

According to the arguments in Section 3.2, the general form of the minimum-
norm-based filters can be expressed as

w(r1) = ζG−1f , (6.23)

where ζ = 1 for the minimum-norm filter, ζ = [fT G−2f ]−1/2 for the weight-
normalized minimum-norm filter, and ζ = [fT G−1f ]−1/2 for sLORETA. There-
fore, substituting Eq. (6.23) into Eq. (6.19), we have

Θ =
[fT G−1f ]2

‖f‖2‖G−1f‖2
. (6.24)

Using the Schwartz inequality,

[fT G−1f ]2 < ‖f‖2‖G−1f‖2,

we can derive
Θ < 1.

Here, note that, since the relationship G−1 ∝ I never holds, Θ is never equal to
1. Therefore, for the minimum-norm-based non-adaptive spatial filters, the SNR
is not preserved and there is an SNR loss in the reconstruction process.

We next check if the adaptive spatial filters preserve the SNR. For all three
minimum-variance spatial filters, the weight vectors pointing at r1 have the fol-
lowing form

w(r1) = ξR−1f ,

We then derive

Θ =
[fT R−1f ]2

‖f‖2[fT R−2f ]
. (6.25)

Substituting Eqs. (13.45) and (13.48) into Eq. (6.25) leads to the relationship

Θ = 1.

This result indicates that, for the single source case, the minimum-variance spatial
filters preserve the input SNR and there is no SNR loss in the reconstruction
process.
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We next consider the case where two sources exist at r1 and r2. We denote
the power of these sources as σ2

1 and σ2
2 and define f and g such that f = l(r1)

and g = l(r2). We assume that the spatial filter is pointing at the first source
location. Then, setting l = f in Eq. (13.57), we can derive

fT R−1f =
‖f‖2

Γ
[1 − α2

1 + α2
cos2(f , g)], (6.26)

where α2 is the input SNR for the second source, which is defined as α2 =
(σ2

2/σ2
0)‖g‖2, and Γ is defined in Eq. (13.58). Using Eq. (13.65), we have

fT R−2f =
‖f‖2

Γ2

[
1 − α2(2 + α2)

(1 + α2)2
cos2(f , g)

]
. (6.27)

Then, substituting Eqs. (6.27) and (6.26) into Eq. (6.25), we derive

Θ =
[1 − α2

1+α2
cos2(f , g)]2

[1 − α2(2+α2)
(1+α2)2

cos2(f , g)]
. (6.28)

If the second source is so weak that α2 ≈ 0, we obtain the relationship Θ ≈ 1,
which is exactly equal to the relationship for the single-source case. However, since
in general we can assume α2 � 1, equation (6.28) becomes[36][41]

Θ ≈ [1 − cos2(f , g)]. (6.29)

The above equation shows that the output SNR of the first source is influenced by
the generalized cosine between f and g, which is often referred to as the spatial
correlation between the two sources[42]. This is an important property of the
adaptive spatial filters.

6.4 Two types of SNR definitions for the vector
minimum-variance spatial filter

We mentioned that, for the vector spatial filter, the definition of the output power
is not unique and we present two definitions, P̂

(I)
V (r) and P̂

(II)
V (r), in Section 2.5.2.

Similarly, for the vector spatial filter, the definition of the output SNR is not
unique. In this section, we present two different definitions of output SNR and we
discuss the relationship between these definitions for the vector minimum-variance
spatial filter. We also discuss the relationship between these two SNR definitions
and the output-SNR definition for the scalar minimum-variance spatial filter[36].

The two definitions for the output SNR of the vector minimum-variance filter
are expressed as

Z(I)
V (r) =

tr{W T RW }
σ2

0tr{W T W }
, (6.30)

Z(II)
V (r)= max

η

ηT Σ̂s(r)η
σ2

0‖W (r)η‖2
=

1
σ2

0

[
max

η

ηT Σ̂s(r)η
ηT Υη

]
, (6.31)
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where the matrix Υ has already been defined in Eq. (4.83). Here, Z(I)
V (r)

and Z(II)
V (r) are orientation-non-optimized and orientation-optimized definitions,

which correspond, respectively, to the definitions of the output power P̂
(I)
V (r) and

P̂
(II)
V (r). The output SNR for the scalar minimum-variance filter is defined in

Eq. (4.8), and is expressed as

ZS(r) =
1
σ2

0

lT (r)R−1l(r)
[lT (r)R−2l(r)]

. (6.32)

In this section, we let σ2
0 equal 1 in order to simplify the notations.

We first show the relationship ZS(r) = Z(II)
V (r). According to Eq. (4.48),

ZS(r) is given by:

ZS(r) =
1

λmin{LT (r)R−2L(r),LT (r)R−1L(r)}

=
1

λmin{[LT (r)R−1L(r)]−1[LT (r)R−2L(r)]}
. (6.33)

Also, according to Eq. (6.31), Z(II)
V (r) is expressed as

Z(II)
V (r) =

1

λmin{Υ, Σ̂s(r)}
=

1
λmin{[LT (r)R−2L(r)][LT (r)R−1L(r)]−1}

.

(6.34)
Since the relationship,

λmin{[LT (r)R−1L(r)]−1[LT (r)R−2L(r)]}
= λmin{[LT (r)R−2L(r)][LT (r)R−1L(r)]−1},

holds[43], we can derive
ZS(r) = Z(II)

V (r). (6.35)

We next compare Z(I)
V (r) and Z(II)

V (r). However, since the comparison for
the general case is difficult, we again assume the single-source scenario in which
a single source with its power of σ2

1 exists at r1, and the source orientation is
denoted η1. The lead-field vector at the source location and the source orientation
is denoted f , i.e., f = L(r1)η1. Under this scenario, we then compare Z(I)

V (r1)
and Z(II)

V (r1). We have

Z(II)
V (r1) = ZS(r1) =

fT R−1f

[fT R−2f ]
. (6.36)

Using Eqs. (13.45) and (13.48), it is easy to derive

Z(II)
V (r1) = 1 + α, (6.37)
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where α = (σ2
1/σ2

0)‖f‖2 is the input SNR. Therefore, using Eq. (6.21), the value
of Θ, the SNR transfer factor, is obtained as

Θ = 1,

and we can see that the orientation-optimized definition, Z(II)
V , preserves the input

SNR.
Next, we discuss Z(I)

V (r1), and for this discussion, we define the eigenvalues
and eigenvectors of the 3 × 3 matrix LT (r1)R−1L(r1) as φj and zj where j =
1, 2, 3. To formulate Z(I)

V (r1), instead of simply using the x, y, z directions, we use
the three orthogonal directions represented by z1, z2, and z3, We define lj such
that lj = L(r1)zj (j = 1, 2, 3). Then, omitting the explicit notation (r1) from
L(r1) for simplicity, the output power at the source location, r1, is expressed as

tr[W T RW ] = tr{[LT R−1L]−1} =
3∑

j=1

1
φj

. (6.38)

Here φj can be obtained as

φj = zT
j [LT R−1L]zj = lTj R−1lj = ‖lj‖2(1 − α

1 + α
cos2(lj ,f)), (6.39)

where we use Eq. (13.46) with σ2
0 = 1. Considering the relationship, cos(lj ,f) =

cos(Lzj ,Lη1) = cos(zj ,η1|LT L)), we have

tr[W T RW ] =
3∑

j=1

1
‖lj‖2[1 − ω cos2(zj ,η1|LT L)]

, (6.40)

where ω = α/(1 + α). The noise gain is expressed as

tr{W T W } =
3∑

j=1

zT
j Υzj =

3∑
j=1

[1 − (2ω − ω2) cos2(zj ,η1|LT L)]
‖lj‖2[1 − ω cos2(zj ,η1|LT L)]2

, (6.41)

where we use the relationship

zT
j Υzj = zT

j [LT (r1)R−1L(r1)]−1[LT (r1)R−2L(r1)][LT (r1)R−1L(r1)]−1zj

= zT
j [

3∑
i=1

1
φi

ziz
T
i ][LT (r1)R−2L(r1)][

3∑
i=1

1
φi

ziz
T
i ]zj =

=
zT

j [LT (r1)R−2L(r1)]zj

φ2
j

=
[lTj R−2lj ]

φ2
j

=
[lTj R−2lj ]

[lTj R−1lj ]2
. (6.42)

As discussed in Section 4.3, z3, which is the eigenvector corresponding to
the minimum eigenvalue φ3, can represent the source orientation and it is gen-
erally nearly equal to the source orientation η1. Therefore, we can assume that
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cos2(z3,η1|LT L) ≈ 1. Also, since the directions represented by z1 and z2 are or-
thogonal to z3, i.e., to η1, we can assume that cos2(zj ,η1|LT L) 
 1 for j = 1, 2.
Thus, by substituting Eqs. (6.38) and (6.41) into (6.30), considering the above-
mentioned relationships, we obtain

Z(I)
V (r1) ≈

1
‖l1‖2 + 1

‖l2‖2 + 1
‖l3‖2[1−ω]

1
‖l1‖2 + 1

‖l2‖2 + 1−(2ω−ω2)
‖l3‖2[1−ω]2

. (6.43)

Further assuming that ‖l1‖2 ≈ ‖l2‖2 ≈ ‖l3‖2, Z(I)
V (r1) is finally expressed as

Z(I)
V (r1) ≈

2 + 1
(1−ω)

2 + 1−(2ω−ω2)
(1−ω)2

= 1 +
1
3
α, (6.44)

and the value of Θ is obtained as

Θ ≈ 1
3
. (6.45)

The above analysis indicates that Z(I)
V (r1) becomes approximately one third of

the input SNR.
When the spherically symmetric homogeneous conductor model is used for

the forward calculation, the source vector is expressed along the two tangential
components, as explained in Section 13.7. As a result, the lead-field matrix L(r1)
is an M × 2 matrix, and LT (r1)R−1L(r1) is a 2 × 2 matrix. In such cases, it is
easy to show that Eq. (6.44) changes to

Z(I)
V (r1) ≈ 1 +

1
2
α, (6.46)

and
Θ ≈ 1

2
.

In this case, the output SNR of the spatial filter is half of the input SNR. This
result is in accordance with that obtained by Vrba and Robinson[41] who assumed
a special source-sensor configuration where a single source exists directly below
the center of a rotationally-symmetric sensor array.

6.5 Influence of array mismatch

We next investigate the influence of array mismatch on the output SNR of the
adaptive spatial filters. When computing a weight vector, the exact lead field is
generally unknown and we must therefore use an approximate lead field. This situ-
ation always happens in bioelectromagnetic inverse modeling, because the lead field
is usually estimated from some kind of model such as the spherical-homogeneous
conductor model, as described in Section 13.7 of the Appendix. Even when we use
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a real-head shape model derived from each subject’s anatomical information (such
as subject’s MRI), we cannot reduce the error between the true and approximated
lead fields completely to zero. Let us define the true lead-field vector at r1 as f
and the approximate lead-field vector as fe. Using fe and Eq. (6.6), we have the
following expression for the weight vector of the minimum-variance spatial filters
such that,

w(r1) = ξeR
−1fe, (6.47)

where ξe = 1/[fT
e R−1fe], ξ = ‖fe‖/[fT

e R−1fe], and ξ = 1/[fT
e R−2fe]−1/2 for

the unit-gain, array-gain, and unit-noise-gain minimum-variance filters, respec-
tively. Substituting the weight into Eq. (6.19), we derive

Θ =
[fT

e R−1f ]2

‖f‖2(fT
e R−2fe)

. (6.48)

Then, assuming the single-source scenario, and using again Eq. (13.47) and
Eq. (13.49), we obtain

Θ =
cos2(fe,f)

[1 + (2α + α2) sin2(fe,f)]
≈ cos2(fe,f)

[1 + α2 sin2(fe,f)]
, (6.49)

where we use the fact that the value of α generally equals the order of the number
of sensors M , and usually M is a large number in the range of 150–400. Thus,
even if the difference between fe and f is small, i.e., even if sin2(fe,f) is small,
the value of α2 sin2(fe,f) can be much larger than 1, resulting in a significantly
small Θ. That is, the array mismatch can cause a significant reduction of the
output SNR. This is actually a well-known weak point of adaptive spatial filters.
In the following sections, we describe methods to overcome this problem.

6.6 Diagonal loading

As suggested in Eq. (6.49), the SNR reduction caused by the array mismatch
should become smaller if we use a smaller α. A smaller α value is attained by ar-
tificially adding noise, i.e., by adding εI to the measurement covariance matrix R.
Here, ε is a parameter that controls the amount of artificially-added noise equiva-
lent. This parameter is called the loading factor. This technique has been called
diagonal loading in the field of sensor array processing[44][45]3. Using diagonal
loading, the weight for the unit-gain minimum-variance spatial filter in Eq. (4.5)
is expressed as

w(r) =
(R + εI)−1l(r)

[lT (r)(R + εI)−1l(r)]
. (6.50)

Using Eq. (13.42), the inverse of (R + εI)−1 is given by:

(R + εI)−1 =
1

(σ2
0 + ε)

(I − α′

1 + α′
ffT

‖f‖2
), (6.51)

3Diagonal loading is referred to as Tikhonov regularization in numerical linear algebra, and
it was already mentioned briefly in Section 3.2.
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where

α′ =
σ2

1‖f‖2

(σ2
0 + ε)

. (6.52)

Therefore, for the single-source scenario, Θ can be expressed in this case as

Θ =
cos2(fe,f)

[1 + (2α′ + (α′)2) sin2(fe,f)]
. (6.53)

Here, since ε is a controllable parameter, α′ can be made small by choosing a
large ε (compared to σ2

0), and we can recover the output SNR to some extent.
However, the value of the input SNR (α′ in this case) also determines the spatial
resolution as shown in Eq. (5.30). If we make α′ large, the spatial resolution
is degraded accordingly. In other words, diagonal loading produces a trade-off
between the output SNR and the spatial resolution, and it can improve output
SNR by sacrificing the spatial resolution.

The diagonal loading spatial filter can also be formulated from the following
quadratic constraint[45][28]:

w(r) = arg min
w(r)

w(r)RwT (r), subject to wT (r)l(r) = 1,

and ‖w(r)‖2 ≤ T0.
(6.54)

Because ‖w(r)‖2 is the noise gain of the minimum-variance spatial filter, the
weight vector obtained using Eq. (6.54) implements a spatial filter whose output
noise power is less than T0/σ2

0 . Namely, T0 sets an upper limit on the power of
output noise. To obtain an explicit form of the weight vector satisfying Eq. (6.54),
we change the inequality constraint to an equality constraint, i.e.,

w(r) = arg min
w(r)

w(r)RwT (r), subject to wT (r)l(r) = 1,

and ‖w(r)‖2 = T0.
(6.55)

The solution satisfying Eq. (6.54) exists on the border of the inequality constraint
‖w(r)‖2 ≤ T0. Therefore, the solution satisfying Eq. (6.54) can be obtained as
the solution for Eq. (6.55), which is obtained by using a derivation similar to the
one used in Section 4.1.1. We first define two Lagrange multipliers, κ1 and κ2,
and define the Lagrangian L as

L(w, κ1, κ2) = wT Rw + κ1(wT l(r) − 1) + κ2(wT w − T0), (6.56)

where we again omit the explicit notation of (r) from the weight vector for sim-
plicity. Then, calculating the derivative of w of the Lagrangian and setting it to
zero gives

2Rw + κ1l(r) + 2κ2w = 0. (6.57)

We can then obtain
w = −κ1

2
(R + κ2I)−1l(r), (6.58)
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and by substituting the above weight expression back into the unit-gain constraint,
we get

κ1 = −2/[lT (R + κ2I)−1l],

and substituting the above expression into Eq. (6.58) gives the weight expression
in Eq. (6.50).

Using the following constrained optimization:

w(r) = arg min
w(r)

w(r)RwT (r), subject to wT (r)l(r) = ‖l(r)‖,

and ‖w(r)‖2 = T0,
(6.59)

and exactly the same derivation, we can derive the array-gain-constraint version
of the diagonal-loading spatial filter whose weight vector is expressed as

w(r) =
(R + εI)−1l̃(r)

[̃l
T
(r)(R + εI)−1l̃(r)]

, (6.60)

where l̃(r) = l(r)/‖l(r)‖. As mentioned previously, diagonal loading degrades
the spatial resolution of the reconstructed source spatial distribution. The follow-
ing sections describe two methods that can produce a high output SNR without
sacrificing the spatial resolution.

6.7 Asymmetric diagonal loading

In the preceding section, we describe the fact that diagonal loading produces a
trade-off between the output SNR and the spatial resolution. A slight modification
of diagonal loading, however, can avoid this trade-off and can overcome the array
mismatch problem without sacrificing spatial resolution. This section describes
this modification of the diagonal loading technique, called asymmetric diagonal
loading, in which we give different values to the denominator and the numerator
loading factors in Eq. (6.50). That is, the weight vector for the unit-gain minimum-
variance filter with asymmetric diagonal loading is given by:

w(r) =
(R + εnI)−1l

lT (R + εdI)−1l
, (6.61)

where εn and εd are the denominator and numerator loading factors, respectively.
When we do not know the true lead field, and we must use an approximated

lead-field vector fe, the weight vector pointing at r1 with this asymmetric diagonal
loading is expressed as

w(r1) =
(R + εnI)−1fe

[fT
e (R + εdI)−1fe]

. (6.62)
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Then, substituting this equation into Eq. (6.19), the value of the SNR transfer
factor, Θ, is expressed in this case as

Θ =
[fT

e (R + εnI)−1f ]2

‖f‖2[fT
e (R + εnI)−2fe]

. (6.63)

Using the same derivation for Eq. (6.53), we finally obtain a value of Θ under the
single-source scenario such that

Θ =
cos2(fe,f)

[1 + (2αn + α2
n) sin2(fe,f)]

, (6.64)

where

αn =
σ2

1‖f‖2

(σ2
0 + εn)

.

The above equation shows that the Θ value (hence, the output SNR) is determined
only by the numerator loading factor εn.

We next calculate the point-spread function using the weight vector with
asymmetric diagonal loading. We use

(R + εnI)−1 =
1

εn + σ2
0

(I − αn

1 + αn

ffT

‖f‖2
), (6.65)

and

(R + εdI)−1 =
1

εd + σ2
0

(I − αd

1 + αd

ffT

‖f‖2
), (6.66)

where

αd =
σ2

1‖f‖2

(σ2
0 + εd)

.

We then derive the point-spread function for the array-gain minimum-variance
filter

�(r) =
(εd + σ2

0)(1 + αd)
(εn + σ2

0)(1 + αn)
‖f‖ cos(l,f)

1 + αd[1 − cos2(l,f)]
. (6.67)

The normalized point-spread function is obtained as

�N (r) =
cos(l,f)

1 + αd[1 − cos2(l,f)]
. (6.68)

The above equation shows that the value of εd determines the shape of the point-
spread function. (The value of εn is contained only in the multiplicative constant
of the point-spread function.) Thus, we can see that only the denominator loading
factor determines the spatial resolution, and the numerator loading factor has no
effect on the resolution.

In summary, only the numerator loading factor determines the output SNR,
whereas the denominator loading factor has no effect on it. Conversely, only the
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denominator loading factor determines the spatial resolution, whereas the numer-
ator loading factor has no effect on it. Therefore, we can obtain a relatively high
output SNR in the presence of array mismatch without sacrificing the spatial reso-
lution, by controlling the numerator loading factor while keeping the denominator
loading factor small.

So, what is the price we pay for the improvement of the output SNR when
we apply asymmetric diagonal loading? To answer this question, let us consider
the leakage problem. We consider a simple case where two sources exist at r1 and
r2. The source distribution is expressed as

s(r, t) = s(r1, t)δ(r − r1) + s(r2, t)δ(r − r2). (6.69)

Substituting the above equation into Eq. (2.82), we have

ŝ(r, t) = s(r1, t)R(r, r1) + s(r2, t)R(r, r2), (6.70)

where R(r, r1) and R(r, r2) are the resolution kernels in which a single source is
located at r1 and r2, respectively. Thus, the spatial filter output at the first source
location r1 is given by

ŝ(r1, t) = s(r1, t)R(r1, r1) + s(r2, t)R(r1, r2). (6.71)

Thus, the amount of leakage from the second-source time course into the estimated
first-source time course is expressed by the ratio ψ, defined as

ψ =
R(r1, r2)
R(r1, r1)

. (6.72)

Using again the weight expression in Eq. (6.61) and the matrix inverse relationships
of Eqs. (6.65) and (6.66), we finally derive

ψ =
cos(f , g)

[1 + αn(1 − cos2(f , g))]
. (6.73)

The above equation shows that the leakage ratio, ψ, is determined only by the
numerator loading factor, and does not depend on the denominator loading factor.
Therefore, if we use a smaller αn to obtain a larger Θ, the amount of leakage
will necessarily increase. In conclusion, the asymmetric regularization provides a
trade-off between leakage and output SNR.

6.8 Eigenspace-projection spatial filter

6.8.1 Eigenspace projection

The SNR degradation due to array mismatch can be avoided by making use of the
property of the low-rank signals described in Section 2.4. Using Eqs. (2.63) and
(2.64), we can rewrite Eq. (6.48), such that

Θ =
[fT

e (ESΛ−1
S ET

S + ENΛ−1
N ET

N )f ]2

‖f‖2[fT
e (ESΛ−2

S ET
S + ENΛ−2

N ET
N )fe]

. (6.74)
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Then, using the property that the noise subspace is orthogonal to the lead-field
vector at the true source locations, i.e.,

ET
Nf = 0, (6.75)

Θ is given by:

Θ =
[fT

e (ESΛ−1
S ET

S )f ]2

‖f‖2[fT
e (ESΛ−2

S ET
S )fe + fT

e (ENΛ−2
N ET

N )fe]
. (6.76)

Let us define the error contained in fe as Δf , i.e., fe = Δf + f . Then, Θ is
expressed as[46][47]

Θ =
[fT

e (ESΛ−1
S ET

S )f ]2

‖f‖2[fT
e (ESΛ−2

S ET
S )fe + ΔfT (ENΛ−2

N ET
N )Δf ]

. (6.77)

We assume that Δf is small and the relationship fe ≈ f holds, thus giving

fT
e (ESΛ−1

S ET
S )f =

Q∑
j=1

‖fT
e ej‖‖fT ej‖

λj
≈

Q∑
j=1

‖fT ej‖2

λj
, (6.78)

and

fT
e (ESΛ−2

S ET
S )fe =

Q∑
j=1

‖fT
e ej‖2

λ2
j

≈
Q∑

j=1

‖fT ej‖2

λ2
j

. (6.79)

Also, we have

ΔfT (ENΛ−2
N ET

N )Δf =
M∑

j=Q+1

‖ΔfT ej‖2

λ2
j

. (6.80)

Therefore, Eq. (6.77) changes to

Θ ≈

[∑Q
j=1 ‖f

T ej‖2/λj

]2

‖f‖2
[∑Q

j=1 ‖f
T ej‖2/λ2

j +
∑M

j=Q+1 ‖ΔfT ej‖2/λ2
j

] . (6.81)

The second term in the denominator causes the degradation of the output SNR,
unless it is negligibly small compared to the first term. Equation (6.81) indicates
that even when Δf is small, the second term in the denominator may not be
negligibly small, because the noise-level eigenvalues are generally much smaller
than the signal-level eigenvalues; i.e.,

λj (j = 1, . . . , Q) � λj (j = Q + 1, . . . ,M).

Therefore, a very small Δf can cause a significant reduction in the output SNR.
Equation (6.81) also shows that the second term in the denominator arises

from the noise-subspace components of the weight vector, and therefore if the
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noise-subspace components are removed, this second term will be removed and no
SNR reduction results. This consideration leads to a method called the eigenspace-
projection spatial filter in which only the signal subspace components of a weight
vector are used for spatial filtering. The weight vector of the minimum-variance
spatial filters are expressed using the noise- and signal-subspace components,

w(r) = ξR−1l(r) = ξESΛ−1
S ET

S l(r) + ξENΛ−1
N ET

N l(r). (6.82)

At source locations, the weight vector can be expressed as

w(r) = ξESΛ−1
S ET

Sf + ξENΛ−1
N ET

Nf . (6.83)

The second term on the right-hand side of the equation above should be zero due
to the orthogonality between ET

N and f . However, because the lead-field vector f
used for deriving the weight vector is not exactly equal to the true f , the product
ET

Nf should have some non-zero value and this non-zero ET
Nf results in the second

term in the denominator in Eq. (6.81). Therefore, the eigenspace-projection spatial
filter only uses the signal-subspace components of the minimum-variance weight
vector. That is, defining the weight vector of the eigenspace-projection spatial
filter as we(r), this weight vector we(r) is obtained using[48].

we(r) = ESET
Sw(r) = ξESET

S (ESΛ−1
S ET

S+ENΛ−1
N ET

N )l(r) = ξESΛ−1
S ET

S l(r).
(6.84)

Using we(r), Θ in Eq. (6.19) is expressed as

Θ ≈

[∑Q
j=1 ‖f

T ej‖2/λj

]2

‖f‖2
[∑Q

j=1 ‖f
T ej‖2/λ2

j

] , (6.85)

where we again use the approximation that fe ≈ f . The above Θ does not have
the second term in the denominator, and thus the eigenspace-projection spatial
filter can prevent the degradation of the output SNR.

However, to implement the eigenspace spatial filter, the information
regarding the separation of the noise and signal subspaces, i.e., the value of the
signal-subspace dimension Q in Eq. (2.53) should be known. The signal subspace
dimension Q is in principle determined by separating distinctly-large eigenvalues
from the small eigenvalues in the eigenvalue spectrum of the measurement co-
variance matrix. This separation, however, may not be easy if there is no clear
threshold in the eigenvalue spectrum.

The well-known work-around for this problem concerns the overestimation
of Q. In general, the overestimation of the signal subspace dimensionality gives
intermediate results between those of the (non-eigenspace-projected) minimum-
variance spatial filter and those of the eigenspace-projection spatial filter obtained
with the correct signal-subspace dimension. Let us consider the case where the
signal subspace dimension is overestimated at Q + ΔQ. Then, the SNR transfer
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Figure 6.1: The plot of the reconstructed Z value. The ordinate shows the relative
Z value because σ2

0 was set to one in this numerical experiments. A cross-sectional
view of the source at (0,−0.8,−6) along the line (x = 0; z = −6) cm. The solid
line shows the results of Z(II)

V and the broken line shows the results of Z(I)
V .

factor of such an eigenspace spatial filter, Θ(ΔQ), is expressed as

Θ(ΔQ) =
[
∑Q

j=1 ‖f
T ej‖2/λj ]2

‖f‖2[
∑Q

j=1 ‖f
T ej‖2/λ2

j +
∑Q+ΔQ

j=Q+1 ‖ΔfT ej‖2/λ2
j ]

. (6.86)

Here, the relationship

0 ≤
Q+ΔQ∑
j=Q+1

‖ΔfT ej‖2/λ2
j ≤

M∑
j=Q+1

‖ΔfT ej‖2/λ2
j

holds. Namely, Θ(ΔQ) has an intermediate value between Θ from the (non-
eigenspace-projected) minimum variance spatial filter and from the eigenspace-
projection spatial filter with the correct Q. If the relationship

Q∑
j=1

‖fT ej‖2/λ2
j �

Q+ΔQ∑
j=Q+1

‖ΔfT ej‖2/λ2
j

holds, the eigenspace-projection spatial filter with an overestimated signal-
subspace dimensionality gives nearly the same SNR as that of the eigenspace-
projection spatial filter with a correct signal-subspace dimension.
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Figure 6.2: (a) The outputs of the minimum-variance scalar spatial filter at the
three source locations, ŝ(r1, t) (top), ŝ(r2, t) (middle), and ŝ(r3, t) (bottom). The
three vertical lines show the time corresponding to the 220th, 268th, and 300th
time points. (b)–(e) The results of source reconstruction on the plane x = 0 cm.
Results of the instantaneous reconstruction |ŝ(r, t)| at (b) the 220th, (c) the 268th,
and (d) the 300th time points. (e) The power reconstruction

√
〈ŝ(r, t)2〉 where

〈ŝ(r, t)2〉 = P̂s(r).

6.8.2 Extension to vector spatial-filter formulation

The eigenspace projection can also be applied to the vector formulation with no
modification. However, since applying the signal-subspace projector generally in-
validates the null constraints for the LCMV spatial filter[49], it may seem a bit
puzzling that the eigenspace-projected vector spatial filter can reconstruct the
three orthogonal source components, in spite of the fact that the null constrains
are not preserved. We explain this fact in the following manner[40].

The eigenspace-projected weight vectors of the vector unit-gain minimum-
variance spatial filter are denoted we

x,we
y,we

z, where we omit the notation of (r)
for simplicity. Let us consider, for example, the case of we

x, which is obtained from

we
x = ESET

Swx.

The null constraints in this case should satisfy

(we
x)T ly(r) = (ESET

Swx)T ly(r) = wT
x ESET

S ly(r) = 0,

and (we
x)T lz(r) = (ESET

Swx)T lz(r) = wT
x ESET

S lz(r) = 0.
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Figure 6.3: (a) The outputs of the diagonal-loading minimum-variance spatial
filter at the three source locations, ŝ(r1, t) (top), ŝ(r2, t) (middle), and ŝ(r3, t)
(bottom). The three vertical lines show the time corresponding to the 220th, 268th,
and 300th time points. The loading factor ε was set to 0.01λmax{R}. (b)–(e) The
results of source reconstruction on the plane x = 0 cm. Results of instantaneous
reconstruction |ŝ(r, t)| at (b) the 220th, (c) the 268th, and (d) the 300th time
points. (e) The power reconstruction

√
〈ŝ(r, t)2〉 where 〈ŝ(r, t)2〉 = P̂s(r).

However, since ly(r) and lz(r) are not necessarily in the signal subspace, we gen-
erally have

ESET
S ly(r) �= ly(r), and ESET

S lz(r) �= lz(r),

and therefore

wT
x ESET

S ly(r) �= 0, and wT
x ESET

S lz(r) �= 0,

leading to the relationships

(we
x)T ly(r) �= 0, and (we

x)T lz(r) �= 0. (6.87)

Consequently, we should conclude that the signal subspace projector ESET
S does

not preserve the null constraints.
However, we can show that the eigenspace-projected weight vectors can re-

construct the three orthogonal components of the source moment, even though
the projection operator does not preserve the null constraints. Let us assume the
single-source scenario, i.e., a single source exists at r with its orientation equal to
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[ηx, ηy, ηz]. Denoting its magnitude as s(t), the sensor output generated by this
source is expressed as

b(t) = [ηxlx(r) + ηxly(r) + ηzlz(r)]s(t).

The x component of the source, ŝx(t), estimated using the eigenspace-projected
vector spatial filter is given by:

ŝx(t) = (we
x)T b(t) = wT

x ESET
S [ηxlx(r) + ηxly(r) + ηzlz(r)]s(t). (6.88)

Here, the vector (ηxlx(r) + ηxly(r) + ηzlz(r)) lies in the signal subspace, and
therefore the relationship

ESET
S (ηxlx(r) + ηxly(r) + ηzlz(r)) = (ηxlx(r) + ηxly(r) + ηzlz(r)) (6.89)

holds. Consequently, we get

ŝx(t) = (we
x)T b(t)

= wT
x (ηxlx(r) + ηxly(r) + ηzlz(r))s(t) = ηxs(t)(wT

x lx(r)) = ηxs(t). (6.90)

Using exactly the same argument, we can also show

ŝy(t)= (we
y)T b(t) = ηys(t), (6.91)

and ŝz(t)= (we
z)

T b(t) = ηzs(t). (6.92)

Therefore, the vector-type eigenspace-projection spatial filter can detect the three
orthogonal components of the source moment, even though the null constraints
are not preserved. Here we also give a numerical example of the results obtained
from the eigenspace-projected vector minimum-variance spatial filter.

6.9 Numerical examples

A series of numerical examples are presented to illustrate the results of the argu-
ments in this chapter. We first present a numerical example for comparing Z(I)

V

and Z(II)
V , which are the two-types of the output SNRs of the vector minimum-

variance spatial filter. For these numerical experiments, the same computer sim-
ulation scheme shown in Fig. 5.2 is used, except that a single point source exists
at r1 = (0,−0.8,−6). The time course shown in the top panel in Fig. 4.3(a)
is assigned to this source. Since the lead-field vector f is calculated using the
spherically-homogeneous conductor model, we use two tangential components to
express the source orientation. The cross sections of the reconstructed relative Z
values along the line (x = 0; z = −6) cm are shown in Fig. 6.1. Here, Z(II)

V is shown
using the solid line, and Z(I)

V is shown using the broken line. The peak value of
Z(II)

V is equal to 147.5, and that of Z(I)
V is equal to 70.5. These results show that
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the peak of the orientation-optimized Z(II)
V is nearly twice as high as the peak of

Z(I)
V . This is in accordance with the results of the discussion in Section 6.4.

We next perform a series of numerical experiments that demonstrate what
occurs in the presence of array mismatch. We here use the same computer simu-
lation as in Section 4.7. The input SNRs for the three sources, α1, α2, and α3, are
equal to 8M . In the numerical experiments presented here, instead of using the
theoretical covariance matrix, we use a sample covariance matrix calculated from

R̂ =
1

400

400∑
k=1

b(tk)bT (tk), (6.93)

where we have a total of 400 time points, and the sample covariance matrix cal-
culated from such a relatively few number of samples should contain some error.

We first apply the array-gain constraint scalar minimum-variance spatial fil-
ter, and the results of the spatio-temporal reconstruction are shown in Fig. 6.2.
Fig. 6.2(a) shows the estimated time courses as spatial filter outputs at the three
source locations, ŝ(r1, t), ŝ(r2, t), and ŝ(r3, t). Fig. 6.2(b)–(e) show the results
of source reconstruction on the plane x = 0 cm. The instantaneous reconstruc-
tion results at the 220th, 268th, and 300th time points are shown, respectively,
in Fig. 6.2(b), (c), and (d). The square root of source power reconstruction√
〈ŝ(r, t)2〉 is shown in Fig. 6.2(e). The reconstructed source time courses contain

a considerable amount of noise, and accordingly, results of the instantaneous re-
construction show some influence of this low output SNR. This low output SNR is
in this case due to the fact that the noise subspace obtained from the sample co-
variance matrix is not exactly equal to the true noise subspace and the error term
in the denominator in Eq. (6.81) remains non-zero, resulting in the degradation of
the output SNR.

Next, we show the results from the diagonal-loading array-gain minimum-
variance spatial filter in Fig. 6.3. Here, the loading factor ε is set to 0.01λmax{R}.
Compared to the non-diagonal loading minimum-variance results in Fig. 6.2, the
SNR of the spatial filter output is greatly improved, but a considerable amount
of blur is introduced. The results here confirm the trade-off relationship between
the spatial resolution and the output SNR.

We show the results of the asymmetric diagonal-loading spatial filter in
Fig. 6.4. The loading factor for the denominator, εd, is set to 0, and the load-
ing factor for the numerator, εn, is set to 0.1λmax{R}. Compared to the results in
Figs. 6.2 and 6.3, it can be seen that the asymmetric diagonal loading can avoid the
blur, while the output SNR is recovered. The spatial resolution is almost the same
as that of the eigenspace-projection spatial filter shown in Fig. 6.5. However, the
source time courses contain considerable amounts of leakage from other sources.
The results here demonstrate the trade-off relationship between the leakage and
the output SNR improvements with the asymmetric diagonal loading, even while
the spatial resolution is maintained.

We then show results for the eigenspace-projection minimum-variance spatial
filter. The signal subspace dimension Q was set to three. The reconstructed results
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Figure 6.4: (a) The outputs of the asymmetric diagonal-loading minimum-variance
spatial filter at the three source locations, ŝ(r1, t) (top), ŝ(r2, t) (middle), and
ŝ(r3, t) (bottom). The three vertical lines show the time corresponding to the
220th, 268th, and 300th time points. The numerator loading factor εn was set to
0.1λmax{R} and the denominator loading factor εd was set to 0. (b)–(e) The re-
sults of the source reconstruction on the plane x = 0 cm. Results of instantaneous
reconstruction, |ŝ(r, t)|, at (b) the 220th, (c) the 268th, and (d) the 300th time
points. (e) The time-averaged reconstruction

√
〈ŝ(r, t)2〉 where 〈ŝ(r, t)2〉 = P̂s(r).

are shown in Fig. 6.5. This figure shows that the eigenspace-projection consider-
ably improves the output SNR with almost no sacrifice of spatial resolution and
leakage. Finally, we show results for the vector eigenspace-projection minimum-
variance spatial filter. The signal subspace dimension Q was again set to three.
The reconstructed results are shown in Fig. 6.6. This figure shows that the results
almost identical to those from the scalar eigenspace-projection minimum-variance
spatial filter are obtained, showing that the eigenspace projection operation works
for vector formulation, even though the eigenspace projection does not preserve
the null constraint, as discussed in Section 6.8.2.
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Figure 6.5: (a) The outputs of the eigenspace-projected minimum-variance spa-
tial filter at the three source locations, ŝ(r1, t) (top), ŝ(r2, t) (middle), and
ŝ(r3, t) (bottom). The three vertical lines show the time corresponding to the
220th, 268th, and 300th time points. The signal-subspace dimension was set
to three. (b)–(e) The results of the source reconstruction on x = 0 cm. Re-
sults of instantaneous reconstruction, |ŝ(r, t)|, at (b) the 220th, (c) the 268th,
and (d) the 300th time points. (e) The power reconstruction

√
〈ŝ(r, t)2〉 where

〈ŝ(r, t)2〉 = wT
e (r)Rwe(r). The weight vector we(r) is defined in Eq. (6.84).
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Figure 6.6: (a) The outputs of the eigenspace-projected vector minimum-variance
spatial filter at the first source (top), the second source (middle), and the third
source (bottom) locations. The two time courses correspond to ŝ‖(r, t) and
ŝ⊥(r, t). The signal-subspace dimension was set to three. The three vertical lines
show the time corresponding to the 220th, 268th, and 300th time points. (b)–(e)
The results of the source reconstruction on x = 0 cm. Results of instantaneous
reconstruction, |ŝ(r, t)|, at (b) the 220th, (c) the 268th, and (d) the 300th time

points. (e) The power reconstruction
√

P̂
(I)
V (r).
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Chapter 7

Effects of low-rank
interference

Bioelectromagnetic measurements are often contaminated by various types of over-
lapping external interference even when the measurements are performed in a
shielded room. This chapter discusses the influence of external interference of
non-biological origin on the adaptive spatial filter output. Typical examples of
such interference include magnetic noise from power lines or electrical appliances
such as elevators, automobiles or the subway. We assume that the interference has
the following two properties: First, it is additive and uncorrelated with brain ac-
tivity. Second, the interference can be modeled as a low-rank signal. Under these
assumptions, our analysis shows that the adaptive spatial filters are insensitive to
interference when its spatial singular vectors are very different from the lead-field
vector of any brain sources. Since this condition is approximately met for many
types of non-biological interferences, we conclude that the adaptive spatial filters
are robust to the superimposition of such interference.

7.1 Influence of low-rank interference

7.1.1 Low-rank interference

We denote the interference carried by the mth sensor channel at time t as dm(t).
The column vector d(t) = [d1(t), . . . , dM (t)]T represents the interference contained
in the measurements of the whole sensor array. Assuming that d(t) is additive,
the measured data b(t) is expressed as

b(t) =
Q∑

q=1

l(rq)s(rq, t) + d(t) + n(t) = bs+n(t) + d(t), (7.1)
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where n(t) is the sensor noise, and bs+n(t) is the signal plus sensor noise defined
as

bs+n(t) =
Q∑

q=1

l(rq)s(rq, t) + n(t). (7.2)

We define the spatio-temporal matrix of the measurement b(t) as B:

B = [b(t1), . . . , b(tK)].

The spatio-temporal matrix of the signal plus sensor noise, bs+n(t), is defined as
Bs+n, where

Bs+n = [bs+n(t1), . . . , bs+n(tK)],

and the spatio-temporal matrix of the interference, Bd, is defined as

Bd = [d(t1), . . . ,d(tK)].

Thus, we have the relationship,

B = Bs+n + Bd. (7.3)

We next define the signal plus sensor noise covariance matrix obtained from
bs+n(t), as Rs+n, i.e.,

Rs+n = 〈bs+n(t)bT
s+n(t)〉.

We also define the covariance matrix of the interference as Rd, i.e.,

Rd = 〈d(t)dT (t)〉.

Assuming that the interference d(t) is uncorrelated with bs+n(t), we have the
relationship,

R = Rs+n + Rd. (7.4)

The output of the minimum-variance spatial filter is given by

[ŝ(r, t1), . . . , ŝ(r, tK)] = ξlT (r)R−1B, (7.5)

where

ξ = 1/[lT (r)R−1l(r)],

ξ = ‖l(r)‖/[lT (r)R−1l(r)],

and ξ = 1/

√
lT (r)R−2l(r),

corresponding to the unit-gain, array-gain, and unit-noise-gain constraints, respec-
tively. In the following discussion, we assume the unit-gain minimum-variance spa-
tial filter. The discussion here can be applied to the array-gain minimum-variance
spatial filter with a very minor modification. The case of the unit-noise-gain
minimum-variance filter is discussed in Section 7.2.
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The key assumption for Rd in our analysis is that Rd has only a few (rela-
tively) large eigenvalues[50]. That is, Rd can be expressed as

Rd =
QD∑
j=1

χjuju
T
j , (7.6)

where χj and uj are the jth eigenvalue of Rd and its corresponding eigenvector,
respectively. Here, QD is the number of non-zero eigenvalues, and we assume that
QD 
 M . Using the singular value decomposition, the spatio-temporal matrix
Bd is expressed as

Bd =
QD∑
j=1

√
χjujv

T
j , (7.7)

where vj is the jth temporal singular vector of Bd.

7.1.2 Analysis when Rd is a rank-one matrix

We first analyze the simplest case where Rd is a rank-one matrix. In such a case,
omitting the subscript for eigenvalue numbering, Rd is expressed as Rd = χuuT .
Then, we derive

R−1 = (Rs+n + χuuT )−1 = R−1
s+n − R−1

s+n

uuT

1/χ + uT R−1
s+nu

R−1
s+n. (7.8)

We can show that the relationship uT R−1
s+nu ≈ 1/σ2

0 holds1. The power of the
interference is equal to χ, and we assume in this chapter that the power of the
interference is much larger than the power of the sensor noise. Thus, we have the
relationship, 1/χ 
 uT R−1

s+nu. Then, Eq. (7.8) changes to

R−1 ≈ R−1
s+n − R−1

s+n

uuT

uT R−1
s+nu

R−1
s+n. (7.9)

1It is easy to show this relationship for the single source scenario. According to Eq. (13.43),
uT R−1

s+nu is expressed as

uT R−1
s+nu =

1

σ2
0

(
1 − α

1 + α
cos2(u, f)

)
≈ 1

σ2
0

,

where we assume that cos2(u, f) ≈ 0. When two sources exist, by substituting u for l in
Eqs. (13.57) and assuming cos2(u, f) ≈ 0 and cos2(u, g) ≈ 0, we can derive

uT R−1
s+nu ≈ 1

Γ

[
1 + α1[1 − α2

1 + α2
cos2(f, g)]

]
=

1

σ2
0

.

We can show that this relationship holds for cases where the number of sources are more than
two.
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Substituting Eq. (7.9) and Bd =
√

χuvT into Eq. (7.5), we obtain

[ŝ(r, t1), . . . , ŝ(r, tK)] ≈ ξlT (r)R−1
s+n(Bs+n +

√
χuvT )

− ξ
[lT (r)R−1

s+nu][uT R−1
s+n(Bs+n +

√
χuvT )]

uT R−1
s+nu

= ξlT (r)R−1
s+nBs+n − ξ

[
lT (r)R−1

s+nu

uT R−1
s+nu

]
uT R−1

s+nBs+n

= ξlTd (r)R−1
s+nBs+n,

(7.10)

where

ld(r) = l(r) −
[

lT (r)R−1
s+nu

uT R−1
s+nu

]
u. (7.11)

Using Eq. (7.9), the value of ξ is found to be

1/ξ = lT (r)R−1l(r) ≈ lT (r)R−1
s+n l(r) − [lT (r)R−1

s+nu]2

uT R−1
s+nu

= lTd (r)R−1
s+nld(r).

(7.12)
Therefore, substituting Eq. (7.12) into Eq. (7.10), we finally derive

ŝ(r, t) =
lT (r)R−1b(t)
lT (r)R−1l(r)

≈ lTd (r)R−1
s+nbs+n(t)

lTd (r)R−1
s+nld(r)

. (7.13)

The above equations indicate that the temporal behavior of the interference rep-
resented by the temporal singular vector v does not affect the output time courses
of the minimum-variance filter. These equations also indicate that the interference
affects the outputs through its spatial singular vector u by modifying the lead-field
vector from l(r) to ld(r) according to Eq. (7.11).

The minimum-variance filter output is derived from Eq. (7.13). That is,
using Eq. (7.2) with ignoring the sensor noise term, and denoting l(r) as l and
ld(r) as ld, the time course output at r is expressed as

ŝ(r, t) =
lTd R−1

s+nbs+n(t)

lTd R−1
s+nld

=
Q∑

q=1

s(rq, t)
lTd R−1

s+nl(rq)

lTd R−1
s+nld

, (7.14)

where

lTd R−1
s+nl(rq) = (l − lT R−1

s+nu

uT R−1
s+nu

u)T R−1
s+nl(rq)

= lT R−1
s+nl(rq)

[
1 − cos(l,u|R−1

s+n) cos(u, l(rq)|R−1
s+n)

cos(l, l(rq)|R−1
s+n)

]
(7.15)
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and

lTd R−1
s+nld = (l − lT R−1

s+nu

uT R−1
s+nu

u)T R−1
s+n(l − lT R−1

s+nu

uT R−1
s+nu

u)

= lT R−1
s+nl[1 − cos2(l,u|R−1

s+n)]. (7.16)

Therefore, Eq. (7.14) can be rewritten as

ŝ(r, t) =
Q∑

q=1

s(rq, t)
lT R−1

s+nl(rq)

lT R−1
s+nl

[
1 − cos(l,u|R−1

s+n) cos(u,l(rq)|R−1
s+n)

cos(l,l(rq)|R−1
s+n)

]

[1 − cos2(l,u|R−1
s+n)]

. (7.17)

We can also show that the output power is given by

〈ŝ(r, t)2〉 =
1

lTd R−1
s+nld

=
1

lT R−1
s+nl[1 − cos2(l,u|R−1

s+n)]
. (7.18)

Because the generalized cosine quantifies the similarity or the difference of the two
vectors, when any lead-field vector in the source space is very different from the
spatial eigenvector of the interference u, the relationships cos(l,u|R−1

s+n) 
 1 and
cos(u, l(rq)|R−1

s+n) 
 1 hold. In this case, ignoring the sensor noise, Eq. (7.17) is
rewritten as

ŝ(r, t) ≈
Q∑

q=1

s(rq, t)
lT R−1

s+nl(rq)

lT R−1
s+nl

=
lT R−1

s+nbs+n(t)

lT R−1
s+nl

, (7.19)

and Eq. (7.18) can be rewritten as

〈ŝ(r, t)2〉 ≈ 1
lT (r)R−1

s+nl(r)
. (7.20)

We can conclude that the influence of the interference is negligible in the output
of the minimum-variance spatial filter.

7.1.3 Analysis when Rd is a rank-two matrix

The analysis can be extended to the case where Rd is a rank-two matrix. In this
case, Rd is expressed as Rd = χ1u1u

T
1 + χ2u2u

T
2 . We assume the relationships

hold:

(uT
1 R−1

s+nu2)/(uT
1 R−1

s+nu1) ≈ 0 and (uT
1 R−1

s+nu2)/(uT
2 R−1

s+nu2) ≈ 0. (7.21)

Then, based on Eq. (7.9), we can derive

R−1 = (Rs+n + χ1u1u
T
1 + χ2u2u

T
2 )−1

≈ R−1
s+n − R−1

s+n

u1u
T
1

uT
1 R−1

s+nu1

R−1
s+n − R−1

s+n

u2u
T
2

uT
2 R−1

s+nu2

R−1
s+n. (7.22)
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Substituting the equation above and Bd =
√

χ1u1v
T
1 +

√
χ2u2v

T
2 into Eq. (7.5),

after lengthy calculations, we finally get

[ŝ(r, t1), . . . , ŝ(r, tK)] = ξlTd (r)R−1
s+nBs+n (7.23)

where

ld = l −
[

lT R−1
s+nu1

uT
1 R−1

s+nu1

]
u1 −

[
lT R−1

s+nu2

uT
2 R−1

s+nu2

]
u2. (7.24)

We can then derive

ŝ(r, t) =
Q∑

q=1

s(rq, t)
lT R−1

s+nl(rq)

lT R−1
s+nl

·

[
1 − cos(l,u1|R−1

s+n) cos(l(rq),u1|R−1
s+n)

cos(l,l(rq)|R−1
s+n)

− cos(l,u2|R−1
s+n) cos(l(rq),u2|R−1

s+n)

cos(l,l(rq)|R−1
s+n)

]

[1 − cos2(l,u1|R−1
s+n) − cos2(l,u2|R−1

s+n)]
. (7.25)

The output power in this case is expressed as

〈ŝ(r, t)2〉 =
1

lT R−1
s+nl

1
[1 − cos2(l,u1|R−1

s+n) − cos2(l,u2|R−1
s+n)]

. (7.26)

That is, these equations above show that the output of the minimum-variance
spatial filter is not affected by the low-rank interference also in this case, assuming
that any lead-field vector in the source space is very different from the spatial
eigenvectors of the interference. The above equations also show that the second
eigenvector u2 affects the filter output in an additive manner. The analysis can be
further extended to the general case where the rank of Rd is greater than 2, and
it can be shown that each eigenvector affects the spatial filter output in exactly
the same additive manner.

7.2 Influence on output of the unit-noise-gain
minimum-variance filter

Let us consider the influence of the low-rank external interference on the output
of the unit-noise-gain minimum-variance filter. We first note that equation (7.10)
holds, regardless of the value of ξ. The value of ξ for the unit-noise-gain minimum-
variance filter is found to be

(1/ξ)2 = lT (r)R−2l(r) = lT (r)R−2
s+nl(r)(1 − ν), (7.27)

where, denoting l(r) as l, ν is expressed as

ν =
lT R−1

s+nu

uT R−1
s+nu

[
2
lT R−2

s+nu

lT R−2
s+nl

− (
lT R−1

s+nu

uT R−1
s+nu

)(
uT R−2

s+nu

lT R−2
s+nl

)

]
. (7.28)
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When deriving these relationships, we use,

R−2 ≈ R−2
s+n − R−2

s+n

uuT

uT R−1
s+nu

R−1
s+n

− R−1
s+n

uuT

uT R−1
s+nu

R−2
s+n +

uT R−2
s+nu

uT R−1
s+nu

R−1
s+n

uuT

uT R−1
s+nu

R−1
s+n. (7.29)

Then, we can derive,

ŝ(r, t)=
Q∑

q=1

s(rq, t)
lTd R−1

s+nl(rq)√
lT R−2l

=
lT R−1

s+n l(rq)√
lT R−2

s+n l

[
1− cos(l,u|R−1

s+n) cos(u,l(rq)|R−1
s+n)

cos(l,l(rq)|R−1
s+n)

]

√
(1 − ν)

,

(7.30)
and

〈ŝ(r, t)2〉 =
lTd R−1

s+nld

lT R−2l
=

lT R−1
s+n l

lT R−2
s+n l

[1 − cos2(l,u|R−1
s+n)]

(1 − ν)
, (7.31)

Therefore, when the assumptions that cos(l,u|R−1
s+n) 
 1, cos(u, l(rq)|R−1

s+n) 

1, and |ν| 
 1 hold, the influence of the interference on the output of the unit-
noise-gain minimum-variance filter is also negligible. The value ν is small when
l and u are very different because only the numerators in Eq. (7.28) contain the
cross products of l and u. In the numerical experiments in Section 7.4, ν is always
less than 10−6.

7.3 Effects on the output of the eigenspace-
projected spatial filter

Using Eq. (7.5), the output of the eigenspace-projection spatial filter is given by

[ŝ(r, t1), . . . , ŝ(r, tK)] = [ESET
Sw(r)]T B

= ξlT R−1ESET
S (Bs+n +

QD∑
j=1

√
χjujv

T
j ). (7.32)

Here, the columns of ES span the signal subspace. As mentioned in Section 6.8,
the signal subspace is determined by separating distinctly-large eigenvalues from
the small eigenvalues in the eigenvalue spectrum of the measurement covariance
matrix. When external interference is significantly greater than the sensor noise,
the signal subspace determined in the above-mentioned manner generally contains
the interference subspace spanned by uj (j = 1, . . . , QD), and the columns of
ES span the signal-plus-interference subspace. Since the source lead-field vectors
l(rq) (q = 1, . . . , Q) and the interference eigenvectors uj (j = 1, . . . , QD) both
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exist in the signal-plus-interference subspace, Bs+n and uj are unaffected by the
application of the signal-plus-interference-subspace projector ESET

S ; i.e.,

ESET
S (Bs+n +

QD∑
j=1

√
χjujv

T
j ) = Bs+n +

QD∑
j=1

√
χjujv

T
j . (7.33)

Therefore, the argument in this chapter also holds for the eigenspace-projected
spatial filter and the output of the eigenspace-projected spatial filter is not affected
by the external interference, d(t).

7.4 Numerical examples

A series of numerical experiments are conducted to illustrate the results of the ar-
guments in this chapter. The same source-sensor configuration and the coordinate
system as illustrated in Fig. 4.2 are used, and the time courses shown in Fig. 4.3(a)
are assigned to the three sources. The simulated MEG recordings are then calcu-
lated at 400 time points. We assume that the sampling interval is 2 ms. Gaussian
noise is added to the generated magnetic field so that the total input SNR, defined
as αT = α1 + α2 + α3, is equal to 8. The generated signal plus sensor noise,
bs+n(t), is shown in Fig. 7.1(a). The (square-root of the) power reconstruction
obtained from bs+n(t) are shown in Fig. 7.1(b), and the reconstructed source time
courses, obtained as the spatial filter outputs at the source locations, are shown in
Fig. 7.1(c). Here, the eigenspace-projected array-gain minimum-variance spatial
filter is used for the reconstruction.

In our numerical experiments, four types of interference d(t) are simulated.
The first is the periodic interference, where the interference for the mth sensor
recording, dm(t), was calculated using dm(t) = sin(2πfdt + φ) for the 60 sensors
over the right hemisphere, and dm(t) = 0 for the other sensors. The frequency of
this periodic interference, fd, was set to 14 Hz, which is fairly close to the 10 Hz-
frequency of the third source. The interference d(t) was then added to bs+n(t) to
generate simulated recordings b(t): b(t) = bs+n(t)+d(t). The resultant simulated
recordings are shown in Fig. 7.2(a).

The second type of interference is the same periodic interference except that
the phase offset varies from sensor to sensor. That is, the interference dm(t) for the
60 sensors over the right hemisphere was calculated using dm(t) = sin(2πfdt+φm),
where each sensor had a different φm that was determined by using a uniformly-
distributed random number between 0 and 2π. The simulated recordings contain-
ing this interference are shown in Fig. 7.2(b).

The third type of interference is a linear trend whose inclination varies from
channel to channel. That is, dm(t) was calculated using dm(t) = Δmt where each
sensor had a different value of Δm, which was determined by using a Gaussian-
distributed random number. Simulated recordings containing such a linear trend
are shown in Fig. 7.2(c). The fourth type of interference is a combination of the
linear trend just described with a low-frequency noise. In this case, dm(t) was
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calculated by using dm(t) = Δmt + sin[2πfdt + φ] where fd was set at 1.1 Hz and
φ was the same for all sensor recordings. The simulated recordings containing this
interference are shown in Fig. 7.2(d).

The covariance matrix of the interference, Rd, was calculated numerically
using Rd = 〈d(t)dT (t)〉. The eigenvalue spectra of Rd for these four types of
interference are shown in Fig. 7.3. The spectra show that the first and third
interferences have a single large eigenvalue, indicating that these interferences
are rank-one interferences. The second and the fourth interferences have two
relatively large eigenvalues, indicating that they are rank-two interferences. The
contour plots of the first spatial eigenvector (the one associated with the largest
eigenvalue) of each of the four kinds of interference are shown in Fig. 7.4(b)–(e).
The lead-field vector associated with the second source is also shown in Fig. 7.4(a).
This contour plot is typical of all (focal) brain sources.

It can be seen that the spatial eigenvectors for all four cases are very different
from the lead fields associated with brain sources. The values of cos2(l,u|R−1

s+n)
between the second-source lead field and the first eigenvector are less than 3×10−3

for all four cases. These very small values confirm our visually-obtained interpre-
tation that the eigenvectors in Fig. 7.4 are very different from the lead-field vector
associated with a brain source. The value of (uT

1 R−1
s+nu2)/(uT

1 R−1
s+nu1) is also cal-

culated for the two cases of rank-two interference, and this value is on the order of
10−6. These numerical evaluations suggest that the influence of the interferences
should be very small. The eigenspace-projection array-gain minimum-variance
spatial filter was applied to the four cases of the simulated recordings in Fig. 7.2.
The results of (the square-root of) the source power reconstruction are shown in
Fig. 7.5. The reconstructed source time courses are shown in Fig. 7.6. There is
no observable influence in any of the results in Figs. 7.5 and 7.6. These results
illustrate the conclusions of the arguments in this chapter.
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Figure 7.1: (a) The simulated MEG recordings with no interference, bs+n(t). (b)
The square root of the power reconstruction,

√
〈ŝ(r, t)2〉, obtained using bs+n(t).

(c) Time course outputs at the three source locations, ŝ(r1, t), ŝ(r2, t), and ŝ(r3, t)
(from top to bottom), obtained using bs+n(t). The eigenspace-projected array-gain
minimum-variance filter was used.
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Figure 7.2: Simulated MEG recordings containing low-rank interferences. (a) A
periodic interference with a frequency of 13.7 Hz overlapped the recordings of the
60 sensors located over the right hemisphere. (b) The same periodic interference
except that a phase offset varies from sensor to sensor. (c) A linear trend, with its
inclination varying from sensor to sensor, overlapped all sensor recordings. (d) A
combination of the linear trend and low-frequency (1.1 Hz) interference overlapped
all sensor recordings.
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Figure 7.3: Eigenvalue spectrum of Rd shown up to the 40th eigenvalue. The
eigenvalues are sorted from largest to smallest. (a) The spectrum for the periodic
interference in Fig. 7.2(a). (b) The spectrum for the periodic interference with
a random phase offset in Fig. 7.2(b). (c) The spectrum for the linear trend in
Fig. 7.2(c). (d) The spectrum for the linear trend and low-frequency (1.1 Hz)
interference in Fig. 7.2(d).
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Figure 7.4: (a) The contour plot of the lead-field vector for the second source.
(b)–(e) The contour plots of the eigenvector of Rd associated with the largest
eigenvalue. (b) Eigenvector contour for the periodic interference in Fig. 7.2(a). (c)
Eigenvector contour for the periodic interference with a random phase offset shown
in Fig. 7.2(b). (d) Eigenvector contour for the linear trend shown in Fig. 7.2(c).
(e) Eigenvector contour for the linear trend with low-frequency interference shown
in Fig. 7.2(d). The dots represent the locations of the sensors (mapped from three
dimensions to two dimensions). The anterior, posterior, left and right directions
are indicated by A, P, L, and R, respectively. The contours represent the relative
intensity, as indicated by the color bar.
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Figure 7.5: Results of square-root of the power reconstruction,
√

〈ŝ(r, t)2〉, ob-
tained using the eigenspace-projected array-gain minimum-variance spatial filter.
(a) The simulated recordings in Fig. 7.2(a) were used. (b) The simulated record-
ings in Fig. 7.2(b) were used. (c) The simulated recordings in Fig. 7.2(c) were
used. (d) The simulated recordings in Fig. 7.2(d) were used.

122



0

0

0 100 200 300 400

0

latency (ms)
(a)

0

0

0 100 200 300 400

0

latency (ms)

(b)

0

0

0 100 200 300 400

0

latency (ms)

(c)

0

0

0 100 200 300 400

0

latency (ms)

(d)

Figure 7.6: The reconstructed source time-courses, ŝ(rq, t) q = 1, 2, 3, obtained as
outputs of the eigenspace-projected array-gain minimum-variance spatial filter. (a)
The simulated recordings in Fig. 7.2(a) were used. (b) The simulated recordings
in Fig. 7.2(b) were used. (c) The simulated recordings in Fig. 7.2(c) were used.
(d) The simulated recordings in Fig. 7.2(d) were used.
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Chapter 8

Effects of high-rank
interference

The major problem with brain electromagnetic measurements is that the measured
signal generally contains a large amount of interfering magnetic fields. The pre-
ceding chapter dealt with the influence of external interference of non-biological
origin. This chapter deals with interference of a physiological origin. In particular,
this chapter focuses on the background brain activity, which is sometimes referred
to as brain noise or physiological noise. The prominent characteristic of the back-
ground interference is that it is generated by a large number of sources[51][52].
Hence, the underlying low-rank signal assumption, which is necessary for formulat-
ing adaptive spatial filters, is invalidated. This chapter first presents a theoretical
analysis showing that such high-rank interference can cause a severe spatial blur in
the reconstruction results. We then describe a prewhitening eigenspace-projection
spatial filter, which can achieve the source reconstruction free from the influence
of background interference even when the power of the interference is significantly
large.

8.1 Influence of background brain activity

8.1.1 Point-spread function under background interference

Here, we derive the point-spread function when background interference exists[53].
For this derivation, we use a model for the measurements b(t) expressed as

b(t) = bs(t) + bI(t) + n(t), (8.1)

where bs(t) is the signal part, bI(t) is the interference generated by the background
activity, and n(t) is the sensor noise. The spatial-filter output is then expressed
as

ŝ(r, t) = wT (r)b(t) = wT (r)bs(t) + wT (r)bI(t) + wT (r)n(t). (8.2)
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For non-adaptive spatial filters, the influence of the interference bI(t) is simply
additive. More specifically, the influence is the overlap of wT (r)bI(t) onto the
signal part, wT (r)bs(t). For adaptive spatial filters, however, the interference
bI(t) affects the source reconstruction results in a more complex manner because
bI(t) also affects the filter weight w(r) through the covariance matrix R. We
derive the point-spread function of the minimum-variance spatial filter that takes
the background interference into account. Numerical examples of the point-spread
function are presented in Section 8.1.2.

The magnitude and the orientation of an interference source are denoted
μ(r, t) and η(r), respectively. We assume that the background sources are con-
tinuously distributed. Then, we have

bI(t) =
∫

Ω

μ(r, t)L(r)η(r) d3r =
∫

Ω

μ(r, t)l(r) d3r, (8.3)

where the integral is computed over the whole source space Ω, and the lead-field
vector l(r) is defined such that l(r) = L(r)η(r). We also assume that only a
single target source exists at r1 with an orientation equal to η1. The magnitude
of the target source is denoted s(r1, t). Then, defining f such that f = L(r1)η1,
the measurement b(t) is expressed as

b(t) = s(r1, t)f +
∫

Ω

μ(r, t)l(r) d3r + n(t). (8.4)

Therefore, assuming that the relationship 〈n(t)nT (t)〉 = σ2
0I holds, the covariance

matrix of the measurements is given by

R = 〈b(t)bT (t)〉 = σ2
1ffT +

∫∫

Ω

〈μ(r, t)μ(r′, t)〉l(r)lT (r′) d3r d3r′ + σ2
0I, (8.5)

where the signal power σ2
1 is defined such that σ2

1 = 〈s(r1, t)2〉. We assume that
the background source activity is spatially uniform and incoherent, i.e.,

〈μ(r, t)μ(r′, t)〉 = σ2
cδ(r − r′), (8.6)

where σ2
c is the power of the background source activity. Substituting Eq. (8.6)

into (8.5), we obtain

R = σ2
1ffT + σ2

c

∫∫

Ω

l(r)lT (r) d3r + σ2
0I. (8.7)

In the right-hand side of the above equation, the integral in the second term can
be approximated using the gram matrix G. Thus, we finally have

R = σ2
1ffT + σ2

cG + σ2
0I. (8.8)

According to the discussion in Section 5.1, omitting the explicit notation of
(r) from l(r), the point-spread function of the array-gain-constraint minimum-
variance spatial filter is expressed as

�(r) = wT (r)f =
l̃
T
R−1f

l̃
T
R−1l̃

. (8.9)
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Substituting Eq. (8.8) into (8.9), we can derive the explicit form of the point-spread
function, which is given by

�(r) = ‖l‖

√
fT D−1f

lT D−1l

[
cos(̃l,f |D−1)

[1 + αD(1 − cos2(̃l,f |D−1))]

]
, (8.10)

where D = I +(σ2
c/σ2

0)G, and αD = (σ2
1/σ2

0)fT D−1f . When the background in-
terference is negligibly small, substituting σc = 0 into (8.10), (namely, substituting
I for D in (8.10),) the point-spread function in this case becomes

�(r) = ‖f‖ cos(̃l,f)

[1 + α(1 − cos2(̃l,f))]
, (8.11)

where α is equal to α = (σ2
1/σ2

0)‖f‖2. The above equation is exactly equal to
Eq. (5.14). When the power of the background interference is much larger than
the power of the sensor noise, substituting D ≈ (σ2

c/σ2
0)G into (8.10), we derive

�(r) = ‖l‖

√
fT G−1f

lT G−1l

cos(̃l,f |G−1)

[1 + αG(1 − cos2(̃l,f |G−1))]
, (8.12)

where αG = (σ2
1/σ2

c )(fT G−1f), which represents the input SNR when only the
background brain noise is present. We present numerical examples of these point-
spread functions in the following section. These examples show that, when large
background activities exist, a significant degradation of the spatial resolution is
caused in the output of the minimum-variance filters.

8.1.2 Numerical examples

To calculate the point-spread functions, the same source-sensor configuration and
coordinate system illustrated in Fig. 5.2 are used except that the single source is
located at (0,−1,−6) cm. We calculated the point-spread function using Eq. (8.10)
for five values of σc/σ1. Here, the input SNR, which is defined as α = (σ2

1/σ2
0)‖f‖2,

is set equal to 4M . Also, in this calculation, the gram matrix G was obtained by
numerically integrating over a volume defined as −8 ≤ x ≤ 8, −8 ≤ y ≤ 8, and
−11 ≤ z ≤ −3. The results plotted in Fig. 8.1(a) show that when the power of
the background activity, σ2

c , is increased, the point-spread function is blurred and
the full-width-at-half-maximum (FWHM) of the point-spread function becomes
greater. The FWHM of the point-spread functions is plotted with respect to
σc/σ1 for three different values of input SNR, α, in Fig. 8.1(b). The results show
that the degree of the spatial blur is approximately linearly increased, depending
on the value of σc/σ1, and the FWHM reaches nearly 1.5 cm when σc ≈ 0.5σ1.

As discussed in Section 5.3, sensor noise is known to cause degradation of the
spatial resolution. Let us compare the degree of spatial blur caused by background
interference and sensor noise. The results of plotting the point-spread functions
in Eqs. (8.11) and (8.12) are shown in Figs. 8.2(a) and (b). Here, α in Eq. (8.11)
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Figure 8.1: (a) Point-spread functions of a source located at (0,−1,−6) cm. Five
values of σc were used: σc = 0, σc = 0.05σ1, σc = 0.1σ1, σc = 0.2σ1, and
σc = 0.5σ1. The input SNR, defined as α = (σ2

1/σ2
0)‖f‖2, was set equal to 4M .

(b) Plot of the full-width-at-half-maximum (FWHM) of the point-spread function
with respect to σc/σ1 for three input SNR values: α = M , α = 2M , and α = 4M .

and αG in Eq. (8.12) were set equal to each other; these values were set to 2M
for the results in (a) and to M for the results in (b). Note that, by setting
α and αG equal, the powers of these two kinds of noises were set equal when
comparing their effects on the point-spread function. These calculated results
show that the FWHM of the point-spread function in Eq. (8.11) is approximately
two-fold greater than that for the point-spread function in Eq. (8.12). That is,
the blur caused by the sensor noise is two-fold greater than that caused by the
interference. The difference between the two point-spread functions is caused by
the difference between cos(l,f) and cos(l,f |G−1). We can see that cos(l,f |G−1)
decays twice as fast as cos(l,f), thus explaining the difference in these two types
of point-spread functions. The amount of sensor noise in a modern MEG scanner
is around 5 fT/

√
Hz, and therefore we expect a noise amplitude to approximately

equal 50 fT (0.05 pT) in the measurement if the bandwidth is set to 100 Hz. On
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Figure 8.2: Comparison of the point spread functions in Eqs. (8.11) and (8.12).
The solid lines indicate the point-spread function in Eq. (8.11) and the broken
lines indicate the point-spread function in Eq. (8.12). The value of α in Eq. (8.11)
and the value of αG in Eq. (8.12) were set equal to each other. (a) The point-
spread functions when α = αG = 2M and (b) The point-spread functions when
α = αG = M .

the other hand, the amplitude of the background interference is, on average, equal
to 0.5 − 2 pT. Hence, the background interference is 10 − 40 times greater than
the sensor noise. Therefore, the background interference is the major cause of the
spatial blur in electromagnetic source imaging. This is true despite the fact that
the sensor noise has a two-fold greater effect on the spatial resolution.

8.2 Prewhitening eigenspace-projection spatial
filter

8.2.1 Prewhitening signal covariance estimation

We next describe the prewhitening eigenspace-projection spatial filter, which can
significantly reduce the influence of background interference[53]. To describe the
method, we first make several definitions. We define the covariance matrix of the
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signal data, bs(t), as Rs:
Rs = 〈bs(t)bT

s (t)〉. (8.13)

We also define the signal-plus-sensor-noise covariance matrix, Rs+n:

Rs+n = 〈[bs(t) + n(t)][bs(t) + n(t)]T 〉, (8.14)

and the interference-plus-sensor-noise covariance matrix, Ri+n:

Ri+n = 〈[bI(t) + n(t)][bI(t) + n(t)]T 〉. (8.15)

We further assume that the background interference is uncorrelated with the signal
source activity. Under this assumption, the relationship

R = Rs + Ri+n (8.16)

holds.
The fundamental assumption for the prewhitening eigenspace-projection spa-

tial filter is that the control-state measurements, bc(t), which contain only the
contributions from the background interference and sensor noise, are available1,

bc(t) = bI(t) + n(t). (8.17)

The interference-plus-noise covariance matrix, Ri+n, can be obtained from such
control-state measurements by

Ri+n = 〈bc(t)bT
c (t)〉. (8.18)

To obtain an estimate of the signal covariance matrix, Rs, we first compute
the prewhitened measurement covariance matrix, R̃, which is defined as

R̃ = R
−1/2
i+n RR

−1/2
i+n . (8.19)

Thus, from Eq. (8.16), we have the relationship

R̃ = R
−1/2
i+n RsR

−1/2
i+n + I = R̃s + I, (8.20)

where
R̃s = R

−1/2
i+n RsR

−1/2
i+n . (8.21)

We define the eigenvalues and eigenvectors of an M ×M matrix R̃s as γ1, . . . , γM

and h1, . . . ,hM , respectively. Since Rs is a positive semi-definite matrix with
rank Q, and R

−1/2
i+n is a non-singular matrix, R̃s is also a positive semi-definite

1Equation (8.17) may not always hold in real-life task-and-control-type measurements. There
may be a situation in which there are some sources that appear only in the control state and do
not appear in the task state. Such sources are called control-only sources, and the prewhitening
method is also significantly robust to the existence of such control-only sources, as discussed in
Section 13.5 in the Appendix.
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matrix with rank Q. Thus, the eigenvalues γ1, . . . , γQ are positive and the other
eigenvalues γQ+1, . . . , γM are zero. Namely, we have

R̃s =
Q∑

j=1

γjhjh
T
j . (8.22)

Therefore, the eigendecomposition of R̃ can be expressed as

R̃ =
Q∑

j=1

γjhjh
T
j + I =

Q∑
j=1

(γj + 1)hjh
T
j +

M∑
j=Q+1

hjh
T
j . (8.23)

The equation above indicates that the Q largest eigenvalues of R̃ are greater than
1 and the corresponding eigenvectors are the same as those associated with the
non-zero eigenvalues of R̃s. The eigenvalues greater than 1 are referred to as the
signal-level eigenvalues of R̃ and their corresponding eigenvectors are referred to
as the signal-level eigenvectors of R̃.

Equation (8.23) indicates that it is possible to retrieve R̃s from the signal-
level eigenvectors of R̃. That is, defining a matrix HS as HS = [h1, . . . ,hQ], the
signal covariance matrix can be obtained using

R
1/2
i+nHSHT

S (R̃ − I)R1/2
i+n = R

1/2
i+n[

Q∑
j=1

γjhjh
T
j ]R1/2

i+n = R
1/2
i+nR̃sR

1/2
i+n = Rs.

(8.24)
In actual cases, the theoretical covariance matrices R and Ri+n are unknown, and
we should use the sample covariance matrices, which are obtained using

R̂ =
1
K

K∑
k=1

b(tk)bT (tk), and R̂i+n =
1

KC

KC∑
k=1

bc(tk)bT
c (tk), (8.25)

assuming that we have K and KC time points for the task and the control periods,

respectively. We define ̂̃R such that ̂̃R = R̂
−1/2

i+n R̂R̂
−1/2

i+n . Using Eq. (8.24), the
estimate of the signal covariance matrix R̂s can be obtained using

R̂s = R̂
1/2

i+nĤSĤ
T

S ( ̂̃R − I)R̂
1/2

i+n, (8.26)

where ĤS = [ĥ1, . . . , ĥQ], and ĥ1, . . . , ĥQ are the signal-level eigenvectors of ̂̃R.
Ideally, since the noise-level eigenvalues of R̃ are equal to 1, multiplying HSHT

S

by (R̃ − I) is not needed to extract the signal subspace. However, in actual

cases, the noise-level eigenvalues obtained from ̂̃
R may not be equal to 1. Thus,

this multiplication is still needed in the prewhitening estimation of the signal
covariance matrix.
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8.2.2 Prewhitening eigenspace-projection spatial filter

Given the estimate of the signal covariance matrix, R̂s, a reasonable estimate of
the signal-plus-sensor-noise covariance matrix, R̂s+n, can be obtained using

R̂s+n = R̂s + εI, (8.27)

where ε is the diagonal loading factor that should be set close to the variance
of the sensor noise, σ2

0 , in this case. Consequently, using the minimum-variance
spatial filter, source power reconstruction free from the influence of the background
activity can be obtained using

〈ŝ(r, t)2〉 =
1

lT (r)R̂
−1

s+nl(r)
=

1

lT (r)(R̂s + εI)−1l(r)
, (8.28)

We then define the spatio-temporal matrix of the measurement, b(t), as B:

B = [b(t1), b(t2), . . . , b(tK)].

The spatio-temporal matrices for bs(t) and bI(t) are defined in exactly the same
manner, i.e.,

Bs = [bs(t1), bs(t2), . . . , bs(tK)],

and
BI = [bI(t1), bI(t2), . . . , bI(tK)].

Then, in accordance with Eq. (8.1), the relationship

B = Bs + BI + N (8.29)

holds where N is the noise matrix defined as N = [n(t1), . . . ,n(tK)]. A reasonable
estimate of the spatio-temporal matrix of the signal, Bs, can also be obtained in
a similar manner as described in Section 8.2.1.

The prewhitened version of B is defined as B̃ such that

B̃ = R
−1/2
i+n B = R

−1/2
i+n Bs + R

−1/2
i+n (BI + N). (8.30)

The singular value decomposition (SVD) of B̃ is obtained as

B̃ =
Q∑

j=1

√
γj + 1hjm

T
j +

M∑
j=Q+1

hjm
T
j , (8.31)

where mT
j indicates the jth temporal singular vector. Once again, the first Q

singular values of B̃ are greater than 1 and they are associated with the signal
portion of the prewhitened data, R

−1/2
i+n Bs. The other singular values are equal to
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1 and they are associated with the interference and noise portion R
−1/2
i+n (BI +N).

Therefore, by applying the projector HSHT
S to B̃, we have

HSHT
S B̃ =

Q∑
j=1

(
√

γj + 1)hjm
T
j ≈ R

−1/2
i+n Bs, (8.32)

and the spatio-temporal matrix of the signal magnetic field Bs can be extracted
by

R
1/2
i+n[HSHT

S B̃] = R
1/2
i+nR

−1/2
i+n Bs = Bs. (8.33)

Defining ΦS as ΦS = R̂
1/2

i+n[ĤSĤ
T

S ]R̂
−1/2

i+n , we have

ΦSB = Bs, (8.34)

and the weight vector of the prewhitening eigenspace-projection spatial filter is
expressed as

wp(r) =
ΦT

S (R̂s + εI)−1l(r)

lT (r)(R̂s + εI)−1l(r)
. (8.35)

Interference-free spatio-temporal source reconstruction is obtained using this
wp(r), i.e.,

[ŝ(r, t1), . . . , ŝ(r, tK)]=wT
p (r)B=

lT (r)(R̂s+εI)−1ΦSB

lT (r)(R̂s+εI)−1l(r)
=

lT (r)(R̂s+εI)−1Bs

lT (r)(R̂s+εI)−1l(r)
,

(8.36)
where R̂s is obtained using Eq. (8.26).

8.3 Overestimation of signal-subspace dimension-
ality

One problem of the prewhitening spatial filter is that it requires the determination
of the prewhitened signal subspace dimension from the eigenvalue spectrum of R̃.
In actual bioelectromagnetic measurements, it is often problematic to accurately
determine this dimension because the eigenvalue spectrum often does not have a
clear separation between the two subspaces. In the following, we show that the
method is quite insensitive to the overestimation of the signal subspace dimen-
sionality . Therefore, accurate determination of the prewhitened signal subspace
dimension is not needed, and we can use an intentionally large Q to implement
the prewhitening spatial filter.

Let us assume that the signal subspace dimension is overestimated as Q +
Qε and define Hε as Hε = [hQ+1, . . . ,hQ+Qε

]. Ideally, the prewhitened data
covariance matrix, R̃, has Q signal-level eigenvalues greater than 1 and M − Q
eigenvalues equal to 1. According to Eq. (8.24), the relationship HεH

T
ε (R̃−I) = 0

holds; hence overestimation of Q does not affect the signal covariance estimate R̂s.
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However, the data covariance matrix is usually estimated from a finite number of
time samples, and in such cases, the noise-level eigenvalues are generally not equal

to 1. We denote the noise-level eigenvalues of ̂̃R as δj + 1 and assume δj ≥ 0 for
j = Q + 1, . . . , Qε. Then, the estimated signal covariance matrix, R̂s, is expressed
as

R̂s = R̂
1/2

i+n[ĤSĤ
T

S + ĤεĤ
T

ε ]( ̂̃R − I)R̂
1/2

i+n

= R̂
1/2

i+n[
Q∑

j=1

γjĥjĥ
T

j ]R̂
1/2

i+n + R̂
1/2

i+n[
Q+Qε∑
j=Q+1

δjĥjĥ
T

j ]R̂
1/2

i+n = Rs + Rε. (8.37)

The second term on the right-hand side of the equation above indicates the error
caused by the overestimation. This error term is expressed as

Rε = R̂
1/2

i+n[
Q+Qε∑
j=Q+1

δjĥjĥ
T

j ]R̂
1/2

i+n =
Q+Qε∑
j=Q+1

δjh̄jh̄
T
j , (8.38)

where h̄j = R̂
1/2

i+nĥj .
We then decompose h̄j using ei (i = 1, . . . ,M), which are the eigenvectors

of the measurement covariance matrix R, such that

h̄j =
M∑
i=1

τj,iei, (8.39)

where τj,i is the expansion coefficient. We can obtain

Rε =
Q∑

i=1

Δλieie
T
i +

M∑
i=Q+1

Δλieie
T
i , (8.40)

where

Δλi =
Q+Qε∑
j=Q+1

δjτ
2
j,i (i = 1, . . . , M). (8.41)

As we discussed in Section 2.4.2, the spans of {e1, . . . ,eQ} and {eQ+1, . . . ,eM}
are respectively the signal and noise subspaces of the measurement. Therefore, on
the right-hand side of Eq. (8.40), the first term is the signal-subspace component
and the second term is the noise-subspace component. To obtain the source recon-
struction in Eq. (8.28), we need to calculate the signal-plus-sensor-noise covariance
matrix. The estimate of the signal-plus-sensor-noise covariance matrix, R̂s+n, in
this case is given by

R̂s+n = Rs + Rε + εI =
Q∑

i=1

(λ′
i + Δλi + ε)eie

T
i +

M∑
i=Q+1

(Δλi + ε)eie
T
i , (8.42)
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where λ′
i is the ith eigenvalue of Rs. The equation above indicates that the

influence of the overestimation is mainly an increase of the diagonal-loading factor.
As discussed in Section 6, a large diagonal-loading factor introduces some blur in
the reconstruction results, so the overestimation of the signal-subspace dimension
may cause some amount of spatial blur. The blur should not be significant as long
as Δλi is small.

8.4 Reconstruction of induced activity

8.4.1 General background

A growing interest has developed in studying so-called induced responses, which
are the intensity modulation of brain activities caused by a stimulus2. Since
the induced activity is generally frequency specific, it is appropriate to use the
frequency-domain minimum-variance spatial filter described in Section 4.6 for
imaging induced activities. Also, since the induced activity is not time-locked
to the stimulus, the traditional waveform-based averaging averages out the activ-
ity of interest. Therefore, the sample cross-spectrum matrix should be computed
from non-averaged raw epochs, such that

Γ̂ (Fw) =
1

KE

KE∑
k=1

∑
f∈Fw

gk(f)(gk(f))H , (8.43)

where gk(f) is the Fourier transform of the kth raw epoch, KE is the total number
of measured epochs, and

∑
f∈Fw

indicates the summation over a target frequency
window Fw.

Since we use the non-averaged epoch data to calculate the sample covariance
matrix, it naturally contains a significant amount of influence from background
interference. We assume that task and control data sets are available, and, us-
ing Eq. (8.43), we calculate the frequency-specific covariance matrix for the task
period, Γ̂ (Fw), and for the control period, Γ̂ c(Fw). To reconstruct the induced
activity, Robinson et al. [34] proposed one method, which is called the F -image
method and is based on the subtraction between the task and control images.
That is, using Γ̂ (Fw) and Γ̂ c(Fw), this method first calculates the spatial filter
weight such that

w(r, Fw) =
Γ̂

−1

total(Fw)l(r)

lT (r)Γ̂
−1

total(Fw)l(r)
, (8.44)

where Γ̂ total(Fw) = Γ̂ (Fw) + Γ̂ c(Fw). Then, the so-called pseudo F -image is
calculated as

F (r, Fw) =
〈ŝ(r, Fw)2〉 − 〈ŝC(r, Fw)2〉

〈ŝC(r, Fw)2〉 , (8.45)

2This modulation is referred to as the event-related spectral power change. When the power
change is negative, it is customarily termed an event-related desynchronization (ERD), and when
it is positive, it is termed an event-related synchronization (ERS)[54].
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where 〈ŝ(r, Fw)2〉 and 〈ŝC(r, Fw)2〉 are the power reconstruction results, which are
obtained using

〈ŝ(r, Fw)2〉 = wT (r, Fw)Γ̂ (Fw)w(r, Fw), (8.46)

and
〈ŝC(r, Fw)2〉 = wT (r, Fw)Γ̂ c(Fw)w(r, Fw). (8.47)

The F -image method attempts to remove the influence of the background activity
based on the subtraction between the task and control images. However, the
effectiveness for this removal is limited because, as described in Section 8.1.1,
the influence of the background activity is not simply additive. The influence
contains spatial blur, which cannot be removed by using the F -image method, as
we demonstrate with numerical examples in Fig. 8.8.

8.4.2 Prewhitening method

We can use the prewhitening method to image the induced source activity[55].
However, as we pointed out, the induced activity is a stimulus-elicited intensity
modulation of the source activity, and the target source activity exists both in the
task and control periods, although its intensity differs between the two periods.
Since the control covariance matrix contains the signal activity, it is not obvious
whether the prewhitening method can be applied. To clarify this point, we mo-
mentarily use the notations for the covariance matrices defined in Chapter 8.2, and
discuss the property of the prewhitening method. In this discussion, it is assumed
that the control state contains the signal activity, and the covariance matrix of the
signal activity in the control state is defined as R′

s. Thus, the covariance matrix
relationship is expressed as

Control: Rc =R′
s + Ri+n,

Task: R =Rs + Ri+n, (8.48)

and therefore,
R = Rs − R′

s + Rc. (8.49)

We consider a general case where some signal sources have greater intensities in
the control state than in the task state, but others have smaller intensities in the
control state than in the task state. The power of the jth signal source in the task
and the control conditions are denoted, respectively, σ2

j and (σ′
j)

2. We assume
that σ2

j > (σ′
j)

2 for j = 1, . . . , Qp and that (σ′
j)

2 > σ2
j for j = Qp + 1, . . . , Q.

Therefore, defining (Δσj)2 = |σ2
j − (σ′

j)
2|, we obtain3

Rs −R′
s =

Qp∑
j=1

(Δσj)2l(rj)lT (rj)−
Q∑

j=Qp+1

(Δσj)2l(rj)lT (rj) = Dp −Dn, (8.50)

3The implicit assumption here is that sources are uncorrelated.
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where

Dp =
Qp∑
j=1

(Δσj)2l(rj)lT (rj), (8.51)

and

Dn =
Q∑

j=Qp+1

(Δσj)2l(rj)lT (rj). (8.52)

This gives
R = Dp − Dn + Rc, (8.53)

and thus,
R̃ = D̃p + I − D̃n, (8.54)

where
D̃p = R−1/2

c DpR
−1/2
c , and D̃n = R−1/2

c DnR−1/2
c .

Because both D̃p and D̃n are positive semi-definite matrices, Equation (8.54) is in
principle the same as Eq. (13.70), and exactly the same arguments hold as those
in Section 13.5 of the Appendix. Accordingly, the following relationship holds:

R1/2
c HSHT

S (R̃ − I)R1/2
c = Dp. (8.55)

We now switch to the notations using the frequency-domain covariance ma-
trices Γ̂ and Γ̂ c, where the explicit notation of (Fw) is omitted for simplicity. Using

Γ̂ c as Rc, and ̂̃Γ (obtained such that ̂̃Γ = Γ̂
−1/2

c Γ̂ Γ̂
−1/2

c ) as R̃ in Eq. (8.55), we
can derive the formula to estimate Dp such that

D̂p = Γ̂
1/2

c ĤSĤ
H

S ( ̂̃Γ − I)Γ̂
1/2

c , (8.56)

where ĤS = [ĥ1, . . . , ĥQp
] is a matrix containing the Qp signal-level eigenvectors

of ̂̃Γ . We can estimate Dn by changing the role of Γ̂ and Γ̂ c. That is, we first

calculate ̂̃Γ c such that ̂̃Γ c = Γ̂
−1/2

Γ̂ cΓ̂
−1/2

, and then obtain an estimate of Dn

using

D̂n = Γ̂
1/2

Ĥ
c

S(Ĥ
c

S)H( ̂̃Γ c − I)Γ̂
1/2

. (8.57)

In the equation above, Ĥ
c

S is defined as Ĥ
c

S = [ĥ
c

1, . . . , ĥ
c

Qn
], which is a matrix

containing the Qn (where Qn = Q−Qp) signal-level eigenvectors of ̂̃Γ c. Here, the
prewhitening method, in which the roles of Γ̂ and Γ̂ c are reversed, is referred to
as the “flipped” prewhitening method. Therefore, the sources that are stronger in
the task state than in the control state can be reconstructed using

〈ŝp(r, Fw)2〉 =
1

lT (r)(D̂p(Fw) + εI)−1l(r)
. (8.58)
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The sources that are stronger in the control state than in the task state can be
reconstructed using the flipped prewhitening method, i.e.,

〈ŝn(r, Fw)2〉 =
1

lT (r)(D̂n(Fw) + εI)−1l(r)
. (8.59)

(a)

(b)

Figure 8.3: (a) Time courses of the three sources assumed for the numerical ex-
periments. The time courses in the panels from top to bottom were assigned to
the first to third sources, respectively. (b) Generated magnetic recordings ob-
tained when no background sources exist (upper panel), and when one-hundred
background sources exist (lower panel).

8.5 Numerical examples

Numerical experiments were performed to illustrate the results of our arguments
on the prewhitening spatial filter. The same source-sensor configuration and the
coordinate system as illustrated in Fig. 4.2 are again used except the third source
location was set to (0, 1.2,−6.4) cm. The time courses assigned to the three sources
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are shown in Fig. 8.3(a). They are basically the same as those in Fig. 4.3(a),
but they have a prestimulus period, and the third source is active throughout
both the pre- and post-stimulus periods. The simulated sensor recordings are
calculated from −300 ms to 300 ms with the sampling frequency assumed to equal
16 kHz. This results in a total 2400 time points in the whole recordings between
−300 ms to 300 ms. The data portion between −300 ms and 0 ms is considered
the prestimulus (control) period, and that between 0 ms and 300 ms the post-
stimulus (task) period. A small amount of white Gaussian noise to simulate the
sensor noise is added to the generated recordings, resulting in the total input SNR
(αT = α1 + α2 + α3) equal to 16. The generated sensor recordings, bs(t) + n(t),
are shown in the upper panel of Fig. 8.3(b). We then generated the simulated
background interference, bI(t). We used one hundred background sources with
random locations and random orientations. Each of these isotropic interference
sources has a random incoherent time course. The background interference, bI(t),
is added to bs(t) + n(t) and the resultant simulated sensor data, b(t), are shown
in the lower panel of Fig. 8.3(b). Here the resultant interference-to-signal ratio
〈bs(t)2〉/〈bI(t)2〉 was set to 2.

The conventional eigenspace spatial filter was first applied to these two sets of
simulated recordings in Fig. 8.3(b). The sample covariance matrix was calculated
using the post-stimulus period with 1200 time points, and then the source-power
reconstruction 〈ŝ(r, t)2〉 was obtained. Figure 8.4(a) shows the results for the case
with no background interference, and Figure 8.4(b) shows the results for the case
with background interference present. Here, the comparison between these two
sets of results again confirms that background interference causes a severe blur in
the reconstruction results.

We then applied the prewhitening spatial filter in Eq. (8.28) to the data
with the background interference. The results are shown in Fig. 8.4(c). In this
application, Ri+n is obtained using the whole pre-stimulus period, and the signal
subspace dimension Q was set to 2. In the results in Fig. 8.4(c), the blur due to
the background activity is significantly reduced relative to the results shown in
Fig. 8.4(b). Also, the third source is not reconstructed because it was also active
during the prestimulus period. These results clearly demonstrate the effectiveness
of the proposed spatial filter. Figure 8.5 shows the reconstructed time courses
of the three sources. In the conventional reconstruction in (b), the reconstructed
time course of the second source shows some influence from the third source. In
other words, there is leakage between the second and the third source time course
estimates. In the prewhitening reconstruction in (c), the influence of the third
source on the second source time course is removed.

Next, we tested the robustness of the prewhitening method when the signal-
subspace dimension, Q, is overestimated. The power reconstruction obtained with
Q set to 5 is shown in Fig. 8.4(d). The time-course estimate obtained with Q set
to 5 is shown in Fig. 8.5(d). In these results, despite the fact that Q is significantly
overestimated, the first and second sources are successfully reconstructed. Here,
the overestimation causes only a slight increase of the spatial blur and a slight
decrease of the output SNR.
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Figure 8.4: Results of the power reconstruction, 〈ŝ(r, t)2〉. (a) Conventional
eigenspace spatial filter was applied to the recordings with no background interfer-
ence. (b) Conventional eigenspace spatial filter was applied to the recordings with
background interference. (c) Prewhitening spatial filter (Eq. (8.28)) was applied
to the recordings with background interference. The signal subspace dimension
Q was set to 2. (d) Prewhitening spatial filter (Eq. (8.28)) was applied to the
recordings with background interference. The signal subspace dimension Q was
set to 5.

Numerical examples are presented for imaging induced activities. In this ex-
periment, we used the sensor alignment of the 275-sensor array from the OmegaTM

(VMS Medtech, Coquitlam, Canada) neuromagnetometer. This was because this
experiment called for real, spontaneous MEG data from this system. Three sources
were assumed to exist on a single plane (x = 0 cm), and their (y, z) coordinates
were (−2.1, 9.5) cm, (2.6, 10.5) cm, and (1.4, 7.5) cm, respectively. The sphere
origin was set to (0, 0, 4) cm. The sources and the coordinate system used in this
experiment are shown schematically in Fig. 8.6. The powers of the three sources
were set equal in the sensor-domain, i.e., σ2

1‖l(r1)‖2 = σ2
2‖l(r2)‖2 = σ2

3‖l(r3)‖2,
where rj , σ2

j , and l(rj) are the location, power, and lead-field vector of the jth
source, respectively.

Multi-epoch measurements were simulated. Each epoch consists of two sets
of data: the task and the control data sets. Uncorrelated sinusoidal time courses
for the three sources were assumed, and the frequency was set to 10 Hz for the first
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Figure 8.5: Results of the reconstructed time courses at the three source locations.
(a) Conventional eigenspace spatial filter was applied to the recordings with no
background interference. (b) Conventional eigenspace spatial filter was applied
to the recordings with background interference. (c) Prewhitening spatial filter
(Eq. (8.36)) was applied to the recordings with background interference. The
signal subspace dimension was set to 2. (d) Prewhitening spatial filter (Eq. (8.36))
was applied. The signal subspace dimension Q was set to 5.

source, 16 Hz for the second source, and 28 Hz for the third source. The power
spectra of these three source time courses are shown in Fig. 8.7. These sinusoidal
time courses have phase offsets that were generated using a uniformly-distributed
random number between 0 and 2π and different random numbers were used across
sources, epochs, and the two conditions. We therefore simulate induced source
activities, which are elicited by the stimulus but not phase-locked to it. Real,
spontaneous MEG was used as interference, and the signal-to-interference ratio
(SIR) was set to 0.3. The intensity of the first source was decreased by 30% from
the control to the task conditions, while the intensity of the second source was
increased by 30% from the control to the task conditions. The intensity of the
third source remained the same between the two conditions.

The results of the source reconstruction experiments are shown in Fig. 8.8.
Here we selected the frequency window between 8 and 18 Hz (shown by the vertical
broken lines in Fig. 8.7), which does not contain the activity of the third source.
The sample cross-spectral matrices are computed using the frequency components
in this frequency window. In the pseudo-F image in Fig. 8.8 (a), the second source
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Figure 8.6: The geometry of the computer simulation used for imaging induced
activities. Note that, because the subject-specific head coordinate system is used,
the z values of the sources are significantly different from the z values used in the
numerical experiments in the previous chapters.

forms a positive peak, and the first source forms a negative peak. Although these
peaks are slightly blurred, the pseudo-F image detects these two sources. Next,
the methods of prewhitening and flipped prewhitening source reconstruction were
applied, and the results are shown in Fig. 8.8 (b) and (c), respectively. In these
results, the first and the second sources form clear peaks at the correct locations
of these sources.
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Figure 8.7: Power spectra of the time courses of the first source(top), the second
source(middle), and the third source(bottom). The vertical broken lines indicate
the frequency window between 8 and 18 Hz.
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Figure 8.8: Results of the source reconstruction experiments. (a) Results of the
F -image method. (b) Results of the prewhitening spatial filter. (c) Results of the
flipped prewhitening spatial filter.
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Chapter 9

Effects of source correlation

As discussed in Section 4.2, one of the fundamental assumptions of the adaptive
spatial filter formulation is that source activities are uncorrelated. However, brain
sources are inevitably correlated to some degree, and in a strict sense, the above
assumption cannot be satisfied. This chapter investigates the influence of tempo-
rally correlated sources on adaptive-spatial-filter source imaging. We discuss how
the source correlation affects the output of the spatial filter, and how robust the
adaptive spatial filter is to source correlation. We also present the LCMV spatial
filter, which can reduce the influence of the source correlation by imposing null
sensitivity over an extended region in which correlated interference exists. Finally,
we briefly describe the source-coherence imaging, which can provide mapping of
the functional connectivity between different brain regions.

9.1 Performance of adaptive spatial filters in the
presence of correlated sources

Let us assume that a total of Q sources exist at r1, r2, . . . , rQ, and denote their
time courses as s(r1, t), s(r2, t), . . . , s(rQ, t). If these Q sources are uncorrelated,
the blocking capability of the minimum-variance spatial filters is expressed as

wT (rp)l(rq) = τδp,q, (9.1)

where τ is a constant that is determined by the constraint, as discussed in
Eq. (4.27). In general cases where partially correlated sources exist, the block-
ing capability of the spatial filter weight is expressed as

wT (rp)l(rq) = τ
[R−1

ν ]p,q

[R−1
ν ]p,p

, (9.2)

where Rν indicates the source covariance matrix defined in Eq. (2.35) and [R−1
ν ]p,q

indicates the (p, q) element of R−1
ν . Equation (9.2), derived in Section 4.2.2, is
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the basis of the analysis in this chapter. In the following discussion, we assume
for simplicity that the unit-gain minimum-variance filter is used and τ is set to 1.
It is easy to extend the discussion to cases where τ has other values.

We assume that a target source exists at rp and that the QI sources are cor-
related with the target source. (A total of QI +1 sources are mutually correlated.)
The spatial filter output ŝ(rp, t), is expressed as[56]

ŝ(rp, t) = s(rp, t) +
QI∑
q=1

[R−1
ν ]p,q

[R−1
ν ]p,p

s(rq, t), (9.3)

where the locations of the correlated interferences are denoted rq (q = 1, . . . , QI).
This equation shows that the spatial filter outputs for the correlated sources con-
tain leakage from the other correlated sources, and such leakage causes errors in
the time-course estimates of the source activities.

We consider a simple case where QI = 1. That is, among Q sources, the first
and the second sources are correlated and the other sources have no correlation
with any other sources. We define the correlation coefficient between the first and
second sources as μ, and the average power of the first and the second sources as
σ2

1 and σ2
2 , respectively. The source covariance matrix can then be expressed as

Rν =

⎡
⎢⎢⎢⎢⎢⎢⎣

[
σ2

1 μσ1σ2

μσ1σ2 σ2
2

]
0 · · · 0

0 σ2
3 ·

...
... · . . . 0
0 · · · 0 σ2

Q

⎤
⎥⎥⎥⎥⎥⎥⎦

, (9.4)

and its inverse R−1
ν is expressed as

R−1
ν =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
σ2
1σ2

2(1−μ2)

[
σ2

2 −μσ1σ2

−μσ1σ2 σ2
1

]
0 · · · 0

0 1/σ2
3 ·

...
... · . . . 0
0 · · · 0 1/σ2

Q

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9.5)

Using Eqs. (9.2) and (9.5), we can derive

w(r1)l(r1)=1, w(r1)l(r2) = −σ1

σ2
μ

w(r2)l(r1)= − σ2

σ1
μ, w(r2)l(r2) = 1, (9.6)

and
w(r1)l(rq) = 0, w(r2)l(rq) = 0, for q = 3, . . . , Q. (9.7)

Therefore, when the spatial filter is pointing at the first source location r1, it
passes the signal from the second source with the gain of −σ1μ/σ2, while blocking
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the signals from the other sources uncorrelated with the first source. Consequently,
the spatial filter output at r1, ŝ(r1, t), is given by:

ŝ(r1, t) = s(r1, t) − (
σ1

σ2
μ)s(r2, t). (9.8)

In exactly the same manner, the spatial filter output at r2, ŝ(r2, t), is given by:

ŝ(r2, t) = s(r2, t) − (
σ2

σ1
μ)s(r1, t). (9.9)

These equations explicitly show that the spatial filter output for the first source
contains leakage from the second source and that the output for the second source
contains the leakage from the first source. Equations (9.8) and (9.9) are valid
for high SNR, but they still hold for considerably lower SNR, as is shown in our
numerical experiments.

9.2 Signal cancellation and estimation of source
correlation

Leakage from correlated activities not only causes errors in the time-course esti-
mate but also causes intensity reduction of the reconstructed sources as shown
below. Using Eqs. (9.8) and (9.9) with the relationship

〈s(r1, t)s(r2, t)〉 = μσ1σ2,

we obtain

〈ŝ(r1, t)2〉=σ2
1(1 − μ2), (9.10)

〈ŝ(r2, t)2〉=σ2
2(1 − μ2), (9.11)

and
〈ŝ(r1, t)ŝ(r2, t)〉 = σ1σ2(μ3 − μ). (9.12)

Equations (9.10) and (9.11) indicate that the power of the reconstructed sources
is reduced by a factor of 1−μ2. This reduction of reconstructed source power due
to the source correlation is known as signal cancellation[57][58].

Let us estimate the magnitude of correlation coefficient using the spatial
filter outputs. The estimated correlation coefficient between the first and second
sources is denoted μ̂, which is given by:

μ̂ =
〈ŝ(r1, t)ŝ(r2, t)〉√
〈ŝ(r1, t)2〉〈ŝ(r2, t)2〉

. (9.13)

Substituting Eqs. (9.12), (9.10) and (9.11) into Eq. (9.13), we finally obtain

|μ̂| =
|σ1σ2(μ3 − μ)|√

σ2
1(1 − μ2)σ2

2(1 − μ2)
= |μ|. (9.14)
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This equation indicates that the correlation coefficient magnitude can be accu-
rately estimated by directly using the spatial filter outputs with Eq. (9.13). This
is somewhat surprising because the adaptive spatial filter assumes that the source
activities are uncorrelated, so we intuitively think that the output is erroneous if
the sources are correlated. However, in the calculation of the correlation coeffi-
cient, these errors cancel, and the correct (magnitude) correlation coefficient can
be retrieved. It should be noted that the above analysis is valid only when two
sources are correlated.

If a third correlated source exists, the accuracy of the estimated correlation
coefficient is affected by this source. This influence can be evaluated in the fol-
lowing manner. We assume that the first, second, and third sources are mutually
correlated, and that their correlation coefficients are denoted μ12, μ13, and μ23.
We further assume that the correlation between the first and second sources is the
target of the measurement, and that the third source is interference. According to
Eq. (9.3), denoting the location of the third source as r3, the spatial filter outputs
at the target source locations r1 and r2 are given by

ŝ(r1, t) =
1

[R̄−1
ν ]1,1

[
[R̄−1

ν ]1,1s(r1, t) + [R̄−1
ν ]1,2s(r2, t) + [R̄−1

ν ]1,3s(r3, t)
]
,

(9.15)
and

ŝ(r2, t) =
1

[R̄−1
ν ]2,2

[
[R̄−1

ν ]2,1s(r1, t) + [R̄−1
ν ]2,2s(r2, t) + [R̄−1

ν ]2,3s(r3, t)
]
,

(9.16)
where the matrix R̄ν is the part of the source covariance matrix that is related to
these three sources. This submatrix is given by

R̄ν =

⎡
⎣

σ2
1 μ12σ1σ2 μ13σ1σ3

μ12σ1σ2 σ2
2 μ23σ2σ3

μ13σ1σ3 μ23σ2σ3 σ2
3

⎤
⎦ , (9.17)

and, its inverse is expressed as

R̄
−1
ν =

1

|R̄ν |

⎡
⎣

σ2
2σ2

3(1 − μ2
23) σ1σ2σ

2
3(μ13μ23 − μ12) σ1σ

2
2σ3(μ12μ23 − μ13)

σ1σ2σ
2
3(μ13μ23 − μ12) σ2

1σ2
3(1 − μ2

13) σ2
1σ2σ3(μ12μ13 − μ23)

σ1σ
2
2σ3(μ12μ23 − μ13) σ2

1σ2σ3(μ12μ13 − μ23) σ2
1σ2

2(1 − μ2
12)

⎤
⎦ ,

(9.18)

where |R̄ν | is the determinant of R̄ν expressed as

|R̄ν | = σ2
1σ2

2σ2
3(1 − μ2

12 − μ2
13 − μ2

23 + 2μ12μ13μ23). (9.19)

Using Eqs. (9.13), (9.15), (9.16), and (9.18), we finally obtain

|μ̂12| =
|μ12 − μ13μ23|√

(1 − μ2
13)(1 − μ2

23)
. (9.20)

This equation shows how the values of μ13 and μ23 affect μ̂12. Clearly, when μ13

and μ23 are small, μ̂12 is close to |μ12|.
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9.3 Suppression of coherent interferences using
the LCMV spatial filter

9.3.1 Weight-vector derivation

As described in Section 4.4, the LCMV spatial filter was originally developed to
suppress the influence of highly correlated interferences. The LCMV spatial filter
is based on the assumption that the locations of the coherent interferences are
known. Let us denote the locations of coherent interferences r1, . . . , rd. If these
locations are accurately known, Eq. (4.49) gives a weight vector that sets the null
sensitivity over these locations. As a result, the spatial filter outputs are free
from the leakage that normally occurs when the sources are correlated. In actual
applications, however, it is unlikely that we will accurately know the locations of
the coherent interferences. Instead, it may be possible to know the approximate
locations or some extended region in which coherent interferences could exist.
Thus, Equation (4.49) needs to be extended to set the null sensitivity over such
an extended region.

This extension can be performed in the following brute-force manner. Let us
define ΩR to be the local region in which the coherent interference sources exist.
Then, we divide ΩR into a total of J voxels whose distances should be comparable
to the spatial resolution of the spatial filter. Let us define the locations of these
voxels as

rΩ1 , rΩ2 , . . . , rΩJ
,

and also define an M × 3J matrix CΩ such that

CΩ = [L(rΩ1),L(rΩ2), . . . ,L(rΩJ
)]. (9.21)

Then, using Eq. (4.49) the weight vector of the LCMV spatial filter is obtained
using

w(r) = arg min
w(r)

wT (r)Rw(r), subject to lT (r)w(r) = 1,

and CT
Ωw(r) =

⎡
⎢⎣

0
...
0

⎤
⎥⎦ .

(9.22)

Defining an M × (3J + 1) matrix C such that

C = [l(r),CΩ],

and a (3J + 1) × 1 column vector c such that

c =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ , (9.23)

149



the resultant weight vector can be expressed as

w(r) = R−1C[CT R−1C]−1c. (9.24)

In the weight equation described above, the number of voxels J can be large.
However, using a large value for J generally consumes degrees of freedom, defined
as M − 3J − 1[7]. That is, if a large value of J is used, the degree of freedom,
which needs to be sufficiently large in order to formulate the weight vector, ap-
proaches zero, and if the degree of freedom is nearly zero, the matrix [CT R−1C]
becomes close to a singular matrix and calculation of its inverse becomes error-
prone. Therefore, the weight should be derived from a smaller number of con-
straints, which still maintain the null sensitivity over ΩR. Such a weight can be
derived in the following manner[59].

We first apply the singular-value decomposition to CΩ, i.e.,

CΩ = [x1, . . . ,xM ]

⎡
⎢⎢⎢⎣

ϕ1 · · · · 0
0 ϕ2 · · · 0
... · . . . 0
0 · · · · ϕM

⎤
⎥⎥⎥⎦ [y1, . . . ,yM ]T , (9.25)

where we assume that the number of sensors M is smaller than 3J . In the above
equation, xj is an M × 1 singular vector, yj is a 3J × 1 singular vector, and ϕj is
the jth singular value. (The singular values are ordered in a decreasing manner.)
We then assume that the first D singular values are large compared to the other
singular values. Defining ΛD as a diagonal matrix that contains the largest D
singular values in its diagonal elements, we get the relationship

CΩ ≈ [x1, . . . ,xD]ΛD[y1, . . . ,yD]T . (9.26)

Thus, combining Eq. (9.26) with the constraint equation CT
Ωw(r) = 0 leads to

[y1, . . . ,yD]ΛD[x1, . . . ,xD]T w(r) ≈ CT
Ωw(r) = 0. (9.27)

Thus, we obtain the relationship

[x1, . . . ,xD]T w(r) ≈ 0. (9.28)

In the above equation, the number of relatively large singular values, D, is gen-
erally much smaller than 3J . The resultant LCMV spatial filter weight vector is
expressed as

w(r) = R−1C[CT R−1C]−1c, (9.29)

where C is an M × (D + 1) matrix, such that

C = [l(r),x1, . . . ,xD],
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and c is a (D + 1) × 1 column vector, such that

c =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ .

The question here is: how can we determine D, the threshold for truncating
the singular values? The discussion above regarding the degrees of freedom requires
that D should be as small as possible. On the other hand, the truncated SVD
matrix in Eq. (9.26) must approximate the matrix CΩ. Let us denote the error of
this approximation εD, which is given by:

εD = ‖CΩ − [x1, . . . ,xD]ΛD[y1, . . . ,yD]T ‖2 =
M∑

j=D+1

ϕ2
j . (9.30)

The above equation indicates that small values of D should increase the approx-
imation error. To reduce this error, a larger D should be used. Therefore, we
should compromise between the amount of εD and the degree of freedom. Un-
fortunately, there is no rigorous method for this determination and the optimal
D should be empirically determined. In addition, to determine the optimal D, a
condition for the eigenspace projection described in the next section should also
be taken into consideration.

9.3.2 Extension to eigenspace-projected spatial filter

The eigenspace projection described in Section 6.8 cannot be directly applied to
the weight of the LCMV spatial filter in Eq. (9.29). This is because the null
constraint,

wT (r)[x1, . . . ,xD] = 0 (9.31)

is not preserved through the eigenspace projection. In Section 6.8, we discuss that
the eigenspace-projection spatial filter uses the signal-subspace component of the
weight vector obtained by ESET

Sw(r), where ES = [e1, . . . ,eQ] and e1, . . . ,eQ are
the signal-level eigenvectors of the measurement covariance matrix R. However,
multiplying the projection operator by the LCMV weight vector in Eq. (9.29) gives

(ESET
Sw(r))T [x1, . . . ,xD] = wT (r)ESET

S [x1, . . . ,xD], (9.32)

and since the column vectors, x1, . . . ,xD, are not necessarily contained in the
signal subspace of R, multiplying ESET

S to x1, . . . ,xD changes these vectors. As
a result, we have

wT (r)ESET
S [x1, . . . ,xD] �= 0.

That is, applying the signal-subspace projector ESET
S does not preserve the null

constraints.
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One way to solve this problem is to define a modified signal subspace that also
contains the subspace spanned by the column vectors x1, . . . ,xD. We then use the
projector onto this modified signal subspace to derive the eigenspace-projection
spatial filter[49]. The modified signal subspace is defined as a column span of a
matrix,

ĒS = [e1, . . . ,eQ, x̄1, . . . , x̄D], (9.33)

where the column vectors x̄1, . . . , x̄D are obtained by applying the Gram-Schmidt
orthogonalization onto the column vectors e1, . . . ,eQ,x1, . . . ,xD. Therefore, the
column vectors of ĒS form an orthonormal basis. The application of the projection
operator ĒSĒ

T
S onto the LCMV weight vector results in

[ĒSĒ
T
Sw(r)]T [x1, . . . ,xD]

= wT (r)ĒSĒ
T
S [x1, . . . ,xD] = wT (r)[x1, . . . ,xD] = 0, (9.34)

because the vectors, x1, . . . ,xD, lie in the column span of ĒS . Thus, the weight
vector of this modified eigenspace LCMV spatial filter preserves the null con-
straints. However, note that the dimensions of the modified signal subspace ĒS are
greater than the dimensions of the true signal subspace. (The difference between
the dimensions of the two subspaces is equal to D.) As discussed in Eq. (6.86),
this overestimation of the signal subspace dimension reduces the noise-reduction
capability of the eigenspace projection. Therefore, there is also a trade-off between
the value of D and the noise-reduction capability of eigenspace projection.

9.4 Imaging magnitude source coherence

There is a growing interest in imaging the coherence of brain activity, because
the source coherence is considered a reliable measure of functional connectivity
between different brain regions [60][61][62][63][64][65]. In this section, we first
show that the magnitude coherence in the frequency domain is estimated by the
direct use of the outputs from the frequency-domain minimum-variance spatial
filter. We define the Fourier spectrum of the source time course, s(r, t), as s(r, f),
and its estimated value as ŝ(r, f). Then, when the first and second sources have
a coherence value ρ(f) at frequency f , we obtain the relationships

ŝ(r1, f) = s(r1, f) −
[
σ1(f)
σ2(f)

ρ(f)
]

s(r2, f), (9.35)

and ŝ(r2, f) = s(r2, f) −
[
σ2(f)
σ1(f)

ρ(f)
]

s(r1, f), (9.36)

where σ2
q (f) is the power spectrum of the qth source at f , i.e.,

σ2
q (f) = 〈|s(rq, f)|2〉.
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Figure 9.1: Results of the square-root of the power reconstruction,
√

〈ŝ(r, t)2〉,
obtained using the array-gain minimum-variance spatial filter. The total input
SNR (αT ) is equal to 16M ; (a) μ = 0.08; (b) μ = 0.5; (c) μ = 0.6; (d) μ = 0.7; (e)
μ = 0.8; and (f) μ = 0.95, where μ is the cross-correlation coefficient between the
first- and the second-source time courses.

Then, substituting Eqs. (9.35) and (9.36) into

ρ̂(f) =
〈ŝ(r1, f)ŝH(r2, f)〉√

〈|ŝ(r1, f)|2〉〈|ŝ(r2, f)|2〉
, (9.37)

leads to

|ρ̂| =
|σ1σ2(ρ3 − ρ)|√

σ2
1(1 − ρ2)σ2

2(1 − ρ2)
= |ρ|, (9.38)

where ρ̂ is the estimated coherence, and we omit the explicit notation of (f).
Here, the superscript H indicates the Hermitian transpose. Equation (9.38) indi-
cates that an accurate estimation of the coherence magnitude can be obtained by
substituting the outputs of the minimum-variance spatial filter into Eq. (9.37).

One problem in estimating the coherence is that the interference contained
in the measurement is passed through the spatial-filter reconstruction process and
gives a pseudo-coherence. This can be understood in the following manner. Let
g(f), gs(f), and gI(f) be the measurement, signal, and interference in the fre-
quency domain, respectively. Then, g(f) is expressed as

g(f) = gs(f) + gI(f), (9.39)
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where we ignore the sensor noise. Considering the relationship

ŝ(ri, f) = wH(ri, f)g(f) = wH(ri, f)(gs(f) + gI(f)),

the cross product in the numerator on the right-hand side of Eq. (9.37) is expressed
as

〈ŝ(r1, f)ŝH(r2, f)〉 = wH(ri, f)〈gs(f)gH
s (f)〉w(rj , f)

+ wH(ri, f)〈gI(f)gH
I (f)〉w(rj , f), (9.40)

where we assume that the brain signal gs(f) and the interference gI(f) are incoher-
ent, i.e., that 〈gs(f)gH

I (f)〉 = 0. In Eq. (9.40), the second term on the right-hand
side shows the pseudo-correlation caused by the interference. If the interference
is region-specific (such as the interference caused by eye blinks), the spatial fil-
ter may separate out this pseudo-term from the true coherence (the first term).
However, since most of the background interferences are non-region-specific, the
pseudo-coherence should also be non-region-specific and it may complicate the
interpretation of the final coherence imaging results.

Nolte et al. proposed using only the imaginary part of the coherence to
avoid this problem[66], because the pseudo-coherence is real valued, and the non-
zero imaginary part of the coherence is caused solely from true interactions among
brain activities. The rationale can be understood in the following manner. De-
noting μ(r, f) the Fourier spectrum of the background source activity, μ(r, t), the
interference term gI(f) can be expressed as,

gI(f) =
∑

j

μ(rj , f)l(rj), (9.41)

where the background sources are represented by discrete independent sources and
j is the index for these sources. Then, the cross product in the second term on
the right-hand side of Eq. (9.40) is expressed as

〈gI(f)gH
I (f)〉 =

∑
j

∑
j′

〈μ(rj , f)μ∗(rj′ , f)〉l(rj)lT (rj′)

=
∑

j

< |μ(rj , f)|2 > l(rj)lT (rj), (9.42)

where the asterisk ∗ indicates the complex conjugate, and the relationship in
Eq. (8.6) is assumed. The above equation shows that 〈gI(f)gH

I (f)〉 is real-valued.
On the other hand, using

gs(f) =
Q∑

q=1

s(rq, f)l(rq),

the cross product in the first term on the right-hand side of Eq. (9.40) is expressed
as

〈gs(f)gH
s (f)〉 =

Q∑
q=1

Q∑
q′=1

〈s(rq, f)s∗(rq′ , f)〉l(rq)lT (rq′) (9.43)
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Because there are source interactions, the product 〈s(rq, f)s∗(rq′ , f)〉 can have a
non-zero value, and thus the first term on the right-hand side of Eq. (9.40) has both
real and imaginary parts. Therefore, the imaginary part of the observed coherence
is only caused only by 〈s(rq, f)s∗(rq′ , f)〉, which is the true brain interaction, but
the real part contains not only the coherence from 〈s(rq, f)s∗(rq′ , f)〉 but also the
pseudo-coherence caused by the interference.

In actual implementation, the computation of the magnitude source coher-
ence between the ith voxel and the jth voxel, ρ̂i,j , is carried out based on Eq. (9.37),
i.e.,

ρ̂i,j =
|
∑

ke
ŝ(ri, f)ŝH(rj , f)|√∑

ke
|ŝ(ri, f)|2

∑
ke

|ŝ(rj , f)|2
. (9.44)

Here, the summation above is carried out over multiple trials and ke is the trial
index. If the data are single-trial data, the whole measurement time course is di-
vided into multiple segments and the summation is performed over these segments.
Guggisberg et al. proposed[62] to average the imaginary coherence over all voxel
connections. That is, they propose to calculate the mean imaginary coherence at
the ith voxel, υi, using

υi = tanh

⎛
⎝ 1

N

N∑
j=1

tanh−1(IM{ρ̂i,j})

⎞
⎠ , (9.45)

where IM{·} indicates the imaginary part of the quantity in the curly braces,
and the imaginary coherence is averaged in the Fisher’s Z-transformed domain.
There is strong evidence that this mean imaginary coherence can detect decreased
connectivity among cortical neurons, and can provide useful clinical information
on pathological brain regions of patients with brain lesions[62]. One example of
this imaginary coherence imaging is presented in Fig. 1.2.

9.5 Numerical examples

Numerical examples are presented to illustrate the results of the arguments in
this chapter. We use the same computer-simulation as in Section 4.7. The time
courses shown in Fig. 4.3(a) are denoted s1(t), s2(t), and s3(t) from the top to the
bottom, respectively. The correlation coefficients are 8 × 10−2 between s1(t) and
s2(t), 2× 10−4 between s1(t) and s3(t), and 4× 10−3 between s2(t) and s3(t). We
assign s2(t) and s3(t) to the time courses of the second and the third sources. The
new time course calculated using

s′1(t) = (1 − ω)s1(t) + ωs2(t), (9.46)

is assigned to the first source where parameter ω controls the degree of correlation
between s′1(t) and s2(t). The simulated MEG recordings are calculated at 400
time points, and the sampling interval is assumed to be 1 ms. The powers of the
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three sources were set in order for their input SNR to be equal, and the total
input SNR αT (= α1 + α2 + α3) was set to 16M . We first investigate the effects
of the signal cancellation caused by source correlation. We generate six data sets
with the correlation coefficients between the first and second sources, μ, of 0.08,
0.5, 0.6, 0.7, 0.8, and 0.95. The results of square root of the power reconstruction
for the six values of μ are shown in Fig. 9.1. Here, the array-gain-constraint
minimum-variance spatial filter was used. These results show that, compared to
the intensity of the third source, the intensities of the first and second sources
are reduced according to their degree of correlation, thus demonstrating the signal
cancellation phenomenon.
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Figure 9.2: The relative intensity of the first source with respect to the correlation
between the first and second sources. The broken line indicates the theoretical
relationship

√
1 − μ2. In these Monte Carlo simulations, the mean intensity of the

first source is calculated from 100 Monte Carlo results. The error bars indicate a
range of ±2 standard deviations. The total input SNR, αT , is set to 4M .

This intensity reduction is theoretically predicted in Eqs. (9.10) and (9.11),
which indicate that the intensities of the reconstructed sources are reduced by
a factor of

√
(1 − μ2). Monte Carlo-type experiments are performed to check

whether the reconstructed signal intensity changes according to
√

(1 − μ2) even
when SNR is quite low. One hundred sets of simulated magnetic recordings are
generated with the same SNR but with different noise realizations for ten different
values of μ. The mean reconstructed intensity of the first source is plotted in
Fig. 9.2. The total input SNR αT is set to 4M . The theoretical trend

√
(1 − μ2) is

plotted with the broken line, and the error bars represent the range of ±2 standard
deviations of the Monte Carlo results. In Fig. 9.2, although a small discrepancy
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is observed when μ approaches 1, the theoretical trend (the broken line) generally
overlaps with the plots from the Monte Carlo experiments, indicating that the
theoretical relationship holds well, even in such low SNR situation as αT /M equal
to 4.
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Figure 9.3: Estimated correlation coefficient between the first and second sources.
Monte Carlo simulations, which generated 100 sets of simulated MEG recordings,
are performed for the five cases of αT , i.e., αT = 3, 4, 6, 8 and 16. The average
values of μ̂ across 100 Monte Carlo results are plotted. The experiments are
performed for the two cases of μ: μ = 0.5 and μ = 0.8. The abscissa is expressed
as αT /M . The error bar shows the range of ±2 standard deviations.

According to the trend
√

(1 − μ2), the intensity reduction is less than twenty
percent, unless the correlation coefficient exceeds 0.6. Likewise, sixty percent of
the original source intensity is still maintained when the correlation reaches 0.8.
Therefore, as far as the signal cancellation is concerned, no serious influences arise
from sources with weak or medium degrees of correlation (μ ≤ 0.6). That is, there
is no large difference between the reconstructed sources when μ = 0 (Fig. 9.1(a))
and μ = 0.6 (Fig. 9.1(c)).

The correlation coefficient between the first and second sources is estimated
from Eq. (9.13) using spatial filter outputs ŝ(r1, t) and ŝ(r2, t). To investigate
the influence of noise on the accuracy of the estimated correlation coefficient, we
estimate the correlation coefficient between the reconstructed time courses of the
first and second sources by averaging the correlation coefficients from one hundred
Monte Carlo trials, where each trial uses simulated magnetic recordings having a
specified SNR and a unique noise realization. Such experiments are repeated for
five values of the total input SNR (αT ), and the results are plotted in Fig. 9.3 for
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Figure 9.4: Time course outputs for the three sources when αT = 4M and (a)
μ = 0.08, (b) μ = 0.4, (c) μ = 0.6, and (d) μ = 0.8, where μ is the correlation
coefficient between the first and second source time courses. The solid lines indicate
the spatial filter outputs and the broken lines indicate the true time courses. The
eigenspace-projection array-gain minimum-variance spatial filter was used with
the signal subspace dimension Q set to 3.

the correlation coefficients μ equal to 0.5 and 0.8. In this figure, the error bars
show the range of ±2 standard deviations. This plot shows that the influence
of the noise on the estimated correlation coefficient is generally very small. The
estimated correlation coefficient is biased so that the average of the estimates is
slightly smaller than the true value when αT equals three. However, this bias is
small and is less than 5% for the whole SNR range used in the experiments.

Reconstructed time courses of the three sources are shown in Fig. 9.4. The
total input SNR (αT ) was set to 4M in this experiment. The results in (a), (b),
(c), and (d) respectively correspond to the cases of μ = 0.08, μ = 0.4, μ = 0.6, and
μ = 0.8. The solid lines indicate the spatial filter outputs, and the broken lines
indicate the original time courses assumed in the computer simulation. When
μ is small, the original time courses can be retrieved as spatial filter outputs.
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However, as μ increases, the difference between the reconstructed and true time
courses becomes large because of the interference from the other correlated source.
This time-course distortion due to leakage is evident when μ = 0.6 and μ = 0.8;
but it is also discernible when μ = 0.4.

We next present an example of the scenario where a third correlated source
exists, and check how the accuracy of the estimated correlation coefficient is af-
fected by this source. This influence can be evaluated using Eq. (9.20). When
μ13 ≈ μ23, this equation can be further simplified to

μ̂12 =
|μ12 − μ2

I |
(1 − μ2

I)
, (9.47)

where μ̂12 is the estimate of the correlation coefficient between the target sources,
and μI (= μ13 = μ23) is the correlation between one of the target sources (the first
or second sources) and the interference source (the third source). This equation
is plotted for the three values of the target correlation, μ12, in Fig. 9.5. The
figure shows that even when an additional correlated source exists, the error due
to this interference is less than ten percent, unless μI exceeds eighty percent of
μ12. Therefore, it is generally true that if the correlation between the interference
source and either target source is not as strong as the correlation between the target
sources, a reasonably accurate estimate of the target-source correlation coefficient
can be obtained.
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Figure 9.5: Effects of a third correlated source on the estimated target correlation
coefficient μ̂12. Dotted, broken, and solid lines correspond to the estimate, μ̂12,
when μ12 = 0.8, μ12 = 0.7, and μ12 = 0.6, respectively where μ12 is the true
correlation coefficient.
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We next perform numerical experiments for coherent interference suppres-
sion as described in Section 9.3. We assumed three sources exist at (0,−1.7,−6),
(0, 1.7,−6), and (0, 1.6,−7.2) on the plane x = 0, and assigned the three time
courses shown in Fig. 4.3(a) to the three sources. The power reconstruction ob-
tained using the array-gain constraint minimum-variance spatial filter is shown
in Fig. 9.6(a). Here, we set the SNR αT to 16M . We then assumed that the
first source located in the left-hand region is an interference and the second and
the third sources located in the right-hand region are the sources of interest, and
only the right-hand region is reconstructed. The reconstruction results, with and
without imposing null-sensitivity, are shown in Fig. 9.6(b)–(d).

The results of the source reconstruction when the first and the second sources
are uncorrelated are shown in Fig. 9.6 (b). These results are exactly the same as
the right-hand side of the results in 9.6(a). The results of the source reconstruction
obtained when the correlation coefficient is set to 0.99 are shown in Fig. 9.6(c).
Since the signal cancellation effects are so large, the second source disappears.
Then, we applied the LCMV spatial filter reconstruction to the same data. We
applied null-sensitivity to a 2-cm cubic region containing the first source, the region
shown by the square in Fig. 9.6(a). The results of this reconstruction are shown in
Fig. 9.6(d). Despite the high correlation between the first and the second sources,
the intensity of the second source is retrieved, demonstrating the effectiveness of
the coherent interference suppression method.
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Figure 9.6: (a) Results of source-power reconstruction for the entire field of view.
The array-gain constraint minimum-variance spatial filter was used. The solid
square indicates the region where null-sensitivity was imposed to obtain the recon-
structed results in (d). (b)–(d)Reconstruction for only the right-hand region of the
field of view. (b) Reconstructed results obtained when the first- and second-source
time courses are uncorrelated (μ = 0.07). (c) The reconstructed results obtained
when the first- and second-source time courses are highly correlated (μ = 0.99).
(d) The results obtained from the LCMV spatial filter when we imposed a null-
sensitivity over the 2-cm cubic region shown by the square in (a).

161



Chapter 10

Effects of using the sample
covariance matrix

Throughout most of our arguments in the previous chapters, we have assumed that
the theoretical covariance matrix is known. However, in practical applications of
adaptive spatial filters, the covariance matrix should be estimated from the data,
and usually we estimate the covariance matrix using the data samples. That is,
denoting the spatio-temporal measurement as B:

B = [b(t1), b(t2), . . . , b(tK)],

the sample covariance matrix R̂ is estimated using

R̂ =
1
K

BBT =
1
K

K∑
k=1

b(tk)bT (tk), (10.1)

where K is the number of time points used for the covariance estimation. Nat-
urally, when this number is small, the estimated sample covariance is likely er-
roneous and such an error may affect the output of adaptive spatial-filters. This
chapter discusses the influence of using the sample covariance matrix on the source
reconstruction results from minimum-variance spatial filters.

10.1 Sample covariance matrix: the maximum-
likelihood estimate of the true covariance
matrix

We first discuss the rationale of using the sample covariance matrix, and show
that the sample covariance matrix is the maximum-likelihood estimate of the true
covariance matrix. The fundamental assumption is that the measured data are a
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realization of a multivariate Gaussian process, where the probability distribution
of the measurement vector b(t) is expressed as

p(b(t)) =
1

(2π)(M/2)|R|1/2
exp[−1

2
bT (t)R−1b(t)]. (10.2)

Assuming that the Gaussian process for each time point is independent and iden-
tically distributed, the probability for the spatio-temporal data set B is given
by

p(B) =
K∏

k=1

1
(2π)(M/2)|R|1/2

exp[−1
2
bT (tk)R−1b(tk)]. (10.3)

Neglecting an additive constant, the log-likelihood function is then expressed as

logL(B) = log p(B) = −K

2
log |R| − 1

2

K∑
k=1

bT (tk)R−1b(tk). (10.4)

To derive the optimum estimate of R, R̂, the likelihood function is maximized
with respect to R. Calculating

∂ logL(B)
∂R

=
K

2
R−1 − 1

2
R−1

K∑
k=1

b(tk)bT (tk)R−1, (10.5)

and setting ∂ logL(B)/∂R to zero give the optimum estimate of the covariance
matrix, R̂:

R̂ =
1
K

K∑
k=1

b(tk)bT (tk) =
1
K

BBT , (10.6)

where we use the formulae[43]

∂ log |R|
∂R

= R−1, (10.7)

and
∂

∂R
bT R−1b = R−1bbT R−1. (10.8)

Discussion above shows that the sample covariance matrix, R̂, is the maximum
likelihood estimate of the covariance matrix.

10.2 Effects of using sample covariance matrices
on the minimum-variance filters

Because the measured data are one realization of a random process, the sample
covariance matrix R̂ is a random variable. Assuming again that the data b(t) are
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drawn from the M -dimensional Gaussian process with mean equal to zero, the
probability density distribution of the matrix

Ĉ = KR̂ =
K∑

k=1

b(tk)bT (tk), (10.9)

is known to be a Whishart distribution WM (R,K), which is expressed as[67][68]

p(Ĉ) =
|Ĉ|(K−M−1)/2 exp[− 1

2 tr(R−1Ĉ)]

2
1
2 KMπ

1
4 M(M−1)|R|K/2

∏M
j=1 Γ[(K + 1 − j)/2]

, (10.10)

where Γ[ · ] is the Gamma function. Note that R is the true covariance matrix.
The Whishart distribution is an important tool for analyzing the stochastic prop-
erty of the sample covariance matrix. Although a discussion regarding the various
properties of the Whishart distribution is beyond the scope of this book, we intro-
duce one useful formula. That is, if Ĉ obeys the Whishart distribution, defining
x as any M × 1 fixed (non-stochastic) vector, we have the relationship[68],

xT R−1x

xT Ĉ
−1

x
∼ χ2

K−M+1, (10.11)

where χ2
K−M+1 is the chi-squared distribution with K−M +1 degrees of freedom.

In the equation above, the notation “∼” indicates that the stochastic variable on
the left-hand side is distributed according to the probability distribution shown
on the right-hand side. Considering Ĉ = KR̂, we can obtain

(xT R̂
−1

x)−1 ∼ 1
K

(xT R−1x)−1χ2
K−M+1. (10.12)

This equation can be used for discussing how the sample covariance matrix affects
the output power of the minimum-variance filter. That is, let us use P̂R̂(r) to de-
note the output power of the unit-gain minimum-variance filter obtained using the
sample covariance and P̂R(r) to denote the output power obtained using the true
(theoretical) covariance matrix. These two kinds of output powers are respectively
given by

P̂R̂(r)=
1

[lT (r)R̂
−1

l(r)]
, (10.13)

and P̂R(r)=
1

[lT (r)R−1l(r)]
. (10.14)

Then, using Eq. (10.12), it is straightforward to obtain

P̂R̂(r) = P̂R(r)
1
K

χ2
K−M+1. (10.15)

It is apparent that the above relationship also holds for the output power of the
array-gain constraint minimum-variance filter. The above equation clearly shows
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that P̂R̂(r) is a random variable and its probability distribution is the chi-squared
distribution with degrees of freedom of K − M + 1. Therefore, we can derive the
relationship, first derived by Capon and Goodman[69],

〈P̂R̂(r)〉 = P̂R(r)
1
K

〈χ2
K−M+1〉 =

K − M + 1
K

P̂R(r), (10.16)

where 〈·〉 indicates the expectation operator and we use 〈χ2
K−M+1〉 = K −M + 1.

The equation above indicates that the average output power obtained using the
sample covariance matrix is smaller than the output power obtained using the
true covariance matrix. The intensity reduction is characterized by the factor
(K −M − 1)/K. Therefore, if the number of time points K is close to the number
of sensors, M , a severe intensity reduction should occur.

10.3 Recovering from the sample covariance
effects: Beamspace processing

The intensity reduction of the output power due to the use of sample covariance
matrices can partly be overcome by diagonal loading, which is discussed in Sec-
tion 6.6, where we argue that diagonal loading can reduce the influence of the
array mismatch. In the same manner, we can show that diagonal loading is also
effective in recovering the signal intensity that is degraded by the use of a sam-
ple covariance matrix. The effectiveness of diagonal loading is, however, achieved
at the sacrifice of the spatial resolution, as was discussed in Section 6.6. In the
following, we describe a different method, called beamspace processing, to reduce
the sample-covariance influence.

The basic idea of beamspace processing is to reduce the dimensionality of the
data. That is, defining an M × JR (where M > JR) matrix T , the dimensionality
of the data b(t) is reduced by applying

β(t) = T T b(t), (10.17)

where β(t) is a set of “transformed” data whose dimension is equal to JR. We
apply the same transformation to the lead field vector, such that

lβ(r) = T T l(r),

and define the covariance matrix of the transformed data as

Rβ = 〈β(t)βT (t)〉 = T T 〈b(t)bT (t)〉T = T T RT .

The weight of the beamspace (unit-gain) minimum variance filter is thus obtained
using

w(r) = arg min
w(r)

wT (r)Rβw(r), subject to wT (r)lβ(r) = 1. (10.18)
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The resultant weight is expressed as

w(r) =
R−1

β lβ(r)

[lTβ (r)R−1
β lβ(r)]

, (10.19)

and the filter output is given by

ŝ(r, t) =
lTβ (r)R−1

β β(t)

[lTβ (r)R−1
β lβ(r)]

=
lT (r)T (T T RT )−1T T b(t)
[lT (r)T (T T RT )−1T T l(r)]

. (10.20)

Comparing the above equation with Eq. (4.6), we can see that the beamspace
minimum variance filter is implemented by simply replacing R−1 in the regular
minimum-variance filter formulation with

T (T T RT )−1T T .

The dimension of the beamspace covariance matrix Rβ is JR, so the intensity
reduction caused by the use of the sample covariance is characterized by (K −
(JR − 1))/K where K is the number of time samples used for the covariance
calculation. Therefore, when K � JR, the intensity bias can be significantly
reduced.

We next argue how to find a reasonable T . Limpiti and Van Veen[70] pro-
posed to derive such a T by restricting the source space to a smaller region ΩR.
That is, we first calculate GR, which is the gram matrix over ΩR, such that

GR =
∫

ΩR

L(r)LT (r) d3r. (10.21)

This GR is called the local gram matrix in this book. Defining the eigenvectors
corresponding to the JR largest eigenvalues of GR as x1, . . . ,xJR

, we obtain T
such that

T = [x1,x2, . . . ,xJR
]. (10.22)

The method here is very similar to the method described in Section 9.3. We first
define the error produced when the column span of T represents the lead-field
L(r) as

e2
T (r) = ‖(I − TT T )L(r)‖2 = tr{(I − TT T )L(r)LT (r)(I − TT T )}. (10.23)

Then, the total error over the region ΩR is given by

∫

ΩR

e2
T (r) d3r = tr{(I − TT T )GR(I − TT T )} =

M∑
j=JR+1

�j , (10.24)

where �j is the jth eigenvalue of GR. Thus, the relative value of this total error
is defined as

ER =
M∑

j=JR+1

�j/
M∑

j=1

�j . (10.25)
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The equation above indicates that a smaller JR gives a greater ER, although
a smaller JR is preferable. The rule of thumb is to check the eigenvalues �j

(j = 1, . . . , M) and to choose a reasonably small JR that gives a reasonably small
ER. This beamspace processing is a method that reduces the data dimensional-
ity by incorporating prior knowledge regarding the possible source locations and
configurations. If we know in advance the region in which the sources exist, this
knowledge can be used to reduce the data dimensionality through beamspace pro-
cessing.

10.4 Numerical examples

10.4.1 Effects of using sample covariance matrices

In this section, we perform numerical experiments to illustrate the results of our
discussion so far. We used the same computer simulation scheme depicted in
Fig. 5.2, except that the coordinates of the single source are (0,−1,−6). The time
course shown in the top panel in Fig. 4.3(a) was assigned to this source. The signal
MEG recordings, bs(t), were computed between 0 and 400 ms, and Gaussian noise
was added to generate the array outputs, b(t), where the input SNR was set equal
to 2M . In this computer simulation, we use six values of the sampling frequency
equal to 0.5, 1, 2, 4, 8, and 16 kHz, which correspond to the number of time
points K equal to 200, 400, 800, 1600, 3200, and 6400, respectively. The sample
covariance matrix R̂ was calculated using Eq. (10.1) with the whole data window
between 0 and 400 ms. We performed Monte-Carlo-type experiments in which
fifty sets of P̂R̂(r) were calculated from fifty generated sets of b(t) having the
same sampling frequency, the same noise statistics and different noise realizations.
We then calculated the average across fifty Monte Carlo results of P̂R̂(r) for each
sampling frequency.

The reconstruction results for the six sampling frequencies are shown in
Fig. 10.1 (a). Here, the cross-sectional profiles of the source at (0,−1,−6) along
the line defined as x = 0 and z = −6 are shown for −3 ≤ y ≤ 1. In this figure,
we can clearly see that the intensity decrease depends on the sampling frequency.
We plot the peak amplitude of these reconstructed profiles with respect to the
number of time points K. The results are shown in Fig. 10.1 (b). In this figure,
the theoretical results obtained using Eq. (10.16) are plotted with the broken line.
The theoretical plot almost entirely overlaps with the plot from the computer sim-
ulation, indicating that the theoretical and computer-simulation results agree very
well.

10.4.2 Recovering from the sample covariance effects

We next applied diagonal loading to the same data. The diagonal-loading fac-
tor was determined as ε = εRλmax{R̂}, where λmax{R̂} indicates the maximum
eigenvalue of R̂ and εR is a user-defined constant. The peak intensity of the recon-
structed profiles is plotted with respect to the number of samples for four values
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of εR. The results are shown in Fig. 10.2(a). It can be seen that when K is less
than 1000, the intensity reduction is significant for small values of εR, such as
10−4 and 10−5. However, such an intensity reduction becomes negligible when εR

is set equal to 10−2. Setting εR equal to 10−2 makes it possible to recover 90%
of the asymptotic source intensity even for K equal to 200. However, such a large
diagonal-loading factor should cause a large spatial blur. This is shown by the
reconstructed profiles in Figs. 10.2(b) where the case of K equal to 1600 is shown.
In this figure, a large blur is caused when εR is set to 10−2.

We then applied the beamspace processing. The regional source space ΩR

was set to a 4-cm cubic region with its center equal to the source location,
(0,−1,−6). We calculated the local gram matrix GR using Eq. 10.21, and per-
formed the eigendecomposition of GR. The eigenvalue spectrum in this case is
shown in Fig. 10.3. According to this plot, a reasonable choice for the beamspace
dimension, JR, is between JR = 3 and JR = 6. The peak intensity is plotted with
respect to the number of samples for the four cases of JR. The results are shown in
Fig. 10.4(a). These plots show that the true intensity is almost perfectly recovered
and more than 95% of the asymptotic value is recovered even when K equals 200.
These plots also show that the effectiveness of the beamspace technique is not
significantly affected by the choice of JR. The reconstructed profiles of the point
source obtained from the data with K equal to 200 for the four choices of JR are
shown in Fig. 10.4(b), which shows that the beamspace technique does not cause
a large image blur and the profiles are approximately equal for all four cases.

We next changed the size of ΩR to check how the size affects the performance
of the beamspace technique. We define ΩR as the hw-cm3 cubic region centered
at the true source location and we measure the performance of the beamspace
technique for four cases of hw: hw = 2, 4, 6, and 8. The beamspace dimension JR

was chosen as the smallest value that satisfies the criterion that the error ER be
less than 10−4. Using this criterion, JR was determined as 5, 5, 7, and 10 when hw

is equal to 2, 4, 6, and 8 cm, respectively. The peak intensity plotted with respect
to the number of samples for these four cases of hw is shown in Fig. 10.5 (a).
This plot shows that, in this particular example, the influence of the size of ΩR

on the effectiveness of the beamspace technique is small, and any choice of hw

gives a nearly perfect recovery of the source intensity. The reconstruction profiles
of the point source obtained when K equals 200 are shown for the four hw values
in Fig. 10.5(b). This figure shows that the image blur is nearly equal for all four
cases and the spatial resolution is not affected by the size of ΩR.

10.4.3 Effects of using sample covariance matrices on
unit-noise-gain minimum-variance filter

We next investigate the effects of using the sample covariance matrix on the out-
put of the unit-noise-gain minimum-variance filter. Unfortunately, since there are
no theoretical arguments for the effects of using sample-covariance matrices on
this type of adaptive spatial filter, we can not derive an equation corresponding
to Eq. (10.16). Thus, we must explore the sample-covariance influence on the
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unit-noise-gain filter solely by numerical experiments. We performed exactly the
same Monte-Carlo-type computer simulation. The reconstructed cross-sectional
profiles of the point source for six sampling frequencies (corresponding to six dif-
ferent values of K) are shown in Fig. 10.6 (a). We can see that, compared to
the results in Fig. 10.1(a), the unit-noise-gain minimum-variance filter is much
more sensitive to small sample sizes than the unit-gain and array-gain minimum-
variance filters. The plot of the peak intensity with respect to the number of time
points, K, is shown in Fig. 10.1(b), which shows that the peak intensity decreases
almost linearly with respect to the number of time points K.

We tested the effectiveness of the diagonal loading to recover the source
intensity. The results are shown in Fig. 10.7(a). It can be seen that diagonal
loading has almost no effects when εR is set below 10−3, and some improvements
can be observed when εR is set to 10−2. The true intensity is nearly perfectly
recovered when εR is set to 10−1. However, using such a large diagonal-loading
factor should cause a large spatial blur. This fact can be seen in Fig. 10.7(b),
which shows the results for K equal to 1600. A very large blur is caused when εR

is set to 10−1.
We then tested the beamspace technique, and the results are shown in

Fig. 10.8(a). To obtain these results, ΩR was set to a 4-cm3 cubic region with
its center at the source location. We used four different values of JR: 3, 4, 5,
and 6. The plotted results show that the effectiveness of the beamspace technique
is rather modest, and the intensity recovery is small, compared to the case in
Fig. 10.4(a). To check the spatial resolution, the reconstruction profiles of the
point source when K = 200 are plotted for the four JR choices in Fig. 10.8(b).
This figure shows that the beamspace technique does not cause an image blur and
the profiles are approximately equal for all four cases.

In summary, our numerical experiments show that the inaccuracy in the
sample covariance matrices much more severely affects the unit-noise-gain spatial
filter than the unit-gain and the array-gain minimum-variance filters. Therefore,
unless the data contain a sufficient number of time samples, it may be safer not
to use the unit-noise-gain minimum-variance spatial filter.
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Figure 10.1: (a) The cross-sectional profiles of the reconstructed source at
(0,−1,−6) for six values of the number of time samples, K, used for comput-
ing the sample covariance matrix. Each profile was obtained by averaging fifty
Monte Carlo results, with the input SNR equal to 2M . (b) The plot of the peak
intensities of the reconstructed profiles with respect to the number of time sam-
ples, K. The theoretical change in the peak-intensity with respect to the number
of samples is plotted with the broken line. (The theoretical plot almost completely
overlaps with the plot from the computer simulation.) These theoretical results
were obtained using Eq. (10.16).
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Figure 10.2: (a) The peak intensity of the reconstructed profiles obtained using
the array-gain minimum-variance filter with diagonal loading. The peak intensity
is plotted with respect to the number of samples, K, with four values of εR:
εR = 10−2, εR = 10−3, εR = 10−4, and εR = 10−5. (b) The cross-sectional profiles
of the reconstructed point source at (0,−1,−6) for the four values of εR. The data
with K equal to 1600 were used. These profiles were obtained by averaging fifty
Monte-Carlo results of P̂R̂(r).
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Figure 10.3: Eigenvalue spectrum of GR calculated using Eq. (10.21) with ΩR set
equal to a 4-cm cubic region with its center at the source location.
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Figure 10.4: (a) The peak intensities of the reconstructed profiles with respect to
the number of samples. The beamspace technique was used with four choices of
JR (JR = 3, 4, 5, and 6). (b) The cross-sectional profiles of the reconstructed
point source at (0,−1,−6). The peak profiles were obtained with the beamspace
technique for these four choices of JR. The data with K equal to 200 were used.
These profiles were obtained by averaging fifty Monte-Carlo results of P̂R̂(r).
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Figure 10.5: (a) The peak intensity of the reconstructed profiles with respect to
the number of samples. The beamspace technique was used with four values of hw:
2, 3, 4, and 5, where hw is the length in cm of each side of the cubic region ΩR. (b)
The cross-sectional profiles of the reconstructed point source at (0,−1,−6). The
peak profiles were obtained with the beamspace technique with these four values
of hw. The data with K equal to 200 were used. These profiles were obtained by
averaging fifty Monte-Carlo results.
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Figure 10.6: Results for the unit-noise-gain minimum-variance filter. (a) The
cross-sectional profiles of the reconstructed point source at (0,−1,−6) for the six
sampling frequencies. The peak profiles were obtained by averaging fifty Monte-
Carlo results, and the input SNR was set to 2M . (b) The plot of the peak in-
tensities of the reconstructed profiles with respect to the number of time points
K.
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Figure 10.7: Results for the unit-noise-gain minimum-variance filter with diagonal
loading. (a) The peak intensities of the reconstructed profiles plotted with respect
to the number of samples, K, with four values of εR: εR = 10−2, εR = 10−3, εR =
10−4, and εR = 10−5. (b) The cross-sectional profiles of the reconstructed point
source at (0,−1,−6) with these four values of εR. These profiles were obtained by
averaging fifty Monte-Carlo results. The data with K equal to 1600 were used.
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Figure 10.8: Results for the unit-noise-gain minimum-variance filter with
beamspace processing. (a) The peak intensities of the reconstructed profiles with
respect to the number of samples. The beamspace technique was used with four
choices of JR ( JR = 3, 4, 5, and 6) (b) The cross-sectional profiles of the recon-
structed point source at (0,−1,−6) with these four choices of JR. These profiles
were obtained by averaging fifty Monte-Carlo results. The data with K equal to
200 were used.
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Chapter 11

Statistical evaluation of the
spatial filter output

This chapter describes statistical methods for assessing the statistical significance
of spatial filter output. Following a brief description of a method based on the
Gaussianity assumption, we introduce methods based on non-parametric statis-
tics. These methods first derive, at each voxel location, an empirical probability
distribution of the spatial filter output. A statistical threshold is then derived from
the empirical distributions obtained from all voxel locations. Here, we describe
two methods that can address the multiple comparison problem.

11.1 Problem with Gaussian-distribution-based
methods

The statistical significance of the spatial filter output can be evaluated using a
method that is based on the Gaussian distribution[71][25], by assuming that the
measurement consists of deterministic signal and Gaussian noise, i.e.,

b(t) = bs(t) + n(t), (11.1)

where bs(t) is the signal of interest, i.e., the signal generated by the brain sources
that are the target of the investigation. Here, n(t) is the noise vector and each
element of n(t) is assumed to be distributed as N (0, σ2

0), which indicates a Gaus-
sian distribution with zero mean and a variance of σ2

0 . The spatial filter output,
ŝ(r, t), is expressed as

ŝ(r, t) = wT (r)b(t) = wT (r)bs(t) + wT (r)n(t). (11.2)

Therefore, assuming these Gaussian processes are uncorrelated between dif-
ferent sensor recordings, the spatial-filter output ŝ(r, t) is distributed as
N (wT (r)bs(t), σ2

0‖w(r)‖2), which is a Gaussian distribution with a mean of
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wT (r)bs(t) and a variance of σ2
0‖w(r)‖2. Actually, since σ2

0 must be estimated
from the measured data, the distribution of ŝ(r, t) is not exactly represented by a
Gaussian distribution but by a t distribution. The statistical evaluation can be per-
formed by testing the null hypothesis that there is no signal source activity at each
voxel location. That is, the t score under the null hypothesis, ŝ(r, t)/(σ0‖w(r)‖),
is calculated and compared to tα/2, which is the two-tailed t score corresponding
to a significance level of α, which is equal to the probability of a Type I error.
This procedure is performed at each voxel location, and if the calculated t score is
higher than tα/2, the estimated source activity, ŝ(r, t), is considered to be statis-
tically significant. We can proceed with a multiple comparisons step by using the
false discovery rate[72][73], which is described in Section 11.2.4.

The problem with the above approach is that the signal and noise model
expressed in Eq. (11.1) is, in general, insufficient to express the actual measure-
ments. As discussed in Chapter 8, the major cause of errors in electromagnetic
brain imaging is not the Gaussian sensor noise but background interferences, which
are the brain signals generated by sources other than the sources of interest. By
denoting such interferences bI(t) (as denoted in Chapter 8), the measured data is
expressed as

b(t) = bs(t) + bI(t) + n(t) = bs(t) + bi+n(t), (11.3)

where bi+n(t) = bI(t) + n(t). The spatial filter output obtained from b(t) is
expressed as

ŝ(r, t) = wT (r)bs(t) + wT (r)bi+n(t) = ŝ0(r, t) + ŝi+n(r, t), (11.4)

where

ŝ0(r, t) =wT (r)bs(t), (11.5)

and ŝi+n(r, t)=wT (r)bi+n(t). (11.6)

Here, ŝ0(r, t) is the estimated signal-source activity of interest, and ŝi+n(r, t)
is the spatial filter output due to the background interference and the sensor
noise. The null hypothesis is that there is no signal source activity, and the
statistical significance of the filter output, ŝ(r, t), is assessed using the probability
distribution of ŝi+n(r, t) under this null hypothesis. The problem here is that the
probability distribution of ŝi+n(r, t) is generally unknown. This has lead us to
develop methods based on nonparametric statistics, which are described in the
following sections.

11.2 Evaluation of statistical significance using
nonparametric statistics

11.2.1 Voxel-by-voxel statistical significance test

Here, we describe methods based on nonparametric statistics in which the probabil-
ity distribution at each voxel is determined from the data, and a priori assumption
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of Gaussianity is not needed. The prerequisite of these methods is that multiple
measurements of bi+n(t) be available. These multiple measurements of bi+n(t)
are denoted with an index β, as bβ

i+n(t) where β = 1, . . . , Kβ , and Kβ is the total
number of measurements. We can then obtain multiple ŝi+n(r, t) such that

ŝβ
i+n(r, t) = wT (r)bβ

i+n(t) β = 1, . . . , Kβ . (11.7)

We can now derive the empirical cumulative null distribution of ŝi+n(r, t) us-
ing these ŝβ

i+n(r, t). That is, we calculate F̂ (x), which is the empirical cumula-
tive distribution of |ŝβ

i+n(r, t)|, such that F̂ (x) = �{|ŝβ
i+n(r, t)| ≤ x}/Kβ where

�{|ŝβ
i+n(r, t)| ≤ x} indicates the number of |ŝβ

i+n(r, t)| that is less than or equal
to x. This procedure is repeated and the empirical distribution is calculated at
all voxel locations. Since F̂ (x) is obtained at each voxel location r and each time
point t, F̂ (x) is rewritten as F̂ (x|r, t) in the following.

Using F̂ (x|r, t), we could obtain the statistical threshold, Σ (r, t), such that
Σ (r, t) = F̂−1(1 − α|r, t) where α is the level of significance. In practice, the
inverse of the empirical cumulative distribution can be calculated by first sorting
|ŝβ

i+n(r, t)| in increasing order:

|ŝ(1)
i+n(r, t)| ≤ |ŝ(2)

i+n(r, t)| ≤ · · · ≤ |ŝ(Kβ)
i+n (r, t)|, (11.8)

where |ŝ(β)
i+n(r, t)| is the βth smallest value among |ŝ1

i+n(r, t)|, . . . , |ŝKβ

i+n(r, t)|.
Then, we could use |ŝ(q)

i+n(r, t)| as the threshold value where q = �(1 − α)Kβ�,
and � · � indicates the maximum integer that does not exceed the value in the
parentheses. However, the statistical threshold obtained in this manner does not
take multiple comparisons into consideration, and it generally leads to a situation
in which many false-positive voxels arise, i.e., many voxels that do not contain
brain activation are found to be active. That is, denoting the total number of vox-
els N , αN false-positive voxels are, on average, found to be statistically significant.
To avoid this problem, the statistical significance is determined using a procedure
that takes multiple comparisons into account. We describe two procedures: one is
a procedure based on the maximum statistics described in the following section,
and the other is a procedure based on the false-discovery rate, which is described
in Section 11.2.4.

11.2.2 Multiple comparisons using maximum statistics

Here, we use maximum statistics [74][75][76] to address the multiple comparison
problem. To utilize maximum statistics, we first standardize the empirical cumu-
lative distribution of |ŝβ

i+n(r, t)| by calculating T β(r, t) such that

T β(r, t) =
|ŝβ

i+n(r, t)| − 〈|ŝβ
i+n(r, t)|〉β

σ̂β(r, t)
. (11.9)

Here,
σ̂2

β(r, t) = 〈ŝβ
i+n(r, t)2〉β − 〈|ŝβ

i+n(r, t)|〉2β ,
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and 〈·〉β indicates the average over the index β, i.e.,

〈ŝβ
i+n(r, t)2〉β =

1
Kβ

Kβ∑
β=1

ŝβ
i+n(r, t)2,

and 〈|ŝβ
i+n(r, t)|〉β=

1
Kβ

Kβ∑
β=1

|ŝβ
i+n(r, t)|.

We then calculate the maximum T β(r, t) among T 1(r, t), . . . , TKβ (r, t) at
each voxel location and at each time point. This maximum value at the ith voxel
location and at the kth time point is denoted T i,k

max, where i = 1, . . . , N , and
k = 1, . . . ,K. Here, N again indicates the total number of voxels and K indicates
the total number of time points. We next obtain the empirical distribution of T i,k

max,
Ĥ(x), such that Ĥ(x) = �{T i,k

max ≤ x}/(NK), where �{T i,k
max ≤ x} is the number of

T i,k
max values which are less than or equal to x. We can then obtain the threshold

of the T i,k
max value for the α-significance level, T th

max, such that T th
max = Ĥ−1(1−α).

The inverse of this empirical cumulative distribution can be calculated by first
sorting T i,k

max in increasing order:

T (1)
max ≤ T (2)

max ≤ · · · ≤ T (NK)
max , (11.10)

and choosing T
(p)
max as T th

max where p = �(1 − α)NK�. We finally obtain the
statistical threshold for the spatial-filter reconstruction, Σ (r, t), by converting
T th

max into a source activity value, that is,

Σ (r, t) = T th
maxσ̂β(r, t) + 〈|ŝβ

i+n(r, t)|〉β . (11.11)

We evaluate the statistical significance of the spatial filter output by compar-
ing the output |ŝ(r, t)| with Σ (r, t). When |ŝ(r, t)| ≥ Σ (r, t), the output ŝ(r, t)
is considered to be statistically significant. Note that ŝ(r, t) is obtained using
ŝ(r, t) = wT (r)b(t) in Eq. (11.4).

11.2.3 Modification for power image

A slight modification of the above-mentioned method gives the statistical threshold
for the power image P̂ (r) = 〈ŝ(r, t)2〉. To derive the threshold for P̂ (r), we
calculate a power reconstruction using bβ

i+n(t), such that

P̂ β
i+n(r) = 〈(wT (r)bβ

i+n(t))2〉. (11.12)

We then standardize P̂ β
i+n(r) using

T β(r) =
P̂ β

i+n(r) − 〈P̂ β
i+n(r)〉β

σ̂β(r)
, (11.13)
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where

σ̂2
β(r) = 〈P̂ β

i+n(r)2〉β − 〈P̂ β
i+n(r)〉2β ,

〈P̂ β
i+n(r)2〉β =

1
Kβ

Kβ∑
β=1

, P̂ β
i+n(r)2, (11.14)

and 〈P̂ β
i+n(r)〉β =

1
Kβ

Kβ∑
β=1

P̂ β
i+n(r).

We then calculate the maximum T β(r) among β = 1, . . . , Kβ at each voxel loca-
tion. This maximum value at the ith voxel location is denoted T i

max where i =
1, . . . , N and N again indicates the total number of voxels. We next obtain the em-
pirical cumulative distribution of T i

max, Ĥ(x), such that Ĥ(x) = �{T i
max ≤ x}/N ,

where �{T i
max ≤ x} is the number of T i

max values which are less than or equal to
x. We can then obtain the threshold of the T i

max value for the α-significance level,
T th

max, such that T th
max = Ĥ−1(1 − α). The inverse of this empirical distribution

can be calculated by first sorting T i
max in increasing order:

T (1)
max ≤ T (2)

max ≤ · · · ≤ T (N)
max, (11.15)

and choosing T
(p)
max as T th

max where p = �(1−α)N�. We finally obtain the statistical
threshold for the spatial-filter reconstruction, Σ (r), by converting T th

max into a
source activity value, that is,

Σ (r) = T th
maxσ̂β(r) + 〈P̂ β

i+n(r)〉β . (11.16)

11.2.4 Multiple comparisons using the false discovery rate

The multiple-comparison problem can also be addressed using the false discovery
rate[72], and this method can replace the use of the maximum statistics for multiple
comparisons. To explain the false discovery rate, we make some definitions as
follows:

Kaa : the numbers of voxels that are truly active and discovered to be active,
Kai : the numbers of voxels that are truly active but discovered to be inactive,
Kia : the numbers of voxels that are truly inactive but discovered to be active,
Kii : the numbers of voxels that are truly inactive and discovered to be inactive.

The false discovery rate, FD, is then defined such that

FD =
Kia

Kaa + Kia
. (11.17)

That is, the false discovery rate is the ratio of the number of voxels that are truly
inactive but discovered to be active to the total number of voxels discovered to be
active. The procedure described below, which was introduced by Benjamini and
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Hochberg[73], guarantees the expectation of this false discovery rate, FD, to be
less than a user-specified value A. That is, the procedure guarantees that

〈FD〉 ≤ Kia + Kii

N
A ≤ A, (11.18)

where 〈FD〉 denotes the expected value of FD and N is again the total number of
voxels. Note that the ratio (Kia + Kii)/N is less than but close to 1, because it
is the ratio of the number of inactive voxels to the total number of voxels. What
is guaranteed in Eq. (11.18) is that if one replicates the same experiment many
times, the average of FD over those replications is less than the user-specified value
A. For any particular case, the obtained FD might be larger than A.

The procedure using the false discovery rate is summarized as follows.
(I) Specify a desired value for A between 0 and 1.
(II) Calculate, at each voxel location, the probability for the event that the
voxel value exceeds |ŝ(r, t)|. Assuming that we have the empirical distribution
of |ŝβ

i+n(r, t)| (β = 1, . . . , Kβ), this probability can be obtained first by sorting
|ŝ(r, t)| and |ŝβ

i+n(r, t)| in increasing order, such that

|ŝ(1)
i+n(r, t)| ≤ · · · ≤ |ŝ(m)

i+n(r, t)| ≤ |ŝ(r, t)| ≤ |ŝ(m+1)
i+n (r, t)| ≤ · · · ≤ |ŝ(Kβ)

i+n (r, t)|,
(11.19)

where again |ŝ(β)
i+n(r, t)| is the βth smallest |ŝi+n(r, t)|. Here, we assume that

|ŝ(r, t)| is greater than |ŝ(m)
i+n(r, t)| but smaller than |ŝ(m+1)

i+n (r, t)|. If |ŝ(r, t)| is
smaller than |ŝ(1)

i+n(r, t)|, we set m to 1. Then, the probability for the event that
the voxel value exceeds |ŝ(r, t)|, p, is obtained as

p =
(Kβ − m) + 1

Kβ + 1
. (11.20)

(III) Sort the p values from all voxel locations in increasing order, such that

p(1) ≤ p(2) ≤ · · · ≤ p(N), (11.21)

where p(j) indicates the jth smallest p value.
(IV) Find the largest j that satisfies the relationship

p(j) ≤
j

N
A.

Denoting such j as jmax, p(jmax) is the threshold value, i.e., the voxels whose p
value is smaller than p(jmax) are determined to be active, and the voxels whose p
value is greater than p(jmax) are determined to be inactive.
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11.3 Deriving a voxel-wise empirical null
distribution

11.3.1 Method when the signal is time-locked and the in-
terference is non-time-locked to the stimulus

We mentioned that the prerequisite of the nonparametric method described in
the preceding sections is that multiple baseline measurements, bβ

i+n(t), (where
β = 1, 2, . . . ,Kβ) be available. Here, we describe a method of creating multiple
bβ

i+n(t) from a single-subject data set. The method is applicable to event-related
measurements where multiple raw epochs are measured and averaged. The key as-
sumption here is that the target brain activity and thus the signal measurements,
bs(t), are time-locked to the stimulus, but the non-target brain activity, including
bI(t), are not time-locked to the stimulus. Therefore, in event-related measure-
ments, the signal measurements generated by time-locked activity are obtained
by averaging raw-epoch measurements. On the other hand, the background non-
time-locked interference, bi+n(t), can be estimated by calculating the plus/minus
averages of the raw epochs. That is, half of the epochs are multiplied by −1 before
averaging over the epochs. By doing so, the time-locked signals are averaged out,
whereas the signals not time-locked to the stimulus are not.

Denoting the raw epoch measurements as {h1(t), . . . ,hKE
(t)} where KE is

the number of raw epochs, we have

b(t) =
1

KE

KE∑
k=1

hk(t). (11.22)

When KE is very large or when the interference is very small, this b(t) is ap-
proximately equal to bs(t). However, in all other cases, a considerable amount
of the interference still exists in the averaged data, b(t). The non-time-locked
interference component existing in the averaged data, bi+n(t), can be estimated
from

bi+n(t) ≈ 1
KE

KE∑
k=1

εkhk(t), (11.23)

where the coefficients ε1, . . . , εKE
have a value of either −1 or 1. We assign −1 or 1

to ε1, . . . , εKE
by drawing −1 or 1 randomly and without replacement from a pool

of a total KE/2 of −1 and a total KE/2 of 1. As a result, one half of ε1, . . . , εKE

have a value of −1 and the other half of ε1, . . . , εKE
have a value of 1[77]. Here,

since there are many ways to assign −1 or 1 to ε1, . . . , εKE
(the number of ways is

equal to KE !/(KE

2 !)2), we can obtain many different bi+n(t)[78]. We denote each
realization bβ

i+n(t), which can be expressed as

bβ
i+n(t) =

1
KE

KE∑
k=1

ε∗khk(t), (11.24)
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where ε∗1, . . . , ε
∗
KE

is one realization of the random assignments of −1 or 1. In
Eq. (11.24), β is an index for the different ways of assigning −1 and 1, and β =
1, . . . ,Kβ , where Kβ indicates the total number of different assignments. Once
bβ

i+n(t) are obtained for β = 1, . . . , Kβ , we can then obtain multiple ŝβ
i+n(r, t)

using Eq. (11.7), and we can now derive the empirical cumulative distribution of
ŝi+n(r, t) using these ŝβ

i+n(r, t).

11.3.2 Method when both the signal and the interference
are non-time-locked to the stimulus

With a slight modification based on the permutation test[74][79], the above-
mentioned method can be applied to the case of imaging induced source activity.
Because an induced activity is not time locked to the stimulus, we cannot use
waveform-based averaging. Instead, we should use covariance-based averaging. In
Section 8.4 we describe two methods, the F -image method and the prewhitening-
based method, to reconstruct such induced activities using averaged covariance
matrices. To explain the method here, we use the F -image method in order to
simplify the explanation. The method is applicable to the prewhitening method in
exactly the same manner. The Fourier transforms of the raw-epoch measurements
are denoted {g1(f), . . . , gKE

(f)} for task data sets and {gc
1(f), . . . , gc

KE
(f)} for

control data sets. As mentioned in Section 8.4, the frequency-specific task and
control covariance matrices, Γ̂ (Fw) and Γ̂ c(Fw), are calculated using

Γ̂ (Fw) =
1

KE

KE∑
k=1

γ̂k(Fw), (11.25)

where γ̂k(Fw) =
∑

f∈Fw
gk(f)(gk(f))H , and

Γ̂ c(Fw) =
1

KE

KE∑
k=1

γ̂c
k(Fw), (11.26)

where γ̂c
k(Fw) =

∑
f∈Fw

gc
k(f)(gc

k(f))H . Here, γ̂k(Fw) and γ̂c
k(Fw) are the co-

variance matrices obtained from the kth epoch data. The task and control power
images are obtained using Eqs. (8.46) and (8.47), which are repeated here:

〈ŝ(r, Fw)2〉 = wT (r, Fw)Γ̂ (Fw)w(r, Fw), (11.27)

and 〈ŝC(r, Fw)2〉= wT (r, Fw)Γ̂ c(Fw)w(r, Fw), (11.28)

where the weight w(r, , Fw) is obtained using Eq. (8.44). These task and control
power images are then used for calculating the F -image such that

F (r, Fw) =
〈ŝ(r, Fw)2〉 − 〈ŝC(r, Fw)2〉

〈ŝC(r, Fw)2〉 .

Multiple F -images can be created to derive the voxel-wise cumulative dis-
tribution using the permutation test in the following manner. That is, under the
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null hypothesis that there is no activation in the task period, there is no difference
between the task and control data sets. Therefore, to calculate the task covariance
matrix, we could use

Γ̂ (Fw) =
1

KE

KE∑
k=1

γ̂∗
k(Fw), (11.29)

where {γ̂∗
1(Fw), . . . , γ̂∗

KE
(Fw)} are drawn randomly and without replacement from

the 2KE sets, {γ̂1(t), . . . , γ̂KE
(t), γ̂c

1(t), . . . , γ̂
c
KE

(t)}. The remaining KE sets of
the epoch-based covariance matrices are denoted γ̂c∗

1 (Fw), . . . , γ̂c∗
KE

(Fw), and they
are used to calculate Γ̂ c(Fw), such that

Γ̂ c(Fw) =
1

KE

KE∑
k=1

γ̂c∗
k (Fw). (11.30)

Since there are many ways to choose {γ̂∗
1(t), . . . , γ̂

∗
KE

(t)} and {γ̂c∗
1 (t), . . . , γ̂c∗

KE
(t)}

(KE !/(KE

2 !)2 ways, in fact), we have multiple sets of Γ̂ (Fw) and Γ̂ c(Fw), which are

denoted Γ̂
β
(Fw) and Γ̂

β

c (Fw), where β = 1, . . . , Kβ and Kβ is the total number of

created data sets. Using Γ̂
β
(Fw) and Γ̂

β

c (Fw), we can calculate multiple F images,
F β(r, Fw), where β = 1, . . . , Kβ . These multiple F β(r, Fw) form an empirical null
distribution at each voxel location.

11.4 Non-parametric method using reconstructed
voxel time courses

The nonparametric method described in Section 11.2 can provide the spatio-
temporal threshold, Σ (r, t). However, the method requires that multi-epoch mea-
surements be performed and stored in memory. In a practical application, such
requirements are not always fulfilled. In addition, the method needs to process
a five-dimensional data set and the resultant computational load and memory
requirements may be prohibitively large. Here, we present a simpler method in
which a time-independent threshold, Σ (r), is obtained[80]. The prerequisite for
the method described here is that a single control measurement be available. In
general, this assumption is approximately fulfilled on various occasions.

The method calculates an empirical cumulative distribution at each voxel
location using the time-course reconstruction during the control period, ŝc(r, tk)
(k = 1, . . . ,Kc), where t1, . . . , tKc

are the discrete time points during the control
period. The assumption here is that the time course reconstruction, ŝc(r, tk),
is identically and independently distributed over the control time period, and
the probability distribution of ŝc(r, tk) is approximately equal to the distribution
of ŝi+n(r, t) in the task period. Thus, we can use the empirical distribution of
ŝc(r, tk) as the probability distribution of ŝi+n(r, t) for assessing the statistical
significance of the spatial filter output, ŝ(r, t), in the task period.
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To utilize the maximum statistics, we first standardize the empirical distri-
bution of |ŝc(r, tk)| by calculating T (r, tk) such that

T (r, tk) =
|ŝc(r, tk)| − 〈|ŝc(r, tk)|〉c

σ̂c(r)
. (11.31)

Here,
σ̂2

c (r) = 〈ŝc(r, tk)2〉C − 〈|ŝc(r, tk)|〉2C ,

and 〈·〉C indicates the time average over the control period, i.e.,

〈ŝc(r, tk)2〉C =
1

Kc

Kc∑
k=1

ŝc(r, tk)2,

and 〈|ŝc(r, tk)|〉C=
1

Kc

Kc∑
k=1

|ŝc(r, tk)|.

We next calculate the maximum T value at each voxel location. The max-
imum T value at the ith voxel location is denoted T i

max, where i = 1, . . . , N and
N again indicates the total number of voxels. We then obtain the empirical cu-
mulative distribution of T i

max, Ĥ(x), such that Ĥ(x) = �{T i
max ≤ x}/N , where

�{T i
max ≤ x} is the number of T i

max values which are less than or equal to x. We
can then obtain the threshold of the T i

max value for the α-significance level, T th
max,

such that T th
max = Ĥ−1(1 − α). The inverse of this empirical distribution can be

calculated by first sorting T i
max in increasing order:

T (1)
max ≤ T (2)

max ≤ · · · ≤ T (N)
max, (11.32)

and choosing T
(p)
max as T th

max where p = �(1−α)N�. We finally obtain the statistical
threshold for the spatial-filter output, Σ (r), by converting T th

max into a source
activity value, that is,

Σ (r) = T th
maxσ̂c(r) + 〈|ŝc(r, tk)|〉C . (11.33)

We evaluate the statistical significance of the spatial filter output by comparing
the output |ŝ(r, t)| with Σ (r). Then, the output ŝ(r, t) for which |ŝ(r, t)| ≥ Σ (r)
are considered to be statistically significant.

It should be mentioned that once we calculate T i
max at each voxel loca-

tion, the distributional properties of the process don’t matter any more and the
assumption that the time-course reconstruction is identically and independently
distributed is not needed. Instead, this multiple comparison procedure imposes a
new assumption that the shape of the distribution of |ŝc(r, tk)| is the same at all
voxels, although its scale may be different.

11.5 Numerical examples

We conducted numerical experiments to illustrate some results for the statistical
thresholding described in this chapter. We used the same experimental scheme
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Figure 11.1: Source reconstruction results using the eigenspace spatial filter. (a)
The reconstructed time courses at the first source location (top), the second source
location (middle), and the third source location (bottom). The three vertical lines
indicate the time points for 123 ms, 157 ms, and 222 ms. Reconstructed source
activity at (b) 123 ms, (c) 157 ms, and (d) 222 ms. (e) the square root of the
power reconstruction,

√
〈ŝ(r, t)2〉.

used in Section 4.7, and generated, at 600 time points, one hundred raw epochs
having the total input SNR, αT , equal to 0.3. The sampling interval is assumed
to be 0.5 ms. We then averaged these one-hundred epochs to obtain the average
recordings with αT equal to 3. The array-gain eigenspace-projected spatial filter
was applied to the averaged recordings with the signal-subspace dimension set
to 3. The reconstructed time courses at the three source locations are shown in
Fig. 11.1(a), and source reconstruction results are shown in Fig. 11.1(b)–(e). We
then calculated the statistical threshold using the randomized plus/minus averages
of the raw epochs described in Section 11.3.1. The reconstructed time courses
with the spatio-temporal threshold are shown in Fig. 11.2(a). The thresholded
reconstruction results are shown in Fig. 11.2(b)–(e). In Fig. 11.2(a), the two
dotted horizontal lines show the statistical threshold at the three sources locations,
±Σ (r1, t), ±Σ (r2, t), and ±Σ (r3, t). In these figures, source activities greater than
the threshold values are considered statistically significant. Reconstructed source
activities lower than these threshold values (for example, the first and second
sources at 222 ms) were set equal to zero.

Next, we used the method described in Section 11.4 to calculate the statistical
threshold. The reconstructed time courses with obtained threshold values are
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Figure 11.2: (a) Reconstructed time courses and statistical threshold at the first
source location (top), the second source location (middle), and the third source
location (bottom). The three vertical lines indicate the time points for 123 ms,
157 ms, and 222 ms. The two (fluctuating) dotted horizontal lines show the spatio-
temporal statistical threshold ±Σ (r, t). Thresholded source reconstruction results
at (b) 123 ms, (c) 157 ms, and (d) 222 ms. (e) the square root of the thresholded
power reconstruction,

√
〈ŝ(r, t)2〉. Statistical threshold was obtained using the

nonparametric method in Section 11.2 with the randomized plus/minus averages
described in Section 11.3.1.

shown in Fig. 11.3(a). In this case, the threshold values are time-independent
so they are shown as straight horizontal lines in this figure. The thresholded
reconstruction results are shown in Fig. 11.3(b)–(d).
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Figure 11.3: (a) Reconstructed time courses and statistical threshold at the first
source location (top), the second source location (middle), and the third source
location (bottom). The two horizontal lines show the statistical threshold, ±Σ (r).
Thresholded source activity at (b) 123 ms, (c) 157 ms, and (d) 222 ms. The time-
independent statistical threshold were obtained using the method described in
Section 11.4.
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Chapter 12

Methods related to adaptive
spatial filters

This chapter describes methods closely related to adaptive spatial filters. The first
one is the Wiener filter, from which the formulation for the minimum-variance
spatial filter can be directly derived. The second one is the multiple signal classi-
fication (MUSIC) algorithm. This algorithm explicitly exploits the orthogonality
relationship between the noise subspace and the sensor lead field at the source loca-
tions, and it can localize the multiple sources through a three-dimensional search.
We will discuss the fact that the algorithm has a close relationship with adaptive
spatial filters. The third one is the generalized likelihood ratio test (GLRT) scan-
ning method. We will show the similarity between the final form of the GLRT
scanning function and adaptive spatial-filter power reconstruction.

12.1 Wiener filter

12.1.1 Minimum-mean-squared-error criterion

The Wiener filter formulation can be obtained by minimizing the cost function in
Eq. (3.13) with Υ A equal to the noise covariance matrix, Rn, and Υ B equal to
the source covariance matrix, Rν . We simplify the arguments in this section by
assuming that the source orientation is predetermined, and define the composite
lead-field matrix at all voxel locations as LV , such that

LV = [l(r1), l(r2), . . . , l(rN )]. (12.1)

Note that the columns of LV are the lead-field vectors in the predetermined ori-
entations1. Then, by setting εΥ A = Rn, Υ B = Rvox, and LV = LV in Eq. (3.14),

1The composite lead-field matrix, LV , is different from the composite lead-field matrix, LV ,
in Eq. (3.2), because in LV the columns are the lead-field vectors in the x, y, and z directions,
whereas in LV the columns are the lead-field vectors in predetermined directions.
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the formula of the Wiener estimate can be obtained as

ν̂vox(t) = RvoxLT
V (LVRvoxLT

V + Rn)−1b(t), (12.2)

where ν̂vox(t) is the estimated source distribution at voxel locations defined in
Eq. (3.5), which is

ν̂vox(t) =

⎡
⎢⎢⎢⎣

ŝ(r1, t)
ŝ(r2, t)

...
ŝ(rN , t)

⎤
⎥⎥⎥⎦ .

The voxel-based source covariance matrix Rvox is expressed as

Rvox =

⎡
⎢⎣

〈s(r1, t)2〉 · · · 〈s(r1, t)s(rN , t)〉
...

. . .
...

〈s(rN , t)s(r1, t)〉 · · · 〈s(rN , t)2〉

⎤
⎥⎦ , (12.3)

where the bracket 〈 · 〉 indicates the expectation operator.
The formula in Eq. (12.2) can also be obtained by minimizing the squared

error between the true and the estimated source spatial distributions[81][82]. We
define the weight matrix for an inverse filter that is used to estimate ν̂vox(t) as
W inv, i.e.,

ν̂vox(t) = W invb(t), (12.4)

The square error between νvox(t) and ν̂vox(t) is given by

F = 〈[νvox(t) − ν̂vox(t)]T [νvox(t) − ν̂vox(t)]〉
= 〈[νvox(t) − W invb(t)]T [νvox(t) − W invb(t)]〉. (12.5)

To derive the W inv that minimizes this cost function, we first calculate the deriva-
tive of F with respect to W inv,

∂F
∂W inv

= 〈−2[νvox(t)−W invb(t)]bT (t)〉 = −2〈νvox(t)bT (t)〉+ 2W inv〈b(t)bT (t)〉.
(12.6)

Here, using b(t) = LVνvox(t), we can derive

〈νvox(t)bT (t)〉 = 〈νvox(t)[LVνvox(t)]T 〉 = 〈νvox(t)νT
vox(t)〉LT

V = RvoxLT
V . (12.7)

Substituting this relationship and R = 〈b(t)bT (t)〉 into Eq. (12.6), and setting
the right-hand side of this equation to zero, we can obtain the expression for the
inverse filter W inv, such that

W inv = RvoxLT
VR−1 = RvoxLT

V (LVRvoxLT
V + Rn)−1, (12.8)

where we use
R ≈ LVRvoxLT

V + Rn.

Substituting Eq. (12.8) into (12.4), we can derive the Wiener estimate (Eq. (12.2)),
which is also called the minimum-mean-squared-error estimate.
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12.1.2 Derivation of the minimum-variance spatial filter

The minimum-variance spatial filter can be derived from the Wiener filter formula-
tion in Eq. (12.2) with the assumption that sources are uncorrelated[83][84]. With
this assumption, the voxel-based source covariance matrix Rvox is expressed as

Rvox =

⎡
⎢⎢⎢⎣

〈s(r1, t)2〉 0 · · · 0
0 〈s(r2, t)2〉 · · · 0
... · . . .

...
0 0 · · · 〈s(rN , t)2〉

⎤
⎥⎥⎥⎦ . (12.9)

Substituting Eqs. (12.1) and (12.9) into (12.2), we obtain
⎡
⎢⎢⎢⎢⎢⎢⎣

ŝ(r1, t)
...

ŝ(rn, t)
...

ŝ(rN , t)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

〈s(r1, t)2〉 0 · · · 0
0 〈s(r2, t)2〉 · · · 0
... · . . .

...
0 0 · · · 〈s(rN , t)2〉

⎤
⎥⎥⎥⎦LT

VR−1b(t)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

〈s(r1, t)2〉lT (r1)
...

〈s(rn, t)2〉lT (rn)
...

〈s(rN , t)2〉lT (rN )

⎤
⎥⎥⎥⎥⎥⎥⎦

R−1b(t). (12.10)

Thus, the expression for the nth voxel at rn is given by

ŝ(rn, t) = 〈s(rn, t)2〉lT (rn)R−1b(t). (12.11)

From this equation, we get

〈ŝ(rn, t)2〉 = (〈s(rn, t)2〉)2lT (rn)R−1〈b(t)bT (t)〉R−1l(rn)

= (〈s(rn, t)2〉)2lT (rn)R−1l(rn). (12.12)

Setting 〈ŝ(rn, t)2〉 equal to 〈s(rn, t)2〉, we obtain

〈s(rn, t)2〉 =
1

lT (rn)R−1l(rn)
, (12.13)

and substituting the equation above back into Eq. (12.11), we finally get

ŝ(rn, t) = wT (rn)b(t), (12.14)

and

w(rn) =
R−1l(rn)

lT (rn)R−1l(rn)
. (12.15)

This is exactly equal to the weight expression for the unit-gain minimum-variance
spatial filter in which the filter is pointing at rn[84].
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12.2 MUSIC algorithm

12.2.1 Single- and multi-dipole search

Before introducing the well-known MUSIC algorithm, we briefly review the con-
ventional single- and multi-dipole search algorithms. These algorithms are based
on the least-squares principle, where the optimum estimate of the signal vector
bs(t), b̂s(t), is obtained by minimizing the error function[1],

F = ‖b(t) − b̂s(t)‖2.

Let us first consider the case where all locations of the Q sources, r1, . . . , rQ,
are known. In such cases, the source magnitudes ν(t) (defined in Eq. (2.28)) are
estimated using

ν̂(t) = arg min
ν(t)

F = arg min
ν(t)

‖b(t) − LDν(t)‖2, (12.16)

where the composite lead-field matrix is defined in Eq. (2.32). To derive ν̂(t), we
differentiate F with respect to ν(t) and this gives

∂F
∂ν(t)

=
∂

∂ν(t)
(b(t)bT (t) − bT (t)LDν(t) − νT (t)LT

Db(t) + νT LT
DLDν(t))

= −2LT
Db(t) + 2LT

DLDν(t). (12.17)

Setting the right-hand side of the above equation to zero, we obtain

ν̂(t) = (LT
DLD)−1LT

Db(t). (12.18)

Substituting the above expression back into F = ‖b(t) − LDν(t)‖2 gives

F = ‖b(t) − LD(LT
DLD)−1LT

Db(t)‖2. (12.19)

Therefore, the least-squares estimate of the signal vector is obtained as

b̂s(t) = LD(LT
DLD)−1LT

Db(t). (12.20)

The matrix LD(LT
DLD)−1LT

D is a projector that projects an M -dimensional vector
onto the column span of LD, which is the signal subspace. The estimated signal
vector b̂s(t) is, therefore, a projection of the data vector, b(t), onto the signal
subspace ES . This is the geometric interpretation of the least-squares estimate
b̂s(t).

So far, we have assumed that the locations of all sources, r1, . . . , rQ, are
known, i.e., that the basis vectors of the signal subspace, l(r1), . . . , l(rQ), are
known. However, the source locations, r1, . . . , rQ, are generally unknown, and
they should be estimated from the data vector b(t). The geometric interpre-
tation given above still holds even when the source locations are unknown.
The source locations r1, . . . , rQ are estimated by searching for those that make
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LD(LT
DLD)−1LT

D equal to a signal-subspace projector where b̂s(t) is the projec-
tion of b(t) onto the signal subspace. When LD(LT

DLD)−1LT
D becomes the signal-

subspace projector, the cost function F in Eq. (12.19) is minimized[85]. This is
the basic principle of the least-squares-based single- or multi-dipole search meth-
ods. The major problem with the multi-dipole search method is that it requires a
3Q-dimensional search, which is generally difficult to implement when Q >= 2 due
to the computational complexity, and there is no guarantee that a global solution
can be obtained, unless initial estimates can be set reasonably close to the true
solution. We next describe the multiple signal classification (MUSIC) algorithm
that can avoid a high-dimensional search by making use of the properties of the
noise subspace[14][15][16].

12.2.2 Making use of the noise subspace–the MUSIC
algorithm

As stated previously, the lead-field vectors at the true source locations are orthog-
onal to the noise subspace, and the source locations, r1, . . . , rQ, can be obtained
by making use of this orthogonality relationship, if we can obtain the basis vectors
of the noise subspace. The question then is how we can obtain the basis vectors
of the noise subspace. In Section 2.4, we already mentioned that the eigenvectors
that correspond to the noise-level eigenvalues of R form basis vectors of the noise
subspace, and Section 13.1 in the Appendix provides the proof that the noise-level
eigenvectors of the sample data covariance are the maximum likelihood estimates
of the basis vectors of the noise subspace. According to Eq. (2.57), the eigenvectors
eQ+1, . . . ,eM are orthogonal to LD. Therefore, the source locations, r1, . . . , rQ,
can be estimated by exploiting this orthogonality.

The orthogonality between the lead-field vector and the noise subspace can
be evaluated by calculating J (r) as

J (r) =
1

l̃(r)T ENET
N l̃(r)

=
l(r)T l(r)

l(r)T ENET
N l(r)

, (12.21)

where l̃(r) is the normalized lead-field vector. The MUSIC algorithm calculates
this J (r), called the MUSIC localizer, in the source space and determines the
source locations as r at which J (r) reaches large values. The algorithm uses only
a three-dimensional search to detect multiple sources, regardless of the number of
sources.

It should be pointed out that a significant similarity exists between the
minimum-variance spatial filter and the MUSIC algorithm, if we compare the
MUSIC localizer in Eq. (12.21) and the output power of the array-gain minimum-
variance spatial filter in Eq. (4.10). Using Eq. (2.63), Eq. (4.10) can be rewritten
as

〈ŝ(r, t)2〉 =
l(r)T l(r)

l(r)T ESΛ−1
S ET

S l(r) + l(r)T ENΛ−1
N ET

N l(r)
. (12.22)
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order of eigenvalue: j

1/λ j

noise subspacesignal subspace

Figure 12.1: Typical shape of the plot of the inverse eigenvalues, 1/λj (solid line),
and the distorted shape used to derive the music localizer (broken line). The
eigenvalues λj are numbered in decreasing order.

Comparing the equation above with Eq. (12.21), one finds that the localizer in
Eq. (12.21) is obtained by setting the inverse of the signal-level eigenvalues to zero
and setting the noise-level eigenvalues to one in Eq. (12.22). Namely, the MUSIC
localizer can be obtained by distorting the eigenvalue spectrum to emphasize the
noise and signal subspace separation, as depicted in Fig. 12.1. In the MUSIC
localizer expression in Eq. (12.21), when r approaches one of the source locations,
the term ET

N l(r) becomes nearly zero and J (r) forms a sharp peak as a function r.
On the other hand, the minimum-variance output power in Eq. (12.22) includes the
first term, l(r)T ESΛ−1

S ET
S l(r) in its denominator. Thus, when r approaches one

of the source locations, 〈ŝ(r, t)2〉 does not become unreasonably large, but forms
a peak whose height corresponds to the source magnitude. Namely, this first term
gives the quantitative reliability of the voxel values in the adaptive spatial-filter
reconstruction.

12.3 Scanning with the generalized-likelihood-
ratio test function

Here, we introduce a method fairly similar to adaptive spatial filters. This
method also uses a test function that scans over voxels in order to obtain a three-
dimensional source reconstruction. This scanning function represents the likeli-
hood ratio between the null and alternative hypotheses, where the null hypothesis
posits that there is no source at the scanning location. The method is called the
generalized-likelihood-ratio test (GLRT) scanning[86][87].

198



12.3.1 Data model

When we have Q total signal sources, the data, b(t), is expressed as

b(t) =
Q∑

j=1

L(rj)s(rj , t) + bI(t) + n(t), (12.23)

where bI(t) is the interference and n(t) is the sensor noise. When the scanning
location r is equal to one of the source locations, for example, the location of the
first source r1, the measured data are expressed as

b(t) = L(r1)s(r1, t) +
Q∑

j=2

L(rj)s(rj , t) + bI(t) + n(t)

= L(r1)s(r1, t) + b
(ex)
I+n(t), (12.24)

where

b
(ex)
I+n(t) =

Q∑
j=2

L(rj)s(rj , t) + bI(t) + n(t). (12.25)

This b
(ex)
I+n(t) is the extended interference plus sensor noise. The data model above

is based on the same idea as that for deriving Eqs. (6.2) and (6.3), i.e., on the
idea that, when the method attempts to detect the source activity at r1, all other
sources are considered interference. When the scanning location r is not equal to
any of the locations of the signal sources, we have

b
(ex)
I+n(t) =

Q∑
j=1

L(rj)s(rj , t) + bI(t) + n(t) = b(t). (12.26)

That is, when no signal source exists at the scanning location r, the extended
interference plus sensor noise, b

(ex)
I+n(t), is equal to the measured signal.

We further assume that the extended interference plus noise, b
(ex)
I+n(t), is

represented by a multi-variate Gaussian process,

b
(ex)
I+n(t) ∼ N (0,Σ), (12.27)

where Σ is the covariance matrix of b
(ex)
I+n(t). Note that since b

(ex)
I+n(t) depends

on r, Σ also depends on the scanning location r. To derive the scanning func-
tion, we have to define the null and alternative hypotheses. The null hypothesis,
H0, posits that there is no source activity at the scanning location r. The alter-
native hypothesis, H1, posits that there is a source activity at r. The method
described here performs this hypothesis testing at each voxel location by scanning
the concentrated data likelihood.
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12.3.2 Deriving the scanning function

Likelihood of the null hypothesis

We first derive the data likelihood when the null hypothesis holds, i.e., when there
is no source at the scanning location, In this case, according to the Gaussianity
assumption in Eq. (12.27) and the relationship in Eq. (12.26), the probability
distribution of the measurement b(t) given Σ is expressed as

p(b(t)) =
1

(2π)(M/2)|Σ|1/2
exp[−1

2
bT (t)Σ−1b(t)]. (12.28)

Defining the spatio-temporal measurement as B: B = [b(t1), b(t2), . . . , b(tK)], and
assuming that the Gaussian processes are independent and identically distributed
for these time points, the probability for this spatio-temporal data set is expressed
as

p(B) =
K∏

k=1

1
(2π)(M/2)|Σ|1/2

exp[−1
2
bT (tk)Σ−1b(tk)]. (12.29)

The log-likelihood function is then expressed as

logL(B) = −K

2
log |Σ| − 1

2

K∑
k=1

bT (tk)Σ−1b(tk) = −K

2
log |Σ| − 1

2
tr{Σ−1BBT },

(12.30)
where we ignore additive constants that are not related to the arguments here.
Using exactly the same derivation as in Section 10.1, we can derive the maximum
likelihood estimate of Σ, such that

Σ =
1
K

K∑
k=1

b(tk)bT (tk) =
1
K

BBT = R̂. (12.31)

Equation (12.31) shows that Σ is equal to the measurement sample covariance
matrix, R̂, when H0 holds. The maximized log-likelihood function is obtained by
substituting the equation above into Eq. (12.30), resulting in

max
Σ

logL(B) = −K

2
log |R̂| − K

2
tr{(BBT )−1BBT } = −K

2
log |R̂| − KM

2
.

(12.32)
We again ignore the additive constant −KM/2 that is not related to the following
arguments. Finally, we attain

max
Σ

logL(B) = −K

2
log |R̂|. (12.33)

Likelihood for the alternative hypothesis

To derive the likelihood for the alternative hypothesis, we assume that the source
time course is given by a weighted sum of temporal basis functions, φj(t), where
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j = 1, . . . ,D and D is the total number of basis functions. Therefore, using a 3×D
matrix X, the time course of a source at r is expressed as

s(r, t) =

⎡
⎣

sx(r, t)
sy(r, t)
sz(r, t)

⎤
⎦ = X

⎡
⎢⎣

φ1(t)
...

φD(t)

⎤
⎥⎦ (12.34)

Defining a vector ϕ(t) such that

ϕ(t) =

⎡
⎢⎣

φ1(t)
...

φD(t)

⎤
⎥⎦ , (12.35)

Eq. (12.24) is rewritten as

b(t) = L(r)X(r)ϕ(t) + b
(ex)
I+n(t), (12.36)

where the scanning location is denoted r. When the alternative hypothesis holds,
the probability distribution of the measurement, B, given X and Σ, is expressed
such that

p(B)=
K∏

k=1

1
(2π)(M/2)|Σ|1/2

exp
[
−1

2
[b(tk)−LXϕ(tk)]T Σ−1[b(tk) − LXϕ(tk)]

]
,

(12.37)
where we omit the explicit notation of (r) from L(r) and X(r) for simplicity. The
log-likelihood function is then expressed as

logL(B) = −K

2
log |Σ| − 1

2

K∑
k=1

[b(tk) − LXϕ(tk)]T Σ−1[b(tk) − LXϕ(tk)]

= −K

2
log |Σ| − 1

2
tr{Σ−1(B − LXΦ)(B − LXΦ)T }, (12.38)

where we again neglect additive constants that are not related to the arguments
here. In the equation above, the matrix Φ is defined as

Φ = [ϕ(t1),ϕ(t2), . . . ,ϕ(tK)]. (12.39)

We then maximize the log-likelihood function in Eq. (12.38) with respect to Σ,
and we get the following relationship by calculating ∂ logL/∂Σ and setting it to
zero:

Σ =
1
K

K∑
k=1

[b(tk) − LXϕ(tk)][b(tk) − LXϕ(tk)]T

=
1
K

(B − LXΦ)(B − LXΦ)T . (12.40)
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The maximized log-likelihood function is obtained by substituting the equation
above into Eq. (12.38) and by ignoring the additive constant −KM/2, resulting
in

max
Σ

logL(B) = −K

2
log |Σ|. (12.41)

Note that the above logL(B) is a function of X and we also need to maximize
the above logL(B) with respect to X.

GLRT scanning function

The scanning function that determines whether there is a source activity at r is
derived by calculating the ratio of the concentrated likelihood for H1 to that for
H0. According to the discussion above, the (non-log) likelihood function for H0 is
expressed as

L(B) = |R̂|−K/2, (12.42)

and that for H1 as

L(B) = max
X

|Σ|−K/2 = max
X

| 1
K

(B − LXΦ)(B − LXΦ)T |−K/2. (12.43)

Therefore, the scanning function is the ratio of these likelihood functions, such
that

maxX |Σ|−K/2

|R̂|−K/2
.

However, the scanning function above is generally hard to compute, because it
contains the exponent K/2, which is generally a very large value. Therefore,
removing this power calculation, we define the scanning function equivalent to the
one above as

S(r) =
|R̂|

minX |Σ| =
|BBT |

minX |(B − LXΦ)(B − LXΦ)T | . (12.44)

Through a rather tedious derivation, which is described in Section 13.6 of the Ap-
pendix, we show that the scanning function in Eq (12.44) can finally be rewritten
as

S(r) =
|LT (r)A−1L(r)|
|LT (r)R̂

−1
L(r)|

, (12.45)

where A is given by

A = R̂ − RT
ΦBR−1

ΦΦRΦB , (12.46)

RΦB =
1
K

ΦBT , (12.47)

and RΦΦ =
1
K

ΦΦT . (12.48)
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We can observe the considerable similarity between the GLRT scanning func-
tion in Eq. (12.45) and the source power reconstruction such as in Eq. (4.10). The
obvious difference is that the GLRT scanning function contains A, which depends
on the choice of the set of temporal basis functions, ϕ(t). Consequently, the per-
formance of the GLRT method depends on the choice of ϕ(t). In the following,
we show a numerical example of the GLRT reconstruction in which the GLRT
method outperforms the adaptive spatial filter.

12.3.3 Numerical examples

Here, we present numerical examples of the GLRT scanning results. In this com-
puter simulation, we used the discrete prolate spheroidal sequences (DPSS)[88][89]
as the temporal basis functions, φj(t), according to papers by Baryshnikov et al.
[90] and Limpiti et al. [70]. The computer simulation scheme as in the previ-
ous chapters was used, except that the source locations were set to (0,−2,−6),
(0, 2,−6), and (0, 1.5,−7.5). The uncorrelated source time courses shown in
Fig. 4.3(a) are assigned to the three sources. The GLRT scanning results were
presented in Fig. 12.2 (a). The results in Fig. 12.2 (b) show the source power
reconstruction from the array-gain minimum-variance spatial filter. The results of
the GLRT scanning are almost the same as those of the minimum-variance spatial
filter.

We next generated the simulated data by assigning correlated time courses
to the first and second sources with Eq. (9.46). The GLRT scanning results when
the source correlation coefficient equals 0.8 and 0.98 are shown in (c) and (e),
respectively. The corresponding results from the array-gain minimum-variance
filter are shown in (d) and (f). In these minimum-variance results, we can observe
the effect of signal cancellation so that the reconstructed intensities of the first and
second sources are significantly reduced. This is particularly true in (f), which are
the results when the correlation coefficient equals 0.98. In these results, the first
and the second sources almost disappear. On the other hand, the GLRT scanning
results are significantly robust to the source correlation. Even when the correlation
coefficient is equal to 0.98 in (e), the method can reconstruct the three sources,
although we can observe some spatial blur, which is likely the effect of the source
correlation.
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Figure 12.2: Results of GLRT scanning and the source power reconstruction from
the minimum-variance spatial filter. (a) The GLRT scanning results when the
source correlation is almost zero. (b) Results from the array-gain minimum-
variance spatial filter with the same data as for (a). (c) The results of GLRT
scanning when the correlation coefficient between the first and second source time
courses was set to 0.8. (d) Results from the minimum-variance spatial filter with
the same data as for (c). (e) The results of GLRT scanning when the correlation
coefficient was set to 0.98. (f) Results from the minimum-variance spatial filter
with the same data as for (e). The GLRT scanning results were obtained us-
ing the discrete prolate spheroidal sequences (DPSSs) used as the temporal basis
functions.
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Chapter 13

Appendices

13.1 Maximum-likelihood estimation of noise and
signal subspaces

In this appendix, we show that when the sample measurement covariance matrix
R̂ is used, the column spans of ES and EN provide the maximum likelihood
estimates of the noise and the signal subspaces of R. The proof here is according
to Scharf[91]. We start from the basic equation of the measurements, Eq. (2.27).
Denoting bs(t) as

bs(t) =
Q∑

q=1

s(rq, t)l(rq), (13.1)

Eq. (2.27) becomes
b(t) = bs(t) + n(t). (13.2)

According to the noise-and-signal-subspace arguments in Section 2.4.1, there are
a total of (M −Q) linearly independent vectors xj (j = 1, . . . ,M −Q), which are
orthogonal to bs(t), i.e.,

xT
j bs(t) = 0, j = 1, . . . , M − Q. (13.3)

We assume that the noise is multi-variate Gaussian with the covariance ma-
trix of σ2

0I, and that the noise probability distributions are independent and
identically distributed for all time points. Then, denoting the spatio-temporal
measurement, B, as

B = [b(t1), . . . , b(tK)],

the log-likelihood function for B, logL(B), is expressed as

logL(B) = − 1
2σ2

0

K∑
k=1

[b(tk) − bs(tk)]T [b(tk) − bs(tk)], (13.4)
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where additive constants are ignored.
If xj is known, the maximum-likelihood estimate of the signal vector, bs(t),

is obtained by maximizing the log-likelihood function in Eq. (13.4) under the
constraint of Eq. (13.3). We change this constrained maximization problem to an
unconstrained minimization problem by introducing the Lagrange multiplier. We
define the Lagrangian such that

L(bs(tk),κ(tk)) =
K∑

k=1

[b(tk)− bs(tk)]T [b(tk)− bs(tk)] + 2
M−Q∑
j=1

K∑
k=1

κj(tk)xT
j bs(tk),

(13.5)
where each κj(tk) is a Lagrange multiplier, and we define

κ(tk) = [κ1(tk), . . . , κM−Q(tk)]T .

Defining
A = [x1, . . . ,xM−Q],

and calculating the derivative of the right-hand side of Eq. (13.5) with respect to
bs(tk), we obtain

∂L(bs(tk),κ(tk))
∂bs(tk)

= −2[b(tk) − bs(tk)] + 2Aκ(tk). (13.6)

Setting the left-hand side to zero, the maximum-likelihood solution of bs(tk) is

b̂s(tk) = b(tk) − Aκ(tk). (13.7)

Here, substituting the equation above into Eq. (13.3), we get

AT [b(tk) − Aκ(tk)] = 0, (13.8)

and
κ(tk) = (AT A)−1AT b(tk). (13.9)

Substituting this equation back into Eq. (13.7), the final maximum-likelihood so-
lution of bs(tk) is obtained as

b̂s(tk) = b(tk) − A(AT A)−1AT b(tk) = (I − ΠA)b(tk), (13.10)

where
ΠA = A(AT A)−1AT .

This ΠA is the projection matrix onto the column span of A, namely, onto the
noise subspace of R.

The above solution, b̂s(tk), is the maximum likelihood solution when A is
known. When A is unknown, the maximum likelihood estimate of A is obtained
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as the A that maximizes the log-likelihood in Eq. (13.4). When b̂s(tk) is expressed
as in Eq. (13.10), the residual of the likelihood function is given by

logL(B) = − 1
2σ2

0

K∑
k=1

bT (tk)ΠAb(tk) = − K

2σ2
0

tr{ΠAR̂}, (13.11)

where tr{·} indicates the trace operation, and R̂ is the sample measurement co-
variance matrix defined in Eq. (10.1). When deriving Eq. (13.11), the properties
of the projection matrix, ΠT

A = ΠA, and Π2
A = ΠA, are used. The log-likelihood

function in Eq. (13.11) is known to have an upper bound, i.e., the relationship

logL(B) = − K

2σ2
0

tr{ΠAR̂} ≤ − K

2σ2
0

M∑
j=Q+1

λ̂j (13.12)

holds, where λ̂j is the jth eigenvalue of R̂ and the eigenvalues are sorted in de-
creasing order. The upper bound is known to be achieved when the relationship

ΠA = [êQ+1, . . . , êM ][êQ+1, . . . , êM ]T = ÊN Ê
T

N (13.13)

holds, where êj is the eigenvector corresponding to λ̂j , and ÊN is a matrix whose
columns consist of the eigenvectors corresponding to the Q+1 smallest eigenvalues
of R̂. That is, the maximum-likelihood estimate of the noise subspace, ÊN , is the
column span of ÊN , i.e.,

ÊN = span{êQ+1, . . . , êM}. (13.14)

Since the noise and signal subspaces are orthogonal complements, it is obvious
that the maximum-likelihood estimates of the signal subspace ÊS is the column
span of ÊS , i.e.,

ÊS = span{ê1, . . . , êQ}. (13.15)

13.2 Additional topics related to non-adaptive
spatial filters

13.2.1 Determination of the optimum orientation for scalar
non-adaptive spatial filters

The scalar spatial filter formulation requires determination of the optimum ori-
entation, ηopt(r), using Eq. (2.70), unless the voxel orientation is predetermined
by other means. The formulae to compute this ηopt(r) for adaptive spatial filters
are presented in Section 4.3. This appendix presents formulae to calculate ηopt(r)
for representative non-adaptive spatial filters. For the minimum-norm filter, the
weight w(r,η) is expressed as

w(r,η) = G−1l = G−1L(r)η(r). (13.16)
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Then, ηopt(r) is derived by maximizing the outputs wT (r,η)Rw(r,η), i.e.,

ηopt(r) = arg max
η(r)

ηT (r)[LT (r)G−1RG−1L(r)]η(r). (13.17)

As discussed in Section 13.3, the above maximization has a closed-form solution,
in which the optimum orientation ηopt(r) is expressed as

ηopt(r) = ϑmax{LT (r)G−1RG−1L(r)}, (13.18)

where ϑmax{ · } indicates the eigenvector corresponding to the maximum eigen-
value of the matrix in the curly braces. For the weight-normalized minimum-norm
filter, ηopt(r) is obtained using

ηopt(r) = arg max
η(r)

ηT (r)[LT (r)G−1RG−1L(r)]η(r)
ηT (r)[LT (r)G−2L(r)]η(r)

, (13.19)

and its closed-form solution is given by

ηopt(r) = ϑmax{LT (r)G−1RG−1L(r),LT (r)G−2L(r)}. (13.20)

For sLORETA, ηopt(r) is obtained using

ηopt(r) = arg max
η(r)

ηT (r)[LT (r)G−1RG−1L(r)]η(r)
ηT (r)[LT (r)G−1L(r)]η(r)

, (13.21)

and its closed-form solution is given by

ηopt(r) = ϑmax{LT (r)G−1RG−1L(r),LT (r)G−1L(r)}. (13.22)

For the spatial matched filter, ηopt(r) is obtained using

ηopt(r) = arg max
η(r)

ηT (r)[LT (r)RL(r)]η(r)
ηT (r)[LT (r)L(r)]η(r)

, (13.23)

and its closed-form solution is given by

ηopt(r) = ϑmax{LT (r)RL(r),LT (r)L(r)}. (13.24)

13.2.2 Equivalence between the vector and scalar minimum-
norm filters

Generally, the scalar and the vector formulations are not equivalent for most of the
spatial filters. However, for the minimum-norm filter, we can show the equivalence
between these two formulations in the following manner. Using Eqs. (2.78) and
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(3.17), the optimum orientation for the vector formulation, η̄opt(r), is obtained
such that

η̄opt(r) = arg max
η(r)

ηT (r)〈ŝ(r, t)ŝT (r, t)〉η(r)

= arg max
η(r)

ηT (r)[LT (r)G−1〈b(t)bT (t)〉G−1L(r)]η(r)

= arg max
η(r)

ηT (r)[LT (r)G−1RG−1L(r)]η(r). (13.25)

A comparison between the above equation and Eq. (13.17) shows that

η̄opt(r) = ηopt(r).

Then, using this η̄opt(r), we have

η̄T
opt(r)ŝ(r, t) = ηT

opt(r)LT (r)G−1b(t) = lT (r)G−1b(t) = ŝ(r, t). (13.26)

This equation shows that η̄T
opt(r)ŝ(r, t) is equal to the scalar spatial filter out-

put ŝ(r, t), thus demonstrating the equivalence between the vector and the scalar
formulations. Although the equivalence between the scalar and the vector formu-
lations can be shown for the minimum-norm filter, these two formulations are not
equivalent for the other non-adaptive filters. For example, in the spatial matched
filter, the estimated power matrix can be expressed as

Σ̂s(r) = W T (r)RW (r) =
1

‖L(r)‖2
LT (r)RL(r). (13.27)

Therefore, the optimum orientation from the vector output, η̄opt(r), is obtained
using

η̄opt(r) = arg max
η(r)

[
ηT Σ̂s(r)η

]
= ϑmax{LT (r)RL(r)}. (13.28)

It is easy to see that this η̄opt(r) is different from the ηopt(r) obtained in
Eq. (13.24). For other non-adaptive filters, it can be shown in the same man-
ner that the two kinds of formulations are not equivalent.

13.3 Rayleigh-Ritz formula

This section provides a proof of the Rayleigh-Ritz formula, which is according to
[37]. We define A and B as positive definite matrices of the same dimensions. We
introduce the following notations and use them throughout the book:

• The minimum and maximum eigenvalues of a matrix A are denoted λmin{A}
and λmax{A}.
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• The eigenvectors corresponding to the minimum and maximum eigenvalues
of a matrix A are denoted ϑmin{A} and ϑmax{A}.

• The minimum and maximum generalized eigenvalues of a matrix A with a
metric B are denoted λmin{A,B} and λmax{A,B}, and the corresponding
eigenvectors are denoted ϑmin{A,B} and ϑmax{A,B}.

Here, if the matrix B is nonsingular, the following relationships hold:

λmax{A,B} = λmax{B−1A},
ϑmax{A,B}= ϑmax{B−1A},
λmin{A,B} = λmin{B−1A},

and ϑmin{A,B} = ϑmin{B−1A}.

Then, using x to denote a column vector with its dimension commensurate
with the size of the matrices, this appendix shows that

min
x

xT Ax

xT Bx
= λmin{A,B}, (13.29)

and

arg min
x

xT Ax

xT Bx
= ϑmin{A,B}. (13.30)

Since the value of the ratio (xT Ax)/(xT Bx) is not affected by the norm of x,
we set the norm of x so as to satisfy the relationship xT Bx = 1. Then, the
minimization problem in Eq. (13.29) is rewritten as

min
x

xT Ax subject to xT Bx = 1. (13.31)

We change this constrained minimization problem to an unconstrained minimiza-
tion problem by introducing the Lagrange multiplier κ. We define the Lagrangian
L(x, κ) such that

L(x, κ) = xT Ax − κ(xT Bx − 1). (13.32)

The minimization in Eq. (13.31) is equivalent to minimizing L(x, κ) with no con-
straints.

To obtain the minimum of L(x, κ), we calculate the derivatives,

∂L(x, κ)
∂x

= 2(Ax − κBx), (13.33)

and
∂L(x, κ)

∂κ
= −(xT Bx − 1). (13.34)

By setting these derivatives to zero, we can derive the relationships, Ax = κBx
and κ = xT Ax. Therefore, the minimum value of xT Ax is equal to the minimum
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eigenvalue of Ax = κBx, and the x that attains this minimum value is equal to
the eigenvector corresponding to this minimum eigenvalue. Namely, we have

min
x

xT Ax

xT Bx
= λmin{A,B}

and

arg min
x

xT Ax

xT Bx
= ϑmin{A,B}.

Using exactly the same derivation, it is easy to show that

max
x

xT Ax

xT Bx
= λmax{A,B} (13.35)

and

arg max
x

xT Ax

xT Bx
= ϑmax{A,B}. (13.36)

13.4 Supplementary formulae when only one or
two sources exist

The definition of the generalized cosine between the two column vectors a1 and
a2 with the metric A, where A is a positive definite matrix is

cos(a1,a2|A) =
|aT

1 Aa2|√
(aT

1 Aa1)(aT
2 Aa2)

. (13.37)

Here, the inequality cos(a1,a2|A) ≤ 1 holds, because the Swartz inequality holds
for any positive definite matrix A, i.e.,

(aT
1 Aa1)(aT

2 Aa2) ≥ (aT
1 Aa2)2 (13.38)

When A is equal to the identity matrix I, the generalized cosine, cos(a1,a2|I), is
simply written as cos(a1,a2), which is equal to

cos(a1,a2) =
|aT

1 a2|√
(aT

1 a1)(aT
2 a2)

. (13.39)

The generalized sine is defined as

sin2(a1,a2|A) = 1 − cos2(a1,a2|A) (13.40)

and
sin2(a1,a2) = 1 − cos2(a1,a2). (13.41)

Next, we provide several supplementary formulae for when a single source
exists. Let us assume that a single source exists at r1 and its power is σ2

1 . The
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lead-field vector at r1 in the source direction is denoted f , namely, f = l(r1).
Then, using Eq. (2.43), the measurement covariance matrix R is expressed as

R = σ2
1ffT + σ2

0I. (13.42)

Its inverse is given by

R−1 =
1
σ2

0

(I − α

1 + α

ffT

‖f‖2
), (13.43)

where α = (σ2
1/σ2

0)‖f‖2. The square inverse is derived as

R−2 =
1
σ4

0

(I − (2 + α)α
(1 + α)2

ffT

‖f‖2
). (13.44)

Making use of the formula in Eq. (13.43), for an arbitrary vector l whose dimension
is commensurate with the size of the covariance matrix, we have,

fT R−1f=
‖f‖2

σ2
0

1
1 + α

, (13.45)

lT R−1l =
1
σ2

0

(‖l‖2 − α

1 + α

(lT f)2

‖f‖2
) =

‖l‖2

σ2
0

(1 − α

1 + α
cos2(l,f)), (13.46)

and lT R−1f =
1
σ2

0

(lT f − α

1 + α

(lT f)(fT f)
‖f‖2

) =
lT f

σ2
0(1 + α)

. (13.47)

Also, using Eq. (13.44) we have

fT R−2f=
‖f‖2

σ4
0

1
(1 + α)2

, (13.48)

and lT R−2l =
‖l‖2

σ4
0(1 + α)2

[1 + (2α + α2) sin(l,f)]. (13.49)

We also provide several supplementary formulae when two sources exist at r1

and r2. Their powers are denoted σ2
1 and σ2

2 . The lead-field vectors at the source
locations and orientations are denoted f and g, respectively, where f = l(r1) and
g = l(r2). Then, the measurement covariance matrix is given by:

R = σ2
1ffT + σ2

2ggT + σ2
0I = σ2

1ffT + σ2
0D, (13.50)

and its inverse is expressed as

R−1 =
1
σ2

0

(D−1 − D−1ffT D−1 (σ2
1/σ2

0)
1 + ᾱ1

), (13.51)
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where

D =I +
σ2

2

σ2
0

ggT , (13.52)

D−1=I − α2

(1 + α2)
ggT

‖g‖2
, (13.53)

ᾱ1 =
σ2

1

σ2
0

fT D−1f , (13.54)

α1 =
σ2

1

σ2
0

‖f‖2, (13.55)

and α2 =
σ2

2

σ2
0

‖g‖2. (13.56)

Using Eq. (13.51), we can obtain, for an arbitrary vector l, the following
equations:

lT R−1l =
‖l‖2

Γ

[
[1 − α2

1 + α2
cos2(l, g)] + α1C(l,f , g)

]
, (13.57)

where

Γ = σ2
0(1 + ᾱ1) = σ2

0 + σ2
1‖f‖2[1 − α2

1 + α2
cos2(f , g)], (13.58)

and

C(l,f , g) = 1 − cos2(l,f) − α2

1 + α2
cos2(f , g) − α2

1 + α2
cos2(l, g)

+ 2
α2

1 + α2
cos(l,f) cos(l, g) cos(f , g). (13.59)

Note that C(l,f , g) = 0 when l = f or l = g. Also, using Eq. (13.51), we have

R−2 =
1
σ4

0

[D−2 − D−2ffT D−1 (σ2
1/σ2

0)
1 + ᾱ1

− D−1ffT D−2 (σ2
1/σ2

0)
1 + ᾱ1

+ D−1ffT D−1(fT D−2f)
(σ2

1/σ2
0)2

(1 + ᾱ1)2
]. (13.60)

Thus, for an arbitrary vector l, we can obtain

lT R−2l =
1
Γ2

[(1 + ᾱ1)2(lT D−2l)

− 2(
σ2

1

σ2
0

)(1 + ᾱ1)(lT D−2f)(lT D−1f) + (
σ2

1

σ2
0

)2(lT D−1f)2(fT D−2f)], (13.61)
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where

lT D−1f=‖l‖‖f‖
[
cos(f , l) − α2

1 + α2
cos(f , g) cos(g, l)

]
, (13.62)

lT D−2f=‖l‖‖f‖
[
cos(f , l) − α2(2 + α2)

(1 + α2)2
cos(f , g) cos(g, l)

]
, (13.63)

and lT D−2l =‖l‖2

[
1 − α2(2 + α2)

(1 + α2)2
cos2(l, g)

]
. (13.64)

Using Eq. (13.61), we can also obtain

fT R−2f =
1
Γ2

(fT D−2f) =
‖f‖2

Γ2

[
1 − α2(2 + α2)

(1 + α2)2
cos2(f , g)

]
. (13.65)

13.5 Robustness of the prewhitening signal
covariance estimation to the
control-only-sources scenario

In Section 8.2, it is assumed that control-state measurements contain only the con-
tributions from the background interference and sensor noise, and the interference-
plus-noise covariance matrix Ri+n can be obtained from such control-state mea-
surements. This assumption, however, may not always be valid in real-life task-
and-control-type measurements. There may be a situation in which there are some
sources that appear only in the control state and do not appear in the task state.
Such sources are called the control-only sources. This appendix shows that the
prewhitening signal covariance estimation is robust to the existence of control-only
sources.

We assume that there are P sources that exist only in the control state and
do not appear in the task state. We also assume that the signal is still low-rank,
i.e., Q+P < M . When control-only sources exist, the control state measurements
bc(t) can be expressed as

bc(t) = bI(t) + n(t) + bΔ(t), (13.66)

where bΔ(t) indicates the signal generated by control-only sources. Assuming that
the activity of control-only sources is uncorrelated with the interference and sensor
noise, the covariance matrix relationships are then expressed as:

Control: Rc =Ri+n + RΔ,

Task: R =Rs + Ri+n, (13.67)

where
RΔ = 〈bΔ(t)bT

Δ(t)〉. (13.68)

Using Eq. (13.67), we have

R = Rs + Rc − RΔ, (13.69)
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and thus
R̃ = R̃s + I − R̃Δ, (13.70)

where R̃Δ = R−1/2
c RΔR−1/2

c . Since RΔ is a positive semi-definite matrix with
rank P and R−1/2

c is a non-singular matrix, R̃Δ is a positive semi-definite matrix
with rank P . Thus, R̃Δ is decomposed as

R̃Δ =
P∑

j=1

βjkjk
T
j , (13.71)

where βj , (j = 1, . . . , P ) are the P non-zero eigenvalues of R̃Δ, and kj are the
corresponding eigenvectors. Substituting Eqs.(8.22) and (13.71) into (13.70), we
have

R̃ =
Q∑

j=1

γjhjh
T
j +

M∑
j=P+1

kjk
T
j +

P∑
j=1

(1 − βj)kjk
T
j . (13.72)

When the control-only sources are well separated from the signal sources of inter-
est, the relationship

span{k1, . . . ,kP } ⊥ span{h1, . . . ,hQ}, (13.73)

approximately holds. Under this assumption, we will show that the set of vectors

{h1, . . . ,hQ,d1, . . . ,dM−P−Q,k1, . . . ,kP } (13.74)

are the eigenvectors of R̃, where {d1, . . . ,dM−P−Q} is the orthonormal basis set
of the subspace: span{hQ+1, . . . ,hM} ∩ span{kP+1, . . . ,kM}.

We first show that the relationship

R̃hi = (γi + 1)hi (i = 1, . . . , Q), (13.75)

holds. That is, we show that the vectors hi (where i = 1, . . . , Q) are the eigenvec-
tors of R̃ and their corresponding eigenvalues are γi+1. To show this, we calculate
the right multiplication of R̃ with hi (i = 1, . . . , Q), and using Eq. (13.72) this
multiplication results in

R̃hi = (
Q∑

j=1

γjhjh
T
j )hi + (

M∑
j=P+1

kjk
T
j )hi + (

P∑
j=1

(1 − βj)kjk
T
j )hi. (13.76)

The first term on the right-hand side becomes γihi. The third term on the
right-hand side of Eq. (13.76) vanishes due to the orthogonality assumption in
Eq. (13.73).

The second term becomes hi, i.e.,

(
M∑

j=P+1

kjk
T
j )hi = hi. (13.77)
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To show this, we first point out that the relationship,

span{h1, . . . ,hQ} ∩ span{k1, . . . ,kP } = ∅ (13.78)

holds, where ∅ indicates the empty set1. Because this relationship holds, we have
hj (j = 1, . . . , Q) /∈ span{k1, . . . ,kP }, and hj (j = 1, . . . , Q) belongs to the com-
plementary subspace of span{k1, . . . ,kP }, which is equal to span{kQ+1, . . . ,kM}.
Namely, hj ∈ span{kQ+1, . . . ,kM}. Therefore, because

∑M
j=P+1 kjk

T
j is the pro-

jector onto span{kQ+1, . . . ,kM}, the application of this projector to hi results
in hi itself. Thus, we show that the vectors hi (where i = 1, . . . , Q) are the
eigenvectors of R̃, and the corresponding eigenvalues are γi + 1.

Next, we show that the relationship,

R̃di = di (i = 1, . . . , M − P − Q), (13.82)

holds. That is, we show that the vectors di (i = 1, . . . , M − P − Q) are the
eigenvectors of R̃, and the corresponding eigenvalues are equal to 1. To show this
relationship, we calculate the right multiplication of R̃ with di, which is equal to

R̃di = (
Q∑

j=1

γjhjh
T
j )di + (

M∑
j=P+1

kjk
T
j )di + (

P∑
j=1

(1 − βj)kjk
T
j )di. (13.83)

Since di is orthogonal to both the subspace spanned by hj (j = 1, . . . , Q) and that
spanned by kj (j = 1, . . . , P ), the only non-zero term on the right-hand side is the
second term, which is equal to di, because di ∈ span{kP+1, . . . ,kM}. Thus, we
have proved Eq. (13.82).

Finally, we calculate the right multiplication of R̃ with ki (i = 1, . . . , P ),
which produces

R̃ki = (
Q∑

j=1

γjhjh
T
j )ki + (

M∑
j=P+1

kjk
T
j )ki + (

P∑
j=1

(1 − βj)kjk
T
j )ki. (13.84)

1To prove this relationship, we use the fact that the vectors

l(r1), . . . , l(rQ), l(rc
1), . . . , l(rc

P )

are linearly independent, where r1, . . . , rQ are the locations of the signal sources and rc
1, . . . , rc

P

are the locations of the control-only sources. Since the matrix R
−1/2
c is non-singular, the vectors

R
−1/2
c l(r1), . . . , R

−1/2
c l(rQ), R

−1/2
c l(rc

1), . . . , R
−1/2
c l(rc

P )

are linearly independent, and consequently the following relationship holds,

span{R−1/2
c l(r1), . . . , R

−1/2
c l(rQ) } ∩ span{R−1/2

c l(rc
1), . . . , R

−1/2
c l(rc

P )} = ∅. (13.79)

Since we have

span{h1, . . . , hQ}= span{R−1/2
c l(r1), . . . , R

−1/2
c l(rQ) }, (13.80)

and span{k1, . . . , kP } = span{R−1/2
c l(rc

1), . . . , R
−1/2
c l(rc

P )}, (13.81)

Eq. (13.79) is equal to the relationship in Eq. (13.78).
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On the right-hand side, the first term becomes zero due to the orthogonality
assumption in Eq. (13.73), and the second term becomes zero due to the orthog-
onality relationship between the signal and the noise subspaces. Thus, we have

R̃ki = (1 − βi)ki. (13.85)

Therefore, ki (i = 1, . . . , P ) are eigenvectors of R̃ and the corresponding eigenval-
ues are 1− βi. We can also show that these eigenvalues are positive but less than
1, i.e., 0 < 1 − βj < 1, although we do not include the proof here. In summary,
we have shown that the vectors

{h1, . . . ,hQ,d1, . . . ,dM−P−Q,kP , . . . ,k1}

are the eigenvectors of R̃. The corresponding eigenvalues, in decreasing order, are:

γ1 + 1, . . . , γQ + 1, 1, . . . , 1︸ ︷︷ ︸
M−Q−P

, 1 − βP , . . . , 1 − β1. (13.86)

Here, the largest Q eigenvalues γ1 +1, . . . , γQ +1 are greater than 1, and therefore,
Eq. (8.26) is still effective at retrieving Rs, even when control-only sources exist.

In general, however, the subspace angle between span{h1, . . . ,hQ} and
span{k1, . . . ,kP } may not be so large and the assumption that these two sub-
spaces are orthogonal may not be satisfied. In such cases, Eq. (13.75) changes
to

R̃hi = (γi + 1)hi +
P∑

j=1

(1 − βj)(kjk
T
j )hi = (γi + 1)hi +

P∑
j=1

[
(1 − βj)kT

j hi

]
kj .

(13.87)
This equation shows that hi (i = 1, . . . , Q) is no longer the eigenvector of R̃ and
the second term on the right-hand side of Eq. (13.87) indicates the error term.
Thus, if the relationship,

(γi + 1) � |
P∑

j=1

(1 − βj)kT
j hi| (13.88)

holds, the error term is negligibly smaller than the first term, and the hi are
still approximately the signal-level eigenvectors of R̃. Conversely, when the error
term is not small, the signal-covariance estimate obtained from Eq (8.26) could be
erroneous.

13.6 Derivation of GLRT scanning function in
Eq. (12.45)

Here, we derive the scanning function in Eq. (12.45). The derivation here is ac-
cording to [86]. We first define a D × K matrix P such that

P = (ΦΦT )−1/2Φ, (13.89)
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where Φ is defined in Eq. (12.39), and K is the number of time point and D is the
number of basis functions, which is naturally much smaller than K. We define a
(K − D) × K matrix Q whose rows consist of the basis functions orthogonal to
ϕ(t). Then, we have the relationships,

PP T = ID, (13.90)

QQT = IK−D, (13.91)

and P T P + QT Q = IK , (13.92)

where ID, IK−D, and IK indicate the D × D, (K − D) × (K − D), and K × K
identity matrices, respectively. Defining BP = BP T and BQ = BQT (where B
is the spatio-temporal data set: B = [b(t1), b(t2), . . . , b(tK)]), we thus have

B = B(P T P + QT Q) = [BP ,BQ]
[

P
Q

]
(13.93)

and

BBT = [BP BQ]
[

P
Q

]
[P T QT ]

[
BT

P

BT
Q

]
= BP BT

P + BQBT
Q. (13.94)

We also define E such that E = L(LT L)−1/2 where L is the lead-field matrix
with the explicit notation of (r) omitted for simplicity.

In Eq. (12.40), we derive the covariance matrix estimate for the alternative
hypothesis H1, such that

Σ =
1
K

(B − LXΦ)(B − LXΦ)T .

Using E and P , we have

LXΦ = L(LT L)−1/2(LT L)1/2X(ΦΦT )1/2(ΦΦT )−1/2Φ = EX̃P , (13.95)

where
X̃ = (LT L)1/2X(ΦΦT )1/2.

Therefore, Σ is expressed as

Σ =
1
K

(B − EX̃P )(B − EX̃P )T . (13.96)

Next, defining
S = BQBT

Q, (13.97)

and using the relationship

(B−EX̃P )(B−EX̃P )T =BBT−B(EX̃P )T−(EX̃P )BT +(EX̃P )(EX̃P )T

= (BP BT
P + BQBT

Q) − BP (EX̃)T − (EX̃)(BT
P ) + (EX̃)(EX̃)T

= S + (BP − EX̃)(BP − EX̃)T

= S1/2[I + S−1/2(BP − EX̃)(BP − EX̃)T S−1/2]S1/2, (13.98)
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we have

|KΣ| = |S1/2[I + S−1/2(BP − EX̃)(BP − EX̃)T S−1/2]S1/2|
= |S||I + S−1/2(BP − EX̃)(BP − EX̃)T S−1/2|

= |S||I + (BP − EX̃)T S−1(BP − EX̃)|. (13.99)

Let us define F(X̃) such that

F(X̃) = I + (BP − EX̃)T S−1(BP − EX̃),

and try to find the minimum value of F(X̃) with respect to X̃. We rewrite this
F(X̃) such that

F(X̃) = I + BT
P S−1BP + (X̃ − X̃0)T (ET S−1E)(X̃ − X̃0)− X̃

T

0 (ET S−1E)X̃0,
(13.100)

where
X̃0 = (ET S−1E)−1ET S−1BP . (13.101)

Therefore, the case of X̃ = X̃0 minimizes F(X̃), and the minimum value F(X̃0)
is

F(X̃0) = I + BT
P S−1BP − X̃

T

0 (ET S−1E)X̃0. (13.102)

The scanning function in Eq. (12.44) can then be expressed as

S(r) =
|BBT |

minX |KΣ| =
|BP BT

P + S|
|S||I + BT

P S−1BP − X̃
T

0 (ET S−1E)X̃0|
. (13.103)

Substituting X̃0 in Eq. (13.101) into the right-hand side of the above equation,
after some manipulation, we finally get

S(r) =
|I + BT

P S−1BP |
|I + BT

P S−1BP − BT
P S−1E(ET S−1E)−1ET S−1BP |

=
|I + BT

P S−1BP |
|I + BT

P S−1BP − BT
P S−1L(LT S−1L)−1LT S−1BP |

, (13.104)

where we use the relationship2

E(ET S−1E)−1ET = L(LT S−1L)−1LT .

2To show this relationship, we first derive,

ET S−1E = [L(LT L)−1/2]T S−1L(LT L)−1/2 = (LT L)−1/2LT S−1L(LT L)−1/2.

Thus, we have,

E(ET S−1E)−1ET = L(LT L)−1/2
[
(LT L)−1/2LT S−1L(LT L)−1/2

]−1
(LT L)−1/2LT

= L(LT S−1L)−1LT .
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Because the matrices I + BT
P S−1BP and LT S−1L are non-singular matrices, we

can use the identity concerning the matrix determinant, i.e.,

|I + BT
P S−1BP ||LT S−1L − LT S−1BP (I + BT

P S−1BP )−1BT
P S−1L|

= |LT S−1L||I + BT
P S−1BP − BT

P S−1L(LT S−1L)−1LT S−1BP |.

Therefore, the scanning function in Eq. (13.104) can be rewritten as

S(r) =
|LT S−1L|

|LT S−1L − LT S−1BP (I + BT
P S−1BP )−1BT

P S−1L|

=
|LT S−1L|

|LT
[
S−1 − S−1BP (I + BT

P S−1BP )−1BT
P S−1

]
L|

. (13.105)

Using the matrix inversion formula,

S−1 − S−1BP (I + BT
P S−1BP )−1BT

P S−1 = (S + BP BT
P )−1,

we finally obtain

S(r) =
|LT S−1L|

|LT (S + BP BT
P )−1L|

=
|LT S−1L|

|LT (BBT )−1L|
. (13.106)

The equation above is the same as the scanning function in Eq. (12.45) because
the following relationship holds:

1
K

S =
1
K

BQBT
Q =

1
K

(BBT − BP BT
P ) =

1
K

(BBT − BΦT (ΦΦT )−1ΦBT )

= R̂ − RT
ΦBR−1

ΦΦRΦB = A.

13.7 Bioelectromagnetic forward modeling

Estimation of the sensor lead-field is called the forward problem[92], which is the
problem of computing the sensor outputs from a point source located at a known
location. The forward problem stands in sharp contrast to the inverse problem,
which is the problem of estimating source spatial distributions from the sensor
data. It is obvious that to solve the inverse problem we need to have a reasonably
accurate estimate of the sensor lead field. In this chapter, we describe how we
can obtain an estimate of the lead field for an MEG sensor array. Although
this section strays somewhat from the scope of the book, we include it for readers’
convenience. The first five subsections follow the derivation reported in Sarvas[93],
and we derive the well-known Sarvas formula for calculating the sensor lead field
for the spherically-symmetric homogeneous conductor. We briefly mention how to
compute the lead field from a realistic head-shape model. An extension to derive
the EEG sensor array is also described.
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13.7.1 Quasi-static Maxwell’s equations

When neural activities exist, they generate an external electro-motive force Fext.
Then, the total force F received by a particle with charge q located in an electric
field E is

F = qE + Fext = q(E + Eext), (13.107)

where Eext represents the external electro-motive force expressed as an electric
field. The electric current density generally is proportional to F . Thus, denoting
the proportionality constant as ρ/q, the relationship

J =
ρ

q
F = ρ(E + Eext) = ρE + Je (13.108)

holds where the proportionality constant, ρ, is called the conductivity. In
Eq. (13.108), J is the total current density and Je represents the external electro-
motive force expressed in units of current density. This Je is called the primary
current or the impressed current, and the electric current represented by ρE, which
does not directly represent the neural activities, is called the return current or the
volume current. This Je is the quantity referred to as the source and is denoted
s(r) throughout this book. In this section, however, we use the notation Je to
explicitly express the physical nature of the source. Here, we will derive the re-
lationship between the magnetic field B and Je, starting with the quasi-static
Maxwell’s equations

E = −∇V, (13.109)
and ∇× B = μ0J , (13.110)

where μ0 is the magnetic permeability of free space, ∇ is the gradient operator,
and V is the electric potential. The relationship between the total current J and
the resultant magnetic field B is given by the well-known Biot-Savart law, which
is derived from Eq. (13.110) and expressed as

B(r′) =
μ0

4π

∫

Ω

J(r) × r′ − r

|r′ − r|3 d3r =
μ0

4π

∫

Ω

J(r) × G(r′, r) d3r, (13.111)

where the kernel G(r′, r) is expressed as

G(r′, r) =
r′ − r

|r′ − r|3 = ∇|r′ − r|−1. (13.112)

In Eq. (13.111), Ω indicates the whole brain region, and the volume integral is
performed in the region Ω.

13.7.2 Magnetic field in an infinite homogeneous conductor

We first consider the case where a whole space is filled with a conductor with a
constant conductivity ρ, and derive the relationship between the primary source
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current Je and the magnetic field B. Let us consider the identity

∫

Ω

∇× (J(r)|r′ − r|−1) d3r

=
∫

Ω

|r′ − r|−1∇× J(r) d3r +
∫

Ω

(∇|r′ − r|−1) × J(r) d3r, (13.113)

where the gradient operator is applied to r, and the volume integral is applied to
a region Ω. The volume integral on the left-hand side of the equation above is
changed to a surface integral such that

∫

Ω

∇× (J(r)|r′ − r|−1) d3r =
∫

∂Ω

dS × (J(r)|r′ − r|−1), (13.114)

where ∂Ω indicates the surface of Ω, and the surface integral on the right-hand
side is applied to ∂Ω. Here, dS is the surface-element vector on ∂Ω. When we
assume that the region Ω is an infinitely extended volume, J(r) on the surface
becomes zero. Namely, the right-hand side of Eq. (13.114) becomes zero, and we
have ∫

Ω

∇× (J(r)|r′ − r|−1) d3r = 0. (13.115)

Therefore, using Eq. (13.113), the relationship,
∫

Ω

∇× J(r)
|r′ − r| d3r =

∫

Ω

J(r)×(∇|r′−r|−1) d3r =
∫

Ω

J(r)×G(r′, r) d3r, (13.116)

holds.
Using this equation, the Biot-Savart law in Eq. (13.111) is rewritten as

B(r′) =
μ0

4π

∫

Ω

J(r) × G(r′, r) d3r =
μ0

4π

∫

Ω

∇× J(r)
|r′ − r| d3r. (13.117)

Substituting J = Je−ρ∇V into the above equation, and considering the relation-
ship, ∇×∇V = 0, we finally obtain

B(r′) =
μ0

4π

∫

Ω

∇× Je(r)
|r′ − r| d3r =

μ0

4π

∫

Ω

Je(r) × G(r′, r) d3r, (13.118)

where we again use the relationship in Eq. (13.117) with Je instead of J . The
equation above indicates that the exact same formula for the Biot-Savart law
holds for Je in the case of an infinite homogeneous conductor. Let us consider
the situation in which the source distribution is highly localized and concentrated
around r0, so it can be expressed as Je(r) = Qδ(r − r0) where Q is the moment
of the source located at r0. Then, Eq. (13.118) changes to

B(r′) =
μ0

4π

∫

Ω

Qδ(r − r0) × G(r′, r) d3r =
μ0

4π
Q × r′ − r0

|r′ − r0|3
. (13.119)
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13.7.3 Electric potential in an infinite homogeneous
conductor

We again consider the case where a whole space is filled with a conductor with
a constant conductivity, ρ, and next derive the relationship between the primary
source current, Je, and the electric potential, V . To derive a formula for the
electric potential, we start from the Poisson equation,

∇2V = ∇ · Je(r)/ρ. (13.120)

The equation above has a well-known solution expressed as

V (r′) = − 1
4πρ

∫

Ω

∇ · Je(r)
|r′ − r| d3r. (13.121)

Let us consider the identity

∫

Ω

∇ · (Je(r)|r′ − r|−1) d3r

=
∫

Ω

|r′ − r|−1∇ · Je(r) d3r +
∫

Ω

(∇|r′ − r|−1) · Je(r) d3r. (13.122)

The volume integral on the left-hand side of the equation above can be converted
to a surface integral by using the Gauss theorem whereby

∫

Ω

∇ · (Je(r)|r′ − r|−1) d3r =
∫

∂Ω

dS · (Je(r)|r′ − r|−1). (13.123)

We again assume that the region Ω is an infinitely extended volume. Then, Je(r)
on the surface becomes zero, and the left-hand side of Eq. (13.122) is equal to zero.
Consequently, we have

V (r′) =
1

4πρ

∫

Ω

(∇|r′ − r|−1) · Je(r) d3r =
1

4πρ

∫

Ω

Je(r) · G(r′, r) d3r. (13.124)

Considering the case in which the source distribution can be expressed as Je(r) =
Qδ(r − r0), Eq. (13.124) changes to

V (r′) =
1

4πρ

∫

Ω

Qδ(r − r0) · G(r′, r) d3r =
1

4πρ
Q · r′ − r0

|r′ − r0|3
. (13.125)

13.7.4 Formulae in a bounded conductor with
piecewise-constant conductivity

We next consider the magnetic field generated by an inhomogeneous conductor.
We assume that the region Ω can be divided into subregions Ωj , j = 1, . . . ,O, and
the region Ωj has conductivity ρj . We also assume that the conductivity, ρ(r),
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is zero outside Ω. In this case, substituting J(r) = Je(r) − ρ(r)∇V (r) into the
Biot-Savart law in Eq. (13.111), we obtain

B(r′) =
μ0

4π

∫

Ω

[Je(r) − ρ(r)∇V (r)] × G(r′, r) d3r

=
μ0

4π

∫

Ω

Je(r) × G(r′, r) d3r − μ0

4π

O∑
j=1

ρj

∫

Ωj

∇V (r) × G(r′, r) d3r. (13.126)

Using
∇× [V (r)G(r′, r)] = ∇V (r) × G(r′, r), (13.127)

and using the same identity for deriving Eq. (13.114), the second term on the
right-hand side of Eq. (13.126) can be rewritten as
∫

Ωj

∇V (r) × G(r′, r) d3r =
∫

Ωj

∇× V (r)G(r′, r) d3r

=
∫

∂Ωj

dS × V (r)G(r′, r) =
∫

∂Ωj

V (r)m(r) × G(r′, r)dS, (13.128)

where ∂Ωj indicates the surface of Ωj , and m(r) is the normal vector of a surface
element on ∂Ωj . Then, substituting this equation into Eq. (13.126), we can derive
the following Geselowitz formula[94]:

B(r′) = B0(r′) − μ0

4π

O∑
j=1

(ρj − ρ′j)
∫

∂Ωj

V (r)m(r) × G(r′, r)dS, (13.129)

where
B0(r′) =

μ0

4π

∫

Ω

Je(r) × G(r′, r) d3r

and ρ′j is the conductivity just outside of Ωj . B0(r′) above is the magnetic field for
the infinite homogeneous conductor in Eq. (13.118). We can also derive a formula
similar to Eq. (13.129) for the case of electric potential V :

ρ(r)V (r′) =
1
4π

∫

Ω

Je(r) · G(r′, r) d3r

− 1
4π

O∑
j=1

(ρj − ρ′j)
∫

∂Ωj

V (r)m(r) · G(r′, r)dS. (13.130)

13.7.5 Magnetic field from a homogeneous spherical
conductor

Here, we assume that Ωj is spherically symmetric, and we set the coordinate origin
at the center of Ωj . We have

B(r′)·er = B0(r′)·er−
μ0

4π

O∑
j=1

(ρj−ρ′j)
∫

∂Ωj

V (r)m(r)×G(r′, r)·erdS, (13.131)
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where er is the unit vector in the radial direction, which is defined as er = r/|r|.
Since m(r) = er in this case, the second term is equal to zero, and we have the
relationship

B · er = B0 · er. (13.132)

This equation indicates that the radial component of the magnetic field is not
affected by the volume current and that the radial component is determined solely
by the primary current. We then proceed to deriving a closed-form formula for the
magnetic field outside a spherically-symmetric homogeneous conductor. The rela-
tionship ∇′×B(r′) = 0 (where ∇′ applies r′) holds outside the volume conductor,
because there is no electric current. Thus, B(r′) can be expressed in terms of the
magnetic scalar potential U(r′), as

B(r′) = −μ0∇′U(r′). (13.133)

This potential function is derived from

U(r′) =
1
μ0

∫ ∞

0

B(r′ + τer) · erdτ =
1
μ0

∫ ∞

0

B0(r + τer) · erdτ, (13.134)

where we use the relationship in Eq. (13.132). Assuming that a highly localized
source exists at r0, by substituting Eq. (13.119) into Eq. (13.134) and integrating
it, we finally obtain

U(r′) =
1
μ0

∫ ∞

0

B0(r + τer) · erdτ

=
1
4π

Q × (r′ − r0) · er

∫ ∞

0

dτ

|r′ + τer − r0|3
= − 1

4π

(Q × r0) · r′

A
, (13.135)

where
A = |r′ − r0|(|r′ − r0||r′| + |r′|2 − r0 · r′). (13.136)

The well-known Sarvas formula for B(r′) is then obtained by substituting
Eq. (13.135) into Eq. (13.133) and performing the gradient operation. The re-
sults are expressed as

B(r′) =
μ0

4π
∇′ (Q × r0) · r′

A
=

μ0

4π

[
Q × r0

A
− 1

A2
(Q × r0) · r′∇′A

]

=
μ0

4πA2
[AQ × r0 − [(Q × r0) · r′]∇′A] , (13.137)

where

∇′A =
[
|r′ − r0|2

|r′| +
(r′ − r0) · r′

|r′ − r0|
+ 2|r′ − r0| + 2|r′|

]
r′

−
[
|r′ − r0| + 2|r′| + (r′ − r0) · r′

|r′ − r0|

]
r0. (13.138)
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We can see that when r0 approaches the center of the sphere, B(r′) becomes
zero, and no magnetic field is generated outside the conductor from a source at the
origin. This is an important property of the spherically-symmetric homogeneous
conductor model. The other important property of the magnetic field obtained
using the spherically-symmetric homogeneous conductor model is that if the source
vector Q and the location vector r0 are parallel, i.e., if the primary current source
is oriented in the radial direction, no magnetic fields are generated outside the
spherical conductor from such a radial source. This is because both of the terms
on the left-hand side of Eq. (13.137) contain the vector product Q × r0, which is
equal to zero when Q and r0 are parallel. Therefore, when using the spherically-
homogeneous conductor model, instead of the x, y, z directions, we usually use
the three orthogonal directions (er,eφ,eθ) to express the source vector. These
directions are illustrated in Fig. 13.1. Because the er component of a source
never creates a measurable magnetic field outside the spherical conductor, we can
disregard this component and only deal with the eφ and eθ components of the
source vector.

To obtain the φ component of the lead field, lφm(r), for example, we first
calculate B(rm) (where rm is the mth sensor location) by using Eq. (13.137) and
by putting the unit-magnitude source at r directed in the φ direction. Namely,
letting r′ = rm, Q = eφ, and r0 = r, we calculate B(rm) using Eq. (13.137).
When the sensor is a magnetometer, (which measures only the magnetic field
component normal to the sensor), lφm(r) is calculated from

lφm(r) = B(rm) · esen
m , (13.139)

where esen
m is a unit vector expressing the normal direction of the mth sensor coil.

When the sensor is a first-order axial gradiometer with a baseline of D, lφm(r) is
calculated from

lφm(r) = B(rm) · esen
m − B(rm + Desen

m ) · esen
m . (13.140)

This lφm(r) represents the sensitivity of the mth sensor to the primary current
density located at r and directed in the eφ direction. In exactly the same manner,
the θ component of the lead field lθm(r) can be obtained.

13.7.6 Magnetic field from a realistically-shaped conductor

Numerical method

The spherically-symmetric homogeneous conductor is generally satisfactory in ex-
plaining the measured magnetic field when only superficial sources exist, i.e., when
all sources are located relatively close to the sensor array. This is because the cur-
vature of the upper half of the brain is well approximated by a sphere. However,
for sources located in lower regions of the brain, the model becomes inaccurate
because the curvature of the lower brain regions significantly differs from a sphere.
The errors caused by misfits of the model may be reduced by using realistically-
shaped volume-conductor models. Such conductor models can be constructed by
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Figure 13.1: The three orthogonal directions (er,eφ,eθ) used to express the source
vector when the spherically-symmetric conductor model is used for the forward
calculation.

first extracting the brain boundary surface from the subject’s 3D MRI. We de-
note this surface ∂Ω, and the region surrounded by ∂Ω is denoted by Ω. We
assume that the conductivity in Ω is uniform and denoted by ρ. We then use
the Geselowitz formula in Eq. (13.129) to calculate the magnetic fields outside the
volume conductor:

B(r′) = B0(r′) − μ0

4π
ρ

∫

∂Ω

V (r)m(r) × G(r′, r)dS. (13.141)

To calculate the second term on the right-hand side of Eq. (13.141), which rep-
resents the influence of the volume current, we need to know V (r) on ∂Ω, which
is obtained by solving Eq. (13.130) for r′ on ∂Ω. For r′ on the boundary of the
surface, the integral equation in Eq. (13.130) is changed to

ρ

2
V (r′) =

1
4π

∫

Ω

Je(r) ·G(r′, r) d3r− ρ

4π

∫

∂Ω

V (r)m(r) ·G(r′, r)dS. (13.142)

In this calculation, we first estimate the electric potential, V (r), on the brain
boundary surface by iteratively solving Eq. (13.142). We then calculate the mag-
netic fields outside the brain using Eq. (13.141). The details of these numeri-
cal calculations are beyond the scope of this book, and can be found in [95][96].
The numerical method mentioned so far assumes uniform conductivity within the
brain boundary, and is called the single-compartment boundary element method
(BEM). The single-compartment BEM is usually used in estimating MEG sensor
lead fields [97]. It can be extended to the multiple-compartment BEM and such
models are usually used for estimating the EEG sensor lead fields. The BEM-
based realistically-shaped volume conductor models generally provide significant
improvements in the accuracy of the forward calculation particularly for deep
sources [98][97], although they are computationally expensive. Improvements in
the computational efficiency of the BEM have been reported [99][100].
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Perturbation method

One interesting approach, which does not require heavy numerical computations,
has been proposed by Nolte et al.[101] to compute the lead field for MEG sensors.
This approach computes the lead field for a realistic volume conductor as a sum
of the lead field for the spherical homogeneous conductor plus a (typically small)
correction factor. To explain this method, first we formulate the relationship
between the primary current density, Je(r), and the magnetic field, B(r′), such
that

B(r′) · m =
∫

Je(r) · d(r′, r,m) d3r, (13.143)

where · represents the vector inner product and B(r′) ·m is the field magnitude in
the direction represented by the unit vector m. In the equation above, d(r′, r,m)
is a vector quantity called the lead field in their paper[101]. Denoting d(r′, r,m) =
[dx(r′, r,m), dy(r′, r,m), dz(r′, r,m)], the relationship between our definition of
lead field in Section 2.1.2 and this d(r′, r,m) is expressed as

lxm(r)= dx(rm, r,esen
m ), (13.144)

lym(r)= dy(rm, r,esen
m ), (13.145)

and lzm(r)= dz(rm, r,esen
m ), (13.146)

where rm and esen
m are the location and orientation of the mth sensor. With the

above relationship in mind, we call this vector quantity, d(r′, r,m), the lead field
in this section. For an infinite homogeneous conductor, using Eq. (13.118), we
have

B(r′) · m =
μ0

4π

∫

Ω

Je(r) × G(r′, r) · m d3r =
μ0

4π

∫

Ω

Je(r) · G(r′, r) × m d3r.

(13.147)
Comparing the above equation and Eq. (13.143) leads to

d(r′, r,m) =
μ0

4π
G(r′, r) × m. (13.148)

The above lead field for an infinite homogeneous conductor is denoted d0(r′, r,m)
for later use.

Let us get back to Eq. (13.143) and rewrite it, using the Biot-Savart law in
Eq. (13.111), as ∫

(Je · d) d3r =
∫

(J × G) · m d3r, (13.149)

where we omit the arguments in the vector quantities for simplicity. We decompose
the lead field, d, into a divergence-free part, ddf , and a curl-free part, dcf . Since the
curl-free part, dcf , can be expressed using a scalar function U such as dcf = −∇U ,
the lead field is expressed as

d = ddf −∇U. (13.150)
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Substituting the above equation and J = Je − ρ∇V into Eq. (13.149), we can
finally derive the relationships

d = d0 −∇U (13.151)
and ∇ · ρd = 0. (13.152)

Combining these two equations and considering the fact that ∇·d0 = 0, we obtain

∇2U = 0. (13.153)

This equation shows that the scalar function U should be a harmonic function,
which is a constraint on U . The key fact here is that Eq. (13.151) can be extended
to

d = dX −∇U, (13.154)

where dX is the lead field in an arbitrary volume conductor and U is a harmonic
function in this conductor. Actually, the equation above is a restatement of the
well-known fact that an arbitrary magnetic field is decomposed into a divergence-
free part and a curl-free part. Therefore, the lead field in a realistic volume conduc-
tor can be obtained as the lead field for the spherical conductor plus a perturbed
component. On the other hand, Eq. (13.152) can be used to derive the boundary
condition. Since ∇·ρd = 0 holds, the normal component of ρd is continuous across
the border of the volume conductor. Since ρd is equal to zero outside the volume
conductor, the normal component of ρd is equal to zero at the boundary of the
volume conductor, i.e.,

m(r) · ρ(r)d(r) = 0, (13.155)

holds for all surface points r, where m(r) is the surface normal vector at r.
To derive the lead field for the realistically-shaped volume conductor, we

start from the relationship

d(r) = dsph(r) −∇U(r), (13.156)

where dsph(r) is the lead field for a spherical volume conductor that can be easily
obtained from Eq. (13.137). The scalar function U(r) is a harmonic function cho-
sen so that the total lead field, d(r), fulfills the boundary condition in Eq. (13.155).
We expand U(r), using the basis-function expansion,

U(r) =
∑

j

ajUj(r), (13.157)

where the natural choice for the basis functions are the spherical harmonics, al-
though the choice of the basis functions is arbitrary as long as they are harmonics.
Then, the problem of computing the lead field is reduced to the problem of de-
termining the appropriate values for the expansion coefficient aj . The expansion
coefficient, aj , can be determined from the boundary condition. That is, defining
the locations on the surface of the volume conductor as rn, where k = 1, . . . , N , the
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coefficient aj is determined so as to minimize the error in the boundary condition;
the error is expressed as

∑
n

[m(rn) · dsph(rn) −
∑

j

ajm(rn) · ∇Uj(rn)]2. (13.158)

Once the coefficient aj is derived, the magnetic field at the sensor locations due
to a source at r is computed using Eqs. (13.156), (13.157), and (13.143). The
principles of the approach described here can be extended to compute the EEG
lead field[102].

Multiple local-sphere model

The other approach that does not require heavy numerical computations, in con-
trast to BEM, is the method of using multiple spheres. Although this approach has
been empirically known for years in the biomagnetic community, its rationale was
first reported by Huang et al. [103]. To explain this method, we start from the
Geselowitz formula for the single-shell model(in Eq. (13.141)), which is expressed
as

B(r′) = B0(r′) +
μ0

4π

∫

∂Ωis

JV (r)m(r) × G(r′, r)dS, (13.159)

where JV (r) = −ρV (r) is the magnitude of the volume current on the inner surface
of the skull. Here, ρ is the conductivity inside the surface, and the conductivity
outside the surface is assumed to be zero. In the equation above, the second term
of the right-hand side represents the magnetic field caused by this volume current.
Here, the surface integral is computed over the inner skull surface, which is denoted
∂Ωis and r is the location coordinate of a point on the surface.

The method of using multiple local spheres seeks multiple overlapping spheres
that best fit the volume current term in Eq. (13.159). Let us assume that the
mth sensor is located at rm and its orientation is represented by esen

m . We seek
the spherical conductor that best approximates the volume current contributions.
That is, the following relationship should hold:

∫

∂Ωis

esen
m · m(r) × G(rm, r)dS

=
∫

∂Ωsp

esen
m · msp(rsp) × G(rm, rsp)dS. (13.160)

Here, the integral on the right-hand side is computed on the surface of the sphere,
which is denoted ∂Ωsp, and the normal vector m(r) and the surface coordinate
should be converted into a new coordinate having an origin at the center of the
sphere. The subscript sp indicates values in this new coordinate system. In deriv-
ing Eq. (13.160), we assume that the true volume current is similar to the volume
current for the spherical conductor, i.e., JV (r) = Jsp

V (r).
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To solve Eq. (13.160) numerically, we introduce a discrete surface mesh,
which represents the inner skull surface of a subject’s MRI. The least-squares cost
function is expressed as

F =
∑

n

[esen
m ·m(n)× rm − r(n)

|rm − r(n)|3 − esen
m ·msp(n)× rm − rsp(n)

|rm − rsp(n)|3 ]2, (13.161)

where r(n) and m(n) are the location and the orientation of the nth mesh point,
respectively. The variables rsp(n) and msp(n) are the location and the orientation
of the nth mesh point expressed in the new coordinate system, where the origin
is located at the center of the sphere. Denoting the center and the radius of the
sphere as cm and Rm, respectively, the conversion between the original and the
new coordinates is carried out by using

msp(n) =
r(n) − cm

|r(n) − cm| (13.162)

and
rsp(n) = Rmmsp(n) + cm. (13.163)

Optimum estimates of cm and Rm can be obtained by minimizing the cost function
in Eq. (13.161). Because these optimum estimates are obtained for each sensor,
each of these parameters has an index m (the sensor numbering), and this opti-
mization is repeated for all MEG sensors to obtain a set of overlapping spheres.
Huang et al. compared this multiple sphere model with the three-compartment
BEM, and they found that the difference is generally very small, in fact less than
0.5%[103].

13.7.7 Electric potential for a multiple-shell conductor

The lead field for EEG sensors can be calculated in the following manner. The
most commonly used head model for the EEG forward calculation is a multiple
shell model consisting of a set of concentric spheres, each with homogeneous and
isotropic conductivity. For a given multiple-shell head model, the potential on the
outer surface at r′ due to a source located at r0 with its moment Q is denoted
V (r′, r0,Q), and the potential on the outer surface of the single-shell conductor
due to a source located at r0 with its moment Q is denoted V S(r′, r0,Q). Then,
the potential on the outer surface of the multiple shell is expressed as

V (r′, r0,Q) ≈ V S(r′, μ1r0, λ1Q) + V S(r′, μ2r0, λ2Q) + V S(r′, μ3r0, λ3Q).
(13.164)

The equation above indicates that V (r′, r0,Q) is obtained by summation of the
potentials of the three single-shell cases in which the source locations and the
source moments are equal to μjr0 and λjQ where (j = 1, 2, and 3). These μj

and λj are scalar constants called the Berg parameters. The single-shell potential
V S(r′, r0,Q) is given by

V S(r′, r0,Q) = V S
r (r′, r0,Q) + V S

t (r′, r0,Q), (13.165)
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where

V S
r (r′, r0,Q) =

1
4πρ|r0|2

[
2
(r′ − r0) · r0

|r′ − r0|3
+

1
|r′ − r0|

− 1
|r′|

]
(r0 · Q), (13.166)

and

V S
t (r′, r0,Q) =

1
4πρ|r0|2

[
2

|r′ − r0|3
+

|r′ − r0| + |r′|
|r′|A

]

[
|r0|2(r′ · Q) − (r′ · r0)(r0 · Q)

]
, (13.167)

where A is defined in Eq. (13.136), and ρ is the conductivity of the inner-most
shell. The derivation of Eqs. (13.164)–(13.167) is beyond the scope of this book.
Readers should refer to [92][104]. Regarding the details of the Berg parameters,
readers should also refer to [105].
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sample cross-spectrum matrix, 145
scalar spatial filter, 33
scalar-type adaptive spatial filter, 54
sensor lead field, 230
sensor lead field, 21
sensor noise, 26
signal subspace, 28, 217
signal subspace dimensionality, 143
signal vector, 28
signal-level eigenvalues, 30, 141
signal-plus-interference subspace, 125
signal-plus-sensor-noise covariance ma-

trix, 140, 142
signal-subspace dimension, 109
signal-subspace projector, 207
signal-to-interference-plus-noise ratio,

94
single-dipole scanning, 45
single-dipole search, 45
SINR, 94
sLORETA, 42
SNR reduction, 109
SNR transfer factor, 97
source correlation, 54
source covariance matrix, 26
source power matrix, 34
source space, 21
source vector, 19
spatial filter, 32
spatial matched filter, 44
spatial resolution, 82
spatial singular vector, 119
spherically symmetric homogeneous

conductor, 102
spontaneous MEG data, 150
standardized low-resolution electromag-

netic tomography, 42
statistical significance, 189
statistical threshold, 189, 191
Swartz inequality, 221

task-and-control-type measurements,
140

temporal basis functions, 210

Tikhonov regularization, 40
tomographic reconstruction methods,

37
total input SNR, 126, 149, 199
total leakage, 46
two tangential components, 68

unit-gain (constraint) minimum-
variance spatial filter, 48

unit-gain constraint, 47
unit-noise-gain (constraint) minimum-

variance spatial filter, 50
unit-noise-gain constraint, 49

vector spatial filter, 33
vector-type minimum-variance spatial

filter, 59
virtual sensor, 32
virtual source correlation, 58
volume current, 231
voxel discretization, 37

weight matrix, 33, 59
weight vector, 32
weight-normalized minimum-norm fil-

ter, 42
Whishart distribution, 175
white-noise gain, 32
Wiener filter, 203

245


	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	back-matter.pdf

