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ABSTRACT
A medical device is an apparatus that uses engineering and scientific principles to interface to
physiology and diagnose or treat a disease. In this Lecture, we specifically consider those medical
devices that are computer based, and are therefore referred to as medical instruments. Further,
the medical instruments we discuss are those that incorporate system theory into their designs.
We divide these types of instruments into those that provide continuous observation and those
that provide a single snapshot of health information. These instruments are termed patient
monitoring devices and diagnostic devices, respectively. Within this Lecture, we highlight some
of the common system theory techniques that are part of the toolkit of medical device engineers
in industry. These techniques include the pseudorandom binary sequence, adaptive filtering,
wavelet transforms, the autoregressive moving average model with exogenous input, artificial
neural networks, fuzzy models, and fuzzy control. Because the clinical usage requirements for
patient monitoring and diagnostic devices are so high, system theory is the preferred substitute
for heuristic, empirical processing during noise artifact minimization and classification.

KEYWORDS
System theory, Machine intelligence, Patient monitoring, In vitro diagnostics, Pseudorandom
binary sequence, Adaptive filtering, Wavelet transforms, ARMAX model, Artificial neural
networks, Fuzzy model, Fuzzy control
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1

C H A P T E R 1

Medical Devices

In 1976, as part of the Medical Device Amendments to the Federal Food, Drug, and Cosmetic
Act, the term “medical device” was defined as:

“an instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or
other similar or related article, including a component part, or accessory which is:

� recognized in the official National Formulary, or the United States Pharma-
copoeia, or any supplement to them,

� intended for use in the diagnosis of disease or other conditions, or in the cure,
mitigation, treatment, or prevention of disease, in man or other animals, or

� intended to affect the structure or any function of the body of man or other
animals, and which does not achieve any of its primary intended purposes through
chemical action within or on the body of man or other animals and which is not
dependent upon being metabolized for the achievement of any of its primary
intended purposes” (United States Code 1976).

Basically, a medical device is an apparatus that uses engineering and scientific principles to
interface to physiology and diagnose or treat a disease. You will note that an “in vitro reagent”,
which is part of an in vitro diagnostic, is specifically listed. For this reason, in vitro diagnostics
are classified by the Food and Drug Administration (FDA) as a type of medical device. Further,
since this definition distinguishes a device as an apparatus that affects physiologic structure or
function without chemical action, it serves to differentiate a device from a drug or biologic.

Medical devices are classified on the basis of patient risk. They span the classification
range from low risk, or Class I, to moderate risk, or Class II, and significant risk, or Class III.
An example of a Class I device is a tongue depressor. Examples of Class II and Class III devices
are a noninvasive patient monitor, such as a cardiograph that measures heart activity, and an
implantable orthopedic prosthesis, respectively. In general, the classification of a device dictates
the rigor with which it is regulated, in terms of FDA’s processes for premarket approval and
postmarket surveillance of device complications.
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2 A BIOSYSTEMS APPROACH TO INDUSTRIAL PATIENT MONITORING & DIAGNOSTIC DEVICES

1.1 MEDICAL DEVICE INDUSTRY
In the United States, there are approximately 6000 medical device companies, covering 50
clinical specialties. Only about 100 of these companies produce annual revenues over $100
million. Approximately 72% of these manufacturers employ fewer than 50 people each (Marwick
2000). According to a 2003 survey by the United States Department of Labor, 15,790 engineers
were employed in this industry in 2003 (United States Department of Labor 2006).

Overall, these companies have been very successful. Three years after regulation began,
the U.S. medical device industry shipped $9.8 billion of goods in 1979. By 2004, these shipments
had grown by approximately an order of magnitude to $93.8 billion. As shown in Figs. 1.1
and 1.2, the mix of devices has not changed dramatically over 25 years. In both 1979 and
2004, surgical/medical instruments and surgical appliances/supplies accounted for the largest

FIGURE 1.1: Comparison of U.S. medical device sector percentage shipments in 1979 and 2004.
Reprinted with permission from Medical Device & Diagnostic Industry, “The Medical Device Market:
Up, Up, and Away,” August 2004. Copyright c© 2004 Canon Communications LLC.
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FIGURE 1.2: Growth of medical device shipments by device sector from 1979 to 2004. Reprinted
with permission from Medical Device & Diagnostic Industry, “The Medical Device Market: Up, Up, and
Away,” August 2004. Copyright c© 2004 Canon Communications LLC.

shipment percentages. Similarly, in both years, x-ray apparatus/tubes accounted for one of the
smallest shipment percentages (Conroy 2004).

Currently, worldwide heart rhythm management and coronary artery stent sales are $10.6
and $6.5 billion markets, respectively. Similarly, obesity management, knee replacement, and
hip replacement sales are $190 million, $4.8 billion, and $4.3 billion markets, respectively.
Device companies are forecasted to continue to grow because of the aging population and inno-
vation. According to the Wall Street firm Lazard Capital Markets, the number of Americans
aged over 60 is projected to increase by at least 30% over the next eight years. On average,
they will spend more on healthcare between the ages of 60 and 70 than they did in all their
previous decades combined. Many successful devices emerged in response to the limitations of
drugs. For example, pacemakers and defibrillators correct heartbeat abnormalities that cannot
be treated chemically. Devices can be designed with electronic components that link them to
computers and communications networks, allowing data from patients with implants to be
monitored remotely (Feder 2006).

1.2 MEDICAL INSTRUMENTATION
Medical instrumentation manufacturers are a subset of medical device manufacturers, dis-
tinguished by manufacture of devices that incorporate embedded or PC-based systems for
use in diagnostic and patient monitoring applications (Baura 2002). Pacemakers use embedded
systems for detection of heartbeats and stimulation after abnormal beat detection. Alternatively,
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Medical Graphics Corporation manufactures a spirometer for measurement of lung volumes.
The spirometer consists of Windows-based software, a PC card, and a pneumotach for conver-
sion of airflow to a differential pressure (Medical Graphics Corporation 2001). Within medical
instrumentation, we can further subdivide manufacturers into those who manufacture patient
monitoring equipment, and those who manufacture diagnostic equipment.

1.3 PATIENT MONITORING DEVICES
Patient monitoring refers to the continuous observation of repeating events of physiologic
function to guide therapy or to monitor the effectiveness of interventions. Historically, these
medical instruments have been most widely deployed in the intensive care units (ICUs) and
operating rooms of hospitals, for care of the most critically ill patients. Some commonly
processed signals are the electrocardiogram, intraarterial blood pressure, and arterial saturation
of oxygen, which is also known as pulse oximetry. Over time, patient monitoring has moved
from invasive to noninvasive measurements, which decrease patient risk.

Traditionally within ICUs, Hewlett Packard, Marquette, and Spacelabs were the dom-
inant manufacturers of racks of modules that provided patient monitoring. With the onset of
mergers and acquisitions (M&As) in the 1990s, Hewlett Packard spun off Agilent, which was
then purchased by Philips. Marquette was purchased by General Electric. Through a series of
M&As, Spacelabs became part of OSI Systems. Today, these racks have been compressed into
smaller integrated systems, such as the Philips Intellevue MP70 patient monitor (Fig. 1.3).

1.3.1 Nellcor Disposable Model
Along with the trend of noninvasive measurement, patient monitoring tends to incorporate
disposable sensors. This marketing strategy was first implemented by Nellcor in the mid 1980s.
Although Biox Technology was responsible for the enabling technology of a calibration curve
for pulse oximetry, Nellcor captured a larger market share by becoming the first manufacturer
of disposable pulse oximetry sensors. Nellcor marketed this feature to address sterility concerns
during the height of the AIDS crisis and cost containment. Because a different calibration
curve is needed for each specific sensor–monitor combination, Nellcor argued that, with stan-
dardization of Nellcor pulse oximeters through the hospital, the same disposable sensor could
be moved between hospital units and decrease costs.

Biox was later acquired by Ohmeda. In 1992, Ohmeda sued Nellcor to invalidate four
sensor patents. In 1995, the U.S. District Court of Delaware upheld the Nellcor patents,
including key patent U.S. 4,621,643 (New and Corenman 1986). As a result, if Ohmeda sold
their sensors for use in a non-Ohmeda oximeter, Ohmeda would be infringing on Nellcors’
patents (Health Industry Today 1995). By 1997, U.S. disposable sensor sales, excluding sales in
federal hospitals and nursing homes, reached $197.5 million. Nellcor accounted for 88% of this



book Mobk079 January 15, 2008 2:29

MEDICAL DEVICES 5

FIGURE 1.3: The Philips Intellevue MP70 patient monitor. c© 2007 Koninklijke Philips Electronics
N.V. All rights reserved. Reproduction in whole or part is prohibited without prior written consent of
the copyright owner.

market. In contrast, U.S. sales of oximeters were only $32 million (IMS Health 1997, Baura
2002).

1.4 DIAGNOSTIC DEVICES
Medical diagnostics refers to discrete testing conducted to provide critical health care informa-
tion for risk assessment, early diagnosis, treatment, or disease management. In the 17th century,
clinicians diagnosed diabetes through the level of sweetness in urine samples. By the end of the
18th century, when the first hospital laboratory was established in Britain, diagnostics started
to become recognized as a standard and indispensable part of healthcare. Current in vivo, or
within the body, diagnostic tests include the computed tomography scan, magnetic resonance
imaging, and blood pressure screening. Current in vitro, or from an external body specimen, di-
agnostics (IVD) tests include cholesterol, Papanicolaou (Pap) smear, and conventional glucose
monitoring tests (Baura 2006).

General Electric, Siemens, and Philips dominate in vivo diagnostics because of their
well-established portfolios of imaging systems. Roche Diagnostics, Abbott Diagnostics, and
Ortho Clinical Diagnostics are the largest IVD manufacturers. Roche Diagnostics includes
its 1998 acquisition—Boehringer Mannheim. Roche’s Cobas 6000 platform, which automates
clinical chemistry and immunoassay testing, is shown in Fig. 1.4. Abbott Diagnostics is part of



book Mobk079 January 15, 2008 2:29

6 A BIOSYSTEMS APPROACH TO INDUSTRIAL PATIENT MONITORING & DIAGNOSTIC DEVICES

FIGURE 1.4: Roche Cobas 6000 Chemistry/Immunochemistry Analyzer. Courtesy of F. Hoffmann-
LaRoche, Basel, Switzerland.

Abbott Laboratories, which was founded by Chicago physician Wallace Abbott in 1900. Ortho
Clinical Diagnostics is the merger of two Johnson & Johnson companies: Ortho Diagnostic
Systems and Johnson & Johnson Clinical Diagnostics (IVD Technology 2005).

1.5 CONCLUSION
The medical device industry has been very successful in a regulated environment for over
three decades. Devices have addressed clinical needs that range from aging joints to aberrant
heartbeats. Moving forward, future devices will incorporate a host of technologies that enable
a larger set of device features to be deployed.
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C H A P T E R 2

System Theory

Before we can discuss the integration of system theory into medical devices, we need to define
system theory. In this chapter, we present an extremely abbreviated description of system theory.
For a more thorough treatment, please see Baura (2002b).

System theory is the transdisciplinary study of the synthesis and design of systems, and
the analysis of their performance. Generally, we represent such a system for discrete time, k, as
a group of inputs, u(k); a group of outputs, y(k); and a system operator, H(k) (Fig. 2.1).

Here, u(k) and y(k) are vectors for this multiple input, multiple output (MIMO) system.
The system operator maps the inputs into the outputs, and is not necessarily linear.

If the system is known to follow superposition and time-invariance, then the system op-
erator can be simplified to be an impulse response, h(k). Recall that a system with superposition
follows:

H[au1(k) + bu2(k)] = aH[u1(k)] + bH[u2(k)], (2.1)

for arbitrary constants a and b. For time-invariance, a delay of the input sequence must cause
a corresponding shift in the output sequence. Specifically, for all delays, k0, an input sequence
with values u1(k) = u(k − k0) must produce the output sequence with values y1(k) = y(k − k0).

2.1 SYSTEM THEORY FOR PHYSIOLOGIC SIGNALS
Typically, acquired physiologic signals cannot be described by this simple MIMO system.
Often, an acquired signal includes some form of signal distortion, as the hospital environ-
ment is an infinite source of signal distortion. In older monitors, 60 Hz interference from
power lines may distort the signal of interest. During surgery, electromagnetic interference
is generated by the electrosurgical unit used for cautery. In unanesthetized patients, patient

H(k) y(k)u(k)

FIGURE 2.1: Discrete time system
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H(k)u(k) ΣΣ  
+

+

F(k)

u~(k)

y(k)

n(k)

FIGURE 2.2: Discrete time system, accounting for acquired noise. The noise is minimized through
filtering

motion is a significant source of distortion. Even respiration and blood pressure may obscure
the signal of interest. These and other noise sources make filtering a necessary requirement
before further digital signal processing and/or control can be applied to an acquired physiologic
signal.

Let us update our system figure to account for acquired noise, n(k), and subsequent
filtering, F(k) (Fig. 2.2).

You will notice that in this system, noise is assumed to be additive, which may not
always be true. Filtering of the combined physiologic and noise signal results in a low noise
approximation, ũ(k), of the true physiologic signal.

Once a low noise approximation of the true physiologic signal is obtained, system identi-
fication, or modeling, can be performed to estimate the system operator, H(k). Typical reasons
for modeling the system operator include classification, prediction of future behavior, or insight
into underlying physiologic mechanisms.

If it is desired that the outputs be improved, control may be performed on the system
(Fig. 2.3).

Please note that the control system operator, G(k), is not necessarily linear. Also, while
the control is illustrated as simple negative feedback, it may be a more complicated nonlinear
control such as fuzzy control.

The applications of system theory we have just discussed are illustrated in Fig. 2.4.

H(k)

G(k)

u(k)

n(k)

ΣΣ Σ
+

+

+
u
~

(k)

-

F(k) y(k)

FIGURE 2.3: Discrete time system that utilizes control
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System
Theory

Underlying
Phys Mechs 

Modeling

Classification Prediction

Filtering Control

FIGURE 2.4: System theory applications for physiologic signals

2.2 FILTERS
Filtering is an all-purpose term that really refers to noise minimization. If the noise source is
restricted to a particular frequency band, frequency-selective filters may be used to minimize
the noise. Under certain constraints of a periodic signal, a pseudorandom binary sequence filter
may be used, which essentially functions as a bandpass filter that does not require frequency
specifications.

Alternatively, if the noise and signal frequency bands overlap, but a reference source for
the noise is present and the noise is additive, then an adaptive filter may be used to minimize
the noise. An adaptive filter possesses a structure that is adjustable in such a way that its
performance improves through contact with its environment. Finally, if the noise and signal
frequency bands overlap, but the noise is minimal when transformed to another domain, then
time–frequency or time–scale analysis may be used to minimize the noise. After transformation,
important signal characteristics may be recovered (Baura 2002b).

2.2.1 Frequency Selective Filters
Frequency-selective filtering refers to noise minimization within a certain frequency band.
As stated above, this simplest type of filtering is useful when the noise and physiologic signal
frequencies do not overlap. Ideally, a frequency-selective filter passes only frequencies of interest,
based on a cutoff frequency, ωc . Each filter form is named for the frequency range that is passed:
lowpass filter, highpass filter, bandpass filter, bandstop (all frequencies except a certain band or
range) filter (Fig. 2.5).

This linear, time-invariant filter has the form of a subset of the autoregressive moving
average, exogenous input (ARMAX) model, which consists of the linear constant coefficient
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Lowpass Bandpass Highpass

Frequency ω (radians) Frequency ω (radians) 

FIGURE 2.5: Schematic of frequency ranges that are passed for various frequency-selective filters

difference equation:

N∑
n=0

an y(k − n) =
M∑

n=0

bnu(k − n) +
P∑

n=0

c ne (k − n), (2.2)

where e (k) is a sequence of independent and identically distributed random variables with zero
mean, otherwise known as white noise, and a0 = c 0 = 1. The model is autoregressive because
it looks back upon past values of itself, y(k − n). It possesses a moving average (the e (k) terms),
and an exogenous, or external, input, u(k).

For our filter, let us assume that white noise is not present and restrict ourselves to input
and output terms:

N∑
n=0

an y(k − n) =
M∑

n=0

bnu(k − n). (2.3)

Using unit delays and the z-transform time-shifting property, we can take the z-transform on
both sides as:

N∑
n=0

anz−nY (z) =
M∑

n=0

bnz−nU (z). (2.4)

The corresponding transform function, or ratio of output to input in the frequency domain, is:

H(z) = Y (z)
U (z)

=
∑M

n=0 bn z−n∑N
n=0 an z−n

=
b0

(
1 + b1

b0
z−1 + · · · + b M

b0
z−M

)
1 + a1z−1 + · · · + aNz−N

, (2.5)

recalling that a0 = 1.
If the filter transfer function has coefficients such that M ≤ N, then it is called an infinite

impulse response (IIR) filter. Its name is based on the recognition that long division of the
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transfer function numerator by its denominator generates an infinite number of terms. If N = 0,
then the filter is a finite impulse response (FIR) filter because long division of the numerator
by denominator obviously contains a finite number of terms. Designers choose FIR systems
to specify exactly linear phase or generally linear phase, or choose IIR systems for closed form
equations, which are more efficient (lower order) to implement.

Because these filters are rarely designed from scratch, we will not describe the processes
for determining the coefficients, an and bn, nor orders, M and N. For design information, the
reader is referred to (Oppenheim et al. 1999).

2.2.2 Pseudorandom Binary Sequence
For the frequency-selective filter, we passed a specified frequency range that contains the
physiologic signal of interest. If the majority of system noise resides outside this range, then
the system signal-to-noise ratio (SNR) is increased. Another filter that increases the SNR is
the pseudorandom binary sequence (PRBS) filter. This time, we amplify the signal strength,
while leaving the noise constant. Given an input signal that is periodic, the PRBS filter functions
as a bandpass filter that does not require frequency specifications.

A PRBS is composed of two values that appear to be randomly introduced but are repro-
ducible by deterministic means. The PRBS filter is one of many spread-spectrum techniques
originally developed for military communications but now finding applications in the commer-
cial arena, particularly in cellular telephony. Spread spectrum refers to a modulation technique
that spreads the spectrum of a signal by using a very wideband spreading signal. The spreading
signal, or encoder, is chosen to have properties that facilitate demodulation, or decoding, of the
transmitted signal by the intended receiver. The encoder is also chosen to make demodulation
by an unintended receiver as difficult as possible. Since system noise is added in the transmis-
sion medium after encoding, the noise can be filtered. The PRBS filtering process is shown in
Fig. 2.6.

amplified
u(k)

+
n(k)

u(k)

n(k)

ΣPRBS
encoder

PRBS
decoder

encoded
signal

transmission medium

Σ

FIGURE 2.6: PRBS filtering process
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TABLE 2.1: M-sequences

N M M-SEQUENCE

2 3 110

3 7 1110100

4 15 111101011001000

5 31 1111100110100100001010111011000

2.2.2.1 PRBS Properties
The PRB sequence consists of a predetermined binary sequence of ones and zeros of maximal
length, M = 2N − 1, where N is the filter order. These maximal length sequences, or M-
sequences, possess several useful properties:

1. An M-sequence contains 1/2(N + 1) ones and [1/2(N + 1) − 1] zeros.

2. The modulo-2, or binary, sum of an M-sequence and any phase shift of the same
sequence is another phase of the same M-sequence.

3. The periodic autocorrelation function, φmm(k), has two values and is given by

φmm(k) =
{

1.0, k = iM
−1
M , otherwise

, (2.6)

where i is any integer and M is the sequence period. The M-sequences for N ≤ 5 are listed in
Table 2.1.

2.2.2.2 Filter Construction
As shown in Fig. 2.6, the PRBS filter is composed of an encoder and decoder. The encoder,
e (k), is merely the original M-sequence. The decoder, d (k), is a similar code in which each 0
has been replaced by –1. We can take the cross-correlation of the encoder and decoder, which
is calculated as:

φed(k) =
∞∑

n=−∞
e (n)d (k + n). (2.7)

Cross-correlation of our encoder and decoder gives the unusual result of:

φed(k) =
{

M+1
2 , k = 0

0, otherwise
. (2.8)
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FIGURE 2.7: Stackup phenomenon

This cross-correlation can be used to filter a periodic signal. Each incoming period, τ , of
the input signal is encoded, that is, multiplied by the next value of the encoder sequence. The
encoded signal is then passed through its transmission medium, which may add system noise.
The received signal is decoded by periodic convolution with the decoder sequence, such that

decoder output(k) =
M−1∑
i=0

d (n) · encoder output(iτ + k). (2.9)

As per Eq. (2.8), the decoder output will be composed of an amplified periodic signal
and the original level of transmitted noise.

While not obvious, this filter also reduces the signal stackup. Stackup occurs when the
time decay of a perturbed signal response back to its original DC value is longer than its
period (Fig. 2.7). In other words, the onset of a periodic signal, which results from a periodic
perturbation, occurs faster than its time delay. The PRBS filter eliminates stackup because only
one perturbation response is preserved.

2.2.2.3 PRBS Example
As an example, let us calculate the filter response of a periodic sequence {5 3 2 0} (τ = 4,
Fig. 2.8) to a second-order filter, with M = 3.

From Table 2.1, we know the encoder sequence, e (k), is {1 1 0}. Multiplying each period
by the encoder sequence results in the encoder output of {5 3 2 0 5 3 2 0 0 0 0 0 5 3 2 0 5
3 2 0 0 0 0 0}. Convolving this encoder output with the decoder sequence ({1 1 –1}) results
in the decoder output {10 6 4 0 0 0 0 0 0 0 0 0}. Note that the decoder output is merely an
amplification of the input sequence.
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FIGURE 2.8: PRBS filter results for M = 7

Now let us add uniform noise in the range {0 1} to the encoder output of this sequence
in a third-order filter, with M = 7 (Fig. 2.8). This noise significantly degrades the encoder
output sequence. However, if we decode the output (Fig. 2.8), the final result is now closer to
the original sequence for the first period. Although the decoded sequence, if normalized, still
does not equal the original, the noise offset is now more uniform.

In a similar manner, IVAC Corporation (now part of Cardinal Health) used a PRB
sequence of length M = 31 in the Signature Edition large volume infusion pump. This pump
calculates catheter resistance, as a first step to detection of infiltration. Infiltration is a drug-
infusion complication during which an intravenous solution or medication is infused into
the tissue surrounding a blood vessel. Theoretically, resistance is calculated from the ratio
of catheter pressure to infusion pump flow. However, in practice, the pressure waveform may
possess significant noise artifact due to the patient’s own blood pressure or other external sources.
External sources include eating with a catheterized arm and wheelchair self-ambulation.

The infusion pump flow packets were encoded using the PRB sequence. The measured
pressure packets were then decoded using PRBS (Fig. 2.9).

The higher signal-to-noise ratio in the pressure waveform enabled accurate calculations
of resistance, as well as a decrease in false alarms based on pressure settings (Voss et al. 1997).

2.2.3 Adaptive Filters
Often, a signal and noise exist in the same frequency range, rendering frequency-selective
filtering ineffective. However, under certain constraints, an adaptive filter may be utilized. An
adaptive filter possesses a structure that is adjustable in such a way that its performance improves
through contact with its environment. Such behavior is the result of several constraints on the
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FIGURE 2.9: (a) Typical raw pressure during wheelchair self-ambulation, at a flow rate of 50 ml/h.
(b) The first raw waveform, the eleventh waveform, and the PRBS filter output scaled by 1/16 are shown.
For comparison purposes, the baseline value of each waveform has been subtracted. Courtesy of Cardinal
Health, San Diego, CA
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filter
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Σ

FIGURE 2.10: Adaptive noise canceller

signal, u(k); the noise associated with the signal, n0(k); the reference noise source, n1(k); and the
filter output, ŷ(k). When an adaptive filter is used as an adaptive noise canceller, the reference
noise source is filtered and subtracted from the primary input containing the signal and noise to
eliminate the noise by cancellation. The adaptive filtering process, used for noise cancellation,
is shown in Fig. 2.10.

2.2.3.1 Adaptive Filter Properties
The system constraints for an adaptive filter are as follows:

1. u(k), n0(k), n1(k), and ŷ (k) are statistically stationary (not variable with time).

2. u(k), n0(k), n1(k), and ŷ (k) have zero means.

3. u(k) is uncorrelated with n0(k) and n1(k).

4. n0(k) is correlated with n1(k).

By feeding the system output back to an adaptive filter and adjusting the filter to min-
imize system output power (i.e., the power of the system error), the output becomes a best
approximation to the signal.

2.2.3.2 Filter Construction
For our adaptive noise canceller, let us use an FIR construction and Widrow and Hoff’s least
mean squares (LMS) algorithm for identification of the bn(k) coefficients (Widrow and Hoff
1960, Widrow and Sterns 1985):

ŷ(k) =
M∑

n=0

bn(k)u(k − n). (2.10)
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Note that our filter coefficients vary with time, unlike coefficients in the standard FIR filter.
Let us rewrite our filter so that the inputs are coefficients are vectors of length M:

ŷ(k) = bT(k)u(k) . (2.11)

As the name of the algorithm implies, we will use a performance function, ξ (k), that is
the expected value of the mean instantaneous squared error, ε2

0(k), between the desired and
filtered output:

ξ [b(k)] = E{ε2
0(k)} = E{y(k) − ŷ(k)}2 . (2.12)

The performance function enables us to devise a method for updating the coefficients,
which Widrow calls weights. First, we substitute Eq. (2.11) into Eq. (2.12), noting that the
expected value of any sum is the sum of expected values:

ξ [b(k)] = E{y2(k)} + E{bT(k)u(k)uT(k)b(k)} − E{2y(k)uT(k)b(k)} . (2.13)

Next, we assume that these are statistically stationary, and that the weights are no longer adjusted
(independent of time, having reached steady state). Because the expected value of a product
is the product of expected values when variables are statistically stationary, the performance
function can be simplified to:

ξ (b) = E{y2(k)} + bT E{u(k)uT(k)}b − 2E{y(k)uT(k)}b. (2.14)

We further simplify Eq. (2.14) by defining R(k) as the square matrix:

R(k) = E{u(k)uT(k)} (2.15)

= E




u2(k) u(k)u(k − 1) · · · u(k)u(k − M)
u(k − 1)u(k) u2(k − 1) · · · u(k − 1)u(k − M)
...

...
. . .

...
u(k − M)u(k) u(k − M)u(k − 1) · · · u2(k − M)




. (2.16)

We also define p(k) as the column vector:

p(k) = E{y(k)u(k)} = E{y(k)u(k) y(k)u(k − 1) . . . y(k)u(k − M)}T. (2.17)

When u(k) and y(k) are stationary, the elements of both R(k) and p(k) are all constant
second-order statistics. Substituting Eqs. (2.15) and (2.17) into (2.14), we obtain the simplified
performance function

ξ (b) = E{y2(k)} + bTR(k)b − 2p(k)Tb. (2.18)
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Note that this performance function is quadratic, with a bowl-shaped performance surface that
is concave upward. Therefore, only a single global minimum exists, and no local minima are
present.

To find this global minimum, we use the method of steepest descent for optimization,
which requires gradient estimation. The gradient is a vector consisting of partial derivatives of
the performance function. Widrow and Hoff assumed that ε2

0(k) is an estimate of E{ε2
0(k)}.

Returning to Eqs. (2.11) and (2.12), we calculate the estimated gradient as

∇̂ξ [b(k)] = ∂ξ̂ [b(k)]
∂b(k)

= ∂

∂b(k)
ε2

0(k) (2.19)

∇̂ξ [b(k)] = ∂

∂b(k)
[y(k) − bT(k)u(k)]2 (2.20)

∇̂ξ [b(k)] = −2ε2
0(k)u(k) (2.21)

We can now specify the LMS algorithm as iterative updating of the weights by steepest changes
in the performance function, which is Eq. (2.21):

b(k + 1) = b(k) − 2µε2
0(k)u(k) . (2.22)

Note that µ is a gain constant that regulates the speed and stability of adaptation. The LMS
algorithm is guaranteed to converge to the optimal solution only if the inverse of the maximum
eigenvalue of R(k) is greater than the gain constant, which in turn must be greater than zero:

1
λmax

> µ > 0. (2.23)

Convergence of the weights is slow. Additionally, the algorithm is sensitive to the eigenvalue
spread, which is the ratio of the largest to smallest eigenvalue.

2.2.3.3 Adaptive Filter Example
The classic biomedical example of adaptive filtering is Widrow’s cancellation of the maternal
heartbeat in recorded fetal electrocardiography (ECG) (Widrow et al. 1975). Although this
example uses more than one reference noise input, which is beyond the scope of our general
discussion, the results are readily understood.

During recording of fetal ECG, interference results from the maternal heartbeat, which
has an amplitude two to ten times greater than that of the fetal heartbeat. Interference also
results from the background noise of muscle activity and fetal motion, with an amplitude greater
than or equal to that of the fetal heartbeat. To minimize this interference, Widrow’s group
used four chest leads to record the maternal heartbeat and other multiple reference inputs for
the canceller. A single abdominal lead recorded the combined maternal and fetal heartbeats
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FIGURE 2.11: Result of adaptive noise cancellation within fetal ECG. (a) Reference noise input (chest
lead). (b) Primary input (abdominal lead). (c) Noise canceller output. Reprinted from (Widrow, 1975),
c© 2007 IEEE.

that served as a primary input. The data were prefiltered with a bandwidth of 0.3–75 Hz,
digitized with a sampling rate of 512 Hz, and recorded on tape. The recorded data were input
to a multichannel LMS adaptive filter. Each of the reference inputs was processed with 32
coefficients with nonuniform (log periodic) spacing and a total delay of 129 ms.

As shown in Fig. 2.11(b), baseline drift and 60 Hz interference are clearly observable in the
primary input obtained from the abdominal lead. Further, the maternal heartbeat (Fig. 2.11(a))
dominates in the primary input recording. The maternal heartbeat and three other chest
recordings containing the 60 Hz interference served as a reference to reduce these interferences.
In the filter output (Fig. 2.11(c)), the fetal heartbeat is clearly discernable (Widrow et al. 1975).

2.2.4 Wavelet Transforms
If a signal and noise exist in the same frequency range, but a reference noise source in a stationary
system is not available for adaptive filtering, the signal of interest may still be recoverable. In
this case, data may be transformed to recover important signal characteristics using a time–scale
or time–frequency distribution. In this brief review, we only cover time–scale distributions, as
they are easier to compute and implement in medical instruments. Time–scale distributions are
better known as wavelet transforms.
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u(k) ΣΣ
+

+
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FIGURE 2.12: Wavelet transform denoising

A time–scale distribution is a two-dimensional mapping of the fraction of the energy
of a one-dimensional signal at time, t, and scale, a . Scale is a physical attribute representing
compression. Time–scale distributions possess an inherent denoising feature that minimizes
noise artifact. By transforming a signal and noise to an alternate scale, important signal features
may be extracted. The recovered features must then be upsampled to the original scale, for proper
positioning of the features within the original signal. This denoising process is illustrated in
Fig. 2.12.

2.2.4.1 Wavelet Transform Properties
By definition, a wavelet, ϕ(t), is a function with a mean of zero, such that∫

ϕ(t) dt = 0. (2.24)

Each wavelet function may be used to bandpass filter a signal. Using this method, the
scale plays the role of a local frequency. As a increases, wavelets are stretched and interact with
low frequencies. As a decreases, wavelets are compressed and interact with high frequencies.
The continuous wavelet transform, WT (t, a), of a signal, u(t), can be defined in the time
domain as

WT(t, a) = 1√
a

∫
u(τ )ϕ ∗

(
τ − t

a

)
dτ. (2.25)

The center frequency and bandwidth of the transform vary inversely with scale, such that
the ratio of the center frequency to the bandwidth is constant.

For efficient processing, only dyadic scales are used. Dyadic refers to powers of the
numeral 2. Using direct substitution, this leads us to the dyadic discrete wavelet transform,
WT (k,2 j ):

WT(k, 2 j ) = 1√
2 j

N−1∑
i=0

u(i)ϕ ∗
(

i − k
2 j

)
. (2.26)

The calculations in Eq. (2.26) may be classified functionally as filtering through convo-
lution and downsampling (retaining every other sample).
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2.2.4.2 Filter Construction
By choosing a wavelet or scaling filter for ϕ(k) in Eq. (2.26), lowpass or highpass filtering may
be accomplished. Two common wavelet and scaling filter pairs are given in Table 2.2.

When a scaling filter, ϕa (k), is used, convolution results in smoothing or lowpass filter-
ing. The resulting wavelet transform is composed of approximation coefficients. As shown in

TABLE 2.2: Haar and Daubechies D4 wavelet and scaling filters

Haar wavelet filter ϕd (k) = { −0.7071, +0.7071}

-1

0

1

Haar wavelet filter ϕd (k) = { −0.7071, +0.7071}

-1

0

1

Daubechies D4 wavelet filter ϕd (k) = {−0.1294,
−0.2241, 0.8365,−0.4830}

-1

0

1

Daubechies D4 scaling filter ϕa (k) = {0.4830,
0.8365, 0.2241, −0.1294}

-1

0

1
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Fig. 2.13, an ECG beat (Sugimachi 1992) degrades in subsequent scales of Haar approximation
coefficients to emphasize the slower T wave, rather than the faster QRS complex.

When a wavelet filter, ϕd (k), is used, convolution results in emphasis of discontinuities
or highpass filtering. The resulting wavelet transform is composed of detail coefficients. As
shown in Fig. 2.13, the same electrocardiogram beat degrades in subsequent scales of Haar
detail coefficients to emphasize the high-frequency QRS complex.

The choice of an optimum wavelet or scaling filter for a particular application is an
art, not a science. This process involves much trial and error, using an appropriate sample of

FIGURE 2.13: Electrocardiogram beat (Sugamachi 1992), with wavelet transforms. (a) Original beat.
(b) Scale 1 Haar approximation and detail coefficients. (c) Scale 2 Haar approximation and detail
coefficients. (d) Scale 3 Haar approximation and detail coefficients
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data to search for consistent feature extraction. In addition to the wavelet or scaling filter, the
appropriate scale must also be chosen.

2.2.4.3 Wavelet Transform Example
In the 1990s, Boudreaux-Bartels’s group investigated a wavelet-based QRS complex detector.
The detection was based on a cubic spline mother wavelet they designed, with a center frequency
equal to 120 Hz and a bandwidth of 240 Hz. Inspecting ECG detail coefficients at scales 2
and 3, they identified the R wave of a QRS complex as at least 60% of the maximum value of
the detail coefficients, if found at both scales. QRS detection is illustrated in Fig. 2.14.

Algorithm validation was accomplished using ECG beats from the American Heart
Association (AHA) database. The database includes reference beat notations from cardiologists.
1950 beats from channel 1 of the 30 min Tape 3203 were analyzed, using this method and

FIGURE 2.14: Electrocardiograms with external noise from American Heart Association Tape 3203
and corresponding detail coefficients. (a) ECG, with dashed lines indicating cardiologist estimate of
QRS onset and tic marks indicating wavelet estimate of R wave locations. (b) Detail coefficients at scale
1. (c) Detail coefficients at scale 2. (d) Detail coefficients at scale 3 (Kadambe, 1999). c© 2007 IEEE.
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three traditional time-based methods. Error rate was defined as the sum of false positives and
false negatives, divided by the total number of beats.

Using the cubic spline wavelet, an error rate of 3% was obtained. In contrast, the
Hamilton–Tompkins, Multiplication of Backward Difference, and Okada algorithms resulted
in error rates of 6, 15, and 34%, respectively (Murray 1994). In a subsequent analysis of
four AHA tapes (including tape 3203), representing 8598 beats with various arrhythmias, the
wavelet method results in a mean error rate of 7%, while the time-based methods resulted in
mean error rates of 12, 15, and 21%, respectively (Kadambe 1999).

2.3 MODELING
Once a low noise approximation of the true physiologic signal is obtained, system identification,
or modeling, can be performed to estimate the system operator. Typical reasons for modeling the
system operator include classification, prediction of future behavior, or insight into underlying
physiologic mechanisms.

Modeling techniques differ for signals that are evenly sampled in time, versus those with
sparse data sampling. If an evenly sampled system is linear, that is, defined by a linear differential
equation, it may be modeled using the classic autoregressive moving average exogenous input
(ARMAX) model or one of its variations. If the system constraints are relaxed to that of
a multiple input, multiple output system that is nonlinear but still time-invariant, then the
system may be described as an artificial neural network. If the system constraints are further
relaxed so that the system operator is nonlinear, time-invariant, and sufficiently complex, it may
not be easily described by mathematical equations. Given such a system, the system operator
may be described using fuzzy logic (Baura 2002b).

For a sparsely sampled signal, linear or nonlinear compartmental modeling is used (Baura
2002b). Compartmental modeling is not included in this Lecture because it is not typically
incorporated into market-released patient monitoring and diagnostic devices. However, fuzzy
control, which is closely related to fuzzy models, is included in this chapter. Because of the
inherent nonlinearity of many physiologic signals, they are more easily controlled by fuzzy
control, than classic control.

2.3.1 The ARMAX Model
Linear modeling is the simplest approach to classification or prediction of future behavior. We
already introduced the ARMAX model in Eq. (2.2):

N∑
n=0

an y(k − n) =
M∑

n=0

bnu(k − n) +
P∑

n=0

c ne (k − n), (2.2)
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ΣΣ
+

+

B(q-1) 1
A(q-1)

C(q-1)

u(k) y(k)

e(k)

FIGURE 2.15: ARMAX system

where e (k) is a sequence of independent and identically distributed random variables with zero
mean, otherwise known as white noise, and a0 = c 0 = 1. The model is autoregressive (AR)
because it looks back upon past values of itself, y(k − n). It possesses a moving average (MA,
the e (k) terms), and an exogenous (X), or external, input, u(k).

Alternatively, Eq. (2.2) may be represented using the argument q −1, which denotes the
backward shift operator. Using this argument, a delay of one sample in the input, u(k), may be
represented as

u (k − 1) = q −1u (k) . (2.27)

Using the backward shift operator, we may rewrite Eq. (2.2) as

A(q −1)y(k) = B(q −1)u(k) + C(q −1)e (k), (2.28)

where

A(q −1) = 1 + a1q −1 + · · · + aNq −N, (2.29)

B(q −1) = b0 + b1q −1 + · · · + b Mq −M, (2.30)

C(q −1) = 1 + c 1q −1 + · · · + cP q −P . (2.31)

The parameter vector, θ, for this model consists of

θ = [a1 . . . aN b0 . . . b M c 0 . . . cP ]T . (2.32)

This system is illustrated in Fig. 2.15.
An important variation of the ARMAX model is the ARX, or controlled autoregressive,

model:

A(q −1)y(k) = B(q −1)u(k) + e (k). (2.33)
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The corresponding parameter vector for this model is

θ = [a1 . . . aN b0 . . . b M]T. (2.34)

We can rewrite Eq. (2.33) as

y(k) = φT(k)θ + e (k), (2.35)

where the regression vector, φT(k), is

φT(k) = [−y(k − 1) . . .−y(k − N)u(k) . . . u(k − M)]T. (2.36)

2.3.1.1 Model Identifiability
Model identifiability refers to the possibility of theoretically and practically obtaining unique
estimates of all the unknown model parameters. The ARMAX and ARX models are both
theoretically identifiable. However, the practical process of parameter estimation may not yield
acceptable results. Problems may arise from different types of experimental error, the number
of data points, and the true system, leading to a loss of practical identifiability.

A model may be uniquely identifiable, nonuniquely identifiable, or nonidentifiable. If
it is uniquely identifiable, the parameters may be uniquely determined. If it is nonuniquely
identifiable, one or more of the parameters possesses more than one, but a finite, number of
possible values. If it is nonidentifiable, one or more parameters possess an infinite number of
solutions.

2.3.1.2 Parameter Estimation
Given an identifiable model, the model parameters may be calculated through a performance
function, ξ (θ). Let us use the prediction error to derive a prediction error method for estimating
the parameter vector.

The error, ε(k), between an output, y(k), and its estimate, ŷ(k), is

ε(k) = y(k) − ŷ(k) (2.37)

Since the estimate may be modeled as

ŷ(k) = φT(k)θ, (2.38)

the error may be calculated as

ε(k) = y(k) − φT(k)θ. (2.39)

Over time, the error vector containing these residuals is defined as

ε(k) = [ε(1) . . . ε(k)], (2.40)
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where K is > (N + M + 1), the dimension of the parameter vector. Since there are
(N + M + 1) parameters in θ, it should be theoretically possible to solve for θ from
(N + M + 1) measurements. However, K > (N + M + 1) measurements are used to account
for noise, disturbances, and model misfit.

The performance functions utilized in prediction error methods possess the form

ξ (θ) = h[V (θ)], (2.41)

where h(k) is a scalar-valued function that must satisfy certain conditions. In particular, the
least squares estimate of θ is defined as the vector that minimizes the mean squared error
performance function

ξ (θ) = 1
2

· 1
K

K∑
k=1

ε2(k). (2.42)

The factor of 1/2 has been added to simplify calculation of the performance function derivative.
The minimum of the mean squared error performance function is calculated by setting

its derivative equal to zero:

dξ (θ)
dθ

= d
dθ

{
1
2

· 1
K

K∑
k=1

ε2(k)

}
= 0. (2.43)

Substituting Eq. (2.39) into Eq. (2.43) yields

dξ (θ)
dθ

= d
dθ

{
1
2

· 1
K

K∑
k=1

[
y(k) − φT(k)θ

]2

}
= 0 (2.44)

1
K

K∑
k=1

[
φ(k)y(k) − φ(k)φT(k)θ

] = 0. (2.45)

Moving the negative terms to the other side of the equation results in

1
K

K∑
k=1

φ(k)y(k) = 1
K

K∑
k=1

φ(k)φT (k) θ. (2.46)

We can then solve for θ̂, the least squares estimate, as

θ̂ =
[

1
K

K∑
k=1

φ(k)φT(k)

]−1
1
K

K∑
k=1

φ(k)y(k). (2.47)
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2.3.1.3 Model Validation
Given various models for the same data sets, how do we choose the best model? Model
validation involves analyzing the results of parameter identification to select an “optimum”
model. For linear models, we evaluate the coefficient of variation (CV), goodness of fit, and
residual statistics.

The coefficients of variation are calculated from the covariance matrix, V [K ], which is
the expected value of the regression vector, multiplied by its transpose:

V [K ] = 1
K

K∑
k=1

φ (k)φT (k) . (2.48)

The diagonal elements of the covariance matrix contain estimates of the variance associ-
ated with each identified parameter. The square roots of these variances are used to calculate
the standard deviations and therefore associated CV for each parameter estimates. CV is also
known as the fractional standard deviation (FSD), and is merely the ratio of a standard devi-
ation to its mean value. When the CVs of estimated parameter values are unreasonably large
(i.e., much greater than 100%), the model may be considered suboptimal. Large CVs may arise
from limitations in the experimental data, such as a small number of measurements or large
measurement errors. Large CVs may also arise from utilization of a model that is too complex
for the available experimental data. As the CVs become larger, the covariance matrix tends
toward nonsingularity (nonunique identifiability).

Goodness of fit may be determined using Akaike’s final prediction error criterion (FPE)
(Akaike 1970). Because a more complicated model with more parameters may better fit experi-
mental data, the number of model parameters is weighed against the number of data points and
mean squared error, which refers to the average of the squared difference between the observed
and estimated data:

FPE =
[

NN + p
NN − p

] {
1

NN

NN∑
k=1

[y(k) − ŷ(k)]2

}
, (2.49)

where NN is the number of data points and p is the number of parameters. In terms of this
criterion, the best model is that which yields the lowest value of FPE.

Residual statistics refers to estimation of the system noise. If this noise is assumed to
be white, Gaussian, and of zero mean, then the residuals should display these properties. If
the residuals do not meet the assumptions, a systematic error in model identification may be
present.
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FIGURE 2.16: Damped sinusoid circuit for external defibrillation

2.3.1.4 ARMAX Model Example
In the 1990s, many researchers began to investigate alternate waveform shapes for automated
external defibrillation. While the traditional damped sinusoid waveform was known to be
effective, it required large current magnitudes during discharge. For a nominal 50 	 patient,
60 A was transmitted at the highest defibrillator setting of 360 J. This high current required a
large capacitor and large inductor for waveform shaping (Fig. 2.16). Indeed, a typical external
defibrillator during this timeframe weighed approximately 20 lbs, which limits its utility for
automated applications outside the hospital environment.

Various research groups reported defibrillation efficacy for different waveform shapes.
Defibrillation efficacy refers to the percentage of successful defibrillation attempts at a particular
voltage. Generally, V50, the total voltage required for 50% successful defibrillation, was reported
in published studies. Baura hypothesized that an accurate estimate of transthoracic impedance
could be used to predict V50 for various waveform shapes. While a nominal 50 	 resistance
was typically used to describe transthoracic impedance, researchers had known since at least
the 1970s that transthoracic impedance was not purely resistive. For example, simultaneous
plots of canine defibrillation voltage versus current result in an ellipse, rather than straight line
(Fig. 2.17).

Transthoracic impedance was modeled as a resistor, Rt , and capacitor, Ct , in series. This
impedance was connected to a defibrillator damped sinusoid waveform (HP43110), Vin(k), and
load resistor, Rl (Fig. 2.16). The transfer function between Vin(z) and Vout(z), the voltage across
Rt and Ct , was derived from circuit analysis as:

Vout(z)
Vin(z)

=
Rt+ 1

Ct

Rt+Rl + 1
Ct

+
1

Ct
−Rt

Rt+Rl + 1
Ct

z−1

1 +
1

Ct
−Rt−Rl

Rt+Rl + 1
Ct

z−1
. (2.50)
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FIGURE 2.17: Simultaneous X−Y plot of current (10A per division) and voltage (500 V per division)
from defibrillator discharge. Dog G: (1) Discharge into artificial resistive load of 50 	; (2) first transtho-
racic discharge; (3) second transthoracic discharge; (4) tenth transthoracic discharge. Reprinted from
(Dahl, 1976) with permission of C. F. Dahl.

To derive an equivalent transfer function, an ARX model was used to model the impulse
response between the measured voltage source and impedance as

Voutm(k) = −a1Voutm(k − 1) + b0Vinm(k) + b1Vinm(k − 1). (2.51)

The model coefficients were obtained from measured Vinm(k) and Voutm(k) using least
squares estimation. Substitution of Eq. (2.51) into Eq. (2.47) yields

θ̂ =
[

a1 b0 b1

]T
=

[
1
K

K−1∑
k=0

φ(k)φT(k)

]−1
1
K

K−1∑
k=0

φ(k)Voutm(k), (2.52)

where K = number of samples per waveform period and

φT(k) = [−V outm(k − 1)Vinm(k)Vinm(k − 1)]T. (2.53)

1000 samples of each voltage were digitized to 12 bits with sampling frequency 20 kHz
(National Instruments LabPC + board), lowpass filtered with a corner frequency of 40 Hz,
and downsampled by 8 samples before applying least squared estimation. Transformation of
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Eq. (2.50) to the z domain and rearrangement yielded the transfer function

Voutm(z)
Vinm(z)

= Vout(z)
Vin(z)

= b0 + b1z−1

1 + a1z−1
. (2.54)

Equating both transfer functions (2.50) and (2.54) yielded an estimate of the transthoracic
resistance

Rt = (b0 − b1)Rl

2(1 − b0)
. (2.55)

For each measurement, the resistance value from a single defibrillation pulse was esti-
mated. Capacitance was estimated by fitting the measured decay of Voutm(k) from its peak value
(Fig. 2.18) to two exponentials, using Powell’s successive quadratic estimation.

This separate step was necessary since the described ARX method does not have sufficient
resolution for accurate capacitance estimates on the order of 10−5 Farads.

In five female Yorkshire swine, defibrillation input and output voltages for defibrillation
shocks of 200 J were acquired. Mean transthoracic resistance and capacitance were estimated
as 35 	 and 299.4 µF, respectively. A voltage versus current plot, based on estimated values
in a constructed RC circuit, was then compared to actual defibrillation voltage versus current
plots for each swine. A typical swine transthoracic voltage versus current plot for swine 1003 is
shown in Fig. 2.19.

These voltage versus current plot comparisons confirmed the accuracy of the estimation
technique (Baura 2000a, 2000b, 2001, 2002b).

2.3.2 Artificial Neural Networks
Physiologic data are often nonlinear. If we allow our system operator, H(k), in Fig. 2.2 to
be nonlinear but time-invariant, we may describe the system operator as an artificial neural
network (ANN).

As its name implies, an artificial neural network refers to a mathematical model of human
brain processing. Indeed, in the 1940s, physiologists and electrical engineers worked together
toward this goal. However, over time, it was discovered that these models did not simulate
human neuron processing. The models remain because of their useful properties, such as their
ability to “learn” a nonlinear function represented by input–output pairs.

One of the simplest neural network architectures is the multilayer feedforward network.
Feedforward networks easily model nonlinear systems, possess a high degree of generalization,
and are suitable for parallel processing. However, these networks are slow to train, as the
parameter estimates converge slowly. They also cannot be easily analyzed for network behavior.

A multilayer feedforward network contains one layer of inputs, u(k), one or more hidden
layers of neurons, x(k), and one output layer of neurons, ŷ(k). Ever since Cybenko (1989) and
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FIGURE 2.18: Estimation of transthoracic resitance and capacitance from typical voltage data (swine
1003). (a) Defibrillator and transthoracic voltage. (b) Estimated and true decimated, lowpass fil-
tered, transthoracic voltage. Resistance = 35 	. (c) Estimated and true transthoracic current decay.
Capacitance = 355.2 µF. Based on (Baura 2000b)
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FIGURE 2.19: Typical swine transthoracic voltage versus current plot (swine 1003). The simulation
was obtained by passing the scaled, defibrillator voltage from a voltage divider network through a 50 	

load resistor, 35 	 resistor, and 357 µF capacitor. The estimated transthoracic resistance and capacitance
are 35 	 and 355.2 µF, respectively. The conversion factor for the observed data was 2.65 volts/AD
counts. Without a voltage divider network, the conversion factor for the simulated data was 0.00122
volts/AD counts. The voltage for a transthoracic impedance of 35 	 alone is also plotted (straight line).
Based on (Baura 2000b)

Hornik et al. (1989) proved that one hidden layer is enough to approximate any continuous
function, multilayer feedforward networks have typically utilized one hidden layer only. Each
weight between the input and hidden layers is represented by wlm(k), a weight connecting
hidden neuron xl (k) to input um(k). Similarly, each weight between the hidden and output
layers is represented by Wnl (k), a weight connecting output ŷn(k) to hidden neuron xl (k). The
weights are fully connected between layers. The desired outputs at iteration k are represented
by y(k). Please note that common nomenclature for the total number of layers is based on the
sum of the hidden and output layers. The input layer is excluded since no processing occurs.
Therefore, the network in Fig. 2.20 contains two layers.

The processing at each hidden neuron may be represented as

xl (k) = g [ fl (k)] = g

[
M∑

m=1

wlm(k)um(k)

]
, (2.56)

where g (x) is an activation function that is typically assumed to be the hyperbolic tangent (tanh)
function times a constant of 1/2. The derivative of this activation function is

g ′(x) = 1 − g 2(x). (2.57)
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FIGURE 2.20: Multilayer feedforward network with two layers. An activation function, g (x), and
summation are contained within each neuron

The processing at each output may be represented as

ŷn(k) = g [ fn(k)] = g

[
L∑

l=1

Wnl (k)xl (k)

]
= g

{
L∑

l=1

Wnl (k)g

[
M∑

m=1

wlm(k)um(k)

]}
. (2.58)

Here, the thresholds have been omitted in these definitions, but could easily be added to the
summation terms. Because this function is continuous and differentiable, system error may
be propagated back from the outputs of the network to the inputs. This solution of “back
propagation” was first described by Paul Werbos in 1974 (Werbos 1974), and was rediscovered
independently by David Rumelhart (Rumelhart et al. 1986) and David Parker (Parker 1985).

2.3.2.1 Parameter Estimation
For the linear ARMAX model, we derived a performance function based on mean squared
error. For the nonlinear multilayer feedforward network, let us derive a performance function
based on squared error:

ξ [w(k)] = 1
2

N∑
n=1

ε2(k) (2.59)

ξ [w(k)] = 1
2

N∑
n=1

yn[(k) − ŷn(k)]2, (2.60)
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where w(k) contains weights from both layers, wlm and Wnl . Substituting Eq. (2.58) into (2.60)
yields

ξ [w(k)] = 1
2

N∑
n=1

{
yn(k) − g

[
L∑

l=1

Wnl (k)g

[
M∑

m=1

wlm(k)um(k)

]]}2

. (2.61)

Since Eq. (2.61) is clearly a continuous differentiable function of every weight, we may
use a gradient descent method to learn appropriate weights, as we did in adaptive filtering.
With this method, we change each weight by an amount proportional to the gradient of the
performance function at the present location. Let us calculate the partial derivatives of the
performance function to obtain our learning rules.

For the hidden-to-output connections, the gradient descent method results in


Wnl (k) = ∂ξ [w(k)]
∂Wnl (k)

= −
N∑

n=1

[yn(k) − ŷn(k)]g ′ [ fn(k)] xl (k). (2.62)

Similarly, for the input-to-hidden connections, the gradient descent method results in


wlm(k) = ∂ξ [w(k)]
∂wlm(k)

= ∂ξ [w(k)]
∂xl (k)

· ∂xl (k)
∂wlm(k)

(2.63)


wlm(k) = −
N∑

n=1

{
[yn(k) − ŷn(k)] g ′ [ fn(k)] Wnl (k)

} · g ′ [ fl (k)] um(k). (2.64)

We may then construct our learning rules as

Wnl (k + 1) = Wnl (k) + ρ
Wnl (k) (2.65)

wlm(k + 1) = wlm(k) + ρ
wlm(k), (2.66)

where ρ is the learning rate.
Equations (2.62) and (2.64)–(2.66) constitute the back propagation algorithm. These

equations back propagate the error within the system until it is minimized. To start, the
weights are initialized to random values. During each iteration, k, of training, an input–output
pair, or pattern, is presented to the network. As the weights are updated, the performance
function decreases, adaptive to the local gradient. If the patterns are presented in random order,
the path through the control space becomes stochastic, allowing wider exploration of the control
surface. Since the update rules are local, minimal storage is required.

2.3.2.2 Model Validation
As previously stated, model validation involves analyzing the results of parameter identification
to select an “optimum” model. For nonlinear models, we evaluate the correlation matrix and
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goodness of fit. Residual statistics are not applicable, since input data for neural networks may
be presented in random order during training.

The correlation matrix of the hidden neurons, Rh (k), can be estimated as

Rh (k) = 1
P

P∑
i=1

xi (k)xT
i (k), (2.67)

where P is the number of input–output pairs and i is the subscript designating a particular pair.
The necessary number of hidden neurons is determined by calculating the rank of this matrix.
If a hidden neuron is expressed by a linear combination of other neurons, then this hidden
neuron is redundant (Hu et al. 1991).

Goodness of fit may be determined using a more generalized version of Akaike’s final
prediction error criterion—the information criterion, AIC (Akaike 1974). AIC is applicable to
nonlinear models. It is calculated as

AIC = NN ln
P∑

i=1

1
σ 2(k)

[y(k) − ŷ(k)]2 + 2p, (2.68)

where σ 2(k) is the system variance and p is the number of parameters.

2.3.2.3 Artificial Neural Network Example
As an example of a feedforward network, let us discuss the ability to recognize handwritten
zip code from the U.S. mail. A network to solve this problem was developed by Le Cun et al.
of AT&T Bell laboratories (Le Cun et al. 1989). The example database used for training
and testing consisted of 9298 isolated numerals digitized from handwritten zip codes. Typical
examples are shown in Fig. 2.21.

Note the large variety of sizes, writing styles, instruments, and writing quality. Many of
the digits would be difficult for a human to classify. 7291 sample digits were used in training;
2007 digits were used in testing. Each digit was first normalized to fill an area consisting of
40 × 60 black and white pixels. These patterns were then reduced to 16 × 16 pixel images using
a linear transformation that mapped the grey levels of the image into a range of {−1, +1}.

The network used possessed three hidden layers—J1, J2, and J3—and an output layer
(Fig. 2.22). J1, the first hidden layer, consisted of 768 neurons. These neurons were arranged
as 12 feature detectors, each composed of 64 neurons. Each group of 64 neurons was arranged
in an 8 × 8 square; each neuron received information only from a 5 × 5 contiguous square
of pixels of the original input. All 64 neurons within a feature detector possessed the same 25
weight values. The location of each 5 × 5 square shifted by 2 pixels between neighbors in the



book Mobk079 January 15, 2008 2:29

SYSTEM THEORY 39

FIGURE 2.21: (a) Examples of handwritten zip codes and (b) normalized digits from the training/test
database. Reprinted from Le Cun et al. (1989) with permission from MIT Press, Cambridge, MA

hidden layer. These extra arrangements enabled each feature detector, composed of 64 neurons,
to detect one feature with high resolution.

Normally, all 256 inputs would be fully connected to all 768 neurons, requiring 196,608
weights. Using special weighting rules, the number of connections were reduced to 19,968
weights. As a result, only 768 threshold and 300 weights remained as free parameters in the
first hidden layer during training.

The second hidden layer, J2, similarly consisted of 192 hidden neurons, arranged as 12
feature detectors. Each feature detector was composed if 16 (4 × 4) neurons each. Each neuron
received information only from groups of 25 neurons, arranged as 5 × 5 receptive fields in the
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FIGURE 2.22: Architecture of multilayer feedforward network for handwritten character recognition.
Reprinted from Le Cun et al. (1989) with permission of MIT Press, Cambridge, MA

previous layers. Using special weighting rules, the number of connections was reduced from
38,592 for full connection to 2592. As a result, only 192 thresholds and 200 weights remained
as free parameters in the second hidden layer.

The third hidden layer, J3, consisted of 30 neurons, receiving information form all
192 neurons of the second layer. With full connections, J3 contained 5760 weights and 30
thresholds. The 10 output neurons, representing 10 digits, were fully connected to J3, and
contained 300 weights and 10 thresholds.

This network was trained using back propagation. The training set was presented to
the network 23 times in random order, and assumed that each digit occurred with the same
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probability in the training set. The weights and threshold were initialized with random values.
The outputs were continuous values with the range {−1, +1}, rather than the typical ±1
extreme values used in classification. This prevented the weights from growing indefinitely
during training.

After training, only ten digits were misclassified (0.14%). However, 102 mistakes (5%)
were reported during testing. By rejecting some of the more illegible test patterns (12.1%),
the misclassification during testing was decreased to 1%. Simpler networks with fewer feature
mapping levels were also evaluated, but produced inferior results (Le Cun et al. 1989).

2.3.3 Fuzzy Models and Control
For a complicated physiologic signal not easily represented by closed form equations, the system
operator, H(k), in Fig. 2.2 may be described by a fuzzy model. This system operator is assumed
to be nonlinear and time-invariant.

Fuzzy models are based on fuzzy sets, which were introduced by Dr. Lotfi Zadeh in 1965
(Zadeh 1965). Fuzzy sets are mathematical representations of the vagueness present in our
natural language when we describe phenomena that do not possess sharply defined boundaries.
When Zadeh published a journal article in 1973 describing the application of fuzzy logic to
control (Zadeh 1973), Ebrahim Mamdani, then working on his dissertation at Queen Mary
College in London, was inspired to create the first fuzzy controller (Mamdani and Assilian
1975).

While many types of fuzzy models now exist, we consider the model Mamdani originally
created, which is known as the linguistic fuzzy model or Mamdani model (Fig. 2.23(a)). In
this model, traditional crisp inputs are transformed into fuzzy inputs using fuzzification. Rule
base inference is then used to map the fuzzy inputs into fuzzy outputs. The fuzzy outputs
are transformed into crisp outputs by defuzzification. The knowledge base provides the fuzzy
control rule base for fuzzy inference and data for fuzzification and defuzzification membership
functions.

A fuzzy controller is merely the addition of feedback. Now, crisp outputs from the
controller are fed back to a controlled system, with system outputs functioning as the crisp
inputs to the controller (Fig. 2.23(b)). The simplest controller utilizes two crisp inputs and
one crisp output. Often, these inputs are an error parameter and change in error parameter. As
a rule of thumb, a minimum of five membership functions per input is required for smooth
control.

Membership functions describe the relationships between crisp and fuzzy values. For
example, a girl whose height is a crisp value of 5′5′′ may also be considered average in height (as
opposed to very small, small, tall, or very tall). Given a fuzzy system with multiple crisp inputs,
u(k), these crisp inputs are transformed into fuzzy inputs, U(k). Each fuzzy input, U mi (k) is an
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FIGURE 2.23: (a) Fuzzy model and (b) fuzzy controller

ordered pair containing a linguistic label, labeli , and degree of membership, µmi [um(k)]:

Umi (k) = {labeli , µmi [um(k)]}, (2.69)

where k refers to the sample and m refers to the input number. The degree of membership may
also be referred to as the possibility (as opposed to statistical probability) with which a crisp
input belongs to a membership function.

A family of membership functions with certain constraints is called a fuzzy partition.
Typically, a fuzzy partition contains five to nine trapezoids. Note that a triangular function is
a subset of a trapezoid. For any crisp input, all degrees of memberships sum to 1. All crisp
inputs are assigned at least one membership function with a nonzero degree of membership
(Fig. 2.24).

Once the fuzzy inputs are determined, the input labels are used to derive the output
labels for various combinations, based on a given set of rules. The various combinations of
fuzzy input degrees of membership are also combined using fuzzy logic to determine the output
degrees of membership. This process is known as rule base inference. As with the fuzzy inputs,
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FIGURE 2.24: Three fuzzy partitions—composed of groups of membership functions. In the context
of discussion, (a) and (b) are inputs, while (c) is an output

each fuzzy output, Yni (k), consists of an ordered pair containing a linguistic label and degree
of membership:

Yni (k) = {labeli , µni [yn(k)]}. (2.70)

Each predetermined rule, or fuzzy conditional statement, consists of an antecedent and a
consequent. An antecedent contains several preconditions; a consequent contains one or more
output actions. Both utilize linguistic labels. For example, a syringe pump motor controller rule
may be “IF p-p FSD is large and 
p-p FSD is positive large, THEN 
 packet size is negative
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medium.” In this example, p-p = peak-to-peak, FSD = fractional standard deviation, and 
 =
change in. A second rule may be “IF p-p FSD is very large and 
p-p FSD is positive large,
THEN 
 packet size is negative large.” The maximum number of rules is equal to the product
of the membership functions. For efficient implementation, rules are often arranged in tables.

Similarly, input degrees of membership are used to derive the output degrees of mem-
bership. Let us assume that the mathematical operation of taking the minimum, also known as
the Zadeh intersection, is used to combine fuzzy input degrees of membership.

As an illustration of rule base inference, let us assume that the syringe pump motor
controller sensors observe p-p FSD = 0.225 and 
p-p FSD = 0.0625, and that we can neglect
k. From our input fuzzy partitions, p-p FSD = 0.225 transforms into U11 = {large, 0.33} and
U12 = {very large, 0.67}. Also, 
p-p FSD = 0.225 transforms into U21 = {positive large, 1}.
Based on our stated rules and the Zadeh intersection, our fuzzy outputs are Y11 = {negative
medium, 0.33} and Y12 = {negative large, 0.67}.

In the last step of our process, we defuzzify the fuzzy outputs to crisp outputs. Defuzzi-
fication procedures are used to select an adequate decision among those deemed adequate by
the output possibility distribution. Because one or more outputs may have been determined by
rule base inference, these output sets are combined. According to the disjunctive interpretation
of a fuzzy relation, which was posed by Zadeh, Mamdani, and Assilian, the outputs must be
combined by union to approximate the compatibility relation. From the union of the outputs,
the crisp output is then determined by taking the centroid (center of area):

yni (k) =
∑q

s =1 µns [ys (k)] ys (k)∑q
s =1 µns [ys (k)]

, (2.71)

where ys (k) are the discrete points in the relevant domain.
For our syringe pump motor controller example, defuzzification is illustrated in Fig. 2.25.

Here, Y11 = {negative medium, 0.33} and Y12 = {negative large, 0.67} have been combined,
with the crisp output determined from the centroid calculation as y1 = −3.0.

2.3.3.1 Parameter Estimation
The knowledge base comprises knowledge of the application domain and the modeling goals.
From the knowledge base, the input and output fuzzy partitions and rule base are established.
For traditional engineering systems, the characteristics of human control behavior, develop-
ment of process skills, individual differences between process operators, task factors affecting
performance, and organization of the operator’s behavior must be taken into account during
construction of the fuzzy partitions and rule base. For physiologic systems, natural variation
must also be generalized from sufficient observations of the control space. The membership
functions are selected to serve as meanings for the linguistic labels in the inference rules.
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FIGURE 2.25: Syringe pump motor controller example defuzzification

Typically, for a system designed exclusively on the basis of intuitive knowledge, fine
tuning of the fuzzy partitions and rule base amounts to observing the results and then intuitively
adjusting membership functions that were derived from intuition in the first place. For simple
fuzzy models, such as those with two inputs, this trial and error method is adequate. However,
with larger systems, a methodology such as neural networks may be utilized for efficient fine
tuning (Keller and Tahani 1992).

2.3.3.2 Model Validation
Model validation is not as straightforward with a fuzzy model as with a traditional mathematical
model. It is possible, however, to analyze the coverage of the input space by the rules. For
an incomplete rule base, additional rules may be constructed from prior knowledge. The
antecedents of these rules may be created from unused combinations of membership functions
in the initial model. The identification data usually cover only a fraction of the complete product
space of the model parameters. Therefore, the antecedents of the obtained rules include only
those combinations of the linguistic terms that were identified from the data. It is possible that
regions not covered by any rules are entered during simulation or prediction. This situation
can be detected by observing the output degree of membership in the rule base. If no rule is
activated above a specified threshold, an additional rule may be added to the rule base. The
antecedent of this rule is given by the combination of linguistic terms that give the highest
output degree of membership for the given data point (Babuska 1998).

2.3.3.3 Fuzzy Control Example
In 1963, Pressman and Newgard at the Stanford Research Institute postulated that the tech-
nique of ocular tonometry could be adapted to blood pressure. With ocular tonometry, a sensor
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is applied to the cornea until its central area is flattened. This flattening indicates that the cir-
cumferential stresses in the corneal wall have been removed and that the internal and external
pressures are equal. The final pressure with which this sensor is applied equals the intraocular
pressure. Similarly, Pressman and Newgard believed that sufficient pressure could be applied
to an artery such as the radial artery, which possesses sufficient bony support. With sufficient
pressure, the transmural (through the arterial wall) pressure would equal zero and the external
pressure would equal the internal pressure (Pressman and Newgard 1963).

Several groups have investigated the application of arterial tonometry for continuous,
noninvasive blood pressure monitoring since publication of this article. In the late 1990s,
Baura developed a method for estimation of systolic, diastolic, and mean arterial pressure,
based on time–frequency analysis of ultrasound velocity waveforms obtained at the radial
artery. The estimates were obtained during an initial applanation sweep (data acquisition
from overcompression to undercompression of the artery), as shown in Fig. 2.26. Once initial
estimates were made, continuous measurement could be accomplished using fuzzy control
(Baura 2002a, 2003).

FIGURE 2.26: Blood pressure estimation during an applanation sweep. Based on (Baura 2003)
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The fuzzy controller was based on the observation that the blood pressure beat possessing
the true (intraarterial) mean arterial pressure (MAP) corresponds to the beat with the maximum
end-diastolic blood velocity. The controller was implemented with two inputs: (1) the mean
pseudo-Wigner distribution of the current beat, and (2) the difference between the current and
last mean pseudo-Wigner distribution. The controller output was the number of applanation
steps sent to the motor. This output ranged from −400 to +400 steps, in multiples of 50
steps. For the motor, 38,400 steps equaled 1 in. If the difference input was a positive value,
the output signal directed the applanation motor to continue in the same direction for the
calculated number of steps. If the difference input was a negative value, the output signal
directed the applanation motor to change direction for a calculated number of steps. The
input and output membership functions of the controller were typical functions of overlapping
trapezoids. Unfortunately, these fuzzy partitions were not publicly disclosed.

In an initial trial in one surgical patient, the controller was evaluated during an observed
50-mmHg drop in MAP over approximately 11 min. This severe pressure drop occurred in
response to epidural administration of the anesthetic bupivicaine. The controller tracked 552
pressure beats, with a mean difference of 3 ± 4 mmHg (Fig. 2.27). Figure 2.28 is a detail view

FIGURE 2.27: Continuous intraarterial catheter and servo pressures in a surgical patient over 11.3 min.
During this time, the catheter MAP dropped 50 mmHg. Based on (Baura 2003)
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FIGURE 2.28: Forty-second snapshots of the catheter and servo data in Fig. 2.27. Based on (Baura
2003)

of Fig. 2.27, illustrating three 40-s windows of the intraarterial catheter and servo data. Figure
2.29 is a 20-s interval snapshot of the data in Fig. 2.28 that occurred at 6.5 min from the onset
of data recording in Fig. 2.27. As illustrated in Fig. 2.29, a significant drop in the end-diastolic
velocity was corrected within five beats.

The controller was then tested in two anesthetized surgical patients during two continuous
20-min intervals, with each test followed by a 5-min resting interval. During each 20-min
measurement, one applanation pressure sweep was conducted, followed by continuous servo
control. During the four measurement periods, the catheter MAPs ranged from 69 to 106 mm
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FIGURE 2.29: Twenty-second snapshot of catheter and servo data at 6.5 min. During this time, a
significant drop in the end-diastolic velocity was corrected within five beats. Based on (Baura 2003)

Hg. Over 3103 beats, the mean MAP difference was −3 ± 5 mmHg. In data from all three
surgical patients, the AAMI standard of ≤5 ± 8 mmHg was met for MAP differences. This
work was discontinued when the inventor left VitalWave Corporation, now known as Tensys
Medical.
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C H A P T E R 3

Patient Monitoring Devices

In this chapter, we describe four patient monitoring devices that use system theory to minimize
the noise in their physiologic input signals. Since patient monitoring involves continuous
observation and processing, a high signal-to-noise ratio is a critical first step to obtaining
accurate device parameters.

Masimo used adaptive filtering to minimize motion artifact during pulse oximetry mea-
surements. Interflo Medical used the pseudorandom binary sequence to increase the signal-
to-noise ratio during continuous thermodilution measurements. CardioDynamics used wavelet
transforms to minimize the noise artifact during impedance cardiography measurements. As-
pect Medical Systems used black box system identification to identify the stages of anesthesia
administration.

3.1 MASIMO PULSE OXIMETRY
Masimo Corporation was founded in 1989 by electrical engineers Joe Kiani and Mohamed Diab,
with the intent of minimizing motion artifact during pulse oximetry using adaptive filtering.
Pulse oximetry measures the arterial saturation of oxygen, SaO2, which is the percentage of
oxygen bound to hemoglobin in arterial blood. Arterial saturation of oxygen is related to the
partial pressure of oxygen, PO2, which is a critical operating room parameter that is monitored
during mechanical ventilation to ensure oxygen is reaching the tissues. SpO2 represents an SaO2

measurement using pulse oximetry.
During the late 1980s and early 1990s, pulse oximetry began to gain acceptance by

the medical community and migrated from use in the operating room to other hospi-
tal units. The American Society of Anesthesiology adopted pulse oximetry as a standard
of basic care in the operating room in 1990 and in the recovery room in 1992 (Amer-
ican Society of Anesthesiologists 1991). As pulse oximetry measurements became more
widespread, measurements were made in less controlled environments in which patient mo-
tion was present. Masimo believed adaptive filtering could be used to minimize noise in the
face of motion and poor peripheral perfusion (low signal-to-noise ratio during low blood
volume).
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3.1.1 Pulse Oximetry Calculations
Theoretically, pulse oximetry is based on the Beer–Lambert law. As described by this law,
the intensity of transmitted light, I , traveling through a uniform medium of path length, l ,
containing an absorbing substance with concentration, c , decreases as

I = I0 e−ε(λ)c l , (3.1)

where I0 is the intensity of the incident light, λ is a specific wavelength, and ε is the extinction
coefficient of the absorbing substance at that wavelength. The unscattered absorbance, A(λ),
of this process is the natural log of the ratio of transmitted light to incident light intensity:

A(λ) = − ln
I
I0

= ε(λ)c l . (3.2)

When more than one substance absorbs light in a medium, each absorber contributes its
part to the total absorbance, AT(λ), as:

AT(λ) =
n∑

i=1

εi (λ)c i li , (3.3)

where n equals the number of absorbers.
If two wavelengths of light are transmitted through a glass cuvette containing a blood

sample containing only oxyhemoglobin (hemoglobin bound to oxygen, HbO2) and deoxyhe-
moglobin, Hb, the arterial saturation of oxygen can be determined as

SaO2 = [HbO2]
[Hb] + [HbO2]

, (3.4)

where [] denotes concentration. Please note that in special, rare cases of anemic hypoxia and
carbon monoxide poisoning, two other forms of hemoglobin may be found in an arterial blood
sample. Because the extinction coefficients of oxyhemoglobin and deoxyhemoglobin differ at
each wavelength (Fig. 3.1), their respective concentrations can be found from Eq. (3.3). The
concentrations are then input into Eq. (3.4) to determine SaO2.

In reality, transmitting light through a glass cuvette is much simpler than transmitting
light through a finger or an ear lobe. Ludwig Nicolai began his oximetry experiments in 1931.
Forty-one years later, pulse oximetry could only be used to accurately measure SaO2 if the SaO2

measurement was at least 90%, which is within the range of healthy individuals. This limited
measurement range was enabled by Takuo Aoyagi at Nihon Kohden in 1972, who realized
that only the pulsating components (arterial and venous blood) should be considered during
measurement. This realization enabled other primary absorbers such as skin pigmentation
and bones, and nonspecific sources of optical attenuation, to be discounted. For a complete
derivation, please see Baura (2002).



book Mobk079 January 15, 2008 2:29

PATIENT MONITORING DEVICES 55

FIGURE 3.1: The extinction coefficients of deoxyhemoglobin (or hemoglobin) and oxyhemoglobin as
functions of wavelength. Wavelengths employed by the pulse oximeter (660 and 940 nm) are indicated.
Reprinted from (Mackenzie, 1985) with kind permission of Spring Science and Business Media.

The parameter that Aoyagi used to estimate SpO2 was the ratio, R, which is the ratio of
the first time derivative of total absorbances at two wavelengths. This equation is given below in
discrete time, after the time derivative for path length has been cancelled out of the numerator
and denominator:

R(k) = εo(λ1)c o(k) + εd(λ1)c d(k)
εo(λ2)c o(k) + εd(λ2)c d(k)

, (3.5)

where k is a discrete sample, the subscript “o” represents oxyhemoglobin, and the subscript ‘d’
represents deoxyhemoglobin. R(k) was used to calculate SpO2 as:

SpO2(k) = εd(λ1) − εd(λ2)R(k)
[εd(λ1) − εo(λ1)] − [εd(λ2) − εo(λ2)]R(k)

. (3.6)

Since these calculations did not hold for SaO2 < 90%, Scott Wilber, who founded
Biox Technology, instead used calibration curves to derive the relationship between R(k) and
SpO2. Specifically, he measured constant R(k) in healthy volunteers who were inspiring a
specific oxygen concentration. The resulting calibration curve (Fig. 3.2) provided a simple
method for determining arterial oxygen saturation. This calibration curve enables accurate
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FIGURE 3.2: Typical pulse oximetry calibration curve

pulse oximetry measurements when motion artifact is not present. Please note that each pulse
oximeter monitor/sensor combination requires its own calibration curve.

3.1.2 Adaptive Filtering in Masimo Software
Masimo used the signal and noise in two wavelengths of light from pulse oximetry to essentially
derive and filter out the noise. In classic adaptive filtering, a noisy signal and a reference noise
source are available for processing. In Masimo’s adaptive noise cancellation application, a
relationship for the reference noise source is derived.

The ratio in Eq. (3.5) can be rewritten to describe the ratio of the input signal, u(k), at
two wavelengths, λ1 and λ2:

R(k) = εo(λ1)c o(k) + εd(λ1)c d(k)
εo(λ2)c o(k) + εd(λ2)c d(k)

= uλ1 (k)
uλ2 (k)

. (3.7)

In the original derivation, it was assumed that noise was not present. Let us define the
signals from the photodiodes, the primary signals yλi (k), as the combination of the input and
noise, nλi (k), such that

yλ1 (k) = uλ1 (k) + nλ1 (k) (3.8)

yλ2 (k) = uλ2 (k) + nλ2 (k). (3.9)

Rearranging Eqs. (3.8) and (3.9) and substituting them into Eq. (3.7) yields

R(k) = yλ1 (k) − nλ1 (k)
yλ2 (k) − nλ2 (k)

. (3.10)
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Cross-multiplication and rearrangement results in

R(k)yλ2 (k) − R(k)nλ2 (k) = yλ1 (k) − nλ1 (k) (3.11)

nλ1 (k) − R(k)yλ2 (k) = yλ1 (k) − R(k)yλ2 (k) ≡ n1(k). (3.12)

Note that we have defined the reference noise source, n1(k), as the linear combination
of the detected noise source and the ratio. This reference noise source will effectively vary with
motion artifact and poor perfusion. However, without noise, n1(k) equals zero and

R(k) = yλ1 (k)
yλ2 (k)

. (3.13)

Unfortunately, the reference noise source depends on the ratio, R(k), which is the param-
eter being monitored to calculate SpO2. Since we have two unknowns but only one equation,
117 possible values of the ratio which correspond to uniformly spaced SpO2 values from 34.8
to 105% are used to calculate candidate reference noise source. Each candidate reference noise
source is then input to the adaptive noise canceller with the infrared primary input; a corre-
sponding filter output is determined. It is assumed by Masimo that the peak of the output
power at the highest saturation corresponds to the arterial saturation (Fig. 3.3).

This sequence of saturation calculations is repeated once per second (Diab et al. 1997).
The system configuration is given in Fig. 3.4; a Masimo Radical-7 monitor that incorporates
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FIGURE 3.3: SpO2 selection, based on peak with highest saturation. ANC = adaptive noise cancella-
tion. Courtesy of Masimo Corporation, Irvine, CA
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FIGURE 3.4: Masimo system configuration. Based on (Diab et al. 1997)

adaptive noise cancellation (trademarked Signal Extraction Technology or SET) is given in
Fig. 3.5.

3.1.3 Clinical Results
This system for motion resistant pulse oximetry was validated in 10 healthy volunteers. Each
volunteer was monitored using three different pulse oximeters: the Nellcor N-200, with its
heuristic & inaccurate C-LOCK algorithm not used; the Nellcor N-3000 that used Oxismart
“advanced signal processing”; and a Masimo prototype that used adaptive noise cancellation.
Masimo chose Nellcor monitors for comparison testing, as Nellcor was the market leader. A

FIGURE 3.5: Masimo Radical-7 monitor. Courtesy of Masimo Corporation, Irvine, CA.
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TABLE 3.1: Pulse oximeter performance index (PI, %) during motion. Based on (Barker 1997)

NELLCOR NELLCOR MASIMO
N-200 N-3000 PROTOTYPE

Oximeter connected
before motion begins 76 87 99

Oximeter connected
after motion begins 68 47 97

Oximetry readings at
lowest point of rapid
desaturation to 75% 70 58 95

disposable sensor corresponding to each monitor was randomly placed on the index, middle,
or ring finger of each subject’s dominant hand. A sensor for a reference pulse oximeter was
also placed on the nondominant hand. Each subject inspired various oxygen fractions from
an anesthesia machine through a tight-fitting face mask to simulate room air, steady-state
hypoxemia (SpO2 ≈ 75%), and transient hypoxemia (SpO2 varied between 75 and 100%).
During each oxygen state, the dominant hand with sensors was subjected to standardized
“rubbing” and “tapping” motions generated by a motor-driven tilt table. Further, the sensors
were disconnected and reconnected at various preselected times, forcing the instrument to
reacquire data during the motion conditions.

The Masimo pulse oximeter performed significantly better (p < 0.05) than the other
monitors during motion in terms of performance index, PI, as shown in Table 3.1. In this
study, PI was defined as the time percentage during which the oximeter provided an SpO2

value within 7% of the control SpO2 value (Barker 1997). Typical SpO2 readings during rapid
desaturation-resaturation and tapping motion are shown in Fig. 3.6.

3.1.4 Conclusion
In 1999, Masimo sued Nellor for patent infringement when Nellcor released its N-395 pulse
oximeter, which Nellcor claimed could monitor in the presence of patient motion. Nellcor
became part of the healthcare division of Tyco International in 2000. In 2007, Tyco’s healthcare
division was spun off as Covidien.

In March, 2004, a jury found that Nellcor infringed several Masimo patents. In September
2005, the appellate court affirmed the infringement findings against Nellcor, and instructed
the District Court to enter a permanent injunction against Nellcors’ pulse oximeters that were
found to infringe (N-395 and N-595). In January 2006, Masimo and Nellcor entered into a
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FIGURE 3.6: SpO2 versus time showing a rapid desaturation-resaturation occurring during tapping
motion. Courtesy of Masimo Corporation, Irvine, CA

settlement agreement, where Nellcor agreed to discontinue shipment of all pulse oximeters
that were found to infringe Masimos’ patents and pay Masimo $265 million for sales of the
infringing products (Masimo Corporation 2006). This was a momentous patent infringement
decision for the medical device industry, as it demonstrated that innovative startups could
prevail over large conglomerates.

In 1997, hospital sales of pulse oximeters and their disposable probes generated
$32,011,546 and $197,494,350, respectively, in the United States. These sales estimates exclude
sales in federal hospitals and nursing homes. Nellcor accounted for 88.1% of total disposable
sales (IMS Health 1997, Baura 2002). By 2006, nonfederal hospital sales of pulse oximeters and
their disposable probes were $11,766,191 and $430,426,031 respectively. Nellcor accounted for
74.9% of total disposable sales (IMS Health 2006). With the settlement of the Masimo v.
Nellcor patent infringement lawsuit, it is believed that Masimo sales will significantly increase
in the future.

3.2 INTERFLO MEDICAL CONTINUOUS THERMODILUTION
Interflo Medical was founded in the late 1980s by anesthesiologist and electrical engineer
Dr. Mark Yelderman, with the intent of converting thermodilution from an intermittent
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to continuous measurement. Yelderman originally conceived of this invention while still a
physician at Stanford University (Yelderman 1985). Thermodilution measures cardiac out-
put, CO, which is the effective blood volume expelled by either ventricle per unit time.
Typically, it is calculated as the product of the left ventricular stroke volume times the
heart rate. Traditionally, cardiac output was considered necessary to guide therapy for cer-
tain critically ill patients, such as those who had experienced complicated cardiac surgery,
complicated mechanical ventilation, emergency or extensive surgery, acute pulmonary edema,
or acute lung injury. It was generally believed that CO management led to better patient
outcomes.

Thermodilution is one of a group of indicator-dilution methods, by which a detectable
indicator is applied upstream in the circulation and detected downstream to determine the
flow rate by which it was mixed. It is assumed that the indicator mixes with all the blood
flowing through the central mixing pool. The indicator for thermodilution is a bolus of room
temperature or iced saline. Because of the nature of this measurement, thermodilution can
only be made intermittently. Interflo Medical believed that the iced saline could be replaced
by heating of the blood itself. Since it is required that the blood should not be affected by
significantly increased temperature, small pulses of heat pulses were applied upstream. To
increase the signal-to-noise ratio of these pulses, the pulses were coded as a pseudorandom
binary sequence.

3.2.1 Thermodilution Calculations
In preparation for thermodilution, a multiple lumen pulmonary artery catheter (PAC) is passed
through the skin into a central vein. Once the catheter tip reaches a central venous location, a
balloon at the tip is inflated, which causes the catheter tip to rapidly move from the right atrium,
through the right ventricle, and into the pulmonary artery. A bolus of room temperature or iced
(0◦C) 5% dextrose in water or 0.9% NaCl is injected through the catheter into the right atrium.
The volume injected in adult patients, that are not fluid restricted, is generally 10 ml. The
resulting blood temperature transient is detected downstream by a thermistor in the pulmonary
artery. A typical thermodilution curve is shown in Fig. 3.7.

Cardiac output is then calculated using the Stewart–Hamilton equation as

CO = VI (TB − TI)K1 K2

A
, (3.14)

where VI is the injectate volume, TB is the blood temperature in the pulmonary artery, TI

is the injectate temperature, K1 is the density factor (injectate/blood), K2 is the catheter
manufacturer’s computation constant, and A is the area under the thermodilution curve.
Due to heat loss through the catheter wall, several serial injections are needed to obtain a
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FIGURE 3.7: Typical intermittent thermodilution curve

consistent value for cardiac output. If the cardiac output is low, the resulting curve will be
very broad, decreasing the signal-to-noise ratio of the measurement. Respiratory-induced vari-
ations in pulmonary artery blood temperature may confound the dilution curve when it is of
low amplitude. Because of fluid overloading, this in vivo measurement can only be obtained
intermittently.

3.2.2 PRBS in Interflo Medical Software
Interflo Medical designed a special PAC that had been modified to include a filamentous heating
element (Fig. 3.8(a)). When the filament was positioned in the right ventricle, a distal thermistor
was now positioned in the pulmonary artery to monitor temperature changes. A maximum of
15 W of heat was delivered to filament, coded as a pseudorandom binary sequence of length
M = 31. This produced transient increased temperatures of +0.02◦C in the pulmonary artery
(Fig. 3.9).

Using Eq. (2.9), the detected thermistor signal was decoded to obtain an amplified
thermodilution curve, with an increased signal-to-noise ratio. A typical curve is shown in
Fig. 3.10. The system configuration for these measurements is given in Fig. 3.11.

3.2.3 Clinical Results
This system for continuous thermodilution was validated first in sheep (Yelderman et al. 1992a)
and then in humans. In the human studies, 54 intensive care unit (ICU) patients, ranging in
weight from 54 to 111 kg, were each studied for six hours. Patient CO was determined by both
continuous and bolus thermodilution, resulting in 222 data pairs. The bolus COs ranged from
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FIGURE 3.8: (a) Continuous thermodilution CCOMBO catheter. (b) Continuous thermodilution
Vigilance monitor. Courtesy of Edwards Lifesciences, Irvine, CA

2.8 to 10.8 l/min (Fig. 3.12); the heart rates varied from 74 to 158 bpm, with some periods of
irregular rhythms.

Using linear regression analysis, a squared correlation coefficient of r 2 = 0.88 (p not
reported) was obtained, meaning that 88% of the variance in the continuous thermodilution
measurements could be accounted for by the bolus thermodilution measurements. The absolute
measure bias was 0.02 l/min; the 95% confidence limits were 1.07 and −1.03 l/min (Yelderman
et al. 1992b).
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3.2.4 Conclusion
Interflo Medical was acquired by Baxter Edwards in 1992. In 2000, Baxter Edwards spun
off its cardiovascular group, which is now known as Edwards Lifesciences. Baxter Edwards
marketed Interflo’s continuous thermodilution system, without significant design changes, as
the CCOMBO catheter and Vigilance monitor (Figs. 3.8(a) and (b)).

The market for both bolus and continuous thermodilution changed dramatically with
the publication of the observational study of PAC use by Connors et al. in 1996. In this study
of 5735 critically ill adult patients receiving ICU care in one of five U.S. teaching hospitals, the
outcomes of patients receiving right heart catheterization within 24 h of ICU stay (38%) were
compared to those who did not receive this initial treatment. By case-matching analysis, it was
determined that PAC patients had an increased 30 day mortality and increased 2 day stay in
the ICU (Connors et al. 1996).

Over time, this study caused PACs, and therefore thermodilution CO measurements,
to decline in use. In 1997, hospital sales of thermodilution catheters and their monitoring
accessories generated $67,162,910 and $14,604,868, respectively, in the United States. These
sales estimates exclude sales in federal hospitals and nursing homes. Baxter accounted for 54.9
and 58.8% of total catheter and accessories sales, respectively (IMS Health 1997, Baura 2002).
By 2006, nonfederal hospital sales of thermodilution catheters and their monitoring accessories
had declined to $63,112,571 and $6,941,915 respectively (IMS Health 2006).

3.3 CARDIODYNAMICS IMPEDANCE CARDIOGRAPHY
CardioDynamics International Corporation traces its roots to BoMed Medical Manufacturing,
which was founded by electrical engineer Bo Sramek in the 1980s. Sramek founded his company
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to commercialize monitors based on impedance cardiography. BoMed went through bankruptcy
in 1992–3, and reemerged through reorganization as CardioDynamics.

Impedance cardiography is a noninvasive, continuous method for monitoring cardiac
output. As discussed earlier in this chapter, CO is the effective blood volume expelled by
either ventricle per unit time. Typically, it is calculated as the product of the left ventricular
stroke volume times the heart rate. After CO measurements by invasive thermodilution were
demonstrated to increase mortality in 1996 (Connors et al. 1996), it was believed by some that
physicians would respond by increasing their use of noninvasive CO measurements.

3.3.1 Impedance Cardiography Calculations
Strictly speaking, impedance cardiography, which is also known as thoracic bioimpedance or
impedance plethysmography, is used to measure cardiac stroke volume, SV. Stroke volume is
the ejection volume from the left ventricle during systole. When the stroke volume is multiplied
by heart rate, cardiac output is obtained:

CO = SV · heart rate. (3.15)

The original stroke volume measurement, based on thoracic impedance, was invented
by Kubicek et al. at the University of Minnesota for use by NASA. Two band electrodes are
positioned on the neck, with the inner electrodes at the root of the neck. Two band electrodes
are positioned at edge of the thorax, with the inner electrode at the level of the xyphoid process.
Constant current flows through the outer electrodes; the resulting voltage is measured across
the inner electrodes (Fig. 3.13).

Assuming that only pure resistance is present, Ohm’s law can be used to calculate the
total impedance, ZT(t), as the ratio of voltage to current. The total thoracic impedance consists
of a constant impedance, Z0, and a time-varying impedance, 
Z(t). Kubicek assumed that the
change in thoracic impedance is related to the pulsatile volume change. He modeled constant
tissue impedances such as bone, muscle, and fat as a conducting volume, in parallel with the
pulsatile impedance. The empirical relationship he developed for one cardiac cycle, or beat,
was:

SV(beat) = ρ · L2

Z2
0

· LVET(beat) · dZ
dtMAX

(beat), (3.16)

where ρ is the resistivity of blood, L is the distance between inner band electrodes in cm,
LVET(beat) is the left ventricular ejection time of a beat in seconds, and dZ/dtMAX(beat)
is the magnitude of the largest negative time derivative of the impedance change occurring
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FIGURE 3.13: Kubicek’s thoracic impedance parallel-column model and measurement setup. Based
on (Kubicek et al. 1979)

during systole in ohms/s (Kubicek et al. 1979). As shown in Fig. 3.14, the impedance derivative
is purposely inverted so that the original negative minimum change will appear as a positive
maximum, in a manner more familiar to physicians.

Sramek chose to model the thorax as a truncated cone, rather than cylinder, and moved
from band to spot electrode measurements. In collaboration with Bernstein, he modified the
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stroke volume equation to:

SV(beat) = β ·
(

Weightobserved

Weightideal

) [
(0.17H)3

4.2

]
· LVET(beat) ·

dZ
dtMAX

Z0
(beat), (3.17)

where β is the relative blood volume index, H is the patient height, Weightobserved is the observed
weight, and Weightideal is the ideal weight (Sramek 1984, Bernstein 1986). Unfortunately, the
correlation between these measurements from Sramek devices and those made using thermod-
ilution was extremely low. In a study in which cardiac output was measured in 28 patients
recovering from elective heart surgery, the square correlation coefficient between the two meth-
ods initially after surgery was r 2 = 0.30(p = 0.002), and decreased to r 2 = 0.26 (p = 0.004)
two to four hours later (Yamikets and Jensen 1995).

3.3.2 Wavelet Transforms in CardioDynamics Software
Both Kubicek and Sramek calculated LVET(beat) and dZ/dtMAX(beat) using heuristic, empiri-
cal methods of identification of curve changes and their time derivatives. As shown in Fig. 3.14,
LVET(beat) is calculated from the B and X points, and dZ/dtMAX (beat) is calculated from
the C point. B is associated with aortic valve opening; X is associated with aortic valve closure.
C represents a major upward deflection during systole. Each individual beat is parsed from R
points in the QRS complex of a corresponding ECG waveform.

If dZ/dt waveforms were as clean as the idealized waveform in Fig. 3.14, heuristic
detection could be sufficient. But since these waveforms, especially for critical cardiac patients,
appear minimally periodic to the eye, accurate fiducial point detection is almost impossible with
heuristic methods. As a first step to improving the correlation between impedance cardiography
and thermodilution CO, Baura and Ng improved the detection of the fiducial points R, Q,
C, B, and X. Using wavelet transforms of training data, noise due to respiration artifact and
low signal-to-noise ratio was minimized, before detection. The training data were chosen
from a data base of 266 patient waveforms. The effective sampling rate for these data, after
downsampling, was 200 Hz (Baura and Ng 2003).

In general, R and Q point detection were based on scale 2 Haar detail coefficients, and
enabled parsing of each ECG and dZ/dt beat. Within an impedance beat, C point detection
was based on scale 1 Mallet approximation coefficients. The global maximum was determined
in the search range of 1/3 and 1/2 of the length between the first and second Q points of dZ/dt.
The first occurrence of these global maxima was designated the C point. B point detection was
based on scale 2 Symlet 2 detail coefficients of 
Z. Search for the most recent local maximum
in the detail coefficients was limited between [(R + 1)/4 + 1 and [(C − 2)/4 + 1)]. The B
point was detected as the global maximum in the range bracketed by this local maximum and
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FIGURE 3.15: Scaling and wavelet filters used in fiducial point detection. (a) Mallet scaling filter,
(b) Symlet 2 wavelet filter, and (c) Fiducial filter. Based on (Baura and Ng 2003)

(C − 2). X point detection was based on scale 1 approximation coefficients using a newly
created Fiducial filter. Search for the X point was limited between the C point and the next
Q point. The X point was detected as the first occurring local minimum of the scale 1 ap-
proximation coefficients (Baura 2002, Baura and Ng 2003). The Mallet scaling filter, Symlet
2 wavelet filter, and Fiducial filter are given in Fig. 3.15. As a representative example, B point
detection is diagramed in Fig. 3.16. For more information on this detection system, please see
(Baura 2002). Wavelet fiducial point detection is implemented in the CardioDynamics BioZ
Dx monitor (Fig. 3.17).

An efficient process for research and development of these algorithms was recently
described (Baura 2004b). In a large monitoring project, many algorithms may be invented in
parallel. As shown in Fig. 3.18, the marketing department requests new monitoring features,
which the research manager interprets as algorithm definitions.

Appropriate clinical data are collected, with a subset used for algorithm invention, or
training, and the remainder reserved for algorithm validation, or testing. Algorithm valida-
tion is performed with predetermined validation criteria. If validation criteria are not met, the
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FIGURE 3.16: B point detection. This patient is a 62 years old, 82 kg pacemaker patient. The local
minimum immediately after the Q point was caused by pacemaker stimulation. Based on (Baura and Ng
2003)

algorithms are retuned with training data. Validated algorithms are demonstrated to marketing,
through a real-time implementation such as LabVIEW. Upon marketing approval, the Lab-
VIEW algorithms are documented in specifications detailing the inputs, internal processing,
and outputs of each algorithm module.
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FIGURE 3.17: CardioDynamics BioZ Dx monitor. Courtesy of CardioDynamics, San Diego, CA

The transfer of algorithm specifications to software engineers initiates the algorithm
development process (Fig. 3.19). Like other parts of a medical device development project,
algorithm development is subject to the design control process, within the Good Manufacturing
Practice requirements set forth by the Food and Drug Administration (FDA). The design input
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requirement is met by the digital signal processor (DSP) system requirements specification
(SRS), which cannot be completed without stable hardware and user interface specifications.
Note that the DSP SRS references the original LabVIEW algorithm specifications. The design
output requirement is met by the DSP Software Design Specification (SDS), which provides
the foundation for code creation, debugging, and code reviews.

Verification refers to confirmation that specific requirements have been met. This is
proven through design verification testing (DVT) and clinical verification testing, per pre-
defined protocols. The DVT protocol encompasses all tests required to prove that specific
requirements in the SRS have been met. Clinical verification testing involves weekly test-
ing at a clinical site, to verify that the algorithms respond as predicted to real patient data.
Validation refers to confirmation that the particular requirements for a specific intended use
can be consistently fulfilled. Using an equivalency protocol, testing is conducted to determine
if the same parameter values are calculated for the same simulated inputs in the prototype
device and a predicate device. Using a clinical validation protocol, testing is conducted in
humans.

Results from verification and validation are fed back to update the SRS and SDS, as
needed. As software bugs are exposed through testing, debugging occurs. When all tests have
passed, the algorithms are transferred to manufacturing (Baura 2004b).

3.3.3 Clinical Results
Clinical data sets for validation were obtained from pacemaker patients at a local pacemaker
clinic. In a single patient, stimulation at the baseline pacemaker stimulation amplitude setting,
and when possible, at the minimum and maximum unipolar and bipolar amplitudes, results in
up to five very different ECG and dZ/dt waveforms. In total, 63 waveforms from 28 patients
were collected for validation (Baura 2004a). The effective sampling rate for these data, after
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downsampling, was 200 Hz. Three beats each from 58 validation data sets were used for fiducial
point detection validation. The validation criteria were based on practical clinical needs in the
field. The mean absolute error (MAE) was used for validation criteria, as it is more robust than
mean error, which enables positive and negative errors to cancel.

For R point detection, the validation criterion was MAE ≤ 2 samples. The R point
validation error was MAE = 0 samples. For Q point detection, the validation criterion was
MAE ≤ 5 samples. The Q point validation error was MAE = 3 samples. For C point detection,
the validation criterion was MAE ≤ 2 samples. The C point validation error was MAE = 1
sample. Finally, for B and X point detection, the validation criterion was LVET MAE ≤ 5
samples. The LVET MAE was 4 samples (Baura 2002, 2004a, Baura and Ng 2003).

3.3.4 Conclusion
When the Connors et al. study was published in 1996, the market for invasive CO measurements
began to decline. However, some predicted that this study would increase the market for
noninvasive cardiac output measurements. This did not occur instead, it decreased the market
for all cardiac output measurements. The decrease in thermodilution catheter sales from 1997
to 2006 was detailed earlier in this chapter. Similarly, nonfederal hospital sales of impedance
cardiography monitors from 2000, 2003, and 2006 generated $x,xxx,xxxx, $x,xxx,xxx, and
$x,xxx,xxx, respectively, in the United States (IMS Health 2000, 2003, 2006).

3.4 ASPECT MEDICAL DEPTH OF ANESTHESIA MONITORING
Aspect Medical was founded in 1987 by electrical engineer Nassib Chamoun, with the intent
of directly monitoring depth of anesthesia. Anesthesia can be defined as a state of drug-induced
unconsciousness, in which a patient neither perceives nor recalls noxious stimulation (Prys-
Roberts 1987). Historically, this continuum from minimal sedation to general anesthesia was
monitoring by an anesthesiologist during surgery by observing responsiveness to verbal or tactile
stimulation, spontaneous ventilation, and cardiovascular function.

However, some patients postoperatively report awareness, that is, the postoperative rec-
ollection of events occurring during general anesthesia. Affected patients report perception of
paralysis, conversations, and surgical manipulations, accompanied by feelings of helplessness,
fear, and pain. The incidence of awareness is 0.1–0.2% in the general surgical population,
but is greater during cardiac surgery, caesarian section, and trauma surgery (Myles et al.
2004). In the 1990 timeframe, depth of anesthesia monitoring was considered by venture
capitalists to be one of the patient monitoring “holy grails”. Aspect Medical believed that
bispectrum analysis of the electroencephalogram (EEG) could be used to monitor depth of
anesthesia.
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3.4.1 Depth of Anesthesia Monitoring
Clinical signs such as blood pressure and heart rate are routinely used to monitor depth of
anesthesia, but may be unreliable. Alternatively, methods based on EEG processing have been
investigated. In 1937, Gibbs et al. first reported that the influence of certain drugs on nervous
activity could be observed in the EEG (Gibbs et al. 1937). Later, Falconer and Bickford noted
that the electrical power in EEG was associated with changes in the rate of thiopental or ethyl
ether administration (Bickford 1950). However, power is sensitive to electrode location, and
insensitive to important changes in frequency distribution.

In the frequency domain, various parameters were created to explore potential corre-
lation with depth of anesthesia. Two such parameters are the peak power frequency and
spectral edge frequency (highest EEG frequency). A third parameter is the bispectrum,
B( f1, f2):

B( f1, f2) =
∣∣∣∣∣

L∑
i=1

Xi ( f1)Xi ( f2)X∗
i ( f1 + f2)

∣∣∣∣∣ , (3.18)

where i is the epoch number, L is the total number of epochs summed, f is a selected frequency,
X( f ) is the Fourier transform of x(k), and X∗( f ) is the complex conjugate of X( f ). None
of these parameters singly has been demonstrated to correlate well with depth of anesthesia
(Rampil 1998).

3.4.2 System Identification in Aspect Medical Software
Aspect Medical used a true black box approach to develop a parameter that correlates with depth
of anesthesia. First, approximately 5000 h of EEG were recorded, representing about 1500
anesthetic administrations and a variety of anesthetic protocols. The awareness behavior of each
patient during the course of each recording was noted. A range of prospective subparameters was
calculated, and each correlation with awareness behavior was tested. The parameters with the
best performance were entered into a multivariate analysis for the creation of a final parameter
called the bispectral index, BIS (Chamoun et al. 1995).

The first subparameter, burst suppression ratio (BSR), is the fraction of epoch length
where EEG voltage is suppressed (does not exceed ±5 mV). The QUAZI suppression index is
designed to detect burst suppression, in the presence of wandering baseline voltage. BetaRatio
is the log ratio of power in two empirically derived frequency bands: 30–47 and 11–20 Hz.
SynchFastSlow is the log of the ratio of the sum of all bispectrum peaks in the area from 0.5
to 47 Hz, over the sum of the bispectrum in the area 40–47 Hz. When all four subparameters
are combined as BIS, BetaRatio is weighted most heavily when EEG has the characteristic
of light sedation. SynchFastSlow predominates during the phenomenon of EEG activation
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FIGURE 3.20: Flowchart of BIS calculations. Based on (Rampil 1998)

and during surgical level of hypnosis. BSR and QUAZI detect deep anesthesia (Rampil
1998).

A flowchart for calculation of BIS is given in Fig. 3.20. The BIS index range of 0–100
correlates well with flatline EEG through general anesthesia and the awake state (Fig. 3.21).
Aspect Medical’s BIS Vista standalone monitor is given in Fig. 3.22.

3.4.3 Clinical Results
The B-Aware trial investigated the ability of BIS to prevent awareness during anesthesia
administration. In this double-blinded, randomized study, 1225 surgical patients were assigned
to the BIS group and 1238 patients were assigned to the routine care group. All patients received
a BIS sensor on the forehead before anesthesia induction, but the BIS monitor was not powered
on for routine care patients. For the BIS group, the anesthesiologist adjusted anesthesia delivery
to maintain a BIS value of 40–60, from the start of laryngoscopy to the time of wound closure.
For the BIS group of patients, BIS was manually recorded at 5 min intervals for the first hour,
and every 10 min thereafter.

After surgery, each patient was interviewed three times to determine if awareness had
occurred, since postoperative recollections can be transient. The number of awareness reports
for the BIS and routine care groups was 2 and 11 (p = 0.022), respectively, a significant
awareness risk reduction of 82% (Myles et al. 2004).
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FIGURE 3.21: The relationship between BIS and depth of anesthesia. Courtesy of Aspect Medical
Systems, Norwood, MA

In a similar study named SAFE-2, 4945 surgical patients were monitored with BIS,
and compared to 7836 historical patients receiving routine care. The number of awareness
reports for the BIS and routine care groups was 2 and 14 (p < 0.038), respectively, a significant
awareness risk reduction of 86% (Ekman et al. 2004).
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FIGURE 3.22: Aspect Medical BIS Vista standalone monitor. Courtesy of Aspect Medical Systems,
Norwood, MA

3.4.4 Conclusion
In October 2003, FDA granted Aspect Medical clearance to indicate BIS for reducing the
risk of intraoperative awareness. No other device possesses this FDA intraoperative awareness
reduction indication. In late 2004, after 18 years and $250 million in funding, Aspect Medical
reached its first quarterly profit. In recent years, Aspect Medical has experienced a growth rate
of around 20% and a profit margin around 75% (Swain 2004).

In 2000, nonfederal hospital sales of BIS monitors and their monitoring accessories
generated $xx,xxx,xxx and $xx,xxx,xxx, respectively (IMS Health 2000). By 2006, nonfederal
hospital sales had increased to $xx,xxx,xxx and $xx,xxx,xxx, respectively (IMS Health 2006).
Aspect Medical is in the process of increasing bispectral index utility through diagnostic
investigations of other brain applications. BIS may be predictive of Alzheimer’s disease and
antidepressive medication effectiveness.
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C H A P T E R 4

Diagnostic Devices

In this chapter, we describe a diagnostic device that uses system theory for classification. Since
medical diagnostics involves discrete testing, it is imperative that this one-shot test result be
accurate.

Neopath used fuzzy models to classify Pap smear cervical cells. While other diagnostic
devices in development use system theory, none has achieved widespread use and high clinical
accuracy.

4.1 NEOPATH CERVICAL CANCER SCREENING
Neopath was founded in 1989 by bioengineering professor Dr. Alan Nelson, with the intent of
automating cervical cancer screening. Cervical cancer is one of the most common malignancies
in women, accounting for 15,700 new cases and 4900 deaths in the United States each year.
The standard diagnostic test for cervical cancer screening is the Papanicolaou (Pap) smear,
during which cervical cells are collected during a pelvic exam and preserved on a glass slide
for classification. Since its introduction in the United States in 1947, the Pap smear has been
credited with decreasing the incidence of cervical cancer from 44 per 100,000 to 5–8 per
100,000 women. However, Pap smear false-negatives do occur, with about 67% resulting from
sampling error (abnormal cells not placed on smear) and 33% resulting from detection error
during the pre-1995 timeframe (Agency for Healthcare Research and Quality 2000). Detection
is performed by certified cytotechnologists, who view Pap smears under a microscope and classify
abnormal cells.

During the late 1980s and early 1990s, several technologies were being developed
to reduce this false-negative rate. Thin-layer cytology aimed to reduce the sampling error
by transferring cervical cell samples to slides with fewer artifacts. Neopath and competitor
Neuromedical Systems aimed to reduce the detection error through computer rescreening
technologies.

4.1.1 Pap Smear Screening
Classification of cervical cell samples was first introduced as a cervical cancer detection method
by Babes in 1926. During the same time frame, George Papanicolaou noted that abnormal cells
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were present in the vaginal pool in the presence of early cervical cancer. In 1943, Papanicolaou
and Traut published the first book on the diagnosis of cervical neoplasia (new cell growth)
by vaginal pool smear. Later, Papanicolaou, with other investigators, developed a classification
system based on the degree of abnormality of the cells on the smear. The Pap smear classi-
fication system was revised in 1988 by the National Cancer Institute in Bethesda, Maryland,
based on the work (Patten 1978) of noted cytopathologist Dr. Stanley Patten, Jr. (Bonfiglio
1997).

The Bethesda System (TBS) classifies cervical cells and evaluates the specimen for qual-
ity. The two main cellular diagnoses are benign cellular changes and epithelial abnormalities.
Classification of epithelial abnormalities is based on the progression of cervical dysplasia. Nor-
mally, the cervical lining is composed of organized layers of uniformly shaped cells, with
the bottom layer containing round cells. As these cells mature, they rise to the surface and
flatten out to become flat squamous cells. During mild cervical dysplasia, which is desig-
nated as CIN I, this growth process is disrupted with a few abnormal cells. During moderate
dysplasia, or CIN II, the abnormal cells are distributed in about half the thickness of the
lining. If the abnormal growth processes to severe dysplasia or carcinoma-in-situ (known as
CIN III), the entire thickness becomes disordered, but the abnormal cells have not spread
below the lining. Once the abnormal growth invades the tissue, it becomes invasive cancer
(Fig. 4.1).

Epithelial cell abnormalities can be classified into six categories. Atypical squamous cells
of undetermined significance (ASCUS) classification refers to unusual cells that are not abnor-
mal enough, compared to the benign condition, to be classified as dysplasia. This classification
usually results in a second Pap smear for verification. Low-grade squamous intraepithelial lesion
(LSIL) classification is associated with hollow cells that possess atypical nuclei and/or mild dys-
plasia. Detection of LSIL cells usually results in colposcopy (visual examination using a lighted
magnifying instrument) for further examination. High-grade squamous intraepithelial lesion
(HSIL) classification is associated with moderate or severe dysplasia or carcinoma-in-situ. The
cells are usually deficient in the dense region of the nucleus containing DNA, are granular or
reticular, and are often found in patterns of lines (Fig. 4.2).

Squamous cell carcinoma classification refers to a malignant invasive tumor of squamous
cells. These cells occur singly or in aggregates; their nuclei contain coarse granular clumps
(Fig. 4.3). Adenocarcinoma classification refers to a malignant invasive tumor composed of
endocervical, endometrial (from the lining of the uterus), or extrauterine cells. Finally, atypical
glandular cells of undetermined significance (AGUS) classification is associated with cellular
changes in glandular cells exceeding those expected in a benign reactive or reparative reaction.
Detection of AGUS cells usually results in colposcopy, as well as scraping of the inner uterine
lining.
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FIGURE 4.1: Progression of cervical dysplasia from normal to invasive cancer. Courtesy of Paul Indman,
MD, www.gynalternatives.com, Los Gatos, CA
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FIGURE 4.2: (a) HSIL Pap smear and (b) cervical biopsy. The biopsy contains normal cells on the left
and dysplasic cells on the right. The smear and biopsy were obtained from different patients. Images
from WebPath (http://library.med.utah.edu/WebPath/webpath.html), courtesy of Edward C. Klatt,
MD
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FIGURE 4.3: (a) Squamous cell carcinoma Pap smear and (b) cervical biopsy. The smear and
biopsy were obtained from different patients. Images from WebPath (http://library.med.utah.edu/
WebPath/webpath.html), courtesy of Edward C. Klatt, MD

4.1.2 Fuzzy Models in Neopath Software
Neopath pioneered cervical cell classification using fuzzy models. Likely, they used fuzzy
models because the application of artificial neural networks to cell classification had already
been patented by competitor Neuromedical Systems in 1990 (Rutenberg, 1990). Through
sheer luck, Dr. Stanley Patten, Jr., whose work laid the foundation for The Bethesda System
classification, happened to retire in Seattle, near where Neopath was based. Patten was lured
out of retirement to become Neopath’s Medical Director. There, he taught Neopath engineers



book Mobk079 January 15, 2008 2:29

86 A BIOSYSTEMS APPROACH TO INDUSTRIAL PATIENT MONITORING

about cervical cytology, and once he learned the theory underlying fuzzy models, converted his
personal cytology rules to this format.

Pattens’ discrimination rules for different cell types, which are implemented in the
Neopath AutoPap system, are illustrated in Table 4.1. Each rule should be interpreted as
the intersection of six conditions to describe a particular cell type. The rules were developed
from a training set of 4174 slides (Lee and Nelson 1997). The system configuration for rescreen-
ing is given in Fig. 4.4. A Becton Dickinson Focal Point System, which is a direct descendent
of the Neopath AutoPap Primary Screening System, is given in Fig. 4.5.

4.1.3 Clinical Results
Both the Neopath and Neuromedical Systems were approved by the Food and Drug Ad-
ministration (FDA) for rescreening of Pap smears in late 1995. However, only the Neopath
system was approved for primary screening (cytotechnologist substitute) in 1998. As of 2007,
the Neopath system is still the only system approved for primary screening of Pap smears. The
results of the clinical trial for primary screening are given below.

The primary screening trial involved 25,124 analyzed slides from five commercial labo-
ratories. Each slide was screened by one cytotechnologist and by the Neopath AutoPap system.
If each slide classification pair was not in agreement, a panel of two to three cytotechnolo-
gists reviewed the slide in question. If no agreement could be reached, then a panel of three
cytopathologists reviewed the slide for a consensus truth determination. The sensitivities for
the AutoPap and cytotechnologists were calculated for the difficult classes ASCUS+, LSIL,
LSIL+, and HSIL (Table 4.2).

For all classes, the AutoPap had higher sensitivity. Further, these sensitivities were
significantly different (p < 0.013) for the LSIL, LSIL+, and HSIL classes (Wilbur et al.
1999).

4.1.4 Conclusion
In 1999, AutoPap merged with AutoCyte, a thin-layer cytology manufacturer, and acquired
the intellectual property of Neuromedical Systems. The merged company was renamed Tri-
Path Imaging. A combined AutoCyte/AutoPap system obtained FDA approval in 2001. On
December 20, 2006, TriPath Imaging was acquired by Becton Dickinson.

Automation has changed cytotechnology practice. Computer-assisted screening and pri-
mary screening have increased sensitivity, productivity, and consistency, while decreasing turn-
around time. And the next change is on the horizon. The human papillomavirus (HPV),
which is the most commonly sexually transmitted infection in the U.S., is linked to cervi-
cal cancer. In fact, four HPV types are responsible for 70% of cervical cancers. On June 8,
2006, FDA approved Merck’s Gardasil HPV vaccine for the prevention of cervical cancer.
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TABLE 4.2: Sensitivities for the AutoPap System and Cytotechnologists.
Based on (Wilbur et al. 1999)

AUTOPAP (%) CYTOTECHNOLOGISTS (%)

ASCUS+ 86 79

LSIL 91 84

LSIL+ 92 86

HSIL+ 97 93

Pap
smear scanning image

capture
focus

module

further
review

required?

image
selection

object
segmentation

feature
measurement

NO

object
classification

slide
classification

FIGURE 4.4: Neopath AutoPap rescreening system configuration. Based on (Neopath 1995)

FIGURE 4.5: Beckton Dickinson Focal Point System. Courtesy and c© Becton, Dickinson and
Company.



book Mobk079 January 15, 2008 2:29

DIAGNOSTIC DEVICES 89

As more women receive the HPV vaccine, it is expected that the rate of cervical cancer will
decline sharply (Centers for Disease Control and Prevention 2006). The Pap smear, a mainstay
against cervical cancer, will become more costly per cancer case detected, and could decline in
use.
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Conclusion
In this Lecture, we described some of the common system theory techniques that are part of the
toolkit of medical device engineers in industry. These techniques include the pseudorandom
binary sequence, adaptive filtering, wavelet transforms, the autoregressive moving average model
with exogenous input, artificial neural networks, fuzzy models, and fuzzy control. Because
the clinical usage requirements for patient monitoring and diagnostic devices are so high,
system theory is the preferred substitute for heuristic, empirical processing during noise artifact
minimization and classification.

We also discussed some exemplary applications of system theory processing that have
been deployed. Masimo used adaptive filtering to minimize motion artifact during pulse oxime-
try measurements. Interflo Medical used the pseudorandom binary sequence to increase the
signal-to-noise ratio during continuous thermodilution measurements. CardioDynamics used
wavelet transforms to minimize the noise artifact during impedance cardiography measure-
ments. Aspect Medical Systems used black box system identification to identify the stages of
anesthesia administration. Neopath used fuzzy models to classify Pap smear cervical cells. As
new applications debut, they will be added to this Lecture.
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