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Preface

Advances in microarray technology continue to increase the amount of
data available to researchers, and the need for new analytical tools has never
been greater. The search for new methods continued with the second
CAMDA conference held in October of 2001. The second volume of
Methods of Microarray Data Analysis highlights ten papers presented at the
conference and presents three review papers to provide readers with a broad
overview of microarrays, experimental design, and analytical methods. As
editors, we have not comprehensively edited these papers, but have
provided comments to the authors to encourage clarity and expansion of
ideas. Each paper was peer-reviewed and returned to the author for further
revisions.

Again, we do not propose these methods as the de facto standard for
microarray analysis. However, the CAMDA conference continues to
provide a forum for the scientific community to work toward a standard
protocol. If you have insights into new analytical methods for microarray
data, please join us at the 2002 CAMDA conference.

Kimberly Johnson

Simon Lin
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INTRODUCTION

The year 2001 marked the release of the working draft of the human
genome. This monumental achievement has fueled continuous improvement
of DNA microarray technology. In parallel, we have seen an accelerated
emergence of novel proteomics and metabolomics technologies with the
resulting data in a format analogous to DNA microarrays [Oliver et al,
Metab Eng. 2002, 4(1):98-106; Albala, Expert Rev Mol Diagn. 2001,
1(2):145-52.]. The challenge of analyzing this tremendous amount of bio-
array data has caught the attention of many statisticians and computer
scientists. To provide a forum for the comparative assessment of new
analytical methods, the second Critical Assessment of Microarray Data
Analysis (CAMDA) conference was held in October, 2001 with 150
researchers from nine countries in attendance. The scientific committee
selected twelve papers for oral presentation, with ten highlighted here. The
presentations were complemented by opening remarks and a keynote address
by Dr. Roland Stoughton of Rosetta Inpharmatics. The second keynote
address was presented by Dr. David Lockhart of The Salk Institute and
Ambit Biosciences. Closing remarks were provided by John Weinstein from
the NCI. At the end of the conference, attendees voted on the “Best
Presentation” with the Scientific Committee providing weighted votes. The
CAMDA’0I Best Presentation went to:

Kevin R. Coombes, Keith A. Baggerly, David N. Stivers, Jing Wang, David
Gold, Hsi-Guang Sung, and Sang-Joon Lee from M.D. Anderson Cancer
Center for their paper “Biology-driven Clustering of Microarray Data,
Applications to the NCI 60 Data Set.”

In this introduction, we describe the CAMDA ’01 data sets and then
briefly mention each paper in this volume, organized by specific topics.
While we have tried to assign each paper to a topic, it is often difficult to
accomplish this because many papers cross categories. We compare and
contrast the methods presented and point out the relevant research issues
associated with each method. Finally, we highlight the web companion to
this book.
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CAMDA 2001 Data Sets

The CAMDA 2000 papers analyzed a spotted cDNA array of yeast cell
cycle data, originated by Spellman et al. [Mol Biol Cell 1998, 9:3273-3279],
and an Affymetrix leukemia data set by Golub et al. [Science 1999, 286:531-
537]. The majority of participants easily discriminated ALL from AML in
the leukemia data set, whereas the yeast data presented a bigger challenge.
Fewer participants attempted to analyze the yeast data. While the 2000
datasets were representative of the different types of arrays, this year’s data
sets were selected to represent the complexity of biological systems.

The scientific committee chose the Rosetta Compendium [Cell.
2000; 102(1): 109-26], from a study of 300 expression profiles of yeast
mutants and chemical treatments, and the NCI60 Cancer Cell Lines with
Drug Treatments [Nature Genetics. 2000;24(3):236-44], a pharmacogenomic
database. The Rosetta Compendium represents a model organism where the
entire genome is known and documented. The challenge was to extract
useful biological information from this overabundance of array data. In
contrast, the challenge of the NCI-60 data set was to model the relationships
between gene expression levels and drug treatment response. These
relationships represent critical questions in pharmacogenomics as well as the
promise of clinically relevant uses for microarrays in patient care. Both data
sets provide the opportunity for researchers to explore a variety of new
methods.

Feature Selection and Extraction

Feature selection and extraction play an important role in genome
analysis. From a pattern recognition point of view, we can think of
biological samples as objects, and genes as features to describe each object.
In a typical microarray data set, the number of objects is small (usually <50),
but the number of features measured is often greater than ten thousand, with
many of the features being either correlated or irrelevant. To circumvent this
“curse of dimensionality,” feature selection or extraction is necessary prior
to applying pattern analysis algorithms [Jain et al., IEEE Transactions on
Pattern Analysis and Machine Intelligence. 22,(1):4-37]. Feature selection
relies on methods that determine the best features to study. Feature
extraction, on the other hand, combines information from individual features
into components, and describes each object by these new components
instead of individual features. Identifying genes participating in the signal
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transduction pathway and then analyzing them as a grouped component
rather than as individual genes reduces the dimensionality while addressing
the issue of biological relevance.

Four papers focus on feature selection and extraction. Zhang utilizes a
supervised component analysis approach to extract features in Chapter 9, and
then uses them to ‘fish out’ interesting profiles from the database. In
Chapter 10, Dasgupta uses partial least squares (PLS) modeling as another
supervised feature extraction method and combines it with predictive
modeling. In contrast to the supervised strategies, the Bayesian deposition
proposed by Bidault et al.can be viewed as an unsupervised strategy to
extract biological pathways and then analyze their patterns. This approach is
discussed in Chapter 7. Lin et al. (Chapter 8) also decomposes the data, but
uses independent component analysis (ICA) to extract features. In addition,
the Lin paper discusses feature selection by utilizing knowledge from the
Gene Ontology annotation of the yeast genome to select relevant features
based on ‘expert opinion’. Both Zhang (figure 2 and 3, Chapter 9) and Lin
(figure 1, Chapter 8) demonstrate that clustering results based on selected or
extracted features are more comprehensible in terms of their biology than
results which do not use this step.

Clustering Strategies

Clustering is a classical unsupervised learning methodology that has been
applied to microarray data since 1998 (Eisen, 1998). It is still actively
investigated in both clustering in algorithm development and in its
application in microarrays. Fowlkes et al. (Chapter 5) present a new
globally divisive algorithm called GENECUT as opposed to the locally
agglomerative algorithm used in Hughes et al. GENECUT performs top-
down k-way partitioning instead of commonly used binary splits. In Chapter
11, Chang et al. use a soft topographic vector quantization (SQVT)
algorithm which defines the microarray clustering problem as an energy
minimization problem. Similar to self-organizing maps (SOM), SQVT is
able to provide a visual clue for the topology of the resulting clusters.
Mateos (Chapter 6) presents a new algorithm to take advantage of both the
hierarchical presentation of clusters and the robustness of neural networks.
This self-organizing tree algorithm (SOTA) is now available as a user-
friendly Java application (http://www.almabioinfo.com). A comparison of
average linkage, SOM, and SOTA can be seen in table 3 of Chapter 3.

Clustering algorithms do not provide an endpoint to the analytical
process. Biology-driven clustering, SQVT, and SOTA all indicate the close
resemblance of the putative breast cancer cell lines (MDA-MB-435 and
MDA-N) to melanomas. These methods further support speculation by Ross
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et al. in the original analysis of the NCI data set concerning a breast-
melanoma connection and indicate that the biology of these connections
deserve further investigation.

Additional applications for clustering are also presented. The Fowlkes
paper suggests that further study of the conserved transcription factor
binding sites of the co-regulated genes is needed. The Chang paper suggests
the use of clustering to reduce the amount of information. Without
clustering first, it is impossible to run some Bayesian Network learning
algorithms. Similarly, Mateos argues that, by using the mean profile of each
cluster, noise could be reduced. These papers show that clustering can be an
important preliminary step in modeling complex biological systems.

Modeling Complex Systems

Modeling complex biological systems has been a challenge for decades.
Several papers in this volume show both the potential benefits and
difficulties of modeling biological pathways. Two papers discuss the
decomposition of gene expression data into multiple biological pathways. In
Chaper 7, Bidaut et al. propose a Bayesian decomposition approach, whereas
in Chapter 8, Lin ef al. propose an independent component analysis (ICA)
approach. A clear advantage of these models is that a gene is no longer
constrained to a group as defined by cluster analysis. Instead, the behavior of
a gene can be explained by its involvement in one or more signaling
pathways.

In addition to modeling pathways, another challenge is the prediction of
the behavioral response of a complex system. Chang et al. utilize Bayesian
networks to model dependencies among gene expression, drug activity and
cancer type. The visual representation of the dependency relationship in
figure 4 of Chapter 11 could direct biologists to investigate further.
Interestingly, the PDQ_ MED software (Chapter 13) provides a similar
topology of the relationship among the concepts when used to check the co-
occurrence of the items in figure 4 of Chapter 11 (see figure 1 below). The
PDQ_MED software seems to further support the Chang model of the
relationship between these variables although this needs additional
investigation.
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Figure 1. The co-occurrence topology in the literature of the items obtained from Bayesian
learning using the Chang method. The text data analysis is done with PDQ_MED. This
topology is closely related to the topology of Figure 4 of Chapter 1 1.

In recognition of the high dimensionality of the data and the possible
correlation among features, as well as the non-linear nature of the biological
system, Dasgupta (Chapter 10) explored kernel-PLS modeling to predict the
pharmacogenomic response of the cell lines. The predictive capability of
kernel-PLS on Taxol response (shown in figure 8 of Chapter 10) is striking,
but more experimental data are necessary to validate this model.

When beginning to model complex biological systems, biologists often
need to determine the differentially expressed genes and the number of
replicates needed to detect these genes. Li ef al. (Chapterl2) investigates
this issue and suggests a pooled variance strategy to discover the
differentially expressed genes. They also discuss the minimum number of
replicates required for detecting differential expression.

Ontologies, Semantic Understanding, and Functional
Genomics

An ancient school of Chinese philosophers believed that the problem of
making complex connections in the physical world originates in the
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difficulty of naming things. In functional genomics, with extensive use of
computers for reasoning, this problem becomes more severe. Usually, a gene
name does not tell the whole story of its function, but functional inference is
at the center of functional genomics.

For example, a gene named ‘Galectin-1’, is also called "GBP", “Lectin,
galactose-binding, soluble, 1", "LGALS1", and “Hs.227751” in the literature
and databases. A knowledgeable biologist might infer an association with
galactoside-binding and lectin, but it requires some reading and a literature
search to associate this gene with apoptosis [Pace et al., J Immunol 2000,
165(5):2331-4]. Computers can not make this inference without an explicit
functional annotation of each gene. The Gene Ontology was designed by a
consortium of genome biologists and bioinformaticians to solve this
problem. For example, the Gene Ontology annotation of galectin-1 is: 1)
galactose binding lectin, and 2) apoptosis. By using the Gene Ontology, we
are one step closer to a semantic understanding of gene functions by
computers and databases.

The CAMDA conference has seen an evolution of emphasis on this issue.
Many of the papers in this volume include the Gene Ontology in the
analytical process. However, encoding the existing biological knowledge
using the Gene Ontology requires enormous effort. The paper by Sluka
(Chapter 13) brought an alternative solution in the form of text data mining
using a commercial software tool. PDQ_MED taps into the wealth of
information in the medical literature. While the CAMDA conference would
not normally include a commercial presentation of this nature, the scientific
committee felt that the Sluka presentation had special merit in its focus on
text data mining. Many attendees at CAMDA’0l were surprised by the
ability of PDQ_MED to discover hidden links in the list of genes available
from high-throughput studies. This presentation was of such high quality
that attendees voted it second on the Best Presentation ballots.

A standard protocol?

The two data sets at CAMDA’00 and those of CAMDA ‘01 continue to
be used as standard data sets in many areas such as workshops, graduate
courses and publications. Without an agreed upon synthetic data set as a
benchmark, the CAMDA data sets have become de facto standards when
testing new algorithms due to the number of papers available for reference.

With continuing technological improvements, microarray analysis may
become routine in many labs. The CAMDA conference has served to
catalyze the interdisciplinary research of bioinformatics and genomics. In the
year to come, we expect to see more new data analysis strategies emerge.
These new methods bring us closer to a consensus on data analysis methods.



Methods of Microarray Data Analysis 11 7

Web Companion

Additional information for many of these chapters can be found at the
CAMDA website, where links to algorithms, color versions of several
figures, and conference presentation slides can be found. Information about
future CAMDA conferences is available at this site as well. Please check the
website regularly for the call for papers and announcements about the next
conference.

www.camda.duke.edu
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AN INTRODUCTION TO DNA MICROARRAYS

Patrick McConnell', Kimberly Johnson', David J. Lockhart?

! Duke Bioinformatics Shared Resource
? Ambit Biosciences & The Salk Institute for Biological Studies, Laboratory of Genetics

Abstract: Oligonucleotide and DNA arrays, or microarrays, have proven to be useful
tools to investigate biological function, and are the focal point of an increasing
number of studies. However, most papers shed little light on the underlying
basis and best use of microarray technology, often leaving a number of
important questions unanswered. Under what conditions are microarrays
helpful? How should microarray data be analyzed? What data analysis
methods should be avoided? Which biological questions can microarrays
address? Which biological questions are not best answered by microarrays?
Here, we examine the technology itself, the data produced, proper
experimental design, data analysis techniques, and experimental validation.
These are issues important to all users of DNA arrays, from the mathematician
who may have only limited knowledge of the biology behind the technology,
to the biologist who is concerned with experimental design and the details of
data analysis. Finally, we stress the importance of great experimental care,
sample and data triage, well-characterized and rigorous analysis, and the need
for appropriate follow-up and verification, especially when using animal or
human tissue.

Key words:  microarrays, functional genomics, data analysis, validation, experimental
design

1. INTRODUCTION TO FUNCTIONAL GENOMICS

Biological and biomedical research is in the midst of a significant
transition that is being driven by two primary factors: the massive increase in
the amount of DNA sequence information and the development of
technologies to exploit its use. Consequently, we find ourselves at a time
when new types of experiments are possible, and observations, analyses and
discoveries are being made on an unprecedented scale. Over the past few
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years, more than 60 organisms have had their genomes completely
sequenced, with another 170 or so in progress (see www.tigr.org or
genomes @ncbi.nlm.nih.gov for a list). The sequence of the human genome
has been deciphered, in both public and private efforts, and the complete
sequence of the mouse and other animal and plant genomes are close behind.
Unfortunately, the billions of bases of DNA sequence do not tell us what all
of the genes do, how cells work, how cells form organisms, what goes wrong
in disease, how we age or how to develop a drug. Thus, functional genomics
has become an increasingly important scientific discipline.

The purpose of functional genomics is to understand biology, not simply
to identify the component parts, and new experimental and computational
methods take advantage of as much sequence information as possible.
Unlike the genome sequencing efforts, functional genomics is less a specific
project or program than it is a mindset and general approach to problems.
The goal is not simply to provide a catalogue of all the genes and
information about their functions, but to understand how the components
work together to comprise functioning cells and organisms.

2. MICROARRAY TECHNOLOGY

To take advantage of the large and rapidly increasing body of sequence
information, new technologies are required. Among the most powerful and
versatile tools for genomics are high-density arrays of oligonucleotides
(short strands of nucleic acids) or complementary DNAs (see Figure 1 for an
overview) [Lockhart er al., 1996; Schena et al., 1995]. DNA arrays work by
hybridization (non-covalent chemical bonding) of fluorescently labeled RNA
or DNA in solution to DNA molecules (probes) that are attached to specific
locations on the chip surface. The hybridization reactions take place in
parallel across the entire array at the same time. Thus, the hybridization of a
sample to an array is, in effect, a highly parallel search by each molecule for
a matching partner on an ‘affinity matrix,” with the eventual binding of
labeled molecules to the surface-bound probe determined by the rules of
molecular recognition. The process is straightforward, highly parallel (all
sequences are counted simultaneously), and, if done correctly, quantitative.
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Figure i. Overview of microarray expression analysis on the Affymetrix platform - cDNA
arrays follow a slightly different procedure, but the overall process is similar. Step 1: identify
a set of genes to be probed and create an array (performed by chip manufacturers). Step 2:
extract mRNA from cells. Step 3: scan the array, generating a quantitative image for perfect
match (PM) and mismatch (MM) probes. Step 4: convert the hybridization intensity values to
quantitative expression levels.

[Figure taken from http://www.ohsu.edu/gmsr/amc/AMC_Technology.shtml, copyright 2001
Edwin Quick, CI BBSR/GMSR BBC at OHSU]



12 McConnell et al.

There are two dominant types of DNA arrays (often called ‘microarrays’)
that have been used for most global gene expression measurements. The
first are high-density oligonucleotide arrays that are synthesized in situ on a
glass surface using light-directed combinatorial synthesis (commercially
available from Affymetrix) [Fodor et al., 1991]. These oligonucleotide
arrays can contain more than 500,000 probes, typically 25-mers (25 bases
long), in approximately 20 x 20 micron features in a total area smaller than
one half-inch square. The arrays are designed and synthesized on the basis
of sequence information alone, and it is possible to cover tens of thousands
of genes and ESTs on a single array [Lipshutz et al., 1999]. The other main
array type is made by spotting cDNAs (or, alternatively, pre-synthesized
oligonucleotides) at specific locations on a glass slide. The cDNAs, usually
polymerase chain reaction (PCR) products that are 500 to 1,000 bases in
length, are spaced about 100 to 300 microns apart, allowing for more than
10,000 spots to be placed on a standard glass microscope slide.

Before using a microarray, samples are often amplified and then labeled
with fluorescent dyes. The samples are then hybridized to the microarray,
and they bind to complimentary probes affixed to the microarray surface.
The arrays are then scanned, producing a fluorescent image. The fluorescent
intensity at any particular probe location indicates the relative concentration
of the complimentary DNA sequence in the sample.
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Figure 2. Overview of gene expression measurements with the Affymetrix platform. The
process begins with mRNA samples from cells which are labeled with a fluorescent dye.
Messenger RNA expression levels are determined using the quantitative fluorescent images.
{Figure is Copyrighted by and provided courtesy of Affymetrix Inc.]

3. MICROARRAY DATA

Microarray data analysis begins with the final scanned image of
fluorescent intensities as shown in Figure 2. Each feature or spot (probe) on
the array is identified by a feature or spot detection and grid alignment
algorithm. Following background subtraction, intensities are translated into
numerical values and normalized (scaled) so that microarray experiments
from different samples and different arrays can be directly compared
[Brazma et al., 2001]. The result is a data matrix of gene expression levels
for each condition (see Figure 3). The resulting data can then be processed
in a number of different ways depending on the purpose of the experiment
(see section 6).
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Figure 3. Example of the conversion of hybridization intensities to relative gene expression
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translations ranging, in this example, from 0-20.

4. MICROARRAY EXPERIMENT GOALS

Genomics and gene expression experiments can be used to identify new
genes involved in a pathway, potential drug targets or expression markers
that can then be used in a predictive or diagnostic fashion. Because the
arrays can be designed and made on the basis of only partial sequence
information, it is possible to include genes on an array that are completely
uncharacterised. In many ways, the spirit of this approach is akin to that of
classical genetics in which mutations are made broadly and at random (not
only in specific genes), and screens or selections are set up to discover
mutants with an interesting phenotype.

Such broad discovery experiments are probably best described as
‘question-driven’ rather than hypothesis-driven in the conventional sense.
But that is not to diminish their value for understanding biological processes
and even for understanding and treating human disease. For example, by
analyzing multiple samples obtained from individuals with and without acute
leukemia or diffuse large B-cell lymphoma, gene expression (mRNA)
markers were discovered that could be used in the classification of these
cancers [Golub ef al., 1999; Alizadeh et al., 2000; Caldas and Aparico, 2002;
Van’T Veer, 2002]. The importance of monitoring a large number of genes
was clearly illustrated in these studies. Golub ef al. found that reliable
predictions could not be made based on any single gene, but that predictions
based on the expression levels of 50 genes (selected from the more than
6,000 monitored on the arrays) were highly accurate [Golub et al., 1999].
The results of the Golub and Alizadeh studies indicated that measurements
with more individuals and more genes will be needed to identify robust
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expression markers that are predictive of clinical outcome. But even with
the limited initial data, it was possible to help clarify an unusual case (classic
leukemia presentation but atypical morphology) and to use this information
to guide the patient’s clinical care. The Golub and Alizadeh studies led to
the van’t Veer study, which successfully predicted cancer disease outcome
with higher confidence than traditional procedures by using microarray
analysis. More discussion of various data analysis strategies applied to the
Golub et al. data set can be found in the CAMDA’00 proceedings [Lin and
Johnson, 2000].

The use of genomics tools such as arrays does not, of course, preclude
hypothesis-driven research. For fully sequenced organisms, arrays
containing probes for every annotated gene in the genome have been
produced [DeRisi et al., 1997; Wodicka et al., 1997]. With these one can
ask, for example, whether a transcription factor has a global role in
transcription (affecting all genes) or a specific role (affecting only some).
Holstege et al. used this type of application in genome-wide expression
analysis in yeast to functionally dissect the machinery of transcription
initiation [Holstege et al., 1998]. Similarly, genes located near the ends of
chromosomes in yeast (as well as genes at the mating-type locus) are known
to be transcriptionally  ‘silent’.  Full-genome arrays allowed the
chromosomal landscape of silencing to be mapped, and make it possible to
test whether what is true for a handful of well-studied genes near the
telomeres is true for all telomeric genes, and whether any centromere-
proximal genes are also transcriptionally silenced [Wyrick et al., 1999].

An often overlooked aspect of global measurement of gene expression is
that the sequence or even the origin of the arrayed probe does not need to be
known to make interesting observations — the complex profiles, consisting of
thousands of individual observations, can serve as transcriptional
‘fingerprints’. The fingerprints can be used for classification purposes or as
tests for relatedness, in a similar manner to the way in which DNA
fingerprints are used in paternity testing. In one example, transcriptional
fingerprints have been used to determine the target of a drug [Marton et al.,
1998]. The basic idea is that if a drug interacts with and inactivates a
specific cellular protein, the phenotype of the drug-treated cell should be
very similar to the phenotype of a cell in which the gene encoding the
protein has been genetically inactivated, usually through mutation. Thus, by
comparing the expression profile of a drug-treated cell to the profiles of cells
in which single genes have been individually inactivated, specific mutants
can be matched to specific drugs, and therefore, targets to drugs. For
instance, fingerprints were used to identify a drug ‘mechanism’ by utilizing
the Rosetta data set [Hughes et al., 2000]. Similarly, profiles have been used
in the classification of cancers and the classification schemes did not depend



16 McConnell et al.

on any specific information about the genes involved [Golub et al., 1999;
Alizadeh et al., 2000], although that information can be used to draw further
biological and mechanistic conclusions. Finally, expression profiles can be
used to classify drugs and their mode of action [Ulrich and Friend, 2002].
For example the functional similarity and specificity of different purine
analogues have been determined by comparing the genome-wide effects on
treated yeast, murine and human cells [Gray et al., 1998; Rosania et al.,
2000]. Ulrich and Friend [2002] also discuss the benefits and challenges of
using “toxicogenomics” as a tool to help identify drug effects earlier in the
drug-discovery process.

3. MICROARRAY EXPERIMENTAL DESIGN

One of the final steps when conducting an experiment is validation of
experimental results. The most basic method of validation for microarray
results is independent replication of experiments. Thus, one of the first steps
in experimental design is to determine the number of replicates needed to
obtain meaningful results. More measurements make it possible to detect
patterns and relationships that would not have been obvious or have
sufficient statistical significance with smaller data sets. But, while it is
preferable to have as many replicates as possible, the high cost of chips
makes it more practical to use a smaller number of replicates. To determine
the number of replicates, biologists must balance confidence, cost and
efficiency against the desire to explore more experimental conditions.
Setting limits on the number of different experimental conditions to be
observed then becomes part of the experimental design process.

On the basis of our experience and that of others, we recommend in
almost all cases, that experiments be conducted at least in duplicate. Using
as many as four microarray replicates for each experiment is preferable,
especially when using spotted cDNA arrays, although experimental
conditions can dictate otherwise [Schulze and Downward, 2001]. This is
consistent with the statistical estimation of the minimum number of
replicates required by Li ef al. [Chapter 12 in this volume].

Regardless of the replication strategy, sample-to-sample variability
cannot, in general, be completely minimized. Thus, it is important to
consider the best ways to maximize consistency between samples. In many
types of studies, it is not possible to control completely all variables, and
there may be considerable variability due to experimental difficulties (for
example, tissue inhomogeneity or variations in sample procedures) or
individual genetic variation (for example, different patients or different
tumours). But such factors do not preclude the discovery of some genes that
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are consistently different and that clearly ‘cluster’ or differentiate between
the sample sets. For example, meaningful results can be extracted from the
analysis of human tissue collected at different hospitals, by different
surgeons and at different times. An essential requirement in these types of
studies is that a sufficient number of experiments be performed across
multiple individuals and multiple tissue or tumour samples to account for
individual variation and possible tissue inhomogeneity.

Preparation of samples for replicates should be done as independently as
possible (for example, different mice or independent dissections of a region,
independent sample preparations and independent hybridizations to
physically different arrays). It is not sufficient to merely remake samples
from the same extracted RNA from the same mouse or tissue sample, or to
simply re-hybridize samples to other arrays, as has been done in some
studies. Furthermore, if genetically identical inbred animals are not used,
then it is necessary to do more experiments or to pool samples from multiple
animals to effectively average out differences due to genetic inhomogeneity.
The same considerations apply when using human tissue or samples from
any genetically inhomogeneous source.

6. MICROARRAY DATA ANALYSIS

Microarray data analysis is central to successful experimentation, but it is
a large and complex topic. There are many ways to analyze, categorize or
divide the data [Quackenbush, 2001], including several widely used
clustering analysis techniques. Such methods are useful for finding genes
that are activated together (or that interact with each other) in particular
pathways. Other algorithms, such as Principle Component Analysis (PCA),
have been applied to reduce the dimensionality of the data in order to
discover genes or conditions that contribute to variability. Freely distributed
software, such as Eisen’s Cluster and TreeView, can be used to process and
visualize the data. Commercially available products such as Genespring and
Partek offer additional tools.

Microarray data analysis is an area of ongoing research, and the primary
subject of the CAMDA conference. The rest of this volume and the previous
volume in the series address a variety of data analysis issues. We briefly
summarize a few main points in the following sections, but for a more in-
depth review of data analysis methods, readers should refer to Jagota [2001]
and Quackenbush [2001].
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7. RESULT VALIDATION

On the basis of our experience and that of others, we cannot stress
strongly enough the importance of great experimental care, well-
characterized and rigorous analysis, and the need for appropriate follow-up
and verification when performing highly parallel expression experiments,
especially when using animal or human tissue. As previously discussed,
replicate experiments should be performed for validation purposes.
Additional methods to validate results include both statistical and biological
procedures.

7.1 Sample and Data Triage

There are several initial sample processing and quality control steps that
can maximize the validity of microarray results. Quality control emphasizes
care and consistency in handling animals, tissue, and cells. Sample RNA
should be handled appropriately to minimize degradation, and samples
should be tested for suitable quality. Sample quality checks include tests for
RNA or cDNA size distributions, and measurements of the quality and
amount of labeled RNA. For a more complete summary of sample triage
processes, see Lockhart and Barlow, [200la].

Before performing further analysis of data produced from microarray
experiments, a data “triage” step should be completed to determine if the
data is of sufficient consistency and quality. Background, noise, overall
signal strength, and the percentage of genes scored as “present” should be
measured. These measures [Lockhart and Barlow, 200la] should be
appropriately assessed and reviewed before data analysis begins in order to
help ensure that false positive rates are low and quantitative values are
reliable.

7.2 Statistical Validation

In some cases, data analysis algorithms make assumptions about the
structure of the data that can produce variations and uncertainties in results.
Experimental noise also contributes to variation and uncertainty.
Fortunately, many of these effects, which are not always obvious, can be
addressed statistically. For example, statistical resampling [Levine and
Domany, 2001; Zhang and Zhou, 2000] has been used to assess the
reliability of clustering in unsupervised learning. Here, subsets of the
original data are randomly selected, and the data-analysis algorithm is
applied to each subset individually. Supervised learning models make use of
cross-validation techniques [Dubitzky et al., 2000] and have been used
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extensively as well. A large portion of the data is used as a ‘training set’
from which a model is built via a data-analysis algorithm. This model is
then tested with the remaining data. If the model fits the remaining data,
then it is considered a valid model. A review of these and other techniques,
including cluster analyses, neural network, and Bayesian network analyses
can be found in Chapter 2.

7.3 Biological Validation

In additional to statistical validation, at least some fraction of the genes
observed to be differentially expressed should be confirmed with
independent methods on independent samples (not the same RNA that was
used for the array experiments), especially if subtle expression differences
are to be interpreted. For example, northern blots or quantitative RT-PCR
experiments are used to check particularly interesting findings, and to
confirm a result that might be the basis for follow-up experiments, such as
the creation of a knockout mouse. The use of western blots to measure
corresponding protein levels, and immunohistochemistry and in situ
hybridization to measure cell or region specificity of proteins and mRNAs is
also highly recommended.

Although array-based expression measurements can be made quantitative
and reproducible, specific genes that are found to be differentially expressed
on arrays should be viewed as high probability candidates but not as
completely confirmed. Global expression measurements should be
considered a starting point for the understanding of a biological problem,
and as a valuable tool for obtaining information concerning a large number
of genes. They should be used in the context of other types of
measurements, knowledge and information, and it should be understood that
findings will need to be followed up with further experiments of various,
more conventional types.

8. CONCLUSION

In summary, the goal of genomics is to understand biology, and DNA
microarrays provide a versatile and powerful way to monitor the functional
expression of tens of thousands of genes at a time. But which data analysis
methods are most appropriate and most useful is still open to question.
Despite their impressive and rapidly growing resume, microarray
technologies are still in their infancy, with plenty of room for technical
improvements, further development, and more widespread acceptance and
accessibility. New experimental methods, along with sequence information,
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computational tools, and integrated knowledge databases are now coupled
with traditional basic science approaches to the study of biology and
medicine.  The combination of new methods with more traditional
techniques will help us understand the function and regulation of all genes
and proteins, decipher the underlying workings of the cell and hopefully lead
to new ways to intervene with or prevent aberrant cellular processes in order
to improve human health and well-being.

Note: some text from this article is reprinted with permission from Nature [Lockhart and
Winzeler, 2000] and Nature Reviews Neuroscience [Lockhart and Barlow, 2001b].
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EXPERIMENTAL DESIGN FOR GENE
MICROARRAY EXPERIMENTS AND
DIFFERENTIAL EXPRESSION ANALYSIS

G.V. Bobashev, S. Das, A. Das

RTI International

Abstract: Advances in microarray technology open new challenges in data collection,
analysis and interpretation. In this review paper, we focus on issues related to
obtaining trustworthy normalized data and results of differential expression
analysis. In particular, we briefly summarize discussions on sources of
biological and technological variation, experimental design, design of arrays,
normalization and error models, differential expression and multiple
comparison issues. These issues remain major bottlenecks to developing
standards and obtaining useful and applicable results of future analysis such as
cluster analysis, network modeling, etc.

Key words:  genomics, microarray, experimental design, differential expression,
normalization, data quality.

1. INTRODUCTION

In this review paper on microarray data, we focus on issues related to
experimental design, normalization and differential expression analysis, (i.e.,
finding genes that are expressed differently between groups). These
emerging issues are widely discussed in the microarray scientific
community. Because of recent advances in computational and statistical
techniques, many scientists are focusing on the analysis of microarray data
and developing models from these data. At the same time, issues of data
collection, quality, and standards remain major bottlenecks to obtaining
useful and applicable results. This paper briefly highlights some of these
issues. The paper is structured as follows: Section 2 discusses experimental
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design with sources of variation and design principles. A brief mention of
microarray design follows in Section 3, and an overview of technical
components of normalization models is provided in Section 4. We discuss
error models and multiple comparison issues in Section 5, and final remarks
are in Section 6. Statistical methodology for normalized data is beyond the
scope of this discussion and will be addressed in future work.

2. DESIGN OF MICROARRAY EXPERIMENTS

The goal of a microarray experiment is to measure and compare the
relative expression levels of thousands of genes simultaneously among
samples. Typically, these samples compare different stages of the cell cycle,
cell types, healthy and diseased cells, or different treatments. It is important
to understand and account for many sources of noise and variation. These
sources of variation are largely responsible for problems such as
measurement error, confounding, elevated false positive and false negative
rates, and biased association. By understanding these sources of variation,
an experiment can be designed in a manner that takes them into account.

Moreover, the analysis models and methods must be compatible with the
experimental design to avoid artificial effects. For decades, statisticians have
dealt with experimental design and analysis issues to separate the effects of
interest from confounding, bias, measurement and random error [Fisher,
1951]. Replication is needed to provide statistical inference. However, due to
the expense of microarray experiments, decisions about what, how and when
to replicate must balance the additional cost against the level of better
inference that is likely to be gained from replication. The answer to these
questions greatly depends on sources of variation in the experiment.

With respect to microarray experiments it is important to differentiate
between “technological” and “biological” variation. Technological variation
could occur because of imprecise measurements of mMRNA content, variation
among microarray batches, imperfection of laboratory protocols and
equipment, etc. Theoretically, with the development of technology and
automation the technological variation could be virtually eliminated.
Biological variation i.e., variation in gene expression among genes, cells,
cell lines, animals, etc., would remain present even if the amount of mRNA
could be measured precisely. These two components — technological and
biological - contribute to the total variance in the experiment, and therefore
researchers must account for both of them at the design and analysis stages.

In the remainder of this section we focus on the identification of different
sources of variation.
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2.1 Biological variation
2.1.1 Variations among subjects

Each microarray experiment begins with the selection of a sample. The
sample should be representative of its population, so that valid inferences
about this population can be drawn. For example, there are many different
strains of lab mice, which may yield different results under the same sets of
experimental conditions. Experimental results based on one strain of mice
may not be generalizable across strains. Among-animals variation may also
be confounded by within-gene variation. Because some of the genes may
have a relatively short time course of activity, variation in the timing of
sample preparation among several animals could alter gene expression,
resulting in two otherwise identical animals producing different expression
profiles. The authors could find little published literature on this issue, but
this is clearly a substantial source of variation.

2.1.2 Variations among genes

A substantial body of literature concerning gene-specific modeling
supports the concept that each gene has its own expression level in a tissue
(in addition to variation among individuals and tissues), as well as its own
expression time course [Kerr et al., 2001 a-d; Yang et al., 2001b; Hughes et
al. 2000, Wolfinger et al., 2001]. More research is needed to understand
fully whether gene expression from many genes on the array should be
pooled together for a higher statistical power, or whether each individual
gene should be treated separately [Dudoit et al., 2000].

What do we know about the consistency of same gene hybridization
rates? How much variance is likely for one gene among multiple
hybridizations? Do different genes have different hybridization rates? The
answers to these questions are platform-dependent and little appears to have
been published on these topics, perhaps because the underlying microarray
experiments are expensive to perform.

Bartosiewicz et al. [2000] estimated variability among spots, slides and
animals for mouse liver tissues. The largest variability occurred among
animals with a coefficient of variation (standard deviation divided by the
mean) ranging from 0.18 to 0.6, while among-slides and among-spots
variability ranged from 0.08 to 0.18 [Wu, 2000]. In recent presentations,
Elashoff [2001] suggests that each gene has its own variation which might
be independent of the mean. This argues against using mean expression as a
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direct predictor of the gene-specific variance. We discuss this in greater
detail in the Differential Expression section.

2.2 Technological variations

The major steps in performing a microarray experiment are (1) creating
or selecting an array, (2) extracting, amplifying, and reverse transcribing
mRNA into ¢cDNA, (3) fluorescent (or radioactive) labeling of cDNAs, (4)
hybridization to a DNA microarray, (5) scanning the hybridized array, and
(6) interpreting the scanned image. Below we discuss the potential
technological pitfalls at each step that can lead to variation.

Step 1-Creating or selecting an array: Construction of an array involves
identifying DNA fragments corresponding to various partial or whole genes
(DNAs, gene fragments, alternate splicings, or oligonucleotides). Solutions
containing the same concentrations of fragments are prepared. These
solutions are used to spot the fragments onto an array. Variation is possible
throughout this step. For example, the spotting process is sensitive to printer
type, pin type, length of the printing cycle, and quality of maintenance of the
instruments.  Arrays are commonly printed in batches, so similar
“production defects” may be shared by all arrays in the batch, in addition to
slide specific factors. For printing purposes, slides are commonly divided
into quadrants, so the same pin prints all spots in a quadrant. This may
introduce quadrant effects (i.e., one pin behaving differently from the others)
and spatial effects within the quadrant (i.e., the efficiency of a pin at a
specific position) [Craig et al., 2001]. However, array printing is generally
performed at specialized sites, and efforts are made to minimize all sources
of variability. Steps 2 through 6 usually contribute more to variability than
step 1, especially when performed by inexperienced technicians.

Step 2-Extracting, amplifying, and reverse transcribing mRNA into
c¢DNA: The transcription level of a gene is equal to the amount of its
corresponding mRNA present in the cytoplasm. When isolating mRNA, it is
important to use identical extraction methods, to use the minimum number
of processing steps, to measure the amount of mRNA and to standardize
concentration. One potential source of variability is the purity of mRNA
among prepared tissue samples. Occasionally, the quantity of cells available
does not yield sufficient mRNA to conduct the experiment and a pre-
amplification process must be conducted, which may skew the relative
abundance of different mRNA species (typically, some low-abundance
mRNAs may not be amplified). Information concerning the details of RNA
extraction must be provided so that its impact on array sensitivity can be
estimated.
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Step 3-Fluorescent (or radioactive) labeling of cDNAs: The success of
this step can be quite variable. cDNAs that hybridize to the microarray
probes must be labeled in order to be detected. The number of fluorescent
dye molecules labeling each cDNA depends on its length and possibly its
sequence composition, both of which are often unknown. Because of this,
fluorescence intensities for different cDNAs cannot be quantitatively
compared. However, identical cDNAs from two samples are comparable as
long as the same number of label molecules have been incorporated into the
target sequence in each sample. To equalize the total concentrations of the
two cDNA samples before applying them to an array, the solutions are
diluted to have the same overall fluorescence intensity. This procedure
assumes the total amount of mRNA is identical in each source population.
This assumption is difficult to check [Bier et al., 2001]. For two-dye arrays,
it is important to ensure the same calibration is consistently used.

Step 4-Hybridization to a DNA microarray: In any hybridization
experiment, the time required for complete hybridization is proportional to
the concentration of the applied mRNA sample. Highly abundant transcripts
will rapidly hybridize to completion, so their signal should be approximately
constant regardless of how long hybridization is performed. For moderately
abundant transcripts, it takes longer for complete hybridization, so the
amount of transcript for such mRNA will be underestimated unless a
sufficiently long hybridization time is used. Finally, for rare abundance
transcripts, the hybridization will still be in the linear phase of the curve after
a relatively long time, and thus the concentration of these rare species is
likely to be greatly underestimated. Other potential causes of variation at
this stage include the temperature at which hybridization is performed, and
the effect of the different buffers used to prevent nonspecific binding [Bier et
al., 2001].

Step 5-Scanning the hybridized array: The hybridized array is scanned to
determine how much of each cDNA sample is bound to each spot on the
array. Within a certain intensity range, the amount of signal detected is
linearly proportional to the time of exposure. Usually, signal is accumulated
by a reading device (e.g., CCD camera, Phosphor imager). Data are saved as
a TIFF image, where the intensity of a given pixel is proportional to the
amount of signal coming from the spot on the filter or slide. For highly
abundant transcripts, beyond a certain amount of signal there may be little
increase in intensity per unit time, and the spot will be saturated in the
image. Moderately expressed genes may yield signals within the linear
component of the scanner’s detection range. For rare transcripts, it may not
be possible to expose the slide long enough to get a detectable signal. One of
the major sources of variation for spotted arrays is baseline intensity
difference between the dyes. One channel is often consistently more
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intensive than the other channel for the same concentration of the label [Kerr
et al., 2001a-d]. Successive scans of the same slide can lead to inconsistent
images. For some technologies such as those based on a radioactive label,
successive scans are not possible.

Step 6-Interpreting the scanned image: Interpreting data from a
microarray experiment can be challenging and subjective. Quantification of
the intensities of each spot is subject to noise for irregular spots, the position
of the spot on the array, dust on the slide, and nonspecific hybridization. It
can be difficult to determine the intensity threshold between spots and
background, especially when the spots fade gradually around their edges.
Spot intensities can be contaminated by neighboring spots bleeding across
spot-boundaries. Detection efficiency may not be uniform across the slide,
leading to excessive red intensity on one side of the array and excessive
green on the other. Even after overcoming detection and calibration
problems, the measured intensities for each spot only represent the ratio of
cDNAs in each cell population. Low levels of cDNA due to reverse
transcription bias, sample loss, or an inherently rare mRNA can cause large
uncertainties in these ratios. Additionally, different software analysis
packages produce different background and signal measurements and
different quality checks (e.g., depending on the segmentation technique used
to define the spots).

2.3 Microarray quality checklist

The statistical analysis of data assumes established protocols were used
to obtain data of a consistent quality, without apparent technological errors
or failures. In practice, many scientists prefer to inspect image quality before
analysis and return to particular spots on arrays to confirm certain statistical
findings. This is not an option for high-throughput screening, which requires
a higher quality microarray system. However, for smaller capacity research
laboratories this is an important step. The quality control recommendations
for microarray chip production can be found in manuals such as the Clontech
manual [Clontech manual, 2001] or on the web. For example, the Galbraith
laboratory web page recommends a set of visual checks to detect problems
such as high background before hybridization, irregular spot morphology,
comet tails, streaks, high background around the margins of the cover slip,
high background following hybridization, and low signal. See
http://www.stressgenomics.org/stress.fls/expression/arraytech/troubleshootin
g/troubles_index.htm.
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3. EXPERIMENTAL DESIGNS THAT
INCORPORATE BIOLOGICAL AND
TECHNOLOGICAL VARIATION

The previous section discussed different biological and technological
sources of variation that can be present in gene microarray experiments and
differential expression analysis (animal, gene type, experimental protocol,
dyes, etc.). These sources of variation are not unique to microarray
experiments; in fact, they are present in virtually every scientific experiment.
In this section we briefly discuss some standard statistical techniques for
designing experiments that can help increase the precision of experimental
data. Below we will be using experimental design terminology such as
“variety” which here represents factors of interest, e.g., time point, tissue
type, type of treatment drug.

3.1 Block designs

The effects of variability can be reduced in the way the experiment is set
up and the experimental material (i.e., the microarray) is handled. This can
be done by grouping the microarrays so that gene expressions of one variety
are closely comparable with those of another, especially with respect to all
extraneous sources of variation. Some known sources of variation such as
experimental protocol, dyes, etc., are usually not of primary interest, but
need to be controlled. Grouping of experimental units into internally
homogeneous batches is known as blocking, and experimental designs that
use this strategy to minimize the effects of variability are known as block
designs [Cochran and Cox, 1992].

Because block designs control sources of variation by keeping extraneous
experimental conditions uniform within a block, the number of experimental
units in each block should normally be the same as (or, a multiple of) the
number of varieties being examined (complete block designs). However, this
may become untenable for a large number of varieties, and incomplete block
designs can handle such situations, albeit with more statistical complexity. In
this context, with the two-dye system, microarray experiments can be
essentially thought of as incomplete block designs with blocks of size two
[Kerr et al., 2001a-d].

A relatively simple example of blocking would be an experiment to
compare gene expression between two cell lines using a one-color platform
in which the units will need to be taken over two days. In order to account
for the effects, if any, from taking units on different days, a block design
would require that half of replicates from each cell line be done on the first
day and the remaining half from each line on the second day. In this way,
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any effects resulting from the different dates involved are balanced between
the cell lines. If one cell line treatment had been conducted entirely on one
day and the other on another day, any effects from the difference in days
would have biased the outcome.

3.2 Randomization

Blocking is an effective mechanism for reducing variability from known
sources by apportioning it equally among the different varieties of scientific
interest. However, in real-life experiments it is often difficult to account for
all factors that can contribute to experimental variability. Randomly
assigning experimental units to one of two or more treatments, prevents such
unknown or unmeasured sources of variation from introducing bias by
ensuring that such factors are not differentially distributed among the
different varieties of interest [Fisher, 1951]. Randomization also provides a
sound objective basis for the appropriateness of certain statistical procedures
and control of type 1 errors in hypothesis tests [Piantadosi, 1997].

Randomization and blocking are both necessary attributes of a well-
designed experiment. When randomization is performed within blocks, the
blocks are homogeneous with respect to extraneous sources of variation
(both biological and technological), thus guaranteeing exactly the same
distribution of blocking factors across treatments/varieties, while retaining
the advantages of randomization. Thus, randomized block designs help
achieve balance on both known and unknown sources of biological and
technological variation.

33 Loop designs

The principles of randomization and blocking can substantially improve
the accuracy and efficiency of microarray experiments. Figure 1 illustrates a
situation where comparisons are made between more than two varieties.
Instead of the standard practice of selecting one reference sample and
including it in all hybridizations (Figure la), Kerr and Churchill [2001a]
have proposed a loop design, where each sample is directly compared to at
least two others (Figure 1b).
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Figure I. Experimental designs to study more than two varieties of interest (adopted from
Kerr and Churchill, 2001a). Nodes represent varicties and edges represent arrays. Direction of
the arrows (head or tail) represents the two dyes. Figure (a) represents the standard reference-
based design, while figure (b) represents a balanced loop design. (Reproduced with the
permission of the authors)

In contrast to the standard design that measures the expression level of
the reference sample multiple times and the expression levels of the other
study samples only once, such a balanced design obtains multiple
measurements of all expression levels. Thus, the loop design obviates the
need for a reference sample and doubles the amount of data on the genes of
interest, without requiring additional resources. It has been shown that such a
balanced design allows one to compare the varieties of interest with much
greater precision than the standard design [Kerr ef al, 2001 a-d]. Moreover,
since this design is balanced with respect to dyes (because each variety is
labeled once with each of the red and green dyes), any dye effects are not
confounded with variety effects, so variety X gene effects are not
confounded with dye X gene effects. In contrast to the standard design, any
anomalous gene expression with respect to dyes will not bias the estimates
of the effect of interest.

34 Split plot designs

In split plot designs, the experimental material (e.g., an array) can be
naturally subdivided or classified into several subgroups (e.g., spots from
different genes), which permits the inclusion of an extra factor in the
experiment. In microarray experiments, a split plot design would be
appropriate if there are two or more non-nested comparisons, (e.g., two
treatments and two mouse strains). Depending on which comparison is more
important, the researcher might want to split that comparison within less
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important comparisons. For example, if treatment effects are more important
than strain effects, each strain would be randomized for two treatments.
Instead of treating array effects the same way for each fixed effect, split plot
designs maximize the statistical power for one effect of interest. If that effect
is the smallest one, it places the reduced significance of the larger effects in
perspective (though it is usually not possible to predict effect sizes before
conducting an experiment). For experiments contrasting the significance
levels of a series of treatments directly, Jin et al. [2001] recommend
complete randomization to assign each labeling reaction to specific arrays.
To maximize the power for a particular contrast, they recommend keeping
the contrast constant across all arrays, as long as the design assigns some
replicates of each treatment to one dye and others to the second dye (called a
dye swap).

3.5 Optimal designs

The search for an optimal design is a challenge in any complex
experiment. This is especially true for microarray experiments, where there
are strong resource constraints. More studies need to be done in this area.
The works of Kerr, Churchill, Craig, and Speed, among others, have
suggested some future directions. A comparison of efficiencies of several
designs is done in Kerr and Churchill [2001 a,b], where the authors compare
several designs and show the efficiency of the loop design as opposed to a
conventional design where each array had a reference sample. The authors
mention however, that even for an experiment with a relatively small (10 or
more) number of arrays, the number of possible designs could be quite large
and it could be computationally difficult to evaluate all of them. On the other
hand, the families of efficient designs are evaluated and some of them could
be  found at  appropriate  links at  Churchill’s  web-site
http://www .jax.org/research/churchill. It is important to mention that
optimality of the design strongly depends on the final objective of the study.
Designs that are optimal for one goal may not be useful for another. For
example, for a differential expression study, it is generally better to have
more replicates for each treatment. For a time-course experiment, where
gene expression patterns are the prime interest, it is more advantageous to
increase the number of time points than it is to increase replicates. So far,
most publications refer to designs using two-dye arrays. For Affymetrix or
radioactively labeled arrays, design issues are generally similar, although
effects such as dye effects are not present [Kerr ez al., 2001 a-d].

Having two dyes has an advantage of doubling the capacity of the array
because each spot carries two pieces of information. In addition, it allows
both treatment and control to be blocked on the same array. On the other
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hand, the two dyes do not have exactly the same correspondence between
mRNA concentration and the fluorescent intensity. This creates a need to
account for such “dye effect” by incorporating a “dye swap”.

4. DESIGN OF MICROARRAYS

There is little published literature addressing the issue of array design,
primarily because most of these processes are proprietary to the array-
producing companies. In a recent paper by Craig et al., [2001] normalization
models were expanded to include effects that cause spot-to-spot variation.
Using these expanded models, one could determine how gene replicates
should be placed on the slide to avoid confounding these effects with the
treatment-by-gene effect. Three factors related to slide construction were
considered: 1) the effect of using different pins (on a multiple pin printing
tool) to print the spots on the slide, 2) the effect of varying amounts of
genetic material being retrieved by the pins on subsequent visits to the
printing tool template (dip effect), and 3) the effect of washing the excess
genetic material from the slide. A pilot study was conducted to assess the
amount of systematic variability caused by these three factors. This study
used one dye (Cy3), one treatment, and one gene at all 256 spots on each of
3 microarrays.

The results of the experiment revealed a nonrandom distribution of dye
intensities among spots on each slide after hybridization and washing. One
source of this variability appeared to be the slide orientation in the
centrifuge, suggesting that labeled genetic material was unevenly washed
off. Within the slides oriented in the same direction, a large percentage of
the variability among spots was explained by slide and pin effects. The dip
effect appeared to be small.

To separate printing and washing effects from the treatment-by-gene
effects, gene replicates are needed, and must be placed on the slide in such a
way as to avoid confounding. Craig et al. [2001] discouraged the use of one
type of replication within the array when the same set of pins is dipped
several times into the same set of wells. Because the same pin is associated
with each gene, this would place replicates in the same region of the slide
and potentially confound the pin effect with the washing and printing effects.
Instead, replicates should be included in the template, and arranged so that
replicate spots are spread throughout the slide. While theoretically this
could be done on a well-by-well basis, this is not practical from an
experimental viewpoint, since a multi-tip pipette is typically used to fill
several template wells at once.
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S. NORMALIZATION MODELS

Normalization is another term for extracting information about gene
expression and accounting for confounding, bias, measurement and random
error. If differential expression is the final goal then normalization implicitly
becomes part of the analysis model. The majority of normalization models
use Analysis of Variance (ANOVA) models also accounting for
experimental design, estimating the amount of differential expression as well
as conducting statistical testing. In other cases, the objective of the
experiment is to conduct further analysis of gene expression such as cluster
analysis. In this case, the output of the normalization models becomes
normalized data, i.e., data that is supposed to be clean of confounding and on
the same scale.

5.1 Data transformation and background removal

Prior to analysis, intensity data are usually transformed, most commonly
by logarithmic transformation. There is some evidence that the logarithm of
measured intensity is linearly (or sigmoidaly), related to probe concentration
[Samartzidou, 2001; Kalnin, 2001]. Thus, the logarithmic transformation
might be justified not only by mathematical convenience, but also by the
physical properties of scanned intensities.

Background removal is often viewed as a statistical task, and there are a
variety of approaches, ranging from removal of the global background
[Clontech manual, 2001] to spatial modeling of local background values.
Some scientists advocate background be removed on the logarithmic scale,
but we did not find any published evidence supporting that contention. On
the other hand, it appears that the problem of background removal may itself
be removed when scientists master microarray technology. Usually, with
increased experience in using array technology, the level of background
noise drops to levels small enough that its removal would not substantially
influence subsequent analyses.

Note that in this discussion we have not separately examined the situation
where measurements are in ratios. We have done this deliberately, since
ratios can be converted back to a linear scale by using the logarithmic
transformation. Suppose, for i=l,2,...,n observations, we have ratio
measures in the form of R; = X1/X2;. Then, we have log R; = log X1; - log
X2;, whereby we are back to a linear relationship, albeit in the log scale.
Thus the same principles and methods discussed previously for ordinary
(i.e., continuous) measures are also applicable to ratio measurements.
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5.2 Linear vs. non-linear effects

Some of the most widespread approaches use models for the mean
expression such as ANOVA, where various factors accounting for disparities
in gene expression levels are introduced as either linear or non-linear terms.
Usually, the effects of spot, block on the array, array replicate, treatment,
etc, are introduced as linear terms [Kerr et al., 2000], while possibly non-
linear relationships between mRNA concentration and intensity are modeled
as a locally linear relationship [Kepler et al, 2000; Yang et al., 2001b].

5.3 Random vs. fixed effects

Various effects in the linear models can be treated as either fixed or
random with the difference in implication usually determined by the
scientific goal. If the estimate for a particular effect is of interest and the
experiment to test this effect is repeatable, it is usually considered fixed. For
example, if differential expression analysis of a specific gene under a set of
defined experimental circumstances is of interest, treatment is usually
considered a fixed effect, because it was not selected at random from a
population of choices of treatments. If the effect is not of specific interest
such as a spot on an array, it should be considered random [Wolfinger et al.,
2001]. Introducing random effects into the model usually increases the
efficiency of the estimates.

54 Ordinary least squares vs. orthogonal regression

Although linear regression analysis is generally used, orthogonal
regression has been proposed as a better approach. The rationale behind
orthogonal regression is that both parts of the equation are treated equally,
thus estimating the relationship between them; while ordinary regression
explains the variation of a dependent variable as a function of the
independent variables [Sapir and Churchill, 2000]. If there is no apparent
reason for treating one array as dependent and another as independent, the
orthogonal approach is preferable. However, if we are relating gene
expression to a standard reference category, ordinary regression is more
appropriate.

5.5 Means vs. medians

Some models use analysis of median variation rather than mean. This
approach may be more appropriate when typical normal distribution
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assumptions are violated but it is not yet widely used. Quantile regression
methodology has been developed by Gould and Rogers [1994]. Amaratunga
et al. [2001] have developed normalization methods using a smooth
monotonic function based on a set of sequential adjustments on the 10th,
20th, and up to the 90th percentiles. Although the use of medians rather than
means seems to be attractive because the distribution of gene expression
(even log-transformed) is often skewed, the application of such models is
very limited because of a lack of theoretical statistical background and
software support.

5.6 Self-consistency

One way to address self-consistency is to identify a set of genes for
which expression is not expected to change during the experiment. This set
is usually not known a priori but could be estimated using an iterative
procedure that identifies a set of genes with the lowest ratio of between-
treatments to within-treatment variance. [Kepler ef al., 2000]. This step is
especially useful when a large number of genes are affected by the treatment
as often happens in small-capacity, custom arrays.

5.7 Flagging outliers

Statistical modeling implies data are assumed to follow a certain
distribution, (e.g., the normal distribution). Outliers could present significant
problems for the analysis and thus bias the results. Detection and removal of
outliers is often considered part of the normalization process. Yang et al.
[2001a] showed that flagging weak spots improves normalization and ratio
estimates in microarrays. Outliers are often defined as points that fall beyond
three standard deviations from the mean, and are usually visible on a 2D plot
[Houts, 2001; Samartzidou, 2001].

6. DIFFERENTIAL EXPRESSION

Analysis of differential gene expression follows directly from the
normalization model. In fact, following the ANOVA framework, differential
expression represents a contrast between gene-specific treatment effects.
These contrasts may be tested using some version of statistical tests. There
are two major problems with the statistical testing of differential gene
expression. First, the use of gene-specific variance with few replicates leads
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to imprecise variance estimates and low power. Second, multiple testing
leads to increased rates of false positives and false negatives.

6.1 Error models

To increase the power of differential expression analysis, more precise
estimates of gene-specific variance are needed. One approach is to employ
error models that use information on variation in other genes within or
across experiments. Older model formulations [Kerr et al, 2000; Churchill
and Oliver, 2001] assume a common gene variance and use a pooled
estimate of variance to conduct a t-test. Others use a linear model that relates
average gene expression to its variance [Kepler ef al., 2000]. Finally, a local
regression approach can identify gene-specific variances assuming a smooth,
but non-linear relationship between mean gene expression and gene variance
[Kepler et al., 2000; Yang et al, 2001b]. All these approaches lead to more
refined estimates of gene-specific variance than the approaches based on a
common pooled gene variance. Models that use some form of pooled
variance often use a z-test rather than a t-test, reasoning that the variance
pooled over such a large number of genes well approximates the “true”
variance. The power of the z-test is much higher than that of the t-test,
especially if the number of replicates is smaller than six [Casella and Burger,
1990].

Wolfinger et al. [2001] and Yang et al. [2001b] have adopted a more
biologically focused approach, where the model is split into two
components. In the first component, an array-level model uses pooled
information about all genes; in the second component, the residuals from the
first model were used to fit a gene-specific model that assumes variance at
the individual gene level.

Thomas et al. [2001] have used more robust Wilcoxon rank tests . These
tests have an advantage in that they do not assume any a priori distributions.

A principally different approach has been taken by a group from
GeneLogic [Elashoff, 2001] where a database of “normal” gene-specific
expression levels and variances has been developed. This database of
normalized expression values is used as a reference for gene-specific
variances in their normalization model. This approach has the advantage of
being able to directly estimate the “true” variance, but it requires enormous
resources to develop such a database.

6.2 Bayesian approach

A Bayesian approach can provide a combination of error models with
individual gene models. Baldi and Long [2001] used a normalized
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distribution of pooled variances as a prior and calculated posterior
distributions for individual genes. Through a simulation study they have
shown that the Bayesian test is much more powerful compared to the
frequentist t-test, especially when the number of replicates is quite small.

6.3 Adjustment for multiple comparisons and power
considerations

There is no uniform approach on how to appropriately deal with the large
number of differential expression tests conducted in one microarray
experiment. Depending on the purpose of the analysis, some scientists
suggest a Bonferroni/Sidak-type adjustment [Thomas et al, 2001; Kerr et
al., 2001 a-c], while Westfall and Young [1993] recommend a resampling
algorithm.

Another less conservative approach is taken for example by Dudoit et al.
[2000], and Storey et al. [2001 where False Discovery Rates (FDR) were
applied to the problems of multiple comparison in microarrays. First
introduced by Benjamini and Hochberg in 1995, the false discovery rate
approach allows control of desired specificity based on the distribution of the
p-values. The number of arrays needed for an experiment depends on
statistical power calculations. When conducting power analysis, one needs to
set up the false positive and false negative rates (or sensitivity and
specificity), consider an approach for multiple testing, and obtain
information on within-gene variation as well as other sources of variation.
Such discussions and simulation results could be found for example in
Wolfinger et al. [2001] and Zien et al. [2001].

7. FINAL REMARKS

We have presented approaches to experimental design, normalization,
and differential expression analysis for microarray experiments. Different
microarray platforms have their own specific features, and hopefully the cost
of arrays will decrease and firm technological standards will be developed.
These standards are needed for comparisons across platforms and
experiments.

One crucial facet of the design and analysis of microarray experiments is
the knowledge of the magnitudes of the sources of variation throughout the
entire experimental process, from array production to data analysis. Database
development should incorporate information about experimental design so
that the data can be merged across experiments for meta-analysis.
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In upcoming work, we discuss the issues that arise with further analysis
of normalized microarray data, pattern/structure discovery, discriminant
analysis and prediction, and modeling genetic mechanisms. The statistical
challenges facing these analyses relate to the fact that microarray data
usually involve relatively few analysis units, but a large number of
measurements per unit.
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MICROARRAY DATA PROCESSING AND
ANALYSIS
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Abstract: DNA arrays technologies make possible the monitoring of changes in the
expression patterns of thousands of genes. The analysis of such data has
become a computationally-intensive task that requires technological
developments at various stages, from the design of the array, to image
analysis, database storage, dataprocessing and clustering and information
extraction. Here areview of the current trends in each of the various areas is
provided.

Keywords: gene expression, normalisation, databases, distances, clustering, gene
networks, data mining.

1. INTRODUCTION

In recent years, a number of technologies in the field of genomics have
developed to a level that has increased the volume of biological data
available in orders of magnitude. The large amount of information coming
from diverse sources including genome sequence projects and high
throughput functional data is attracting the interest of biologists to the study
of global mechanisms, leaving behind the old paradigm “one postdoc, one
gene.” In this new setting for biological research, DNA array technologies
that allow for the simultaneous recording of thousands of gene expression
levels in a single experiment have acquired a special role. This technology
has opened new ways of looking at organisms in a genome-wide manner.
Now it is possible to study complete genome patterns of gene expression in
prokaryotes [Arfin ef al., 2000] or in simple eukaryotes like yeast [Eisen et
al., 1998] or C. elegans [Hill et al., 2000], while in higher organisms, like
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humans, tens of thousands of genes related to a given system can be
monitored [Zhang et al., 1997].

There are two extensively used formats: cDNA microarrays [Schena et
al., 1995] and Affymetrix gene chips or oligonucleotide arrays [Lockhart et
al., 1996]. In the first format, each cDNA array consists of solid support
(usually nylon or glass) where cDNA or oligonucleotides are arrayed in a
fixed pattern. Fluorescent DNA derived from mRNA coming from the
control and test samples is competitively hybridised to the complementary
DNA probes on the array. The radioactive or fluorescence emissions of
specifically bound probes are detected using an appropriate scanner, giving a
quantitative estimate of each gene expression. These intensity values are
supposed to be proportional to the amounts of RNA originally present in the
cell. Oligonucleotide arrays, on the other hand, employ a different system to
label the complex probe. These are directly synthesized on glass wafers
using a photolithographic process.

A complete system for expression arrays requires the implementation and
development of different experimental protocols but, even more important, is
the development of database and bioinformatics tools for data collection and
analysis. Computational tools for microarray data analysis are in rapid and
continuous evolution and there is no clear consensus on which methods are
best to cope with the complexities of such analysis [Brazma and Vilo, 2000;
Quackenbush, 2001]. This review will go over the different steps necessary
in the analysis of the DNA array data, and comment on the advantages and
limitations of the different, most used data analysis methods.

2. DESIGN OF THE ARRAY

One of the first problems in any microarray assay is the selection of an
appropriate set of genes to be used in the array. In some special cases, like
prokaryotes or small eukaryotes such as yeast, an array can be prepared
including the complete genome. Unfortunately, for many eukaryotic
genomes the total number of genes is unknown and their intron/exon features
are not well defined. In any case, the total number of genes is too large to be
fitted in a single array. Therefore, a selection of a representative set of genes
to be present in the array must be done. In general this selection work
involves finding genes with known features: genes of known function, or
having sequence or functional relationships with genes of interest, or
sequence variants of genes of interest, or biological controls, etc. There are
different databases and public data repositories containing information on
the sequences that can be used for this selection process, such as UniGene
(http://www.ncbi.nlm.nih.gov/UniGene), TIGR gene indices (TIG, in
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http://www.tigr.org/tdb/tgi.shtml), DoTS (http://www.allgenes.org), etc.
These resources provide high-quality annotation for the cDNA contained in
them but the number of sequences is extremely high (more than 13 million
sequences in the last GenBank release of year 2001). Due to the large
numbers of sequences, integrated software that allows user-friendly
querying, array project management, and clone tracking can be very useful
[Tamames et al., 2002].

When using oligonucleotides as probes, the probe length and the melting
point of the expected heteroduplex is of crucial importance [Hughes et al.,
2001]. Other factors, such as base composition and order, are important too.
Several computer programs have been developed to optimise the choice of
oligonucleotides [Drummond and Stamper, 1999], but in the case of cDNA
arrays, problems often arise from a lack of reliability. Even in cleaned up,
sequence verified, cDNA collections, error rates can be as high as 30%
[Knight, 2001] due, mainly, to three different types of errors. (1) the
corresponding sequence in the database is different from the one found in the
cDNA clone; (2) the sequence is correct, but the annotation is wrong; and (3)
the predicted orientation is wrong. Another common problem, derived from
using cDNA from ESTs collections is redundancy. A widely used method
for controlling redundancy is clustering of EST data [Miller et al., 1999].
Recently, alternative splicing has been identified as a common mechanism of
the generation of variability at the level of gene products. It has been shown
that at least 50% of the human genes are subjected to alternate splicing
[International Genome Sequencing Consortium, 2001; Venter 2001] and this
fraction is likely to be similar in other animals, including invertebrates
[Brett, 2002]. This raises an obvious problem regarding the election of the
probe representative of a particular gene. The use of tools such as GeneNest
[Coward, 2002] to explore gene structure, including alternative splicing,
based on a mapping of the EST consensus sequences to the complete human
genome, can help in solving this problem.

Once genes are identified, it is important to determine the specific
conditions to be studied, for example, the different time points of a
biological process, or the distinct types of tissue, or drug treatments, etc.,
which can take different values, or classes. Therefore, considering all the
variables involved in the experiment, there are four basic experimental
factors to be taken into account: values (or classes), genes, dyes, and arrays.
With these four factors there are 2* = 16 possible experimental effects. The
first step in choosing a good design is to identify which effects might
possibly contribute to variation in the data. An ANOVA model can thus be
considered as having global and gene-specific components [Kerr and
Churchill, 2001a; Kerr et al., 2000]. Obviously, intra- and inter-array gene
replications are necessary to have estimation on the different types of
experimental errors.
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The first steps of deciding on the set of genes to be placed in the array
and determining the conditions to be studied are examples of the inherent
complexities of the management of data in genomic methodologies. With
just these factors to consider, the size and complexity of the microarray data
set becomes apparent.

3. DATA ACQUISITION AND IMAGE ANALYSIS

After competitive hybridisation with the control and the query labelled
DNAs, the array is scanned. Two images corresponding to the two
fluorescent dyes are obtained. For cDNA arrays, these images must be
analyzed to identify and quantify the spots corresponding to the probes.
Usually, commercial microarray scanner manufacturers provide their own
solutions for image processing. In addition there are several public domain
software packages for the analysis of the images produced in DNA array
experiments (see Table 1).

The processing of scanned images usually involves three tasks. (1)
gridding, which is the process of assigning coordinates to each of the spots,
(2) segmentation, which allows the classification of the pixels either as
foreground or as background; and (3) intensity extraction, which implies
calculating, for each spot on the array, red and green foreground
fluorescence intensities, background intensities and, in some cases, quality
measures [Yang et al., 2001]. Background adjustment is necessary because
measured intensities include a contribution due to the non-specific
hybridization of the target to other elements in the slides (chemicals, etc).
The most commonly used procedure to remove this background effect is
subtracting the fluorescence intensity measured around the spots.
Nevertheless, the use of means or medians around the spot tend to produce
noisy measures [Yang et al., 2001]. Some software packages use
morphological opening, which is a way of calculating an average of the
background along windows, which can be subtracted from the signal. This
method performs better than the subtraction of a constant average, which can
cause negative intensity values.

Some programs are very efficient in the precise localisation of the spots
(e.g. QuantArray) while others provide convenient data analysis tools (e.g.
GenePix and ArrayPro). ArrayVision is well-known as a powerful program
for macroarray images. The quantification of macroarray (radioactive)
images is often more complicated than for microarrays (fluorescent), as in
the first case the spots tend to be tightly arranged, with no space between
consecutive spots.
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Table 1. Some available programs for image analysis. Upper part: commercial programs.
Lower part: public domain programs.

Program and distributor Web page

AIDA Array, Raytest GmbH http://www.raytest.de

ArrayPro, Media Cybernetics http://www.mediacy.comy/

ArrayVision, Imaging Research Inc. | http://www.imagingresearch.com/

GenePix, Axon Instruments, Inc. http://www.axon.com

ImaGene, BioDiscovery Inc. http://www.biodiscovery.com/

Iconoclust, Clondiag http://www.clondiag.com/

Iplab, Scanalytics Inc. http://www.scanalytics.com/

Lucidea Automated Spotfinder, http://www.amershambiosciences.com/application

Amersham Bioscience /microarray/default.htm

Phoretix Array”, Phoreticx http://www.phoretix.com/index.htm

QuantArray, Packard BioScience http://www.packardbiochip.com/

Spot, CSIRO http: / /www.cmis.csiro.au/iap/spot.htm

Free software and author Web page

ArrayViewer, NHGRI http://www.nhgri.nih.gov/DIR/LCG/1 5SK/HTML/
images.html

F-Scan/P-Scan, Center for http://abs.cit.nih.gov/fscan/

Information Technology, NIH http://abs.cit.nih.gov/pscan/

Scanalyze from Michael Eisen, http://rana.lbl.gov/EisenSoftware.htm

Lawrence Berkeley National Lab,
Berkeley, California

TIGR Spotfinder, TIGR http://www.tigr.org/softlab/

4. NORMALISATION AND FILTERING

Image processing is the first step in the data analysis process. The
distinct efficiencies in the labelling process and in the detection of the
fluorescence in both channels, as well as differences in the initial amount of
mRNA in the samples, not to mention problems derived from the
manipulation of the samples, cause systematic biases in the measures. Then,
the intensity values for red and green channels must be rescaled before
proceeding with the analysis [Hill et al., 2001]. This process is called
normalisation and is based on the existence of some reference point. These
references are either external, if some controls are “spiked” into the RNA
before labelling, or internal, under the assumption that most of the genes (or
at least a large subset of them) do not change their expression values in both
cases. These controls are used to balance the biases in both channels. A
common approach is to assume that the total amount of mRNA is the same
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for both samples. Under this assumption, the total computed intensity in red
and green channels (mean or median value) should be the same and can be
used as a normalisation factor. This approach has been used both for
Oligonucleotide and cDNA arrays. Nevertheless, there are more
sophisticated approaches that involve specific assumptions. In many
experiments it is possible to assume that a significant amount of the genes
are expressing at the same level. A scatter plot of red versus green would
cluster these genes along a straight line of slope 1 (for similar labelling
efficiencies). Intensities are adjusted to get a slope of 1. Another approach
consists of the use of “housekeeping” genes, whose expression level is
supposed to be the same in closely related samples. An approximate
probability density can be calculated for all the red and green ratio intensities
for the housekeeping genes, and used for estimating confidence intervals to
identify differentially expressed genes [Der et al., 1998]. So far there are few
comparisons of the relative merits of the different normalisation procedures
[Hill et al, 2001; Li and Wong, 2001; Goryachev et al, 2001]. In addition,
normalised data, which are expression ratios, are usually log-transformed.
The advantage of using this transformation is that the resulting data reflect
the up-regulation and down-regulation values in a symmetrical scale. Ratios
of down-regulated genes have their values between 1 and 0, while up-
regulated ratios can have large values. For example, after log2-
transformation, a change in the regulation by a factor of 2 (2 for up-
regulation and 1/2=0.5 for down-regulation) would take the values of 1 and -
1 for up- and down-regulation, respectively.

Whichever method is used, and whatever analysis is performed, it is
judicious to filter out genes that do not change their expression level during
the course of the experiment [Harrington et al., 2000]. The selection of
informative genes is the first step in reducing the complexity of the data and
so improving the signal to noise ratio.

S. DATA STORAGE

Data storage is a critical and often underestimated step. The ability to
make comparisons between different experiments (usually from different
laboratories) is highly dependent on the existence of a common, well-defined
storage structure. In addition, the vast amount of information produced by
the DNA array techniques needs an efficient relational database system for
storage (see Table 2).
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Table 2. Most popular human DNA repository databases.

Database Web page

ArrayExpress, European Bioinformatics  http://www.ebi.ac.uk/arrayexpress
Institute

ArrayDB, National Human Genome http://genome.nhgri.nih.gov/arraydb/
Research Institute

ChipDB, Whitehead, MIT http://web.wi.mit.edu/young/chipdb
DRAGON, Kennedy Krieger Institute http://207.123.190.10/dragon.htm
ExpressDB, Harvard http://twod.med.harvard.edu/ExpressDB
Gene Expression Omnibus (GEO), NCBI  http://www.ncbi.nlm.nih.gov/geo

GeneX , NCGR http://www.ncgr.org/genex

RIKEN ¢cDNA Expression Array http://genome.gsc.riken.go. jp/READ/
Database (READ), RIKEN

RNA Abundance Database (RAD) http://www.cbil.upenn.edu/RAD2/query.htm

University of Pennsylvania I
Stanford Microarray Database (SMD), http://genome-
Stanford University wwwd stanford.edu/MicroArray/SMD

There is currently a significant international effort to standardise the way
this information is stored and managed, and the MGED (Microarray Gene
Expression Database) working group (http://www.mged.org/) is perhaps, the
most important example. MGED has four main objectives. First is providing
a standard definition of a minimum set of data known as the MIAME
(Minimum Information About a Microarray Experiment) initiative [Brazma,
2001].  Second is the development of a relational database schema for
storing the data. The ArrayExpress relational database schema is available
at the EBI ArrayExpress website (http://www.ebi.ac.uk/arrayexpress/),
including tools for submitting and retrieving the data. Third is the
establishment of a data exchange format (MAGE-ML, a specialised XML
format) for microarray experiments. And fourth is the development of
ontologies for microarray experiment descriptions and biological material
(biomaterial) annotation.

The advantage of many systems of information storage is that they
provide an interface to allow recovery of the data stored under a user-
friendly system of queries. Users can easily filter the data, for example
removing genes whose expression patterns do not change along the studied
conditions, apply different transformations, and send data directly to analysis
tools. There are different commercial PC-based packages that provide these
capabilities to the same extent (depending on the price), that can fulfil the
storage and analysis necessities of small groups. Nevertheless, when a large
number of experiments are performed, the approach must be different. There
are some public domain packages that can easily be implemented and allow
the setup of a centralised resource for data storage and management. One of
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these packages is the popular maxdSQL (Manchester University;
http://bioinf.man.ac.uk/microarray/resources.html).

6. ADDRESSING BIOLOGICAL QUESTIONS

The possibility of determining in a simple experiment the expression
level of thousands of genes opens up the possibility of obtaining answers for
biological questions that, just two or three years before, we could not even
dream. From the point of view of the pure methodology, we can distinguish
between questions involving the comparison of two conditions (typically the
condition of interest versus a reference) and the questions involving the
study of many conditions (e.g. time courses, dosage series, series of patients,
tissues, etc.). Comparison of two conditions involves the determination of
the genes whose expression levels change significantly with respect to the
reference condition. Multi-condition experiments usually provide the answer
for more complexes questions, and involve more sophisticated methods for
their analysis. The next two sections will describe the most commonly used
methodologies for analyzing both situations.

Typically, the multi-condition experiments are represented in a matrix of
gene expression values, with genes in rows and conditions in columns. In
other words, each column represents a single microarray experiment.
Depending on the experiment, the values of gene expression can be used to
classify conditions (columns) or gene expression profiles (rows). Both cases
involve a first step of clustering either to obtain sets of conditions with
similar gene expression values or to obtain sets of genes with similar
expression profiles along the studied conditions. Classification of different
types of cancers is a typical example of the first type of experiments. The
molecular signature of the different tumoral tissues has been demonstrated to
be a valuable diagnostic tool (see for example [Alizadeh et al., 2000; Alon et
al., 1999; Perou et al., 1999; Ross et al., 2000; Scherf et al., 2000; etc.]). The
second type of experiment usually involves the study of time series or
dosage series to detect which genes display highly correlated expression
patterns. These genes most likely play similar roles in the cell (see, for
example [Brown et al., 2000; Eisen et al., 1998; Wen et al., 1998; etc.]). In
addition, it is possible to design experiments that infer networks of
interactions between genes [D’haeseleer et al, 2000]. It is possible, in
theory, to extract information about these networks from the study of
expression profile correlation and, in some cases, complement the results
with external information.
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7. DATA ANALYSIS

7.1 Two conditions comparison

The comparison of two independent samples (i.e. diseased versus normal
tissue, etc.) is the simplest experimental situation, as previously mentioned.
Although a number of statistical tests are available to assess the significance
of the observed differences, most of the papers published to date use simple
filtering rules that eliminate genes with less than two- or three-fold
expression changes or, in general arbitrary assigned fold differences [Schena
et al., 1996; Webb et al., 2000]. Application of such thresholds completely
fail to spot biologically important genes that have a small fold change, but
which are highly significant statistically because they can be measured with
high precision as a result of replication. On the other hand, many genes that
have a large fold change in one array may also exhibit high variability across
multiple arrays and thus possess little to no statistical significance. Thus, the
appropriate determination of significance is a key issue that helps to
appropriately distinguish between important biological changes and chance
variation [Wittes and Friedman, 1999]. A recent work [Tanaka et al. 2000]
illustrates the danger of false positives and false negatives when looking
strictly at fold change.

Classical statistical techniques, like a standard t-test, are available to
check the significance of the observed differences if two independent
samples are compared. This test produces a P value that represents the
probability that the difference is observed because of random chance. A very
small P value will indicate that the tested gene is likely to be differentially
expressed. The genes in the array can be ranked according to increasing p
values and an appropriate threshold can be selected depending on the
percentage of false positives chosen.

So far there are few examples where these tests have been applied
[Rogge et al., 2000; Glynne et al., 2000], but in the majority of the cases, the
strategy of choice seems to be based on ad hoc thresholding procedures,
often based on arbitrary assigned fold differences [Schena et al., 1996; Webb
et al., 2000].

7.2 Multiple conditions comparison.
7.2.1 Types of comparisons: genes or conditions
As already mentioned, the values of gene expression can be used to

classify conditions (columns) or gene expression profiles (rows). In both
cases a first clustering step is necessary. However, even though the goal of
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clustering is the same, the characteristics of the input data are quite different.
In the case of classifying conditions, a few (usually less that one hundred)
column vectors with many components (all the genes in the array, that is,
several thousands) need to be clustered. On the other hand, when gene
expression patterns are to be classified, several thousand rows with few
components need to be clustered. Individual components of the vectors have
a non negligible noise component, and missing values are not infrequent.
The different properties of the distinct clustering methods make them more
suitable for one, both, or none of the types of comparisons, as will be
discussed in the next sections.

7.2.2 Distances

The identification of genes with correlated expression across the
conditions studied or, alternatively, the identification of conditions with
similar expression values for all the genes is achieved through the
comparison of the row or column vectors, respectively, by means of a
distance function. The choice of a given metric depends very much on what
properties the researcher wants to measure. There are two types of metrics
extensively used in the comparison of expression profiles: Euclidean
distance and Pearson’s correlation coefficient.

Given two vectors, that can represent either genes (rows) or conditions
(columns), with their corresponding expression patterns: vy (€51, €125 « €1n)
and v; (€21, €12, .. €3,), values for both distances are obtained as follows.
Euclidean distance is obtained as the square root of the summation of the
squares of the differences between all pairs of corresponding values:

dl,z = Z(eli - ezi)2

i

This metric measures the absolute distance between two points in an n-
dimensional space, where n is the size of the vector. This distance considers
two similar vectors whose components display similar magnitude of
expression. Although this property may be useful in some cases, in the case
of gene expression profiles it is biologically more interesting to search for
vectors whose components may have different absolute values, but similar
overall profile. Euclidean distance can be used for these purposes if the data
are properly transformed (normalised in a statistical sense, that is,
subtracting the mean and dividing by the variance). Nevertheless, the ideal
metric for identifying profiles with similar shapes is the Pearson’s
correlation coefficient (r) that does not need any specific transformation of
the data. This metric gives values between -1 (negative correlation) and 1
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(positive correlation). The more the two profiles have the same trend; the
closer to 1 is the r value, irrespective of their absolute values of expression.
A very interesting property of the correlation coefficient is that it can be used
to detect negatively correlated genes.

The distances described above are affected to some extent by the fact that
there exists a degree of correlation between genes as well as between
experimental conditions. This correlation tends to produce elliptical clusters,
which can cause problems for clustering methods whose optimal
performance occurs with compact, round clusters, such as k-means. There
are, on the other hand, distances that can deal with datasets containing large
numbers of measures with a high degree of internal correlation. Distances
that take into account covariance between experiments, like Mahalanobis
distance [Mahalanobis, 1936], may be useful for datasets with high internal
correlation. The problems derived from the complex joint distribution of
gene expression values, particularly their correlational structure and non-
normality has been addressed by other authors [Hunter, 2001]. They argue
that simple similarity metrics such as Euclidean distance or correlational
similarity scores are suboptimal for use in this application and propose the
use of Bayesian approaches. Nevertheless, they conclude that the use of
more sophisticated approaches did not produce significantly better results
than the euclidean or the correlation metrics.

Most of the metrics found in the literature are derived from the Euclidean
distance or from the correlation coefficient.

7.2.3 Unsupervised clustering

Unsupervised clustering comprises a number of techniques that produce
arrangements of the data based on a distance function. These methods do not
use any external information for constructing groups of similar profiles of
conditions or genes.

Despite the arsenal of methods used, the optimal way of classifying gene
expression data is still open to debate. Here we will discuss the virtues and
pitfalls of the most frequently used methods. The table below shows a list of
the most current methods used for clustering, arranged on the basis of their
properties and underlying algorithms.
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Table 3. Some of the most used clustering methods and their main properties.

Method Topology Properties

PCA, SVD, Non hierarchical | Exploratory algorithms
k-means, quality cluster | Non hierarchical | Runtimes > n’
Average linkage Hierarchical Runtimes > n’

SOM Non hierarchical | Robust, runtimes ~n
SOTA Hierarchical Robust, runtimes ~n

Clustering techniques can be used in combination with other exploratory
techniques, like Principal Component Analysis (PCA) [Everitt and Dunn,
1992], that help to visualise the complexity of the data in a two or three-
dimensional space, and groups of genes can be visualised. Other related
techniques, like Singular Value Decomposition (SVD) [Alter et al., 2000] or
correspondence analysis [Fellenberg et al., 2000] have also been applied to
cluster gene expression patterns. Nevertheless, some authors have pointed
out that these techniques can produce misleading results when applied to
gene expression data [Yeung and Ruzzo, 2001]

Depending on the way in which the data are clustered we can distinguish
between hierarchical and non-hierarchical clustering. Hierarchical clustering
allows detecting higher order relationships between clusters of profiles
whereas the majority of non-hierarchical classification techniques work by
allocating expression profiles to a predefined number of clusters, without
any assumption on the inter-cluster relationships. Many authors prefer
hierarchical clustering to the non-hierarchical alternatives due to the
possibility of exploring different levels of the hierarchy. Aggregative
hierarchical clustering in its different variants (average-linkage, single-
linkage, complete-linkage, etc.) [Sneath & Sokal, 1973] is still one of the
preferred choices for the analysis of patterns of gene expression, in part due
to the availability of software either in standard statistical packages or
specifically designed for gene expression data [Eisen er al, 1998]. It
produces a representation of the data with the shape of a binary tree, in
which the most similar patterns are clustered in a hierarchy of nested subsets
[Dopazo et al, 2001]. Standard hierarchical clustering has been used to
analyze several systems, including yeast [Eisen et al., 1998; Chu et al., 1998;
Spellman et al., 1998] and human cells [Wen et al., 1998; Perou et al., 1999;
Voehringer et al., 2000; Scherf et al., 2000; Ross et al., 2000; Roberts et al.,
2000].

As an alternative to hierarchical clustering, other non-hierarchical
methods, like quality cluster [Heyer et al, 1999] or k-means [Hartigan,
1975], have been used [Tavazoie et al., 1999]. These algorithms start with a
pre-defined number of clusters and, by iterative reallocation of cluster
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members, minimise the overall within-cluster dispersion. Common criticisms
of these types of algorithms focus on the fact that the number of clusters has
to be fixed from the beginning of the procedure. Other authors [Ben-Dor et
al., 1999; Herwig et al., 1999] proposed different versions of a progressive
k-means procedure that find the number of different clusters from the data
itself and is independent of an a priori specified number of clusters.

Standard hierarchical clustering works very well for clustering conditions
(few items) but several authors [Tamayo er al., 1999] have noted that
standard clustering methods are not very robust when applied to clustering
thousands of gene expression profiles. In addition, typical runtimes of
standard methods based on distance matrices can range from N° to N*
[Hartigan, 1975], which makes them very slow when thousands of items are
to be analyzed. In an attempt to overcome these problems, some authors
have proposed the use of neural networks as an alternative [Tamayo et al.,
1999; Toronen et al., 1999; Herrero et al., 2001]. A comparison of runtimes
[Mateos et al., 2002b (Chapter 6, this volume)] shows how neural network-
based methods are clearly faster than their standard counterparts. A recent
comparative study [Cummings, 2001], shows SOTA as one of the fastest
methods. Unsupervised neural networks, such as Self-Organising Maps
(SOM) [Kohonen, 1997] or the Self-Organising Tree Algorithm (SOTA)
[Dopazo and Carazo, 1997], provide a more robust framework, appropriate
for clustering large amounts of noisy data. Because of their properties, neural
networks are suitable for the analysis of gene expression patterns. They can
deal with real-world data sets containing noisy, ill-defined items with
irrelevant variables and outliers, and whose statistical distributions do not
need to be parametric.

Nevertheless, the SOM has some inherent problems. Firstly, it is a
topology-preserving neural network. In other words: the number of clusters
is arbitrarily fixed from the beginning, as in k-means. In addition, the
training of the network (and, consequently, the definition of clusters)
depends on the number of items in each cluster. Thus the clustering obtained
is not proportional. If irrelevant data (e.g. invariant, "flat" profiles) or some
particular type of profile is over represented, SOM will produce an output in
which this type of data will populate the vast majority of clusters. As a “side
effect”, the most interesting profiles tend to map in a few clusters and
resolution can be poorer for them. Contrary to this, clustering obtained with
SOTA is proportional to the heterogeneity of the data, instead to the number
of items in each cluster. Thus, regardless of whether a given type of profile
is abundant, all the similar items will remain grouped together in a single
cluster and they will not directly affect to the rest of the clustering. This is
because SOTA is distribution preserving while SOM is topology preserving
[Dopazo and Carazo, 1997; Frizke, 1994].
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To date there are few comparisons about the relative performance of
different clustering methods. Recently, using the silhouette statistic [Hand,
1981] it was found that SOTA performed slightly better than average
linkage, whereas SOM displayed the worst performance in terms of accuracy
of classification in the proper cluster [Mateos et al., 2002b (Chapter 6, this
volume)].

Since the comparison operations are performed amongst the data and the
average profiles in the nodes, the absence of some points (missing values) in
a vector corresponding to a particular gene expression profile will have a
negligible effect on the whole process of the network training. This makes
unnecessary the use of methods for estimating missing values [Troyanoskaya
et al., 2001] required if average linkage or similar methods are used.

724 Definition of clusters: confidence intervals and statistical
approaches

Statistical tests for assessing the reliability of the clusters found by the
different methods have been scarcely used. Since the development of
statistical models that account for clustering in the context of gene
expression is still in a very preliminary phase [Baldi and Long, 2001],
simulation [Kruglyak and Tang, 2001] or resampling techniques, like the
bootstrap [Efron and Tibshirani, 1991], have been used [Kerr and Churchill,
2001b] as a practical alternative.

Other authors [Herrero et al., 2001] used a permutation test, consisting of
producing random permutations in the values of the rows (genes) to obtain
an approximation of the random distribution of distances that one could
expect in a data set with the same distribution of values that the original data
set studied. Then, a simple one-tail test can be used to set a threshold, at the
desired confidence level, for a distance value that cannot happen by chance.
This test can be coupled to some clustering methods [Herrero et al., 2001].

725 Supervised clustering

For most biological problems, there is some information available
beforehand that can be exploited to produce clusters and to further classify
new data. There are a number of methods for supervised clustering able to
“learn” from this information the features defining each cluster, usually from
a training set, and later use this knowledge to classify additional data. A
detailed description of these methods is beyond the scope of this revision but
it is worth mentioning that they have successfully been applied to cluster
both genes and conditions.
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Support Vector Machines (SVM) was the first example of the application
of machine learning methods to classifying gene expression profiles. SVM
are able to use prior information on the classes studied, in this case MIPS
(http://www.mips.biochem.mpg.de/proj/yeast) functional classes [Brown et
al., 2000]. Later, perceptrons, a feed forward neural network, were used for
the same task [Mateos et al., 2002a], showing some advantages over SVM,
such as the possibility of classifying several classes at the same time (SVM
can only separate two classes at a time).

Recent proposals suggest that supervised methods such as SVM [Furey et
al., 2000] or supervised neural networks [Khan ef al., 2001] can be used to
classify conditions too. Neural networks, in contrast to SVM, are able to
discriminate amongst many different classes, and this is preferable for multi-
class problems. Principal component analysis (PCA) was used to reduce the
number of items to analyze [Khan et al., 2001]. One reason for this reduction
is the consequent decrease in the number of parameters that the perceptron
has to infer from the data, which depends on the size of the input layer (in
this particular case the number of genes). Generally speaking, fewer
parameters mean more generalisation power in the network. Nevertheless,
the use of PCA results for clustering may not provide the best results [Yeung
and Ruzzo, 2001]. Other authors have first clustered the gene profiles with
SOTA, and used them for clustering conditions after defining the optimal
level of information [Mateos et al., 2002b (Chapter 6, this volume)].

Again there are few comparisons between supervised and unsupervised
clustering methods, but in a recent example [Mateos et al., 2002b],
supervised clustering seems to perform better for classifying conditions.

7.3 Gene networks

One of the subjects attracting more attention is the study of gene
networks. The simplest approach is clustering the data and searching for
regulatory control elements (e.g., promoters) in all co-expressing genes
[Brazma et al., 1998; Tavazoie et al., 1999]. But the information provided by
these approaches is limited to genes that are co-regulated, not to which gene
is regulating which other gene. In network inference, the aim is to construct
a model of the interactions between genes. This requires inference of the
causal relationships among genes or, in other words, the reverse engineering
of the network architecture from the gene expression profiles. Boolean
networks [Somogyi et al., 1997; Liang et al., 1998] are utilised for reverse
engineering gene networks, for example in S. cerevisiae [Friedman et al.,
2000]. Depending on the connectivity (number of possible gene
interactions), Boolean networks need more or less experimental points. Fully
connected networks would need 2" experimental measures for N genes,
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which is a completely unrealistic number. But introducing restrictions
derived from previous knowledge of the system can drastically decrease the
number of points required [D’haeseleer et al, 2000]. Also, systems of
differential equations [Chen ef al., 1999] or other approaches inspired in
electronic circuit theory [Arkin et al, 1997] can be used for modelling
simple gene regulation systems. A major challenge is to couple modelling
with systematic experimental design. This is the key for the discovery of
novel gene function and gene network connections trough expression
profiling and computational inference.

8. CONCLUSIONS AND FUTURE PROSPECTS

The methods revised here, despite being a non-exhaustive collection,
comprise the most widely used ones. Nevertheless, these methods constitute
only the tip of the iceberg in terms of the magnitude of information that
DNA array technologies, with the appropriate data analysis can offer.

The real purpose of genomic methodologies like DNA arrays is to
convert the wealth of data produced into information and the information
into knowledge [Basset et al., 1999]. The methods described in the review
can be considered the first generation of analysis tools, oriented to arrange
the vast amounts of data in a comprehensive manner. The next step in the
analysis consists of extracting the information and biological characteristics
common to groups of genes of interest. Most of this information is in the
biomedical literature and because of this, a considerable effort in developing
automatic procedures for extracting it has been made in the last years.
Different problems such as the detection of protein names [Fukuda, 1998§],
information related to groups of proteins [Andrade and Valencia, 1998],
protein-protein interactions [Blaschke et al, 1999], or building knowledge
bases derived from the scientific literature [Ohta et al, 1997] as well as
general utilities for text retrieval [Wilbur and Coffee, 1994] have been
addressed recently. Also, text mining techniques have been applied to the
analysis of gene expression data [Tanabe et al., 1999; Oliveros et al., 2000;
Jenssen et al., 2001].

However, text mining (and data mining in general) is only one of the
many topics in progress. The DNA array data analysis field is rapidly
evolving and many new methods now under development will come to light
soon. It is even possible that, in only a few years, DNA arrays will be
substituted by other, more powerful, functional genomic screening
techniques. Nevertheless, many of the ideas for the analysis of the data,
perhaps implemented in different, more efficient algorithms, will still hold.
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Abstract: In this note, we describe an approach to the analysis of microarray data that
uses significant biological information early in the process. By combining
information about the biological function and chromosomal location of genes
with microarray expression data, we are able to get a more comprehensive
picture of the heterogeneity of different kinds of cancer. We also get
information about the importance of different chromosomes and biological
processes for distinguishing cancers. In general, methods that use existing
biological knowledge are likely to provide more meaningful and more
interpretable results than completely unsupervised methods.

Key words: DNA microarrays, gene ontology.

1. INTRODUCTION

At present, the prototypical statistical analysis of a set of microarray data
relies on methods that apply equally well to any data set that can be
structured as a single large matrix. Very few methods attempt to use existing
biological knowledge early in the analysis. In the study of cancer, this
approach seems inadequate. We already know about many genes that are
important in the study of cancer because of their involvement in specific
biological processes; see, for instance, the curated cancer gene lists
maintained by the National Cancer Institute [NCI, 2001]. We also know that
cancers frequently exhibit systematic chromosomal abnormalities, and that
these abnormalities can, in some cases, be detected by gene expression
profiling with microarrays [Virtaneva et al., 2001].
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In this paper, we describe a way to use existing knowledge about the
location of genes on chromosomes and existing functional annotations to
analyze the NCI60 data set [Ross et al., 2000; Schetf et al., 2000]. We began
by carefully updating the gene annotations, including chromosome
mappings. Using the structured vocabulary produced by the Gene Ontology
Consortium [GOC, 2000], we selected several of the functional categories of
genes that are represented on the array for detailed analysis. We carried out
separate hierarchical cluster analysis and principal component analysis using
the genes from each chromosome and the genes assigned to each functional
category. We found that this method is at least as good at clustering cell lines
from related types of cancer as methods that use all genes or methods that
select genes based on a variation filter. Moreover, this method allows us to
interpret the genes involved without resorting to ex post facto arguments. By
combining genes (or principal components of genes) from known functional
categories that are identified by this analysis as useful for distinguishing
different types of cancer, we should also be able to cluster the remaining
expressed sequence tags (ESTs) on the microarray and make predictions
about their functional roles.

2. THE ANNOTATION PROBLEM
2.1 Reannotating the Spots

The critical step in applying existing functional and chromosomal
annotations from the public databases to the analysis of microarray data is to
collect up-to-date information about the genes spotted on the array. Most of
the spots on the microarrays used to acquire the NCI60 data were already
annotated with GenBank accession numbers. Although the spot annotations
included gene symbols and descriptions, this information must be considered
suspect. Symbols and descriptions are properly associated to UniGene
clusters or LocusLink identifiers rather than to GenBank accession numbers;
every time UniGene is rebuilt, some accession numbers become associated
with different clusters, or with no cluster at all.

To address this problem, we downloaded the latest build of UniGene
(ftp://ncbi.nlm.nih.gov/repository/UniGene/Hs.data.Z, build 137 as of July
2001) and reannotated all 10,000 spots on the microarrays using a
combination of perl scripts and SQL queries against an evolving Microsoft
Access database. In the existing descriptions of the microarrays, most spots
were annotated with two GenBank accession numbers, one from the 3’ end
and the other from the 5° end of the gene. Of the 10,000 spots on the array,
8,192 spots were annotated with both 3’ and 5’ accession numbers, 1,514
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had only one accession number, and 294 had no accession number. The
latter spots consisted primarily of empty spots and controls. The results of
our updated analysis of the annotations are shown in Table 1. Only 7,478 of
the spots on the microarray could be mapped to a unique cluster in the
current build of UniGene. (These categories of spots are indicated with an
asterisk in Table 1.) The 7,478 spots represented 6,614 distinct genes.

Table 1. Current UniGene status of the accession numbers of the spots on the NCI60
microarrays. Asterisks indicate categories of genes with usable UniGene annotations.

Number of Spots | Existing GenBank annotations Current UniGene Status
294 | No available accession number None
128 | Only 3" available Unknown to UniGene
* 1379 | Only 3' available Known to UniGene
1 | Only 5'available Unknown to UniGene
" 6 | Only 5" available Known to UniGene
399 | Both 3" and 5’ available Both unknown
763 | Both 3" and 5" available 3" known, 5' unknown
291 | Both 3" and 5" available 3" unknown, 5' known
646 | Both 3" and 5" available Both known, but disagree
* 6093 | Both 3" and 5" available Both known, and agree

Along with the current UniGene cluster numbers, we downloaded current
gene symbols, names, chromosome mappings, cytogenetic positions, and
LocusLink identifiers. Of the 6,614 distinct genes, 6,059 had been mapped to
specific chromosomes in the current UniGene database. When compared
with the total number of genes per chromosome listed in the MapViewer at
the National Center for Biotechnology Information (NCBI) as of July 2001,
most individual chromosomes are represented on the array in roughly the
expected numbers of genes (data not shown). The only exception is the Y
chromosome, which is represented by a single gene on the microarray.

2.2 Finding Functional Categories

2.2.1 From UniGene to LocusLink

As mentioned above, the UniGene annotations include a mapping from
clusters to LocusLink identifiers. LocusLink provides a gateway to
additional functional information about the genes. Of the 6,614 distinct
genes on these microarrays, 5,074 were associated with LocusLink
identifiers. The remaining 1,540 genes consisted primarily of expressed
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sequence tags (ESTs) and “hypothetical proteins” with no further functional
information.

222 From LocusLink to Gene Ontology

LocusLink includes functional annotations for many genes using the
structured vocabulary being developed by the Gene Ontology Consortium.
To access this information, we downloaded the latest release of LocusLink
(ftp://ncbi.nlm.nih.gov/refseq/LocusLink/LL_tmpl) from the NCBI web site.
Using a combination of perl scripts and SQL queries against our Access
database, we located all the Gene Ontology numbers associated with each of
the spots on the array that were already mapped to a LocusLink identifier.

The functional annotations in Gene Ontology form a directed acyclic
graph, with a single root node and three top-level nodes representing
biological processes, molecular functions, and cellular components. Of the
5,074 LocusLink identifiers represented on the microarray, we found that
2,989 had a functional annotation:

— 2,484 genes had at least one molecular function;
— 2,399 genes were involved in a biological process;
— 1,883 genes were localized to one cellular component.

For genes that had at least one Gene Ontology annotation, we found a
total of 11,277 annotations, broken down into:

— 3,758 annotations of molecular function;
— 4,762 annotations of biological process;
— 2,757 annotations of cellular component.

We decided to restrict our attention to annotations of biological processes
for further analysis of the gene expression data. We believe that biological
processes (which explain why something is being done) provide a more
interpretable conceptual level for grouping genes than molecular function
(what is being done) or cellular component (where it is being done).

2.2.3 Disentangling Gene Ontology

The Gene Ontology structured vocabulary is a directed acyclic graph
with thousands of nodes. The existing annotations are frequently quite
detailed, mapping individual genes far down in the hierarchy. Our goal was
to select a few nodes at reasonably high levels to group the genes into sets
each containing approximately 100 to 500 genes. This goal required us to
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determine how many genes were mapped into subnodes of any given node in
the graph.

Table 2. Functional categorics of genes.

Function Annotations | Spots
Oncogenesis 140 180
Apoplosis 128 138
Physiological processes 180 210
Perception of external stimuli 238 150
Ectoderm development 129 152
Mesoderm development 92 102
Cell adhesion 111 140
Cell-cell signaling 137 166
Cell surface receptor linked signal transduction 222 228
Intracellular signaling cascade 110 110
Cell motility 120 153
Cell organization and biosynthesis 98 118
Cell shape and size control 78 101
Intracellular protein traffic 157 188
Transport 146 136
Cell proliferation 197 249
Stress response 599 in2
Radiation response 147 136
Cell cycle 494 283
Nucleic acid metabolism 695 595
Protein metabolism 471 567
Lipid metabolism 146 156
Carbohydrate metabolism 103 97
Energy pathways 88 98

To accomplish this task, we downloaded the complete Gene Ontology graph
in XML format from the Gene Ontology web site. Using a perl script, we
mapped the frequency of annotation from the genes into each node, and then
percolated those frequencies up the tree. We then inspected the graph and
selected 24 categories. The categories are shown in Table 2, along with the
number of annotations into subnodes in the graph and the number of spots on
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the array placed into each functional category. The number of annotations
can exceed the number of spots because of multiple annotations per gene or
because of multiple pathways in the graph. The number of spots can exceed
the number of annotations because some genes are represented multiple
times on the microarray.

3. PRELIMINARY ANALYSIS

3.1 Data Preprocessing

We used the normalization procedure followed by the original authors
[Ross et al., 2000]. Thus, for each microarray, local background is
subtracted from the estimate of signal intensity at each spot. The
background-corrected values in the second channel are rescaled to set the
median log ratio of the background-corrected values between the channels to
equal one.
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Figure |. Variability of reference channel measurements as a function of log intensity.

We considered studentizing the log ratios; that is, taking each log ratio
and dividing it by its standard deviation. The standard deviation can be
estimated from the repeated measurements in the reference channel. To
investigate this possibility, we normalized each channel independently,
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rescaling the median intensity in the channel to one. We computed the
interquartile range of each gene as the difference between the 75" and 25"
percentile values of its log intensity. We plotted the interquartile range as a
function of its median log intensity across experiments (Fig. 1). The vertical
line in the graph marks the 97" percentile of the empty spots on the arrays.
Although studentizing would reduce the weight given to the spots to the left
of this line, it is simpler to filter them out completely, since they are
essentially unexpressed by any of the cell lines in this study. After this
filtering step, 9,249 spots remain.

We next considered centering each row in the data matrix of log ratios;
that is, subtracting the mean of each row from all entries in the row. Because
the reference material is a mixture of twelve of the cell lines studied
individually in these experiments, one might expect the average expression
in the experimental channels to be roughly equal to the average expression in
the reference channel; that is, the average log ratios across all experiments
should be zero. To investigate this possibility, we plotted the median log
ratio (over all experiments) of each gene as a function of its median log
intensity in the reference channel (Fig. 2). We found that a substantial
number of genes were consistently expressed at higher levels in the reference
channel than in the experimental channel: 1,027 genes have median log
ratios greater than (0.5. This result makes sense if these genes differ sharply
in their expression between cell lines. We also performed cluster analyses
using only the genes whose average log ratio was small (less than 0.5 in
absolute value). These genes were still able to recover a great deal of
information about how the cell lines were related (data not shown). In order
to give both groups of genes comparable weight in our further analyses, we
centered each row of the log ratio matrix.
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Figure 2. Median log ratio between channels as a function of the median log intensity in the
reference channel.

3.2 Updating Cell Line Classifications

Preliminary cluster analysis suggested that the origins of some cell lines
in this study were incorrectly annotated (data not shown). Cell line SNB-75
is described by the original authors as derived from a renal call carcinoma,
but it tended to cluster with cell lines derived from tumors of the central
nervous system (CNS) [Ross et al, 2000]. At the NCI web site
(http://dtpws4.nciferf.gov/DOCS/misc/common_files/cell_list.html), this cell
line is listed as CNS-derived. A search of the medical literature found a
number of references confirming this classification [Shi et al., 1995]. Next,
the cell line ADR-RES is described by Ross et al. as being of unknown
origin. The NCI web site describes ADR-RES as a breast cancer cell line;
published articles describe it as a multidrug resistant cell line developed
from the breast cancer cell line MCF-7 [Nieves-Neira and Pommier, 1999].
We updated the annotations on both cell lines for further analysis. Finally,
after confirming that replicate experiments from the same cell line (K562 or
MCF7) clustered together repeatedly, we decided to use only one member of
each replicate pair in order to avoid giving undue weight to the replicated
cell lines.
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33 Choosing a Distance Metric

Before performing analyses using sets of genes filtered by chromosomal
location or by functional category, we had to choose a distance metric to
compare both genes and samples. We considered four different metrics:
Euclidean distance, the Pearson correlation coefficient, the Spearman rank
correlation, and the Euclidean distance between rows of the Pearson
correlation matrix. Each correlation-based measure was converted into a
distance metric by taking distance = (I — correlation)/2. We performed
analyses on the data set consisting of all 9,249 nonempty spots using both
multidimensional scaling and average linkage hierarchical clustering for
each distance metric. All the correlation-based metrics gave comparable
results (data not shown). Analyses using Euclidean distance seemed to be
driven strongly by a few outlying samples (which were in turn driven by a
small number of outlying genes). After reviewing these preliminary results,
we decided to perform all further analysis using the distance metric based on
the Pearson correlation coefficient. The cluster analysis using all 9,249 genes
and this metric displays coherent patterns for 7 of the 9 kinds of cancer; only
breast cancer and prostate cancer fail to cluster together strongly (Fig. 3).
Analysis of the data using multidimensional scaling or principal components
gave results that were consistent with the hierarchical clustering (data not
shown).
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Figure 3. Hierarchical clustering using 9,249 genes, with distance determined by the Pearson
correlation coefficient. Seven of the nine kinds of cancer cell lines cluster strongly together.
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4. CHROMOSOMAL CLUSTERING

For each chromosome (except for the Y chromosome, for reasons
described above), we formed a data matrix whose columns were the 60
experimental samples and whose rows were the genes on the microarray
from that chromosome. Genes unexpressed in the reference channel were
omitted. The matrix contained normalized log ratios between the
experimental samples and the reference channel. In addition, the values in
each row were centered to have mean zero. We performed principal
components analysis and hierarchical clustering using the distance metric
derived from the Pearson correlation coefficient. We scored each
dendrogram for its ability to cluster samples into classes that correctly
reflected the kind of cancer involved, using the following ordinal scale:

— A = a cluster contains all and only samples of that kind.

— B = a cluster contains all samples of that kind of cancer, but includes one
or two extraneous samples.

— C = a cluster contains all but one sample of that kind.

~ D = a cluster contains all but one sample of that kind, but includes one or
two extraneous samples.

— E = a cluster contains all but two samples of that kind.

— F = samples of that kind are weakly clustered.

Using this scale, the scores for each cancer from the dendrogram of
Figure 3 are shown in Table 3 (abbreviations: B = breast, C = colon, L =
leukemia; M =melanoma; N = non small cell lung cancer; O = ovarian; P =
prostate; R = renal; S = central nervous system).

Table 3. Scores for the dendrogram shown in Figure 3.

Cancer B | C L M|N|O|P|R|S
Score A|lA|D F | D C | E

Using an ordinal scale allows us to rank the quality of a clustering based
on how well it identifies individual cancer types, but it does not allow us to
assign a single quantitative score for the overall quality of the cluster.
Replacing A-F by numerical values 1-6 would allow us to compute
numerical averages, but raises two potential difficulties. First, we do not
know a priori how to weight the relative importance of clustering specific
types of cancer. Second, we do not have a sound statistical basis for
interpreting the significance of the scores that would result. For these
reasons, we restricted ourselves to the ordinal scale.
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Table 4. Scores showing ability of genes on specific chromosomes to cluster cancer types.

Chromosome | B C L M N 0 P R S
1 B A D F D B
2 E C D D E D E
3 C E D E F
4 E E E E

5 A | A D F E

6 G A D E | E D
7 E A D E & E
8 E 9 D

9 B C D F E D
10 & C E E E

11 E C C D
12 B C C E E | E

13 D E

14 A A F

15 & B & F &

16

17 A A D F E E
18 E D

19 D D

20 E C

21

22 A E E
X B A D E D

The scores for dendrograms using one chromosome at a time are shown
in Table 4. We can draw a number of conclusions from this table. First,
genes on chromosomes 16 and 21 are unable to distinguish any single kind
of cancer. At the opposite extreme, chromosomes 1, 2, 6, 7,9, 12, and 17 can
be used to distinguish the largest numbers of cancer types (see Fig. 4 for
examples). Also, breast cancer samples do not cluster together regardless of
the chromosome being used. Conversely, leukemias and colon cancers are
both easily distinguished from other kinds of cancer. Note also that the
prevalence of D scores in the melanoma column results from one melanoma
sample (LOXI MVI) that consistently clusters apart from the other samples,
and from two putative breast cancer samples (MDA-MB-435 and MDA-N,
both of which came from the same patient) that consistently cluster as
nearest neighbors within the majority of the melanoma samples.
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Figure 4. Dendrograms using genes restricted to a single chromosome. Chromosome 17 gives
a highly structured result; chromosome 21 is essentially random.
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S. FUNCTIONAL CLUSTERING

For each functional category (or biological process) of genes described
above, we formed a data matrix whose columns were the experimental
samples and whose rows were the spots on the microarray corresponding to
genes involved in that biological process. Genes that were unexpressed in
the reference channel were omitted from the data set. Each data set was
analyzed as described for the analogous chromosome-specific data sets. The
dendrograms were scored as described above; the result is shown in Table 5.
Again, the colon cancers, leukemias, melanomas, and renal cancers are most
easily distinguished, with the breast and lung cancers least likely to cluster
together to any degree. Interestingly, genes involved in apoptosis do a poor
job of distinguishing most kinds of cancers. The categories that do the best
job of classifying melanomas are “radiation response” and “perception of
external stimuli”, both of which include a substantial number of genes
involved in the perception of light. The categories that work best to
distinguish many kinds of cancer are cell cycle, cell proliferation, and
protein metabolism, suggesting that cancers use a wide range of different
strategies to overcome the built-in controls on growth.
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Table 5. Scores showing ability of genes in different functional categories to cluster cancer
types.
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CONCLUSIONS

We can draw some general conclusions by looking at the dendrograms
and the multidimensional scaling plots for all the chromosomes and all the
functional categories. A complete set of these figures can be found in the

http://www.mdanderson.org/depts/cancergenomics/camda.html.
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First, the colon cancer and leukemia cell lines appear to be the most
homogeneous kinds of cancer included in this study, followed by the
melanomas and the renal cancer cell lines. At the opposite extreme, the
breast cancer cell lines seem to be the most heterogeneous, followed by the
non-small cell lung cancers. The ovarian and central nervous system cancers
fall somewhere in the middle of this spectrum. In addition, the colon cancers
and leukemias share some significant common features, often clustering near
one another. Similarly, the two prostate cancer cell lines frequently cluster
near the ovarian cancer cell lines.

The tissue of origin of several cell lines in this study is in question. The
original authors [Ross et al, 2000; Scherf et al, 2000] concluded that the
putative breast cancer cell lines MDA-MB-435 and MDA-N were actually
melanomas; our results support this conclusion. Another cell line, SNB-75,
is listed as a renal cell carcinoma by Ross er al, but was described
previously as a CNS cancer [Shi er al, 1995]. This cell line consistently
clusters with other cancers of the central nervous system, and so one
suspects that the earlier description of its origin is more likely to be correct.
Finally, the ADR-RES cell lines is listed as being of “unknown” type by
Ross et al., but is described elsewhere as derived from a breast cancer cell
line [Nieves-Neira and Pommier, 1999]. Across a wide variety of functional
categories and chromosomes, this sample is most similar to one of the
ovarian cancer cell lines, and so it is difficult to draw definitive conclusions
about its origin.

We found substantial differences in the ability of collections of genes (on
different chromosomes or in different functional categories) to distinguish
between types of cancer. Some individual chromosomes were nearly as good
at distinguishing cancer types as the full data set; others yielded essentially
random permutations of the data. Similarly, some functional categories of
genes were extremely good at distinguishing cancer types, and others were
nearly useless.

Because this study did not include normal counterparts of the tissues of
origin of the cancer cell lines, one must draw conclusions carefully.
Categories of genes that distinguish cancer types may actually be reflecting
differences in gene expression in the underlying tissues of origin. Categories
of genes that fail to distinguish cancer types may do so either because they
are unimportant for the study of cancer or because they are important — in
similar ways — across a wide variety of cancers.

Apoptosis genes, for example, did not distinguish between different
cancer types in this study. Without question, apoptosis genes play a critical
role in the development and progression of cancer. In order to proliferate,
every cancer must find a way to avoid the apoptotic pathways that lead to
cell death. The inability of apoptosis genes to distinguish cancer types has
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two possible interpretations: either most cancers avoid cell death by
developing similar disturbances in the apoptotic pathways, or else each
cancer finds an idiosyncratic way (having nothing to do with the tissue of
origin) to avoid cell death. In either event, this finding suggests that cancer
therapies targeted to specific genes in the apoptotic pathways are more likely
to be useful across a wide range of types of cancer, but less likely to be
useful for all patients with breast cancer, for instance.
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EXTRACTING GLOBAL STRUCTURE FROM
GENE EXPRESSION PROFILES
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Abstract: We have developed a program, GENECUT, for analyzing datasets from gene
expression profiling. GENECUT is based on a pairwise clustering method
known as Normalized Cut [Shi and Malik, 1997]. GENECUT extracts global
structures by progressively partitioning datasets into well-balanced groups,
performing an intuitive k-way partitioning at each stage in contrast to
commonly used 2-way partitioning schemes. By making use of the Nystrom
approximation, it is possible to perform clustering on very large genomic
datasets.

Key words:  gene expression profiles, clustering analysis, spectral partitioning

1. INTRODUCTION

DNA microarray technology empowers biologists to analyze thousands of
mRNA transcripts in parallel, providing insights about the cellular states of
tumor cells, the effect of mutations and knockouts, progression of the cell
cycle, and reaction to environmental stresses or drug treatments. Gene
expression profiles also provide the necessary raw data to interrogate cellular
transcription regulation networks. Efforts have been made in identifying cis
acting elements based on the assumption that co-regulated genes have a
higher probability of sharing transcription factor binding sites.

There is a well-recognized need for tools that allow biologists to explore
public domain microarray datasets and integrate insights gained into their
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own research. One important approach for structuring the exploration of
gene expression data is to find coherent clusters of both genes and
experimental conditions. The association of unknown genes with
functionally well-characterized genes will guide the formation of hypotheses
and suggest experiments to uncover the function of these unknown genes.
Similarly, experimental conditions that cluster together may affect the same
regulatory pathway.

Unsupervised clustering is a classical data analysis problem that is still an
active area of intensive research in the computer science and statistics
communities [Ripley, 1996]. Broadly speaking, the goal of clustering is to
partition a set of feature vectors into k groups such that the partition is
“good” according to some cost function. In the case of genes, the feature
vector is usually the degree of induction or suppression over some set of
experimental conditions. As of yet, there is no clear consensus as to which
algorithms are most suitable for gene expression data.

Clustering methods generally fall into one of two categories: central or
pairwise [Buhmann, 1995]. Central clustering is based on the idea of
prototypes, wherein one finds a small number of prototypical feature vectors
to serve as “cluster centers”. Feature vectors are then assigned to the most
similar cluster center. Pairwise methods are based directly on the distances
between all pairs of feature vectors in the data set. Pairwise methods don’t
require one to solve for prototypes, which provides certain advantages over
central methods. For example, when the shape of the clusters are not simple,
compact clouds in feature space, central methods are ill-suited while
pairwise methods perform well since similarity is allowed to propagate in a
transitive fashion from neighbor to neighbor. A family of genes related by a
series of small mutations might well exhibit this sort of structure,
particularly when features are based on sequence data.

Clustering algorithms can also often be characterized as greedy or global
in nature. The agglomerative clustering method used by Eisen et al. [1998]
to order microarray data is an example of a greedy pairwise method: it starts
with a full matrix of pairwise distances, locates the smallest value, merges
the corresponding pair, and repeats until the whole dataset has been merged
into a single cluster. Because this type of process only considers the closest
pair of data points at each step, global structure present in the data may not
be handled properly.

Another unsupervised clustering approach that has been applied to gene
expression analysis is the self —organizing map [Tamayo et al., 1999]. While
this technique is useful for structuring data sets in some applications, the
lack of an explicit “energy function” has made it difficult to analyze.
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Our approach to clustering gene expression data is based on the
Normalized Cuts (NCut) method introduced by Shi and Malik [1997; 2000].
Normalized Cuts is a pairwise clustering that finds a partitioning of the data
set into well-balanced groups. The resulting clustering minimizes a well-
defined, global cost function. Experience in the field of computer vision,
VLSI layout and parallel computing suggests that spectral graph methods
[Chung, 1997] such as Normalized Cuts provide excellent results on a wide
range of practical problems. In Section 2, we outline the NCut method for
clustering and in Section 3, demonstrate the application of NCut to the
Rosetta yeast gene expression dataset [Hughes et al., 2000].

2. CLUSTERING WITH NORMALIZED CUT

In this section we describe the NCut cost function, which provides a
measure of cluster quality that takes into account both the within-group
similarity and the between-group dissimilarity. We also outline the
algorithm used for finding a clustering of the data that has low cost. The
reader is referred to Shi and Malik [2000] and the references therein for
additional detail.

2.1 The NCut Criterion

We use the Pearson correlation between vectors of expression data to
capture the degree of similarity between two genes or two experiments. We
will apply the same clustering algorithm to both the problem of clustering
genes and that of clustering experiments so in this section we refer
generically to the items being clustered. Let W;; be the Pearson correlation
between the ith and jth data points. First consider the case of partitioning the
dataset into two groups (bi-partitioning). Let V denote the complete set of
data which is broken into subsets A and B. The NCut cost function is defined
as

cut(A, B) N cut(A,B)

NCut (A,B) =
assoc (A,V) assoc(B,V)

where the cut and association, defined as
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cut(A4,B) = ZWI'j assoc(A,V) = Zwij

ied,jebB i€Ad,jeB

are graph-theoretic terms that quantify the cost of this partition (the cut) and
the total connection of the subset to the whole set (the association).
Normalizing by the association term makes NCut different from graph
theoretic techniques based on min-cut (applied to genomic data by Sharan
and Shamir [2000], which can generate highly unbalanced clusters and
require elaborate post-processing. Shi and Malik, [2000] provide a
comparison.

While finding the A-B partition that minimizes the NCut criterion is an
NP-hard optimization problem, it is possible to relax the constraints in order
to obtain a closed form eigenproblem that yields high quality
approximations. The problem is formulated in terms of minimizing the
Rayleigh quotient,

y (D-W)y
y' Dy

where W is the matrix whose entries are Wy, D is a diagonal matrix with Dj;
=2 W, and y is a partition indicator vector. If we allow y to take on
continuous values then the minimum is obtained by the second leading
eigenvector of the generalized eigenvalue problem (D-W)y=ADy.

2.2 K-Way Partitioning

The NCut bi-partitioning technique has been applied to genomic
expression data by Xing and Karp [2001] for a data set containing two
clusters. However, for the analysis of a large compendium of expression
data, we would expect there to exist far more than two clusters.
Generalization to the case of more than two groups can be obtained in a
number of ways. One method is to apply bi-partitioning recursively on A
and B. Another method is to compute k leading eigenvectors instead of just
the second one. This leads to a k-dimensional embedding that is amenable to
clustering with simple central methods such as k-means [Duda and Hart,
1973]. The approach taken in our present work is a combination of these
two methods. We perform a recursive k-way clustering where k is
automatically chosen at each level to minimize the k-way NCut criterion
defined as
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L cut(A,V — A,
NCuty (Ay, Apyos ) = 3 S8AY = A1)

k= assoc(4,,V)

We find that this criterion constitutes an effective form of model selection
and yields natural clusters while avoiding the artificial constraint of bi-
partitioning or pairwise merging schemes.

2.3 Clustering Large Datasets

Our algorithm was prototyped in MATLAB where it takes less than a
minute to cluster the 560 genes used in our experiments. For very large
problems, the computation and memory requirements to solve the
eigenproblem can become a limiting factor for interactive data analysis. To
avoid these costs, we can exploit the Nystrom Approximation which allows
one to extrapolate the solution to a large clustering problem using a small
subset of the data [Fowlkes et al., 2001].

This approximation exploits redundancy between rows of the Wj matrix
by choosing a small subset of the genes and computing their similarity to
every other gene in the dataset. This thin strip of the matrix is then used to
compute a direct numerical approximation to the eigenvectors needed for
partitioning. The memory and processing expenses grow in proportion to
the number of samples rather than the total number of data points so by
using this approximation, our method should extend efficiently to the
analysis of complete genomes with thousands of experiments.

3. RESULTS

We have built a system for interactively browsing the results of the NCut
algorithm called GENECUT. The clustering results presented in this paper
along with prototype software are available from our website at
http://www.cs.berkeley.edu/~fowlkes/bio/. In this section we present some
results that indicate our algorithm is capable of finding clusters that exist in
the data. A robust algorithm is extremely important since true clusters in a
data set are unknown and poor clustering results could easily be misleading.
While it is difficult to evaluate the performance of clustering algorithms
quantitatively, we are able to point to clusters of well characterized genes
which have closely related functions, suggesting that the algorithm is
effective.
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Figure 1. The result of performing a recursive, k-way partitioning on a set of 560 genes and
123 experiments. Genes are arrayed along the x-axis and experiments along the y-axis. The
contents of the cluster indicated by the white circle are listed in Table 1 and Table 2. The
color-coding on the tree indicates the cost of the associated k-way cut. The contents of other
clusters are available for interactive exploration: http://www.cs.berkeley.edu/~fowlkes/bio/
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Figure 1 gives a visual overview of the clustering analysis presented by
GENECUT for the Rosetta gene expression dataset [Hughes et al., 2000].
The output of the clustering algorithm is presented in the form of a web page
that allows the user to traverse up and down through the layers of the tree
structure in both the experimental and gene dimensions. The user can click
on clusters in the overview image in order to view the genes and experiments
in that cluster. Gene descriptions include links to detailed descriptions and a
link that invokes a BLAST search of the Saccharomyoes Genome Database
using the 500 bp upstream sequence.

We expect that clusters of genes showing similar expression patterns are
likely to share some conservative regulatory motif. The ability to do a
BLAST query quickly is a first step towards seeking similar transcription
factor binding sites. We are currently exploring DNA motifs associated with
several of these clusters. Automatic identification of these putative motifs
would clearly be helpful in experimental design.

Experiment # | Description

9 erg Deletion

10 ergl Deletion

107 hmgl Deletion

61 Yer044c (haploid) Deletion

29 ERGI1 (tet promoter) Shutdown

35 HMG?2 (tet promoter) Shutdown

73 Lovastatin drug treatment
82 Terbinafine drug treatment
71 Itraconazole drug treatment

Table 1. Experiment cluster #5, an interesting group of experiments found by GENECUT
(shown circled in Figure 1). This cluster contains experimental conditions relating to the
sterol synthesis pathway.

Table 1 shows a cluster along the experimental axis that groups together a
set of experiments that all involve perturbations of sterol biosynthesis. To
extract global features from an experimental cluster like these sterol
synthesis experiments, we sort the gene clusters by their normalized
variances. We reason that the makeup of gene clusters with high variance
across a particular experiment cluster is likely to be biologically relevant.

Table 2 lists the gene cluster that has the highest mean variance in
expression level for the sterol synthesis experiments cluster. This gene
cluster makes biological sense and also agrees with a visual examination of
the dataset.
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Gene | System Name | Description

1 YHRO007C [ERG1] Cytochrome P450 (lanoterol 14 alpha-demethlase),
essential for biosynthesis of ergosterol

110 YDRS530C [4PA2] ATP adenylyltransferase II

169 YGLO00IC [ERG26] C-3 sterol dehydrogenase, C-4 decarboxylase, required
for ergosterol biosynthesis

195 YGRO049W [SCM4] Protein that suppressed temperature-sensitive allele of
CDC4 when overexpressed

197 YGRO60W [ERG25] C-4 sterol methyl oxidase: enzyme of the ergosterol
biosynthesis pathway

210 YGRI175C [ERG!] Squalene monooxygenase (squalene epoxidase), an
enzyme of the ergosterol biosynthesis pathway

279 YIL113W Unknown

337 YKROS53C [¥SR3] Sphingoid base-phosphate phosphatase, putative

regulator of sphingolipid metabolism and stress response

344 YLLO112W Protein with similarity to human triacylglycerol lipase

380 YMLO0O08C [ERG6] S-adenosylmethionine delta-24-sterol-C-
methyltransferase, carries out methylation of zymosterol as part
of the ergosterol biosynthesis pathway

392 YMRO15C [ERGS5] Cytochrome P450, delta 22(23) sterol desaturase,
catalyses an intermediate pathway step in the biosynthesis
pathway

434 YNLIIIC [CYB5] Cytochrome b5

491 YOR237W [HES!] protein implicated in ergosterol biosynthesis, member of
the KES1/HES1/OSH1/YKR003W family of oxysterol-binding
(OSBP) proteins

511 YOR394W Member of the seripauperin (PAU) family (YPL282C and
YOR394W code for identical proteins)

523 YPL272C Unknown

Table 2. Gene cluster #10 found by GENECUT contains genes related to sterol biosynthesis.
This cluster had the largest variance across experimental conditions for the set of experiments
in experiment cluster #5

Many easily identified clusters discussed in [Hughes et al., 2000] were
also found by the GENECUT algorithm. This is notable since the two
algorithms employed take quite different approaches (local agglomerative
vs. global divisive). Figure 2 contrasts the genes found by our algorithm
with those of Hughes et al. [2000] for the sterol gene cluster (our cluster
#10). Genes that appear in the intersection of the two clusters are presumed
to be related with high confidence while those which only appear in a single
cluster require more experiments to pin down. Since the agglomerative
clustering algorithm produces a dendrogram whose leaves are individual
genes, the cluster shown is actually a manually selected sub-tree.
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Figure 2. A comparison of the “sterol” cluster found by Hughes et al. [2000] (dotted circle}
and that found by the GENECUT algorithm (solid circle). As with many other clusters, there
is significant overlap.

4. CONCLUSIONS

In this report, we developed a novel application of the NCut algorithm to
the problem of gene expression profile analysis. The algorithm performs
favourably by focusing on the global features and recursively partitioning
the dataset into clusters. We demonstrate the utility of NCut in extracting
global features from an experiment cluster, and further explore regulatory
sequences within the representative gene clusters. It may be possible to use
this algorithm effectively in conjunction with hierarchical clustering tools in
order to perform “harvesting” of dendrograms and allow rapid exploration of
genomic data sets. We envision that this algorithm can ultimately be used as
a general clustering tool in various areas of genomics research such as
protein classification, DNA sequence data, and drug sensitivity profiling.

REFERENCES

Buhmann, JM. Data Clustering and Learning. In: Arbib, MA, ed. The Handbook of Brain
Theory and Neural Networks. MIT Press, 1995.

Chung, FRK. Spectral Graph Theory. American Mathematical Society (1997).

Duda, R, Hart, P. Pattern Classification and Scene Analysis. John Wiley & Sons (1973).

Eisen, MB et al. Cluster analysis and display of genome-wide expression patterns. Proc.
Natl. Acad. Sci 95 (1998): 14863-14868.



90 Fowlkes et al.

Fowlkes, C, Belongie, S, Malik, J. Spatiotemporal grouping using the Nystrom
approximation.  Proc. IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recogn
(2001).

Hughes, TR, Marton, MJ et al. Functional discovery via a compendium of expression
profiles. Cell 102 (2000): 109-126.

Ripley, BD. Pattern Recognition and Neural Networks. Cambridge (1996).

Sharan, R, Shamir, R. Click: A clustering algorithm with applications to gene expression
analysis. Proc. Of ISMB. AAAI Press, 2000.

Shi, J, Malik, J. Normalized cuts and image segmentation. Proc IEEE Conf. Computer Vision
and pattern Recognition (1997): 731-737.

Shi, J, Malik, J. Normalized cuts and image segmentation. [EEE Trans. PAMI 22 (2000):
888-905.

Tamayo, P et al. Interpreting patterns of gene expression with self-organizing maps: Methods
and applications to hematopoietic differentiation. Proc. Natl. Acad. Sci. 96 (1999): 2907-
2912.

Xing, EP, Karp, RM. Cliff: Clustering of high-dimensional microarray data via iterative
feature filtering using normalized cuts. Proc. Of the Nineteenth ISMB (2001).



6

SUPERVISED NEURAL NETWORKS FOR
CLUSTERING CONDITIONS IN DNA ARRAY
DATA AFTER REDUCING NOISE BY
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Abstract: In this paper we compare various applications of supervised and unsupervised
neural networks to the analysis of the gene expression profiles produced using
DNA microarrays. In particular we are interested in the classification of
samples or conditions. We have found that if gene expression profiles are
clustered at the optimal level, the classification of conditions obtained using
the average gene expression profile ofeach cluster is better than that obtained
directly using all the gene expression profiles. If a supervised method (a back
propagation neural network) is used instead of an unsupervised method, the
efficiency of the classification of conditions increases. We studied the relative
efficiencies of different clustering methods for reducing the dimensionality of
the gene expression profile data set and found that the Self-Organising Tree
Algorithm (SOTA) is a good choice for this task.

Key words:  SOTA, perceptron, clustering, linear runtime, gene expression, noise
reduction.

1. INTRODUCTION

DNA microarray technology opens up the possibility of measuring the
expression level of thousands of genes in a single experiment [Brown and
Botsein, 1999]. Serial experiments measuring gene expression at different
conditions or times, or distinct experiments with diverse tissues, patients,
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etc., allow us to obtain gene expression profiles under the different
experimental conditions studied. Initial experiments suggest that genes with
similar expression profiles tend to play similar roles in the cell. Aggregative
hierarchical clustering has been extensively used for finding clusters of co-
expressed genes [Eisen et al., 1998; Wen et al., 1998]. Nevertheless, several
authors [Tamayo et al, 1999] have noted that aggregative hierarchical
clustering suffers from a lack of robustness. In addition, typical aggregative
hierarchical clustering methods have runtimes that can range from N* to N*
[Hartigan, 1975], which makes them very slow when thousands of items are
to be analyzed. In an attempt to overcome these problems, some authors
have proposed the use of neural networks as an alternative to aggregative
hierarchical cluster methods [Tamayo et al., 1999; Toronen et al., 1999;
Herrero et al., 2001]. Unsupervised neural networks, such as Self-Organising
Maps (SOM) [Kohonen, 1997] or the Self-Organising Tree Algorithm
(SOTA) [Dopazo and Carazo, 1997], provide a more robust framework
appropriate for clustering large amounts of noisy data. Neural networks have
properties that make them suitable for the analysis of gene expression
patterns. They can deal with real-world data sets containing noisy, ill-
defined items with irrelevant variables and outliers, and whose statistical
distributions do not need to be parametric. Moreover, they are much faster
and can easily be scaled to large data sets. Additionally, supervised methods
like support vector machines (SVM) that are able to use prior information on
the classes studied, have been applied to the analysis of functional classes of
genes [Brown et al., 2000].

On the other hand, clustering of samples has been used extensively for
the classification of different types of cancers, where the molecular signature
of the different tumoral tissues has been demonstrated to be a valuable
diagnostic tool. Initial work has used classical hierarchical methods (see for
example Alizadeh et al., [2000]; Alon et al., [1999]), but recent papers have
proposed the use of supervised methods like SVM [Furey et al., 2000] or
supervised neural networks [Khan et al., 2001]. Neural networks, in contrast
to SVM, are able to discriminate amongst many different classes, and this is
preferable for multi-class problems.

The objective of the present work is to compare the relative merits of
different supervised and non-supervised clustering approaches for the
classification of samples (here different cancer cell lines) based on their
different gene signatures. A study of performance in terms of runtimes and
accuracy of classification for classical and neural-network-based alternatives
for clustering genes is given.

The problems of noise and non-informative gene expression profiles are
also discussed. Here we give a combined approach in which the gene
expression patterns are clustered into a reduced set of co-expressed genes,
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and the clusters’ average values are then used to train a supervised neural
network. This approach provides superior accuracy of classification of
samples when compared to the alternative unsupervised classification. The
additional advantage of this approach is that the resulting entities used for
the classification are not simple genes, but sets of co-expressed genes.
Consequently, various data-mining techniques can be applied to assign some
form of identity to them.

2. COMPARATIVE PERFORMANCES OF
CLUSTERING METHODS

2.1 Data set used

The data set corresponding to the NCI-60 cancer cell lines with drug
treatments [Scherf et al., 2000] has been used. Gene expression levels were
expressed as log(red/green). Ratios of fluorescence measurement were
corrected by computational balancing of the two channels [Scherf et al,
2000]. The data set includes expression values for 1,376 genes plus 40
assessed molecular targets for the drugs (a total of 1416 clones), in sixty
different cell lines corresponding to nine different types of cancers.

2.2 Comparative runtimes

Since the analysis of DNA array data usually implies management of
thousands of genes, the runtime of a method may constitute a real bottleneck
for its application. Many of the classical methods used for clustering are
based on iterative processing of a distance matrix obtained from “all-against-
all” comparisons. If the most time-consuming operations are performed on
such a distance matrix then runtimes must be at least proportional to the
square of the number of items. This is the case for the family of aggregative
hierarchical methods. Aggregative hierarchical methods, like average
linkage and related methods, have runtimes in the range of N? to N*
[Hartigan, 1975]. On the other hand, in the case of SOM or SOTA, the most
time-consuming comparison operations are performed amongst the data and
the nodes in the network (fixed in SOM and limited in SOTA at each step).
The obvious advantage derived from this fact is that the number of
comparisons needed for the classification depends principally on the number
of items. Runtimes are therefore approximately linear [Dopazo et al., 2001].
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Figure |. Comparison of runtimes of average linkage (grey line) and SOTA (black line). Top:
detail of runtimes for up to 1000 genes, Bottom: runtimes for up to 5000 genes. The runtimes
were obtained using an SGI Origin200. The data used were subsets randomly sampled from
the complete data set of the study of gene expression in a synchronised cell cycle in yeast.
[Eisen et al., 1998].
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When runtimes of both approaches are compared (see Figure 1) we can
observe that average linkage is faster only when a few items (less than 600,
see the top part of Figure 1) are to be analyzed. Otherwise, SOTA is clearly
faster. Average linkage runtime is, at least, quadratic, whereas SOTA
runtime is approximately linear. SOM behaviour (data not shown) is linear
too.

23 Comparative accuracy

The silhouette statistic [Hand, 1981] was used to study the accuracy of
the classification obtained by using each of the various methods. Silhouette
measures how well the items are assigned to their corresponding clusters by
comparing the distance from each item to the centre of its cluster, with the
distance of the item to the centre of the closest cluster. The silhouette
statistic is therefore defined for a cluster A as:

b -a()
S = e (.b()

where a(i) is the average of all the distances within cluster A, b(i) is the
minimum of the distances d(x;,B), this distance being the average distance of
the element x; in cluster A to all the elements in cluster B, the nearest cluster
to A. In this case, the higher the statistic the better.

Figure 2 shows how SOTA performs better than average linkage,
irrespective of the split criterion used (see Herrero et al., [2001]). The
criterion used by SOTA to decide whether a node should be further divided
so as to go on to a higher resolution relies on the intra-profile distances of
the genes within the node. Due to this, SOTA is able to recover all the
different patterns of expression profiles present in the data set analyzed, no
matter how many genes display each pattern. In this aspect SOTA is superior
to SOM, which holds more neurons for the more populated patterns. This is
because SOM clustering is density-dependent [Kohonen, 1997], and this is
not a desirable property when the aim is to discover all the different types of
patterns present in the data.

SOTA and average linkage are always superior to SOM in terms of
accuracy (data not shown).
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Figure 2. Silhouette statistic for the aggregative hierarchical method UPGMA (average
linkage) and SOTA with two different criteria for growing the tree. In SOTA resources
(circles), the decision for splitting a node is based on the mean distance to the average value
of the cluster (centroid). In SOTA variability (squares) this decision is based on the maximum
of the distances between all the genes in the cluster and the cluster’s centroid.

24 Conclusions on comparative performances

Obviously the benchmark given here is far from exhaustive, but it
focuses on the comparative efficiency of: (i) average linkage, as one of the
most commonly-used distance matrix-based methods; (ii)) SOM, as the
alternative based on a neural network; and (iii) SOTA, as a hierarchical
version of SOM, based on a growing topology [Dopazo and Carazo, 1997].
From the point of view of efficiency of the classification (as measured by the
silhouette statistic), SOTA performs a little better than average linkage.
SOTA also presents additional advantages with respect to runtime. Both
SOTA and SOM presents an additional advantage: they can deal in a natural
way with missing values that frequently occur in the DNA array data sets.
Since the comparison operations are performed amongst the data and the
average profiles in the nodes, the absence of some points (missing values) in
a vector corresponding to a particular gene expression profile will have a
negligible effect on the whole process of the network training. This avoids
the use of methods for estimating missing values [Troyanoskaya et al., 2001]
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necessary if average linkage or similar methods are used. Table 1
summarizes some properties of the methods compared.

Table 1. Comparison of properties of Average linkage, SOM and SOTA.

Property Average linkage SOM SOTA

Hierarchical Yes No Yes

Growing Aggregative (from Fixed size Divisive (from root
tips to root) to tips)

Resolution Full Number of clusters | Configurable level

fixed beforechand

Statistical definition of No No Built-in

cluster

Noise effect Sensitive Robust Robust

Unequal cluster size Sensitive Very sensitive Robust

effect

Accept missing values No Yes Yes

Runtime >N? N ~N

3. CLUSTERING OF CONDITIONS

3.1 The problem of noisy patterns

The unequal distribution of genes among clusters is not only a problem
from the point of view of clustering of gene expression patterns. In some
cases it can even be a problem for the classification of conditions. Attempts
at classifying cancer types based on the molecular signatures provide a clear
example of this. Depending on the composition of a particular DNA
microarray, there will be a number of genes that will display high or low
expression values depending on the physiological circumstances of the
patient, and are uncorrelated with the type of the cancer. They therefore
introduce noise into the classification because they tend to produce an
alternative clustering unrelated to the class-based clustering that is sought. If
noisy classes are abundant and overpopulated they may make classification
extremely difficult by drastically reducing the signal component in the data
set.

Since the relative composition of clusters has no clear biological
meaning, a significant part of the contribution of noise to the final
classification could be removed if the average patterns of the gene
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expression profiles were used for classification of the conditions, instead of
using the gene profiles themselves.

3.2 Clustering of conditions and noise reduction

In recent work, a perceptron was trained to identify four different round
blue cell tumours [Khan et al., 2001]. Principal component analysis (PCA)
was used to reduce the number of items to analyze. One reason for this
reduction is the consequent reduction in the number of parameters that the
perceptron has to infer from the data, which depends on the size of the input
layer (in this particular case this would be the number of genes). Generally
speaking, fewer parameters means more generalisation power in the
network. However, the quality of the input data was further improved by
extracting from the data the components with most variance. Nevertheless,
using this approach the biological meaning of the entities analyzed is then
lost to some extent.

In the approach proposed here, the data are first clustered at gene level. A
perceptron is then trained using the average values of the clusters found. We
can study the accuracy of the classification obtained for the cell lines by
using data clustered at different levels of resolution.

Figure 3 shows the learning rate of the perceptron when trained with the
data set clustered at different levels of resolution. Learning rates at each
point were obtained using “leave-one-out” validation. This means that for
each point, sixty perceptrons with 59 cell lines are trained, and the remaining
cell line is used as a test for studying the predictive ability of the perceptron.
The value at each point is the number of cell lines properly classified in each
of the sixty different training processes. The number of clusters (patterns)
used for training the perceptron range from 1,416 (the actual number of
clones) to only 13 different patterns.

The predictive power of the perceptron is very low if the training is
performed with a high number of elements in the input layer. This reflects a
combination of a high level of noise and the problem of overtraining of the
network, due to the high number of parameters that are learned from the
data. As the number of patterns approaches an optimum value for the
learning process of the network, the number of true positives increases.
When the optimum value of 161 patterns (in this case) is reached, the
perceptron is able to identify 43 out of the sixty cell lines. For a number of
patterns below this optimum value, the predictive power decreases, although
performance is not as poor as when a number of profiles over the optimum
value is used. For a small number of patterns, the performance of the
perceptron is much better in terms of generalisation (opposed to
overtraining), because the number of parameters to be learned from the data
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set 1s lower. On the other hand, the information content decreases when
various different clusters are collapsed into a single cluster.
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Figure 3. Ratio of success in the classification of cell lines at different levels of resolution.

Table 2 shows how the perceptron performs as well as or better than an
unsupervised classification obtained by SOTA (or average linkage, data not
shown), using the same data set. When all the gene expression profiles are
used the unsupervised classification is still inferior to the supervised
classification, except in the case of the breast cancer line. For some reason,
the information that leads to the proper classification of this cell line is best
represented in the original, unclustered set of profiles. Nevertheless, the ratio
of success in the classification is still too low, and this putative increase in
the efficiency of the classification mightjust be an artefact.
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Table 2. Comparison performances of supervised vs unsupervised classifications.

Cell line Total | Supervised | Unsupervised (161) | Unsupervised (1,416)
Breast 8 2 2 4
Melanoma 8 7 7 7
Prostate 2 0 0 0
Renal 8 7 6 7
Lung 8 3 3 3
CNS 6 4 4 4
Ovary 6 5 3 3
Leukemia 6 6 6 5
Colon 7 7 7 ]

Figure 4 shows the unsupervised classification of the different cell lines
obtained by SOTA using (Figure 4A) the patterns corresponding to the 161
clusters with optimal information content, and (Figure 4B) the original 1,416
gene expression profiles. In both cases the tree was grown up to nine nodes,
corresponding to the nine different cell lines. The relative position in the tree
changes for some cell lines, but the efficiency in the classification is slightly
better in the case of the 161 patterns. Some of the cell lines are well defined,
such as colon cancer or renal carcinoma, but others cannot properly be
discriminated, and the number of false positives is high too. The results
obtained with average linkage are very similar (data not shown).

In other experimental systems (e.g. [Alizadeh et al., 2000; Alon et al.,
1999]) where each phenotype can easily be discriminated (data not shown),
this approach performs considerably better.



Methods of Microarray Data Analysis 11

2 CNS
oo oz @ o Ovary

=l(=] Prostate
! Renal
i< Lung

>

HE’] Melanoma
=][*] Breast

TI[EIF“M

\
® f'"'“.[ 'I b |[8] o
® [EIEE] | o
ED-_*}_ 0
[o [efoflo o] e
IF_EWI & -
@ [l i «

lﬂg
=l=1El
Giciols

= EIEETIE 2
® [o o) J[E] «
o ez e«
) oo o] o
© [ s o
(o {e]s)lo [2] o
® [v=I0]o ][] «
® [o Lo fs]o]o]e«

+@ [0 [u]fo o] e
1.60

Figure 4. Unsupervised clustering of the 60 cell lines into nine clusters by SOTA using as

= Leukaemia
= Colon

101

data: A 161 patterns and B all 1,416 gene profiles. The number of cell lines in each cluster is
represented by a circle of proportional size. The numbers in the squares represent the number
of cell lines of each type in the corresponding cluster.
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4. CONCLUSIONS

SOTA is a clustering method with linear runtimes and superior accuracy
compared to its widely-used counterparts, average linkage and SOM. The
possibility provided by the method for obtaining clusters of co-expressed
genes at different levels of the hierarchy can be used to study the relative
information content of this hierarchy at different levels. When different
"slices" of the hierarchy are used to produce a classification of samples
based on the average values of the gene expression profiles of the various
clusters at different levels, we found that there exists an optimal information
level at which the classification obtained is the best one possible. An
explanation for this is that the optimal information level corresponds to the
best signal-to-noise ratio in the data when these are subject to a process of
compression based on the divisive segregation produced by SOTA. The
classification can be improved by using a supervised method, such as a
perceptron. Unlike other approaches, such as using PCA for reducing the
dimensionality of the data [Khan er al, 2001], the classification obtained
here depends upon groups of co-expressed genes, which probably play a
related role in the cell.

Web interfaces to the programs used in the present work (SOTA, SOM
and average linkage) can be found on the web server at:
http://bioinfo.cnio.es/dnarray/analysis/
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Abstract: Many methods have been proposed for the analysis of microarray data. In
general, these methods are borrowed from statistics and data mining, and they
ignore the underlying biology that gives rise to the data. Biological systems,
such as cells, are complex, with constant activation and deactivation of
multiple pathways in response to external and internal stimuli. Thus, of
particular concern is the failure of many analysis methods to allow expression
levels for asingle gene to be explained as arising from multiple, different
stimuli. Bayesian Decomposition, originally developed for spectral mixture
analysis, overcomes this problem by permitting the discovered patterns within
the expression data to overlap, allowing genes to belong to multiple groups.
We present results of the application of Bayesian Decomposition to the
deletion mutation data, demonstrating its ability to assign genes that are
regulated by multiple pathways to multiple coexpression groups, allowing
identification of changes to specific signalling pathways.
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1. INTRODUCTION

1.1 The Development of Cancer

Human cancer is the second leading cause of death in the United States
and throughout the Western world [Alison et al., 1997]. Unlike heart disease
and diabetes, the fundamental cellular biology underlying the development
of cancer is poorly understood, at least partly because cancer arises from a
myriad of different cellular malfunctions [Cooper, 1992; Macdonald et al.,
1997]. In order to understand cancer development in individual
malignancies, the recovery of the process that led to the specific cellular
malfunction present in the cancer cells must be identified. A key feature of
such development must involve the cellular signalling pathways and
metabolic pathways that control cell growth, differentiation, apoptosis
(programmed cell death), and motility. Recovery of pathway information is
presently possible only through complex experiments [Winzeler et al., 1999;
Hughes et al,, 2000], however new technologies such as microarrays and
gene chips offer the possibility of more quickly and cheaply determining
such pathways.

Pathway information is critical not only to the understanding of cancer
development, but also to the design of effective therapeutics in the treatment
of cancer. Present cancer treatments, such as radiotherapy and
chemotherapy, result in substantial collateral damage to healthy tissues.
Targeted therapies would try to alter behaviour in a cell specific manner,
affecting only cancer cells. The creation of these therapies will require a
detailed understanding of how disrupting specific cellular pathways affect
downstream events in cells and an understanding of the signalling and
metabolic networks in order to avoid unintended side effects in treatment
(e.g. disrupting a pathway in a healthy cell leading to damage to healthy
tissues).

1.2 Microarray Measurements and Analysis

Recent advances in microarray and gene chip technology have led to
large amounts of data that potentially could aid in the understanding of the
cellular function and pathways involved in human disease. While studies
have already shown that it is possible in some cases to identify disease states
more accurately using mRNA expression profiles than can be done using
classic pathology methods [Golub ef al., 1999; Alizadeh et al., 2000; Zhang
et al., 2001], the complexity of the underlying biological systems is reflected
in difficulties in data analysis. The gene expression and proteomic data sets
are expected to dwarf present sequence data in complexity [Bittner et al.,
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1999] leading to the need for computer science technology to recover the
maximal information [Lockhart et al., 2000; Young, 2000].

Many attempts have been made to apply standard data mining
algorithms to discover patterns within gene expression array data. Many
algorithms are variations on standard methods for analysing matrices, since
array data typically takes the form of two dimensional sets of numbers (e.g.
expression levels for many genes at different conditions). Methods applied
include the use of standard statistical methods [Claverie, 1999; Alter et al.,
2000; Ideker et al., 2000; Kerr et al., 2000; Kerr et al., 2001], self-organising
maps [Tamayo et al, 1999], support vector machines [Brown et al., 2000],
and clustering [Eisen et al, 1998; Getz et al, 2000; Kerr et al, 2001;
Lukashin et al., 2001; Yeung et al, 2001], among other methods, reviewed
by Brazma and Vilo [Brazma et al., 2000]. Recently new statistical methods
that maintain non-Euclidean relationships during reduction of the
dimensionality of the data space have been reported [Roweis et al, 2000;
Tenenbaum et al, 2000], which may help in defining relationships in
complex expression data. In general, these methods do not incorporate
knowledge of the underlying biological system, although there are methods
that do take into account some experimental information [Heyer et al.,
1999].  However all these methods still lack an ability to recover
fundamental behaviour, since each gene within the expression experiment
can be assigned to only one coexpression group. This violates the
underlying biological fact that many individual genes are coexpressed in
multiple groups in response to different stimuli [Roberts et al., 2000]. This
fundamental flaw limits the usefulness of most algorithms as it leads
inevitably to the loss of information related to behaviour arising from
multiple inputs, which is critical for understanding cellular behaviour
[Bittner et al., 2000].

Originally developed for use in multidimensional spectral imaging [Ochs
et al., 1999], Bayesian Decomposition is a matrix factorisation method that
identifies physically meaningful basis vectors (patterns) simultaneously with
their distributions in a data set. The basis vectors need not be orthogonal as
in principal component analysis or obey other independence criteria. As
used here, the method is similar to nonnegative matrix factorisation [Lee et
al, 1999], however Bayesian Decomposition allows negative basis vectors
with properly encoded prior information (see below).
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Figure . The matrix decomposition performed by Bayesian Decomposition. The data can be
viewed as a matrix (D). The goal is to identify the matrices 4 and P, the distribution and
pattern (basis vector) matrices respectively, where the patterns have some physical or
physiological meaning. The mock data (M) is the data that would result from the model (4
and P) in the absence of noise.

2. METHODS

2.1 Bayesian Decomposition

The fundamental decomposition performed by Bayesian Decomposition
is the recovery of a distribution matrix (A) and a pattern matrix (P) that
combine to form a mock data matrix (M) that reproduces the data matrix (D)
within the noise. This relationship can be written as

D~M=AP, [1]
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and is shown diagrammatically in Fig. 1. This factorisation of D into A and
P is generic, but can be specialised to specific situations by the incorporation
of additional information in the analysis. Unlike a statistical approach, such
as principal component analysis (PCA), the rows of P do not need to be
orthogonal or fulfil other independence criteria. This allows the algorithm to
model biological and physical systems, which typically have underlying
processes that are nonindependent. For example, gene regulation through
the cell cycle would have genes upregulated in G1 with tails of expression
remaining in the S phase. Different rows of the P matrix would have peaks
of expression in different phases, but overlaps between the rows would be
present (i.e. the rows are nonorthogonal). Meanwhile, each column of A
would contain significant values for genes upregulated within a single phase.
Some rows of A would contain significant values in multiple columns,
indicating peaks of expression in multiple parts of the cell cycle.

Since in the general problem, neither A nor P are known and there are no
independence criteria, the problem is mathematically degenerate making an
analytical solution impossible. However, a Markov chain Monte Carlo
(MCMC) procedure can be used to sample the space of possible solutions
(posterior distribution) to determine its properties, which provides a mean
solution and uncertainty estimates. Furthermore, multiple possible solutions
can be identified if supported by the data. The application of MCMC to
stochastic image processes was initially demonstrated by Geman and Geman
[Geman et al., 1984] leading to exploration of a wide variety of sampling
procedures [Metropolis et al., 1953; Hastings, 1970; Kirkpatrick et al., 1983]
for solution of imaging problems, reviewed by Besag et al. [Besag et al.,
1995].

MCMC techniques require relative probability measurements at each
sampled point in the solution space, which is provided here through a
Bayesian approach. In the past decade Bayesian methods using MCMC
techniques have been used in a wide variety of problems in data analysis,
e.g. medical imaging, agricultural field studies, population studies, and
economic forecasting [Besag, 1986; Besag et al, 1993; Grenander et al.,
1994; Hill, 1994]. Bayesian statistical analysis starts with the apparently
trivial statement,

= p(Model | Data)p(Data)

= p(Data | Model)p(Model) [2]

p(Model, Data){

where p(Model,Data) is the probability of both the model and the data (the
joint probability distribution), p(Model\Data) is the conditional probability
of the model given the data (the posterior), p(Data) is the probability of the
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data (the evidence), p(Data\Model) is the conditional probability of the data
given the model (the likelihood), and p(Model) is the probability of the
model (the prior). The posterior distribution is the solution space for our
problem, since it measures the probability of the present model (sample) in
light of the data. Rearrangement of Eqn. 2 yields the posterior,

)= p(Data | Model)p(Model)

Model | Dat
p(Model | Data »(Data)

. (3]

which provides the MCMC algorithm with probabilities for determining
steps during the sampling process. Since the evidence, p(Data), usually acts
as a scaling parameter, it can be ignored in this case since MCMC only
needs relative probabilities. This means that the relative probability between
points in the solution space is determined completely by the likelihood,
which is easily determined by comparing the model to the data, and the
prior, which is the probability of the model independent of the data. The
prior allows for inclusion of domain knowledge about the problem under
study (e.g. known coexpression).

Putting in the matrices A and P for the model leads to the specific form
of Bayes’ equation (Eqn. 3) for the bilinear problem (ignoring the scale
factor),

p(4,P| D) p(D] A, P)p(4, P). [4]

The sampling from the posterior distribution and the encoding of the prior
are done using a bilinear form of the Massive Inference™ Gibbs sampler
from Maximum Entropy Data Consultants (Cambridge, England) that also
enforces positivity on the solutions. The sampler also encodes a prior
probability distribution, p(A,P). This is done by creating multiple domains
with mappings between them.

The first domain (top line of Fig. 2) is an atomic domain that contains
two infinitely divisible (2% points in silico) one dimensional spaces (one
corresponding to the A matrix and one to the P matrix) in which atoms
(point masses) exist. These atoms are created and destroyed in accordance
with a prior distribution comprising a uniform spatial distribution and a
logarithmic flux distribution [Sibisi et al., 1997]. This prior tends to remove
atoms that are not forced to exist by the data, yielding a minimal structure in
the model. The prior in this space also enforces positivity and additivity of
atoms, which effectively reduces the search space for the sampler by a factor
of 2", where N is the number of dimensions. The second domain is the
model domain (bottom of Fig. 2) that contains the A and P matrices. The
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transformation of atoms from the atomic domain to the model domain
permits the inclusion of prior knowledge in the form of convolution
functions (f's in Fig. 2). These convolution functions encode prior
knowledge by forcing correlations between elements in the A and P
matrices. For example, an atom in the P atomic domain may be constrained
to be an mRNA abundance curve with a known rise time and half-life,
thereby making each row of P a measure of a type of transcriptional
response. In addition the convolution functions can create negative values
within the model, so long as the underlying atomic distributions remain
positive and additive.

pattern 1

pattern P

mutant 1 » mutant N

Figure 2. The atomic and model domains used by Bayesian Decomposition. The atomic
domain (only the domain for the patterns shown here) contains an infinitely divisible line.
Atoms (point masses) are created and placed onto the line. Each atom (for instance, the one
in bold) is then mapped to the mode! domain (4 and P matrices) by a convolution function (f)
that can distribute their flux in simple or complicated ways (above it is spread nonuniformly
to five matrix elements as shown by the spots).
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Such convolution functions were used to model inversion recovery curves
[Ochs et al, 2001], which have inherently negative components, allowing
analysis in magnetic resonance relaxographic imaging [Labadie et al., 1994].
Once the prior is chosen, the remainder of the problem is straightforward.
A random model is generated in accordance with the prior as the starting
point for the Markov chain. A change to this model is generated according to
the prior, and a new likelihood is calculated using the sum of the squares of
the residuals normalised by the standard deviation, ©, of the noise in the
data, i.e. a normalised [’ distribution. Rather than calculate the full
likelihood at each point, the change in the likelihood is calculated for the
specific change in the model, so that the likelihood can be updated
incrementally. The log likelihood, L, can be written in matrix notation as

L=

2;2 (4P - D) (4P - D)) (5]

where A" represents the transpose of A and Tr indicates the trace of the
quantity in the brackets. The noise () has been assumed to be equal at all
points in order to simplify the form of Eqns. 5 and 6 (the actual calculation is
done allowing independent noise estimates for each data point). The
behaviour of the change in the log likelihood, AL, can be derived by looking
at the effect of adding a small amount of flux, 8P, to the model. By inserting
P+3P for P in Eqn. 5 and subtracting Eqn. 5 from the result, the change in
log likelihood is

sLGP)- - 1v (46P) (4P - D)

[6]
20" | +(AP - D)" A8P + (A6P) (A 6P)

where it is assumed that only changes to P are made. A similar equation
governs calculations for changes in the model for A. In order to simplify the
calculations, we do not allow simultaneous changes in A and P, since
allowing such changes would require evaluation of terms involving dA4dP.
Note that barring such changes does not prevent the system from reaching
any state and should have no effect on the final result, since the sampler can
move dP followed by 84 and reach the same point. As long as detailed
balance is maintained, the sampler still samples the space correctly. For
each step of the Markov chain, a random change is generated in the atomic
domain in accordance with the prior. The algorithm then calculates the
change in the likelihood using Eqn. 6 and determines whether to accept this
change by comparing this with a randomly generated value. If the step is
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taken, the likelihood is updated. MCMC samplers require a "burn-in" time
to reach an area of high probability that is suitable for sampling. The
sampler runs for an operator-specified time without recording samples and
then continues while recording for an equal number of steps.

2.2 Issues in the Application of Bayesian Decomposition

One difficulty in Bayesian Decomposition (BD) analysis is the estimation
of the correct dimensionality of the model space (i.e. the number of columns
of A and rows of P). This can be provided by estimation of the number of
dimensions needed to fit the data through statistical analysis (such as PCA)
or by making multiple runs with BD using different estimates. For many
analyses, specific features appear indicating when the number of patterns is
excessive. In spectroscopic studies and time domain modelling, these are
often the emergence of patterns that appear to be unrelated to spectral
features or to natural time behaviours. In data sets that have no likely
correlated structures between points, such as the Rosetta data, the estimation
of the dimensionality is more problematic.

Eqn. 1 is mathematically degenerate, so that multiple, analytical solutions
exist. Bayesian Decomposition searches through these possible solutions for
those that are most probable and samples the likely solutions. In general, if
the number of elements in D is significantly larger than the number of
elements in A and P combined or if there is a good mathematical model of
the process underlying the generation of the data, these multiple solutions
can be representations of the same solution, yielding a mean and standard
deviation for each element of the matrix. In cases where there are multiple,
significantly differing solutions, the sampler may move between these. This
will generally yield significant uncertainties at the points that differ between
the models, however BD saves snapshots of individual solutions that can be
examined to verify that multiple solutions exist. In addition, by repeating
the analysis using different random seeds in the Markov process, different
Markov chains are generated and the results can be compared. This reduces
the probability that the result obtained provides only one solution out of
many that all fit the data equally well.

2.3 Application to the Rosetta Compendium

For gene expression analysis, each row of D represents the expression of
a single gene with the columns representing different conditions (in this
work, different deletion mutants). The matrix M would match the matrix D
exactly ifA and P were perfect models of the system and if there were no
noise. The distribution matrix A contains rows that describe the amount of
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each pattern within the corresponding row (gene) in D, with each column
being associated with a single pattern. The rows of P are the patterns that
show the behaviour of the coexpressed genes among the deletion mutants
(i.e. which coexpression groups are present in each mutant). Because of the
symmetry of the decomposition, the columns of A also contain patterns.
These patterns are the coexpressed genes within each mutational pattern
from P. This information can be used to infer pathway activation,
suppression, and interaction in the deletion mutants, since many genes are
known a priori to be transcribed in response to activation of specific
pathways. Essentially the genes for which a great deal of information is
known are used as guides for interpreting other genes in the coexpression
groups. Previous work on the yeast cell cycle data sets [Cho et al., 1998;
Spellman et al., 1998] has shown that the method can extract biologically
significant, overlapping expression patterns from gene expression data
[Moloshok et al., In Press].

The deletion mutation data set was downloaded from Rosetta
Inpharmatics and filtered to remove experiments where less than two genes
underwent three-fold changes and to remove genes which did not change by
three-fold across the remaining experiments. The resulting data set
comprised 764 genes and 228 experiments. The Rosetta error model
[Hughes et al., 2000] provided the estimate of uncertainty in the data used in
the calculation of the likelihood during sampling. Since Bayesian
Decomposition presently is limited to mock data with positive values in gene
expression analysis, all data were transformed from log ratios to ratios.
PCA was used to estimate the dimensionality of the data (number of
columns of A and rows of P). Two "knees" appeared in the amount of
variance explained by the principal components at three principal
components and seven principal components. We focused our analysis on
seven patterns. Multiple runs of Bayesian Decomposition were performed,
each with the Markov chain process beginning at different, randomly
generated points in the space of possible solutions. The individual patterns
were cross-correlated between runs of the algorithm to identify those
patterns that were consistent. Analysis of the data in terms of coregulation
and pathway activation were focused on these consistent patterns. For each
pattern, the genes that were significantly expressed in each pattern were
identified (i.e. the amplitude of their assignment to the pattern was greater
than three times the uncertainty in that amplitude). The largest amplitude
genes in each pattern were analyzed in terms of cellular role as defined in the
Yeast Database from Proteome [Costanzo et al., 2000; Costanzo et al., 2001]
in order to assign a function to the pattern. The patterns with clear function
were then validated by analysis of specific deletion mutants from the
compendium.
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3. RESULTS

3.1 Identification of the Patterns

The patterns (rows of P) identified in the data were assigned functions
based on the top scoring genes in each pattern (largest amplitude in the
corresponding column of A). Since cellular processes are complex and
involve numerous activities, the assignment of a pattern to a cellular
behaviour and thus to a signalling pathway or set of pathways is difficult.
By using the Proteome database to identify cellular roles for the top 50
scoring genes in each pattern, a tentative cellular role for the pattern was
defined.

The repeated runs of the Bayesian Decomposition algorithm were used to
check the reproducibility of the identified patterns. It was determined that
four of the patterns were tied consistently to specific deletion mutants, while
three of the patterns showed more variation. This could be a result of the
inherent structure in the data, allowing multiple methods of mixing together
some of the patterns to explain the variation along certain directions in the
multidimensional data set. It is also possible that the variation is an
indication of a requirement for more basis vectors to explain the data, with
each of the present, varying vectors actually being comprised of mixtures of
these more fundamental, underlying vectors. However, the Rosetta error
model already permits the normalised ¥’ to be unduly low, suggesting
overfitting of the data. Although, this may instead indicate that the Rosetta
error model has overestimated the actual error.

Of the consistent patterns, the first is clearly linked to amino acid
metabolism with 22 genes linked to this function out of 36 of known
function (cellular role in the Proteome database) in the top 50 scoring genes.
The second is more difficult to identify as it has a mixture of metabolic,
RNA processing, and DNA processing genes in the top 50 scoring genes.
The third is also hard to identify, with 30 of 50 genes having no known
function. The fourth is clearly linked to the mating response with 13 genes
linked to mating response and 5 to meiosis out of 23 genes with known
function in the top 50 scoring genes. In addition, 8 of the genes of mating
function appear in the top 50 scoring genes of this pattern across all runs of
Bayesian Decomposition.

The analysis allows a further confirmation of the roles of these patterns.
By analysing the deletion mutants that have or lack the pattern, the
assignment of the pattern to the specific cellular role can be verified. Clearly
only the mating pathway allows this to be done easily, as the other stable
patterns are not clearly linked to a signalling pathway. This is likely to be a
result of the fact that not all deletion mutants affect signalling pathways, but
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instead have effects on metabolic behaviour and other cellular processes.
However, the focus of our application of the algorithm is on the ability to
identify changes to signalling pathways from expression data, so we focus
on the mating response.

3.2 Validation of a Pattern

In order to validate the mating response pattern, we explored deletion
mutants related to the mating pathway [Posas ef al., 1998] by focusing on
those specific mutants in the mating pattern (i.e. the amplitude for these
mutants in the row of P related to the mating pattern). The mating response
in S. cerevisiae is mediated via a MAPK signalling cascade initiated by
binding to the Ste2 or Ste3 membrane receptors. The signal is transduced
through Stell, Ste7, and Fus3 with Ste5 serving as a scaffolding protein.
The signal activates the Ste/2 transcription factor, leading to transcription of
mating response genes. In addition, the signal is transduced to the MAPK
cascade from the membrane by a G protein complex or through the Ste20
protein. Fig. 3 shows the amount of the behaviour (amplitude normalized by
column in matrix P) of the overall gene expression attributable to the mating
pathway in the experiments with the genes for these proteins knocked out.
Note that in every case, the behaviour is exactly as would be expected, with
the exception of the Fus3 deletion mutant. This is because Kss/ can
substitute for Fus3, yielding a mating response in the absence of Fus3 [Posas
et al., 1998]. However, the double knockout KssI/Fus3 does show the loss
of the mating response. The fact that the response stays active in the Ste20
knockout is a result of the alternative activation of the signalling cascade
directly by the G protein complex.

Similar graphs can be shown for the other patterns within the data,
however interpretation is problematic since the function is difficult to
deduce. Nevertheless, this example demonstrates the potential for Bayesian
Decomposition to identify gene expression changes related to changes in
signalling pathways, even in the midst of complex behaviour. In fact, the
Digl,Dig2 dual deletion mutant scored highest in this pattern, with 37% of
the behaviour explained by the mating response. This indicates that the gene
expression pattern related to mating response was identified within a data set
where no more than ~1/3 of any set of gene expression levels could be
related directly to it.
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Figure 3. The percentage of the behaviour of an individual deletion mutant that is explained
by the mating response based on gene expression.

4. CONCLUSIONS

The Rosetta compendium provides a vast amount of information for the
study of gene expression in yeast. Analysis of this data presents special
problems seen in few other data sets presently available. The effect of a
single deletion can be extremely complex, due to the ability of yeast to
provide similar function with different proteins, the ability of multiple
separate pathways to yield similar transcription, and the inherent cross-talk
present in signalling pathways within yeast.

The analysis presented here shows both the potential of and difficulties
with identifications of pathway modifications from gene expression data.
While some patterns were consistent across multiple runs of the algorithm,
others varied significantly. This is probably a reflection of flexibility in the
underlying model with multiple solutions of seven patterns being equally
capable of explaining the expression profiles of the genes in the
compendium. However, some patterns were consistent across multiple runs,
allowing insight into some pathways. It is not necessarily immediately
obvious what the function controlled by the pathway (or linked pathways) is
for each of these patterns. This can be a result of the identified genes in the
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coregulation group having unknown function or of a consistent cellular role
being unidentifiable with our present knowledge.

Despite the difficulty of analysing data such as the Rosetta compendium,
Bayesian Decomposition has successfully isolated the transcriptional
response corresponding to the mating pathway. No single gene is
transcribed solely in response to this pathway activation. Nevertheless, a
group of coregulated genes has been identified related to activation of the
pathway. Changing together, these genes provide a fingerprint of pathway
activation. The identification of this pathway is verified by the fact that the
mating pattern is absent in deletion mutants of proteins integral to the
pathway (Ste5, Ste7, Stell, Stel2, and Fus3/Kss1). In addition, the analysis
identifies a series of genes that either knock out mating due to loss of critical
cellular function or play an important role in the mating pathway, since they
also have total loss of the mating fingerprint. One advantage of this method
is that it is fairly tolerant of false positives in the data. Since each pattern
consists of many genes showing significant expression, the role of the
pattern is not determined by only a few genes. Since false positives should
arise from random variations, it is unlikely that a pattern will be falsely
assigned as it would require coordinated false positives.

A key unsolved question in the use of Bayesian Decomposition is the
number of dimensions to use in the analysis. This is a different question
from the number of expression units, as Bayesian Decomposition is
attempting to identify a minimal set of basis vectors for the data within the
constraints. These are unlikely to be identical to groups of genes that
together provide some cellular function, but instead may be groups of
cellular functions that within the experiment are activated simultaneously.
As such, the number of patterns sought by Bayesian Decomposition may be
significantly less than the number of groups required to map out cellular
function. However, the patterns identified should be the number of
independent sets of these groups of cellular functions, with each set being
turned on or off together throughout the experiment being analyzed. Since
this does not provide an a priori method to choose the number of patterns
(i.e. to match a known or suspected number of cellular functions), other
means need to be developed to identify the dimensionality. In this work
PCA was used, however it is not a reliable tool for estimating dimensionality
in gene expression data.

Bayesian Decomposition offers significant advantages for the analysis of
microarray data. Often mere identification of coregulation is not of great
interest, while identification of changes in pathway activation and behaviour
is. This is logical since a broad spectrum of diseases is known to be induced
by errors in proteins whose primary function is signal transduction (e.g. p53,
abl, c-kit). Such errors may include loss of ATP binding sites, other
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mutations, or full loss of function due to loss of heterozygosity. If such
changes get reflected in levels of gene expression, which is overwhelmingly
likely, then analysis of expression data with the goal of identifying
modifications in pathway behaviour is an important step in identifying
targets for treatment of disease. Bayesian Decomposition has been designed
in order to untangle interacting signals in other areas, and it offers a
promising method for doing the same in expression analysis, thus allowing
recovery of pathway information. BD can also be used in combination with
more complicated methods that attempt to identify signalling and metabolic
networks, including reverse engineering of networks using various
modelling techniques [D'Haeseleer et al., 2000] or use of gene expression
data to test existing network models [Hartemink et al., 2001].

In the future we intend to encode additional prior knowledge into the
analysis system. Such knowledge will include linkages between genes
which are known to be coregulated through correlations within the columns
of the A matrix. In addition, for time series data, we have recently
introduced correlations in the rows of the P matrix corresponding to
modelled rise times and half-lives for mRNA species. With these additions,
Bayesian Decomposition should be able to discover significant information
within gene expression data sets.
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Abstract:

Key words:

The Rosetta data set opens the possibility of comparing an experimental
microarray data set with a reference profile from the compendium. However,
explaining this comparison in terms of individual genes could be adaunting
task because of the sheer number of genes. Thus, we postulate a new strategy
of modeling microarray data in terms of functional genomic units (FGUs). A
functional genomic unit is a group of genes that carries out a certain biological
function. We explored the possibility of defining the functional genomic units
from the Gene Ontology (GO) annotation of the yeast genome. To visualize
the tree structure of the GO, we have written a yeast genomic knowledge
browser in Java, and integrated it with the microarray data. The pitfall of using
the GO is that only a portion of the genes in the genome are functionally
known or inferred. Thus, we further investigated an unsupervized learning
method to identify those functional genomic units in the yeast genome. We
have applied an established analysis method from digital signal processing,
Independent Component Analysis (ICA), to the Rosetta data set. To further
validate the utility of the Rosetta compendium, we have designed an
experiment to investigate the yeast cells transfected with human Racl, a small
GTPase protein of the Rho family, and demonstrated that functional genomic
units helped us to corroborate our own microarray experiment with the Rosetta
data set.

Functional Genomic Units (FGUs), Independent Component Analysis (ICA),
Principle Component Analysis (PCA), Gene Ontology (GO), Racl, Rosetta
Compendium.
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1. INTRODUCTION

With the accumulation of large amounts of gene expression data, the
scientific community hopes to use compendiums to corroborate individual
experiments and elucidate functional changes. The Rosetta compendium
[Hughes et al., 2000] describes the genomic responses of S. cerevisae under
300 conditions, providing a large reference data set to make this kind of
comparison possible. Various tools from the statistics and computer science
communities have been developed to simplify comparing microarray
experiments. However, biologists still have a difficult time comprehending
the results of these approaches because the results are expressed in terms of
individual genes, and there are such a large number of individual genes in
the genome. Furthermore, a standard for comparing results from different
array platforms has yet to be developed, so corroborating results can be
technically difficult.

Here we postulate a new strategy of modeling the microarray data:
instead of using individual genes as building blocks for modeling, we use
functional genomic units. A functional genomic unit (FGU) is a group of
genes that carries out a particular biological function. These genes can be in
the same pathway or can span several pathways, but together they achieve a
certain biological task. Functional genomic units can be identified by taking
advantage of existing knowledge or by developing new tools. We
demonstrate both approaches in this paper.

The Gene Ontology Consortium has produced a hierarchical, structured
vocabulary for describing the molecular function, biological process, and
cellular component of gene products (see http://www.geneontology.org/).
These categorizations are further delineated as one traverses the hierarchy,
becoming more specific as the lower levels are approached. When this
hierarchy is applied to a set of genes, each GO term describes a subset of
functionally coordinated genes, so a GO node at a certain level can be
thought of as a functional genomic unit. We took this approach, which is
based on existing knowledge, as a method for identifying functional units in
microarray data.

Principle Component Analysis (PCA) is an excellent method for
extracting linear combinations of the latent components that underlie
observed data when the observable is governed by a Gaussian distribution.
However, the observed quantities in biology are frequently non-Gaussian, in
which case the principal components extracted are no longer statistically
independent because zero second-order statistics (covariance) cannot
guarantee independence of non-Gaussian quantities [Vigario et al., 2000].
Therefore, we utilize an alternative technique, independent component
analysis (ICA), for extracting the underlying components that have
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biological significance. Our initial research results show that ICA provides a
very promising tool for extracting the functional genomic units without
utilizing existing knowledge about the data.

To demonstrate the utility of the Rosetta data set to corroborate other
experiments, we used the Affymetrix platform to profile the yeast cells
transformed with constitutively active human Racl. Racl is a small GTPase
protein of the Rho family [Ridley, 2001] regulating the organization of the
actin cytoskeleton, cell migration, cell proliferation, vesicle trafficking,
redox system, and gene transcription. However, the downstream mechanisms
of Racl are not clear. We used the Rosetta data set to support the
explanation of our Racl results.

2. METHODS

2.1 GO Browser

We implemented a Java-based program for browsing the GO hierarchy,
which is a tree where each node is a GO term. Each gene in the data set that
has one or more GO terms associated with it was mapped to a node in the
tree. We were able to discern which terms have genes associated with them
by coloring each node based on whether it maps to a gene or its descendants
map to a gene, as well as labeling each node with its gene contents. We
were able to get a finer quantitative picture for which terms have gene
association by  visualizing the data in a “treemap”  (see
http://www.cs.umd.edu/hcil/treemaps/). Here, each node is drawn as a
rectangle, and the children of each node are drawn as rectangles within the
parent. The size of each rectangle is directly related to the number of genes
attached to that branch. Thus, GO terms with many gene associations can be
quickly 1identified because they (and their parent) are drawn larger.
Furthermore, in treating GO terms as functional units, we developed tools to
extract the genes from a functional unit and compile the cDNA data from the
Rosetta compendium, as well as the user-supplied data.

2.2 ICA Model of the DNA Microarray

Suppose we have a K-dimensional random signal x;= {x,x,,--,x,J,
i=12,---,N, with N being the number of observations and T the matrix
transpose. We seek to find M latent components s =[s,,s,,--,s,]" satisfying
the following linear statistical model,
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x=Fs (1]

where F is a mixing matrix, each column of which gives the contributions of
a latent component to the K observed components. Generally, without posing
any constraints, the equation in [1] cannot be solved because both F and s are
unknown. However, in many scenarios including that considered here, the
components in 5 can be assumed independent of each other. The model with
the independent constraint on s is thus referred to as an [CA model.

If the distribution of x is Gaussian (and therefore s), the columns of F are
nothing but the eigenvectors of the covariance matrix of x, and the PCA can
be used to find F and 5. In our application, since the gene expression
profiles are typically non-Gaussian, the solution involves more complex
techniques.

The basic idea behind the techniques to solve [1] is to minimize the
Kullback-Leibler (KL) distance between the joint probability density
function (pdf) and product of marginal pdf’s of s. If we restrict ourselves to
a standardized version of x (that is, with zero mean and unit covariance
matrix), this is equivalent to maximising the summation of the marginal
negentropics of s [Comon, 1994]. Because negentropy is in fact the KL
distance between the pdfs of s and a Gaussian distribution with the same
covariance matrix, the problem boils down to maximising the non-
Gaussianity of each component.

One way to measure non-normality of a random variable is to estimate its
cumulants. In [2] a cumulant-based ICA algorithm is developed based on
pair wise processing. To avoid the noise sensitivity of the cumulant, an
alternative ICA algorithm called FastlCA [Hyvirinen and Oja, 2000] was
devised based on a new approximation of differential entropy.

Suppose the given data matrix has in each column the gene expression
levels for one experiment (corresponding to a given environment for the
cells of interest). The expression levels of a particular gene in different
experiments are then given in the corresponding rows of the data matrix. We
aim to extract a certain number of independent components, with each
component representing the genes sharing common biological functions.
Since the components are mutually independent, each such component
should represent a particular biological function that is distinct from all other
functions.

The independent component s and the mixing matrix F have
interesting interpretations from biology. To see this, let us rewrite [1] as

X = is,f, {2]

i



Methods of Microarray Data Analysis 11 127

where s; is the i-th component in s and f; the i-th column of F. In [2] the gene
expression profile x is expressed as a linear combination of f; with the
combination coefficient s;. This is in fact a linear transformation that allows
x to be expressed with respect to f;, with the expression level s;. Then the f;
here serves as characteristic vectors, which are responsible for the
interpretation of the new expression profile s=[s,,s,,":-,s,]. Remember [2]
is an ICA model, which means the components of § are mutually
independent. This implies that characteristic vectors f; may represent some
self-defined independent concept. This assumption is reasonable in biology:
there are many genes co-expressed in one experiment and these co-expressed
genes are usually responsible for some common biological function. Then it
is natural for us to define a functional genomic unit based on each
characteristic vector f;. Since the positive or negative sign of values in gene
expression only indicates the impact of experiments in different directions
(increase or decrease), it is reasonable to use only absolute values of f;. Let
[f] (| | denotes taking absolute values) be normalized to unit norm. The
normalized |f] defines a functional genomic unit with the j-th value in |f}
indicating the fuzzy membership of the j-th gene belonging to the i-th
functional unit.

2.3 Profiling the yeast cells transfected with constitutive
active human Racl gene

GC1945 yeast cells are transformed with the constitutive active human
Racl gene. The experimental details are reported in a separate paper [Vata
et al, 2002]. Briefly, three biological replicates were measured under the
transformed and control conditions using Affymetrix yeast S98 oligoarray
that contains about 6,400 yeast ORFs. Logarithmic ratios of expression
levels between the transfected and vector-only control cell lines are taken
and normalized.

3. RESULTS

3.1 GO mapping of yeast genes
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Figure 1. a) Relevant genes selected with Yeast GO Browser. Functional categories
related with ergosterol biosynthesis are checked. b) Roseita experiments grouped by
average-linkage clustering [Eisen er al., 1998] with 6136 gene features. Experiments
with perturbation of ergosterol synthesis are checked. Only the interesting portion of the
results shown. c) Same clustering method as applied in Fig 1 (b), but using 238 gene
features selected from Fig 1 (a).
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From previous knowledge, we know the perturbation of ergosterol
biosynthesis will compromise ion homeostasis, membrane functions, mating
behaviour, and respiration [Parks ef al., 1995]. Accordingly, we selected 238
relevant yeast genes with the GO Browser (Figure 1a). By using this relevant
set of genes for clustering, we can see tighter clustering of ergosterol-related
experiments (Fig 1c¢) as compared to Fig 1b, which used all gene features for
clustering.

3.2 ICA Results
3.2.1 Simulated data

Suppose we have three genomic functional units whose simulated
expression levels versus experiments are given in the left portion of Figure 2,
and assume the expression levels of the observed genes are in the right
portion of Figure 2. The expression levels of the extracted independent
components versus experiments are shown in the left portion of Figure 3,
and, for comparison, the corresponding PCA results are shown in the right
portion of Figure 3. Under an ideal situation, the results in Figure 3 should
recover the information in the left portion of Figure 2. Figure 3 demonstrates
that ICA does a better job of recovering the original genomic function units
than PCA.

The results in Figure 2 and 3 are re-plotted in Figure 4 and 5,
respectively, in the format of histograms, which demonstrate in a clearer
manner that ICA recovers the original three non-Gaussian sources (i.e.,
genomic function units) while PCA does not.
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Figure 2. Left: Simulated expression levels of three genomic functional units as a

function of experiment. Right: Expression levels of the observed three genes as a
function of experiment.
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Figure 3. ICA and PCA results on the simulated gene expression data. Left:
Expression levels of the independent components as a function of experiment.
Right: Expression levels of the principal components as a function of experiment.
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Figure 4. Left: Histogram of the simulated expression levels of the three genomic
functional units in Figure 2 (left). Right: Histogram of the expression levels of
the observed three genes in Figure 2 (right).
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Figure 5. Histogram of the ICA and PCA results on the simulated data. Left:
Histogram of the expression levels of the independent components in Figure 3
(left). Right: Histogram of the expression levels of the principal components in
Figure 3 (right).

3.2.2 The compact Rosetta dataset

We then applied ICA to a compact Rosetta dataset in which we have
good a priori knowledge on the genes and experiments. It consists of 122
genes measured in 126 experiments. The independent components extracted
are shown in the left portion of Figure 6. The characteristic vectors of each
independent component are shown in the right portion of Figure 6. These
characteristic vectors give the fuzzy membership of genes belonging to each
independent component and therefore define genomic function units. A
manual check of the results in Figure 6 with the a priori knowledge
demonstrates that they are consistent. For example, the prominent genes in
FGU #7 include genes in:

=  the mating response:
o YJLI57C (FARI, cell cycle arrest, mating response)
o YOR212W (STEA4, beta subunit of G protein coupled to
mating factor receptor)
o YNL145W (MFA2, mating a-factor pheromone
precursor)
o YPL256C (CLN2, G1 cyclin)
= lipid and ergosterol biosynthesis pathway

o YMRO15C (ERGS)
o YLRO56W (ERG3)
o YGRI175C (ERGI)
o YNLI111C (CYBS, cytochrome b5)
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o YHRO007C (ERGI11)

o YJL196C (ELOL, elongation enzyme 1)
®  carbohydrate metabolism

o YPRI160W (GPH1)
YELOI1W (GLC3)
YGRO32W (GSC2)
YGL256W (ADH4)
YJL153C (INO1)
YDRO74W (TPS2)
YFLO14W (HSP12)
YCL040W (GLK1)
YJR009C (TDH2)

O 0 00O0O0O0O0

Accordingly, FGU #7 was downregulated in experiments of ergosterol
perturbations (erg2, ergl1, YER044C, itraconazole) and mating (ste4, stell,
stel2, stel8, fus3); but upregulated in experiments perturbing the cell wall
function (tet-KAR2, tet-CDC42, tet-FKSI, fksl, tet-RHOI). This indicates
new insights to how the biological system works, and corresponds with our
previous knowledge [Parks ef al., 1995; Kitajna et al, 2000]. Similarly, we
found FGU #13 (corresponding to protein synthesis); FGU #4, 5, 9, 10, and
20 (corresponding to various aspects of energy and carbohydrate
metabolism); and FGU #9 (corresponding with general metabolism).

3.2.3 The Complete Rosetta dataset
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Figure 6. ICA results on the Compact Rosetta dataset. Left: Expression levels of
the independent components (column) versus experiment (row).  Right:
Characteristic vector (column) of each independent component (row).



Methods of Microarray Data Analysis 11 133

The full Rosetta dataset consists of 6316 genes measured in 300
experiments. To save space, the complete ICA results are not shown here.
Instead, we show two of the functional units that have been identified in the
complete Rosetta dataset by the ICA algorithm.

The fuzzy membership function (defined in section 2.2) of the first
identified unit is shown in Figure 7. By setting an appropriate threshold at
0.06, we find there are about 10 genes in this unit, including carbohydrate
metabolism: YFLO53W (DAK?2), YLR307W (CDA1); and cell growth,
division and DNA synthesis: YFL026W (STE2), YDR218C (SPR28),
YLR307W (CDAI), YPL121C (MEIS).

Membership function of Genomic Functional Unit #69
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Figure 7. Fuzzy membership function of the first genomic function unit (FGU
#69) identified in the complete Rosetta dataset.

By similar procedures, we analyze a second FGU with 15 genes. Six of
these genes are coding for isoforms of a- glucosidase (MAL62, MAL32,
MALI12, FSP2, YIL172c, and YJL216c). Four of the genes are directly
associated with cell-wall synthesis and sporulation (YER096w, YHR139c,
YDR403w, and YJR150c). Five genes are involved in glucose metabolism
(TUPIYDL245c, YELO069c, YNRO72w, and YJR158w). ICA analysis
suggests these three groups of genes are working coordinately. It reflects the
underlying sequential process of biology: i) glucose uptake, ii) the
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intracellular transport and metabolism of glucose, and iii) utilization of
sugars in the cell-wall biosynthesis as building blocks. In conclusion, this

FGU includes 15 genes directing sugar metabolism into cell-wall synthesis
in a coordinated manner.

3.3 Using the Rosetta data set to corroborate the Racl
Experiment

[+ Gene Ontology
§ [+ Itiological_process
§ [+ cell growth and maintenance
9 D cell organization and biogenesis
9 [+ cytoplasm organizalion and biogenesis
@ (59| vacuole organization and biogenesis
@ [+ organelle organization and biogenesis
@+ |nuclear organizalion and biogenesis
@[+ | milochondrion organizalion and biogenesis
9 tyloskeleton organization and biogenesis
¢ atlin eytoskeleton reorganization
[353] aciin filament organization
9 [353] autin moifcation
[ﬁﬂ aclin filament organization
9 [768] microtubule-based process
& E] microlubule cyloskelaton organization and biogenes
9 E]estahlishmenl of cell polarity
establishment of cell polarity (sensu Saccharomyce

an internal gene index. Left: Treemap of “cell organization and biogenesis” where
“actin filament organization” is highlighted with an arrow.

Using SAM statistics [Tusher et al., 2001], we identified 792 genes from
the Racl experiment that are differentially regulated more than 1.5 fold.
These genes are mapped to 1685 GO terms. 726 of these gene-to-term
mappings were found under the “cell growth and maintenance” branch, the
largest expression in the tree. Within this branch, we identified “cell
organization and biogenesis” as being both pertinent to our experiment and
having a substantial portion of the genes at 71 mappings. Further in the tree,
we found “actin filament organization” to be expressed (see Figure 8), which
is relevant to the Racl biology. We took its parent, “organelle organization
and biogenesis,” to be a functional unit and visualized the microarray data
from these genes in Eisen’s Cluster and TreeView (see
http://rana.lbl.gov/index.htm and [Eisen et al, 1998]). Our Racl experiment
is close to the farl and rvs161 mutant experiment of the Rosetta data set.
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Farl inhibits cdc28, and thus controls the cell cycle arrest. Rvs161 is a
cytoskeletal protein binding protein. Mutations of rvs161 result in a
delocalization of the actin cytoskeleton. Both of them provide insight on
howRacl works.

When we analyze the Racl experiments in terms of the FGUs identified
by the ICA algorithm, we can see Racl has upregulation of FGU #7 (see
section 3.2.2 for discussion of its characteristic genes). This effect is similar
to the Rosetta experiment findings tet-KAR2, tet-CDC42, tet-FKSI, fksl,
and tet-RHOI. It suggests the close relationship between the Racl effects
and tet-Rhol effects, since Rac is in the Rho protein family [Ridley, 2001].

4. DISCUSSION

Traditionally, microarray data is interpreted on a gene-by-gene basis. In
this paper, we proposed a new strategy by using a group of functionally
related genes called functional genomic units (FGUs) to interpret the
complex data. Two complementary approaches have been explored to define
the FGUs.

First, we construct the FGUs by using the Gene Ontology. This approach
is actually a feature selection process based on expert opinions as defined in
the GO annotation of genes. A supervised learning approach for feature
extraction has been discussed in Chapter 9 of this volume.

As demonstrated in section 3.1, selecting pertinent gene features involved
in ergosterol biosynthesis helps us to answer relevant questions of ergosterol
pertubation, whereas a “kitchen-sink” clustering with all the variables has
limited explanatory capabilities. This is because clustering is highly
dependent on the context of analysis. Large numbers of irrelevant features
will degrade the results [John et al, 1994]. For example, in the context of
clustering auto insurance customers, one would use features such as driving
accidents and driver’s age, but not features such as driver’s body weight.
Similarly in microarray analysis, we want to select relevant gene features
with the biological focus of our interest.

Unfortunately, FGUs defined by selecting appropriate nodes in the gene
ontology tree limit us to what is already known. As a complementary
method, we explored an ab initio data modeling approach by using ICA for
feature extraction. ICA has been shown to be a good algorithm for blind
source separation [Comon, 1994], EEG signal processing [Hyvérinen and
Oja, 2000], and brain imaging [Tzyy-Ping et al, 2001]. To our knowledge,
this is the first time it has been applied to microarray data. To better
understand the behavior of the ICA algorithm, we started with simulated
data, and then moved on to a compact Rosetta dataset before we applied it to
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the full dataset. ICA exploits the assumption that the functional units of
genes are mathematically independent of each other. This independence,
achieved by linear combination of genes, may or may not overlap with
existing knowledge of molecular pathways. In addition, the linear
combination of genes, which typically includes large numbers of
uncharacterised genes, imposed problems for biological explanations. In
section 3.2 and 3.3, we are only able to explain some of the FGUs; the
remains are still of interest and should be explored further.

With so many sources of variation in microarray experiments, many
investigators have argued against the usefulness of large-scale gene
expression databases to deposit data generated from different labs with
various technology platforms. In this paper, we use the Rosetta dataset to
corroborate our Racl experiment data. It generates an interesting hypothesis
of the Rac signalling pathway awaiting further biological validation. This
suggests that, with caution, it is possible to use a large reference database to
corroborate other experiments.

Finally, it should be noted that the fact that the microarray data compiled
from our GO Browser corroborates designed experiment data lends support
to a correct GO annotation of the genes. Although many genes have yet to
be annotated, the GO database may be a powerful tool in genomics research.
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Abstract:

Key words:

Reference databases of expression profiles from diverse mutations and
chemical treatments of a single assay offer a bird's-eye view of changing
expression patterns due to multiple perturbations. Such a compendium of
expression profiles has been used to ascertain the roles of previously
uncharacterised genes and infer the pathways through which their impact may
take place. However, many genes have multiple molecular functions and are
involved in different biological processes. The interaction patterns between
genes and profiles from two-dimensional hierarchical clustering of such
compendium of data could be very complex and often scattered. This makes it
difficult to identify and extract all the genes and profiles whose variation in
expression levels is closely associated with a particular target function. In this
paper, a supervised component analysis approach is proposed in which a small
number of profiles and/or genes of known properties are used as “bait” to help
“fish out” other profiles and genes from a reference database that are relevant
to a particular function of interest. The final cluster analysis and pattern match
is then done using a much-reduced data set.

Expression data analysis, microarray data analysis, supervised analysis,
support vector machine, SVM, unified maximum separability analysis,
UMSA, discriminant analysis, cluster analysis.
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1. OBJECTIVES

A reference database of expression profiles from diverse mutations and
chemical treatments of a single assay offers a bird's-eye view of changing
expression patterns due to multiple perturbations. In such a compendium of
expression profiles, a particular perturbation would most likely result in
collective changes among multiple genes. The individual genes could also be
implicated in profiles from different experimental conditions. Because of
such many-to-many relationships between genes and expression profiles, the
direct application of 2-dimensional hierarchical cluster analysis on a large
number of genes and profiles often results in noisy and scattered patterns
that are difficult to interpret.

There are situations in which the objective of analysis is to identify genes
and perturbations that are pertinent to a predetermined set of molecular
functions or biological processes of interest. The proposed approach in this
paper is to incorporate this information into a supervised algorithm to select
a subset of the original data upon which further clustering and pattern
matching can be performed more effectively and efficiently.

2. METHODS

2.1 Data Sets

The publicly available reference database of expression profiles of yeast
mutants and chemical treatments [Hughes ef al., 2000] is used as test data for
the proposed algorithm. A subset of 136 experiment profiles and 551 ORFs
have been selected from the original data of 300 experiment profiles and
6298 ORFs based on the criteria of including only experiments with 2 or
more genes up- or down-regulated at greater than or equal to 3 fold, and a p-
value < 0.01 based on the error model in Hughes e al. [2000]; and only
genes up- or down-regulated at greater or equal to 3 fold, and p-value < 0.01
in 2 or more experiments. In addition, from the same source, profiles of 63
negative controls where also used in the analysis.

One of the purposes of this paper is to show that the proposed supervised
method to select a subset of data for further analysis will not result in
significant loss of useful information. The above data pre-processing steps
were chosen to closely match the data selection criteria used in the original
publication [Hughes et. al, 2000] so that results from the two approaches
could be compared.
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2.2 The Algorithms

In Zhang et al., [2001a], the Unified Maximum Separability Analysis
(UMSA) procedure was reported for computing a projection vector in a
high-dimensional space along which two classes of data are optimally
separated. The UMSA procedure incorporates partial data distribution
information into the construction of an optimal soft-margin hyper-plane
similar to the ones described in the Support Vector Machine (SVM)
literature [Vapnik, 1998]. In Zhang et al., [200la], UMSA was used in a
backward stepwise algorithm to assign significance scores to individual
genes according to their collective contributions to the separation of classes
of experiments.

The UMSA classifier for a set of m training samples x,, x;, ..., X, drawn
from distributions D" and D~ with the corresponding class membership
labels /;, £, ..., I, € {-1,1} 1is determined by solving the following
constrained optimisation problem:

1 m
Minimize —0U-LU+ £ 1
ize o Zl:p,«f, (1)

subjectto  L(v-x;+b)21-&,i=1,2,...,m,

where the non-negative variables &, &, ..., &, represent errors in the
constraints that are penalized in the object function, and the coefficients p,,
P2 ..., Pm are positive constants reflecting the relative “importance” of the m
individual data point. In UMSA, p,=¢(x,0D ,0 )>U 1is used to
incorporate prior knowledge about data distribution into the optimisation
procedure so that the resultant classifier does not rely solely on boundary
points (support vectors). In the current implementation, p, is typically
related to the level of disagreement of a sample x; to a classifier derived
based on distributions of D" and D~ estimated from the m training samples
(e.g., classifier from linear discriminant analysis). Let this level of
disagreement be 0;, the following positive decreasing function is used to
compute p;:

p;=90)=C- e"s’z/"z, where C > 0. [2]

In this paper, for processing microarray expression data where the large
number of variables and the small sample size make the direct estimation of
conditional distributions difficult, o, is defined to be the shortest distance
between the data point x; and the line that goes through the two class
means. The two parameters, & and C modulate the amount of influence an
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individual sample may have upon the solution of v in the optimisation
problem above. One may notice that for a very large ¢ relative to the range
of 0;, p; would essentially become a constant close to C. The UMSA
algorithm then becomes equivalent to the optimal soft-margin classifier in
SVM.

The UMSA procedure may also be used for component analysis [Zhang
et al., 2001b]. The basic algorithm iteratively computes a projection vector
d along which two classes of data are optimally separated for a given set of
UMSA parameters. The data are then projected onto a subspace
perpendicular to d . In the next iteration, UMSA is applied to compute a
new projection vector within this subspace. The iteration continues until a
desired number of components have been reached. For interactive 3D data
visualisation, often only three components are needed. Depending on the
shape of data distribution, for many practical problems, three dimensions
appear to be sufficient to “extract” all the significant linear separation
between two classes of data. The following is the actual UMSA component
analysis algorithm for a data set of m samples and n variables:

inputs:
UMSA parameters C and o ;
number of components ¢ < min(m, n);
data X'= (x,, x5, ..., xn); and
class labels L=(, I, ..., L), e {=1,+1}.
initialisation:
component set D « {};
ke 1.
while k < ¢

1. applying UMSA(o, C)on X=(x), x, ..., X,) and L;
2. di« vf|v]; D DU {di};
3. xiex; —(x/d)d, ,i=1,2,..m,
4, k «k+1.
return D.

The UMSA component analysis method is similar to the commonly used
principal component method (PCA) or Singular Value Decomposition
(SVD) in that they all reduce data dimension. The difference is that in
PCA/SVD, the components represent directions along which the data have
maximum variations while in UMSA component analysis, the components
correspond to directions along which two predefined classes of data achieve
maximum separation. PCA/SVD are for data representation; UMSA
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Component Analysis 1s for data classification (which is also why in many
cases, a three dimensional component space is sufficient for linear
classification analysis).

23 The approach

In microarray expression data processing, a particular phenotypic
variation may be associated with multiple genotypic changes. Similarly,
individual genes are often implicated in multiple biological functions and
pathways. The commonly used 2D hierarchical cluster analysis approaches
require a gene or an experiment profile to “take a stand” and be grouped into
one and only one of the clusters. As with many unsupervised methods, there
is no guarantee that a gene or an experiment profile with multiple
associations would necessarily be grouped into a cluster that is meaningful
for the purpose of a particular analysis.

The approach proposed in this paper uses UMSA component analysis to
project the entire expression data onto a 3D component space. The
projection is determined based on a selected subset of data with known
properties important for the purpose of analysis. The user would then be able
to discard a significant (albeit conservative) portion of the data that are not
relevant before applying a regular cluster analysis procedure.

To analyze the compendium of yeast mutants and chemical treatments
data, a small number of experiments with conditions associated with the
molecular functions or biological processes of interest are used as “bait”
forming one of the two classes of data points. The control experiments are
used to form the other class of data. In the absence of control data, the
unselected large number of profiles may serve as the control group. Once the
projection to a 3-dimensional UMSA component space is determined, the
entire data set is projected onto this space. Data points (profiles) that are
close to the few selected “bait” in the UMSA component space are selected
for further analysis. Genes that correspond to large projection coefficients
(loading factors), especially of the first component, are also selected for
further analysis.

The above procedure projects profiles as data points in the gene space.
One may also first select a few genes that are known to be involved in the
biological processes of interest and carry out the selection process by
projecting genes as data points in a profile space.

UMSA component analysis selects genes that are essential in
differentiating the “bait” profiles from the large compendium of profiles.
The selected profiles are most similar to the “bait” profiles only in the
subspace formed by these essential genes. Irrelevant genes and profiles with
strong patterns and forming large clusters lose their significance in this
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subspace. In contrast, under PCA/SVD, genes and profiles that are
underrepresented in terms of expression variations and absolute numbers
may not be selected at all. Many that do get selected due to repetition and
large variance may have nothing to do with the purpose of the current
analysis.

3. RESULTS

Mutants erg2A, and erg3A, and tet-ERG11 are used as the “bait” class
and the 63 negative controls as the control class. UMSA parameters s=10.0
and K=5.0 [Zhang et al., 200la] are used for the component analysis,
resulting in a subset of 78 profiles and 200 ORFs. The UMSA component
analysis results and profile selection are demonstrated in Figure 1. Results
from 2-dimensional hierarchical cluster analysis (absolute uncentered) using
the Cluster software package from Stanford University [Eisen et al, 1998]
are shown in Figure 2, which are compared to clustering results using the
entire dataset of 136 profiles and 551 ORFs in Figure 3.

The cluster of ORFs identified as related to yeast ergosterol biosynthesis
from both the original data set and the reduced data set are listed in Table 1.
It shows that the reduced data set contains most ORFs except erg3,
CAF120/ynl278w, and ysr3/ykr053c. It has four additional ORFs, however,
that are not in the results from the large data set: erg25, ymrl34w, yll012w,
and cyb5/ynl11lc. The omission of erg3 in the results from the reduced data
set is explained by the fact that erg3A is used as one of the three “bait”
profiles. The UMSA component representation of erg3A hence has very little
to do with erg3. Two of the additional ORFs identified from the reduced data
set are hypothetical ORFs with unknown functions.
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Figure 1. 3D plot of individual profiles in UMSA component analysis. The three filled
circles are mutant erg2A, and erg3A, and tet-ERG11 used as the “bait.” The filled squares
are the 63 controls used with the “bait” to determine the UMSA component projections.
The hollow circles and squares are the projections of the remaining profiles in the UMSA
component space. Profiles within the neighbourhood of the “bait” (the hollow circles) are
sclected for further analysis. During the same process, genes that contribute the most to
the separation between the “bait” and the controls are selected for further analysis. This is
a Matlab 3D scatter plot based on the original Java 3D API plot in colour.
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Table I. Comparison of ORFs identified using large and reduced data sets. Identified ORFs

are indicated by

4.

gy

ORFs

Large Set

Reduced Set

YDR453C

*

YER044C

YGLO0IC

*
*
*

SCM4/YGRO49W

ERG25/YGRO60W

ERGI/YGR175C

*

ERGI11/YHR007C

*

YIL113W

ELO1/YJL196C

YSR3/YKRO053C

*| %] %] =

ERG3,SYRI/YLROS6W

YLLO12W

ERG6//YMLO0SC

*

ERGS5/YMRO15C

*| =

YNL278W

YMRI134W

CYBS/YNL111C

HES1/YOR237W

YPL272C

¥ ¥ ¥ *

CONCLUSIONS

Analysis of large databases often requires careful balance between
efficiency through data reduction and minimizing the risk of losing useful
information. The main advantage of the proposed approach is that by using a
supervised method, known properties
incorporated into the data selection process, which in turn improves the
effectiveness and efficiency of cluster analysis and pattern matching and
detection. However, this approach is most useful for “fishing out” unknown
relationships amongst genes and profiles that have something in common
with the pre-selected “bait” profiles or genes.

of experiments and genes are
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Abstract:

Modeling the relationship between genomic features and therapeutic response
is of central interest in pharmacogenomics [Musumarra et al., 2001]. The NCI-
60 cancer data set with both gene expression and drug activity measurements
provides an excellent opportunity for this modeling exercise. To correlate the
gene expression profile with the drug activity pattern, we utilized a soft
modeling technique called Partial Least Squares (PLS) [Tobias, 2000]. Soft
modeling requires less stringent assumptions about the data than other
modeling techniques [Falk ef al., 1992], A high level of collinearity in multi-
dimensional gene expression profiles motivates us to undertake the PLS
approach, which not only trims data redundancy but also exposes the
underlying hidden functional units as latent features. It is believed that these
functional gene groups play a key role in determining the efficacy of the
cancer drugs to different cell lines (types of cancer). We have shown the
efficacy of PLS in identifying drug resistant and drug sensitive genes. We have
also investigated techniques to exploit the non-linear dependence between
individual gene expressions in order to explain variations in the drug activity
pattern. This is facilitated by a kernel function that implicitly carries out the
regression in a higher-dimensional space where the data is linear [Christiannini
et al., 2000]. The kernel-based non-linear approach is shown to be more
effective in defining the correlation between the drug response and the gene
expressions. The PLS approach, as implemented here, could be used to
differentiate cancer cell lines between renal cancer and melanoma, for
example, or different drug groups like Alkylating agents and Tubulin-active
anti-mitotic agents.
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Key words: Pharmacogenomics, NCI-60 microarray data set, anti-cancer therapeutics,
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1. INTRODUCTION

DNA microarray technology provides an enormous opportunity to
analyze the behavior of several thousand genes in a cell or a tissue. The
massive scale of parallelism using DNA-chip technology quantifies the
concentration of an array of predefined genes in a single experiment. The
focus of our research is to identify the underlying (hidden) functional gene
units from gene expression data and correlate the behavior of these latent
features with drug activity patterns. The NCI-60 data set provides an
excellent opportunity for an exercise of modeling pharmacogenomics. In this
data set [Ross et al, 2000], the A matrix represents the activity pattern of
118 drugs over 60 different human cancer cell lines. The activity of any drug
for a given cell line is defined as the log-concentration of the drug required
to reduce the growth rate to 50% (logGlsy). The T matrix shows the
expressions (concentrations) of 1375 genes over the same cell lines. Since
the gene expression pattern observed in the NCI-60 data set corresponds to
untreated cells, we limit our analyses on sensitivity to therapy rather than on
molecular consequences of therapy. In our research, we are only looking for
intrinsic genomic components rather than individual genes contributing to
drug resistance.

The objective of our research is to model the correlation between the gene
expression profile and the drug activity pattern based on NCI-60 anticancer
data. We have proposed a soft modeling approach called Partial Least
Squares (PLS) to that effect. PLS is shown to be effective in handling high
dimensionality and requires relatively few observations to model the
underlying correlation between latent features and drug groups. Ordinary
PLS searches only in the linear space of genomic features, and hence
ignores non-linear relationships between the genes, if any. The kernel-based
non-linear PLS approach [Ranner ef al., 1994] incorporates the non-linearity
and is shown in our modeling to be highly efficient and effective in
expressing the interdependence between the latent components. These non-
linear components explain the drug activities in a more compact fashion. The
paper is structured in the following manner: The motivation behind the PLS
approach is discussed in Section 2 followed by the methodology in Section
3. The performance analyses of proposed algorithms is shown in Section 4
followed by conclusions and acknowledgements in Section 5 and 6.
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2. MOTIVATION

Since our primary objective is to quantify the correlation between the
gene expression and the drug response over a set of cell lines, one intuitive
approach is to investigate the Multiple Linear Regression (MLR) method.
MLR assumes the individual features in the input set to be linearly
independent. Hence, it explains the variation in the output data as a weighted
sum of individual correlations. We believe that individual gene-drug
correlations do not have independent biological interpretation. Rather, it is a
group of genes which play a key role in any biochemical reaction. A high
level of interdependence between individual genes in a cell makes MLR
inappropriate for analyzing gene expression data. Another intuitive approach
to reduce redundancy in the multivariate data is the eigenvalue
decomposition used in Principal Component Analysis (PCA) [Janne et al.,
2001]. For a matrix X, the principal components are represented by the
eigenvectors of the square matrix X X. Though PCA is shown to be effective
for noise reduction, it does not address the notion of finding relevant features
(gene groups) that are responsible for the variation in drug responses. In
other words, PCA is effective in reducing the dimensionality by identifying
the eigenvector directions in the multidimensional gene space, but these
directions do not necessarily explain the variation in the output space (drug
response) in a most effective way. Hence, we aim for modeling scheme that
reduces the dimensionality of the gene expression data while taking the
variation in drug response into consideration. The PLS approach presented
here is a soft modeling technique to analyze the gene expression pattern to
extract the underlying gene groups that correlate maximally to the drug
response. In PLS, the optimal linear predictive relationships between input
and output variables are created with an objective to minimize the
generalization error. Generalization error is defined statistically as modeling
error on the entire input data space.

The motivation behind the PLS approach is twofold:

1. It is known in the scientific community that every gene in a human
genome does not express itself independently of each other in their roles for
malfunctioning of tumor cells. Rather, it has been verified that in most of the
complex biochemical reactions, a small subset of genes work in cohesion.
This phenomena leads to high multi-collinearity among the variables (gene
expressions) in microarray data. Hence, the algorithm should be capable of
extracting underlying features governing the biochemical reactions from a
high-dimensional correlated data set.

2. The dimensionality of the feature space in the NCI-60 data set is
much higher than the number of observations (cell lines) available for
training. Hence, the modeling approach should handle overfitting and
minimization of generalization error.
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Partial Least Squares (PLS) is shown to be very effective in
chemometrics [Ranner et al, 1994] and econometrics under similar
constraints.

3. METHODOLOGY

PLS was developed by Herman Wold in 1966 as a general model to
estimate the latent constructs from multiple indirect observations [Wold et
al., 1984]. PLS models are completely described by two sets of linear
equations; one represents the relationship between the latent features
extracted from the observables and the other connects the latent variables
with the observed quantities.

The gene expression profiles serve as “descriptors” for PLS modeling and
the drug activity patterns are “response” vectors. Ordinary PLS, as described
by Wold, addresses only the linear dependence between the features,
whereas a Kernel-based PLS approach incorporates non-linearity. For
brevity, we shall only focus on the methodology of a kernel-based PLS
technique, though we have implemented both techniques and have shown the
Kernel-PLS to be more effective in our scenario.

Kernel PLS was initially proposed by Roman Rosipal et al. [Rosipal et
al., 2001]. It has been proved to be very successful in expressing the
interdependence between the multivariate input and the output data set in a
very generalized and concise manner [Janne et al, 2001]. This method is
particularly useful in situations where the dimension of the input space is
significantly greater than the number of training samples used for modeling.
The main advantage of a Kernel based PLS method is that it can incorporate
the non-linear relationship between the input and the output data set. We
have shown the performance of Radial Basis Function (RBF) kernel in our
algorithm and compared its performance with linear (no-kernel) PLS
techniques.

Kernel-PLS belongs to the class of kernel-based non-linear regression
techniques. Any linear regression method finds the optimum linear
regression surface in the multidimensional input and output space through
minimization of the least square error. The optimality is defined only in the
linear space. Hence, any non-linear relationship between the features are
ignored (approximated by a linear surface in the multidimensional space). In
a kernel-based scheme, input space is transformed into a higher dimensional
feature space and linear regression analysis is performed in higher
dimensional feature space which projects to non-linearity in the original
space of observables. The correlation in feature space is represented by a
kernel defined entirely in terms of input space variables. The advantage of a



Methods of Microarray Data Analysis 11 155

kernel method is the execution of the regression analysis in the higher
dimensional space without explicitly defining the transformation. A non-
linear transformation from input variable space X to feature space F is done
through a non-linear mapping ¢: x;, € K" —> ¢(x;) € £'i=1,...,n where n is
the size of the input data set. Our objective is to construct a linear PLS
regression model in F. This is achieved in terms of the latent variables in the
feature space. The method is described as follows:

1.intialize u

2.t=¢p"”
3.c=Y"t
4.u=Yc,u<—u/”u“

5.repeat steps 2.—5.until convergence

6.deflate @¢p" Y matrices : ¢¢" «—(p—tt" W p—-1t"§)",
YeY-uTY

Note that u,t and ¢ are latent variables in the feature space.

Applying the so-called 'kernel-trick' where K(x;,x;)=¢(x;) ¢(x;),
we can effectively bypass the explicit transformation of input variables to the
higher dimensional feature space. The equivalent equation in terms of kernel
matrix K is given by

Ke(I-tt")K(~tt") [1]

For prediction based on testing point {x;}:*,, the predicted output vectors
are calculated as given by the following equation:

Y, =¢,B=KU(T' KU)"T'Y 2]

In any kernel method, one transforms the input space onto a higher
dimensional feature space and subsequently tries to achieve classification or
regression in that space. For most non-separable data there exists a higher
dimensional mapping for which transformed data fall on the linear
regression surface. The motivation behind kernel-PLS is the inherent non-
linearity that exists in the basic mechanism of most of the biochemical
reactions in living cells.
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4. PERFORMANCE ANALYSES

The aim of our research is to extract the underlying functional gene units
that explain variation in drug response. PLS is shown to be efficient in
extracting the latent features from both the gene expression profile and the
drug response pattern. PLS is an iterative greedy algorithm that extracts at
each step the latent component pair from the input and the output data set
that exhibits maximum correlation. The latent components are either a linear
or non-linear (kernel method) combination of the measured observables.
Figure 1 shows the percentage reconstruction of gene expression and drug
activity patterns using linear PLS (no-kernel) and that 20 PLS components
are sufficient to explain 95% variation in drug response.
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Figure I. Percentage reconstruction of drug response as a function of ordinary (linear) PLS
components.
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This provides evidence that a small group of genes (functional units) play
key roles in explaining a biochemical reaction, hence the drug responses.
With this insight, we focused our attention to a particular class of drugs,
called Taxols. These drugs form a subset of the entire drug activity pattern
data set. Figure 2 represents the linear regression plot between the most
significant latent feature (1* PLS component) extracted from the gene
expression data set with the average Taxol response over 60 cell lines. A
strong correlation suggests that Taxol drugs act preferentially on a group of
genes that play a significant role inhibiting the growth of microtubules.
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Figure 2. Linear Regression between average Taxol response and ¥ PLS component.

Figure 3 shows a regression plot of average Taxol response as a function
of the first two PLS components, and these results support our belief. The
extracted PLS components are linearly independent of each other. Hence we
could shift our attention from the whole set of genes to individual groups
that work independently. Each PLS component refers to a weight vector in
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the multidimensional gene space that represents the significance of each
gene in the corresponding PLS component.

Regression plot of 1st two PLS components extracted from Taxol group of Drugs
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Figure 3. Regression surface between average Taxol response and first two PLS
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Figure 4 shows the plot of eigenvalues as a function of the PLS
component index. It is evident from the plot that one could terminate the
PLS extraction process after 5 iterations. This also gives us an idea of how
many PLS components should be considered in explaining a drug behavior.

0.5
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Variation in Comelation Coefficient as a function of extracted PLS components for Taxol-59-12 drugs

I T T T T =T  pgs T T T
06- T
[ . [y
= ]
§O.S~ ]
e |
§ I
o 04 ] 1
-
<« | .
T 03- " N
: S
5 | T
o ! |
0.2+ g
5
® I |
= 01+ -
&
0.1 1 1 1 1 1 — L 1 1
2 4 6 8 10 12 14 16 18
Extracted PLS Components

Figure 4. Plot of eigenvalues as a function of PLS component index.

We have extracted the significant genes from the first five PLS
components and plotted the percentage reconstruction in Figure 5 using only
the extracted genes. The plot shows little difference, confirming our belief
that PLS could be used to extract important genes from a pool of genes
expressions. Figure 6 represents a regression plot similar to Figure 3 using
only the extracted genes.
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The kernel method is thought to be more effective in explaining
pharmacogenomics in a quantitative manner. Figure 7 shows the percentage
reconstruction of the drug response using RBK kernel and no kernel. It is
apparent from the plot that, by using non-linear methods, one could explain
the variations in the drug response in a more concise manner. Figure 8 shows
the linear regression plot of the 1% PLS component extracted using an RBF
kernel as a function of average Taxol response. It shows a strong positive
correlation, whereas we find almost no correlation with subsequent PLS
components.

We believe that since non-linear interaction is allowed in the kernel-based
approach, it could explain the complex interdependence between genes using
a single PLS component. Hence the rest of the PLS components are
redundant. Therefore, we infer that the complex correlation between
different genes and drug activity pattern can be explained by kernel-PLS in a
more accurate and efficient way. The PLS approach, as described here, is
more biologically motivated and considered to be superior to other clustering
algorithms. First of all, PLS tries to extract the latent genomic components
which are maximally decorrelated. Thus, they are expected to explain
independent biological events in a cell or a tissue. Secondly, any particular
gene could be a member of more than one genomic component or class that
is not allowed by other similarity criteria-based clustering algorithms. Also,
the number of clusters are predefined in traditional clustering schemes
whereas PLS defines the genomic clusters “on the fly.”
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Mathematically, each PLS component is a combination of individual
genes. To test if these combinations correspond to any previous biological
knowledge, we dissect each component by matching them with the gene co-
occurrence networks obtained by a PubGene literature search [Jenssen et al.,
2000]. Although these reconstructed gene networks from literature co-
occurrence differ from the real networks operating in the cells, it is a feasible
model. If the PLS components are able to discover the co-regulated genes,
we would expect to reveal a highly connected network from a PubGene
search. As shown in Figure 9, the first PLS component includes signalling
genes such as MYC and NDRGI1 and cytoskeleton related genes such as
COL1A1 and COL4A1. The second PLS component in Figure 10 includes
another set of connected genes such as VEGF, ERGI1 and SPOCK.

Figure 9. Literature Network of genes with genes extracted from the first PLS component.
Each node in Figure 9 and 10 is a gene by the HUGO symbols. The connections between the
nodes is based on literature co-occurrence calculated by PubGene. All the nodes (genes)
except those within double ellipse are revealed by the PLS modeling. COL1A1: collagen, type
I, alpha 1; COL4ATl: collagen, type IV, alpha 1; COL18A1l: collagen, type XVIII, alpha
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1, COL2A1: collagen, type 1I, alpha; COL1A2: collagen, type 1, alpha 2; COL4A2 collagen,
type 1V, alpha 2; COL6A1: collagen, type VI, alpha 1; COL4A3: collagen, type IV, alpha 3,
MATNI: matrilin 1, cartilage matrix protein; MATN2: matrilin  2; MATN3: matrilin
3; MATN4: matrilin  4; TRAM: translocating  chain-associating membrane protein;
CALR: calreticulin; MIC2: antigen identified by monoclonal antibodies 12E7, F21 and
O13; VIM: vimentin; TJP1: tight junction protein (zona occludens 1); AMBP: alpha-1-
microglobulin/bikunin precursor; TPM1 tropomyosin (alpha); ACTN4: actinin, alpha 4; LCP1
lymphocyte cytosolic protein (actin-binding); CFL2 cofilin; LEP leptin receptor gene related
protein; EGFR: epidermal growth factor receptor (avian erythroblastic leukemia viral (v-erb-
b) oncogene homolog); CCNDI: cycliny MYC: v-myc avian myelocytomatosis viral
oncogenec homolog; NDRG!: N-myc downstream regulated gene; CAV2: caveolin 2;
PTN: pleiotrophin (heparin binding growth factor 8, neurite growth-promoting factor 1);
TGFB2: transforming growth factor, beta 2; FGFRI: fibroblast growth factor receptor;
GNASI: guanine nucleotide binding protein (G protein), alpha stimulating activity

polypeptide.

Figure 10, Literature Network of genes with extracted genes from the second PLS
component. All the genes except those under double ellipse are revealed by the second PLS
component. COLI1AL: collagen, type I, alpha 1; COL2AI: collagen, type Il
alpha; COL1A2 collagen, type I, alpha 2; COL3A1: collagen, type I,
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alpha; COLSA2: collagen, type V, alpha 2; COLGAL: collagen, type VI, alpha
1; FBNI: fibrillin; FBN2: fibrillin;  VIM: vimentin; AMBP: alpha-1-microglobulin/bikunin
precursor; HXB: hexabrachion (tenascin C,
cytotactin); CALR: calreticulin; ALDOB: aldolase B, fructose-bisphosphate; TRAM:
translocating chain-associating membrane protein; SFTPC: surfactant, pulmonary-associated
protcin C; VEGF: vascular endothelial growth factor; FST: follistatin; STATSB: signal
transducer and activator of transcription S$B; MMP9: matrix metalloproteinase 9;
PTPN11 protein tyrosine phosphatase, non-receptor type 11; AP2M1: adaptor-related protein
complex 2, mu subunit; EGR1: early growth response 1; CA3: carbonic anhydrase III, muscle
specific; SPOCK: sparc/osteonectin, c¢wev  and  kazal-like domains  proteoglycan
(testican); P8: p8 protein (candidate of metastasis 1); DUSP6 dual specificity phosphatase6.

The role of many of these genes in taxol treatment has been indicated
previously. For example, MYC is a previously identified oncogene
regulating cell growth and proliferation. The interaction between MYC and
microtubules has been shown by immunocoprecipitation and the regulation
of MYC expression by microtubule system was suggested [Khyari et al.,
1997]. Further analysis of these results in a biological context could generate
new insights and hypotheses. For example, some of the double ellipse genes,
which indicate genes not revealed by PLS modeling, are not included in the
microarray. Based on the tight connections with other involved genes, it
should be interesting to investigate them on an individual basis by RT-PCR.
In conclusion, PLS components not only offer good predictability but also
offer satisfying explanations of the complex biological system.

S. DISCUSSION

Kernel-based techniques to achieve Principal Component Analysis (PCA)
and Partial Least Squares (PLS) prove to be appropriate for microarray data
analyses. In the situations of high multi-collinearity among regressors,
Ordinary Least Squares (OLS) produces unbiased estimates of regression
coefficients with high variance. This is also true in cases where numbers of
observations are far less than the number of observed variables in the input
space. The main advantage of the kernel-based PLS is the projection of the
original regressors to the ‘real’ latent variables. This increases the noise
immunity of the proposed modeling scheme. Using the standard ‘kernel’
trick, one effectively bypasses the actual transformation of the input vectors
to the feature space. We have shown the Kernel-PLS approach to be more
effective in explaining the drug variation and extracting underlying
functional gene units. There are many potential applications to our research:

1. To recognize the method of action for a new drug.
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2. To classify the cell lines and recognize a new unknown cell line based
on its drug response.

3. To cluster genes in small working groups that work independently in
a cell.

4. To make an informed decision on combination therapy to maximize
the cytotoxic effect and minimize the drug-resistance potential.
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ANALYSIS OF GENE EXPRESSION PROFILES
AND DRUG ACTIVITY PATTERNS BY
CLUSTERING AND BAYESIAN NETWORK
LEARNING

Jeong-Ho Chang, Kyu-Baek Hwang, and Byoung-Tak Zhang

Biointelligence Laboratory, School of Computer Science and Engineering, Seoul National
University, Seoul 151-744, Korea

Abstract: High-throughput genomic analysis provides insight into a complicated
biological phenomena. However, the vast amount of data produced from up-
to-date biological experimental processes needs appropriate data mining
techniques to extract useful information. In this paper, we propose a method
based on cluster analysis and Bayesian network learning for the molecular
pharmacology of cancer. Specifically, the NCI60 dataset is analyzed by soft
topographic vector quantization (STVQ) for cluster analysis and by Bayesian
network learning for dependency analysis. Our results of the cluster analysis
show that gene expression profiles are more related to the kind of cancer than
to drug activity patterns. Dependency analysis using Bayesian networks
reveals some biologically meaningful relationships among gene expression
levels, drug activities, and cancer types, suggesting the usefulness of Bayesian
network learning as a method for exploratory analysis of high-throughput
genomic data.

Key words:  Gene expression pattern, drug activity pattern, molecular pharmacology, soft
topographic vector quantization (STVQ), Bayesian networks

1. INTRODUCTION

Recent developments in the technology for biological experiments have
made it possible to produce massive biological datasets. For example,
microarrays obtained from cDNA chips or oligonucleotide chips provide a
parallel view of the expression pattern of tens of thousands of genes in a
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sample. These massive datasets provide an opportunity to broaden the
knowledge of the complex biological phenomena, but also require
appropriate analysis techniques different from conventional methods for the
traditional one-gene-in-one-experiment paradigm. Until now, diverse
methods from the statistics and machine learning fields, such as hierarchical
clustering [Eisen et al, 1998], principal component analysis (PCA)
[Raychaudhuri et al, 2000], neural networks [Khan et al., 2001], and
Bayesian networks [Friedman et al., 2000; Hartemink et al., 2001; Hwang et
al., 2001], have been applied to high-throughput genomic analysis. In data
analysis, it is most important to adopt the appropriate methods to the purpose
of the analysis.

In this paper, the NCI60 dataset [Scherf et al., 2000] is analyzed for the
molecular pharmacology of cancer. The NCI60 dataset consists of 60 human
cancer cell lines from 9 kinds of cancers, which are colorectal, renal,
ovarian, breast, prostate, lung, and central nervous system origin cancers, as
well as leukemias and melanomas. On each cell line, the gene expression
pattern is measured by a cDNA microarray of 9,703 genes including ESTs.
Also, 40 molecular targets other than mRNA are assessed. And 1,400
chemical compounds are tested on the 60 cell lines. These compounds
include some anticancer drugs that are currently in clinical use. The drug
activity on the cell line is measured by the growth inhibition assessed from
changes in total cellular protein after 48 hours of drug treatment using
sulphorhodamine B assay [Scherf et al., 2000].

We use soft topographic vector quantization (STVQ) [Graepel, 1998] for
cluster analysis and Bayesian network learning for dependency analysis. In
the cluster analysis, 60 cell lines are clustered based on the gene expression
patterns and drug activity patterns. Dependency analysis aims to model the
probabilistic relationships among the expression level of each gene, the
activity of each drug, and the kind of cancer.

The paper is organized as follows. In Section 2, the cluster analysis by
STVQ is described. The dependency analysis by Bayesian network learning
is described in Section 3. Finally, the conclusion and some directions for
further research are given in Section 4.

2. CLUSTER ANALYSIS OF THE NCI60 DATASET

We have clustered the 60 human cancer cell lines of the NCI60 dataset based
on gene expression patterns and drug activity patterns, respectively. In the
experiments, we investigate if there is a common pattern in gene expression
and drug activities of the cell lines from the same tissue of origin, and thus if
cell lines of the same cancer type can be clustered appropriately.
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2.1 Soft Topographic Vector Quantization

Soft topographic vector quantization (STVQ) [Graepel, 1998] is a clustering
algorithm based on principles from statistical physics. It can provide not
only a stable and good clustering solution, but also a topographic map of the
clustered data.

In this algorithm, clustering is defined in terms of an optimisation
problem. The cost function to be optimised is given as

E=

$me,. [

M
=

i

where N is the number of samples and M is the number of clusters. m; is a
binary variable indicating whether the i* sample belongs to the /” cluster,
and e; is the error occurred by assigning the i" sample to the j" cluster. The
error term is defined as

1Y & ;
euzizhﬂ”x.—‘zklz’ Zhjk =1 (), =
k=1 k=1

where X; is a sample vector and z, is a cluster centre whose value is
determined by the average of the sample vectors assigned to it. Ay is a
neighbourhood function between ;j* and K" clusters. By introducing 4 for
every pair of clusters, STVQ is able to visualize the cluster structure in the
same way as the self-organizing map (SOM) does in the one- or two-
dimensional space.

STVQ provides an efficient procedure to find a good solution to the
minimization of Equation 1 based on the maximum entropy principle and the
idea of deterministic annealing. It is initialised with a random configuration
as a K-means algorithm and proceeds using an iterative optimisation method,
the EM algorithm [Dempster et al., 1977], with some annealing schedule. In
the E-step, the expectation value of m, that is the probability that the sample
x; belongs to the j* cluster, is estimated for each pair of samples and clusters.
Then, all the cluster centres are calculated in the M-step. These two steps are
iteratively alternated until convergence. More details about STVQ can be
found in [Graepel, 1998].

2.2 Clustering of the NCI60 Cell Lines Using STVQ

The NCI60 dataset comprises two matrices, called the T matrix and the A
matrix. In the T matrix, each cell line is represented by 1,416 attributes that
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include 1,376 genes and 40 molecular characteristics. The 1,376 genes are
those with strong patterns of variation among the cell lines and with less than
or equal to 4 missing values [Scherf et al, 2000]. Each cell line in the A
matrix is represented by the activity values of 1,400 chemical compounds.

For each cell line in the T matrix, all of its attribute values were
standardized (mean value is 0 and the standard deviation is 1) across 1,416
attributes, including genes and individual targets. Likewise, all the drug
activity values of each cell line in the A matrix were standardized. Now,
each cell line is represented as a vector, where the vector x; corresponds to
the i* cell line.

First, we have clustered the 60 cell lines based on the gene expression
profiles. For each cluster centre 2, all of its attribute values are standardized
after every update. Then the squared Euclidean distance in Equation 2 is
closely related with the Pearson correlation coefficient. That is,

Ix -z = (x'x, + 2]z, - 2x72,)

3
[ xTzk) 13
=|2D=2Dx =2k | = 2D(1 -1y,

where D is the number of attributes of x; and z,, and r; is the Pearson
correlation coefficient for x; and z,. Based on this relation, we have used the
squared Euclidean distance scaled by 1/D as the distance between x; and z,
and the error term in Equation 2 is equivalent to

1 & lle-lkilz <

ei,-:EZhﬁ—D_—;hﬁ(l—m) (4]

k=1

The cell lines have been clustered with varying number of clusters, that is
9, 16, and 25. The result with 16 clusters is shown in Figure 1(a). It can be
seen that each cluster or nearby clusters appropriately reflect the organ of
origin of its constituent, especially for the leukemias (LE), the colon cancer
lines (CO), the CNS lines, the renal carcinoma lines (RE), and the melanoma
lines (ME).
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Figure . The results of cell line clustering: (a) based on gene expression profiles (a = 0.0),
(b) based on interpolated distance (@ = 0.7), and (c) based on drug activity patterns (a = 1.0).
The value of A is inversely proportional to the Euclidean distance between ;* and &” clusters,
where each cluster is represented as a discrete position in the two-dimensional lattice. In this
4x4 lattice, the cluster in the upper-left corner is encoded as (0, 0) and that in the lower-right
comer as (3, 3). Clusters at the corners and ends are not neighbouring each other in view of
Euclidean distance between the coordinates in the lattice.

We then ask, will the cell lines from the same tissue of origin show
similar patterns in drug activities, such that they appear in the same or
nearby clusters? To investigate if this is the case, we have clustered the cell
lines based on both gene expression profiles and drug activity patterns. The
error occurred by assigning a cell line to a particular cluster is defined as

%ihﬂ([(l—a)“xf—zflll+a"x§'-zfﬂ, (0<a<l) [5]
k=1

where the cell line x# and the cluster z# are related with gene expression
profiles, and x and z with the drug activity patterns. The constant « is
used to interpolate two distances based on the gene expression profiles and
drug activity patterns.

Two criteria were used to measure the quality of the clustering results:
the average Pearson correlation coefficient R and the average entropy H
across all the clusters. They are defined as

YN 2 o (6]
R ZN Nj(Nj_l)Zidr‘* ’

Jj=!
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H i_]ﬁ_ — S N_ og & s [7]
= N| &N, N,

where N is the number of cell lines, M is the number of clusters, and C is the
number of tissues oforigin. N, represents the number of cell lines assigned to
the j* cluster, and Njcthe number of cell lines from the K organ of origin in
the j* cluster. The value in the bracket in Equation 6 is the average Pearson
correlation coefficient across all the pairs of cell lines in the same cluster and
that in Equation 7 represents the entropy in a cluster. When the cluster size is
fixed, the higher value of entropy H means that the cluster structure is less
reflective of the tissue of origin of the cell lines. In the case of the Pearson
correlation coefficient R, the higher value means a better quality of
clustering result in terms of inner cluster similarity.

Figure 2 shows the variation of the values of R and H in clustering of the
cell lines, respectively, with varying a values in Equation 5. It can be seen
that, with the higher value of ¢, the value of R based on gene expression
profiles gets lower and the value based on drug activity patterns gets higher,
showing the opposite trends between the two cases. In the case of the
average entropy, as the value of a increases, the entropy has a tendency of
being higher (for 16 clusters, from 0.40 to 0.72), and thus the quality of
clustering becomes worse.
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Figure 2. Values of the two measures of clustering quality over varying a. (a) Averaged
Pearson correlation coefficients for 9 and 16 clusters. GE: The Pearson correlation coefficient
based on gene expression profiles. DA: The coefficient based on drug activity patterns. (b)
Averaged clustering entropies for 9 and 16 clusters. Only cancer types of the constituents in a
cluster are considered, so just one graph suffices for each experiment.

From these two results, we can see that, in general, the similarity in gene
expression profiles among a set of cell lines does not necessarily relate to a
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similarity in drug activity patterns among the cell lines. Also, the drug
activity patterns are less related to the organ of origin, when compared with
the gene expression profiles.

The cluster structure of the 60 cell lines on the basis of drug activity
patterns only, that is &= 1.0 in Equation 5, is shown in Figure I(c). As also
indicated by the value of average entropy, the cluster structure of the cell
lines can be seen to be more heterogeneous than the result based on the gene
expression profiles only. And Figure 1(b) shows a compromised solution
with @ = 0.7. In [Scherf et al., 2000], it has been proposed that this
heterogeneity might be partly due to the activity of genes related to drug
sensitivity and resistance, which has been supported by the fact that several
cell lines with a relatively high expression level of multi-drug resistance
gene ABCBI have been clustered in the same group. Inspired by our
clustering results and the proposal, we have tried analysing the relationships
among the activities of anticancer drugs and the expression levels of the
genes by Bayesian network learning.

3. DEPENDENCY ANALYSIS USING BAYESIAN
NETWORK LEARNING
31 Bayesian Networks

A Bayesian network [Heckerman, 1999] is a probabilistic graphical model
that represents the joint probability distribution over a number of random
variables. For an efficient representation, conditional independencies among
the variables are exploited. These conditional independencies are encoded by
a DAG (directed acyclic graph) structure in which a node corresponds to a
random variable. The joint probability distribution over a set of n random
variables X = {Xj, X3, ..., X,}, given the Bayesian network for X, is
described as follows:

PX) =] T P(X, | Pacx,)), (8]

i=l

where Pa(X;) is the set of parents of node X; in the Bayesian network
structure. P(X; | Pa(X;)) in the above equation is called the local probability
distribution for X;. Typically, the linear Gaussian model for continuous
variables and the multinomial model for discrete variables are used for
modeling the local probability distribution.
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Learning Bayesian networks from data consists of two parts: learning the
network structure and learning the local probability distribution for each
node in the given structure. The second part corresponds to a simple
calculation under some reasonable assumptions [Heckerman, 1999]. A
popular approach to structural learning is the score-based search. The search
space is nevertheless super-exponential in the number of variables. Because
it is nearly impossible to find the best-scoring network structure even in a
moderate case (7 or 8 variables), several search heuristics such as greedy
search, greedy search with random restarts, and simulated annealing are used
in practice [Heckerman, 1999]. In this paper, the greedy search algorithm
and another search heuristic for hundreds of variables with the BD (Bayesian
Dirichlet) scoring metric [Heckerman ef al., 1995] are used to learn Bayesian
networks from the NCI60 dataset.

3.2 Applying Bayesian Networks to the Analysis of
NCI60 Dataset

The NCI60 dataset contains gene expression patterns (T matrix) and drug
activity patterns (A matrix) for 9 different cancer types [Scherf et al., 2000].
To model the probabilistic relationships among them, we use a Bayesian
network where each node corresponds to each variable. In the Bayesian
network learning, the T matrix and A matrix are combined together, so that
each cell line sample has gene expression levels and drug activities as its
attributes.

3.2.1 Pre-Processing of the Dataset

The experiments focus on the 1,376 genes and 118 drugs as in the analysis of
gene-drug correlations by Scherf et al. [2000]. Furthermore, genes and drugs
that have more than 3 missing values across 60 samples, as well as unknown
ESTs, were eliminated for robust analysis. Consequently, the analyzed
NCI60 dataset includes 60 samples with 890 attributes (805 gene expression
levels, 84 drug activities, and one additional variable for the kind of cancer).
The number of attributes is extremely large compared to the number of
samples. This might cause problems, such as a seriously slow learning
speed, low confidence in learned models, and infeasibility of probabilistic
inference. To cope with these problems, the number of attributes is reduced
in two ways. One is to use prototypes of attributes. Genes and drugs are
clustered respectively and the centre of each cluster is regarded as an
attribute. The other is attribute selection. Here, all the genes and drugs are
clustered together and all the members of some adjacent clusters are selected
to construct the Bayesian network for the specific purpose of the analysis.



Methods of Microarray Data Analysis 11 177

The soft topographic vector quantization (STVQ) described in Section 2 is
used for clustering.

All the continuous attribute values were discretized into three levels (low,
normal, and high) for the multinomial local probability distribution model of
the Bayesian network. The multinomial model is chosen because of its
expressive power although discretization might cause some information loss.
Two discretization boundary values for each attribute are calculated as u +
c-oand u - c-o. Here, u is the mean value and o is the standard deviation of
the attribute across 60 samples. ¢ is a constant, which determines the
distribution ratio of the original values in low, normal, and high.

322 A Fast Search Heuristic for Bayesian Network Learning

A general greedy search algorithm [Heckerman, 1999] is nearly inapplicable
to learning Bayesian networks which consist of hundreds of nodes. Friedman
et al. [1999] suggest a fast search heuristic for such cases and a similar
approach is adopted in the experiments. The “local to global” heuristic is a
kind of greedy search algorithm. Here, the search space is reduced by
learning the structure around each node within small bounds before
performing the greedy search procedure. The bounds are based on the
concept of a Markov blanket [Pearl, 1988]. The Markov blanket of a variable
satisfies the following.

P(X,|X-X)=P(X,|BL(X,)), BL(X)cX-X, (9]

where X is the set of all the variables and BL(X;) is the Markov blanket of
X:. Because the Markov blanket size of each node is unknown, the maximum
size is pre-specified. Although the “local to global” heuristic is not
guaranteed to find a good-scoring network in all cases, the learning speed is
much faster than a general greedy search algorithm in the case of learning
Bayesian networks with hundreds of nodes.

3.3 Experimental Results

Experimental results on the original dataset (Dataset 1), one reduced
dataset with prototypes (Dataset 2), and another reduced dataset with
selected attributes (Dataset 3) are given here. Table 1 shows the properties of
these three datasets with applied learning methods, learning time, and the
applicability of probabilistic inference. This table describes the properties of
three datasets with respect to the applied learning methods, learning time,
and the applicability of probabilistic inference. Samples in Dataset 2 have
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gene prototypes and drug prototypes as attributes. Dataset 1 is too large to
apply the general greedy search algorithm. Dataset 3 is so small that the
“local to global” heuristics are not required. Microsoft MSBN software -
http://research.microsoft.com/research/dtg/msbn/OIdMSBN.htm - was used
for probabilistic inference in the analysis. The average learning time is
measured on a Pentium III 1GHz machine.

Table 1. The properties of three datasets with respect to the applied learning methods,
learning time, and the applicability of probabilistic inference. The numbers in the
parentheses of the forth column represent the number of runs of the greedy search
algorithm with random initialisations. The numbers in the parentheses of the fifth column
represent the used maximum Markov blanket sizes. The rightmost column shows the
applicability of probabilistic inference to the Bayesian networks learned from each dataset.

# of #of | Greedy | “Local to global” | Learning time Prob.

genes | drugs | search heuristics in avg. (secs) | inference
Dataset | 805 84 | —" 0(5~8) 32337 no
Dataset 2 40 51 0(20) O(5~15) 123.9 yes
Dataset 3 12 4 [ O(100) el 15.6 _yes

3.3.1 Experimental Results on the Original Dataset

Three Bayesian networks were learned from the original dataset according to
three different discretization boundaries (¢ = 0.43, 0.50, and 0.60).
Probabilistic inference from the Bayesian network with 890 nodes is nearly
impossible. Hence, only the number of edges connected to each node is
analyzed here. An edge represents direct probabilistic dependency and the
node with many edges is considered to be related to many other nodes. Table
2 lists the top ten nodes that are most related to others on average in three
Bayesian networks. The most related one is the cancer type node. The other
nine nodes are all for genes. The results seem to be reasonable since the
strong relationship between gene expression patterns and the kind of cancer
is discovered from the cluster analysis in Section 2.

To investigate the influence of different discretization boundaries on the
analysis, the Pearson correlation coefficient (r;) among the numbers of edges
of all the nodes in two Bayesian networks was calculated as follows:

890 1 890 890

'= ;nkink/ "g’ga;”u;"lq [10]

w | (80 2 lg90 , 1 (&2 2’
St ol o] |l

k=1 k=1 k=1 k=1
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where ny; is the number of edges of node k in Bayesian network i and ny; is
the number of edges of the same node in Bayesian network j. The average
value of ; among three Bayesian networks is 0.841. The number of edges of
each node does not seem to be so much influenced by different discretization
boundary values.

Table 2. Top ten nodes that are closely related to the others. The first is cancer type and the
other nine nodes are all for genes. The average number of edges of each node over all 890
nodes is 5.21.

Description of node The average
number of edges
The kind of cancer 125
SID W 487878, SPARC/osteonectin [5:AA046533, 3" AA045463] 25

Homo sapiens Cyr61 mRNA, complete cds Chr.1 [486700, (DIW),

5:AA044451, 3 AA044574] 3
SID W 162479, Homo sapiens epithelial-specific transcription factor 6
ESE-1b (ESE-1) mRNA, complete cds [5"H27938, 3:H27939]

CDH2 Cadherin 2, N-cadherin (neuronal) Chr. [325182, (DIRW), 13.7
5':W48793, 3:W49619] '
H.sapiens mitogen inducible gene mig-2, complete CDS Chr.14 133
[488643, (IW), 5:AA045936, 3"AA045821] -
SID W 429623, Homo sapiens clone 24659 mRNA sequence 133

[5:AA011634, 3"AA011635]
SID W 290871, Integrin alpha-3 subunit [5:N99380, 3"N71998] 13
COLA4AI Collagen, type IV, alpha 1 Chr.13 [145292, (EW),
5"R78225, 3:R78226]

COLA4A1 Collagen, type 1V, alpha | Chr.13 [489467, (IEW),
5"AA054624, 3" AA054564]

12.7

12.7

3.3.2 Experimental Results on the Reduced Dataset with Prototypes

In the Bayesian network learned from the reduced dataset with 40 gene
prototypes and 5 drug prototypes, the negative correlation between ASNS
(Asparagine synthetase Chr.7 [510206, (IW), 5:AA053213, 3"AA053461])
and L-asparaginase, as well as the negative correlation between DPYD (SID
W 278125, Dihydropyrimidine dehydrogenase [5:N94809, 3:N63511]) and
SFU (fluorouracil) are examined [Scherf et al., 2000]. Figure 3 shows two
parts of the Bayesian network. In Figure 3(a), G4 is the gene prototype
which includes ASNS and D2 is the drug prototype which includes L-
asparaginase. G4 and D2 are dependent on each other directly. This suggests
that these two nodes are strongly correlated with each other. In Figure 3(b),
G8 is the gene prototype that includes DPYD and DS is the drug prototype
that includes 5FU. G8 and D5 do not directly depend on each other.
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Cancer type

Figure 3. Two parts of the Bayesian network with 46 nodes. G1 ~ G40 are gene prototypes.

D1 ~ D5 correspond to drug prototypes. In (a), D2 directly depends on G4 and vice versa. D5
is not directly dependent on G8 in (b).

Table 3 presents the results of the probabilistic inference from the
Bayesian network. The inferred conditional probabilities do not show the
expected negative correlation between D2 and G4 clearly. For example,
P(D2 = low | G4 =high) should be greater than P(D2 = high | G4 = high). As
a consequence, the Bayesian network with 46 nodes has failed to reveal
some biologically known facts clearly. It might be due to the information
loss induced from discretization, the use of prototypes, or both of these.

Table 3. The conditional probability table for P(D2 | G4) inferred from the Bayesian network
in Figure 3. The negative correlation is not apparent here.

D2 =low | D2=normal | D2 = high
G4 = low 0.32096 0.27086 0.40818
G4 = normal 0.31387 0.41247 0.27366
G4 = high 0.32167 0.34920 0.32913

333 Experimental Results on the Reduced Dataset with Selected
Attributes

To investigate the probabilistic relationships around L-asparaginase, 12
genes and 4 drugs were selected through clustering. Figure 4 shows the part
of the Bayesian network with 17 nodes. In this figure, the direct probabilistic
dependency is observed between the cancer type and L-asparaginase. L-
asparaginase and ASNS are also dependent on each other directly. In
addition, ASNS directly depends on PSCR (SID W 484773, PYRROLINE-5-
CARBOXYLATE REDUCTASE [5:AA037688, 3:AA037689]). Tables 4
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and 5 show the results of some probabilistic inferences from the Bayesian
network. The conditional probabilities in Table 4 coincide with the negative
correlation between ASNS and L-asparaginase. Moreover, when the cancer
type is known to be leukemia, the negative correlation is stronger.

Bt

. L-asparagin a@

e

Cancer ype N ( ASNE j:enc\}
) -~

8

- —1—- e
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e i

/
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Figure 4. The Bayesian network with 17 nodes. Gene nodes are represented by acronyms.
Following is the list of full names of the acronyms PSCR, ASNS, H2B, HH, and LL: SID W
484773, PYRROLINE-5-CARBOXYLATE REDUCTASE [5:AA037688, 3:AA037689]
(PSCR), ASNS Asparagine synthetase Chr.7 [510206, (IW), 5:AA053213, 3:AA053461)
(ASNS), SID 470936, Homo sapiens mRNA for histone H2B, clone pjG4-5-14
[S:AA034106, 3:AA032092] (H2B), SID W 376009, HISTONE HID [5:AA040305,
3:AA040326] (HH), SID W 430196, LACTOYLGLUTATHIONE LYASE [5:AA010331,
3:AA010332} (LL).

In addition, P5CR and L-asparaginase are highly negative-correlated in
Table 5. P5CR is involved in the alanine and aspartate metabolism. ASNS is
involved in the arginine and proline metabolism. These two metabolisms are
closely located in the metabolic and regulatory pathway in the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) located on the web at

(http://www.genome.ad.jp/kegg). And the similarity of P5CR and ASNS in relation to
the negative correlation with L-asparaginase seem to indicate a meaningful relationship.
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Table 4. The conditional probability table for P(L-asparaginase | ASNS) and P(L-
asparaginase | ASNS, Cancer type = Leukemia) (the values in the parentheses). The quantified
probabilistic dependency between the expression level of ASNS and the activity of L-

asparaginase coincides with the known biological fact (the negative correlation).

L-asparaginase =
low

L-asparaginase =
normal

L-asparaginase =
high

ASNS = low 0.19857 (0.17536) 0.27471 (0.22838) 0.52672 (0.59626)
ASNS = normal 0.31110(0.27128) 0.49795 (0.53790) 0.19095 (0.19081)
ASNS = high 0.42159 (0.38500) 0.36279 (0.42437) 0.21561 (0.19063)

Table 5. The conditional probability table for P(L-asparaginase | PSCR). The quantified
probabilistic dependency between the expression level of PSCR and the activity of L-
asparaginase is similar to that between 4SNS and L-asparaginase.

L-asparaginase = L-asparaginase = L-asparaginase =
low normal high
P5CR = low 0.27510 0.35226 0.37263
P5CR = normal 0.31621 0.41072 0.27307
P5CR = high 0.33837 0.39664 0.26499

4. CONCLUSION AND FUTURE WORK

In this paper, the NCI60 dataset was analyzed for the molecular
pharmacology of cancer. First, the 60 cell lines were clustered using the
STVQ algorithm. While the hierarchical clustering algorithm used in [Scherf
et al., 2000] operates in an agglomerative way and provides the tree-like
cluster structure, the STVQ algorithm, starting from a coarse global
structure, successively refines the cluster structure with some annealing
schedule. And it finally represents the cluster structure in a two- or three-
dimensional lattice.

We have performed cluster analyses based on the gene expression pattern
and the drug activity pattern, respectively. The differences of the cluster
structures were shown quantitatively in terms of the averaged Pearson
correlation coefficient and the clustering entropy. The drug activity pattern
less reflects the tissue of origin than the gene expression pattern, and it is
suggested that this might be partly due to the expression of particular genes
related to some drug activities. From these results, the drug activity pattern is
analyzed with gene expression patterns and cancer types for more detailed
information, and Bayesian network learning was applied for this purpose.

In the experiments, a fast search heuristic was applied to learning the
Bayesian network with hundreds of nodes. Among hundreds of attributes,
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only a few of them, including the cancer type and some genes, show notable
relations to others. In order to perform the probabilistic inference, we
reduced the dimensionality of attributes by clustering. By using prototypes,
the known biological facts could not be discovered clearly. This might be
due to the loss of useful information in the original data by the use of gene
prototypes and drug prototypes. Hence, the dimensionality reduction by
attribute selection was performed. Focusing on the discovery of relationships
around L-asparaginase, we selected 12 genes and 4 drugs by clustering. The
results of the analysis coincide with the known biological facts: the negative
correlation between L-asparaginase and ASNS, as well as the influence of the
kind of cancer on this negative correlation. In addition, the positive
correlation between ASNS and P5CR was discovered. Biologically, ASNS
and P5CR are located closely in the metabolic pathway. To summarize, the
relationships among genes, drugs, and cancer types could be modelled by
Bayesian network learning. This suggests that Bayesian network learning
and clustering are appropriate for the exploratory analysis of high-
throughput genomic data.

Directions for further research are as follows: In a complex domain such
as DNA microarray analysis, the learned results are prone to be unreliable
because of the small sample size compared with the number of attributes.
The eMCMC (evolutionary Markov chain Monte Carlo) method [Zhang et
al., 2001] might be an appropriate solution. The more efficient and robust
learning and inference algorithms for large Bayesian networks should also
be studied. In addition, combining knowledge from biomedical literature
with data analysis is a candidate for the improvement of the quality of
results.
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Abstract:

Key words:

One frequent question in the study of microarrys concerns the number of
replicates required to obtain vaild data. We used the T-matrix data from the
NCI-60 cancer cell lines dataset to investigate this question. Five testing
methods were evaluated. We selected two cancer groups for comparisons,
ovarian (OV) vs. breast (BR) and leukemias (LE) vs. renal carcinoma (RE), to
perform hypothesis testing for detecting the genes expressed differentially
between cancer groups. Our goal is to examine the pattern and performance of
each testing method and the required sample size. The first four testing
methods are t-test based methods with different strategies of computing
sampling variance, including the uses of sampling variance, pooled variance,
and common variance. The Sth test is a permutation test based on the t-test
with pooled variance. Our results show that there are more genes with
statistically significant differences in expression in the LE vs. RE comparison
than between the OV vs. BR. The permutation works similarly to the t-test
itself. Overall, the pooled variance approach proved a better strategy. For
sample size, as expected, the number of significant genes increased as the
number of cell lines increased for the same testing method. However, we
found that the results derived from 3 cell lines are very different from the other
results. It may imply that more than three cell lines or replicates are needed in
the microarray study in order to attain enough power to detect the differential
gene expression

microarry, replicates, t-test, permutation test, sample size, power



186 Li et al.

1. INTRODUCTION

An exciting biological achievement in the last few years is the utilization
of microarray technologies to measure simultaneously the expression levels
of thousands of genes. The image data from the arrays lead to gene-specific
intensities representing relative expression levels. A comparison of gene
expression of cells or tissues from two experimental conditions, which may
refer to samples drawn from two types of tissues, tumors or cell lines, may
provide useful information on important biological processes or functions
[Botstein and Brown, 1999; Lander, 1999]. It has been found that due to
high noise-signal ratios, a single microarray may not provide enough
information to be reliable for analysis [Lee et al., 2000]. Replication of array
experiments is often recommended. Replication also makes it possible to
assess variability of expression within genes between replicates. One of the
important statistical issues in microarray study is the hypothesis testing for
detecting differentially expressed genes between two experimental
conditions. Due to the high cost of each replicate, it is impractical to produce
many replicates of arrays. On the other hand, a small number of replicates
make it difficult to perform statistical tests. The balance between
maintaining reasonable cost and maximizing statistical robustness requires
more thorough investigation.

With this question in mind, we made use of the gene expression data
from the T-matrix of NCI-60 cancer cell lines dataset [Scherf et al., 2000]
and evaluated five simple t-test based methods for evaluating differential
gene expression. We also examined the effect of the number of cell lines for
each testing method. Although the data here are not exactly in the same
format and property as the replicates of microarrays, our goal is two fold: (1)
to find the pattern and evaluate the performance of each testing method and,
(2) to infer the number of replicates needed in the microarray if the testing
method is applied.

2. MATERIALS AND METHODS

The testing methods that we evaluated in this study are t-test based
methods, differing from one another because of different estimating
procedures for the variance. The details of five testing methods are described
below.

Let Y4 and Ys be the intensity measurement for gene i (i=1, ..., n) at the
Jjth cancer cell line for group A and B cancer (e.g. ovarian and breast cancer),
respectively, where j4=/,..., ¥4 and jg = I,..., rg .We use type A as an
example to describe the sampling variance estimation of each gene; that is,
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The pooled variance for each gene is computed by:
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In addition, we also investigated the t-tests based on the common
variance, which is defined as the average of sampling variance over all genes
[Nadon et al., 2001]. The use of the common variance strategy in the t-test
was suggested as more powerful than the conventional way of estimating
sampling variance when the number of replicates is small. The basic idea is
to combine all sampling variances across all genes to form a common
variance; that is, variance will be constant through all genes. The common
variance can be obtained as below.

3ss
Sj = i=ln

We evaluated the following five tests:

Testl: use sampling variance for each gene in each cancer group.

]';,:

Test2: use pooled sampling variance for each gene.
T = YiA — YiB
‘ 11
S (—+—)

ip
Fy Tg

Test3: use the common variance for each cancer group.
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Test4: use the pooled common variance.

(r, =DS%+(ry, =1S;

2=
(ry+r,=2)
Y,-Y,
]-:,:: )/l iB
S2~+——-
,,(rA VB)

Test5: a permutation test within each gene based on Test2. We first
computed Test2 for each gene in the observed dataset. We mixed all
expression data from all cell lines in each gene together and randomly
withdrew r4 and rz cell lines into each disease without replacement. Then,
performed Test2. We repeated the same procedure 1000 times and computed
the number of times (N) that the test from permuted samples is more extreme
than the one from the observed sample. The p-value is, therefore, computed
by N/1000. If the p-value is less than 0.05, we reject the null hypothesis of
equal expression levels between group A and B.

All tests were compared to the standard t-distribution with a threshold of
5% significance level.

Two sets of comparisons were performed in this study: ovarian (OV) vs.
breast (BR) and leukemias (LE) vs. renal carcinoma (RE). One reason to
choose these two pairs for comparison is that more cell lines are available for
these four disease categories in the data set. In the original data set, we had 6
cell lines for OV, 8 for BR, 6 for LE, and 8 for RE. We used this original
data set to perform all five tests. For examining the sample size, we used
computer generated random numbers to choose 3, 4, and 5 cell lines from
each disease and then performed the first four testing methods, that is, Testl
to Test4.
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3. RESULTS

We used C++ and Splus for data management and computations. Table
1 summarizes the number of genes demonstrating significant differential
expression in the OV vs. BR and LE vs. RE comparisons for each of the 5
testing procedures. The comparison between OV vs. BR produced fewer
differentially expressed genes than the comparison of LE vs. RE. The
permutation test obtained 99 genes in the OV vs. BR group and 560 genes in
the LE vs RE group, which is almost the same as Test2. Since the
permutation test is based on Test2, our results indicate that the permutation
test did not improve the outcome of Test2 in this set of data. Overall, the
strategy of using the common variance (Test3 and Test4) identified fewer
genes than tests using sampling variance (Testl and Test2). From the view
of the pooled variance approach, we found that pooled variance strategies
(Test2 and Test4) detected fewer genes expressed differentially than the tests
not using pooled variance (Testl and Test3) in the OV vs. BR group, but
vice versa in the LE vs. RE group.

Table |: The number of genes expressed significantly different obtained from Test!-Test5 for
OV vs. BR and LE vs. RE.

OV vs. BR LE vs. RE
Testl 105 551
Test2 96 561
Test3 82 526
Testd 75 541
TestS: Permutation test
based on Test2 99 560

To compare the performance between each testing method, we examined
whether the same gene was detected by any pair of testing methods. Table 2
summarizes the number of genes showing significantly different expression
in each pair of testing methods. The upper triangle is for OV vs. BR and the
lower triangle is for LE vs. RE. For instance, we found that 90 genes had
different expression levels between OV and BR by Testl and Test2, and 537
genes had different expression levels between LE and RE by Testl and
Test2.

We also summarized the number of genes that were found to show
significantly different expression levels in one test, but not in the other test.
The results of these pairwise comparisons are summarized in Table 3. Each
row presents the testing method with significant results and each column is
for the testing method with non-significant results. For instance, we found 2
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genes with significant results from Test5, but nonsignificant in Testl for the
comparison between OV vs. BR (Table 3a)

Table 2: The number of common genes detected by each pair of testing methods.

Comparison OV vs. BR
Test2 Test3 Testd Tests
Testl | 90 61 57 90
Test2| 537 [ 60 56 91
LE vs. RE 7
Test3 477 487
Test4 485 495
Tests 555 553

Note: The upper triangle is for the OV vs. BR group and the lower triangle is for the LE vs.
RE group.

Table 3: Pairwise comparison between testing methods for (a) OV vs. BR (b) LE vs RE.

(3a)
Testl Test2 Test3 Testd Test5
Testl* 44 48 51
Test2* 36 40 42
Test3* i 23
Test4* 37
Test5*
(3b)
Testl Test2 Test3 Testd Test5
Testl*|'ia i
Test2*
Test3*
Test4*
TestS*

Note: Each row (Test]*-Test5*) is for significant testing results and each column (Test!-
Test5) is for nonsignificant testing results.

The examination of sample size is summarized in Figure 1, which shows
the percentage of genes showing a significantly different expression level
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between diseases based on each testing method for each sample size that we
examined. We used computer generated random numbers to select the
sample (cell lines). The sampled cell lines were then applied to each testing
method. It is clear that a similar pattern was observed for the cases of sample
size 4 or greater, but it is very clear that wrong results were produced under
sample size 3. As can be seen, the histogram pattern under sample size 3 is
much different from those produced by other sample sizes for both the OV
vs. BR group and the LE vs. RE group (Figure la, 1b). Furthermore, we
found that Test2 detected more genes in the OV vs. BR group (29%) than in
the LE vs. RE group (27%) when sample size is 3, which is not what we
expected.

Figure |. The percentage of significant differential expressed genes under different sample
sizes (ss=3, 4, 5, and 6 cell lines from each disease) by Testl—Test4. (1a) Comparison of OV
and BR (1b) Comparison of RE and LE.
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4. DISCUSSION

Microarray analysis has become a popular laboratory tool for studying
changes in expression across a large number of genes. Image data from the
arrays lead to gene-specific intensities representing relative expression
levels, which are difficult to interpret without proper statistical testing.
Replication of microarray experiments is needed to assure the quality of each
spot measurement. The importance of replication has been nicely illustrated
in recent work by [Lee et al., 2000]. Here, we investigated one of the
interesting statistical issues in microarray replication, the statistical testing
methods and the number of replicates, by using the T-matrix of NCI-60
cancer cell lines dataset. We evaluated five t-test based testing methods. In
the future, it is possible to extend our scope to other testing methods such as
methods based on a mixed model [Wolfinger et al., 2001]. Although a t-test
is a relatively simple statistical testing method, we have often seen it
implemented in the computer packages specialized for microarray data
analysis, for instance, Partek software (http://www.partek.com). It will be
useful if we have a more thorough understanding of the performance of t-test
based methods when they are applied to microarray data. It should be noted
that the dataset used here does not represent exact microarray replicates, so
the results should be interpreted with caution. There is no standard to
quantify which testing method is close to the true answer; that is, the true
number of genes with different expression level in two diseases that we
compared. We can only compare the similarity and differentiation between
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testing methods, not the robustness of the testing methods. The numbers
presented here (Table 1, 2, and 3) are not meaningful if interpreted alone.
For microarray data analysis, in practice, we test multiple genes at the same
time. Therefore, it is necessary to correct for multiple testing using an
adjusted p-value (e.g. Bonferroni correction) to declare significant results. In
this study, our purpose is to compare testing methods with the same set of
data. Therefore, we did not apply the Bonferroni correction because it will
not affect our conclusion.

As the results demonstrate, ovarian and breast cancer show fewer gene
expression differences than leukemias and renal carcinoma. These results
are consistent with the biological similarities between breast and ovarian
cancer: for instance, both are of epithelial origin and both have similar
oncogenic changes (e.g., p53 over-expression). This finding corresponds to
the results of cluster analysis [Scherf et al., 2000]. Although we do not know
which method detects the closest number of genes to the true answer, in
general, we found that common variance strategy (Test3 and Test4) will
detect fewer genes than the sampling variance strategy (Testl and Test2).
We also saw a consistent pattern of the testing methods with pooled variance
(Test2 and Test4) in both groups of comparison; that is, both Test2 and
Test4 showed either an increasing (in LE vs. RE) or a decreasing (in OV vs.
BR) number of genes when we compare them to Testl and Test3. We
interpret this finding as an indication that a pooled variance strategy can
adjust the results toward the true answer better than the one without a pooled
variance strategy. Furthermore, we saw no improvement by using a
permutation test as TestS is almost exactly the same as Test2. The pairwise
comparison (Table 2 and 3) nicely corresponds to the theoretical derivation.
For instance, Test3 and Test4 are similar tests based on the common
variance, so most of the genes identified in Test3 and Test4 are exactly the
same (only 7 genes were identified by Test3, but not by Test4). This finding
is also consistent with the outcome of Table 2, for instance, more genes were
detected at the same time when Testl was compared to Test2 than when
Testl was compared to other testing methods (Test3 and Test4). In
summary, we recommend Test2 and Test4 for future analyses.

The sample sizes do affect the outcome of a test. Our results clearly show
that a sample size of 3 cell lines shows a completely different pattern of
results (Figure 1). For instance, Testl and Test2 detected more genes in the
OV vs. BR group than in the LE vs. RE group, which we know is incorrect
based on the biological knowledge. It implies that the variance estimates by
using 3 cell lines (or replicates) may not be robust. We strongly suggest that
more than 3 replicates are necessary in a microarray study.



194 Lietal

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support from NIH grants NS26630,
ES11375, Parkinson Udall P50 NS39764-03, and Parkinson Udall
supplement P50 NS39764-02S2.

REFERENCES

Botstein, D, Brown, P. Exploring the new world of the genome with DNA microarrays.
Nature Genetics (Suppl) 21 (1999): 33-37.

Lander, ES. Array of hope. Nature Genetics (Suppl) 21 (1999): 3-4.

Lee, M-L T, Kuo, FC, Whitmore ,GA, Sklar J. Importance of replication in microarray gene
expression studies: statistical methods and evidence from repetitive cDNA hybridizations.
Proc Nat Acad Sci 97 (2000): 9834-9839.

Nadon, R, Shi, P, Skandalis, A, Woody, E, Hubschle, H, Susko, E, Rghei, N, Ramm, P.
Statistical inference methods for gene expression arrays. http://www.imagingresearch.com
(2001).

Scherf, U, Ross, DT, Waltham, M, Smith, LH, Lee, JK, Tanabe, L, Kohn, KW, Reinhoid,
WC, Myers, TG, Andrews, DT, Scudiero, DA, Eisen, MB, Sausville, EA, Pommier, Y,
Botstein, D, Brown, PO, and Weinstein, JN. A gene expression database for the molecular
pharmacology of cancer. Nature Genetics 24 (2000): 236-244.

Wolfinger, RD, Gibson, G, Wolfinger, ED, Bennett, L, Hamadeh, H, Bushel, P, Afshari, C,
Paules, RS. Assessing gene significance from cDNA microarray expression data visa
mixed models. J Comput Biol 8(6) (2001): 625-637.



13

EXTRACTING KNOWLEDGE FROM GENOMIC
EXPERIMENTS BY INCORPORATING THE
BIOMEDICAL LITERATURE

James P. Sluka

InPharmix Inc.

Abstract: We present a technique to extract relevant information from the literature to
aid in the analysis of a typical genomics data set. Analysis was conducted
using PDQ_MED, a program based on the assumption that if two genes are
found to be related under an experimental paradigm, such as a gene chip
experiment, then any literature which relates the two genes is of interest.
PDQ_MED searches MEDLINE for abstracts that contain two or more of the
terms in the user's query set. For this paper, we have used PDQ_MED to
analyze 160 genes up-regulated in acute myeloid leukemia (AML) from the
NCI-60 dataset. PDQ_MED executed 12,880 queries to MEDLINE and
identified nearly 300,000 abstracts that refer to at least one of the 160 terms.
PDQ_MED identified and analyzed a set of 81 terms that can be grouped
together via the literature. In addition, there is literature directly linking 52 of
the terms with AML. Overall, the literature analysis identified 1028 sentences
that directly relate two or more of the query genes.

Key words: gene expression analysis, literature, DNA microarray, PDQ_MED, text mining

1. OBJECTIVE

As the use of genomic tools increases, there is a growing need for tools to
effectively exploit the resulting data. Lists of genes that are related under an
experimental paradigm are a common result of genomics techniques such as
subtracted libraries, differential display, 2D protein gels and gene chip
(DNA microarrays) or protein array experiments. Currently, there are only a
few tools for extracting useful information from the scientific literature in
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conjunction with these large data sets. Two such tools are MedMiner'
[Tanabe et al., 1999] and PubGene? [Jenssen et al., 2001].

2. ANALYTICAL METHODS

PDQ_MED (Pair-wise Data Query to MEDLINE) exhaustively searches
MEDLINE for abstracts that contain two or more of the terms in the user's
data set. This pair-wise approach allows the researcher to effectively mine
the nearly 11 million abstracts in MEDLINE for information relevant to their
genomics projects.

PDQ_MED is based on the assumption that if two genes are found to be
related under some experimental paradigm, such as in a gene chip
experiment, then any literature which relates the two genes is of interest. A
"co-occurrence” is defined as any abstract that contains two or more of the
query terms. The simplest embodiment of this idea is to search MEDLINE
(or other databases) with all possible pairwise combinations of the query
terms. For N terms, ~N%/2 searches are required. For small values of N, this
can be done manually. For larger values, the number of searches quickly
becomes impractical.

2.1 Data Sets

We have chosen to analyze a subset of the NCI-60 cancer gene
expression database [Scherf et al, 2000]. The initial set consisted of the
expression data for the full set of 9,703 genes for the three leukemia cell
lines, CCRF-CEM, MOLT-4 and K-562, in the NCI database. CCRF-CEM
and MOLT-4 are from acute lymphoblastic leukemias (ALL) whereas K-562
represents acute myelogenous leukemia (AML). The K-562/AML data was
divided by the average for the two ALL lines in order to reduce the influence
of genes characteristic of leukocytic cell lines. The resulting expression data
is similar to the Golub data set [Golub et al., 1999] used for CAMDA-2000.
The resulting modified expression values were then sorted and the 250 most
highly expressed genes used as the gene list. For these 250 genes we then
removed unnamed genes including ESTs, KIAAs and genes annotated as
"similar to" another gene, resulting in a final list of 160 named genes. In
addition, we included a term for the disease (AML).

As our literature database (knowledge domain), we used MEDLINE
accessed through Entrez via the web (http://www.ncbi.nlm.nih.gov/entrez/).

"http://discover.nci.nih.gov/textmining/filters.html
? http://www.pubgene.org/
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MEDLINE currently contains more than 11 million abstracts and, in terms of
the total number of characters, is approximately the same size as the
GENBANK nucleotide database.
2.2 Software

PDQ_MED is a web-based Perl program that searches MEDLINE for
abstracts that contain two or more of the terms in the user's data set.
2.2.1 Input

The first step in the analysis is to assign names to each gene that are
suitable for searching in MEDLINE. In this case, the original names are
those that appear in the NCI-60 database. Since these names tend to be brief,
cryptic or outdated, some work was needed to verify or correct the names.
To assign the best possible name to each gene we used keyword and/or
BLAST searches across a combination of publicly available databases.

These included GENBANK, OMIM, GDB and GeneCards. Typical original
and corrected names are shown in Table 1.

Table 1. Typical corrected names for the NCI-60 dataset as used in this study.

NCI-60 "Name"

Corrected Name(s)

SID W 293514, Human 54 kDa progesterone
receptor-associated immunophilin FKBP54
mRNA, partial cds [5:N98804, 3"N63715]

FKBP54 "54 kDa progesterone receptor-
associated immunophilin"

SID W 361787, Human guanine nucleotide-
binding regulatory protein (Go-alpha) gene
[5:W96534, 3:W96428]

GNAOI "guanine nucleotide-binding regulatory
protein®

Hemoglobin, alpha 1 Chr. (469647, (E),
5"AA027875, 3:AA027832]

HBA1 "Hemoglobin, alpha 1"

SID 81641, H.sapiens mRNA for Nup88 protein
[5:T64514, 3:T65939]

Nup88 "nucleoporin 88kD"

SID W 509700, Omithine aminotransferase
(gyrate atrophy) [5"AA058461,
3"AA058361]

OAT "Ornithine aminotransferase”
"ORNITHINE OXO0-ACID
AMINOTRANSFERASE"

PRKCBI1 Protein kinase C, beta |
Chr.16[284459, (IEW), 5N75108,
3"N52338]

PKCB PRKCB PRKCB2 "Protein kinase C,
beta 1" PKC-bl

PNMT Phenylethanolamine N-methyltransferase
Chr.17[289857, (R), 5", 3"N63192]

PNMT "Phenylethanolamine N-
methyltransferase” PENT

The basic input to PDQ_MED is a list of query terms encompassing the
genes, proteins, diseases or other concepts under investigation (see Figure 1).
An individual query term can consist of more than one version of a particular
name. For example, a query can consist of a full name and an abbreviated
name; “Interleukin-1b IL-1b”, or alternative names; ‘“proteasome iota
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macropain iota”. PDQ_MED automatically inserts ORs between the
individual terms, or quoted phrases, contained on a single line of the input
representing a single gene, gene product, disease or other concept. In
addition, the user may explicitly join terms by any of the Boolean operators
or use any of the field or date operators supported by MEDLINE.

¥ PDO_MED Inpul - Natlscape

Terms on the same lne e OR'd together, mdwndual bnes are paswase ANLD'd 1ogether &
AML "Acute Myeloid Leukemia® “Acute Myelogencus Leukemia” -
“adenylate kinase 1" "adenylate kinase-1"

IATK "Agammaglobulinaemia protein-tyrosine kinase”

ACE "ANGIOTENSIN-CONVERTING ENIYME™

"annexin ii" annexin-2 "lipocortin II” lipocortin-2

"AP-2 beta” TFAPZB

"bata Spectrin” b-spectrin

CAPNZ "Calpain L2" or canpl2 or CALPAIN

"Carnitine acetyltransferase”

"Cathepsin L~

ICHRNAT “ACETYLCHOLINE RECEPTOR" "Cholinergic receptor”

"Corticostercid binding glebulin”

.[ | of?

MEDLINE Options:
Language Restrictions: .2: [none hd
Medline Search Field: 7; |Al - ; i
PDQ_Mled Options: o

Text Word
Proxiinity: 7; «Tille Word

" takws conaderably longer to run,
Pluuma Tenmns: '2:  Substance Name ferms” takes longer Lo run.

IMeSH Major Topic -
aMeSH Terms :l

JAuthor Name
HECRN Number
Entrez Date
4Joumnal Name
Publication Type -l =
=laal T Document Done LyQlume | e s o2 @ e |

Figure 1. Part of the PDQ_MED input page.

2.2.2 Search

Searches are carried out by constructing individual Entrez URLs for all
possible pairwise combinations of the query terms joined by AND. The
URLs are then submitted via the internet and the search results captured and
analyzed by PDQ_MED.

2.2.3 Local Acronyms and Proximity Searching
A refinement to the basic search strategy is to require a higher degree of

dependence, i.e., closer proximity within the document, between two query
terms. In "Proximity" searching, PDQ_MED examines all abstracts
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containing two terms and determines if the terms co-occur in the same
sentence. Sentence level proximity searching is not directly supported by
MEDLINE.

One challenge to effectively use proximity searching in the scientific
literature is the highly variable nature of the names of genes, proteins and
small molecules. As mentioned above, PDQ_MED allows the user to enter
multiple names for the same entity. However, acronyms that either are
common words, or used for more than one concept, are problematic. For
example, a common acronym of "Acute Lymphoblastic Leukemia" is ALL.
Since ALL is a common English word MEDLINE will not search for
abstracts containing it. In addition, it is common for more than one gene,
protein or concept to use the same acronym. These problems with acronyms
make proximity searching in the biomedical literature difficult. Consider, for
example, the abstract:

“In acute lymphoblastic leukemia (ALL), the cell surface ... (followed by

several sentences). GPRE also decreased the fraction of CD 11-bearing
ALL M2 and M5 cells.”

In this case, the use of a "local acronym" (ALL) destroys proximity
between the terms "acute lymphoblastic leukemia" and CDI11. To
circumvent this problem, PDQ_MED identifies local acronyms on a per
abstract basis. Briefly, a local acronym is defined as a short parenthetical
character string following a query term as in the ALL example above. A
local acronym is only used for the abstract in which it was found. These
local acronyms allow PDQ_MED to identify the CD 11 plus ALL (a local
acronym for "acute lymphoblastic leukemia") sentence shown above as a
proximity sentence.

224 Analysis

After PDQ_MED has identified all of the abstracts containing two or
more of the query phrases, it uses a greedy clustering algorithm to organize
the terms into groups. These groups represent sets of terms that co-occur in
the literature. For example, if query-A and query-B co-occur in a set of
abstracts and query-B and query-C co-occur in a different set of abstracts,
then queries-A, B and C are clustered together in the same group (Figure 2).
Groups may suggest relationships between terms that are not explicitly
present in MEDLINE. In the example in Figure 2, grouping would suggest a
possible relationship between query-A and query-D because of their
common linkage to query-B, even though query-A and query-D do not
explicitly co-occur in any abstracts.
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group 1 group 2
term-a}—{term-b)
N
term-c
term-d

Figure 2. Grouping of query terms.

The user may also search for "Pharma Terms" such as "agonist",
"antagonist” or "drug" (Table 2). The "Pharma Term" search results are used
to rank and highlight the proximity sentences for each term pair and provide
additional practical information about the individual query terms.

Table 2. Default "Pharma Terms” used by PDQ_MED.

antagonis* down-regulat*
agonis* regulat*®
inhibit inhibit* | X-ray "crystal structure"
bind* bound therapy therapeutic
stimulat* drug
interact* target target*
up-regulat* efficacy cfficacious

3. RESULTS

For a complete search of MEDLINE with the AML dataset including
proximity checking, PDQ_MED executed 12,880 queries and identified
nearly 300,000 abstracts that refer to at least one of the 160 query phrases
(gene names). Total run time for this analysis was three hours. The run time
is essentially independent of the computer used since the majority of the
time (>90%) is spent waiting for the MEDLINE responses to the queries.
The query term that occurred most frequently in MEDLINE was
"angiotensin-converting enzyme" (23,588 abstracts). AML occurred in
21,564 abstracts.

For the 161 terms in this data set, PDQ_MED identified a group of 81
terms (which includes AML) that can be linked together (grouped) via the
literature. For these 81 terms, there were a total of 1028 sentences
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representing 204 term pairs. No co-occurrences were found for the
remaining 80 terms.

Figure 3 shows a distance geometry representation of the simplified co-
occurrence data for the terms in the 81-member group. In Figure 3, each box
represents a query term. Connected boxes represent terms that co-occur in at
least one abstract. The length of the interconnection is inversely proportional
to the co-occurrence frequency. cFos, AML, VEGF, ACE, IGF1, IL8 and
cadherin were the most extensively cross-referenced terms in this set with
217, 25, 21, 20, 19, 18, 18 co-occurring terms respectively. To simplify the
graph in Figure 3, only the three strongest links from each node are shown.

H1F2_HISTO

F | —
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h
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e Malri
[Camit wapickics_c {GABAA tec [Throm_apol -
L0 T - Cathepsin_
[CALM_priannose.
KEL_Kell_p 7 TLACE./
QYPB_gyco Joshor ]
GEPD_Gluco
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annaxin_ii [ALASE_S:_L
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Nup88_nucl elenoprot]  [Prothyn] Parathymos |

Figure 3. Distance geometry representation of the relationships found in MEDLINE for the
terms in the 81-term group. In this display only the three strongest links from each node are
shown.

4. DISCUSSION

The PDQ_MED analysis of the 300,000 abstracts covering this set of 161
terms resulted in selecting 1028 sentences, a more than 1000 fold reduction
in data. The 1028 sentences are partitioned across 204 term pairs, with an
average of five proximity sentences per term pair. Though examination of
the 1028 sentences is a formidable task, it is a practical undertaking.

There are several analyses of the results provided by PDQ_MED that
may be used, depending upon research needs. In the sections that follow we
examine several of these.
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4.1 Title Proximity

For highly cross-linked data sets, such as the AML data (Figure 3), it is
useful to first examine only the strongest links found in MEDLINE. One
way to do this is to use PDQ_MED's ability to search only the titles of
papers for co-occurrences of query terms. If two query terms occur together
in the title of a paper then there is a very good chance that the paper says
something significant about the relationship between the two terms. Figure
4 shows the distance geometry analysis of the terms from the AML dataset
which co-occur in the titles of papers. As can be seen, the number of
relationships is significantly fewer than in the full abstract search (compare
Figures 3 and 4). AML (marked by an arrow) is directly linked to seven
other terms (the limit used for the generation of the graph).

It is interesting to note the "constellation" of 8 terms all linked to both
IL8 and VEGF (marked by an arrow), consisting of Cadherin-H, Prosl,
ACE, cFos, AFP, IGF-1, Inhibin-A and TCEb2, which may suggest a
particular pathway or regulatory network is operating. Examination of the
proximity sentences for these terms suggests their involvement in
angiogenesis, tumour development and various carcinomas.
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Figure 4. Title Proximity for the AML dataset. In this representation, only the seven
strongest links per node are shown.
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4.2 Genes Linked to the Disease

A second analysis of the PDQ_MED results is to ask for which of these
genes does the literature provide a precedence for their involvement in
AML? AML co-occurs in abstracts with 52 of the query genes and co-occurs
in sentences with 25 of the query genes. A listing of the query terms that co-
occurred with AML two or more times (with proximity checking) is shown
in Table 3. In Table 3, the number of abstracts containing both terms and the
number of proximity sentences are given by the "Abstract" and "Proximity"
columns, respectively.

Table 3. Terms (gene or protein names) with >1 co-occurrence with AML in MEDLINE.

Abstract | Proximity Gene / Protein Name
=250 83 CD33
14 9 Vegf
22 8 1-8
9 8 Meis|
35 5 Glycophorin A
29 5 Gopd
43 4 cFos
6 3 Calm
6 3 Thbd
b] 3 Cadherin
3 3 Mssd
4 2 Asparagine Synthetase
3 2 Lyn
2 2 Inhibin Beta A

The query term that co-occurs most frequently with AML is CD33 and
out of a total of 83 proximity sentences, the two top ranked sentences were
(query terms in bold face):

1. Blast cells from most patients with acute myelogenous leukemia
express CD33, whereas normal stem cells necessary for maintenance of
hematopoiesis do not.

2. Two anti-CD33 monoclonal antibody conjugates, Y90-HuM195 and
CMA-676, have been used in acute myelogenous leukemia (AML) and
have shown some efficacy.

From these two sentences, the user quickly learns something about the
relationship between CD33 and AML. In this case, that CD33 is a
characteristic marker of AML cells and that it has been used as a therapeutic
target for intervention in AML.
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Overall, there is literature precedence for some relationship between
AML and about one third of the high expression genes from the AML cell
line in the NCI-60 database.

4.3 Genes That Cannot Be Linked to the Disease

A third useful analysis of the PDQ_MED results is examination of the list
of genes that cannot be linked to AML. As mentioned above, 52 of the genes
can be linked at the abstract level, an additional 29 genes fall in the same
group as AML, leaving 80 genes that could not be linked, directly or
indirectly, to AML. For some of these "un-linked" genes there is simply very
little literature available. However, others occur frequently in MEDLINE.
For example, MAP3KS5 occurred in 2657 abstracts but never with AML or
any of the 80 terms that grouped with AML. This suggests a research
opportunity with several attractive features including;

1. Experimental observation of increased levels of MAP3KS in AML cells.

2. Significant quantity of literature describing the function of MA3KS in
other systems.

3. The apparent novelty of the idea that MAP3KS is related in any way to
AML.

Table 4 shows a portion of the "Pharma Term" sentence output for
MAP3K5 (MEK1) that identifies two small molecule inhibitors, U0126 and
PD98059, of this kinase. It may be worthwhile to investigate the affect of
these inhibitors on AML cells. Similar results are found for several other of
the genes in the AML dataset (data not shown).
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Table 4. Selected "Pharma Sentences” for MAP3KS (MEK1). Query terms are in bold,
"Pharma Terms" are bold italics, and the underlined number is the MEDLINE abstract ID.

MAP3KS5 OR "mitogen-activated protein kinase kinase kinase 5" OR "MAP/ERK kinasc
kinase 5" OR ASK1 OR MAPKK1 OR MAPKKKS5 OR MEK1 OR MEKKS

11423913 Pretreatment with either the MEKI inhibitor U0126 or PI3-kinase inhibitor
L.Y294002 sensitized BAE cells to TNF-induced apoptosis.

11431469 Three different inhibitors of MEK 1/2 abolished PE-induced activation of S6K2
whereas expression of constitutively active MEKI activated S6K2, without affecting the
p38 mitogen-activated protein kinase and JNK pathways, indicating that MEK/ERK
| signaling plays a key role in regulation of S6K2 by PE.

11437382 To determine the involvement of MEK 1-p42/p44 MAPK pathway in mediating
DAB2 gene expression, we have performed the following experiments and found that (i)
there was sustained activation of pd2/p44 MAPK, but not p38 MAPK, upon K562 cells
differentiation; (ii) application of MEK inhibitor U0126 reduced the expression of DAB2
protein, mMRNA and promoter activity, as well as cell differentiation; (iii) constitutively
active MEKI increased DAB2 promoter activity; and (iv) dominant negative ERK2
abolished constitutively active MEK I-induced DAB2 promoter activity.

11440832 PD98059, a specific inhibitor of ERK kinase (MEKI1), reduced H(2)O(2)-
induced AR expression,

11444915 The MEK1/2 inhibitor PD098059 abrogated ISO-stimulated ERK activity,
albeit the increase in protein synthesis was unaffected.

11454948 In the present study, we examined the effects of PD098059 and U0126, two
structurally dissimilar inhibitors of MAP kinase kinase (MEK1/2), on the activation of
ERK and Akt stimulated by human 5-hydroxytryptamine(1B) (serotonin) (5-HT1B)
receptors.

44 Terms That Cannot Be Linked to Any Other Term

No proximity co-occurrences were found for 80 of the genes in the AML
dataset. For some of these genes, co-occurrences do occur at the abstract
level (data not shown). A trivial explanation for unlinked terms is simply
that they were incorrectly named in the query list. This highlights the most
difficult aspect of searching the biomedical literature with gene names
derived from sequence based databases.

4.5 Types of Errors

When examining the types of errors that a search tool may produce it is
convenient to differentiate two types, false negatives (errors of omission)
and false positives (errors of inclusion). With PDQ_MED, and similar tools,
false negatives can be caused by several factors. These include the use of an
incomplete list of name variants for a particular gene in the input list,
spelling errors in the query list or the target database (MEDLINE) and
"name drift" in the literature. Of these, "name drift" is the most problematic.
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For example, from 1986 until 1996, what is now called "estrogen receptor 1"
(ESR1) was simply the "estrogen receptor”. From 1996 to about 2000, it was
called "estrogen receptor alpha" before being changed to the current
excepted name. Throughout this period the alternate spelling "oestrogen"
was also used.

False positives are generally caused by multiple usages of the same name
or acronym. In the ESRI case, the literature prior to 1996 contains many
references which use only the acronym ER. Unfortunately, ER is also
frequently used for other uses such as "endoplasmic reticulum" and
"emergency room".

Ultimately, it is up to the user to verify the suitability of particular names
and to extract the relevant information.

4.6 Other Uses for the '""Pharma Sentences'

As mentioned earlier, the "Pharma Sentences" provide a quick method of
filtering the literature and highlighting particularly interesting sentences
containing one or more of the query terms. Table 5 shows the "Pharma
Sentences" for Cathepsin L and Annexin II (Lipocortin II). For Cathepsin L,
several inhibitors were found. For Annexin II, regulatory information is
found such as regulation of Annexin II by AnV and stimulation of Annexin
II translocation to the plasma membrane by phorbol esters.
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Table 5. Partial listing of "Pharma Sentences" for Annexin II (Lipocortin II) and Cathepsin L.
Query terms are in bold, "Pharma Terms" are in bold italics, and the underlined number is the
MEDLINE identifier (PMID).

Cathepsin L;

10698261 This activation was not inhibited by CA-074, a specific inhibitor of
cathepsin B, but was strongly inhibited by CLIK-066 and CLIK-181, specific inhibitors
of cathepsin L.

10713271 The propeptide of cathepsin S was observed to inhibit cathepsin L with a
K(i) of 0.08 nM, vyet cathepsin L propeptide inhibited cathepsin S only poorly.
10748021 The mushroom protein is a tight binding inhibitor of papain (K(i) = 0.59
nm), cathepsin L (K(i) = 0.41 nm), cathepsin B (K(i) = 0.48 micrometer), and
bromelain (K(i) = 0.16 micrometer) but is inactive toward cathepsin H, trypsin, and
pepsin.

10748022 Saxiphilin is now characterized as a potent inhibitor of three cysteine
proteinases: papain, human cathepsin B, and cathepsin L.

Annexin 11 or Lipocortin I1;

10084978 However, the immunolocalized tPA protein was most strongly associated
with the amnion and chorion, as was its receptor annexin Il, suggesting that the amnion
and chorion are the targets for decidual tPA.

10213612 These observations furthermore suggest that AnV may regulate the
fusogenic function of annexin I1.

10376803 With the use of immunofluorescence, annexin II was found to translocate
from cytoplasm to plasma membranes in type II cells upon stimulation with phorbol 12-
myristate 13-acetate.

4.7 Comparison To Other Tools

There are relatively few tools available for mining the biomedical
literature with lists of genes such as those obtained in many types of
genomics research. Two of the tools that are available are PubGene [Jenssen
et al, 2001] and MedMiner [Tanabe et al, 1999]. Both of these tools are
useful for analysing lists of genes. However, both suffer from the fact that
they are dependent upon a pre-calculated index. Both PubGene and the
GeneCards portion of MedMiner rely upon a gene index which contains the
links to MEDLINE. This limits their usefulness in that they can only
process terms which have been indexed and, in both cases, only human gene
and gene product names are included. Since it does not use a pre-calculated
index, PDQ_MED has the advantage of no limitations on the terms that can
be searched, other than those imposed by MEDLINE itself. In addition,
PDQ_MED does not require an index be maintained and periodically
updated. Perhaps the biggest advantage of using a pre-calculated index is

speed. = Both PubGene and MedMiner are considerably faster than
PDQ_MED.
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Table 6. Comparison of PDQ_MED with PubGene and MedMiner

James P. Sluka

MedMiner
Package: PDQ_MED PubGene (MEDLINE +
GeneCards)
Types of genes, gene products, | genes & gene genes, gene products,
query terms drugs, diseases ... products drugs, diseases ...
Requires
updating no yes yes
of index
Sentence level
proximity yes no no
checking
Shows matching
yes no no

sentences
Provides links
back to yes no yes
MEDLINE
Allows use of
"holo" names 2 e T
Allows use of

) yes no yes
non-gene terms
SpECI.(‘,S’ none human only human only t
restrictions
Reagve slow fast fast
speed

T For example, cFos and cJun together make AP-1.
t1 The GeneCards portion of MedMiner is limited to human genes.

S. CONCLUSIONS

We have demonstrated PDQ_MED, a new tool for the search and
analysis of the scientific literature. PDQ_MED allows researchers to
effectively mine the more than 11 million abstracts in MEDLINE for
information that will allow them to fully exploit the results of their genomics
experiments. PDQ_MED quickly provides a framework, based on the
biomedical literature, which helps to organize and explain why certain sets
of genes are co-regulated. PDQ_MED also identifies pairs of genes or gene-
disease relationships for which there is no literature precedence. In total, this
information can suggest avenues of further research. Overall, PDQ_MED
ensures that the researcher can effectively gather and analyze the relevant
literature for large sets of genes, proteins and disease terms hence providing
a key capability for a successful genomics research project.
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Glossary

ENTREZ - Internet based search engine for the GENBANK, PUBMED,
MEDLINE and OMIM databases maintained by the National Center for
Biotechnology Information, the National Library of Medicine and the
National Institute of Health. See www.ncbi.nlm.nih.gov/Entrez/.

GDB - The Genome Database (GDB) is the official central repository for
genomic mapping data resulting from the Human Genome Initiative. See
www.gdb.org.

GENBANK - Database of DNA and protein sequences maintained by
National Center for Biotechnology Information. See also ENTREZ.

GeneCards - GeneCards (TM) is a database of human genes, gene products
and their involvement in biological processes. It offers concise information
about the functions of many human genes culled from multiple sources on
the internet. See http://www.dkfz-heidelberg.de/GeneCards/.

MEDLINE - Database of citations, including abstracts, from the biomedical
literature maintained by National Center for Biotechnology Information.
See also ENTREZ.

OMIM - "Online Mendelian Inheritance in Man" database is a catalog of
human genes and genetic disorders. The database contains textual
information and references. It also many links to other databases maintained
by National Center for Biotechnology Information. See also ENTREZ.
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p-value - A measure of statistical significance for a hypothesis test. The p-
value for a test is the probability of observing a value for a statistic that is as
extreme or more extreme than the observed value if the null hypothesis is
true.

Power - The probability that a statistical test rejects the null hypothesis
given that the null hypothesis is false.

PUBMED - Database of citations, including abstracts, from the biomedical
literature maintained by National Center for Biotechnology Information.
See also ENTREZ.

significance level - The probability of rejecting the null hypothesis given
that the null hypothesis is true; also referred to as the Type I error of a
statistical test.
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