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Preface

The bad news for many medical students and doctors is that
these days one cannot practise medicine well without some
understanding of statistics. Most papers in medical journals
use statistical techniques to summarise or interpret observations,
and even at clinical meetings it is difficult to escape at least
occasional reference to standard deviations and P values. A
doctor with no knowledge of statistics is unable to evaluate
much of the scientific information that is crucial to the
optimal care of patients.

Increasingly, a similar challenge is now faced also by other
health professionals such as nurses and physiotherapists. This
dependence on statistical methods is reflected in undergraduate
and postgraduate curricula.

The good news is that clinicians need not be mathematicians
to use statistics. In the same way that a report of a plasma
creatinine concentration can be interpreted and acted on
without a detailed understanding of the laboratory methods
underlying the assay, so it is not necessary for a clinician to
understand all the mathematical intricacies of a statistical
calculation in order to apply its results. Just as we normally
trust the biochemist to use an appropriate analytical method,
so we may put faith in medical statisticians to get their sums
right. It helps if clinicians can carry out simpler tasks such as
calculating means and standard deviations, but more
important is the ability to communicate with statisticians—to
formulate a problem in such a way that a statistician can
advise on an appropriate analytical method; to recognise and
assess any biological assumptions that are inherent in the
statistical analysis; and particularly to understand the results
of statistical calculations when they are presented.

This book is aimed at doctors, medical students and other
health professionals who view statistics as a necessary evil. It
is not intended as a manual for those wishing to carry out
their own statistical analyses beyond the simple summarising
of data that might be required for a clinical meeting. Rather, it
sets out to explain the principles of statistics that must be
understood in order to read journals and practise clinical
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Preface

disciplines competently, and it does this without using any
mathematics beyond the level needed for school leavers. For
readers who prefer a more detailed and mathematical
approach, many other texts are available, some of which are
listed on page 106.

The book divides into three sections. Chapters 1 to 3 are
concerned with descriptive statistics used to summarise data
numerically and graphically so that they can be better
understood and communicated. Chapter 4 introduces the
concept of probability and gives examples of its applications
in clinical practice. Chapters 5 to 9 deal with statistical
inference and the methods by which general conclusions can
be drawn from observations made on samples of patients or
clinical material. Principles are illustrated with examples from
many different fields of medicine and, to help reinforce
readers’ understanding, questions are included at the end of
each chapter with answers starting on page 99. The examples
and questions are constructed to demonstrate particular
teaching points, and to achieve this some use fictitious data.
However, all are intended to be realistic.

Davip CoGGON
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1: Types of data

Table 1.1 shows an extract from data on a consecutive series of
births at a district general hospital over a 12 month period. It
contains information that might be useful as part of an audit
of the maternity service for the district. For example, it tells us
something about the level of activity of the service, how work
is apportioned between various consultants, and the nature of
the hospital’s patient mix. As presented, however, the data are
difficult to digest. Just glancing at the table we get an
impression that roughly half the babies are boys and that most
mothers stay in hospital for two to four days after delivery, but
much of the information is relatively inaccessible. From the
full data set it might not be immediately obvious whether one
consultant cared for more mothers from lower socio-economic
classes or kept patients in hospital for a longer time than the
average. An obstetrician who went to an audit meeting and
presented 20 overhead transparencies in the format of Table 1.1
would not be thanked by colleagues.

Much more helpful would be to summarise the data,
presenting only the information that was relevant to the audit
exercise—for example, the numbers of mothers looked after by
each consultant and their socio-economic distribution. This
process of summarising data is achieved by use of descriptive
statistics. The summary may be numerical—the mean birth
weight of the babies, for example—or graphical—as in a plot
showing the relation of birth weight to the parity of the mother.
Graphical summaries allow a lot of information to be
assimilated rapidly, but numerical summaries are often more
precise and have the advantage that they can be communicated
in spoken as well as written form. The choice between
numerical and graphical summary depends on the type of data
under consideration, the information that is to be abstracted,
and the circumstances in which it is to be communicated (in a
written report, at a meeting, over the telephone, and so on). To
some extent it is a matter of personal taste.

The techniques wused to summarise data, whether
numerically or in graphical form, are determined by the
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Statistics in Clinical Practice

nature of the data. It is helpful, therefore, to review the types
of data that are commonly encountered in medical practice.
As we shall see later, this classification of data is relevant
not only to their summary by descriptive statistics, but also
in the approaches adopted to statistical inference (see
Chapter 5).

Nominal, ordinal, and quantitative data

Table 1.1 contains information about eight items of
information for each birth. These variables fall into several
distinct types. The sex of the baby and the identity of the
supervising consultant are examples of nominal data. Each
birth belongs to one of a set of mutually exclusive categories
(male/female, Mr Brown/Miss White/Mr Green/Mr Black).
Moreover, these categories have no inherent order. For
example, there is no special reason to place Mr Green between
Miss White and Mr Black—we could quite reasonably list
them in some other sequence.

The socio-economic class of the mother also belongs to a set
of mutually exclusive categories, but in this case the categories
do have a natural order: higher, intermediate, lower.

In listing the classes it would not make sense to place the
“higher” category between the “intermediate” and “lower”
categories. Data such as socio-economic class that fall into an
ordered series of three or more categories are termed ordinal . *
Another example of ordinal data is the grading of muscle
strength sometimes used by neurologists:

No active contraction

Visible or palpable contraction without active movement
Movement with gravity eliminated

Movement against gravity

Movement against gravity plus resistance

Normal power

Nk whr—O

* A categorical variable that can take only two possible values is described as
binary and is always classed as nominal.



Types of data

Although it is conventional to label levels of muscle
strength numerically, these numbers tell us only about their
rank order. A muscle strength of grade 4 cannot necessarily be
interpreted as twice grade 2. It is simply more than grade 3,
which in turn is more than grade 2.

In contrast, data such as birth weight and mother’s age are
truly quantitative. Such quantitative data can be further
classified according to whether they are discrete or continuous.
Discrete quantitative data can take only a limited number of
possible values. For example, the number of previous
pregnancies must be a whole number, and these days will
rarely exceed 12. On the other hand, birth weight can lie
anywhere in a continuum from less than 1500 g to more than
4500 g. Of course, this continuity depends in practice on
the precision with which the weights are recorded. If
measurements were made only to the nearest kilogram, the
variable would effectively be discrete. The borderline between
discrete and continuous data is somewhat arbitrary, but
quantitative variables can reasonably be considered
continuous if the number of possible values is more than 20.

Univariate, bivariate, and multivariate data

One way of looking at the data in Table 1.1 is to consider the
variables one at a time. For example, we might start by
concentrating solely on the birth weights and examine their
distribution for all of the babies. This analysis would be based on

Box 1.1 Birth weights (in grams) from a consecutive series
of babies born in a district general hospital

3460 3100
3740 2910
2790 3455
3340 3795
3920 4070
3250 2580
2875 2655
2945 2510
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Box 1.2 Sexes of a consecutive series of babies born in a
district general hospital

ST
MM

the subset of data of the form shown in Box 1.1 and would be
classed as wunivariate as it incorporates a single item of
information for each birth. Similarly, the subset of data in Box 1.2
concerning the sex of the babies is univariate.

Table 1.2 Sex and birth weight (in grams) of a consecutive
series of babies born in a district general hospital.

Sex Birth weight Sex Birth weight
F 3460 F 3100
M 3740 M 2910
F 2790 F 3455
F 3340 M 3795
M 3920 F 4070
F 3250 M 2580
F 2875 M 2655
M 2945 F 2510

Looking independently at the sex and birth weight of the
babies tells us nothing about how the two are related to each
other—for example, whether the boys tended to be heavier
than the girls. To answer this question we need data in the
form shown in Table 1.2. These are bivariate data comprising
two linked pieces of information—the sex and the birth
weight—for each baby.

More complex analyses might look at the interrelation of
three, four, or even more variables using multivariate data.
Table 1.1 is an example of a multivariate data set containing
eight linked items of information for each birth.



Types of data

Chapter 2 describes techniques for summarising univariate
data, and Chapter 3 deals with the summary of bivariate and
multivariate data.

Questions

1.1 Classify the following variables according to whether
they are nominal, ordinal, discrete quantitative, or
continuous quantitative.

1.2

(a)

(b)

©

(d)
(e)

()
(8)
(h)

(@)

()
(k)

Systolic blood pressure, measured to the nearest mm
Hg, in a series of patients admitted to hospital with
myocardial infarction.

Blood cholesterol level, measured to the nearest 0-1
mmol/l, in a series of men attending a health
promotion clinic.

Number of previous blood transfusions in a series of
renal transplant patients.

Blood group.

Antibody titres to cytomegalovirus (measured to one
of eight possible levels).

Ethnic origin (classified as white, mixed, asian/asian
British, black/black British, Chinese, or other).
Educational level (classified as primary, secondary, or
higher).

Number of sexual partners in the past month in a
series of patients attending a clinic for sexually
transmitted diseases.

Smoking habit (classified as ever smoked or never
smoked).

Cause of death (classified as cancer, cardiovascular
disease, respiratory disease, or other).

Grade of surgeon (classified as senior house officer,
specialist registrar, or consultant).

In a survey carried out at a general practitioner’s surgery,
information was collected on each patient’s sex, age,
presenting complaint, and whether any medication was
prescribed. How many bivariate combinations can be
made up from these variables?



2: Summarising univariate

data

Nominal data

Box 2.1 lists the diagnoses of a series of patients admitted to a
surgical unit. The diagnostic categories have no natural order,

so these are nominal data.

The simplest way to summarise such data numerically is by a
frequency count, giving the number of patients with each diagnosis
(Table 2.1). Alternatively, or in addition, one can calculate the
proportion or percentage of patients in each diagnostic category.

Box 2.1 Diagnoses of a series of 48 patients

admitted to a surgical unit

Gastric ulcer
Cholelithiasis
Cholelithiasis
Cancer of rectum
Cancer of stomach
Duodenal ulcer
Cancer of colon
Inguinal hernia
Duodenal ulcer
Inguinal hernia
Inguinal hernia
Cholelithiasis
Cancer of colon
Cholelithiasis
Cancer of colon
Cancer of pancreas
Cholelithiasis
Cancer of oesophagus
Inguinal hernia
Duodenal ulcer
Cholelithiasis
Cholelithiasis
Cancer of colon
Inguinal hernia

Inguinal hernia
Cholelithiasis
Cancer of colon
Oesophageal stricture
Cholelithiasis
Cancer of colon
Cancer of pancreas
Duodenal ulcer
Cholelithiasis
Gastric ulcer
Inguinal hernia
Cancer of pancreas
Cancer of colon
Cancer of rectum
Cholelithiasis
Cancer of stomach
Cancer of oesophagus
Cholelithiasis
Cancer of pancreas
Inguinal hernia
Cancer of colon
Inguinal hernia
Cancer of rectum
Cancer of colon



Summarising univariate data

Table 2.1 Frequency count summarising the data presented in
Box 2.1, and showing proportions of pationts for each diagnostic
category.

No. of Proportion of
Diagnosis patients patients (%)

Cholelithiasis 12
Inguinal hernia
Cancer of colon
Duodenal ulcer
Cancer of pancreas
Cancer of rectum
Gastric ulcer

Cancer of stomach
Cancer of oesophagus

25

19

19

8

8

6

4

4

4

Oesophageal stricture 2

PNNNWAEPMOO

N
(0]

All diagnoses 100

The advantage of proportions is that they facilitate comparisons
with other series in which the total number of patients is
different (Table 2.2). However, if proportions are quoted without
frequency counts, it is helpful at least to indicate the total
number of observations on which they are based. A statement
that “10% of patients undergoing hip replacement were treated
privately” carries more weight in a comparison if it is 10% of 200
patients rather than 10% of 20 patients.

Proportions should not be given unwarranted precision. If
altogether there are only 30 observations then it is clearly
inappropriate to quote percentages to four decimal places. As
a rule of thumb, if there are fewer than 100 observations in
total then it is not worth calculating percentages to more than
the nearest whole number. Because of rounding errors,
individual percentages may sum to slightly more or less than
100 (as in Table 2.2).

When frequency counts and proportions are presented in
tabular form, the order of the different nominal categories
is optional. One approach might be to list them in order
of descending frequency, as in Table 2.1, but this is not
essential. When some of the categories have subdivisions
it makes sense to group the subdivisions together, as in
Table 2.3.
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Table 2.2 Comparison of diagonses in two series of surgical patients.

Diagnosis Proportion of patients (%)
First series Second series
(n = 48) (n=71)
Cholelithiasis 25 13
Inguinal hernia 19 14
Cancer of colon 19 17
Duodenal ulcer 8 8
Cancer of pancreas 8 14
Cancer of rectum 6 11
Gastric ulcer 4 4
Cancer of stomach 4 11
Cancer of oesophagus 4 4
Oesophageal stricture 2 0
Appendix abscess 0 3

Note that although percentages are used for the comparison, the total
numbers of patients in each series (n = 48 and n = 71) are also given.
Because of rounding errors each column of percentages totals to 99
rather than 100

Table 2.3 Frequency of deaths from different types of accidental
injury in male farmers aged 20-64 in England and Wales during
1979-80 and 1982-90.

Type of accident Number of deaths

Transport accidents

Off-road motor vehicle accidents 32

Animal transport accidents 12
Poisoning

Pesticides 3

Gases 7
Injury by animals 17
Injury by falling object 30
Injury by machinery 127
Injury by firearms 20
Injury by electric current 28

Subdivisions of different categories of accidents are grouped together
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Figure 2.1 Bar chart based on data summarised in Table 2.1.
Each diagnosis is represented by a separate bar, the height of which
corresponds to the frequency of the diagnosis.

Bar charts and pie charts

Nominal data can be summarised graphically by bar charts
or pie charts. In a bar chart (Figure 2.1) there is one bar for each
nominal category, with the height of the bar corresponding to
the frequency count of the category. The values of frequency
counts or proportions, or both, should be indicated—for
example, by a scale, as in Figure 2.1. All of the bars should be
of equal width and they are normally separated from each
other.

Sometimes, where the differences between frequency counts
are small in comparison with the absolute values of
frequencies, the scale of a bar chart is broken, as in Figure 2.2.
The effect is to exaggerate the differences between categories.
This technique is best avoided, but if it is used, the breaks in
the scale and bars must be clearly indicated.

10
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160 160

No. of patients
No. of patients

100 -

o L1 . 3 E—]

Men Women Men Women
(a) (b)

Figure 2.2 Effect of breaking the scale in a bar chart.

Figures (a) and (b) show the distribution, according to sex, of patients
attending a general practice because of low back pain. The effect of
breaking the axis, as in (b), is to exaggerate differences between
categories. Note that breaks are shown both in the scale and in the bars.

A pie chart (Figure 2.3) is an effective way of demonstrating
the proportions of observations falling in different nominal
categories. Each category is represented by a segment of a circle
(a slice of the pie), the area of the segment corresponding to
the proportion of observations in the category. The order in
which segments are arranged around the circle is arbitrary.

Ordinal data

The methods of summarising ordinal data are similar to
those used for nominal data, except that tables and charts
should display the categories of an ordinal variable in their
natural sequence. For example, Figure 2.4 shows different ways
of summarising data on the severity of pneumoconiosis in a
population of coal miners.

Quantitative data

A set of quantitative measurements can be summarised
numerically by measures of central tendency (where the

11
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Cholelithiasis

Oesophageal stricture
Cancer of oesophagus

Inguinal hernia Cancer of stomach

Gastric ulcer

_«HAREN
\
\ I Cancer of rectum
\\ X Cancer of pancreas
Cancer of colon #
Duodenal ulcer

Figure 2.3 Pie chart based on the data summarised in Table 2.1.
Each diagnosis is represented by a segment of the circle, the
area of which corresponds to its frequency as a proportion of all
diagnoses.

“middle” of the distribution of measurements lies) and of
dispersion (how spread out the measurements are).

Central tendency

The most familiar measure of central tendency is the mean
or average of the observations. This is calculated by adding
together all of the measurements and then dividing the total
by the number of measurements. Thus the mean of the
15 blood glucose levels in Box 2.2 is 6-3 mmol/l. The mean of
a discrete quantitative variable need not necessarily take one
of the discrete values of the variable. The oft-quoted average of
2-4 children in a family is acceptable even though it is not a
whole number.

The other measure of central tendency in common usage is
the median. This is derived by ranking all of the measurements
in ascending order and then selecting the middle value
(Box 2.2).

12
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(a) Table showing a frequency count

Grade of Number Proportion
pneumoconiosis of miners of miners (%)

Category 0 38 17-3
Category 1 56 255
Category 2 73 332
Category 3 53 241

(b) Bar chart
80
70
60
50
40
30
20
10
0 I I I I

0 1 2 3

Grade of pneumoconiosis

Frequency

(c) Pie chart

Category 1
56

Category 0

38
Category 2
73 Category 3
53

Figure 2.4 Methods of summarising the distribution of pneumoconiosis
grades in a series of coal miners.

In each case the grades of pneumoconiosis are set out in their natural
order. Grades of pneumoconiosis are classified by comparison of chest
radiographs with standard films.

13



Summarising univariate data

Box 2.2 Calculation of the mean and median of 15 blood
glucose levels

In a series of 15 patients fasting blood glucose levels (mmol/I)
were recorded as follows:

5.8, 4-3, 25.9, 5-2, 6-1, 3.9, 4-4, 5:6, 5-3, 4-5, 46, 3:8, 51,
54, 4-6
The mean is obtained by adding together all of the measurements and
then dividing by the number of measurements. Thus it is given by:
(5-8+4.3+25:9+5:2+6:1+39+4.4+56+53+45+
4.6 +3:8 +5-1 + 54 + 4-6)/15 = 94-5/15 = 6-3
To calculate the median, the 15 measurements are first ranked in
ascending order:
3-8, 39, 4:3, 4:4, 4'5, 4.6, 4-6, 5-1, 5-2, 5:3, 5:4, 5:6, 5-8,
6-1, 25-9
The median is then given by the middle value in the ranking: 5-1.

Statistical packages for computers include routines for deriving
means and medians.

Where there are an even number of measurements in a data
set, the median is the mean of the middle two measurements
in the ranking (Box 2.3).

Note that the mean can be strongly influenced by outlying
values of a variable. For example, the mean of the glucose
levels in Box 2.2 is 6-3 mmol/l. Without the outlying value
of 25-9 it would come down to 4-9 mmol/l. The median of
5-1 mmol/l, on the other hand, is changed much less by
exclusion of the outlier, reducing only by 0-25 mmol/1.*

Dispersion

The simplest measure of dispersion is the range of a
variable—that is, the difference between its highest and lowest
values. In practice, it is usually quoted by stating these extreme
values explicitly—range 3-8 to 25-9 mmol/l, for example. By
definition, the range, like the mean, is sensitive to any outlying
observations, which is a particular disadvantage when outliers
may be “rogue results” arising from measurement errors. The

* These calculations with exclusion of an outlier are presented to illustrate a
point. When analysing data it is sometimes tempting to exclude outlying
values that do not fit the overall pattern. However, such a step is usually
incorrect and should not be taken without good justification.

14
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Box 2.3 Calculation of the median of an even number of
measurements
In a series of 20 patients from a renal unit, haemoglobin levels
(mg/100ml) were recorded as follows:
84, 11-9, 6-3, 8-2, 9-5, 9-0, 7-6, 9-0, 10-1, 9-8, 89, 10-4,
7-6, 8:8, 11-5, 10-6, 8:2, 87, 9-0, 88
To calculate the median, we first rank the measurements in
ascending order:
6-3, 76, 7-6, 82, 82, 84, 87, 88, 88, 89, 9:0, 9-0, 9-0,
9.5, 9:8, 101, 10:4, 10-6, 11-5, 11-9
We then calculate the mean of the middle two values in the ranking:
(8:9 + 9:0)/2 =8-95

problem can be overcome by instead using the interquartile
range. This is calculated by ranking all of the measurements in
ascending order and identifying the lower and upper
quartiles—the values lying a quarter and three quarters of the
way up the ranked list (Box 2.4). The interquartile range is the
difference between the upper and lower quartiles, and like the
range is usually quoted by giving its extremes—interquartile
range 4-4 to 5-6 mmol/l, for example.

Box 2.4 Calculation of the interquartile range for the blood
glucose measurements listed in Box 2.2

Firstly, the 15 measurements are ranked in ascending order:
3-8, 3:9, 4:3, 4-4, 4-5, 4-6, 4-6, 5-1, 5-2, 5:3, 5-4, 5-6, 5-8, 6-1, 25-9

The lower quartile is the value one quarter of the way up the
ranked list: 4-4 mmol/I.

The upper quartile is the value three quarters of the way up the
ranked list: 5-:6 mmol/I.

The interquartile range is the difference between the upper and
lower quartiles: 5-:6 — 4-4 = 1-2 mmol/I.

In this example with 15 measurements, definition of the quartiles is
straightforward, but with other numbers of observations it is
sometimes necessary to take a weighted average of the two
measurements lying either side of the quarter way mark in the
ranking and of the two measurements either side of the three quarter
way mark (rather as the median of an even number of measurements
is the average of the two central values). Fortunately, this is normally
done automatically by a computer program.

15
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The measure of dispersion most often encountered in
medical practice is the standard deviation, definition of which
is rather more complicated. Firstly, the mean of the variable is
derived. Next, the difference between each measurement and
this mean (its deviation from the mean) is calculated. Each
deviation is then squared. The squared deviations are summed
for the whole data set and divided by the number of
measurements minus one to obtain a quantity known as their
variance. The standard deviation is the square root of the
variance. The definition can perhaps be better understood
from the example in Table 2.4.*

In practice, standard deviations are normally obtained by
the push of a button on a calculator or computer (as are the
other statistics described in this chapter). However, an
appreciation of their definition is necessary if the results of
the computation are to be meaningful. It is not too difficult
to see that the more dispersed a set of measurements, the
bigger their deviations from the mean will be, and therefore
the larger their standard deviation. The reason for adopting
this particular measure of dispersion (rather than simply
calculating the average deviation, for example) is that it has
convenient mathematical properties, especially in the
context of statistical inference. The nature of these
advantages need not concern us here, but it is important to
be aware that standard deviation and variance measure the
spread of a distribution. It should be noted that a standard
deviation has the same units as the measurements from
which it is derived. For example, in Table 2.4 it is measured
in mmol/l.

*Many calculators and spreadsheets allow derivation of two standard
deviations. One, denoted by S or o, ,, is calculated according to the definition
given here; this is the one that is normally used. The other, denoted by o, or
o, entails dividing the sum of the squared deviations by the number of
measurements rather than this number minus one. When the number of
measurements is large there is almost no difference between o, and o,. The
reason for preferring o, , lies in the mathematics of statistical inference:
defined in this way, the standard deviation of a sample of measurements gives
a better estimate of the standard deviation of the population from which the
sample was taken.

16
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Table 2.4 Calculation of the standard deviation for the blood glucose
measurements listed in Box 2.2.

Measurement Deviation Squared deviation
5-8 5:8-6-:3=-05 (-0-5)2=0-25
4-3 4-3-6-3=-2-0 (-2-0)? =4-00
25-9 259 -6-3=+19-6 (+19-6)2 = 384-16
5.2 52-6-3=-11 (-1-1)%=1-21
6-1 6:1-6-3=-0-2 (-0-2)> =0-04
39 39-6-3=-24 (-2:4)2=5-76
4-4 4-4-6-3=-1-9 (-1-9)2=3-61
5-6 56 -6-3=-0-7 (-0-7)>=0-49
5-3 5.3-6-:3=-1.0 (-1-0)2=1-00
4-5 4.5-6-3=-1-8 (-1-8)2=3-24
4-6 46-6-3=-1.7 (-1-7)>=2-89
3-8 38-6-:3=-25 (-2-5)2=6-25
5-1 51-6-3=-1-2 (-1-2)2=1-44
5-4 54 -6-3=-0-9 (-0-9)2=0-81
4-6 46 -6-3=-1-7 (-1-7)2=2-89

The mean of the 15 measurements in Box 2.2 is 6-3. The variance or
mean squared deviation is given by: (0-25 + 4.00 + 384-16 + 1-21 +
0:04 + 576 + 3:61 + 0:49 + 1-00 + 3:24 + 2:89 + 6:25 + 144 +
0-81 + 2:89)/(15 — 1) = 418-04/14 = 29-86. The standard deviation is
the square root of the variance: ¥(29-86) = 5-5 mmol/I

Graphical representation

The numerical summaries that have been described above can
be applied equally to discrete and continuous quantitative data.
The techniques for summarising quantitative data graphically,
however, differ according to whether they are discrete or
continuous. As for nominal and ordinal data, the distribution of
discrete quantitative data can be displayed in the form of a bar
chart. For example, Figure 2.5 shows the number of
exacerbations requiring treatment with oral steroids in a group
of asthmatic patients followed for 12 months. The frequency of
each number of exacerbations is represented by a separate bar
centred on that number.

With continuous data, bar charts are inappropriate. Figure 2.6
shows the systolic blood pressures of 60 patients attending a
health promotion clinic. The values range from 105 mm Hg
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Figure 2.5 Bar chart showing frequency of exacerbations requiring
treatment with oral steroids in a group of asthmatic patients followed
over 12 months.

to 178 mm Hg. If we tried to depict these data in a bar chart
we would obtain a cumbersome plot, the left-hand end of
which is shown in Figure 2.6. Almost all of the bars would be
one unit high, and between the bars there would be wide gaps.
We might just as well have stuck with the raw data in the
original table.

The answer to this problem is to partition the range of blood
pressures into intervals and plot the frequency with which
pressures were recorded in each interval as a histogram. In a
histogram each interval is represented by a rectangle, the width
of which corresponds to the range of the interval and the area of
which represents the frequency of measurements within the
interval. The intervals need not all be equal (Figure 2.7), but note
that where they are not, it is the area of the rectangle and not its
height which corresponds to the frequency count. Unlike in a
bar chart, the rectangles are contiguous.

The secret of constructing a useful histogram is the choice
of intervals into which the range of measurements is divided.
If the intervals are too narrow we end up with a picture similar
to a bar chart, and if they are too wide we lose useful detail
(Figure 2.8). Getting the right balance is to some extent a
matter of trial and error. Statistical packages for computers are
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These data are systolic blood pressures (mm Hg) measured in
60 men attending a health promotion clinic:

140 109 144 162 115 125
131 164 155 178 162 144
133 133 121 135 142 130
13 137 128 142 167 134
166 146 13 150 128 17
160 154 139 135 17 124
143 118 105 107 158 144
129 120 148 139 172 127
133 129 174 153 141 131
156 152 130 148 151 125

Trying to summarise the data in a bar chart would produce a
cumbersome plot, the left-handed end of which is shown;

Frequency

hen Ooll

105 106 107 108 109 110 111 112 113 114 115 116 117
Systolic blood pressure (mm Hg)

A much more useful graphical representation is obtained with a
histogram:
14

a -
0 OoON
|

Frequency

1
00 ™10 120 130 140 150 160 170 180

Systolic blood pressure (mm Hg)

Pressures that are an exact multiple of 10 are here counted in the
higher of the two rectangles to which they might be assigned. Thus,
a value of 140 is counted as 140-150 and a value of 150 as 150-160.

Figure 2.6 Histograms.

programmed to make a sensible choice of intervals for
histograms, but the user normally has the option to alter the
specification if desired.
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100 110 120 130 140 150 160 170 180
Systolic blood pressure (mm Hg)

Figure 2.7 Histogram with unequal intervals.

This is an alternative plot of the data in Figure 2.6. Intervals of 10 mm Hg
have been used at the extremes and 5 mm Hg intervals have been
used elsewhere. It is the area of rectangles — not their height — that
corresponds to the frequency count.

Frequency distributions

When a histogram is based on a large number of
measurements it is possible to divide their range into relatively
fine intervals, and the outline of the rectangles may then
approximate to the form of a smooth curve (Figure 2.9). This
curve maps out the frequency distribution of the variable.

The shape of the frequency distribution as plotted in a
histogram can be characterised in several ways. One feature is
the number of peaks that are observed. The distribution of
blood pressures in Figure 2.6 has a single peak or mode and is
termed unimodal. On the other hand, the age distribution of
patients admitted to an oncology unit with Hodgkin'’s disease,
as shown in Figure 2.10, is bimodal with two peaks.

Another feature is the symmetry of the distribution. The blood
pressures in Figure 2.6 are distributed in an approximately
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If the data from Figure 2.6 are replotted with intervals that are too
narrow (2 mm Hg) we end up with an unhelpful picture similar to a
bar chart:
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If the intervals are too large (25 mm Hg), useful detail is lost:
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Figure 2.8 Effect of varying the numbers of intervals in a histogram.

symmetrical fashion about a mode somewhere between 130 mm
Hg and 139 mm Hg. In contrast, the survival periods of patients
with colonic cancer illustrated in Figure 2.11 have an asymmetrical
or skewed distribution. The right-hand tail of the distribution is
longer than the left, and we therefore say that it is skewed to the
right or positively skewed. Conversely, where the left-hand tail of
a unimodal distribution is longer than the right, the distribution
is skewed to the left or negatively skewed. Note that in a
symmetrical distribution the mean is equal to the median.
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Figure 2.9 Frequency distributions.

When a histogram is based on a large number of observations whose
range is divided into fine intervals, the outline of the rectangles may
take on the shape of a smooth curve. This curve is known as the
frequency distribution of the variable that has been measured.

25 -

20

15

No. of cases

15 25 35 45 55 65 75 85
Age (years)

Figure 2.10 Histogram showing the age distribution of 119 patients
admitted to an oncology unit with Hodgkin’s disease.

The distribution of patients is bimodal with peaks at age 25-34 and
55-64 years.
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Figure 2.11 Histogram showing survival periods from diagnosis in a
series of patients with colonic cancer.

In additon, 21 patients were still alive after four years of follow-up. The
distribution of survival times is skewed to the right—that is, it is
asymmetrical with a longer right-hand than left-hand tail.

The normal distribution

Certain shapes of frequency distribution occur commonly
in nature (at least to a close approximation) and are given
special names. One in particular, to which reference is often
made, is the normal distribution (sometimes also known as
the Gaussian distribution). This has a symmetrical bell shape
(Figure 2.12) that can be described by a mathematical equation.
Sometimes the bell is tall and narrow, and sometimes it is
more flattened, but whatever the dispersion of the data,
approximately 95% of measurements lie within two standard
deviations either side of the mean.

As well as allowing us to describe succinctly a commonly
observed pattern of data, the concept of the normal
distribution is important in the mathematics of statistical
inference.
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Mean Mean Mean
-2SD +2 SD

Mean Mean Mean
-2SD +2 SD

Figure 2.12 The normal distribution.

This has a symmetrical bell shape. The bell may be tall and narrow or

more flattened, but whatever the dispersion of the data, approximately
95% of observations lie within two standard deviations (SD) either side
of the mean.

Questions

2.1 Which of the following could be summarised by a
histogram?

(a) The distribution of a series of leukaemia patients
according to HLA type.

(b) The weekly numbers of appendicectomies carried
out in a surgical unit over a 12 month period.

(¢) The serum concentrations of y-glutamyl transferase
in a series of alcoholic patients.
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2.2

2.3

2.4

(d) The numbers of cardiac arrests experienced by each
of a group of patients while on a coronary care unit.

Which of the following could be summarised by a bar
chart?

(a) The numbers of filled teeth in a series of 5-year-old
children.

(b) The distribution of a series of women undergoing
cervical smear testing according to whether the
findings were normal, suspicious, or definitely
abnormal.

(¢) The distribution of peak flow measurements in a
group of patients with chronic bronchitis.

(d) The activity of serum amylase in a series of patients
presenting to hospital with acute abdominal pain.

Which of the following could be summarised by a mean
and standard deviation?

(@) The numbers of hospital admissions required in a
group of patients with inflammatory bowel disease
followed over two years.

(b) The head circumferences of a sample of newborn
babies measured in cm.

(c) The grades of hypertensive retinopathy in a group of
patients receiving treatment for high blood pressure.

(d) The annual amounts spent on drugs in 30 general
practices.

Which of the following apply to a variable with a normal
distribution?

(a) Its distribution is skewed to the right.

(b) Its distribution is unimodal.

(¢c) Its mean is equal to its median.
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3: Summarising bivariate
and multivariate data

Bivariate data

Summaries of bivariate data provide information about the
distribution and interrelation of two variables. Each of the
variables may be nominal, ordinal, discrete quantitative, or
continuous quantitative, so there are a total of 10 possible
combinations:

nominal x nominal

nominal x ordinal

ordinal x ordinal

nominal x discrete quantitative

ordinal x discrete quantitative

discrete quantitative x discrete quantitative
nominal x continuous quantitative

ordinal x continuous quantitative

discrete quantitative x continuous quantitative
continuous quantitative x continuous quantitative

These will be considered in turn.

Both variables nominal

When both variables are nominal, it is often convenient to
set out a numerical summary in the form of a contingency table.
For example, Table 3.1 shows the distribution of a series of
stomach cancer patients according to their blood group and
the histological type of the tumour. One variable (blood
group) is represented by the columns of the table, and the
other (histology) by the rows. The cells of the table show the
counts of patients for each combination of blood group and
histology, and as an option the marginal totals (the totals for
each column and row) are also displayed. In this particular
example there are four columns and two rows, but any
number of each is permissible, depending on the numbers of
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Table 3.1 A contingency table showing the distribution of a series of
stomach cancer patients according to blood group and histology.
Percentages are based on the total study sample of 490 patients as
a denominator.

Histology Blood group
A B AB (o) Total
Intestinal type 127 72 32 95 326
(26%) (15%) (7%) (19%) (67%)
Diffuse 80 25 11 48 164
(16%) (5%) (2%) (10%) (33%)
207 97 43 143 490
Total (42%) (20%) (9%) (29%) (100%)

Table 3.2 Contingency table showing the proportions (%) of men in an
epidemiological survey who reported back pain in the previous 12
months, according to employment status.

Back pain in previous 12 months Employment status
Employed Unemployed
(n =1037) (n =128)

Yes 37 45

No 63 55

The denominators on which the proportions are based are given at the
head of each column. Because the back pain variable can only take one
of two values, “yes” or “no”, the second row of the table is redundant and
could reasonably be omitted

categories into which the variables fall. A contingency table
showing the distribution of the patients by sex and histology
would have two rows and two columns.

As an alternative or in addition to frequency counts, the
proportion of observations in each cell can be calculated. In
Table 3.1 the proportions are expressed as a fraction of all
patients, but usually it is more informative to take the
marginal totals of the columns or rows as the denominators.
For example, Table 3.2 gives the proportions of men in an
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Figure 3.1 A three-dimensional bar chart based on the data
summarised in Table 3.1.

This method of presentation is satisfactory provided that some bars do
not get completely hidden behind others.

epidemiological survey who reported back pain in the
previous 12 months, according to whether they were in work
or unemployed at the time of answering a questionnaire. In
this case the proportions are based on the totals for each
column. If, as here, proportions are quoted without giving the
frequency count for each individual cell of the contingency
table, it is usually helpful at least to indicate the total counts
on which the proportions are based.

Because the variable “back pain in the past 12 months” as
defined in this survey could take only two values—“yes” or
“no”—the information in the second row of Table 3.2 is really
redundant. Once we know that 45% of unemployed
men reported the symptom, it follows automatically that
100 - 45 = 55% did not. Thus in this case it would be quite
reasonable to omit the second row. However, if the variable
had three categories (perhaps because some men could not
remember whether they had had back symptoms and were
thus classed as “don’t know”), a one line summary giving the
proportions of men reporting back pain would not convey all
of the information. We would not know what proportions of
men belonged to the “don’t know” as opposed to the “no”
category.
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Figure 3.2 Bar charts showing counts of patients with melanoma
according to eye and hair colour.
The two charts are alternative methods of presenting the data.

As with univariate data, spurious precision in the
calculation of proportions should be avoided.

The information in Table 3.1 can be represented graphically
by a three dimensional bar chart (Figure 3.1). This method works
well provided that some bars do not get completely hidden
behind others; this will depend on the distribution of the data.
If the problem does arise, it is better to show a series of bar
charts side by side as in Figure 3.2. The top part of Figure 3.2
shows counts of melanoma patients according to their eye and
hair colour. There is one bar chart for each category of hair
colour, with the individual bars representing different colours
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12 454 9606 3361
357 108 138
1033
1178 944
General medicine General surgery Ophthalmology
(n =14 589) (n=10747) (n =4443)
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Figure 3.3 Use of multiple pie charts to show the distribution of
hospital admissions according to department and catchment population.
Each of the five departments is represented by a separate pie whose
area corresponds to the total number of admissions by that department
over a 12 month period. The pies are divided up to show the
proportions of these admissions from different catchment populations.

of eyes. The bars are shaded to help clarify the eye colours to
which they refer (colour coding would be better, but makes
books more expensive). Alternatively, the bar charts could be
combined, as in the lower figure where each bar represents a
category of hair colour and is divided into segments
corresponding to different eye colours. The height of the
segment indicates the count of patients with the relevant
combination of hair and eye colour.

Another way of displaying bivariate nominal data
graphically uses multiple pie charts, as in Figure 3.3. Each
category of one variable (in this example “specialty”) is
represented by a separate pie, the area of which corresponds to
the total number of hospital admissions for that specialty
during a 12 month period. The pies are divided up to show the
proportions of these admissions from different catchment
populations. Again, colour coding would be an advantage.
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Contingency table showing numbers of subjects
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Figure 3.4 Two methods of summarising the distribution of subjects in a
survey of eye disease according to grade of cataract and presence or
absence of pterygium in the right eye.

The ordering of cataract grades is respected in both methods of
presentation.

Each of these methods of graphical display has its
advantages, and the choice between them is largely a matter
of personal taste. You pick the one that you feel conveys the
message most simply and clearly.

One variable nominal and one variable ordinal or both
variables ordinal

In this situation the methods of summary are similar to
those used when both variables are nominal, but with the
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Table 3.3 Contingency table showing agreement between two doctors
when asked to grade femoral neck bone mass independently in a
series of 100 radiographs.

Grade assigned by first doctor

Grade assigned by

second doctor 1 2 3 4 5 6
1
2 7 1
3 1 24 9 1
4 5 38 3
5 1 9 1
6

The grades of bone mass are set out in their natural order on both
axes. Thus, the diagonal represents exact concordance between the
two observers, and the further a pair of observations lies from the
diagonal, the more the disagreement. Cells of the table with a zero
count have in this case been left blank.

additional requirement that the categories of ordinal
variables are presented in their natural order. For example,
Figure 3.4 shows the distribution of subjects in a survey of eye
disease according to grade of cataract (an ordinal variable)
and the presence or absence of pterygium (a nominal
variable). The analysis was carried out because both diseases
are suspected of being caused by exposure to ultraviolet
radiation in sunlight. Note that the cataract grades are
displayed in order from zero to four, both in the contingency
table and in the bar chart.

Table 3.3 illustrates the level of agreement between two
doctors when asked independently to grade femoral neck
bone mass in a series of pelvic radiographs. The grading,
which depends on the trabecular pattern of the bone, is
according to an index devised by Singh. Here both variables
are ordinal. The ranking of both is taken into account in the
presentation, and with the data summarised in this way, the
diagonal from the top left to the bottom right hand corner of
the table represents exact concordance between the two
observers. The further a pair of observations lies from this
diagonal, the greater the disagreement.
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Table 3.4 Contingency table showing case fatality in patients with
myocardial infarction according to number of previous infarcts

No. of previous Proportion of (%)
infarcts No. of patients of cases fatal

0 35 20

1 25 28

2 9 22

3 5 40

4 2 50

All patients 76 25

The row totals on which the proportions are based are given in the
central column. As all cases are classed either as “fatal” or “not fatal”
(there are no “unknowns”), there is no need for a column to show the
proportions of cases that were not fatal.

One variable nominal or ordinal and one variable
discrete quantitative

If the quantitative variable does not take too many values
(up to five or six, say), one option is to summarise the data in
the form of a contingency table as in Table 3.4. Often,
however, a better approach is to derive summary measures of
central tendency and dispersion for the quantitative variable
across each category of the nominal or ordinal variable. These
can then be displayed in tabular form or graphically. Thus,
Figure 3.5 shows two ways of summarising the frequency of
admissions to a district general hospital for attempted suicide
on different days of the week over the course of a year. Note
that with either method, the days of the week are in their
proper sequence.

Both variables discrete quantitative
If neither variable takes too many values, a contingency

table may again be helpful. For example, Table 3.5 shows the
number of units of blood transfused in patients with
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No. of admissions

Day of week Mean Median Range
Monday 14 1-0 0-5
Tuesday 16 10 0-5
Wednesday 2:0 2:0 0-10
Thursday 18 15 0-7
Friday 19 2:0 0-6
Saturday 14 10 0-4
Sunday 16 2:0 0-4
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Figure 3.5 Two methods of summarising the frequency of admissions to
a district general hospital for attempted suicide on different days of the
week over the course of a year

Table 3.5 Contingency table showing number of units of blood
transfused in patients with haematemesis and melaena according to
the occurrence of rebleeding episodes while in hospital.

Number of units of Number of episodes of rebleeding
blood transfused
0 1 2 Total
0 210 0 0 210
2 18 0 0] 18
4 99 4 0 103
6 55 51 0 106
8 10 35 8 53
10 0 8 22 30
Total 392 98 30 520
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haematemesis and melaena according to the occurrence of
rebleeding episodes while they were in hospital.

Where the number of values taken by a variable is larger, it
may be preferable to calculate univariate summary statistics
for it across the values of the other variable and then display
them either in tabular or graphical form. Thus, Figure 3.6
shows how the number of episodes of reduced peak flow in a
group of children over a 12 month period related to the dose
of methacholine which produced a reduction of at least 20%
in FEV, (forced expiratory volume in one second) in a
bronchial challenge test. This is the provocative dose (PD,,).
The methacholine was given in incremental doses, stopping
when the FEV, had fallen by 20% from baseline. Because there
were only three children with a PD,, of 0-05 and two with a
PD,, of 0-2, it might be better to group together those with
a PD,,<0-2 pmol methacholine, as in Figure 3.6(c), putting a
break in the horizontal axis to make clear that they have been
treated differently.

One variable nominal, ordinal or discrete quantitative, and
one variable continuous quantitative

A commonly used method of summary is to calculate
measures of central tendency and dispersion for the continuous
variable across the values of the other variable. These can then
be shown either in tabular or in graphical form. Figure 3.7
shows two ways ((a) and (b)) of illustrating the distribution of
blood glucose concentrations recorded at different intervals
after initial loading in a series of oral glucose tolerance tests.
Sampling was carried out at 0, 30, and 120 minutes.

A more complete graphical description is provided by a “dot
plot”, in which values of the nominal, ordinal, or discrete
quantitative variable are represented on one axis (in order and
to scale if appropriate) and the continuous variable is displayed
on the other axis. Each observation is then marked as a dot, as
in Figure 3.7(c). Where two or more observations coincide,
their dots can be plotted alongside each other. In this example,
two patients had glucose levels of 7-2 mmol/l at 120 minutes.

A limitation of the dot plot shown here is that it does not
indicate which dots belong to which patients. If it were
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(a) Tabular summary
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Figure 3.6 Three methods of summarising the relation of the number of
episodes of reduced peak flow in a group of children over 12 months to

PD,, on methacholine challenge.

For ease of presentation, PD,, in the graphs is plotted on a logarithmic
scale (see page 39). The second graph shows interquartile ranges as

well as medians and ranges.
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(a) Tabular representation

Blood glucose (mmol/I)

Time (minutes) Mean Standard deviation
0 56 05
30 87 0-9
120 60 1.2

(b) Graphical representation of means and standard deviations
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Figure 3.7 Four methods of summarising the results of 10 oral glucose
tolerance tests.
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important to convey this information, the three dots for each
patient could be joined by lines, as in Figure 3.7(d). It now
becomes clear that those with high glucose at 30 minutes tended
also to have high values at 120 minutes. With a large number of
patients, however, a plot of this type could get rather messy.

Box 3.1 Linear and logarithmic scales

In a linear scale a given distance always corresponds to the same
absolute increment in a variable. For example, in the linear scale
shown below, an increase in annual mortality from one to two
deaths/1000 persons is represented by the same distance as that
from four to five deaths/1000 persons or from five to six deaths/
1000 persons.

| | | | | | | |
0 1 2 3 4 5 6 7
Annual mortality (deaths/1000 persons)

In a logarithmic scale a given distance always represents the
same proportionate increase in the variable. Thus, in the logarithmic
scale below, a doubling of annual mortality from one to two
deaths/1000 persons is represented by the same distance as that
from two to four deaths/1000 persons or from four to eight
deaths/1000 persons.

| | | | |
1 2 4 8 16
Annual mortality (deaths/1000 persons)

Sometimes the continuous variable has a highly skewed
distribution. For example, the dot plot in Figure 3.8(a)
shows serum levels of immunoglobulin E in non-smokers,
ex-smokers, and current smokers. Most of the dots are
clustered near the baseline (zero), making them difficult to
distinguish. In this situation the picture may be made clearer
by plotting the continuous variable on a logarithmic scale, as in
Figure 3.8(b). Normally we use a linear scale in which a given
distance always corresponds to the same absolute increment
in the variable. In a logarithmic scale a given distance always
corresponds to the same proportionate increase in the variable
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(a) When IgE is plotted on a linear scale most of the dots
are clustered near the baseline, making them difficult
to distinguish.
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(b) The picture becomes clearer when IgE is plotted
on a logarithmic scale.
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Figure 3.8 Dot plots showing serum immunoglobulin E (IgE) in 1U/ml
according to smoking habits in a sample of elderly men and women.

(Box 3.1). The effect of using a logarithmic scale is to compress
the upper end of a range relative to the lower end. Differences
between high values look less impressive. Thus when reading
graphs it is important always to check the type of scale.
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Figure 3.9 Scatter plot illustrating the relation between mortality from
chronic bronchitis at ages 35-74 in 212 local authority areas of
England and Wales during 1968-78 and infant mortality from
respiratory disease in the same areas during 1921-25.

Mortality from chronic bronchitis is expressed in terms of a
standardised mortality ratio (SMR) to take account of possible
differences in the age distribution of the populations under examination.
The striking relation between the two sets of mortality rates suggests
that causes of respiratory infection in infancy may also predispose to
later chronic obstructive airways disease.

Note also that a logarithmic scale can never get down to
zero. For example, suppose that we are summarising weights
and that a distance of 5 mm on our scale corresponds to a
doubling of weight. If we start at the point on the scale
representing 1 g and go down 5 mm we will get to a value of
0-5 g. Another 5 mm down will take us to 0-25 g. But no
matter how long we continue in this way, we will never reach
a weight of zero. It follows that if a variable sometimes takes a
value of zero, or can take both positive and negative values,
then it cannot be displayed on a logarithmic scale.

Both variables continuous quantitative
The relation between two continuous variables can be

displayed graphically as a scatter plot. One variable is represented
on the horizontal axis and the other on the vertical axis. Each
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pair of measurements is then represented as a dot. For example,
Figure 3.9 illustrates the relation between mortality rates from
chronic bronchitis in 212 local authority areas of England and
Wales during 1968-78 and infant mortality from respiratory
disease in the same areas some 50 years earlier.

Conventionally, if one variable can be considered to depend
on or be caused by the other, it is called the dependent variable
and is drawn on the vertical axis. The other variable is termed
the independent variable and is shown on the horizontal axis.
In Figure 3.9 it is more natural to think of mortality from
chronic bronchitis in 1968-78 depending on earlier patterns
of infant mortality than the other way round.

If it makes the presentation clearer, one or both variables
may be plotted on a logarithmic scale.

The most common form of numerical summary for bivariate
continuous data is the correlation coefficient. This is a measure
of the extent to which the points in a scatter plot lie on a
straight line. It is calculated from the paired measurements
according to a set formula or rule (normally this is done by a
computer program in a statistical package) and can take values
between -1 and +1. A negative correlation coefficient implies
that the points fit best to a straight line sloping down from left
to right, and a value of —1 means that the points lie perfectly
on such a line (Figure 3.10). A positive coefficient implies that
the best fitting straight line slopes up from left to right, and a
value of +1 means that the points lie perfectly on a line
sloping in this way. The closer the correlation coefficient to
zero, the less well the points fit to a straight line.

Note that a correlation coefficient of zero does not mean
that two variables are not related—only that they do not have
a straight line relationship. Thus in Figure 3.10(f) the
independent variable seems to determine the dependent
variable precisely, but because the relationship is not linear the
correlation coefficient may be close to zero.

It is important to note that correlation coefficients can be
strongly influenced by a few outlying points on the scatter
plot. In Figure 3.11, which shows the relation of
thyrotoxicosis incidence to the past prevalence of goitre in 11
British towns, exclusion of the outlying point reduces the
correlation coefficient from 0-89 to 0-47. For this reason, when
analysing bivariate continuous data it is wise to examine
scatter plots as well as calculating correlation coefficients.
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(a) (b)

L) L]
L] L]
L] L]
L] L]
L] L]
L] L]
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L] (]
L] L]
A coefficient of +1 means a perfect A coefficient of -1 means a perfect
fit to a straight line rising from fit to a straight line sloping down
left to right. from left to right.
(c) (d)
L] L] L] L] [ ] (]
) o o (] L]
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L] L] L] L] L] L]
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When the points on the scatter Here the points show an
plot show a poor fit to a straight imperfect fit to a straight line
line, the correlation coefficient rising from left to right. The
is close to zero. correlation coefficient is +0-96.
(e) (f)
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o o o o hd hd
L] L] L] L]
o q0
A rather poorer fit to a straight A non-linear relation can have a
line than (d) and sloping down correlation coefficient close to
from left to right. The coefficient zero even if it is very exact.
is —0-87.

Figure 3.10 Correlation coefficients.
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Figure 3.11 A scatter plot showing the correlation of incidence of
thyrotoxicosis and past prevalence of goitre in 11 British towns.

One outlying town has an unusually high rate of both thyrotoxicosis and
goitre. Such outliers have a strong influence on correlation coefficients.
In this instance, exclusion of the outlier reduces the correlation
coefficient from 0-89 to 0-47.

The other common method of summarising bivariate
continuous data is by means of a regression line. This is the
straight line that best fits the points on a scatter plot, and like
the correlation coefficient it is derived according to set rules
(usually by means of a program in a statistical package). It can
be superimposed on the scatter plot, as in Figure 3.12, or
expressed in terms of an equation. For example, the regression
line in Figure 3.12 is such that, on average, an increase in
infant mortality from bronchitis and pneumonia of 10 deaths
per 1000 births is associated with an increase of 52 in the
standardised mortality ratio (SMR) for chronic bronchitis.

A regression line is the straight line which best fits the data,
but unlike the correlation coefficient, it does not indicate how
good the fit is. A regression line can be calculated even when
the data show minimal tendency to a linear relationship. In
this case, however, the regression line has little meaning.

The use of the regression line is in predicting values of the
dependent variable from the independent variable. For
example, from the regression line in Figure 3.12(a) it can be
predicted that an infant mortality rate from bronchitis and
pneumonia of 20 deaths per 1000 births will be associated
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(a) A regression line is the straight line which best fits the points on a
scatter plot. The figure below show a regression line superimposed
on the scatter plot from Figure 3.9

250
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Chronic bronchitis SMR
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0 5 10 15 20 25 30 35
Infant mortality (deaths/1000 births)
The use of a regression line is in predicting values of the dependent
variable from the independent variable. For example, from the
regression line above we would predict the SMR from chronic

bronchitis in an area to be: 25 + (5-2 x its infant mortality rate from
bronchitis and pneumonia).

The prediction is only valid wihtin the range of data from which it has
been derived. It should not be used for extrapolation (as opposed to
interpolation).

(b

A regression line can be calculated even when the data show minimal
tendency to a linear relationship:
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However, in this case the regression line has little meaning.

Figure 3.12 Regression lines.

with an SMR for chronic bronchitis of 129. Such predictions
are valid only within the range of the data. The regression line
in Figure 3.12(a) could not validly be used to predict the
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chronic bronchitis SMR associated with an infant mortality
from respiratory disease of 40 deaths per 1000 births. Clearly,
when the correlation coefficient is close to zero, as in Figure
3.12(b), one can have little confidence in predictions based on
a regression line. Techniques of statistical inference based on
regression are discussed in Chapter 8.

Multivariate data

When data sets comprise more than two interrelated
variables, summary becomes more difficult. The best approach
is often to start by looking at each variable separately in
univariate analyses and then proceed to examine them in
pairs. For example, in the multivariate set of data on births
that was discussed in Chapter 1, one might first summarise the
distribution of each individual variable and then analyse the
relation of birth weight to each of sex, socio-economic class,
and number of previous pregnancies. Exploration in this way
gives a feel for the structure of the data and allows important
features to be characterised. The interrelationship of multiple
variables may be further summarised by techniques of
statistical modelling, but this is more often carried out in the
context of statistical inference than for simple description (see
Chapter 8).

Guiding principles

The description of methods of summarising data that has
been presented here and in Chapter 2 is not comprehensive,
but it covers the techniques that are most often encountered
in clinical practice. The first step in an analysis is to identify
the types of data under consideration. Various approaches are
then possible for each type of data, and the choice is partly a
matter of personal preference. The guiding principle should be
to abstract and convey the important messages of the data in
the simplest and clearest way possible. Graphs are often better
than tables when the need is to provide a summary message
that can be assimilated rapidly. On the other hand, tables
usually give more precise information and may allow readers
to carry out further calculations on the data if they wish.
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Tables and graphs should be adequately labelled, especially in
written reports. The need for simplicity applies particularly to
visual aids for oral presentations. Too often speakers succumb
to temptation and try to include more information in a
transparency or screen than can reasonably be assimilated by
their audience.

Questions

3.1

46

What methods could be used to summarise the
following?

(a)

(b)

(©

(d)

(e)

(®

(8)

The presence or absence of cutaneous warts in
groups of men from four different occupational
groups.

The relation between length of stay in an intensive
care unit (measured in days) and Glasgow coma
score (measured on an ordinal scale from O to 15) on
admission in a series of patients.

The relation between APGAR score at birth
(measured on an ordinal scale from O to 10) and IQ
at age 7 years in a sample of children born on a
maternity unit.

The presence or absence of Parkinson’s disease in
relation to smoking habit (classed as non-smoker,
ex-smoker, or current smoker) in a survey of elderly
people.

The case fatality of a series of children with bacterial
meningitis according to the day of the week on
which they were admitted to hospital.

The relation of birth weight to fasting blood glucose
concentration at age 50 years in a sample of men
born at the same hospital during the 1940s.

The agreement between two surgeons in classifying
inguinal hernias as direct or indirect on clinical
examination.



4: Probability

Chapters 2 and 3 have dealt with techniques for summarising
data. Sometimes our interest extends no further than the data
set that is being summarised. Thus, in a parliamentary election
the distribution of votes cast on the day directly determines
the outcome of interest—who is elected and who loses their
deposit. This contrasts with an opinion poll, where our
primary concern is not the voting preference of the sample of
people interviewed, but that of the electorate more generally.
We hope that the distribution of preferences in the
interviewees tells us something about this, but there is always
a possibility that the people selected for interview are in some
way atypical.

The same distinction can be drawn in clinical practice. A
consultant wishing to justify a short term increase in
manpower for his outpatient clinic needs information about
the patients on his waiting list. He might summarise this in
terms of the mean time since referral of those currently
waiting for a first appointment, or by the proportion who
have been waiting for more than six months. Whether the
current state of affairs is atypical (for example, because of an
unusual spate of referrals or sickness absence in staff) is
irrelevant to the short term decision. If patients have been
waiting too long then something needs to be done. The
patients studied form the total population of interest.

On the other hand, the observation of reduced mortality in
patients with myocardial infarction who are given a
thrombolytic drug as part of a clinical trial is important only
for what it can tell us about the value of the drug more
generally (unless we happen to be one of the patients in the
trial). This will depend on how well the findings in the sample
of patients studied represent the wider state of affairs.

Samples may be unrepresentative because of the way in
which they have been selected. For example, an opinion poll
carried out by approaching people on the street and asking
them for their views would tend to exclude people who do not
get out and about—perhaps because they are tied up at work
or because they are disabled. If the opinions of such men and
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women are different from those of people who walk around
town then the findings of the survey are unlikely to reflect
reliably the views of the total population. Similarly, a study of
alcohol consumption in general practice patients could be
misleading if the heaviest drinkers declined to participate.
Where a sample is atypical of the larger population which it is
intended to represent because of the way in which it has been
chosen, we say that it is biased.

In addition, even if there is no systematic deficiency in its
method of selection, a sample may be unrepresentative by
chance. If I throw a die twice, the outcome will not necessarily
be the same on both occasions. In fact, most times I would
expect to throw different numbers. (If you have ever waited
for a double to start a board game you will be well aware of
this.) In the same way, two clinical trials with identical designs
would not be expected to produce identical results.
Differences will occur just by chance. The process of drawing
conclusions from samples about wider populations while
taking into account possible chance effects is known as
statistical inference.

The principles of statistical inference will be described in
Chapters 5 to 8, but first we need a method of quantifying
chance. This is achieved using a measure called probability. As
I will show, the concept of probability is relevant not only to
statistical inference but also to other aspects of clinical
practice.

What is chance?

Suppose that I toss a coin. In theory, if I knew all of the
relevant physical factors, including the mass of the coin, its
diameter and thickness, the exact forces setting it in motion,
the viscosity of the air, the height of the surface onto which
the coin will fall, and the shape and plasticity of this surface,
I might be able to predict whether it will come down heads or
tails. In practice, however, these cannot be known with
sufficient accuracy or detail. Thus, in advance the outcome
will always be uncertain—a matter of chance.

In the same way, I cannot predict with certainty whether an
apparently healthy patient attending my clinic is going in the
future to develop lung cancer. Certain influences make this
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outcome more or less likely (for example, his smoking habits),
but it will depend upon a myriad of circumstances, many of
them operating at a molecular level, about which I will never
have adequate information. Whether the patient goes on to
develop lung cancer is again a matter of chance.

Probability

Although 1 cannot reliably predict the outcome of an
individual coin toss, I do know that if I toss a coin a large
number of times it will tend to come down heads on half the
tosses. The reasons for this must lie in the way that the many
factors that determine the result of a single coin toss interact
with each other. The practical importance is that it offers a
way of quantifying the chance of throwing heads. If on
repeated coin tossing half of all tosses result in heads, I can say
that the probability of obtaining heads in a single toss is 50%
or 0-5.*

Similarly, if I know from previous studies that 6% of men
with the same age and smoking habits as my clinic patient will
go on to develop lung cancer, I can say that the probability of
my patient getting lung cancer is 6% or 0-06.

When they are defined in this way, we can see that
probabilities are numbers in the range from zero to one. A
probability of zero means that the outcome will never happen.
A probability of one means that it will definitely occur. The
closer the probability to one, the more likely the outcome.

In clinical practice we often have to deal with uncertainties,
and many of these can be quantified by probabilities. One
application lies in the description of prognosis. Patients and
their families regularly ask what are the chances that an
operation will be successful or that a treatment will lead to
cure, and the answer is often in the form of a probability. For
example, we might tell the parents of a child newly diagnosed
as having leukaemia that with current treatment there is a
60% chance of a cure.

Sometimes the probabilities we give are rough guesses based
on our personal clinical experience, but in other cases they

*In this and the chapters that follow, percentages and decimals are used
interchangeably.
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may derive from formal research. For example, a systematic
follow up study of adults presenting with a first epileptic fit
collected information about the occurrence of further fits in
the same patients over the next few years. This helps us to
estimate the probability that a person with a first seizure will
go on to have more fits, an important consideration in
deciding whether he or she should be allowed to continue
driving a car.

Of course, when quantifying prognosis in this way it is
important to take into account as far as possible those factors
that are likely to have a major influence on the course of an
illness. Thus, if the staging of a tumour is known and is a
crucial determinant of outcome, we should base our prognosis
and any probabilities that we quote on experience relating
specifically to that tumour stage.

Another application of probabilities relates to the diagnostic
process. When a patient presents with a complaint we assess the
chances of different underlying diagnoses and plan our
investigation or treatment accordingly. For example, a general
practitioner confronted by a child with a sore throat would
assess the probability of a bacterial cause, taking into account
which upper respiratory infections were prevalent in the
community at the time and any special diagnostic features of the
case. Depending on this evaluation the doctor might prescribe
an antibiotic, take a throat swab, or treat the symptoms and
review the child if there was no improvement over the next few
days. If a throat swab were taken and proved negative on
bacterial culture, this would lead the doctor to modify his or her
assessment of the probability of bacterial infection.

In experimental trials where computers have been used to
assist diagnosis, the programs have been based on numerical
calculations of probability, but normally assessment of the
chances of different diagnoses is informal and more
qualitative. Nevertheless, an understanding of probability
helps to clarify the process. Also, it offers a way of quantifying
the value of different diagnostic tests and procedures.

Sensitivity, specificity, and predictive value

Few clinical investigations are completely reliable, and
errors can occur in both directions. Some patients may be
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Box 4.1 Evaluation of mammography in the diagnosis of
breast cancer

Outcomes in a series of 1500 women investigated by
mammography

Result of Histologically proven tumour within Total
mammography six months of mammography

Yes No
Positive 9 59 68
Negative 7 1425 1432
Total 16 1484 1500

The sensitivity of mammography is the probability that it will
correctly diagnose a true case, and is given by 9/16 = 56%.

The specificity of mammography is the probability that it will
correctly classify a non-case, and is given by 1425/1484 = 96%.

The predictive value of mammography is the probability that a
woman with a positive result really has a tumour, and is given by
9/68 = 13%.

incorrectly classified as having a disease (false positive
diagnoses), while others who are genuine cases may be missed
(false negative diagnoses). If correct diagnoses can eventually be
established then the accuracy of a test can be evaluated. For
example, Box 4.1 shows the accuracy of mammography in the
diagnosis of breast cancer, assessed according to whether a
histologically proven tumour was found at some stage during
the six months after the test. (It is assumed here that histology
provides a valid guide as to whether a cancer is really present,
although in practice histology too might be misleading.) Of
1500 women in the study, 16 turned out to have breast cancer,
and nine of these had been correctly diagnosed on
mammography. The proportion of cases correctly diagnosed
by a test is known as its sensitivity. Put another way, the
sensitivity of a test is the probability that it will correctly
diagnose a case.

A total of 1484 women did not have breast cancer, and
1425 of these were correctly classified as cancer-free on
mammography. The proportion of non-cases correctly
classified by a test is termed its specificity. In other words,
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specificity represents the probability that a non-case will be
correctly classified.

The requirements of a test in terms of sensitivity and
specificity depend on the use to which it is to be put. For a
screening exercise that is to be followed by more detailed
investigation of people with positive tests (for example,
cervical smear testing in which positive results are followed up
by cone biopsy), the emphasis is usually on sensitivity—on
ensuring that cases are not missed. On the other hand, when a
positive diagnosis on a test will lead directly to a major
intervention such as colectomy or mastectomy, high specificity
is essential. If the test lacks specificity, a substantial number of
people may receive unnecessary and injurious treatment.

The characteristic of a test that is of most relevance in the
management of an individual patient is its predictive value—
the probability that disease is really present when the test is
positive. In Box 4.1, 13% of women with positive mammograms
actually had breast cancer.

The predictive value of a test depends not only on its
sensitivity and specificity, but also on the prevalence of
disease in the population of patients to whom it is applied.
Consider the example of sputum cytology as an investigation
for bronchial carcinoma. Let us suppose that the test has a
sensitivity of 40% and a specificity of 99%.

The first example in Box 4.2 shows the expected outcome if
we apply the test in a sample of 1000 patients presenting to
hospital with haemoptysis, 80% of whom have bronchial
carcinoma. From the known sensitivity and specificity we
would expect 320 of the 800 cases to test positive and 198 of
the 200 non-cases to test negative. Altogether, therefore, we
would have 322 patients with positive results, of whom 320
would really have lung cancer. It follows that the predictive
value would be 320/322 = 99%.

By the same reasoning, the expected outcome if the test
were used to screen 10 000 apparently healthy smokers with a
lung cancer prevalence of 1% would be as in the second
example in Box 4.2. In this case the predictive value of 29% is
much lower. Fewer than one third of the people with positive
results would actually have lung cancer.

It is important for clinicians to be aware that the predictive
value of a test varies according to the circumstances of its use.
Otherwise, they may manage patients inappropriately.
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Box 4.2 Application of sputum cytology as an investigation
for bronchial carcinoma in two populations of patients

It is assumed that the test has a sensitivity of 40% and specificity
of 99%.

(a) Expected outcome in 1000 patients presenting to hospital with
haemoptysis of whom 80% have bronchial carcinoma

Bronchial carcinoma

Sputum cytology Present Absent Total
Positive 320 2 322
Negative 480 198 678
Total 800 200 1000

Predictive value = 320/322 = 99%

(b) Expected outcome in 10 000 apparently healthy smokers with
a lung cancer prevalence of 1%.

Bronchial carcinoma

Sputum cytology Present Absent Total

Positive 40 99 139
Negative 60 9801 9861
Total 100 9900 10 000

Predictive value = 40/139 = 29%

Combining probabilities

Either of two events

Where two outcomes are mutually exclusive, the probability
that one or the other will occur is calculated by adding their
individual probabilities. For example, if a baby has a 0-04%
chance of being homozygous for the sickle cell gene and a
3-92% chance of being a heterozygote, then the probability
that it carries the gene either as a homozygote or as a
heterozygote is 0-04 + 3-92 = 3-96%.
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Note that this rule for adding probabilities applies only
when the outcomes are mutually exclusive. The probability
that a baby carries genes for sickle cell disease and/or beta
thalassaemia is not the probability that it carries the sickle cell
gene plus the probability that it carries the beta thalassaemia
gene. Rather, we must subtract from this sum the probability
that the baby carries both the sickle cell and the beta
thalassaemia genes. In general, for two outcomes A and B,

Probability of A or B = Probability of A + Probability of B -
Probability of both A and B

If A and B are mutually exclusive then they cannot both occur,
and the probability of both A and B is therefore zero.

Both of two events

The probability that both of two events occur can be
calculated from their separate probabilities if they are
independent—that is, if the occurrence of one event does not
make the other more or less likely. In this case, the probability
of both events occurring is obtained by multiplying their
individual probabilities. This principle has important
applications in medical genetics.

Suppose that a couple, both apparently healthy, have a child
with cystic fibrosis. If they have another baby, what is the
probability that this child too will have the disease? Cystic
fibrosis is an autosomal recessive disorder. Each of us carries
two copies of the relevant gene, one inherited from our father
and one from our mother. The disease is manifest if both of
these genes are defective. If a parent has a single defective gene
(is a heterozygote) there is a 50% chance that the defective
gene will be passed on to any son or daughter and a 50%
chance that the child will receive the normal gene.

The parents in this example must be heterozygotes since
they do not themselves have cystic fibrosis, but each must
have passed on a defective gene to their child. Therefore if
they have a second baby, there is a 50% chance that the gene
transmitted from the father will be defective, and a 50%
chance that the mother will pass on a defective gene. From
empirical observation we know that the transmission of genes
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from mother and father is independent. Getting a defective
gene from the father makes no difference to the probability of
being given a defective gene by the mother. It follows that the
probability that the second child will have cystic fibrosis
(because it has inherited a defective gene from both its father
and its mother) is the probability of getting a defective gene
from the father (0-5) multiplied by the probability of getting a
defective gene from the mother (0-5). This comes to 0-25.

This is a very simple example, and clinical geneticists often
have to advise on much more complex problems, but their
calculations are guided by the basic rules for combining
probabilities.

The other major application of probabilities in medicine is
in statistical inference. This will be described in the chapters
that follow.

Questions

4.1 Adult polycystic disease is autosomal dominant in
inheritance. The disease occurs if a defective gene is
inherited from either the mother or the father or from
both parents. What is the probability that a man has
polycystic disease if his sister has the disorder and his
brother and father do not?

4.2 Surgeons were shown in one study to diagnose
appendicitis correctly in patients with acute abdomen
with sensitivity 88% and specificity 86%. Assuming that
this is standard, what would be the predictive value of a
surgeon’s diagnosis of appendicitis in a sample of
patients with acute abdomen, 25% of whom actually had
the disorder?

4.3 The sensitivity and specificity of defined ECG criteria in
the diagnosis of myocardial infarction are 80% and 50%
respectively, while for criteria based on levels of cardiac
enzymes the sensitivity and specificity are each 65%.
Assuming that given the disease status of the patient, the
results of the two tests are independent (in other words,
among true cases of myocardial infarction a positive ECG
does not make enzymes any more or less likely to be
positive, and among non-cases a negative ECG does not
make enzymes any more or less likely to be negative),
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(a)
(b)
©
(d)
(e)

®)

What is the probability that a true case will be
positive on both tests?

What is the probability that a true case will be
positive for either one or both tests?

What is the probability that a non-case will be
negative for both tests?

What is the probability that a non-case will be
negative for either one or both tests?

If we took as our diagnostic criterion that both ECG
and enzymes should be positive, what would be the
sensitivity and specificity?

If we took as our diagnostic criterion that either one
or both of ECG and enzymes should be positive,
what would be the sensitivity and specificity?



5: Hypothesis testing

Statistical inference is concerned with the uncertainties that
arise when generalising from observations made in samples.
Suppose, for example, that we carry out a laboratory
experiment to test the chronic toxicity of a new drug, and we
find that six out of 20 rats receiving the highest dose of the
drug develop liver tumours as compared with only three out
of 20 control animals. How sure can we be that this represents
a genuine carcinogenic effect of the drug, and that repeat
experiments with the same design would not show excesses of
liver tumours in the controls as often as in the treated rats?
Two approaches are commonly used to address such
uncertainty. Hypothesis testing, which was the first of the
methods to be developed, will be described in this chapter.
Chapter 6 will describe the second technique, which is based
on estimation with confidence intervals.

Populations and samples

Underlying all statistical inference, whether by hypothesis
testing or by estimation with confidence intervals, is the
notion that the available data relate to a sample and that this
sample is derived from a larger population about which
conclusions are to be drawn. The population of interest may
be explicitly defined. For example, the sample of voters
questioned in an opinion poll is selected from the electorate
as a whole and is intended to provide information about the
voting preferences of that larger population. More often,
however, the population is hypothetical. Thus the sample of
rats in a study of carcinogenicity is viewed as coming from a
larger population of similar rats that might in theory be
investigated in the same way. From observations in the sample
we aim to draw conclusions about what would be found if the
total population of rats were studied.

The mathematical theory underlying statistical inference
generally assumes that the populations from which samples
derive are extremely large. This is reasonable in most
circumstances encountered in practice.
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The logic behind hypothesis testing

Suppose that we are given a coin and are asked to find out
whether it is a “fair” coin—whether it is equally likely to come
down heads or tails when it is tossed. The obvious way to
investigate this question is to toss the coin a few times and see
what happens. If we tossed the coin three times and it came
down heads on each occasion, we would not be terribly
surprised. It quite often happens that a cricket or football
captain wins the toss on three occasions in a row. However, if
we then tossed the coin a further seven times and again got
heads every time, we might begin to suspect something
peculiar.

It would be nice if we could calculate a probability that the
coin is fair, but with probability defined as in Chapter 4, this
is not possible. Our coin is not selected from a set of coins,
known proportions of which are fair or unfair. The only
information available to us is the outcome of the sample of
coin tosses that we have carried out.

We can, however, turn the problem round and calculate
what would be the probability of obtaining the outcome that
we have observed if in fact the coin were fair. If the coin were
fair, then in the hypothetical population of all tosses that
could be made with it, half would be heads and half would be
tails. Put another way, the probability that any single toss
would come out heads is 0-5. Successive tosses of the same
coin are independent. (The popular belief that if there has
been a sequence of heads then tails is more likely next time by
“the law of averages” is misguided.) It follows that the
probability of three heads in a row is

0-5x0-5x%x0-5=0-125

Similarly, the probability of three tails in succession is 0-125.
Throwing three successive heads and throwing three
successive tails are mutually exclusive outcomes. Therefore the
probability of obtaining three heads in a row or three tails in
a row is

0-125 + 0-125 = 0-25
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This accords with our intuition that three tosses in a row all
the same is not terribly surprising. It can be expected to
happen 25% of the time when we carry out three tosses with
a fair coin.

If we toss a coin 10 times, the probability of getting 10
heads is

0-5%x0:5%05%05x%x05x05%x05%05%05 %05 =
0-00098

This is also the probability of obtaining 10 tails, and the
probability of getting 10 tosses all the same (heads or tails) is
therefore

0-00098 + 0-00098 = 0-00196

Again our intuitive judgment is supported. A sequence of 10
tosses all the same can happen with a fair coin, but it would
occur on fewer than one in 500 occasions (0-00196 is less than
0-002 = 1/500). Given that it is so improbable, we might feel
inclined to reject the assumption of a fair coin as incorrect,
and adopt the alternative view that the coin is unfair.

A parallel argument can be developed in the context of
medical research. Suppose that we wish to investigate whether
a new drug treatment for peptic ulcer is effective. Again, we
might attempt to answer this question by conducting an
experiment. We could set up a clinical trial in which a sample
of patients with peptic ulcer was allocated to treatment either
with the new drug or with a pharmacologically inactive
placebo, and then compare the rate of healing (perhaps
assessed by endoscopy) at a specified interval after starting
treatment.

Suppose further that 60 out of 100 patients receiving the
new drug are healed as compared with 30 out of 100 patients
given placebo. As with the coin, it would be nice if we could
calculate a probability that the drug is superior to placebo, but
this does not make sense given the way in which probability
has been defined. There is no set of “worlds” in a proportion
of which the drug is effective while in the remainder it is no
better than placebo. All we have is our one “world” and the
findings in our sample of 200 patients.
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Again, a solution is found by turning the problem around.
We can think of our sample of 200 patients as coming from an
extremely large population of ulcer patients who could, in
theory at least, be treated with drug or placebo. Let us assume
that the drug is ineffective. If this is the case, the proportion
of patients in our large population that would be healed while
being given the drug would be the same as in patients
receiving placebo. In other words, the probability of an
individual patient receiving the drug being healed would be
the same as that of an individual being given placebo.

In our sample of 200 patients the overall healing rate was

(60 + 30)
(100 + 100)

=45%

Assuming an underlying 45% probability of healing in the
source population of ulcer patients, whether they receive drug
or placebo, we can calculate the probability of observing a
difference in healing rates between drug and placebo as large
as or larger than 60/100 compared with 30/100. The sum is
more complicated than in the coin tossing example, but it
turns out that the probability of such an extreme difference is
again small, 3-7 x 107° in fact. Put another way, if in ulcer
patients overall there were a similar 45% healing rate whether
they received drug or placebo, and we repeatedly carried out
trials of similar design to our original study in samples of 200
patients, fewer than one in 10 000 of such trials would find a
difference between drug and placebo as large as 60%
compared with 30%.

Given that such an extreme outcome is so unlikely under
our original assumption of no difference between drug and
placebo, we might decide to reject the assumption and
conclude instead that there is in fact a difference.

The approach that has been illustrated in the above two
examples is the basis of statistical hypothesis testing. We start
by making a null hypothesis about the population of interest
(for example, that healing rates are no different in patients
given drug or placebo). Often this hypothesis is the negation
of the end point in which we are really interested (that drug
treatment is better than placebo)—hence the “null” in the
nomenclature. Next we make observations in a sample
selected from the population. Usually the outcome in this
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sample will deviate somewhat from the null hypothesis. We
then calculate the probability of obtaining a deviation from
the null hypothesis as large as or larger than that which we
have observed, simply through the chance variation that can
be expected from one sample to another. This probability is
commonly termed a P value or level of statistical significance.
Thus a P value is defined as:

The probability of obtaining an outcome as or more extreme
than that observed in the study if the null hypothesis were true.

If a P value is low we may decide to reject the null hypothesis
as incorrect.

Statistical significance

How low should a P value be before we reject the null
hypothesis? There is no simple answer to this question. All we
can say is that other things being equal, the lower the P value,
the less credible the null hypothesis.

Traditionally, P wvalues less than 0-05 have often been
assigned special status and deemed statistically significant.
However, there is nothing intrinsically unique about the level
of 0-05, and the difference between P values of 0-049 and
0-051 is no more important than that between values of 0-047
and 0-049. The term “statistically significant” is a literary
convenience when describing results, but the fact that a
finding is statistically significant does not mean that it cannot
legitimately be attributed to chance. Indeed, if a large number
of independent statistical tests are carried out (as is often the
case in epidemiological studies), one in 20 can be expected to
show statistical significance at a 5% level even if all of the null
hypotheses are true. Nor does failure to achieve statistical
significance preclude us from concluding that a null
hypothesis is unlikely to be correct. The final conclusions
from an analysis depend on other factors as well as the level of
statistical significance attained—in particular, the design and
size of the study and the weight of evidence from other
investigations (see Chapter 9).

One often sees P values quoted in relation to a reference—
P < 0.05, P<0-01, or P < 0-001—but it is better if possible to
give the exact P value—for example, P = 0-023 as this conveys
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more information (just as it is more informative to say that a
car costs £11 500 than to quote the price as “under £12 000”).

Statistical tests

In the example of the coin tossing experiment in which all
ten tosses came out the same, calculation of the P value was
fairly straightforward. Usually, however, the mathematics is
more complex. For example, to compute the probability of
obtaining at least seven tosses the same in a sequence of ten
tosses requires application of more advanced techniques than
can be covered in this book. For the same reason, in the
comparison of ulcer healing rates between drug and placebo,
the P value was quoted without an indication of how it was
derived. Calculation of this P value from first principles would
be extremely complicated.

Fortunately, the derivation of P values can usually be made
easier by application of an appropriate statistical test. A
statistical test can be viewed as a shorthand method of
obtaining a P value. It entails calculation of a special summary
statistic from the sample data according to a set formula or
recipe (Box 5.1), and then looking up this value of the statistic
in a table which gives the corresponding P value. Nowadays,
calculation of the statistic and its checking against tabulated
values are normally carried out by computer.

There are many different statistical tests, each with its own
special formula for calculating the relevant statistic and its own
table for looking up P values (Box 5.2). The choice of the correct
test depends on the nature of the data, the study design, and the
hypothesis under investigation. For example, different tests are
applied to nominal, ordinal, and quantitative data.

Parametric and non-parametric tests

A broad distinction is made between parametric and
non-parametric tests. A parametric test makes assumptions
about the distribution of data in the population from
which the study sample is drawn. For example, in a study
comparing the birth weights of babies whose mothers did
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Box 5.1 An example of the use of a statistical test

Suppose that a survey is carried out to find out whether attempted
suicide is associated with unemployment, and that in a comparison
of 100 cases of attempted suicide and 160 controls, the levels of
unemployment are as in the contingency table:

Cases Controls Total
Unemployed 36 16 52
Employed 64 144 208
Total 100 160 260

The proportion of cases unemployed (36/100 = 36%) is higher than
that of controls (16/160 = 10%), but could this difference have
occurred by chance?

The null hypothesis here is that there is no underlying difference
in the unemployment rates of cases and controls in the population
from which our sample of 260 subjects came. We assume that in the
source population the observed overall unemployment rate
(52/260 = 20%) applies equally to both cases and controls.

The probability of observing such a large difference between
cases and controls (36/100 v 16/160) if this null hypothesis were
true can be calculated quickly by use of a statistical test, and in this
particular case the appropriate test is the chi squared test. The
relevant statistic is calculated from the sample data according to a
set formula:

N(lad — bc | — N/2)?

(@+b)(c+d)(a+c)(b+d)

where a is the number of unemployed cases, b of unemployed
controls, ¢ of employed cases and d of employed controls, N=a + b +
c+d;and | ad — bc | means ad — bc if ad is larger than bc and bc — ad
if bc is larger than ad.

Thus, we here obtain a value for the statistic of

260 ((36 x 144 — 16 x 64) — 260/2)?
(36 + 16) (64 + 144) (36 + 64) (16 + 144)

_ 260 (5184 - 1024 - 130)°
52 x 208 x 100 x 160

260 x 40307
52 x 208 x 100 x 160

= 24.4

Continued
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Box 5.1 continued

When we look this up in the relevant reference table we find that it
corresponds to a P value of 8 x 107".

There are many statistical tests, each with its own special formula
for deriving the relevant statistic and its own look-up table. Choosing
the right statistical test for a particular problem requires experience,
and clinicians who are in doubt will do best to consult a statistician.

Box 5.2 Some examples of statistical tests

Chi squared (x?) test
McNemar’s test

t test

Paired t test

Chi squared test for trend
Variance ratio test (F test)
Mann-Whitney U test

or did not receive nutritional supplements during pregnancy,
a parametric test might assume that the underlying
distribution of birth weights was normal (Gaussian). Non-
parametric tests make no assumptions of this kind. The
advantage of parametric tests is that they allow stronger
conclusions, provided that the assumptions which they make
can be accepted.

Following the recipe for a test is not too difficult, but
choosing the correct test for a particular set of data and study
question requires skill and experience and is not a job for the
amateur. Unless they can be confident in their own ability,
clinicians will do best to consult a medical statistician about
which test to use. For those who are concerned only with
interpreting other people’s published analyses, it is more
important to identify the null hypothesis under investigation
and the P value obtained than to worry about the statistical
test that was used to derive the P value. Concerns about the
latter can be left to statistical referees who review papers
before publication and to the minority of readers who are
more knowledgeable in statistics.
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One tailed and two tailed tests

Reports of statistical analyses in medical journals sometimes
refer to tests of statistical significance as one tailed or two
tailed. This distinction relates to the possibility that deviation
from a null hypothesis can occur in two directions. For
example, when we compare a drug with placebo in a clinical
trial, our null hypothesis is that there is no underlying
difference in outcome. Deviation from this hypothesis can
occur because patients receiving the drug fare better than
those receiving placebo, or vice versa. A one tailed or one sided
test calculates the probability of deviation from the null
hypothesis in a specified direction. Thus, with the assumption
of no underlying difference between drug and placebo, we
might derive the probability of observing a benefit from the
drug relative to placebo as large as that found in our study. In
contrast, a two tailed or two sided test calculates the probability
of deviation from the null hypothesis in either direction—for
example, the probability of a difference in outcome (beneficial
or adverse) between drug and placebo as large as that
observed.

Two tailed tests are more conservative than one tailed tests
(for a given set of data they give higher P values) and are used
more often. If a test in a published report is not specified as
one tailed or two tailed, it is usually safe to assume that it is
two tailed. The choice of which to use is a matter of personal
taste, but the difference in their meaning must be borne in
mind when results are interpreted.

Questions

5.1 What is the null hypothesis in a study?

(a) To find out whether use of a new surgical technique
reduces rates of wound infection.

(b) To find out whether patients from certain general
practices wait shorter times for outpatient
appointments.
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(©

To find out whether adenoidectomy reduces absence
from school in children with middle ear disease.

5.2 What is meant by the P values in the following
statements?

66

(@)

(b)
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In a trial of a new analgesic regimen used in terminal
illness, patients reported more satisfactory pain relief
than when receiving conventional treatment (P =
0-02).

In a comparison of the workloads of two accident
and emergency departments there was no significant
difference in the numbers of hip fractures treated
over a 12 month period (P>0-05).

Advice to mothers in a community not to leave
babies face down in their cots was associated with a
significant reduction (P <0-05) in rates of sudden
infant death over two years as compared with the
two previous years.



6: Estimation with
confidence intervals

In the example of the coin tossing experiment that was
described in Chapter 5, we were in effect looking at samples
from the hypothetical population of all sequences of tosses
that could be made with the coin under study. We considered
two samples—one of three tosses, and the other of 10 tosses.
The findings in both samples were the same insofar as all
tosses were the same, but the P values were quite different—
0-25 for the sample of three tosses as compared with
approximately 0-002 for the sample of 10 tosses.

This illustrates an important feature of statistical
significance. The statistical significance of a finding depends
not only on the extent of its deviation from the null
hypothesis (100% heads instead of 50% heads) but also on the
size of the sample in which that deviation is observed.
Consider two clinical trials comparing treatments for
leukaemia, one involving 20 patients and the other 2000
patients. One measure of efficacy might be the proportion of
patients going into remission (meaning that the peripheral
blood count is normal and fewer than 5% of the nucleated
cells in the bone marrow are blasts) after treatment. Table 6.1
shows the P values for two possible outcomes of such trials
under the null hypothesis of no difference between the
treatments. In the case of the first study, the observed benefit
from treatment A is large (50% v 25% remission), but because
this is observed in only a small sample of patients the P value
is unremarkable. In contrast, the observed benefit from
treatment A in the second study is much smaller (25% v 20%),
but because of the larger sample size this is more significant
statistically (P = 0-009).

In practice, when deciding which of two treatments for
leukaemia to use, we need to know not only which is the
better therapy but also by how much it is better. If the added
benefit from a drug is minimal and its cost extortionate, then
it is unlikely to be a treatment of choice. In the same way, if
we had to decide how much resource to commit to a public
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Table 6.1 Levels of statistical significance in two clinical trials of
treatment for leukaemia.

Treatment A Treatment B Statistical
significance
No. of No. going into No. of No. going into  of difference
patients  remission patients remission between A and B

Trial | 20 10 20 5 0-2
Trial I 1000 250 1000 200 0-009

health campaign promoting the use of sun creams to protect
against skin cancer, we would need information on the extent
to which sun exposure affects the risk of skin cancer, and not
simply on whether or not there is a hazard. In general,
decisions in clinical practice depend not on whether an effect
is present, but on how big the effect is.

It follows that hypothesis testing is not the most
appropriate statistical technique for informing clinical
decisions. A finding that is highly significant statistically may
be clinically irrelevant (because the effect is small). On the
other hand, clinically important outcomes may fail to achieve
statistical significance if they are observed only in small
samples.

Because of this, the trend in recent years has been to an
alternative approach to statistical inference using estimation
with confidence intervals. From a study sample we can make an
estimate of the outcome measure or effect in which we are
interested (the difference in cure rates between two
treatments, for example), but we are left with the problem that
even if our sample has been properly selected, it may be
atypical simply by chance. A confidence interval is a measure
of how much trust we can place in an estimate derived from a
sample, taking into account the scope for chance variation
from one sample to another.

What are confidence intervals?
As with hypothesis testing, the concept of a confidence

interval should be viewed in the context of a sample derived
from a larger population about which conclusions are to be
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drawn. Specifically, there are numerical attributes or
parameters of the population which we would like to estimate.
Examples of such population parameters might be “the
percentage five-year survival of patients with newly diagnosed
oesophageal cancer”, “the prevalence of Down’s syndrome in
babies born to mothers over 35 years of age”, “the risk of
colonic cancer in patients who have had ulcerative colitis for
more than 10 years”, or “the reduction in general practice
consultation rates following introduction of a new policy for
managing patients with asthma in the community”.
Corresponding to each such population parameter is a sample
statistic—for example, the percentage five-year survival in a
sample of patients with newly diagnosed oesophageal cancer,
the prevalence of Down’s syndrome in a sample of babies born
to mothers over 35 years of age, etc.

A sample statistic constitutes a point estimate of the
corresponding population parameter. However, even if the
sample has been chosen in an appropriate way, this estimate
will not be completely reliable. If the same study were
repeated with a different sample from the same population,
the point estimate obtained would probably be different, just
because of the chance variation between samples. In essence,
a confidence interval gives a range around a point estimate
within which the corresponding population parameter is
likely to lie (assuming that the study has been well designed
and conducted).

Most often, 95% confidence intervals are quoted. A 95%
confidence interval for an estimate is derived from the sample
data according to set mathematical rules. Its meaning can be
better understood if we consider the theoretical situation in
which a study is repeated a large number of times, using
different samples selected from the same population. Each
sample will produce its own point estimate and surrounding
confidence interval, and some of these confidence intervals
will include the population parameter while others do not (see
Box 6.1(a)). The mathematical recipe for deriving the 95%
confidence intervals is set so that, in the long run, 95% of
samples will have confidence intervals that include the
population parameter.

Sometimes 90% confidence intervals are given instead. The
rules for calculating 90% confidence intervals are set in such a
way that in a large series of samples, each with its own
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confidence interval, 90% of confidence intervals will include
the corresponding population parameter. It follows that for a
given sample, the 90% confidence interval will be narrower
than the 95% confidence interval (Box 6.1 (b)).

Box 6.1 Confidence intervals

(a) If a study were repeated a large number of times using different
samples selected from the same population, each sample would
produce its own 95% confidence interval.

Sample 1 | |

Sample 2 } |

Sample 3 —

Sample 4 | | — 95%_
Sample 5 | | f:onfldence
Sample 6 } | interval

4
Value of population parameter

In the above example the 95% CIl for sample 3 does not include
the population parameter that is being estimated. The formula
for calculating 95% confidence intervals is set in such a way that in
the long run 95% of such confidence intervals will include the
population parameter (assuming that the study is well designed and
executed).

(b) 90% confidence intervals are narrower than the corresponding
95% confidence intervals and are derived according to a
formula such that on average 90% of such intervals will include
the population parameter.

Sample 1 H—r—H

Sample 2 H—H 1 95%
Sample 3 Hr+—H 1 90%
Sample 4 H—H confidence
Sample5 H—H interval
Sample 6  H——H

t
Value of population parameter

Here the 90% confidence interval for sample 4 excludes the
population parameter, but the corresponding 95% confidence interval
does not.
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The methods of calculating confidence intervals depend on
the type of data that is being analysed (nominal, ordinal, or
quantitative), the design of the study, and the parameter that
is being estimated. Computer programs are available for
calculating confidence intervals, but choosing the right
method requires skill and experience; if in doubt, it is best to
consult a medical statistician.

The relation of confidence intervals to P values

A null hypothesis can be viewed as postulating a null value
for a population parameter. For example, the null hypothesis
that there is no difference in cure rates between two drugs is
equivalent to a proposition that the parameter representing
the difference in cure rates between the two drugs has a value
of zero. If we obtain a result that is statistically significant with
a P value of less than 0-05, this is equivalent (at least to a close
approximation) to a statement that the 95% confidence
interval for the relevant population parameter does not
include the postulated null value.

Suppose, for example, that an epidemiological study is
carried out to investigate the association of smoking with
cervical cancer. The null hypothesis in this case is that no
association exists—that the population parameter defined as
the ratio of cervical cancer rates in smokers and non-smokers
has a value of one. A statement that an association was found
between smoking and cervical cancer with a P value of less
than 0-05 is equivalent to saying that the 95% confidence
interval for the estimated ratio of cervical cancer rates in
smokers and non-smokers did not include one.

Because of this equivalence, P values tell us little extra when
confidence intervals are known.

Standard error
Sometimes estimates of population parameters are quoted

with their standard errors rather than confidence intervals.
A standard error is a statistic calculated from measurements in
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a sample, often as an intermediate step in the derivation of a
confidence interval or P value. In particular, where a sample
mean is used to estimate a population mean, the upper and
lower 95% confidence limits (the upper and lower bounds of
the 95% confidence interval) are given approximately by the
sample mean plus or minus twice its standard error (the exact
calculation depends on the size of the sample).

Thus, in a sample of men aged 16-64 the mean difference in
daily vitamin C intake between non-smokers and heavy
smokers was 19-2 mg with a standard error of 7-8 mg. It follows
that the 95% confidence interval for the estimated mean
difference in vitamin C intakes by smoking habit in the
population from which these men came is approximately 19-2 -
(2%x7-8)to 19-2 + (2 x 7-8) —that is, 3-6 to 34-8 mg.

In general, confidence intervals can be interpreted more
directly than standard errors and are a preferable method of
presenting results.

Sample size and confidence intervals

Other things being equal, the larger the size of a sample, the
narrower the confidence interval that will be obtained. This
reflects the fact that bigger samples provide more information
and therefore allow more confident conclusions with a smaller
range of uncertainty. This theme will be developed further in
the next chapter.

Questions

6.1 In follow up of men who participated in nuclear weapons
tests, leukaemia mortality was 1-75 times that in a control
group (95% confidence interval 1-01 to 3-06).

(a) What is meant by this 95% confidence interval?

(b) Would the excess mortality in the study group
as compared with controls be statistically significant
(P <0-05)?
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6.2 In an analysis of controlled trials of nicotine replacement
as an aid to smoking cessation, nicotine chewing gum
had an efficacy (defined as the difference in percentages
of treated and control subjects who had stopped smoking
at one year) of 6% (95% confidence interval 4% to 8%).

(a) What does this confidence interval mean?
(b) How could a narrower 95% confidence interval be
obtained?
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7: Statistical power and
selection of samples

With a given study design, larger samples provide more
information. This was illustrated in the coin-tossing experiment
described in Chapter 5. With a sample of only three tosses it
was not possible to draw any worthwhile conclusions about
the fairness of the coin, whereas the result of 10 tosses brought
the fairness of the coin into serious doubt. Small samples are
more often unrepresentative by chance, and therefore do not
allow such confident conclusions as large samples.

This is reflected by wider confidence intervals when
samples are small. Box 7.1 shows confidence intervals
in three drug trials. In each trial there is an estimated

Box 7.1 Effect of sample size on confidence intervals

Consider three trials comparing a drug with placebo and using
mortality as an outcome measure. The table below shows the 95%
confidence intervals that would be associated with a reduction in
mortality of 5% according to the size of sample in which it was
observed.

Reduction in mortality
with drug as
Placebo Drug compared with placebo

No. of  No. of No. of No. of Point  95% confidence

patients deaths patients deaths estimate interval
Trial | 40 10 40 8 5% -13% to +23%
Trial Il 400 100 400 80 5% - 1% to +11%
Trial 1l 1600 400 1600 320 5% +2% to +8%

The larger the sample size, the narrower the confidence interval

reduction in mortality of 5% with the drug as compared with
placebo, but the confidence intervals around this estimate
vary enormously according to the size of the study. With
only 40 patients in each treatment group, there is major
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uncertainty about the apparent benefit from the drug. Indeed,
the findings would be quite compatible with its having a
detrimental effect as compared with placebo. On the other
hand, the benefit could easily be as much as a 23% reduction
in mortality. In contrast, the largest study provides a much
more precise estimate of benefit, indicating that it probably
lies in the range 2% to 8%. We say that this study has more
power.

In essence, the power of a study is its ability to minimise
the uncertainties that arise because of chance variation
between samples. Two methods are commonly used to
quantify power. Once a study has been completed,
confidence intervals provide the most convenient and
easily interpreted measure of power. They tell us with how
big and how small values for the parameter of interest the
tindings could easily be compatible. However, confidence
intervals do not lend themselves so readily to the advance
quantification of power when studies are being planned.
In this case the wusual approach is to base power
calculations on the hypothesis testing approach to
statistical inference.

Type 1 and type 2 error

When hypothesis testing is carried out, two sorts of error
can occur. First, the null hypothesis may be rejected when in
fact it is true. This is called type 1 or alpha error. Alternatively,
the null hypothesis may escape rejection when in reality it is
incorrect. This is termed fype 2 or beta error.

There is an inverse relation between the probabilities of
type 1 and type 2 error. Thus, if stringent criteria are set for
rejecting the null hypothesis (a P value of less than 0-001,
say), the chance of type 1 error will (by definition) be lower
than with a less demanding threshold (for example, a P value
of less than 0-05). On the other hand, the chance of type 2
error will be higher. This is illustrated in Box 7.2, which
shows how the probability of type 2 error might vary across
a range of thresholds for rejecting the null hypothesis in a
clinical trial.
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Box 7.2 Probability of type 2 error in relation to thresholds
for rejecting the null hypothesis in a clinical trial

The figure illustrates the relation between the probability of type 2
error and the level of statistical significance at which the null
hypothesis will be rejected for three clinical trials comparing a drug
with placebo. In each case it is assumed that equal numbers of
patients are randomised to drug and placebo, and that the drug
halves mortality from 20% to 10%. However, the trials differ in the
total number (N) of patients studied.

10 -

S

o

N

2 N =100

=

“6 0-5 -

z

= N =250

©

Qo

2

a N =500
0 T T T 1

0001 001 01

Threshold for rejecting null hypothesis of no difference in
mortality between drug and placebo (probability of type 1 error)

For any given sample size, the stricter the requirements for rejecting
the null hypothesis the higher the probability of type 2 error. As
sample size increases, the probabilities of type | and type 2 error
decrease.

Given the threshold at which the null hypothesis will be
rejected, studies with greater power have a lower probability of
type 2 error. Thus, the quantity defined as one minus the
probability of type 2 error can be taken as a measure of power.*

* Technically, the measure is termed the “statistical power” of the study. I have
used the term “power” in a more general sense to describe the quality of
which “statistical power” is one measure.
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We might say that a study will have 80% power to detect an
effect of a given size at a 5% level of statistical significance,
meaning that if we set the threshold for rejecting the null
hypothesis at a P value of 5% then the probability of type 2
error will be (100-80)% = 20%.

This index of power will depend on:

e sample size—bigger studies have greater statistical power;

e the extent to which the null hypothesis is incorrect—if the
true state of affairs is very different from the null
hypothesis then the study is more likely to produce a low P
value and the null hypothesis is less likely to be accepted in
error;

e certain features of the study population, according to the
design of the study.

For example, in a case-control study examining the
relation of acute upper gastrointestinal bleeding to recent
aspirin intake, the null hypothesis would postulate the same
prevalence of aspirin use in cases and in controls without
bleeding. The statistical power of the study to detect an
association between aspirin and bleeding, measured as one
minus the probability of type 2 error, would depend on the
threshold for rejecting the null hypothesis, the numbers of
cases and controls, the strength of the true association
(measured as an odds ratio’) and the prevalence of aspirin
use in controls. Table 7.1 gives some examples of how these
different variables would influence the power. If an
investigator planning such a study could specify the
threshold that would be used to reject the null hypothesis,
the level of the odds ratio that it was important to detect,
and the likely prevalence of aspirin use in controls, then
levels of power could be calculated for different numbers of
cases and controls, and an appropriate sample size could
be chosen.

T The ratio of the odds of upper gastrointestinal bleeding in someone who has
recently taken aspirin to those in someone who has not. This is a measure of
the extent to which aspirin is associated with an increased risk of bleeding. For
example, an odds ratio of two would imply that gastrointestinal bleeding was
approximately twice as common in recent users of aspirin as in non-users.
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Table 7.1 Factors influencing the power of a case-control study to
detect an association between recent aspirin intake and acute upper
gastrointestinal bleeding.

True Threshold for Prevalence of recent

odds rejecting null aspirin intake in No. of No. of Power
ratio  hypothesis controls cases controls (%)
2:0 P=0-01 10% 50 50 4
2:0 P=0-01 10% 100 100 12
20 P=0-01 10% 100 200 16
2:0 P =0-05 10% 50 50 14
2:0 P =0-05 10% 100 100 30
2-0 P =0-05 10% 100 200 38
2:0 P =0-05 20% 50 50 76
2:0 P =0-05 20% 100 100 98
20 P =0-05 20% 100 200 100
4.0 P=0-01 10% 50 50 39
4.0 P=0-01 10% 100 100 83
4.0 P=0-01 10% 100 200 94
4.0 P =0-05 10% 50 50 68
4.0 P =0-05 10% 100 100 95
4.0 P =0-05 10% 100 200 99
4.0 P =0-05 20% 50 50 99
4.0 P =0-05 20% 100 100 100
4.0 P=0.05 20% 100 200 100

In a study comparing mean systolic blood pressures in
people on a low salt diet and on a normal diet, the null
hypothesis would be that there is no difference in mean
systolic pressures. Here the power would depend on the
threshold for rejecting the null hypothesis, the number of
subjects, the true difference in blood pressure associated with
a low salt diet, and the variability of blood pressures between
different people when on a normal diet (measured as their
standard deviation). Table 7.2 shows how these factors
interrelate.

When planning studies it is important to ensure that they
will have adequate power, or time and effort will be wasted in
a fruitless exercise. Because the methods of calculating power
vary according to the study design, clinicians will normally do
best to seek help from a medical statistician. In doing so,
however, they should be prepared to define a null hypothesis
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Table 7.2 Factors influencing the power of a study to detect a
difference in systolic blood pressure between people on a low salt
diet and an equal number of people on a normal diet.

True mean Threshold Standard deviation Total no. of Power
reduction in for rejecting of systolic pressures  subjects (%)
systolic null hypothesis in people on a

pressure normal diet (mm Hg)

(mm Hg)

2 P=0-01 15 100 3
2 P=0-01 15 200 5
2 P=0-01 15 400 11
2 P=0-01 10 100 6
2 P=0-01 10 200 12
2 P=0-01 10 400 28
2 P=0-05 15 100 10
2 P =0-05 15 200 15
2 P=0-05 15 400 27
2 P=0-05 10 100 17
2 P =0-05 10 200 29
2 P=0-05 10 400 52
4 P=0-05 15 100 27
4 P=0-05 15 200 47
4 P=0-05 15 400 76
4 P=0-05 10 100 52
4 P=0-05 10 200 81
4 P=0-05 10 400 98

and the extent of deviation from this that they would hope to
detect. They must also be ready to answer questions about the
likely distribution of key variables in their study population.
The statistician will explain which variable or variables are
relevant, according to the study design.

Selecting samples

Once an adequate sample size has been calculated, the
method by which the sample is chosen may be straightforward.
For example, in a hospital-based clinical trial, eligible patients
would normally be recruited consecutively until the required
number had been obtained; and in a case-control study of
patients with asthma from a general practice it might be
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necessary to include all available cases in order to achieve
satisfactory numbers. Sometimes, however, there is a pool of
potential subjects from which only a proportion is needed. For
example, in a survey to compare the prevalence of back pain
in adults from eight areas of Britain, power calculations
indicated that it would be necessary to study only one in 20
local residents in order to have a good chance of detecting any
important differences in the occurrence of back disorders.

In this case, the way in which the study sample is chosen
from the study population of eligible subjects is critical to the
validity of subsequent statistical inference. Various methods of
sampling can be used, some better than others.

Quota sampling

In market research the technique of quota sampling is often
used. The study population is divided into bands or strata
according to criteria such as age, sex, and socio-economic
group, and target quotas are set for each stratum with the aim
of obtaining a representative mix of people in the study
sample. For example, 30 men and 30 women might be
required in each of the age bands 20-39, 40-59, and 60 +. The
investigator then approaches people, perhaps in the street
or by telephoning addresses sequentially, until the quotas
are filled.

The weakness of this method is that certain sectors of the
study population may be systematically excluded from the
sample (for example, people too busy to answer questions on
the street or those who do not have a telephone), leading to
serious bias. Quota sampling is therefore rarely used in
medical research.

Systematic sampling

More acceptable is to take a systematic sample—for example,
every tenth person from a list of all members of the study
population. But this is still not ideal. Bias may arise because of
the way in which subjects are ordered in the listing of the
study population. Thus, in an age-sex register of a general
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practice any twins of the same sex will appear consecutively,
and a systematic sample would never pick up both members
of a pair. Depending on the purpose of the study, this could
lead to error.

Also, the investigator may be tempted to manipulate the
order of the population listing so that some subjects are
deliberately included in or excluded from the sample, and this
could render the sample unrepresentative.

Simple random sampling

These weaknesses are overcome by use of random sampling
methods. By random sampling we mean that each member of
the study population has a defined, non-zero probability of
being included in the study sample. In simple random
sampling all subjects have an equal probability of inclusion.
For example, a sample might be chosen so that each subject
had a random, one in 15 chance of selection.

The starting point for random sampling is an ordered listing
of the study population. This listing is known as the sampling
frame. If the study population comprised the patients
registered with a general practice, an age-sex register would
provide a suitable sampling frame. In a study of women who
had undergone hysterectomy at a hospital during a specified
period, the sampling frame could be based on a list of all such
operations, ordered according to the date and time at which
they were carried out. The method by which the sampling
frame is ordered is entirely a matter of convenience. Any
ordering will do, but it must be defined at the outset.

Next, the sample is selected from the listing by use of
random numbers. Random numbers are a sequence of digits
generated by computer according to a special mathematical
formula. Technically speaking, numbers derived in this way
are not truly random, but to all intents and purposes they
behave as if they were random. In the long run, each digit
from zero to nine appears with equal frequency, and no
sequence of two, three, or four digits occurs more frequently
than any other of the same length. Box 7.3 shows an extract
from a table of random numbers. Such tables can be found
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published in books of statistical tables and in many statistical
textbooks.

Suppose that we wish to select a sample of 20 subjects from
a population of 90. This could be done using a table such as
that in Box 7.3. First, we decide how the table is to be read -
from left to right in rows working down the page is a natural
method, given that this is how we normally read text. Next, a
starting point in the table is chosen by shutting the eyes and
placing the point of a pencil on the page. Let us assume that
the starting point is the number 07 underlined in Box 7.3.

Our sampling frame allows us to allocate each member of
the study population a two digit number from 01 to 90.
Therefore, beginning at our chosen starting point, we read off
a series of two digit numbers from the table. The first number
is 07, so this subject enters the sample, followed by subjects
61, 58, and 85. The next number, 98, lies outside the range 01
to 90, so we simply ignore it and go on to the next. Similarly,
if a subject already selected came up a second time, we would
just go on to the next number. We continue in this way until
we have the 20 subjects that we need.

This may at first seem an unnecessarily laborious approach
to sample selection. Why not just pick 20 subjects from the 90
in a seemingly haphazard manner? Unfortunately, such
haphazard methods tend on average to be far from random,
and only proper random sampling can be guaranteed free
from systematic error.

Box 7.3 Extract from a table of random numbers

44 32 21 24 15 60 05 31 38 54 96 84
21 47 96 61 08 19 58 47 18 75 42 24
15 58 41 69 43 25 72 53 45 27 66 58

For ease of reading, the digits are grouped in pairs, but they can be
read in sequences of any required length (single digits, pairs,
triplets etc). For a description of how such a table could be used to
select a random sample, see text.
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These days the process of selecting random samples has
been made easier because personal computers are fitted with
software that will generate random numbers. Thus, a fairly
simple program can be written to list 20 numbers at random
between 01 and 90 without any need to look up tables of
random numbers. Clinicians needing to select large random
samples (of size greater than 100, say) may find it worthwhile
to seek help from a statistician or computer programmer.

Stratified random sampling

Sometimes the investigator wishes to fix the distribution of
certain characteristics in the study sample—for example, the
numbers of men and women. This is achieved by stratified
random sampling. The study population is partitioned into
strata according to the characteristics concerned, and simple
random sampling is carried out within each stratum to obtain
the required numbers. So, the male members of the study
population might be randomly sampled to obtain 40 men,
and the female members to obtain 40 women.

With stratified random sampling, members of the study
population do not necessarily all have the same probability of
inclusion in the study sample. Some strata may be relatively
over-represented by design. Thus, to permit subsidiary analyses of
adequate statistical power in different age groups, a sample
could be stratified by age with deliberately enhanced
representation of the elderly, who otherwise might be too few
in number (Box 7.4).

Multistage sampling

Sometimes, especially in epidemiological studies, it is more
convenient or economical to carry out random sampling in
two or more stages. For example, suppose that the study
population comprises residents of a large city. To compile a
suitable sampling frame for the full study population could be
difficult. An alternative might be first to select a random
sample of general practices from all the practices in the city,
and then to select random samples of patients from the lists
of the chosen practices. This is called multistage or cluster
sampling. Provided the number of practices selected was not
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too few, and a similar proportion of patients was sampled
from each list, such a sample should be reasonably
representative.

Box 7.4 Stratified random sampling
Suppose that we wish to select a sample of 200 people from a
population of 1000 with an age distribution as shown below:

Age group Population
20-39 500
40-59 400
60 + 100
All ages 1000

If we select a simple random sample with a sampling fraction of one
in five then we can expect only 20 members of our sample to be aged
60+ years. This will limit statistical power to draw any conclusions
about this age band. An alternative would be to select a stratified
random sample as shown below:

Age group Population Sampling fraction Sample
20-39 500 14 per 100 70
40-59 400 17-5 per 100 70
60 + 100 60 per 100 60

Relative oversampling from the oldest age group might ensure an
adequate sample size in each age band.

Randomisation in clinical trials

A special case of sampling is the allocation of patients to
different treatments in clinical trials. From the population of
all patients included in the study, samples must be selected for
each treatment. To avoid bias, this again is best achieved by
random selection. In prospective studies the sampling frame is
usually established according to the order in which patients
are recruited to the study, and random numbers are then used
to assign the patients to different treatment groups.

Suppose, for example, that there are two treatments, A and
B, under comparison, and we would like roughly equal
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numbers of patients to receive each. A sequence of random
numbers could be generated by computer or abstracted from a
table of random numbers. If the first number were odd, the
first patient would receive treatment A, and if it were even,
treatment B would be given. The treatment for the second
patient would be determined in a similar way from the second
number in the series (odd for treatment A and even for
treatment B) and so on.

Modifications of this technique can be applied to distribute
patients between any number of treatments. It is important,
however, that the investigator does not know which
treatment will be allocated by the randomisation until after
the patient has been assigned a place in the sampling frame.
Otherwise, there is a danger that entry to the study will be
manipulated deliberately or subconsciously so that certain
patients are treated according to the investigator’s wishes
rather than at random. For example, in a trial of self-
administered physiotherapy after stroke, the investigator
might prefer less motivated patients to receive conventional
treatment, believing that they would not comply adequately
with the self-administered regimen. Knowing that the next
person to enter the trial would receive self-administered
therapy, he might be disinclined to recruit a poorly motivated
patient, preferring to treat such a patient conventionally
outside the trial. However, he would happily recruit the same
patient if he knew that the next assigned treatment in the
trial would be conventional therapy. In the long run, the
outcome of such a policy would be to allocate a higher
proportion of well motivated patients to the self-administered
therapy than to conventional treatment, and this could
produce a misleading outcome. If the outcome of randomisation
is revealed only after a subject has entered the study, this
problem is avoided.

Questions
7.1 What sampling frames might be used to select a sample
of 11-year-old children living in the city of Winchester?

7.2 The figure below shows how the statistical power (given
as a percentage of the maximum achievable given the
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7.3

7.4

7.5

86

number of cases) of a case-control study relates to the
ratio of controls to cases when other variables (including
the number of cases) are fixed. What implications does
this have for sampling strategies in case-control studies?
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In writing a grant proposal for a trial to evaluate
behaviour therapy in the treatment of sleep disorders,
how might you specify the power of the study?

In reporting the results of a trial to evaluate behaviour
therapy in the treatment of sleep disorders, how might
you specity the power of the study?

In a report of a comparison of lung cancer rates between
coal miners and dockers it was stated that there were no
statistically significant differences in the smoking habits
of the two occupational groups. Why is this use of
statistical significance unsatisfactory?



8: Statistical modelling

Statistical analyses reported in medical journals often make
use of statistical models. A statistical model starts with
specified assumptions about the interrelation of different
variables in the study population and estimates population
parameters, or derives P values from sample data on the basis
of these assumptions. For example, one modelling technique
that is commonly applied is that of multiple linear regression.

Multiple linear regression

Table 8.1 shows an extract of data on lung function from a
cross sectional survey of 276 men and women aged 65 years
and older. For each subject there is a measurement of forced
expiratory ratio (FEV,/FVC), and also a record of age, sex, and
smoking habits. We might ask how important are age, sex, and
smoking habits as predictors of forced expiratory ratio.

If we were looking only at age we could start by constructing
a scatter plot as in Figure 8.1, and we could derive an equation
for the regression line of forced expiratory ratio on age. With
the commonly adopted assumption that the ratio declines in

Table 8.1 Extract of data on lung function from a cross sectional
survey of 276 men and women aged 65 years and older.

Subject Age Sex Smoking habit Forced expiratory ratio
No. (years) (FEV,/FVC (%))
1 71 M Smoker 47
2 88 M Smoker 56
3 83 F Never smoked 74
4 71 M Smoker 70
5 67 F Smoker 71
6 81 F Never smoked 76
7 68 F Smoker 76
8 67 F Smoker 41
9 75 F Never smoked 75
10 83 F Smoker 60
11 81 M Smoker 68
12 73 M Smoker 39
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Figure 8.1 Scatter plot of FEV,/FVC against age.

This plot is based on the data which were illustrated in Table 8.1. The
regression line of FEV,/FVC on age is marked, although the correlation
is poor. The poor correlation is reflected in a relatively wide confidence
interval for Parameter, in the multiple regression analysis (see text).

a linear fashion with age (has a straight line relation to age),
the slope of the regression line would give an estimate of the
rate at which the ratio declines with age in the population
from which the study sample was drawn.

Multiple linear regression extends this approach, allowing
us to assess the importance of several variables
simultaneously—in this case age, sex, and smoking habit.
The simplest model would assume that forced expiratory ratio
is predicted as the sum of four terms. The first is a baseline
value. The second is a population parameter multiplied by the
subject’s age. This parameter represents the change in forced
expiratory ratio associated with a one year increase in age. The
third term is zero if the subject is a man, but takes the value of
a second parameter if the subject is a woman. It indicates the
difference in forced expiratory ratio between women and
men. The last term is zero if the subject is a non-smoker and
takes the value of a third parameter if he or she has smoked.
It represents the difference in forced expiratory ratio
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Box 8.1 Multiple linear regression for forced expiratory ratio
(FEV,/FVC (%))

Point 95% Confidence

estimate interval
Parameter, (effect of age) -0-12 -0-35to + 0-:10
Parameter, (effect of gender) +4-12 + 1:29 to + 6-96
Parameter, (effect of smoking) -5-44 - 8:38 to — 2:50

between smokers and non-smokers. In other words, we
assume that the ratio is predicted as

baseline value
plus  Parameter, x (age in years)
plus  Parameter, x (O if subject is male or 1 if female)
plus  Parameter, x (O if subject is a non-smoker or 1 if a
smoker)

The three population parameters can be estimated from the
sample data with 95% confidence intervals. The results of the
calculation are shown in Box 8.1 (we do not need to worry
here about exactly how the calculations were carried out).

For example, from this analysis we would estimate that, given
the sex and smoking habits of a subject, forced expiratory ratio
falls by 0-12 percentage points for each year of age; and that with
the age and sex of the subject given, the ratio is reduced by 5-44
percentage points if he or she has been a smoker. The
corresponding confidence intervals indicate the range of values
for these parameters with which the study findings would
readily be compatible. Thus, in the absence of bias, the reduction
in forced expiratory ratio associated with having smoked is likely
to lie in the range 2-50 to 8-38 percentage points.

Put in this way, the results are not too difficult to understand,
but they do depend on the assumptions of the model. For
example, it is supposed that, given a person’s smoking habits,
forced expiratory ratio falls at the same constant rate with
increasing age in both men and women. It is for the clinician
to decide whether this makes sense biologically. From what is
known about lung function, is it plausible that forced
expiratory ratio would decline at a roughly constant rate with
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Figure 8.2 Survival from diagnosis in male patients with cancer of the
thyroid and cancer of the tongue.

increasing age, and that this rate would be similar in men and
women? The statistician can test the validity of the assumptions
to some extent using the study data, but the clinician must also
evaluate them in the light of what is known from elsewhere.

Survival analyses

Another common application of statistical models is in the
analysis of survival data. Many studies measure the “survival”
time from an initial event such as the diagnosis of a disease or
start of a treatment until a specified outcome such as death,
recovery, or discharge from hospital. One way of summarising
the findings for a sample of patients is by means of a survival
curve. For example, the survival curves in Figure 8.2 show
proportions of men with thyroid and tongue cancer who were
still alive at different intervals after diagnosis.

Often the patients in a study of survival are not all followed
for the same length of time. For example, in an investigation
to assess the outcome of surgery for rectal cancer, patients
would normally remain under surveillance from the time of
their operation until they died or until the end of the study,
whichever came sooner. In general, patients with operations
early in the course of the study would be followed for longer
than those who came under observation only shortly before
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the close of data collection. At first glance, it might seem that
for the purposes of statistical inference, patients who had been
followed for only one year by the end of the study could not
tell us anything useful about the chances of surviving 10 years
from surgery. However, this is incorrect. Actuarial methods of
lifetable analysis allow full use to be made of the data from all
patients in the study.

The methods of lifetable analysis are too complex to describe
in detail in a text of this length, but the general approach can
be outlined. In the example above, the analysis might start by
estimating the probability that a patient will survive one year
from the date of operation. All patients would contribute to
this calculation, with a small adjustment to take account of
those who were not followed for a full year. Next, the findings
for patients who were alive and being followed up one year
after surgery would be used to estimate the probability of
surviving a second year, assuming that death did not occur in
the first 12 months. In a similar way, estimates would be
obtained for the probabilities of surviving each successive year
of follow up. Finally, the chances of surviving 10 years from
surgery would be calculated by multiplying the estimated
probabilities of surviving each year in turn:

(Probability of surviving from operation to year 1) X
(probability of surviving from year 1 to year 2) x ... X
(probability of surviving from year 9 to year 10)

The probability of surviving a specified period from the date
of operation is a population parameter for which the data from
a study sample provide an estimate. By appropriate statistical
techniques it is also possible to derive a 95% confidence
interval for the estimate. In the example considered above,
survival was measured until death, but the same methods
could be applied to look at survival until other endpoints.

Sometimes survival is summarised by a single statistic such as
a 12 month survival rate—the proportion of patients surviving
12 months from entry to follow up without experiencing the
endpoint of interest. However, a statistic of this sort conveys less
information than a full survival curve. For example, in Figure 8.2
thyroid and tongue cancer are both associated with a 12 month
survival rate of just less than 60%. However, survival to six years
is much lower for tongue cancer than for thyroid cancer.
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In epidemiological studies and in the analysis of controlled
trials we often wish to compare the survival curves of two or
more groups of patients. For example, in a trial of a new
immunosuppressant regimen for renal transplants we might
compare the survival from transplantation to a first rejection
episode with that of patients receiving conventional therapy.
One statistical model that is commonly applied in this
situation is a proportional hazards analysis. In its simplest form,
this model assumes that at any given time after entry to follow
up the probability of the outcome of interest (in this case
rejection) in one group of patients (those receiving the new
treatment) is a constant multiple of that in another group
(those receiving conventional therapy). The ratio of
probabilities is known as the hazard ratio and is a population
parameter. It can be estimated from the findings in a study
sample with an associated 95% confidence interval. In the
study of immunosuppressants, a hazard ratio less than unity
would imply that patients on the new treatment survived free
of rejection for longer than those on conventional treatment.

Multiple regression and proportional hazards analysis are
only two examples of the many models that may be employed
in statistical inference. The same principles apply to the use of
any model. When assessing the results, clinicians should
identity the assumptions underlying the model and assess
their biological plausibility before drawing conclusions.

Questions

8.1 A statistician working with a doctor on a comparison of
two treatment regimens for femoral neck fracture
explains that she has used a proportional hazards model
to compare survival in the two treatment groups. The
model assumes that at any given time after starting
treatment, the probability of death in the first treatment
group is a constant multiple of the corresponding
probability in the second treatment group. She has
estimated this ratio and calculated a 95% confidence
interval for it. What biological considerations might lead
the clinician to question this model?
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9: Interpretation of statistical
analyses

Doctors and other clinicians who are not themselves carrying
out research need an understanding of statistics mainly so that
they can interpret other people’s papers that are presented at
meetings and in journals. Descriptive statistics are usually not
too difficult to follow, but statistical inference presents more
of a problem. Many of the analyses reported in medical
journals use mathematical techniques that are beyond most
clinicians, and there is a danger that results are either rejected
as incomprehensible or accepted uncritically.

A more constructive approach is to treat statistical analyses
in a similar way to biochemical tests. It is not necessary to
know all the technicalities of an assay for serum potassium in
order to apply its results in clinical practice. However, a doctor
does need to understand the implications of different
potassium concentrations, and be able to interpret results in
the light of other available clinical data—deciding, for
example, whether a high concentration results from renal
failure, an adverse effect of a drug, or simply a haemolysed
specimen. In the same way, when assessing the findings of a
clinical trial it is not essential to master all the mathematical
nuances of survival analyses, but it is important to appreciate
what is meant by an estimated 10% increase in five year
survival and by the associated confidence interval. The
clinician should be able to recognise shortcomings in the
study method which might have led to error and should be
able to interpret results in the light of data from other related
studies.

The evaluation of studies that entail statistical inference is
easier if a systematic approach is adopted. The first step is to
identify the questions that are being asked and the population
and circumstances in which the questions are being addressed.
For example, in a study of prognosis in diabetic patients, is the
focus on insulin dependent diabetes, non-insulin dependent
diabetes, or both, and are there any restrictions in terms of age
and sex? If hypothesis testing has been used, what are the null
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hypotheses under test? If estimation has been carried out,
what are the population parameters of interest?

Assessment of bias

The next stage is to assess any biases that might be present.
A bias is a deficiency in the design or execution of a study
which leads a parameter to be systematically overestimated or
systematically underestimated, or which tends to make P
values falsely high or low. For example, in an epidemiological
study of non-Hodgkin’s lymphoma, cases were compared with
controls who did not have the disease and subjects were asked
if they had ever worked with organic solvents. The null
hypothesis was of no association between non-Hodgkin's
lymphoma and exposure to solvents, and the parameter to be
estimated was the odds ratio of non-Hodgkin’s lymphoma in
people who have worked with solvents (effectively the ratio of
their lymphoma risk to that of people with no exposure to
solvents). If cases tended to recall past solvent use more
completely than controls (perhaps because they were more
interested in the study and better motivated), this would
produce a bias. The odds ratio of non-Hodgkin’s lymphoma
from working with solvents would be exaggerated, and the
null hypothesis of no association might be incorrectly rejected
because of a spuriously low P value.

In searching for potential biases it is important to consider
the selection of subjects or material for inclusion in the study.
Is the study sample likely to be representative (as regards the
study question) of the population to which the results will be
applied?

Also, the reliability of measurements must be assessed. In
the example of the lymphoma case-control study there was a
possibility of bias because of errors in the ascertainment of
solvent exposure. Quite often, studies suffer from missing data
because measurements are not possible for all subjects in the
study sample. This too may be a source of bias.

A potential for bias does not mean that a study should
automatically be rejected as flawed. When investigations are
carried out on human subjects, practical and ethical
constraints often militate against an ideal study design, and a
purist approach would lead to unnecessary loss of useful
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information. Rather, biases should be identified and their
potential impact evaluated. In what direction are they likely to
affect P values or estimates of parameters and how much?
For example, in a study of elderly men and women registered
with three general practices the prevalence of respiratory
symptoms was estimated by means of a postal questionnaire.
Twenty eight per cent of those who replied to the
questionnaire reported wheeze in the past year, but because
only 83% of subjects responded, this prevalence estimate may
have been biased. In particular, it is possible that symptom free
patients were less inclined to participate, in which case an
overestimate would have occurred. The reader must decide
how much of an overestimate would be plausible, and interpret
the result accordingly. (In the extreme case, none of the non-
responders would have had wheeze, in which case the true
prevalence in the study sample would have been 24%.)

Assessment of chance error

The next step is to assess the potential for error because the
study sample might be unrepresentative by chance.
Confidence intervals and P values contribute importantly to
this assessment, and their meanings have already been
explained. The tighter the confidence interval, the more
certain an estimate of a population parameter; and the lower
the P value, the less credible a null hypothesis. Note, however,
that confidence intervals and P values tell us only about
chance effects; they do not allow for bias. An apparently
precise estimate of a population parameter (one with a narrow
confidence interval) may be wildly out if serious bias is
present.

If the reader is not competent to assess the methods by
which confidence intervals or P values have been derived then
these must be accepted on trust. This is reasonable, especially
when journals routinely employ statistical referees to check
that calculations are appropriate.

Judgments about the likely contribution of chance to
findings are helped by confidence intervals and P values, but
these are not the only considerations. It is also important to
set the results of a study in the context of what is known from
other sources. If they diverge greatly from the findings of
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other investigations, we may conclude that they are
unrepresentative even if the confidence interval is very tight
or the P value very low. For example, if we carried out a study
which showed a statistically significant (P<0-05) protective
effect of smoking against lung cancer and there were no biases
to explain this anomalous result, we might quite reasonably
conclude that it had arisen by chance, despite its statistical
significance. Put another way, given current knowledge, it
would take an awtful lot to convince us that smoking protects
anyone from lung cancer.

How much weight is given to the results of other studies is
subjective. So too is the assessment of bias. Even experts will
disagree on the importance of a bias and on the strength of
evidence from one investigation as compared with another.
But then experts do not always agree on clinical matters
either—the presence of a faint heart murmur or the optimal
treatment for mild depression, for example. We have to live
with the uncertainty. Where disagreements occur in the
interpretation of studies, an understanding of statistical
principles will help the clinician to identify the sources of
discord and come to a conclusion.

Meta-analysis

Although assessment of the overall weight of evidence on a
question will always be to some extent subjective, it may be
possible to bring together the results from several similar
studies in a formal meta-analysis. In a meta-analysis the data
from two or more studies are pooled and analysed to produce
a single summary estimate for a parameter with a confidence
interval or summary P value. The method ensures that each
study is given appropriate weight according to its power.

The main value of this approach is when many studies of
similar design have addressed the same study question, but
each individually has low power. In the combined analysis
power may be considerably enhanced. Thus a meta-analysis
by Yusuf and colleagues, published in 1985, examined the
efficacy of long term [ blockers in reducing mortality after
myocardial infarction. The analysis included data from 24
separate randomised controlled trials, of which only four had
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shown statistically significant (P<0-05) benefits when
analysed individually. In the pooled analysis, however, a clear
benefit was apparent, with an estimated 20% reduction in
mortality (P<0-00001).

The techniques of meta-analysis work best for randomised
controlled trials, which tend to be more uniform in design and
suffer from fewer biases than observational studies. An
essential requirement is that the criteria for including studies
in the analysis be clearly specified at the outset. Otherwise,
there is a danger that rules for inclusion will be manipulated
consciously or subconsciously to achieve a desired outcome. If
the results of a particular study do not conform to the
expectation of the investigator, it may be tempting to find a
reason to exclude it.

With the inclusion criteria defined, the other crucial
element is to ensure that all eligible studies are identified. This
may not be easy because not all investigations get published
in mainstream journals and some do not get published at all.
However, it is a necessary process because the studies that do
not achieve prominent publication tend to be those with less
interesting (non-positive) results. If they are omitted then the
summary assessment will be biased in favour of a positive
outcome. A careful search must be made of all available
sources of information, including old registers of ongoing
research projects and abstracts of reports presented at scientific
meetings.

Working with statisticians

Clinicians carrying out their own research will often need
to seek advice from a medical statistician. It is a good idea to
make contact at the planning stage of a study rather than to
come later with a mass of data collected in a suboptimal way
and ask for help in sorting it out.

When working with a statistician, clinicians should try to
understand the principles of the analytical method, even if
they do not follow all the fine details. In particular, it is
important to identify any biological assumptions that are
inherent in the analysis and to assess their acceptability.
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Interpretation of statistical analyses

Summary

The techniques of statistical inference help us to interpret
the findings of studies, but the results of statistical calculations
do not on their own determine clinical decisions. Like the
results of laboratory tests, they must be interpreted in context.
Sensible interpretation is possible even if the mathematics
underlying the calculations is not fully understood. This book
has tried to introduce the principles of statistical analysis in a
way that clinicians will find practical and relevant. Readers
who wish to explore the subject in more detail should consult
the recommendations for further reading on page 106.
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Answers

Chapter 1

1.1 (a)
(b)
(©)
(d)

(e)

()
(8

(h)
(i)

()
(k)

Continuous quantitative.

Continuous quantitative.

Discrete quantitative.

Nominal (the categories of blood group have no
natural order).

Discrete quantitative (there are only eight possible
values for the titres).

Nominal.

Ordinal (there is a natural sequence from primary
through secondary to higher).

Discrete quantitative (unless the patients were
extremely promiscuous, in which case the variable
might be treated as continuous quantitative).
Nominal.

Nominal (the categories have no natural order).
Ordinal.

1.2 Six: sex x age, sex X presenting complaint, sex x
medication, age x presenting complaint, age x
medication, presenting complaint x medication.

Chapter 2

2.1 (a)

(b)

©
(d)

No. HLA type is a nominal variable; histograms are
used for continuous quantitative variables.

No. Few surgical units would carry out more than 20
appendicectomies in a week, so this would normally
be treated as a discrete quantitative variable and
summarised graphically by a bar chart.

Yes. Concentration of y-glutamyl transferase is a
continuous quantitative variable.

No. This is a discrete quantitative variable.
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2.2 (a)

(b)

©
(d)

2.3 (a)
(b)
(©
(d)

2.4 (a)
(b)
(©)

Yes. The number of filled teeth in a child must be a
whole number between 0 and 20. Thus it is a discrete
quantitative variable and a bar chart could be used.
Yes. As defined, the result of smear testing is an
ordinal variable with three values. A bar chart could
therefore be used.

No. Peak flow is a continuous quantitative variable,
so a histogram would be used rather than a bar chart.
No. Serum amylase activity is a continuous
quantitative variable.

Yes. This is a discrete quantitative variable.

Yes. This is a continuous quantitative variable.

No. Grade of retinopathy is an ordinal variable.

Yes. Amount spent is a continuous quantitative
variable.

False. It is symmetrical.

True.

True. This follows from the symmetry of the
distribution.

Chapter 3

3.1 (a)

(b)

(©

(d)
(e)

100

Contingency table or bar chart (nominal x nominal
data).

A table or graph showing summary measures of
central tendency and dispersion for length of stay
across different values of Glasgow coma score
(ordinal x discrete quantitative). A dot plot might
also be possible.

A table or graph showing summary measures of
central tendency and dispersion for IQ across
different values of APGAR score, or a dot plot
(ordinal x continuous quantitative).

Contingency table or bar chart (nominal x ordinal).
Contingency table or bar chart (fatality is nominal
(fatal or not) and day of week is ordinal).
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(f) Scatter plot and possibly a correlation coefficient or
regression line (both variables are continuous
quantitative).

(g) Contingency table (for each surgeon, diagnosis is a
nominal variable with two categories—direct and
indirect).

Chapter 4

4.1

4.2

His father does not have the disease, and therefore cannot
carry the gene. It follows that his sister must have
acquired the gene from their mother and the mother
must carry the gene. The mother must be a heterozygote
since if she were a homozygote she would pass on a
defective gene to all her children and his brother would
also have the disease. It follows that the man has a 50%
probability of inheriting a defective gene from his mother
and of having the disease.

Let us assume that the surgeon sees 1000 patients,
of whom 250 have appendicitis. Of the 250 with
appendicitis, he will correctly diagnose 250 x 88% = 220.
Of the 750 without appendicitis he will correctly exclude
the diagnosis in 750 x 86% = 645. It follows that he will
incorrectly diagnose appendicitis in 750-645 =105
patients. Thus, altogether he will diagnose appendicitis in
220 + 105 = 325 patients, of whom 220 will actually have
the disorder. The predictive value of his diagnosis of
appendicitis is therefore 220/325 = 67-7%.

Surgeon’s diagnosis

True diagnosis Appendicitis  Not appendicitis ~ Total

Appendicitis 220 30 250
Not appendicitis 105 645 750
Total 325 675 1000
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4.3

102

In making this calculation, a sample of 1000 patients was
assumed in order to make the arithmetic simple, but
(aside from any rounding errors) the same predictive
value would be obtained if we assumed a sample of a
different size.

(a)

(b)

(©

(d)

(e)

()

The probability that a true case is positive on
electrocardiography is 80% and the probability that
a true case is positive on cardiac enzymes is 65%
(from the given sensitivities). As the two tests are
independent, the probability that a true case is
positive on both tests is obtained by multiplying
these probabilities: 80% x 65% = 52%.

The probability that a true case will be positive for
either one or both tests is the sum of the probabilities
of being positive on each test separately minus the
probability of being positive on both tests: 80% +
65%-52% = 93%.

The probability that a non-case will be negative on
electrocardiography is 50% and the probability that
a non-case will be negative on cardiac enzymes is
65% (from the given specificities). Since the two tests
are independent, the probability that a non-case will
be negative on both tests is obtained by multiplying
these probabilities: 50% x 65%=32-5%.

The probability that a non-case will be negative for
either or both tests is the sum of the probabilities of
being negative on each test separately minus the
probability of being negative on both tests: 50% +
65% - 32-5% = 82-5%.

In this situation the sensitivity is the probability that
a true case is positive on both tests (52%) and the
specificity is the probability that a non-case is
negative on either or both tests (82-5%).

In this situation the sensitivity is the probability that
a true case is positive on one or both tests (93%) and
the specificity is the probability that a non-case is
negative on both tests (32-5%).
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Chapter 5

5.1 (a) Rates of wound infection are the same with the new
surgical technique as with conventional treatment.

(b) The average waiting time for an outpatient
appointment is the same for patients from the
specified general practices as from other general
practices.

(¢) In children with middle ear disease rates of absence
from school are the same after adenoidectomy as in
comparable children who have not had the
operation.

5.2 (a) If in general the new analgesic produced no better or
worse pain relief than conventional treatment, the
probability of observing a difference in pain relief
between the new analgesic and conventional
treatment as large as or larger than that found in the
trial would be 0-02 (2%).

(b) 1If the underlying workloads of the two departments
were identical, the probability of finding a difference
between them in numbers of hip fractures treated
over 12 months as large as or larger than that
observed in the study would be more than 0-05 (5%).

(c) If advice not to leave babies face down in their cots
had no influence on rates of sudden infant death, the
probability of observing a difference in the rates of
sudden death as large as or larger than that found in
the study would be less than 0-05 (5%).

Note that in each of the above examples, the
definition of the P value starts with an “if.”

Chapter 6

6.1 (a) Assuming that there was no bias in the study
method, the true rate of leukaemia mortality in men
who participated in nuclear weapons tests is likely to
be between 1-01 and 3-06 times that in the
comparison group from which the controls were
selected. If the true rate were outside this range, the
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6.2

probability of obtaining results as or more extreme
than those observed would be less than 5% (0-05).

(b) Yes. If there were no underlying differences in
mortality rates from leukaemia in the study group
and controls, the ratio of their rates would be one.
One lies outside the range 1-01 to 3-06. Therefore, if
the null hypothesis of no underlying difference in
rates were correct, there would be less than a 5%
probability of finding a difference as large as or larger
than that observed.

(a) Assuming that there was no bias in the trials
analysed, the true efficacy of nicotine chewing
gum in people of the sort studied is likely to lie
somewhere in the range 4% to 8%. If the true efficacy
were outside this range then there would be less than
a 5% probability of obtaining results as or more
extreme than those found.

(b) By studying larger numbers of people.

Chapter 7

7.1
7.2

7.3

7.4

104

General practice age—sex registers, school registers.

If there is a limit on the availability of cases then the
power of a study can be increased by having more than
one control per case, but there is a law of diminishing
returns and it is not worth going beyond a ratio of four or
five to one unless additional controls can be obtained
very easily and cheaply.

One would start by specifying a benefit from therapy
worth detecting, perhaps a 20% improvement according
to an appropriate measure. The power of the study would
then be expressed as the probability of its finding a
statistically significant (normally at a 5% level) difference
in outcome between treated patients and controls if
treatment conveyed a benefit of this specified magnitude.
Thus, if therapy produced a 20% improvement, the study
might have an 80% probability of obtaining a statistically
significant difference between treated patients and
controls.

A confidence interval around an estimate of the benefit
from therapy.
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7.5 The relevance of the smoking habits of the two
occupational groups lies in the possibility that they might
contribute to differences in lung cancer rates between the
groups. The potential contribution depends on the
magnitude of any difference in smoking habits rather
than its statistical significance. The statistical significance
depends on the numbers of subjects as well as the
magnitude of the difference in their smoking habits. A
large difference might not be statistically significant if the
number of subjects was small, but it would still be
important in this context.

Chapter 8

8.1 The nature of the treatments might be such that any
differences in risk of death would be expected to apply
only in the short term (for example, before patients have
mobilised). In this case, the assumption of a constant
ratio of mortality risks at all intervals since the start of
treatment would be questioned.
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Further reading

Altman DG. Practical statistics for medical research. London: Chapman and
Hall, 1991.

This book is aimed primarily at medical researchers with limited previous
exposure to statistics teaching. It is also useful to medical students, doctors
and other clinicians who want more than just an introduction to the
subject.

Altman DG, Machin D, Bryant TN, Gardner M]. Statistics with confidence.
London: BM] Publishing Group, 2000.

This book concentrates particularly on the rationale for using confidence
intervals in statistical inference and the techniques for calculating them.

Armitage P, Berry G, Matthews JNS. Statistical methods in medical research.
Oxford: Blackwell, 2001.

An excellent source of reference for the more mathematically inclined.

Bland JM. An introduction to medical statistics. Oxford: Oxford University Press,
2000.

Aimed at medical students, doctors and other health professionals, but it
helps if the reader is comfortable with algebraic formulas.

Campbell MJ, Machin D. Medical statistics—a commonsense approach.
Chichester: Wiley, 1999.

The more complicated mathematics is kept in an appendix, making the
book relatively easy to read.

Coggon D, Rose G, Barker DJP. Epidemiology for the uninitiated. London: BM]
Publishing Group, 1997.

A concise introduction to epidemiology covering study design and
interpretation.

Pocock §]. Clinical trials—a practical approach. Chichester: Wiley, 1983.
A thorough and readable account of the methods used in clinical trials.

Swinscow TDV, Campbell M]. Statistics at square one. London: BM]J Publishing
Group, 2002.

A short guide for those wanting to carry out simpler statistical analyses for
themselves.
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bias 94-5, 96
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selection 48, 94
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chance 48-9
chi squared test 63—4
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clinical trials, randomised sampling
84-5
cluster sampling 83-4
confidence intervals 57, 67-73
90% 69-70, 70
95% 69, 70
characteristics 68-71, 70
interpretation 95-6
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contingency tables
both ordinal or one nominal + one
ordinal variable 31-2, 31, 32

both variables discrete
quantitative 33-5, 34
both variables nominal 26-8, 27
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33,33, 34
continuous quantitative data 4
bivariate analyses 35-45
univariate 17-19, 19
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data
missing 94
raw 1, 2
summarising see summarising data
types 1-6
dependent variable 41
descriptive statistics 1-3
diagnostic tests 50-2
discrete quantitative data 4
bivariate analyses 33-40
graphical representation 17, 18
distribution see frequency distribution
dot plots 35-8, 37, 39

effect size 68

error
chance 95-6
type 1 and 2 75-9

false negatives 51
false positives 51
forced expiratory ratio (FEV,/FVC)
87-90, 88, 89
frequency counts 7, 8, 9
frequency distribution 20-1, 22
bimodal 20, 22
normal 23, 24
skewed 21, 23, 38
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unimodal 19, 20
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23,24
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hypothesis testing 57-66
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interpretation 93-4
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data; discrete quantitative data
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randomised controlled trials 84-5, 97
random numbers 81-2, 82
random sampling 81-3
in clinical trials 84-5
stratified 83, 84
range 14-15
display methods 36
recall bias 94
regression
line 43-35, 44
multiple linear 87-90, 89, 92
response bias 95

sample 57
selection 47-8, 79-85
statistic 69
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standard error 71-2
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examples 64
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survival
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tests, diagnostic/screening 50-2
two tailed tests 65
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type 2 error 75-9, 76

univariate data 4-5,4, 5
summarising 7-25

variables 3
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