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Preface 

The purpose of this book is to present a systematic treatment of stochastic 
models which arise from genetics, carcinogenesis, AIDS epidemiology and HIV 
pathogenesis. It is meant to provide basic methodological tools to analyze these 
processes and to study the stochastic behavior of these processes. This book is 
useful because cancer and AIDS are the most dangerous diseases threatening 
the survival of human beings and because the genetic principle has been used 
in developing computer algorithms by computer scientists. Also, the genome 
project has made the genetic theories one of the most important disciplines in 
scientific research. 

This book is organized into 9 chapters. To illustrate the basic stochastic 
processes which arise from genetics, cancer and AIDS, in Chapter 1, numerous 
examples from these areas are presented. These processes include univariate 
and multivariate Markov chains with discrete time and with continuous time, 
diffusion processes, state space models and hidden Markov models. Having 
introduced these processes, the rest of the book is then devoted to develop 
basic theories of these processes and applications of these processes to genetic, 
cancer and AIDS. Thus, in Chapter 2, we present the basic theories of Markov 
chains with discrete time and describe the stochastic dynamic behavior of these 
processes. In Chapter 3, we present some basic theories of limiting results 
and stationary distributions in Markov chains with discrete time; as applica­
tions of stationary distributions, in Chapter 3, we also present some MCMC 
(Markov Chain Monte Carlo) methods to develop optimal computer algorithms 
to estimate unknown parameters in the models and illustrate its applications. 

vn 
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Chapters 4 and 5 are devoted to develop basic theories of Markov chains with 
continuous time and describe the stochastic dynamic behavior of these pro­
cesses. In Chapters 6 and 7, basic theories and methodologies of diffusion 
processes are presented and illustrated by examples from genetics and biomed­
ical problems. Finally in Chapters 8 and 9, we present some basic theories of 
state space models and describe how to construct state space models in cancer 
and AIDS and illustrate applications in these areas. 

This book is unique and differs from other books on stochastic processes 
and stochastic models in several ways: First, it has presented and developed 
approaches which are not discussed in other books of stochastic processes. This 
includes MCMC methods and stochastic difference and differential equation 
approaches to Markov chains. Second, the book describes how to apply the 
theories to solve problems in genetics, cancer and AIDS. Third, it has presented 
and discussed state space models and illustrate its applications to cancer and 
AIDS problems which are not discussed in other books of stochastic processes. 

I originally compiled this book for students in the Department of Math­
ematical Sciences at the University of Memphis, Memphis, Tennessee, when 
I was offering a graduate course in applied stochastic models. These lecture 
notes have then been up-dated and expanded to include stochastic and state 
space models of carcinogenesis, AIDS epidemiology and HIV pathogenesis in 
HIV-infected individuals. Thus, the book may be used as a text for applied 
stochastic processes or applied stochastic models. It may also be used as a 
reference book for courses in mathematical modeling and in stochastic models 
of biomedical systems and as a reference for research tools by medical doctors 
and researchers. 

I would like to express my sincere appreciation to Professor George Anas-
tassiou of University of Memphis for inviting me to submit my book to World 
Scientific for the series edited by him. I want also to express my thanks to my 
students Mr. Xiangke Huang, Ms. Ping Zhang and Mr. J. H. Zhu for drawing 
many of the figures in Chapters 2-3 and 8-9. 

Finally I wish to thank Ms. Diane Mittelmeier, Mr. G. Luo and Mr. 
Weiming Ke for typing some of the chapters and to Dr. Sen Hu and Mr. 
Ye Qiang of the World Scientific Publication Company for assistance in the 
publication of my book. 

Wai-Yuan Tan, 2001 
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Chapter 1 

Introduction 

In the studies of natural systems, the main problem is usually to derive math­
ematical models for the response or responses in terms of input and/or risk 
variables as well as time. Almost all of these models are stochastic models be­
cause most of the risk variables are subject to random variations and most of 
the measurements of the responses and input variables are subject to random 
measurement errors. This is true for medical systems such as AIDS, cancer 
and genetics as well as for biological sciences, engineering sciences and social 
and economic systems. To study these systems, therefore, it is important to 
examine the probability laws governing the behavior of these systems. The 
purpose of this book is to present a systematic treatment on stochastic mod­
els which have been used in genetics, cancer, AIDS and some other medical 
systems. 

To set up the basic background, in this chapter we will define some basic 
terminologies and give examples from genetic, cancer and AIDS to illustrate 
some basic concepts of stochastic processes. 

1.1. Some Basic Concepts of Stochastic Processes 
and Examples 

Definition 1.1. A stochastic process {X(t),t € T} is a family of random 
variables indexed by the parameter t in T. 

l 



2 Introduction 

In biomedical sciences as well as in many other areas, the parameter t is 
usually related to time and the set T is referred to as the parameter space. 
The sample space St of X{t) is referred to as the state space and the elements 
of St the states. The space St may be discrete in which case the number 
of elements of St is either finite or countable infinite, or continuous in which 
case the number of elements of St is uncountable infinitely many. Similarly, 
T may either be discrete or continuous. It follows that there are four types of 
stochastic processes: 

(a) A stochastic process with discrete state space and discrete time t. 
(b) A stochastic process with discrete state space and continuous time t. 
(c) A stochastic process with continuous state space and discrete time t. 
(d) A stochastic process with continuous state space and continuous time t. 

For given n and for given to < t\ < ••• < tn, the observed values 
{X(t0),X(ti),... ,X(tn)} of X(t) at {to,*i, • • • ,tn} is referred to as a sample 
path of the process. We will refer the stochastic process as a finite stochastic 
process if the state space S contains only a finite number of states. To sim­
plify notations, in what follows, we will let T = {t > 0} if T is continuous 
and let T = {0 ,1 , . . . , } if T is discrete, unless otherwise stated (This can be 
achieved by defining the starting time of the process as 0). Similarly, in what 
follows, we will let {S — [a,b], — oo < a < b < oo} if S is continuous and let 
S = { 0 , 1 , . . . , } if S is discrete, unless otherwise stated (This can be achieved 
by defining the tth element of S as i — 1 (i = 1 , . . . , oo)). 

The above definition of stochastic process can also be extended to 
fc-dimensional stochastic processes with k > 1 being a positive integer. 

Definition 1.2. A k-dimensional stochastic process { X (t), t € T} is a family 
of A;-dimensional random vectors indexed by the parameter t in T. 

In A;-dimensional stochastic processes, the state space S is then a subset of 
the fc-dimensional Euclidean space E^k\ Also, some of the variables of X (t) 
may be discrete while other random variables of X (t) may be continuous. 
These are mixed-type random vectors. In this book we will not consider cases 
with mixed types of random variables in X (t), unless otherwise stated; thus 
we will only consider cases in which either all random variables in X (t) are 
discrete or all random variables in X (t) are continuous. 
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Example 1.1. The frequency of mating types under full-sib mating 
in natural populations. In animal breeding, the breeders are usually 
confronted with the problem of sib mating (brother-sister mating) leading to 
inbreed lines. Sib mating also are very common in wild animal populations. 
Hence, it is often of interest to compute the frequency of different mating types 
in sib mating in domestic as well as in wild populations. In a large population 
of diploid individuals, if we focus on a single locus with two alleles A and a, then 
there are three genotypes {AA, Aa, aa} and there are 6 different mating types 
(see Remark 1.1): {AA x AA, aa x aa, AA x aa, AA x Aa, aa x Aa, Aa x Aa} 
which we denote by {1 , . . . ,6} respectively. (As a convention, the genotype 
on the left denotes the genotype of the mother whereas the genotype on the 
right denotes the genotype of the father). Let t denote generation and let 
X(t) denote the frequency of mating types at time t under sib-mating. Then 
{X(t),t S T = (0,1, • - . , )} is a stochastic process with discrete time and with 
state space S — {1, . . . , 6 } . This is an example of stochastic process with 
discrete time and discrete state space. 

Remark 1.1. In most of the plants, animals and human beings, the chromo­
somes are grouped into a fixed number of pairs of homologous chromosomes, 
one from the mother and the other from the father. This type of individuals has 
been referred to as diploid. For example, in human being, there are 23 pairs of 
chromosomes and hence human being are diploid individuals. Biologists have 
also shown that all characters are controlled by genes which are segments of 
DNA in the chromosomes. This segment has been referred to as locus and 
different genes in the same locus are referred to as alleles. 

Example 1.2. Survival of mutant genes in natural population-
branching processes. In human beings, many of the inherited disease are 
caused by mutation of certain genes [l, 2]. Suppose that at a certain time, 
a mutant gene is introduced into the population. Suppose further that each 
mutant gene produces j mutant genes with probability pj (j = 0 , 1 , . . . , oo) in 
the next generation independently of other genes. Let X{t) be the number of 
mutant genes at generation t. Then X(t) is a stochastic process with discrete 
time and with state space 5 = { 0 , 1 , . . . , oo}. As we shall see, this type of pro­
cesses belongs to a class of stochastic processes referred to as Galton-Watson 
branching processes [3]. This is an example of stochastic process with discrete 
time and discrete state space. 
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Example 1.3. The change of frequency of genes in natural 
populations. In studying the theory of evolution, it is of interest to find the 
probability law in natural populations governing the changes of the frequen­
cies of types or genes. Thus, in a large population of diploid individuals, for a 
single locus with two alleles A and a, one would need to find the probability 
law for the number of A allele over time. Let N be the population size and let 
t denote generation. Then the number X{t) of A allele at time t is a stochastic 
process with discrete time and with state space S = { 0 , 1 , . . . , 2JV}. (Note that 
in a diploid population, each individual has two alleles for each locus; hence 
the total number of alleles for each locus in the population is 2N.) This is an 
example of stochastic process with discrete time and discrete state space. 

Let Y(t) = - 2 ^ . Since the population size N is usually very large and 
since the evolution process is an extremely slow process taking place over 
millions and millions of years, as we shall see in Chap. 6, Y(t) can be closely 
approximated by a stochastic process with continuous time and continuous 
state space S = [0,1]. 

Example 1.4. The number of drug-resistant cancer tumor cells. In 
treating cancer by chemotherapy, a major difficulty is the development of 
drug-resistant cancer tumor cells. Thus, questions of the possible efficiency 
and optimal timing of cancer chemotherapy can be studied by mathematical 
models for the development of drug-resistant cancer tumor cells. Let Xi(t) be 
the number of sensitive cancer tumor cells at time t and X2(t) the number of 
resistant cancer tumor cells at time t. Let 0 be the time starting treatment. 
Then {[Xi(t),X2(t)],t > 0} is a two-dimensional stochastic process with pa­
rameter space T = {t > 0} and state space S = {{i,j),i,j = 0 , 1 , . . . , } . 
Stochastic process of this type has been studied in [4]. This is an example of 
two-dimensional stochastic process with discrete state space and continuous 
parameter space. 

Example 1.5. The multi-stage model of carcinogenesis. Cancer 
tumors develop from normal stem cells by going through a finite number of 
genetic changes or mutations with intermediate cells subjecting to stochastic 
proliferation (birth) and differentiation (death). That is, cancer tumors de­
velop from normal stem cells by a multistage model with intermediate cells 
subjecting to stochastic birth and death. Assume that there are k (k > 2) 
intermediate stages. For t > 0 with 0 being the time of birth of the individual, 
let Xo(t) denote the number of normal stem cells at time t, Xi(t) (i = 1 , . . . , k) 
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the number of the ith stage intermediate cells at time t and T(t) the number of 
malignant cancer tumors at time t. Then {[Xi(t), i = 0,l,...,k, T(t)],t > 0} is 
a (fc + 2)-dimensional stochastic process with parameter space T = {t > 0} and 
with state space S = {(i0, ii,...,ik, h+i), V = 0 , 1 , . . . , ; r - 0 , 1 , . . . , k + 1}. 
In general, {Xi(t),i = 0,1,... ,k,T(t)} involves both stochastic birth-death 
processes for cell proliferation and differentiation of normal stem cells, inter­
mediate cells and cancer tumors and Poisson processes for generating inter­
mediate cells through genetic changes or mutations. This is an example of 
multi-dimensional stochastic processes with discrete state space and continu­
ous time. These processes have been discussed in detail in [5, 6]. 

Example 1.6. The AIDS epidemiology in homosexual populations. 
Consider a large population of homosexual men such as the San Francisco 
homosexual population which is at risk for AIDS. Then there are three types of 
people regarding HIV epidemic in the population: The S (susceptible) people, 
the I (infective) people and the A (clinical AIDS cases) people. A S person 
does not carry the AIDS virus but can contract it through sexual contact 
with I people or AIDS cases or by sharing needles in IV drug use or through 
blood transfusion of contaminated blood. An / person carries the AIDS virus 
and can transmit the virus to S people through sexual contact or sharing 
contaminated needles with I people; there is a chance that he/she will develop 
AIDS symptoms to become an AIDS case. An AIDS case (An A person) is a 
person who has developed AIDS symptoms or who has CD4^+^ T cell counts 
in the blood falling below 200/mm3 [7]. 

Let S(t), I(t) and A{t) denote the numbers of susceptible people (S people), 
infected people (I people) and AIDS cases at time t respectively and write 
X (t) = {S(t),I(t),A(t)}', where / denotes transpose. Let to = 0 be the time 
at which a few HIV were introduced into the population to start the AIDS 
epidemic. Then {X(t),t > 0} is a three-dimensional stochastic process with 
parameter space T = {t > 0} and with state space Q = {(i,j,k),i,j,k being 
non-negative integers}. This is an example of multi-dimensional stochastic 
process with discrete state space and continuous parameter space [8, Chap. 3]. 

Example 1.7. The HIV pathogenesis in HIV-infected individuals. 
In a HIV-infected individual, let time 0 denote the time of HIV infection. 
Then, there are three types of CD4(+) T cells, the uninfected CD4(+) T cells 
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(denoted by T{), the latently infected CD4<+) T cells (denoted by T2) and 
the productively HIV-infected CD4^+^ T cells (denoted by T3, also referred 
to as actively HIV-infected T cells). Let Ti(t) (i = 1,2,3) denote the 
number of Ti (i — 1,2,3) cells at time t per mm3 of blood and let V(t) 
denote the number of free HIV at time t per mm3 of blood. Denote by 
X(t) = {Ti(t),i = l,2,3,V(t)}'. Then {X(t),t > 0} is a four-dimensional 
stochastic process with parameter space T = {t > 0} and with discrete state 
space S = {(i,j, k, I), i,j, k, I being non-negative integers); for more detail, see 
[8, Chaps. 7-8] and [9]. 

1.2. Markovian and Non-Markovian Processes, 
Markov Chains and Examples 

In genetics, carcinogenesis, AIDS as well as in many other stochastic systems, 
many processes can be characterized by a dependence condition referred to as 
the Markov condition. These processes are classified as Markov processes. 

Definition 1.3. Let {X(t),t G T} be a stochastic process with parameter 
space T and with state space S. Then X(t) is called a Markov process iff (if 
and only if) for every n and for every 11 < • • • < tn < t in T, 

Pr{X(i) G A\X(h) = * ! , . . . , X(tn) = xn) = P{X(t) G A\X(tn) = xn} , 

for any event A C S. (1-1) 

where Pv{X(t) G A\X{ti) = x\,..., X(tn) = xn} is the conditional probability 
of X(t) G A given {X(h) =xu.. .,X(tn) = xn} and P{X(t) G A\X(tn) = 
xn} the conditional probability of X(t) G A given X(tn) = xn. 

The above definition is equivalent to stating that the probability distribu­
tion of X(t) depends only on results in the most recent time and is independent 
of past history. Prom this definition, it is then seen that most of the processes 
in genetics and in evolution theory are Markov processes. Similarly, many pro­
cess in carcinogenesis [5] and in AIDS epidemiology [8] are Markov processes. 
Thus, Examples 1.1-1.4 are Markov processes. However, there are also many 
processes in nature which are not Markov. An example from AIDS epidemi­
ology is given in Example 1.10 whereas an example from cancer is given in 
Example 1.12 below. A sufficient condition for which X(t) is Markov is that 
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for every h < • • • < tn, X{t2) - X(h),X(t3) - X(t2),..., X{tn) - X(t„_i) 
are independently distributed of one another. This latter condition has been 
referred to as "independent increment"; see Exercise 1.1. 

Definition 1.4. A Markov process {X(t), t € T} with state space S is called 
a Markov chain iff S is discrete. (With no loss of generosity, one may assume 
S — { 0 , 1 , . . . , oo}.) A Markov chain {X(t), t S T} is called a finite Markov 
chain iff the state space S contains only a finite number of states. 

By this definition, Examples 1.1 and 1.3 are finite Markov chains 
whereas Examples 1.2 and 1.4 are Markov chains with infinite state space. 
Examples 1.1-1.3 are Markov chains with discrete time whereas Example 1.4 
is a Markov chain with continuous time. General theories and its applications 
of Markov chains with discrete times will be discussed in detail in Chaps. 2 
and 3 whereas general theories and its applications of Markov chains with con­
tinuous times will be discussed in detail in Chaps. 4 and 5. Notice that these 
general theories are characterized by the transition probabilities 

Pij(s,t) = Pr{X(t) = j\X(s) =i}, ieS,j€S. 

For Markov chains with discrete times, the pij(s,tys are further character­
ized and derived by the one step transition probabilities 

Pij(t) = Pij(t, t + i) = Px{X(t +1) = j\X{t) = i}, ieSjeS. 

The analog of the one-step transition probabilities in Markov chains with 
continuous times are 

Pij(t,t+At) = Pi{X(t+At) = j\X(t) = i} = a y ( t )At+o(A*) , ieSJeS, 

where o(M) is defined by liniAt->o A t = 0. In the literature, the ctij(t) have 
been referred to as the transition rates or infinitesimal parameters. Thus, for 
Markov chains with continuous time, the processes are characterized by the 
infinitesimal parameters or transition rates. 

Definition 1.5. A Markov chain {X(t),t 6 T} with state space S = 
{ 0 , 1 , . . . , oo} is a homogeneous Markov chain iff ptj(s,t) = pij(t — s) for all i £ 
SJGS. 

From Definition 1.5, notice that homogeneous Markov chains depend on 
the time parameters only through the difference of times. It follows that if the 
chain is homogeneous, then Pij(t) = Pij(s, s + t) = P{X(s + t) = j\X(s) = i} 
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= P{X(t) = j\X(0) — i} for all s > 0. Hence, for Markov chains with discrete 
time, the 1-step transition probabilities are given by py( l ) = P{X(n + 1) = 
j\X(n) = i) = pij which are independent of n. 

In natural systems, homogeneous Markov chains are very common although 
there are also nonhomogeneous Markov chains. For instance, Examples 1.1-1.4 
given above are homogeneous Markov chains. In Example 1.2, however, if the 
progeny distribution of X(n) depends on n, then the chain is not homogeneous 
although it is Markov. For ease of illustration, in what follows, we will assume 
that the chain X(t) is homogeneous although many of the results hold also for 
some nonhomogeneous Markov chains, unless otherwise stated. 

Remark 1.2. Homogeneous Markov chains are not stationary chains. In 
fact, as shown in Example 5.4, stationary distributions may not exist in some 
homogeneous Markov chains. On the other hand, the homogeneity condition 
is a pre-condition for denning stationary distributions. 

Example 1.8. The full-sib mating model for one locus with two 
alleles in natural populations. In Example 1.1, we have considered a large 
diploid population under full-sib mating. In this example, we have focused on 
one locus with two alleles A : a and let X(t) denote the mating types at time t. 
Then, the state space consists of the six mating types AA x AA, aa x aa, AA x 
aa, AA x Aa, aa x Aa, Aa x Aa which are denoted by ( 1 , . . . , 6) respectively. 
Thus, {X(t),t 6 T = (0,1,2, . . . )} is a finite homogeneous Markov chain with 
state space S = { 1 , . . . , 6}. For this Markov chain, the matrix of the one-step 
transition probabilities is given by: 

AAxAA 
aa x aa 
AA x aa 

AA x Aa 

aa x Aa 

Aa x Aa 

AAxAA 
/ 1 

0 
0 

1 

4 

V 
1_ 
16 

aa x aa 

0 

1 

0 

0 

1 
4 

J_ 
16 

AA x aa 

0 

0 

0 

0 

0 
1 
8 

AA x Aa aax Aa 
0 
0 
0 
1 
2 

x Aa 

0 

0 
0 

0 

1 
2 
1 
4 

Aa x Aa 

o N 
0 
1 
1 
4 
1 
4 
1 
4 ) 

The above matrix of one-step transition probabilities are derived by noting 
that matings occur only between brother and sister within the family. For 
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example, the mating type AA x Aa gives only progenies AA and Aa with 
relative frequencies {^ AA, ^ Aa}; hence the frequencies of mating types in 
the next generation is { | AA x AA, ^ Aa x Aa, \ AA x Aa}. As another 
example, notice that the mating type Aa x Aa gives progenies {AA, aa, Aa} 
with relative frequencies { | AA, | Aa, j aa}; hence the frequencies of mating 
types in the next generation is {^ AA x AA, ^ aa x aa, | AA x aa, \ AA x 
Aa, \aax Aa, \ Aa x Aa}. 

Example 1.9. The simple Galton-Watson branching processes. In 
genetics, in biological problems as well as in many other stochastic systems, 
an important class of Markov processes is the branching process; see [3]. This 
includes the simple Galton-Watson process which is a homogeneous Markov 
chain with discrete time. This latter process has been used to examine the 
stochastic behavior of mutant genes in populations; in particular, the survival 
of mutant genes as time progresses. 

Definition 1.6. A Markov chain {X(t),t G T = (0 ,1 ,2 . . . )} , with state 
space S = {0,1,2 . . .} is called a simple branching process (or Galton-Watson 
process) with progeny distribution {pk,k = 0,1,2, ...(j>k > 0,£}j£Lopfc = 
1)} iff P{X(0) = 1} = 1 and the one-step transition probabilities pij = 
Pr{X(n + 1) = j\X(n) = i} are given by: 

(i) If i = 0, j > 0, then pij = Sij, where, Stj = 1 if i = j and <5*j = 0 if i ^ j . 
(ii) If i > 0, then 

Pij = Pr{Zi + Z2 + --- + Zi=j}, 

where Z\, Z2, • • • are independently and identically distributed with probability 
density function (pdf) given by pj, j = 0,1,2 

Prom the above definition, we see that the Galton-Watson process is a 
homogeneous Markov chain. (Because po — 1 indicates that the mutant is 
certainly to be lost in the next generation while po = 0 is the situation that the 
mutant will never get lost, to avoid trivial cases we will assume 0 < po,pi < 1 
in what follows). 

To obtain p^ for i > 0, let f(s) denote the probability generating function 
(pgf) of the progeny distribution {pj,j = 0 , . . . ,00}, fn(s) the pgf of X(n) 
given X(0) = 1 and gi(s) the pgf of {pij,i > 0,j = 0 , . . . , 00} . Then, by 
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(ii) above, <?j(s) = [/(s)]* andpy(n) = [pi?(n)]\ By definition of pgf, we have: 

p y ( n ) = M^ / , , w L 4=0 

As an example, consider a diploid population with only one allele A at the 
A locus before the toth. generation (With no loss of generality, one may assume 
that to — 0). Suppose that at the 0th generation, an A allele has mutated 
to a so that at the 0th generation there is an individual with genotype Aa in 
the population. Let X(t) be the number of mutant a at generation t. Assume 
that each mutant a reproduces itself independently of one another and that 
each mutant has probability pj of giving j mutants in the next generation. 
Then, barring further mutations from A to a in the future, {X(t),t G T = 
{0,1,2. . .}} is a Galton-Watson process. 

To specify pj, let the fitness (i.e., average number of progenies per genera­
tion) of AA and Aa genotypes be given by /x and /x(l + v) (/x > 0) respectively. 
Let N be the population size. Then in the 0th generation, the frequency of 
the a allele is 

for finite v, where p = jft{l + v). When N is sufficiently large, and if the 
mating is random, then to order of o((2JV)-1), the probability that there are 
j "a" mutants in the next generation is 

= (2")p*(l-p)2N-j. 

Since A = 2Np = (1 + v) + (2N)o((2N)-1) -> (1 + v) as N -> oo, when 
N is sufficiently large, 1 + v is then the average number of progenies of the a 
allele and 

p , „ e - < ^ ) ( I + £ ,- = 0,1,2 

(Notice that the Poisson distribution is the limit of the binomial distribution 
if N —> oo and if lim^^.oo(2iVp) is finite.) 
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Using the Poisson progeny distribution as above, we have that f(s) = 
eA(s-!) and gi(a) = [/(s)]< = e^f '"1) , i = 1,2,. . . . Hence, 

POJ = S0j, j = 0 , 1 , . . . , oo, 

P« = e " i A ^ r p , t = l , 2 , . . . ; j = 0,1, 2 , . . . , oo . 

Example 1.10. Nonhomogeneous Galton-Watson processes. In the 
Galton-Watson processes, the progeny distribution may change as time pro­
gresses. This is true for new mutants which are usually selectively disadvan­
tageous comparing with wild allele when they were first introduced into the 
population; however, environmental changes at latter times may make the 
mutants selectively more advantageous over the wild allele. In these cases, 
the branching processes become nonhomogeneous. To illustrate how to derive 
transition probabilities in these cases, assume that the progeny distributions 
of the mutant are given by {p/ , i = 1,2} for n < t\ and t\ < n respectively, 
where 

pf=e~Xi-T, * = 1,2, j = 0 , 1 , . . . . o o , 

and where Aj = 1 + s,, i = 1,2. 

(1 + Si is the relative fitness of the mutant comparing with the wild allele 
over time with 1 for time n < t\ and 2 for time n > t\.) 

Let pij(n, n + 1) = Pr{X(n + 1) = j\X(n) = i}. Then, for j = 0 , 1 , . . . , oo, 

Poj(n, n + 1) = SOJ for all n e T — ( 0 , 1 , . . . , oo); 

Pij(n,n + 1) = e~iXl ^-^- for n<h and for all i = 1,2 ; 

Pij{n, n + 1) = e~iX2 ^ 2) for n>h and for a l i i = 1,2 . 

Example 1.11. The Wright model in population genetics. In 
Example 1.3, we have considered a large diploid population and have focused 
on one locus with two alleles, say A and a. Let the population size be N 
(In reality, N is the number of individuals who mature to produce progenies). 
Denote by {X\{t),X2{t)} the numbers of the genotypes AA and Aa at gen­
eration t respectively (The number of the genotype aa at generation t is 
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Xs(t) = N — X\(t) — Xz(t) as the population size is N). Since the geno­
type AA contributes 2 A alleles while the genotype Aa contributes only one 
A allele, X(t) = 2Xi(t) + Xi(t) is then the number of A allele at generation 
t. Let p(i, t) denote the frequency of A allele at generation t + 1 given X{t). 
Since the total number of alleles in the population is 2N as each individual 
has two alleles, hence p(i,t) is a function of -ffi = ^ given X(t) = i. Under 
the assumption that the mating is random among individuals, the conditional 
probability that {Xi(t+1) = m, ^ ( t + l ) = n} given X(t) = i is then given by: 

Pr{Xi(i + 1) = m, X2(t + 1) = n\X(t) = i} 

: Mirfr m\n\(N — n — m)\ 

x[2P(i,t)q(i,t)}n[q(i,t)Y-m-n, 

where q(i,t) = 1 — p(i,t). 

The probability generating function (pgf) of X(M-l) = 2X1(t+l)+X2(t+l) 
given X(t) — i is 

27V 

0(a) = Yl s rpr{^(* + 1) = r\X(t) = i} 
r=0 

N N~m 

= E E ' a , ^ m , n l ( ^ n - n > ) l ^ ^ m ^ » W . ' ) ] W 
m=0 n=0 

\2iJV—m—n 
x[«(i,«)2 

= ( M M ) ] 2 + 2«p(i,t)g(i,t) + [g(», t ) ] 2 } " 

= {sp(i,t) + q(i,t)}2N 

2N '2N 

i-o ^ 
E s j ,- b(M)F'[g(M)]2JV-'. 

It follows that the process {X(t),t e T} is a Markov chain with discrete 

time T = ( 0 , 1 , . . . , oo) and with state space 5 = { 0 , 1 , . . . , 2N}. The one step 

file:///2iJV��
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transition probability is: 

Pr{X(t + 1) = j\X(t) =i}= ( 2 ^ ) \p(i,t)y[q(i,t)}
2N-i , 

where q(i,t) = 1 — p(i,t). 

The above model has been referred to as the Wright model in population 
genetics [10]. Whether or not this chain is homogeneous depending on p(i,t). 
The following cases have been widely considered in the literature of population 
genetics. 

(i) If there are no mutation, no selection among the individuals and no 
immigration and migration, then p(i,t) = ^ if X(t) = i. This case has been 
referred to as the Random Genetic Drift in population genetics; see Chaps. 6 
and 7. In this case, the chain is homogeneous. 

(ii) Suppose that there are mutations from A to a and from a to A in each 
generation but there are no selection, no immigration and no migration. Let 
the mutation rates per generation from A to a be u and from a to A be v. 
Then, given X(t) = i, p(i,t) = ^ ( 1 — u) + (1 — jfi)v. If both u and v are 
independent of time t, then the chain is homogeneous. However, because of 
the changing environment, it is expected that both u and v are functions of 
time. In this latter case, the chain is not homogeneous. 

(iii) Suppose that there are no mutations, no immigration and no migra­
tion but there are selections among the individuals. Let the fitness (i.e., the 
expected number of progenies) of the three genotypes {AA, Aa, aa} be given 
by c(l + si), c(l + s2) and c respectively ( c > 0); see Remark 1.3. Then, given 
X{t) = i, with x = 27v, p t + i = p(i,t) is given by: 

.. , _ 2a:2c(l + si) + 2a;(l - x)c(l + s2) 
P{-h ' ~ 2x2c(l + *i) + 2 x 2z(l - x)c(l + s2) + 2(1 - x)2c 

_ x[l +xs\ + (1 - x)s2] 
~ 1 + x[xsi + 2(1 - x)s2] ' 

Hence, if both si and s2 are independent of time t, then the chain is homoge­
neous; if any of si and s2 depend on time t, then the chain is not homogeneous. 

(vi) Suppose that there are no immigration and no migration but there 
are selections among the individuals and there are mutations from A to a and 
from a to A. Let the mutation rates per generation be given in (ii) and let 
the fitness of the three genotypes be given in (iii). Then, given X(t) = i, with 
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2N> Pt+i =p{i,t) is given by: 

x2(l + si) + x(l-x)(l + s2) p(i,t) = ( 1 - w ) 

+ v 

x2(l + Sl) + 2x{\ - x){\ + s2) + (1 - xf 

x{l - x)(l + s2) + (1 - x)2 

(1-u) 

+ v 

x2{l + S l ) + 2x(l - a;)(l + s2) + (1 - x)2 

x[l + xsi + (1 - x)s2] 
1 + a;[a;si + 2(1 — x)s2] 

(l-x)[l + xs2] 
1 + x[xs\ + 2(1 — x)s2] 

(v) Suppose that there are immigration and migration but there are no 
mutations and no selections among the individuals. To model this, we follow 
Wright [ll] to assume that the population exchanges the A alleles with those 
from outside populations at the rate of m per generation. Let xi denote the 
frequency of A allele among the immigrants. Then, given X(t) = i, with 
x = TR' P*+i = P({> *) i s S i v e n by ; 

p(i, t) = x + m(xj — x). 

The chain is homogeneous if m and/or xj are independent of time t; oth­
erwise, the chain is not homogeneous. 

Remark 1.3. Because the frequency of the alleles are the major focus in 
population genetics, one may with no loss of generality assume relative fitness 
for the genotypes. This is equivalent to delete the constant c from the fitness 
of the genotypes. 

Example 1.12. The staged model of the AIDS epidemiology. In 
the AIDS epidemic, for clinical management and for taking into account the 
effects of infection duration, the infective stage (/ stage) is usually divided 
into substage 7 i , . . . , / j . with stochastic transitions between these substage [12-
17]. For example, based on the total number of CD4^+^ T cell counts per 
mm3 of blood, Satten and Longini [16-17] have classified the I stage into 6 
substage given by: 7i, CD4 counts > 900/mm3; h, 900/mm3 > CD4 counts 
> 700/mm3; 73, 700/mm3 > CD4 counts > 500/mm3; h, 500/mm3 > CD4 
counts > 350/mm3; h, 350/mm3 > CD4 counts > 200/mm3; h, 200/mm3 > 
CD4 counts. (Because of the 1993 AIDS definition by CDC [7], we will merge 
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71 ( M ) l2{s,t) 7 * - l ( M ) 

A M ) x /%(s,t) / 

V2(s,t)\ /(jJs(s,t) 

AIDS 

Fig. 1.1. A general model of the HIV epidemic with reverse transition. 

the Ie stage with the AIDS stage (A stage).) Let S denote the susceptible stage. 
Then the model and the transition is expressed schematically in Fig. 1.1. 

Let S(t) and Ii(t) (i = l , . . . ,fc) denote the numbers of S people and 
Ii (i = l,...,k) people at time t respectively and A{t) the number of AIDS 
cases at time t. Let t = 0 be the time to start the epidemic. Then we have a 
(k + 2)-dimensional stochastic process U(t) = {S(t),Ii(t),i — 1,... ,k,A(t)} 
with parameter space T = {t > 0} and with sample space fi which is a sub­
set of an (k + 2)-dimensional Euclidean space with non-negative integers as 
components. 

Let ps{t)dt be the probability of 5 —• I\ during [t, t + dt). With IQ = S and 
ifc+i = A, let the transition rates of Ii —> Ij+i, Ii —> Ii-i and Ii —> A at time t 
be given by ^(s, t), fii(s, t) and u)i(s, t), respectively, for Ii {i — 1 , . . . , k) people 
who have arisen from 7j_i at time s. (Note that /3i(s, t) = 0,7fe(s, t) = Uk(s, t) 
from Fig. 1.1.) If 7i(s,t) = ji(t),l3i(s,t) — f)i{t) and Wj(s,£) = Wj(t) are 
independent of s, then the process 17 (f) is Markov. This process is in fact a 
Markov chain since the number of states is countable infinite. These are the 
processes considered by Longini and his associates [12]. On the other hand, if 
7i(s,£),/3j(s,£) and a>j(s,£) are dependent on s, then the process U(t) is not 
Markov [13, 14, 18]. The non-Markovian processes arise because of treatment 
of HIV-infected individuals by anti-viral drugs such as AZT. These are the 
processes considered by Longini et al. [13, 14]; see also [18]. 

Example 1.13. The MVK two-stage model of carcinogenesis. The 
two-stage model of carcinogenesis which fits the cancer biological mechanism 
was first proposed by Knudson [19], Moolgavkar and Venzon [20] and Mool-
gavkar and Knudson [2l] and has been referred to as the MVK two-stage model. 
This model assumes that a cancer tumor develops from a single normal stem 
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cell by clonal expansion and views carcinogenesis as the end result of two dis­
crete, heritable and irreversible events in normal stem cells; each event occurs 
during cell division. The MVK two-stage model has assumed that the param­
eter values are constant independent of time and has made the assumption 
that with probability one each cancer tumor cell grows instantaneously into 
a malignant tumor. Furthermore, it is assumed that the proliferation and 
differentiation of normal stem cells follow deterministic growth. 

Let N(t) denote the number of normal stem cells at time t and {I(t), T(t)} 
the numbers of initiated cells and cancer tumor cells. (Note that I(t) is actu­
ally the number of the first initiated tumor cells and T(t) the number of second 
initiated cells under the assumption that each second initiated cell grows in­
stantaneously into a malignant tumor; see [5, Chap. 3].) Then N(t) is a deter­
ministic function of time t and {I{t),T(t)} is a two-dimensional Markov chain 
with continuous time; see Tan [5, Chap. 3]. To find the transition rates (or 
incidence functions) of this process, let Mi(t) be the number of mutations from 
normal stem cells to 7 cells during [t, t + At) and denote by A(t) = JV(£)ajv(i), 
where ajv(0 is the mutation rate per cell division from N to I at time t. Then, 
to order of 0(JV(0)_1), Mi{t) follows a Poisson distribution with mean \{i)At\ 
see Exercise 1.13. Let bj(t),di(t) and ai(t) be the birth rate, the death rate 
and the mutation rate of the I cells. Then, during [t, t + At), the probabilities 
that an / cell will yield two I cells, 0 I cells and 1 I cell and 1 T cell are 
given respectively by bi(t)At + o(At),di(t)At + o(At) and ai(t)At + o(At), 
respectively. It follows that as defined in Chap. 4, {I(t),t < 0} is a stochastic 
birth-death process with birth rate jbi(t)+X(t) and death rate jdi(t). This is a 
nonhomogeneous stochastic Feller-Arley birth-death process with immigration 
as defined in [22]. 

For the above process, notice that because the number of stem cells after 
birth is usually very large (106 ~ 108), it is a good approximation to assume 
that N(t) is a deterministic function of t; in fact it has been shown by Tan 
and Brown [23] through continuous multiple branching process that to order 
of O(N(0)~1), N(t) is indeed a deterministic function. However, it has been 
recognized that the assumption that with probability one each cancer tumor 
cell grows instantaneous into a malignant tumor does not hold in many real 
world situations [6, 24, 25]; in fact it has been shown by Yang and Chen [24] and 
Tan and Chen [6] that malignant tumor cells develop by clonal expansion from 
primary second initiated cells. It follows that conditional on the number of I(s) 
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cells for all s < t, T(t) follows a Poisson distribution with conditional mean 
given by Xr(t) = / 0 I(x)ai(s)PT(s,t)dx, where Pr(s,t) is the probability that 
a second initiated cell arising at time s will develop into a malignant cancer 
tumor by time t; for proof of this, see Chap. 8. Since the distribution of T(t) 
depends on the I(s) for all s < t, T(t) is not even a Markov process; for more 
detail, see Chap. 8. 

1.3. Diffusion Processes and Examples 

Let {X(t),t > 0} be a stochastic process with continuous parameter space 
T = {t > 0} and with continuous state space S = [a,b]. (a can be - c o and 
b can be oo.) Suppose that the increment dX(t) = X(t + dt) — X(t) changes 
continuously in probability when dt is very small so that the probability of 
any jump (say e > 0) would be nil. Also, in many practical problems, it is 
reasonable to assume that if dt = 0, one may practically ignore higher order 
moments (i.e., with order > 3) of dX(t). This leads to a class of stochastic 
processes which involve only the first and second moments of dX(t). If these 
processes are Markov processes, then they are classified as Diffusion Processes. 

Definition 1.7. Let X(t) be a Markov stochastic process with parameter 
space T = {t > 0} and with state space S = [a,b]. Then X{t) is called a 
diffusion process with coefficients {m(x, t),v(x, t)} if and only if the following 
conditions hold: 

(i) For every e > 0 given, for every x € S and for every t > 0, 

P{\X(t + dt) - X(t)\ > e\X(t) = x} = o(dt), 

where o(dt) is defined by linidt-vo o(dt)/dt = 0. 
(ii) There exists a continuous function m(x, t) of x 6 S and t > 0 satisfying 

the condition: 

E[X(t + dt) - X(t)\X(t) = x}= m{x, t)dt + o(dt). 

(iii) There exists a positive continuous function v(x, t) of x £ S and t > 0 
satisfying 

E{[X(t + dt) - X(t)]2\X(t) = x}= v{x, t)dt + o{dt). 
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(iv) For every x € S and every t > 0, 

E{\X{t + dt) - X(t)\r\X{t) = x} = o{dt) if r > 3 . 

Any stochastic process {X(t), t € T} which has continuous parameter space 
T and continuous state space S and which satisfies condition (i) is called a con­
tinuous stochastic process. Notice that condition (i) in Definition 1.7 implies 
that the probability of any significant change of state is very small in a small 
time interval (Convergence to 0 faster than the time interval dt). That is, with 
probability one the process X(t) will not have jumps as time increases. Condi­
tion (iii) implies, however, that for any time interval dt, no matter how small, 
with positive probability changes do occur. Thus, condition (iii) guarantees 
that the process is a dynamic process unless it has been absorbed into some 
absorbing states. 

Let f(x, y; s, t) be the conditional probability density function (pdf) of X(t) 
at y given X(s) — x. Then, condition (i) can be expressed alternatively as: 
For any e > 0, 

/ f(x,y;t,t + dt)dy = o(dt). 
J\y-oc\>e 

To be more precise, we notice that conditions (i)-(iv) are also equivalent 
to conditions (i), (ii)', (iii)' and (iv), where conditions (ii)' and (iii)' are given 
by the following: 

(ii)'. For any e > 0, 

/ (y — x)f(x,y;t,t + dt)dy = m(x,t)dt + o(dt). 
J\y—x\<e 

(iii)'. For any e > 0, 

/ (y - x)2f(x,y;t,t + dt)dy = v{x,t)dt + o(dt). 
J\y-x\<e 

Condition (iii)' follows easily from the observation that if \y — x\ > e > 1, 
then \y — x\3 > (y — x)2 so that 

/ {y-x)2f(x,y;t,t + dt)dy< f \y-x\3f(x,y;t,t + dt)dy = o{dt); 
J\y—x\>e J\y-x\>e 
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1/2 

on the other hand, if 1 > \y - x\ > e, then (y - x)2 < 1 so that 

/ (y-x)2f(x,y;t,t + dt)dy < f{x,y;t,t + dt)dy = o(dt). 
J\y-x\>e J\y-x\>£ 

Condition (ii)' follows readily from the Schwarz inequality given by: 

/ \y-x\f(x,y;t,t + dt)dy<{[ (y - x)2f(x,y;t,t + dt)dy\ 

J\y-x\>e [J\v-x\>£ J 
^ 1/2 

f(x,y;t,t + dt)dy\ 
-x\>e ) 

Using the conditional pdf f(x, y; s, t), one may also define the diffusion pro­
cess as homogeneous iff f(x,y; s,t) = f(x,y;0,t — s) = f(x,y;t — s): That is, 
f(x, y; s, t) depends on the times s and t only through the difference t — s. No­
tice that, in order for the diffusion process to be homogeneous, a precondition 
is that m(x, t) = m(x) and v(x, t) = v(x) must be independent of time t. In 
Chaps. 6 and 7, we will provide some general theories of diffusion processes 
and illustrates its applications in detail. 

Example 1.14. Diffusion approximation of population growth 
models. Let {X(t),t > 0} denote the number of bacteria at time t with 
M being the maximum population size. Then, under some general conditions, 
it is shown in Chap. 6 that to the order of 0(M~2), Y(t) = X(t)/M follows a 
diffusion process with state space S = [0,1]. For the stochastic logistic growth 
process, this was proved in [26, 27] by using alternative methods. 

Example 1.15. Diffusion approximation of the Galton—Watson 
branching processes. Let {X(t), t GT = (0,1,..., oo)} be a Galton-Watson 
branching process with progeny distribution {pj,j = 0 ,1 , . . . , oo} . Assume 
that the mean and the variance of the progeny distribution are given respec­
tively by 1 + jjCt + 0(N~2) and a2, where N is very large. Then it is shown in 
Example 6.6 that to the order of 0(N~2), Y(t) = X(t)/N is a diffusion process 
with state space S = [0, oo) and with coefficients {m(x, t) = xa, v(x, t) = xa2}. 

Example 1.16. Diffusion approximation of the Wright model in 
population genetics. In Example 1.11, we have considered the Wright model 
in population genetics. In this model, {X(t), t G. T} is the number of A allele 
in a large diploid population of size N, where T = { 0 , 1 , . . . , oo}. It is shown in 
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Example 1.11 that this is a Markov chain with state space S = { 0 , 1 , . . . , 2N} 
and with one-step transition probabilities given by: 

pr{xx(t+1)=j\x(t)=i} = (2^ pU^r, 

where pt+i is the frequency of A allele at generation t +1 and qt+i = 1-pt+i-

Denote by x — i/2N, m(x,t) = (2N)(x - pt+i), and 

v{x,t) = {2N){x - p t + i ) 2 +P t+ i ( l - P t + i ) • 

If m(x, t) and v(x,t) are bounded functions of x and 4 for all i > 0 and 
for all t > 0, then, it is shown in Theorem 6.6, that to order of 0(N~2), 
{Y(t) = X(t)/(2N),t > 0} is a diffusion process with state space S = [0,1] 
and with diffusion coefficients {m(x,t),v(x,t)}. 

Example 1.17. Diffusion approximation of the SIR model in in­
fectious disease. Consider the SIR model in infectious diseases. Let S(t) 
and I(t) denote the number of S people and I people at time t. Let c(t)At 
be the average number of partners of each S person during [t, t + At). Let 
the transition rates of I —> R be 7(f) and q(t) the per partner transmission 
probability of the disease given contacts between a S person and an / person 
during [t,t + At). Let the death rate and the immigration and recruitment 
rate of I people be /x/(i) and vi(t) respectively. Suppose that the following 
conditions hold: 

(1) There is no contact between S people and R people. 
(2) The population size changes very little over time so that S(t) + I(t) = 

N(t) ~ N is approximately independent of time t. 
(3) There is only one sexual activity level and the mixing pattern is random 

mixing. 

Then it is shown in Example 6.8 that to the order of 0(N~2), {Y(t) = 
-jTit > 0} is a diffusion process with state space S = [0,1] and with coefficients 
{m(x, t) = a(t)x{l-x) + fj,I (t) - x[y(t) + vi (t)}, v(x, t) = a(t)x{l - x) + /z/ (t) + 
x[y(t) + i//(t)]}, where a(t) = c{t)q(t). 

Example 1.18. Diffusion approximation of initiated cancer cells in 
carcinogenesis. Consider the MVK two-stage model of carcinogenesis as 
described in Example 1.13. Let No denote the number of normal stem cells at 
time 0 and denote by X(t) = ^-I(t). For large No, it is shown in Example 6.7 
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that to the order of O(N0
 2),{X(t),t > 0} is a diffusion process with state 

space (I = [0, oo) and with coefficients 

{m{x, t) = aN(t) + xf(t), v(x, t) = —xLj(t)} , 
iVo 

where 7(f) = bj{t) — di(t), u>(t) = bj{t) + di(t) and ax(t) is the mutation rate 
from normal stem cells to initiated cells. 

1.4. State Space Models and Hidden Markov Models 

To validate the stochastic models and to estimate unknown parameters in the 
model, one usually generates observed data from the system. Based on these 
data sets, statisticians have constructed statistical models to make inferences 
about the unknown parameters and to validate the model. To combine infor­
mation from both the mechanism and the data, the state space model then 
combines the stochastic model and the statistical model into one model. Thus, 
the state space model has two sub-models: 

(1) The stochastic system model which is the stochastic model of the sys­
tem, and 

(2) the observation model which is the statistical model based on some 
observed data from the system. 

Definition 1.8. Let X{t) be a stochastic process with parameter space T 
and with state space 5. Let {Y(tj) =Yj,j = l,...,n} be the observed values 
on X(t) at the time points <i < t<i < • • • < t„_i < tn. Suppose that Yj = 
f[X(t),t < tj] + ej for some function / ( ) of X(t),t < tj, where ej is the 
random measurement error for measuring Yj. Then the combination {X(t),t £ 
T;Yj,j = 1,... ,n} is called a state space model of the stochastic system with 
stochastic system model given by the stochastic process {X(t),t € T} and with 
the observation model given by the statistical model Yj = f[X(t),t < tj] + ej 
for the system. In other word, a state space model of a stochastic system is 
the stochastic model of the system plus some statistical model based on some 
observed data from the system. 

From this definition, it appears that if some data are available on the sys­
tem, then one may always construct a state space model for the system. For 
this state space model, the stochastic process of the system is the stochastic 
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system model whereas the statistical model of the system is the observation 
model. As such, one may look at the state space model as a device to combine 
information from both sources: The mechanism of the system via stochastic 
models and the information from the data on the system. It is advantageous 
over both the stochastic model and the statistical model used alone as it com­
bines advantages and information from both models. 

The state space model was originally proposed by Kalman in the 60's for 
engineering control and communication [28]. Since then it has been success­
fully used in satellite research and military missile research. It has also been 
used by economists in econometric research [29] and by mathematician and 
statisticians in time series research [30] for solving many difficult problems 
which appear to be extremely difficult from other approaches. In 1995, the 
state space model was first proposed by Wu and Tan in AIDS research [31, 
32]. Since then it has been used by Cazelles and Chau [33] and by Tan and 
his associates for modeling AIDS epidemic [34, 35]; it has also been used by 
Tan and his associates for studying the HIV pathogenesis in HIV-infected indi­
viduals [36-39]. Recently, Tan and his associates [40-42] have developed state 
space models for carcinogenesis. In Chaps. 8 and 9, we will illustrate and 
discuss these models and demonstrate some of its applications to cancer and 
AIDS. 

Definition 1.9. A state space model is called a hidden Markov model if the 
stochastic system model is a Markov process. 

Hidden Markov models usually apply to observed data on a Markov 
process because the observed data are usually masked by random measure­
ment errors in measuring the observations. As such, it is appropriate to 
define hidden Markov models as above because the Markov process is hidden 
in the observed equations. In this section we will illustrate this by an exam­
ple from the AIDS epidemiology. This example has been used by Satten and 
Longini [17] to estimate the transition rates in the San Francisco homosexual 
population. 

Example 1.19. The hidden Markov models of HIV epidemic as 
state space models. Consider a population involving only HIV-infected 
individuals and AIDS cases. Following Satten and Longini [17], we partition 
the HIV-infected individuals into 6 sub-stages by the number of CD4^+^ T 
cells per mm3 of blood as given in Example 1.12. Let i stand for the 7j stage 
with 1% denoting the AIDS stage. Let X(t) denote the stochastic process 
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representing the infective stages with state space fl = {1 , . . . , 6} and with 
parameter space T = { 0 , 1 , . . . , oo} with 0 denoting the starting time. Let 
7ji be the one-step transition probability from Ij to Ii (j,i = 1,.. . ,6) and 
with 76j = Sei, i = 1 , . . . , 6. Then X(t) is a homogeneous Markov chain with 
6 states and with discrete time. In this Markov chain, the state 1$ is the ab­
sorbing state (persistent state) and all other states are transient states (For 
definition of persistent states and transient states, see, Definition 2.3.) Let Yi(t) 
be the observed number of the Ii people at time t. Then, because the CD4^+^ 
T cell counts are subjected to measurement errors, in terms of the observed 
numbers, the process is a hidden Markov chain. In this section, we proceed to 
show that this hidden Markov chain can be expressed as a state space model 
which consists of the stochastic system model and the observation model (For 
more detail about state space models, see Chaps. 8 and 9.) To this end, let 
Wij(t) denote the number of Ij people at time i + 1 given Ii(t) Ii people at time 
t for i — 1 , . . . , 5; j = 1 , . . . , 6 and Zij(r, t) the observed number of IT people 
at time t + 1 counted among the W^ (t) people. Assume now that the death 
rate is very small for people other than AIDS and that there are no immigra­
tion and no migration in the population. Then, given Ii(t) for (i = 1 , . . . , 5), 
the probability distribution of Wij(t),j = 1,...,6 follows a five-dimensional 
multinomial distribution with parameters {Ii(t);jij,j = 1 , . . . , 5} . That is, 
with Wi6(t) = Ii(t) — J2j=i Wy(0> w e h a v e that, for i = 1 , . . . , 5, 

{Wij(t),j = 1 , . . . , 5}\Ii(t) - ML{Ii(t); Jijtj = 1 , . . . , 5} . 

Note that 2 j = i 7tj = 1 for i = 1 , . . . , 6 and IQ -¥ 1$ only. 
Let I6(t) include people who died from AIDS during [t, t + 1). Then, we 

have the following stochastic equations for Ij(t),j = 1 , . . . , 6: 

5 

Ij(t + l) = Y/Wii(Jt) + 6j(iI6(t) 
i = l 

5 

= £h(thij + 5jeh(t) + €j(t + 1), (1.2) 
i = l 

where 
5 

^•(*+i) = D^(*)- /*(*)'y«]-
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Denote by F' = (jij) the one-step transition matrix, / ( t ) = {Ji(£) , . . . , 
h(t)}' and e(t + l) = {ei(t + l),..., €e{t + 1)}'. Then in matrix notation, the 
above system of equations become: 

I(t + l) = FI(t)+e(t + l). (1.3) 

This is the stochastic system model for the state space model associated 
with the above hidden Markov chain. 

To account for the random measurement error, we assume that the mea­
surement errors follow Gaussian distributions and that measurement errors 
for AIDS cases is very small to be ignored. Let Vi {i = 1 , . . . ,5) denote the 
mean number of CD4(+> T cells per mm3 of blood for the U stage. (One 
may take v\ — 1000/mm3,f2 = 800/mm3, v$ = 600/mm3, 1/4 = 425/mm3, 
V5 = 275/mm3.) Let Xi = z ^ i — 1 , . . . , 5, where Z is the observed number 
of CD4(+). Then, given the / ; stage (i = 1 , . . . , 5), the conditional distribution 
of Xi is a truncated Gaussian with mean 0 and variance a2 and with state 
space [-fog, 2°ioo"'] independently for i = 1 , . . . , 5. For (i - 1 , . . . , 5), let 

2000 - Vi 900 - vi 700 - Vi 500 - v{ 
a*.° = T7^ ' a M = m n ' a i . 2 = i n n ' a*.3 = 100 ' 100 ' 100 ' 100 ' 

350 - Vi 200 - Vi Vi 
1,4 100 ' ' 100 ' ' 100 

Denote, for (i = 1, . . . , 5 ; j = 1 , . . . ,6), 

rai,j-i 

Pij =Q f(x)dx. 

where f(x) is the pdf of the Gaussian distribution with mean 0 and variance 
a*andC7i=f°;;°f(x)dx. 

Then for (i = 1 , . . . , 5; j = 1 , . . . , 5), the conditional probability distribution 
of {Zij(r, t), r = 1 , . . . , 5} given Wy(i) is: 

{Zy(r,*),r = 1 , . . . , 5}|Wy(i) ~ ML{W i j(i); p,v,r = 1 , . . . , 5} . 

Note that Ylt=i Pir = 1 for j = 1 , . . . , 5. 
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It follows that we have, with p6* = 76i = fe: 

Yi(t + 1) = £ I J2 Z«»(*'*) + ^ P e * i + Si6I6{t) 
„=1 U=l J 

5 6 

= £ £ Wuv{t)Pvi + Si6h(t) + ea{t + 1) 
U = l 11 = 1 

5 6 

= ^ Iu{t)^luvPvi + 8i<>h{t) + en(t + 1) + e i2(i + 1) 
u = l u = l 

6 6 

= ^2IuW ^^vPvi + ei(t + 1), 

where 

and 

en(t + 1) = ] T i £ [ Z u „ ( i , t ) - Wu„(t)p*] 1 

e i2(t + 1) = >T | ^ P r t [ W u „ ( t ) - /u(t)7««] [ . 
w=l U=l J 

and e4(t + 1) = en(t + 1) + e i2(t + 1). 
Put P = {pij) and H = P'F. Denote by Y(t) = {^ ( i ) , . . . , Y6(t)}' and 

e (t) = {ei(t),..., ee(i)}'- Then, in matrix notation, we have: 

Y(t + l)=HI(t)+e(t+l). (1.4) 

Equation (1.4) is the observation model for the state space model associated 
with the above hidden Markov chain. 

1.5. The Scope of the Book 

The stochastic models described in Sees. 1.1-1.4 are the major models which 
arise from genetics, cancer and AIDS. In this book we will thus present a 
systematic treatment of these models and illustrate its applications to genetics, 
cancer and AIDS. 
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In Chap. 2, general theories of Markov chains with discrete time will be 
presented and discussed in detail. As a continuation of Chap. 2, in Chap. 3, 
we will present some general theories on stationary distributions of Markov 
chains with discrete time; as an application of stationary distributions, we 
also present some MCMC (Markov Chain Monte Carlo) methods to develop 
computer algorithms for estimating unknown parameters and state variables. 
In Chaps. 4 and 5, general theories of Markov chains with continuous time 
will be presented and discussed in detail. Applications of these theories to 
genetics, cancer and AIDS to solve problems in these areas will be discussed 
and demonstrated. In Chaps. 6 and 7, we will present and discuss in detail 
general theories of diffusion processes. We will show that most processes in 
genetics, cancer and AIDS can be approximated by diffusion processes. Hence, 
one may use theories of diffusion process to solve many problems in these areas. 
Finally in Chaps. 8 and 9, we present and discuss some general theories of state 
space models and illustrate its applications to cancer and AIDS. 

This book is unique and differs from other books on stochastic processes 
and stochastic models in that it has presented many important topics and ap­
proaches which would not be discussed normally in other books of stochastic 
processes. This includes MCMC methods and applications, stochastic differ­
ence and differential equation approaches to Markov chains as well as state 
space models and applications. It follows that there are minimal overlaps with 
other books on stochastic processes and stochastic models. Also, the applica­
tions to cancer, AIDS and genetics as described in this book are unique and 
would normally not be available in other books of stochastic processes. 

1.6. Complements and Exercises 

Exercise 1.1. Let {X(t),t > 0} be a stochastic process with state space 
S = ( 0 , 1 , . . . , oo). Suppose that the following two conditions hold: 

(a)P{X(0) = 0} = l. 
(b) {X(t),t > 0} has independent increment. That is, for every n and for 

every 0 < *i < • • • < £ „ , { * } = X(tj) - X{tj-i),j = 1 , . . . ,n} are indepen­
dently distributed of one another. 

Show that X(t) is a Markov process. 

Exercise 1.2. Let {X(j),j = 1,2,... ,oo} be a sequence of independently 
distributed random variables. That is, for every n and for every set of integers 
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0 < ji < ••• < j n , {X(ji),i = l,...,n} are independently distributed of 
one another. Define Y(j) = | [ X ( j - 1) + X(j) + X{j + l)},j = 1 , . . . , with 
P{X(0) = 0} = 1. Show that {Y(j),j = 1,2,...} is not a Markov process. 

Exercise 1.3. Consider the two-stage model described in Example 1.13. 
Let {B^{t),DM{t)} denote the numbers of birth and death of normal stem 
cells during [t,t + At) and M/(i) the number of mutations from N -t I 
during [t,t + At). Denote the birth rate, the death rate and the mutation 
rate of normal stem cells by 6jv(t), d^{t) and a^(t) respectively. Then given 
N(t), {Bfl?(t), Dft(t), Mi(t)} follows a multinomial distribution with parame­
ters {N(t),bN(t)At,dN(t)At,aN(t)At}. Show that if N(t) is very large and 
if X(t) = N(t)aN(t) is finite for all t > 0, then to order of OftiV^)]-1), 
Mi(t) is a Poisson random variable with parameter X(t)At independent of 
{BN(t),DN(t)}. 

Exercise 1.4. Let {X(n),n = 0 ,1 , . . . ,oo} be a simple branching process 
with progeny distribution {pj = ( a + j - 1 )# Q ( l — Q)i,j = 0 ,1 , . . . , oo} , where 
a > 0 and 0 < 6 < 1. Derive the one-step transition probabilities. Show that 
this is a homogeneous Markov chain with discrete time. 

Exercise 1.5. Let {X(n),n = 0 ,1 , . . . ,oo} be a simple branching process 
with progeny distribution given by: 

P i ( « ) = ( a i + ^ _ 1 ) ^ i Q l ( l - ^ y . J = 0 , l , . . . , o o , i f n < m , 

Pj(n)=(a2+-~1)o2^(l-d2y, j = 0,l,...,oc, ifn>m, 

where aj > 0 (i = 1,2) and 0 < 0j < 1 (i = 1,2). Derive the one-step 
transition probabilities. 

Exercise 1.6. Let {X(t),t > 0} be a continuous stochastic process with 
state space S = [a, b\. Denote by AX(t) = X(t + At) — X(t) and suppose that 
the following conditions hold: 

(a) E{AX(t)\X(t) = x}= m(x, t)At + o(At), 
(b) E{[AX{t)}2\X(t) = x} = v(x,t)At + o(At), 
(c) E{[AX(t)]k\X(t) = x} = o(At) for k = 3 ,4 , . . . , oo, 

where {m(x, t), v(x, t)} are continuous functions of (x, t) with v{x, t) > 0. 
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Show tha t {X(t),t > 0} is a diffusion process with s ta te space 5 = \a,b] 

and with diffusion coefficients {m(x, t),v(x, t)}. 

E x e r c i s e 1.7. In the hidden Markov model given by Example 1.19, prove 

or derive the following results: 

(a) T h e elements of e (t) and of e (t) have expected value 0. 

(b) Using the basic result Cov(X,Y) = ECav[E(X\Z),E(Y\Z)] + 

ECov(X,Y\Z), show tha t 
z 

C o v { 7 ( i ) , e ( r ) } = 0, Cov{7( t ) , e ( r ) } = 0 

for all { i > 0 , r > 0 } . 

(c) Derive the variances and covariances of the random noises 
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Chapter 2 

Discrete Time Markov Chain Models in 
Genetics and Biomedical Systems 

In many stochastic systems in natural sciences including genetics as well as in 
biomedical problems, one may treat both the state space and the parameter 
space as discrete spaces. In these cases, when the process is Markov, one is 
then entertaining Markov chains with discrete time. This is especially true in 
mating types and gene frequencies in natural populations with generation as 
time unit, see Examples 1.1, 1.2 and 1.11; it is also true in many branching 
processes involving new mutants and in AIDS epidemics; see Examples 1.9,1.10 
and 1.12. In the past 15 to 20 years, some general theories of Markov chains 
with discrete time have also been invoked to develop computer algorithms to 
solve many complicated computational problems in natural sciences. This has 
been referred to as the MCMC (Markov Chain Monte Carlo) method and 
has become a very popular method. By using examples from many genetic 
systems, in this chapter we will develop some general results of discrete time 
Markov chains and illustrate its applications. In the next chapter, we will 
develop theories for stationary distributions and illustrate the applications of 
some MCMC methods. 

2.1. Examples from Genetics and AIDS 

Example 2.1. The self-fertilization Markov chain. In many plants 
such as rice, wheat and green beans, the flowers have both the male and female 
organs. These plants are diploid and reproduce itself through self-fertilization. 

31 
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To study the stochastic behavior in these populations, we consider a single 
locus with two alleles A : a in the population and let X(t) represent the 
three genotypes AA,Aa and aa at generation t. Let {1,2,3} stand for the 
genotypes {AA,aa,Aa} respectively. Then X(t) is a homogeneous Markov 
chain with state space S — {1,2,3}. Under self-fertilization, the one-step 
transition probabilities pij = Pr{X(t + 1) = j\X(t) = i} are: 

Aa 

o\ 
0 
1 
2 / 

That is, the one-step transition matrix is 

/ l 0 0 \ 

p = 0 1 0 

1 1 1 

\ 4 4 2 / 

Example 2.2. The frequency of genes in natural populations un­
der steady state conditions. In population genetics, an important topic 
is the random changes of frequencies of different genes or genotypes as time 
progresses. This is the major thesis of evolution theory [l]. In these studies, 
one usually images a sufficiently large population of diploid. If the mating is 
random between individuals (i.e. random union of gametes to yield progenies) 
and if there are no selection, no mutation, no immigration and no migration, 
then as time progresses, the population will reach a steady-state condition 
under which the frequencies of genes and genotypes will not change from gen­
eration to generation. This steady state condition has been referred to as the 
Hardy-Weinberg law in population genetics. This is illustrated in some detail 
in Subsec. 2.10.1. In the case of one locus with two alleles (say A and a), 
the Hardy-Weinberg law states that the frequency p of the A allele is inde­
pendent of time and at any generation, the frequencies of the three genotypes 
{AA, Aa, aa} are given respectively by {p2,2pq, q2}, where q = 1 — p. 

AA aa 

AA ( 1 0 

0 1 
1 1 

V 4 4 
Aa 
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To describe the stochastic changes of frequencies of the genotypes under 
steady state conditions, let {X(t),t — 1,.. . ,} denote the three genotypes 
{AA, Aa, aa} at generation t for the females. Then {X(t),t = 1,2,. . . , } is a 
Markov chain with state space fi = {AA, Aa, aa}. Under steady-state condi­
tions for which the Hardy-Weinberg law holds, the one-step transition matrix 
of this Markov chain is given by: 

aa 

o\ 
1 

9 / 

The above transition probability matrix can easily be derived by using 
argument of conditional probabilities as given below: 

(i) Since daughter and mother must have one gene in common, so, given AA 
mother, the genotypes of the daughters must either be AA or Aa; given AA 
mother, the daughters have one gene fixed as A, the probabilities of the other 
gene being A or a are given respectively by p and q under Hardy-Weinberg 
law since these are the frequencies in the population and since the mating is 
random. This gives the first row of the transition matrix. Similarly, we obtain 
the third row of the above transition matrix. 

(ii) Given Aa mother, then with 5 probability each daughter has one gene 
fixed by A, and with ^ probability each daughter has one gene fixed by "a". In 
the first case, each daughter will have probability p being AA and probability 
q being Aa; in the second case, the probability is p that each daughter has 
genotype Aa, and probability q that each daughter has genotype aa. Hence, 
given Aa mother, the probability is | x p = | p that the daughter genotype is 
AA whereas the probability is ^q + \p = \ that the daughter genotype is Aa; 
similarly, given Aa mother, the probability is \q that the daughter genotype 
is aa. 

Example 2.3. The inbreeding systems in natural populations. In 
wild natural populations, matings between individuals can hardly be expected 
to be random; see Subsec. 2.11.2. Hence, in studying evolution theories, it 
is of considerable interests to study many other mating systems than random 

AA 

Aa 

aa 

I 
AA Aa 

q 
1 1 
2P 2 

V 0 p 
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mating in the population. Fisher [2] and Karlin [3, 4] have shown that many 
of these mating systems can be described by homogeneous Markov chains. 
In Example 1.8, we have described the full sib-mating systems (brother-sister 
matings); other mating types which have been considered by Fisher and Karlin 
include parent-offspring mating, mixtures of random mating and sib-mating 
as well as other mating types, assortative matings, first cousin mating, second 
cousin mating, etc. 

Example 2.4. The two-loci linkage Markov chain in self-fertilized 
populations. By using theories of finite Markov chain with discrete time, Tan 
[5] has developed a two-loci model with linkage to assess effects of selection in 
self-fertilized diploid populations such as rice and wheat. This model considers 
two linked loci (.4 and B) each with two alleles (A, a) and (B, b), respectively. 
Then, denoting by XY/ZW the genotype with XY on one chromosome and 
ZW on the other, there are altogether ten genotypes AB/AB, Ab/Ab, aB/aB, 
ab/ab, AB/Ab, AB/aB, Ab/ab, aB/ab, AB/ab, and aB/Ab. For the consid­
eration of the effect of selection it is assumed that there is no difference in 
effect of selection regarding sex, and that the two loci act independently of 
each other with respect to selection. Then, the fitness of the genotypes are 
given by: 

BB Bb bb 

AA xi + x2 xi + 1 xi + y2 

Aa l+x2 1 + 1 I + 2/2 

aa yi+x2 yi + 1 V\ + y 2 

where it is assumed that Xj > 0, j/j > 0, i = 1,2. 

Let {X(t), £ = 1,2, . . . ,} denote the above ten genotypes at generation t. 
Then X(t) is a finite Markov chain with discrete time and with state space 
given by S = {AB/AB, Ab/Ab, aB/aB, ab/ab, AB/Ab, AB/aB, Ab/ab, aB/ab, 
AB/ab, aB/Ab}. Letting p be the recombination value between the two loci 
(0 < p < 5), then under self-fertilization with selection, the one step transition 
matrix is given by: 

R I Q 
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where 

R={R1, R2,
 R

3,
 R A ) 

CN-i S^J t^j r^j 

xi +x2 xi +2/2 

ci 

0 

xi + y2 

Cl 

Xi +X2 

C2 

0 

C5 

L c 5 

C3 

0 

0 

C2 

0 

2/i + ^2 
c4 

c5 

, 2 

C5 

2 

0 

0 

y\ + 2/2 

C3 

2/1 +2/2 
c4 

(X1 + X2) — (xi + 2/2) —(2/1 + 32) —(2/1 + 2/2) 

^2 

( 1 1 + 1 2 ) — (z i+2 /2 ) —(2/1 + 3:2) —(2/1+2/2) 
cs cs cs 

2p<7 

and where 

2( l + :ci) 

Cl 

0 

0 

0 

1 + s i 

C5 

l + o:i 

C5 

0 

2 ( 1 + a a ) 

C2 

0 

2pg 

2pq 

0 

l + a:2 

C5 

1 + 32 

C5 

2(1+2/2) 

C3 

0 

1 + 2/2 

C5 

1 + 2/2 

2 M 

2p<7 
C5 

0 

0 

0 

2(1 + 2/1) 
c4 

1 + 2/1 4g2 

2pg 
C5 c 5 

0 

0 

0 

0 

0 

0 

0 

0 

2pq 
l + 2/i 4p2 

C5 C5 

ci = 4a; 1 + X2 + 2/2 + 2 , c2 = 4aj2 + a;i + 2/1 + 2 , 

C3 = 42/2 + xi + 2/1 + 2 , c4 = 42/i + x2 + 2/2 + 2 , 

c5 = 3i + x2 + 2/1 + 2/2 + 4 . 

C5 

C5 J 
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The above transition matrix is derived by first considering the Mendelian 
segregation under self-fertilization and then imposing effects of selection to 
yield frequencies of different genotypes. As an illustration, consider the geno­
type -£g at generation t. Under Mendelian segregation with linkage, this 
genotype produces four types of gametes {AB, Ab, aB, ab} with frequencies 
{\p, 3?) \q, |p}> Q = 1 — Pi respectively. Under self-fertilization with no selec­
tion, this gives the frequencies of the above ten genotypes at generation t + 1 
as: 

AB Ab aB ab AB AB Ab aB AB aB 
AB Ab aB ab Ab aB ab ab ab Ab 

1 9 1 2 1 2 1 2 1 1 1 1 1 2 1 2 
jP -A1 -q -p -pq -pq -pq -pq -p -q . 

The average fitness is 

T P 2 ( Z I + x2) + ^q2{xi + y2) + ^Q2(yi + x2) + J P 2 G / I + 2/2) 

+ ^ ( z i + 1) + 2 ^ ( 1 + x2) + ^pq(l + 2/2) + ^ ( l + 2/i) 

1 9 1 9 C5 

+ V+V =7-
Hence the frequencies of the ten genotypes at generation t + 1 under selec­

tion are given by: 

AB 

AB 

—p2(xi + x2) 
C5 

AB 
aB 

—2pq(l + x2) 
C5 

Ab 

Ab 

—q2(xi + y2) 
C5 

Ab 
ab 

-2pq(l + y2) 
C5 

aB 

aB 

—q2(yi + x2) 
C5 

aB 
ab 

-2pq(l + yx) 
C5 

1 

C5J 

ab 

ab 

°2(yi + 

AB 
ab 

4 2 
—P 
C5 

2/2) 

AB 
Ab 

—2pq(xi 
C5 

aB 
Ab 

& 

This gives the elements of the last row of P above. Similarly, one may 
derive elements of other rows of P ; see Exercise 2.1. 
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Example 2.5. The base substitution model in D N A sequence. DNA 
strands are made up by four nitrogen bases A (adenine), G (guanine), 
C (cytosine) and T (thymine), a phosphate molecule (P) and a sugar (De-
oxyribose to be denoted by dR). These strands are directional starting with 
a 5' end (A phosphate) and walk down to the 3' end (a hydroxyl, i.e. OH). 
A and G belong to the purine group whereas C and T are pirimidines. A is 
always linked to T by two hydrogen bonds (weak bone) and G always linked 
to C by three hydrogen bonds (strong bond). Hence, given the base sequence 
in one strand of DNA, the sequence in the other strand of DNA is uniquely 
determined. The DNA molecules have two strands coiled up in a double helix 
form. (RNA molecules differ from the DNA in three aspects: (1) The RNA's 
are single strand molecules. (2) The T base is replaced by U (uracil) in RNA. 
(3) The sugar in RNA is ribose.) Given in Fig. 2.1 is a schematic representation 
of the DNA molecule. 

To analyze the DNA sequence in human genome, it has been discovered 
that the arrangement of nitrogen bases in the sequence are not independent; 
however, in many cases, the base substitution in the sequence as time pro­
gresses can be described by Markov chain models; see [6]. The discovery of 
restriction enzymes in bacteria has allowed biologists to estimate the substitu­
tion rates in successive bases in the DNA sequence in many cases. (Restriction 
enzymes are enzymes which recognize specific sequences of basis along the 
DNA strand and cut the DNA at these restriction sites.) Given below is a 
Markov chain for base substitution in the DNA dimers in humans considered 

5' P - d R - P - d R - P - d R - P - d R - O H 3' 

C A G T 

G T C A 

3' O H - d R - P - d R - P - d R - P - d R - P 5' 

Fig. 2.1. Schematic representation of double stranded DNA. P, phosphate; dR, deoxyribose; 
OH, hydroxyl; - , covalend bond; . . . , weak bond; . . . , strong bond; A, adenine; C, cytosine; 
T, thymine; G, guanine. 
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by Bishop et al. [6]. The state space of this chain consists of the states 
{A, C, G, T, AG, AGC, AGCT}. The matrix of the one step transition proba­
bilities has been determined as: 

A 

C 

G 

P = j< 

AG 

AGC 

AGCT 

A 

0.32 

0.37 

0.30 

0.23 

0.30 

0.37 

^0.23 

C 

0.18 

0.23 

0.21 

0.19 

0 

0.23 

0.19 

G 

0 

0.05 

0.25 

0.25 

0.25 

0.05 

0.25 

T 

0.27 

0.35 

0.24 

0.33 

0.24 

0 

0.33 

AG 

0.23 

0 

0 

0 

0 

0 

0 

AGC 

0 

0 

0 

0 

0.21 

0 

0 

AGCT 

0 \ 

0 

0 

0 

0 

0.35 

0 / 

Example 2.6. The AIDS epidemic in homosexual or IV drug user 
populations. Consider a large population of homosexual men or IV drug 
users who are at risk for AIDS. Then, as illustrated in Example 1.6, there 
are three types of people: The S people, the I people and the AIDS cases. 
Denote by I(u) the infective people with infection duration u (i.e. u is the time 
elapsed since the infective person contracted HIV). Let {S(t),I(u,t)} denote 
the numbers of S people and of I(u) people at the ith month respectively 
and A(t) the total number of AIDS cases including those died from AIDS by 
the ith month. Put X(t) = {S(t),I(u,t),u = 0 , 1 , . . . ,t, A(t)}'. Then under 
some general conditions, {X(t),t G T = ( 0 , 1 , . . . ,oo)} is a multi-dimensional 
Markov chain with discrete time. This type of Markov chains in HIV epidemic 
has been developed by Tan and his associates in terms of chain binomial and 
chain multinomial distributions; see [7-12]. 

2.2. The Transition Probabilities and Computation 

Let {X(t),t G T} be a Markov chain with state space S = {0,1,2, . . .} and 
parameter space T = {0,1 ,2 , . . .} . Then the random behavior and properties 
of this Markov chain is characterized by the transition probabilities which is 
defined by pij(s,t) = P{X(t) = j\X(s) = i} for t > s. Prom these transition 
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probabilities, obviously, we have: pij(s,s) = 5^, where 5^ is the Kronecker's 
6 defined by da = 1 and S^ — 0 if i ^ j . To compute these probabilities and 
to prove some general theories, we first give the following theorem which has 
been referred to as the Chapman-Kolmogorov equation. 

Theorem 2.1. The Chapman-Kolmogorov equation. Let {X(t),t = 
0 , 1 . . . , } be a Markov chain with state space S = {0,1,2 . . . } . Let the transition 
probabilities be given by pij(m,n) = Pi{X(n) = j\X(m) = i). Then, for any 
0 <m <r <n, we have that 

oo 

Pij(m,n) = ^pik{m,r)pkj(r,n). (2.1) 
fc=0 

Proof. By applying the Markov condition, we have 

Pij{m,n) = Pi{X(n) = j\X(m) = i} 

oo 

= £ Pr{X(n) = j , X(r) = k\X(m) = i} 
fc=0 

oo 

= ^ P r { X ( n ) = j\X{r) = k,X(m) = i}Pi{X(r) = k\X(m) = i} 
fc=0 

oo 

= ^ P r { X ( n ) = j\X(r) = k}Pi{X(r) = k\X(m) = »} 
fc=0 

oo 

= J ^ P r { X ( n ) = j\X(r) = k}Pi{X(r) = k\X{m) = i) 
fc=0 

oo 

J2Pik{m,r)pkj(r,n). 
a 

fc=0 

Equation (2.1) is called the Chapman-Kolmogorov equation. As we shall 
see, this equation is the basic approach for proving many of the results in 
Markov chains. 

Using the above Chapman-Kolmogorov equation, if the chain is finite 
(i.e. the state space S has only a finite number of elements), then, P(m,n) = 
ipij(m,n)) = P(m,r)P(r,n) = T^Z™P{m + r - l , m + r) . If the chain is 
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finite and homogeneous, then P(n, n + 1) = P is independent of n so that 
P(m,n)=Pn-m. 

The above results also extend to some non-homogeneous finite Markov 
chains. To illustrate, suppose that Pij(n,n + 1) = Pij(s) for i s_i <n<tss = 
1,...,N with t0 = 0 and tN = oo. Put Ps = (p»j(s)) for s = 1 , . . . , N. Then, 
with to = 0, 

^(0,71) = ^ , i f n < t i ; 

= I f [ ^ " i 1 "** | Ps+is - if *i < *2 < • • • * . < n < t .+i , 

s = 1,...,N-1. 

Prom above, it follows that to compute P(0,n) for finite Markov chains 
with discrete time, in many cases one would need to find the power of the one-
step transition matrices. This problem is made easy if the one-step transition 
matrices have real distinct eigenvalues so that these matrices can be trans­
formed into diagonal matrices. For example, if the matrix P has real distinct 
eigenvalues Xj, j = 1 , . . . ,r, then, as shown in Subsec. 2.11.3, 

r 

P = 2_^XjEj, 

where Ej = R^ ^ ( P - XJ), j = 1 , . . . ,r . 

It is shown in Subsec. 2.11.3 that £)J= i Ej = I,E] = Ej and EiEj = 0 if 
i }£ j ; hence 

T 

P(n)=Pn = '£x?Ej. 
3=1 

The expansion P = Y^=i ^jEj w m D e referred to as a spectral expansion 
of P and the Ei's the spectrum matrices of P. 

Example 2.7. The self-fertilization Markov chain. In Example 2.1, 
we have considered a self-fertilized Markov chain for one locus with two al­
leles A and a. The state space of this chain consists of the three geno­
types {AA, aa, Aa}. This is a homogeneous Markov chain with the one-step 
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transition probability matrix given by: 

(I 0 0 \ 

P = 0 1 0 

1 1 1 
\ 4 4 2 / 

The characteristic function of P is <j>(x) = \P — xl3\ = (1 — x)2(\ — a;) = 0. 
Thus the two eigenvalues of P are Ai = 1 and A2 = \ with multiplicities 2 and 
1 respectively. Hence, the spectrum matrices are: 

Ei 
(Ai - A2) 

(P -A 2 / 3 ) = 2 

(l-1-
2 

0 

1 

V 4 

0 

-1 
1 
4 

0 \ 

0 

1 1 

2 ~ 2 / 

= 

/ l 

0 

1 

\ 2 

0 

1 

1 
2 

o\ 
0 

°J 
and 

£Jo 
(A2 - Ax) 

( P - A 1 / 3 ) = (-2) 

/ 0 

0 

1 

V~2 

It follows that we have 

0 \ 

0 

1 

/ l - l 

0 

1 

V 4 

0 

1 - 1 

1 
4 

0 \ 

0 

i-> 

P = AiEj + A2J52 

/ l 

0 

1 

\ 2 

0 

1 

1 

2 

0 \ 

0 1 
+ 2 

/ 0 

0 

1 
\~2 

0 

0 

1 
~ 2 

0 \ 

0 
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P(t) = Pt = X\E! + A*£2 = 

/ l 

0 

0 \ 

0 

\l \ ° 
+ 

/ 

Denote by ez = (0,0,1). Then we have 

{?)'** 

/ I N 
2 
1 
2 

+ 

1 \ 
2 
1 
2 

V 1 J 

/ o 
0 

1 
"2 

2 1 2* 

5 I 1 2* 

o o\ 
0 0 

1 
~2 V 

V 2* / 

It follows that given at time t = 0 an individual with genotype Aa, at the 
t generation, the probabilities of the three types AA, aa and Aa are given by 
| ( 1 - Tp), 5(1 - ^-) and ^r, respectively. 

Example 2.8. The sib mating Markov chain for one locus with two 
alleles in natural populations. In Example 1.8, we have considered a 
Markov chain of mating types under full-sib mating in large diploid popu­
lations. The state space of this Markov chain consists of the six mating types 
AA x AA, aa x aa, AA x aa, AA x Aa, aa x Aa, Aa x Aa. The one-step transition 
probability matrix of this chain is given by P = (^ £), where 

R 

/ 0 
1 
4 

0 

1 
Vl6 

o\ 
0 

1 

4 
1 

1 6 / 

and, Q — 

(° 

0 

0 

1 

100 

0 

1 
2 

0 

1 
4 

0 

0 

1 
2 

1 
4 

1 \ 

1 
4 

1 
4 

1 
4 / 

We have 

pn _ ( i £ Q")' Whele i?" = E ^ - R = (/4-Q)-1(74-Qn). 
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The characteristic function <j>(x) of Q is 

43 

4>{x) = \Q- xl4\ = (-x) ^ [ - - x 
\~X 

1 I 
8 V2 \ \ \ - X 

= - G - ^ ) f G ^ ) ( i - ) - f n G ^ ) } 

=iG_:c)G":c)(4x2~2x~i)=o-
Hence the eigenvalues of Q are {Ai = ^,A2 = \,\3 = \(1 + V§) = 

^ei,A4 = ^(1 — y/5) = 162}- Since all eigenvalues are real and distinct, Q 
can be expressed in terms of spectral expansion. The spectrum matrices of Q 
are: 

Ei = 
1 

(Ax - A2)(A! - A3)(A! - A4) 
(Q - X2I4)(Q - X3I4)(Q - A4/4) 

/ 0 0 

0 i 

0 o\ 

- i 0 
1 1 

"2 2 
0 - o ^ 0 2 2 

\ 0 0 0 0 / 

£>2 = 
(A 2 -A 1 ) (A 2 -A3) (A 2 -A 4 ) 

- 1 - 1 l \ 

(Q - Ai/4)(Q - hh)(Q - A474) 

2 

1 1 
~8 4 

_1 1 
~8 4 

1 _ 1 
V~8 ~4 

1 1 
'4 4 / 
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Ez = (Q - Xih)(Q - A2/4)(Q - A4/4) 

1 

(A3 - A!)(A3 - A2)(A3 - A4) 

Ifi + H) ±(i + a.) i 
4 V 2 / 4 X 1 / 4 

1 J \ 

1 

8 

£2 
8 

£1 
4 

£1 
4 

and 

£ 4 = - ( Q - A 1 / 4 ) ( Q - A 2 7 4 ) ( Q - A 3 / 4 ) 

1 

£2 
4 

(A4-A1)(A4-A2)(A4-A3) ' 

l( ' + ! ) ;(' + ?) 

i(1 + !) i(1 + l ) 7 
£2 £2 1 

It follows that Qn = J2t=iKEi a n d Rn = {h - Q)'1^ - Qn) = 

= 1 l - A i rjl~ 

Hence, we have 

/ h 0 \ 

V 

pn l-X? 

\ i=i 1=1 / 

Example 2.9. The two-loci linkage Markov chain in self-fertilized 
populations. In Example 2.4, we have considered a two-loci model with 
linkage with in self-fertilized diploid populations. This model is a homogeneous 
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Markov chain with one step transition matrix given by: 

h | 0 

R | Q 

where R is a 6 x 4 matrix and Q a 6 x 6 matrix. 

For this transition matrix, we have 

h 0 
pn _ 

RA Qn 

n-\ 

where Rn = J2 ^ R = ^ ~ Q)'^1* ~ Q") • 
i = 0 

The eigenvalues of Q are readily obtained as: 

Ai = - ( 1 + xi), A2 = - ( 1 + x2), A3 = - ( 1 + y2), A4 = - ( 1 + Vl), 
C\ Ci C3 C4 

As = — (q2 +P2), and A6 = — (q2 - p2). 

The spectrum matrices Ei of Q are obtained as: 

Ei 

En = 

1 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

zi 0 0 0 0 0 

zi 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 0 0 

0 0 z3 0 0 0 

0 0 z3 0 0 0 

Eo, 

E4 

0 0 0 0 0 0 

0 1 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 z2 0 0 0 0 

0 z2 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 1 0 0 

0 0 0 z4 0 0 

0 0 0 Zi 0 0 
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E5 ER — 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 - - -
2 2 

0 0 0 0 -
1 1 
2 2 J 

where 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1 1 
— Z\ —Z2 —Zz — Z4 - -

1 1 
— Z\ —Zi -Z3 -Zi - -

zi = p ( l - p ) ( l + a;1) 

z2 - p(l - p)(l + x2) 

z3 = p(l - p)(l + y2) , 

z4 = p(l - p)(l + yi) , 

It follows that Qn = T,i=iKEi and Rn = (76 - Q)~l{h - Qn) = 

Example 2.10. The Galton-Watson branching processes. Let 
{X(t),t G T = ( 0 , 1 , . . . , oo)} be a simple Galton-Watson branching process 
with progeny distribution {pj, j — 0 , 1 , . . . , oo}. Then the one-step transition 
probabilities are given by: 

POJ = <V), j = 0 , 1 , . . . ,oo, 

- ( 1 + z i ) -

- ( l + x 2 ) -
.C2 

- ( 1 + 2 / 2 ) -
- C 3 

C4 

-2{p2+q2) 

-2(p2+q2) 

-2(p2 + q2) 

-2(p2+q2) 

i r dj 

Pij = f.\d^9 i(s)\ 
) 3=0 

for i > 0, 

where gi(s) = f(s)1 with f(s) being the probability generating function (pgf) 
of the progeny distribution. 
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To find pij(n) for n > 1, let ft{s) be the pgf of X{t) given X(0) = 1 for 
t = 1,2,.... Then 

P I J W = -T, | ^ j / n ( s ) | and Pij(n) = jA-^ [/»(*)]' | for*>l. 

To find /t(s), notice that / i (s) = / (s) and, for £ > 1, 

oo 

/t(s) = 5> n Pr{*W = n|*(0) = 1} 
n=0 

OO f OO "\ 

= E s" i E P r W ) = n W - !) = k}Vv{X{t - 1) = fc|X(0) = 1} l 
n=0 (k=Q ) 

oo oo 

= Y, E s ^ W 1 ) = "l*(0) = fc}Pr{X(t - 1) = k\X(0) = 1} 
n=0 fc=0 

oo f oo ^ 
= E i E s n P r ( Z i + Z 2 + --- + ^=n) iP r{X( i - l ) = fc|X(0) = l} k=0 Kn=0 

oo 

£[/(S)]fcPr{X(*-l)=A;|X(0) = l} 
fc=0 

= / t - i [ / (* ) ] . 

On continuing, we have that 

MS) = / t- l[ /(*)] = ft-2{f[f{s)]} = / t - 3{/[ / [ / (*)]]} 

= ••• = /{ / [ / • • • [ / (« ) ] •••]} = / [ /*- ! (*) ] . 

The above formula for the pgf of the Galton-Watson branching process is 
the basic tool for deriving results for Galton-Watson processes. For example, if 
we let \i and a2 denote the mean and the variance of the progeny distribution 
respectively, then by using the above generating functions, it can easily be 
shown that (Exercise 2.5) 

E[X(n)\X(0) = 1] = nn and Var[X(n)|X(0) = 1] = a2
fi

n~1(l+n+- • • + / i n _ 1 ) . 

In Example 2.16, we will use the above pgf formulae to find the first ab­
sorption probability and mean absorption times. In Example 6.6 we will use 



48 Discrete Time Markov Chain Models 

the above pgf formulae to show that Y(t) = X(t)/N can be approximated by 
a diffusion process when N is very large. 

Example 2.11. Non-homogeneous Galton-Watson processes. In the 
Galton-Watson processes, the progeny distribution may change as time pro­
gresses. This is true for new mutants which are usually selectively disadvan­
tageous comparing with wild allele when they were first introduced into the 
population; however, environmental changes at latter times may make the mu­
tants selectively more advantageous over the wild allele. In these cases, the 
branching processes become non-homogeneous. To illustrate how to derive 
transition probabilities in these cases, assume that the progeny distributions 
of the mutant are given by {pj j = 0 , 1 , . . . , oo, i = 1,2} for n < t i and t\ < n 
respectively, where 

pf> = e->«£,i = l,2,j = 0,l,...,oo, 

where A; = 1+Sj, i = 1,2. (1+Sj is the relative fitness of the mutant comparing 
with the wild allele over time with 1 for time n < t\ and 2 for time n > t\.) 

Let pij(n) = Pi{X(n + 1) = j\X(n) = i}. Then, for j = 0 , 1 , . . . , oo, 

Poj(n) = SOJ for all n £ T = ( 0 , 1 , . . . , oo); 

Pij (n) = e~iXl ^±¥- for n < h ; 

Pij (n) = e~iX2 ^ ^ - iorn>t1. 

Let f^\s) denote the pgf of the progeny distribution {pf , j = 0 , . . . , oo}, 
/ „ ' (s) the pgf of the simple homogeneous Galton-Watson branching process 
with progeny distribution {pf , j = 0 , 1 , . . . , oo} and / n ( s ) the pgf of the above 
non-homogeneous Galton-Watson branching process. Then, it is obvious that 

fn(s) = fn
1Hs) = fW[fi1}1(s)}, if n < t l 5 

Ms) = fn
2ltl[f£\s)}, if n > t x . 
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It follows that for n < t\, 

P i J ( 0 , n ) = i | ^ / W ( s ) } ^ a n d p « ( 0 , n ) = i | ^ [ / W ( a ) ] * } _ for i > 1; 

but for n > t\, 

Pii(0,n) = i { JL/£>tJ/«(s)]} and 

Pi'(0'n) = jj {^^--ti^Wl}'}, 0 •
 for » > x • 

2.3. The Structure and Decomposition of Markov Chains 

Consider a Markov chain {X(t), t e T} with parameter space T = ( 0 , 1 , . . . , oo) 
and with state space S = { 0 , 1 , . . . , }. In this section we will illustrate the basic 
structure and decomposition of these chains. For simplicity of illustration, we 
will restrict ourselves to homogeneous Markov chains, unless otherwise stated, 
although many results also hold in non-homogeneous chains. 

Definition 2.1. Let j £ S and k £ S be two states of S. Then we say j 
leads to k, denoted by j -> k, iff there exists an n > 0 such that Pjk(0, n) > 0; 
we say j <-> k, iff j —• A; and k —»• j . 

For example, in the sib-mating Markov chain given by Example 1.8, 1 —» 
1, 4 ->• 1, 4 -> 4, 4 -»• 6, 6 -> j , j = 1 , . . . , 6, etc. 

Definition 2.2. Let C be a set of states of the homogeneous Markov chain 
{X(t), t £ T = (0 ,1 ,2 , . . . )} . Then C is called a closed set iff for every k <£ C 
and j £ C, j -ft k. By j -/> k, it means that it is not possible to find a n such 
that Pjk(0, n) > 0. A closed set consists of a single state is called an absorbing 
class and the element the absorbing state. 

By Definition 2.2, the state space itself is a closed set. If the state space 
contains a proper closed subset, then the chain is said to be reducible; oth­
erwise not reducible or irreducible. Examples 1.8, 2.1 and 2.4 given above 
are reducible homogeneous Markov chains but Examples 2.2 and 2.5 are ir­
reducible homogeneous Markov chains. For example, in the full-sib mating 
Markov chain given in Example 2.2, the state A A x A A forms an absorbing 
class, so is the state aa x aa; that is, in the sib-mating example, there are 
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two absorbing classes {AA x AA} and {aa x aa}. Similarly in Example 2.3, 
there are four closed sets each with only one state; these absorbing classes 
are {AB/AB, Ab/Ab, aB/aB, ab/ab}. The following theorem gives a necessary 
and sufficient condition for a Markov chain to be irreducible. 

Theorem 2.2. A Markov chain is irreducible iff for any two states j and 
k,j o k. 

Proof. The "if" part is trivial; hence we prove only the "only if" part. 
To prove the "only if" part, assume that the chain is irreducible and con­

sider an arbitrary state j £ S. Let Cj be the set of all states that j leads to 

and Cj the set of all states that j does not lead to. Then Cj (1 Cj = 0 and 

Cj U Cj = S, the state space. We now show that for any £ £ Cj and for any 

k 6 Cj , £ -ft k so that Cj is closed. Now, j ->• I and j ft k by definitions of 

Cj and Cj'; thus, if I —>• k, then j -» k, a contradiction. Hence £ -ft k and Cj 
(*} /* is closed. It follows that Cj ' — 0. Since j is an arbitrary state, the theorem 

is established. • 

By Theorem 2.2, the Markov chain in Example 2.2 and the base substi­
tution model in Example 2.5 are irreducible since each state can be reached 
by other states. For the Wright model given in Example 1.11, if there are 
no mutation and no immigration and migration, then the chain is reducible 
with two absorbing states 0 and 2N; on the other hand, if there are forward 
and backward mutations, then the chain is irreducible since each state can be 
reached from other states. 

The following simple result gives a necessary and sufficient condition for a 
set of states in a Markov chain to be closed. 

Theorem 2.3. Let C be a set of states in a Markov chain. Then C is closed 
iff, for any n > 0 , ^ j e C p i j ( 0 , n ) = 1 for any i G C. 

Proof. For any i £ C, £ \ Pij (0, n) = 1 = £ j g C ptj (0, n) + YLj^c V%i (0,n) = 
Z)j €cP*j(° ' n ) i f f X^£cPy(°> n) = ° iffpij(0,n) = 0 for j <£ C. This holds for 
any n > 0 so that the theorem is proved. • 

By Theorem 2.3, all absorbing states in Examples 1.8 and 2.4 are closed 
sets consisting of a single state. 

From Theorem 2.3, if C is a closed set, then, by deleting all states not in 
C, we obtain another Markov chain with state space = C. Using Theorem 2.3, 
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we have also the following theorem for the structure of transition matrix in 
finite chains. A Markov chain is said to be a finite Markov chain iff its state 
space S contains only a finite number of elements. 

Theorem 2.4. A finite homogeneous Markov chain {X(t),t G T} is re­
ducible iff its one-step transition matrix P can be expressed as 

Proof. (1) If the chain is reducible, then its state space contains a proper 
closed subset C. With no loss of generality we may let the elements of C be 
0 ,1 ,2 , . . . , c. Then Pij(n) = 0 for all n = 1,2,... and for all j = c + 1 , c + 2 , . . . 
if 0 < i < c. Hence 

P=(M °) 
\R Q) 

(2) Let P = (% °). Then Pi^n) = 0 for all n = 1,2,... and all j = 
c + 1, c + 2 , . . . if 0 < i < c. Thus C = {0,1, 2 , . . . , c} is a proper closed set of 
the state space. The chain is therefore reducible. • 

As an Corollary of Theorem 2.4, we have that if the finite homogeneous 
Markov chain contains k (k > 1) closed sets and if these k closed sets do not 
exhaust all states, then by rearranging and renaming the states, the one-step 
transition matrix P can be expressed as: 

/Q Ri R2 . . . Rk\ 

Pi 0 

V o pj 
where Pj is the one-step transition matrix for the j t h closed set. 

The above form is called the canonical form of P. Notice that 
(i?i, i?2i • • •, Rk) 7̂  0 for otherwise, the chain contains k + 1 closed sets, con­
tradicting the assumption of k closed sets. 

As an illustration, consider the sib-mating Markov chain given by Exam­
ple 1.8. Rearranging the states so that {1,2,3,4,5,6} stand for the states 
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(Q 

0 

U 
Ri 

Pi 

0 

Ra 
0 

Pi 

{AA x aa, AA x Aa, aa x Aa, Aa x Aa, AA x AA, aa x aa} respectively, then 
the one-step transition matrix is given by: 

P = 

where Q and R = (Ri, R2) are given in Example 2.2 and Pj = 1 is the one-step 
transition matrix for the jth closed set. 

Similarly, in Example 2.4, by rearranging the order of the states in the 
state space so that the first six states are transient states, then the one step 
transition matrix can be expressed in the above form. 

2.4. Classification of States and the Dynamic Behavior of 
Markov Chains 

To study the behavior of Markov chains, one needs to classify the states. For 
this purpose, define the event Ajk(n) by A,-fc(n) — {X(n) = k,X(m) ^ k,m = 
1,2,... ,n—l\X(0) = j}. Then Ajk{n) is the event of first passage to k at time 
n fromj at time 0. With this definition, it is obvious that Ajk{n)r\Ajk(n') = 0 
if n ^ n' and Ajk = U^Li A;'fc(n) *s * n e ev^nt that the chain ever reaches the 
state k starting at the state j initially. Thus, 

fjk = Pr{Ajfe} = Pr U AJfc(n) 
n = l 

= £Pr(Ajfc(n)) 
n=l 

= Y^ Pr{X(n) = k\X(m) ^ Jfe, m = 1,2,. . . , n - 1, X(0) = j} 

0 0 

= ^2fjk(n), 
n = l 

where fjk is the probability that the chain ever reaches the state k starting 
with the state j at time 0 and fjk(n) the probability that the chain first reaches 
the state k at time n starting with the state j initially. 

Definition 2.3. The state j is called persistent (or recurrent) iff fjj = 1, 
and transient (or nonrecurrent) iff fjj < 1. 
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Prom this definition, the states AA x AA and aa x aa in the full-
sib mating chain given by Example 1.8 are persistent states whereas all 
other states are transient states. Similarly, in Example 2.4, the states 
{AB/AB, Ab/Ab, aB/aB, ab/ab} are persistent states whereas all other states 
are transient states. On the other hand, all states in Examples 2.2 and 2.5 are 
persistent states. 

If fjj = 1, then fjj(n), n = 1,2,... forms a probability density function for 
the first return time Tj of the state j . The expected value of the first return 
time Tj, denoted by fij = Y^Li nfjj(n)i ls called the mean return time of the 
state j . 

Definition 2.4. Let j be a persistent state and fij the mean return time of 
j . Then j is called positive iff fij < oo and null iff fij — oo. 

In the next chapter, we will show that if j is persistent, then 

1 n 1 
lim — > Vi Am) = — . 

m = l J 

Thus, the limit is positive iff j is positive; the limit is 0 iff j is null. 
Given Definition 2.3, an immediate question is: Given a state, say j , is it 

persistent or transient? To answer this question, we first prove the following 
lemma. 

L e m m a 2 .1 . 

, l i m £n=lPO-(") 

where Pij(n) = Pi{X(n) = j\X(0) = i), for any homogeneous Markov chain 
{X(t)}, t e T = {0 ,1 ,2 , . . .} , with state space S = {0 ,1 ,2 , . . .} . 

Proof. We have Pij(n) = Y^Z.=i fij(m)Pjj(n ~ m) f o r a n v n > 1. Hence, 

N N n N N 

X^'(n) = 13 X) fij(m)Pjj(n ~ m) = 2 J2 fn(m)Pn(n ~ m) 
n=l n = l m = l m=\n=m 

N (N-m -\ N N 

m=\ \ n=0 ) m = l n=0 
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Thus, since Pjj{0) = 1, we have that 

E n = l P ^ ( n ) 

m=l l + I ,n=lP i j ( n ) 

and so 

f i J - l + Zn=iPnW 

Let now JVi = [ f ] be the largest integer < f. Then, f - K i V i < f < i V 
and N2 = N - Ni > N - f = f. Thus, JV -> oo =$• Nx ->• oo and AT2 - • oo. 
Furthermore, Ni > m =$• N - m > N - Ni = N2- Hence 

53 P^(n) = 51 -Mm) j 53 ^(m ) [ - 53 -M™) 53^(n) • 
n—1 m = l I. n=0 J m = l n=0 

It follows that 

*N / N JVi 

1 + £ « = ! ? # ( » ) m=l 

Let JV —> oo (and hence JVi —> oo and JV2 —> 00). Then 

' " " I + £ £ . i P t f ( » ) " D 

Using the above lemma, we have immediately the following results for ho­
mogeneous Markov chains with discrete time: 

Theorem 2.5. For homogeneous Markov chains with discrete time, the fol­
lowing results hold: 

(1) j is persistent iff Yl™=iPii{n) = °°'» 
(2) j is transient iff Y^H=iPii(n) < °°>' 
(3) If j is transient, then Y^=iPiiin) < °°\ ifi->3 and if Y^Li Pii(n) < 

00, then j is transient; 
(4) If j persistent and i -> j , then Y^=iPiiin) = °°; ifJ2™=iPii(n) = °°; 

for some state i, then j must be persistent. 
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Proof. (1) and (2) follow immediately from the lemma by putting i = j . 
(3) and (4) follow from Lemma 2.1 and the results: (a) 0 < / ^ < 1, (b) 
i -> j =$• Pij(n) > 0 for some n > 0 so that J2^=iPij(n) > °> a n d (c) 
i-*j=> fij > 0. n 

Notice that 

oo 

/ Pij {n) < oo =$• lim ptj (n) = 0 . 
n = l 

As a consequence of the above theorem, if j is transient, linin-yoo pjj (n) = 0 
for any state i. If the number of transient states is finite and if Q{n) is the n-
step transition matrix for transient states into transient states, then we must 
have linin-Hx, Q(n) = 0. This result implies that finite Markov chains must 
contain persistent states; for if not, then, because Ylf=oPij(n) = 1 f ° r a u 

n > 0 and for alii € S if the state space of the chain is S = { 0 , 1 , . . . , N}, we 
obtain the result 0 = 1 by letting n —> oo, which is not possible. 

Example 2.12. Random walk on a fixed path. Consider a random 
walk on a fixed path starting at time t = 0. Let X(t) be the position at 
time t and assume that Pi{X(t + 1) = j + l\X(t) = j} — p (0 < p < 1) and 
Pv{X(t+l)=j-l\X(t)=j} = l-p = q. Then, {X(t),teT= ( 0 , 1 , . . . , oo)} 
is a homogeneous Markov chain with discrete time and with state space Q, = 
{ - o o , . . . , - 1 , 0 , 1 , . . . , o o } . 

For this Markov chain, obviously i -H- j for alH e Q, and j € Q, so that the 
chain is irreducible. Thus, if any state is transient, then the chain is transient 
in which case the chain contains no persistent states; on the other hand, if 
any state is persistent, then the chain is persistent and contains no transient 
states. 

To find conditions for which the chain is transient or persistent, consider 
the state 0 and assume that X(0) = 0. Then, it takes an even number of 
steps to return to 0 given X(0) = 0 and Pi{X(2n) = 0|X(0) = 0} = (2^){pq)n 

for all n = 1 , . . . , oo. (That is, the period of 0 is 2 so that Pi{X(2n + 1) = 
0|X(0) = 0} = 0 for all n = 0 , 1 , . . . , oo; see Definition 3.2.) We will show that 
if p = | , then 0 is persistent in which case the chain is persistent and contains 
no transient states; on the other hand, if 0 < p < Jj, then 0 is transient in 
which case the chain is transient and contains no persistent states. 
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To prove the above, notice the Stirling formulae given by [13]: 

[ Yin J 

Applying the above Stirling formulae, we obtain: 

2 ^ V < z ) n - V2^(2n)2n+h-2n{pq)n{nn+lV2^e-n}-2 

= - ^ = ( 4 M ) ' 

It follows that with r = 4pq, 

{1_i.+ 0 ( n- , )}a_^ ( 4 M r . 

OO OO -

n=l n = l 

r 
rar 

Now r = l i f f p = i a n d O < y < l i f f O < p < i Hence T°° , -±=rn = oo 

iff p = 5 and J2^Li 7 ^ r " < oo iff 0 < p < 5. Or, 0 is persistent iff p = ^ and 

0 is transient iff 0 < p < | . 
Assume p = 5 so that the chain is persistent and irreducible. The mean 

return time of 0 is VQ = ]CnLi(2n)-Poo(2n) = ^^Li(2n)/'(y/nn) = 00 and hence 
the state 0 is null. On the other hand, all persistent states in Examples 2.1-2.2 
and 2.4 are aperiodic and have mean return time 1. 

To further characterize the dynamic behavior of Markov chains, an imme­
diate question is: Given a state j initially, how many times the state j will 
return to j as time progresses? One may also wonder how the probability of 
this event is related to the classification of the states! To answer these ques­
tions, we prove the following theorem which is referred to as the 0-1 law in 
homogeneous Markov chains. 

Theorem 2.6. (The 0-1 law). Let j be an arbitrary state in S and let gjj 
be the probability that the chain will visit j an infinitely many times given j at 
time 0. Then, 

(1) 9jj — 1 iff J *s persistent; 
(2) gjj = 0 iff j is transient. 
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Proof. Let gij (m) be the probability that starting with the state i, the chain 
visits the state j at least m times. Then <7»j(l) = fij and 

9ij{m) = fij(l)gjj(m - 1) + fij(2)gjj(m - 1) + • • • 

OO 

= Yl fidn)9jj(™ - 1) = fij9jj(m - 1). 
n=l 

Hence g%j{m) = fijfjj~x for m > 1. Putting i = j and letting m -> oo, 
0-1 law follows immediately. D 

The above 0-1 law leads immediately to the following results for the be­
havior of homogeneous Markov chains. 

(i) If j persistent, then g^ =• fjj = 1 = gjj(l); from the proof of the 0-1 
law, we have also g^ = fij = gij(l), for any i. 

(ii) If j transient, then g^ = 0 for any i. Thus, if the chain is finite, it 
must contain persistent states as it can stay in transient states only in a finite 
number of times. However, if the chain contains an infinite number of states, 
then Example 2.12 shows that the chain may not contain persistent states. 

The following theorem also shows that persistent states go only to persistent 
states in homogeneous Markov chains. Hence, once a transient state visits a 
persistent state, then the chain will stay forever in persistent states. 

Theorem 2.7. For homogeneous Markov chains, if i is persistent and if 
i —> j , then j —> i and j is persistent; moreover fji — gji = fij = g^ = 1. 

Proof, i -> j => there exists a no > 0 such that Pij(no) > 0; and i persistent 
=> 1 = fa = gu- But then SfePifc(no) = 1 = /»» = 9u = J2kPik(no)9ki-
Hence, 0 = EfcP»*;("o)(l - gu) =>• 0 = p i fc(n0)(l - gu) for all k = 0 ,1 ,2 , . . . 
as 0 < gki < 1. Hence, Pij(no) > 0 => gji = 1 = fji. This implies further that 
j -¥ i. Thus there exists an mo such that Pjj(mo) > 0. 

To prove that j is persistent, notice that, by using the Chapman-
Kolmogorov equation, one has: 

Pjj{mQ +n + n0)> Pji(m0)pu(n)pij(no). 

Hence 2 „ P j j ( " ) > E n P j j ( m o + n + n0) > Pij(n0)pji(m0)YlnPii(n). Thus, 
i persistent => J2nPjj(n) — o° => j persistent. This also implies that fij = 
g^ = 1, as proved above. • 
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2.5. The Absorption Probabilities of Transient States 

Consider a homogeneous Markov chain {X(t),t € T} with discrete time 
T = { 0 , 1 , . . . , oo} and with state space S = { 0 , 1 , . . . , oo}. Assume that the 
chain consists of both persistent states and transient states and that the per­
sistent states are grouped into k closed sets of persistent states. (Results in 
Sec. 2.4 shows that if the chain contains a finite number of transient states, 
it must contain persistent states; on the other hand, if the chain contains in­
finitely many transient states, it may or may not contain persistent states; see 
Example 2.12). Let Pij(n) denote the n-step (n > 0) transition probability 
from the state i to the state j with Pij(l) = Pij and py(0) = 6ij. Let CT 
denote the set of transient states. If CT is finite (i.e. CT contains only a finite 
number of elements), then, as shown by Theorem 2.7, starting with any tran­
sient state i € CT initially, with probability one the state i will eventually be 
absorbed into some closed sets Cj as time progresses. On the other hand, if 
CT is infinite, then as illustrated in Example 2.12, the chain may not contain 
persistent states; also, even if there are persistent states, Example 2.16 shows 
that, under some conditions, with positive probability the chain may stay in 
transient states forever as time progresses; see Subsec. 2.5.2 and Example 2.16. 

To derive formula for absorption probabilities of transient states, denote 
by: 

(1) Fitj(n) = The probability that starting with i s CT at time t = 0, the 
chain will be absorbed into the j t h closed set Cj at or before time n (n > 0). 

(2) gij(n) = The probability that starting with i £ CT at time t — 0, the 
chain will be absorbed into the j t h closed set Cj at time n (n > 0) for the first 
time. 

(3) pi(j) = The ultimate absorption probability of i £ CT into the closed 
set Cj as time progresses. 

Then, gij(n) = Fitj(n) - Fitj(n - 1), and noting that Fitj(0) = 0, 

oo 

Pi{j) = lim Fitj(n) = Y]9i,j{n). 
n—>oo ^—•» 

n = l 

Further, Fi(n) = £ L = 1 Fitj(n) is the probability of absorption into a per­
sistent state at or before time n starting with i £ CT at time t = 0; 
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9i(n) — ^2j=i9i,j(n) is t n e probability of first time absorption of i e CT 
into a closed set at time n; 

Pi = J2j=iPiU) *s ^ e ultimate absorption probability of i E CT into a 
closed set as time progresses. 

We will show that if CT is finite, then pi — 1, for all i e CT- In this case 
gi(n) is the pdf of the first absorption time T"j of i e CT and Fj(n) the cdf 
otTi. 

To find these probabilities, denote by 

fc 

ffli0') = X Pim' * G C'T' J' = l' • • • ' fc' aIld fli ~ 2Z a i ( J ) • 
m£Cj j=l 

Since with probability one persistent states go only to persistent states by 
Theorem 2.7, we have that with Fij(0) = 0, 

n-l 

- f i , j ( n ) = X Pim + Yl X Pirn{r)am(j) 
m£Cj r = l rogCr 

= a i 0 ' ) + X I PimFm,j(n - 1) for 71 = 1, . . . , CO, i £ CT, j — 1, . • • , k 

TTI€CT 

(2.2) 

and 
n - l 

Fi(n)=ai + '^2 X P™(r) 

= a* + ^ PimFm(n - 1), for n = 1 , . . . , oo, and i £ CT • (2.3) 
m £ C r 

It follows that with j?im(0) = J j m , 

fl*,j(") = 2 Z #™( n ~ 1)a«*(j) for n = 1 , . . . , oo, « G C r , j = 1 , . . . , *. 

(2.4) 
Thus, 

k 

9i(n) = ^9iAn)= X Vim{n- l)am,i G CT,n= l , . . . , o o ; (2.5) 
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Pi(j) = lim Fij(n) = V ] PimPmU) + aiU) for i e C r , j = 1 , . . . , fe (2.6) 
m€Cx 

and 

Pi = ^Piti) = ^ P i m ' °m + a*> f o r i^cT- (2.7) 
.7 = 1 TUECT 

In the Galton-Watson branching process with progeny distribution {pj, j = 
0 , 1 , . . . } , there is only one persistent state 0 and CT = { 1 , . . . , O O } . In this case, 
ai = po, XQ = pi, pi — XQ (i = 1,...) and pij = pj so that Eq. (2.7) becomes: 

oo 

X0 = ^Pj^O +P0 = f(x0) • 

3 = 1 

This is the formulae given in Theorem 2.11. 

2 .5 .1 . The case when CT is finite 

Suppose now that the set CT is finite. Assume that CT has r elements and 
Cj has rij elements. With no loss of generality, we assume that the first 
r states are the transient states and the other states are persistent states. 
Let Hj be the r x nj matrix of the one-step transition probabilities from 
transient states to states in Cj and Q the rxr matrix of the one-step transition 
probabilities from transient states to transient states. Denote by Q(n) the n-
step transition matrix of transient states with Q'^n) (i = l , . . . , r ) as the 
ith row of Q(n). Then Q(n) = Qn. Further, as shown in Subsec. 2.7.1, the 
absolute values of eigenvalues of Q are less than one so that Qn —> 0 as n —> oo. 
Denoting by a(j) = {ai(j),..., ar(j)}', j = l , . . . , fc and a = {ai,...,ar}'. 
Since the elements in each row of a transition matrix sum to 1, we have that 
2l?) = Hilnj and a = (Ir - Q)1T. 

To express the above absorption probabilities in matrix notation, denote 
by: 

(1) Fj(n) = {Fhj(n),.. .,Frj(n)Y, j = 1 , . . . , * and F(n) = { ^ ( n ) , . . . , 
Fr(n)}'; 

(2) 9j(n) = {gi,j(n),...,grtj(n)Y, j = 1 , . . . , k and g (n) = {ffi(n),..., 
9r(n)Y; 
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( 3 ) PU) = {plU),---,Pr(j)}', j = l , . . . , f c a n d P ={Pl,...,pr}'. 

Then, in matrix notation, we have: 

(1) The vectors of absorption probabilities into Cj and into any persistent 
state at or before n are given respectively by: 

Ej(n) = £ Qra(j) = (Ir - Q)~\Ir - Qn)a(j) 
r-Q 

= {Ir-Qyl{Ir-Q
n)Hjlnj forj = l , . . . , f c , (2.8) 

F(n) = (Ir-Q)-1(Ir-Q
n)a 

= (Ir - Qn)(Ir - Q)-\lr - Q) 1 P = (Ir - Qn)lr . (2.9) 

(2) Since gi,j{n) — ^[(n - l ) a ( j ) , gi(t) = Q'i(n - l)a, the vectors of first 
time absorption probabilities into Cj and into any persistent state are given 
respectively by: 

9j(n) = Qn-1a(j) = Qn-1Hjlnj,j = l,...,k,. f o r n > 0 , (2.10) 

k 

9{n)=^2gj(n) = Qn-1a=Qn-1(Ir-Q)lr f o r n > 0 . (2.11) 

(3) Since YlnLo *5" ~ ( ^ — Q ) - 1 , the vectors of ultimate absorption prob­
abilities into Cj and into any persistent state are given respectively by: 

oo 

P(j) = £ e n _ 1 a ( i ) = (h ~ Q^aij) = (Ir ~ QTlHjlnj (2.12) 
n = l 

and 
oo 

P = E 3 n - 1 < * = (^r - Q ) _ 1 « = (Ir ~ QTHir - Q)Ir = 1 P • (2.13) 
n=l 

The result /» = 1. r is equivalent to stating that the probability that i 6 C? 
will eventually be absorbed into a persistent state is one. This also implies 
that the element gi(n) in 9(n) is the discrete probability density function 
(pdf) over the space { 1 , . . . , 00} of the first passage time T, of i S CT and 
Fi(n) the cumulative distribution function (cdf) of Tj. 
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If Q has real distinct eigenvalues Xi,...,Xu,u < r, then, as shown in 
Subsec. 2.11.3, Q = £ " = 1 XiEh where Et = U^ j-^-iQ-XjIr) * = 1 , . . . , u. 
The Ei's satisfy the conditions E\ = Eit EiEj = 0 if j ^ i and X)"=i ^* = -̂ r-
It follows that Q(n) = Qn = £ " = 1 W and ( / r - Q ) " 1 = £ " = 1 i ^ - E i - (Note 
that A, < 1 so that 1 - Xi > 0.) 

Hence, noting that a(j) = Hjlnj and a = (Ir — Q)lr = 2 i = i ( l ~ 
Xi)Ei lr, 

u 

u u 

5 („) = J2 K~lEi & = $3 A?~1(1 ~ A*)E4r,« = 1, • • •. 00. 
i = l i = l 

Thus, since £ £ „ Q" = (Ir - Q)~\ 

OO 

p(j) = E ^ n _ 1 s 0 ) = (A- - Q)_1s0') 
n=l 

u u 

= £ ( 1 - Xi^EiaiJ) = 5 > - X^EiHjl^ . 

2.5.2. The case when CT is infinite 

When Cy is infinite, the ultimate absorption probabilities of transient states 
into persistent states may or may not be one. In this section we derive the 
probability Gi{i G CT) that the chain will stay forever in transient states 
starting with transient state i G CT, initially. To derive these probabilities, 
denote by Wi(n) = Pi{X(n) G CT\X{0) = i}, ^ ( 0 ) = 1, for i € CT- Then 
these probabilities are given by CT; = limn_>00o'j(n),i G CT- (As shown in 
Theorem 2.9, such limits always exist.) To find <7i, since with probability one 
persistent states go only to persistent states, we have, for n = 1 , . . . , 00: 

W i(n) = 2 Pim^m{n ~ 1) . 

If the limit limn_>oo uii(n) = <7j exists, then by Lebesque dominated 
convergence theorem (see Lemma 3.3), we obtain by taking limit on 
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both sides: 

0~i = / j PimO~m • 

This leads to the following theorem for computing at. 

Theorem 2.8. Let ai be the probability that the chain stays forever in the 
transient states given initially X(0) = i G CT- Let u>j(n) be defined as above. 
Then, 

(i) The limit limn-xx, Ui{n) exists and limn_+0o Wi(n) = ai. 
(ii) ai satisfies the equation 

°i = $ 3 VivOv,i G CT . (2.14) 
v€CT 

(hi) Ifviti G CT, satisfies the above system of equations and if\vi\ <l,i E 
CT, then \vi\ < ai,i G CT-

(iv) For i G CT, let Xi be the probability that starting with X{0) = i G CT, 
the chain will eventually be absorbed into a persistent state as time progresses. 
Then x^ = 1 for all i G CT iff ai = 0 for all i G CT is the only solution of the 
system of Eqs. (2.14). 

Proof. By definition, for every i G CT,u>i(n) = Pr{X(n) G CT\X(0) = 
i}. Since the chain is in CT at time n implies that the chain must be in 
CT at times 1,2...,n — 1, so, <7j = \imn->oo Wi(ri) if the limit exists. To 
show that the limit does exist, note first that 0 < Wj(n) < 1 for all i G CT 
and for all n = 1,2,... as they are probabilities. Thus, for every i G CT, 
0 < w<(l) < 1, 0 < Ui{2) = EvecTPiv"v(l) < Ev€cTPiv = ^ i ( l ) < 1, 
0 < Wi(3) = £ „ € C T P > W „ ( 2 ) < Y,vecT PivUv(l) = w*(2) < u>i(l) < 1; by 
induction, 0 < Ui(n + 1) < uJi{n) < •• • < u>j(l) < 1. This shows that for each 
i G CT, {cjj(n)} is a bounded monotonic non-increasing sequence so that the 
lim„_>oo uji(n) — ai exists for all i G CT- This proves (i). 

Now, 0 < J2vecTPiv — I'P™ - ° anc* ° - w«(n) - !; ^ Lebesque 
dominated convergence theorem, 

at = lim LJi(n + l) = lim Y"* pivujv(n) 
VECT 

= y~\ Piv[ lim w„(n)] = y* Pivav,i G C T . 
V€CT VGCT 
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This shows that the ait i £ CT satisfy Eq. (2.14). This proves not only (ii) 
and also that the solution of Oi = YlvecT Piv<Jv exists as the limit exists. 

To prove (iii), suppose that Vj satisfy Vi = Y^ikec Pikvk,i £ CT and 
\vi\ < l,i £ CT. Then, \vi\ < Y,k€CTPik\vk\ < tlkecTPik = a ,»(1)' 
Kl ^ X)fc€r Pik\vk\ < ^k&cTPikwk{^) = w»(2), and by induction, \v{\ < w,(n) 
for all n = 1,2,. . . , oo and for all i £ CT- Hence, \vi\ < <7j for all i £ CT-

To prove (vi), denote by (3i = X]j=i S m g C ' P*m' Then, obviously, the 
{xi,i £ CT} satisfies the system of equations: 

Xi = ^2 Piv%v + fti,i £ CT • 
vecT 

The general solution of this system of equations is given by Xi — x\p' + xf', 

where 0 < Xj < 1; 0 < xf' < 1 is the general solution of Xj = X ^ g c r P™xv and 

x\p is a particular solution of xi = J2vecT P™xv + Pi- Since 0 is the solution 

of Xi — y^.gf j . Piv%vi i> € CJ*J so the above system of equations has unique 

solution iff {x\q* = 0, i E CT} is the only solution of X{ — y \v£fij, ViyXy-, i £ CT 

or iff the probability is 0 that starting with X(0) = i £ CT initially, the chain 
stays forever in transient states. • 

2.6. The Moments of First Absorption Times 

Assuming that starting with i £ CT, with probability one the chain will even­
tually be absorbed into a persistent state. Then gi{t) is the probability density 
function of the first absorption time Ti of i £ CT- In this section we proceed 
to find the moments of T, i £ CT- In particular we will find the mean fa of Ti 
and the variance Vi of Ti. 

Now by definition, for each i £ CT, Pr(Tj = t) = gi(t) = uJi(t — 1) — u>i{t). 
Hence, 

oo oo 

Hi = ^2 n9i(n) = Y^, n N ( n - !) - ^i(n)] 
n = l n = l 

oo oo oo oo 

= 5 ^ ( n - l ) w i ( n - l ) - 5 ^ n w i ( n ) + 5 ^ w i ( n - l ) = 53w i(n). (2-15) 
n = l n = l n = l n=0 
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Let j]i = Y^=in29i{t)- Then Vi = r\i - /if. On subst i tut ing gi(n) — 
u>i(n — 1) — Wj(n), we obtain: 

oo oo 

n=l n=l 

OO OO OO 

= J2(n - l)2uJi{n - 1) - Yl n V ( n ) + 2 ^ ( n - l )wj(n - 1) 
n=l n=l n=l 

oo oo oo oo 

+ ^ W j ( n - 1) = 2 ^ n W i ( n ) + ^ W j ( n ) = 2 ] P n W j ( n ) + / i j . (2.16) 
n=l n=0 n=0 n=0 

2 . 6 . 1 . The case when CT is finite 

If CT is finite with r elements, then we may express the above equations in 

matr ix notat ions. For this purpose, denote by: 

u = {nl,...,^Y,v = {v1,...,vry, 
V = {m,---,Vr}', and U sq = {/x2,... , ^ 2 } ' . 

Then, since <jj(n) = {u>i(n),... , a / r ( n ) } ' = Q(n)lr = Qnlr, we have: 

oo oo 

C/ = ^ y ( n ) = J ] g " l r = (7 I . -Q)- 1 l r . (2.17) 
n=0 n=0 

Since Y^Zo iQ%l = (-̂ r — Q)_ 2> w e obtain: 

oo oo 

V = 2 ^ n w ( n ) + {7 = 2 Q ^ n Q n - 1 l P + U 
n=0 n=0 

= 2Q(7P - Q)-21P + E7 = (JP + Q)(JP - Q ) - 1 tf . (2.18) 

If Q has real distinct eigenvalues A j , . . . , Au, u < r, then 

u 
£/ = (7P - Q)-11P = 5 ^ ( 1 - A * ) - 1 ^ 1 P ; (2.19) 

i=l 
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a n d 

V=(Ir + Q)(Ir - Q)^ U = 5^(1 + Xi)(l - Xi)-2Eilr. (2.20) 
i = l 

2.7. Some Illustrative Examples 

In this section we illustrate the applications of the above results by some 
examples from genetics. 

Example 2.13. The full-sib mating model for one locus with t'wo 
alleles in natural populations. In Example 2.4, we have considered a full-
sib mating chain for one locus with two alleles in a large diploid population. 
In this example, the one-step transition matrix is: 

where 

s'.=(H°'s 

0 0 ' \ 

1 0 

V5i #2 QJ 

o 

#2 = (0,0,1,1 Q 

/o 

0 

0 

1 

1 \ 
1 
4 
1 
4 
1 
1/ 

Thus, 

N = (h-Q)-1 = 

( 1 

0 

0 

0 

1 
2 

0 

0 

1 
2 

_1 
4 

- 1 \ 
1 

"I 
1 

"i 
24 

/32 

4 

4 

U 

32 

64 

16 

32 

32 

16 

64 

32 

64 \ 

32 

32 

64 y 
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Hence, the vector of the probabilities of ultimate absorption into AA x AA 
given the transient states is 

while the vector of the probabilities of ultimate absorption into aa x aa given 
the transient states is 

P(2)=NR2 
1 1 3 1 
2 ' 4 ' 5 ' 2 

The vectors of mean absorption times and variances of first absorption times 
of the mating types AA x aa, AA x Aa, aa x Aa, Aa x Aa are given respectively 
by: 

U = {Ir-Q)-llr = NU 

160 „ „„ 116 „ „ 116 136 
— =6.67, — = 4 . 5 , - = 4 . 5 , - = 5 . 6 7 

and 

V = {2(7r - Q)-1 -Ir}U- Ust = (2N -h)U- Ust 

= -L(13056, 12304, 12304, 13056)'= (22.67, 21.36, 21.36, 22.67)'. 

Using the eigenvalues and spectrum expansion matrices of Q from 
Example 2.8, we obtain the probability of first absorption into the type 
AA x AA at time n given the mating types {AA x aa, AAx Aa, aa x Aa, Aa x Aa} 
is,withg ,

1 = (0>i, 0 , i ) , 

3^) = ^1ElRl + ^z-1E2R1 + ^)n-1 E.R. + ^Y'1 EiRl 

/ 0 \ 

2 n + 2 

1 

-1 + 4«+2 

5 

-12 

3 

V 3 / 
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+ ( - , T) 
n - l I 

X 
40 

/ 3 - V 5 \ 

, 3 
4 

+(?)""••' 40 

V 1 + ci / 

/ 3 + V5\ 
, 3 

1 + -C2 

\ l + 62 / 

Similarly, the probability of first absorption into the type aa x aa at time 
n given the mating types {AA x aa, AA x Aa,aa x Aa, ^4a x Aa} is, with 

4 ' 16 > Ry = (0,0, -7, Tg), 

5»(") = 2^rEl«2 + i ^ 2 # 2 +
 (T)""1 ̂ 2 + (?) 

n - l 
£/4 .R 4 i>2 

2™+2 

/ 0 \ 

1 

- 1 

v o y 
4n+2 

5 

-12 

3 

V 3 / 

(T) 
n - l ^ 

X 
40 

/ 3 - V 5 \ 

+ U ) X40 

/ 3 + V5\ 

V i + ci ) 

Example 2.14. The linkage model in self-fertilized populations. In 
Example 2.4, we have considered a two loci linkage model in large self-fertilized 
diploid populations. To illustrate the applications of Sec. 2.6, for simplicity 
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we assume that there are no selection (i.e. Xi = yi = l , i = 1,2); for general 
results under selection, we refer the readers to Tan [4]. In this case, the 1-step 
transition matrix is 

where 

Till = 

i?3' = 

and 

/ 1 

0 

0 

0 

o, o, 

0 

1 

0 

0 

-R2 

4 

0 

0 

1 

0 

-R3 

0 

0 

0 

1 

S'\ 
0' 

0' 

0' 

QJ 

Rl' = T 0, j , 0, 

°> i °. i 

(1 
2 

0 

0 

0 

El 
4 

) , R*> = (' 

Q = 

2pq 

4 

2pq 

4 

1 
2 

0 

0 

2pq 

4 

4 

0 

0 

1 
2 

0 

2pq 

4 

4 

0 

0 

0 

1 
2 

4 

2pg 
4 

0 ,0 , 

0 

0 

0 

1 1 
4' 4' 

0 

0 

0 

El 
2 

El 

4 

4 

El 
2 T / 

£l 
4 

E! 
4 

The eigenvalues of Q are Ai = ^ with multiplicity 4, A2 = \[p2 + q2) and 
^3 = \{<1 — p) and the spectral matrices of Q have been obtained and given in 
Example 2.9 with Xi = j/j = 1, i = 1,2. 

(i) The vectors of the probabilities of ultimate absorption into the 
four absorbing types AB/AB,Ab/Ab,aB/aB and ab/ab given the types 
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(AB/Ab, AB/aB, Ab/ab, aB/ab, Ab/aB) are given respectively by: 

£(!) = 

£(2) = 

£(3) = 

'1 

.2 ' 

"1 

.2 ' 

o, 

i«. 
°4 

^ 

o, 

o, 

1 
2 ' 

4 l V
i + l + 2 p y ' ' 

4\ l+2p)' 

4 v i + 2Py' 

4V l + 2 p / . 

4 V l + 2 p / 

i f l +
1 - 2 ^ l 

4\ i + 2Py_ 

and 

5(4) = o, o, -
1 1 1 
2' 2' 4 

l - 2 p " \ 1 
l + 2p 

l - 2 p 
4 V1 l + 2p/_ 

(ii) The vectors of first time absorption probabilities into the 4 absorb­
ing types AB/AB, Ab/Ab,aB/aB, ab/ab given the transient types are given 
respectively by: 

92{n) = \ ^ r v 0, — , 0, <S2n, * l n J , 

93{n) = ^0, 0, — , — , «5ln, «52„J , 

54(n) = (o, 0, ^ r T I , — , 5ln, S2nj , 

where 

hn = 
1 1 / 1 + 2pq 

and 

»2n 

2n+l 4 

1 1 (l + 2pq 
2n+1 4 

^(P2+<12) 

;(P2 + Q2) 

n-\ 

n - 1 

:(Q-P) 

^(1-P) 
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(iii) The vectors of mean absorption times and variances of first time ab­
sorptions of the transient types are given respectively as: 

^ = ( 2 , 2 , 2 , 2 , 2 < 1 + - « W±M)\ 
l + 2pq ' l + 2pq J ' 

V'= (2, 2, v, v), 

where v = 12 - ^ ^ ^ ^ { 2 ( 3 - 2pq) + 4(Upq)2}. 

Example 2.15. The Wright model under mutation in population 
genetics. In Example 1.11, we have considered the Wright model for a single 
locus with two alleles A and a in population genetics. In this model, we now 
assume that there are no selection and no immigration and migration, but 
A mutates to a with rate a.\ and a to A with rate a2. Then the transition 
probability from i A genes at generation n to j A genes at generation n + 1 is 

Pij = ( ^ ) ^ - P i r - j 

where 

i f i \ % 
Pi = 2N^l~a^+\~2N)a2 = a2 + 2N^ ~ ai ~~ a2)' ° ~ au"2 - 1 ' 

In this model, if 0 < a\, a2 < 1, then Pij > 0 for all i,j = 0 ,1 ,2 , . . . , 2N. 
Thus, if 0 < « i , ai < 1, the chain is irreducible. On the other hand, if 
a j / 0, a i < 1 but «2 = 0, then 0 is an absorbing state and is the only 
persistent state, while all other states are transient; if cti ^ 0, 0.1 < 1, but 
a.\ = 0, then {2iV} is an absorbing state and is the only persistent state while 
all other states are transient. If both a.\ = a2 = 0, then {0,2iV} are the 
absorbing states and are the only persistent states while all other states are 
transient. To derive the absorption probabilities, we first derive the eigenvalues 
of the one-step transition matrix P = (Pij)-

(2.15.1) The eigenvalues of P = (Pi j ) . We will show that the eigenvalues 
of P are 

Ai = 1, and, Xk+1 = -^—(1 - a i - a2)
k J f[(2N - i + 1) 1 , 

for Jfe = l ,2, . . . ,2JV. 

To prove this results, we will prove the following lemma. 
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Lemma 2.2. Let X(t) be the number of A alleles at generation t. If 

3 

E{X*{t + l)\X(t) = t} = 5 3 ° k A J = 0,1,2,..., 2JV, 
k=0 

for some constants a^j, then ajj (j = 0 , 1 , . . . , 2JV) are the eigenvalues of P. 

Remark 2.1. Notice that the above condition is equivalent to stating that 
the jib. conditional moment of X(t+1) around 0 given X(t) = i is a polynomial 
in i of degree j . The result of the lemma states that the coefficient of V in the 
polynomial E{Xj(t + l)\X(t) = i} is the (j + l ) th eigenvalue (j = 0 , . . . , 2N) 
of P . 

Proof of Lemma 2.2. Denote by P't the ith row of P, i = 1,2,. . . , 2iV + 1. 
For j = { 1 , . . . , 2JV + 1}, define the following (2JV + 1) x 1 columns, r j = 
{Qi-\ V-\ ..., {2N)i-1}', Xj = {U ~ 1)°, U ~ I ) 1 , • • •, U ~ 1) 2 W } ' and a , = 
(aoj-i, oi j - i , • • •, a-j-ij-i, 0 , . . . , 0)'. If the above condition is satisfied, then, 
with O0 = 1, we have, for a l i i = 1,2,. . . , 2N + 1 and j = 1,2,. . . , 2N + 1: 

27V 

E{X*-\t + l)\X(t) = i - 1} = 5 3 F - 1 ^ - ! , * = P'iLj 

fe=0 

3-1 

fc=0 

Let R, H, A be (2N+1) x (2AT+1) matrices with the jth column being given 
by r j , Vj, a,j, respectively, j = 1 , . . . , 2N + 1. Then, H' = R and in matrix 
notation, the above equation reduces to: PR = RA. Thus P = RAR-1, so 
that \P - \I\ = \RAR~1 - \I\ = \A- XI\ = 0. Thus, the eigenvalues of A are 
the eigenvalues of P. Since A is upper triangular, so (ajj, j = 0 , 1 ,2 , . . . , 2N), 
are the eigenvalues of P. • 

To derive the eigenvalues of P, we note that: 

E{X\t + l)\X{t) = i} = l, 

E{X(t + l)\X(t) = t} = 2NPi = (1 - a i - a2)i + 2Na2 , 

file:///RAR~1
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and 

2N 2N 

E{X\t + l)\X(t) = i} = Y,M - W + E - ^ 
j = 0 j = 0 

73 

,a2 

d E(2f)pV"-' 

J / (p=Pi ,9= l -P i ) 

(p=Pt ,g=l -P i ) 

= (2N)(2N-l)pj + 2NPi 

i 
= (2JV)(2iV-l) 

+2N 

2N 
(1 - a i - a2) + 2Na2 

— {l-a1-a2) + 2Na2 

which is a polynomial in i of degree 2. 
By mathematical induction, one can easily show that E{X^ (t+l)\X{t) = i) 

is a polynomial in i of degree j , j = 0 ,1 ,2 , . . . , 2N. Furthermore, the coefficient 
of ik in E{Xk(t + l)\X(t) = i) is obtained from the coefficient of ik of the 
following polynomial (polynomial in i): 

,, dk 

| P dpk 

2N / r > A r 

(P=Pi>9=l-Pi) 

= (27V)(2AT - 1) • • • (2JV - k + l)P
k 

( k , 

— {l-a1-a2)+2Na2 = m(2N-i + l) 

for k = 1,2,3,...,2N. 
Hence, the eigenvalues of P (the coefficient of ik) are 

A 1 = l 

for fc = l ,2, . . . ,2JV. 

'Afc+1 = (2^ (1 ~ai"a2)k n\{2N ~i+1>>}> 
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(2.15.2) The absorption probabilities. If a* ^ 0 for both i = 1,2, the 
chain is irreducible and all states are persistent. To derive absorption proba­
bilities, we thus consider the following three cases. 

Case 1: If QI ^ 0, a i < 1 but a2 = 0, then 0 is an absorbing state and is 
the only persistent state, while all other states are transient. Since the chain 
is finite if N < oo, the ultimate absorption probability of any transient state 
i (i > 0) is one by results of Subsec. 2.5.1. Thus the probability is 1 that the 
A allele is eventually lost from the population. 

In this case, 

\Bi Qi) 

and the eigenvalues of P are Ai = 1 and for k = 1 , . . . , 2N, \k+i = T^jinzQ ~ 
ai)h Yli=i(2N — i + 1),0 < Afc+i < 1. Further, the eigenvalues of Qi are 
7i = Aj+i, i = 1 , . . . , 2JV. Since all eigenvalues are distinct and real, Qi can be 
expanded as a spectral expansion. 

To find the absorption probabilities and the moments of first absorp­
tion times, put Ei = Uj^i ^=fi(Qi ~ XJJ2N), i = 1,...,2N. Then Ef = 
EuEiEj = 0, if i ^ j and J^i^i = hN- Since Rt = (I2N - Q I ) 1 2 J V , we 
have: 

(1) The vector F(n) of absorption probabilities at or before n is: 

2AT 

F(n) = (I2N - Q?)12N = £ ( 1 - tf)Eil2N . 
i=l 

(2) The vector 9 (n) of first time absorption probabilities at n is: 

2N 

9{n) = Qn
l-

l{I2N-Ql)l2N = YJir
l(L-li)Eil2N, n = l , . . . , o o . 

i=l 

(3) The vector U of mean absorption times is: 

2JV 

U = (I2N - Qi)-112N = 5^(1 - nr'Eil 2N 
i=l 
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(4) The vector V of the variances of first absorption times is V" — T] — U Sq, 
where Usq = {uj,..., v%N}' and 

V = (hN + Qi)(hN - QxT2 12JV 

IN 
= ^ ( l + 7 i ) ( l - 7 i ) - 2 £ 4 2 W . (2.21) 

i = l 

Case 2: If oc2 ^ 0, a^ < 1, but « i = 0, then {2N} is an absorbing state and 
is the only persistent states while all other states are transient. In this case, 
the eigenvalues of P are Ai = 1 and 

1 * 
Afc+1 = (2tfj*(1 " ̂  II(2Ar - { + * )> k = !> 2 >' • • ' 2 N > 

and 0 < Afc+i < 1, fc = 1,2,.. . , 2iV. 
The one-step transition matrix is 

*-(? t). 
and the eignevalues of Q2 are Xi = Ai_|_i,i = 1,...,2N. In this case, the 
ultimate absorption probability of transient states into the absorbing state 2N 
is one. That is, the probability is 1 that the A allele is eventually fixed ("a" 
allele is lost in the population). 

Put Et = n j # i ^ j ( Q 2 - Xihs), i = l,...,2N. Then Ef = Eit EiEj = 

0, if i ^ j and £ i = 1 Ei = I2N. Since i?2 = (hff - ^ 2 ) ^ 2 ^ , we have: 

(1) The vector F(n) of absorption probabilities at or before n is: 

2N 

F(n) = (I2N - Ql)l2N = £ ( 1 - x")Eil2N • 

(2) The vector 9 (n) of first time absorption probabilities at n is: 

2N 

h(n) = QrHhN - Q2) 12„ = 5 > ? - 1 ( l - Xi)£?i 12JV, n = 1 , . . . , 00. 
i=\ 
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(3) The vector U of mean absorption times is: 

2N 

U = (I2N - Q2)-
ll2N = J > - Xi)-lEil2N • 

i=l 

(4) The vector V of the variances of first absorption times is V — 7̂ ~ U sqi 
where U sq = {v\,..., i/%N}' and 

V =(l2N+Q2)(hN-Q2T2l 2N 

2N 

j = l 

Case 3: If a\ = a2 = 0, then {0,2./V} are absorbing states while the states {i = 
1 , . . . , 2JV — 1} are transient states. Hence the ultimate absorption probabilities 
of transient states are one. That is, gene A will either be lost or fixed in the 
population eventually as time progresses. This case corresponds to the case of 
"genetic drift" or "Wright drift" in population genetics. 

In this case the one-step transition matrix is 

P = 

/ 1 0 0 \ 

0 1 0 

\ « 1 «2 QJ 

The matrix P have 2N — 1 distinct eigenvalues Ai = A2 = 1, and 

1 k 

AW = ( ^ n ^ - i + 1 ) ' k = 2,...,2N. 

The eigenvalue Ai has multiplicity 2 corresponding to the two absorbing 
states {0,2N} while all other eigenvalues have multiplicity 1 and have values 
between 0 < A; < 1 (i = 2 , . . . , 2N). It is easily observed that the eigenvalues 
of the (2N — 1) x (2JV — 1) one-step transition matrix of transient states Q are 
o"i = A i+2, i = 1 , . . . , 2JV - 1. 

Put d = n j ¥ i ^(Q-^l2N),i = 1, • • • , 2 N - 1 . ThenG? = GuGiGj = 

0, if i ^ j and X)i=i~ @i — hN-i- Let i = 1 correspond to the state 0 and 
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i = 2 correspond to the s tate 2N. Since YJi=i £i = C ^ J V - I — Q)l2N-i, 

we have: 

(1) The vector Fi(n) of absorption probabilities into the i th absorbing 

s ta te at or before n is: 

Fi(n) = (I2N-i ~ Qn){hN-i ~ QYla,i 

2 J V - 1 

^ ( l - ^ ) ( l - C T i ) _ 1 ^ « i , i = l , 2 . 
i = l 

The vector F (n) of absorption probabilities into the absorbing s tates at or 

before n is: 

2 i V - l 

F{n) = (I2N - Qn)liN-i = £ (1 - * ? ) < * I 2 N - 1 • 
i = i 

(2) The vector 5 i (n ) of first t ime absorption probabilities into the i th 

absorbing s ta te at n is: 

2JV-1 

9i{n)=Qn-1ai= ^ a^GjOi, n = l , . . . , o o . 

The vector 9 (n) of first t ime absorption probabilities at n is: 

2JV-1 
5 ( n ) = Q n - 1 ( / 2 J V - i - Q ) l 2 J V - i = Yl ^ n _ 1 ( l - ^ ) ^ l 2 J V - i , n = l , . . . , o o . 

(3) The vector U of mean absorption times is: 

2JV-1 

U = (I2N-1 - Q)-1 12JV-1 = 5 1 ( J ~ °i)~lGi 12AT-1 • 
x = l 

(4) The vector V" of the variances of first absorption times is V̂  = V — U sq, 

where C/sq = {vj,..., ^ J V - I } ' a n d 

7? = (7 2 j V - i + Q ) ( J 2 A T - I - Q)~212JV-1 

2JV-1 

= ^ ( l + < 7 i ) ( l - ^ ) " 2 G i l 2 i v - i . 
i = l 
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Example 2.16. The absorption probabilities of simple branching 
process. Let {X(t),t £ T = ( 0 , 1 , . . . ,00)} be a Galton-Watson branching 
process with progeny distribution {pj,j = 0,1,..., 00} as described in Exam­
ple 2.10. (To avoid trivial cases, we assume 0 < po,pi < 1 and 0 < po +P i < 1, 
unless otherwise stated.) In this section we derive some basic results for the 
absorption probabilities and mean absorption times of transient states if the 
ultimate absorption probability of transient states is one. 

(2.16.1) Absorption probabilities. Let qj be the ultimate absorption prob­
ability of the state j (j > 0). Then, obviously, qj = q>, where q = qi is the 
ultimate extinction probability of X(t) when X(0) = 1. When the branching 
process is the process describing the behavior of a mutant gene arising at time 
0, q is the probability of ultimate extinction of the mutant. This problem is 
the well-known problem of the survival of a mutant in population genetics [14]. 
Although it is not necessary, for ease of illustration, in what follows we will 
often refer X(t) as the number of mutants at generation t, unless otherwise 
stated. 

Theorem 2.9. The survival probabilities of mutants. Let xn = 
Pr{X(n) = 0|X(0) = 1} = /„(0), where fn(s) is the pgf of X(n). Then, 
we have: 

(1) The limit linin-^oo xn exists and limn-xx, xn = q. 
(2) q satisfies the functional equation x = f(x), where f(s) — fi(s) is the 

pgf of the progeny distribution. 
(3) q is the smallest non-negative root of x — f(x). 

Proof. To prove (1), notice first that xn is the probability that the mutant 
is lost at or before generation n so that 0 < xn < 1. Hence, to show that 
q = linin-Kx, xn exists, it suffices to show that qn is a monotonic increasing 
function of n. We prove this by mathematical induction by first noting that 
3 j / (s) = f'(s) > 0 for all s > 0 so that f(s) is a monotonic increasing function 
of s if s > 0. 

Now, 1 > /(0) = /i(O) = Xl = p0 > 0, so f(p0) = /[/(0)] = /2(0) = 
xi > /(0) = A(0) = po = zi > 0; hence, x3 = /3(0) = /[/2(0)] > /[/(0)] = 
/2(0) = x2 > /(0) = xi. Suppose now xn = /n(0) > xn-i = / n - i ( 0 ) ; 
then x n + 1 = / n + i (0 ) = /[/„(0)] > /[/„_i(0)] = /„(0) = x„. This shows 
that xn = fn(0) is a monotonic increasing function of n. It follows that 
linin^oo xn = q exists. 
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To prove that q satisfies the equation x = f{x), notice that a;„+i = 
/n+i(0) = /[/n(0)] = f(xn) = £ ° l 0 4 P r { X ( l ) = j\X(0) = l } . Since 
0 < xn < 1 and £ ° l 0 P r { X ( l ) = j\X{0) = 1} = 1, so, by the Lebesque 
dominated convergence theorem (cf: Lemma 3.3), 

oo 

q = lim xn+1 = lim Y V P r { X ( l ) = j |X(0) = 1} 

OO 

= J2i K? <}Pr{X(l) = j\X(0) = 1} 
*—* n—+00 

OO 

= £yPr{X(l)=./|X(0) = l} = /(«). 
j=o 

This proves (2). 
To prove (3), notice that 1 = / ( l ) . Hence 1 is a solution of x = f(x). 

Suppose now A is another solution of x = f(x). We proceed to show that 
limn_j.00 /n(0) = q < A so that lim„^.oo xn = q is the smallest non-negative 
root of x = f(x). First, x = 0 is not a solution of x = f(x) as 0 ^ /(0) = po-
Thus, A > 0. Hence, 

A = / ( A ) > / ( 0 ) = X ! = p o ; 

=> A = /(A) > /[/(0)] = /a(0) = x2 , 

=» A = /(A) > /[/2(0)] = /3(0) = x3 . 

Suppose now A = /(A) > xn = / n (0) , then A = /(A) > /[/„(0)] = 
/n+i(0) = xn+\. Thus, A > x n for all n = 1,2,... so that A > limn-n*, xn = q. 

This proves (3). • 

Theorem 2.10. The fundamental theorem of simple branching pro­
cess. Let n denote the mean number of the progeny distribution. Then x = f(x) 
has an unique root r) satisfying 0 < n < 1 iff f'(l) = fi > 1; or 1 is the only 
non-negative root of x = f(x) iff / ' ( l ) = n < 1. In the case of the mutant 
gene, this is equivalent to stating that the probability is 1 that the mutant gene 
will eventually be lost [i.e. r = 1) iff the mean of the progeny distribution is 
less than or equal to 1. 
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Proof. To prove Theorem 2.10, notice that under the assumptions 0 < 
po, Pi < 1 and 0 < p0 + Pl < 1, /"(s) = £tf{s) > 0 for all s > 0. Thus, /(*) 
is a convex function of s for s > 0. It follows that s = f(s) intersects y = f(s) 
in at most two points. Since 1 = / ( l ) , there is at most one root 77 satisfying 
0 < 77 < 1. Furthermore, since f"(s) > 0 for s > 0, f'(s) is a continuous and 
monotonic increasing function of s when s > 0. 

(i) If there is a 77 such that 0 < 77 < 1 and 77 = /(?/), we will show that 
1 < /j, = / ' (1) . Now 77 = /(??) leads to 1 - 77 = 1 - f(rj) so that x~fffi = 1. 
But, by the mean value theorem in Calculus, 1 — f(rf) = / ' ( r ) ( l — 77) for some 
0 < 7 7 < r < l a s f(s) is convex, implying that f'(r) = 1,0 < r < 1 and 
r < 1. Since / ' ( s ) is strictly monotonic increasing for s > 0, it follows that 
/ ' ( l ) = VL> f'(r) = 1. 

(ii) Conversely, suppose that 0 < / ' ( l ) = /x < 1. Then, for any s, 0 < s < 1, 
we have 1 — / ( s ) = / '(^)(1 — s) for some s < r < 1. Since / ' ( s ) is strictly 
increasing for s > 0, so / ' ( r ) < / ' ( l ) < 1. It follows that 1 — f(s) < 1 — s 
or s < f(s) for all 0 < s < 1. Thus, 1 is the only non-negative root of 
x = f(x). • 

As an example, consider a single locus with two alleles A : a in a random 
mating diploid population with N individuals (The "a" gene is referred to as 
the mutant gene). Suppose that at the 0th generation, there is a mutant "a" 
entering into this population so that there is one individual with genotype 
Aa while all other individuals have genotype AA. Let the relative fitness of 
individuals with genotypes AA and Aa be given by 1 and 1 + s respectively. 
Then the frequency of "a" mutant is 

p-M-*A-±(i+a)+0(l.\ 
P~ l + ft -2iV ( 1 + S) + °UJ' 

and, in the next generation, the probability that there are j "a" genes is: 

*-(rxw)'('-wr-
When N is large, Pj ~ c-<1 + a>*ijf£, j = 0,1,2---. 

Let X(n) be the number of a allele at generation n. Under the assumption 
that there are no mutations from A —> a or vice versa in future generations, 
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X{ri) is a Galton-Watson branching process with progeny distribution {Pj, j = 
0 , . . . , } . When N is sufficiently large, 1 + s is the average number of progenies. 
Thus, in a sufficiently large population, the probability is 1 that the mutant 
"a" will eventually die out iff s < 0, or iff there is disadvantageous selection 
for Aa individual. When s > 0, the survival probability is n — 1 - 9, where 9 
is the smallest positive root of 9 = e^1+s^e~l\ as e(1 + s)(0 - 1) is the probability 
generating function of 

i , = e - ( i + S ) ( i + f £ i i ! J = 0 ) i ) 2 . . . . 

To find 9, notice that with TT = 1 - 0, 0 = e^+'W-V, we have 

1 - 7T = e-*(l+») = 1 - 7r(l + S) + -n2(l + s)2 + -7T3(1 + S)3 + • • • . 
2 6 

If 7r and 5 are small, we may omit terms involving {7r rsn _ r , n > 3}, then 
1 — 7r = 1 — 7r(l + s) + ^n2 so that n = 2s. Better approximations may be 
obtained by expanding f(9) = e(1+s)(e_1) in Taylor series around 0 = 1 to give 

9 = f(9) = 1 + (0 - 1)/'(1) + i ( 0 - 1)2/ '(1) + \(9 - 1)3/ '"(1) + • • • • 

Thus, with TT = 1 - 9, / ' ( l ) = 1 + s, / " ( l ) = a2 - / ' ( l ) + [/ '(l)]2 = 
o-2 - (1 + s) + (1 + s)2 = cr2 + (1 + s)s; omitting {(0 - l ) r , r > 3}, we have 

-TT ^ -TT(1 + s) + \-K2\a2 + s(l + s)]. It follows that, TT ̂  ja+^i+i) = 

7/1
 2«8<i+»r: — f l if we omit terms involving {sr,r > 3}, where a2 is the 

variance of Pj and a2 = (1 + s). 

(2.16.2) First absorption probabilities gin) and mean absorption 
time /x. In the Galton-Watson process, the set T of transient states is 
given by T = {1 ,2 ,3 , . . .} . Denote w(n) = Pr{X(n) e T\X{0) = 1}. Then 
u(n) = 1 - xn, u(n) < u(n - 1), and g(n) = Pr{N0 = n\X(0) - 1} = 
x„ — xn-x = u(n—l)—(jj(n), which is the probability that the chain enters the 
absorbing state 0 for the first time at n. This follows from the results that if 
X(n) G T, then X(n - 1) e T whereas given X(n - 1) G T, X(n) may or may 
not be in T. Notice that J^^Li 9(n) ^ ^e ultimate absorption probability that 
the chain will eventually be absorbed into the state 0. By Theorem 2.11, this 
probability is 1 iff fi = / ' ( l ) < 1. That is, the probability is 1 that the mutants 
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will eventually die out iff the mean number of the progeny distribution is less 
than or equal to 1. 

Assuming that the mean number ^ of the progeny distribution is /a < 1, 
then g(n) forms a discrete probability density function and the mean absorp­
tion time \i (i.e. the expected number of generations for extinction given 
X(0) = 1) is: 

OO CO 

fj. = ^ ng(n) = ^ n{w(n - 1) - w(n)} 
n=0 n=0 

OO OO OO 

= ^ ( n - l)u(n - 1) + ^2u>i(n - 1) - Y^n^i™) 
n=0 n=0 n=0 

OO 

= \~2u;(n) as w(—i) = o • 
Tl=0 

To derive xn = 1 - u(n), notice that xn+1 = /„+i(0) = /[/n(0)] = f{xn). 
When the progeny distribution is Poisson as above, then xn+i = e~(1+aX1~Xn\ 
When s = 0, lim„_Kx> xn = q = 1 and xn+i = eXn~l. Putting yn = (1 - x „ ) _ 1 

(or xn = 1 - j / - 1 , j / n > 1 as 1 - x n < 1), yn+i = (1 - e - " " 1 ) - 1 = {1 -
(1 - y'1 + \y~2 - i y~ 3 + 0i j /~ 4 )} - 1 , where 0X, depending on n, is less than 
some constant if y'1 is bounded. Or, yn+i = y„(l + \y^ + ^ j / ~ 2 + 022/n3), 
where 02 is less than a constant. When n is large, the above indicates that 
yn is dominated by §, yn S= f. Hence, £ ^ = 1 £ = 2 £ l = i £ = 21ogn, 
when n is large. Thus, 2/n = f + g logn + 83, where #3 is bounded. Hence, 
*n = 1 - g+iio,n+«, = * - 3n+iogn+g4>

 w h e r e ^ is bounded. Or, w(n) = 
1 — x n = 3 n + i0gn +g so that 53^- 0 w(n) = 00. This shows that, although the 
probability is 1 that the mutant is eventually lost, the expected number of 
generations for extinction is 00. 

2.8. Finite Markov Chains 

Consider a finite homogeneous Markov chains, {X(t),t € T = (0 ,1 ,2 , . . . )} . 
Then, by Theorem 2.6, the chain must contain persistent states. Further, 
all persistent states are positive. If the chain contain transient states, then, 
the probability is 1 that the transient states will eventually be absorbed into 
persistent states. (In general, finite Markov chains may or may not contain 
transient states.) 
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2.8.1. The canonical form of transition matrix 

Suppose that the chain contain r transient states and k closed sets of persistent 
states. Let P be the matrix of the 1-step transition probabilities of this chain 
and Pj the matrix of the 1-step transition probabilities of states in Cj. Then 
the following proposition gives the canonical form for P. 

Proposition 2.1. Let the first r states be transient states. Then, P can be 
expressed in the following canonical form: 

fQ Ri R2 ••• Rk\ 

Pi 0 

V 0 Pj 

where (R\, i?2 , . •., Rk) ¥" °-

To prove the above proposition, first notice that the chain must contain 
persistent states. Thus, let j \ be a given persistent state, that is, fj1j1 = 1 
so that ji <-> j \ . Denote by C\ the set of all states that j \ leads to. Since 
i i € Ci, so C\ is not empty. By Theorem 2.6, for every k £ C\,k <-»• ji; 
hence, by using the Chapman-Kolmogorov equation, if k € C\ and if £ € C\, 
then k o jx,£ «-» j i so that k <-> £. This implies also that C\ is closed. 
This follows since if s £ C\, then k -/> s for any fe £ Cj; for otherwise, 
ji «-» k, k —>• s =» ji —> s so that s S C\, a contradiction. Hence, C\ is a 
non-empty closed irreducible set of persistent states, and for any k € C\ and 
£ S C\,k «-» £. If Ci exhausts all persistent states, than all other states (if 
any) are transient states. Hence, with CT denote the set of transient states, 
we have: 

Cx C\ 

p=Cr(Q R\ 

CI V 0 Pj 

Since C\ U CT = S, the state space and Ci n CT = 0; also R ^ 0 since, for 
otherwise, the chain can stay in transient states an infinite number of times. 
We notice that CT may be empty, in which case, the chain is irreducible with 
S = C\. Now, if C\ does not exhaust all persistent states, then there exists an 
h & C\ and ji is a persistent state. Then, if we define C^ as the set of all states 
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J2 leading to, then C2 is also a non-empty irreducible closed set of persistent 
states such that, £ £ C2 and n £ C2 => £ «-» n. Moreover, Ci n C2 = 0, for 
otherwise, h € C\,h E C2 so that /1 «-> j i , h <->• j'2 =>• j i <-> J2 so that j'2 G Ci, a 
contradiction. Continuing this process, since the chain is finite, we have, after 
a finite number of times, put the set of all persistent states into the disjoint 
union Ci U C2 U . . . U Ck of non-empty irreducible closed sets of persistent 
states. For any k G CT and £ € Cr,k <-> £, for all r = 1,2,...,A;; and for 
k E CT,£ G Cs,r ^ s,k -ft £. Let CT be the set of all transient state (CT = 0 
if no transient states). Then C\ U C2 U • • • U Ck U Cy = 5, the state space, 
C T n C r = 0, r = 1,2,. . . , k, Cr D Cs = 0, r ^ s. Hence, 

CT 

c2 

/ 

0 

0 

Pi 

0 

0 

p2 

ck \ 0 

c fc 

0 

0 

0 PkJ 

where Pi is the transition probability matrix for states in Ci,Ri the tran­
sition probability matrix from states in CT to states in Ci, and Q the 
transition matrix of transient states into transient states. We notice that, 
R = (Ri,R,2,..-,Rk) 7̂  0, for otherwise CT is closed so that the chain can 
stay in transient states an infinite number of times, violating the 0-1 law. 

Using the above canonical form, it is easy to see that the matrix of the 
n-step transition probabilities is given by: 

P(n) = Pn = 

(QU Hln H2n 

0 P? 0 

0 0 P2" 

V 0 

Hkn \ 

0 

0 

0 PQ ) 

where 

Hn = Ri, i = l,2,...,k 

n-l 

Hin = ] T QsRiP?-X-3, i = 1,2, • • •, k. 
3=0 

> . 
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Since, by Theorem 2.4, if j is transient, then ^2nPij(n) < oo, so that 
linin-xx, pij (n) = 0. It follows that 

lim Qn = lim (pij(n)) = ( lim PijM) = 0. 
n->oo n-+oo n-HX 

This implies the following two results which are basic for the analysis of 
homogeneous Markov chains. 

(i) The eigenvalues of Q must have absolute value < 1. Furthermore, for 
every i e CT and for every j £ CT, \pij{n)\ < cr™> where 0 < r < 1, and c a 
constant. 

When Q has real eigenvalues {\i,i = l , . . . , r } , and can be expanded in 
spectral expansion, these results can easily be demonstrated. (The results 
hold regardless whether or not Q can be expanded in spectral expansion.) 

For then 

r 

i=l 

where 
| A i | > | A 2 | > - - . > | A r | , 

Ai, A2, . . . , Ar being the distinct eigenvalues of Q. Qn ->• 0 =£• A™ ->• 0 so that 
|Aj| < 1. Further, if we let ei(u,v) be the (u,t;)th element of Ei, then 

r 

Pu,v(n) = y^;Kei(U>V) 
i = l 

and 

|Pu,u(«)| < |Ai|nm„„, where mUtV =r max \ei{u,v)\. 
l<i<r 

Putting m = maxuecT,w6CT ™-u,v, then 

| p « ( n ) | < | A i r m , 0 < | A 1 | < l . 

(ii) (I-Q)-1 exists and (I - Q)'1 = I + Q + Q2 + • • •. This follows from 
the results: Qn -* 0 as n -> 00 and (I-Q)(I + Q + Q2 + - • - + Qn) = I-Qn+1. 
If Q has real eigenvalues {A;,i = 1 , . . . , r} and can be expanded in terms of 
spectral expansion, then Q = E i = i A»-E*> where Ei = Yl^ A . 1 A . (Q - Aj7). 
Notice that £? = EuEiEj = 0 for i ± j and £ [ = 1

 E< = ^- J t follows that 
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2.8.2. Absorption probabilities of transient states in finite 
Markov chains 

For homogeneous finite Markov chains, the absorption probabilities and the 
moments of first absorption times have been given in Sec. 2.5. However, these 
results are easily derived alternatively by using the above canonical form and 
by noting that the elements of rows of Pn sum up to 1. The latter condition 
is equivalent to that for any integer m > 1: 

k 

J ' = l 

Because the methods are straightforward, we leave it as an exercise 
(Exercise 2.9). 

2.9. Stochastic Difference Equation for Markov Chains 
With Discrete Time 

When the chain is finite, in many cases one may use stochastic difference equa­
tions to represent and characterize the chain. When some data are available 
from the system, one may then derive a state space model for the system. As 
illustrated in Chap. 8, this will provide an avenue for validating the model and 
for making inferences about unknown parameters in Markov chains with dis­
crete time. Notice also that in multi-dimensional Markov chains with discrete 
time, the traditional approaches often are very difficult and complicated, if not 
impossible. In these cases, the stochastic difference equation method appears 
to be an attractive alternative approach for solving many problems which prove 
to be very difficult from other approaches. In this section we illustrate how to 
develop stochastic difference equations for these Markov chains. 

2.9.1. Stochastic difference equations for finite 
Markov chains 

Consider a finite Markov chain {X(t), t G T = ( 0 , 1 , . . . , oo)} with state space 
5 = {l , . . . , fe + l } . Denote the one step transition probabilities by {pij(t) = 
Pr{X{t + 1) = j\X(t) = t} i, j = 1 , . . . , k + 1}. Let Xi(t) (i = 1 , . . . , k + 1) be 
the number of individuals who are in state i at time t and Z„ (t) the number 
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of individuals who are in state j at time t + 1 arising from individuals who 
are in state i at time t. Then, given Xi(t), the probability distribution of 
{Zij(t),j = 1,...,A:} follows a A:-dimensional multinomial distribution with 
parameters {Xi(t),pij(t), j = 1 , . . . , k}. That is, 

{Zij(t + l),j = 1 , . . . , k}\Xi(t) ~ ML{Xi(t), PiJ(t), j = 1, . . . , * } . (2.22) 

Furthermore, conditional on {Xi(t),i = 1 , . . . , A; + 1 } , {Zij(t),j = 1 , . . . , k} 
is independently distributed of {Zrj(t),j = l,...,k}ifi^r. 

Using the above distribution results, we have, for j = 1 , . . . , k + 1: 

fc+i fc+i 

X, (* + ! ) = £ Zii W = E X&)*i W + eJ (* + X)' (2-23) 

where e3-(t +1 ) = Y^±l\Zij(t) -Xi{t)pij(t)\ is the random noise for Xj(t + 1). 
In Eq. (2.23), the random noise €j(t + 1) is the sum of residues of random 

variables from its conditional mean values. Hence, E[tj(t + 1)] = 0 for all 
j = l , . . . , fc + l- Using the distribution result given in Eq. (2.22), one may 
readily derive the covariance Cov(ej(t + 1), er(t + 1)) by noting the basic 
formulae 

Cov (X, Y) = E Cov (X, Y\Z)+ Cov [E(X\Z), E{Y\Z)\ 

for any three random variables (X, Y, Z). This gives (Exercise 2.10), 

fc+i 

Cjr(t + 1) = Cov [€j(t + 1), er(t + 1)] = J2[EXi(t)]{pij(t)[Sjr - pir(t))} . 
*=i 

Denote by X(t) = {X1(t),...,Xk+i{t)}', e{t) = {ei( t ) , . . . ,e f c + i ( t )} / and 
F'(t) = (j>ij(t)) = P(t). Then, in matrix notation, Eq. (2.23) can be ex­
pressed as: 

X(t + l) = F(t)X(t)+e{t + l). (2.24) 

In Eq. (2.24), the vector of random noises have expected value 0 and 
covariance matrix V(t + 1) = {Cij(t + 1)). Let /ii(t) = E[Xi(t)\ and put 
£(i) = {/i!(*),...,Mfc+i(*)}'• Then, from Eq. (2.24), 

g(t+l) = F(t)l*(t). 
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For validating the model and for estimating the unknown parameters, sup­
pose that some observed data are available on the number of states at times 
tj,j = l , . . . , n . Let Yi(j) be the observed number of state i at time tj, 
i = 1 , . . . ,k + l,j = 1 , . . . ,n. Then, 

Yi(j) = X^) + ei{j),i = 1,... ,k + l,j = 1,... ,n, (2.25) 

where ei(j) is the measurement error for observing Yi(j). 
One may assume that the ei(j)'s have expected values Eei{j) = 0 and vari­

ance Var [ej(j')] = <r| and are independently of one another for i = 1 , . . . , k + 1 
and j = 1 , . . . , n and independently distributed of the random noises {er(t), r = 
l , . . . , fc + l } . 

Denote by Y(j) = {Y^j),... ,Yk+1(j)}' and e(t) = { e i ( i ) , . . . ,ek+1(t)}'. 
Then, in matrix notation, Eq. (2.25) can be expressed as: 

yU) = X(tj)+e(j),j = l,...,n. (2.26) 

Combining Eqs. (2.24) and (2.26), we have a linear state space model for the 
chain with stochastic system model given by Eq. (2.24) and with observation 
model given by Eq. (2.26). Using this state space model, one may then estimate 
the unknown parameters and validate the model. This will be illustrated in 
Chap. 9. 

Example 2.17. Mixture of random mating and assortative mating. 
In Example 2.2, we have considered a large natural population involving one-
locus with two alleles under random mating. Under this condition, the frequen­
cies of the gene and the genotypes do not change from generation to generation. 
This steady state condition is the well-known Hardy-Weinberg law in popula­
tion genetics. In natural populations, however, random mating is hardly the 
case; the real situation may be a mixture of several different types of mating 
types (see Subsec. 2.11.2). A frequent situation is the assortative mating by 
phenotypes. That is, individuals chose mating partners by phenotype, e.g. tall 
people chose tall people for mating. In this example, we consider the situation 
of mixture between random mating and assortative mating type. For a single 
locus with two alleles A : a, under assortative mating, there are then only three 
mating types: AA x AA, Aa x Aa, aa x aa. 

Let {X(t), t € T = ( 0 , 1 , . . . , oo)} be the Markov chain for the three geno­
types {AA, Aa, aa}. Let 1 — 9 be the proportion of assortative mating type in 
each generation and p(n) the frequency of A allele at generation n. Assume 
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that there are no mutations, no selection and no immigration and migration. 
Then, p(n) = p and, under mixture of random mating and assortative mating, 
the one-step transition matrix is given by (Exercise 2.11): 

P = 0 

( P 
1 

Vo 

\~p 

1 

2 

0 \ 

2 ( 1 - P ) 

1 - P J 

+ ( 1 - 0 ) 

(\ 0 0 \ 

1 1 1 

4 2 4 

\ 0 0 l) 

Let X'(t) = {Xi(t),X2(t),Xz(t)} denote the frequencies of the 
three genotypes {AA,Aa,aa} at generation t respectively and Y'(J) — 
{^i(j))5^0')>^3(j)} t n e observed frequencies of the three genotypes 
{AA, Aa, aa} at generation tj (j = 1 , . . . , n) respectively. Then we have, with 
F = P': 

and 

X(t + l) = FX(t)+e(t + l). 

XU) = X{ti)+eV),j = l, 

(2.27) 

(2.28) 

where e (t +1) and e (j) are the vectors of random noises and of measurement 
errors as defined in Subsec. 2.9.1 respectively. Using this state space model, one 
may then use procedures given in Chap. 9 to estimate {9,p} and to estimate 
and predict the state variables to validate the model. 

2.9.2. Markov chains in the HIV epidemic in homosexual 
or IV drug user populations 

For Markov chains of HIV epidemic considered in Example 2.6, the traditional 
approach as given above is very complicated and difficult. A feasible and 
rather simple alternative approach is by way of stochastic difference equations. 
This is the approach used by this author and his associates for modeling these 
models; see [7, 8, 10, 11, 15, 16]. In this section we illustrate how to develop 
stochastic difference equations for state variables in these models. 

Example 2.18. The chain binomial model in the HIV epidemic. 
Consider the AIDS Markov chain {Z(t) = {S(t),I(u,t),u = 0 , . . . ,t,A(t)}', 
t € T = ( 0 , 1 , . . . , oo)} described in Example 2.6. For this chain, because 
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the population size of non-AIDS people does not change significantly during 
a short period, we assume that for S people and I(u) people, the number 
of immigrants and recruitment equal to the number of death and migration 
out of the population; thus as an approximation to the real world situation, 
we will ignore immigration and death of S people and I(u) people. Then, S 
people would decrease only through HIV infection and I(u) people would only 
decrease by developing AIDS symptoms to become clinical AIDS patients. 

To develop stochastic difference equations for these state variables, let Fs(t) 
be the total number of S -> 7 during [t, t + 1), Fi(u,t) the total number of 
7(u) -> A during [t, t+l). Let ps(t) be the probability of S -> 7 during [t, t+l) 
and 7(w, t) the probability of I(u) —» A during [t, t + l) at time t. Then, we 
have: 

S(t + l) = S{t)-Fs(t), (2.29) 

I(0,t + l) = Fs(t), (2.30) 

I(r + l,t + l)=I(r,t)-Fi(r,t), r = 0,l,...,t, (2.31) 

t 

A{t + l) = A{t) + Y,Fi{r,t) (2.32) 
r=0 

t 

= A(t) + J2lI(r,t)-I(r + l,t+l)}. 
r=0 

Assume that ps{t) and j(u,t) are deterministic (non-stochastic) functions. 
Then the probability distribution of Fs(t) given S(t) is binomial with pa­
rameters {S(t),ps{t)}. That is, Fs(t) | S(t) ~ B[S(t),ps(t)]. Similarly, 
F/(u, t) I/(«,*) ~-B[/(u,t),7(«,*)]• 

Using these distribution results, one may subtract the conditional mean 
values from the random variables in Eqs. (2.29)-(2.32) respectively to obtain 
the following equivalent equations: 

S{t + 1) = S(t) - S(t)ps(t) + es{t + 1), (2.33) 

7(0, t + 1) = S(t)Ps(t) + e0(t + 1), (2.34) 

I(r + l,t + l) = I(r,t)-I(r,t)1(r,t) + er+1(t + l), r = 0,...,t, (2.35) 
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A(t +1) = A(t) + ^ I(r, t)j(r, t) +eA(t + l). (2.36) 

In Eqs. (2.33)-(2.36), the random noises are given by: 

es(t + 1) = -\Fs(t) - S(t)Ps(t)], e0(t + 1) = Fs(t) - S(t)Ps(t), 

e r + 1( i + l) = - [ F / ( r , t ) - / ( r , i ) 7 ( r , t ) ] , r = 0 , . . . , i , 

t 

eA(t + l) = ^[F(r,t)-I(r,t)1(r,t)}. 
r=0 

Denote by X (t) = {S(t), I(u, t), u = 0 , 1 , . . . , t}'. The above distribution 
results imply that the conditional probability P{ X (t +1) | X of X (t +1) given 

£(*) is 

x 
A / /(r,t) 
lU / ( r , i ) - / ( r + M + l) r = 0 

x [7(r, t)]'^*)-J(r+i.t+D [i _ 7 ( r > t)]/(r+i,t+i). (2.37) 

It follows that the probability density of X = {X(l),..., X(tM)} given 
X(0) is 

P{X|X(0)} = n P{X(j + l)\X(j)}. 

The above distribution results for { X (t), t = 1 , . . . , t ^ } have been referred 
to as the chain binomial distribution for the HIV epidemic [10, l l ] . 

Let Y(j) be the observed total number of new AIDS cases during 
[tj-i,tJ)(j = l,...,n). Then 

Y ( j ) = £ AI(i)+eti),j = l,...,n (2.38) 
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where Ai{t) is the AIDS incidence during [t,t + 1) and e(j) is the random 
measurement (reporting) error associated with observing Y(j). 

The above results give a state space model for the HIV epidemic for ho­
mosexual populations or populations of IV drug users first proposed by this 
author and his associates, see [10, 11, 15, 16]. For this state space model, 
the stochastic system model is given by Eqs. (2.33)-(2.36) and the observation 
model is given by Eq. (2.38). 

Example 2.19. The staged chain multinomial model of HIV 
epidemic. In the studies of HIV epidemic, to account for effects of infection 
duration, the infective stages are usually partitioned into substage. For exam­
ple, Longini et al. [17-19] and Satten and Longini [20-21] have partitioned the 
infective stage into 5 substage by the CD4^+^ T cell counts per mm3 of blood; 
see Fig. 1.1 in Example 1.12 for detail. 

Complying with Fig. 1.1 of Example 1.12, in this example we consider 
a staging model for the homosexual population assuming that the infective 
stage has been partitioned into k sub-stages (Ix,..., Ik). Let {S(t), I(r, t), r = 
l,...,k} denote the numbers of S people and Ir people at the tth month 
respectively and let A(t) denote the total number of AIDS cases devel­
oped at the ith month. Under the assumption that the transition rates 
{/3r(s,i) = /3 r(t),7 r(s,t) = 7 r(t) ,w r(s, t) = w r(t)} are independent of time 
s, X(t) = {S(t),I(r,t),r = l,...,k,A(t)}' is a (k + 2)-dimensional Markov 
chain with discrete time. For this chain, it is extremely difficult to develop ana­
lytical results. Thus, a feasible and reasonable approach is by way of stochastic 
difference equations. 

To develop stochastic difference equations for these state variables, let 
{Fi(r, t), Bi(r, t), Wj{r, t), Di(r, t)} and Ri(r, t) denote the numbers of {Ir -*• 
Ir+i, Ir —>• Ir-i, Ir —> A}, the number of death of Ir people, and the number 
of recruitment and immigration of Ir people during [t, t + 1), respectively. Let 
Fs(t),Ds(t) and Rs(t) be the number of S -> 7i, the number of death and 
retirement of S people and the number of immigrants and recruitment of S 
people during [t,t + 1), respectively. Assume that because of the awareness of 
AIDS, there are no immigration and recruitment of AIDS cases. Then we have 
the following stochastic equations for S(t),I(r,t) and A(t): 

S(t + 1) = S(t) + Rs(t) - Fs(t) - Ds(t); (2.39) 
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I(l,t + l)=I(l,t)+Ri(l,t)+Fs(t) + Bi(2,t) 

- F / ( l , t ) - W > ( l , t ) - D 7 ( l , t ) ; (2.40) 

I(r,t + l) = I{r,t) + RI{r,t) + Fi(r-l,t) 

+BI(r + l,t)-FI(r,t)-BI(r,t) 

-Wi(r,t)-DI(r,t)r = 2,...,k-l; (2.41) 

I{k, t + l) = I{k, t) + Ri(k, t) + Fi{k- 1, t) 

-Bj(k, t) - *>(*, t) - Dj(k, t); (2.42) 

k-i 

A(t + 1) = A(t) + £ W/(r,t) + F/(fc,t). (2.43) 
r= l 

Let /is(i) and /i/(r, t) denote the probabilities of death of £ people and Ir 

people during [t,t + 1) respectively. Let ps(t) be the probability of S —¥ Ii 
during [t, t+1). Then, given U (t) = {S(t), I(r, t), r = 1 , . . . , k}, the conditional 
distributions of the above random variables are given by: 

{Fs(t),Ds(t)}\y(t)~ML{S(t);ps(t),Mt)}; 

{^(1,0,̂ /(1,*). £>/(M)}|̂ W "^{/(M^w.o/iW.wa.t)}; 

~ ML{I(r,tynr{t),f3r(t),u;r(t),ni(r,t)} , for (r = 2 , . . . ,k - 1); 

{F/(fc, i), Bj(fc, t), D/(fe, t )} | U(t) ~ ML{/(fc, t);7k(t),l3k{f), w(fc, t)} • 

Assume further that the conditional distributions of Rs(t) given 5(i) 
and of Ri(r,t) given I{r,t) are binomial with parameters {£(<), i/,s(t)} and 
{I(r, £),i//(r,t)} respectively, independently of other variables. 

Define the random noises: 

es(t + 1) = [i?s(t) - 5(t)i/s(t)] - [Fs(t) - S(t)Ps(t)} 

-[Ds{t)-S{t)»s{t)h 

er(t + 1) = [fl/(r,t) - I(r,t)vr(r,t)} + [Ffr - l , t ) - 7(r - l,t)7r-i(*)] 
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+(1 - JfcP)[Bj(r + l , t ) -I(r + l,t)A-n(*)l 

- ( 1 - <Jfer)[*>(r,i) - 7(r,t)7 r(t)] - (1 - «Jir)[B/(r,t) 

- J ( r , *)&(*)] - TO',*) - I(r,t)Mt)} 

-[DI(r,t)-I(r,t)tMr(t)],r = l,...,k; 

k 

eA(t + 1) = 5 } W j ( r , i ) - / ( r , t K ( t ) ] . 
r = l 

Then, Eqs. (2.39)-(2.43) are equivalent to the following stochastic difference 
equations: 

S(t + 1) = S(t)[l + vs(t) - ps(t) - ns(t)] + es(t + 1); (2.44) 

I(r,t + 1) = I(r - l , t)7r-i(*) + (1 - Srk)I(r + l,t)/3r+1(t) 

+I(r, t)[l + Mr, t) - Irit) - (1 - 5lr)pr(t) 

- ( l - ( y P f c K ( t ) - w ( r , t ) ] + C r ( * + l ) , (r = l,2,...,k), (2.45) 

fc 

4( i + 1) = A(t) + J21(T, *K(*) + CA(* + 1), (2.46) 
r= l 

where 7(0,t) = S(t), 7o(i) = Ps(i), Pi{t) = pk+1{t) = 0, «fc(t) = 7fc(0 and tfy 
is the Kronecker's J. 

Because of the above distributions, the above model has also been referred 
to as chain multinomial model [7-9, 15]. 

2.10. Complements and Exercises 

Exercise 2.1. For the self-fertilized two-loci linkage model as described 
in Example 2.4, show that the one-step transition matrix is as given in 
Example 2.4. 

Exercise 2.2. Consider a large natural population of diploid involving one-
locus with three alleles Ai,A2,A3. Show that if the mating between individuals 
is random and if there are no selection, no mutations and no immigration and 
migration, then the Hardy-Weinberg holds (See Subsec. 2.11.1). 
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Exercise 2.3. (Mixture of self-fertilization and random mating). 
Consider a large natural population involving one-locus with two alleles A: a. 
Let {X(t),t £ T = ( 0 , 1 , . . . , oo)} denote the Markov chain of the three geno­
types {AA,Aa,aa}. Assume that the mating type is a mixture of random 
mating and self-fertilization. Let 1 — 0 be the proportion of random mating 
in each generation and let p(n) be the frequency of A gene at generation n. 
Assume that there are no mutations, no selection and no immigration and 
migration. Show that p(n) = p and the one-step transition matrix is given by: 

p = (i-e) 

1 V 
1 
2P 

\ o 

1-p 

1 
2 

P 

0 ) 
\{i-v) 

1 - p ) 

+ e 

(i 
I 
4 

U 

0 
1 
2 

0 

0 \ 
1 
4 

1 / 

Show that the eigenvalues of P are given by {Ai = 1, A2 = \9, A3 = 
i ( l + 9)}. Obtain the spectral expansion {Ei, i = 1,2,3} of P so that 

3 

Pn = YJKEi. 

Exercise 2.4. (Markov chain under inbreeding in natural popula­
tions.) Consider a large natural population involving one-locus with two al­
leles A : a. Let {X(t),t E T = ( 0 , 1 , . . . , 00)} denote the Markov chain of 
the three genotypes {AA, Aa, aa}. Assume that there are no mutations, no 
selection and no immigration and migration. Then under inbreeding with in­
breeding coefficient F, the one-step transition matrix is given by: 

P = (1 - F) 

I V 
1 
2P 

1 - p 

1 

2 

P 

0 \ 

1-p ) 

+ F 

/ I 
1 
2 

0 ° \ 

0 2-

\ o 0 1 / 

Show that the eigenvalues of P are given by {Ai = 1, A2 = 0, A3 = ^(1+F)}. 
Obtain the spectral expansion {Ei, i = 1,2,3} of P so that 

Pn = '$2>?Ei. 
i = l 
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Exercise 2.5. Consider a Galton-Watson branching process {X(t), t G T = 
(0 ,1 , . . . , ) } with progeny distribution {pj,j = 0 , 1 , . . . , }. Suppose that the 
mean and the variance of the progeny distribution are given by {/i, a2} respec­
tively. Show that the mean and variance of X(n) given X(0) = 1 are given 
by E[X(n)\X(0) = 1] = M

n and Var [X(n)\X(Q) = 1] = ^ - H E S , ^ 1 ) 
respectively. 

Exercise 2.6. Consider a Galton-Watson branching process {X(t), t e T = 
(0,1, . . . )} with progeny distribution {pj(t),j = 0 , 1 , . . . , oo, t > 0}. Derive the 
one-step transition probabilities in each of the following. 

(a) Assume that Pj(t) = pj, 
where 

{pi= ( 7 + ^ - 1 W ( l - u ) * , j = 0 , l , . . . , o o ) 0 < u < l , 7 > o | . 

(b) Assume that Pj{t) = Pj(l) if t < t\ and pj(t) = Pj(2) if t > ti, 
where 

tPj(i) = (j* +3
j~

1) «? (1 - u 0 j . 3 = 0 , 1 , . . . , oo, 0 < Ui < 1, 7 i > o | . 

Exercise 2.7. (Mating type involving sex-linked genes). Consider a 
single locus with two alleles A : a in sex chromosomes in human beings (see 
Remark 2.2.) Let the mating types {AA x AY, aa x aY} be represented by the 
state ei, the mating types {AA x aY,aa x AY} by e2 and the mating types 
{Aa x aY, Aa x AY} by e3. Let X(t) be the Markov chain for the mating types 
under brother-sister mating in a large population. If there are no mutations, 
no immigration and migration, and no selection and if t represents generation, 
then {X(t),t G T = (0 ,1 , . . . , ) } is a homogeneous Markov chain with discrete 
time with state space S = {e,, i = 1,2,3}. 

(a) Show that e\ is an absorbing state and the other two states are transient 
states. Show also that the matrix of the one-step transition probabilities is 
given by: 

0 0 \ 

0 1 

1 1 
7 
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(b) Derive the eigenvalues, eigenvectors and the spectral expansion of the 
matrices P and Pn for positive integer n. 

(c) Derive the probability densities of first absorption times of transient 
states. 

(d) Derive the vectors of expected values and variances of the first absorp­
tion times. 

Remark 2.2. (Sex-linked genes in human beings). In human beings, 
sex is determined by the sex chromosomes X and Y. The genotype of females 
is XX while that of males is XY. The Y chromosome has only a few genes so 
that if a gene is located in the sex chromosome, then the males are usually semi-
zygote. That is, males have only one gene as they have only one X chromosome. 
Thus, for a single locus with two alleles A : a in the sex chromosome, the 
genotypes of males are either AY or aY. (The genotypes of the females are 
AA,Aa,aa.) The mating types are: 

AA x AY, aa x aY, AA x aY, aa x AY, Aa x aY, Aa x AY. 

In the mating types, as a convention, the genotype on the left side denotes 
that of female and the genotype on the right side that of the male. 

Exercise 2.8. (Parent-offspring mating types). Consider a single locus 
with two alleles A and a in a sufficient large diploid population. Assume that 
the matings always occur between the younger parents and the progenies. Then 
there are 9 mating types which we denote by the numbers 1 , . . . , 9 respectively 
as follows (Remark 2.3): 

Parent 

AA 

aa 

AA 

aa 

Aa 

Aa 

A 

aa 

AA 

x 

x 

x 

X 

X 

X 

X 

X 

X 

AA 

aa 

Aa 

Aa 

AA 

aa 

Aa 

AA 

aa 

~ 1 

~ 2 

~ 3 

r~j 4 

~ 5 

~ 6 

~ 7 

r*J 8 

~ 9 
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Let X(t),t G T = {0,1,2, . . .} denote the parent-offspring mating types 
at generation t. Then {X(t), t = 1,2,...} is a Markov chain with state space 
O = { 1 , . . . , 9}. Assume that the fitness of the three genotypes are: 

AA, Aa, aa 

x 1 x, x > 0. 

Then the above chain is homogeneous. 

(a) Show that the states (1,2) are absorbing states and all other states are 
transient states. Show also that the 1-step transition matrix is 

P = 

(Pi 

0 p2 o' 

52 Q J 

where Pi = P2 — 1, 

£ i = ^ 0 , 0 , 0,0, 0 , V / , V f , 

and 

( o 

Q 

o 

l 
l + x 

0 

0 

0 

0 

1 

0 

1 

l + x 

0 

X 

l+x 

0 

0 

0 

R2 = { 0,0,0, 

l + x 

0 

l+x 

I 
l + X 

0 

0 

2(1 +a;) 2(1 +a;) l + x 

0 0 0 

0 0 0 

- , 0 , 0 , 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 / 

(b) Obtain the eigenvalues and eigenvectors and the spectral expansion of 
matrices P and Pn. 

(c) Derive the ultimate absorption probabilities into absorbing states. 
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(d) Derive the vector of probability densities of first absorption times. 
(e) Derive the vectors of the means and the variances of first absorption 

times. 

Remark 2.3. In this example, one may assume that the individuals have 
both sex organs as are the cases in some plants. In animal populations, one 
may assume a large population with equal number of males and females and 
that there are no differences in fitness between males and females. 

Exercise 2.9. Consider a finite homogeneous Markov chain {X(n),n = 
0 , 1 , . . . , }. Assume that the chain contains k closed sets and also contain r 
transient states. Use the canonical form of the transition matrix as given in 
Sec. 2.8 to prove Eqs. (2.9)-(2.13) and (2.17)-(2.18). 

Exercise 2.10. Derive the covariances between the random noises given in 
Eq. (2.23) in Subsec. 2.9.1. 

Exercise 2.11. Let {X(t), t e T = (0 ,1 , . . . , )} be the Markov chain given 
in Example (2.17). Assume that the population is very large and that there 
are no mutations, no selections and no immigration and migration. Show that 
the frequency p{n) of the A allele at generation n is independent of n. Show 
also that the one-step transition matrix is as given in Example 2.17. 

Exercise 2.12. (Multiple branching processes). Let {X(t) = 
[Xi(t),...,Xk(t)]',t 6 T = ( 0 , 1 , . . . , oo)} be a ^-dimensional Markov process 
with state space S = {£ = ( i i , . . . ,ik)'',ij = 0 ,1 , . . . ,oo , j = 1 , . . . ,fc}. For 
each i (i — 1 , . . . , k), let {qi(j), 3 = ( j i , . . . ,jk)' £ S} denote a fc-dimensional 
probability density defined on the space S. 

Definition 2.5. {X(t),t G T} is called a k-dimensional Galton-Watson 
branching process with progeny distributions {gi(J = ftO'i, • • • ,3k), J € 5, i = 
1 , . . . , Ar} iff 

(a) P{Xi(0) = 1} = 1 for some i = l,...,k 

and 

(b) P{X(t + l) = i\X(t)=i} 

= P{Xr(t + l)=jr,r = l,..., k\Xr(t) =ir,r = l,...,k} 
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= p EE^u)=^--EEz^")=^ 
<u=lr=l u=lr=l 

= p EE^) = i -
l.u=lr=l J 

where Z^r) = [Zi(r, i),..., Zk(r, i)]' ~ Z = [Zi(i),..., Zk{i)]' independently 
of one another for all (i = 1 , . . . , fc) and for all (r = 1 , . . . , oo) and where the 
Z i are random vectors independently distributed of one another with density 
{liU) = 1i(ji>- • • life)i 3 € S}. (Notice that Zj(r, i) is the number of Type-j 
progenies produced by the r th individual of Type-i parents.) 

Let 9i(x) = gfai,..., Xk) (i = 1,. • •, k) denote the pgf of the ith progeny 
distribution (i.e. &(.?, i S S). Let fi(x;t) denote the pgf of X(t) given 
X(0) = ei; where gi is a k x 1 column vector with 1 at the ith position and 
with 0 at other positions. Show that 

oo oo / k \ fc 

E • • • E I K " p{X{t + 1) = j\X(t)=i} = Y[\gr(x))^ . 
ji=0 jk=0 \ r = l / r = l 

Hence show that 

fi(x;t + l)=gi{f1(x;t),...,fk(x;t)}. 

Show also that 

fi{x;t + l) = fi{gi(x),...,gk(x);t}. 

In the multiple branching process as defined in Definition 2.5. Let 

mi,j(n) = E[Xj(n)\X(0)=ei}=(^-fi(x)) ,i,j = l,...,k. 
\OXJ / (x i=l,i=l,. . . ,fe) 

Then m,ij(n) is the expected number of Type-j progenies at generation 
n from a Type-i parent at generation 0. Let M(n) = [mij(n)] be the fc x fc 
matrix with mitj(n) as the (i, j)th element and put M = M( l ) . Show that 
M(n) = Mn for any positive integer n. The matrix M has been referred 
to as the matrix of expected progenies. Notice that the elements of M are 
non-negative. 
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The multiple branching process is called a positive regular if there exists a 
positive integer r such that all elements of Mr are positive. Such as matrix 
M is called a Perrron matrix. Denote by 9{x) = \gi(x),... ,gk{x)}'. The 
multiple branching process is called a singular process if 9{x) = Ax for some 
matrix A. Notice that 9(x) = Ax correspond to the case that each type has 
probability one of producing just one child. 

The following results are useful for deriving basic results for multiple 
branching processes. 

(1) If M is a Perron matrix, then M has a positive real eigenvalue Ao with 
multiplicity 1 whose corresponding normalized right eigenvector (u ) and left 
eigenvector (v) have only real positive elements. Furthermore, the following 
results hold: 

(a) If Xi is any other eigenvalue of M, then |Aj| < Ao. 
(b) There exists a matrix Mi = (cy) such that 

Mn = XQ(uv') + M2 , with \cij\ < 0(an),i,j = 1,. ..,k for some 0 < a < A0 . 

For proof, see Gantmacher [22], Chap. 13. 

(2) For non-singular, positive-regular multiple branching processes, the fol­
lowing result is an extension of Theorem 2.11. 

Theorem 2.11. Let {x(t) = [Xi(t),...,Xk(t)]',t € T = ( 0 , 1 , . . .,oo)} 
be a k-dimensional multiple branching process with state space S = {^ = 
(ii,... ,ik)', ij = 0 , 1 , . . . , oo, j = 1,...,A;} and with progeny distributions 
{Qi(j)t J = til,-- • >3k)' 6 S}. Let M be the matrix of expected number of 
progeny distributions per generation. Suppose that the process is non-singular 
and positive regular so that M has a real positive eigenvalue A of multiplicity 
1 satisfying |A»| < A for any other eigenvalue Xi of M. Let a denote the vector 
of extinction probabilities given {-A (̂O) = e*, i = 1 , . . . ,fc}. Then, q = 9(l) 
and 

q = lfc, ifX<l, 

0 < Q < 1*, i}X>\, 
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where 9{x) is the vector of pgf's of the progeny distributions and gi the k x 1 
column vector with 1 at the ith position and with 0 at other positions. 

For proof, see [23, p. 41]. 

2.11. Appendix 

2.11.1. The Hardy-Weinberg law in population genetics 

In natural populations, if the probability that each individual selects an in­
dividual of a particular type as its mating partner is given by the relative 
frequency of that particular type in the population, then the mating between 
individuals in the population is referred to as a random mating. The Hardy-
Weinberg law in population genetics specifies that if the population size is very 
large and if the mating between individuals is random, then under some con­
ditions, the frequencies of genes and genotypes do not change from generation 
to generation. The specific conditions under which this steady state condition 
holds are: 

(1) The generation is discrete. 
(2) There are no selection. 
(3) There are no mutation. 
(4) There are no immigration and no migration. 

We now illustrate this law by considering a single locus in Subsec. 2.11.1.1 
and two-linked loci in Subsec. 2.11.1.2 in diploid populations. 

2.11.1.1. The Hardy-Weinberg law for a single locus in 
diploid populations 

Consider a single locus with two alleles (A and a) in a sufficiently large pop­
ulation of diploid. Suppose that the mating is random and that there are 
no selection, no mutation, no immigration and no migration. Then, after at 
most two generations, the frequency of A allele becomes p which is indepen­
dent of time and the frequencies of the three genotypes {AA, Aa, aa} become 
{p2, 2pq, q2} where q = 1 — p, respectively. This steady-state result has been 
referred to as the Hardy-Weinberg law. 

To prove the Hardy-Weinberg law, at generation t, let {n m ( l ) ,n m (2) , 
nm(3)} denote the numbers of the three genotypes {AA,Aa,aa} respectively 
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for the males in the population; {n/( l ) , n/(2), n/(3)} the numbers of the three 
genotypes {AA, Aa, aa} respectively for the females in the population. Denote 
by {um(i) = nm(i)/[nm(l) + nm{2) + nm(3)], uf{i) = nf(i)/[nf(l) + n/(2) + 
n / ( 3 ) ]>* = M A ' P m = " m ( l ) + ^Um(2) ,? m = l-pm,Pf = Uf{l) + \uf(2),qf = 
1 — Pf. Then, p m and p / are the frequency of .4 gene for the males and for 
the females respectively at generation t. Under random mating and assuming 
that there are no selection, no mutation, no immigration and no migration, 
the mating types (the first genotype denotes the mother), the frequencies of 
the mating types and the frequencies of the progenies are given by: 

Mating types Frequencies Frequencies of different types 
of mating types in the daughters (or in the sons) 

AAxAA 

AA x Aa 

AA x aa 

Aa x AA 

Aa x Aa 

Aa x aa 

aa x AA 

aa x Aa 

aa x aa 

um(l)uf(l) 

u m ( l ) U / (2 ) 

(l)«/(3) 

um(2)uf(l) 

um(2)uf(2) 

um{2)uf(3) 

(3)«/(l) 

um(3)« /(2) 

(3)«/(3) 

1 
4' 

AA 

-AA:-Aa 
2 2 

Aa 

-AA:-Aa 
2 2 

AA : -Aa : -aa 
2 4 

1
 A

 X 
-Aa : -aa 
2 2 

Aa 

1 A l 

-Aa : -aa 
2 2 

aa 

Thus, for both the males and females, the frequencies of the three genotypes 
at generation t + 1 are: 

(1) AA : mm(l)uf(l) + ^« m ( l )« / (2) + -u m (2 )« / ( l ) + -um(2)uf{2) 

iim(l) + 2U™(2) \ \ uf0-) + 2 U / ( 2 ) f = P™Pf ! 
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(2) Aa : -um{l)uf(2) + mm{l)uf{3) + - u m ( 2 ) u / ( l ) + -um{2)uf{2) 

+ -um(2)uf(3) + m m ( 3 ) u / ( l ) + -um{Z)uf{2) 

= um(l)qf + -um{2)(pf + qf) + um(3)p/ 

(1) + -um{2) 

pmqf + qmpf; 

If (2)Um(3) P/ 

(3) aa : mm(3)u /(3) + -u m (3)u / (2) + -Um(2)u/(3) + -um(2)uf(2) 

x(3) + 2U" (2) }{ «/(3) + 2 U / ( 2 ) 9mg/ . 

The frequency of the A allele at generation t + 1 is p = p m p / + 3(Pm<7/ + 
QmPf) = \{Pm +Pf) for both males and females. The frequencies of the three 
genotypes {AA, Aa, aa} at generations t+j (j = 1,2, . . . ,) are given respec­
tively by {p2,2pg, g2}, where q = 1 — p for both males and females. The fre­
quency of A allele is also p for both males and females at generations t+j with 
j = 1,2,...,. Notice that if um(i) = u/(i), i = 1,2,3, then pm = pf = p and 
the steady-state condition is achieved in one generation. If um{i) ^ u/(i), then 
the steady-state condition is achieved in two generation with p — \{pm +Pf)-

By a straightforward extension, the above results also extend to cases in­
volving a single locus with more than two alleles; see Exercise 2.2. For example, 
suppose that the A locus has k alleles, Ai,i = 1,2,... ,k and that the following 
assumptions hold: 

(1) The individuals are diploid and the population size is very large. 
(2) The generation is discrete. 
(3) The mating is random. 
(4) There are no selection, no mutation, no immigration and no migration. 

Then in at most two generations, the frequencies of the genotypes are pf 
for the genotype AiAi and are 2piPj for the genotype AiAj, (i ^= j). 

Example 2.20. The ABO-Blood group in human beings. In human 
beings, the blood group is controlled by three alleles {A, B,0). The AB 
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type has genotype AB; the A-type has genotypes {AA, AO}; the 5-type has 
genotypes {BB,BO} and the O-type has genotype OO. Let {p, q,r} (r = 
1 — p — q) denote the frequencies of the {A, B, O} alleles in the population 
respectively. Then, under Hardy-Weinberg equilibrium, the frequencies of the 
{AB-type, A-type, B-type, O-type} are given by {2pq,p2 + 2pr,q2 + 2qr,r2} 
respectively; for more detail see Example 3.5. 

2.11.1.2. The Hardy-Weinberg law for linked loci in diploid 
populations 

To illustrate the Hardy-Weinberg equilibrium for linked loci, consider two 
linked-loci A and B in a very large diploid population. Assume that the 
A locus has k alleles {At,i = l,...,k} and that the B locus has m alleles 
{Bj,j = 1, . . . , m } . Assume further that the mating between individuals is 
random, the generation is discrete and that there are no selection, no mu­
tation, no immigration and no migration. Then, as time progresses, with 
probability one the frequency of gamete with genotype AiBj will approach 
Piqj, where pi and qj are the frequencies of the alleles Ai and Bj in the pop­
ulation respectively; under random mating, the frequency of individuals with 
genotype AiBj/AuBv will approach (2 - 5iu)(2 - 6jv)pipuqjqv, where Sy is the 
Kronecker's 5 defined by Sij = 1 if i = j and = 0 if i ^ j . (As in the case 
with one locus, pi is the average of the frequencies of the Ai allele of males and 
females at generation 0; qi is the average of the frequencies of the Bj allele of 
males and females at generation 0). 

To prove the above result, let Pn(AiBj) denote the frequency of gamete 
with genotype AiBj at generation n; let 0m and Of denote the crossing-over 
frequencies between the A locus and the B locus for males and for females 
respectively. Put 6 — \{6m + #/). Then after two generations, we have the 
following relationship between the frequencies of gametes at generation n — 1 
and generation n: 

Pn{AiBj) = (1 - &)Pn-1(AiBj) + 9Piqj , 

for all i = 1 , . . . , k; j = 1 , . . . , m. 
The above equation is derived by noting that the gametes at generation 

n + 1 are either products of a meiosis with a crossing over with probability 9 
or products of a meiosis without crossing-over with probability 1 — 6. If no 
crossing-over has occurred, then the frequency of gamete with genotype AiBj 
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at generation n + 1 is the same as that at generation n; on the other hand, 
under crossing-over, the frequency of AiBj at generation n + 1 is a product of 
random union of alleles Ai and Bj at generation n from the population. The 
above equation leads to 

Pn(AiBj)~piqj = (l-6){Pn-1(AiBj)-piqj} = (l-9)n-2{P2(AiBj)-piqj}, 

for a l i i = 1 , . . . , k; j = 1 , . . . , m. 
Since 1 - 8 < 1, it follows that limn_>.0OPn(ylj.B;,-) = piqj for all i = 

l,...,k,j — 1, . . . , m . This condition has been referred to as linkage equi­
librium in the population. 

The above results have also been extended to cases involving three or more 
linked loci by Bennett [24]. For example, if we have 4 linked loci, say A, B, C 
and D, then under linkage equilibrium, the frequency of gamete with genotype 
AiBjCulJv is given by Piqjruwv, where {pi,qj,ru,wv} are the frequencies of 
alleles {Ai,Bj,Cu,Dv} in the population respectively; for more detail, see [l]. 

The above Hardy-Weinberg law has also been extended to cases involv­
ing sex-linked genes and to polyploid populations; such extensions have been 
discussed in detail in [l]. 

2.11.2. The inbreeding mating systems 

In large natural populations, if there are no disturbances (mutation, selection, 
immigration and migration) and if the mating is random, then both the fre­
quencies of the genes and the genotypes will not change from generation to gen­
eration. This steady state result has been referred to as the Hardy-Weinberg 
law; see Subsec. 2.11.1. If the mating is not random, then the frequencies of 
the genotypes will change over generations but the frequencies of genes remain 
stable and will not be affected. To illustrate, consider a single locus with k 
alleles Ai, i = 1 , . . . , k. Let F be the probability that the two genes in AiAi 
are exactly the same copies of the same gene in an ancestor. Then the fre­
quencies of AiAi and AiAj (i ^ j) are given respectively by (1 - F)pf + Fpi 
and 2(1 — F)piPj, where pi is the frequency of the Ai allele in the population. 
In population genetics, F has been referred to as the inbreeding coefficient. 

In wild natural populations, matings between individuals can hardly be 
expected to be random. Hence, in studying evolution theories, it is of con­
siderable interests to study many other mating systems than random mating 
in the populations. Fisher [2] and Karlin [3, 4] have shown that many of 
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these mating systems can be described by homogeneous Markov chains. In 
Examples 2.7 and 2.8, we have described the self-mating system and the full 
sib-mating system (brother-sister matings) respectively; other mating types 
which have been considered by Fisher and Karlin are the parent-offspring mat­
ing system, the half-sib mating system, the assortative mating system, first-
cousin mating systems, second-cousin mating systems, as well as mixtures of 
these systems. 

2.11.3. Some mathematical methods for computing An, 
the nth power of a square matrix A 

Let A be a p x p matrix of real numbers. If there exists a number (in general, 
complex number) A and a non-zero vector x satisfying Ax = Xx, then A is 
called an eigenvalue of A and x the eigenvector of A corresponding to A. The 
restriction x ^ 0 implies that the eigenvalues of A must satisfy det(A — XIp) = 
\A — XIp\ = 0. Now, \A — XIp\ = 0 is a polynomial in A of degree p; hence, 
\A — XIP\ = 0 has p roots in the complex field. Let the distinct roots of A be 
Ai, A2, . . . , Ar repeated ki,k2,. • • ,kr times respectively (k\ + hi + • • • + kT = p 
as there are p roots). The matrix A is called diagonable iff, there exists a 
non-singular p x p matrix R such that: 

/A:7fcl 

R-'AR = A 

\ 

^2 h2 

\ 0 XrIkJ 

is a diagonal matrix with diagonal elements 

^ 1 ) • • • ; ^1>> ^ 2 ) • • • i A 2 , , • • • , Xr, . . . ,Xr, 
v ' " v ' » ^ ' 
k\ ki kr 

Partitioning R by R = (Ri, R2,...Rr) and R'1 by R 

G'2,.-.,G'ry, then 
ki kr 

- 1 = ( 
ki 

R'lAR = A^AR = RA, R~lA = AiT1 
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and A = RAR 1. These lead immediately to the following results: 

1. AR = RA -> AR4 = XtRi, i = 1, 2 • • • r; and R~lA = AR'1 -> GiA = 
AjG;, i = 1, 2 • • -r. That is, the columns of Ri are independent right eigen­
vectors of the eigenvalue A,; the rows of G, are independent left eigenvectors 
Xt. 

2. We have 
r r 

A = RAR-1 = (Ru R2,.. .,Rr)A(G[, G 2 , . . .,G'r)' = ^ A ^ G * = ^ A ^ * ' 
»=1 i = l 

where Ei = RiGi, i = 1,2,..., r. Next we show that 

r 

5 3 £* = 7P> ^? = ^i. a n d ^^- = o 
t= i 

for all i ^ j so that A = Y^=i ^i^i is the spectral expansion of A. To prove 
these, note first that 

r r 

2_^^i = Z^,R*G!i = (Ri, i?2, • • • ,-Rr)(G1, G 2 , . . . ,GT) = RR~ = Ip; 
i = l i = l 

Jp = -R- -R = (Gj, G 2 , . . . , G r) (i?i, i?2, • • •, -Rr) 

' G\Ri G1R2, • • • GiRp ' 

G2R1 G2R2, • • • G2Rr 

\GTR\ Grii2) • • • GrRr J 

It follows that 

GiRi = Iki,GiRj = 0, ioii^j. 

Thus, £!? = £*£; = RiGiRiGi = Rid = Ei and EkEj = RiGiRjGj = 0 
for i 7̂  j . 

If the eigenvalues A* (i = 1 , . . . , r) of A are real numbers, then we have the 
following theorem for the spectral expansion of A. 

Theorem 2.12. Spectral expansion of square matrices. If the p x p 
matrix A is diagonable with real eigenvalues, then the spectral expansion of A is 
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given by A = E[=i KEi, where Aj, A2,. . . , Ar are the real distinct eigenvalues 

of A and Ei = n j # i 7 ^ 7 ) 0 4 ~ V P ) -

Proof. A diagonable implies that there exists a non-singular matrix R such 
that: 

R'XAR = A : 

/Ai/ f c l 

V 0 

•Wfc2 

\ 

r̂-ffc,. / 

where Ai, A2, . . . , Ar are the real distinct eigenvalue of multiplicities 
ki,k2,...,kf respectively. Further, \j real imply that R and R~l are ma­
trices of real numbers. Denote by Dj (j = 1 , . . . , r) the p x p diagonal matrix 
with 1 at the E i = i fo + 1 , . . . , YL\Z\ ^i + kj diagonal positions but with 0 at 
all other positions. (The sum Xw=i ^i is defined as 0 by convention). Then, 
R~lAR = £ [ = 1 AiA; E[= i Dt = Ip,Df = Di and DiDj = 0 for i + j . Put 
Hi = RDiR~\ then j ^ = 1 ^ = Jp, #*#* = # , , fl^ = 0 for i + j . But, 

x [R-\A - X2IP)R] • • • [R-^A - Xi-!lp)R] 

x [R-^A - *i+iIP)R] • • • [R~HA - KIp)R} = Dt. 

Hence, Hi = Ei. • 
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Chapter 3 

Stationary Distributions and MCMC in 
Discrete Time Markov Chains 

3.1. Introduction 

In natural systems, most of the processes will eventually reach a steady-state 
condition as time progresses. This is true in Markov processes as well as in 
many non-Markovian processes. Thus, as time progresses, under some general 
conditions the homogeneous Markov chain with discrete time will eventually 
reach a steady-state condition under which the probability distribution of the 
chain is independent of time. In this chapter we will illustrate how and under 
what conditions the Markov chain X(t) with discrete time will converge to 
some stationary distributions. Then we will illustrate how this theory can be 
used to generate some computational algorithms to solve many optimization 
problems in many applied fields including biomedical systems. This latter 
algorithm has been called the MCMC (Markov Chain Monte Carlo) method. 
First we give the following definition for stationary distributions of Markov 
chains (see Remark 3.1). 

Definition 3.1. Let {X(t),t = 0 ,1 , . . . , } be a homogeneous Markov chain 
with state space S = { 0 , 1 , . . . , 00}. Then a probability density function 7Tfc 
over S is called a stationary distribution of the chain X(t) iff 

00 

Trk = '^2njPjk, k = 0 , 1 , 2 , . . . , 
j=o 

where Pjk is the one-step transition probability. 

113 
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Remark 3.1. Example 2.12 shows that homogeneous Markov chains with 
infinite states may not even have persistent states and hence may not have 
stationary distributions. However, for the definition of stationary distribution, 
the chain must be homogeneous. 

Notice that if {TVJ, j € 5} is a stationary distribution of the Markov chain 
X(t), then by application of the Chapman-Kolmogorov equation, it follows 
easily by mathematical induction that 

oo oo 

7Tfc = 22^jPjk => TTfc = 2j7rj-fjfc(n) f° r all n > 1. 
j=o j=o 

If the chain is finite with m{m > 1) states and with 1-Step transition 
matrix P = (Pij), then, with n' = (7ri,7T2,... ,7rm), n' = ir'P(n) = ir'Pn for 
all positive integer n. 

In the next two sections, we will illustrate how the limiting results of the 
transition probabilities of the chain X(t) characterize the stationary distribu­
tions of the chain X(t). For deriving these results, we will need the following 
mathematical results which we present as Lemmas 3.1-3.3. 

Lemma 3.1. (Cesaro summability). Ifan^a as n —• oo, then 

N 

N 
1 N 

j-; 2_^ am ~* a a s ^ ~* ° ° • 
m = l 

Note that the Converse result of this is not true in general. 
For proof, see [1, p. 72]. 
Let X(t), t € T = {0,1,2, . . .} be a homogeneous Markov chain with state 

space S - {0 ,1 ,2 , . . .} . 

Lemma 3.2. (Fatou's lemma). / / fj(n) > 0, Pjk > 0 and if limn^oo 
fj (ri) exists for all j , then 

lim ^2fi(n)Pjk > Y^ ( Mm fj(nj)Pjk; 
n—»oo L—* *—* \ n—*oo / 

i 3 

tf 9{x) ^ 0) f(n>x) ^ 0 and Iinin-yoo / (n , x) exists for all x, then 

lim I f(n,x)g(x)dx > I I lim f(n,x))g(x)dx. 
n—yoo J j \n—>oo / 
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L e m m a 3.3. (Lebesque 's domina ted convergence t h e o r e m ) . If 
\\van^oofj{n) exists for all j , Pjk > 0, \fj(n)\ < bj and if J2jbjpjk < °o, 
then 

nlim \£fAn)Pikj = £ ( , l i m / , (n ) )P , f c ; 

If 9(x) > 0,limn-yoof(n,x) exists for all x, \f(n,x)\ < h(x) and if 
J h(x)g(x) dx < oo, then 

lim / f(n,x)g(x)dx — / ( lim f(n,x))g(x)dx. 
n—voo J J \ n—>oo / 

The proofs of Lemmas 3.2 and 3.3 can be found in most textbooks of real 
analysis, see for example, A. N. Kolmogorov and S. V. Fomin [2]. 

3.2. T h e Ergodic Sta tes and Some Limit ing Theorems 

Consider a homogeneous Markov chain {X(t),t = 0 ,1 , . . . ,oo} with state 
space S = { 0 , 1 , . . . , oo}. If the state j is transient, then 53nLi Pij(n) < °° 
so that linin-xxj Pj, (n) = 0 for all i € S. Thus, by the Cesaro Lemma, 
i E n = i ^ y ( n ) —> 0 as iV —> oo if j is transient. If j is persistent, then 
the existence of limn^.oo P^ (n) depends on whether or not j is periodic. 

Definition 3.2. The persistent state j is said to have period dj (dj > 1) iff 
Pjj (n) > 0 and n > 0 imply n = mdj for some m > 0. j is called aperiodic if 
dj = 1. 

Using this definition, it is seen that the greatest common divisor (g.c.d.) of 
n for which Pjj(n) > 0 is dj\ that is, for any finite set of integers m , n 2 , . . . , n r 

such that Pjj(ns) > 0, s = 1,2,... ,r , the g.c.d. of {ni , r i2, . . . ,nr} is dj. By 
results of the lemma in Sec. 3.8, there exists an integer M > 0 such that for 
all m> M, Pjj (mdj) > 0. 

Theorem 3.1. If j s S is persistent and aperiodic, then the limit 
linin-xx) Pjj (n) exists and is given by 

lim Pain) = — . 
n->oo •" fij 

This limit is positive iff Hj < oo or iff j is a positive state. 
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Proof. To prove this result, notice that for n = 2 , . . . , 

Pii («) = fij 0)Pii (n-l) + --- + fij (n)P^- (0). (3.1) 

Let Q4j(s) = £ ~ = 0 s
nPij(n) and F^s) = ££=o *"/«(«)• 

On multiplying both sides of Eq. (3.1) by sn and summing over n from 1 
to oo, the left side gives Qij(s) — Sij whereas the right side yields 

oo n oo cxi 

£ a nE/«(*)p«(n -*) = X>fc/v(*)X>n-fc^(»-*) 
n = l fc=l fc=l n=fc 

Hence, we have 

Qij(a) - Si:j = Fij(s)Qjj (s). (3.2) 

This gives 

( 1 - ) g * W = l ^ ) - ^ 

Notice that Fjj (s) is the pgf of the first return time of the state j if j is 
persistent and aperiodic. Hence, if j is persistent and aperiodic, the mean 
return time fij of j is 

n = l 

It follows that the right side of Eq. (3.3) is \j\ij. To show that the left 
side of Eq. (3.3) is lim7i_+00 Pjj(n), notice that with Pu(—1) = 0, we have 
\Pu{k) — Pu{k — 1)| < 2; hence, by the Lebesque's dominant convergence 
theorem (see Lemma 3.3), we obtain: 

n 

lim(l - s)Qu{s) = lim Urn V sk{Pu{k) - P«(fc - 1)} 
s—>1 5—*-l n—foo *—-^ 

fc=0 

= lim lim Y sk{Pu{k) - Pu(k - 1)} 
n->oo s->l *—' fc=0 

lim P„(n) . 

file:///j/ij
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Thus, 

lim Pu(n) =• — . D 
n—>oo ^tj 

If i / j , then by using Eq. (3.2), we have: 

lim(l - s)Qij(s) = lim Ftj(a) lim(l - s)Qjj(s) = ^-. 
S-»l S-¥l S-¥l fXj 

With Pij(0) = 0, if i ^ j , we obtain by using exactly the same approach as 
above: 

lim Pij(n) = lim(l - s)Qij(s). 

Hence, if j is persistent and aperiodic, then, for all i and j 

lim Pij(n) = &. 

The above proof is simple and straightforward but is not vigorous mathe­
matically. More vigorous alternative proofs can be found in many texts; see 
for example, Karlin and Taylor [3]. 

By Theorem 2.7, if i is persistent and i —> j , then j is persistent and j —> i; 
furthermore, fy = fji = 1. Thus, if i and j are persistent and i —> j , then 

lim Pu (n) = — . 

If j is persistent and periodic with period dj > 1, then Pjj(n) = 0 if n ^ rdj 
for some integer r and the g.c.d. of mj for Pjj(m,i) > 0 is dj. The following 
theorem shows that although lim„_>oo Pjj(n) does not exist, limn_>oo Pjj(ndj) 
does exist, however. 

Theorem 3.2. If j £ S is persistent and periodic with period dj > 1, then 
lim„_4oo Pjjfodj) exists and is given by 

lim Pjj(ndj) = - ^ . 

Proof. Defining Pjj(ndj) = P-- (n) and fjj{ndj) = fjj(n), then we have: 

n 
j(*)c^,\ _ V f (* ) f m ip (* ) | ^;)(")=E/i;V)i,i;)(n-m)-

m = l 
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Since 
OO 1 OO 

ra=l •? n = l ^ 

then we have, by Theorem 3.1: 

lim Pjjindj) = lim rt*\n) 

By Theorem 3.2, if j is periodic with period dj > l and if fij < oo, then the 
limit lmin^oo Pjj(n) does not exist. This follows readily from the observation 
that the sub-sequence {Pjj(ndj +1), n = l , . . . , oo} converges to 0 whereas the 
sub-sequence {Pjj(ndj), n = l , . . . , oo} converges to dj/fj,j > 0 by Theorem 3.2. 
The following theorem shows, however, that the Cesaro limit for j always exists 
regardless whether or not j is periodic. 

Theo rem 3.3. If j G S is persistent and periodic with period dj > l, then 

l N l 
lim — Y^ PjjM = — . 

n=l J 

The limit is positive iff fij < oo iff j is positive. 

Proof. We have 

l N l M 

n = l ro=l 

where Mdj <N<(M + l)dj. 
Noting that ¥£- -» l and l m w ^ P/.,-(m) = Pjj{mdj) = ^ by 

Theorem 3.2, we have: 

n = l J m = l *J 

From Theorems 3.1-3.3, if j is persistent and positive, then the Cesaro 
limit is positive. If j is persistent, aperiodic and positive then the limit 
limn-xx) Pjj (n) is positive. Persistent states which are aperiodic and positive 
are also called "ergodic states". For closed sets of persistent states, the prop­
erties "positiveness" and "periodicity" are shared by all states in the closed 
set. This is proved in the following theorem. 
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Theorem 3.4. Consider a closed set C of persistent states. Then all states 
in C have the same period. Furthermore, either all states in C are positive or 
all states in C are null. 

Proof. Let i € C and j £ C. It then suffices to show: 

(1) di = dj, where di is the period of i, 

and 
(2) either both i and j are positive or both i and j are null. 

Now i <-» j implies that there exist mo > 0 and no > 0 such that 

Pji{m0) > 0 and Pij(nQ) > 0. 

By the Chapman-Kolmogorov equation, then, 

Pu(m0 + n 0 ) > Pij(n0)Pji(m0) > 0 

and 

Pjj(m0 + n0) > Pji(m0)Pij(n0) > 0. 

This implies that TOO + no are divisible by both di (period of i) and dj 
(period of j ) . 

Let A; be a positive integer not divisible by di such that Pjj(kdj) > 0. Then 

Pu(no + mQ + kdj) > Pij(n0)Pjj(kdj)Pji(m0) > 0. 

Thus di divides TOO + no + kdj so that dj is divisible by di. Similarly, by 
exactly the same approach, one can prove that di is also divisible by dj. Hence 
di = dj = d. 

To prove that both i and j are positive or both i and j are null, notice 
that with di — dj = d, Pu{mo + nd + mo) > Pij(mo)Pjj(nd)Pji(rio) > 0, 
and Pjj(mo + nd + TOO) > Pji(no)Pu(nd)Pij;(TOO) > 0. Hence j positive => i 
positive; i null => j null. D 

As an illustration, consider the random walk chain in Example 2.12. If 
p = 5, then the chain is persistent and irreducible; since the state 0 has period 
2, so all states have period 2. When p = 5, the mean return time of 0 is 

00 00 

n=l n= l 
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Hence for the persistent random walk chain given in Example 2.12, the 
state 0 is null and so are all other states. On the other hand, all persistent 
states in Examples 2.1, 2.2 and 2.4 are aperiodic and have mean return time 
1; hence all persistent states in these examples are ergodic states. 

3.3. Stationary Distributions and Some Examples 

With the above limiting results, we are now ready to derive the stationary 
distributions of homogeneous Markov chains. 

Theorem 3.5. In a homogeneous irreducible Markov chain {X(t),t £ T = 
(0 ,1 ,2 , . . . )} , if the states are persistent positive, then the stationary distribu­
tion exists and is uniquely given by the limits 

N 

J!m„iv :E^(n) = ^- = 7 r i > 0 J = ° . I . - - - . AT-voo N 
00 . 

n = l 

Proof. Since the chain is irreducible, we have, for any two states j and k, 
j <-» k; further, since the states are persistent, fjk = 1. Now, by Theorem 3.3, 

N 

lim Ar 
iV->oo N 

1 x ^ „ , , fjk 1 £i>,fc(„) = M = J _ > 0 
n = l 

as the states are positive. 
But, using Chapman-Kolmogorov equation, Pkk(n +1) = J2j Pkj{n)Pjk so 

that 

N + l 
N N 

, N+i p "I N 

n=\ J n=l 

-E ^ £>«(»> 
n = l 

Pjk-

Letting N —> oo, we obtain -Kk > Ylj ^jPjk by Fatou's lemma. 
Summing over k, 

^vrfe > ̂ irj Y,Pjk = J2**-

Thus7Tfc = Ej7rj-pjfc-
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Now 1 = ^ f c Pjk{n) for all n > 1 so that 

1 = £ i r l>w 
k ra=l 

for all N. 
By Fatous Lemma, 

l>$]V f c>0. 
k 

Further, 

for all n > 1. This implies that 

1 * 

Since lim^^oo ^ X^Li ^jfc(«) exists, 1 > jf^=1Pjk(n) > 0 and 0 < 
2 , - Tj < 1> by Lebesque's dominated convergence theorem, 

i n=i y j y 

Thus, 5Z. ^ = 1, 1 > Tij > 0; or, (7ri,7r2,...) is a stationary distribution 
of the chain. Suppose (/xi, / i j , . . . ) is another stationary distribution, i.e., \ik = 
J2j VjPjk; then ^ = J2j (J'jPjkin) for all n > 1 so that 

1 N 

j n = l 

By Lebesque's dominated convergence theorem, we then have 
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Corollary 3.1. Let {X(n),n = l , . . . , oo} be a homogeneous Markov 
chain with transition probabilities {Pij(n),i,j = 0 ,1 , . . . , oo} . / / the chain is 
irreducible, aperiodic and positive, then lrnin-xxj Pij (n) = ITJ > 0 exists and the 
stationary distribution is uniquely given by TTj,j = 0 , 1 , . . . , oo. 

The proof is trivial and is left as an exercise; see Exercise 3.1. 
Let {X(t),t e T = (0 ,1 ,2 , . . . )} , be a homogeneous Markov chain. If the 

chain contains persistent states, then, as shown previously, the persistent states 
can be put into a disjoint union of irreducible closed sets of persistent states. 
Suppose that this chain contains persistent positive states. Then, there exists 
an irreducible closed set Cfc of positive persistent states. For this closed set, we 
have, using Theorem 3.5, a stationary distribution, say 7rji. = (nik i n2k > • • •)• 
It is then easily seen that (O1, %£ , Q', O') is a stationary distribution of the 
chain. Suppose we have another irreducible closed set Q of positive persistent 
states, (I > k) then (O', O', 7rj\*, O') is another stationary distribution. 
Obviously, for any 0 < c < 1, 

«Q',z?, O', 0') + (l-c)(0', O ' . T T W . O ' ) 

is also a stationary distribution of the chain. Hence, if the chain contains more 
than one irreducible closed set of positive persistent states, then the chain 
contains an infinite number of stationary distributions. To summarize, we 
have: 

(a) If the chain does not contain positive persistent states, then the sta­
tionary distribution does not exist. Notice that this is possible only if the state 
space of the chain contains an infinite number of states. 

(b) If the chain contains only one irreducible closed set of positive persistent 
states, the stationary distribution exists and is unique. 

(c) If the chain contains more than one irreducible closed set of persistent 
states, the stationary distributions exist and is infinitely many. 

As a special case of the above result, we see that, for finite homogeneous 
Markov chain, the stationary distributions always exist. The stationary distri­
bution is unique if and only if the chain contains only one irreducible closed 
set. All these results follow from the fact that finite homogeneous Markov 
chain must contain persistent states and all persistent states must be positive; 
see Exercise 3.2. 
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Example 3.1. The base substitution model in human D N A dimers. 
In Example 2.5, we have considered the DNA base substitution model in 
humans considered by Bishop et al. [4]. This is an irreducible, aperiodic 
and homogeneous Markov chain with discrete time and with state space 
S = {A,C,G,T,AG,AGC,AGCT}. Since the rows of the one-step transi­
tion matrix P sum up to 1, 1 is an eigenvalue with multiplicity 1 and a right 
eigenvector of 1 is lj, a 7 x 1 column of l"s. Let 7r = {ni,... , ^7} ' be the 
left eigenvector of 1. Then n is the stationary distribution and by Corollary 
of Theorem 3.5, limn^.oo P(n) = l i m n - ^ Pn = ITX'- That is, TT'P = TV'. 

To derive 7r, partition jr' = {x',y'), where {x' = (ni,... ,7T4), y' = 
(TT5, 7T6, ^7)} and partition P by 

P = where Pn 

/0.32 

0.37 

0.30 

^0.23 

0.18 

0.23 

0.21 

0.19 

0 

0.05 

0.25 

0.25 

0.27\ 

0.35 

0.24 

0.33 j 

12 

/0.23 

0 

0 

V 0 

0 \ 

0 

0 

0 / 

P21 and P22 = 

0 

0 

0 

0.21 

0 

0 

0 

0.35 

0 

Then x'P12 + V'Pn. = V1 which gives 

V' = (7r5,7r6,7r7) =TTI (0 .23 , 0.0483, 0.016905) = 7Tia'. 

Further, the constraint l.77r = 1 gives 

s-K\ +TT2+TT3+TT4 = 1, where s = 1.289205. 
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Let b i be the ith column of h — P[\ and put 

Ci = 61 - P 2 1 O , Ci = bi , i = 2 ,3 ,4 , c 5 = (s, 1 ,1 ,1 ) ' . 

Let /e
/ = (0,0,0,0,1). Let C\ be the 4 x 4 matrix with the ith column 

being given by Ci and C the 5 x 4 matrix with the first 4 rows being given 
by the rows of C\ and the 5th row being given by c'5. On substituting these 
results into the equation TT'P = TT', we obtain, with 0 denoting a 4 x 1 column 
ofO's: 

x'Pn +7Tia'P2i = %' so that (J4 — P\\)'x — Tri-F^iS = Cia; = 0 ; 

Cx = e so that a; = (C'C)-lC e . 

This gives the stationary distribution as 

TT' = (as'.TTio') = (0.2991, 0.1846, 0.1354, 0.2906, 0.0688, 0.0144, 0.0051). 

Example 3.2. The frequencies of genotypes under equilibrium con­
ditions in natural populations. For the Markov chain of genotype fre­
quencies described in Example 2.2, the eigenvalues of the one-step transition 
probability P are given by {X\ = 1,A2 = |,A3 = 0}. Then, with I.3 denoting 
a 3 x 1 column of l's and with u' = (p2, 2pq, q2), q = 1 - p, the spectral 
matrices are given by: 

E^tlY7^^p-X^ = 
J=2 A l " X> 

(p2 2pq q2\ 

p2 2pq q2 

\p2 2pq q2/ 

= l 3 « ' , 

Ei = nA^-¥s)= 
W 

I 2pq 2q(q-p) 

p(q -p) 1 - Apq 

\ -2p2 -2p{q-p) 

-2q2 \ 

-q(q - p) 

2pq ) 

E* = RT^TSP-^) = 
( I2 

j = l 
A3 - Xj 

-2q2 q2 

-pq 2pq 

\ p2 -2p2 
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Hence the spectral expansion of P(n) = Pn is given by: 

3 1 
P{n)=Pn = Y,KEi = E1 + -E2. 

It follows that lim„^.ooP{n) = E\ = l$u'. That is, the stationary dis­
tribution of the frequencies of the three genotypes {AA,Aa,aa} are given 
by (p2, 2pq, q2) respectively. This is equivalent to saying that the Hardy-
Weinberg law is in fact the stationary distribution of the genotypes. 

Example 3.3. The Wright model under mutation in population 
genetics. Consider the Wright model under mutation given by Example 2.11 
for a single locus with two alleles A and a. This is a Markov chain with the 
one-step transition probabilities given by: 

P« = (2f)pl(l-Pi)2N-i, 

(1 - a i ) 4- (1 - — J a2 = a2 + ^ ( 1 - a i - a 2 ) , 0 < a i , a 2 < 1. 

where 

^ 2JV 

This chain is homogenous if the ait (i = 1 , 2 ) are independent of time t. 
Also, as proved in Example 2.15, the eigenvalues of the one-step transition 
matrix P — (P%j) are given by: 

i^( l - a i -a 2 ) f c |n(2iV-i + l ) | , Ai = 1, and Xk+i = , 

for fc = 1,2,.. . , 2JV. 
Assuming that the QJJ'S are independent of time t so that the chain is 

homogeneous, we will derive the stationary distribution in two cases. 

Case 1: If ai ^ 0, for i — 1,2 and if c*i + c*2 < 1, then the chain is irreducible 
and aperiodic; further, all eigenvalues of P are distinct. (The largest eigenvalue 
is a i = 1 and all other eigenvalues are positive but less than 1). 

Let Xj and Uj be the right eigenvector and the left eigenvector of Xj 
satisfying XjVj = 1, respectively. Then, since the rows of P sum to one, 
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!5i — ,12JV+1, a (2AT + 1) x 1 column of l's and 

2JV+1 

P(„) = P» = 12^+^; + X] w . 
i=2 

where E, = £ ;£- , i = 1 , . . . ,2iV+ 1. 
Hence, y i is the stationary distribution of the above Markov chain if aj ^ 0 

and if OJJ are independent of time t. Although for given {N,cti,i = 1,2}, 
numerical solution of y[P = y[ is possible, exact analytical solution is not 
yet available; in Chap. 6, we will approximate this stationary distribution for 
large N by a diffusion process. 

Case 2: If a\ = a2 = 0, then 0 and 2N are absorbing states while all other 
states are transient. In this case Poo = P2N, 2N = 1 and there are 2N distinct 
eigenvalues given by: 

A 1 = A2 = 1, andAfc+2 = — - J [ ( 2 N - i + l), k = l,...,2N-1. 

The eigenvalue 1 has multiplicity 2 while all other eigenvalues have multi­
plicity 1 and have values between 0 < Aj < 1 (i = 3 , . . . , 2N + 1 ) . It is easily 
observed that y x = (1 ,0 , . . . , 0)' and y 2 = (0 ,0 , . . . , 0,1)' are two independent 
left eigenvectors of A i = A2 = 1. Hence, for any real 0 < u < l ,u2/i + (l —w)2/2 

is a stationary distribution of the above chain. 
This case corresponds to the case of "genetic drift" or "Wright drift" in 

population genetics. 

3.4. Applications of Stationary Distributions and Some 
M C M C Methods 

In the past 15 years, important breakthroughs have been made in computa­
tional algorithms by the application of the stationary distribution of discrete 
time Markov chains. The basic idea is that if one wishes to generate random 
samples from some unknown probability distribution, one needs only to con­
struct an irreducible aperiodic Markov chain with discrete time so that the 
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stationary distribution of the chain coincides with the probability distribution 
in question. Thus, even though the probability distribution is unknown, it is 
still possible to generate random samples from this probability distribution if 
an irreducible Markov chain can be constructed. This type of methods has 
been called the Markov Chain Monte Carlo Method (MCMC). In this sec­
tion, we will describe three such methods and illustrate its applications by 
some examples from genetics. In Chap. 9 we will illustrate how to apply 
these methods to solve some difficult estimation problems in AIDS and car­
cinogenesis. For more general theories and methods, we refer the readers to 
text books [5, 6]. 

3.4.1. The Gibbs sampling method 

To illustrate, consider k random variables, say, Xi,...,Xk- Suppose that 
the conditional distribution p(xi\xi,...,x^\, Zj+i,...,Xk) = p(xi\x^)) of X% 
given all other random variables is available for all i = 1 , . . . , k. (We denote by 
a<(j) the sample with Xi being deleted.) Then the Gibbs sampling procedure 
starts with an arbitrary initial point x (°) = (x\', x2 , •. •, xk ) and generates 
a series of random points x^x\ x(2\ x^3\ ..., where a;(m+1) is derived from 
x (m) in the following way. 

(1) Xi is drawn randomly from pfailx? , x^ ',..., xk
m'); 

(2) X2 is drawn randomly from p ^ l ^ i , £3 , • • •, xk
m'); 

(3) xk
m Ms drawn randomly fromp(xk|X™ , x2

m ,...,xk"^1 '). 

Perform the above random drawings independently and repeatedly until 
convergence. When convergence is reached at m = N, the sample point 
x\ Ms a random sample of size 1 from the marginal distribution p{xi) of 
Xi, i = 1 , . . . , k. That is, the theory of Gibb sampler indicates that one can 
generate random samples from the marginal distribution of Xi by generat­
ing random samples from the conditional distributions p(xi\x^) through an 
iterative procedure. The proof of this theory is based on the limiting station­
ary distribution of an irreducible and aperiodic Markov chain and hence has 
also been referred to as a Markov Chain Monte Carlo Method (MCMC). The 
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multi-level Gibbs sampler is an extension of the Gibbs sampler method in that 
each Xi is a vector of random variables. This method has been used extensively 
by this author in AIDS research; see Chap. 9 for details. 

To prove the above result and the convergence, it suffices to consider two 
discrete random variables X and Y. For illustration, assume that the sample 
space of X and Y are given respectively by Sx = {a\,... ,am} and Sy = 
{bu...,bn}. Then, 

n 

P(X = ai\X = Oj) = ^P(X = m\Y = br)P(Y = br\X = aj), 
r= l 

and 

m 

P(Y = bi\Y = bj) = ^2P(Y = bi\X = ar)P(X = ar\Y = bj). 
r=l 

Let j4(x|a;) be the mxm matrix with the (i,j)th element given by P(X = 
di\X = aj), A{y\y) the nxn matrix with the (i, j)th element given by P(Y = 
bi\Y = bj), A(x\y) be the m X n matrix with the (i, j)th element given by 
P(X = a,i\Y = bj) and A(y\x) be the n x m matrix with the (i,j)th element 
given by P(Y — bi\X = aj). Then, A{x\x) = A(x\y)A(y\x) and A(y\y) = 
A(y\x)A(x\y). Consider a discrete time Markov chain Cx with state space Sx 

and with one-step transition matrix Px = A'(x\x). Then, since all elements 
of -A(X|:E) are positive, the chain is irreducible and aperiodic. Thus, starting 
with any distribution of X, the chain will converge to a stationary distribution 
9x = {<7x(l)) • • • ydxii71)}' which satisfies the condition 9X = A(x\x)9x. This 
stationary distribution is unique as the chain is irreducible. We next show that 
gx(i) is in fact given by the marginal distribution of X. 

To prove this, let fx(i) = P(X = a4) (i = 1 , . . . ,m) and fy{j) = P(Y = 
bj) (j = 1 , . . . , n). Then the joint density of (X, Y) is 

P(X = auY = bj) = f(i,j) = P(X = ai)P(Y = bj\X = at) 

= fx(i)P(Y = bj\X = ai) 

= fy(j)P(X = ai\Y = bj). 

Hence the marginal pdf of X is fx(i) = Y^j=i fv(J)P(X = a>i\Y = bj) 
and the marginal pdf of Y is fy(j) = ^2iLifx(i)P(Y = bj\X = aj). It 
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follows that 

m 

YtP{X = ai\X = ai)fs{j) 
J '=I 

m f n ~\ 

j= l t r = l J 

n [ m 1 

= £ / > ( * = Oi\Y = br) I 52fx(j)P(y = br\X = aj) \ 
r=l [j=l J 

n 
= ^P(X = ai\Y = br)fy(r) = fx(i). 

Put / x = {/x( l ) , . . . ,fx(fn)}'- The above is equivalent to A(x\x)fx = 
fx so that the density f x of X is indeed the stationary distribution of the 
above Markov chain. Hence / x = g x as the stationary distribution is unique. 
Similarly, one consider a discrete time Markov chain Cy with state space Sy and 
with one-step transition matrix Py = A'(y\y). Then, this chain is irreducible 
and aperiodic. Further, it can similarly be shown that the density function 
fyU) U = 1) • • • i TI) of Y is the stationary distribution of Cy. 

The above idea can readily be extended to continuous random variables. 
If the sample space of X and Y are finite intervals, this can easily be shown 
by using embedded Markov chains; see Chap. 4 for general theories. However, 
for continuous random variables, if the sample space is not bounded, then 
there is a possibility that the chain may not converge to a density function. 
This has been called the improper posterior in the literature. An example of 
this type has been given by Casella and George [7]. Hence, to use the Gibbs 
sampler method for continuous random variables, it is important to monitor 
the convergence. Methods to monitor the convergence have been described in 
[8-12]. 

To implement the above Gibbs sampling procedure, one needs to gener­
ate a random sample of size 1 from a conditional density. In many practical 
problems, it is often very difficult to draw a sample either because the den­
sity is not completely specified or because the density is very complicated. To 
get around this difficulty, in the next two sections we describe two indirect 
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methods. In Chap. 9, we will use these methods to implement the Gibbs 
sampling procedures. 

3.4.2. The weighted bootstrap method for generating 
random samples 

Suppose that g{x) is a pdf and f{x) > 0 for all x (/(x) may not be a den­
sity). Suppose further that both g{x) and f(x) are computable for all x. The 
weighted bootstrap method is a method to generate a random sample from the 
density h(x) = r<*f/\ through generating random samples from the density 

g(x). This method was proposed by Smith and Gelfand [13] and is given by 
the following procedures: 

(i) Generate a random sample (xi,... ,xn) from g(x). 
(ii) Compute ut = f(Xi)/g(xi) and qt = u>ij Y^j=i ^j for i = 1 , . . . , n. 
(iii) Let Y denote the random variable with sample space II = {xi,..., xn} 

and with probability density {qt, i = 1 , . . . , n} so that P(Y = Xi) = qi. Then 
draw a random sample {yi,..., y^} from Y. That is, draw a random sample 
{yi, • • • ,2/JV} of size N with replacement from II with probabilities {qi,i = 
1 , . . . , n} . (N need not be the same as n). If n is sufficiently large, {yi,. - -, yJV} 
is approximately a random sample of size N from h(x). 

To prove the above algorithm, observe that 

n ^ n / f l ™ ] 
P(Y < y) = J2<lih-°°,y}(xi) = ~ Yl^h-ocy]^) {-Y^^U 

i=l i=l I I i=l J 

where I A (X) is the indicator function of the set A. 
Since {xi,..., xn} is a random sample from g(x), if n is sufficiently large, 

= /_oo j^k-^vii^gi^dx 

/

oo ry 

f{x)I(-oo, y) (x)dx = / f(x)dx. 
•00 J — OO 

n 
i=l 
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Similarly, if n is sufficiently large, 

I T ^ r°° f(r) r°° 
-Y,"i = EMX)}= %+g(x)dx= f(x)dx. 
II

 i=l J-oo 9\x) J-oo 

Hence, for large n, 

P(Y < y) 
SZo ttx)dx = I h(x)dz 

J —oo 

Tan and Ye [14, 15] have used the above method to estimate unknown pa­
rameters and state variables in an AIDS epidemic model involving homosexual 
and IV drug populations. The method will be illustrated in Chap. 9. 

3.4.3. The Metropolis-Hastings algorithm 

This is an algorithm to generate data from a density {7Tj, i = 0 ,1, . . .} without 
fully specifying the form of 7T;. Specifically, one assumes that 7Tj OC f(i) with 
f(i) computable; however, the normalizing constant is very complicated so that 
•Ki is not completely specified. The problem is how to generate data from 7Tj 
under these conditions? The main idea of the Metropolis-Hastings algorithm 
is to construct a Markov chain with 7T; as the stationary distribution. We will 
illustrate this by first proving the following theorem. This theorem is the basis 
of the Metropolis-Hastings algorithm. 

Theorem 3.6. Let p(i,j) be the one-step transition probability from state i to 
state j of a homogeneous Markov chain with state space S = { 0 , 1 , . . . , oo} and 
parameter space T = { 0 , 1 , . . . , oo}. Suppose that this chain is irreducible and 
aperiodic. Assume that the density {7Tj, i = 0 , 1 , . . . , oo} satisfies the following 
conditions. 

ni p(h j) = " j p{ji i) for all i and 3 • 

Then {ni, i = 0,1,...,} is the stationary distribution of this chain. 

Proof. This theorem follows easily from the observation that 

oo oo oo 

^2^iP(i,j) = YlnJP(J>*) = ni HPti' i)=77i for a11 3 • D 
i=0 i=0 i=0 
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To construct a Markov chain with {7Tj, i = 0,1, . . .} as the stationary dis­
tribution, let q(i,j) be the one-step transition probabilities of an irreducible 
and aperiodic Markov chain. Let a(i,j) be positive quantities satisfying 
{0 < a(i,j) < 1 for all i,j = 0 , 1 , . . . , }. Then we have a new Markov chain 
with transition probabilities p(i,j) given by: 

q(i,j)a{i,j), tfi^j; 

P(i,j) = 
l - ^ g ( i > •?')"(*, j ) , ifi=j. 

jjti 

We will chose a(i,j) such that 7Tjp(i, j) = IXJ p(j, i). Then, by Theorem 3.6, 
{•Ki,i = 0 , 1 , . . . , } is the stationary distribution of this chain. Assuming that 
for all i,j, TV%q(i,j) > 0 and Kjq(j,i) > 0, Hastings [16] proposed choosing 
a(hj) by the following forms: 

where the s^ 's are given by 

- l 

f
 l + TTiq(i,j) 

Sij — < 

1 + 
Kj q(j, i) 

*i q{j, *) 

i f![iiM>i. 

- i 

Kiqihj)' " Kjq(j,i) 

From these definitions, obviously Sij = Sji. Further, 

KiP(i,j) =Kiq{i,3)sii{l + itiq(i,j)[K:jq(j,i)\-ly1 

= ^jqU,i)sjiTTiq{i,j){^iq{i,j)+'!Tjq(j,i)} 

= njqU,i)sji{i + Kjq(J,i)[-xiq{iJ)}~1}~1 

for all i, j =0,1, 
This shows that 7Tj is indeed the stationary distribution of the newly con­

structed Markov chain. In this construction, we have further that a(i,j) = 1 
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if £^M < 1 and 

«(u)=(i+^iji+^r 
= *j g(?, Q < j f f 7Tig(*,j) > j 

•*iq(i,j) ' 7Tj«(j'.i) 

Since 7r»g(i, J){TTJ g ( j , i )} _ 1 = {/(i)g(*>.7')}{/0')gCM)}~1. t h e a b o v e con­
struction leads to the following algorithm known as the Metropolis-Hastings 
algorithm: 

(1) Given i, generate j by using the transition probabilities q(i,j). 
(2) Compute the ratio A = {f(i)q(i, j)}{f{j)<l{3,i)}~x- If this ratio is less 

than or equal to 1, keep j . 
(3) If the ratio in Step (2) is greater than 1, then keep j with probability 

a(hJ) = {fti)<l(j, i)}{f(i)q(h J ) } - 1 and keep i with probability 1 -a(i, j) and 
go back to Step (1). 

To implement Step (3), one generate an uniform variable U from the C/(0,1) 
distribution. If U < a(i,j), keep j ; otherwise, keep i and go back to Step (1) 
and repeat the process. 

In the literature, the distribution q(i, j) has been referred to as the proposal 
distribution whereas the probabilities a(i,j) the acceptance probabilities. 

The above algorithm extends readily to continuous density g(x) oc f(x) by 
noting that if g(x)p(x, y) = g(y)p(y, x), then 

/ 9{x)p{x, y)dx = g(y) / p(y, x)dx = g(y). 

In this case, assuming that the support of g(y) and q(x, y) are the same as 
S, the algorithm becomes (See Remark 3.2): 

(1) Given x e S, generate y € S by using the transition probabilities q(x, y). 
(2) Assuming {f(x)q(x, y) > 0, f(y)q(y,x) > 0} for all x £ S and y £ 

5, compute the ratio A = {f(x)q(x,y)}{f(y)q(y,x)}~1. Then keep y with 
probability a(x,y) = min{l, f

f\l]
qJfx'^\}• 

Remark 3.2. For the validity of the algorithm, it is necessary to assume 
that the support of g(x) is the same as the support of q(x,y). The result is 
not valid if this assumption fails; see Tanner [17]. 
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Example 3.4. The Linkage Problem. As illustrated in Sec. 3.5, to esti­
mate the linkage fraction between two genes, one would usually need to gen­
erate samples from the density of the form: 

f(<j>) oc g{4>) = r~\l - <t>)b-l(2 -4>)m,0<<l><l. 

Given the above density f(<t>), E((/>) and E(4>2) are easily derived as 

lib 

v1 = E(<l>) = Y,<Oi-A 
i=0 

a + b + i ' 

where Wj = Cj /^J lo ci w i t n 

m — i) 
i(a + b + j - i) u j — 

TT ( m - 0 ( & + i - 0 ] . ( TT fa defined as 1. 

V,i=l 

and 

„ - 1?<A?\ V ^ . . ( ° ) ( a + 1 ) 

i=0 (a + 6 + i)(a + 6 + i + l) 

To generate data from /(</>), notice that f{<j>) can be closely approximated 
by the density of a beta distribution with the two parameters (d\, d2) being de­
rived by equating the first two moments of this density to {v\, 1/2} respectively. 
That is, we put: 

— = ui and — = 1/2 . 
d1 + d2 (di + d2){dl + d2 + 1) 

This gives 

i/!(1/2 - ^ 1 ) , , d i ( l - t - i ) 
di = —^5 and ct2 = —- • 

v{ - v2 1/1 

To speed up convergence, we use this beta distribution to generate an initial 
value of </>. Then, given <f>i, we will use as proposal density q(4>i,(j)), where 

"*'« = ra*""(I-*)'fa"1 

where k\ = d2<f>i/(l — (f>i). 
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For the above linkage problem, the Metropolis-Hastings algorithm is then 
given as follows: 

(1) Using the above approximated beta-density to generate the initial start­
ing value, say <j)\ to start the process. 

(2) Given <j>\, use the above proposal density q{(j>i,(j>) to generate 4>2-
(3) Compute the ratio A = {/(&)?(&, ^ { / ( ^ M ^ i ) } - 1 . K t h i s 

ratio is less than or equal to 1, keep cj>2-
(4) If the ratio in Step (2) is greater than 1, then keep fc with probability 

a(<j>i,fo) = {/(</>2)9(^2,</>i)}{/(^i)9(^i,^2)}_1 and keep 4>i with probability 
1 — a(i, j) and go back to Step (1). 

Notice that in implementing the Metropolis-Hastings algorithm, one would 
need to specify q(x,y); furthermore, f(x) must be computable. Different 
choices of q(x, y) and the pro's and con's have been discussed by Tierney [18] 
and by Chip and Greenberg [19]. Intuitively, to speed up the convergence, it 
is advantageous to choose q(x, y) as close as possible to the stationary density 
g(x) (in discrete cases, iXi). Thus, we propose the following approach which 
will be most convenient especially in handling random vectors of variables. 

To illustrate, suppose that we wish to generate 9 from P(9\Y), where 6 
is a vector of variables. Suppose that P(9\Y) is not completely specified but 
P(9\Y) oc h(6) = exp{g(9)} with h(9) computable. Suppose further that 
g(9) is a concave function of 9 defined over fi. (This implies that the matrix 
V of second derivatives of g(9) is negative definite). Then one may proceed 
as follows: 

(1) Given <?o, approximate g(9) by a Taylor series expansion up to second 
order to give: 

g{9) ~ g{90) + (9- 90)'u0 - \{9 - 90)'V(9 - 90). 

where u0 = {-^9{9))Q = QO and V = {V{r,s)) with V{r,s) = - ( g ^ 

9(Z))9 = 9o-
(Notice that since g(9) is concave, V is positive definite or semi-positive 

definite if go € fi). 
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Then 

exp(ff(jg)) ex exp { - ± ( 0 - u)'V{6 - fi)|. 

where u = 90 + (V" + SI)~1u0 with <S > 0. (If V is nonsingular, take J = 0; 
otherwise, let 8 be a small positive number such as 10 - 5 ) . Let q(0\9Q) denote 
the multivariate normal density of N{u, (V + J / ) - 1 } . 

(2) Generate #i from q(9\90) and compute 

U . ii/i(jgo)«(jgi|jgo) = 0. 

(3) Keep #i with probability a. 
(4) To implement the above algorithm when a < 1, generate an uniform 

variable U from U(0,1) and keep $ i if U < a; keep Q0 and repeat the process 
if U > a. 

3.5. Some Illustrative Examples 

To illustrate the above MCMC methods, in this section we give some specific 
examples. 

Example 3.5. Estimation of frequencies of genes in the ABO blood 
groups via the Gibbs sampling method. In human beings, there are four 
different types of blood: The AB-type, the A-type, the B-type and the O-type. 
These blood types are controlled by three alleles {A, B, 0 } . The genotypes of 
these blood types are given respectively by: 

Blood Types AB-type A-type B-type O-type 

Genotypes AB AA, AO BB, BO 0 0 

Let 9 = (p, q) and r(r = 1—p—q) denote the frequencies of the alleles (A, B) 
and 0 in the population respectively. Then, under steady-state conditions, the 
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frequencies of the four blood types in the population are given respectively by: 

Blood Type AB-type A-type B-type O-type 

Frequency 2pq p2 + 2pr q2 + 2qr 

Suppose that a random sample of size n is taken from the population. 
Among this sample of n individuals, let the numbers of individuals with blood 
types {AB, A, B, 0 } be denoted by y' = {yi,y2,2/3,2/4} (E,t=i V* = n) respec­
tively. Then the probability distribution of y is multinomial with density 

P{y\&} = C0(y)(2pq)yi(p2 + 2pv)^{q2 + 2qr)y3(r2)V* , (3.4) 

where Co(y) = ^Tr^—f and y,- are non-negative integers satisfying 
~ 1 l j = i Vi • 

E4 
i = 1 Vi = n. 
Let Z\ be the number of individuals with genotype AA in the popula­

tion and Z2 be the number of individuals with genotype BB in the popula­
tion. Then Zi 6 { 0 , 1 , . . . , j/j+i} i = 1,2 and the joint density of y and Z = 

(z1,z2y is 
p{v, £!£> = Ci(y)(2pq)vKp2)Zl(2pr)V2-Zl(<i2)Z2(2<ir)V3-Z2(r2)y*, 

where 

Ci(V) = Co{V)Y[ 
3=1 

Vj+i 

and 

V2 3/3 

p{ym= £ Y,p{hZ\e~}-
Zi=0Z2=0 

The conditional density of Z given y is 

2 

n 
J = I 

Vj+l 

z< 
P2 \Zl ( 2PV Y2~Zl 

p2 + 2prj \p2 + 2prj 

z2 

^q2 + 2qr 

where Z\ = 0 , 1 , . . . , y2, Z2 = 0 , 1 , . . . , y3. 

2qr \V3~Z2 

q2 + 2qr) 
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Let P(0) be the prior distribution of 9. Then the conditional density 
P(6\y, £)~of0 given (y, Z) is 

P(9\y, Z) « P(9)P{y, Z\9} 

<xP(8){pq)Vlp2Zl(pr)y2-ziq2Z2(qr)V3-Z2r2vi 

<xP(6)pmiqm2(1 - p - q)m3 , 

where mj = y1 + y2 + Zi, m2 = y\ + yz + Z2 and m3 = y2 + y3-Zi-Z2 + 2j/4. 
To implement the Gibbs sampling method, a natural conjugate prior dis­

tribution is usually taken for P(9) so that P(9) (x pai~1qa2-1(l -p - q)0-3'1, 
where the hyper-parameters aj are determined by some previous studies. (This 
is the empirical Bayesian method; see [20]). In the event that there is no prior 
information or previous studies, one may take (aj = 1, i — 1,2,3) to reflect the 
situation that the prior information is vague and imprecise. The latter prior 
is referred to as the noninformative uniform prior. 

Given the above conditional distributions, notice that P{Z\y, 8} is the 
product of two binomial densities {Pi(Zi), i = 1,2}, where P\(Z{) is the den­
sity of B(y2, p2/{p2 + 2pr}) and P2(Z2) is the density of B(y3, q2/{q2 + 2qr}). 
Similarly, one may also note that P(6 \ y, Z) is the density of a bivariate Beta-
distribution with B{mi,m2,m,3) with parameters {rrn, i = 1,2,3}. Hence the 
algorithm of the Gibbs sampler is given by the following procedures: 

(1) Given {y, 6}, generate Z\*' from the binomial distribution Z\ ~ 

B(y2, p2/{p2 + 2pr}); generate Z2* from the binomial distribution Z2 ~ 
B(y3,q

2/{q2 + 2qr}). 

(2) Given y and with Z = £ w = {z[*\ Z{
2

]}', generate 0 W = 

{p(*), q(*)}' from the bivariate Beta distribution (p,q) ~ B(mi + ai,m2 + 

fl2,"^3 + 03). 

(3) With 9 = e{*\ go to Step (1) and repeat the above (l)-(2) loop until 
convergence. 

At convergence, the above Gibbs sampling method then gives a random 
sample Z of size 1 from P(Z\y) and a random sample 6 from P(6\y). The 
convergence is guaranteed by the basic theory of homogeneous Markov chains. 
To estimate the parameters 9, one then generate a random sample from P{6\ y) 
of size n. The sample means (the posterior means) and the sample variances 
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(the posterior variances) and the sample covariances (the posterior covariances) 
from this sample may then be used as the estimates of the parameters and the 
estimates of the variances and covariances of these estimates. 

To illustrate the above procedure, we use the data from Li [21, p. 48] which 
provided survey results of blood types of 6,000 people in Kunming, Yunnan, 
China. This data is given as follows: 

Blood Types AB-type A-type B-type O-type 

Observed Number 607 1920 1627 1846 

Applying the above procedures to this data set, one can readily estimate the 
parameters {p, q, r = 1 — p — q}. Plotted in Fig. 3.1 are the estimates of these 
parameters by the Bayesian Gibbs sampling method with uniform prior for the 
parameters. From Fig. 3.1, it is clear that after eight iterations, the results 

0.3 

P value 
Q value 

3 4 5 

I t e r a t i o n N u m b e r 

Fig. 3.1. Plots showing estimates of the frequencies (p, q) of blood type genes by the Gibbs 
sampling method. 
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converge to {p = 0.2356, q = 0.2059}. Based on 100 repeated sampling, the 
standard errors of these estimates are given by 0.0041 and 0.0039 respectively. 

Remark 3.3. The EM-algorithm. From the classical sampling theory 
approach, the EM-algorithm has been proposed to estimate the frequencies of 
genes in the ABO-blood groups; see [22]. The EM-algorithm is an algorithm 
to compute the MLE (the maximum likelihood estimates) of the unknown 
parameters. This method is an iterative method which loops between the 
E-step and the M-step until convergence. For the above problem, the E-step is 
to computer the expected value of Z from the conditional density P{Z\y, 0} 
to give: 

Z1=E{Z1\y,0} = y2
 P 

p2 + 2pr ' 

and 

z2 = E{z2\y, 0} = 2/3 q 

q2 + 2qr 

With {Zi = Zi, Z2 = Z2}, the M-step is to derive the MLE of 6' = (p, q) 
by maximizing the function H(p, q) = pmiqm2(l -p — q)™3 to give 

m i . „ rh2 
P = = s — and q = —3 — , 

E i = l mi E i = l mi 

where the fh^s are computed from rrii by substituting Zi for Zi. 
To compare the EM-algorithm with the Gibbs sampling method, notice 

that computing the {Zi,i = 1,2} is equivalent to generating a large sample 
from P{Z\y, 6} and then computing the sample means; similarly, computing 
the MLE of 9 by maximizing the function H(p, q) is equivalent numerically to 
generating a large sample from the Beta-distribution B(m\ +1, m2 +1,7713 +1) 
and then computing the sample means. Hence, for the above problem, the 
EM-algorithm is numerically equivalent to the Gibbs sampling method only 
under the noninformative uniform prior. Comparing the above two approaches, 
notice that there are significant differences between them both in concept 
and in results: 

(1) The EM-algorithm is the sampling theory approach while the Gibbs 
sampling method is based on the Bayesian approach. Hence in the 
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EM-algorithm, the parameters are unknown constants whereas the sample 
data are random variables; on the other hand, in the above Gibbs sampling 
method, the parameters are random variables whereas the sample data are 
given constants. 

(2) The probability concept between the two approaches are quite different. 
In the EM-method, the probability is denned in terms of relative frequency 
whereas in the above Gibbs sampling method, the probability is subjective 
and is based on personnel degree of beliefs; see [23]. 

(3) In the EM-method, prior information about the parameters are ignored 
whereas in the above Gibbs sampling method, prior information about the 
parameters are taken into account through the prior distribution. Hence the 
two method give identical numerical results only if one uses the noninformative 
uniform prior. 

(4) In the above Gibbs sampling method, the sample posterior variances 
and covariances can be used as estimates of the variances and covariances of 
the estimates. In the EM-algorithm, one would need to compute the estimates 
of the variances and covariances of the estimates given the MLE. Given the 
MLE, general formula for estimating the asymptotic variances and covariances 
have been provided by Louis [24]; see also [17, pp. 47-52]. 

3.6. Estimation of Linkage Fraction by Gibbs 
Sampling Method 

In living beings, all characters are controlled by genes, each of which is a seg­
ment of DNA in a chromosome. Since the number of genes are very large 
whereas the number of chromosomes for each species is finite, one may ex­
pect that many genes are located in the same chromosome. (For example, 
in human beings, there are more than 100,000 genes identified yet there are 
only 23 pairs of chromosomes). Thus, many of the genes are linked and 
they tend to segregate together into the same cell during cell division. To 
identify association between different characters, it is important in many 
cases to estimate how far genes are apart in the same chromosome. This 
is the problem of estimating the linkage proportion or recombination frac­
tion for linked loci. For this type of problem, the Gibbs sampling method 
is particularly useful, especially in analyzing human pedigree data; see [25, 
26]. By using some simple examples, in this section, we will illustrate how to 
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use the Gibbs sampling method to estimate the recombination fraction between 
two loci in the same chromosome. 

To begin with, consider two loci in the same chromosome. Suppose that 
the first locus has alleles A and a and that the second locus has alleles B and b. 
Denote by AB/ab the genotype of a diploid individual with phenotype AaBb, 
where the genes A and B are in the same chromosome and where the genes 
a and b are in the other homologous chromosome. (In the genetic literature, 
the genotype AB/ab has been referred to as the coupling phase whereas the 
genotype Ab/aB has been referred to as the repulsion phase). Then, for indi­
viduals with genotype AB/ab, most of the gametes (haploid) produced have 
genotypes AB and ab because genes in the same chromosome tend to segre­
gate together; however, a small fraction of the gametes of AB/ab individuals 
have genotypes Ab and aB due to crossing-over between the two homologous 
chromosomes during cell division. Let <f>(l > <j> > 0) be the frequency of 
crossing-over between the two loci. Since there are four chromatids in each 
pair of homologous chromosomes during meiosis and crossing-over occurs only 
between any two of the chromatids, each crossing over will give on the average 
an equal number of the {AB, Ab, aB, ab} gametes; on the other hand, when 
there are no crossing over, each meiosis will give only AB and ab gametes 
with frequency 1/2 for each. Hence, the proportion of AB or ab gametes is 
\<j> + ^(1 — 0 = ^(1 — <f>/2) whereas the proportion of Ab or aB gametes 
is \<f> = \{4>/2). Denote by 0 = cj>/2. Then ± > 6 > 0 and the expected 
proportion of the four types of gametes from AB/ab individuals are: 

Gamete Genotype AB Ab aB ab 

Proportion 1 (1 -0 ) l-9 \Q 1 ( 1 - 0 ) 

1(2-*) \<f> 1* 1(2-*) 

Similarly, the expected proportion of the four types of gametes from Ab/aB 
individuals are: 

Gamete AB Ab aB ab 

Proportion Ifl 1 (1 -0 ) 1 (1 -0 ) I0 

\+ 1(2-0 1(2-0 1* 
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In the above, 9 has been referred to as the recombination fraction and 1 — 0 
the linkage fraction. The constraint \>6>Q implies that 1—6 > 9 so that the 
linkage fraction is always greater than or equal to the recombination fraction. 
The case with 6 = \ is equivalent to independent segregation in which case 
the four types of gametes are equally probable (i.e. each with frequency \). 

With the above background, in the next two examples we will illustrate 
how the Gibbs sampling method can be used to estimate the recombination 
fraction 9. Because of the constraint ^ > 6 > 0, it is convenient to work with 
cj) = 20 as the constraint of <f> is 1 > <j> > 0. Notice that given the estimate <f>, 
the estimate of 9 is 6 = ^<f> and Var {9} = jVar {^}. 

Example 3.6. Estimation of recombination proportion between two 
linked loci in self-fertilized populations by Gibbs sampling method. 
In this example we consider two linked loci each with two alleles (say A : a 
and B : b) in a self-fertilized population such as rice or wheat. (This example 
is commonly used in most of the statistic texts such as Rao [27]). 

To start with, consider a crossing AABB x aabb between two pure-lines with 
genotypes AABB and aabb respectively. Then, in F\ (i.e. the first generation), 
all individuals have genotype AB/ab (coupling phase). Hence, in F2 (i.e. the 
second generation), there are 10 genotypes 

{AB/AB, AB/Ab, AB/aB, AB/ab, Ab/Ab, 

Ab/aB, Ab/ab, aB/aB, aB/ab, ab/ab} 

with frequencies 

ji(i-0)2, \e{\-e), \e{\-e), \{i-ef, -f , 

\e\ \e{i-e), \e\l-9(i-9), \{i-of} 
respectively. If the allele A is dominant over the allele a and B is dominant 
over b, then there are only four phenotypes which are denoted by {A-B-, 
A-bb, aaB-, aabb}. Notice that individuals having any of the genotypes 
{AB/AB, AB/Ab, AB/aB, AB/ab, Ab/aB} have the same phenotype A-B-; 
individuals having any of the genotypes {Ab/Ab, Ab/ab} have the same phe­
notype A-bb; individuals having any of the genotypes {aB/aB, aB/ab} have 
the same phenotype aaB- and individuals with the genotype ab/ab have the 
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phenotype aabb. Hence, among the progenies of a AB/ab x AB/ab mating, the 
frequencies of the A-B-phenotype, the A-bb phenotype, the aa5-phenotype 
and the aabb phenotype are given respectively by: 

(1) A-B-Phenotype 

i ( i _ ^a + |fl(1 _ e) +
 l_e{i -e) + l(i - of + \e2 

= 1[(1 - 0 ) 2 + 2] = 1 ( 3 - 2 0 + 02) = 1 ( 1 2 - 4 ^ + ^ 2 ) . 

(2) A-bb Phenotype 

\e2 + 1^(1 - 9) = 1*[2(1 -9)+ 9} = 1(?(2 -0) = ^ 0 ( 4 - </>). 

(3) aaB-Phenotype 

lp + 1^(1 -B) = 1*[2(1 -9)+9} = 1^(2 -9) = 1 ^ ( 4 - <f>) . 

(4) aabb Phenotype 

\(l-9)2 = ^(2-<f>)2. 

Suppose that in F%, the observed number of individuals with phenotypes 
{A-B-, A-bb, aaB-, aabb} are given respectively by y' = {yi,y2i,V22,y3}, 

where 2/2 = J2j=i 3/2j and ^ i = i Vi = n- Then the probability distribution for 
these observed data is multinomial with density: 

P{y\9} = C(n;yi,i = 1,2,3)^(3-29+ 92)y>[9(2-9)}y*(l-9)2y°, (3.5) 

where 

C(n;y<>t = 1,2,3) = " • 

and yj are non-negative integers satisfying X)i=i 2/» = n-
To estimate 0 using data y as above, the classical sampling theory ap­

proach is to derive estimates of 9 by maximizing P{y\9} under the constraint 

\ > 0 > 0. Because with positive probability, the MLE without the constraint 



Estimation of Linkage Fraction by Gibbs Sampling Method 145 

may give estimates with value greater A, the classical method without con­
straint is not satisfactory. In the sampling theory approach, to date, efficient 
statistical procedures for estimating 9 under the constraint remain to be devel­
oped. Because of these difficulties, Tan {28] has proposed the Bayesian method. 
Through Monte Carlo studies, he has shown that the Bayesian method was con­
siderably more efficient than the classical MLE approach. Results of Monte 
Carlo studies by Tan [28] showed that in almost all cases, the Bayesian method 
gave estimates much closer to the true values than the MLE without the con­
straint. Under uniform noninformative prior, the Bayesian estimates are nu­
merically equal to the MLE under the constraint which can be derived by the 
EM-algorithm. As an illustration, we now illustrate how to use the Gibbs 
sampling method to derive the Bayesian estimate of 9. 

To derive the Bayesian estimate of 9, denote by Z\ the number of individ­
uals with genotypes AB/AB or AB/ab, Zi the number of individuals with 
genotypes AB/Ab or AB/aB, respectively, among the yi individuals with 
phenotype A-B-. Let W denote the number of individuals with genotypes 
Ab/Ab or aB/aB among the yi individuals with phenotypes A-bb or aaB-. 
Then Z3 = y\ — X)i=i %i is * n e number of individuals with genotypes Ab/aB 
among the yi individuals with phenotype A—B- and 1/2 — W the number of 
individuals with genotypes Ab/ab or aB/ab among the 2/2 individuals with 
phenotypes A-bb or aaB-. The conditional density of Z = {Z\,Z-i\ given 
y and 9 is that of a 2-dimensional multinomial distribution with parameters 

{yi,i!^%i, 3-20+%}- T h a t is> 

2 | < ^ > ~ M x { „ , ; J ^ , i f f i ^ } ; (3.6, 

the conditional distribution of W given y and 9 is binomial with parameters 

{2/2, 2=g}. T h a t is, 

WM~>V~B{*>W^}> (3-7) 

Further, given {y, 9}, Z and W are independently distributed of one an­
other. Denote by X' = {Z1, W}. Then the joint probability density function 
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of {y, X} given 9 is 

P{h £ W = P{V\9}P{Z\yue}P{W\y2,9} 

= Ci( l - 0)2Zl[0(l - 9)f292Z3 

x( i - 9)2y3{92W[9(i - e)}y2~w} 

where C\ is a function of (y, Z) but is independent of 6. C\ is in fact given by 

Cl = 3z>22Z*+z°+»>-w-2nC(n;yi,i = l,2,3)C(y1;Zj,j = 1,2,3) (j»\ , 

where C(m; kt, i = 1 , . . . , r) = m! /{n [ = i hi}. 
Let P(#) be the prior distribution of 9. Then the joint density of {9, y, X} 

is P(9)P{y, X\6} and the posterior distribution of 9 given {y, X} is 

P{0|2/, £ } oc P(0)(1 - 0)2Zl[0(l - 0)]Z2(0)2Z3 

x( l - fl)2"8^2^^ - 6>)P_ W} 

= P(9)9mi (1 - 0 ) m 2 , (3.8) 

where mx = mi( j / , X) = 2Z3 +Z2 + y2 + W and m2 = m 2 (y , X) = 2{Z\ + 
y3) + ^2 + ( y 2 - ^ ) -

Because | > 0 > 0, a natural conjugate prior of 9 is 

P ( 0 ) o c ( 2 0 ) a i - 1 ( l - 2 0 ) a 2 - 1 , 

where a* > 0, i = 1,2; see [25]. 
Using this prior, then, with (f> = 29, the posterior distribution of (f> is 

P{<}>\y, X} oc </>ai+mi-1(l - </>)a2-1(2 - 4>)m\ 0 < <£ < 1. (3.9) 

Using the density in (3.9) and noting (2 - <j))m2 = ]>X2
0 ( T K 1 ~ ^ w e 

obtain after simplification the conditional expected value of cj> given { y, .X } as 

. mi + a i + a 2 + 1 
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where Wj = h/ YIj2o bj = c»/ YJj2o ci w i t n 

and 

b.= (mA r ( Q 2 + j ) 
j \ j JT(m1+a1+a + 2+j)' 

= f [ [ . / m 2 " i ) ( a 2 + i : i ) J . f f [ is defined as 1. 
i = l ^i=l 

Given the above results, the algorithm of the Gibbs sampler for estimating 
{Z,4> = 26} is given by the following procedures: 

(1) Given { y, <j> = 26}, generate Z^*' from the multinomial distribution 

7 MT J „ • 3 ( 2 ~ ^ ) 2 4 < M 2 - ^ ) 1 . 
Z~ML\yi> 1 2 - 4 ^ + ^ ' 1 2 - 4 * + * » J ' 

given {y, (/> = 20}, generate W**) from the binomial distribution 

W ~ 5 (y2, * 
4-<t> 

(2) Given y and with X = X w = {Z W , WW}' , generate ^*) from the 

density P{<£| 2/, X W } . 

(3) With <j> = <fi*\ go to Step (1) and repeat the above Step (l)-(2) loop 
until convergence. 

At convergence, the above Gibbs sampling method then gives a random 
sample X of size 1 from P{X\y) and a random sample </> from P((j>\y). The 
convergence is guaranteed by the basic theory of homogeneous Markov chains. 
To estimate the parameter <j>, one then generate a random sample from P(<j>\ V) 
of size n. The sample means (the posterior means) and the sample variance 
(the posterior variance) of (j> = 29 from this sample may then be used as the 
estimate of 4> = 29 and the estimate of the variance of this estimate. 

To implement the above algorithm, as illustrated in Example 3.4, one may 
use the Metropolis-Hasting algorithm. 
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Initial value — 0.2 
Initial value — 0.4 

1 1 
6 8 

I t e r a t i o n N u m b e r 

Fig. 3.2. Plots showing estimates of linkage fraction by the Gibbs sampling method. 

As an example, consider the data given in Rao [27, p. 369] which give the 
observed number of different phenotypes in F2 under coupling phase. 

Phenotype in Fi A-B- A-bb aaB- aabb 

Observed Number 125 18 20 34 

Applying the above procedures to this data set, one can readily estimate the 
linkage fraction 9. Plotted in Fig. 3.2 are the estimates of 9 by the Bayesian 
Gibbs sampling method with uniform prior. From Fig. 3.2, it is clear that 
after a few iterations, the results converge to <j> = 29 = 0.9525 (or 9 = 0.4762). 
Based on 100 repeated sampling, the standard errors of this estimate is 0.0028. 

Remark 3.4. The EM-algorithm. Under uniform noninformative prior, 
the Bayesian estimate is numerically equal to the MLE under the constraint. 
Hence, putting a* = 1, (i = 1,2) and using the conditional expected values 
as the generated number in each of the Steps (l)-(2) above, the above Gibbs 
sampling method is numerically identical to the EM-algorithm to derive the 
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MLE of <j> and hence 9 under the constraint. Notice that the EM-algorithm in 
this case is much more easier and converges much faster than the Gibbs sam­
pling method. However, the EM-algorithm has ignored the prior information 
as it is a sampling theory approach whereas the Gibbs sampling method is a 
Bayesian approach. Further, the probability concept is very different between 
the two approaches. Because computing the posterior means are equivalent to 
generating a large sample and then computing the sample mean, for speeding 
up the convergence and for ease of computation one may use the posterior 
mean as the generated sample in Steps (l)-(2) of the above algorithm. 

Example 3.7. Es t imat ion of recombinat ion p ropor t ion be tween two 
linked loci in h u m a n popula t ions by Gibbs sampling m e t h o d . In this 
example we illustrate how to estimate the recombination fraction between two 
linked loci each with two alleles (say A : a and B : b) in a human population. 
Again we assume that A is dominant over a and B is dominant over b. 

Suppose that we have data from k independent families in each of which 
the phenotype of one parent is A-B- and the phenotype of the other 
parent is aabb. That is, the mating in each family is A-B- x aabb. As­
sume that the j t h family has rij(nj > 1) progenies and in this family, de­
note by y'j = {yj(l),yj(2,l),yj(2,2),yj(3)} the observed numbers of pro­
genies with phenotypes {A-B-, A-bb, aaB-, aabb} respectively. To rule 
out the possible genotypes {AB/AB, AB/Ab.AB/aB} for the parent with 
phenotype A-B-, we restrict ourselves to the situation that in each family, 
either the phenotype aabb or at least three different phenotypes have been 
observed. Then the genotype of the parent with phenotype A-B- is either 
AB/ab or Ab/aB. (Notice also that in the mating A-B- xaabb, the geno­
types {AB/AB, AB/Ab.AB/aB} for the parent with phenotype -A-B-provide 
no information about the recombination fraction 0.) Further, under linkage 
equilibrium, the frequencies of the AB/ab and aB/Ab genotypes among par­
ent with phenotype A-B- are i ; see [26]. It follows that the probability density 
for observing Vj given 6 for the j t h family is 

P{yj\6} = -C0{Oyi{2\l - QfiW+yiW + 0w(i)+w(3)(i _ e)v^2)} , 

where C0 = (nj\)/{4?> Uli VjW} w i t h %(2) = E?= i tfi(2,r). 
The probability density for observing Y — {Vj,j = l,...,k} given 6 for 

all families is P{Y\0) = n}=i PiVjW}-
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For applying the Gibbs sampling method, in the j t h family, let Zj be 
defined by Zj = 1 if the genotype of the parent with phenotype A-B- is AB/ab 
and Zj = 0 if otherwise. Then the Zj's are independently and identically 
distributed as binomial with parameters { 1 , | } . That is, for j = l,...,k, 
P(Zj = 1) = P(Zj = 0) = \ independently. The joint density of {Zj,yj} 
given 6 is 

P{Zj, VjlO} = \c06
N^\l - 9)N^ , 

where iV^j) = Zjyj(2) + (l-ZJ)[yj{l) + yj(3)] and JV2(j) = Zj[yj{l) + yj(3)] + 
(1-Zj)yj(2). 

Hence the conditional density of Zj given V j and 9 is 

P{Zj\yj,e} = P{Zj,yj\e}/P{yj\e} = V>f (1 - ^j)l-z> 

The conditional density of Z1 = {Zj,j = 1 , . . . , k} given Y and 9 is 

k k 

P{Z\Y,6} = f[P{Zj\yj,0} = J ] V f (1 - Vi) 1"* ' • 
j = l j=\ 

Let P(#) be the prior distribution of 6. Then the posterior distribution of 
9 given {Z,Y} is 

P{0| Z , Y} oc P{6)9Nl (1 - 0 ) " a , 
where JVi = Dj=1JV i0"),* = 1,2. 

Because ^ < 0 < 0, a natural conjugate prior of 6 is 

P(6)cx(29)ai-1(l-29)a2-1, 

where â  > 0, i = 1,2; see [25]. 
Using this prior, then, with 4> = 29, the posterior distribution of cj> is 

P{<I>\Y, Z) oc <f,ai+Ni-\l - 4>)a^-1(2 - <j>)N*. 
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The conditional expected value of <f> given {Y, Z } is 

N* AT , 

E{<f>\Y,Z} = ^ 1 + <11 

. Ni + ai + a2 + i ' 
1=1) 

where A* = U i / { E ^ o %} = vi/{J2?=o vj} wi*h 

W 2 \ T(a2+j) 
Uj = 

j / r ( A T 1 + a i + a + 2 + j ) 

and 

-pr (^ a - 0 ( 0 , + i - i ) ( TT * defined as 1. 
J 1 1 i Af, + n , + n . n - l - i - i 1 1 1 

i = l 
i(JVi + a i + a 2 + j - i ) 

\i=l 

Given the above results, the algorithm of the Gibbs sampler for estimating 
{Z ,<f> = 28} is given by the following procedures: 

(1) Given {Y, <j> = 26}, generate Z[*' from the binomial distribution 

Z i ~ 5 { l ; V i } , i = l,...,k. 

(2) Given Y and with Z = | W = {z j* \ j = 1 , . . . , A;}', generate ^*) from 
the density P{<f>\Y, Z^}7 

(3) With 0 = ^W, go to Step (1) and repeat the above Steps (l)-(2) loop 
until convergence. 

At convergence, the above Gibbs sampling method then gives a random 
sample Z of size 1 from P(Z\Y) and a random sample <j> from P(<f>\Y). The 
convergence is guaranteed by the basic theory of homogeneous Markov chains. 
To estimate the parameter <f>, as in Example 3.6, one generates a random 
sample from P(<f>\Y) of size n. The sample means (the posterior means) and 
the sample variance (the posterior variance) of <f> = 26 from this sample may 
then be used as the estimate of <j> = 28 and the estimate of the variance of this 
estimate. 

To implement the above algorithm, as in Example 3.6, one may use the 
posterior mean as the generated sample in Step (2) of the above algorithm. 

In the above, we have considered only a special case involving an aabb 
parent. Many other cases have been considered in [26]. Also, we are only 
involving qualitative traits. The Gibbs sampling method will be especially 
useful in estimating the linkage recombination involving quantitative traits. 
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Some preliminary studied have been made in [25, 29]. There are many inter­
esting problems which remain to be solved, however; and the Gibbs sampling 
methods can provide a solution to these problems. We will not go any further 
here, however. 

3.7. Complements and Exercises 

Exercise 3.1. Prove the Corollary 3.1. 

Exercise 3.2. Let {X(t),t £ T = (0,1, . . . )} be a finite homogeneous 
Markov chain. If the chain is irreducible, show that all states are persistent 
and positive. Hence, for homogeneous finite Markov chains with discrete time, 
the stationary distribution exists and is unique. 

Exercise 3.3. Consider the finite Markov chain for mixtures of selfing and 
random mating as described in Exercise 2.2. Show that the chain is irreducible. 
Derive the stationary distribution of this chain. 

Exercise 3.4. Consider the finite Markov chain for inbreeding as described 
in Exercise 2.3. Show that the chain is irreducible. Derive the stationary 
distribution of this chain. 

Exercise 3.5. (Estimation of Inbreeding Coefficient). Given below are 
data on haptoglobin genotypes from 1,948 people from northeast Brazil cited 
by Yasuda [30]. Here, there are three alleles {Gi,i = 1,2,3}. Let {pi,i = 
1,2,3} be the frequencies of the genes. Under Hardy-Weinberg condition, 
the frequencies of the genotypes Gi/Gi and Gi/Gj (i ^ j) are then given 
by Fpi + (1 — F)p? and (1 — F)2piPj respectively, where F is the inbreeding 
coefficient. 

Genotype 

GilGx 

Gi/G2 

G1/G3 

G2/G2 

G2/G3 

G3/G3 

Observed Number 

108 

196 

429 

143 

513 

559 

Genotype Frequency 

FPl + (1 - F)p\ 

(1 - F)2plP2 

(1 - F)2Plp3 

Fp2 + (1 - F)p\ 

(1 - F)2p2p3 

FP3 + (1 - F)p\ 
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By introducing dummy variables for the genotypes Gi/Gt, develop an 
EM-algorithm for deriving the MLE of {pi,i = 1,2, F}. Assuming uni­
form prior, derive a Bayesian Gibbs sampling procedure for estimating these 
parameters. 

Exercise 3.6. (Estimation of Linkage in Repulsion Case). Consider 
two linked loci in a self-fertilized population each with two alleles, say A : a 
and B : 6. Suppose that a repulsion crossing AAbb x aaBB is made at time 
0. Assume that there are no interactions between the two loci and that A is 
dominant over a and B dominant over 6. Derive the expected frequencies of 
the four phenotypes {A-B-, A~bb, aaB-, aabb}. Assuming that the observed 
numbers of the four phenotypes are given by {ran,ni2, ^21,^22} respectively, 
derive an EM-algorithm to estimate the linkage recombination 9 between the 
.4-locus and the i?-locus. Let the prior distribution of 9 be given by P(9) oc 
9a~1(l — 9)b~1,a > 1,6 > 1, derive a Bayesian Gibbs sampling procedure to 
estimate 6. 

Exercise 3.7. (Estimation of linkage through backcrossing between 
aabb and Ab/aB or AB/ab). Consider two linked loci in a human pop­
ulation each with two alleles, say A : a and B : b. Assume that A is not 
dominant over a and that B is not dominant over 6. Take a random sam­
ple of size n from the population with phenotype AaBb and mate each indi­
vidual in the sample with a person with genotype aa&6. (This is called the 
backcrossing.) 

(a) Assuming that the frequencies of AB/ab and Ab/aB are equal in the 
population with phenotype AaBb, derive the expected frequencies of the ob­
served phenotypes. 

(b) By introducing dummy variables, derive an EM algorithm for estimating 
the MLE of the recombination fraction 9 between the two loci. 

(c) Assuming a beta prior for 9, derive the Bayesian Gibbs sampling pro­
cedures to estimate 9. 

3.8. Appendix: A Lemma for Finite Markov Chains 

Lemma 3.4. Let P(x) be a real-valued function defined over the set of 
integers. Let I(+] be a subset of positive integers defined by: n e 7(+) iff (if 
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and only if) P(n) > 0. Suppose that the following conditions hold: 

(a) 7(+) is not empty. That is, there is a positive integer m such that 
P(m) > 0. 

(b) The g.c.d. (greatest common divisor) of elements of 1^ is 1. 
(c) If a G 7(+) and b G 7(+), then a + b £ /(+). 

Then, there exists a positive integer No such that for all integer n satisfying 
n > No, n G 7(+). That is, for all integer n such that n > No, P(n) > 0. 

Proof. To prove the Lemma, we first prove the following three results: 

(1) First we prove that there exists a positive integer a in 7(+) with a > 1. 
To prove this, notice that by assumption (a), there exists a positive integer 6 
such that b G I(+y, then by condition (c), mb 6 /(+) for all positive integers 
m = 1,2,3,. . . ; hence 7(+) contains infinite many elements and there exists an 
element a in 7(+) with a > 1. 

(2) Next we notice that for every positive integers n and a, if a > 1 and 
if n is not divisible by a, then n can be expressed by n = roa + r, where ro 
is a non-negative integer and r is a positive integer satisfying 0 < r < a; for 
otherwise, n is divisible by a, contradicting the assumption. 

(3) Third, we will show that there exist two consecutive integers in 7(+), 
say JVi and N2(N2 > Ni), such that N2 = Ni + 1. To prove this, suppose that 
the maximum difference between consecutive numbers in 7(+) is k (k > 1). 
That is, there exist n\ G /(+) and n% = n\ + k G 7(+) and n\ and 712(̂ 2 > ^1) 
are consecutive numbers in 7(+). We will show that k = 1 by using argument 
of contradiction. 

Suppose that k > 1. Then there exists a positive integer n in J(+) such that 
n is not divisible by A;. (Notice that such an n always exists; for otherwise, 
k is the g.c.d. of elements of 7(+) but k > 1.). Then by result (2), n can be 
expressed by n = mik + m-i where m\ is a non-negative integer and ra2 is a 
positive integer satisfying 0 < mi < k. By condition (c), d = (mi + l)(n\-\-k) G 
7(+) and e = n + (mi + l )ni G 7(+). But, d — e = (mi + l)k — mik — m2 = 
k — m2 > 0 which is less than k contradicting that k is the maximum difference 
between consecutive numbers. Hence k = 1. 

With results from (l)-(3), we are now ready to prove the final result of 
the lemma. By result (3), there exists an JVi in 7(+) such that N\ + 1 G 7(+). 
By Condition (c), obviously, one may assume N\ > 1. Let TVo = Nf and 
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n — NQ = j . If j is a positive integer, then by result (2), j = r\Ni + r2 where 

r i is a non-negative integer and r2 a positive integer satisfying 0 < r2 < N\. 

It follows tha t 

n = N0 + j = Nl + j = Nl + nNi - r2Nx + r2 + r 2 M 

= Nx(Ni -r2 + n) + r2(N1 + 1 ) . 

Since for all positive integer j , Ni(Ni-r2+n) € /(+) and r2(Ni + l) e 7(+) , 

so, n = AT0 + j £ /(+) for all j = 1,2, D 
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Chapter 4 

Continuous-Time Markov Chain 
Models in Genetics, Cancers 
and AIDS 

In the previous two chapters, we have discussed a class of stochastic models 
which are Markov chains with discrete time. We have developed some basic 
theories and have demonstrated some applications of this class of stochastic 
models to some genetic problems and to some biomedical problems. In this 
chapter, we will extend these results into Markov chains with continuous time. 
As it turns out, this class of stochastic models is very rich and has a wide range 
of applications to many biomedical problems as well as ecological systems. 
It includes stochastic birth-death processes, many genetic processes, filtered 
Poisson processes, HIV epidemiology models as well as many cancer models. 

4.1. Introduction 

Let {X(t),t s T} be a Markov chain with T = {t > 0} and with state space 
S = {0,1,..., oo}. Denote the transition probabilities of this Markov chain by 
Pij(s, i) = Pr{X(t) = j\X{s) = i} for t > s and for i,j = 0 , 1 , . . . , oo. Then, 
as in Markov chains with discrete time, the chain {X(t),t > 0} is denned as 
a homogeneous chain if pij(s,t) = pij(t — s) = P{X(t — s) = j\X{0) = i}. 
Furthermore, as in Markov chains with discrete time, the following two results 
are immediate: 

(1) lima->t Pij{s,t) = limt^a pij(s,t) = 5ij, where 5ij is the kronecker's S 
denned by 6ij = 1 if i = j and 5ij = 0 if i ^ j . If the chain is homogeneous, 
then limAt-^o Pij (At) = Sij. 
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(2) For any times s <r <t and {0 < i,j < oo}, the following Chapman-
Kolmogorov equation holds: 

oo 

Pij(s,t) = ^2pik(s,r)pkj(r,t). 
fc=0 

If the chain is finite, then, with the transition matrix being denoted by 
P(s,t) = (pij{s,t)), the above Chapman-Kolmogorov equation can be ex­
pressed in matrix notation as: 

P(s, t) = P(s, r)P(r, t) for any r satisfying s <r <t. 

It follows that if the chain is finite and homogeneous, then with t = nAt, 

P(t) = P(At)n = lim P(t/n)n. 
n—*oo 

Using pij (At) as analog of the one-step transition probabilities in Markov 
chains with discrete time, one may then construct a Markov chain with discrete 
time with At corresponding to one time unit. This Markov chain will be 
referred to as an embedded Markov chain for the original chain X(t); see 
Remark 4.1. 

As in Markov chain with discrete time, one may also define i -> j for i £ S 
and j £ S and define closed sets in the state space S. Thus, if {X(t),t £ T = 
[0, oo)} is a homogeneous Markov chain with continuous parameter space and 
with state space S = { 0 , 1 , . . . , oo}, then i -> j for i £ S and j £ S iff there 
exists a time t > 0 in T such that Pij(t) > 0; we define the subset C in S 
(i.e. C C S) as a closed set iff for every i £ C and for every j £ C, i -H- j . 
The chain X(t) is said to be irreducible iff the state space S does not contain 
proper closed subsets, or, iff for every i £ S and for every j £ S, i <-> j . 

As in Markov chains with discrete time, the states in Markov chains with 
continuous time can also be classified as persistent states (or recurrent states) 
and transient states (or non-recurrent states). To be specific, let T,j be the 
first passage time to the state j from the state i at time 0 and denote by 
P{Tij £ [t,t + At)\X(Q) = i} = fij(t)At. Then, the state i is classified as 
a persistent state (or recurrent state) iff J"0°° fu(t)dt = 1. (i is classified as a 
transient state (or non-recurrent state) if i is not persistent.) 

If i is persistent, then fait) is the pdf of the first return time Tu of the 
state i. The mean return time of the persistent state i is i/* = J0°° tfu(t)dt. As 
in Markov chains with discrete time, the persistent state i is called a positive 
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state if the mean return time Vi of i is finite, i.e. Vi < oo; the persistent state i is 
called a null state if the mean return time i>i of i is infinite, i.e. v^ = oo. Unlike 
Markov chains with discrete time, however, the problem of "periodicity" does 
not exist in Markov chains with continuous time. That is, in the embedded 
Markov chains, all persistent states are aperiodic. 

Remark 4.1. In [l], any Markov chain derived from the original chain is 
called an imbedded chain. We will follow Karlin [2] to define the discrete-time 
Markov chain with At as a fixed time unit as an embedded chain to differ from 
the imbedded chain as defined in [l]. 

4.2. The Infinitesimal Generators and an Embedded 
Markov Chain 

In Markov chains with discrete time, the chain is characterized and specified 
by the one-step transition probabilities. In Markov chains with continuous 
time, the role of these probabilities are played by the transition rates (or the 
incidence functions or the infinitesimal generator) otij(t), where for i ^ j , 

oy (*) = Ahmo ^P{X(t + At) = j\X(t) = »} , 

and au(t) = J2j^i aij(t)- Or, equivalently, for i ^ j , 

P{X(t + At) = j\X(t) = i} = aij{t)At + o(At), 

where limAt->o ĵt = 0; and 

P{X{t + At) = i\X(t) = i} = i - ^ 2 P{X(t + At) = j\X(t) = i} 

= 1 - au(t)At + o(At). (4.1) 

In the literature, Qy (t) have also been referred to as infinitesimal generators 
(or infinitesimal parameters). (In what follows, we assume that the aij(t)'s are 
continuous functions of t unless otherwise stated.) 

Given At > 0, denote by pl*\m,n) = P{X(nAt) = j\X(mAt) = i} for all 
integers n > m > 0. Then one may construct a new Markov chain {Y(t),t £ 
T = ( 0 , 1 , . . . , oo)} with discrete time and with transition probabilities given 
by P{Y(n) = j\Y(m) — i} = P}*\m,n). The state space of this chain 
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is S = { 0 , 1 , . . . , oo} and the one-step transition probabilities are P^*'(m, m + 
1) = aij(mAt)At. This Markov chain Y(t) has discrete time T — 
{ 0 , 1 , . . . , oo}. In this book, this chain is referred to as an embedded Markov 
chain embedded in the Markov chain X(t); see Remark 4.1. In this embedded 
Markov chain, one time unit corresponds to At in the continuous time scale. 

By using the above embedded Markov chains, one can extend results of 
Markov chains with discrete time to those of Markov chains with continuous 
time through the following procedures: 

(1) For given At > 0, construct an embedded Markov chain. 
(2) Write down results of Markov chain with discrete time using this 

embedded Markov chain. 
(3) Derive results of Markov chain with continuous time by letting At —> 0. 

By using this approach, for Markov chains with continuous time, the 
following results are immediate: 

(1) Starting with any transient state, if the set CT of transient states is 
finite, then with probability one the chain will eventually be absorbed into a 
persistent state. It follows that if CT is finite, then the chain must contain 
persistent states. 

(2) With probability one, persistent states will return to itself an infinitely 
many times; transient states will return to itself only a finite number of times. 

(3) Persistent states go only to persistent states. That is, if i is persistent 
and if z —> j , then j -* i and j is persistent; furthermore, 

/ fij(t)dt= / fji{t)dt = l. 
JO JO 

(4) For finite Markov chains, not all states are transient. That is, there 
exist at least one persistent state. 

(5) For finite Markov chains, all persistent states are positive. 
(6) If C is a closed set of persistent states, then either all states are positive 

or all states are null. If the closed set is finite, then it must be a closed set of 
persistent states and all states in C are positive. 

Example 4.1. Stochastic birth-death processes. A Markov chain 
{X(t),t G T = [0, oo)} with continuous time and with state space S = 
{0 ,1 , . . . , } is called a stochastic birth and death process with birth rate 
bi(t) = aii+i(t) and death rate di{t) = a* j_i(t) iff the transition rates satisfy 
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the following conditions: 

(1) a i i i + i ( t ) = bi{t) > 0, 
(2) Oi,i_i(t)=di(<) > 0 , and 
(3) a y ( t ) = 0foral l \i - j \ > 2. 

The birth-death process is called the Feller-Arley birth-death process with 
birth rate bi(t) and death rate di(t) if bi(t) = ib(t) and di{t) = id(t), the stochas­
tic Gompertz birth-death process if 6j(i) = ib(t)e~xt and di(t) = id(t)e~xt 

with A > 0 [3], and the stochastic logistic birth-death process if bi(t) = 
ib(t){l-i/M}, di(t) = id(t){l-i/M} and 5 = { 0 , 1 , . . . , M } , where M denotes 
the maximum population size [4, 5]. A Markov process {X(t),t S T = [0,00)} 
with state space S = ( 0 , 1 , . . . , 00) is called a birth-death process with immi­
gration iff (1) X(t) is a birth-death process, and (2) the birth rate and death 
rate are given by {&*(<) + a{t) (a(t) > 0,bi{t) > 0) and di(t) (di(t) > 0) 
respectively. 

Stochastic birth-death processes are the most widely used processes in 
natural sciences including biology, medical sciences, businesses, social sciences 
and engineering. It has been used in cancer models [3, 4, 6] and in AIDS 
models [7, Chaps. 7 and 8]. It has been shown by [4, 6] and Tan and 
Piantadosi [5] that the cell proliferation and differentiation of normal stem 
cells and cancer cells of female breasts are best described by stochastic logistic 
birth-death processes; similarly, the growth and relapse of cancer tumors 
are best described by stochastic Gompertz birth-death processes; see [3, 
6]. In [7, Chaps. 7 and 8] and [8], stochastic logistic birth-death processes 
have been used to model proliferation of CD4 T cells by infection by antigens 
and HIV. 

Example 4.2. The Moran genetic model as a finite stochastic birth-
death process. The model was first proposed by Moran [9]. It considers a 
haploid population of fixed population size M, consisting of two types of alleles 
A\ and A2 together with the following basic assumptions: 

(i) During [t,t + At), the probability of having more than one death is 
o(At). 

(ii) The pdf of the life time distribution of each Aj allele is Aje~Aj',£ > 0, 
where \j > 0 is independent of t. (Notice that if there is selection among the 
A\ and Ai alleles, then Ai ^ A2; if there is no selection among the two types 
of alleles, then Ai = A2 = A.) 
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(iii) Whenever a death occurs among the alleles during [t,t + At), it is 
replaced immediately by an allele which is A\ or Ai allele with respective 
probabilities p(

t*
] = ^ ( 1 - c*i) + (1 - ^ ) a 2 and q[m) = 1 - p[*\ where 

X(t) is the number of A\ allele at time t and where a\ (1 > a\ > 0) and 
a2 (1 > a 2 > 0) are the mutation rates from A\ to A<i and from A2 to A\ 
respectively. (Notice that because the population size is fixed at M, if X(t) 
is the number of A\ allele in the population at time t, then the number of A2 

allele at time t is M - X(t).) 

We now proceed to show that the above process X(t) with t € T = [0, oo) 
and with state space S = {0 ,1 ,2 , . . . , M} is a finite homogeneous birth-death 
process with birth rate bj and death rate dj being given respectively by 

bj = X2pj(M — j) and dj = \\jqj, where 

Pj = ¥ ( 1 ~ a i ) + f1 ~ MJ ° 2 a n d qj = l~pl'j = 0 ,1 ,2 , . . . , M . 

To prove the above claim, let Tj denote the survival time of an Aj allele. 
Then, by (ii) given above, the probability density of Tj is 

\je-x**dz = e~x**. 

Hence the conditional probability that an Aj allele dies during [t, t + At) 
given an Aj allele at time t is 

Pv{Tj > t\Tj >t}- Pv{Tj > t + At\Tj > t} 

= 1 - Pr{Tj > t + At\Tj > t} 

_ Pv{Tj >t + At} _ e - A ^ t + A ' ) 

Pi{Tj >t} e-W 

= l-e~x'At = XjAt + o(At), j = l,2. 

Thus, the conditional probability that an Ai allele dies during [t, t + At) 
given that there are k A\ alleles at time t is 

Pr{An Ax allele dies during [t,t + At)\X(t) = k} = k\xAt + o(At). 

file:////jqj
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Similarly, the conditional probability that an Ai allele dies during [t, t + At) 
given that there are M — k A2 alleles at time t is 

Pr{An A2 allele dies during [t, t + At)\X(t) = k} = (M - k)X2At + o(At). 

Since the conditional probability that an A<i allele dies and is replaced by 
an A\ allele during [t,t + At) given that there are j A\ allele is Pjj+x(At) = 
Pr{X(i + At) = j + l\X{t) = j}, we have: 

Pjtj+i(At) = Pr{X(t + At) = j + l\X(t) = j} = (M - j)\2PjAt + o(At). 

Similarly, since the conditional probability that an A\ allele dies and is 
replaced by an A2 allele during [t, t + At) given that there are j A\ allele is 
P w _ i ( A t ) = Pr{X(t + Ai) = j - l\X{t) = j}, we have: 

PJd-i(At) = Pi{X(t + At) =j- l\X(t) = j} = j\iqjAt + o(At); 

and by assumption (i) above, 

Pj,k{At) = Pr{X{t + At) = k\X{t) = j} = o(At) if \k - j \ > 2 . 

This shows that the Moran's genetic model is indeed a finite homogeneous 
birth-death process with birth rate bj = (M—j)\2Pj and death rate dj = jXiqj 
and with state space S = {0 ,1 ,2 , . . . , M}. This is a finite Markov chain with 
continuous time. In this chain, if aj = 0, i = 1,2, then the states 0 and M are 
absorbing states (persistent states) and all other states (i.e. 1,2,. . . , M— 1) are 
transient states and the chain contains two proper subsets. If a, > 0, i = 1,2, 
then all states are persistent and the chain is irreducible. 

Example 4.3. The nucleotide substitution model as a finite Markov 
chain with continuous time. In molecular evolution, Kimura [10] showed 
that the nucleotide substitution in Eukaryotes were best described by Markov 
chains with continuous time. In these cases, the four DNA bases {A, T, C, G} 
are generated by a Markov chain with continuous time with transition rates 
{a, (3,7,6, e, A, K, a} as described by Fig. 4.1. This is a homogeneous Markov 
chain with state space S = {̂ 4, C, T, G}. 

Example 4.4. The AIDS epidemic as Markov chains with continu­
ous time. Markov models with continuous time have been used extensively 
in the literature to study the dynamic of the HIV epidemic [7, 11-15]. 
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Purines A ^ G 

Pyrimidines C -^ T 

a 

Fig. 4.1. Plots showing transitions in the nucleotide substitution model in molecular 
evolution. 

To illustrate, consider a large population consisting of HIV infected indi­
viduals and AIDS cases with transitions described by Fig. 1.1. 

If we assume that the transition rates @i(s,t) = (3i(t),ryi(s,t) = 7i(i) and 
u>i(s, t) = tJi(t) are independent of the initiation time s, then we have a Markov 
chain with state space fl = {It,i = l,...,k,A = h+i}, where A denotes the 
AIDS stage and Ii the ith infective stage. When time is treated as a continuous 
variables, this is a finite Markov chain with continuous time, the special cases 
of which have been considered by Longini and his associates [11-15]. In this 
chain, A is the absorbing state and all other states Ii (i = 1 , . . . , k are transient 
states. If {0i(t) = /3j,7i(i) = 7i,Wi(i) = uii] (i = 1 , . . . ,k) are independent of 
time t, then the process is also time-homogeneous. Notice also that if /% = 0 
for i = 1 , . . . , k and if Uj = 0 for j = 1 , . . . , k - 1, then the model reduces to 
the model considered by Longini et al. [11, 12]. 

Example 4.5. The drug resistant tumor cells in chemotherapy as 
Markov chains with continuous time. In Example 1.4, we have considered 
a drug-resistant model for cancer chemotherapy. In this model, there are two 
types of cancer tumor cells: The sensitive cancer tumor cells (X\) and the resis­
tant cancer tumor cells (X2). Assuming that the Xi cancer tumor cells follow 
stochastic birth and death processes for cell proliferation and differentiation 
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and that the resistant cancer tumor cells arise from sensitive cancer tumor 
cells by mutation. Let Xi{t) be the number of Xi cancer tumor cells at time 
t and let 0 be the time starting treatment. Then {[Xi(t),X2(t)},t > 0} is a 
2-dimensional Markov chain with continuous parameter space T — {t > 0} and 
with state space S = {(i,j),i,j = 0 , 1 , . . . , }. This is the stochastic process 
first studied by Tan and Brown [16]. 

Example 4.6. The Chu's multi-event model of carcinogenesis as 
Markov chains with continuous time. Many biological studies have 
shown that carcinogenesis is a multi-stage random process with interme­
diate cells subjected to stochastic cell proliferation and differentiation and 
with the number of stages greater than 2. Specific examples include colon 
cancer which has been shown to involve at lease one dominantly acting onco­
gene (ras) and several antioncogenes in chromosomes 5q, 17p and 18q [17, 
18]; other examples involving more than 2 stages have been given in [6, 19-
22]. This has led Chu [23], Chu et al. [24], Little and coworkers [19-22] to 
extend the MVK two-stage model into a multistage model with the normal 
stem cells and the initiated cells subjecting to stochastic proliferation (birth) 
and differentiation (death). When the number of stages for initiated cells 
equals to 2, this model reduces to the MVK two-stage model. Chu [23] has 
called his model the multi-event model to distinguish it from the classical 
Armitage-Doll model [6, Chap. 1]. Let N(t) denote the number of normal 
stem cells at time t, Ii{t) (i = 1 , . . . ,k) the number of the z-stage initiated 
cells at time t and T(t) the number of malignant cancer tumors at time t. As 
in the MVK two-stage model, the above multi-event model also assumes that 
with probability one each of the Ik cells grows instantaneously into a malig­
nant cancer tumor so that the Ik cells may be considered as cancer tumors. In 
this case, the process {N(t), Ii{t), i = 1 , . . . , k — 1, Ik{t) = T(t)} is a (k + 1)-
dimensional Markov chain with continuous time T = [0, oo). The state space is 
S = {(io,H, • • • ,*fc),with ij,j = 0 , 1 , . . . ,fc being non-negative integers}. No­
tice, however, that in many practical situations the assumption Ik = T may 
not hold [25, 26]; therefore, as noted in Example 1.13, T(t) is not Markov. In 
any case, the process {N(t), Ii(t), i = 1 , . . . , k — 1} is always a Markov chain 
with continuous time. 

Example 4.7. A continuous time Galton—Watson branching pro­
cess. Consider a large haploid population (i.e. the individuals have only one 
set of homologous chromosomes in the genome.). Assume that at time 0 a 
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mutant is introduced into the population. Let X(t) be the number of mutants 
at time t. Then X(t) is a homogeneous Markov chain with parameter space 
T = [0, oo) and with state space S = { 0 , 1 , . . . , oo} if the following conditions 
hold: 

(i) After time 0, no new mutants are introduced into the population. 
(ii) The density of the life time distribution of each mutant is exponential 

with density h,M{t) = X e~At, A > 0 , « e T . 
(iii) Whenever a mutant dies with probability pj(J = 0,1,..., oo) such that 

Y^'JLQPJ = 1, it leaves beyond j mutants. (To avoid trivial situations, we will 
assume 0 < po < 1-) 

(vi) Each mutant proceeds according to the above rules and probability 
laws independently of other mutants. 

In the above Markov chain, the state 0 is persistent and all other states 
(i.e. 1,2, . . . , oo) are transient. 

To find the transition rates otij, let TM be the survival time of the mutant. 
Since the probability that a mutant at time 0 will survive at least t period 
is P(TM > t) — Jt h,M(x)dx = 1 — e~Xt, the conditional probability that a 
mutant at time 0 will die during [t, t + At) given that it has survived t period is 

-^—-,{P(TM >t)- P(TM >t + At)} = \At + o(At). 

It follows that for j ^ 1, 

Pi{X{t + At) = j\X{t) = 1} = XpjAt + o(At). 

If j = 1, then, since the mutant remains one mutant if it does not die, 

Pr{X(t + At) = l\X(t) = 1} = 1 - XAt + XpiAt + o(At) 

= 1 - (1 - Pi)\At + o(At). 

(In the above equation, the first term 1 — AAi is the probability that the 
mutant survives the time period [t,t + At).) 

It follows that aij = pj\ for j ^ 1 and an = (1 — pi)X. Let qj = 
aijAt if j ^ 1 and q\ = 1 — a n At. Let Y(n) be the Galton-Watson branching 
process with progeny distribution {qj,j = 0 ,1 , . . . , oo} . Then Yl'jLoQj — 1 
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and Y(n) is an embedded Markov chain of X(t). The pgf of {qj,j € S} is 

oo 

h(s) = ^2 sjqj = s + [g(s) - s}XAt = s + u(s)At, 
j=0 

where g(s) is the pgf of pj, j G S and u(s) = [g(s) — s]X. 
Since each mutant proceeds according to the same rule and the same 

probability laws independently of one another, given i mutants at time t, the 
pgf of the number of mutants at time t + At is [/i(s)]1. Now, 

[/i(s)f = {s + u(s)Aty = si + isi-1u(s)At + o(At) 

= a*[l - t(l -pi)\At] + isi-lp0XAt 

OO 

+ i Y, si+j-l
Pj\At + o(At). 

It follows that 

fo(At) , i f j < i - l ; 

ipoXAt + o(At), if j = i - 1; 

1 - z(l - pi)XAt + o(At), if j = i ; 

_ ipj-i+iXAt + o(At), Hj>i. 

Hence, for i > 1, a^- = 0 if j < i — 1; a^- = ipoX if j = i — 1; an = 
*(1 — Pi)^ if J = ^ and a^ = ipj_i+iX if j > i. 

4 .3 . The Transi t ion Probabi l i t ies and Kolmogorov 
Equat ions 

In Markov chains with discrete time, one derives the general transition 
probabilities by giving the one-step transition probabilities and then apply­
ing the Chapman-Kolmogorov equation. Extending this to continuous time, 
one then derives the general transition probabilities by giving the transition 
rates and then applying the Kolmogorov forward and/or backward equations. 
These are systems of differential and difference equations. The differential 
operator applies to time as time is continuous whereas the difference operator 
applies to the state variables as the state variables are discrete. 

Pv{X{t + At)=j\X{t)=;i} = < 
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There are two types of systems of equations. One is referred to as the 
Kolmogorov forward equations whereas the other as the Kolmogorov backward 
equations. The Kolmogorov forward equations are given by: 

—pi:j (s,t) = ^2 pik (s, t)akj (t) - Pij (s, t)ajj (t), (4.2) 
kit] 

where i, j = 0 , 1 , . . . , oo and Pij(s, s) = Sij. 
The Kolmogorov backward equations are given by: 

~dsPij^s'^ "='^2aik^Pk^s't^ ~ au(s)Pij{s,t), (4.3) 
k^i 

where i,j — 0 , 1 , . . . , oo and Pij(s, s) = 6ij. 
Notice that in the Kolmogorov forward equations, the derivatives are taken 

with respect to the forward time t whereas in the Kolmogorov backward equa­
tions, the derivatives are taken with respect to the backward time s. If the 
otij(t) = a^'s are independent of t, then the chain is homogeneous so that 
Pij(s,t) = Pij(t — s). In these cases, the above Kolmogorov forward and back­
ward equations reduce respectively to: 

(1) The Kolmogorov Forward Equations 

d_ 
di -nPij(t) = J^Pifc (*)<*** - Pij(f)ctjj , 

where i, j = 0 , 1 , . . . , oo and Pijifi) = 5^. 
(2) The Kolmogorov Backward Equations: 

^Py 'W = ^ZaikPkj(t) - aupijit), 

where i,j = 0 , 1 , . . . , oo and Pij{0) = <%. 
To prove Eqs. (4.3), note that by the Chapman-Kolmogorov equation, we 

have for t > s and for As > 0: 

Pij{s - As,t) = ^2pik{s - As,s)pkj{s,t) 
fc=o 

oo 

= ^ « i f c ( s - As)pkj{s,t)As 
kyti 

+ {1 - au(s - As)pij(s, t)As} + o(As). 
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Subtracting pij (s, t) from both sides of the above equation and dividing by 
As, we obtain: 

1 ° ° 

7—{Pij(s - As,t) ~ Pij(s,t)} = "^2aik(s - As)pkj(s,t) 

, . . . , o(As) 
- aii(s - As)pij(s, t) + . 

By letting As —> 0, one then drives the Kolmogorov backward equations 
as given by (4.3). By using exactly the same approach, one may derives the 
Kolmogorov forward equations as given by (4.2); see Exercise 4.1. 

From above, theoretically, given the transition rates, one may derive the 
general transition probabilities by solving the Kolmogorov forward equations 
or by solving the Kolmogorov backward equations. (In practice, the solution 
of the above system equations may be very difficult if not impossible.) We now 
illustrate this by some examples. 

Example 4.8. The Feller-Arley stochastic birth-death process. Let 
X(t) be a Feller-Arley birth-death process with birth rate bi(t) = ib(t) and 
death rate di(t) = id(t). Then a^t+i^) = ib(t), otiti-i(t) = id(t), and aij(t) = 
0 if \i — j \ > 2. Hence the Kolmogorov forward equations become: 

—Pi j(s, t) = Pij-i(s, t)(j - l)b(t) +piJ+i(s, t)(j + l)d(t) 

-Pij(t)Mt)+d(t)}, (4.4) 

where i, j — 0 , 1 , . . . , 00 and Pij(s, s) = <$#. 

We now use the following basic steps to solve the above system of equations: 
(1) Transform the system of equations into a partial differential equation 

(PDE) for the pfg of Pij(s,t): 

Qi(u; s,t) = ^2 ukPik(s, t), 
fc=o 

(2) Solve the PDE of Qi(u; s, t). 
(3) Obtain pij(s,t) by taking derivatives repeatedly with respect to u to 

obtain pij(s,t) as 

\ ( d? \ 
Pij(s,t) = -\^jQi(u;s,t)J 

u = 0 



170 Continuous-Time Markov Chain Models 

To solve Eq. (4.4), multiplying both sides of (4.4) by v? and summing over 
j from j = 0 to j = oo, the left side is §^Qi(u;s,t); the right side is given by 
9(u, t)-tQi{u; s, t) where g{u, t) = (u- 1) [«&(*) - d(t)\ = (u - l)[(u - l)b{t) + 
j(t)] with 7(i) = &(£) — d(t), by using the results given below: 

oo oo 

5^u ' ' ( j - l)pi,j-i(s,t) = u 2 5 3 u J ' - 2 ( j - l)Pij-i(s,t) 
j=0 j = l 

°° 9 9 
= u 2 ^ — u J p i j ( s , i ) =u2—Qi(u;s,t), 

j=o u 

(notice that pit~i(s,t) = 0); 
oo oo 

^ V O " + l)pi)i+i(s,t) = ]TV_1.?X:i(M) 
j'=o j = i 

oo „ _ 

= X I Q-uJPii(S> f) = -Q-Qi(U~> S> 0 . 

and 

OO OO Q 

j=0 3=0 

This shows that Qi(u; s,t) satisfies the PDE given by: 

—Qi{u; s, t) = g(u, t)—Qi(u; s, t). 

The initial condition is Qi(u;s,s) — u%. As shown in [3] and [6, Chap. 2], 
the solution of the above PDE under the initial condition Qi(u;s,s) = u% is 
(Exercise 4.2) 

^ • • " - ( 1 + «0-V-"iKw)' (4'5) 

where £(t) = exp{- f*[b{x) - d(x)]dx} and ((t) = f* b{y)Z(y)dy. 
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Hence, if i = 1, then 

Plj(t) = P{X(t)=j\X(0) = l} 

= < 

1 -^)TW ifi = 0; 

m ( 0) 3-1 

EX{t) = {{(i)}-1 = exp | / [6(x) - d(a;)]da?| 

if i > 0 . 

and 

VarX(i) = {^ ) + 2CW-l}/«eW 2 -

To derive results for i > 1, put: 

Oi(s,t) = C(M)/[£(M) + C(M)] ,a 2 (M) = [1 - a i (M)] /C(M) 

and a3(s,i) = 1 - [C(s,*)]_1. Then, 

Pij(s,t) = [ai(s,t)YJ2(l) (J + kj l ) Ms,t)}k[a3(s,t)Y 

with (0) = 1 for all real I and ( fc
 x) = 0 for all integer k > 0. 

Example 4.9. The number of initiated tumor cells in the two-stage 
model of carcinogenesis. In Example 1.13, we have described the non-
homogeneous MVK two-stage model of carcinogenesis. Denote the birth rate 
and death rate of each / cell at time t by b(t) and d(t) respectively and let oto(t) 
be the mutation rate from N —> / at time t. That is, the probabilities that an 
I cell at time t will give rise to 2 / cells, 0 I cells and 1 / cell and 1 tumor 
cell at time t + At are given respectively by {b(t)At + o(At),d(t)At + o(At)} 
and ao(t)At + o(At), respectively. Under the assumption that the number 
N(0) = No of normal stem cells at time 0 is very large, then to order of 
0(N^'1), one may assume the number N(t) of normal stem cells at t (t > 0) as 
a deterministic function of t; for proof, see ([16, 27, 28]). In these cases, I(t), 
the number of initiated cells at time t, follows a non-homogeneous birth-death 
process with immigration. In this process, given i I cells at time t, the birth 
rate and the death rate are given by ib(t) + ao(t) and id(t) respectively. Thus, 
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the infinitesimal parameters are 0^+1(4) = ib(t) + ao(t), 0^-1(4) = id(t), and 
otij{t) = 0 if \i — j \ > 2. Hence the Kolmogorov forward equations become: 

jtPij(s,t) = Pij-i(s,t)[(j - l)b(t) + a0(t)} +Pitj+1(s,t)(j + l)d(t) 

-Pij(t)[jb(t) + a0(t) + jd(t)}, (4.6) 

for i,j = 0 , 1 , . . . , 00 with Pij(s, s) = 5ij. 

Denote the pfg of pij(s,t) by: 

Qi(u;s,t) = Y^ukPik(s,t). 
k=0 

Then, by multiplying both sides of Eq. (4.6) by u-7 and summing over j 
from j = 0 to j = 00, we obtain the following partial differential equation for 
Qi(u;s,t): 

—Qi(u; s, t) = g(u, t)—Qi(u; s, t) + (u - l)a0(t)Qi(u; s, t) 

where 

g{u,t) = (u-l)[ub(t)-d(t)} = (u-l)[(u-l)b(t)+y(t)] and j(t) = b(t)-d(t). 

The initial condition is Qi(u; s, s) = ul. The solution of the above PDE 
under the initial condition Qi(u;s,s) = ux is very difficult in general cases. 
When Noao(t) is finite, then as shown by Tan and Brown [16, 28], to the order 
of O^N^1), Qi(u;s,t) given I(s) =iis 

Qi(u;s,t) = [fi^s^YexpU N(x)a0{x)[f{u;x,t) - l]dx\ , (4.7) 

where N(t) is the number of normal stem cells at time t and f(u; s, t) is the 
pgf of a Arley-Feller stochastic birth death process with birth rate b(t) and 
death rate d(t). 

By results from Example 4.8, 

f(u;s,t) = l + - ( a ; _ 1 ) 

£(s,t) - (x - l)«s,t) 

where £(s, t) = exp{- /'[6(a:) - d(x)]dx} and C(s, t) = / ' b(y)((s, y)dy. 
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Assume i = 1 and put Pj(s, t) = pitj(s, t). To derive pj(s, t) from Eq. (4.7), 
denote for j = 0 , 1 , . . . , oo: 

qj(s,t) = f N{x)a0{x)[£(x,t) +£(*,<)] ~ ( j + 1 ) 

J s 

x [8j0 + (1 - fy>)£(a:, *)<(*. t)i-1]da! • 

Then, 

{/ exp < / iV(a;)ao(a;)[/(w;a;, £) — l]dx } 
exp{ -qo(s,t) + ^ u J g j ( s , i ) > =^2ujr{2tj)(s,t), 

3 = 1 I J=0 

where 

f(2,o)(M) = exp[-g0(s, t)] . 

and for j = 1 , . . . ,oo, 

r(2,j) (*. 0 = X ] —J—^.i) (5> t)lj-i(s, *) • 
i=0 J 

From Example 4.8, we have: 

1 

r ( U ) (*.*) = < 

1 -
£(M) + <(M) ' 

£(s,i) / <(M) N ' _ 1 

l(£(M) + C(M))2 U(M) + C(M) 

Hence, 

if j = 0; 

if j > o . 

fc=0 

For deriving results for the general case i > 1, put: 

a i ( M ) = <(M)/K(M) + C(M)].a2(M) = [1 - oi(*,t)]/C(«,t) 
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and a3(s,t) = 1 - [C(s,*)]_1. Then, 

OO 

[/(«; B,t)]*=x;«Mij) (*'*)-
3=0 

where 

r g , ) ( M ) = [0l(S)t)H £ (I) (J+ ) ~ X) [a2(s,t)}k[a3(s,t)Y-k , 

with (o) = 1 for all real I and (fc^1) = 0 for all integer k > 0. 
Using this result, we obtain: 

i 

Pij(s,t) = 53r(i!fc)(s '*)r(2j-fc)(s '*) • 
fc=0 

(For details, see Tan and Brown [16].) 

4.4. Kolmogorov Equations for Finite Markov Chains with 
Continuous Time 

Suppose that the chain is finite with state space S = { 1 , . . . , k}. Then one may 
express the Kolmogorov equations in matrix notations. To illustrate, let P(s, t) 
be the kxk matrix with (i , j)th element given by Pi,j(s,t),i,j = l,...,k. Then 
P(s, t) is the transition matrix for the transition of states at time s to states 
at time t. Let A(t) = (ay(i)) be the kxk matrix with (i, j ) th element given 
by aij(t) — SijOtu + (6ij - l)ctij. 

Denote by 

^P(M) = ( # * ( - , ' ) ) and §-sP(s,t) = (£«,(' ,*)) • 

Then, in matrix notation, the Kolmogorov forward equations and the 
Kolmogorov backward equations are expressed respectively by the following 
matrix equations: 

%-P(s,t) = -P(s,t)A(t) (4.8) 
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and 

~P{a,t) =-A(a)P{s,t). (4.9) 

The initial condition is P(s, s) = Ik, the fc-dimensional identity matrix. 
If the chain is homogeneous such that otij(t) = oiij,P(s,t) = P(t — s) and 

A(t) = A, then the above Kolmogorov forward and backward equations reduce 
respectively to: 

jtP(t) = -P(t)A (4.10) 

and 

jtP{t) = -AP{t). (4.11) 

The initial condition is P(0) = /&. 
Define the matrix exponential function e At = YL^Lo \{~i)J-AJ, then the 

solution of (4.10) and (4.11) is given by 

P(t) = e~At. 

If A is diagonable with real distinct eigenvalues Ai < • • • < Ar (r < k), then as 
shown in Subsec. 2.11.2 

A = Y,X<Ei 

i = l 

where E{ = Ujfti j ^ ( A ~ V * ) . » = 1 , . . . ,r . (Note Ef = E^EiEj = 0 if 

i ^ j and YA=I Ei = h-) Hence 

r 

P(t) =e-At = Yje~XitEi. 

Note that if r = k, then Ei = Qir'i, where tf j and r , are the right and the 
left eigenvectors corresponding to the eigenvalue A,- respectively. 

For homogeneous finite Markov chains with continuous time, one may 
derive the matrix P(t) of transition probabilities alternatively by noting 
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the results: 

(1) : P(At) = Ik - AAt + o(At), 

(2) : P(t) = P(nAt) = P(At)n 

= {h - AAt + o(At)}n 

= llk--At + o(t/n) 

by putting t = nAt and 

(3) : P(t) = lim [h--At + o{t/n) 
n—too [^ n 

Example 4.10. Markov chain models of HIV epidemic. Consider the 
Markov chain model described in Fig. 1.1 for HIV epidemic with transition 
rates {7i(s, t) — 7*, fa(st) = fa, Wi(s, t) = un,= 1 , . . . , k}. Satten and Longini 
[15] assumed k = 6 so that the 7th stage is the AIDS stage and the 6th stage 
is defined by /6 ,200/mm3 > CD4 counts. Assuming that there are no other 
transitions and that death occurs only after AIDS, then we have a finite Markov 
chain with 7 states 5 = {/», i = 1 , . . . , 7} with I7 = A being a absorbing state 
and all other states being transient states. The estimates of these transition 
rates have been obtained in [15] by using the San Francisco Men's Health Study 
(SFMHS) data and are given in Table 4.1. 

Because of the 1993 AIDS definition by CDC [29], we will merge the I6 

stage with the AIDS stage. Then we have a finite Markov chain with state 
space fi = {U, i = 1 , . . . , 6} with IQ = A being the AIDS stage. (The rate for 

Table 4.1. The estimated values of transition rates by Satten and Longini [15J. 

71 

72 

73 

74 

75 

= 0.0381 

= 0.0478 

= 0.0399 

= 0.0417 

= 0.0450 

y32 

ft 
& 
ft 
ft 

= 0.0030 

= 0.0087 

= 0.0064 

= 0.0167 

= 0.0071 

Wl 

W3 

W4 

W5 

W6 

= 0>2 = 0 

= 0.0016 

= 0.0025 

= 0.0038 

= 0.0647 

,-At 
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Is -» A is now 75 + UJ5.) The infinitisemal matrix of this chain is: 

B 

0' 

where w' = (pji, i = 1,.. . ,4,75 + W5) and 

J3 = 

On substi tut ing the estimates from Table 4 .1 , we obtain 

w' = (0,0,0.0016,0.0025,0.0488) 

+ U>1 

-/?2 

0 

0 

0 

- 7 1 0 0 

#2 + 72 + w2 - 7 2 0 

-@3 /?3 + 73 + <̂ 3 - 7 3 

0 - / ? 4 /34 + 74 + W4 

0 0 - / 3 B /3s 

0 

0 

0 

-74 

+ 75 + w5 

and 

B 

0 

0 

0 

0.0381 -0.0041 0 0 

-0.0030 0.0508 -0.0478 0 

0 -0.0087 0.0502 -0.0399 

0 0 -0.0064 0.0506 -0.0417 

0 0 0 -0.0167 0.0655 

The eigenvalues of B are given by Ax = 0.0179, A2 = 0.0714, A3 = 0.0445, A4 = 
0.0899, A5 = 0.0315. The left eigenvectors Uj and the right eigenvectors Vi of 
Aj are given respectively by: 

tji = (0.0265,-0.1780,0.5564,1.4756,1.2937), 

u'2 = (-0.0270,0.2988,-0.5882,-0.2868,2.0403), 

u'3 = (0.0773, -0.1637, -0.4577,0.8119,1.6089), 

u'A = (0.0044, -0.0767,0.3253, -1.4451,2.4697), 

u>5 = (-0.0789, -0.1724, -0.0360,1.1826,1.4523), 
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and 

v[ = (2.0219,1.0701,0.6088,0.2162,0.0759), 

v'2 = (-1.6768,1.4639, -0.5245, -0.0342,0.0975), 

v'3 = (5.3891, -0.8991, -0.4576,0.1087,0.0862), 

u'4 = (0.4154, -0.5648,0.4360, -0.2593,0.1775), 

v's = (-6.1220, -1.0532, -0.0400,0.1761,0.0866), 

{ci = u'i w, i = 1 , . . . , 5} = (0.0669,0.0979,0.0998,0.1174,0.0738). 

Denote Ei = %%u'^ then B and e Bt have the following spectral expansions 
respectively: 

5 5 

B = ^\iEi, and e~Bt = ^e~XitEi. 
3=1 3=1 

It follows that 

P(t) = e-
M = 

/ l 

/ I Si 0 \ 
0 e-B < ^ - e - 8 * ) ^ - 1 ^ 

\0 0 1 J 

Si 0 \ 

o J > - ^ & 
3 = 1 

\ ° 0 1/ 
where 

a = ( / 4 - e - i " ) B - 1 u ; 

5 5 

= Y,e-XitEiW=J2e~Xit°W 
i = i i = l 
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Example 4.11. The nucleotide substitution Markov chain in 
molecular evolution. In Example 4.3, it is shown that the nucleotide substi­
tution in Eukaryotes can be described by a finite homogeneous Markov chains 
with continuous time. The state space of this chain is S = {A, C, T, G} 
and the transition events are described by Fig. 4.1 with transition rates 
{a, f3,7, S, e, A, K, a}. In this Markov chain, the matrix B of infinitesimal 
parameters is given by: 

B = 

A 

G 

C 

T 

A 
/ a + 7 + A 

—e 

-S 

{ -6 

G 
—a 

e + 7 + A 

— K 

— K 

c 
- 7 

- 7 

0 + S + K 

—a 

T 
-A 

-A 

-0 
6 + K-

Hence the matrix P(t) of transition probabilities from states at time 0 to 
states at time t is P{t) = e~Bt. We will show that the matrix B has four 
distinct real eigenvalues {z/j,i = 1,2,3,4} so that B is diagonable. 

Let Xi and Vi denote the right eigenvector and the left eigenvector of B 

for Ui respectively, i = 1,2,3,4. Denote by Ei = (x'iyi)~1Xi'y'i,i = 1,2,3,4. 
Then {El = Eh E{Ej = 0, i ^ j , £ ? = 1 Ei = 74} and the matrices B and P(t) 

have the following spectral expansions: 

B = Y^ "iEi and PQ) = 52 e-VttEi. 
» = i » = i 

To derive i/», notice first that all rows of B sum up to 1 so that v\ = 0 is 
one eigenvalue with right eigenvector Xi = ( l , l , l , l ) ' = 1 . 4 , a 4 x l column of 
l's. To derive the other eigenvalues, let Mi be a 4 x 4 matrix defined by: 

Mi = 

(l 0 0 l \ 

0 1 0 1 

0 0 1 1 

\0 0 0 1 / 
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Then the inverse Mx
 1 of Mx is Mx

 l — 

(I 0 0 - l \ 
0 1 0 - 1 
0 0 1 - 1 

\o o o i J 

and 

C = M^BMi 

/j + X + a + S K — a cr — 7 0^ 

6 — e 7 + A + e + K a — 7 0 

0 0 S+K+P+a 0 

\ -6 -K ~a 0 / 

Since the characteristic function of B is (j>(x) = \B — xl±\ = \MX
 1BMi — 

21/41, so 

<?!>(z) = \C-xU\ 

= (5 + K + P + <T-X) 

x{(7 + A + a + <5- a;) (7 + A + e + K - a ; ) - ( « ; - a) (J - e)} 

= (5 + K + /3 + a - a:) (7 + A + a + e - a) (7 + A + <5 + K - X ) 

= 0. 

It follows that the other three eigenvalues are 

{ ^ 2 = 7 + A + 5 + K, v3=j + \ + a + e,vi = 5 + K + f3 + a} . 

This shows that all eigenvalues of B are real and distinct so that B is 
diagonable. The right eigenvector aj» of Vi for i = 2,3,4 can readily be 
derived by solving the system of equations (B — Vil4)xi = 0 which is unique 
up to non-zero constant multiplier. After some straightforward algebra, these 
eigenvectors are obtained as: 

x'2 = (1,1, - a , - a ) with a = (8 + K ) / ( 7 + A), 

a(S + K-L>3) + K(J + A) 
:'3 = ( 0 1 , 0 2 , 1 , 1 ) w i t h a i = 

and a2 

aS — en 

( - € ) ( « + K - I A , ) - 5 ( 7 + A ) 

aS — en 
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x'4 = (1,1, a3, a4) with a3 

and a4 = 

/3(7 + A - v4) + \(S + K) 

fi-y-Xcr 

( -g) (7 + A - u4) - j(5 + K) 

^7 - ACT 

To derive the left eigenvectors of the zVs of B, put Q = (aji, 2j2> £3, £4)-
Then Q is non-singular and the rows of the inverse Q~l of Q are the left 
eigenvectors of the zVs respectively. To derive Q~l, notice the result that if 

the square matrix G is partitioned by G = I I and if {G, Gu, G22} 
\Cx21 G 2 2 / 

are non-singular, then 

G - 1 ^11.2 

- G 2 2 ^ 2 1 ^ 1 1 . 2 

Gn G12G221 

" ^ 2 2 . 1 > 

where Gu.j = Gti - GijG^Gji, i ± j . 

Using this result, we obtain: 

Q~' = 

1 + 002 1 +OOl 0 + 04 0 + 03 

( l + a)(o2 - a i ) 

1 — a2 

( l + a)(a 2 - « l ) 

1 + 0 

( l + a)(a2 - a i ) 

0 

( l + a)(a2 -a\) 

1 — a\ 

(1 + o ) ( o 2 - a i ) 

1 

(a2 - a i ) 

0 

( l + a)(a4 - a 3 ) 

1 — 04 

( l + a)(a4 - 0 3 ) 

0 

1 

(1 + a)(o4 — 03) 

1 — 03 

(1 + a)(a4 - 03) 

0 

1 

04 — 03 04 — 03 

On substituting the {a,aj,i = l,2,3,4}'s, we obtain the four row vectors of 
Q-1 as: 

y'i = | ^ y [ % + A) + e(<5 + K ) , K ( 7 + A) + a(<5 + K)] , 

^ y W 7 + A)+7(«5 + «),/3(7 + A)+A(<5 + K ) ] | ; 

file:///Cx21
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V2 = ; < ; (« -S,a- K). 

~ J + X + S + K \a + e-S-KK ' 

y'* = 

P+o-i-X 

a(5 — e«; 

( 7 - a , A - / 3 ) }' 
3 (7 + A + a + e)(a + e - 5 - K) 

7/3 -aX 
y\ = 

Since x^Vi = l,i = 1,2,3,4, so we have: 

( -1 ,1 ,0 ,0 ) ; 

( 0 ,0 , -1 ,1 ) . 

p(!) = uyi + Tle-vtti£iV,i 
t = 2 

It follows that linit-Kxj P(i) = ^ 4 ^ 1 -

(4.12) 

Example 4.12. The Moran genetic model. In Example 4.2, we have 
shown that the Moran's model is a finite homogeneous birth-death process 
with birth rate bj = (M - j)X2{M-{l - ax) + (1 - jj)a2} and dj = jXi{(l -
a2) - -fell — a\ — a2)}. Hence P(t) = (Pjk(t)) = e~M, where A is given by: 

/ 6o —6o 
-di ( 6 i + d i ) - 6 i 

—d-2 (62 + ^2) —̂ >2 

where A 

\ 

-d-M-x (0M+l+dM-l) —OM-l 

—dM dM / 

(4.13) 

with bj and dj as given above. 
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When Ai = A2 = A (no selection), the eigenvalues and eigenvectors of A 
have been obtained by Karlin and McGregor [30] using Hahn polynomials. 
The Hahn polynomial Qn(x) = Qn{x;a,j3,N) with parameters (a,/3,N) is 
defined as: 

Qn(x) = Qn(x; a, (3, N) = F ( 3 > 2 )(-n, -x, n + a + (3 + 1; a + 1, -N + 1; 1) 

_ v ^ (~n)fc(-a;)fc(n + a + {3 + l)k 

fc=o 
(a + l)k(-N + l)k(kl) 

where a > -1,(3 > —1, N > n, (c)0 = 1 and (c)fc = c(c + 1) • • • (c + A; — 1) for 
k> 1. 

The following two properties of Hahn polynomials have been proved in [31, 
32] and will be used to derive the eigenvalues and eigenvectors of A: 

(1) Orthogonality relationships: 

N-l 

^2 Qn(x)Qm(x)p(x) 
x=0 

0, if n ^ m 

1 •( — , it n = m 
(4.14) 

and 

N-l 

E 
n=0 

X I Qn{x)Qn(y)nn = 

0, if Z ^ 2/ 

1 "f 
, if x = y ,p(x) 

> . 

Where 

p(x) = p(x;a,/3,N) = 
(a+x\ ((3+N-l-x\ 
\ x ) \ N-l-x J 

(N+a+[)\ 
\ N-l J 

and 

7T0 = 1, for n = l , 2 , . . . , J V - l , 

7Tn =TVn((X,f3,N) 

(V) rcs + i) 

(4.15) 

, x = 0 , l , 2 , . . . , A T - l : 

(*+*+/»+») r(o + i)r(x + (3 +1) 
I > + a + l ) I > + a + /? + l) (2rc + a + /? + !) 

T(n + /3 + l ) r ( n + l) (a + /3 + 1) 
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(2) Qn(x) satisfies the following difference equation 

XnQn(x) = D(x)Qn(x-l)-(B(x) + D(x))Qn(x)+B(x)Qn(x + l), (4.16) 

where 

B(x) = (AT - 1 - x){a + 1 + x), D{x) = x(N + p - x), and 

An = n{n + a + P + 1). 

Case 1: If ai > 0,0:2 > 0 but 1 > a\ + a?, then the birth rate bj and death 
rate dj of Moran's model can be rewritten as: 

bj = ^(l-a1-a2)[(M + l)-l-j] 
Man 

1 — Ql — 02 
-l)+l+j 

M 
(1 - 01 - a2){N - 1 - j){a + l + j). 

and 

dj = Jf^-ai-a^ «M+1>+(r^-1) 
\ 1 — a — «2 / 

- 1 ~J 

= — (1 - ai - ai)j[N + 0 - j], 

where 

N = M + l,a= l a n d /? = 
1 — a i — ct2 1 — a\ — ai 

Putting \in — -jj-(l — OL\ — Q2)n(n + a + P + 1), then we have for j — 0,1, 
2,...,M = N-1: 

^nQn(j') = -bjQ„(j + 1) + (6j + dj)Q„(j) ~ djQn{j - 1) . 

Noting (4.16), it is immediately seen that /in = jjy(l — &i — ct2)Ti(n + a + 
/3 + l ) , n = 0 , l , 2 , . . . , M = : i V - l a r e the eigenvalues of 4̂ with corresponding 
right eigenvectors 

r'n = (Qn(0),Qn(l),...,Qn(M)). 

Let Cn be the left eigenvector of A corresponding to the eigenvalue fxn. Then 
Zn^m = SnmCn for some constant Cn. Using the orthogonality relationship 
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(4.14), the left eigenvector („ of fin of A is proportional to 

U s „ = {p(0)Qn(0), p(l)Qn(l), ..-, p(M)Qn(M)}' , 

and r'ngn — YLx=oP(x)Qn(x) — ^n 1 ) 7 1 = 0 ,1 ,2 , . . . ,M. Since all the eigen­
values /i„ are distinct, so 

M 

„ = 0 H n * n ; 

or, 

M 

P,-fc(i) = p{k) £ % x p ^ - —(1 - a i - a2)n(n + a + /3 + 1 U TvnQn(j)Qn(k), 
n=0 *• J 

(4.17) 
where j,k = 0,1,2,..., M. 

Formula (4.17) was first derived by Karlin and McGregor [30]. 

Case 2: a\ = <*2 = 0 (no mutation). 

In this case, 60 = cfo = &M = ^M = 0 so that 0 and M are absorbing states. 
Furthermore, pj = -^ and ĝ  = 1 - -fa, j = 0 ,1 ,2 , . . . , M. Hence, matrix A 

( o o' o \ 
-wi B -W2 , where the Wj are (M — 1) x 1 

0 0' 0 J 
columns given by w i = (M - 1 , 0 , . . . , 0)', w2 = ( 0 , . . . , 0, M — 1)' and where 

/ 2 ( A f - l ) , - ( M - l ) , 0 \ 

-2(M-2), 2-2(M-2), -2(Af - 2) 

-3 (M-3) , 2-3(Af-3), -3(Af - 3) 0 

B = 

- 2 ( M - 2 ) , 2 - 2 ( M - 2 ) , -2(Af - 2) 

- ( M - l ) , 2(M-1)J 
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Obviously, 0 is an eigenvalue of A with algebraic multiplicity 2 while 
the other eigenvalues of A are given by/x n = -^an,n = 1,2, . . . , M — 1, 
where the ern are the eigenvalues of B. Furthermore, the two independent 
left eigenvector of 0 of A are x[ = (1 ,0 ,0 , . . . ,0) and x'2 = (0 ,0 ,0 , . . . , 1); 
the two right eigenvector of 0 of A are obviously y[ = {1, ( i ? - 1 ^ ) ' ^ } and 
y'2 = {0, (B~lw2)', 1}. Notice that x^Vj = J^ (i,j = 1,2) as it should be. 

Now an ^ 0 as det(5) =£ 0. Let un and vn denote the left eigenvector 
and the right eigenvector of B corresponding to the eigenvalue <rn respec­
tively. Then, it is easily seen that the left eigenvector and the right eigen­
vector of A corresponding to the eigenvalue /x„ are given respectively by: 

V'n = ( - £ « » £ i > «!,. - £ « » # 2 ) and x'n = (0,v'n,0). 
To obtain the eigenvalues and the eigenvectors of B, notice that the first 

and the (M — l)th columns of B are given respectively by 

c! = {2(M - 1), - 2 ( M - 2), 0 , . . . , 0}', and 

c M - i = { 0 , 0 , . . . , 0 , - 2 ( M - 2 ) , 2 ( M - l ) } ' ; 

and, for j = 2 , 3 , . . . , M — 2, the j t h column is 

c J - = = { 0 ' 0 _ 2 ) , - 0 - - l ) ( M - j + l ) , 2 j ( M - j ) , - ( j + l ) ( M - j - l ) , 0 ( M _ J _ 2 ) } ' , 

where 0 'k is a row of k 0' s. 
Hence, for j = 1 , . . . , M - 1 , the ( j - l ) t h element, the (j' + l ) th element and 

the jth element of Cj are given respectively by Cj(j — 1) = —5j-i,Cj(j + 1) — 
-pj-UCj(J) = 5j-i + &•_! + 2 = 2j(M - j), where 

V i = U - i)(M - j +1) = 0" - i)[(M - 1 ) - (j - 1 ) +1 ] , 

/3 ,_! = (M - 1 - j ) ( l + j) = [(M - 1) - 1 - (j - 1)][1 + 1 + (j - 1)]. 

(For j — 1, the first and second elements of c j are ci(l) = <5J_1 + /3J-_1 + 2 = 
2(M - 1) and cx(2) = -/?,•_! = - 2 ( M - 2) respectively.) 

Let AT = M - 1, a = j3 = 1 and put: 

£n_i = (n - l)(n - l + l + l + l ) , i?„_1(j - 1) = Qn_x{j - 1; 1,1, M - 1), 

for n = 1,2,. . . , M - 1 and j = 1,2,. . . , M - 1. 
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Then, we have: 

-$n-lRn-l{j - 1) = V i f l n - i t f - 2) - (*,-_! + ft-i^-iO' - 1) 

n = l l . . . , W ( = M - l ) ; j = l , . . . , J V ( = M - l ) . 

Or, since £n-i + 2 = n(n + 1), 

r»(n+l) i2„_i0 ' - l ) = (&- i +2)Rn-1(j - 1) 

= -0 - - l ) (M- i + l)i?n_!(i-2) 

+ 2j(Af - i ) i?n- l ( j ~ 1) - (J + 1)(M - J - l ) ^ n - l ( j ) 

= C i( j - lJiZn-lO' - 2) + CjfflRn-lV ~ 1) 

+ c j(j + l ) i2 n_ 1( j ) , (4.18) 

where j - 1 , . . . , N = M - 1 and n = 1 , . . . , JV = M - 1. 
Formula (4.18) implies that an = n(n + 1), n = 1 , . . . , iV = M — 1 are the 

eigenvalues of B and the left eigenvector of B corresponding to the eigenvalue 
an is 

u'n = {i?„_i(0) , f l n_i( l ) , . . . , fi„-i(M - 2)} , 

where i?n_i(,j) = Q n _i ( j ; 1,1,M - 1) is valid for j = 0 , 1 , . . . ,M - 2 and 
n=l,2,...,N = M-l. 

For deriving vn, define: 

* ( * ) = * * ; 1,1, M - 1) = ( M - i + m ) = (M + 1 ) M ( M - 1 ) ' 

a; = 0 ,1 ,2 , . . . , M - 2; n^ = 1 and for n = 1,2,. . . , M - 2 , 

. W - W U M - D - (M"2) x r ( 2 )
 x r ( n + 2)r(n + 3) 
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Then, by (4.14), 

1 

^ Rn{x)Rm{x)po{x) = < 

N-l 

x=0 

0, if n 7̂  m 

—J-TT-, if n = m 
• , n = 0 , l , . . . , M - 2 ( = J V - 1 ) . 

This result implies that the right eigenvector v n of an of i? is proportional 

to 

9n = {po(0)i2„_i(0),po(l)i2n-i(l), • • -,Po(M - 2)i?n_i(M - 2)}' 

6 

M{M2 - 1) 
{(M - l ) i^_! (0 ) , 2(M - 2)i?n_1(l), 

...,r(M- r)Rn_!(r - 1 ) , . . . , (M - l ) # „ - i ( M - 2)} ' ; 

Now, u'nvn = 1 and t}^9„ = T^=o Po{x)\Rn-i{x)}2 = « - i ) _ 1 by 

(4.14), where 7r^x - | S ± n ( n + l ) ( 2 n + l ) , n = 1,2,... ,M - 1. Hence 

7 r n - i S 5 n = 1 so that we have: 

v'n = nn*l1q'n = cn[(M-l)Rn-1(0),2(M-2)Qn_1(l),...,r(M-r) 

Qn_!(r - 1 ) , . . . , (M - l )Q„_i (M - 2)], 

where 

Cn — 
(l-1

2)n(n + l)(2n + l) 
'" — /Af+n ( ^ ( M + l J M ^ - l ) ' 

Notice that an ^ 0 and are all distinct so that B is diagonable and A has M 
distinct eigenvalues {/xi = 0, //j+i = <jj, j = 1 , . . . , M - 1}. For j = 2 , . . . , M, 
the left Xj and right eigenvectors yj are given respectively by 
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Define the matrix EQ by: 

/ 1 0 \ 

EQ — B~1w1 B~1w2 

V o i / 

1,0,. . . ,0 
0 ,0 , . . . , 1 

0 \ 

= I B~X™1 O(M-l.M-l) B _ 1 « / 2 

O'M-I i y 

1 0' M-l 

0 

/ 1 
M - l 

AiM-1 

M - l 1 M - l 

3=1 ° j J'=l 3 

V o o M - l / 

where 0(Pig) is a p x g matrix of 0's; and for j = 1 , . . . , M — 1, define the 
matrices Ej by: 

/ ° \ 

/ 

W 
1 , / 1 / / 

0 o' 0 

1 1 

V o o' M - l 0 

Then we have: 

M - l 

P(t) = e~At = E0+^2 e—a'^Ej = 
j = i 

0 \ / 1 S M - I 
M - l 

i = i 
V o o^_j i / 

^ M - l where aj = Ef=T 0- " <*-*""') jrvjbj'jjy&j = 1,2. 
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4.5. Complements and Exercises 

Exercise 4.1. Prove Kolmogorov forward equation given by Eq. 4.2. 

Exercise 4.2. Prove Eq. (4.5) for the pgf of P{X{t) = j\X{0) = i} of the 
Feller-Arley birth-death process. 

Exercise 4.3. Derive the Kolmogorov forward equation for the stochastic 
logistic birth-death process with birth rate bi{t) = ib(l — i/M) and death rate 
di(t) = id(l - i/M). Derive the pgf of P{X(t) = j\X(0) = i} of this process. 

Exercise 4.4. Consider a continuous-time Galton-Watson branching 
process {X(t), t > 0} with progeny distribution {pj,j = 0 , 1 , . . . , } and with 
survival parameter A (A > 0) as described in Example 4.7. Let g(x) denote 
the pfg of the progeny distribution and <f>{x,t) = E{xx^\X(0) = 1} the pfg 
oiX{t) given X{Q) = l. 

(a) By using the Chapman-Kolmogorov equation, show that 

<j>{x,t + T) = <j){<j>{x,T),t}. 

(b) Noting the results (f>(x, At) — x+u(x)At+o(At), where u(x) = X[g(x) — 
x], then 

4>(x, t + At) = 4>{<t>{x, At), t} 

= 4>{x + u(x)At + o(At), i) . 

Hence show that <p(x, t) satisfies the following partial differential equation: 

—<j>{x,t)=u{x)—(p(x,t), <j>(x,0)=x. 

Exercise 4.5. In a large population, assume that the probability density of 
the survival time T of each individual is given by: 

/ ( t ) = A e - A t , t > 0 , A > 0 . 

Suppose that when each individual dies at time t, immediately it either 
leaves beyond two individuals, or die (no progenies) with probabilities p(t) 
and q(t) = 1 —p(t) respectively. Let X(t) be the number of individuals at time 
t. Show that {X(t),t > 0} is a Feller-Arley birth-death process with birth 
rate &;(£) = iX p(t) and death rate di(t) = iX q(t). 
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Let (f>(z,t) = E[zxM\X(0) = 1]. If p(t) = p so that q(t) = 1 -p = q, show 
that <j>{z> t) satisfies the following integral equation: 

4>(z,t) = ze-xt+ J \e-^t'x\p[cj>{z,x)}2 + q}dx. 
Jo 

Hence show that (f>(z, t) satisfies the following Ricatti equation: 

-(l>(z,t) = b[ct>(z,t)}2-X4,(z,t) + d, 

where {b = pX, d = q\} and <j>{z, 0) = z. 
Show that the solution of <j>(z,t) is given by Eq. (4.5) with i = 1. 

Exercise 4.6. Two-types population growth model. Consider a large 
population consisting of two types of individuals, say normal type (or Type-1) 
and mutant type (or Type-2), Suppose that the following conditions hold: 

(i) The probability density of the survival time Tj (i = 1,2) of the Type-i 
individual is given by: 

fi(t)=Xie-Xit,t>0,Xi>0. 

(ii) When a normal individual dies at time t, immediately it either leaves 
beyond two normal individuals, or 1 normal individual and 1 mutant in­
dividual, or die (no progenies) with probabilities {pi(t),r(t)} and qi(t) = 
1 — pi{t) — r(r), respectively, where 0 < pi(t) + r(t) < 1. 

(iii) When a mutant individual dies at time t, immediately it either leaves 
beyond two mutant individuals, or die (no progenies) with probabilities P2{t) 
and q^it) = 1 — P2{t) respectively. 

(iv) All individuals in the population produce progenies or die by following 
the above probability laws independently of one another. 

Let Xi(t) denote the number of Type-i individuals at time t and put X (t) = 

[Xi(*),X2(i)]'. 

(a) Show that the above process {X(t),t > 0} is equivalent to the cancer 
tumor drug resistant model described in Example 4.5 with 

{b1{t) = X1p1{t),d1{t) = X1q1(t),a(t) = X1r{t),b2(t)=X2P2(t),d2(t) = X2q2(t)}. 
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(b) Let if>i(z,t) = E[zXi^{X^O) = 1,X2(0) = 0],i = 1,2. Show that 
ipi(z,t) is the pgf of a Feller-Arley birth-death process with birth rate bi(t) 
and death rate di(t) as given in Example 4.8. 

(c) Suppose that the parameters {pi(t) = Pi,qi{t) = q%,i = 1,2} are in­
dependent of time t. Then r(t) = r — 1 — p\ — q\ and a(t) — a — \\r are 
independent of t. Show that ip2{z,t) = <l>{z,t) satisfies the following integral 
equation: 

4>(z,t) = e-Al* + [ Aie-Al(*-x){pi[^,a:)]2+rV»1(z,a:)^(«>a;)}cfa. 
Jo 

Hence, show that <j> satisfies the following equation: 

-cj>(z, t) = h[4>{z, t)}2 + (aVi(z, t) - Ai)0(z, t), 

with^>(z,0) = 1. 
With il>i{z,t) available from (b), solve the above equation to derive ip2{z,t) = 
<j>{z,t). 

Exercise 4.7. Continuous-time multiple brsinching processes. Con­
sider a large population with k different types. Let Xi(t) (i = 1 , . . . , k) denote 
the number of the ith type at time t. Suppose that the following conditions 
hold: 

(1) The probability density of the survival time of Type-i individuals is 

hi(t) = Xie~Xit, t >0,Xi>0,i = l,...,k. 

(2) When a Type-i individual dies, with probability <&( j) = qi(ji, • • • ,jk) 
it immediately leaves beyond j r progenies of Type-r, r = l,...,k, where the 
jr(r = 1,... ,k)'s are non-negative integers. 

(3) All individuals in the population follow the above probability laws for 
proliferation independently of one another. 

Then {X(t) = [X\(t),... ,Xk(t)]',t > 0} is a fc-dimensional continuous-
time multiple branching process with state space S = {i^ = (ii,..., i^)', ij = 
0 , 1 , . . . , oo, j = 1 , . . . , k}, with progeny distributions {qi([) = g»(j'i,... ,jk), 
j € S, i = 1 , . . . , k} and with survival parameters {Aj, i — 1 , . . . , k}. One may 
assume P{Xi(0) = 1} = 1 for some i = l,...,k. Let M be the matrix of 
expected number of progeny distributions per generation and g (x) the vector 
of pgf's of progeny distributions. Then, as in discrete-time multiple branching 
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processes, one defines X(t) as singular if 9{x) = Ax for some matrix A and 
define X (t) as positive regular if there exists an integer r such that all elements 
of Mr are positive. 

For illustration, assume k = 2 and define the generating functions: 

(f>io(xi,x2;t) = <f>io(x;t) = E • 

<t>oi{xi,x2;t) = <p0l(X;t) = E-

<t>n{xi,x2;t) = (j)n(x;t) = E • 

iK< ( t ) 

. 2 = 1 

.i=l 

.*=i 

\Xi(0) = l,X2(0) = o \ , 

|X1(0) = 0,X2(0) = l l , 

\X1(0) = l,X2(0) = l ) . 

Let gi(xi,x2) = gi(x)(i = 1,2) denote the pfg of the progeny distribution 
of Type-i individuals and put Ui(x\,x2) = Ui(x) = \i[gi(x) — Xi\. 

(a) Prove the following results: 

4>\o{x; At) = xi + ui(xi,x2)At + o(At), 

<f>oi{x; At) = x2 + u2(xi,x2)At + o(At). 

(b) By using results of (a), show that the infinitesimal parameters from 
(i, j) —> (u, v) for { X (i), t > 0} are given by: 

ro, 

a(i,j;u,v)=< 
Xiqi{0,v-j), 

A292(u-i,0), 

i A i t l - ^ U . O J l + j A a l l - ^ O , ! ) ] , 

iXiqi{l,v - j)} + jX2q2{0,v - j + 1)], 

iAiqi(w-i + 1,0)] +jA 2g2(u-i , l ) ] , 

JAigi(u-i+l, v-j)]+j\2q2{u-i, v-j+1)], if u>i, v ^ ' . 

if u < i — 1, or 

if v < j — 1, or 

if u = i— l,v < j , 

if u < i = i — l,v 

if u = i — l,v > j 

if u > i, v = j — 1 

if u = i, v = j ; 

if u = i, v > j ; 

if u > i,t; = j ; 

or 

= j-i; 
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(c) By using results of (a), show that for (i,j) = (1,0) or (i,j) = (0,1), the 
(pij(x;t)'s satisfy the following equations: 

4>ij(x, t + r) = <j>ij{<j>io(x, T ) , <j>oi (x, r ) ; t} for t > 0, T > 0 , 

r\ r\ e\ 

-^(t>ij(x,t) =U1(x) — <l>ij(x,t) + U2{x)—<l>ij(x,t), 

where {<pw(x,0) = xi,<f>0i(x,0) = XQ}. 

Exercise 4.8. Multivariate birth-death processes. Let {X(t) = 
[X\(t),..., Xk(t)]', t > 0} be a ^-dimensional Markov process with state space 
S — H = (i\,... ,ik)',ij = 0, l , . . . , o o , j = l , . . . , / c } , gi the fc x 1 column 
vector with 1 at the zth position and with 0 at other positions. 

Definition 4.1. {X(t) = [Xi(t),... ,Xk(t)]',t > 0} is called a k-
dimensional birth-death process with birth rates {bi(j,t),i = l,...,k,j = 
0 , 1 , . . . ,oo;bi(j, t) > 0}, death rates {di(j,t),i = l,...,k,j = 
0 , 1 , . . . ,oo;di(j, t) > 0} and cross-transition rates {aij(r,t),i,j = l,...,k 
(i =fi j),r = 0 , 1 , . . . , oo; cnj{r, t) > 0} iff the following conditions hold: 

P{X(t + At) = i\X(t)=i} 

dr(ir,t)At + o(At), 

o(At), 

At + o(At), if i = i + e r ; 

if J = ^ — e r ; 

if \l'k(i- i)\>2-

Using Definition 4.1, then the drug-resistant cancer tumor model as de­
scribed in Example 4.5 is a 2-dimensional birth-death process with birth rates 
{bi(j,t) — jbi(t),i = 1,2}, death rates {di(j,i) = jdi(t),i = 1,2} and cross 
transition rates {otit2(j,t) = ja(t),aUiV(j,t) = 0 if (u,v) ^ (1,2)}. Similarly, 
for the fc-dimensional multi-event model of carcinogenesis as described in 
Example 4.6, X(t) = {Io(t) = N(t), Ii(t), i = 1 , . . . , k — 1} is a k-dimensional 

birth-death process with birth rates {bi(j,t) = jbi(t),i = 0,1 fc — 1}, 
death rates {di(j,t) = jdi(t),i = 0,1,...,fc — 1} and cross transition rates 
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{<Xi,i+l(j>l) = J01^), i = 0 , 1 , . . . , fc - 1, au<v{j, t) = 0 if (u, v) ^ (i,i + 1) for 
i = 0 , l , . . . , f c - l } . 

(a) Show that the Kolmogorov forward equation for the probabilities 
P{Ij{t) = ij,j = 0 , l , . . . , * - l | / 0 ( 0 ) = AT0} = P(ijfj = 0,l,...,k-l;t) 
in the A;-dimensional multi-event model is given by: 

jtP{ihj = 0,l,...,k-l-t) 

= P(i0-l,ij,j = l,...,k-l;t)(i0-l)bo(t) 

fc-i 

+ 2 j - P ( i o , * i , . - • >i?'-i>*j - l .^ j+i i - • -,ik-i;t)(ij - l)bj(t) 

3 = 1 

fc-2 
+ 2j-P(*o,H,. •• ,ij,ij+i - l,ij+2,. • .,ik-i;t)ijatj(t) 

j=o 

fc-i 
+ ^2P(io,h,---,ij-i,ij + l,ij+i,...,ik-i;t)(ij + l)dj(t) 

j=o 

{fc-l fe-2 1 

J"=0 j=0 J 

for ij = 0 , 1 , . . . , oo,j = 1 , . . . , k. 
(b) Denote by <f>(xo,xi, • • • ,Xk-i;t) = <j>{x) the pgf of the probabilities 

P{Ij(t) =ij,j = 0,l,...,k-l\I0{0) = N0} = P(ij,j = 0,1,...,k~l;t) in 
the A;-dimensional multi-event model as described in Example 4.6. Show that 
(j)(x) satisfies the following partial differential equation with initial condition 
4>Cx;0) = x^: 

-Ql^iS't) ^^2\(xi~ l)[xibi(t) - di(t) + xi+1ai]-jr—</>(x;t) \ 

+ Uxk-i - l)[xk-ibk-i(t) - dk-i(t)]— 4>{x;t)\ . 
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Chapter 5 

Absorption Probabilities and 
Stationary Distributions in 
Continuous-Time Markov Chain 
Models 

In Chap. 4, we have discussed some general results of Markov chains with 
continuous time. For the applications of these chains, we present in this chapter 
some results on absorption probabilities, first absorption times, stationary 
distributions as well as some other topics of importance. We will illustrate 
these results by examples from genetics, cancer and AIDS. 

5.1. Absorption Probabilities and Moments of First 
Absorption Times of Transient States 

Consider a homogeneous Markov chain {X(t), t £ T = [0, oo)} with continuous 
time and with state space S = { 0 , 1 , . . . , oo}. Assume that the chain contains 
both transient states and persistent states and that the persistent states are 
grouped into k closed sets {Cj, j = 1 , . . . , k}. In this section we will illustrate 
how to derive the absorption probabilities of transient states into persistent 
states. 

Let c*ij be the transition rates (infinitesimal parameters) of the chain. (Note 
that aij(t) = otij are independent oft as the chain is homogeneous.) Let CT 
be the set of transient states. To find the absorption probability of i £ CT 
into a persistent state, denote by uii(t) = Pv{X(t) G CT\X(0) = i}. Since 
persistent states go only to persistent states, then u>i(t — At) — uJi(t) = gi(t)At, 
where gi(t) = — ^ t > is the probability that starting with X(0) = i € CT, the 
chain is absorbed into a persistent state during [t, t + At) for the first time. If 
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/o°° 9i(t)dt = 1, then gi(t) is the pdf of the first absorption time Tj of i € CT 
into a persistent state. Given that with probability one, i G CT will eventually 
be absorbed into a persistent state, then one may evaluate the mean /x̂  and 
the variance Vi of Tj. Now, we have: 

/•oo JV 

/ tgi(t)dt= lim lim ^ (nAt ){wi [ (n -1 )A*] -u> i (nAt )} 
j 0 ->oo t-> n = i 

= lim lim i ^ Wi(nAi)Ai - (NAt)uJi(NAt) I 

/•OO 

= / Wi(t)dt 
Jo 

and 

N 

/ t2
gi(t)dt= lim lim 53(nAt ) 2 [wi ( (n - l )At ) -Wi(nAt ) ] 

r * 
=
 AUSO ilmo 1 EKn ~ 1)̂ *1 V[(n - l)At] 

° ° *• n = l 

N N 

- 5^(nAt)2o;i(nAt) + 2 j ^ [ ( n - l)At]wi[(n - l)At]At 
71 = 1 71 = 1 

+ £>i[(n-l)A*](At)H 
T l = l ' 

/•OO 

= 2 / t(Ji(t)dt. 
Jo 

Hence, the mean fit and the variance Vi of Ti are given respectively by the 
following formulas: 

/•OO /-OO 

Mi = / tgi(t)dt = / Wi(t)di (5.1) 
Jo Jo 

and 
/•OO />O0 

Vi = / t25i(i)di - Mi = 2 / tw^tjdt - /x2 . (5.2) 
7o JO 
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To find the absorption probability into Cj of i £ CT, let gij(t)At be the 
probability of absorption into Cj of i 6 CT during [t, t + At) for the first time 
and gi(t) — ^2j=i9ij(t). Then gi(t)At is the probability of first absorption 
time into a persistent state of i G CT during [t, t + At). Let v%{j) = YLiec a*' 
and Ui = Ylj=i ui{j)- Then, to order of o(At), Vi(j)At is the probability that 
the state i £ CT at time t will be absorbed into Cj during [t,t + At); and, to 
order of o(At), UiAt is the probability that the state i € CT at time t will be 
absorbed into a persistent state during [t, t + At). 

Hence, 

9i,j(t) = Yl Pa(*)"l(j) 
l€CT 

and 

fc 

9i(t) = Yl9*'^ = Yl PU^I • 
j=i iecT 

(Notice also that gi(t)At ^ Wj(t - At) - Wj(t) for small At.) 
The ultimate absorption probability into Cj of i S C T is therefore: 

y»oo 

Jo 

5.1.1. The case when CT is finite 

Assume that CT is finite with r elements. With no lose of generality, 
assume that the first r states of S are transient states. Then the absorption 
probabilities and moments of first absorption times can be expressed in matrix 
notation. To this end, denote by Q(t) the rxr matrix of transition probabilities 
P{X(t) = j\X(0) = i) of transient states (i.e. i,j = 1 , . . . , r) and by B be the 
rxr matrix with the (i,j')th element given by bij = Sijau + (5ij — l)aij ,i,j = 
1 , . . . , r. Then, Q(nAt) = Q(At)n by the Chapman-Kolmogorov equation; and 
to order of o{At) (At > 0), 

Q(At) = Ir - BAt + o(At). 

It follows that with t = nAt, we have: 

,-Bt Q(t) = lim {/r - BAt + o(At)}n = Im^ llr - — + o(At)\ e 
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where e Bt is the matrix exponential function denned by e Bf = 

Furthermore, since an = Yli^i au = Y,i&;i<=cT
 au + £ ; = i £ i € c , au = 

Hwecr ail + v" w e h a v e : 

r 

Vi =otu - 22 an =22 ha , 
l^i;leCT 1=1 

and v = {v\,..., vr}' = Blr, where lr is the r x 1 column of l 's. 
To express the results in matrix notation, denote by: 

w(t) = {(Ji(t),... ,w r(*)}', g'i = the ith row of Q; 

9j(t) = {gij(t),.. .,gr!J(t)Y, 9(t) = {9l(t),.. .,9r(t)Y; 

and 

P(j) = {Pl(j),-- • ,Pr(j')}'. P = {Pi. • • -,PrY • 

Then, since persistent states go only to persistent states, we have: 

<*(*) = S W W = ?i(*)lr , w(«) = Q(t)lr; 
iecT 

9iAt) = J2 Pa(t)^O') = ^ ( % ( i ) , gi(*) = Q(t)v{j) ; 

fli(*) = E P«(*)^ = S*(*)JK = 9i(*)fllr, »(*) = <?(% = Q ( * ) ^ l r . 
J€CT 

On substituting the result Q(t) = e _ B t , we obtain: 

u)(t)=e-Btlr, (5.3) 

5 ; (< )=e - B t £( .7 ) , (5.4) 

and 

9{t) = Q{t)u=e-BtBlr. (5.5) 
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Equation (5.5) is the matrix exponential distribution first derived by 
Tan [1]. 

Denote by /0°° f(t)dt = {J^° fi(t)dt,..., J0°° fr(t)dt}' for any vector 
/(£) = {fi(t),... ,fr(t)}' of integrable functions fi{t),i — l,...,r. Then, 
from Eqs. (5.4) and (5.5), we obtain: 

P(j) = J™ 9i(t)dt = | ^ ° ° e~BtBdtj B~xv{j) = B-lu{j), (5.6) 

p=l g(t)dt= e-mBlrdt = - de-Btlr=lr. (5.7) 
~ Jo ~ Jo ~ Jo ~ ~ 

Equation (5.7) shows that for each i £ CT, Pi = 1. That is, starting with 
any i e CT, with probability one the chain will eventually be absorbed into 
a persistent state as time progresses. Let e\ denote the l x r row with 1 in 
the ith position (i = 1 , . . . , r) and 0 at other positions. Then by Eq. (5.6), the 
probability of ultimate absorption into Cj of i G CT is e'.B~l v(j). 

Using Eqs. (5.1) and (5.3), we obtain the vector U of the means of the first 
absorption times of transient states as: 

roo y»oo 

U= u(t)dt= e-Btlrdt = B-1lr = {vi,...,i>r)'• (5.8) 
~ Jo ~ Jo ~ ~ 

Denote by \v = {/0°° tu>i(t)dt,..., /0°° tcjr(t)dt}' = J0°° tu{t)dt. Then, by 
Eq. (5.2), the vector of variances of first passage times of transient states is 
V = v~ Usq, where U sq = [y\,..., v*)'. 

Now, by Eq. (5.3), we have: 

-I />00 rOO 

- 7 7 = / te-Btlrdt = ~ t d ( e - B t ) J 3 _ 1 l r 

/»oo 

= / e-BtB-1lrdt = B~2 lr = B~lU . 
Jo 

It follows that 

Y =2B~1U -Usq. (5.9) 

Example 5.1. Moran's model of genetics with no selection and 
no mutation. Consider the Moran's model of genetics as described in 
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Examples 4.2 and 4.12. Assume that there are no selection and no muta­
tion. Then, the states 0 and M are absorbing states while all other states are 
transient states. In this case, with {Uj, Vj, Wi) being given in Example 4.12, 
the transition matrix P(t) is given by: 

P(t) = 

1 

£i(*) 

0 

M - l 

V e - A ^ + i ) * w , u ' 
j=i 

S'M-I 

0 \ 

Eli*) 

1 / 

where 

M - l 

Fi{t)=^{l-e-^^)-^)vj{u'iwi), 1 = 1,2. 

Since ^Li Wk = BIM-I = Ylfji1 JU + ^V.JU'JXM-U
 w e have: 

M - l 

3=1 i=l 

Using these results, we have: 

(1) The vectors of absorptions of transient states into 0, M and persistent 
states (0 or M) at or before time t are given by Fi(t), F2(t) and F(t) 
respectively. 

(2) The vectors of first time absorptions into 0, M and persistent states (0 
or M) of transient states at time t are given respectively by: 

x M - l 

9o(t) = -j-Ftf) = - £ e-KM+^Vju'jW!, 

9M(t) 

so 

3=1 

. M - l 
A T — \ X 

dt 

d_ 

dt'' 

£,a(') = Tf E e " ^ a + 1 ) * 2 i » i » a . 

M - l 

£W = M E J'O" + l K H i ( , ' + l ) t S i S ; i « - i 
j = l 
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(3) The vectors of ultimate absorptions probabilities into 0, M and persis­
tent states (0 or M) of transient states are given respectively by: 

M - l 

£(0) = lim F^t) = J2 00' + l )} _ 1 «i«^ i . 
3=1 

M - l 

£ (M) = t1-^ £ 2 ^ = E ^ + 1)}"1Si^H?2 , 
J = l 

M - l 

£ = to^ £(*) = 53 SJ«ii^-i = 1M-I • 

(4) The vectors of mean values and variances of first absorption times of 
transient states into persistent states (0 or M) are given respectively by: 

f°° M~l ( X 1 - 1 

l j U - l = {t*l, • • •, f*M-l}', 

Y = U - {K. • • •. MM-I}'»
 where 

M - l 

, 1 M - 1 

Example 5.2. The HIV epidemic and the HIV incubation 
distribution. In Examples 4.4 and 4.10, we have described a Markov chain 
model with continuous time for the HIV epidemic. The transition rates of this 
chain have been estimated by Satten and Longini [2] by using data of the SF 
Men's Health study. With {ci, Aj, Uj, Vi} being given in Example 4.10, the 
transition matrix P(t) is given by: 

P(t) = 

/ I S4 0 \ 

0 Y,e~X*tEi £(*) 
3 = 1 

\ o 0 1 ) 
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where Ei = ViU^ and 

5 

F(t) = (h ~ e~Bt)l5 = 5^(1 - e-^)Ei 1B 

i = l 

5 

= ^ d j ( l - e _ A i t )v i , where d* = u | l 5 , i = l , . . . , 5 . 
*=i 

Hence, we have: 

(1) F(t) is the vector of cdf's of the first absorption times of transient 
states. 

(2) The vector 9 (£) of pdf's of first absorption times of transient states is, 

g(t) = e~BtBl5 = ^di\ie-XitVi. 
i = l 

(3) The vector U of mean absorption times and the vector V of variances 
of mean absorption times are given respectively by: 

U =Y/\idiirte-Xitdt\vi 

5 

= *52{di/xi}vi = {MI, • • •, »s}', 
i=\ 

vf = 2 - { / i i 2
) . . . , / z 5

2 } / . 

where 

5 s «oo "\ 5 

V = YjXidi\ t2e~Xitdt \ Vi = V { 2 d i / A i
2 } t ; i . 

In HIV epidemic, the random time period from HIV infection to AIDS onset 
is defined as the HIV incubation period, to be denoted by Tmc. In the above 
formulation, Tmc is then the first absorption time of I\ to A. The conditional 
probability density function finc(t) of Tmc given that the individual dies after 
AIDS is called the HIV incubation distribution. In the above formulation, Tin{ 

is then the first absorption time of I\ to A. Thus, /inc(<) = <7i(<) = e[g(t) 
inc 

) 
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where e^ is a 5 x 1 column with 1 at the ith position and with 0 at other 
positions. Hence, 

5 

finc(t) = e[e-BtBl5 = J2Xie~Xit(z'^di 

i=l 

where r* = {e'iVi)di,i = 1 , . . . ,5 . 

Example 5.3. The continuous time Galton—Watson branching 
process. Consider the continuous time branching process described in 
Example 4.7 for mutants. To evaluate the extinction probability of mutants 
in this chain, we consider an embedded branching process {Y(n),n G T — 
( 0 , 1 , . . . ,oo)} with progeny distribution {qt,i = 0 , 1 , . . . , oo}. Let /„(s) be 
the pgf of Y(n) given 7(0) = 1. Then, / i (s) = h(s) = s + u(s)At and 
fn{s) — f[fn-i(s)] for n > 2. Using this embedded Markov chain, then by 
Theorem 2.10, the probability XQ that the mutant at 0 is lost eventually is the 
smallest non-negative root of the function equation fi(x) — x. But fi(x) = x 
iff u(x) = 0 iff g{x) = x and this hold for all At > 0. Thus, the extinc­
tion probability xo is the smallest non-negative root of the functional equation 
g(x) = x. Further, by Theorem 2.11, x0 = 1 iff ( £ M ) S = 1 = /j[(l) < 1 or 
iff (2^fi)«=i = u ' ( l ) < 0 or iff ( ^ ) . = i = fl'(l) < 1; and this is true for all 
At > 0. Notice that \i = g'(l) is the expected value of the progeny distri­
bution {pj,j = 0 , 1 , . . . , oo}. Hence with probability one the mutant gene at 
t = 0 will eventually be lost iff the expected value /x of the progeny distribution 
{pj,j = 0 , 1 , . . . , oo} is < 1. It follows that if /x < 1, then starting with any 
state i at time 0, with probability one the state will eventually be absorbed 
into the state 0 as time progresses. On the other hand, if // > 1, with positive 
probability, the chain will stay forever in transient states. 

To find the extinction probability XQ when /x > 1, one need to solve the func­
tional equation g(x) = x. If pj = e~xK-,j = 0 , 1 , . . . , oo, then the functional 
equation g(x) = x becomes x = e_A(1_x) and [i = A. Put A = 1 + s (s > 0). If 
s > 0 is very small, then XQ is close to 1 so that 5 = 1 — xo is very small. It is 
shown in Example 2.16 that if 6 — 1 — XQ is very small, then to order of o(J3), 
XQ is approximated by XQ = -r±r-
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If fj, < 1, then one may define the pdf of first absorption time of the mutant 
at time 0 and also find the mean /i of this first absorption time. Let t = nAt 
and let xo(n) denote the probability that starting with X(0) — 1, the chain 
is absorbed into 0 during [t, t + At) for the first time. Let uj(t) denote the 
probability that starting with X(0) = 1, the chain is in a transient state by 
time t + At. Then, w(t) = u(nAt) = l-x0(n) and w(t- At) = u[(n- l)At] = 
1 -x0(n- 1). 

Now, by using the imbedded chain Y(n), x0(n) = /n(0) = / i [ / n - i (0) ] = 
h[xo(n — 1)] = xo(n — 1) + {g[xo(n — 1)] — xo(n — l)}XAt. Hence, 

x0(n) — x0(n — 1) = u(t — At) — u(t) 

= {g[x0(n - 1)] - x0(n - l)}XAt 

= {g[l - u{t - At)} ~l+u(t- At)}XAt. 

Hence f{t) = {g[x0(t)] - x0{t)}\ = {g[l - u)(t)} - 1 + w(t)}\ is the pdf of 
the first absorption time of the mutant at 0. Notice that since zo(0) = 0 and 
limjv-xx, XQ(N) = XQ = 1 as fi < 1, 

I f(t)dt = lim lim *S^{g[x0(n - 1)1 - x0(n - l)\XAt 
7 1 = 1 

N 

= lim lim yixn(n) — xn(n — 1)} = lim lim XQ(N) = 1 • 

n = l 

Denote by u(nAt) — wo(n). Then the mean /J of first absorption time is 

roo N 

/ tf(t)dt = lim lim Y " n{g[x0(n - 1)1 - x0(n - l)}XAt 
n = l 

N 

= lim lim > nlwofn — 1) — (Jo(n)\ 
n=l 

N 

= lim lim / t ( n — l)uo(n — 1) — ruJo(n) + wo(n — 1)} 
At-vO N-yoo *—* 

n = l 

oo 

= lim y^u>o(n). 
At-*0-

n=0 
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Notice that for each fixed At, x0(n) = e*(*o(n-i)-i) a n d W o( n) = l-Xo(t); 

and it is shown in Example 2.16 that Yl™=ouo(n) = oo. This holds for all At. 

Hence /x = oo if pj — e~x K-j — 0 , 1 , . . . , oo. 

5.2. The Stationary Distributions and Examples 

Let {X(t), t e T — [0, oo)} be a Markov chain with continuous time T and with 
state space S = {0 ,1 , . . . ,oo}. If X(t) is homogeneous, then the transition 
rates (i.e. the infinitesimal parameters) {aij,i € S,j € S} are independent 
of t. In these cases, as in Markov chain with discrete time, one may define 
stationary distributions for X(t) (Note: Stationary distribution can be defined 
only if the chain is homogeneous. However, Example 5.4 shows that stationary 
distributions may not exist although the chain is homogeneous.) 

Definition 5.1. A probability density {ni,i € 5} over S is called the sta­
tionary distribution of X(t) iff for every t > 0, the following condition holds: 

oo 

7Tj = ^TTiPijit), j = 0, 1, . . . , OO . (5.10) 
j = 0 

By using embedded Markov chains and results of Markov chain with dis­
crete time, one may readily find the stationary distributions if they exist. The 
following theorem provides a method for finding the stationary distribution 
when it exists. 

Theorem 5.1. The probability density {ni,i S S} over S is a stationary 
distribution of X(t) iff the folloiving condition holds: 

KjtXjj = Yl ni0iii. J = 0 , 1 , . . . , oo. (5.11) 

Notice that if the chain is finite with n elements, then Eq. (5.11) is 
equivalent to the matrix equation 

TT'A= 0 , 

where A is the n x n matrix with (i , j)th element given by 5ijQ.jj — (1 — 
5ij)aij,i,j = l , . . . , n . 
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Proof. Suppose that {fl"*, i £ S} over S is a stationary distribution of X(t). 
Then, for any At > 0, 

oo 
ni = 5Z 7r^i(^i)» j = 0,1,. . . , oo. (5.12) 

i=0 

But, to order of o(At),Pij(At) = a^At if i ^ j , and pjj(At) = 1 — ctjjAt. 
Hence, on substituting these results, Eq. (5.12) becomes 

oo 

^J = y^TriPij(At) 

= ^TTiOtijAt + 7Tj[l - o^- At] + o(At), j = 0 , 1 , . . . , oo . 

It follows that 

n3a3J = X / 7I'iQ!« + o(At)/At, j = 0, 1, . . . , OO . 

Letting At ->• 0 gives Eq. (5.11). 
Conversely, suppose that Eq. (5.11) holds. Then, for any At, one obtains 

easily: 

oo 
Kj = ^T 1TiPij(At) + 0{At), j = 0, 1, . . . , OO . 

i=0 

Choose At > 0 such that £ = nAt. Through the embedded Markov chain, 
one has: 

oo 

•Kj = ^2 KiPiJ (*) + ° ( A t ) , j = 0, 1, . . . , OO . 
i=0 

Letting At —»• 0 then gives Eq (5.10) so that {7Ti, t € 5} over S is a station­
ary distribution of X(t). D 

As in Markov chain with discrete time, the stationary distribution may 
or may not exist. If the stationary distributions exist, it may not be unique. 
One may summarize the results as follows. These results are easily proved by 
using embedded chains and by noting the result that all persistent states in 
the embedded chain are aperiodic. 
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(1) If the chain is homogeneous, irreducible and persistent, then the limiting 
distribution and hence the stationary distribution exist iff the persistent states 
are positive. Furthermore, the stationary distribution is unique and is given 
by linit-KxPijit) — nj,j S S. Notice that an irreducible homogeneous chain 
may not contain persistent states in which case the stationary distribution does 
not exist. (If the irreducible chain does not contain persistent states, then the 
chain must have infinitely many states.) 

(2) If the chain contains more than one closed sets and if stationary distri­
butions exist, then there are infinitely many stationary distributions. 

(3) For finite Markov chains, the stationary distributions always exist 
although it may not be unique. Example 5.4 shows that if the chain is infinite, 
then stationary distributions may not exist. 

Example 5.4. Stationary distributions in some birth-death pro­
cesses. Consider a homogeneous birth-death process {X(t),t G T = [0,oo)} 
with birth rate bi (bi > 0, i = 0 ,1 , . . . , ) and death rate di (d0 = 0, dt > 0 for 
i = l , . . . ) . In this case, a^- = bi if j = i + 1; = di if j = i - 1; = 0 if \i — j \ > 2; 
and an =bi + dt. Thus, Eq. (5.11) become: 

7Tj(6j + dj) = -Kj-ibj-i + TTj+idj+i,j = 0 , 1 , . . . , with TT_I = 0. 

Putting j = 0, then TTI = ^TT0 ; putting j = 1 yields TT2 = 3^7r 0 . By 
mathematical induction, it can easily be shown that TTJ = CJ'KQ,] = 0 , 1 , . . . , OO, 

where the Cj is defined by: 

' - 1 h 
c0 = 1, Cj = TT -7^- for j = 1,2,.. 

to di+1 ,oo. 

The condition ]CSo "i = 1 then leads to: 

1 

Notice that 7To is finite iff Y^T=a cj < °°- Thus the stationary distribution 
{ ĵ'j j = 0 , 1 , . . . , oo} exists iff X^'=o ci < ° ° - -^s a n example, assume bj = jb+X 
with b > 0 and A > 0 and dj = jd, d > 0. (This is the so-called Feller-Arley 
birth-death process with immigration.) Then we have, for j = 1 ,2, . . . , : 

j—i 

Cj = (b/dy [[ 
i=0 
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Thus, if 0 < r = b/d < 1 and if A/6 < 1, 

OO OO 

^2CJ <J2rJ <oo; 

j=0 j=0 

in these cases, the stationary distribution exists and is unique as given above. 
On the other hand, if r = (b/d) > 1 and if X/b > 1, then the series Yl'jLo ci 
diverges so that the stationary distribution does not exist. 

Example 5.5. Nucleotide substitution model in molecular evolu­
tion. In Examples 4.3 and 4.11, we have described the nucleotide substitution 
model in Eukaryotes. This is a finite homogeneous Markov chains with con­
tinuous time. Since the transition rates are positive, the chain is irreducible. 
Further, with {i>j, ajj, 2/;} being given in Example 4.11, the transition matrix 
P(t) is given by: 

4 

i=1 

It follows that l imt^ooP^) = \iV'\- Thus, V\ is the density of the sta­
tionary distribution. 

Example 5.6. Moran's genetic model with no selection. Consider the 
Moran's genetic model with \ = A so that there are no selection between the 
two types. This is a finite homogeneous Markov chain with continuous time. 
The transition matrix of this chain has been derived in Example 4.12 in terms 
of Hahn polynomials. In this example, we derive the stationary distributions 
of this chain. 

Case 1: If a\ > 0, a<i > 0 but 1 > a.\ + 0:2, then the chain is irreducible so 
that there is an unique stationary distribution for the states. Also, all states 
are persistent states and are positive. With {p(k),nn,Qn(j)} being given in 
Example 4.12, the transition probabilities of this chain are given by: 

M f A 1 
Pjk(t) = p(k) ^ e x P J - ^ ( ! - Q i - a2)n(n + a + p+l)t\ TTnQn(j)Qn(k) 

n=0 ^ ' 

= p(k) | l + £ e x p | - — (l-ai-a2)n(n+a+p+l)t\TrnQn(j)Qn(k)\ . 
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Let t -> oo, then lim^oo Pjk (t) — p{k),k — 0, ...,M. Hence, {p{j),j = 
0 , . . . , M} is the unique stationary distribution. 

Case 2: a\ = «2 = 0 (no mutation). In this case, 0 and M are absorbing 
states while all other states are transient states. Because the two independent 
left eigenvector of 0 of A are x[ = (1 ,0 ,0 , . . . ,0) and x'2 = (0,0,0,..., 1), the 
stationary distributions of this chain are 

s ' = a ( l , 0 , . . . , 0 ) + ( l - a ) ( 0 , . . . , 0 , l ) , 

where 0 < a < 1 is a real number. That is, there are uncountable many 
stationary distributions. 

Notice that, as shown in Example 4.12, the transition matrix in this case 
is given by: 

M - l 

Thus, linit-xx; P(t) = Eo; further, gi-Eo = £i,i = 1>2. 

5.3. Finite Markov Chains and the HIV Incubation 
Distribution 

Consider a homogeneous Markov chains {X(t),t € T = [0, oo)} with state 
space S. If the state space contains only n elements (1 < n < oo) so that the 
chain is finite, then the chain must contain persistent states. These persistent 
states can be grouped into k disjoint closed sets (Cj,j = l,...,k;k > 1). 
The chain may or may not contain transient states; for describing the general 
structure, however, we assume that the chain contains transient states and 
let CT denote the set of transient states. Suppose that there are nj(n.j > 1) 
states in Cj,j = l,...,k and that there are r(r > 0) transient states. (Note 
52 i=i nj +r = n.) Also, with no loss of generality, we assume that the first r 
states are transient states. Let a^i G S,j £ S denote transition rates and let A 
denote the nxn matrix whose (u, u)th element is Suvauu — (1 — Suv)auv(u, v = 
1 , . . . , n). Then, P(M) — In - AM + o(At). As in Markov chain with discrete 
time, we also have the following proposition which shows that A can be put in 
the following canonical form: 
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5.3.1. Some general results in finite Markov chains with 
continuous time 

In this subsection we give some general results for finite Markov chains with 
continuous time. We first prove the following canonical form of the transition 
matrices. 

Proposition 5.1. (Canonical Form of A). Let A be the matrix of in­
finitesimal parameters for a finite Markov chain with continuous time and 
suppose that the chain contains transient states. Then A can be expressed 
in the following canonical form. 

CT C\ C2 

CT ( B -Di -D2 

d 0 Ax 0 

A= C2 0 0 A2 

C k \ 0 0 

ck 

-Dk\ 

0 

0 

Ak J 

where Ai is the matrix of transition rates for states in Ci,Di the matrix of 
transition rates from states in CT to states in Ci, and B the matrix of tran­
sient rates for states in CT- We notice that D = (Di, D2,..., Dk) ^ 0 as 
S i = i Dilm — Blr and B is not 0. Also, ifrij = 1, then Aj = 0. 

Notice that the above canonical form of A is similar to the the canonical 
form of the one-step transition matrix of probabilities of finite homogeneous 
Markov chains with discrete time given in Sec. 2.8. Indeed, this canonical 
form of A can be proved by that of the one-step transition matrix through the 
embedded Markov chain. 

To prove the above canonical form, notice that through the embedded 
Markov chain, we have, by results from Sec. 2.8: 

P(At) = 

/ Q ( A t ) H^At) H2(At) 

Pi(At) 

P2(At) 

Hk{At)\ 

Pk(At) J 
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By definition, P(At) — In — AAt + o(At) and the Cj are closed sets. It 
follows that to order of o(At), Pj(At) = Inj - AjAt j = 1 , . . . , re; Q(At) = 
Ir - BAt and Hj(At) — DjAt, j = 1 , . . . , re. This shows that the matrix A has 
the above canonical form. 

Prom the above canonical form, it appears that the A matrix in finite 
homogeneous Markov chains with continuous time plays the role of the matrix 
P of the one-step transition probabilities in finite homogeneous Markov chains 
with discrete time. The major difference between the A matrix and the P 
matrix is that in P the elements of each row sum up to 1 whereas in A the 
elements of each row sum up to 0. That is, 

k 

j = l 

but 

k 

J ' = l 

where 0 m is a m x 1 column of 0. 
As in finite homogeneous Markov chain with discrete time, through the 

canonical form of A, one may also derive formulas for absorption probabilities 
and moments of first absorption times of transient states as given in Sec. 5.1. 
To this end, notice that for m = 1 , . . . , 

(Bm -Ei(m) -E2(m) ... -Ek(m)\ 

A? 0 . . . 0 

0 0 A^ ... 0 

V 0 . . . 0 AT 

{ Ei(l) = Di, 

where < m— 1 

i — 1,2,. . . , re; 

Ei(m) = J2 B'DiAT-1-3, 1 = 1,2,. . . ,*; m = 2,3, . 
s = 0 
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Let t = mAt, At > 0. Then, by Chapman-Kolmogorov equation, P(t) can 
be expressed as: 

P(t) = lim [P(At)]m = lim [J„ - AAt + o(At)]m 

= lim [In - At/m + o(t/m)}m = e'At 

m—>oo 

oo 1 

7 7 1 = 1 

On substituting the above canonical form for A™, we obtain: 

(e~Bt -G.it) -G2(t) 

oo 

p(*)=/» + £-i(-trA" 
m = l 

-Ait 0 
,-A3t 

V o 

-Gk(t)\ 

0 

0 

where 

oo 

m—l 

Since JPJ(£) = —Gj(t)lnj is the vector of absorption into Cj of transient 

states at or before time t, so F(t) = Y!j=i Eii1) = ~ £ j = i Gi(*),inj is the 
vector of cdf of the first absorption times (Tj, i € CT) into persistent states of 
transient states at time t. 

Since Ajlnj = QUj, so 

oo 

m = l 

oo 

7 7 1 = 1 

= {/„ - e-^B^Djl^, j = l,...,k. (5.13) 

http://-G.it
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Since Ylj=i Djlnj ~ &Xr as * n e elements of each row of A sum up to 0, so 

k k 

= {In-e-Bt}lr. (5.14) 

It follows that the vector of pdf's of first time absorption of the transient 
states is 

9{t) = jtF{t) = e-BiBlr. (5.15) 

Notice that formulae (5.15) is also derived alternatively in Sec. 5.1. 
Using Eq. (5.13), the vector of ultimate absorption probabilities of the 

transient states into Cj is 

P{j) = tlim Fj{t) = B-'Djl^, j = l,...,k. 

Notice again that 

k 

Using Eq. (5.15), one may obtain: 

U= te-BtBlrdt = - td{e~m)lr 

~ Jo ~ Jo ~ 
/ •oo 

= / e-Btlrdt = B-1lr, 
Jo 

f] = / t2e-mBlrdt = - t2d(e-Bt)lr 

~ Jo ~ Jo ~ 
y»00 

= 2 / te-Btlrdt = 2B-2lr = 2B-1U, 
Jo 

and V = V - Uso. s 9 -
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5.3.2. Non-homogeneous finite chain with continuous time 

The above results extend readily to piece-wise non-homogeneous cases. In 
these cases, the time interval [0, oo) is partitioned into m non-overlapping sub-
intervals Li = [ti-x,ti),i = l , . . . , m with (to = 0,tm = oo). The transition 
rates are given by: 

otij(t) = otij(u), if t e Ln 

Let P(0, t) = P(t) and for u = 1 , . . . , m, put 

A(u) 

(Bu -Dx{u) -D2{u) ... -Dk(u)\ 

Ai(u) 0 

A2(u) 

0 Ak{u) J 

Then, for t € Lu,u = 1,..., m, P(t) is given by: 

u - l 

P(t) - <J [ J e-A&Ti \ e-*(«)(*-*«-i), (5.16) 

where Tj = tj —tj-\ and where I I i_i R(J) 1S defined as In. 
Using the above canonical form, we have for j = 1 , . . . , m: 

-A(j)t _ 

(e-B* -Gl(j;t) -G2(j;t) 

e-Ai(j)t o 

0 0 e - ^W* 

V 0 

••• ~Gk(j;t)\ 

0 

0 

0 e-Ak(j)t J 
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where 

219 

oo 

Gi(u; i) = £ - ( - t j ^ u , j ) , i = 1 , . . . , k , 

where 

J = I 

Ei(u; 1) = A ( « ) , i = l,2,...,k, u = l,...,m, 

^(U;i) = ^5^(«Mr 1 _ 5 W, 

i = 1, 2 , . . . , k; u = 1 , . . . , m, j = 2 , 3 , . . . . 

To derive P{t) for £ € £(•"), u — 1 , . . . , m, denote by: 

and 

«=i [ j=i J 

- | J ] e ^ lGi(u;t-*„_i), » = 1,...,&. 

On multiplying out the matrices in the Eq. (5.16) and simplifying, we obtain 
for t e Lu: 

P(t) = 

(Q{t) Fi(«) F3(t) ... Fk(t)\ 

Ri(t) 0 . . . 0 

0 0 R2(t) ... 0 

V 0 0 Rk{t)J 
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Since Ailni = 0ni, we have Ei(u;j)lni = B{ 1Di(u), where D^u) 
Di(u)lni, and 

° ° 1 
-Gi(u,t)lni = -'£7i(-t)

JBt1Di{u) 
j = i J 

= (Ir-e-B«t)B-1Di(u), i = l,...,k. 

Using these results and noting X) i = 1 Di(u) = Bu 1 r, u — 1 , . . . , m, we ob­
tain: 

(1) For t € Lu (u = 1 , . . . , m), the vectors of absorption probabilities into 
the j'th closed set and into persistent states of transient states at or before 
time t are given respectively by: 

u- l (v-1 "J 

Fiit) = Ft{t)lnt = £ I J ] e-B" \ (7P - e-fl«T-)^_15i(«) 

+ J J ] e"B'T' 1 [JP - e-^(t-*u-:) ] j B-i p .(u)) f = i , . . . , *. 

^ ( * ) = E £ * ( * ) = E I n e _ B j T ' [ (^ -e_Bvr") i -

+ I i f c~B^ I [Ir - e-B«(t-*-0] i r . 

(2) The vectors of first time absorption probabilities into the jfth closed set 
and into persistent states of transient states at time t for t € Lu (u = 1 , . . . , m) 
are given respectively by: 

£i(*) = Jt Fj(t) = I n e~Bn 1 e -^ -C-^ -O £«(«), j = l,...,k, 

£(t) = jtE{t) = £>(*) = [lie-*™ } e-B^-^Bulr. 
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(3) The vectors of mean absorption times and variances of first time of 
transient states are given respectively by: 

/•oo m-l fu-1 \ ftu 

U = / tg{t)dt= V { T[eB^ } / xe-B^x-^'^Bulrdx 
Jo ~ u=i ( ,= ! J •/'«-! 

/ • O O 

+ I TT e - ^ T i J> / xe-B^'-^-^Bmlrdx 
m —1 ] -oo 

m—1 I u—1 I 

u=l ( j= l J 

+ I JJ e-B" I (tm_i/r + B"1) 1P = (/ii,... ,/ir)', 

£ = 2 - ( / * ? . • • • , /£ ) ' . where, 

/ •oo m - l f u - 1 1 4u 

r? = / t2fl(t)dt = T I TT e"*^ I / z V ^ - ' - ^ M x 

•/o u = 1 [ ; = 1 J •/t.-x 

U e~B^ \ / ^ e - B ™ ^ - * ™ - ! ) B j n l r d x 

m—1 f u—1 J 

= E S II e_BjTi ? i2Bu\lr - e-B^) + *„_!(*„_!/,. + 2B-1) 
«=i [i=i J 
- Tu(TuIr + 2B-1)e-B^}lr 

+ J I I ^ ^ | t2 5-2 + *m-l(*m-l/r + 25-1)] l r . 

Example 5.7. The HIV incubation distribution under treatment. 
In this example, we will apply the above theory to derive the HIV incubation 
distribution under AZT treatment. Thus, as in Examples 4.4 and 4.10, we 
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consider a large population consisting of k HIV infected stages (Ii, i = 1 , . . . , k) 
and AIDS cases (A — h+i)- We assume that there are no backward transition 
and the other transition rates are given by: 

Transition Ii —> Ii+\ Ii —> A Treatment status 

First Interval 7»(1) wi{^) No treatment 

Second Interval 7* (2) = 6^(1) ^ ( 2 ) = 9ui{l) Treated by AZT 

The above is a piece-wise non-homogeneous Markov chain with continuous 
time with m = 2. This chain has been studied by Longini et al. [3, 4] and by 
Tan [5]. For this Markov chain, the A(i) matrix is given by: 

A(i) = 
'Bi 

0', 

-W% 

0 

where 

Bi 

0 

0 

-7i(*) 

72W+W2K 

0 

V 0 

and w'i = {wi(i),...,Wfc(i)}. 

0 

-72 (i) 

73(i) + w3(i) -73 (i) 

7fc(*)+Wfc( i ) / 

Thus, for an individual who has contracted HIV to become an I\ person at 
time 0 and who has been treated by AZT since t\, the transition matrix P(t) 
is: 

P(t) 

((*-"*' (Ik-e
B^)lk 

= s 

-Bi* (Ik-e
B^ 

Si 1 
e -B 1 t 1 > < e -B 2 ( t - t l ) ) { ( / f c_ eB 1 t 1 ) + e - B l t , ( / f c _ e B a ( t - t 1 ) j j i t ' 

oi 

if t<h 

, ift>ti. 
fci 
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For this individual, the vector of pdf of first absorption time of Ii(i 
1,...,fc) into A is: 

9(t) = 

e-BltBilk = e-Bltw1, if t < h ; 

e B l t l x e-B2(t-tl)B2ik = e s l t l x f.-Bzit-H)w2) if f > i j 

Hence, the pdf of the HIV incubation distribution is: 

e i e - B l t t / / i , if * < * i , 

e[eBltl x e-B^t-t^w2, if i > h, 
finc(t) 

where e i = (1 ,0 , . . . ,0 ) . 
Now, it is obvious that the eigenvalues of Bi are {\j(i) = 7j(*) + Uj(i), j = 

l , . . . , f c} . If Aj-(i) ^ Au(i) for all j ^ u, then as shown in Lemma 4.1, a 
left eigenvector <Zj(i) and a right eigenvector Pj(i) of Sj for \j(i) are given 
respectively by: 

Pj(i) = {Bjl(i),Bj2(i),...,Bjk(i)}' 

and 

?j(t) = [C7 l-1(t),C j2(t)>...>C jfc(»)]', 

where for j , r = 1 , . . . , fc, 

•Bjr( i ) = < 
II^ 'W/^W-AiW]}, i f r< j , 
l=T 

0, if r > j , 

and 

Crj-(i) = < 

with ni=j+i being defined as 1 

[ J (TJ-iCO/^W-ArCi)]}, i f r < i , 
l=r+l 

10, if r > j , 
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Put Ej(i) = Pj(i)%j(i). Then E](i) = E3ii),Ej(i)Eu(i) = 0 if j ^ u and 

E j L i Ej(i) = -ffe- It follows that 

3 = 1 0 = 1 

Denote A£l(j) = Bju(i)Cjv(i). Then, by the above definition, 

' 0 , if j > v or u > j ; 

4?2tf) 
IIMOMII^W-^W]" 1 - if«<j<«-

,. /=u 

Let / i ^ ( 0 = Y!j=ue~Xj{i)tA(ul(j) foi 1 <u <v <k,i = 1,2, then we have: 

(1) For 0 <t<tu 

finc(t)=e[e-B^w1=J2^il)\e'1pj(l))(g'j(l)w1) 

3 = 1 

k ( k *\ 

= ^ e - A , d ) t j B . l ( 1 ) ^ W i ( 1 ) C . . ( 1 ) 

3=1 l » = l J 

fc ( k 

i = J 

= ^ ^ ( l ) ^ e - ^ W ' 5 , 1 ( l ) C j i ( l ) 

» = 1 j=l 

=x;Wi(i)^ )(t). 
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(2) F o r t X i , 

/mc(t) = e[e-B^e-B*-^w2 = ^ V ^ U ^ e i ^ ( 1 ) ) 
* = i 

E< 

= J2^Xiil)tlBn(l) { Y,e-Xi(m~U) 

i = l , J = l 

£c(u(l)Biu(2) 

X)Wt)(2)CJ-„(2) 

I 

fc fc 
^ ^ e - A i ( l ) t l j B i l ( 1 ) C i u ( 1 ) 

i = l u=i 

x J ^ ^ e - ^ ( 2 ) ( t - t 0 ^ ( 2 ) 5 j u ( 2 ) ^ ( 2 ) 
(j = l V=j 

k u k v 

U = l 2 = 1 I V = U J = l 

u = l V.u=l i = l i J = u 

= Ew«(2) E ^ C i ^ ^ - t i ) 
w=l k.u=l 

Lemma 5.1. Let 5 be akxk upper bi-diagonal matrix with distinct diagonal 
elements A i , . . . , A*, and upper off-diagonal elements — 7 1 , . . . , —7fe-i- Tften, 
A i , . . . , Afc are the eigenvalues and a right eigenvector Pj and a left eigenvector 
Qj corresponding to the eigenvalue Xj are given respectively by 

and 

Pj = [BjU Bj2,...,Bjk}' 
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where for j , r = 1 , . . . , k, 

Bjr = < 

( j ' - i 

YlbiKh-Xj)], Hr<j, 
l=T 

0, if r > j , 

and 

(~*rj — * 
t[[li-i/(M-K)], i f r < j \ 

Z=r+1 

0, if r > j 

with Yli=i+i being defined as 1. 

Proof. We prove only the right eigenvectors since the proof of the left eigen­
vector is quite similar. 

To prove the right eigenvectors, consider the matrix equations: 

Ai -71 

A2 -72 O 

O -7fc-i 

A f c 

Xi 

Xk-l 

Xk 

A1Z1 - 71 x2 

X2x2 - j2x3 

Xk-\Xk-i ~7fc_ia;fc 

AfcXfc 

Xi 

Xk-l 

Xk 

i = 1,... ,k. 
Since Aj ^ Aj for all i ̂  j , if i < k, then Xi+i = • • • = x& = 0. It follows 

that a right eigenvector for Ai is 

x ' = z 1 [ l , 0 , . . . , 0 ]=z i [ .Boo ,0 , . - . , 0 ] , 

s i ^ 0 ; or Pi i s a right eigenvector for Ai. 
Let 1 < i < k. Then the above equations give Aj_iXj_i — 7i-iZj = AjZj-i 

which yields Zj_i = [ 7 J_ I / (AJ_I - Aj)] Xi = B^i-iXi; similarly, A;_2a:i-2 -
7i-2^i- i = XiXi-2 yields Xi-2 = [-yi-2/{Xi-2 - Aj)]a;i_i = [ 7 , - 2 / ^ - 2 -
Xi)\Bi^\Xi = Bi^2Xi. Suppose now Xj = BijXi for 1 < j < i — 1, 
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then \j-\Xj-i — jj-iXj = XiXj-i so that Xj-i = [jj-i/(Xj-i — Xi)]xj = 
[7j_i/(Aj_i — Aj)] BijXi — Bij-iXi. By mathematical induction, we have that 
Xj = BijXi for all j = 1 , . . . ,i — 1. Hence, for 1 < i < k, a right eigenvec­
tor for Xi is x' = Xi [Bio, Bn,..., Bik}. Thus, Pi is a right eigenvector of B 
corresponding to the eigenvalue Aj, i = 1 , . . . , k. 

For deriving the HIV incubation distributions under AZT treatment under 
general conditions, let ij be the time to start the ith round of treatment and 
with t\ being the first time for AZT treatment, to = 0 < t\ < • •. (Longini 
et al. [3] assumed ti=March 1987 since that was the time AZT was made 
available in the United States.) Let Uj be the probability that each infected 
person receives AZT treatment at tj with qj = 1 — Uj. Assume that whenever a 
person is treated by AZT at tj, then he/she is always treated by AZT at t for 
t>tj. Let pj be the probability that each infected person is actually treated at 
tj. Thenpo = 0,Pi = Ui,p2 = pi+qiu2, ...,Pj= Pj-i +Pj, for j = 1, 2 , . . . ,n, 
where pj = Uj l~[j=i 1i- That is, pj = pj — Pj-i (j = 1,...,) is the probability 
that the person starts treatment at tj. Now Y^j=iPj = Pn a n d for all integer 

«> E"=I£? + (nr=i*) = YTjZlpj + (rnri1*) = ••• = pi + qi = i-, so 
(nr=i9i) = i -p»-

Using these results, for HIV infected people who contracted HIV at time 
to = 0, the probability density of the HIV incubation distribution is: 

(1) If t<tu then 

/i„c(i) = E ^ ( 1 ) / l H ) ( i ) -
i= l 

(2) If tn < t < tn+1 for n = 1 , . . . , 

fUt) = (l-Pn)li2UJ^hiiW) 

+f^iPi-Pi-i^^wlib^uM^t-u)}. 
i=l v=l l.u=l J 

The above results are first given by Longini et al. [3]. 

file:///j-/Xj-i
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5.4. Stochastic Differential Equations for Markov Chains 
with Continuous Time 

As in Markov chains with discrete time, in many cases one may use stochastic 
differential equations to represent and characterize Markov chains with contin­
uous time. As shown in Chap. 8, this will then provide an avenue for making 
inferences about unknown parameters in Markov chains with continuous time 
and to validate the model. We now illustrate the basic theories by using some 
examples. 

5.4.1. The Feller-Arley stochastic birth-death processes 

Consider a Feller-Arley birth-death processes {X(t),t 6 T = [0, oo)} with 
state space S = ( 0 , 1 , . . . , oo) and with birth rate bj(t) = jb(t) and death 
rate dj(t) = jd(t). To develop a stochastic differential equation represen­
tation, let B(t) and D(t) denote the numbers of birth and death during 
[t, t + At) respectively. We will show that the above stochastic birth-death 
process is equivalent to assuming that the conditional probability distribution 
of {B(t),D(t)} given X(t) is a two-dimensional multinomial distribution with 
parameters {X(t),b{t)At,d(t)At}. That is, 

{B(t),D{t)}\X(t) ~ ML{X{t); b(t)At, d(t)At} . 

These distribution results are equivalent to the following proposition. 

Proposition 5.2. X(t) satisfies the following stochastic equation: 

X(t + At)=X(t) + B(t)~D{t). (5.17) 

To prove this proposition, let 4>{u,t) denote the pgf of X(t). Then, by 
Eq. (5.17), we obtain: 

<t>{u,t + At) = E{ux(t+A^} 

= E{ux^E[uB^-D^\X(t)}} 

= E{ux^[l + (u - l)b(t)At + (u'1 - l)d(t)At}x^} 

= E{ux^[l + Xtyu-igfaQ&t + o(At)}} 

= (j>{u, t) + g(u, t)—(f>(u, t)At + o{At), 
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where g(u,t) = (u - l)ub(t) + (1 - u)d(t) = (u - l)[(u - l)b(t) + ~/(t)} with 

7 ( i ) = b(t) - d(t). 
Subtracting <j>(u, t) from both sides of the above equation, dividing by At 

and letting At -> 0, one obtains the following equation for the pgf of X(t): 

—<f>(u,t) = g(u,t)—(j)(u,t). 

Since the above equation is precisely the same equation for the pgf of X(t) 
derived by using the Kolmogorov equation as given in Sec. 4.3, the proposition 
is proved. • 

Let e{t)At = [B{t) - X(t)b(t)At] - [D{t) - X(t)d(t)At}. Then Eq. (5.17) 
gives: 

dX(t) = X{t + At) - X{t) = B{t) - D(t) 

= X{t)>y(t)At + e{t)At, (5.18) 

where i{t) = b(t) - d(t). 
Equation (5.18) is the stochastic differential equation for X(t). Let Yj be 

the observed number on X(t) at times tj, j = 1 , . . . ,n. Then, 

Yj=X(tj) + ej,j = l,...,n. (5.19) 

Combining Eqs. (5.18) and (5.19), we have a state space model for the birth-
death process X(t). In this state space model, the stochastic system model is 
given by Eq. (5.18) whereas the observation model is given by Eq. (5.19). 

5.4.2. The number of initiated cancer tumor cells in the 
two-stage model of carcinogenesis 

In Subsec. 5.4.1, we have developed a stochastic differential equation repre­
sentation for Feller-Arley birth-death processes. We have shown that during 
small time intervals, the stochastic birth and death are equivalent to multi­
nomial distribution. In this section, we will prove that the stochastic birth, 
death and mutation (immigration) process is also equivalent to a multinomial 
distribution. Since as shown in Example 4.9, the number of initiated cancer 
tumor cells I(t) in the two-stage model of carcinogenesis is closely approxi­
mated by a stochastic birth-death process with immigration with birth rate 
bj(t) — jb(t) + X(t) and with death rate dj(t) = jd(t), we can therefore develop 
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a stochastic differential equation representation for the number of I cells. To 
this end, let B(t) and D(t) denote the numbers of birth and death of / cells 
during [t, t+At) respectively. Let Mjv(t) denote the number of mutations from 
JV -» I during [t,t + At). Then, M^{t) is distributed as Poisson with mean 
\{t)At and conditional on X(t), the probability distribution of {B(t), D(t)} is 
two-dimensional multinomial with parameters {X(t),b(t)At, d(t)At} indepen­
dently of MN (t). 

Using this setup, we now prove that the multinomial distribution results 
for the birth-death-mutation process is equivalent to the following proposition. 

Proposition 5.3. X(t) satisfies the following stochastic equation: 

X(t + At) = X(t) + MN(t) + B{t) - D(t). (5.20) 

The proof of this proposition is almost exactly the same as that of 
Proposition 5.2 and hence is left as an exercise. 

Let e(t)At = [MN{t) - \{t)At] + [B(t) - X(t)b{t)At] - [D(t) - X(t)d(t)Ai\. 
Then Eq. (5.20) is equivalent to the following stochastic differential equation: 

dX(t) = X(t + At) - X(t) = MN(t) + B(t) - D(t) 

= [X(t) + X(t)7(t)]At + e(t)At, (5.21) 

where >y{t) = b(t) - d{t). 

5.4.3. The number of sensitive and resistant cancer tumor 
cells under chemotherapy 

In Example 4.5, we have considered the numbers of sensitive (T\) and resis­
tant (T2) cancer tumor cells under chemotherapy. Let T,(i)(i = 1,2) denote 
the number of T, cancer tumor cells at time t. Then {Ti(t),i = l,2,t G T = 
[0,oo)} is a two-dimensional Markov chain with state space S = {{i,j),i,j — 
0 , 1 , . . . , 00}. By using results from Subsec. 5.4.2, in this section we will develop 
a stochastic differential equation representation for this process. To this end, 
assume that the Tj(i = 1,2) cells follow a Gompertz stochastic birth-death pro­
cess with birth rate jbi(t) with 6j(i) = rji(t)e~5it(r]i(t) > 0; Jj > 0) and death 
rate jdi(t) with d{(t) = (ie~Sit(& > 0). Assume that the mutation rate from 
Ti to Tj (i ^ j;i,j = 1,2) is cti{t); that is, during [t,t + At) the probability 
that one T cell will yield one T cell and one Tj(j ^ i) cell is cti(t)A + o(At). 
Let Bi(t) and Di(t) denote the numbers of birth and death of T(i = 1,2) 
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tumor cells during [t,t + At) respectively. Let Mj(£) denote the number of 
mutations from T; -> Tj(i ^ j) during [t, t + At). Then, the conditional prob­
ability distribution of {Bi(t), Di(t), Mi(t)} given Ti(t) is a three-dimensional 
multinomial distribution with parameters {Ti(t),bi(t)At, di(t)At,oti(t)At} in­
dependently of {Bj(t), Dj(t), Mj(t)} for i^j. 

Using the above distribution results, we have the following proposition. 

Proposition 5.4. The {Ti(t), i = 1,2} satisfy the following stochastic 
equations: 

Tx{t + At) = r i ( t ) + M2(t) + Bi(t) - Di(t), (5.22) 

T2{t + At) = T2{t) + Mi(t) + B2{t) - D2(t). (5.23) 

The proof of this proposition is almost exactly the same as that of Propo­
sitions 5.2 and 5.3 and hence is left as an exercise. 

For i 7̂  j and i, j = 1,2, let 

€i{t)At = [Mji^-Tj^aj^A^ + lBi^-TiitM^Atj-iDi^-Ti^di^At]. 

Then Eqs. (5.22)-(5.23) are equivalent to the following stochastic differen­
tial equations: 

dTi(t) =T1{t + At) - Ti(t) - M2(t) + Bi(t) - Di(t) 

= [T2(t)a2(t) + Ti(t)7i(*)]A* + ei(t)At, (5.24) 

dT2(t) = T2it + At) - T2(t) = Mi(t) + B2(t) - D2(t) 

= [Ti(t)ai(i) + T2{t)l2{t)]At + e2{t)At, (5.25) 

where ji(t) — bi(t) - di(t), i = 1,2. 

5.4.4. Finite Markov chains with continuous time 

In Example 4.2, we have shown that the Moran's genetic model is a finite 
stochastic birth and death process which is a special case of Markov chains 
with continuous time. In Example 4.3, we have shown that the nucleotide sub­
stitution model is a finite Markov chain with continuous time. In this section we 
will develop a stochastic differential equation representation for general finite 
Markov chains with continuous time. To this end, let {X(t),t £ T = [0, oo)} 
be a finite Markov chain with state space S = ( 1 , . . . , k +1) . Let the transition 
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rates of this chain be given by atj(t) for i ^ j and au(t) = Yl,jj=iaii{^)-
Let Xi(t)(i = l , . . . , fc + 1) be the number of the state i at time t and 
Zij(t) (hJ = 1.---J-W) the number of state j at time t + At arising from 
the state i during [t,t + At). Then, the conditional probability distribu­
tion of {Zij(t),j = 1 , . . . ,k + l,j ^ i} given Xt(t) is fc-dimensional multi­
nomial with parameters {Xi(t),atij(t)At,j — 1 , . . . ,fc + l , j ^ i} indepen­
dently of {Zrj(t),j = l,...,k + l,j ^ r} for all i ^ r. Further, Zu(t) = 
Xi{t) — Y^jjti Zij(P) anc^ hence the conditional distribution of Zu(t) given Xi{t) 
is binomial with parameters {Xi(t), 1 — au(t)At}. 

Using the above distribution results, we have the following stochastic rep­
resentation: 

fc+i 

Xj(t + At) = 5 3 ZH(*) for j = 1 , . . . , fc + 1. (5.26) 

Let tj{t)At = Ei^[Zij(t) - Xi(t)aijAt} + {Zjj(t) - Xj(t)[l - a^At}}, 
j = l,...,k + l. 

Then Eq. (5.26) are equivalent to the following set of stochastic differential 
equations: 

dXj(t) = Xj(t + At) - Xj(t) 

= J - XjWatjjit) + 53Xi(t)a«(t) L i + e^At, 

= -l^2xi{t)aij(t)\At + ej(t)At, for j = 1 , . . . ,k + 1, (5.27) 

where a^-(£) = 6ijCtu(t) + (6ij — l)ajj(t) for all i,j = 1 , . . . , k + 1. 
Put X( t ) = {Xi( t ) , . . .,Xk+i(t)Y and e(t) = { £ l ( t ) , . . . , Cfc+i(*)}' and let 

A'(<) = (ay(t)) be the (k + 1) x (k + 1) matrix with (i,j)-element being given 
by a,ij(t). Then, in matrix notation, Eq. (5.27) become: 

dX(t) = -A(t)X{t)At+e(t)At. (5.28) 

If some data are available from the system, then one may develop a state 
space model for the system with the above equation as the equation for the 
stochastic system model. This is the hidden Markov model as defined in 
Chap. 1. 
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5.5. Complements and Exercises 

Exercise 5.1. Absorption in birth-death processes. Consider a homo­
geneous birth-death process {X(t),t > 0} with state space S = ( 0 , 1 , . . . , oo). 
Suppose that the birth rates and death rates are given by {bt{t) = 9(t)bi > 
0, di = 0, i = 0 , 1 , . . . , }, where bi > 0 for all i = 0 , 1 , . . . , and 6(t) is a continu­
ous function of t. 

(a) Show that given X(0) = i for i < k, with probability one the process 
will eventually reach k as time progresses. 

(b) Let fi(t) be the density that the process will reach k{i < k) during 
[t, t + At) given X(0) = i. (That is, the probability that given X(0) = i, the 
process will reach k for the first time during [t, t + At) is fi(t)At + o(At).) Let 
A be the k x k matrix given by: 

A = 

Put / ( t ) = {f0(t),hit),...,/fc-i(t)}'. Show that /( t) is given by: 

f{t) = e(t)e-Aa^Alk, 

where g(t) = JQ 9(x)dx. 

This is the special case of absorption probabilities for birth-death process 
derived by Tan [4]. 

Exercise 5.2. Consider a stochastic logistic birth-death process with state 
space S = ( 0 , 1 , . . . ,M) and with bith rate bi(t) = ib(l - i/M)(b > 0) and 
death rate di(t) = id(l - i/M)(d > 0). 

(a) Derive the probabilities of ultimate absorption into the states 0 and M 
respectively. 

(b) Derive the vectors of the means and the variances of first absorption 
times of transient states. 

(bo 

0 

0 

0 

\o 

-b0 

h 

0 

0 

0 

-&1 

0 

0 

o\ 
0 

0 

0 

bk) 
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Exercise 5.3. Consider a birth-death process {X(t), t > 0} with state space 
S = ( 0 , 1 , . . . , oo) and with birth rates bi(t) = bi and death rates di(t) = di. If 
{bo = 0, bt > 0, di-i > 0, i = 1 ,2 , . . . , } , then the state 0 is an absorbing state. 

(a) Given X(0) — i(i > 0), let m denote the probability of ultimate absorp­
tion into 0. Show that the Uj's satisfy the following difference equation with 
initial condition UQ = 1: 

h , di 
Ui = ui+i + Mi_i, or 

bi + di bi+ di 

ui+i-v,i =-^(ui-Ui-i), i = l , 2 , . . . . 
bi 

Hence, show that the {un, n = 1 , . . . , } are given by 

m / i , um+1 ~ ui+(ui -1) 5^ n i 1 
* = i \ j = i j 

Ui = 

i+E£i(n}.i[^i]) ' 

s£i(nj-ife/fcj]) 

m > 1; 

1 + 

(b) Assume YHLI [Il)=i[dj/bj]) = oo so that with probability one the 
process will eventually be absored into tyhe state 0. Given X(0) = i(i > 0), 
let Wi denote the mean time untill absorption. Show that the wt 's satisfy the 
following difference equation with initial condition w0 = 0: 

1 bi di 
+ -r-—rwi+1 + -——-wi-1, or bi + di bi + di bi + di 

1 , di( \ 
Wi ~Wi+i = — + —{Wi-i -Wi), 1 = 1,. 

bi bi 
Denote by 

Pi — —; , tor i = 1,2,... 



Complements and Exercises 235 

By using results from (b), show that the wm(m > l) 's are given by: 

oo 

00, if ^ Pi = 

Wm = < 

oo 

oo; 

oo m— 1 / r , \ oo oo 

£ " + E I I I E P , ifE^<~-
^ i = l r = l \fc=l fc / j=r+l i=l 

Exercise 5.4. In Example 5.5, the stationary distribution of the nucleotide 
substitution was derived by using the spectrual expansion. Prove the result by 
using Theorem 5.1. 

Exercise 5.5. In Example 5.6, the stationary distribution of the Moran's 
genetic model was derived by using the spectrual expansion. Prove the result 
by using Theorem 5.1 for the case with mutation but no selection. 

Exercise 5.6. Let {X(t) = [Xi(t),... ,Xk(t)]',t > 0} be a fc-dimensional 
Markov chain with continusous time and with state space S = {^ = 
( H , . . . , ik)', ij = 0 , 1 , . . . , oo, j = 1 , . . . , k}. Let the transition rates from £ 
to i = (ji,.. .,jk)' be given by a(i, j ) for all {£ € S, J € S, £ ^ £ }. As­
sume that X(t) is irreducible. Then g(ii,- • -,ik) = ff(i,) i s t n e stationary 
distribution iff 

Prove the result for the case k = 2. 

Exercise 5.7. Consider a two-dimensional continuous-time multiple branch­
ing process {X(t),t > 0} with progeny distributions {qi(ji,J2),ji,J2 = 
0,1, . . . , oo , i = 1,2} and with survival parameters {Aj = X,i — 1,2}. Then 
the transition rates a(i,j;u,v) are given in Exercise 4.7. For fixed At, let one 
time unit correspond to At. Then, for a Type-1 individual at time t, the prob­
ability that this individual will give rise to u Type-1 individual and v Type-2 
individual at time t + At is: 

f A «i(u, v)At, if (u, v) ? (1,0); 

1(u,v) - j j _ A[1 _ 9 i ( 1 > 0 ) ] A t j if {U)V) = ( 1 ) 0 ) . 
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Similarly, for a Type-2 individual at time t, the probability that this indi­
vidual will give rise to u Type-1 individual and v Type-2 individual at time 
t + At is: 

(Xq2(u,v)At, if ( u , 0 / ( 0 , 1 ) ; 

[ l - A [ l - < z 2 ( 0 , l ) ] A i , if («,«) = (0,1). 

Then one may define an embedded two-dimensional multiple branching 
process {Y(t) = [Yi(t),l2(*)]',* > 0}- This branching process has discrete 
time and has progeny distributions {£i(u, v), u, v — 0 , 1 , . . . , oo, i = 1,2}. 

(a) Show that the pgf of the progeny distribution &(u, v)(i = 1, 2) of Y (t) 
is hi{x\,X2) — hi(x) = Xi + Ui(x)At, where Ui(x) = \[gi(x) — Xi](i = 1,2) 
and gi(x) is the pfg of the original progeny distribution qi(x). Hence, show 
that the matrix M$ of mean progenies of Y (t) is 

M5 = (1 - XAt)I2 + XAt M, 

where M is the matrix of mean numbers of the original progeny distribution 

(b) Show that if X (t) is non-singular and positive regular, so is the process 

(c) Assume that X (t) is non-singular and positive regular and let 70 be 
the largest positive eigenvalue of M. Let /i; be the probability of ultimate 
absorption into 0 of Xi(t) and put M = (^1,^2)'- Using Theorem 2.12 in 
Exercise 2.12 and the above embbeded branching process, show that (J. = 12 

i f f 7 o < l . 

Exercise 5.8. Consider a large population consisting of two niches. Suppose 
that each niche contains two types of individuals, say A\ and A2 and that the 
following conditions hold: 

(1) The probability density of the survival time of Type-i individuals in 
each niche is 

h(t) = Xe~xt, t>0,X>0. 

(2) When an individual in the ith niche dies, with probability Pi(j) = 
e_ 7 i7i J/j\ (j = 0 ,1 , . . . , ) it leaves beyond j progenies immediately. 
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(3) When an individual in the ith niche yields n progenies, the probability 
that there are n* (i = 1,2, n\ + n2 =n) Type-i progenies is 

V{ni,n2) ^ p ^ ( l - P i i r . (5.29) 

(4) All individuals in the population follow the above probability laws for 
proliferation independently of one another. 

Let Xi(t) (i = 1,2) denote the number of the ith type at time t. Then 
{X(t) = [Xi(t),X2(t)]',t > 0} is a two-dimentsional continuous-time multiple 
branching process with state space S = {(i, j),i,j = 0,1,...,oo}. 

(a) Derive the pgf of the progeny distributions. 
(b) By using Theorem 2.12 given in Exercise 2.12 (or Part (c) of 

Exercise 5.7), derive the necessary and sufficient condition that the popula­
tion will eventually be extinct as time progresses. 

(Note: The model in this exercise is the continuous analog of the model 
proposed by Pollak [5].) 

Exercise 5.9. Consider a homogeneous Markov chain {X(t),t > 0} with 
state space 5 = (e;, i = 1 , . . . , k +1). Let the transition rate of this chain from 
ei -> ej be given by 

„ . ili, if j = i + l , 

[0, i f j # t + l . 

Then, starting with X(0) = ej(i < k + 1), with probability one the chain 
will eventually be absorbed into the state efc+i. Let /(£) be the density of 
absorption into ek+i at t given X(0) = e\. 

(a) If 7i = 7, show that f(t) is given by: 

f(t) = f~jr)1
ktk-le-'t,t>0. 

(b) If 7i jt ̂ j for all i ̂  j , show that f(t) is given by: 

( fc \ k 
I ]7i ^ ^ ) e - ^ 4 , t > 0 , 

where A(i) = Ylj^i ~ 7i)_ 1-
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(c) Using results (a) to derive the HIV incubation distr ibution in 

Example 5.7 for the special case {7i( l ) = 7(1) , Wi(l) = u>(l),i = l,...,k}. 

E x e r c i s e 5 .10 . Prove Proposit ion 5.3. 

E x e r c i s e 5 . 1 1 . Prove Proposit ion 5.4. 
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Chapter 6 

Diffusion Models in Genetics, Cancer 
and AIDS 

In many biomedical systems, the population size is usually very large 
so that the state variables are closely approximated by continuous vari­
ables. If time is also continuous, then one is entertaining a stochastic 
process with continuous state space and continuous parameter space. As 
we shall see, many problems in cancer, genetics and AIDS can be con­
sidered as stochastic processes which have both continuous state space 
and continuous parameter space. This is especially true for evolution 
processes describing changes of frequencies of certain types or genes in 
large populations. The latter is justified by the observation that evolu­
tion is a slow process which takes place over millions of years and that 
the population size is usually very large. In this chapter we will thus 
consider a class of stochastic processes with continuous state space and 
continuous parameter space involving only the first two moments of the 
changes. In particular we will consider Markov processes with continu­
ous state space and continuous parameter space which have been referred 
to as diffusion processes. As we shall see, many processes in biomed­
ical systems can be approximated by diffusion processes; this includes 
stochastic processes describing population growth, stochastic processes of 
carcinogenesis, some stochastic process in infectious diseases as well as 
evolutionary processes involving changes of gene frequencies in natural 
populations. 

239 
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6.1. The Transition Probabilities 

Let {X(t),t > 0} be a diffusion process with state space S = [a,b] and with 
coefficients {m(x,t),v(x,t)} as defined in Definition 1.7. For 0 < s < t, let 
f(x,y;s,t) be the conditional probability density function (pdf) of X(t) at y 
given X(s) = x, x £ S and put: 

F(x,y;s,t)= f(x,z;s,t)dz, for y > a . 
J a 

Then the initial conditions become: 

f(x, y; s, s) = S(y — x), the Dirac's delta function, 

where the Dirac's delta function 5{x) is defined by f^° 6(x)g(x)dx = g(0) for 
any integrable function g(x) and 

F(x,y;s,s) = H(y - x), 

where H{x) = 1 if x > 0 and H(x) = 0 if x < 0. 
The Chapman-Kolmogorov equations become: For every x G S,y £ S and 

for every o o > i > r > s > 0 , 

f(x,y;s,t)= f(x,z;s,r)f(z,y;r,t)dz, (6.1a) 
J a 

F(x,y;s,t)= / f(x,z;s,r)F{z,y;r,t)dz 
J a 

and 

f 
Ja 

F(z,y;r,t)dzF(x,z;s,r), (6.1b) 

where dzF{x, z; s, r) = f(x, z; s, r)dz. 
As in Markov chains, the diffusion process {X(t),t > 0} is called a 

homogeneous diffusion process iff f(x,y;s,t) = f(x,y;t — s) (or F(x,y;s,t) — 
F(x,y;t — s)). That is, f(x,y;s,t) (or F(x,y;s,t)) depends on the times s 
and t only through the difference t — s of times. For homogeneous diffusion 
process, therefore, one may always start with the original time 0. Notice 
also that for the diffusion process {X(t),t > 0} to be homogeneous, it is 
necessary that the coefficients {m(x, t) = m(x),v(x,t) = v(x)} must be inde­
pendent of time t. For homogeneous diffusion processes, the initial conditions 
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then become f(x, y; 0) = S(y - x) and F(x, y; 0) = H(y — x). The Chapman-
Kolmogorov equations become: 

For every x 6 S,y € S and for every oo > t > r > 0, 

f{x,y;t)= f(x,z;r)f(z,y;t-r)dz, (6.2a) 
./a 

and 

F(x,y;t) = f(x,z;r)F(z,y;t~r)dz 
Ja 

= [ F{z,y;t-r)dzF(x,z;r). (6.2b) 
Ja 

6.2. The Kolmogorov Forward Equation 

Using (6.1a) or (6.1b) (or (6.2a) or (6.2b) for homogeneous diffusion processes), 
as in Markov chains with continuous time, one may derive Kolmogorov forward 
and backward equations for evaluating f(x, y; s, t). These equations are useful 
also to derive stationary distributions and the absorption probabilities and the 
mean time to absorptions; see Chap. 7 for detail. 

The following theorem shows that the conditional pdf f(x, y; s, t) (or 
f(x,y;t — s)) satisfies the Kolmogorov forward equation (6.3a) (or (6.3b)). 
This equation is called the forward equation because the derivatives are taken 
with respect to the forward time t. 

Theorem 6.1. Let {X(t),t > 0} be a diffusion process with state space 
S = [a,b] and with diffusion coefficients {m(x,t),v(x,t)}. Suppose that for all 
y 6 [o,6] and for allt, both ^{m(y,t)f{x,y;s,t)} and -§^{v(y,t)f(x,y;s,t)} 
exist. Then, -gifix, y; s, t) exists and f(x, y; s, t) satisfies the following partial 
differential equation with initial condition f(x, y; s, s) = 8(y — x) : 

—f(x,y;s,t) = -j-{m(y,t)f(x,y;s,t)} 

1_<P_ 

2dy* 
+ 7;i^{v(y,t)f(x,y;s,t)}, (6.3a) 

with initial condition f(x, y; s, s) = S(y — x), the Dirac's delta function. 
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If the process is homogeneous, then the above Kolmogorov forward equation 
reduces to: 

Id* 
a t , v ~ > * > - v - ^ r - W M - ^ - v j • 2dy 

f(x,y;t) = -^{m(y)f(x,y;t)} + - — {v(y)f(x,y;t)}, (6.3b) 

with initial condition f(x, y; 0) = 6(y — x). 

(The above equation has also been referred to as Fokker-Plank equation.) 
We prove the theorem only for the case in which both m(x, t) and v(x, t) 

are polynomials in x. A proof for general cases is given in Subsec. 6.8.1. 

Proof. To prove the above theorem for the case that both m(x, t) and v(x, t) 
are polynomials in x, write simply f(x,y;s,t) = f(y,t) when there is no 
confusion. Let <j>(u, t) be the conditional characteristic function (cf) of X(t) 
given X(s) = x. Then, with i = y/^1, we have, 

#« ,« ) = / eiuyf(y,t)dy, 
J a 

and by the Fourier inversion formulae, 

1 t°° 
f(y>t) = ^J_ e-mv<f>(u,t)du. 

(For the proof of the Fourier inversion formulae and general theories, see [1, 
Chap. 4].) 

To prove the above forward equation, we will first show that if m(y,i) 
and v(y,t) are polynomials in y, then <j>(u,t) satisfies the following partial 
differential equation: 

d_ 
dt «°>t} =(*u)m (dk' *) *"•t} + i^fv{dkr') Hu>t] • (6-4) 

In the above equation, "i(g7^j,t) and v(-gn^),t) are operators operating 
on <j>{u, t). As an example, if m(y, t) = bo + b\y + i>2j/2, then 

( d ,\ u L
 d u & 

\o\iu) J a{iu) o(iu)2 

file:///o/iu
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To prove Eq. (6.4), notice that by the Chapman-Kolmogorov equation, 

<j>{u,t + dt) = j eiuyf(x,y;s,t + dt)dy 

= f eiuv\j f(x,z;s,t)f(zty;t,t + dt)dz\dy 

= J eiuz j J" eiu^f(z,y;t,t + dt)dy 1 f(x, z; s, t)dz. 

Expanding e%u(y z) in Taylor series to give 

eiu(v-z) = 1 + {iu){y _z) + M ( y _ z)2 + M ( J / _ z)3 + . . . > 

we obtain: 

j eiu(y-z)f^y;t}t + dt)dy = 1 + (iu)m(z,t)dt + ^~v{z,t)dt + o(dt). 

It follows that 

<f>(u, t + dt) = J eiuz I j e<u<»-*>/(z, y; t, t + dt)dy 1 f(x, z; s, t)dz 

= f eiuz U + (iu)m(z,t)dt+^-v{z,t)dt + o(dt)\ 

x f(x,z;s,t)dz 

d \ (iu)2 ( 0 
Hu,t) + {(iu)m^—,t)+ 2 

x 4>(u, t)dt + o(dt). 

"(ek)'*)} 

From the above equation, on both sides, subtracting tfi(u, t), dividing by dt 
and then letting dt —• 0, we obtain: 

lim — {4>(u,t + At)-<f>(u,t)} 
At->0 iXt 

= Hm(4o,')*(tt,') + ^ ! , ,(^o , ')}^ , ' )-
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Similarly, by following exactly the same procedure, we obtain: 

This shows that ^<f>(u,t) exists and <j>{u,t) satisfies Eq. (6.4) for <j>(u,i). 
By the Fourier inversion formulae, this also shows that -§if(x, y; s, t) exists. 

To prove Eq. (6.3a), on both sides of Eq. (6.4), multiply by ^e~iuy and 
then integrate u from —oo to oo. Then, by the Fourier inversion formulae, on 
the left side, we obtain 

On the right side, the first term is, by applying results from Lemma 6.1 
given below: 

r 
2TT ̂

.-'".{Mm^.^Kt)}*. 

L,r*'{m(m<t)«u-t)}'k' 
d_l_ 
dy2-K , 

= —Q-{m(y,t)f{x,y;s,t)}. 

On the right side, the second term is, by applying results from Lemma 6.1 
given below: 

= \ i s ^ - l°° e~iuv{v(lJ^,t)<t>(u,t)\du 
2dy22nJ_OQ \ \d(iu)' J YK >\ 

.2{v(y,t)f(x,y;s,t)}. 
~ 2dy 

This shows that Eq. (6.3a) holds. 
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Lemma 6.1. Let P{x) be a polynomial in x and let <f>(u) be the cf of the pdf 
f{x). Then, 

rjy"-p{ak}Hu)du=p(xMx)-
We will prove the result of the above lemma by mathematical induction. 

Thus, first we assume P(x) = ax + b, where a and b are constants. Then, by 
using integration by part, 

t L e~iux {aek + b} ̂ du = bfW + a h II e'iuxd^ 
= bf(x) + ax~ r e~iux(j){u)du 

= (b + ax)f{x). 

Thus, the result holds if P(x) is any polynomial of degree 1. Suppose that 
the results hold for any polynomial Pn(x) of degree n. We need to show that 
the results also hold for any polynomial P(x) of degree n + 1. To prove this, 
write P{x) as P(x) = an+ixn+1+Pn(x),an+i ^ 0, where Pn(x) is a polynomial 
of degree n. Then, 

S II e""p { ak } mda ~ p'{x)m + <"»l 

/

oo Ftn+l 

d(iu)n+iYK ' 

By integration by part, the second term on the right side of the above 
equation becomes: 

1 r°° dn+1 1 f°° dn 

an+l^Loo e~iuxWurri<l>{u)du = an+lX^ loo e~iuxdi^rHu)du 

= an+1x
n+1f(x). 

It follows from the above results that if P(x) = a„+ia:n+1 + Pn{x), then, 

1_ y ~ e-iuXp j _ | _ j ^(u)du = Pn{x)f{x) + an+lXn+if{x) 

= P(x)f(x). 



246 Diffusion Models in Genetics, Cancer and AIDS 

Thus, the result of Lemma 6.1 holds. 
Using Theorem 6.1, one may derive the conditional pdf f(x, y; s, t) by solv­

ing the Kolmogorov equation (6.3). This is possible only in some cases whereas 
it is extremely difficult in many other cases. Given below are some examples 
in which explicit solution of Eq. (6.3) is possible. 

Example 6.1. The Browning motion process. In 1827, R. Brown, a 
botanist, noticed that when pollen is dispersed in water, the individual particles 
were in uninterrupted irregular motion. The stochastic process describing this 
motion is called the Browning motion process. Let 0 denote the position of 
the particle initially (i.e. at time 0). Let {X(t),t > 0} denote the distance 
between the particle and the original position 0 at time t. Suppose that the 
following postulates hold: 

(a) When the time periods are not overlapping, the displacement of the 
particle during these periods are independent. This is equivalent to stating 
that the process {X(t),t > 0} has independent increment. 

(b) The displacement during the period [s, t) depends on time only through 
the time period t — s. That is, X(t) has homogeneous increment. 

(c) E[X{t)\X{0) = 0] = 0 for all * > 0. 
(d) limAt-*> -ttE{[X{t + At) - X(t)]2\X(0) = 0} = b(t) > 0. 
(e) {X(t),t > 0} is a continuous process; see Definition 1.7. 

Notice that P(X(0) = 0) = 1 and condition (a) implies that X(t) is Markov. 
Conditions (c)-(e) then imply that {X(t),t > 0} is a diffusion process with 
state space (—oo,oo) and with coefficients {m(x, t) = 0,v(x,t) = b(t)}. Let 
f(x, t) denote the conditional pdf given X(0) = 0. Then f(x, t) satisfies the 
following Kolmogorov forward equation (Fokker-Plank equation): 

^f(x,t) = ^b(t)-^f(x,t). (6.5) 

The initial condition is f(x,0) = 5(x), the Dirac's delta function. 
Suppose that the total probability mass is confined to finite intervals in 

the real line so that limx^ioo f(x, t) — 0 and linXr-^ioo Jj/(a;, t) = 0. Suppose 
further that b(t) — a1 is independent of time t so that the process is time 
homogeneous. Then explicit solution f(x, t) of (6.5) can be derived. 
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To obtain this solution, let <f>(u,t) denote the cf of f(x,t). That is, 

/

oo 
eiuxf(x, t)dx, 

-oo 

where i — \/—l. 
Multiplying both sides of (6.5) by elux and integrating over x from —oo to 

oo, we obtain on the left side: 

coo 

/ _ ^ | / ( M ) = ^ ( M ) . 

Now, by using integration by parts, we have: 

d2 r°° . d2 r • d 1 f°° • d 
j _ e™—2f{x,t)dx= e™

x£f(x,t) - ( i « ) y _ e™x-^f(x,t)dx 

= -{in) {{eiuxf{x,*)]*«, - (»«) |_~ eiuxf(x,t)dx 

= ( - u a M u , t ) . 

Hence, </>(u, t) satisfies the equation 

^ ( u , i ) - - U
2 y < / » ( n , r ) . (6.6) 

The initial condition is <f>(u, 0) = 1. 
The solution of Eq. (6.6) under the condition <f>(u, 0) = 1 is 

<j>(u, t) = exp - | » v < } 
The above is the cf of a normal density with mean 0 and variance cr2t. 

Hence, 

Example 6.2. The probability distribution of gene frequency in 
natural populations under genetic drift. As illustrated in Sec. 6.5, the 
frequency of genes in natural populations can be closely approximated by diffu­
sion processes with state space [0, 1], In the event that there are no mutations, 
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no selection and no immigration and no migration, the stochastic change of 
gene frequency is then caused by random chances other than major genetic 
pressures. This random change has been referred to as Genetic Drift by Wright 
[2]. In this case, the frequency {X(t),t > 0} is a homogeneous diffusion process 
with state space [0, 1] and with coefficients {m(x, t) = 0,v(x,t) — x(l — x)}; 
for detail see Sec. 6.5. In this case, the Kolmogorov forward equation is 

§-tf(p,x;t) = l£L{x(l-x)f(p,x.tt)}, (6.7) 

where f(p,x;t) is the conditional pdf of X(t) given X(0) = p. The initial 
condition is f(p,x;0) = S(x — p). 

To solve the above partial differential equation, for simplicity we write 
simply f(p,x;t) = f(x,t) by suppressing p and put f(x,t) = h(t)g(x). On 
substituting this into Eq. (6.7), we obtain: 

h'(t) 1 / d2 

-^[x(l - x)g(x)n = - A , 
h(t) 2g(x) 

for some constant A. 
The above results lead to h(t) oc e~xt and g(x) satisfies the equation: 

x(l - x)g"{t) + (2 - 4x)g'(t) + (2A - 2)g(x) = 0. (6.8) 

In Eq. (6.8), A and the associated solution g{x) have been referred to as 
the eigenvalue and eigenfunction of the operator 

S = x(l-x)^ + (2-^-2, 

respectively. (Some general theories of eigenvalues and eigenfunctions in 
differential equations are given in Subsec. 6.8.3.) 

To find the eigenvalues of Eq. (6.8), consider the series solution g(x) = 
YmLaaixl- O n substituting this series solution into Eq. (6.8), we obtain: 

afc+1=(fc + l )1(fc + 2 ) K f c + 1)(fc + 2 ) " 2 A l a f c ' 

for k = 0 , 1 , . . . ,00. 
Thus, in order that g(x) is finite at x = 1, we must have that A = 

^(k + l)(fc + 2) = Afc, for some non-negative integer k. Thus, Eq. (6.8) has 
infinitely many eigenvalues given by Afc = \(k + l)(fc + 2), k — 0 , 1 , . . . , 00. 
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The eigenfunction gk{x) corresponding to the eigenvalue A*, are solutions of 
the equation: 

x(l - x)g'l{t) + (2 - 4x)g'k(t) + k(k + 3)gk(x) = 0 . (6.9) 

Notice that the above equation is a special case of the Jacobi equation with 
a = b = 2; see Subsec. 6.8.2 for some general results of Jacobi polynomials. 
Hence, aside from a constant multiple, gk{x) is given by gk{x) = Jfc(x; 2,2). 

It follows that the general solution of Eq. (6.7) is 

oo 

fix, t) = Yl c*J*(x; 2,2)e-h^m^)t f 
fc=o 

where the Cj are constants to be determined by the initial condition f(x, 0) = 
S(x — p) if given X(0) = p. 

To determine Cj, put t = 0, multiply both sides of the general solution by 
x(l — x)Jj(x; 2,2) and then integrate both sides with respect to x from x = 0 
to x = 1. Then, on the left side, we have: 

r - l 

x(l — x)Jj(x;2,2)S(x —p)dx 

/

1-P 

(z + p)(l -z-p)Jj(z + p;2,2)5{z)dz 
-p 

/ 
Jo 

= p(l-p)Jj(p;a,b). 

On the right side, because of the orthogonality of Jacobi polynomials, 
we have: 

Cj / x(l-x)J?(x;2,2)dx = Cj-r 
Jo \J 

(i + i) 
+ 2)(2j + 3) 

Hence Cj = ^ y ( j+2)(2j+3)p(l-p) Jj(p; 2,2) and the solution of Eq. (6.7) 
under the initial condition / (x , y; 0) = 6(y — x) is 

° ° 1 

/(p,z; t) = p(l - p) £ - £ _ - ( * + 2)(2fc +3) 
fe=0 

xJfc(p;2,2)Jfc(x;2,2)e-5(fc+1>(fe+2)t 

0 0 1 
= p(l - p) X ) ^ ^ y ( 2 J + l ) r J (p) r J (x)e - i^ -+ 1 )* , (6.10) 
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where Tj(x) = Tj(x;2,2) = (j + l)Jj-i(x; 2,2) (j = l , . . . , oo ) is the 
Gagenbuaer polynomial. 

The above solution was first derived by Kimura [3]. 

6.3. The Kolmogorov Backward Equation 

As in Markov chain with continuous time, the conditional pdf f(x, y\ s, t) of 
the diffusion process {X(t),t > 0} also satisfies the Kolmogorov backward 
equation. In fact, we can prove a more general result of backward equation 
for the transformation u(x; s, t) of f(x, y; s, t). By using this general form, one 
can show that not only the conditional pdf f(x, y; s, t) but also the absorption 
probabilities and the moments satisfy the Kolmogorov backward equation. 

To illustrate, let {X(t),t > 0} be a diffusion process with state space \a, b] 
and with coefficients {m(x,t),v(x,t)}. Define u(x;s,t) by: 

u(x;s,t)=j f(x,z;s,t)g(z)dz (6.11) 
J a 

where g(y) is an integrable function defined over [a, b]. 
Then, by properly choosing g(x), we can attach different meaning to 

u(x;s,t). For example, if we chose ^(a;) = 5(x — y), then u(x;s,t) = f(x,y;s,t) 
is the conditional density of X(t) at y given X(s) = x; if we chose g(x) = xk, 
then u(x;s,t) is the fcth conditional moment of X(t) given X(s) = x; if we 
chose g(x) = 1 if a<c<x<d<b and = 0 for otherwise, then u(x; s, t) is the 
probability that c < X(t) < d given X(s) = x; if the boundary points a and b 
are absorbing states while all states x with a < x < b are transient states and 
if we put g(x) = S(x — a) + 6(b — x), then u(x; s, t) is the probability that X{t) 
absorbs into a or b at or before time t given X(s) = x. 

Theorem 6.2. (The Kolmogorov backward equation for u(x;s,t)). 
The u(x; s, t) as defined above satisfies the following backward equation: 

-fou(x'' s> *) = m(x> 8)Q^U(X' S> *) + 2V(X> s ) ^ 2 u(x> s> *) ' (6.12a) 

with initial condition u{x; s, s) — g(x). (Note that f(x, y; s, s) = 5(y — x).) 
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If the diffusion process {X(t),t > 0} is time homogeneous, then u(x; s,t) = 
u(x;t — s) and the above Kolmogorov backward equation reduces to: 

—u(x;t) = m(x)—u(x;t) + -v(x)-^u(x;t), (6.12b) 

with initial condition u(x;Q) — g(x). 

Proof. By the Chapman-Kolmogorov equation, we have 

f(x, y;s- As, t) = f(x, z;s- As, s)f{z, y; s, t)dz. 
J a 

Hence 

u(x; s-As,t) = I f(x, z;s- As, s)f(z,y;s,t)dz \ g(y)dy 

= f{x,z;s~As,s)l f(z,y;s,t)g(y)dy\dz 

,6 

= / f(x,z;s — As,s)u(z;s,t)dz. 
Ja 

Expanding u(z; s,t) = J f(z, y; s, t)g(y)dy in Taylor series around x to give 

u(z; s, t) = u(x; s, t) + (z - x)—-u(x; s, t) + -(z - xf — u{x; s,t) -\ , 

we obtain: 
, 6 

u(x;s — As,t) = / f[x, z;s — As,s)u(z;s,t)dz = u(x;s,t) 
Ja 

+ < {z-x)f(x,z;s-As,s)dz\—u(x;s,t) 

+ < 2 / ( z ~ x)2f(x>*'•>s ~ A s > s ) d z \ 1)^2U(X>5'*) 

+ o(As) = u(x; s, t) + m(x, s) As—— u(x; s, t) 
ox 

1 d2 

+ -v{x, s)As—u(x; s, t) + o(As). (6.13) 
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From both sides of Eq. (6.13), subtracting u{x;s,t), dividing by As and 
letting As —> 0, we obtain: 

— lim —— {u(x;s,t) — u(x;s — As,£)} 
AS-+O As u v v 

= m(x, s)—u(x; s, t) + -v(x, s)—u(x; s, t). (6.14) 

Similarly, by using exactly the same procedure, we obtain: 

— lim ——{u(x;s +As,t) — u(x;s,t)} 
Aa-»0 A s 

= m(x, s)—u(x; s,t) + -v(x, s)-^u(x; s,t). (6.15) 

Combining Eqs. (6.14) and (6.15), we prove that -g^u(x;s,t) exists and 
that u{x\ s,t) satisfies the backward equation as given by Eq. (6.12a). Because 
f(x, y; s, s) = S(y — x), the initial condition is u(x; s, s) = g(x). • 

In diffusion processes, the backward equation as given in Theorem 6.2 is 
useful in many ways: First, theoretically it can be used to derive the probability 
density functions. (Explicit solution is possible only in some cases; in many 
cases, however, the explicit solution is extremely difficult to derive even if it is 
not impossible.) Second, it can be used to derive the probabilities of fixation 
and absorptions into absorbing states; see Chap. 7. Third, it can be used to 
derive the mean of the first passage times and the mean so-join times; see 
Chap. 7. In this section we give some examples for which explicit solution is 
possible. 

Example 6.3. The solution of backward equation for the proba­
bility distribution of gene frequency under genetic drift in natural 
populations. In Example 6.2, we have considered the problem of genetic drift 
under the Wright model. In this case, the stochastic process {X(t),t > 0} is 
a homogeneous diffusion process with state space [0, 1] and with coefficients 
{m(y, t) = Q,v(y,t) = y(l - y)}. Hence, the Kolmogorov backward equation 
for the conditional pdf f(x, y; t) is 

d Id2 

Oif(x,y,t) = x(l - x)--^f(x,y;t). (6.16) 

The initial condition is f(x, y; 0) = S(y - x). 



The Kolmogorov Backward Equation 253 

To solve the above equation, for simplicity we write f(x, y; t) = f(x, t) by 
suppressing y and let f(x;t) = g(x)e~xt, where A is a constant. Then g(x) 
satisfies the equation: 

d2 

x(l~x)-^g(x) + 2Xg(x)=0. (6.17) 

In the above equation, the A's (say Xj) satisfying the above equation are the 
eigenvalues of the operator S = ^x(l — x)-^ and the solutions gj(x) associated 
with Xj are the eigenfunctions corresponding to the eigenvalue Aj. The general 
solution of the above equation is then given by: 

f(x,t)^J2cjgj(x)e-^t. (6.18) 
3 

To find these eigenvalues and the associated eigenfunctions, consider the 
series solution g(x) — ~%2iLo aix%- ®n substituting this series solution into 
Eq. (6.17) and equating to zero the coefficient of xk for k = 0 , 1 , . . . , we obtain 
ao = 0 and for k = 0 , 1 , . . . , oo, 

Uk+1 = (k + l)k^k ~^~ 2 A ^ ' 

It follows that ai = 0 and we can assume a^ = 1. Further, in order that the 
solution is finite at x = 1, we require 2A — fc(fc — 1) = 0, or Afc = \k(k — 1), k = 
2 , . . . , oo. We also require that for all j , k = 2 , . . . , oo, 

I 
l 

- l . [x(l-x)\ 1gj(x)gk(x)dx 
lo 

is finite; see Subsec. 6.8.3. Under these restrictions, the eigenvalues of the 
operator S are given by: 

Ajt = -k(k - 1) for fc = 2 , 3 , . . . . 

Given Afc = \k(k — 1) (k > 2), write aj a s a j ' . Then, a^ = 1 and 

ay =0 for all j — k + 1 , . . . , oo; moreover, for j < k, k — 3 , . . . , oo, the aj ^'s 
are derived from the iterative equation: 

a?+\ = JJ^-y.UU - 1) - k(k - l)]af , (6.19) 

for j = 2 , . . . , k — 1 with ay — I. 
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An eigenfunction corresponding to Xk is gk{x) = Yli=x °i **• Using 
Eq. (6.19) iteratively with a2 = 1, k = 2 , . . . , oo, we obtain: 

g2(x) = x(l - x) = x(l - x)J0(x; 2,2), 

g3(x) = 2x(l - x)(l - 2x) = x(l - x)J1(x;2,2), 

g4(x) = x(l - x)(l -5x + 5x2) = -x(l - x)J2(x; 2 ,2 ) , . . . . 

The general solution of f(x; t) = f(x, y; t) is 

oo 

f(x,y;t) = Y,d9i(x)e-^i-1)t. 
i=1 

Now the operator S defined by S = \x{\ — x)-^ satisfies the Green 
formulae given by: 

[Sg(x)]f(x) - [Sf(x)]g(x) = ^ ( 1 - x)±{g'{x)f(x) - f'{x)g{x)} . 

(See Subsec. 6.8.3 for the Green Formulae and its applications.) 
It follows that for all solutions g(x) which vanish at x = 0 or x = 1, S is 

self adjoint. In these cases, as shown in Subsec. 6.8.3, for all Xj ^ Xk,j,k = 
2 , . . . , oo, 

I 
l 

- l [x(l - x)\ gj(x)gk(x)dx = 0 . 

Since g%{x) = x(l — X)JQ(X;2,2) and gs(x) = x(l — x)Ji(x;2,2), by the 
orthogonality of Jacobi polynomials J(x; 2,2), we have for j = 2 , . . . , 

Q' (x) 
— — bj Jj-2(x'> 2,2), bj being a constant. x(l — x) 

On substituting these results into Eq. (6.18), the solution f(x,y;t) then 
becomes: 

oo 

/ (x , y; t) = J^ A - 2 * ( l - x)Ji-2(x; 2 , 2 ) e ~ i ^ - 1 ^ 
i=1 

oo 

= 5 3 DMl - x)Ji& 2,2)e-i< i + 1X i + 2> t , (6.20) 
i=0 
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where the Di's are constants to be determined by the initial condition 
f(x,y;0) = 5(y-x). 

Multiplying both sides of Eq. (6.20) by Jk(x;2,2), putting t = 0 and 
integrating the function from 0 to 1, we obtain: 

Jk(y,2,2) = Dk f x{l-x)Jl{x;2,2)da 
Jo 

= Dt{ \B(k + 2,k + 2) 

(k + 2)(2k + 3) ' 

Hence Dk = (k + 2)(2k + 3)Jk(y;2,2)/(k + 1) so that 

f(x,y; t) = x(l -x)JT (j + 2 K 2 i + 3 ) J i ( a ; ; 2 > 2 ) J i { y . 2 > 2 ) e - i d + m + 2 ) t 

i =0 
t + 1 

= <l ~ *> E l ^ r ^ x j r ^ y j e - * ^ 1 ) * , (6.21) 

where Tk(x) = Tk(x; 2,2) = (k + l)Jk~i(x; 2,2) is the Gagenbauer polynomial. 
Notice that the solution in (6.21) is exactly the same as that given by (6.10) 

for the Kolmogorov forward equation as it should be; see Remark 6.1. 

Remark 6.1. It can be shown that under the conditions given in Theo­
rems 6.1 and 6.2, the solution of the forward equation is the same as the solu­
tion of the backward equation and is unique. The proof is quite complicated 
and hence will not be given here. 

Example 6.4. The solution of backward equation for the distribu­
tion of gene frequency under mutation and genetic drift in natural 
populations. Consider a large diploid population with one locus and two 
alleles A and a. Let Y(t) be the frequency of gene A at time t. Assuming 
that there are gene mutations from A —> a and from a —> A with rate 0idt 
and fadt during [t, t + dt) respectively. Assume that the /Vs a r e indepen­
dent of time. Then, under the Wright model, {Y(t),t > 0} is a homogeneous 
diffusion process with state space S = [0,1] and with coefficients {m(y, t) = 
&2 — (/3i + P2)y,v{y,t) = 2/(1 — y)}\ f° r detail see Example 6.9 in Sec. 6.5. It 
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follows that the conditional probability density f(x, y; s, t) = f(x, y;t — s) of 
Y(t) given Y(s) = x satisfies the following backward equation: (We suppress 
y by writing f(x, y; t) as f{x, y; t) = f(x; t) when there is no confusion.) 

^f(x; t) = \fa - (fii + / W ^ / f o t) + | x ( l - x)-^f(x; t), (6.22) 

with initial condition f(x; 0) = 6(y — x). (The Dirac's 8 function.) 

To solve the above equation, put f(x;t) = h(t)g(x). Then 

* $ = j£jlft - (ft + Aw|«M + |« i - *>£«<*) = -* 

for some constant A. 
This leads to h(t) oc e_ A t . Further, g{x) satisfies the equation: 

x(l - *)-^9(x) + 2[& - (A + /32)x]-^g(x) + 2A g(x) = 0. (6.23) 

Let a = 2/?2 and b = 2/3i and consider the series solution of the above 
equation g{x) = X)2o aix%- ®n substituting this series solution into Eq. (6.23), 
we obtain: 

ak+1 = (k + l)(k + a){k{k + ° + b~ 1 } - 2X]ak ' 

for k = 0 , 1 , . . . . 
Set ao = 1. Under the condition that the solutions of Eq. (6.23) are finite at 

x = 1 and x = 0, the eigenvalues are then given by Afc = ^k(k + a + 6 — 1), fc = 
0 , 1 , . . . . The eigenfunction gk{x) corresponding to A& satisfies the equation: 

d? d 
x(l - x)j-^gk(x) + [a - (a + b)x]—gk(x) 

+ k(k + a + b-l)gk(x)=Q. (6.24) 

Notice that the above equation is the equation for the Jacobi polynomial 
Jk(x;a,b). Hence, aside from a constant multiple, gk(x) — Jk{x\a,b). The 
general solution of Eq. (6.22) is then given by: 

oo 

/ ( * , y; t) = £ CiJi{x; a, b)e-W»«+»-W , (6 .25) 



Diffusion Approximation of Models 257 

where the Cj's are constants to be determined by the initial condition 
f(x,y;0) = 8(y-x). 

In the above equation, put t = 0, multiply both sides by x a _ 1 ( l — 
x)b~1Jk{x;a,b) and then integrate out x from 0 to 1. This gives 

ya-1(l-y)h-1Jk(y;a,b) = Ck(
2k + a + b-2\B(k + a,k + b). 

It follows that the solution of Eq. (6.22) is 

x Jk(x; a, b)Jk(y; a, b)e-i^
k+a+b-^t. (6.26) 

In the above solution, notice that the first term is the Beta density given 

by fo(y) = ,B(a,h)3/a~1(1 _ y ) 6 _ 1 which is the limit of f{x,y;t) as t -> oo. 

6.4. Diffusion Approximation of Models from Genetics, 
Cancers and AIDS 

In this section we will show that most of the systems in cancer and AIDS can 
be approximated by diffusion processes. Similarly, most of the evolutionary 
processes can be approximated by diffusion processes. 

Example 6.5. Approximation of stochastic growth by diffusion 
process. Consider the growth of a biological population such as the popu­
lation of bacteria. Let X(t) be the number of individuals in the population 
at time t and let M be the maximum population size. Then, realistically, 
{X(t),t > 0} is a stochastic process with state space S = {0 ,1 ,2 , . . . , M}. 
This follows from the fact that because of the changing environment which 
involve many random variables, the population growth involves many vari­
ables which are subjected to random variations. To find the probability law 
for X(t), observe that M is usually very large so that Y(t) = —fif- changes 
continuously in [0, 1] approximately. This suggests that one may approximate 
Y(t) by a continuous process with Y(t) changing continuously in the interval 
[0, 1]. 
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To illustrate how to approximate {Y(t),t > 0} by a diffusion process, 
suppose that Y(t) can be described by the following stochastic differential 
equation: 

±Y(t) = eY(t)g[Y(t)) + u(t), (6.27a) 

where e > 0,g(x) is an ordinary function of x and u(t) a random variable so 
that {Y(t),t > 0} is a stochastic process. Or, to cover cases in which dj ' 
does not exist, we consider alternatively the stochastic equation: 

dY(t) = eY(t)g[Y(t)]dt + Z(t)Vdt, (6.27b) 

where Z(t) = u(i)s/dl. 
The above Eqs. (6.27a) and (6.27b) describe the mechanism by means of 

which the population grows. In Eqs. (6.27a) and (6.27b), the first term for 
given Y(t) is the systematic change which is often used by scientists to de­
scribe the population growth deterministically while the second term u{t) and 
Z(t)Vdl are the random noises which are assumed to have zero expectation; 
the random noises are introduced to take into account the effects of random 
disturbances for the increment during [t, t + dt). For example, if g{x) = 1 — x 
and if u(t) = 0, then Eq. (6.27b) gives a two-parameter logistic growth function 
as defined in [4, 5]. 

To find the probability law for Y(t), assume that E[Z(t)\Y{t) = y] = 0, 
Vax[Z(t)\Y(t) = y] = a2{y,t) > 0 and E{\Z(t)\r\Y(t) = y} = o(dt,y) for 
r > 3, where limdt^o ° ^ ' ^ = 0 uniformly for 0 < y < 1 and for t > 0; also 
we assume that the conditional pdf f(y,t) of Y(t) given Y(t0) = y0 satisfies 
l i m ^ o f(y, t) = limy-v! f(y, t) = 0 for all t > 0. 

Given these conditions, we proceed to show that the stochastic process 
{Y(t),t > 0} is in fact a diffusion process with state space [0, 1] and coefficients 
m(y,t) = eyg(y) and v(y,t) = a2(y,t). 

To prove this, notice that with dY(t) - Y(t + At) - Y(t), we have: 

iKy.t; At) = E{exp[-9dY(t)]\Y(t) = y} 

= 1 - Oeyg{y)At + \e2a2(y, t)At + o(At, y), 



Diffusion Approximation of Models 259 

where liniAt-+o At = ^ uniformly for 0 < y < 1 and for t > 0. For real 
0 > 0, put: 

^(0,t) = £;{exp[-fly(t)]|y(to) = Vo}= [ e-eyf(y,t)dy. 
Jo 

Then, 

5*'-'> = jf' 
, - » w df(y,t) 

dt 
dy=v™o-^t{mt + &t)-<t>(o,t)} 

= lim ~E{[exp(-0Y(t + At))-exp(~dY(t))}\Y(to) = yQ} 
At->0 A t 

= lim -J- / e-en^(y, *; At) - i}/(y, t)dy 
At—>0 IAI J o 

= Aljmo ~Jo e-ev {-9eyg(y)At + \e2a2(y, t)At + o(At)} f(y, t)dy 

= £ e-ey {-9eyg(y) + |ffV(y,t)} f{v,t)dy. 

Now integration by parts gives: 

/ e-9y\-6yg{y))f{y,t)dy= f yg{y)f{y,t)de'ey 
Jo Jo 

= -Jo
1e-ev{£.\yg(y)f(y,t)]}dy; 

fe-ey\e2a2{y,t)f{y,t)dy = - \ J* B<?{y,t)f(y,t)de-e* 

= \ [ e-eye^[a2(y,t)f(y,t)}^dy 
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It follows that 

or 

r e ^{^ / ( y ' * ) + ^ [ e r a ( y ) / ( 2 / ' o i _ ^ [ < T 2 ( 2 / ' i ) / ( y ' o i } d y = 0 ' 
This holds for all real 8 > 0. Hence, 

| / ( » , t ) = -£-[eyg(y)f{y,t)) + ^[a2(y,t)f(y,t)]. (6.28) 

Obviously, the initial condition is f(y, to) = S(y—yo), the Dirac's (^-function. 
This shows that {Y(t),t > 0} is a diffusion process with state space [0, 1] and 
coefficients eyg(y) and a2(y,t). lia2(y,t) = a2(t)y(l — y) and if g(y) = 1 — y so 
that the above is a two-parameter stochastic logistic growth process, the above 
approximation was first obtained in [4, 5] by using an alternative approach. 

Example 6.6. Diffusion approximation of branching process. Let 
{X(t),t € T = ( 0 , 1 , . . . ,oo)} be a simple branching process with progeny 
distribution {pj,j = 0 , . . . ,oo}. (To avoid trivial cases, we will assume that 
0 < po,pi < 1 because if po = 0, then the mutant gene is certainly to be lost 
in the next generation; if po = 1, then the mutant gene will never be lost from 
the population.) 

Let At = 1/N correspond to one generation and put Y(t) = X(t)/N = 
X(t)e, e — 1/N. If N is very large and if the mean of the progeny distribution 
is 1 + jja + 0(N~2), then we will show in the following that to the order of 
0(N~2), Y(t) is approximated by a diffusion process with parameter space 
T = {t > 0} and state space S = {y > 0}. The coefficients of this diffusion 
process are {m(y,t) = ay,v(y,t) = a2y}, where a2 is the variance of the 
progeny distribution. 

To prove that Y(t) is a diffusion process as above for large N, let / ( s ) 
be the pgf of the progeny distribution. Then / ' ( l ) = 1 + ^a + 0(N~2) and 
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a2 = / " ( l ) + /'(1)[1 - / ' ( l ) ] . Hence, with i = y/^Tj, 

/(e*«) = / ( l ) + izef'{l) + \{izf\f"{l) + / ' ( l )]e2 + 0(e3) 

1 + ize(l + ae) + \{iz)2[a2 + (1 + ae)2]e2 + 0 ( e 3 ) . 

This gives: 

Iog/(e t e e) = log il + ize(l + ae) + \{iz)2[a2 + (1 + ae)2]e2 + 0(e3)\ 

= ize(l + ae) + \{iz)2[a2 + (1 + ae)2]e2 

- i ( i , ) 2 ( l + ae)V + 0(e
3) 

= ize (l + ae+ -izea2 j + 0(e3). 

Let / n (s) be the pfg of X(n) given X(0) = 1. Then it has been shown in 
Example 2.10 that f„(s) = fn-i(f(s)) = / ( / n - i ( * ) ) (see Sec. 2.2). Let (j>(t, z) 
be the characteristic function of Y(t) given X(0) = 1. Then, 

<j>(t + e,z) = fn+1(e
izc) = fn[f(eize)} 

= Me10*^'"*) = <j>{t, z + ze{a + iza2/2) + 0{e2)) 

= <f>(t, z) + ze(a + iza2/2)—<j){t, z) + 0(e2). 

Hence, 

|{0(* + e,z)- 4>(t, z)} = z(a + iza2/2)^4>(t, z) + 0(e2)/e. 

Letting e -» 0, then 

^ ( t , z) = z(a + iza2/2)-j^<fi(t, z). (6.29) 

The above equation shows that to the order of 0(N~2), the c.f. <fi(t,z) 
of Y(t) satisfies the above Eq. (6.29). Let f(y,t) be the pdf of Y(t) given 
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X(Q) = 1. Then by the inversion formulae [1, Chap. 4], 

f(y,t) = ^f°°j-izy<t>{t,z)dz. 

Multiplying both sides by ^e~lzy and integrating over z from —oo to oo, 
we have on the left side: 

1 {°° ( d 1 d 1 f°° 
2TT 

on the right side, we have: 

| /(w,*); 

-I 
2nJ_ 

2 „ 2 e~lzy \iza+-(iz)za <t>{t ,*)} dz 
d{iz) 

d 1 r°° d 
= -<*lTZ- e-xzy-—Mt,z)dz 

dy2irj_00 d(izyK' J 

+ ^-7TH^- e-izy-f-<f>(t,z)dz. 
2 dy2 2n J_00 d(iz) 

Now, by integration by parts, we have, under the restriction 
l i m ^ i o o (/>(t, z) = 0: 

2^ J e~izvi«7r^ z)dz = ( — M z)e'izy 
d{iz) 

Hence the right side becomes 

'dy 

It follows that 

27r 

+ y^J™e-i*y(t>(t,z)dz 

= yf(y,t). 

a2 d2 

-<*7z{vf(v, *)} + y ^ { ! / / ( ! / - *)} • 

9f(y,t) = -a-^{yf(y,t)} + ^^{yf(y,t)}. 
a* 

(6.30) 
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The initial condition is f(y, 0) = 5(y — jj). 
The above approximation was first proved by Feller [6]. 

Example 6.7. Diffusion approximation of the initiated cells in the 
two-stage model of carcinogenesis. In Example 1.13, we have considered 
the two-stage model of carcinogenesis. In this process, N(t) and I(t) denote the 
numbers of normal stem cells and the initiated cells at time t respectively. Since 
the number N(0) = No of normal stem cells at the time of birth (i.e. t = 0) 
is usually very large, in Example 4.9 it has been shown that I(t) will follow 
a birth-death process with immigration with birth rate jb(t) + X(t) and death 
rate jd(t), where b(t) > 0, d(t) > 0 and X(t) = N(t)aN(t) with ajv(*) being the 
mutation rate of N —>• / at time t; see Example 4.9. We will show that to order 
of O(N0~

2), {Y(t) — I(t)/N0, t € [0, oo)} is approximated by a diffusion process 
with state space [0, oo) and with coefficients {m(x, t) = aw(t) +xj(t), v(x, t) = 
•±xu(t)}, where -y(t) = b(t) - d(t) and w(t) = b(t) + d(t). 

To prove this, let M^{t) denote the number of mutations from N —> I 
during [t, t + At); let Bj(t) and Di{t) denote the numbers of birth and death 
of J cells during [t, t + At). Then, as shown in Subsec. 5.4.2 

I(t + At) = I(t) + MN{t) + B/(t) - D/ ( t ) , (6.31) 

where 

{£/(<),!>/(*)}I*(0 ~ ML{X(t);b(t)At,d(t)At} 

and 

MN{t) ~ Poisson{A(i)Ai}, 

independently of {Bj(t),Di(t)}. 

Let <f>(u,t) denote the characteristic function (cf) of Y(t). That is, 

0(u, t) = EeiuY^ , where i = > /= l . 

Then, we have: 

<t>{u, t + Ai) = £ [ e i u y ( t + A t ) ] 

= E[e^iu)M^1}E{eiuYWr)[X(t), u, t]} , (6.32) 

where r)(X(t),u,t) = E{e^iu[Bl{t)-Dl{t)]\X{t)}. 
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Now, by using the distribution results of {Bi(t),Di(t)} and Mjy(t), we 
have: 

t)(X(t),u,t) = {1 + [eft - l]6(t)At + [e~ft - l]d{t)At}x^ 

= 1 + X(i){[eft - l]b(t) + [e _ f t - l]d(t)}At + o(At) 

= 1 + y( t ) {(tufr(t) + ^ - " ( * ) } At + o(At) + 0(No2)At, 

and 

£ { e ( , " ) " t - } = exp{A(i)At(e^ - 1)} = 1 + A(t)At{e™S - 1} + o(At) 

= 1 + ( i u ) ^ A t + o(At) + 0(No2)At. 
No 

On substituting these results into Eq. (6.32) and simplifying, we obtain: 

# u , t + At) = £ e i u y « J 1 + ( t u ) ^ A t + Y(t) 
No 

(iuh{t) + &j£u>(t) At 

+ o(At) + 0(No2)At 

i , t ) | ] <f>(u,t){l + (iu)^At<t + /• \ i -. (iu)2 . , 
(*«)7(«) + ^ " " ( O 

9 
x At-^—<j>{u, t) + o(At) + 0(No2)At. 

On both sides of the above equation, subtracting $(u,t) , dividing by At 
and letting At —> 0, we obtain: 

-<j>(u,t) = (iu)-^-<!>(u,t) + 
(iu)2 

(i«)7(t) + ^ - " ( t ) 

^2 

<9(iu) 
—0(u, t )+O(iV o - 2 ) 

( i " ) m ( ^ ) ' ' ) * " ' i } + ^ ( ^ ) ' ' ) HU't} + °{N°2) 

(6.33) 

where 

m —^t d(iu) 
^ + 7 ( * ) — 
N0

 +1[t)d(iu) 
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v.et\_u{t) a 
d(iu)' J No d(iu) 

Let f(x,y : s,t) denote the pdf of Y(t) at y given Y(s) = x. Then, 
f(x, y; s, s) = S(y — x), the Dirac's delta function and by the Fourier inversion 
formulae [1, Chap. 4], f(x,y;s,t) is given by: 

f(x,y;s,t) = ± j™ e-iuy^(u,t)du. 

On multiplying both sides of Eq. (6.33) by ^ e iuy and integrating over u 
from — oo to oo, on the left side we obtain: 

— f(x,y;s,t). 

On the right side, since m(y, t) is a polynomial in y, the first term is, by 
using results from Lemma 6.1: 

d 1 f°° 
- i - / e-»"(iti)m . . 
2?r J_00 [d(iu) 

<j>(u, t)du 

_l_d_ r° 

2TT 8y J_, r r>* d(iu) 
<j)(u, t)du 

d 
--Q-{m(yi ^ / ( ^ i v'i s> *)} • 

Since v(y, t) is a polynomial in y, the second term on the right side is, by 
using results from Lemma 6.1: 

J_ r 
2*7-0 

-iuy 
(iuf d 

d(iu) 
,t 

~2dy»\2irJ_< 

<j)(u,t)du 

' d 
d(iu)' <t>{ u,t)du > 

i a2 
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Thus, we obtain: 

d d Id2 

—f(x, y; s, t) = —g-{m(y, t)f(x, y; s,t)} + - -^ {v(y, t)f(x, y; s, t)} 

+ O(iV0-2). (6.34) 

Notice that the above equation is the Kolmogorov forward equation of 
a diffusion process with state space [0,oo) and with coefficients {771(0;, t) = 
^ + x-y(t),v(x,t) = x^-}, where 7 ( i ) = b(t) - d(t) and u(t) = b(t) + d(t). 
Hence the result is proved. 

Example 6.8. Diffusion approximation of fraction of infective 
people in the SIR model. In Example 1.6, we have considered a large 
population of homosexual men who are at risk for AIDS. Let S(t),I(t) and 
A{t) denote the numbers of S people, J people and AIDS cases at time t in 
this population. Let Y(t) = I(t)/N(t), where N(t) = S(t) + I(t). In this 
section, we will show that for large N(t), Y(t) is closely approximated by a 
diffusion process if the following assumptions hold: 

(i) We assume that there are no sexual contact or IV drug contact with 
AIDS cases. 

(ii) There is only one sexual activity level so that each person in the 
population has the same number of different sexual partners per unit time. 
Thus, the number of different sexual partners of each 5 person during the time 
interval [t, t + At) can be expressed by c(t)At, where c(t) is a non-negative real 
number. 

(iii) We assume that AIDS spread mainly through sexual contact between 
S people and I people, ignoring other transmission avenues. (This is approx­
imately true in the city of San Francisco since sexual contact between homo­
sexual men accounts for over 90% of AIDS cases in the homosexual population 
in that city; see [8].) 

(vi) We assume that the immigration and recruitment rates (vs(t), vi(t)) 
are equal to the death and emigration rates (ns{t),(ii(t)) for both S people 
and / people, respectively. It follows that as a close approximation, one may 
assume N(t) = N. That is, approximately, N(t) is independent of t. 

(v) The infection duration of an / person is defined as the time elapsed since 
this / person acquired the HIV. We assume that the infection duration of the I 
people have no significant impacts on the HIV transmission and progression. It 
follows that one may let 7(<)Ai be the probability of I -> A during [t, t + At). 
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(vi) There are no people who are immune to the disease and there are no 
reverse transitions from A to 7 and from I to S. 

(vii) We assume that people pick up their sexual partners randomly from 
the population (random mixing or proportional mixing ). Let ps{t)At be the 
probability of S —> 7 during [t,t + At). Since N(t) = N is usually very large, 

ps(t)At = c(t)q(t)j^At = Y(t)a(t)At, 

where q(t) is the per partner probability of HIV transmission from the 7 person 
to the S person given sexual contacts between these two people during [t, t+At) 
and a(t) = c(t)q(t). 

To approximate Y{t), denote by: 

(1) Rs(t)(Ri(t)) = Number of Immigration and Recruitment of S People 
(7 People) During [t,t + At). 

(2) D s(*)(D/(t)) = Number of Death and Emigration of S People (7 
People) During [t, t + At). 

(3) Fs(t){Ri\t)) = Number of S -> 7 (7 -»• A) Transitions During [t, t+At). 

Then, we have the following stochastic equations for S(t) and I(t): 

S(t + At) = S(t) + Rs(t) - Fs(t) - Ds(t), (6.35) 

I{t + At) = I(t) + R!(t) + Fs{t) - F/(i) - D 7 ( t ) . (6.36) 

In the above equations all variables are random variables. Given {S(t), 
I(t)}, the conditional probability distributions of these random variables are 
given by: 

{Fs(t),Ds(t)}\[S(t),I(t)} - ML{S(t),Y(t)a(t)At,„s(t)At}; 

{Fi{t),D!{t)}\I{t) ~ ML{7(t) ,7( t )At, / i7( t )At}; 

Rs(t)\S(t) ~ B{S(t),vs(t)At}; 

and 

72 7 ( i ) l ^ )~ -B{7( i ) , ^ ( i )Ai} -

Further, given {S(t),I(t)}, {[Fs(t),Ds(t)\, [Fj(t),-D/(*)]. Rs{t),Ri(t)} are 
independently distributed of one another. 
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Theorem 6.3. (Diffusion approximat ion of Y(t)). Given the above 
assumptions, to order ofO(N~2), the conditional pdf f(x,y;s,t) ofY(t) given 
Y(s) = x = jij satisfies the following partial differential equations: 

—f(x,y; s.t) = -—{m(y,t)f(x,y;s,t)} + — -— {v(y,t)f(x,y;s,t)} , 

(6.37) 

where m(y, t) = a(t)y(l -y)+ yvi(t) - y[j(t) + (j,i(t)} and v(y, t) = a(t)y(l -
y) + y"i(t) + y[i(t) + nI(t)}. 

That is, to order 0(N~2), Y(t) is approximated by a diffusion process with 
state space S = [0,1] and with coefficients {m(y,t), jjv(y,t)}. 

Proof. To prove the above theorem, notice first that S(t) = N — I(t) = 
N[l-Y(t)], Fs(t)\[S(t),I(t)} ~ B{S(t);Y(t)a(t)At} and F / ^ + Z ^ M * ) ~ 
B{I(t); [7(i) + m(t)]At}. Let 4>(u,t) denote the cf of Y(t). That is, <j>{u,t) = 

£[e i"yW],i = x / F l ) -
Then, 

(j>{u,t + At) = JS[cioy(*+A*)] 

= E (exp | | [ 7 ( i ) + Rj(t) + Fs(t) - F,(t) - £ , (* ) ]} ) 

= Eie'^vsOrmjtYWvtYit))]} (6-38) 

where 

Vs\Y(t)] = E{e*i»F*V\[S(t),r(t)]}, 

(I[Y(t)]=E{e*iuR'W\I(t)}, 

and 

m[Y{t)} = E{e-*iulF'M+Dim]\i(t)]. 

Since Fs(t)\[S{t),I(t)} ~ B{S{t),Y(t)a(t)At], 

Vs[Y(t)} = {l + Y(t)a(t)At[e% - 1]} 5« 

= 1 + S(t)Y{t)a(t)At[e% - 1] + o(At) 
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= 1 + Y(t){l - Y(t)]a(t) {(iu) + ^ } At 

+ o(At) + 0(AT2)At, (6.39) 

where 0(N~2) is of the same order as iV~2 (i.e. \iva.N^oo{N20(N~2)} = 
Constant.). 

Since Ri{t)\I{t) ~ B{I(t); &-/(*) At}, 

(I[Y(t)} = {l + vI(t)At[e%-l}}IW 

= 1 + iVY(t)i//(t)Ai[e# - 1] + o(At) 

= l + Y(t)Vl(t){(iu) + &£}At 

+ o(At) + 0(N-2)At. (6.40) 

Since Fi{t) + I>/(t)|/(*) ~ 5{/(t); [7(f) + w(*)]At}, 

7,7[y(t)] = {1 + (7(*) +W(*)][e-* - l]Ai}/(t) 

= 1 + iVy(t)[7(t) + W(t)]At[e-^ - 1] + o{At) 

= 1 + Y(t)[7(t) + W(*)] {-(i«) + &£ } At 

+ o(At) + 0(iV-2)At. (6.41) 

On substituting the results of Eqs. (6.39)-(6.41) into Eq. (6.38), we obtain: 

Vs[Y(t)}Ci{Y(t)}Vl[Y{t)} = 1 + Y(t)[l - Y{t)}a(t) {(iu) + ^ } At 

+ Y{t)u!{t) {(i«) + ^ j At + y(t)[7(«) + Mt)} 

x i-(iu) + M ! } At + o(At) + 0(N~2)At 

(in)2 

= 1 + (tU)mrr(t), t] At + ^ f v[Y(t), t] At 

+ o(At) + 0(iV-2)At. 
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It follows that we have: 

4>(u, t + At) = EeiuY W j l + (iu)m{Y(t), t] At + M ^ v [ r (*), *] A* 

+ o{At) + 0(N~2)At; 

= 4>{u,t) + (iu)m 

8 

(iu)2 

<f>(u,t)At+^-v 

d(iu) 

d(iu)' 

<f>(u, t)At + o(At) + 0(N~2)At. (6.42) 

From both sides of Eq. (6.42), subtracting <f>(u,t) and dividing by At, we 
obtain: 

At 
{<j>(u, t + At)- (j>(u, t)} = (iu)m 

d(iu)' 

7 7 , * 
d(iu) 

o(At) 

At 
<i>(u,t) + ^=^ + 0(N-2)At. 

In the above equation, by letting Ai —• 0 we obtain: 

d 
dt 

4>(u,t) = (iu)m 

(iu)2 

d 
<9(iu) 

(j>{u,t) 

2N 

d 
d(iu)' 

0(u,i) + O(W- 2 ) . (6.43) 

To prove Eq. (6.37), notice that by the Fourier inversion formulae [1, 
Chap. 4], 

1 f°° 
f(x,y;s,t) = —J e-™«<t>(u,t)du. 

On both sides of Eq. (6.43), multiplying by ^e luy and integrating over u 
from —oo to oo, on the left side we obtain: 

d_ 

dt 
f(x,y;s,t). 
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On the right side, since m(y, t) is a polynomial in y, the first term is, by 
using results from Lemma 6.1: 

J_ r 
27r7_c 

-iuy (iu)m 
d 

d(iu)' 

d_ r 
:&vJ-0 

i_d rco 

d 

<j>{u, t)du 

d 

d(iu)' 
<j>(u, t)du 

= -Q-{m(y, t)f(x, y; s, t)} . 

Since v(y, t) is a polynomial in y, the second term on the right side is, by 
using results from Lemma 6.1: 

27rJ_ 
.-tuw iiUf P —» -; :—i) I f 

J 2NV\_d{iuy\ 

d 
<j)(u, t)du 

~ 2N dy2 \ 2TT J_ 2Ndy-

2JVdy2 

e~luvv ^-T.* d(iu) 

{v(y,t)f{x,y;s,t)}. 

<f>(u, t)du 

(6.44) 

Thus, we obtain: 

d d Id2 

—f{x, y; s, t) = -—{m(y, t)f(x, y; s, t)} + ^g-^{v(y, *)/(*» V> s> *)} 

+ 0{N-2). 

The initial condition is f(x, y; s, s) = S(y — x). 

(6.45) 

• 

6.5. Diffusion Approximat ion of Evolut ionary Processes 

It is universally recognized that in most of the cases, the evolution process is a 
Markov process. This follows from the observation that the frequencies of the 
types at any generation very often depend only on those of the previous gen­
eration and are independent of past history. To develop theories of evolution, 
the following facts have also been observed: 

(a) The population size is usually very large. 
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(b) The evolution process is a slow process, taking place over millions 
of years. 

(c) Evolution does go on so that the variance of the process is always 
positive. 

From these observations, by properly changing the time scale and the scale 
for the state variables, the evolution process can be closely approximated by 
diffusion processes. According to the calculation by Ewens [8], in some cases 
such approximations are extremely good, so good that one is surprised to see 
how the mathematical principle works for nature. 

Applications of the diffusion processes to genetics and evolution theories 
was initiated by Sir R.A. Fisher in 1922 who likened the evolution principle 
to the diffusion of gases in quantum mechanics [9]. To see the connection, 
suppose that there are two types, say, type 1 and type 2, in the natural popu­
lation. Then, the evolution theory is the random process to change the relative 
frequencies of these two types. The basic factors which cause these changes 
are the mutation, selection, immigration and migration, finite population size 
and other random factors. This can be likened to two connected containers of 
gases and notice that if we apply external or internal disturbing factors such 
as heat and pressure on one container, the gases of this container will flow into 
the other container. In evolution theories, these disturbing factors are called 
genetic pressures, which are mutations (internal disturbing factor), selection 
(external disturbing factor), immigration and migration, genetic drift as well 
as other random factors. 

To illustrate how diffusion processes can be used to approximate the evo­
lutionary processes, consider a large diploid population with N individuals. 
Suppose that there are two alleles A and a at the A-locus and let X(t) denote 
the number of A allele at generation t. Then {X(t),t e T} is a Markov 
chain with discrete parameter space T = ( 0 , 1 , . . . , oo) and with state space 
S = { 0 , 1 , . . . , 2JV}. The one-step transition probability is 

Pij(t,t + i) = r j M \p(i,t)y[i-p(i,t)]2N-i, 

where p(i,t) is the probability of A allele for generating the genotypes at 
generation t + 1. (Notice that the p(i,t) are in general functions of X(t) = i 
and t.) This is the so-called Wright model as described in Example 1.11. 
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In the above Wright model, put Y(t) = X(t)/(2N). When N -*• oo, then 
Y(t) changes continuously from 0 to 1. Let one generation correspond to At = 
(2N)~1. Then, for large N, one may expect that Y(t) is a continuous process 
with parameter space T = [0, oo) and with state space 5 = [0,1]. The following 
theorem shows that to the order 0(N~2), Y(t) is closely approximated by a 
diffusion process. 

Theorem 6.4. Let {X(t), t = 0,1,2, . . .} be a Markov chain with state space 
S = { 0 , 1 , 2 , . . . , M = 2N}. Put Pr{X{n) = j\X{m) = k} = pkj{m, n). Denote 
by s — ^,t— jfe,x = -ftf and y = -jfc and let f(x,y; s, t) be the conditional pdf 
ofY(t) = —*j- Suppose that the following conditions hold: 

M 

' ! 1 

m(x,t) + o{M~1), i f r - 1 , 
M 

w EifFtf-*)p^(n'n+1) 
M 

\ -v(x,t) + o(M-i), 

U M - 1 ) , 

MT-V-") P^n>n + L> = \ i-v(x, t) + oiM-1), if r = 2 , 
j=0 

if r > 3 , 

where m(x, t) and v(x, t) are polynomials in x and are continuous functions of 
t — — 

(ii) For large M {i.e. M -> oo), ^f{x,y;s,t),-^[m(y,t)f{x,y;s,t)} and 

-rp-2 [v(y, t)f(x, y; s, i)} exist and are continuous functions ofy in [0,1] for every 
t>0. 

Then to order of 0(M~2), f(x,y;s,t) satisfies the following Kolomogorov 
forward equation (Fokker-Planck equation): 

—f{x,y;s,t) = —rj-[m(y,t)f(x,y;s,t)] 

+ o-^Ky> *)/(*> y;*'*)]- (6-46) 2 9y2 

with f(x, y; s, s) = 8{y — x), the Dirac's S-function. (See Remark 6.2.) 

Remark 6.2. In Theorems 6.4 and 6.5, it is assumed that the population 
size at generation t is N independent of t. These theorems also hold if the size 
is Nt provided that Nt is very large for all t and that N/Nt = 1 + OiN'1), 
where N is the harmonic mean of the Nt's. In these cases, one simply replaces 
N by N in these theorems. In population genetics, N has been referred to as 
the effective population size; see [2]. 
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Proof of Theo rem 6.4. To prove Theorem 6.4, define for real 9 > 0: 

M 

j=o 

where Pkj(m, n) = Pi{X(n) = j\X(m) = k}. 
In the limits as M —> oo, Y(t) = —j^ can be assumed to change contin­

uously so that for large M, we write pkj(m,n) as j>jy(m, n) = f(x,y;s,t)Ay, 
where Ay = M~l,s = jjj?,t = jfc,x = JJ and y = -fa. This implies that as 
M —»• oo so that Ay -> 0, 

lim <l>m,n(Jk,9) = 4>(x,9;s,t) = / e~9yf(x,y;s,t)dy. 

Notice that if /(a;, y; s, t) has continuous first partial derivative with respect 
to t, so does (j)(x, 9; s, t). Now, by the Chapman-Kolmogorov equation, 

M M M 
<t>m,n+i(k,9) = ^2e-e&pkj(m,n + l) = ^ e ' 6 ^ ^2pkr(m,n)prj(n,n + 1) 

j = 0 

M 

j = 0 r=0 

M 

r=0 j'=0 

= ^e-e^pkr{m,n)^{l-~{j-r) + \(^-\ {j-rf 
r=0 j=0 > ^ ' 

+ 0 j ^ s O ' - 7 " ) 3 W n , n + l) = 0m,n(fc,0) 

x p r j ( n , n + l ) + o(M : ) 

0 M 

r=0 
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Put At = Az = M _ 1 and for large M, write <j>m,n{k,6) S <j>(s,x;t,0) and 
Pkr(m,n) = f(x,z;s,t)Az, where z = -fa. Then, as M -> oo, the second and 
third terms on the right side of the above equation converge, respectively, to 
the following integrals: 

M r f1 

l i m ^ ^ e - ^ ^ m ^ — , — Jpkr(m,n) = J e-9zm(z,t)f(x,z;s,t)dz 
r=0 

and 

M 

im 
M 

M .1 

lim^^e-e™v(—,—)pkr(m,n)= / e~6zv{z,t)f{x,z] s,t)dz 

In Eq. (6.47), subtract both sides by <t>m,n{k,6) = <f>(x,6;s,t), dividing by 
At = M - 1 and noting limAt->o " L = 0, we obtain: 

i J m o A t ^ X ' e ' s ' t + A*) - ^9">s>l)> 

= -Q-t<l>(x,6\s,t) 

= -6 I e-9zm(z,t)f(x,z;s,t)dz+-e2 e-9zv(z,t)f(x,z;s,t)dz. 
Jo 2 y0 

Now, 

<j>(x,8;s,t) = — e 9zf(x,z;s,t)dz 
dt 

further, integration by part gives: 

-9 e~6zm(z,t)f(x,z;s,t)dz= / m(z,t)f(x,z;s,t)di 
Jo Jo 

e-9z 

f1 d 
= - e~9z — [m{z, t)f(x,z;s,t)]dz, 3z l 
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and 

±92 j e-6zv(z,t)f(x,z;s,t)dz = ~ 9 ^ v(z,t)f(x,z;s,t)de-ez 

= \ 9 jQ e-e^~[v(z,t)f(x,z;s,t)]^dz 

= ~\ Jo {§-zWzMx,z;s,t)])de-6z 

It follows that 

This holds for all real 6 > 0 so that 

d d Id2 

—f(x,y;s,t) = - — [m(y,t)f(x,y;s,t)} + -~[v(y,t)f(x,y;s,t)}. 

Since f(x, y; s, t) is a probability density function, one must have f(x, y; s, s) = 
6(y — x), the Dirac's J-function. D 

Theorem 6.5. Let {X(t), t = 0 ,1,2, . . .} be a Markov chain with state space 
S = {0 ,1 ,2 , . . . , M} as given in Theorem 6.3. Suppose that condition (i) given 
in Theorem 6.3 holds and that in the limit as M —> oo, f(x, y; s, t) is contin­
uous in s and f(x, y; s, t) has continuous first and second partial derivatives 
with respect to x. Then -^f(x,y;s,t) exists and f(x,y;s,t) also satisfies the 
following Kolomogorov backward equation: 

—g^f{x,y,s,t) = m(x,s)—f(x,y;s,t) 

1 a2 

+ -^{x,s)—f(x,y\s,t), (6.48) 

with f(x,y; s, s) = S(y — x), the Dirac's S-function. (See Remark 6.2). 
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Proof. To show that f(x,y; s,t) satisfies the backward equation (6.32), ob­
serve that 

M 

</>m-i,n(M) = Yle e^Pkj{m-l,n) 
j=0 

M M 

= ^ e~efc ^2pkr(m - 1, m)prj(m, n) 
j=0 j=0 

M ( M 

= ^Pkr(m- l ,m) I ^e-e^prj(m,n) 
r=0 

M 

7 = 0 

= ^2(t>m,n {r, 0)pkr ( m - 1, T7l) . 

r=0 

Now, in the limit as M —>• oo, we may write <j>m-i,n{k,9) and 4>m,n(r, 9) 
as <j>m-i,n{k,0) = <f>(x,6\s - As,t) and </>m,„(r, 0) = <j>(z,9;s,t), where 
As = M_1,s = jj,t = j*j,x = jj and z = j ^ . Under the assumption that 
f(z,y;s,t) has continuous first and second partial derivatives with respect to 
z, <f>(z, 9; s, t) has continuous first and second derivatives with respect to z. 
Thus, one may expand <j>{z, 9; s, t) in Taylor series with respect to z around 
x = M t o S i v e : 

1 R 
<j>{z, 9; s, t) = <j>(x, 9; s, t) + — (r - k)—cj)(x, 9; s, t) 

Thus, in the limit as M —> oo, 

<t>(x,9;s - As,t) = J2 \<t>(xAs,t) + —( r - k)—<j>(x,9;s,t) + - — (r - k)2 

r=0 *• 

d2 

<r^-k? \pkr{m- 1,1 

1 R 

= <f>(x,9;s,t) + -—m(x,s)—<f>(x,9;s,t) 

+ ^ ( x , s)-^<t>(x, 9; s, t) + o{M~l). 
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Letting M —> oo so that As = M * —>• 0, we obtain: 

- lim -r-{<t>(x, 9; s, t) - <p(x, 0;s- As, t} 
As-vO A s 

= m(x, s)—<t>{x, 6; s, t) + -v(x, s)-^<j>(x, 6; s, t). 

Similarly, for n > m, we have: 

M 

Qm,n(k,9) = ^2e~e^pkj{m,n) 

M M 

- ^e~e-fo 'YjPkri'm,m + l)prj(m + 1,n) 
j=0 r=0 

M M 

= y^,Pkr(m,m + 1) ^ e~e^prj(m + 1,n) 

(6.49) 

r=0 

M 

j=0 

m + l , n 
r=0 

In the limit as M ->• oo, write </>m+i,n(r,#) as 0m+i,n(r ,0) = <j>(z,B\s + 
As, t), where z = JJ, and expand <j>(z, 9;s + As, t) in Taylor series with respect 
to z around x = jfi to give: 

^(2, 0; s + As, t) = <f>{x, 9;s + As, t) + ~(r - k)—(f>{x, 9; s + As, t) 

+ lw{r~k)2&^X'6'S + As't) + 0{w{r-k)3}-
This yields 

M , 
4>{s,x;t,9) = ^2pkr(m,m + \)<<j)(x,9; s + As,t) 

r=0 <• 

+ ^ ( r ~ f c ) ^ ( : r ^ ; S + A S ' i ) + ^ ( r ~ f c ) 2 

d2 

x-Q~2<l>(x,9;s + As,t) + 0 M 5 ( ' - « 3 
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1 r\ 
= <j)(x, 9; s + As, t) + —-mix, s)—-<f>(x,9;s + As,t) 

M ox 

+ 2MV(X'^Ihfi'H*'9''S + AS'^ + ° ( M _ 1 ) • 

Since <f>(x, 9; s, t) is continuous in s, so, as M —> oo so that As = M~l -> 0, 

- AlimQ -^{<t>(x, &; s + As, t) - 4>{x, 0; s, t)} 

= m{x, s) — <j>(x, 9;s,t) + -v(x, s) ^^{x, 9;s,t). (6.50) 

Combining Eqs. (6.49) and (6.50), we prove that ^(j>(x,9\s,t) exists and 
(x, 9; s, t) satisfies, 

d d i d 2 

~d~s^X'6] S ' ^ = Tn(X,^'dx^'°]S'^ + 2 V ^ X '^ da-2 ^ X ' e ' S ' ^ ' 

Since 4>{x, 9; s, t) = J* e 6yf(x, y; s, t)dy, 

-£-s<t>(x,9;s,t) = -Jo e~eyi^-f(x,y;s,t)\dy 

—f(x,y;s,t) 

82 

= e ym(x,s) 
Jo 

dy. 

This holds for all real 9 > 0 so that ^f{x,y;s,t) exists and f(x,y;s,t) 
satisfies the equation 

-Q-f(x> y< s>f) = m(x> s>>d~x^x' y> s> *) + 2V(X' s^!h?^x'y's' ^ ' ^6 '51^ 

Since f(x, y; s, t) is a probability density function, obviously f(x, y; s, s) = 
5(y — x), Dirac's 5-function. • 

Example 6.9. The Wright model in population genetics. In Exam­
ple 1.11, we have considered the Wright model in population genetics. In this 
model, there are two alleles A and a and {X(t),t € T} is the number of A 
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allele in a large diploid population of size N, where T = { 0 , 1 , . . . , oo}. This is 
a Markov model with one-step transition probabilities given by: 

2N 
Pv{X1(t + 1) = j\X(t) = »} = ^ V J p? + 1 <f ' , 

where pt+i 'is the frequency of A allele at generation t +1 and qt+i = 1 — pt+i-
It follows that with x = j ^ , 

J _̂ 
2iV 27V 

X(t) = i}= 0(N'2), for r > 3 ; 

where 

and 

E-
2N 2N 

m(x, t) = (2JV)(pt+i - x) + 0{N~l); 

X(t) = i\ = (pt+1-x)2 + E l ( ^ - P t + 1 
2N 

X(t) 

1 

where 

= (Pt+i - xy + —Pt+i(l - pt+1) 

= ±v(x,t) + 0(N-2), 

v(x,t) = (2N)(x-pt+1)
2+pt+1(l-Pt+1) + 0{N-1) 

If m(x, t) is a bounded functions of x and t for a l i i > 0 and for all t > 0, 
then, by Theorems 6.4 and 6.5, to order of 0{N~2), {Y(t) = Z$,t > 0} is 
a diffusion process with state space S = [0,1] and with diffusion coefficients 
{m(x, t),v(x, t)} (cf. Remark 6.3). 

Case 1: Genetic drift. In this case, we assume that there are no mutations, 
no immigration and migration and no selection. Then, given X(t) = i, p t+i = 
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jfi = x so that m(x,t) = 0 and v{x,i) = x(l — x). In this case, the diffusion 
process is a homogeneous process. 

Case 2: With mutation only. In this case we assume that there are no 
immigration, no migration and no selection but there are mutations from A 
to a with rate u(t) and from a to A with rate v(t). Because the mutation 
processes are rare events, one may assume that u(t) = ^f- + o^N-1) and 
u(*) = wr + ° (N - 1 ) ) where f3i(t)(i = 1,2) are bounded functions off for all 
t > 0. Then, with x = ^ : 

= x + {(1 - x)fh{t) - * / M * ) } ^ + 0(N'2). 

It follows that 

pt+i - x = {(1 - x)(32{t) - xPi(t)}^ + 0(N~2). 

This leads to m(x,t) = {(1 - x)/32{t) - x/3i(t)}. 

Since (2N)(pt+i - x)2 = ^m2{x,t) — Ofo*1) and since 

Pt+i(l-Pt+i) x + -^™>(x,t) l-x-—m{x,t) + 0{N~1) 

= x(l-x) + 0(N~1), 

so, we have v(x, t) = x(l — x). 

Case 3: With immigration and migration only. In this case we assume 
that there are no mutations and no selection but there are immigration and 
migration. To model this, we follow Wright [2] to assume that the population 
exchanges the A allele with outside at the rate of m(t) per generation at time 
t. If xi{t) is the frequency of the A allele at time t among the immigrants, 
then the frequency of the A allele at generation t + 1 is 

p t + i = x + m(t)[xi(t) — x] if given X{t) = i so that Y(t) = —— = x . 
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Since the proportion of immigration and migration is usually very small, 
one may assume m(t) = ^u(t), where u(t) is a bounded function of t\ then, 

m(x,t) = u(t)[xi(t) -x] = -w(t)[l - xi(t)]x + u(t)xi(t)(l - x). 

Similarly, as in Case 2, one can easily show that 

v(x, t) = x(l — x). 

From above, it is obvious that Case 3 is exactly the same as Case 2 if one 
writes uj(t)xj{t) ~ &(*) and w(t)[l - z/(<)] ~ /3i(i). 

Case 4: With selection only. In this case, we assume that there are no muta­
tions, no immigration and no migration but there are selection among different 
genotypes. To model this case, we assume that the selective values of the three 
genotypes at the tth generation are given by: 

AA Aa aa 

l + «i(t) l + s2(t) 1 

where Sj(t) = 2^a»(t) + 0(N~2) with a^i ) being a bounded function of time 
t, i = 1,2. 

Then we have: 

1 
Pt+1 ~ l + si(t)x2 + 2s2(t)x(l-x) 

x {[1 + Sl(i)]a;2 + [1 + s2(t)]x(l - x)} + 0(N~2) 

1 + Si{t)Xz + 2S2\t)x(l — X) 

-x + 0{N~2) =x + x(l- x){s2(t)(l - 2x) + si(t)x} + 0{N~2) 

= x + {x(l - x)[ai(t)x + a2( i)( l - 2 ^ ) ] } ^ + 0{N~2) 

= x + m(x, i)(2AT)-1 + 0(N~2), 

where m(x,t) = x(l — x)[cti(t)x + at2(t)(l — 2a;)]. 
Using this result, as in Cases 2 and 3, we obtain: 

v(x,t) = x(l - x) + OiN-1). 
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Case 5: The case with mutations and selection. In this case, we assume 
that there are mutations as given in Case 2 and there are selections between 
the genotypes as given in Case 4. If mutations take place after selection, the 
frequency pt+i of A at the next generation given X(t) = i is then: 

Pt+1 -[1~ U{t)] l + Sl(t)x> + 2s2(t)x(l-x) 

[1 + s2(t)}x(l - x ) + ( l - x ) 2 

U l + si{t)x2 + 2s2{t)x(l-x) 

where x = i/(2N). 

Hence, on substituting Si(t) = ai(t)/(2N) and {u(t) = /3i(t)/(2N),v(t) = 
P2(t)/(2N)}, we obtain: 

P^ - X = l + S l (^ + l 2 (^( l - , ) { [ 1 + Sl {X)]X2 + [1 + S2(<)]X(1 - X)} 

- x - ^{t)x/(2N) + /32(t)(l - x)/(2N) + 0(N~2) 

= {x(l - x)[a2{t){l - 2x) + ai(t):r] - ^{t)x 

+ / 3 2 ( t ) ( l - x ) } ^ + 0(iV-2) 

= m ( ^ * ) 2 ^ + C(iV- 2) , 

where 

m(x,t) = i ( l - x)[a2(t)(l - 2x) + a i ( r> ] - Pi(t)x + /32(t)(l - x). 

Hence, as in Cases 2-4, we obtain 

v(x,t) = x(l - x) + O^N-1). 

(By assuming mutations occurring first and then selection, one may obtain 
exactly the same m(x,t) and v(x, t) as above; see Exercise 6.4.) 

Case 6: The general case. In the general case, we assume that there are 
mutations as given in Case 2, immigration and migration as in Case 3 and 
there are selections between the genotypes as given in Case 4. Then by the 
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same approach, we have: 

pt+i =x + {x{l - x)[a2(t)(l - 2s) + cutyx] - fa(t)x + ft(t)(l - x) 

- u/(t)[l - Xl(t)]x + w(t)Xl(t)(l -x)}^j + 0(N~2) 

= x + m(x,t)^+0(N~2), 

where m(x,t) = x(l -x)[a2{t)(l -2x) + ai(t)x] - ji(t)x + j2(t)(l -x), j^t) = 

f3i(t) +u(t)[l - xi(t)], and 7 2( t) = /%(*) + w(t)z/(*)> a n d 

v(x,t) = x(l - x) + 0(N~l). 

Remark 6.3. In the above cases, the variance is v(x) = x(l — x). This 
variance has also been used in [10,11]. Notice that the variance of the frequency 
of the gene under binomial distribution is -^jx^l — x) = x{l — x)At, where 
At = ^JJ. Hence the above is the correct variance. In Crow and Kimura [12], 
instead of using v(x) = x(l — x), they have used v(x) = ^fix(l — x). 

6.6. Diffusion Approximation of Finite Birth-Death 
Processes 

By using the Kolmogorov forward equations and by using similar procedures, 
it can readily be shown that finite birth-death processes are closely approx­
imated by diffusion processes. To this end, let {X(t),t 6 T = [0,oo)} be 
a finite birth-death process with birth rate bj(t), death rate dj(t) and with 
state space S = {0 ,1 ,2 , . . . , M}. Let Y(t) = jjX(t) and suppose that 6fc(t) = 
M E ; i o f t ( ' ) ( l ) J ^ d dk(t) = M £ £ 0 * j ( t ) ( & ) ' \ where # ( t ) > 0,6j(t) > 0 
are independent of k. Then, the following theorem shows that to the order of 
0(M~2), {Y(t),t > 0} follows a diffusion process with state space S == [0,1] 
and with coefficients {m(y,t),v(y, £)}, where 

H i 712 

i=o j=o 

and 

j=0 3=0 
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Theorem 6.6. Let f(p,x;s,t) be the conditional pdf ofY(t) given Y(s) = 
p. Then, to the order of 0(M~2), f(p,y;s,t) satisfies the following partial 
differential equation: 

g].f(p, V, s, t) = - — {m(y, t)f(p, y; s, t)} + — — {v(y, t)f(p, y; s, t)} , 

(6.52) 

where 0 < y < 1, with f(p,y; s, s) = S(y — p), the Dirac's S-function. 

Proof. By using the Kolmogorov forward equation, the proof is very similar 
to that of Theorem 6.4. Hence we leave it as an exercise; see Exercise 6.5. D 

Theorem 6.7. Let Y(t) = -^X{t) and let bk{t) and dk(t) be as given in 
Theorem 6.6. //, to the order of 0(M~2), the conditional probability density 
f(p, y; s, t) ofY(t) given jjX(s) = p is an analytic function ofp for 0 < p < 1, 
then, to the order of 0(M~2), f(p,y; s,t) also satisfies 

d d i d 2 

~-Q2f(p,y,s,t)^m(p,s)—f(p,y;s,t) + —v(j),s)-^f(p,y,s,t), 

(6.53) 

where f(p, y; s, s) = 6(y - p). 

Proof. By using the Kolmogorov backward equation, the proof of Theo­
rem 6.7 is very similar to that of Theorem 6.5. Hence we leave it as an exercise; 
see Exercise 6.6. D 

Example 6.10. Applications to the analysis of Moran's model of 
genetics. In the Moran's model of genetics as described in Example 4.2 in 
Sec. 4.2, we have 

bj = (M- j)\2 | a 2 + -^rj(l - a i - a2) J 

= M { a2A2 + A2 ( 1 - ai - 2 a 2 ) ^ - A2(l - <*i - a2 J (j^\ 



286 Diffusion Models in Genetics, Cancer and AIDS 

and 

dj = j'Ai J (1 - a2) - jjj(l - a i - a2) j 

= MJA l (l-a2)A_Al(1_ai_a2)^
2 |. 

By Theorems 6.6 and 6.7, Y(t) = jjX(t) can be approximated by a 
diffusion process (valid to the order of 0(M~2)) with 

m(x) = a2\2 + A2(l - ct± — 2a2)x — A2(l — c*i — a2)x
2 

- Ai(l - a2)x + Ai(l - a i - a2)x
2 

= A2(l - x)[x(l - ai) + (1 - x)a2] - Aiz[(l - a 2 ) ( l - x) + axx] 

and 

Jjv(x) = ^ { A 2 ( l - x)[x(l - a i ) + (1 - ar)a2] 

+ Aiz[(l - a 2 ) ( l - i ) + aiz]} . 

6.7. Complements and Exercises 

Exercise 6.1. Consider a two-stage model of carcinogenesis under constant 
chemotherapy and immuno-stimulation [13]. Then one may assume that £(£) = 
d(t) — b(t) > 0, where b(t) and d(t) are the birth rate and death rate of initiated 
cells (/ cells). Let N(0) — No and let a^(t) denote the mutation rate from 
N -* I. If No is very large, then it is shown in Example 6.7 that to the order 
of O(N0~

2), {Y(t) = I(t)/No,t > 0} is a diffusion process with state space 
S = [0,00) and with diffusion coefficient 

|m(y,t) = aN(t) - y£(t) = -±-\(t) - y£(t) ,v(y,*) = j ^ ( * ) } , 

where u(t) — d{i) + b(t). Assume that {b(t) = b,d(t) = d, o/v(i) = a^} are 
independent of time t. Denote by {71 = 2A/w,72 = 2JVo£/w}. Show that 
the solution of the Kolmogorov backward equation gives the conditional pdf 
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f(x, y; t) of Y(t) given Y(Q) = x as: 

f(x,y;t)=g(y) 

where 

J>-fc^iW)471W) 
fc=0 

ff(2/) = r £ ) y 7 1 ~ l e _ 7 2 y ' ° - y ^ ° ° ' 

and where I%\y) = £££=<> ( - 1 ) ' (J) 2 / J r S M i s t h e Laguerre polynomial 
with degree A; and with parameter 7 [14, Chap. 1]. 

Laguerre polynomials Lj^'(y) are orthogonal polynomial in y orthogonal 
with respect to the weight function 

% ) = f ^ ) y 7 ~ l e ~ T ! / ' 0 < y < o o . 

(For basic properties of Laguerre polynomials, see [14, Chap. 1]. 

Exercise 6.2. Let {Y(t),t > 0} be a continuous Markov process with state 
space S = [a, b]. Assume that AY(t) = Y(t+At) - Y(t) = Z(t)g[Y(t), t]+e(t), 
where g(x,t) is a deterministic continuous function of x and t and where 
{Z(t),e(t)} are independently distributed random variables satisfying the 
conditions: 

E[Z(t)} = a(t)At + o(At), E[e(t)} = 0; 

V a r [ Z ( i ) ] = 4 ( t ) A i + o(Ai), 

Var[e(t)] = a2At + o(At), 

E{[Z(t)]k} = o(At) and 

E{[e(t)]k} = o(At), for k = 3 ,4 , . . . . 

Show that {Y(t),t > 0} is a diffusion process with state space S = [a,b] 
and with diffusion coefficients 

{m(x, t) = a(t)g(x, t), v(x, t) = a2
z(t)g

2(x, t) + a2} . 

Exercise 6.3. Consider the Wright model for one locus with two alleles 
A : a as defined in Example 6.9. Assume that there are no selection but there 
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are mutations and immigration and migration as given by Cases 2 and 3 in 
Example 6.9. Then, as shown in Example 6.9, to the order of 0(N~2), the 
frequency Y(t) of the A allele is a diffusion process with state space [0,1] and 
with diffusion coefficients 

{m(y) = 72(1 -y)- 712/. v{y) = 2/(1 - V)} • 

Let Hk{x,t) = E{[Y(t))k\Y(0) = x} be the fcth moment around 0 of Y(t) 
given Y(0) = x. Then, as shown in Sec. 6.3, fik(x,t) satisfy the Kolmogorov 
backward equation with initial condition /ifc(a;,0) = 6(1 — x). As shown by 
Example 6.4, this equation can be solved in terms of Jacobi polynomials. 
Derive these moments. 

Exercise 6.4. Derive the diffusion coefficients in Case 5 of the Wright model 
in Example 6.9. 

Exercise 6.5. Prove Theorem 6.6. 

Exercise 6.6. Prove Theorem 6.7. 

Exercise 6.7. Let {X(t),t > 0} be a diffusion process with state space 
S = [0,1] and with diffusion coefficients {m(x) = 0,v(x) = Vsx

2(l — x)2}. 
This is the model for random fluctuation of selection intensity introduced by 
Kimura [15] in population genetics. The Kolmogorov forward equation of this 
process is given by 

^/(p.*;*) = lv'Q^i^0- -x)2f(p,x-t)}, 0 < x < 1. 

(a) Let £ = £(x) be a function of x and make the transformation 
u(p,£;t) = extg{x)f(p,x;t) = eXtg(*)(^f(p,x;t). Show that if {£ = £(x) -
l oga ; / ( l -x ) ,A = Vs/8} and if g(x) = ±[x(l - x)]3'2 = i e i « , then u(p,x;t) 
satisfies the following heat equation: 

Qju(p,t;t) = -VSQgu(p,t;t), - o o < £ < o o , (6.54) 

with initial condition u(p, £; 0) = g(x)5(x — p) = g(*\£)5(x — p). 
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If one does not know {g(x),£(x)}, then the following hint leads to the 
solution: 

(Hint: With the help of Eq. (6.54), workout £u(p ,£ ; t ) and ^V3-§^u{p,C,t) 
as a linear combinations of f(p,x;t),f'(p,x;t) and f"(p,x;t) and equal 
coefficients of f(p,x;t),f'(p,x;t) and f"(p,x;t) from Jju(p, £;£) to those of 
%Va-§pu(p,f;t) respectively.) 

(b) Using results of (a), show that the solution f(p,x;t) is 

f(p,x;t) = ^ / j ' ^ ' ^ f i O K 

1 exp(-y3V8) 

v
/ 2 ^ t {x(l - x)} 2 / 3 

X i l e X P { - ^ ( 1 O g ^ ) 2 } K l - Z ) ] 1 / 2 / ( ^ ; 0 ) ^ 
1 [P ( l -P )1 1 / 2 

V /2^rT^{x(l-x)} 2 /3 

x e x p { _ W 8 _ J _ ( l o g ^ i ) | 

6.8. Appendix 

In the appendices, we first provide a general proof of Theorem 6.1. Then, to 
make the book self-contained, we give in Subsec. 6.8.2 some general results 
of Jacobi polynomials. In Subsec. 6.8.3, we provide some general results and 
discussions of eigenvalues and eigenfunctions of differential equations as well 
as the Green's formulae for differential equations. 

6.8.1. A general proof of Theorem 6.1 

Let Q(x) be an arbitrary continuous function with continuous first and second 
derivatives Q'(x) and Q"{x) in [a,b\ and with Q(x) = 0 for x ^ [a,b]. By 
continuity of Q(x) in [a, b], one must have Q'(a) = Q'{b) = Q"(a) = Q"{b) = 
Q(a) = Q(b) = 0. Note that the class of functions Q(x) satisfying the above 
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conditions is not empty; for example, f o r — o o < o < 6 < o o , one may chose 
Q(x) = 0 for x ^ [a,b] and Q{x) = (x - a)3(6 - x)3exp(-dx2), with 0 > 0 
arbitrary. 

Consider now the integral 

/

oo 
Q(y) 

-oo 

df(u,y;s,t)' 

dt 
dy fbQ(y) 

J a 

df(u,y;s,t) 

dt 
dy. 

Since Q{y) and [ Qt'
s' ] a r e continuous functions of y, I exists and 

= fbQ(y) 
J a 

df(u,y;s,t) 

dt 

d fb 

dy = o~; Q(y)f(u, y\ s> t)dy 

But, by the Chapman-Kolmogorov equation, 

/

oo 
/ (u , z; s, t)f(z, y\t,t + At)dz . 

•oo 

Thus, 

I — lim A 
At-X) A t 

hfa
 Q{-v){j_ /(«.«;*.*)/(«.y;*,* + At)d2-/(u>y;s,t)}di/. 

Interchanging the order of integration and noting Q{x) = 0 for x ^ [a,b], 
we obtain: 

I = Aljmo ^ y f(s, u; t, z) | j f Q(y)/(z, </;*,* + Ai)dy - Q(z) 1 dz. 

Choose 6 > 0 in such a way that y S [a, b] and |y — z| < 6 imply z €E 
[a,b]. Also, Q(x) is continuous in [a,b] so that there exists a constant M > 0 
satisfying |<3(z)| < Af for all x. For such a S > 0, we have then: 

/ Q(y)/(*,y;*.* + *t)dy < M [ f{z,y,t,t + At)dy 
J\y-z\>5 J\y-z\>S 

= MPr{\X(t + At) - X(t)\ > S\X(t) = z} 

= o(At), 

where o(At) satisfies limAt->o &p- = 0 uniformly for t > 0 and for z € [a, b]. 
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It follows that for 5 > 0 as chosen above, 

1 = iimn X7 / /("»z's' f) \ f Q(y)f(z> w; *> * + A*)rfy - Q(z) [dz • 
At-»0 At J_0O [ J|3,-z|<5 J 

Now, Q"(y) is continuous so that for y £ [a, 6] and z £ [a, b], 

Q{y) = Q(z) + (y- z)Q'(z) + ~(y - z)2Q"{z) + 0[(y - zf]. 

Hence, for z £ [a, b] and y £ [a, b], 

lim i - ( f Q(y)f(t, z; t + At, y)dy - Q(z) \ 
At-H) At [J\y-Z\<5 J 

= l^o AI{ ~ w*™^+A^ - x^\ > s\x®=A 

+ Q'(z) f (y-z)f(z,y;t,t + At)dy 
J\y-z\<5 

+ ~Q"(z) [ (y-z)2f(z,y;t,t + At)dy 
1 J\y-z\<s 

+ [ 0[(y-z)3}f(z,y;t,t + At)dy\ 
J\y-z\<5 ) 

Q'(z)m{z,t) + ±Q"(z)v{z,t). 

It follows that, 

r 
J-c 

f(s,u;t,z) Q'(z)m(z,t) + ^Q"(z)v(z,t) dz. 

Integration by parts now gives the results: 

rb 

/

OO /*0 

f(u, z; s, t)m(z, t)Q'(z)dz - / f(u, z; s, t)m(z, t)dQ(z) 
-oo J a 

= - j Q{z)[~[m{z,t)f{u,z-,s,t)\\dz 
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f(u,z;s,t)-Q"(z)v(z,t)dz = I -v(z,t)f(u,z;s,t)dQ'(z) 

= ~\ faQ\z){^z\b{z,t)f{u,z-s,t)]}dz 

= ~\ ['{^MM)/(u,*;M)]}dQ(s) 

Thus, 

J : 
df(u,z;s,t) 

or 

./a 

/

6 /• a 1 fl2 1 

Q(z) s _ ^ l T O ( 2 ' ^ (u> 2->s> *)] + 2 a ? ^ 2 ' i ^ ( " ' *; s' *)1 f d z ; 

2dz2 [*(*>*)/( u,z;s,t)] I dz = 0. 

Since the integrand is a continuous function of z and since Q(z) is arbitrary 
with continuous first and second derivatives, by the lemma given below, 

—f(u,x;s,t) = - — [m(x,t)f(u,x;s,t)} + --^[v(x,t)f(u,x;s,t)]. 

The initial condition is obviously f(u, x; s, s) = 6(x — u). 

Lemma 6.2. Let f(x) be a continuous function defined in [a, b\. Assume that 
f <j)(x)f(x)dx = 0 whenever <j){x) satisfies the following two conditions: 

(i) <j>{x) = 0 for x 7̂  [a, 6], and 

(ii) <j>(x) has continuous first and continuous second derivatives in [a,b]. 

Then, f(x) = 0 in [a,b]. 
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Proof of Lemma 6.2. Suppose / (x) / 0 in [a,b]. Then, there exists Xo £ 
[a,b] such that /(xo) ^ 0. Assume /(xo) > 0 so that there exists a S > 0 
such that /(xo) > 5 > 0. (One may similarly prove the result if /(xo) < 0). 
Since / (x) is continuous in [a, 6], there exists a sub-interval [a, (3] in [a, 6] with 
/3 — a > 0 such that XQ 6 [a,/3] and / (x) > 0 for all x G [a,/3]. Choose e > 0 
such that /? > e and /? — a — 2e > 0 so that a < a < a + e < 0 — e < (3 < b. 
Define <j)(x) = 0 if x ^ [a,/?] and put 4>(x) = (x - a)3(/? - x)3 if a < x < /3. 
Then, obviously, </>(x) — 0 for x ^ [a, 6] and <̂ >(x) has continuous first derivative 
and continuous second derivative in [a, b\. It follows that £J{x)<t>{x)dx = 0. 
But, <j>(x) > 0 for a < x < j3 and 4>(x) >0fora + e<x</3 — e. Hence, 

rb /./3 r/3-e 

0 = / f(x)<j>{x)dx = j f(x)<j)(x)dx >S 4>(x)dx > 0. 
Ja Ja Ja+e 

This contradicts / f(x)<j>(x)dx = 0. Thus, one must have / (x) = 0 for 
x € [a,b]. D 

6.8.2. Jacobi polynomials and some properties 

Jacobi polynomials Jn(x;a, b)(a > 0,6 > 0) are orthogonal polynomials in x 
(n denoting degree) orthogonal with respect to the Beta distribution / (x) = 
x a _ 1 ( l — x)b~1/B(a, b), 0 < x < 1. These polynomials can be derived by using 
the Gram-Schmidt process described as follows: 

(1) Denote by E[g(x)} = J* g{x)f{x)dx. Then put 

P0(x) = l, P I ( X ) = X - £ ( X ) . 

(2) For k = 2 , . . . , oo, put: 

fc-i 

Pfc(x) =xk -^2akjPj(x) 
j=o 

where 

for j = 0 , . . . ,k — 1. 

akj = Eix'Pjix^/EiPfix)} 
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From the above construction, obviously, one has: 

(1) For all k ^ j , 

EiP^Pkix)} = f Pj(x)Pk(x)f(x)dx = 0. 
Jo 

It follows that Jk(x; a, b) is a constant multiple of Pk(x). 
(2) For any positive integer k, xk can be expressed as a linear combination of 

Pj(x),j = 0 , 1 , . . . , k with constant coefficients. It follows that any polynomial 
in x with degree k can be expressed as a linear combination of Ji(x; a, b), i = 
0 , 1 , . . . , k with constant coefficients. 

6.8.2.1. Differential equation for Jacobi polynomials 

The following theorem is useful for explicitly writing down Jk(x;a, b) and for 
proving some useful results involving Jacobi polynomials. 

Theorem 6.8. Jn{x) = Jn(x;a,b) satisfies the following second order 
differential equation: 

x(l - x)J^{x) + [a-{a + b)x]J'n(x) + n(n + a + b - l)Jn(x) = 0. (6.55) 

Proof. To prove the above results, note first that the above equation is 
equivalent to the following equations: 

^ { z a ( l - x)b J'n(x)} = -n{n + a + b- l jar—^l - a;)6-1 Jn(x). 

Next we show that for Jk(x) = Jk{x; a, b) with degree k < n, we have: 

Jk{x)^-{xa{l - x)bJ'n{x)}dx = 0. I /o dx 

This follows by applying the basic results of integration by parts to give: 

^ Jk(x)-^{xa(l-x)bJ^x)}dx = - j J'k(x)La(l-x)b±Jn(x)\dx 

J Jn{x) — {xa{l-x)bJ'k{x)}dx 

= f {xa-\l-x)b-1Jn(x)7rk{x)}dx^0 
Jo 

as nk(x) is a polynomial in x with degree k <n. 
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Now, obviously, 

-{xa(l - x)»J'n{x)} = xa~\\ - xf-'rjnix), — lTa(\ - ^b T ' • - " - ~a~ln ~^b~l-
dx 

where r)n(x) is a polynomial in x with degree n. The above result then implies 
that for all k = 0 , 1 , . . . , n - 1, 

= / {xa~1(l-x)b-1Jk(x)r]n(x)}dx = 0 
Jo 

so that r)„ (x) = CJ„ (x; a, b) for some constant C. It follows that 

4-{xa{l - x)bJ'n{x; a, b)} = Cxa-\l - xf^J^x; a, b). 
ax 

Comparing coefficient of x
n+a+b~2 on both sides gives C = —n(n + a + b — 1). 

This proves the theorem. O 

Notice that from the above theorem, we have the following integral relations 
between Jn(x;a,b) and J'n{x;a,b): 

-^{xa(l - x)bJ'n{x)\ = -n{n + a + b- l t e 0 " 1 ^ - xf'1 JJx). 
ax 

6.8.2.2. An explicit form of Jacobi polynomials 

To obtain an explicit form of Jn(x;a,b), we need to solve the differential 
equation given by (6.55). Note that with (c = a,a = —n,/3 = n + a + 6— 1), 
the above equation is a special case of the Hypergeometric equation given by: 

x(l - x)f"(x) + [c - (a + j3 + l)x)f{t) - a/3 f(x) = 0. (6.56) 

To solve Eq. (6.56), consider a series solution 

f(x) = ^aix
i. (6.57) 

i=0 

On substituting f(x) in Eq. (6.57) into Eq. (6.56), we obtain: 

oo oo oo 

^ i ( z - l ) a i ( x i _ 1 - a : i ) + ^ i a i [ c a : i - 1 - ( Q ! + ^ + l ) a ; i ] - a / 3 X ) a i : i ; i = 0 ' (6-58) 

for all 1 > x > 0. 
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Equation (6.58) gives 

(a + k)(fi + k) . 
Gk+1= (k + l)(c + k)ak fi»* = 0 . 1 . - . ~ - (6"59) 

For any real number a, define a^) = 1 if fe = 0 and a^) = (a + 1) • • • (a + 
k — 1) if k = 1,2,. . . , oo. If c 7̂  0, then, from Eq. (6.57), we have, with a0 = 1, 

ak = % ^ for/c = 0 , l , . . . , o o . 

It follows that the solution of Eq. (6.56) is given by 

If j3 = —k or a = —k for some positive integer k, then o^ = 0 for all 
j = k + 1 , . . . , oo. In this case the solution is a polynomial in x with degree k 
given by: 

f(X)=H(a,/3;c;x) = J : m ^ x k . 
k=0 

(fc0c(fe) 

It follows that Jn(x; a, b) = CH(-n, n + a + b-1; a; x) for some constant C. 
Now, 

(-n)(k)=(-n)(-n + l)...(-n + k-l) = (-l)k{k\)(n
i) , 

n + a — 1 \ 1 , . . . . 
= —An + a - i)(n + a - 2 ) - - - ( n + a - l - n + l) 

n / n! 

If we chose C as C = ( n + ° - 1 ) , then 

JB(,;a,^(fl + fl-1)f(-B)W(,;tfl + t ' 1 ) ( V 

= ^ E ^ 1 ) * ( I ) (n + a + b - % ) ( a + k)(n-k)Xk . (6.60) 
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(Note: The above choice of C was motivated by the simple form of the 
Rodrigues's formulae given in Theorem 6.9.) 

6.8.2.3. The Rodrigue's formulae and E[J^(x; a, b)] 

For deriving E[J%(x;a,b)], we first give the following Rodrigue's formulae for 
Jn(x;a,b) =Jn(x). 

Theorem 6.9. Jn(x;a,b) satisfies the following equation: 

n\dxn xa-^l-x)b-lMx]a,b) = - — {xn+a-1(l-x)n+b-1}. (6.61) 

The above formulae has been referred to in the literature as the Rodrigue's 
formulae for Jacobi polynomials. 

To prove the above equation, note that by Leibniz' rule, 

-^{xn+a-1(l-x)n+b-1} 
dxn 

-t(;){^--~}{!*-->~-*}-
Notice that 

dn-k 

dxn~k x-"" - = (n + a - 1) • • • (n + a - 1 - (n - k) + l)xa~1+k n+a—1 

«-*» " ^ V -
and 

dk 

dxk (1 - aO^6"1 = (-l) f c(n + b-l)---(n + b - l - k + 1)(1 - x)b~1+n-k 

= (-l)fc(&!) ( n + £ _ 1 ) (l-x)6-1 +"- f c . 
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Hence we have: 

£L{xn+a-\l - x ^ - 1 } = ( n l K - ^ l - x)»-1 ] T ( - l ) f c 

fc=o 

*("::;1)("+*~1h-*r~* 
= xa-\l-x)b-1in{x) 

where £n(x) is a polynomial in x of degree n. 
Since for any polynomial pk(x) in x of degree k (k < n), -£p;Pk(x) = 0, we 

have, by applying integration by parts n times: 

I! pk{x)&{xn+a~i{i - x)n+b~i}dx 

= ( -1 ) " £ xn+a~\l - x)^-1 ^Pk(x)dx = 0. 

It follows that for k < n, 

/ 
Jo 

s ° _ 1 ( l - x)b-^n(x) Jk(x; a, b)dx = 0. 

Hence, £n(x) = CJn(x;a,b) for some constant C and 

^L { a ; n + a - l ( 1 _ x)n+b-l} = Cxa-X{l _ x)f>-l J ^ . ^ . 

Comparing coefficient of x
n+a+b~2 on both sides of the above equation and 

noting the explicit form of Jn(x; a, b) given in (6.60), we obtain C = n\. 
Prom the above proof, we also derive another explicit form for Jn(x; a, b) as 

Mx-,a,b)=±^-l)^n+
n

a_-^ ( " ^ - ^ ( l - . ) - * . (6.62) 

By using the Rodrigue's formulae, we have that 

dx 

dn 

-Jn{x; a, b) = ( - l ) n ( n + 3) • • • (2n + a + b - 2) 

( - ! ) > ! ) 2 n + a
n

+ 6 - 2 
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Hence, by using integration by parts repeatedly: 

E{JZ(x;a,b)} = - J — fxa-\l-x)b-'Jl(x-a,b)dx 
&\a, o) J0 

=«i)r^°-6>{£ | i"+*" , ( i- i r '" i ,}< f c 

! I I xn+a-l(1_xjn+b-lc 

(6.63) 

1 (2n + a + b-2 , , „_,.„_,„ ,„.+„_, 
ax B(a,b) \ n 

B(n + a,n + b) (2n + a + b-2 

B(a,b) \ n I 

If a = b = 2, then 

5 ( n + 2,n + 2) / 2 n + 2 \ _ 6 ( n + l ) 
£{^(a ; ;2 ,2 )} = 

5(2,2) I n / (n + 2)(2n + 3) 

6.8.3. Some eigenvalue and eigenfunction problems in 
differential equations 

Let S denote the differential operator defined by 

Consider the equation S[f(x)] = —Xf(x). Suppose that this equation is 
satisfied by some non-zero constants Xk (k = 0,1, . . .) and some functions 
fk,j(x) (k = 0 , 1 , . . . , j = 1 , . . . , rife) defined over some domain [a, b\. That is, 

S [ / i j ( i ) ] = -Xkfk,j(x). 

These non-zero constants Xk are referred to as the eigenvalues of the 
operator S and the functions fk,j(x),j = l,...,rifc the eigenfunctions cor­
responding to the eigenvalue Xk- In this section, we will give some basic 
results concerning eigenvalues and eigenfunctions. Specifically, we will prove 
the following results: 
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(1) If the operator S is self-adjoint (to be defined below) for functions 
defined over [a, b], then all eigenvalues are real numbers. 

(2) Let fij1 (x) and fk,j2 (x) be eigenfunctions corresponding the eigenvalues 
Aj and Afc respectively. If S is self-adjoint and if Aj ^ A/t, then 

b 

v(x)fi,h (x)fk,h (x)dx = ° > 

where a(x) = {c/a(x)} exp{/J j3(y)/a(y)dy} with c and d being some properly 
chosen constants. 

For defining self-adjoint operator and for proving the above properties, we 
first prove the following result. This result has been referred to as Green's 
formulae in the literature. 

Theorem 6.10. (The Green's formulae). Let a(x) be defined above and 
let K(X) = cexp{/^ /3(y)/a(y)dy}. Then, for any two twice differentiate func­
tions f(x) and g(x) defined over [a,b], we have: 

g(x)S[f(x)} - f(x)S[g(x)} = -L^±{K(x)\g(x)f>(x) - f(x)g'(x)}} . 

Writing S[f(x)} as S[f(x)} = ^{^{x)f'{x)} +q(x)f(x), the above result 
is straightforward. It is therefore left as an exercise. 

Definition 6.1. The operator S is referred to as a self-adjoint operator if 
for any two twice differentiable functions defined over [a, b], 

{K(xMx)f'(x) - f(x)g\x)]}b
a = {K(b)[g(b)f'(b) - f(b)g'(b)}} 

~{K(a)[g(a)f'(a)-f(a)g>(a)}}=0. 

Obviously, the above condition holds if f(a) = f(b) = 0 and g(a) = g(b) = 
0; or f'(a) = cif(a), f'(b) = c2f(b), g'(a) = cig(a) and g'(b) = c2ff(&) for some 
constants c\ and c^. 

Theorem 6.11. / / the operator S is self-adjoint, then all eigenvalues of S 
are real. 

Proof. Let Â  be the conjugate of the eigenvalue A* and f^(x) is the 
conjugate of f(x). Then, 

S[/«(aO] = - A « / W ( z ) . 

/ 
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Hence, 

/ a{x){f(x)S[f^(x)]-f^(x)S[f(x)]}dx 
Ja 

= (X(C)-Xk) fba(x)\f(x)\2dx. 

Ja 

On the other hand, since S is self-adjoint, 

fb 

/ *(x){f(x)SfU{x)-fW{x)Sf(x)}dx 
Ja 

= (Ai* )-AW) [bo-(x)\f(x)fdx = 0. 
Ja 

Since Ja o~(x)\f(x)\2dx > 0, so, Â  = Xk for all k — 1, That is, all eigen­
values are real numbers and all eigenfunctions are real-valued functions. • 

Theorem 6.12. Let fk,j(x) be eigenfunctions corresponding to the eigen­
value Xk- If the operator S is self-adjoint, then 

/ (T{x)fk,j(x)fi,i{x)dx = 0 for all k^i. 
Ja 

Proof. Since S is self-adjoint, we have: 

f o-(x){fitl(x)S[fktj(x)} ~ fk,j(x)S[fiJ(x)}}dx = 0. 
J a 

Thus, 

I a{x){fitl(x)S[fkJ(x)] - fktj{x)S[fitj(x)]}dx 
J a 

= (Xi - Xk) / a(x)fk,j(x)fiti(x)dx = 0. 
Ja 

Since Xi ^ Xk, so 

/ o{x)fk,j (?)fi,i (x)dx = 0. 
Ja a 
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Chapter 7 

Asymptotic Distributions, Stationary 
Distributions and Absorption 
Probabilities in Diffusion Models 

In Chap. 6, we have shown that many processes in genetics and biomedical 
problems can be closely approximated by diffusion processes. Although it is 
possible to solve the Kolmogorov forward or backward equations to derive the 
conditional pdf f{x,y;t) in some cases, in most of the cases, the solution is 
very difficult, if not impossible. If the eigenvalues and eigenfunctions of the 
equation exist, however, in many cases one may derive asymptotic distributions 
by approximating these eigenvalues and eigenfunctions. In this chapter, we 
will thus illustrate how to approximate the eigenvalues and the eigenfunctions 
whenever exist. 

In diffusion processes, in most of the cases the processes will eventually 
converge to stationary distributions. Hence it is of considerable interest to 
derive such stationary distributions whenever exists. In this chapter we will 
illustrate how to derive these stationary distributions and illustrate its appli­
cations to some genetic and biomedical models. 

In diffusion processes in which there are absorbing states, it is also of 
considerable interests to compute the absorption probabilities and the moments 
of first absorption times. In this chapter we will also develop procedures to 
compute these absorption probabilities and to compute the moments of first 
absorption times, in particular the mean and the variance of first absorption 
times. 

303 
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7.1. Some Approximation Procedures and Asymptotic 
Distributions in Diffusion Models 

In diffusion processes, theoretically one may derive the conditional pdf 
f(x, y; s, t) by solving the Kolmogorov forward or backward equations. In 
most practical problems, however, it is often very difficult, if not impossible, to 
solve these partial differential equations. On the other hand, in many biological 
systems and in population genetics, in many cases the eigenvalues and eigen-
functions often exist and are real; in these cases one may derive close approxi­
mations to the pdf's by approximating the eigenvalues and eigenfunctions. In 
this section we thus illustrate some basic approaches to derive these approxi­
mations. It turns out that for all examples in Chap. 6, the procedures given 
below are applicable to derive approximate and asymptotic distributions. 

To illustrate, suppose that we have a homogeneous diffusion process 
{X(t),t > 0} with state space S — [a,b] and with diffusion coefficients 
{m(x),v(x)}. Then the backward equation is: 

—f(x,y;t) = m ( i ) - f ( x , y ; t ) + -v(x)-^f(x,y;t), (7.1) 

where f(x, y; 0) = S(y - x). 
Making the transformation f(x, y; t) = e~xtr)(x)h(x), where r){x) is a given 

function of x, then h{x) satisfies the following equation: 

a(x)h"(x) 4- p(x)h'{x) + (\+ jjq(x)\ h{x) = 0 , (7.2) 

where a(x) = \v(x), (3{x) = m(x) + v(x) ^ \og[r)(x)} and q(x) = 

N{m(x)£log[r,(x)}+v(x)^}. 
If the eigenvalues (Xj,j — 1 , . . . , oo) of Eq. (7.2) exist and are real, then 

the general solution of Eq. (7.1) is given by 

oo 

f(x, y; t) = 7]{x) ^ C j i t i e - ^ ' h j i x ) , 
3 = 1 

where hj(x) is an eigenfunction of Eq. (7.2) corresponding to the eigenvalue Xj 
and where the Cj(y)'s are functions of y and can be determined by the initial 
condition f(x, y; 0) = S(y — x) and the orthogonality of the eigenfunctions 
hj(x). 
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Let A denote the operator A = a(x)-£7 + P(x)£. Then Eq. (7.2) is 
expressed as 

Ah(x) + {X + eq(x)}h(x) = 0, 

where e = ^ with large N. 
To derive approximations to {Xj, hj(x)}, the basic trick is to chose ri(x) so 

that the following conditions hold: 
(1) The function q{x) is bounded. 
(2) The eigenvalues j t of the operator A are real and these eigenvalues and 

its associated eigenfunctions Ui{x) can readily be derived. 
Then the eigenvalues Xj and the eigenfunctions hj(x) of Eq. (7.2) can 

readily be approximated by using {yi,Ui(x)} through the following relation­
ships: 

oo 

fc 

= 7i + £ e S w + ° ( e f e + 1 ) ; (7.3) 
i = l 

oo 

hj(x)=uj(x) + Y/e
iuf\x) 

i = i 
k 

= Uj(x) + J2 JufH*) + 0(*fe+1), (7.4) 
i = l 

for j = l , . . . , o o . 
Using Eqs. (7.3) and (7.4), by deriving jy and uy(x) one may derive 

{Xj, hj(x)} from the eigenvalues 7j and eigenfunctions Uj(x). This is called the 
method of perturbation [l]. Because the first and second eigenvalues dominant 
for large t as these are the smallest eigenvalues, for large t, we have the following 
asymptotic distributions: 

2 

f(x,y;t) *Y,C<(y)e~Xith^ ~ CiG/)e-A l t /n(x) . (7.5) 
i = l 

From Eq. (7.5), to derive asymptotic distributions, one need only to ap­
proximate the first and second eigenvalues together with their eigenfunctions. 
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To illustrate how to approximate {Xj, hj(x)} by {7*, Uj(x), i = 1 , . . . , 00}, 
let a(x) = - ^ exp{ / x §$jdy} and denote by E[r(x)) = Ja r{x)a{x)dx. 
Further, we assume that hj(x) and Ui(x) are normalized eigenfunctions so 
that E[h?(x)] = E[uf(x)} = 1 for all (i,j = l , . . . , oo ) . Then, we have the 
following results: 

(1) From basic results of eigenfunctions (see Subsec. 6.8.3), hj(x) and Ui{x) 
are orthogonal with respect to the weight function a(x). That is, for all i ^ j , 

E[hi(x)hj(x)] = / a(x)hi(x)hj(x)dx = 0 
J a 

and 

,6 

E[ui(x)uj(x)] = J o(x)ui(x)uj(x)dx = 0. 
Ja 

(2) The eigenfunctions {ui{x), i — 1 , . . . , 00} form a basis of all integrable 
functions in [a, b] so that for all i, j = 1 , . . . , 00, 

u(i\x) = Y,^Sk{x); 

where the a]V 's are constants. *ik 

(3) Under the assumption E[uf(x)} = E\h1(x)\ = 1, we have 

l = E[hHx)]=E{ui(x) + f^^\x) 
i=i 

= E{ui
i{x) + Yt^gid{x) 

j=i 

l + J2^E[9iJ(x)}, 
j = l 

where for j = 0 , 1 , . . . , 00, 

9i,2j+l{x) = 2J^u?\x)u?i+'-k\x) 
k=0 
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and 

307 

*W + a (« ) = [u(J+1)(x)]> + 2j2u?)(x)u?j+2-k\x) 
fc=0 

with u\ '{x) = Ui(x). 
It follows that E[gij(x)] = 0 for all j = 1 , . . . ,oo. In particular, with 

U = 1,2): 

E[ui(x)41\x)] = ^E{gi,1(x)}=0, 

£[5i,2(z)] = S W O B ) ] 2 } + 2£[u i(s)u^( a !)] - 0. (2 ) , 

(7.6) 

(7.7) 

„0 ) ,0) To derive 7 ^ ' and the a^ , we substitute Eqs. (7.3) and (7.4) for Aj and 
hi(x) respectively into the equation Ahi(x) + {Aj + eq(x)}hi(x) = 0 to give: 

A\ui(x)+Y,tju(?\x)\ + 
3=1 

This gives: 

and for j = 1, 2 , . . . , 

(J) 7i+eg(z)+^y7> 

Auj(a;) +7jUi(a;) = 0, 

j ' - i 

u i(x) + ^ e J ' ^ j ) ( x ) 
J = I 

= 0. 

A u ^ ( x ) +7<«?' )W + Pu«/(*) +7? ) ]« i (») + E ^ « ( a ; ) + 7 | r W r ) ( * ) = 0, 
r = l 

where 5Z r = 1 *s defined as 0. 

On substituting u\3'(x) = ^T,k a)£uk{x) into the above equation and noting 
Auk{x) = -7kUfc(:r), we obtain for j = 1 , . . . , 00, 

Z X f c ^ - lk)uk{x) + \5ljq{x)+1'f
)}ui{x) 

ri-i 

+ E E ^ ( z ) + 7ir)]airr) U(*) = 0. (7.8) 
fc kr=l 
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If j = 1, then, 

X > ^ - ?*)«*(*) + [?(*) + 7i(1)]«iW = 0 • (7.9) 
fc 

Multiplying both sides of Eq. (7.9) by a{x)ui{x), integrating from a to b 
and noting that E[ui{x)uk{x)] — Sik, we obtain 

1™ = -E[q(x)ufa)]. 

Multiplying both sides of Eq. (7.9) by a(x)uk(x), integrating from a to b 
and noting that E[ui(x)uk(x)] = Sik, we obtain for k =4 i, 

a^ = E[q(x)ui(x)uk{x)]. 
Ik -Ji 

To obtain a\k\ we notice that by (7.6), 

E[Ui{x)u^{x)]=Q. 

Since 

E[Ui{x)u^{x)} = E fcaS'K^Bi^jJ = a j ^ K ? ^ ) ] = a! 

it follows that a^' = 0 . 

To derive 7} ' and a,y, we put j = 2 in Eq. (7.8) to give 

E^^-^^w+if'^w+bw+ifiE^^w^0' (7-10) 
it fc 

Multiplying both sides of Eq. (7.10) by o{x)ui{x), integrating from a to b 
and noting that E[ui{x)uk{x)\ = Sik, we obtain: 

1?] = -Y,a<ikE[q{x)ui{x)uk{x)}. 
k 

Multiplying both sides of Eq. (7.10) by a(x)uk(x), integrating from a to 6 
and noting that E[ui{x)uk{x)} ~ Sik, we obtain for k ^ i, 

7fc~7i L fc J 
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To obtain a^, we notice that from Eq. (7.7), 

0 = E[9i,2(x)} = E{[u?\x)]2} + 2E[ui{x)uf){x)}. 

Since 

E{[u?\x)f} = E Ij^a^Mx)) = 5 > « ) 2 i < H ( z ) ] 2 

I k ) k 

= E(°2 ,)a = E(a2 ))a , 
k k^i 

and 

E{ U i (x)uf >(*)]} - £ | ^ a ^ U i ( x ) U f c ( x ) | = a ^ M z ) ] 2 = aj2 ) , 

we obtain 

To summarize, denoting by E[q(x)ui(x)iij(x)} = (ui,quj), we obtain: 

= 7< - e(uh qut) - e2 ^ (Ui, qu.,)2 + 0(e3) 

and 

2 

hi(x)=ui(x) + J2Mi)+0(e3) 
3 = 1 

= Ui{x) + eJ2aVUj(x) + e2 ^ c g ^ O * ) + 0(e3) 
3¥=i 3 

= Ui{x) + e y~] {m, quj)uj(x) + 0(e2), 
^ 3 - H 
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where 

and 

a<2) = - { E a**} <ui» «"*) + 7i1)ai]) > . for i ± 3 • 
7 i I k J 

Better approximation can also be derived. In fact, from Eq. (7.8), by 
exactly the same approach as above we obtain for j = 3 ,4 , . . . , co, 

l r=l fe J 

7fc-7, . = 1 

Similarly, by using results E[gi}2j+\{x)} = 0 and E[git2j(x)] = 0 for 
j = 1 , . . . ,00, we obtain: 

,(2j+i) _ v ^ J v l
n ( r ) „ ( 2 J + 1 - r ) 

fe l r = l J 

^ — {^E^ + EE^Mr0}-
l fc fe r=l J 

Example 7.1. The Wright model with selection in population 
genetics. Consider the Wright model for one locus with two alleles A : a 
in a large population with size JV as described in Example 6.9. Assume that 
there are selections between different genotypes and the selection rates are 
independent of time t but there are no mutations and no immigration and 
migration. Then, it is shown in Example 6.9 that to the order of 0(N~2), the 
frequency of the A gene is a diffusion process with state space [0,1] and with 
diffusion coefficients {m(x) — x(l - x)[a\x + 02(1 - 2x)],v(x) = x(l - x)}, 
where 04 are the selection intensities. In this case, the Kolmogorov equations 
are extremely difficult to solve. However, because selection effects are usually 
very small, it is reasonable to assume the Noti as finite. Then one may apply 
the above method to derive approximate and asymptotic solutions. 
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To proceed, we make the transformation f(x, y; t) = e~x te~p^h(x), where 
p(x) = \a.\ + (x — x2)a2. Then x(l — x)-2gp- = m(x) and h(x) satisfies the 
equation: 

1 
x(l - x)h"[x) + {A - eq(x)} = 0, (7.11) 

where 

and 

e = —,q(x) = c0 + e{ci + c2x + c3x
2} , with at = Nan, i = 1,2 , 

co = cci - 2a2, ci = 2c*2, c2 = 4a2c0 , c3 = 2CQ . 

From Example 6.3, we have a(x) — x(i_x\- Denote the operator A = 

lx(l — x)-^. From Example 6.3, the eigenvalues and the eigenfunctions of 
Af{x) + X f(x) = 0 are given by: 

7 i = 2 i ( * + 1 ) a n d Ui(x) = {(i + l)(2i + l)/i}*x(l-x)Ji-i(x;2,2), 

for i = 1,2,. . . , where the Ji(x;p,q) are Jacobi polynomials denned in 
Subsec 6.8.2. 

Hence, we have: 

(ui,qui) = 6 / a(x)q(x)[x(l — x)]2dx 
Jo 

> I [c0 + e( 
Jo 

c\ + c2x + c3a;2)][a;(l - x)]2dx 

= 6{c05(3,3) + e[Cl5(3,3) + c25(4,3) + c3B(5,3)]} 

1 2 
co + e | c\ + - c 2 + ^c 3 

Further, for j = 2 , 3 , . . . , we have to the order of 0(e): 

J/-1 
' x2(l-x)2Jj-1(x;2,2)dx 
o 

= {6(j + l)(2j + l)/j}ijj^Jo i(l-a;) 
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dx = (-ly-^eu + i)(2j + i)/j}4 

dx. 

£^w-*ry 

Thus, to the order of 0(e), 

(u1,qu2) = (-3c0)\ /5 / x2(l - x)2(l - 2x)dx 
Jo 

= (-3c0)\/5[B(3,3) - 25(4,3)] = 0, 

{ui,qu3) = {-2co)V2 x 7 / x2(l - xfdx 
Jo 

= ( -2c 0) \ / l45(3,3) = - ^ c 0 , 
15 

(ui,quj) — 0 , for j = 4 , . . . , o o . 

From these results, it follows that since 73 — 71 = 5, 

co e2 f 1 2 14 2 ] /_, 3. 
A! = 71 + e - + T { d + - c 2 + -C3 - —c2^ + 0(e3) 

= l + e | + 0 ( e 2 ) , 

and 

/ii(x) = ui(a;) + e ^ a\) Uj(x) + Oe2 

= y/Qx{l -x)- e„®C°x(l - x)(l -5x + 5x2) + 0(e2). 
75 

Similarly, we have: 

(u2,qu2) = 30 / or(a;)g(a;)[a;(l - x)(l - 2x)]2dx 
Jo 

= 30 / [c0 + e(ci + c2x + c3x
2)][x(l - x)(l - 2x)]2dx 

Jo 

= 30{[c0 + e ci][B(3,3) - 45(4,3) + 45(5,3)] 
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+ ec2[5(4,3) - 45(5,3) + 45(6,3)] 

+ ec3[5(5,3) - 45(6,3) + 45(7,3)]} 

313 

1 1 
Co + e ( ci + - c 2 + - c 3 

Further, since J\(x\ 2,2) = 2(1 — 2x), we have to the order of O(e): 

/ • l 

{u2,q Uj) = c0{30(j + l)(2j + l ) / j } * / x2( l - x)2( l - 2x)J j_i(x;2,2)cfa 
Jo 

= {30(j + l)(2j + l)/j}i ^ ° _ jT1 x(l - s)(l - 2s) 

' di-1 • 1 
X J f o P T ^ 1 - 3 ^ dx 

= ( - i r 1 { 3 0 ( j + l)(2j + l ) / j}5 

Co 

( i - i ) 
- J xj(l - x)j d? - l 

dxi-
^{x{l-x)(l-2x)} dx. 

Thus, to the order of 0(e), {u2,qui) = (u\,qu2) = 0, and 

(u2, qu3) = (-3c0)V4 x 70 / x3( l - x)3( l - 2x)dx 
Jo 

= (-6c0)\/70[5(4,4) - 25(5,4)] = 0, 

(u2,qu4} = (-15c0)\/6 / x3(l - xfdx 
Jo 

= (-15c0)V65(4,4) = - | | 3 c o , 

(u2, quj) = 0 , for j = 5 , . . . , oo . 

From these results, it follows that since 74 — 72 = 7, 

co e2 f 1 1 27 91 ^ , , 
A 2 = 7 2 + e y + y{c1 + 2C2 + - c 3 - — c 2 j + 0 ( e 3 ) 

= 3 + e ^ + 0(e2) 
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and 
oo 

h2(x) = u2(x) + e^ra{
2
1)uj(x) + 0(e2) 

= V30a;(l - x)(l - 2x) - e^-V30cox(l - x)J3(x; 2,2) + 0 ( e 2 ) . 

7.2. Stationary Distributions in Diffusion Processes 

As in Markov chains, as time progresses, many of the diffusion processes in 
nature will converge to a steady-state condition. The probability distribu­
tion of the process under the steady state condition is the so-called stationary 
distribution of the process. Notice again that as in Markov chains, for the 
stationary distribution to exist, the diffusion process must be homogeneous so 
that the coefficients {m(y, t) = m(y),v(y,t) = v(y)} must be independent of 
time t. This follows from the observation that the stationary distribution is 
independent of time. However, as shown in Example 7.4, homogeneous diffu­
sion processes may not have stationary distributions. 

To proceed, let {X(t),t > 0} be a homogeneous diffusion process with state 
space [a,b] and with coefficients {m(x),v(x)}. Let f(x,y;t) be the conditional 
pdf of X{t) at y given X(0) = x. 

Definition 7.1. The boundary point a is called a regular boundary point iff 
a is accessible from the interior of S and the interior points of S are accessible 
from a. We define the boundary point a as accessible from the interior of 
S iff for every e > 0 given and for every XQ satisfying a < XQ < b, there 
exists a time t such that /o°

 e f(xo,y;t)dy > 0; similarly, the interior point 
Xo(a < XQ < b) is accessible from a iff for every e > 0, there exists a time t 
such that Jx °_e / ( a , y; t)dy > 0. The boundary point a is called an absorbing 
barrier iff a is accessible from the interior of S but the interior points of S are 
not accessible from a. Similarly, b is a regular boundary point iff b is accessible 
from the interior of S and the interior points of S are accessible from 6; b is 
an absorbing barrier iff b is accessible from the interior of S but the interior 
points of S are not accessible from b. 

Notice that the case in which the boundary points a and b are regular is 
the analog of irreducible Markov chains in diffusion processes; similarly, the 
absorbing barrier points are the analog of absorbing states in Markov chains 
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in diffusion process. Hence, once the process reaches the absorbing barrier, it 
will stay there forever; this is the condition of fixation in diffusion processes. 

In the Wright model considered in Example 6.9, if there are mutations 
from A —> a and from a —> A and/or if there are immigartion and migration, 
then both 0 and 1 are regular boundary; if there are no mutations and no 
immigration and migration, then both 0 and 1 are absorbing barriers. On the 
other hand, if there are no immigration and migration and no mutations from 
A —\ a but there are mutations from a —>• A, then 0 is a regular boundary but 
1 is an absrobing barrier; similarly, if there are no immigration and migration 
and no mutations from a —> A but there are mutations from A —¥ a, then 0 is 
an absorbing barrier but 1 is a regular boundary. 

Definition 7.2. Let {X(t),t > 0} be a homogeneous diffusion process with 
state space S = [a,b] and with coefficients {m(x),v(x)}. Let f(x,y;t) be the 
conditional pdf of X(t) given X(0) = x. Suppose that the boundary points a 
and b are regular boundary points. Then the density function g(y) defined in 
S = [a, b] is defined as a stationary distribution iff 

9(y)= / g(x)f(x,y;t)dx, y€S. 
J a 

For deriving the stationary distribution for homogeneous diffusion pro­
cesses, we will first prove the following theorem which provides some intuitive 
insights into the steady state condition and the stationarity of diffusion 
processes. This theorem was first due to Kimura [2]. 

Theorem 7 .1 . Let {X(t),t > 0} be a diffusion process with state space S = 
[a, b] and with coefficients {m(x, t), v(x, t)}. Let P(p, x; s, t)dt be the probability 
mass crossing the point x during [t, t + dt) given X(s) — p. Then P(p, x; s, t) 
is given by: 

P{p, x; s, t) = m{x, t)f(p, x; s, t) - -^{v(^,*)/(p, x; s, t)} (7.12) 

where f(p,x;s,t) is the conditional pdf of X(t) given X(s) = p. 

Proof. To prove this theorem, let P(+)(p,x;s,t)dt be the probability of 
crossing the point x from the left during [t,t + dt) given X(s) = p and 
P(_)(p, x;s,t)dt the probability of crossing the point x from the right during 
[t, t + dt) given X(s) = p. Let g(A£\x, At) denote the conditional pdf of the 
change A£ during [t, t + At) given X(t) = x. Then, the probability of the event 
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that X(t) e(x- \dx,x + \dx) and A£ e (A£ - ±d(A£), A£ + \d{A£)) given 
X(s) —pis 

f(p, x; s; t)g{A£\x, At)dx d(A£). 

It follows that, 

P(+)(p,x;s,t)dt= f f f(p,£,s,t)g(At\t,dt)d(AZ)dt 

IA(>OJx-&Z 

and 

/ [X f(P, fc *, t)g(A£\t dt)d£ d(AO , 
J At>0Jx-A£ 

P(_) (p, x;s,t)dt= f f f(p,t;s, t)g{At\t, dt)d(AZ)d£ 
Jx<£JA£<x-£ 

= f f / (P, fc«, % ( A ^ , d tK d(AO. 
JA£<0 Jx 'A£<0 Jx 

Hence, we have: 

P(p, x; s, t)dt = P(+) (p, a;; s, t)dt — P(_) (p, x; s, t)dt 

= f [X f(j>,t;8,t)g{At\t,dt)dtd{&t). (7.13) 
J Jx-A( 

Expanding /(p, £; s, t)<7(A£|£, dt) in Taylor series with respect to £ around 
x, we obtain: 

f(p, fc s, t)<7(A£|£, dt) = /(p, x; s, t)g(At\x, dt) 

+ (£ - ^ ^ { / ( P . a5-. s> t)p(A£|x, * )} 

+ £(£ - x)2^{f(p> *;s- Off(A |̂x, *)} 

+ | ( £ - a;)3^3{/(p,x;S,t)5(A£|a;,dt)} + • • • . 
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On substituting this expansion into the inner integral of (7.13), the inner 
integral of (7.13) becomes: 

f f(P, t\ s, t)g(AZ\£, dt)d£ = (A0/(P, x; s, t)g(A^\x, dt) 

-\(A02-^{f(p,x;t)g(AZ\x,dt)} 

+ | ( A 0 3 | ^ { / ( P , *; t)g(^\x, dt)} + --.. 

Noting the results 

[(A£)g(A£\x, dt)d(A£) = m(x, t)dt + o(dt), 

[(A$)2g(A£\x,dt)d(A£) = v(x,t)dt + o(dt), 

and 

j(AZ)rg{Ati\x, dt)d(AS) = o(dt) for r = 3,4,. . . , 

we obtain from Eq. (7.13): 

P(p, x;s,t)dt = P(+) (p, x; s, t)dt — P(_) (p, x; s,t)dt 

= f f f{p,t;',t)g(Ai\t,dt)dt 
J Jx-d(AZ) 

= m(x, t)f(p, x- t)dt- i ^ | / (p , x; t) J(Atfg(AZ\x, dt)d(A£)\ 

+ h& {f{p'X'*} J^)39(AZ\x,dt)d(AZ)| + • • • 

= \rn(x,t)f(p,x;t)- - — [v(x,t)f(p,x;t)} \ dt + o(dt). 

This shows that 

P(p, x; s, t) = m(x, t)f(p, x; s, t) - - — [v{x, t)f(p, x; s, t)}. D 
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Since P(p, x; s,t) = 0 implies that the net flow of probability mass crossing 
x at time t is 0, if m(x, t) = m(x) and v(x, t) = v(x) are independent of t, 
then the solution f(p, x; t) = g(x) of the above equation under the constraint 
P(p,x;s,t) — 0 is the stationary distribution of X(i) and is independent of 
both p and t. In adopting this result, however, we have to be careful in its 
interpretation. If x = a and x = b are regular boundary points so that starting 
with x = a or x = b, with positive probability the process can go to a < x < b 
in the process, the solution in this case does provide the stationary distribution 
as defined in Definition 7.2; but, if x = a and x = b are absorbing barriers, 
then the stationary distribution may not exist. 

Theorem 7.2. Let {X(t),t > 0} be a homogeneous diffusion process with 
state space S = [a,b] and with coefficients {m(x),v(x)}. Assume that a and 
b are regular boundary points. If the solution {g(x),x G S} of the fol­
lowing equation is unique and if lim^-m m(x)g(x) = linix-^ m(x)g(x) = 
limx^a £[v(x)g(x)] - limx^b-£[v(x)g(x)} = 0, then {g(x),x € S} is the 
unique stationary distribution of the diffusion process X(t) : 

-m(x)g(x) +- — [v(x)g(x)} = 0 , xeS. (7.14) 

Proof. To prove Theorem 7.2, put 

rb 

I 
Ja 

g(x)f(x,y;t)dx = ri(y,t). (7.15) 

We will show that 7j(y, t) = r](y) is independent of t and that rj(y) = g(y) 
for all y £ S. 

On both sides of Eq. (7.15), taking partial derivative with respect to t and 
noting the result of the backward equation, we obtain: 

d_ 
dt 

Q rb fb d 
V(y,t) = QI g{x)f{x,y;t)dx = / g(x)—f(x,y;t)dx 

rb f a i a2 "i 
= / 9(x) <m(x)—f(x,y;t) + -v(x)-^f(x,y;t)\dx. 

It follows that by applying integration by parts, 

d_ 
dt 

ffaV'Qfa { -im(x)9(x)} + •^•^[v{x)g{x)\ \ dx = 0 . 
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This shows that r](y, t) = r](y) is independent of t. To prove rj(y) = g(y) 
for all y £ S, denote by F{x,z;t) = Jz f(x,y;i)dy. Then, from the forward 
equation, we have: 

-F{x, y; t) = -m(y)f(x, y; t) + - — [v(y)f(Xt y-1)\. 

On both sides of Eq. (7.15), multiplying by —m(y), we obtain: 

/ 9{x)[-m(y)f{x, y;t)]dx = -m(y)r]{y). (7.16) 
Ja 

On both sides of Eq. (7.15), multiplying by \v(y) and taking derivative 
with respect to y, we obtain: 

I g(x){^Nw)/(*.y;*)]}dx = l^HyMy)}• (7.17) 

Adding Eqs. (7.16) and (7.17) gives 

2dy 
-m{y)r){y) + ~ \v{y)n(y)} = J 9(x)\- m{y)f(x, y; t) 

+ 
- t o "\ 

--Q-[v(y)f(x,y;t)}[dx 

= L gW{§iF(X'y't)}dx 

= dij 9^{l f(xiz'>t)dz\dx 

= \di 9(x)f{x,z;t)dx \ dz 

ja
V{^)}dz = Q. 

dt 

This shows that rj(y) = g(y). O 

Now, putting £(a:) = v(x)g(x), Eq. (7.14) gives 



320 Asymptotic Distributions, Stationary Distributions and Absorption Probabilities 

This gives 

p(x) = | y e x p { 2 / * ^ } , (7.18) 

where C is a normalizing constant. 
Hence, if the conditions in Theorem 7.2 hold, then the density of the 

staionary distribution of X(i) is given by Eq. (7.18). 

Example 7.2. The stationary distribution of gene frequency in the 
Wright model of population genetics. In Examples 1.11 and 6.9, we have 
considered the Wright model in population genetics for a single locus with two 
alleles A and a. In this model, {X(t),t € T} is the number of A allele in 
a large diploid population of size N and the chain is irreducible if there are 
mutations from A —> a and from a —> A and /or if there are immigration 
and migration. Let the mutation rates from A —> a and from a —> A be 
given by u(t) = | ^ + 0(N~2) and v(t) = ^ + 0(N-2) respectively. Let 

x(t) 
~ JR^ + OiN 2) be the population exchange rate per generation between 

the A allele of the population and the A allele of the outside population and 
xi the frequency of the A allele among the immigrants. Denote the relative 
fitness of the three genotypes {AA, Aa, aa} by {l + -^ai+0(N~2), l + ^a2 + 
0(N~2), 1} respectively. Then, it is shown in Example 6.9 that to the order 
of 0(N~2), Y(t) = ^X(t) is a diffusion process with state space S = [0,1] 
and with diffusion coefficients given by 

m(x, t) = x(l - x)[a2(l - 2x) + a^x] - 71X + 72(1 - x), 

where 71 = /?i(f) + w[l — xj], and 72 = 02 + xiu), and 

v(x,t) = x(l -x) + OiN-1). 

In this process, if there are mutations and/or immigration and migration, 
then 7; > 0 (i = 1,2) so that 0 and 1 are regular boundaries. Under these 
conditions, the stationary distribution of Y(t) exists and is given by 

5(*) = ^ e x p { 2 f ^ 4 , 0<*<1, 
v{x) I Jo v{y) J 



Stationary Distributions in Diffusion Processes 321 

where Co is a normalizing constant such that / 0 g(x)dx = 1. Now 

+ 71 log(l - x) + 72 log(z). a2(x - x2) + -a.\x2 

It follows that 

v(x) I Jo v(v) J 

Co 
v(x) 

expfaia;2 + 2a2x(l - x) + 271 log(l - x) + 272 log(x)} 

= C 0 x 2 7 2 _ 1 ( l - a;)271-1 exp{aix
2 + 2a2a;(l - x)} , 0 < x < 1. 

If there are no selection so that on = 0 for i = 1,2, then 

00*0 = 5(272,27 l) 
2 7 2 - 1 

(1-a r ) 
2 7 1 - 1 0 <a; < 1. 

Example 7.3. The stationary distribution of gene frequency in the 
Moran model of genetics. In Example 6.10, it is shown that for the Moran's 
model of genetics, to the order of 0(M~2)), Y(t) = jjX(t) is a diffusion 
process with diffusion coefficients: 

m(x) = (1 - x)\2[x{l — ai) + (1 - x)a2] — x\i\(\ — x)(l - a2) + xa{\, 

v(x) = —{(1 - a;)A2[x(l - a{) + (1 - 3)0:2] + zAi[(l - a;)(l - a2) + xa{\} . 

In this case, if A* ^ 0 for i — 1,2, then the 0 and 1 are regular boundaries 
so that one may derive the stationary distribution of Y(t). By Theorem 7.2, 
this stationary distribution is given by 

f(x) = coK*) ] - 1 exp {2 JX ^Hdy\ . 

Suppose that aj — jfCij,j = 1,2, Ai = A and A2 = A + jj(, where a,j and 
£ are independent of M. Then 

m(x) = T7[z(l - x)(C + Aa2 - Aai) + Aa2(l - a;)2 - Xaix2] + 0(M~2) 
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and 

M 

Hence, 

v(x) = ^ 2 A z ( l - a:) + 0(M~2). 

2 / 'dy = ci + T-{[C + A(a2 - ai)]x + Aa2(loga: - g) 
y u(y) A 

+ Aax(x + log(l - x))} + 0(M~2). 

Thus, to the order of 0(M~2), 

f(x) = cx _ exp I j(x + a2 log x + oi log(l - x) > 

= c2e*xxa2-1(l - x ) a i _ 1 , 

where c\ and c2 are constants such that c^1 = /„ e^^xo;02_1(l — x)ai~1dx. 
If (, = 0 (no selection), then 

/(a;) = ^7^ r ^ - H l - ^ r " 1 . 0 < a ; < l . 
B{a2,ai) 

Example 7.4. The stationary distribution of the number of initiated 
cells in the two-stage model of carcinogenesis. It is shown in Example 4.9 
that for the two-stage model of carcinogenesis, if the number of normal stem 
cells is very large, then the number of initiated cells I(t) is a birth-death process 
with immigration with birth rate jb(t)+X(t) and with death rate jd{t). Also, it 
is shown in Example 6.7 that to the order of 0(NQ2), Y(t) = - ^ p is a diffusion 
process with state space S = [0, oo) and with diffusion coefficients {m(x, t) — 
^ - t{t)x,v{x,t) = 1 ^ * } , where tf(t) = d(t) - b{t),u(t) = &(*) + <*(*)}• To 
derive the stationary distribution, we assume that {b(t) = b, d(t) = d, X(t) = A} 
so that £(£) = $ and tv(t) = u. 

Now it is shown in Example 5.4 that if b > d, then the stationary distribu­
tion does not exist; it follows that for the diffusion process Y(t) = -jy , the 
stationary distribution also does not exist if b > d. Intuitively, since A > 0, 
I(t) will keep on increasing as time increases if b > d, so that it will never 
reach a steady state condition. To derive the stationary distribution of Y(t), 
we thus assume d > b. This is usually the case when the cancer patients are 
constantly subjected to chemotherapy or immunotherapy. In these cases, we 
have £(£) = £ > 0 and the stationary distribution exixts. 
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Now, with {m(x) = -£— x£,v(x) = jj-x}, we have: 

J "^-dy = C0 + i [7l log(a:) - 72*] 

where {71 = ^7,72 = ^ p } and Co is a constant. Hence, the density of the 
stationary distribution of Y(t) is 

Ci 2 f
x rI!Mdy g(x) = —— e J Hv) y 

72 71 

r(7i) 
B 7 i - i e - 7 2 * 0 < z < 

where C\ is a constant such that g(x) is a density. 
For the above diffusion process, the Kolmogorov backward equation is 

/(*, v; *) = ( ^ - **) £/(*, r, t) + ^ * J^/(*.»; *), (7.19) 

with initial condition f(x, y; 0) = 5(y - x), the Dirac's S function. 
Using exactly the same approach given in Example 6.2, Eq. (7.19) can 

readily be solved in terms of Laguerre polynomials; see Exercise 6.1. In fact, 
making the transformation f(x,y;t) = e~crth(x), h(x) satisfies the equation: 

^-cjxh"(x) + ( A _ £ B ) h>(x) + ah(x) = 0. 

The eigenvalues and eigenfunctions of this equation are given by 

<Tk = k£, hk{x) =L<j^1\'j2x), k = 0 , 1 , . . . , 00 , 

where L^\y) - £ £ * = 0 ( _ i ) i g y r g ± £ } i s the fcth degree Laguerre poly-
nomial with parameter 71. 

Using the same approach as in Example 6.2 and using the orthogonal 
properties of Laguerre polynomials as given in [3, p. 6], the solution of 
Eq. (7.19) is, 

f{x,y;t) = g(y) £e-^W)4 7 l ) (722/) 
.fc=0 

fc + 7 1 - 1 
k 

- 1 ' 

Noting i£7l)(a;) = 1, liim^oo f(x, y; t) = g{y). 



324 Asymptotic Distributions, Stationary Distributions and Absorption Probabilities 

7.3. The Absorption Probabilities and Moments of First 
Absorption Times in Diffusion Processes 

Consider a homogeneous diffusion process {X(t),t > 0} with state space 
S = [a,b] and wih diffusion coefficients {m(x),v(x)}. Assume that the two 
boundary points a and b are absorbing barriers and that starting at any 
X(0) = x satisfying a < x < b, with probability one the process will even­
tually be absorbed into the boundary points as time progresses. In this section 
we will illustrate how to derive the absorption probabilities into these boundary 
points and derive formula to computer the mean and the variance of the first 
absorption time. 

7.3.1. Absorption probabilities 

Let ua(p; t) denote the probability that starting with X(0) = p G S, the process 
is absorbed into the boundary a at or before time t and Ub(p; t) the probability 
that starting with X(0) = p € S, the process is absorbed into the boundary b 
at or before time t. Put ((p;t) = ua(p;t) + Ub(p;t). Then h(t;p) = JjCfeO is 

the pdf of the first absorption time R(p) of the state X(0) = p G S, Ua(p) = 
limt-yoo ua(p; t) the ultimate absorption probability of X(0) = p G S into a and 
Ub(p) = limt-^oo Ub(j>; t) the ultimate absorption probability of X(0) = p G S 
into b. In formulae of u(x;s,t) defined by Eq. (6.11), by choosing g(y) = 
8(y — a),g{y) = S(y — b) and g(y) = S(y — a) + S(y — b), the corresponding 
u(x;s,t) in Sec. 6.3 is ua(x;t),Ub(x,t) and C,(x;t) respectively. Hence, by 
Theorem 6.2, ua(x,t),Ub(x,t) and £(#,£) all satisfy the following Kolmogorov 
backward equations respectively: 

g^ua(p;t) = m(p)—ua(p;t) + -v(p)-^ua(p;t), (7.20) 

with ua(p; 0) = 1 if p = a and ua(p; 0) = 0 if p ^ a; 

g-tub(p;t) = m(p)—ub(p;t) + ^v(p) — 

with Ub(p; 0) = 1 if p = b and Ub(p; 0) = 0 if p ^ b; and 

with £(p; 0) = 1 if p = a or p = b and £(p; 0) = 0 if p ^ a and p^b. 

—ub(p;t) = m(p)—ub(p;t) + -v(p)^-^ub(p;t), (7.21) 

-C(p; t) = m(p)—C(p; *) + ^v(p)^C(p; t), (7.22) 
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From Eq. (7.20), by letting t -» oo, we have the following equation for the 
ultimate probability Ua(p) of absorption into x = a: 

rn(p)^Ua(p) + l-v(p)^Ua{p) = 0, (7.23) 

with the boundary conditions Ua{a) = 1 and Ua(b) = 0. 
To solve the above equation, notice the result 

o C"P m(.x) J j 

It follows that e J »(»> x-jjzUa{p) = Co, where Co is a constant. 
The solution of (7.23) is then given by 

rp rv 
Ua(p) = Ua{a) + C0 ip(x)dx = 1 + Co / i}>{x)dx, 

Ja J a 
where 

Putting p = b and noting Ua(b) = 0, we obtain 

fb 

CQ1 = - / ip(x)dx 
Ja 

so that 

UM^-I^. (7.24) 
Ja ip(x)dx 

Similarly, by letting t -» oo in Eq. (7.21), we obtain: 

m(p)±Ub(p) + lv{p)^Ub(p) = 0 (7.25) 

the boundary conditions being Ubib) = 1 and Ub(a) = 0. 
The solution of Eq. (7.25) under the boundary conditions Ubib) = 1 and 

Ub(a) = 0 is 

Ja ^{X)dx 
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Notice that Ua(p) + Ub(j>) = 1 so that the ultimate probability of absorption 
is 1; this is expected as x = a and x = b are absorbing barriers. 

The following Theorem provides an avenue to derive the pdf h(t;p) of the 
time to absorption given X(0) = p. 

Theorem 7.3. The pdf h(t;p) of the first passage time R(p) satisfies the 
following backward equation: 

^h(t;p) = m(p)^h(t;p) + lv(p)^h(t;p), (7.27) 

where h(0;p) = S(p — a) + S(p — b). 

Proof. To prove the theorem, notice that (,{x,t) = Jah(z;p)dz and 

^ fa h(z;p)dz = h(t;p). Hence, from Eq. (7.22), 

d f /"* 1 1 d2 T f* 
h(t;p)=m(p)— \ h(z;p)dz + ^ W ^ / h(z;p)dz 

/"* f d I d 2 1 
= / yn{p)—h{z-,p)-T-v(p)—h{z]p)K>dz. 

Taking derivative with respect to t on both sides of the above equation, we 
obtain: 

—h(t;p) = m{p) — h(t;p) + -v{p)-—h(t;p). 

This proves the theorem. • 

7.3.2. The first two moments of first passage times in 
diffusion processes 

Using Theorem 7.3, we can readily derive equations for the mean time T{p) 
and the variance a2(p) of R(p). 

Theorem 7.4. Let T(p) be the expected time for absorption given X(0) = p. 
Then T(p) satisfies the following equation: 

. sdT[v) 1 , ,d2T(p) 

with boundary conditions T(a) = T(b) = 0. (// there is only one boundary a, 
then T{a) = 0.) 
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Proof. To prove Theorem 7.4, we notice that, if we let h(t;p) be the 
probability density that absorption to either a or b takes place at time t, 
then, as shown in Theorem 7.3 above, h(t;p) satisfies the following backward 
equation: 

—h(t;p) = m(p)—h{t;p) + -v(p)-^h(t;p). 

Now, by definition, 

/ • O O 

T{p)= / th(t;p)dt. 
Jo 

Hence, by interchanging the order of differentiation and integration, 

f°° d 

/ • O O 

= {th(t;p)}%> - h(t;p)dt 
Jo 

= - 1 , 

as linit-Kxj h(t; p) — 0 and with the initial conditions being T(l ) = T(0) — 0. n 

To solve (7.28), we notice that 

, ,dT(p) 1 , ,d2T(p) n 

has two solutions given by 

fi/;(x)dx fpib(x)dx 
Ua(p)=JpJK

 and Ub(p) = Ja
b
 VK ' , 

/ a $(x)dx j a ip{x)dx 

where Ua(p) + Ub(p) = 1. Hence, U'Jp) = -U'b{p), and 

J (Ua{p) Ub(P)\ ( Ua(P) Ub(P)\ ^(p) 
det = det = U'b(p) = Jy"— j - 0 . 

\K{p) U'b{p)J \-U'b{p) U'b{p)) />(*)d* 
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The method of variation of parameters then suggests that 

T(p)=A(p)Ua(p) + B(p)Ub(P); or T = AUa + BUb, 

by suppressing p in A{p), B(p), Ua(p) and Ub(p). Differentiation gives 

T = AU'a + A'Ua + BU'b + B'Ub. 

We choose A and B such that A(a) = B(b) = 0 and A'Ua + B'Ub = 0 so 
that 

T" = AU^ + A'U'a + BV'b' + B'U'b. 

Substitution of this into m(p)T' + \v{p)T" = - 1 gives 

- 1 = \v{p)[AU': + A'U'a + BUZ + B'Ui] + m(p)[AU'a + BU'b] 

= [\v(p)UZ + ™(P)K} A + \y{p)U'b' + m(p)U^ B 

+ lv(p)A'U'a + ±v(p)B'Ub-

= \v{p)A'U'a + \v{p)B'U'b, 

or 

±v(p)A'Ui + ±v(p)B'U{, + l = 0. 

Thus, combining with A'Ua + B'Ub = 0, we have: 

fUa
 Ub\(A'\ = ( ° \ 

so that 

Now, 

' A ' \ = 1 / 2Ub/v(p) ' 
B') ~ UaU>b-UbU'a\-2Ualv{p) 

U'a=,U'M-—^- and U'b = ^ l -
Ja xl){x)dx Ja ip(x)dx 
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Hence, 

rb 
A,= Wb_ 1 2Ubfii/>(x)dx 

v(p) UaWh-UbU'a v(pW(p)(Ua + Ub) v(pW(p) 

and 

Similarly, 

2Ua 1 - 2 * 

f 
/ ip(x)dx, 

J a 

B' = I xp(x)dx, 
Jv v(p) UaUl-UbU>a v(p)iP(p) 

so that 

Hence, a particular solution is given by 

T(p) = A(p)UM+B(p)Ub(],) 

-2UM [ *m I"mivdx+2UMI « F.miyiT 

= J t(x,p)dx, (7.29) 
J a 

where 

t(x,p)=2Ua(p)[v(x)iP(x)]-1 i>(y)dy, ifO<x<p, 
J a 

and 

t(x,p) = 2Ub(p)[v(x)i>(x)]-1 J il>(y)dy , if p < x < 1. 

Since Ua(b) = Ub{a) = 0, we have T(a) = T(b) = 0. We next show that the 
above solution is the only solution satisfying T(a) — T(b) = 0. To prove this, 
let Ti(p) be another solution satisfying Ti(l) = Ti(0) = 0; we wish to show 
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that Ti(p) = T{p) for all a < p < b. Putting K = Kip) = Tip) - Ti(p), then 
Kip) satisfies 

d TS 1 M ^ 

'TP
K + 2 V ^ 

But this implies that 

mip)—K + -vip)-T1K = 0, with K(a) = K(b) = 0. 

dp 

so that 

ip { dp J 

A-(p)=Cl fe^V^dy 
J a 

C 2 . 
Jo 

Hence, 

K(a) = c2 = 0 and A"(6) = a f e~2f° ^dxdy = 0 =» ci = 0 
•/a 

or, # (p ) = 0 so that T(p) = Ti(p). 
Let cr2 be the variance of the first time absorption Rip) given initially 

X(0) = p, and put a^ = Wij>) — (T(p))2. Then, we have the following theorem 
for the computation of Wip): 

mip)~Wip) + -Vip)—Wip) = - 2 2 » , (7.30) 

Theorem 7.5. W(p) satisfies the following second order equation: 

'dp-' \v{p)h 
where Wia) = W(b) = 0 and Tip) is given by (7.29). (// there is only one 
boundary a, then Wia) = 0.) 

The above theorem was first given by Tan [4]. 

Proof. Let /i(i;p) be the pdf of the first passage time Rip) given X(0) — p, 
then, as shown above, /i(i;p) satisfies 

—h(t;p) = mip) — hit;p) + -v(p)—h(t;p). 

Since 
/»oo 

W{p)= \ t2hit;p)dt, 
Jo 
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so, by interchanging ^ and / , integrating by parts and noting that 

*2C(P> *) ->• 0 as t ->• oo, 

d2 „ „ , f^ , f , , a , , , i _ a2 

m 
rf 1 rf2 f°° ( 8 1 A2 1 

( I , ) -»'(p)+-„( I , )^j»»=y <» | r o ( p )_/ , ( , ; P )+_„& , )_ f t ( , . ,p ) | d( 

/ • O O 

= - 2 / th(t;p)dt 
Jo 

= -2T(p). D 

By using the method of variation of parameters, one can similarly show 
that the solution of (7.30) is given by 

W(p)=4Ua(p) f T{x)[i>{x)v{x)}-1 [Xi>(y)dydx 
Ja J a 

+ 4Ub(p) f TixMWvix)}-1 f iP(y)dydx. (7.31) 
Jr> Jx 

Example 7.5. Absorption probabilities of gene frequency in the 
Wright model of population genetics. In the Wright model in popu­
lation genetics for one locus with two alleles A and a, if there are no mutations 
and no immigration and migration, then 0 and 1 are absorbing barriers. In 
this case, with probability one the process will eventually be absorbed into the 
absorbing states. When the population size N is very large, then as shown 
in Example 6.9, to the order of 0(N~2) the frequency Y(t) of A gene is a 
diffusion process with diffusion coefficients given by 

{m(x,t) = x(l - x)[xai(t) + (1 - 2x)ct2(t)], v(x) = x(l — x)} , 

where the ai(t)'s are the selection intensities (See Example 6.9, Case 4). 
Assume now at(t) = at,i = 1,2, so that the process is time homogeneous. 
Then, 

<t>(x) = exp 1-2 ~^dy \ = exp{-[«ia;2 + 2a2x{l - a;)]} . 
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If there are no selection so that o^ = 0, i = 1,2, then cf>(x) = 1. In this case, 
the ultimate absorption probabilities into 0 and 1 given Y"(0) = p are given 
respectively by: 

Uo{p) = l-i^iir = l-p> 
Jo <P(x)dx 

Ulip)= r 1 ^ w =p-Jo <t>{x)dx 

The mean of the first absorption time given Y(0) = p is given by: 

T{p) = 2U0(p)£[v(x)(/>(x)}-1 y%(y)dy\dx 

+ 2U1(p)f [vfrMx)]-1 | f <j>{y)dy\dx 

= 2 ( l - p ) / (l-x)~1dx + 2p [ x~xdx 
Jo Jp 

= -2 (1 - p) log(l - p) - 2plog(p) = log{(l - pfQ-P),?*}-1. 

The variance of the first absorption time given Y(0) = p is V(p) = W(p) -
T2(p), where W(p) is given by: 

W(p) = 4U0(p) J"' TWlvix^ix)}-1 UX <P(y)dy\ dx 

+ Wx{p) j TixMxMx)]-1 U <t>{y)dy\dx 

= 4 ( l - p ) / T{x){l-x)~ldx + ±p f T(x)x~1dx. 
Jo JP 

Example 7.6. Absorption probabilities of gene frequency in 
Moran's model of genetics. In the Moran's model of genetics considered 
in Examples 6.10 and 7.3, if ai = a2 = 0 (no mutation), then O and M 
are absorbing states; we may then apply (7.24), (7.26), (7.29) and (7.31) to 
compute the ultimate absorption probabilities, the mean absorption times, and 
the variances of first absorption times, valid to the order of 0(M~2). 
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Put t ing ai = a2 = 0 (i.e. a.\ — a2 = 0),Ai = A and \2 = \+ j^C, then 

tp{x) = exp I -2M I 7—j^dy I oc exp i -~r(x \ • 

Hence, 

SSl>(x)dx_ fie-K*dx (1-e-Kp) 
l W &1>{x)dx fZe-i<*dx (1-e-K) ' 

where 

and g = 1 — p. 
Letting £ —> 0 and applying the L'Hospital rule, we have then: 

lim Ui(p) = p , lim U0{p) = l-p = q, 
C->o c->o 

,. _,, , Af f /•" a; , f x , 
lim i (p) = — < o / —; r-dx + p I —, rdx 
c_,o yy> A \Vo z(l-x) Jo x(l - x) 

~ -y{9log9+plogp}, 
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and 

lim W(p) = - 2 ( ^- ) \q I — - — - { x l o g x + (I - x)\og(l - x))dx 
\ q h x{l-x) 

+ P —,——rz(x\ogx+(l -x)log(l-x))dx\ 
J0 x{x + l) ) 

These results are comparable to those of the Wright's model with no 
selection and no mutation as given above. 

7.4. Complements and Exercises 

Exercise 7.1. Consider the Wright model in population genetics for one 
locus with two alleles A : a. Under the assumption of selection, mutation, 
immigration and migration, the frequency of A gene is a diffusion process with 
state space [0,1] and with diffusion coefficients given by (See Example 6.9, 
Case 6): 

m(x) = x(l - aj)[aia: + a 2 ( l - 2a;)] - 71a; + 72(1 - x), 

and v(x) = x{l — x). Assume that Ncti is finite for i = 1,2, where N is 
the population size. Using results of Example 6.4 and the theories in Sec. 7.1, 
derive an approximation to the first two smallest eigenvalues and the associated 
eigenvectors of the associated differential equation, to the order of 0(N~2). 
Hence derive an asymptotic distribution of the conditional density f(p, x; t) to 
the order of 0(N~2). 

Exercise 7.2. Consider the Wright model in population genetics for one 
locus with two alleles A : a. Suppose that the genotype aa is lethal and A is 
dominant over a so that AA and Aa have the same phenotype. Assume that 
there are mutations from A —> a and from a —t A and there are immigration 
and migration as given in Case 6 of Example 6.9. Then, it was shown in 
Example 6.9 that to the order of 0(N~2), the frequency Y(t) of the A allele 
is a diffusion process with state space [0,1] and with diffusion coefficients 

< m(x) = 72(1 - x) - 712; - — — , v(x) = x(l - x) L 
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Further, the states 0 and 1 are regular boundaries. Show that the density <j>(x) 
of the stationary distribution is given by: 

</>(x) = Cx2^-\l - x)2^-\l - x2), 

where C is a normalizing constant satisfying fQ (j>(x)dx = 1. 

Exercise 7.3. Consider the Wright model in Exercise 7.1 and assume that 
ct\ = 2c*2 = 2Z. (This is the case of additive selection; see [5]). Then, 
during the time period [t,t + At), the change of gene frequency of A allele 
given Y(t) = x can be represented by AY(t) - Y(t + At) - Y(t) = x(l -
x)Z + [72(1 — x) — jix] At + e(t), where Z is the random variable representing 
the intensity of selection with mean EX — sAt -f- o(At) and with variance 
Var(Z') = a2At + o{At) and where e(t) is the random disturbance with mean 
0 and variance x(l — x)At. Under this condition, to the order of 0(N~2), the 
frequency Y (t) of the A allele at time t (t > 0) is a diffusion process with state 
space [0,1] and with diffusion coefficients 

{m(x) = sx(l — x) — ^\x + 72(1 — x), v{x) = a2x2(l — x)2 + x(l — x)} . 

This is the model describing random variation of selection first considered 
by Kimura [6]. In this case, the states 0 and 1 are regular boundary points. 

Let W = 4y and put Ai = \{l + y/1 + 4W) (Ai > 1) and A2 = i ( l -
VI + 4W) (A2 < 0). Then v(x) = CT2(AI - a;)(a; - A2). Show that the density 
of the stationary distribution is given by 

<j>{x) = Cx**-\\ - xfn-^Xy - x)Wi-\x - X2)
W2~\ 0 < x < 1, 

where 
2 

Wi = z~(sW + 7iAi - 72A2), 
M — *2 

2 
W2 = —(sW + 71-̂ 2 - 72A1), 

Ai - A2 

and C is a normalizing constant satisfying the condition J0 4>(x)dx = 1. 

Exercise 7.4. Prove Eq. (7.31). 

Exercise 7.5. Consider the Wright modwel given in Exercise 7.2. Assume 
that {-ji = 0,i = l ,2}so that there are no mutations and no immigration and 
migration. In this case the states 0 and 1 are absorbing barriers. 
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(a) Obta in the ul t imate absorptions into 0 and 1. 

(b) Derive the mean and the variance of first absorption times. 

E x e r c i s e 7.6. Let {X(t),t > 0} be a logistic bir th-death process with s ta te 

space 5 = ( 0 , 1 , . . . , M) and with bir th ra te 6j(i) = ib(l - i/M) and dea th ra te 

di(t) = id(l — i/M). Then, it is shown in Example 6.9 tha t to the order of 

0(M~2), {Y(t),t > 0} is a diffusion process with s ta te space [0,1] and with 

diffusion coefficients 

{m(x) = ex(l — x), v(x) = ux(l — x)} , 

where {e = b — d, u> = b + d}. In this case the s tates 0 and 1 are absorbing 

barriers. 

(a) Obta in the probabilities of ul t imate absorptions into 0 and 1, respec­

tively. 

(b) Derive the mean and the variance of first absorption times. 
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Chapter 8 

State Space Models and Some 
Examples from Cancer and AIDS 

As defined in Definition 1.4, state space models (Kalman filter models) of 
stochastic systems are stochastic models consisting of two sub-models: The 
stochastic system model which is the stochastic model of the system and the 
observation model which is a statistical model based on some data from the sys­
tem. That is, the state space model adds one more dimension to the stochastic 
model and to the statistical model by combining both of these models into 
one model. It takes into account the basic mechanisms of the system and 
the random variation of the system through its stochastic system model and 
incorporate all these into the observed data from the system; furthermore, it 
validates and upgrades the stochastic model through its observation model and 
the observed data of the system. It is advantageous over both the stochastic 
model and the statistical model when used alone since it combines information 
and advantages from both of these models. Given below is a brief summary of 
the advantages over the statistical model or stochastic model used alone. 

(1) The statistical model alone or the stochastic model alone very often 
are not identifiable and cannot provide information regarding some of the 
parameters and variables. For example, the backcalculation method (a sta­
tistical model of HIV epidemic) in AIDS research is not identifiable so that 
one cannot estimate simultaneously the HIV infection and the HIV incubation 
distribution; see [l] and [2, Chap. 5]. By using state space model, this difficulty 
is easily solved; see [2-4]. 

337 
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(2) State space model provides an optimal procedure to updating the model 
by new data which may become available in the future. This is the smoothing 
step of the state space models; see [5-7]. 

(3) The state space model provides an optimal procedure via Gibbs 
sampling to estimate simultaneously the unknown parameters and the state 
variables of interest; see [3, 4]. For example, by using the AIDS incidence 
data for the observation model in the state space model, the author and his 
associates were able to estimate the recruitment and immigration rates as well 
as the retirement and death rates besides the HIV infection, the HIV incu­
bation, the numbers of S people, I people and AIDS incidence in the Swiss 
populations of IV drug users and homosexual/bisexual men [4]. This is not 
possible by other models used alone. 

(4) The state space model provides an avenue to combine information from 
various sources. For example, this author and his associates have attempted 
to link the molecular events at the molecular level with the critical events 
at the population level in carcinogenesis via the multi-level Gibbs sampling 
method [8]. 

The state space model was originally proposed by Kalman and his associates 
in the early 60's for engineering control and communication [9]. Since then it 
has been successfully used as a powerful tool in aero-space research, satellite 
research and military missile research. It has also been used by economists 
in econometrical research [10] and by mathematician and statisticians in time 
series research [ll] for solving many difficult problems which appear to be 
extremely difficult from other approaches. Since 1995, this author and his 
associates have attempted to apply the state space model and method to AIDS 
research and to cancer research; see [2-4, 12-23]. Because of its importance, in 
this chapter and the next chapter we will illustrate how to construct state space 
models for some problems in cancer and AIDS and demonstrate its applications 
to these areas. 

8.1. Some HIV Epidemic Models as Discrete-Time Linear 
State Space Models 

In the first application of state space models including those by Kalman, 
time is discrete and both the stochastic system model and the observation 
model are linear functions of the state variables. These are the discrete-time 
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linear state space models. In general, these state space models can be 
expressed as: 

(A) Stochastic System Model: 

X(t + l) = F(t+l,t)X(t)+e(t + l); 

(B) Observation Model: 

Y(t + l) = H(t + l)X(t + l)+e(t + l), 

where e (t + 1) is the vector of random noises associated with X (t + 1) and 
e(t + 1) the vector of random measurement errors associated with measuring 
the observed vector Y(t +1) and where F(t + l,t) and H(t + 1) are transition 
matrices whose elements are deterministic (non-stochastic) functions of time 
t. In this model, the usual assumptions are: 

(1) The elements of ,e(£)'s are independently distributed random noises 
with means 0 and with covariance matrix Var[re(t)] = V(t). 

(2) The elements of e(t)'s are independently distributed random errors 
with means 0 and with covariance matrix Var[e (£)] = £(£). 

(3) The £ (<)'s are independently distributed of the e(T)'s for all t > to and 
T>t0. 

(4) The ,e(£)'s and the e(i)'s are un-correlated with the state variables 
X(T) for all t > to and r > to. 

In Example 1.1, we have illustrated how a hidden Markov model of HIV 
epidemic as proposed by Satten and Longini [24] can be expressed as a discrete-
time linear state space model. In Subsec. 2.8.1 and in Example 2.17, we have 
demonstrated that for finite Markov chains, if some data sets are available from 
the system, then it can be expressed as discrete-time linear state space models. 
The following two examples show that some of the HIV transmission models 
can be expressed in terms of discrete-time linear state space models. These 
are the models first proposed in [12, 14, 17, 23]. Notice that in the example 
in Subsec. 8.1.1, the dimension of X (t) increases with time t. This case has 
been referred to as an expanding state space model by Liu and Chen [25]. 
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8.1.1. A state apace model with variable infection for 
HIV epidemic in homosexual populations 

In Subsec. 2.8.2, we have developed a stochastic model for the HIV epidemic 
in homosexual populations or populations of IV drug users. In this model, the 
state variables are X(t) = {S(t),I(r,t),r = 0 , 1 , . . .,t, A(t)} with t denoting 
calendar time. When some observed data are available from the system, then 
one can develop a state space model for this system. Using the stochastic 
process from Subsec. 2.9.2, the stochastic system model of this state space 
model is given by the stochastic Eqs. (2.33)-(2.36) in Subsec. 2.9.2. Let Y(t) 
be the observed number of AIDS cases at time t. Then the equation of the 
observation model of the state space model is given by: 

Y(t) = A(t) + e(t), 

where e(t) is the measurement error in reporting AIDS cases at time t. 
The e(i)'s are usually associated with under-reporting, reporting delay 

and/or other errors in reporting AIDS cases. When such reporting errors 
have been corrected, one may assume that the e(t)'s have expected values 0 
and have covariances Cov[e(i), e(r)] = 5tT<7\(t), where 5ij is the Kronecker's 
6. These random errors are also un-correlated with the random noises 
e (t) = {es(t), eu(t), u = 0,...,t, €A(t)}' denned in Subsec. 2.8.2. In this model, 
if one replaces ps(t) by its estimates respectively, then one has a discrete-
time linear state space model as given above. This model was first proposed 
by Tan and Xiang [17] (see also [3, 4]) for the HIV epidemic in homosexual 
populations. 

To present the state space model in matrix form, denote {<j>s(t) = 1 — 
ps(t),(t>i{t) = l-ji(t),i = 0, ! , . . . ,<} and put; 

>s( t ) 0 0 

Ps{t) 0 0 

0 4>0{t) 0 

F{t + l,t)= 0 0 Mt) 

0 0 0 

0 70 (t) 7 l ( t ) 

. . . o 

.. . o 

.. . o 

•• 0 

•• M*) 
•• 7*(*) 

0" 

0 

0 

0 

0 

0 
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Then, 

X(t + l) = F(t + l,t)X(t)+e(t + l). 

The expected value of ie(t) is a vector of zero's and the variances and 
covariances of elements of e{t) are given in Table 8.1. 

8.1.2. A staged state-space model for HIV epidemic in 
homosexual populations 

In Subsec. 2.8.2, we have developed a staged-model for the HIV epidemic in 
homosexual populations. In this model, the state variables are {S(t),I(r, t), 
r = l,...,k,A(t)}. The stochastic equations for these state variables are 
given by Eqs. (2.39)-(2.43). By using these equations as the equations for 
the stochastic system model and by using Eq. (8.1) as the equation for the 
observation model we have a staged state space model for the HIV epidemic 
in homosexual populations. In this model, if estimates of ps(t) are available, 
then by substituting these probabilities by its estimates respectively, we have 
a discrete-time linear state space model as given above. This state space 
model was first proposed in [12, 14, 23] for the HIV epidemic in homosexual 
populations. 

Table 8.1. The variances and covariances of the random noises for the chain binomial model 
of HIV epidemic. 

CSs(t + 1, r + 1) = Cov[£ s( t + 1), £ S ( T + 1)] = 5tTVs(t + 1) = 5trE{S(t)ps(t)[l -ps( t ) ]} ; 

CSu(t + 1, T + 1) = Cov[e s(t + 1), £ u ( r + 1)] = -c5tT<5uoVs(t + 1); u = 0 , . . . , t + 1; 

CSA(t + l,T + l) = Cov[e s(t + 1), £ A ( T + 1)] = 0. 

For u, v = 0 , . . . , t, t > 0 and T > 0, 

Cuv(t + 1, T + 1) = Cov[e u + i ( t + 1), £ „ + I ( T + 1)] 

= 6tT6uv{6ouVs(t + 1) + (1 - <5ou)V7(u + 1, t + 1)} , 

where, for u = 0,...,t, 

V/(u + 1, t + 1) = E{I(u, t)bu(*)[l - 7«(*)]-

CAA(t + l,r+l) = Cov[eA(t+l),eA(T+l)] = StT £ u = o Vf(« + 1, t + 1). 

For u = 0 , . . . , t + 1, 

CAu{t + 1, r + 1) = Cov[£u(t + 1), eA(r + 1)] = ~StT(l - 5uQ)Vi(u, t + 1). 
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To present the stochastic dynamic model in matrix form, put ips(t) = 
l + Mt)-Ps(t)-ds(t) and{Vv(i) - l + ur{t)-(l-6rk)lr(t)-(l-6rl)pr(t)-
ur(t) — dr(t), r = 1, . . . , k) and put: 

\jjs{t) 0 

Ps(t) Vi(t) fo(t) 

7i(«) Mt) /%(*) 
F(t + l,t) 

0 LJi(t) 

Then, the stochastic system model is 

7fc_2(t) Vfc-i(*) &(*) 

7fc-i(*) Vfc(<) 0 

Wfc(t) 1 

A-(i + l) = F(t + M ) £ ( t ) + 6 ( t + l ) , 

where £ (£) is the vector of random noises given by: 

e(t) = [es(t),e1(t),...,ek(t),eA(t)}'. 

The expected value of the random noise e (t) is zero and the variances and 
covariances of these random noises are given in Table 8.2. 

In [23], an additional observation model has been given by the total 
population size. Let Yi (t) be the total number of AIDS cases at time t including 
those who died from AIDS during [t — 1, t) and Y% (t) the sum of the total popu­
lation size in the system at time t and the number of people who died from 
AIDS during [t— l , i ) . Let e\{t) and e2(i) be the measurement errors for Y\(t) 
and YbC*) respectively. Then, 

Y1(t) = A(t) + e1(t), 

5 

Y2{t) = S(t) + *£lr(t) + A(t) + e2{t). 
T=l 

In the above equations, Yi (t) can be obtained from the surveillance reports 
from CDC of the United States or the World Health Organization (WHO); 
Y2{t) is usually available from population surveys and AIDS surveillance 
reports. In general, ei(t) is associated with AIDS report errors and e2(t) with 
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Table 8.2. The variances and covariances of the random noises for the staged model of HIV 
epidemic. 

Css{t + 1, r + 1) = Cov[e s(t + 1), es(r + 1)] = <5tTVar[£S(t + 1)], where 

Var[es(t + 1)J = E{S{t)\ps{t) + ^ ( t ) ] [ l - ps(t) - »s(t)}} + a2
s(t) with 

Var[fls(t)]=4(*); 

CSu(t + 1, r + 1) = Cov[es(t + 1), e u ( i + 1)] = -SulStTE{S(t)ps(t)[l -ps(t) - (ts(t)]} 

for u = 1 , . . . , fc; 

C S j 4 ( t + 1, T + 1) = Cov[e s(t + 1), eA(r + 1)] = 0 for all t, r ; 

Cu«(t + 1, T + 1) = Cov[eu(t + 1), e„(T + 1)] = <5tr{<5UuVar[eu(t + 1)] + Sv,u+1Cov[eu(t + 1), 

«u+l(* + 1)1 + Sv,u+2Cov[eu(t + 1), eu+2(t + 1)] + ^ . u - i C o v ^ - x ^ + 1), eu(t + 1)]} 

for all u, v — 1 , . . . , fc, 

where 

V„(t + 1) = Var[eu(t + 1)] = 6luE{S(t)ps(t)[l - pS(t)]} + (1 - * i„ )u / (u - 1, * h „ _ i ( t ) 

[1 - 7 „ _ i ( t ) ] + (1 - « „ * > / ( « + l , t ) /3„+ i ( t ) [ l - /3„+i ( t ) ] + « / K t ) { p ( / „ ; t ) [ l - p ( J „ ; t ) ] } + 

o-l(t), with p ( / u ; <) = ( ! - *ufc)7u(*) + (1 - <5iu)/9u(t) + w„(t) + M * ) for u = 1 fc, 

where uj(i>,t) = £J(i>,t),cr5l(t) = Var[B/(r,t)] and /3i(t) = 0, 

C„ ,„ + i ( t + 1) = Cov[£v(t + 1), e„+i(t + 1)] = - u j ( u , t ) 7 „( t ){ l - 7 „( t ) - (1 - <5i„)/M*)-

w„(i) - M * ) } - « / ( " + M)A>+i(*){l - A,+i(*) - w.+i(f) - (1 - <Wl,k) 7«+l(*)~ 

M«+i(*)}. for w = 1, . . . , * : - 1, 

C„,v+3(t + X) = Cov[e„(t + l ) ,£„+ 3 ( t + l)] = - u / ( u + l , t ) /3„+ i ( t )7 t P + 1 ( t ) , for 

v - 1 , . . . , fc - 2; 

C A v ( t + 1, r + 1) = Cov[£v(t + 1), £ A ( r + 1)] = -StTtii(v, t)uv(t)[l - uiv(t) - (1 - <?„*) 

7«W - A>(*) - /*«(t)], for u = 1 , . . . , fc; 

C ^ ( t + 1, T + 1) = Cow[eA{t + 1), £A(T + 1)] = < J t r { E * = l « / ( " ! * W * ) [ 1 ~ <"*(*)]}• 

population survey errors. Let Y(t) = [Yi(t),Y2(t)]' and e(t) = [ei(t),e2(i)]'. 
Then in matrix notation, the observation equation is given by the stochastic 
equation 

Y(t) = H(t + l)X(t)+e(t), 

where 
ro o o o o o i' 

H{t) = 
1 1 1 1 1 1 1 
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8.2. Some State Space Models with Continuous-Time 
Stochastic System Model 

In many state space models, the stochastic system model is usually based on 
continuous time. This is true in HIV pathogenesis as well as in carcinoge­
nesis. In this section we give some examples from cancer treatment and HIV 
pathogenesis. 

8.2.1. A state space model for drug resistance in 
cancer chemotherapy 

In Example 1.1, we have considered a drug resistance model in cancer treat­
ment. In this model, the state variables are the number of sensitive cancer 
tumor cells (Xi(t)) and resistant cancer tumor cells {X-2{t)) over time. Suppose 
that the total number of tumor cells have been counted at times tj,j = 1 , . . . , n. 
Then we can develop a state space model with stochastic system model given 
by Eqs. (8.1)-(8.2) and with observation model given by Eq. (8.3). This is the 
state space model first proposed by Tan and his associates in [26]. 

8.2.1.1. The stochastic system model 

As shown in [27], one may assume that the Type-i tumor cells proliferate by 
following a stochastic birth and death process with birth rate bi(t) and death 
rate di{t). Also, many biological studies have shown that resistant tumor cells 
arise from sensitive tumor cells by mutation with rate a(t) and that one may 
ignore back mutation from resistant cells to sensitive tumor cells. To develop 
the stochastic system model, we thus denote by: 

Bs(t)(BR(t)) = Number of birth of sensitive (resistant) tumor cells during 
[t,t + At), 

Ds(t)(DR(t)) = Number of death of sensitive (resistant) tumor cells during 
[M + Ai), 

Ms(t) = Number of mutations from sensitive tumor cells to resistant tumor 
cells during [t, t + At). 

Then, as shown in Sec. 4.7, the conditional distributions of {Bs(t), 
Ds(t),Ms{t)} given X^t) and of {BR(t), DR(t)} given X2(t) are multi­
nomial distributions with parameters {Xi(t),b\(t)At,di(t)At,a(t)At} and 
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{X2{t),b2(t)At,d2(t)At}, respectively. That is, 

{Bs(t)>-Ds(*)>-Ms(i)}|Xi(t) ~ ML{Xi(t) ;6i( t)At,d1( t)At,a(t)At} 

and 

{BR(t),DR(t)})X2(t) ~ ML{X2(i);62(t)At,ci2(t)Ai}. 

Let 

Cl(t)At = [5 s( t) - Xi(t)6!(t)At] - [Z>s(*) - X i W ^ A i ] 

and 

e2(i)Ai = [Ms(t) - Xi(*)a(t)At] + [£H(t) - X2(*)fc2(i)Ai] 

-[£>H(t)-Jf2(<)d2(<)A<]. 

Then we have the following stochastic differential equations for the state 
variables {Xi(t),X2(t)} respectively: 

dXi(t) =Xi(t + At) - Xi{t) = Bs(t) - Ds(t) 

= X1(t)11(t)At + e1(t)At, (8.1) 

dX2(t) = X2(t + At) - X2(t) = Ms(t) + BR(t) - DR(t) 

= {Xi(t)o(t) + X2(t)l2(t)}At + €2(t)At, (8.2) 

where ji(t) = bi(t) - di(t),i = 1,2. 
In Eqs. (8.1)-(8.2) the expected values of the random noises {ej(t),i = 

1,2} are zero; further, these random noises are un-correlated with the state 
variables X(t) = {Xi(t),X2(t)}. Also, to order of o(At), the variances and 
the covariances of {ej(t)At,i = 1,2} are given by: 

Cov{e1(t1)At,e1(t)At} = 6tutE[X1(t)}{bl(t) + d1(t)}At + o(At), 

Cov{e2(t1)At,e2(t)Ai} = J t l, t{ELYi(t)]a(i) + \b2(t) 

+ d2(t)]E[X2(t)]}At + o(At), 

Cov{e1{t1)At,e2{t2)At} = o{At). 
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8.2.1.2. The observation model 

Let Y(i, j) denote the observed total number of cancer tumor cells of the 
ith individual at time i, with (i = l , . . . , f c , j = 1, . . . ,n) . To describe 
the observation model, we assume that with X{t) = E i = i * i ( * ) . e(i,j) = 
{Y(i, j) - X{tj)}/^X(tj) is distributed as normal with mean 0 and variance 
of independently for i = 1 , . . . , k,j = 1 , . . . ,n. Then, the observation model 
is given by the following statistical equations (stochastic equations): 

Y(i,j)=X(tj) + <Jx(tj)e(i,j), i = l,...,k, j = l,...,n, (8.3) 

where e(i,j) is the random measurement error associated with measuring 
Y(i,j) and e(i,j) ~ N(0, of) independently and are un-correlated with the 
random noises in the stochastic system equations. 

8.2.2. A state space model of HIV pathogenesis 

Consider a HIV-infected individual. For the HV pathogenesis in this individual, 
there are four types of cells in the blood: The normal uninfected CD4 + T cells 
(to be denoted by Ti cells), the latently HIV-infected CD4+ T cells (to be 
denoted by T2 cells), the actively HIV-infected CD4+ T cells (to be denoted 
by T3 cells) and the free HIV. Free HIV can infect Ti cells as well as the 
precursor stem cells in the bone marrow and thymus. When a resting l i cell 
is infected by a free HIV, it becomes a T2 cell which may either revert back 
to a T\ cell or be activated at some time to become a T3 cell. On the other 
hand, when a dividing T\ cell is infected by a free HIV, it becomes a T3 cell 
which will release free HIV when it dies. T2 cells will not release free HIV until 
being activated to become T3 cells. Further T\ cells are generated by precursor 
stem cells in the bone marrow and mature in the thymus; the matured T\ 
cells then move to the blood stream. For this stochastic dynamic system, 
Tan and Wu [28] have developed a stochastic model in terms of stochastic 
differential equations. To estimate the numbers of CD4 T cells and free HIV 
in the blood, Tan and Xiang [15] have developed a state space model for this 
system. For this state space model, the stochastic system model is expressed 
as stochastic differential equations given by (8.4)-(8.7) below; the observation 
model of this state space model is given by the statistical model given by 
Eq. (8.8) below. 



Some State Space Models 347 

8.2.2.1. Stochastic system model 

Let Ti(t),i = 1,2,3 and V(t) be the numbers of T,i = 1,2,3 cells and free 
HIV at time t respectively. Then X(t) = {Ti{t),i = l ,2 ,3,V(t)} is a four-
dimensional stochastic process. To derive stochastic differential equations for 
these state variables, consider the time interval [t, t + At) and denote by: 

(1) S(t) = Number of T\ cells per mm3 blood generated stochastically by 
the precursor stem cells in the bone marrow and thymus during 
[t,t + At); 

(2) G\{t) = Number of T\ cells per mm3 generated by stochastic logistic 
growth of Ti cells during [t, t + At) through stimulation by free 
HIV and existing antigens; 

(3) Fi(t) = Number of Ti cells infected by free HIV during [t, t + At); 
(4) G2(t) — Number of T2 cells among the HIV-infected T\ cells during [t,t + 

At); 
(5) F2(t) = Number of T2 cells activating to become T3 cells during [t, t+At); 
(6) Di(t) = Number of deaths of Tt cells during [t, t + At), i = 1,2,3; 
(7) Dv(t) = Number of free HIV which have lost infectivity, or die, or have 

been removed during [t, t + At); 
(8) N(t) = Average number of free HIV released by a T3 cell when it dies at 

time t. 

Let k\ be the HIV infection rate of T\ cells, &2 the rate of Ti cells being 
activated, fit (i = 1,2,3) the death rate of T, cells (i = 1,2,3) and fiy the rate 
by which free HIV are being removed, die, or have lost infectivity. Let 7 be 
the rate of proliferation of T\ cells by stimulation by HIV and antigens, w(t) 
the probability that an infected Ti cell is a T2 cell at time t and s(t) the rate 
by which T\ cells are generated by precursor stem cells in the bone marrow 
and thymus at time t. Then the conditional probability distributions of the 
above variables given X (t) are specified as follows: 

S(t)\V{t) ~ Poisson with mean s(t)At, 
[Gi(t),.Di(t)]|Ti(t) ~ Multinomial [Ti(t);&r(*)At,/xiA<], 
[F1(i),I>v(i)]|[V'(t).2'i(t)] ~ Multinomial (V(*);fciTi(*)At,/iyAt], 
[F2(t),T»2(t)]|T2(t) ~ Multinomial [T2(t);fe2At,/x2At], 



348 State Space Models and Some Examples from Cancer and AIDS 

• G2(t)\Fi(t) ~ Binomial [Fi(t);u(t)\, 
• D3(t)\T3(t) ~ Binomial [T3(t); ^3At], 

where bT(t) = 7[1 - £ j = 1 T.,M/Tmax]. 

Given X( t ) , conditionally S(t), [ d ^ . D i W ] , [*!(*), ZV(*)]> [ ^ W . ^ W ] . 
and -Da(£) are independently distributed of one another; given i*i(£), 
conditionally G?2(<) is independently distributed of other variables. 

Let €i(t),i = 1, 2,3,4 be defined by: 

eiifydt = [S(t) - s(t)dt] + [Gi(t) - br(t)Ti(t)dt] 

- \Fx{t) - kiTiitWQdt] - [Dx(t) - inTtftdt], 

e2(t)dt = [G2(t) - uWkiVMTiMdt] - [F2(t) - k2T2(t)dt] 

- [D2(t) - H2T2(t)dt], 

e3(t)dt = {[F^t) - hTiWVflAt] - [G2(t) - wiQktTiWVWdt]} 

+ [F2(t) - k2T2(t)dt] - [D3(t) - / i3(t)r3(t)dt], 

c 4 ( t ) * = N(t)[D3(t) " T3(t)fi3dt] - [Fi(t) - kxTi{t)V(t)dt\ 

- [Dv{t) - pvV(«)cft]. 

Using these distribution results, we obtain the following stochastic diffe­
rential equations for Ti(t),i = 1,2,3, V(t): 

dTi(t) = Ti(« + dt) - Ti(t) = S(t) + Gi(t) - Fi(t) - £>i(t) 

= {s(t) + 6r(*)2i(*) - AtiZi(t) - fciF^Ti^)}^ + ex(t)dt, (8.4) 

dT2(t) = T2{t + dt) - T2(t) = G2(t) - F2{t) - D2(t) 

= {w(i)AiV(t)Ti(t) - /i2T2(i) - k2T2{t)}dt + e2(t)dt, (8.5) 

dT3(t) = T3(t + dt) - T3(t) = [Fx{t) - G2(t)} + F2(t) - D3(t) 

= {[1 - w(t)]fciK(t)Ti(i) + k2T2(t) - fx3T3(t)}dt + e3(t)dt, (8.6) 

dV(t) = V(t + dt) - V(t) = N(t)D3(t) - Fi(t) - Dv(t) 

= {N(t)fx3T3(t) - kiV(t)Ti(t) - nvV(t)}dt + ei(t)dt. (8.7) 
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In Eqs. (8.4)-(8.7), the random noises €j(t), j = 1,2,3,4 have expectation 
zero. The variances and covariances of these random variables are easily 
obtained as Cov[ei(t)dt, €j(T)dt] = 8(t — T)Qij(t)dt + o(dt)y where 

Qu{t) = V a r h ^ J = E{s(t) + br{t)Tx(t) + [MI + * i * W i ( * ) } , 

Q12(t) = Cov[ci(t),e2(t)] = -fc lW(t)E[V(t)Ti(t)], 

Quit) = Cov[6i(t),c3(t)] = -fci[l - w C i J l E ^ t J T ^ t ) ] , 

Quit) = Cov[Cl(t),C4(*)] = hEWTiit)], 

g2 2( i ) = Var[e2(t)] = E ^ u W V ^ l t ) + (/x2 + fe2)T2(i)], 

Q23(i) = Cov[e2(i),£3(i)] = -E{w(t)[l - ^ (* ) ]* i^ (* ) r i (0 + *2r2(*)}, 

Q34(t) = Cov[£2(i),e4(t)] = -fc lW(t)E[V(t)Ti(t)], 

Quit) = Var[e3(*)] - E{[1 - «/(*)]*! V ^ p ) + fc2T2(i) + /i3T3(i)} , 

g34(*) = Cov[e3(t), c4(t)] = - [1 - w ^ i E ^ ) ^ ) ] - iV( t ) W Er 3 ( t ) , 

Q44(i) = Var[e4(t)] = E{iV2(t)/x3T3(t) + [/xy + hT^Vit)} . 

By using the formula Cov(X,y) = E{Cov[iX,Y)\Z]} + Cov[EiX\Z), 
E(Y\Z)], it can be shown easily that the random noises e,(i) are un-correlated 
with the state variables Ti(t), i = 1,2,3 and V(£). Since the random noises 
€jit) are random variables associated with the random transitions during the 
interval [t,t + At), one may also assume that the random noises e -̂(t) are 
un-correlated with the random noises ei (r) for all j and Wit^r. 

8.2.2.2. The observation model 

Let Yj be the log of the observed total number of CD4+ T-cell counts at time 
tj. Then the observation model, based on the CD4+ T-cell counts, is given by: 

Ys = log E%) 
. i = i 

+ e j , j = l,...,n, (8.8) 

where ej is the random error associated with measuring yj. 
In Eq. (8.8), one may assume that ej has expected value 0 and variance a"j 

and are un-correlated with the random noises of Eqs. (8.4)-(8.7) of the previous 
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section. As shown in [28], one may also assume that ej is un-correlated with 
eu if the absolute value of tj — tu is greater than 6 months. 

8.3. Some State Space Models in Carcinogenesis 

In the past 5 years, this author and his associates have developed some state 
space models for carcinogenesis. In this section we will thus present some of 
these models. 

8.3.1. The state space model of the extended multi-event 
model of carcinogenesis 

In Example 1.5, we have presented the fc-stage (fc > 2) multi-event model 
first proposed by Chu [29] in 1985; see also [30-35]. In human beings, these 
models are useful to describe the cascade of carcinogenesis of colon cancer, 
lung cancer and breast cancer which involve many oncogenes and suppressor 
genes; see [21, 36, 37]. A serious shortcoming of this model is that it has 
ignored the cancer progression by assuming that each primary cancer tumor 
cell grows instantaneously into a malignant cancer tumor; see Remark 8.1. 
In many practical situations, however, this assumption usually does not hold 
and may lead to confusing results; see [38]. Because, as shown by Yang and 
Chen [39], each cancer tumor develops by clonal expansion from a primary 
cancer tumor cell, Tan and Chen [21] have resolved this difficulty by assuming 
that each cancer tumor develops by following a stochastic birth-death process 
from a primary fc-stage initiated cell. This model has been referred to by Tan 
and Chen as the extended fc-stage multi-event model. A state space model 
for this model has been given by Tan, Chen and Wang [22]. In this state 
space model, the stochastic system model is represented by the stochastic 
differential equations given by (8.9)-(8.10) given below; the observation model 
is represented by a statistical model given in Subsec. 8.3.1.2 below involving 
data on the number of intermediate foci per individual and/or the number of 
detectable malignant tumors per individual. 

Remark 8.1. For the fc-stage multi-event model as described in [30-32], it 
is assumed that each primary Ik cell grows instantaneously into a malignant 
cancer tumor in which case one may consider each i*, cell as a cancer tumor. To 
relax this assumption and for modeling generation of malignant cancer tumors, 
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we define the Ij cells which arise directly from Ij-\ cells by mutation or genetic 
changes as primary Ij cells. Thus, Ij cells which arise from other Ij cells by 
cell division are referred to as secondary Ij cells. Thus, in the extended fe-stage 
multi-event model, malignant cancer tumors derive from primary Ik cells by 
following a stochastic birth-death process. 

8.3.1.1. The stochastic system model 

The extended &-stage multi-event model views carcinogenesis as the end point 
of k {k > 2) discrete, heritable and irreversible events (mutations or genetic 
changes) and malignant cancer tumors arise from the primary Ik cells through 
clonal expansion. An important feature of this model is that it assumes 
that normal stem cells and intermediate-stage cells undergo stochastic cell 
proliferation (birth) and differentiation (death). Let N = IQ denote normal 
stem cells, Ij the j t h stage initiated cells arising from the (j — l)th stage 
initiated cells (j = l,...,k) by mutation or some genetic changes and T 
the cancer tumors arising from the primary Ik cells through clonal expan­
sion by following some stochastic birth-death processes. Then the model 
assumes N -4 I\ —> Ii —>•••—>• Ik with the N cells and the J, cells subject 
to stochastic proliferation (birth) and differentiation (death); see Fig. 8.1. 
Let Ij(t),j = 0, l , . . . , fc — 1 denote the number of Ij cells at time t and 
T(t) the number of malignant cancer tumors at time t respectively. To 
model the stochastic process U(t) = {Ij(t),j = 0 , 1 , . . . , k — l,T(t)}, let 
{bj(t),dj(t),aj(t)} denote the birth rate, the death rate and the mutation 
rate from Ij —> Ij+\ at time t for j = 0 , 1 , . . . , k — 1. That is, during the 
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Fig. 8.1. A schematic representation of the extended multi-event model of carcinogenesis. 
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time interval [t,t + At), the probabilities that an Ij cell at time t will yield 
two Ij cells, zero Ij cells, and one Ij cell and one Ij+i cell at time t + At are 
given by bj(t)At + o(At),dj(t)At + o(At) and aj(t)At + o(At) respectively. To 
model the generation of malignant cancer tumors, assume that each malignant 
cancer tumor develops from a primary Ik cell by following a stochastic birth 
and death process with birth rate bk(s,t) and death rate dk(s,t), where s 
is the onset time of the primary Ik cell. (Because growth of cancer tumor 
cells basically follow Gompertz growth [40], Tan and Chen [21] have assumed 
bk{s,t) = 6xexp{—<5r(i — s)} and dk(s,t) — dyexp{—5r{t — s)}, where bj-, dr 
and 6T are non-negative numbers.) 

8.3.1.2. Stochastic differential equations for Ij cells, 
j = 0,l,...,k-l 

To derive stochastic differential equations for these cells, let {Bj(t),Dj(t), 
Mj(t)} denote the numbers of birth, of death and of mutation from 
Ij —» Ij+i for j = 0, l,...,k — 1 during the time interval [t,t + At). 
Then, as shown in Sec. 4.7, the conditional probability distribution of 
{Bj(t),Dj(t),Mj(t)} given Ij(t) for j — 0 , 1 , . . . , k - 1 is multinomial with 
parameters {Ij(t),bj(t)At,dj(t)At,ctj(t)At} respectively: 

{Bj(t), Dj{t), Mj(t)}\Ij(t) ~ ML{Ij(t); bj(t)At, dj(t)At, aj(t)At} , 

j = 0 , l , . . . , A ; - l . 

Using these distribution results, we obtain the following stochastic 
differential equations for Ij(t),j = 0 , 1 , . . . , k — 1: 

dl0{t) =I0{t + At) - I0{t) = B0{t) - D0{t) 

= I0(t)j(t)At + e0(t)At, (8.9) 

dlj(t) = Ij(t + At) - Ij(t) = Mj^(t) + Bj(t) - Dj(t) 

= {Ij-x^aj^ + Ij(t)j(t)At} + ej(t)At,j = 1 , . . . , k - 1, (8.10) 

where -yj(t) = bj(t) - dj(t),j — 0,1, ...,k- 1. 
In Eqs. (8.9)-(8.10), the random noises are given by: 

e0(t)At - [B0(t) - I0(t)b0(t)At] - [D0(t) - I0(t)d0(t)At] 



Some State Space Models in Carcinogenesis 353 

and for j = 1 , . . . , k — 1, 

€j(t)At = [Mj-^t) - I^Waj^WAt) + [Bj(t) - IjWbjMAt] 

-[DjW-IjWdjWAt]. 

From the above definition, the random noises {ej(t),j = 0 , 1 , . . . ,k — 1} 
have expectation zero conditionally. It follows that Eej(t) = 0 for j = 
0 , 1 , . . . , k - 1. Using the basic formulae Cov(X, Y) = E{Cov[{X, Y)\Z]} + 
Cov[E(X\Z),E(Y\Z)}, it is also obvious that ej(t)'s are un-correlated with 
elements of X(t). Further, using the distribution results given above, the 
variances and covariances of the £j(t)'s are easily obtained as, to order o(Ai), 
Cov(ei(t)At, ej(r)Ai) = 6(t - r)Cij(t)At + o(At), where 

Cjj(t) = Var[e,(i)] = E{[1 - ^ 0 ] / , - i ( i ) ^ - i ( t ) 

+ Ij(t)[bj(t) + dj(t)]}, (j = 0 , l , . . . , f c - l ) (8.11) 

and 

Citj(t) = Cov[ci(t), Ci(t)] = 0 for i ^ j . 

8.3.1.3. The probability distribution ofT(t) 

To model the generation of malignant cancer tumors, let Pr(s,t) be the 
probability that a primary Ik cell arising at time s will develop a detectable 
cancer tumor by time t. Assume that a cancer tumor is detectable only if it 
contains at least NT cancer tumor cells. Then, given an Ik cell arising from 
an Ik-i cell at time s, by using results from Example 4.8 and [31, 40], the 
probability that this Ik cell will yield j Ik cells at time t is given by: 

PM(J) = { 

f 1 - (h(t - s) + g(t - s))-1, if J = 1, 

* ( ' - ) V-1 Kt-s) i f . > 1 ; 

where 

h(t-s) + g(t-s)J (h(t-s)+g(t-s))2, 

h(t - s) = exp <- [bk(y - s) - dk{y - s)]dy \ 

= exp{-{eT/ST)[l - exp(-6T(t - s))]} 
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and 

g(t - s) = J bk(y - s)h{y - s)dy = (bT/eT)[l - h(t - s)\. 

Then PT(S, t) is given by: 

oo -. / i, \ \ NT — 1 

PHs,t)=^PM{j) = h{t_s)+g{t_s) {h{tJs);
s
g{t_s)) • 

(8.12) 

Theorem 8.1. (Probability Distribution of T(t) ) . Given the above 
specifications, the conditional probability distribution of T{t) given {lfc_i(it), 
u < t} is Poisson with parameters 

\{t)=l Ik-i{x)ak-i(x)PT(x,t)dx. 
Jto 

That is, 

r( t) |{/ f c_i(u), i0 < u < t} ~ Poisson{A(t)} . (8.13) 

Proof. To obtain the probability distribution of T(t), let t — t0 = nAt and 
let C(s,t) be the total number of detectable cancer tumors at time t from 
primary Ik cells arising from the 7fc_i cells by mutation during the time interval 
[s, s + At). Then, to order o(At), the probability distribution of C(s, t) given 
Mk{s) primary Ik cells at time s is binomial with parameters {Mk(s), PT(S, t)}. 
Further, one has: 

n 

T(t) = Aljmo J2 C[to + (j - l)At, t]. (8.14) 

Now, given Ik-i(s) Ik-x cells at time s, the number of Ik cells which are 
generated by mutation from these 7fc_i cells during [s,s + At) is, to order 
o(At), a binomial variable with parameters {Ik-i(s),ak-x(s)At}. By using 
the moment generation function method, it is then easy to show that the 
probability distribution of C(s, t) given 4 - 1 (s) Ik-\ cells at time s is, to order 
o(At), binomial with parameters {Ik-i(s),ak-i(s)PT(s,t)At}. 
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Hence, the conditional PGF of T(t) given {Ik-i(x),to < x < tj} is ob­
tained as: 

n 

4>(z,t) = lim JJ£{z c ( t o + ( j ' - 1 ) A M ) | I fc- i (*o + 0' - l)Ai)} 

n 

= lim J | { 1 + {z - l)Qfc_i[to + (j ~ l)At] 

x Pr[*o + C? - l )AM]A*} 7 f c - l ( t o + ( j~ 1 ) A t ) 

n 
= lim JJexpftz - l)/fc_i[t0 + (j - l)At]afc_i[t0 + (j - l)At] 

x -Pr[*o + 0' - !)Ai> * ] A < + °(A*)} 

= exp Uz -I) j Ik^{x)ak^{x)PT(x,t)dt\ . (8.15) 

The above pfg is that of a Poisson distribution with parameter \{t) and 
hence the theorem is proved. • 

Let Qr(tj~i,tj) be the conditional probability of yielding a detectable 
cancer tumor during [i,-_i,ij) given {7fc_i(a;),io < x < tj}. Theorem 8.1 
then gives: 

QT{tj-\,tj) = exp i - / Ik-i(x)ak-i(x)PT(x,tj-i)dx I 

-exp I- Ik-i(x)ak_1(x)PT(x,tj)dx\ . (8.16) 

8.3.1.4. The probability distribution of intermediate foci in 
carcinogenesis studies 

In many carcinogenesis studies, very often the experimenters may have data 
on the number of intermediate foci per individual. For example, in animal 
carcinogenicity studies on skin cancer, one may have data on the number of 
papillomas per animal and number of carcinoma per animal over time. Under 
the MVK two-stage model, papillomas are derived by clonal expansion from 
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Fig. 8.2. A two-stage (multi-event with k = 2) model carcinogenesis in initiation-promotion 
experiments. 

primary 7i cells and carcinoma are derived from primary I2 cells. This is 
represented schematically by Fig. 8.2. In the fc-stage extended multi-event 
model, let Tj denote the Type-j intermediate foci and Tj (t) the number of Tj 
foci per individual at time t. Then the Tj foci are derived from primary Ij 
cells. Using exactly the same procedures as in Subsec. 8.3.1.3, one may derive 
the probability distribution of Tjit). 

To derive the probability distribution of Tj(t), let Pj(s, t) be the probability 
that a primary Ij cell arising at time s will develop a detectable Type-j foci by 
time t. Assume that a Type-j focus is detectable only if it contains at least Nj 
Ij cells. Then, using exactly the same procedure as those in Subsec. 8.3.1.3, 
we obtain: 

Pj(S,t) 1 9j(s,t) 

where 

and 

hj(s,t) + gj(s,t) \hj(s,t) + gj(s,t) 

hj(s,t) =expl- \bj{y) - dj(y)]dy 

Ni-l 

(8.17) 

9j{s,t) = / bj(y)hj(s, 
Js 

y)dy. 

Further, the conditional probability distribution of Tj(t) given {7j_i(u), 
u < t} is Poisson with parameters Xj(t) = ftoIj-i(x)aj-i(x)Pj(x,t)dx. 
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That is, 

Tj(t)\{/,-_!(u),t0 < u < t} ~ Poisson{Aj-(*)}. (8.18) 

Let Qi(tj_i,tj) be the conditional probability of yielding a Type-i 
intermediate focus during [tj-\,tj) given {Ii-\(x),to <x<tj}. Then, 

Qi(tj-i,tj) = exp < - / Ii^1(x)ai-i(x)Pi(x,tj-i)dx \ 

- e x p < - / Ii-i(x)(Xi-i(x)Pi(x,tj)dx > . (8.19) 

The proofs of the above results are exactly the same as that in 
Subsec. 8.3.1.3 above and hence is left as an exercise; see Exercise 8.8. 

8.3.1.5. The observation model 

The observation model depends on the type of data available. In the animal 
carcinogenicity studies on skin cancer, suppose that data on the number 
of papillomas per animal over time are available. Let Y\(i,j) be the ob­
served number of papillomas for the zth animal during the time interval 
\ti,i-i,t%j),j = l,...,k with Uo = to and tik = oo. Then, the observation 
model is given by: 

Y1(i,j)=T1(tj) + e1(i,j), j = l,...,k, (8.20) 

independently for i = l,...,n, where ei(i,j) is the measurement error 
associated with counting T\{tj). One may assume that e\(i,j) ~ N(Q,a%) 
independently of the random noises in Eqs. (8.20). 

Let rij be the number of animals with intermediate foci being developed 
during [tj-i,tj) with J2j=inj — n- Then, starting with n animals with 
no intermediate foci, {rij,j = 1,...,A;} is distributed as a A:-dimensional 
multinomial vector with parameters {n; Qi(tj_i,tj),j = 1 , . . . , k}. That is, 

(rijj = l , . . . ,fc) ~ M L { n ; Q i ( t , _ 1 , t , ) , j = l,...,k}. 

Suppose that data on the number of carcinomas per animal over time are 
also available. Let Y2(i,j) be the observed number of carcinomas for the ith 
animal during the time interval [tij-i,tij),j = l,...,k with £JO = to and 
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Uk = co. Then, an additional equation for the observation model is 

Y2(i,j)=T(tj)+eT(i,j), j = l,...,k, (8.21) 

independently for i = l , . . . , n , where e r ( i , j ) is the measurement error 
associated with measuring T(tj). One may assume that e r ( i , j ) ~ N{0,aj) 
independently of e\{i\, j\) for all {i\, j\} and the random noises in Eqs. (8.21). 

Let rrij be the number of animals with detectable tumors being developed 
during [tj-i,tj) with ^7=1 m i — n- Then, starting with n animals with no 
tumor, {m,j,j = 1 , . . . , k} is distributed as a fc-dimensional multinomial vector 
with parameters {n; QT(tj-i,tj),j = 1 , . . . , k}. That is, 

(rrijj = l,...,k) ~ML{n;QT(tj-i,tj),j = l , . . . , f c } . 

8.3.2. A state space model for extended multiple pathways 
models of carcinogenesis 

While the multi-event models assume that cancer tumors develop from a single 
pathway through a multi-stage stochastic process, it has long been recognized 
that the same cancer might arise from different carcinogenic processes (See 
[31, Chap. 4], [41]). For example, in the animal studies of rats liver cancer by 
DeAngelo [41], at least four pathways are involved for the DCA-induced hepa­
tocellular carcinomas in B6C3F1 mice; that is, a carcinoma may be preceded 
directly by hyperplastic nodules, adenomas, or dysplastic foci, and through 
an indirect pathway, carcinomas may also evolve from adenomas that have 
evolved from hyperplastic nodules. Let IQ,IJ,J = 1,2,3 and W denote the 
normal stem cell, the Type-j initiated cell j = 1,2,3 and the cancer tumor 
cell, respectively. Then the model is represented schematically by Fig. 8.3. 
A state space model for this cascade of carcinogenesis has been provided by 
Tan, Chen and Wang [22]. In this state space model, the stochastic system 
model is represented by the stochastic differential Eqs. (8.22)-(8.26) given 
below and the observation model is represented by Eqs. (8.30)-(8.32) given 
below. 

8.3.2.1. The stochastic system model 

Let Io(t) and Ij(t),j = 1,2,3} denote the numbers of Jo cells and Ij cells, 
j = 1,2,3 at time t respectively. Let {T(t),Tj(t),j = 1,2,3} denote the 
number of carcinoma per animal, and the numbers of hyperplastic nodules per 
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Fig. 8.3. A multiple pathways model for hepatocellular carcinomas induced by 
dichloroacetic acid (DCA). 

animal, of adenomas per animal, and of dysplastic foci per animal at time t, 
respectively. 

Let {bj(t), dj(t)}(j = 0,1,2,3) be the birth rate and death rate of Ij cells 
(j = 0,1,2,3), respectively and {bT(s,t),d,T(s,t)} the birth rate and death 
rate of W cells at time t which arise from initiated cells at time s. Let the 
mutation rates of 7o —> Ij(j = 1,2,3), Iu —¥ Iz(u = 1,2) and Ij —¥ W(j = 
1,2,3) be given by aj(t){j = 1,2,3), pu(t)(u = 1,2) and Uj(t)(j = 1,2,3) 
at time t, respectively. Then, by using exactly the same approaches given in 
Subsecs. 5.4.2-5.4.3, we obtain the following stochastic differential equations 
for 7,(0,^ = 0,1,2,3: 

AI0(t) = I0(t + At) - I0(t) = 70(i)7o(i)At + e0{t)At, 

AIi{t) = Ii(t + At) - Ii{t) = I0(t)ai(t)At 

+ Ii{t)ji(t)At + €i(t)At, i = 1,2, 

(8.22) 

(8.23) 

Ah(t) = \ I0{t)a3{t) + J2li(t)Pi(t) + 73(t)73(t) \ At + e3(t)At, (8.24) 

where, ^(t) = bj(t) - dj(t),j = 0,1,2,3. 
The random noises £j(t)'s have expected value 0 and are un-correlated with 

the Ij(t)'s. Further, to order o{At), Cov[e i(t)Ai,e j(r)At] = 5{t - r)Qij{t)At, 
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where 

Q00(t) = E[I0(t)}[bQ(t) + d0(t)}, Qoi(t) = 0, i = 1,2,3, 

Qu(t) = E[I0(t)]ai{t) + E[Ii(t)][bi{t) + di(t)], Qi3 = Qi2 = 0, t = l , 2 ; 

2 

Q33(t) = E[I0(t)]a3(t) + Y,Wi(t))W) + E[h(t)}[h(t) + d3(t)}. 

By using exactly the same approach as in Subsec. 8.3.1.3 and in 
Theorem 8.1, the conditional probability distributions of T(t) given {Ii(t), i = 
1, 2, 3} and of Tj(t) given Ij(t) are given respectively by: 

T(t)|{/i(u),to < « < * , » = 1,2,3} ~ Poisson{A(i)} , (8.25) 

Tj(t)\{Ij(u),t0 < u < t} ~ Poisson{Aj(t)} , j = 1,2,3, (8.26) 

where 

3 , t 

1 = 1 " ' ' O 3 = 1 

= I I0{x)aj 
Jt0 

^j(*) = / Jo(a0a:j(a!).P.,-(2:,*)da:, .7 = 1,2, 

Jto 
Io{x)a3(x) + y^Ji(x)(3i(x) Pz{x,t)dx. 

i = l 

8.3.2.2. TTie observation model 

Denote by: 

(1) Yo(i,j) = Observed number of detectable cancer tumors for the ith 
animal at time ty , j = 1 , . . . , n, where Uo = to. 

(2) Y\(i, j) — Observed number of hyperplastic nodule for the ith animal 
at time iy , j = 1 , . . . , n, where ti0 = to-

(3) Y2(i,j) = Observed number of dysplastic nodule for the ith animal at 
time tij, j = 1 , . . . , n, where i;o — to. 

(4) Yz{i, j) = Observed number of adenomas for the ith animal at time iy, 
j = 1 , . . . , n, where ti0 = i0-
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The observation model based on data {Yo(i, j),Yr(i, j),r = l ,2 ,3 , i = 
1 , . . . , n, j - 1 , . . . , k} are given by: 

Y0(i,j) = T(tj) + eT(i,j), j = l,...,k, (8.27) 

Yr{i,j) = Tr(tj)+er(i,j), j = l,...,k, r = l , 2 , (8.28) 

Y3(i,j)=T3(tj) + e3(i,j), j = l,...,k, (8.29) 

where {er(i, j), er(i, j),r = 1,2,3} are the measurement errors associated with 
measuring {T(tj),Tr(tj),r = 1,2,3} respectively. One may assume that these 
measurement errors are independently distributed as normal variables with 
means 0 and variances {a^,crf,r = 1,2,3} respectively. 

Let {QT(tj-i,tj),Qi(tj-i,tj),i = 1,2,3} denote the probabilities of 
yielding a detectable tumor, a detectable hyperplastic nodule, a dysplastic 
nodule and a adenomas during [tj-i,tj) respectively. Then, 

Qr{tj-i,tj) =exp<-^2 Ii(x)L>i(x)Pr(x,tj-i)dx > 

- exp 1 - ^2 j ' Ii(x)cJi(x)PT(x, tj)dx 1 , (8.30) 

Qi(tj-i,tj) = exp \~ I Io(x)ai(x)Pi(x,tj-1)dx \ 

— exp < — / Io(x)ai(x)Pi(x,tj)dx > , i = l , 2 , (8.31) 

and 

Q3(tj-i,tj) = exp < - / < I0(x)a3(x) + ^Tli(x)l3i(x) > P3(a;,fi_1)cfa; 

2 
I / ~J I 

— exp / ' I I0(x)a3(x) +J2li(x)0i(x) \ Piix^dx \ . 

(8.32) 
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8.4. Some Classical Theories of Discrete and Linear State 
Space Models 

In the classical analysis of state space models, the parameter values are as­
sumed known or have been estimated from other sources. The main theories 
are to derive optimal estimates or predicted values of the state variables X (£). 
These are the main results in most of standard texts on state space models 
(see for example [5-7]). In this section, we briefly summarize these results 
for discrete-time linear state space models and illustrate its applications using 
examples from AIDS epidemiology. Results for continuous-time state space 
models will be given in Sec. 9.1. 

To proceed, we thus consider the state space model given by Eqs. (8.33) 
and (8.34), where the random noises js(t) and the measurement errors e(t) 
are assumed to be distributed independently of one another with expected 
values {Ee(t + 1) = Q,Ee(t) = 0} and covariance matrices {Var[e(£)] = 
V(t),Var£(i)] = £(t)}~ 

X(t + 1) = F(t+l,t)X(t)+e(t + l,t), (8.33) 

Y(t + l) = H(t + l)X(t + l)+e(t + l), i = l , . . . , n . (8.34) 

In the classical analysis, it is assumed that the transition matrices 
F(t + l,t) and H(t) and the covariance matrices {V(t),H(t)} are given 
matrices of real numbers. The main problem is to estimate and pre­
dict X(t) based on data D{n) = {Y(j),j = 1,2, . . . , n } . To this end, 
define: 

• X(t\k) = Estimator (if t < k) or predictor (if t > k) of X (t) given data 

~ D(k) = {Y(j),j = l,...,k}, 

• Y (k + r\k) = Predictor of Y (k + r) given data D(k) for r > 0, 

• £x(^|fc) = -^(£|&) — %(t) = Residual of estimating (if t < k) or predicting 
(if * > fe) X(t)by X(t\k), 

• ey(k + r\k) -Y(k + r\k) - Y(k + r) - Residual of predicting Y(k+r) by 

Y(k + r\k), 
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• P(t\k) = \ar[e(t\k)} = Covariance matrix of the residual £x(t\k) and 
Py(k + r\k) — Var[|y(fc + r\k)] — Covariance matrix of the residual 
£y(fc + r\k). 

In the above notation, X(t\k) has been referred to in the literature as a 
(t — k)-step predictor of X (t) if t > k, a forward filter of X (t) if t — k and a 
smoother (or backward filter) of X (t) if k > t. 

To derive X(t\k), the standard least square method is to derive estimates 
by minimizing the residual sum of squares subjecting to the condition of 
unbiasedness. This is equivalent to seeking a linear estimator X (t\k) = 

-R(O) + Yli=i R(})1C (}) °f % (t) satisfying the two conditions: 

(l)E[$(t\k)\X(t)] = X(t),and 

(2) ti{D[X(t\k) - X(t)][X(t\k) - X(t)]'} is minimized for any positive 
definite matrix D. 

By the Gauss-Markov theorem of least square method (see [42]), this pro­
cedure then gives the linear, minimum varianced, unbiased estimator of X (t) 
given data D(k) or the BLUE (best, linear and unbiased estimator) of X (t) 
given data D(k), see Remark 8.2. These results are summarized in the follow­
ing two theorems. 

Remark 8.2. We define X{t\k) as an unbiased estimator (or predictor) of 
X(t) given data D(k) if £J[^(t|fc)] = 0. Define X (t\k) as the unbiased and 
minimum varianced estimator (or predictor) or BLUE of X (t) given data D(k) 

if X{t\k) satisfies the following two conditions: 

(1) X {t\k) is an unbiased estimator (or predictor) of X (t) given data D(k). 

(2) For any other unbiased estimator (or predictor) X W (t\k) of X (t) given 
data D{k) with residual e^*\t\k) = X(*\t\k) - X(t) and with P(*)(t|fc) = 
Var[^^*)(i|fc)], p(*\t\k) — P(t\k) is a non-negative definite matrix. 

(That is, x'[P(*\t\k) — P(t\k)]x > 0, for any vector x of real numbers 
with at least one non-zero element.) 
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8.4.1. Some general theories 

Given the above specification, in this section we give some general theories 
which are the gold standard methods for discrete-time linear state space models 
in most texts of state space models. 

Theorem 8.2. Given the estimator of X(0) as X(0|0) with E[e(0\0)] = 
0 and Var[^(0|0)] = P(0|0), the linear, unbiased and minimum varianced 
estimator (filter) or BLUE X(j\j) of X(j) given data D(j) are given by the 
following recursive equations: 

(1) Under the assumption, the estimator of X(Q) is JsT(0|0) with 
E[e (0|0)] = 0 and Var[e (0|0)] = P(0|0). 

(2) Forj = 0,l,...,n = tM, 

XU + l\j)=F(j + l,j)X(j\j), 

X(j + l\j + i) = X(j + l\j) + Kj+1[Y](j + 1) 

-H(j + l)X(j + l\j)}, 

where 

Kj+1 = P(j + l\j)H'(j + l)[Ey(j + I ) ] " 1 , 

and where Ey( j + 1) = H(j + l)P(j + l\j)H'(j + l) + 'E(j + 1) is the covariance 
matrix of eY(j + l\j) = H(j + l)X(j + l\j) -Y(j + 1) = H(j + l)ex(j + 
l | j ) - c ( j + l ) . 

The covariance matrices of the residuals <sx(j + l | j ) omd e x(j + l | j + 1) 
are given respectively by: 

P(j + l | j ) - F(j + l,j)P(j\j)F'(j + l,j) + V(j + 1), (8.37) 

and 

P(j + l\j + 1) = [I - Kj+1H(j + l)]P(j + l\j). (8.38) 

In the literature, the matrix Kj+i has been referred to as the Kalman gain 
matrix due to addition of the observation Y(j + 1). In the above theorem, 

(8.35) 

(8.36) 
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X(j + l\j) is a linear combination of Y (1) , . . . ,Y(j) and X(j + l\j + 1) a 

linear combination of Y"(l), ...,Y(j + 1). Also, since E[X (0|0)] = £[X(0)] , 

both X(j + l\j) and .X (j + l l j + l) are unbiased for X(j + 1); see Exercise 8.11. 

Equations (8.35)-(8.38) have been referred to as the forward filtering. 

Theorem 8.3. Given the estimator of X(0) as X(0|0) with E[e(0\0)} = 
0, the linear, unbiased and minimum varianced estimator or BLUE X (j\n) 
of X (j) given data D(n) with (n > j) is given by the following recursive 
equations: 

X(j\n) = X(j\j) + Aj{X(j + l |n) - X (j + l\j)} , (8.39) 

where 

Aj = Ptj\j)i"U + i,3)P-1U + Mi); 

(8.40) 
P(j\n) = P(j\J) - Aj{P(j + l\j) - P(j + l | n ) } ^ , 

forj = l,...,n. 

Obviously, X(j\n) is a linear combination of Y(l),...,Y(n) and 
E[X(j\n)] = E[X(j)]. Further, by mathematical induction it can easily be 
shown that P(j\j) — P(j\m) is positive semi-definite if m > j (Exercise 8.12). 
Hence the variances of X (j\j) are greater than or equal to the variances of the 
corresponding elements of X (j\m) if m > j respectively. 

Equations (8.39)-(8.40) have been referred to as backward filters. 

Proof of Theorems 8.2 and 8.3. Theorems 8.2 and 8.3 can be proved by 
standard least square theories; see [5-7]. Since the least square estimators are 
equivalent to the maximum likelihood estimators (MLE) under the assumption 
of normal distributions for the random noises and random measurement errors, 
we prove Theorems 8.2 and 8.3 by assuming normality for the random noises 
and for the random measurement errors. We will prove this by using a basic 
result from multivariate normal distributions. This basic result is: 

Let the p x 1 random vector X be normal with mean u and covari-
ance matrix S. That is, X ~ N(u,12). Partition X, u and S by X' = 
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( £ i , £2) , «' = (»!. 22) "id 

E n E12 

E2I E22 

where X i and u i are pi x 1 with (1 < Pi < p) and E n is pi x pi . Then, 
Xi ~~N{uuXu),X2 ~ N(u2,^22),X1\X2 ~ N{ui + Ei2E2-2

1(^2 -
«2),En.2} and X2\Xi ~ iV{w2 + E 2 iEf 1

1 (X 1 - «i),E22.i}, where Ej».j = 
En - E y E ^ E j i for i ^ j . 

To prove Theorems 8.2 and 8.3, let X(t\j) = E{X(t)\D(j)}, ex(t\j) = 

X ( t | j ) - X ( i ) a n d 

P( t | i ) = ^{[ |x(* | i ) ] [ i jc(* | j ) ] '} . 

where D(j) = {Y(l),..., Y(j)}. Then, from the stochastic system equation, 
X(j + l\j) = E{X(j + l)\D(j)} = F(j + l,j)X(j\j) and ex(j + l\j) = 
XU + 1|J') ~X(j + l) = F(j + l,j)ex(j\j) -e(j + 1) so that P(j + l\j) = 
F{J + ]->J)P{J\J)F{j + ^>3)' + V{3'+ !)• If the random noises ^( t ) are normally 
distributed, then 

X(j + l)\D(j) ~ AT{X(j + l | j ) , P ( j + l | j )} . 

Similarly, from the observation equation, we have: 
Y(j + l b ) = E{Y(j + l)\D(j)} = H(j + l)X(j + l\j) and eY(j + l\j) = 

Y (j + l\j) -Y(j + 1) = H(j + l ) e x O ' + l | j ) - e (j +1) so that Ey( j + l | j ) = 
E{[eY(j + l | j ) ] [ | y ( j + lb')]'} = H(j + l)P(j + l\j)H(j + 1)' + Etf + 1). 
Furthermore, the conditional covariance between X(j + l) and Y"(y + 1) given 

E y x ( j + l | j ) = Cov[Y(j + l),X(j + l)\D(j)\ 

= ff(j + 1) Var[X (j + l) |D(i)] = H(j + l)P(j + l\j). 

If the random noises £(£) and the random errors e(t) are normally 
distributed, then 

Y(j + l)\D(j) ~ N{H(j + 1)X (j + l\j) = F ( j + 1, j )X( j \ j ) , Ey( j + l | j )} . 
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Thus the conditional mean of X (j + 1) given {D(j), Y (j + 1)} = D(j + 1) is 

x{j + i\j +1) = x(j+i\j)+i:'YX(j+i\j)i:Y\j+i\j)[Y(j+i)-Y(j+i\j)} 

= X(j + l\j) + Kj+1[Y(j + 1) - H(j + l)X(j + l\j)], 

where 

Ki+1 = P(j + l\j)H'(j + l)[H(j + l)P(j + l\j)H(j + 1)' + E(j + l ) ] - 1 

is the Kalman gain matrix. 

The covariance matrix of the residual £x(j + l | j + 1) is 

p(j + i\j +1) = P(J + i\j) - E'yx0' + i\J)xY\j + IWYXU + ib') 

= {I-Kj+1H(j + l)}P(j + l\j). 

It follows that 

X(j + l)\D(j + 1) ~ N{X(j + l\j + l),P(j + l\j + 1)} . 

Notice that X(j + l\j + l) is the MLE which is the forward filter of X (j + 1) 
as given in Theorem 8.2. Notice also that from Eqs. (8.35)-(8.36), 

X(j + i\j + i)-X(j + l\j) = Kj+1[Y(j + 1) - H(j + l)X(j + l\j)} 

and from Eqs. (8.37)-(8.38), 

P(j + l\j) - P(j + l\j + 1) = Kj+1H(j + l)P(j + l\j) 

= P(j + l\j)H'(j + 1)^(1 + l\j)H(j + l)P(j + l\j) 

which is positive semi-definite. 
To prove Theorem 8.3, recall that if the random noises and random errors 

are normally distributed, then 

X(j)\D(j)~N{X(j\j),P(j\j)}. 

Hence the conditional covariance matrix between 

X (j) and Y (j +1) = H(j + l)F(j + l,j)X(j) + [H(j +1) e (j +1) + e (j +1)] 



368 State Space Models and Some Examples from Cancer and AIDS 

given D(j) is 

Exyt f ) = P(J\J)F'(j + l,j)H'(j + 1) = A(j)P(j + l\j)H'(j + 1), 

where A(j) = P{j\j)F'{j + l,j)P~\j + l\j). 
Thus the conditional mean of X(j) given D(j + 1) = {D(j), Y(j + 1)} is 

xu\j +1) = x(j\j)+ZXYU^U+mixu+1) 
-H(j + l)F(j + l,j)X(j\j)} 

= X(j\j) + A(j)Kj+1[Y(j + 1) - H(j + 1)X(j + l\j)} 

= X(j\j)+A(j){X(j + l | j + l)-X(j + l\j)} . 

The covariance matrix of the residual ex(j\J + 1) ^s 

P(j\j + 1) = PO'li) - S j r y W E ? 1 ^ + l | j ) S W ( i ) 

= PU\J) ~ A(j)Kj+1H(j + l)P(j + l\j)A'(j) 

= P(j\j) - A(j){P(j + l\j + 1) - P(j + l\j)}A'(j). 

It follows that 

X(j)\D(j + l)~N{$V\j + l),PV\j + l)}. 

By following this approach and using mathematical induction (cf. 
Exercise 8.13), we obtain: 

X(j)\D{n)~N{X(j\n),P(j\n)}, 

where 

X(j\n) = X(j\j) + A(j){X(j + l |n) - X(j + l\j)} 

and 

P(j\n) = P(j\j) - A(j){P(j + l|n) - P(j + l\j)}A'(j) 

for n > j are as given in Theorem 8.3. 
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To implement the above procedure for deriving the Kalman filter estimates 
of the state variables for given initial distribution of X (t) at time 0, one first 
derives results by using formulas in Theorem 8.2. Then one goes backward 
from n to 1 by applying formulas in Theorem 8.3. • 

8.4.2. Alternative representation of Kalman filters 
and smoothers 

Using the matrix result (/ + AB)"1 = I - A(I + BA)~1B, it can easily be 
shown that P(j + l\j + 1) = {P~\j + l\j) + H'(j + l)Vj^H{j + l ) } - 1 

and Kj+1 = P(j + l\j + l)H'(j + l)Ej+i, see Exercise 8.14. It follows that 
P(j + l\j) — P(j + l\j + 1) is a positive semi-definite matrix so that the variances 
of elements of X(j + l\j) are greater than or equal to the variances of the 
corresponding elements of X(J + l\j + 1) respectively. Furthermore, X(j + 
l\j + 1) can be expressed as (Exercise 8.15): 

X(j + l\j + 1) = {P-Hi + l|i) + H'(j + WJ^HV + l )}- 1 

x{p-\j + l\j)X(j + l\j) 

+ H'(j + yVj^HU + l)X(j + l |Y)} , (8.41) 

where 

X(j + 1\Y) = [H'(j + l)^H(j + iT'H'iJ + l)Ej^Y(j + 1) 

is the least square solution of the linear model 

Y(j + 1) = H(j + l)X(j + 1) + e(j + 1). 

Similarly, by using the matrix results (/ + AB)'1 = I - A(I + BA)~XB, it 
can be shown easily that X (j\n) can be expressed as: 

X(j\n) = {P-X{j\j)+F'{j + l,j)Vf+\F(j + l . j ) } - 1 ^ ^ ^ " ! ^ 

+ F'(j + l,j)V-+\F(j + l,j)X (j\B, n)} , (8.42) 
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where 

X(j\B,n)} = [F'(j + l,j)V~+\F(j + lJT'F'iJ + ld)V~+\X{j + l |n)} 

is the least equation solution of X (t) from X (j'+l) = F(j+l,j) X (j)+£ (j '+l) 
with X(j + l\n) replacing X(j + 1); see Exercise 8.16. 

8.4.3. Some classical theories for discrete-time linear state 
space models with missing data 

In the above model, it is assumed that data can be collected at each time 
point. In many practical situations, however, data are only collected at time 
point tj,j = l,...,k with tk < n. Denote by {Y(tj) = Z(j),e(tj) = £(j)}-
The state space model then becomes: 

X(t + l) = F{t + l,t)X(t)+e(t + l), t = l,...,n, (8.43) 

ZV)=H{j)X(ti) + £{j), j = l,...,k. (8.44) 

To derive the BLUE of X (t) when there are missing data, the basic trick 
is to reduce the model to that in Subsec. 8.4.1 at time points tj (j = 1 , . . . , fc) 
when data are available; one uses the stochastic system equation at time points 
t (t^tj,j = l,...,k) when there are no data. 

To derive the BLUE of state variables, define the following matrices: 

j - i j - i 

F(J,») = I I F(r + l>r)' for 3 ^ l> with F({>*) = YlF(T + l,r) = Ip, 
r=i r=i 

j 

<C? + 1,*) = 5 3 ^ 0 ' + l.»" + !)£(»• + 1). for 3 > *, 
r=i 

G(j + l,j) = F(tj+1,tj), j = l,...,k, 

2(j' + l) = C(*i+i,*i), j = l,...,k. 

Then the expected values of £(j), C(r+1, i)} and r](j) are vectors of zero's. 
The covariance matrices of these random vectors are given by Var[£(.?)] = 
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j 

Var[ C V + h 0] = I ] FU + 1.»" + W r + 1)^0' + 1, r + 1) 

and 

Var[2(j + 1)] = Htj+utj) = * 0 ' + 1) 

respectively. Furthermore, the V (j) are independently distributed of one an­
other and are un-correlated with the state variables. 

Denote by X(tj) = u(j) and D(j) = {Y(ti),i = l,...,j}. Then, from 
Eq. (8.43), we have: 

X(t)=F(t,t-l)X(t-l)+e(t) 

= F{t,t-2)X(t-2) + £{t,t-2) 

= --- = F(t,tj)X(tj) + C(t,tj) 

= F(t,ts)u(j) + C(t,tj), for t>tj, (8.45) 

and for j = 1 , . . . ,k, 

X(tj+i) =u(j + l) = G(j + l,j)u(j) + V(j + 1), (8.46) 

Z (j + 1) = H(j + 1) u (j + 1) + | (j + 1), t>tj. (8.47) 

Using the state space model with stochastic system model given by 
Eq. (8.46) and with the observation model given by Eq. (8.47), by Theorems 8.2 
and 8.3, the BLUE of u(j) = X(tj) given data D(j) and given data D(n) are 
given respectively by the following recursive equations: 

(1) The BLUE k(tj\j) = u(j\j) of X(tj) Given D(j). 
(a) By assumption, the unbiased estimator of ^ ( 0 ) is u(0|0) with 

Var[e (0|0)] = P(0|0) = Pu(0|0). 
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(b)Foij = 0,l,...,k, 

u(j + l\j) = G(j + l,j)u(j\j), 

u(j + l\j + l)=u(j + l\j) + KzU + l)[Z(j + 1) - H(j + l)u(j + l\j)], 

where 

KzU + 1) = Puti + W W + l ) [Sz( j + I ) ] " 1 , 

and where Ez(j + 1) = H(j + l)Pu(j + l\j)H'(j + l) + fl(j + 1) is the covariance 
matrix of ez(j + l\j) = H(j + l)u(j + l\j) - Z(j + 1) = H(j + l ) e „ ( j + 

(c) The covariance matrices of the residuals eu(j + l\j) and iu(j + l\j +1) 
are given respectively by: 

Pu(j + l\j) = G(j + l,j)Pu(j\j)G'(j + 1, j) + * ( i + 1), 

and 

Pu(j + l\j + 1) = [/ - Kzti + Wti + l)}Pu(j + 1|J) • 

(2) The BLUE X(tj\k) = u{j\k) of X(tj) Given D(k). 

u(j\k) = UtilJ) + Auti){uti + 1|«) - %ti + 1|J')} , 

where 

A.0") = Puti\J)G'ti +1, J)PU
_1(J + I |J) ; 

P-CJI*) = ^x(Jb') - Au(j){Pu(j + l\j) - Pu(j + l\k)}A'u(j), 

for j = 1 , . . . , fc. 

To derive the BLUE of X (t) for tj <t< tj+i, notice that from Eq. (8.45), 

linear unbiased estimators of X (t) can be expressed as F(t,tj)X (tj), where 

X(tj) is an unbiased linear estimator of X(tj) = u(j). Since the BLUE of 

H ti) g i v e n data D(j) and given data D(k) are given respectively by u (j\j) and 

u(j\k), hence, for tj <t < tj+\, the BLUE of X(t) given data D(j) and given 

data D(n) are given by X(t\j) = F(t,tj)u(j\j) and X(t\k) = F(t,tj)u(j\k), 
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respectively. For tj <t < tj+i,j = 1 , . . . , k — 1, the covariance matrices of the 
residuals £x(t\j) = % (t\j) — ^f (*) a n d £x(*|^) = % (t\k) — X(t) are given 
respectively by: 

Px(t\j) = Fit^PutiW^tj) + A(Mj), 

and 

PX(*I*) = Fit^P^mF'^tj) + A(t,tj). 

8.5. Estimation of HIV Prevalence and AIDS Cases in the 
San Francisco Homosexual Population 

As an application of the discrete-time linear state space model, in this section 
we proceed to estimate and predict the HIV prevalence and the AIDS cases in 
the San Francisco homosexual population. Given in Table 8.3 is the monthly 
AIDS incidence data available from the gopher server of CDC. As shown in the 
example in Subsec. 8.1.2, this data set, together with the total population size 
and numbers of people who died from AIDS (Y2(t)), will be used to construct 
the observation model of the state space model. (To avoid the problem of 
changing AIDS definition by CDC in 1993, we have used the AIDS incidence 
data only up to December 1992; see [43].) Since the sum of the population size 

Table 8.3. San Francisco AIDS case report for 1981-1994 by month of primary diagnosis. 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

1 
6 
24 
46 
77 
104 
136 
156 
159 
200 
220 
286 
243 
213 

3 
5 
19 
32 
62 
93 
137 
144 
141 
174 
195 
303 
234 
164 

2 
0 
31 
39 
72 
114 
142 
184 
179 
191 
195 
299 
229 
162 

1 
6 
25 
43 
77 
100 
130 
141 
197 
156 
190 
215 
188 
131 

1 
6 
19 
39 
73 
103 
149 
130 
163 
180 
208 
218 
190 
90 

3 
15 
21 
48 
80 
109 
149 
155 
201 
173 
193 
241 
224 
38 

3 
12 
27 
67 
94 
121 
150 
139 
169 
176 
229 
267 
235 

3 
10 
35 
59 
89 
138 
148 
136 
160 
195 
243 
244 
179 

5 
10 
28 
70 
76 
112 
161 
156 
138 
156 
220 
249 
182 

3 
14 
31 
54 
89 
149 
140 
117 
155 
175 
303 
240 
162 

3 
20 
26 
60 
70 
99 
123 
132 
138 
182 
227 
196 
162 

8 
12 
31 
56 
89 
142 
131 
155 
142 
150 
241 
226 
161 
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and the number of people who died from AIDS is quite stable, we follow Bailey 
[44] and Hethcote and Van Ark [45] to assume that the immigration rates of 
5 people and / people equal to the death rates of these people respectively, 
i.e., fJ-s(t) = ds(t), (J.r(t) = dr(t), for r = 1,2,.. . , 5. Thus, based on estimates 
by Lemp et al. [46], i^(<), is taken roughly as 58000 ± 5000. Because of the 
awareness of AIDS, one may also assume that there is no immigration for AIDS 
cases. 

8.5.1. Estimation of parameter values in the San Francisco 
homosexual population 

In this application, we apply the staged model with k = 6 given in Example 8.2. 
We will use the estimates by Satten and Longini [24] for the forward, the 
backward and the direct transition rates (probabilities) of the infective stages 
under the assumption that these transition rates are constants and that there 
are no direct transition to AIDS for the first 3 infective stages. These estimates 
are given in Table 4.1. We will use the estimate ns{t) — Hu(t) = 0.000532(u = 
1 , . . . , k) per month given in [45]. These estimates were obtained from the 1987 
Bureau of Standard Statistics [47]. 

To implement the Kalman recursion, we need the estimates of the infection 
rate Ps(t) of S people. This rate is the conditional probability that a 5 person 
contracts HIV for the first time to become an HIV carrier. Hence ps(j) — 
/ / 0 ' ) / [ 1 - - f / 0 ' - l ) ] ) where / / ( j ) and Fj(j) are the pdf and cdf of HIV infection, 
respectively. 

To estimate ps (t), let / s (j) be the density of the seroconversion distribution 
and fw (t) the density of the window period which is defined as the random time 
between HIV infection and HIV seroconversion. Since the seroconversion dis­
tribution is a convolution of the HIV infection distribution and the distribution 
of the window period, one can readily estimate fi(j) from estimates of fs(j) 
and fw(t). Under the assumption that fw(t) is an exponential distribution 
with parameter 9, we have: 

fsti) = f fl(x)fw(J ~ *)dx = Y > ( i ) f \e-W-4dx 
Jo ^ Ji-i ^ 

= ^ / / ( » ) e - * w - < ) ( l - e - * ) 
i-l 

file:///e-W-4dx
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i - 1 

i = l 

= / / 0 ' ) ( l - e - * ) + e - * / . ( j - l ) . 

Let /«(0) = 0. Then we obtain 

/ / ( l ) = / - ( l ) ( l - e - * ) - 1 , 

fliti^il-e-lr'im-e-vfsij-l)), iovj>2. (8.48) 

By using the estimate of the fs(t) by Tan, Tang and Lee [48] and the 
estimates 0 = 3.5 month by Horsburgh et al. [49], we obtain the estimates of 
fi(t) as given in Fig. 8.4. 

8.5.2. The initial distribution 

The initial values of Kalman recursion, X (0) and P(0|0), are obtained by run­
ning only the dynamic models for 20 steps (months) starting at 10 infective 
people. That is, we are assuming that there were only 10 I\ people in 

o.oxe -r 

O . O U : 

0 . 0 1 2 : 

O-OIO: 

O.OOS : 

o.ooe-i 

0 . 0 0 4 :, 

O.OOZ -. 

O-OOO-l^-.—,—,—.—,—.—.—.—.—,—.—.—.—.—,—.—,—.—.—,—.—,—, ,—.—.—.—.—,—.—,—.—.—,—.—.—.—,—,—.—.—.—.—,-
O SO lOO 1JRO 200 2BO 800 3SO 400 4.BO 

Fig. 8.4. Plot showing the estimates of HIV infection density. 
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May, 1979. We run our dynamic model (state equations) for 20 steps (up 
to December, 1980) with the random error being set as zero. Using t = 0 
corresponding to December, 1980, the initial values of the states at 0 states 
are reported in Table 8.4. The result shows that in January, 1981 there would 
be approximately one AIDS case which is close to the observed number of A 
person given in Table 8.3. 

8.5.3. The variances and covariances of random noises and 
measurement error 

The variance-covariance matrix of the random noises of state variables is 
estimated by using formulas given in Table 8.2 with the mean of the 

Table 8.4. The sources of parameters, initial values, observation and state variables. 

Parameters 

71 (t) = 0.0441 /32(t) = 0.0035 

72 (t) = 0.0456 j33{t) = 0.0121 

73 (t) = 0.0420 /34(t) = 0.0071 

74 (t) = 0.0404 #>(*) = 0.0192 

l*s(t)=ds(t) iiT(t) = dT{t) 

Ps(t) t=l,2,...,N 

u>i(t) =w2(t) = 0 

u>3(t) = 0 

w4 (t) = 0.0052 

w5(t)= 0.0474 

for r = 1, 2 , . . . , 5 

Initial Values 

X (0|0) = [56392.5,1247.7, 294.4,57.3,8.4,0.95,0.26]' 

P(0|0) = 

" 233.1 -173.3 0 
-173.3 227.2 -52 .6 

0 -52 .6 66.6 
0 0 -12 .8 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 

-12 .8 0 0 
15.8 - 2 . 3 0 
- 2 . 3 2.7 - 0 . 3 -

0 - 0 . 3 0.4 -
0 -0 .04 -0 .04 

Variance-Covariance Matrix of Random Errors 

V(t) 

E(t) = diag{i, 6250000} 

0 " 
0 
0 
0 

-0.04 
-0.04 
0.3 

Sources 

Satten and Longini [24] 

Satten and Longini [24] 

Satten and Longini [24] 

Satten and Longini [24] 

Assumption 

Tan, Lee and Tang [48] 

Sources 

dynamic models 

dynamic models 

Sources 

Table 8.2 

Assumption 

Observation and State Variables 

Yi(t) 

Y2(t) =58000 ±5000 

X (t) = [S(t), h(t), J a ( t ) , . . . , I6(t), A(t)}', t = 1,2, ,N 

Sources 

Table 8.3 

Survey [46] 

to be estimated by 

Kalman Recursion 
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state variables being replaced by the one-step ahead prediction of these 
variables. 

In the observation models, we assume that the ei(f) and 62(f) are un­
corrected (i.e., £(f) is a diagonal matrix, where the diagonal elements are 
the variances of ei(f) and 62(f)). This is actually true since the observation 
variables Y\(t) and Yzit) are obtained from two different sources. To obtain the 
variances of e\(t) and 62(f), notice that ei(f) is related to the error of reporting 
AIDS cases and 62(f) is related to the error of survey of the San Francisco 
homosexual population. Hence, the variance of ej(f) can be obtained from 
the estimates of the variance of reported AIDS cases. Because this estimate 
currently is not available to us, for illustration purpose, in [23] this variance 
is taken as a function of time, say, Var[ei(f)] = t. The variance of 62(f) 
can be easily obtained by assuming the error range 5000 to be two standard 

Table 8.5. Estimated numbers of the infective people in 
the five stages for the years 1981-1992. 

Time 

81.06 
81.12 

82.06 
82.12 
83.06 

83.12 
84.06 
84.12 
85.06 
85.12 
86.06 
86.12 

87.06 
87.12 
88.06 

88.12 
89.06 

89.12 
90.06 
90.12 
91.06 
91.12 
92.06 
92.12 

h 

1280 
1519 

2080 
3005 
4049 
5274 

6621 
8296 
10229 
11580 

12146 
12040 

11134 
9694 
8187 

6785 
5551 

4549 
3755 
3104 
2578 
2153 
1883 
1724 

h 

690 
911 

1161 
1537 
2071 

2739 

3538 
4495 
5685 
7000 

8226 
9254 

9958 
10246 
10149 
9760 
9166 

8453 
7700 
6959 

6265 
5631 

5063 
4572 

/3 

279 
529 

771 
1021 
1323 
1696 

2146 
2682 

3320 
4061 

4855 
5659 

6442 
7158 
7745 
8154 
8383 

8413 
8238 
7880 
7407 
6924 
6481 
6054 

h 

76 
212 
406 
629 
876 
1156 

1466 
1809 

2204 
2665 

3150 
3621 

4074 
4552 
5062 
5613 
6096 

6675 
7177 
7570 
7638 
7322 
6985 
6794 

h 

11 
46 
122 
237 

377 
548 

742 
927 
1133 
1385 

1665 
1909 

2098 
2260 
2399 
2706 
2780 

3138 
3511 
4215 

4902 
4830 
4240 
4030 

Total 

2336 
3217 
4540 
6429 
8696 

11413 
14513 
18209 
22571 
26691 

30042 
32483 
33706 
33910 
33542 
33018 
31976 
31228 

30381 
29728 
28790 
26860 
24652 
23174 
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deviation. Then we have Var[e2(*)] =6250000. This large variance downgrades 

the information from l^W-
All the parameters, initial values and assumptions are summarized in 

Table 8.4. Based on that information, we can apply the Kalman recursion 
in Sec. 8.2 to estimate the state variables X{t) — [S(t),Ii(t),l2(t),... ,h(t), 
A{t)}'. The Kalman smoothing method is applied to the data (1981-1992) 
given in Table 8.3 and those of the total population size. Using these data sets 
we have obtained the estimates of the numbers of infective people in each of the 
five / stages and the cumulative numbers of AIDS cases for each month from 
January, 1981 to December, 1992. We have also computed the total number 
of infective people and the AIDS incidence. All these results are summarized 

Table 8.6. Comparison of the estimated and the observed AIDS 
incidence and the AIDS cumulative numbers for the years 1981-
1992. 

Year and 

Month 

81.06 
81.12 
82.06 
82.12 
83.06 
83.12 
84.06 
84.12 
85.06 
85.12 
86.06 
86.12 
87.06 
87.12 
88.06 
88.12 
89.06 
89.12 
90.06 
90.12 
91.06 
91.12 
92.06 
92.12 

AIDS incidence 

Estimated 

12 
24 
42 
82 
133 
180 
253 
354 
437 
514 
623 
752 
841 
867 
890 
854 
1011 
951 
1047 
1064 
1203 
1463 
1540 
1416 

Observed 

11 
25 
38 
78 
139 
178 
247 
366 
441 
507 
623 
761 
843 
853 
910 
835 
1040 
902 
1074 
1034 
1201 
1463 
1562 
1422 

AIDS cumulative 

Estimated 

12 
35 
77 
160 
293 
473 
726 
1080 
1517 
2031 
2654 
3406 
4247 
5114 

6005 
6859 
7869 
8821 

9868 
10932 
12134 
13597 
15138 
16553 

Observed 

11 
36 
74 
152 
291 
469 
716 
1082 
1523 
2030 
2653 
3414 
4257 
5110 
6020 
6855 
7895 
8797 

9871 
10905 
12106 
13560 

15131 
16553 
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in Tables 8.5 and 8.6 by 6 months. For comparison purpose, the observed 
AIDS incidence and the observed cumulative numbers of AIDS cases are also 
included in Table 8.6. 

8.5.4. Estimation results 

From the results of Table 8.6, it is observed that the Kalman smoothing esti­
mates trace the observed values surprisingly well. The estimated results reveal 
that the respective peaks of the numbers of infective people in the five stages 
are 12197,10254, 8427, 7657, 4999 which are achieved in August 1986, January 
1988, October 1989, April 1991, and September 1991 respectively; but the total 
number of infective people reaches its peak 33915 as early as November, 1987. 

8.5.5. Projection results 

To check the effectiveness of the Kalman projection, we have projected the 
AIDS incidence and the cumulative number for the years 1990-1992, and 
compared them with the observed values. These results are presented in 
Table 8.7. From the results of this table, it is observed that in general the pro­
jected values are close to the observed ones. However one may notice that as in 
other projections [45, 46] the results appear to be under-projected for the year 
1991 and 1992, presumably due to the adjustment error for the new 1993 AIDS 
definition. It might be of interest to note that the projected results are at least 
as good (close to the observed values) as those of the other projections [45, 46]. 

In Table 8.8, we have listed the projected numbers of the infective people for 
each of the five stages, the total number of infective people, the AIDS incidence 

Table 8.7. Comparison of the projected and the observed AIDS 
incidence and the AIDS cumulative numbers for 1990-1992 based 
on observations during 1981-1989. 

Year and 

Month 

90.06 
90.12 
91.06 
91.12 
92.06 
92.12 

AIDS incidence 

Predicted 

1005 
1103 
1186 
1251 
1298 
1326 

Observed 

1074 
1034 
1201 
1463 
1562 
1422 

AIDS cu 

Predicted 

9812 
10915 
12101 
13353 
14650 
15977 

mulative 

Observed 

9871 
10905 
12106 
13569 
15131 
16553 
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Table 8.8. Projected numbers of the infective people, the AIDS incidence and the AIDS 
cumulative number for 1993-2002 based on observations during 1981-1992. 

Year and 

Month 

93.06 
93.12 
94.06 
94.12 
95.06 
95.12 
96.06 
96.12 
97.06 
97.12 
98.06 
98.12 
99.06 
99.12 
00.06 
00.12 
01.06 
01.12 
02.06 
02.12 

h 

1556 
1307 
1107 
977 
878 
936 
1479 
2656 
4103 
5220 
5797 
5930 
5762 
5414 
4968 
4481 

3988 
3515 
3072 
2669 

h 

4145 
3754 
3383 
3046 
2746 
2490 
2337 
2400 
2750 
3317 
3945 
4508 
4939 
5217 
5347 
5349 
5247 
5066 
4826 
4548 

Infective people 

h 

5634 
5227 
4836 
4461 
4104 
3771 
3468 
3224 
3084 
3084 
3221 
3459 
3748 
4043 
4307 
4516 
4660 
4734 
4742 
4688 

h 

6615 
6393 
6140 
5863 
5571 
5270 
4966 
4668 
4391 
4157 
3985 
3887 
3863 
3903 
3989 
4103 
4227 
4345 
4445 
4517 

h 

4046 
4015 
3945 
3845 
3721 
3577 
3420 
3254 
3085 
2920 
2768 
2639 
2540 
2476 
2447 
2448 
2473 
2525 
2566 
2617 

Total 

21996 
20696 
19411 
18192 
17020 
16044 
15670 
16202 
17413 
18698 
19716 
20423 
20852 
21053 
21058 
20897 
20595 
20175 
19651 
19039 

AIDS 

Incidence 

1359 
1351 
1331 
1299 
1259 
1211 
1160 
1104 
1047 

991 
939 
894 
859 
835 
822 
821 

828 
842 
858 
876 

Cumulative 

17912 
19264 
20594 
21893 
23152 
24363 
25523 
26627 
27674 
28666 
29605 
30499 
31358 
32193 
33016 
33837 

34665 
35507 
36365 
37240 

and the AIDS cumulative numbers from 1993 to 2002 by every 6 months based 
on all the reliable data in 1981-1992. It is observed that the numbers of 
the infective people in each of the infective stages will have a second peak. 
This is caused by the bi-mode property of the estimated infection rate ps{t). 
The number of S people will dramatically decrease after 1995, and the total 
infective people will soon reach its second peak, 21077, in March, 2000. 

8.6. Complements and Exercises 

Exercise 8.1. In the models given in Sees. 8.1 and 8.2, show that if the 
random noises in the stochastic system equations have expected value 0, then 
the random noises are un-correlated with the state variables. 

Exercise 8.2. Using the stochastic Eqs. (2.32)-(2.35) and the distribution 
results given in Subsec. 2.8.2, prove the covariance formula in Table 8.1. 
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Exercise 8.3. Using the stochastic Eqs. (2.40)-(2.44) and the distribution 
results given in Subsec. 2.8.2, prove the covariance formula between I{i, t) and 
I(j,r) and between I(i,t) and A(T) as given in Table 8.2. 

Exercise 8.4. In the HIV pathogenesis model described in Subsec. 8.2.2, let 
{ui(t) = E[Ti(t)],i = l,2,3,uv(t) = E[V(t)]} denote the expected numbers 
of {Ti(t),i = 1,2,3, V(t)} respectively. Using the stochastic Eqs. (8.4)-(8.7), 
show that these expected numbers satisfy the following system of differential 
equations: 

^ « i ( t ) = s(t) + {E{bT(t)\ - /i! - Ai«v(t)}«i(t) + Cov{6T(i),r1(i)} 

-u2{t) = w(t)fci«v(t)ui(t) - [/x2 + k2]u2{t) + u(t)ki Cov{V(i), Ti(t)} , 

—u3(t) = [1 - w(i)]fciu^(t)ui(t) + fc2u2(£) - M3«3(<) 
at 

+ [i-w(t)]fciCov{V(t),ri(t)}, 

^ « v ( t ) = N{t)v3u3(t) - AjlUv(t)ui(t) - /ivuv(t) - fci Cov{y(t),Ti(t)} . 

Exercise 8.5. In the HIV pathogenesis model described in Subsec. 8.2.2, 
by using the distribution results in Subsec. 8.2.2, show that the covariances 
between the random noises are as given in Subsec. 8.2.2. 

Exercise 8.6. For the multi-event model as described in Subsec. 8.3.1 and 
in Example 4.6, by using the stochastic Eqs. (8.9)-(8.10) and the multinomial 
distribution results for {Bj(t),Dj(t),Mj(t)} given Ij{t), show that the pgf 
of {Ij(t),j = 0 , 1 , . . .,k — 1} are given exactly by that in Part (b) of 
Exercise 4.8. This shows that the classical Kolmogorov equation method 
is equivalent to the stochastic equation representation and the conditional 
multinomial distributions for the associated random variables. 

Exercise 8.7. Prove Eq. (8.11) for the variance of the random noises of 
Eqs. (8.9)-(8.10). 

Exercise 8.8. Prove the distribution results given by Eqs. (8.18)-(8.19). 

Exercise 8.9. For the multiple pathways model as described in 
Subsec. 8.3.2, by using the stochastic Eqs. (8.22)-(8.24) and the multinomial 
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distribution results, show that the joint pgf (f>(xi,i — 0, l ,2 ,3; t) = <j>{x\t) = 

EillLo *i i ( tVo(0) = No} of {Ii(t),» = 0,1,2,3} is given by: 

—<f>(x);t) = (x0 - 1) <xQb0(t) -do(t) + ^2xiai > —<j>(x;t) 

2 ~ 

+ Yfri - l)[*Mt) - <k(t) + x3Pi]—<j>(x;t)} 

+ (sa - l)[x3b3(t) - d3(t)} — <f>(x;t)} , 

where the initial condition is (j){x; 0) = x0 °. 

Exercise 8.10. Prove the distribution results given by Eqs. (8.25)-(8.26). 

Exercise 8.11. Show that If Ee (0|0) = 0, then X(j + l\j), X(j + l\j +1) 

and X(j\n)(n > j) are all unbiased for X(t). 

Exercise 8.12. Using mathematical induction, show that in Theorem 8.3, 
P{j\j) — P(J\m) is positive semi-definite for all m > j . 

Exercise 8.13. By using mathematical induction method, show that 

X(j)\D(n)~N{$ti\n),P(j\n)}, 

where {X(j\n),P(j\n)} are given in Theorem 8.3. 

Exercise 8.14. Show that the Kalman gain matrix Kj+i can be expressed 
as P(j + l\j + \)H'(j + 1)2"+!. Hence show that P(j + l\j) - P{j + l\j + 1) 
is positive semi-definite. 

Exercise 8.15. Prove Eq. (8.41). 

Exercise 8.16. Prove Eq. (8.42). 

Exercise 8.17. Prove Eq. (8.48) under the assumptions: 

(a) The HIV sero-conversion distribution is a convolution of HIV infection 
distribution and the window period. 

(b) The window period follows an exponential distribution with parame­
ter e. 



References 383 

References 

R. Brookmeyer and M. Gail, AIDS Epidemiology: A Quantitative Approach, 
Oxford University Press, Oxford (1994). 
W. Y. Tan, Stochastic Modeling of the AIDS Epidemiology and HIV 
Pathogenesis, World Scientific, Singapore (2000). 
W. Y. Tan and Z. Z. Ye, Estimation of HIV infection and HIV incubation via 
state space models, Math. Biosciences 167 (2000) 31-50. 
W. Y. Tan and Z. Z. Ye, Some state space models of HIV epidemic and applica­
tions for the estimation of HIV infection and HIV incubation, Comm. Statistics 
(Theory and Methods) 29 (2000) 1059-1088. 
D. E. Catlin, Estimation, Control and Discrete Kalman Filter, Spring-Verlag, 
New York (1989). 
A. Gelb, Applied Optimal Estimation, M.I.T. Press, Cambridge, MA (1974). 
A. P. Sage and J. L. Melsa, Estimation Theory with Application to 
Communication and Control, McGraw-Hill Book Com., New York (1971). 
W. Y. Tan, W. C. Chen and W. Wang, A generalized state space model of 
carcinogenesis, in 2000 International Biometric Conference at UC Berkerly. 
R. E. Kalman, A new approach to linear filter and prediction problems, J. Basic 
Eng. 82 (1960) 35-45. 
A. C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, 
Cambridge University Press, Cambridge (1994). 
M. Aoki, State Space Modeling of Time Series, Second edition, Spring-Verlag, 
Berlin (1990). 
H. Wu and W. Y. Tan, Modeling the HIV epidemic: A state space approach, in: 
ASA 1995 Proceeding of the Epidemiology Section, ASA, Alexdria (1995). 
W. Y. Tan and Z. H. Xiang, A stochastic model for the HIV epidemic in 
homosexual populations: Estimation of parameters and validation of the model, 
in: Simulation in the Medical Sciences, eds. J. G. Anderson and M. Katzper, 
The Society for Computer Simulation, San Diego (1996). 
W. Y. Tan and Z. H. Xiang, State space models of the HIV epidemic in homo­
sexual populations and some applications, Math. Biosciences 152 (1998) 29-61. 
W. Y. Tan and Z. H. Xiang, State Space Models for the HIV pathogenesis, 
in: Mathematical Models in Medicine and Health Sciences, eds. M. A. Horn, 
G. Simonett and G. Webb, Vanderbilt University Press, Nashville (1998). 
W. Y. Tan and Z. H. Xiang, Estimating and predicting the numbers of T cells 
and free HIV by non-linear Kalman filter, in: Artificial Immune Systems and 
Their Applications, ed. DasGupta, Springer-Verlag, Berlin (1998). 

[17] W. Y. Tan and Z. H. Xiang, Modeling the HIV epidemic with variable infection in 
homosexual populations by state space models, J. Statist. Inference and Planning 
78 (1999) 71-87. 

[18] W. Y. Tan and Z. H. Xiang, A state space model of HIV pathogenesis under 
treatment by anti-viral drugs in HIV-infected individuals, Math. Biosciences 156 
(1999) 69-94. 



384 State Space Models and Some Examples from Cancer and AIDS 

[19] W. Y. Tan and W. C. Chen, Stochastic models of carcinogenesis, Some new 
insight, Math Comput. Modeling 28 (1998) 49-71. 

[20] W. Y. Tan, C. W. Chen and W. Wang, Some state space models of carcinoge­
nesis, in: Simulation in Medical Sciences, eds. J. G. Anderson and M. Katzper, 
The Society of Computer Simulation International, San Diego (1999). 

[21] W. Y. Tan, C. W. Chen and W. Wang, Some multiple pathways state space 
models of carcinogenesis, in: Simulation in Medical Sciences, eds. J. G. Anderson 
and M. Katzper, The Society of Computer Simulation International, San Diego 
(2000). 

[22] W. Y. Tan, C. W. Chen and W. Wang, Stochastic modeling of carcinogenesis by 
state space models: A New approach, Math and Computer Modeling 33 (2001) 
1323-1345. 

[23] H. Wu and W. Y. Tan, Modeling the HIV epidemic: A state space approach, 
Math. Compt. Modeling 32 (2000) 197-215. 

[24] G. Satten and Ira M. Jr. Longini, Markov Chain With Measurement Error: 
Estimating the "True" Course of Marker of the Progression of Human 
Immunodeficiency Virus Disease, Appl. Statist. 45 (1996) 275-309. 

[25] J. S. Liu and R. Chen, Sequential Monte Carlo method for dynamic systems, 
Jour. American Statist. Association 93 (1998) 1032-1044. 

[26] W. Y. Tan, W. Wang and J. H. Zhu, A State Space Model for Cancer Tumor 
Cells under Drug Resistance and Immunostimulation, in: Simulation in the 
Medical Sciences, eds. J. G. Anderson and M. Katzper, The Society for Com­
puter Simulation, San Diego (2001). 

[27] W. Y. Tan and C. C. Brown, A nonhomogeneous two stages model of 
carcinogenesis, Math. Modeling 9 (1987) 631-642. 

[28] W. Y. Tan and H. Wu, Stochastic modeling of the dynamics of CD4+ T cell 
infection by HIV and some Monte Carlo studies, Math. Biosciences 147 (1998) 
173-205. 

[29] K. C. Chu, Multi-event model for carcinogenesis: A model for cancer causation 
and prevention, in: Carcinogenesis: A Comprehensive Survey Volume 8: Cancer 
of the Respiratory Tract-Predisposing Factors, eds. M. J. Mass, D. G. Ksufman, 
J. M. Siegfied, V. E. Steel and S. Nesnow, Raven Press, New York (1985). 

[30] K. C. Chu, C. C. Brown, R. E. Tarone and W. Y. Tan, Differentiating between 
proposed mechanisms for tumor promotion in mouse skin using the multi-vent 
model for cancer, Jour. Nat. Cancer Inst. 79 (1987) 789-796. 

[31] W. Y. Tan, Stochastic Models of Carcinogenesis, Marcel Dekker, New York 
(1991). 

[32] M. P. Little, Are two mutations sufficient to cause cancer? Some generaliza­
tions of the two-mutation model of carcinogenesis of Moolgavkar, Venson and 
Knudson, and of the multistage model of Armitage and Doll, Biometrics 51 
(1995) 1278-1291. 

[33] M. P. Little, Generalizations of the two-mutation and classical multi-stage 
models of carcinogenesis fitted to the Japanese atomic bomb survivor data, J. 
Radiol. Prot. 16 (1996) 7-24. 



References 385 

[34] M. P. Little, C. R. Muirhead, J. D. Boice Jr. and R. A. Kleinerman, Using 
multistage models to describe radiation-induced leukaemia, J. Radiol. Prot. 15 
(1995) 315-334. 

[35] M. P. Little, C. R. Muirhead and C. A. Stiller, Modelling lymphocytic leukaemia 
incidence in England and Wales using generalizations of the two-mutation model 
of carcinogenesis of Moolgavkar, Venzon and Knudson, Statistics in Medicine 
15 (1996) 1003-1022. 

[36] S. H. Moolgavkar, A population perspective on multistage carcinogenesis, in: 
Multistage Carcinogenesis, eds. C. C. Harris, S. Hirohashi, N. Ito, H. C. Pitot, 
T. Sugimura, M. Terada and J. Yokota, CRC Press, Florida (1992). 

[37] K. M. Kinzler and B. Vogelstein, Colorectal tumors, in The Genetic Basis of 
Human Cancer, eds. B. Vogelstein and K. M. Kinzler, McGraw-Hill, New York 
(1998). 

[38] A. Y. Yakovlev and A. D. Tsodikov, Stochastic Models of Tumor Latency and 
Their Biostatistical Applications, World Scientific, Singapore (1996). 

[39] G. L. Yang and C. W. Chen, A stochastic two-stage carcinogenesis model: A new 
approach to computing the probability of observing tumor in animal bioassays, 
Math. Biosci. 104 (1991) 247-258. 

[40] W. Y. Tan, A Stochastic Gompertz birth-death process, Statist.& Prob. Lett. 4 
(1986) 25-28. 

[41] A. DeAngelo, Dichloroacetic acid case study, in: Expert Panel to Evaluate 
EPA's Proposed Guidelines for Cancer Risk Assessment Using Chloroform and 
Dichloroacetate as Case Studies Workshop, ILSI Health and Environmental 
Sciences Institute, Washington, D.C (1996). 

[42] W. Y. Tan, Note on an extension of Gauss-Markov theorem to multivariate 
regression models, SI AM J. Applied Mathematics 20 (1971) 24-29. 

[43] CDC, 1993 Revised Classification System for HIV Infection and Expanded 
Surveillance Case Definition for AIDS Among Adolescents and Adults, MMWR 
41 (1992), No. RR17. 

[44] N. T. J. Bailey, Estimating HIV incidence & AIDS projections: Prediction and 
validation in the public health modelling of HIV/AIDS, Statistics in Medicine 
13 (1994) 1933-1944. 

[45] H. W. Hethcote and J. W. Van Ark, Modeling HIV transmission and AIDS in 
the United States, Lecture Notes in Biomath. Springer-Verlag, Berlin (1992). 

[46] G. F. Lemp, S. F. Payne, G. W. Rutherford, and et al., Projections of AIDS 
morbidity and mortality in San Francisco, Jour, of Amer. Medic. Assoc. 263 
(1989) 1497-1501. 

[47] U. S. Bureau of the Census, Statistical Abstract of the United States: 108th 
edition, Washington, D. C. (1987). 

[48] W. Y. Tan, S. C. Tang and S. R. Lee, Estimation of HIV Seroconversion and Ef­
fects of Age in San Francisco Homosexual Populations, Jour. Applied Statistics 
25 (1998) 85-102. 

[49] C. R. Jr. Horsburgh, C. Y. Qu, I. M. Jason, et al., Duration of human immuod-
eficiency virus infection before detection of antibody, Lancet 2 (1989) 637-640. 



This page is intentionally left blank



Chapter 9 

Some General Theories of State Space 
Models and Applications 

In Chap. 8,1 have illustrated how to develop state space models in some cancer 
and AIDS models. As a continuation, in this chapter I proceed to give some 
general theories and illustrate its application. 

9.1. Some Classical Theories of Linear State Space Models 
with Continuous-Time Stochastic System Model 

In the previous chapter I have given some general theories for discrete-time 
linear state space models. Because most of the state space models in HIV 
pathogenesis and in carcinogenesis have continuous-time for the stochastic sys­
tem models, in this section I will present some general theories for the classical 
analysis of continuous-time state space models. Thus, we consider a state 
space model with stochastic system model given by Eq. (9.1) below and with 
observation model given by Eq. (9.2) below, where the matrices {F(t),H(j)} 
are given non-stochastic transition matrices: 

jtX(t)=F(t)X(t)+e(t), t>0; (9.1) 

Y(j)=H(j)X(tj)+e(j), j = l,...,n. (9.2) 

In the above equations, it is assumed that the elements of the random 
noises e (t) and of the random measurement errors e (j) have expected values 
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0 and are independently distributed of one another. The covariance matrices 
of e (t)dt and e (j) are given by Cov[,e (t)dt, e [r)dt] = 5(t - r)V(t)dt + o(dt) 
and Var[e(_7')] = E(j), where 5(x) is the Dirac's S function. 

Let X(t\k) denote a predictor (or estimator) of X (t) given data D(k) = 
{Y(u),u = l , . . . , fc} with residual e(t|A;) = X(t\k) - X(t), where k = 
1 , . . . , n. Denote the covariance matrix of je (t\k) by Q(t\k). 

To derive the optimal X (t\k), write X(tj) = u(j) and X(tj\k) = u(j\k), 
Q{tj\k) = P(j\k) for k = 1 , . . . ,n and Q(tj+1\j) = P(j + l\j). Then, we have 
the following two theorems which provide the optimal estimator and predictor 
of X (t) given D(k) = {Y(u),u = 1 , . . . , jfe}. 

Theorem 9.1. Assume that for t > tj, there exist matrices R(t,tj) satis­
fying the conditions limt-ttj R(t,tj) = Ip and -^R(t,tj) = F(t)R(t,tj); see 
Remark 9.1. Then, given u(0\Q) as an unbiased estimator of X(Q) with P(0|0) 
as the covariance matrix of ^(0|0), for tj < t < t ,+i , the BLUE X(t\j) of 
X (t) given data D(j) are given by the following recursive equations: 

(i) For tj < t < tj+i, j = 0 , 1 , . . . ,n (to = 0,tn+i = oo), X(t\j) satisfies 

the following differential equation with boundary condition limt-^ X (t\j) = 

jtX{t\j) = F(t)X{t\j), (9.3) 

where for j > 0, u(j\j) is given in (hi). 
(ii) For tj < t < tj+i, j = 0 , 1 , . . . , n, Q(t\j) satisfies the following differ­

ential equation with boundary condition limt_>.t; Q(t\j) = P(j\j): 

jtQ(t\j) = F(t)Q(t\j) + Q(t\j)F(t)' + V(t), (9.4) 

where for j > 0, P{j\j) is given in (iii). 
(iii) Forj = 0,1,.. .,n, put G{j+l,j) = R(tj+i,tj). Then, u{j+l\j),P(j+ 

l\j), u(j + l | j + 1) and P(j + l\j + 1) are given by the following recurssive 
equations (see Remark 9.2): 

u(j + l\j) = G(j + l,j)u{j\j), (9.5) 
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u(j + l | j + 1) = u(j + l\j) + Kj+1{Y(j + 1) - H(j + l)u(j + l\j)} , (9.6) 

P(j + l | j ) = G{j + l,j)P(j\j)G'(j + 1, j) + V€(j + 1), (9.7) 

and 

P(j + l\j + 1) = [I - tfj+1tf (j + l )]P(j + l | j ) , (9.8) 

where 

V((j + 1) = / ^ R(tj+1,x)V{x)R'(tj+ux)dx, 

and 

Kj+1 = P ( j + l | j )ff( j + l)'W{j + l)P(j + l\j)H'{j + 1) + E(j + l ) ] - 1 . 

In the literature the procedures in Theorem 9.1 have been referred to as 
the forward filtering. 

Remark 9.1. In most cases, there exists a p x p matrix R(t,tj) satisfying 
the conditions limt_>t;). R(t,tj) = Ip and ^R(t,tj) = F(t)R(t,tj) for all t >tj. 
Observe that if F{t) = F, then 

R(t,tj) = exp[F{t-tj)], 

where 

provided that the series converges. 
If F(t) = Fi for Si,<t < si+i, then 

R{t,tj) = exp[Fk(t-sk)]\ l[ exp(Ffe -i+uTk-i+u) > exp[Fu(su+i - tj)] 
[l=u+l ) 

for Sk <t < Sfe+i and su < tj < su+i where Tj = s;+i - si. 
In general, if elements of F(t) are bounded, then one may write R(t, tj) as 

Uj — 1 

R(t, tj) = hin H [Ip + F(tj + iA)A], 
i=0 
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where for fixed A > 0, rij is the largest integer satisfying (n, + 1)A > t — tj > 
HjA. 

Theorem 9.2. Suppose that for tj < t < tj+\ with 0 < j < n, there exist 
matrices R(t, tj) satisfying the conditions limt-ttj R(t, tj) = Ip and ^R(t, tj) = 
F(t)R(t,tj). Then, given X(0|0) = «(0|0) as an unbiased estimator of X (0) 
with P(0|0) as the covariance matrix of the residual ^(0|0), the BLUE X (t)n) 
of X(t) given data D(n) are given by the following recursive equations: 

(i) For tj < t < tj+i, j = 0 , 1 , . . . ,n, X(t\n) satisfies the following differ­

ential equation with boundary condition l im^^. X(t\n) = u(j\n): 

±X(t\n) = F(t)X(t\n), (9.9) 

where u(j\n) is given in (iii). 
(ii) For tj < t < tj+i, j = 0 , 1 , . . . , n, Q(t\n) satisfies the following differ­

ential equation with boundary condition l i m ^ t Q{t\n) = P(j\n): 

jtQ(t\n) = F(t)Q(t\n) + Q(t\n)F(t)' + V(t), (9.10) 

where P{j\n) is given in (iii). 
(iii) For j = 0 ,1 , . . . , n , put G(j + l,j) = R(tj+l,tj). Then, u(j\n) 

and P(j\n) are given by the following recursive equations respectively (see 
Remark 9.2): 

fi U\n) = fi U\J) + M«(j + l|n) -«(? ' + lb')} (9-11) 

and 

P(j\n) = P(j\j) - Aj{P(j + l\j) - P(j + l | n ) } 4 , (9.12) 

where 

Aj = P(j\j)G(j + l,j)'p-\j + l\j). 

In the literature, the procedures in Theorem 9.2 have been referred to as 
the smoothing procedures. This has also been referred to as the backward 
filtering. 
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Notice that results of the above theorems are basically results from lin­
ear least square methods. Hence, results of the above two theorems may be 
considered as extensions of the Gauss-Markov theorems in linear least square 
models; see [l]. 

Proof of Theorems 9.1 and 9.2. As in Subsec. 8.4.3, the basic trick to 
prove Theorems 9.1 and 9.2 is that at the time points t = tj (j = 0 , 1 , . . . , n), 
we reduce the model to a standard discrete-time linear Kalman filter model 
and then apply results from Theorems 8.2 and 8.3; for time t in tj < t < tj+\, 
since observed data are not available, we use stochastic system equations and 
take conditional expectations given data. 

Now, if R(t, tj) is a p x p matrix satisfying the conditions limt_>t̂  R(t, tj) = 
Ip and -^R(t,tj) = F(t)R(t,tj) for all t>tj. Then in terms of mean squared 
error, the solution of Eq. (9.1) is 

X(t) = R(t,tj)X(tj) + V(t,tj), (9.13) 

where ^{t^tj) is given by: 

r)(t,tj)= / R{t,x)e(x)dz 
~ Ju ~ 

Also, the above solution of Eq. (9.1) is unique almost surely (see 
Remark 9.2). 

Obviously, E[??(£, U)] = 0 and the covariance matrix of i?(t,tj) is 

V0(t,tj)= j R(t,x)V(x)R'{t,x)da 

Furthermore, the T](t,ti)'s are independently distributed of the measure­
ment error e (j)'s and are uncorrelated with X (t). 

Put X(tj) = u(j),R(tj+1)tj) = G(j + l,j),v(tj+1,tj) = Z(j + 1) 
and Vo{tj+i,tj) — V^(j + 1). Obviously, €(j + 1) are uncorrelated with 
C(i + 1) if i 7̂  j . Then, we have the following state space model for u(j), 
j = 0 , . . . , n - l : 

u(j + 1) = G(j + l,j)u(j) + | ( i + 1) (9-14) 
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and 

Y(j + 1) = H(j + l)u(j + i)+e(j + l). (9.15) 

The above is a standard linear discrete-time Kalman filter model as given 
in Subsec. 8.4.1. Part (iii) of Theorems 9.1 and 9.2 then follow from basic 
results as given in Theorems 8.2 and 8.3 respectively. 

To prove (i) of Theorems 9.1 and 9.2, we put X (t\j) = R(t,tj)u(j\j) (t > 
tj) and X(t\n) = R(t,tj)u(j\n) (0 < j < n). Then, since £tR{t,tj) = 
F(t)R(t,tj), obviously, X(t\j) and X(t\n) satisfy the equation in (i) of 
Theorems 9.1 and 9.2 respectively. To prove (i) of Theorems 9.1 and 9.2, 
it remains to show that these estimators are the optimal estimators. Writing 
the residual e(t\j) = X (t\j) - X(t) as 

€{t\j) = R(t,tj)eu{j\j)-ri(t,tj), 

where £u(j\j) = j&tilJ) ~ UC?)> * n e covariance matrix of t{t\j) is 

Q ( % ) = R{t,tj)P{3\3)R{t,tj)' + V0(jk,tj). 

Let X(*\t\j) be any other linear unbiased estimator of X (t) given data D(j), 
where tj < t < tj+1. Then, by Eq. (9.13), X(*\t\j) = R(t,tj)u^{j\j), 
where u^(J\j) is an unbiased estimator of X(tj) = u(j) and is a lin­
ear function of elements of D(j). Let Q^*\t\j) be the covariance matrix 
of | w ( * b ' ) = £ ( , ) ( * | j ) - X(t) and P(*\j\j) the covariance matrix of 
£{*K(j\j) = «W&IJ) - «(j')-~Then, 

QW(t|j) = R(t,tj)pU(j\j)R!(t,tj) + VQ{t,ti). 

But by (iii) of Theorem 9.1, P^(J\j) - P(j\j) is positive semi-definite. It 
follows that Q(*\t\j)-Q(t, tj) = F(t, tj){P^{j\j)-P{j\j)}F'(t, tj) is positive 
semi-definite. This shows that for t>tj, X(t\j) is the BLUE of X(t) given 
D(j). This proves (i) of Theorem 9.1. Similarly one proves (i) of Theorem 9.2 

To proves (ii) of Theorems 9.1 and 9.2, notice that the covariance matrix of 
the residuals e(t\j) = X(t\j) - X(t) and e(t\n) = X(t\n) - X(t) are given 
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by the following two formula respectively: 

Q(t\j) = R(t, t^PUim^ W + V0(t, tj), 

Q{t\n) = Rit^PUl^R^tj)' + V0{t,tj). 

Noting that R(t,t) = Ip and -^R(t,ti) = F(t)R(t,ti), by taking derivatives 
on both sides of the above equation, it is obvious that (ii) of Theorems 9.1 and 
9.2 hold. This proves (ii) of Theorems 9.1 and 9.2. 

Remark 9.2. It can be shown that if the solutions of Eq. (9.1) exist for each 
given £ (£), then the solution is unique almost surely (i.e. with probability one). 
It follows that the estimators u(j\k) are unique almost surely. Because the 
proof is quite complicated, we will not present it here. We only note that the 
least square solutions are unique almost surely. 

9.2. The Extended State Space Models with 
Continuous-Time Stochastic System Model 

As shown in examples in Sees. 8.2 and 8.3, in many state space models of 
HIV pathogenesis and carcinogenesis, either the stochastic system model or 
the observation model or both are non-linear models. In these cases, one 
may express the stochastic system equations and the observation equation 
respectively as: 

dX(t)= f[X(t)]dt+ e(t)dt, tj < t < tj+u j = 0 , 1 , . . . , n ; (9.16) 

X(j)=h[X(tJ)]+ej, j = l,...,n. (9.17) 

Given that the above state space model can be closely approximated by 
the extended Kalman filter model, then one may use the procedures given in 
Theorems 9.1 and 9.2 to derive approximate optimal estimators of X (t). The 
basic idea is to expand £[X(t)] and h[X(tj)] in Taylor series with respect to 
the optimal estimates up to the first order and then take conditional expec­
tation given data. For state space models of HIV pathogenesis, it has been 
shown by Tan and Xiang [2-4] through Monte carlo simulation studies that 
this approximation is indeed very close. This is expected and justified by the 
observation that the HIV infection rates are usually very small. 
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Notice that if one expands f[X(t)] and h[X(tj)] in Taylor series with 
respect to the optimal estimates up to the first order and then take condi­
tional expectation given data, the models reduce to linear models given in the 
previous section. Then one may use results of the previous two theorems to 
derive optimal estimates. Since the basic procedures are practically the same 
as those in the above two theorems, we summarize without proof the results 
in the next two theorems. We will leave the proofs of these theorems as an 
exercise; see Exercise 9.1. 

Theorem 9.3. Suppose that elements of h[X (t)\ and elements of f[X(t)] 
have continuous and bounded first derivatives and can be closely approximated 
by Taylor series expansion up to first order. Then, given X(0|0) = u(0|0) as 
an unbiased estimator of X (0) with P(0|0) as the covariance matrix of the 
residual ê (0|0), for tj < t, the BLUE X (t\j) of X (t) given data D(j) are 
closely approximated by the following recursive equations: 

(i) For tj < t < tj+i, j = 0,l,...,n (to = 0,tn+i = oo), X(t\j) satisfies 

the following differential equation with boundary condition limt-^. X (t\j) = 

a(j\jy-

jtX(t\j)=f[X(t\j)}, (9.18) 

where for j > 0, X (tj\j) — u(j\j) is given in (hi). 
(ii) For tj < t < tj+i, j = 0 , 1 , . . . ,n, Q(t\j) satisfies the following differ­

ential equation with boundary condition l imt-^ Q(t\j) = P(j\j): 

jtQ{t\j) = F(t\j)Q(t\j) + Q{t\j)F{t\j)> + V(t), (9.19) 

where F(t\j) = {jfjf) fJX ^ ) x {t)=X m
 with lha^tj Q(t\j) = P{j\j) 

being given in (iii). 
(hi) Denote by limt_>t.+1 X (t\j) = u(j + l\j) and limt_+tj+1 Q(t\j) = P(j + 

l\j). Let H0(j + 1) = (efrnkiX (*)]) X{t)=uUlJ)-
 Then &U + W + V and 

P{j + l |j ' + 1) are given by the following recursive equations respectively: 

u(j + l\j + 1) = u(j + l\j) + Kj+1{Y(j + 1) - h[u(j + l\j)]} , (9.20) 
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and 

P(j + ltf + 1) = [I - Kj+1H0(j + 1)]PU + 1|J), (9-21) 

and 

Kj+1 = P(j + l\j)H0(j + l)'[H0{j + l)P(j + l\j)Ho(j + 1)' + SO' + I ) ] " 1 . 

To implement the procedures in Theorems 9.1 and/or 9.3, one starts with 
X(0|0) = u(0|0) and P(0|0). Then by (i) and (ii) of the respective theorems, 
one derive X (t|0) and Q{t\0) for to < t < t\ and derives u ( l | l ) and P ( l | l ) by 
(iii) of the respective theorems. Repeating these procedures one may derive 
X(t\j) and Q{t\j) for tj < t < tj+i, j = 0 , 1 , . . . , n . These procedures are 
referred to as forward filtering procedures. 

Theorem 9.4. Suppose that elements of h[X{t)\ and elements of f[X{t)\ 
have continuous and bounded first derivatives and can be closely approximated 
by Taylor series expansions up to first order. Then, given A"(0|0) = w(0|0) 
as an unbiased estimator of X(0) with P(0|0) as the covariance matrix of the 
residual e(0\0), for tj <t < tj+1 with 0 < j < n, the BLUE X(t\n) of X(t) 
given data D(n) are closely approximated by the following recursive equations 
respectively: 

(i) For tj < t < tj+1, j = 0 , 1 , . . . , n , j < n (t0 = 0 , t n + 1 = oo), 
X (t\n) satisfies the following differential equation with boundary condition 
l i m t ^ . X(t\n) = u(j\n): 

jtX(t\n) = f[X(t\n)}, (9.22) 

where for j > 0, X (tj\n) = u(j\n) is given in (iii). 
(ii) For tj < t < tj+i, j = 0 , 1 , . . . ,n, j < n, Q(t\j) satisfies the following 

differential equation with boundary condition limt-ytj Q(t\n) = P(j\n): 

jtQ{t\J) = F(t\n)Q(t\n) + Q{t\n)F{t\n)' + V(t), (9.23) 

where F(t\n) = ( - ^ _ / [ X ( f ) ] ) ^ = ^ ^ with l i m t ^ , Q(t\n) = P(j\n) 

being given in (iii). 
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(iii) For j = 1 , . . . , n, u(j\n) and P(j\n) are given by the following recursive 
equations respectively: 

«C?» = «0'li) +M&U + II") - &U + !|i)} (9-24) 

and 

P(j\n) = P(j\j) - Aj{PU + l\j) - P(j + l\n)}A'j, (9.25) 

where, with (rij + 1)A > t,+i - tj > rijA, G(j + 1, j ) = limA-^oECioV + 
F(tj + sA\j)A], and 

Aj=P{j\j)GU + l,j)'P-1ti + l\j) 

and where P(j\j) and P(j + l\j) are given in Theorem 9.3. (To compute G(j + 
l,j), we assume A to be a very small number such as one hour and then 
approximate G(j + l,j) by G(j + l,j) * UZ^il + F(tj + *A|j)A].) 

To implement the procedures in Theorems 9.2 or 9.4 to derive X (t\n) 
for tj < t < tj+i, one first derives X(t\j) for tj < t by using formulas in 
Theorems 9.1 or 9.3 (forward filtering). Then one goes backward from n to 1 
to derive the estimates given data D(n) for tj <t < tj+i by using formulas in 
Theorems 9.2 or 9.4. These are the backward filtering procedures. 

9.3. Estimation of CD4<+) T Cell Counts and Number of 
HIV in Blood in HIV-infected Individuals 

As an application of Theorems 9.1-9.4, we consider a hemophilia patient from 
NCI/NIH Multi-Center Hemophilia Cohort Studies. This patient contracted 
HIV at age 11 through a blood transfusion. The CD4^+) T-Cell counts for this 
patient were taken at 16 occasions and are given in Table 9.1. (Notice that 
\tj —tu\ > 6 months for j ^ u, see Table 9.1.) 

For this individual, the estimates of the parameters are: s = 10/day/mm3, 
6 = 0.7571/day/mm3, 7 = 0.03/day/mm3, /^ = ^2 = 0.02/day, fj,3 = 0.3/day, 
Hv = 4.6/day, T m a x = 1656.16/day/mm3, iV0 = .3351, ft = 0.794378E - 05, 
ft = 49.9061£ + 03/ , fci = 1.3162 x 10-6 /day/mm3 , k2 = 7.9873 x 
10"3 /day/mm3 , w = 0.2, where N{t) = iV0exp(-ft i) + ft(l - exp(- f t t ) ) 
and s(t) = s/[9 + V(t)]. In these estimates the values of the parameters 



Estimation of CD^ T Cell Counts 397 

s,f,fii,i = l,2,3,/xy,c<; were taken from the literature [5-9] but the values 
of the parameters ki,k2,No,Pi,P2,6,Tmax were estimated by nonlinear least 
square procedures [10, 11]. 

Using these estimates and the methods given in Theorems 9.3-9.4, we have 
estimated the number of free HIV, the total number of CD4^ T cells and 

Table 9.1. The Observed Total Numbers of CD4<+) T Cells 
of an HIV Infected Patient. 

Days after 
Infection 

1152 
1404 
1692 
1872 
2124 
2376 
2592 
2736 

T Cell Counts 
(mm3) 

1254 
1005 
1022 
1105 
372 
432 
520 
660 

Days after 
Infection 

2952 
3096 
3312 
3456 
3708 
3852 
4032 
4212 

T Cell Counts 
(mm3) 

686 
357 
440 
584 
508 
583 
328 
345 
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Fig. 9.1. Plots showing the observed total number of OD4^+) T cell counts and the estimates 
by the Kalman filter method and by deterministic model. 
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Fig. 9.2. Plots showing the Kalman filter estimates of the numbers of HIV infected T cells 
and the estimates by the deterministic model. 

the numbers of Tj cells (i = 1,2,3) at different times. Plotted in Fig. 9.1 
are the estimated total number of CD4(+) T-cell counts together with the ob­
served CD4(+) T-cell counts. Plotted in Figs. 9.2-9.3 are the estimated num­
bers of infected CD4^+^ T cells and free HIV respectively. 

From Fig. 9.1, we observed that the Kalman filter estimates tried to trace 
the observed numbers. On the other hand, if we ignore the random variations 
and simply use the deterministic model to fit the data, then the fitted numbers 
would draw a smooth line between the observed numbers. This is not surprising 
since the deterministic model would yield continuous solutions. 

From Figs. 9.2-9.3, we observed that before days 2,800 since HIV infection, 
the estimated numbers of the HIV infected T cells and free HIV are very small 
(almost zero) by both the Kalman filter methods and the deterministic model. 
After days 2800 since HIV infection, however, there are significant differences 
between the Kalman filtering estimates and the estimates by the deterministic 
model. It appears that for the Kalman filter estimates, both the numbers 
of the HIV-infected CD4<+) T cells and free HIV first increase very sharply, 
reach a maximum at about 3,000 days since HIV infection and then decrease 
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Fig. 9.3. Plots showing Kalman filter estimates of the number of free HIV together with 
the estimates by the deterministic model. 

to a very lower level around 3240 days since infection; after that the curves 
increase steadily. These results appear to be consistent with the observation by 
Phillips [8], suggesting an acute infectivity phase early on. On the other hand, 
the deterministic results show only moderately increasing curves without an 
initial high peak; also no decreasing pattern has been observed. From Figs. 9.2-
9.3, we also observed that the estimated curves of the infected T cells and free 
HIV show similar pattern, suggesting a positive correlation between infected 
CD4(+) T cells and free HIV. This is not surprising since free HIV are released 
mainly from the death of T3 cells. 

9.4. A General Bayesian Procedure for Estimating the 
Unknown Parameters and the State Variables by 
State Space Models Simultaneously 

To apply the theorems of Chap. 8 and Sees. 9.1-9.2 to estimate the state 
variables, one would need to assume the parameter values as known or given. In 



400 Some General Theories of State Space Models and Applications 

many problems, however, the parameters may be unknown. In such cases, one 
would need to estimate simultaneously the unknown parameters and the state 
variables. In this section, we introduce some of these procedures for the model 
given in Sees. 8.1 and 8.2 through the multi-level Gibb's sampling method. 
The basic procedure was first proposed by this author and his associates in 
AIDS research and has been referred to as a generalized Bayesian method; see 
[12, 13] and [14, Chaps. 6 and 9]. The multi-level Gibbs sampling method is 
an extension of the Gibb's sampler method to multivariate cases first proposed 
by Sheppard [15], as described in Subsec. 3.3.1. Theoretical studies of this 
extension have been given in [15-17]. 

To proceed, let X = { X (1 ) , . . . , X (<M)} be the collection of all state vari­
ables, G the collection of all unknown parameters and Y = { Y (ti),..., Y {tf.)} 
(0 < ti < • • • < tk < £M) the collection of all vectors of observed data sets. Let 
P ( 0 ) be the prior distribution of the parameters 0 , P ( X | 0 ) the conditional 
probability density of X given the parameters 0 and P(Y\X,Q) the condi­
tional probability density of Y given X and ©. In these distributions, the prior 
density P ( 0 ) can be constructed from previous studies. (This is the so-called 
empirical Bayesian procedure; see [18].) If there are no prior information or 
our prior knowledge is vague and imprecise, then one may adopt an uniform 
prior or non-informative prior. The conditional probability density P(-X"|0) 
represents the stochastic system model and may be derived theoretically from 
the stochastic system equations. Given X, the probability density P(Y"|0, X) 
has usually been referred to as the likelihood function of the parameters. Based 
on the type of probability distributions being used, the standard inference in 
the literature may be classified as: 

(1) The Sampling Theory Inference: Given X, inference about 0 is derived 
only from the likelihood function P(Y\X, 0 ) . For example, one derives esti­
mate of 0 by maximizing P(Y\X, 0) ; these are the MLE (maximum likelihood 
estimator) of 0 . 

(2) The Bayesian Inference: Given X, the Bayesian inference about 0 
is derived from the posterior distribution of 0 which is proportional to the 
product of P ( 0 ) and P(Y\X, 0 ) . For example, one may use the posterior 
mean E{Q\X, Y} of 0 given {X, Y} or the posterior mode of 0 given {X, Y} 
as an estimate of 0 . These are the Bayesian estimate of 0 . 

(3) The Classical Kalman Filter: The classical theories of Kalman filter 
(see Sec. 8.4 and Sees. 9.1 and 9.2) derive optimal estimators or predictors of 
the state variables X by using P(X\Q)P(Y\X, 0 ) with 0 being assumed as 
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given or known. These are the procedures given in almost all of the texts on 
Kalman filters published to date; see for example [19-21]. 

In the above, notice that in the sampling theory inference, the prior in­
formation about 0 and the information about X from the stochastic system 
model are completely ignored; in the Bayesian inference, the information from 
the stochastic system model have been ignored. In the classical Kalman filter 
theories, the parameters 0 are assumed known. Thus, in each of these cases, 
some information have been lost or ignored. In this section we proceed to derive 
a general procedure to estimate simultaneously the unknown parameters and 
the state variables by taking into account information from all three sources. 
For this purpose, notice first that the joint probability density function of 
(X,Y,Q) is P(Q,X,Y) = P(Q)P(X\Q)P(Y\X,Q). From this, one derives 
the conditional probability density function P(X\@,Y) of X given ( 0 , y ) 
and the conditional probability density function P(Q\X, Y) of 9 given (X, Y) 
respectively as: 

P{X\Q,Y)cxP{X\e)P{Y\X,G), (9.26) 

and 

P(Q\X, Y) oc P{Q)P{X\Q)P{Y\X, 0 ) . (9.27) 

Given these conditional distributions, one may then use the multi­
level Gibb's sampler method [15-16] to estimate simultaneously 0 and X. 
The multi-level Gibb's sampler method is a Monte Carlo method to esti­
mate P(X\Y) (the conditional density function of X given Y) and P ( 0 | y ) 
(the posterior density function of 0 given Y") through a sequential procedure 
by drawing from P(X\Q, Y) and P(Q\X, Y) alternatively and sequentially. 
As proposed by Sheppard [15] and used by Liu and Chen [16], the algorithm 
of this method iterates through the following loop: 

(1) Given ©W and Y, generate X w from P{X\Y, ©W). 
(2) Generate 0<*> from P(@\Y, JT W ) where X(i,) is the value obtained 

in (1). 
(3) Using @W obtained from (2) as initial values, go back to (1) and repeat 

the (l)-(2) loop until convergence. 

At convergence, the above procedure then leads to random samples of X 
from the conditional density P(X\Y) of X given Y independently of 0 and to 
random samples of 0 from the posterior density P(Q\Y) of 0 independently 
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of X. The proof of the convergence of the multi-level Gibbs sampling 
method is easily derived by extending the proof given in Subsec. 3.3.1; see 
Exercise 9.2. 

9 .4.1. Generating data from P(X\Y, 0 ) 

Because in practice it is often very difficult to derive P(X\Y, 0 ) whereas 
it is easy to generate X from P(X\@), Tan and Ye [12, 13] have devel­
oped an indirect method by using the weighted bootstrap method due to 
Smith and Gelfand [22] to generate X from P(X\Y, 0 ) through the gener­
ation of X from P(X\&). The algorithm of the weighted bootstrap method 
is given by the following steps. The proof of this algorithm has been given in 
Subsec. 3.3.2: 

(a) Given ©(*) and X (I) (0 < I < j), generate a large random sample of 
size iV on X(j + 1) by using P{X(j + 1)\X(J)} from the stochastic system 
model; denote it by: {Xw(j + 1)7-.., X^(j + 1)}. 

(b) C o m p u t e r = P{Y(j + l)\X(s),s = 0,l,...,j,XW(j + l),@W} 
and qk = Wk/J2i=iwi f° r ^ = 1,---,N. (The observation model facilitates 
the computation of Wk.) 

(c) Construct a population IT with elements {Ei,...,E^} and with 
P(Ek) = qk- (Note $^ i = 1 q% = 1) Draw an element randomly from II. If 
the outcome is Ek, then X (fc)(j +1) is the element of X (j +1) generated from 
the conditional distribution of X given the observed data and the parameter 
values. 

(d) Start with j = 1 and repeat (a)-(c) until j = tM to generate a random 
sample from P(X\Y, 0(*)). 

9.4.2. Generating & from P(®\Y,X) 

To generate 0 from P ( 0 | X , V), very often it is convenient to partition 0 into 
non-disjoint subsets 0 = {©! , . . . , 0j} and apply multi-level Gibbs sampling 
method to these subsets. With no loss of generality we illustrate the method 
with I — 3 and write 0 = {0i ,© 2 ,©3}. Let the conditional posterior distri­
bution of 0 , given {Y,X, Gj, all j ± *} be P{Qi\Y, X, Qj, all j ^ i). Then 
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the algorithm goes through the following loop: 

(1) Given 0 = 0 W and X = X{*\ generate 0 i from P ( 0 1 | y , X ( * ) , 
© ^ , 0 ^ ) , and denote it by Q^. 

(2) Generate 0 2 from P ( 0 2 | y , X ( * ) , 0 ^ 1 ) , 0 ^ ) ) , where 0 ^ is the value 

obtained in (1), and denote it by 0 2 . 

(3) Generate 0 3 from P ( 0 3 | r , X w , 0 f )
f 6 ^ ) ) , where © ^ is the 

value obtained in (1) and 0 2 the value obtained in (2), and denote it 

(4) Using {©^ ',j — 1,2,3} obtained from (l)-(3) as initial values, go back 
to steps in Subsec. 9.4.1 to generate X from P(X\Y, 0 ) . 

Starting with j = 0 and continuing until j = tM, by combining the above 
iterative procedures from Subsecs. 9.4.1 and 9.4.2, one can readily generate a 
random sample for X from P(X\Y) and a random sample for 0 from P ( 0 | V ) . 
Prom these generated samples, one may use the sample means as estimates of 
X and 0 and use the sample variances and sample covariances as the estimates 
of the variances and covariances of the estimates of the parameters and state 
variables. 

In the next two sections we illustrate the application of the theories of this 
section by two examples: One from the discrete-time state space model and 
the other from the continuous-time state space model. 

9.5. Simultaneous Estimation in the San Francisco 
Population 

In this section, we illustrate the application of the theories in the previous 
section to estimate the unknown parameters and the state variables simul­
taneously in the San Francisco homosexual population. We will adopt the 
state space model given by the example in Sec. 8.1.2. In this example, we 
assume only one sexual activity level by visualizing Ps(t) as a mixture from 
different sexual activity levels; we note, however, that this will not affect the 
results because the probabilities of HIV infection of S people are functions 
of time. 
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9.5.1. A state space model for the San Francisco 
homosexual population 

To develop a state space model for the San Francisco homosexual population, 
we make the following assumptions: 

(1) Based on [23, 24], we assume that ps(t) and 7(u,i) = ^{t — u) are 
deterministic functions. 

(2) Because of the awareness of AIDS, we assume that there are no im­
migrants and recruitment of AIDS cases. Because the total population size 
changes very little over time, for S people and / people we also assume that 
the numbers of immigrants and recruitment are balanced out by death and 
retirement. As shown by Hethcode and Van Ark [25], this is approximately 
true for the San Francisco homosexual population. It follows that for the S 
people and / people, one may ignore immigration and death; see Remark 9.3. 

(3) As in the literature, we assume that there are no reverse transition from 
I to S and from A to I; see [23, 24]. 

Remark 9.3. In [12], it is shown that assumption (2) has little impacts 
on the estimation of the HIV infection distribution and the HIV incubation 
distribution. However, it does have some impacts on the estimation of the 
numbers of S people and / people. To correct for this we have thus figured in 
a 1% increase per year in estimating the numbers of S people and / people in 
the San Francisco homosexual population; for more detail, see [12]. 

9.5.1.1. The stochastic system model 

Under the above assumptions, the stochastic model is the chain binomial model 
given in Subsec. 2.9.2. In this model, if we ignore A(t), the state variables 
at time t are X(t) — {S(t),I(u,t),u = 0,1,...,t} and the parameters are 
© = {ps{t),lf(t),t = l , . . . , t M } - Let X = {X(l),...,X(tM)}, where tM is 
the last time point. Then X is the collection of all the state variables and 0 
the collection of all the parameters. For this model, the conditional probability 
distribution Pr{X| X (0)} of X given X (0) is available from Subsec. 2.9.2 and 
is given by 

tM — 1 

p{x\X(o)}= J] p{X(j + i)\x(j),e}, 
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where 

Pr{*0- + i ) im©}=( / ( 0
5 f j ^^ 

x n ( 7(M) ) 
x [7(u)]'(«.*W(«+i,t+i)[1 _ 7 ( u ) ] / («+i , t+i ) . 

(9.28) 

For generating X, we copy the stochastic equations from Subsec. 2.9.2 
to give: 

S(t + l) = S{t)-Fs(t), (9.29) 

l{0,t + 1) = Fs(t), (9.30) 

I(u + 1, t + 1) = I(u, *) - f/(u, t), u = 0 , . . . , t, (9.31) 

where Fs{t)\S(t) ~ 5{5(t),Ps(*)} and F/(u, t ) | / (u , t ) ~ B{J(u , i ) , 7 (u)} . 

9.5.1.2. The observation model 

Let Y(j + 1) be the observed AIDS incidence during [j,j + 1). Then the 
stochastic equation for the observation model is 

Y(j + l) = A(j + l) + e(j + l), 

where A(j + 1) = Ylu=o[I(u>t) ~ I(u + 1>* + 1)1 anc^ e(* + 1) is t n e random 
measurement error associated with observing Y(j + 1). Assuming that the e(jf) 
are independently distributed as normal with means 0 and variance a?, then 
the likelihood function LA = L(Q\y) given the state variables is 

tM ( 1 1 

i A « n *? exp J -^IYU) - AW2 | • (9-32) 

9.5.2. The initial distribution 

Since the average AIDS incubation period is around 10 years and since the 
first AIDS cases were discovered in 1981, we assume January 1, 1970 as to = 0. 
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It is also assumed that at time 0 there are no AIDS cases and no HIV infected 
people with infection duration u > 0; but to start the HIV epidemic, some 
HIV were introduced into the population at time 0. (That is, there are some 
I people with zero infection duration at time 0.) Tan, Tang and Lee [26], and 
Tan and Xiang [27, 28] have shown that the results are very insensitive to the 
choice of time origin. 

Based on the estimate by Tan and Xiang [27, 28], we assume 5(0) — 40,000; 
see Remark 9.4. Since the total number of AIDS cases during 1981 in the city of 
San Francisco was observed as 36, we assume 1(0,0) = 36 at time 0. The initial 
variances and covariances of these initial numbers are given by the variances 
and covariances of £s(0) and eo(0). That is, we have: 

X (0|0) = [5(0) = 40,000,7(0,0) = 36] 

and 

p r o l o g I" V a r [ € s ( 0 ) 1 Cov[es(0),e0(0)]" 
U [Cov[es(0),€0(0)] Var[eo(0)] 

R e m a r k 9.4. This number is the number of 5 people who were at risk for 
AIDS at tQ — 0. This does not include those 5 people who would not be 
infected or would not contribute to the total number of AIDS cases in his/or 
her life time. Recently, molecular biologists [29] have found that besides the 
CD4 receptor, successful infection of T cells by HIV also requires an CC-
chemokine receptor. For M-tropic HIV, this CC-chemokine receptor is CCR-5. 
Since during the long asymptomatic period, M-tropic HIV appears to be the 
dominant type [30], if the CCR-5 gene has mutated to deplete the function of 
the CCR-5 receptor, then the infection of T cells by HIV can not be completed 
in which case the individual would not be infected by HIV nor will he/she 
proceed to the AIDS stage. Let C denote the wild CCR-5 gene and c the 
mutated form of CCR-5. Let q be the frequency of the c gene in the population. 
Then the combined frequency of the CC type and the Cc type is q2+2q(l—q) in 
the population. Based on the estimate q = 0.01 by [29] of the frequency of the 
CCR-5 mutant gene in the population, then there are about 20% (q2 + 2q(l -
q) = 0.199) people in the population with at least one mutant gene. It follows 
that the estimated total size of 5 people at to — 0 is around 40,000 +10,000 = 
50,000. With a 1% population increase as estimated by the Census survey [3l], 
this leads to the population size of 58048 = 50,000 x (1.01)15 in 1985 which is 
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very close to the estimate 58500 of the size of the San Francisco homosexual 
population in 1985 by Lemp et al. [32]. 

9.5.3. The prior distribution 

In the above model, there are two sets of parameters: (1) The probabilities 
{ps{j),j = 1,2,...} of the HIV infection of S people, and (2) the transition 
rates {j(j),j = 1,2,...} of I(j) ->• A. The ps(j) are the hazard functions of 
the HIV infection distribution and the 7(7) the hazard functions of the HIV 
incubation distribution. That is, the pdf's of the HIV infection and the HIV 
incubation are given respectively by fi(j) = Ps(j) TllZi (1 — Ps(i)),j > 0 and 
g(s,t) = g(t - s) = 7 ( t - a j n j l p ^ l - 7(0) .* > s- Int33> 341> t h e P r i o r 

distributions of these parameters (i.e. {ps{j), l(j),j = 1 , . . . < M } ) are specified 
by the following procedures: 

(1) It is assumed that a priori the ps(i)'s are independently distributed 
of the 7(j)'s. 

(2) The Prior Distribution of ps{i)-
Since 0 < ps(j) < 1, and since the complete likelihood function of 

the hazard function of the HIV sero-conversion in the EM-algorithm can be 
expressed as a product of beta densities [26, 35], a natural conjugate prior of 
PS(j) is: 

P{ps{i), i = 1,...) oc n { M i ) ] a i ( i M [ l - Ps(i)r{i)-1} , (9.33) 

where oi(i') and 02(1) are determined by some prior studies. Notice that if 
ai(i) — d2(i) = 1, the above prior is an uniform prior which corresponds to no 
prior information. 

To determine the prior parameters from some prior data, one may specify 
a i ( j ) — 1 as the number of HIV infected individuals with HIV infection in 
[j — 1, j ) in the prior data. If there are no individuals in the prior study, then 
the ai(j) — 1 are distributed as multinomial random variables with parameters 
{"0) fi(to, j), 3' = 1) }i where fi(to,j) is the probability density distribution 
(pdf) of the HIV infection at time j for 5 people at to = 0. It follows that 
ail?) = 1 +nofi(t0,j) and a2(j) = 1 + n0 Z ) J > J + I //(*o,0> where fi{t0,j) is 
the estimate of fi(to,j) and no the sample size in the previous study. 

(3) The prior distribution of 7(7). 
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Table 9.2. Prior Information for Infection Distribution. 

Time 

ai(t) 

02 (t) 

Time 

ai(t) 

02 (t) 

Time 

01 (t) 

a2(t) 

Time 

01 (t) 

a2(<) 

Jun. 77 

4.03 
1060.42 

Jun. 81 

13.53 
574.57 

Jun. 85 

1.52 
397.31 

Jun. 89 

1.41 
373.92 

Dec. 77 

5.92 
1033.92 

Dec. 81 

10.25 
511.87 

Dec. 85 

1.52 
394.28 

Dec. 89 

1.18 
372.56 

Jun. 78 

7.42 
1001.62 

Jun. 82 

6.67 
469.05 

Jun. 86 

1.28 
391.98 

Jun. 90 

1.22 
371.38 

Dec. 78 

8.39 
957.60 

Dec. 82 

4.95 
441.70 

Dec. 86 

1.31 
390.37 

Dec. 90 

1.69 
368.87 

Jun. 79 

11.15 
903.19 

Jun. 83 

3.40 
424.51 

Jun. 87 

1.61 
387.22 

Jun. 91 

5.09 
355.00 

Dec. 79 

15.61 
829.79 

Dec. 83 

2.45 
413.57 

Dec. 87 

1.87 
383.12 

Dec. 91 

9.33 
313.97 

Jun. 80 

15.50 
733.92 

Jun. 84 

2.03 
406.48 

Jun. 88 

1.47 
377.77 

Jun. 92 

10.25 
259.07 

Dec. 80 

14.02 
650.26 

Dec. 84 

1.85 
401.15 

Dec. 88 

1.25 
375.83 

Dec. 92 

9.04 
207.49 

Since 0 < 7(7) < 1 and since the complete likelihood function of the in­
cubation hazard functions is a product of beta densities, a natural conjugate 
prior for 7(j) is, 

P(lU)J = 1,2,...) oc Hb(j)]blV)-l[l-l(j)]baU)-1}, (9-34) 

where the prior parameters bi(j) and 62(J) a r e estimated from some prior 
studies on the HIV incubation distribution. As above, if g(j) is an estimate 
of the HIV incubation density g(j) from some study with sample size n, then 
an estimate of 61 (j) and 62 (j) a r e given by &i(j) = 1 + ng(j) and 620) = 

i + E i > i + i 6 i ( 0 -
Given in Tables 9.2 and 9.3 are the estimated hyperparameters of the prior 

distributions for ps(t) and j(t) respectively. 
To compare effects of different prior distributions, we also assume that our 

prior knowledge about the parameters are vague and imprecise so that we 
assume uniform prior for the parameters. That is, we take aj(i) = bi(t) — 1 
for i = 1,2. We will compare results from different prior distributions. 

9.5.4. Generating X from the conditional density P(X\®, Y) 

We use the weighted bootstrap method as described in Sec. 9.4 to generate 
X from P{X\Q) through the stochastic Eqs. (9.29)-(9.32) given above. Thus, 
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Table 9.3. Prior Information for Incubation Distribution. 

Time 

b1(t) 

MO 
Time 

h(t) 

M«) 
Time 

bi(t) 
62(t) 

Time 

bl(t) 
62(t) 

Jun. 77 

5.34 
528.82 

Jun. 81 

4.99 
318.96 

Jun. 85 

3.49 

163.95 

Jun. 89 

2.32 
75.28 

Dec. 77 

5.46 
502.34 

Dec. 81 

4.82 
295.62 

Dec. 85 

3.31 
149.63 

Dec. 89 

2.21 
67.74 

Jun. 78 

5.51 
475.37 

Jun. 82 

4.63 
273.36 

Jun. 86 

3.15 

136.34 

Jun. 90 

2.11 
60.83 

Dec. 78 

5.52 
448.24 

Dec. 82 

4.44 
252.24 

Dec. 86 

2.99 

124.02 

Dec. 90 

2.02 
54.50 

Jun. 79 

5.48 

421.23 

Jun. 83 

4.25 
232.27 

Jun. 87 

2.84 
112.62 

Jun. 91 

1.93 
48.70 

Dec. 79 

5.40 
394.61 

Dec. 83 

4.05 
213.48 

Dec. 87 

2.69 
102.10 

Dec. 91 

1.85 
43.39 

Jun. 80 

5.29 
368.58 

Jun. 84 

3.86 
195.84 

Jun. 88 

2.56 
92.41 

Jun. 92 

1.78 
38.54 

Dec. 80 

5.15 

343.32 

Dec. 84 

3.67 
179.34 

Dec. 88 

2.44 
83.48 

Dec. 92 

1.71 
34.11 

given X(J) = {S(j),I(u,j),u = 0, l,...,j} and given the parameter val­
ues, we use the binomial generator to generate Fs(t) and Fi(u,t) through the 
conditional binomial distributions Fs{t)\S(t) ~ B{S(t),ps(t)} and Fi(u,t)\ 
I(u,t) ~ B{I(u,t),-y(u)}. These lead to 

S(t + 1) = S{t) - Fs(t), 7(0, t + 1) = Fs(t),I(u + 1, t + 1) 

= I(u,t) - F / ( u , t ) , u = 0,l,...,t 

and 
t 

A(t + l) = TTFI{u,t). 

The binomial generator is readily available from the IMSL subroutines 
[36] or other software packages such as SAS. With the generation of X from 
P(X\Q), one may then apply the weighted bootstrap method to generate X 
iiomP(X\Y,Q). 

9.5.5. Generating 0 from the conditional density 
P(&\X,Y) 

Using Eq. (9.28) given in Subsec. 9.5.1, and the prior distribution from 
Subsec. 9.5.3, we obtain 
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P(e\X,Y) oc J ] { |p s(t)] / ( 0 , t + 1 ) + a i ( t )"1[l - P s ( * ) ] S ( t + 1 ) + o a ( t ) _ 1 } 
t=o 

x I I {[7(w)]Cl(" )+6 l (u )_1[l-7(u)]C2(" )+62(u)_1}. (9-35) 
u = l 

The above equation shows that the conditional distribution of ps{t) given 
X and given Y is a Beta distribution with parameters {1(0, t+l) + a\(t), S(t+ 
1) + a,2(t)}- Similarly, the conditional distribution of i(t) given X and given 
Y is a Beta distribution with parameters {c\(u) + 61 (u), 02(11) + ^ ( u ) } . Since 
generating a large sample from the Beta distribution to give sample means are 
numerically identical to compute the mean values from the Beta distribution, 
the estimates of ps(t) and j(t) are then given by: 

() J(0,t + l) + oi(t) 
PS{ ' 7(0,t + l) + S(t + l) + ai(t) + a2(t) ' 

= d (u ) + 6i(u) 

£ L i M « ) + &<(«)]" 

We will use these estimates as the generated sample means. 
Using the above approach, one can readily estimate simultaneously the 

numbers of S people, I people and AIDS cases as well as the parameters 
{ps(t),l(t)}- With the estimation of {ps(£),7(£)}, one may readily estimate 
the HIV infection distribution fi(t) and the HIV incubation distribution g(t) 
through the formula //(f) = ps(t) n | Z j ( l - Ps(0) and g(t) = i(t)UlZ{ 
(1 — y(i)). For the San Francisco homosexual population, these estimates are 
plotted in Figs. 9.4-9.6. Comparing results from Sec. 8.5 and with the corre­
sponding results from this section, one notices that these two approaches gave 
similar results and hence almost the same conclusions for the San Francisco 
homosexual population. Given below we summarize the basic findings: 

(a) From Fig. 9.4, the estimated density of the HIV infection clearly showed 
a mixture of distributions with two obvious peaks. 

(b) From Fig. 9.5, the estimated density of the HIV incubation distribution 
appeared to be a mixture of distributions with two obvious peaks. 

(c) From Fig. 9.6(a), we observe that the estimates of the AIDS incidence 
by the Gibbs sampler are almost identical to the corresponding observed AIDS 
incidence respectively. These results are almost identical to the estimates by 
the method of Sec. 8.5; see Sec. 8.5. 
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Fig. 9.4. Plots of the estimated HIV infection distribution. 

O . O O B 

Fig. 9.5. Plots of the estimated HIV incubation distribution. 

(d) To assess influence of prior information on {ps(*),7(i)}> we plot in 
Figs. 9.4-9.5 the estimates of the HIV infection and the HIV incubation under 
both with and without (i.e. non-informative uniform prior) prior information. 
The results show clearly that the prior information seem to have little effects, 
especially in the case of HIV infection. 
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Fig. 9.6. Plots of the observed AIDS incidence, the Gibb's sampler estimate and the esti­
mated numbers of susceptible and infected people. 

9.6. Simultaneous Estimation in the Cancer Drug-Resistant 
Model 

In Subsec. 8.2.1, we have considered the cancer drug-resistant model under 
chemotherapy and immuno-stimulation. In this model, the state variables are 
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the numbers of sensitive cancer tumor cells (Xi(t)) and resistant cancer tumor 
cells (X2(t)). The parameters are the birth rates (6j(t), i = 1,2), the death 
rates (di(t), i = 1,2) and the mutation rates a(t) from sensitive tumor cells 
to resistant tumor cells. If some data are available from this system so that 
one can develop a state space model, then one may use the basic procedures 
in the previous section to estimate simultaneously the state variables and the 
parameter values. 

To serve as an example, in this section we will use the model in 
Subsec. 8.2.1 to generate some Monte Carlo data; by using the generated 
data we then proceed to derive estimates of the unknown parameters and 
the state variables. 

9.6.1. Data generation 

As in [37], we use the model given in Subsec. 8.2.1 to generate some Monte 
Carlo data over a period of 60 days. We partition the time interval [0,60] of 
60 days into 5 sub-intervals: 

[0,10), [10,20), [20,30), [30,40), [40,60]. 

Chemotherapy is applied to sub-intervals [10,20) and [30,40) but immuno-
stimulation is applied to all sub-intervals. For the birth rates and death rates, 
if chemotherapy is not applied, we assume bi(t) = &i = 0.055 and di(t) = di = 
0.035 to yield 7i(£) = b\(t) — di(t) = 0.02 which corresponding to a doubling 
time of 35 days for cancer tumor cells; if chemotherapy is applied, then we 
assume &i(£) = 61 = 0.055 but di(t) = 5s — 0.535. For resistant cancer 
tumor cells, because of resistance, we assume foW = &2 = 0.045 and d^t) = 
d-2. = 0.025 to reflect the observation that resistant tumor cells in general have 
smaller fitness than sensitive tumor cells. (Notice that b^it) — d^if) = 0.02 
so that the doubling time is again 35 days for resistant tumor cells; see [37].) 
For the mutation rates from sensitive tumor cells to resistant tumor cells, if 
chemotherapy is not applied, we take a(t) = c*o = 1 0 - 7 (Notice that this 
is the spontaneous mutation rate.); if chemotherapy is applied, then we take 
a(t) — a\ — 10 - 3 . In this model, therefore, the parameters to be estimated 
are: ©i = {61,di ,5s},92 = {b2,d2} and 0 3 = { a 0 , a i } . 

Using these parameter values and the model in Sec. 9.3, we have generated 
20 observed total number of cancer tumor cells every 3 days over a period of 60 
days (k — 1, n — 20). In the generation of these observed numbers, we assume 
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Table 4. Generated Observed And Fitted Numbers. 

Time (days) Fitted Numbers Observed Numbers 

3 

6 

9 

12 

15 

18 

21 

24 

27 

30 

33 

36 

39 

42 

45 

48 

51 

54 

57 

60 

1.0613E + 07 

1.1264E + 07 

1.1955E + 07 

6488948.00 

938810.00 

158220.00 

49455.00 

52387.00 

55492.00 

58815.00 

44822.00 

41900.00 

43489.00 

45951.00 

48597.00 

51373.00 

54331.00 

57447.00 

60754.00 

64222.00 

1.0614E+07 

1.1258E+07 

1.1940E+07 

6475337.00 

932789.60 

156488.50 

48068.66 

50940.54 

54344.58 

57735.37 

43981.10 

41307.60 

42858.89 

45424.34 

48512.52 

51272.01 

54666.74 

58480.43 

61710.66 

65850.72 

that the Gaussian errors have mean 0 and variance of = 1. These generated 
observed numbers are given in Table 9.4. 

9.6.2. The state space model 

Using the state space model given in Subsec. 8.2.1, one may derive the 
probability density P{X\Q} and the likelihood function of the parameters 
P{Y\X, &}. Combining with the prior distribution of the parameters, one 
may then use the generalized Bayesian method of Sec. 9.4 to estimate the 
unknown parameters and the state variables. 

9.6.2.1. The probability distribution of the state variables 

Let X = {X (1 ) , . . . , X {i,M)}, where £M is the time of termination of the study 
and X(t) = {Xi(t),X2{t)}'. Then, by the Markov condition, the conditional 
probability density P{X\Q} of X given 0 is 
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P{X\Q} = P{X(0)\G}l[P{X(t)\X(t-l),Q}. 
t=i 

To derive the conditional density P{X(t)\X(t — 1) ,0} , denote by: 

mi(i, t) = Xtf) + i - Xx(t + 1), rn(i,j, t) = Xi{t + 1) - 2t - 3 , 

m2(k,j,t) = X2(t) + k + j - X2(t + 1), n2{k,j,t) = X2(t + l)-2k-j. 

Then, using the stochastic equations given by Eqs. (8.1)-(8.2) and noting 
that the probability distributions of {Bs(t), Ds(t), Ms(t)} and {BR(t), DR(t)} 
are multinomial, we obtain: 

^ M . fgH(T ) f t r ) 
^Ux2{t)\ fX2{t)-k\ 

X h \ k ) \ma{k,j,t)) 

x [b2{t)}k[d2{t)}m^k^[l-b2(t)-d2(t)}
n^k'j^ . (9.36) 

The above distribution is quite complicated, to implement the multi­
level Gibbs sampling method, we thus introduce the augmented data U = 
{U(j),j = l,...,tM}, where U(j) = {Bs(j),Ds(j),Ms(j),BR(j),DR(j)}. 
Then, by using Eqs. (8.1)-(8.2) and the multinomial distributions for the 
augmented variables, one can generate X given U and O; similarly, one can 
generate U given X and ©. The conditional density P{X\U, 9 } of X given 
U and 6 is, 

P{X\U,G} = P{X(0)\Q}l[P{X(t)\X(t-l),U(t-l),G}, 
t= i 

P{X(t + l)\X(t), U(t)} oc C1(t)C2(t)[6i(t)]B s ( t )[a(t)]M s ( t )[di(*)]m s ( t ) 

x [1 - h(t) - di(t) - a(t)]nsV[b2(t)]
B*W 

x [ d 2 ( i ) ] m « « [ l - 6 2 ( t ) - d 2 ( f ) ] n f l ( t ) , (9.37) 
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where 

and 

with 

and 

c ( t ) = ( X M \ (Xi(t)-Bs{t)\ (XM-BsW-Msit)} 
l U \B3{t))\ Ms(t) ){ ms(t) ) ' 

\BR(t)J\ mR(t) ) 

ms{t) = Xi(t) - Xi(i + 1) + Bs(t), 

ns(t) = Xi(t + 1) - 2Bs(t) - Ms(t), 

mR{t) = X2(t) - X2(t + 1) + BR(t) + Ms(t), 

nR(t) = X2(t + 1) - 2BR(t) - Ms(t). 

9.6.2.2. The conditional likelihood function 

Write X(t) — 5Zi=i-^»(*)- Under the assumption that e ( l , j ) = {Y(l,j) — 
X(tj)}/y/X(tj) is distributed as normal with mean 0 and variance a2 

independently, the conditional likelihood function of the parameters given -X" is 

P { Y ! X , e } =, „-» j - 7 J = e X p { - 5 ^ | r ( l , i ) - X f e ) ] ^ } . (9.38) 

9.6.3. The prior distribution and the conditional posterior 
distributions of the parameters 

To assign the prior distribution for the parameters, we assume that a priori 
the {Qi,i = 1,2,3} are independently distributed of one another. Then the 
prior distribution of {0j , i = 1,2,3} is 

3 

P{ei)i = l,2,3} = JJP{e i}, (9.39) 

where P{@i} is the prior density of @,. 
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To derive the conditional posterior distribution of the parameters, let 
{Lu,i = l,...,ki} (&i = 3 in the above) denote the sub-intervals in which 
chemotherapy has not been applied and {L2i,i = 1, . . . , ^2} (&2 = 2 in the 
above) the sub-intervals in which chemotherapy has been applied. Denote by: 

fcl fc2 

ft = E E x&)> s* = E E x^)> and N* = Ex^) -
i=l teLu i=l t€L2i t 

MI) = E E **(*)> ns{2)=E E M*),m^) = E E Ds® > 
i=l teLu i=l t£L2i i=l t6Lii 

™s(2) = E E D*(f)' MI) = E E Ms(*)> M2) = E E M^) > 
i = l t€l<2> »=1 t€Lii i=l teL2i 

and 

nfi = ^ B«(i), mR = J2 DR{t). 
t t 

Then, using the probability densities of the state variables given above, we 
obtain the conditional posterior distribution of 0 ; given the other parameters 
and given {X, U, Y} as: 

P ( 0 i | 0 2 , 0 3 , Y, X, U) <x P (0 1 ) ^ s ( 1 ) + n s ( 2 ) [ r f 1 r ^ ( 1 ) [ r f s ] m s ( 2 ) 

x ( l - 6 1 - d i ) S l - n s ( 1 ) - m s ( 1 ) 

X (1 - h - J1)^-«s(2)-ms(2) ( (94Q^ 

P(G2\Qi,&3,Y,X.U) oc P(e2)(62)B* 

x (d2)
mR(l - 62 - d2)

NR-nR-m* , (9.41) 

p(e3|0i!02,y,x,c7)ocP(03)(r-^_) s 

a \ S1-ns(l)-ms(l)-fcs(l) 

X , 1 - r r ^ 
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X ' 
1-h-Ss, 

To implement the multi-level Gibbs sampling method, because we have 
no prior information about the parameters, we assume non- informative prior 
to reflect that our knowledge about the parameters are vague and imprecise. 
Notice that if we assume a non-informative prior, generating a large sample 
of ©i from the posterior distribution of Eq. (9.40) and taking sample mean is 
numerically equivalent to estimating {bi,d\,5s} by 

t ns(l)+ns(2) . (1 - &i)ms(l) * (l-bi)ms{2) 
bl ~ g _ i _ g ' dl = ~~c 7TV~ > a n d °s = ~~g 7^V~ • 

Si + S2 Si- ns ( l ) S2 - ns{2) 
Similarly, if one uses a non-informative prior, generating a large sample of 
©2 from the posterior distribution of Eq. (9.41) and taking sample mean is 
numerically equivalent to estimating {62,^2} by 

62 = ^ , and ^2 = ^ ; 

generating a large sample of ©3 from the posterior distribution of Eq. (9.42) 
and taking sample mean is equivalent numerically to estimating {ao ,a i} by 

. ( l - S i - d i ) M l ) . (l-bi-6s)ks(2) 
a° = "5 7TT 7TT i a l — 

Si-ns(l)-ms(l)' S2-ns{2)-ms(2) 

9.6.4. The multi-level Gibbs sampling procedure 

Using results from Subsecs. 9,6.2-9.6.3, the multi-level Gibbs sampling method 
to estimate © and the state variables are then given by the following 
loop: 

(1) Combining a large sample from P{U\X,Q} for given X with 
P { Y | 0 , X} through the weighted Bootstrap method due to Smith and Gelfant 
[21], we generate U (denote the generated sample U^) from P{U\Q,X,Y} 
although the latter density is unknown. 

(2) Combining a large sample from P{X\U(*\@} with P{Y\G,X} 
through the weighted Bootstrap method due to Smith and Gelfant [2l], we 
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generate X (denote the generated sample by X^) from P{X\Q, U^*\Y} 
although the latter density is unknown. 

(3) On substituting {U^*',X^*'} which are generated numbers from the 
above two steps and assuming non-informative uniform priors, generate G 
from the conditional density P{9\X^.U^ ,Y} given by Eqs. (9.22)-(9.24) 
in Subsec. 9.6.3. 

(4) On substituting X^*' generated from Step (2) above and with 0 being 
generated from Step (3) above, go back to Step (1) and repeat the above (l)-(3) 
loop until convergence. 

At convergence, one then generates a random sample of X from the con­
ditional distribution P{X\Y} of X given Y, independent of U and 0 and a 
random sample of 0 from the posterior distribution P { 0 | Y } of 0 given Y, 
independent of {X, U}. Repeat these procedures we then generate a random 
sample of size n of X and a random sample of size m of 0 . One may then 
use the sample means to derive the estimates of X and 0 and use the sample 
variances as the variances of these estimates. The convergence of these pro­
cedures are proved by using the basic theory of homogeneous Markov chains 
given in Subsec. 3.3.1. 

9.6.5. Estimated results 

Using procedures given in Subsec. 9.6.4 and the data in Table 9.4, we have 
estimated the unknown parameters and the state variables. Given in Figs. 9.7-
9.8 are the estimated values of the Xi(t) 's over time. Given in Table 9.4 
are the estimated total numbers of tumor cells over time. The estimates of 
the parameters together with the estimated standard errors by the Bootstrap 
method are given as follows: 

Si 

di 

6s 

k 
d2 

do 

di 

= 5.5006038E -

= 3.4966093£ -

- 02 ± 6.6009081.E 

- 02 ± 1.344672l£ 

= 0.5343983 ± 1.1880239E - 03 , 

= 4.1315455E-

= 2.3084166.E-

= 5.0931044E -

= 1.0274288£-

- 02 ± 1.0685023.E 

- 02 ± 5.0952979£' 

- 07 ± 1.5631909E 

- 03 ± 5.3189488E 
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Fig. 9.7. Plots showing the number of sensitive tumor cells. 

,-.-. y^ 

SO SB 6 0 
T i m e ( d a y s ) 

Fig. 9.8. Plots showing the number of resistant tumor cells. 
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From the above estimates and the fitted results given in Table 9.4, it is clear 
that the methods appear to be quite promising. The Kalman filter estimates 
of the numbers of Xi(t) also appear to be very close to the generated true 
numbers. Notice that if one uses the classical least square method to estimate 
the unknown parameters, the problem is not identifiable in the sense that 
one can not estimate the birth rates and the death rates separately but only 
the difference between the birth rate and the death rate. 

9.7. Complements and Exercises 

Exercise 9.1. Prove Theorem 9.3. 

Exercise 9.2. Prove Theorem 9.4. 

Exercise 9.3. Prove the convergence of the multi-level Gibbs sampling 
procedures in Sec. 9.4. 

Exercise 9.4. Using the stochastic Eqs. (9.29)-(9.31), derive the distribu­
tion result in (9.28). 

Exercise 9.5. Using the density given by (9.35), derive the expected values 
and variance of ps{t) and i(t). 

Exercise 9.6. Using the stochastic Eqs. (8.1) and (8.2), derive the distribu­
tion results in Eqs. (9.36) and (9.37). 

Exercise 9.7. Using the densities given by (9.40)-(9.42), derive the expected 
values and variance of hi, di and «j. 
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Stochastic Models with Applications to Genetics, 
Cancers, AIDS and Other Biomedical Systems 

This book presents a systematic t reatment of Markov chains, 

diffusion processes and state space models, as wel l as 

alternative approaches to Markov chains through stochastic 

difference equations and stochastic differential equations. 

It illustrates how these processes and approaches are applied • . 

t o many problems in genetics, carcinogenesis, AIDS epidemiology 

and other biomedical systems. 

One feature of the book is that i t describes the basic MCMC (Markov 

chain and Monte Carlo) procedures and illustrates how to use the Gibbs 

sampling method and the multilevel Gibbs sampling method t o solve many 

problems in genetics, carcinogenesis, AIDS and other biomedical systems. 

As another feature, the book develops many state space models for 

many genetic problems, carcinogenesis, AIDS epidemiology and HIV 

pathogenesis. It shows in detail how to use the multilevel Gibbs sampling 

method to estimate (or predict) simultaneously the state variables and the 

unknown parameters in cancer chemotherapy, carcinogenesis, AIDS 

epidemiology and HIV pathogenesis. As a matter of fact, this book is the first 

to develop many state space models for many genetic problems, carcinogenesis 

and other biomedical problems. 
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