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Preface

When Statistics ar Square One was first published in 1976 the type
of statistics seen in the medical literature was relatively simple:
means and medians, ¢ tests and chi-squared tests. Carrying out
complicated analyses then required arcane skills in calculation and
computers, and was restricted to a minority who had undergone
considerable training in data analysis. Since then, statistical
methodology has advanced considerably and, more recently,
statistical software has become available to enable research workers
to carry out complex analyses with little effort. It is now
commonplace to see advanced statistical methods used in medical
research, but often the training received by the practitioners has
been restricted to a cursory reading of a software manual. I have
this nightmare of investigators actually learning statistics by
reading a computer package manual. This means that much
statistical methodology is used rather uncritically, and the data to
check whether the methods are valid are often not provided when
the investigators write up their results.

This book is intended to build on Statistics ar Square One. It is
hoped to be a “vade mecum” for investigators who have undergone
a basic statistics course, to extend and explain what is found in the
statistical package manuals and help in the presentation and
reading of the literature. It is also intended for readers and users of
the medical literature, but is intended to be rather more than a
simple “bluffer’s guide”. Hopefully it will encourage the user to
seek professional help when necessary. Important sections in each
chapter are tips on reporting about a particular technique and the
book emphasises correct interpretation of results in the literature.

Since most researchers do not want to become statisticians,
detailed explanations of the methodology will be avoided. I hope it
will prove useful to students on postgraduate courses and for this
reason there are a number of exercises.

The choice of topics reflects what I feel are commonly
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STATISTICS AT SQUARE TWO

encountered in the medical literature, based on many years of
statistical refereeing. The linking theme is regression models, and
we cover multiple regression, logistic regression, Cox regression,
Ordinal regression and Poisson regression. The predominant
philosophy is frequentist, since this reflects the literature and what
is available in most packages. However, a section on the uses of
Bayesian methods is given.

Probably the most important contribution of statistics to medical
research is in the design of studies. I make no apology for an
absence of direct design issues here, partly because I think an
investigator should consult a specialist to design a study and partly
because there are a number of books available: Cox (1966),
Altman (1991), Armitage and Berry (1995), Campbell and Machin
(1999).

Most of the concepts in statistical inference have been covered in
Statistics at Square One. In order to keep this book short, reference
will be made to the earlier book for basic concepts. All the analyses
described here have been conducted in STATA6 (STATACorp,
1999). However most, if not all, can also be carried out using
common statistical packages such as SPSS, SAS, StatDirect or
Splus. I am grateful to Stephen Walters and Mark Mullee for
comments on various chapters and particularly to David Machin
and Ben Armstrong for detailed comments on the manuscript.
Further errors are my own.

M]J Campbell
Sheffield

Further reading

Armitage P, Berry G. Srawstical Methods in Medical Research.
Oxford: Blackwell Scientific publications, 1995.

Altman DG. Practical Statistics in Medical Research. London:
Chapman and Hall, 1991.

Campbell MJ, Machin D. Medical Statistics: a commonsense
approach, 3rd edn. Chichester: John Wiley, 1999.

Cox DR. Planning of Experiments. New York: John Wiley, 1966.

Swinscow TDV. Statistics atr Square One, 9th edn. (revised by MJ
Campbell). London: BM]J Books, 1996.

STATACorp. STATA Statistical Software Release 6.0. College
Station, TX: STATA Corporation, 1999.



1 Models, tests and data

Summary

This chapter introduces the idea of a statistical model and then
links it to statistical tests. The use of statistical models greatly
expands the utility of statistical analysis. The different types of data
that commonly occur in medical research are described, because
knowing how the data arise will help one to choose a particular
statistical model.

1.1 Basics

Much medical research can be simplified as an investigation of
an input/output relationship. The inputs, or explanatory variables,
are thought to be related to the outcome, or effect. We wish to
investigate whether one or more of the input variables are plausibly
causally related to the effect. The relationship is complicated by
other factors that are thought to be related to both the cause and
the effect; these are confounding factors. A simple example would be
the relationship between stress and high blood pressure. Does
stress cause high blood pressure? Here the causal variable is a
measure of stress, which we assume can be quantified, and the
outcome is a blood pressure measurement. A confounding factor
might be gender; men may be more prone to stress, but they may
also be more prone to high blood pressure. If gender is a
confounding factor, a study would need to take gender into
account.

An important start in the analysis of data is to determine which
variables are inputs, and of these which do we wish to investigate
as causal, which variables are outputs and which are confounders.
Of course, depending on the question, a variable might serve as any
of these. In a survey of the effects of smoking on chronic bronchitis,
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STATISTICS AT SQUARE TWO

smoking is a causal variable. In a clinical trial to examine the effects
of cognitive behavioural therapy on smoking habit, smoking is an
outcome. In the above study of stress and high blood pressure,
smoking may be a confounder.

However, before any analysis is done, and preferably in the
original protocol, the investigator should decide on the causal,
outcome and confounder variables.

1.2 Models

The relationship between inputs and outputs can be described
by a mathematical model which relates the inputs, both causal
variables and confounders (often called “independent variables”
and denoted by x) with the output (often called the dependent
variable and denoted by y). Thus in the stress and blood pressure
example above, we denote blood pressure by y and stress and
gender are both x variables. We wish to know if stress is still a good
predictor of blood pressure when we know an individual’s gender.
To do this we need to assume that gender and stress combine in
some way to affect blood pressure. As discussed in Swinscow,' we
describe the models at a population level. We take samples to get
estimates of the population values. In general we will refer to
population values using Greek letters, and estimates using Roman
letters.

The most commonly used models are known as “linear models”.
They assume that the x variables combine in a linear fashion to
predict y. Thus if x; and x, are the two independent variables we
assume that an equation of the form By+B;x;+B,x, is the best
predictor of y where B, 3; and B, are constants and are known as
parameters of the model. The method often used for estimating the
parameters is known as regression and so these are the regression
parameters. Of course, no model can predict the y variable perfectly,
and the model acknowledges this by incorporating an error term.
These linear models are appropriate when the outcome variable is
Normally distributed.! The wonderful aspect of these models is
that they can be generalised so that the modelling procedure is
similar for many different situations, such as when the outcome is
non-Normal or discrete. Thus different areas of statistics, such as ¢
tests and chi-squared tests are unified, and dealt with in a similar
manner using a method known as “generalised linear models”.

2



MODELS, TESTS AND DATA

When we have taken a sample, we can estimate the parameters
of the model, and get a fit to the data. A simple description of the
way that data relate to the model?® is

DATA =FIT + RESIDUAL

The FIT is what is obtained from the model given the predictor
variables. The RESIDUAL is the difference between the DATA
and the FIT. For the linear model the residual is an estimate of the
error term. For a generalised linear model this is not strictly the
case, but the residual is useful for diagnosing poor fitting models as
we shall see later.

Do not forget however, that models are simply an approximation
to reality. “All models are wrong, but some are useful.”

The subsequent chapters describe different models where the
dependent variable takes different forms: continuous, binary, a
survival time, and when the values are correlated in time. The rest
of this chapter is a quick review of the basics covered in Statistics at
Square One.

1.3 Types of data

Data can be divided into two main types: quantitative and
qualitative. Quantitative data tends to be either continuous
variables that one can measure, such as height, weight or blood
pressure, or discrete such as numbers of children per family, or
numbers of attacks of asthma per child per month. Thus count data
are discrete and quantitative. Continuous variables are often
described as having a Normal distribution, or being non-Normal.
Having a Normal distribution means that if you plotted a
histogram of the data it would follow a particular “bell-shaped”
curve. In practice, provided the data cluster about a single central
point, and the distribution is symmetric about this point, it would
commonly be considered close enough to Normal for most tests
requiring Normality to be valid. Here one would expect the mean
and median to be close. Non-Normal distributions tend to have
asymmetric distributions (skewed) and the means and medians
differ. Examples of non-Normally distributed variables include age
and salaries in a population. Sometimes the asymmetry is caused
by outlying points that are in fact errors in the data and these need
to be examined with care.
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Note it is a misnomer to talk of “non-parametric” data instead of
“non-Normally distributed” data. Parameters belong to models,
and what is meant by “non-parametric” data is data to which we
cannot apply models, although as we shall see later, this is often a
too limited view of statistical methods! An important feature of
quantitative data is that you can deal with the numbers as having
real meaning, so for example you can take averages of the data. This
is in contrast to qualitative data, where the numbers are often
convenient labels.

Qualitative dara tend to be categories, thus people are male or
female, European, American or Japanese, they have a disease or are
in good health. They can be described as nominal or caregorical. If
there are only two categories they are described as binary data.
Sometimes the categories can be ordered, so for example a person
can “get better”, “stay the same,” or “get worse”. These are ordinal
data. Often these will be scored, say, 1, 2, 3, but if you had two
patients, one of whom got better and one of whom got worse, it
makes no sense to say that on average they stayed the same! (A
statistician is someone with their head in the oven and their feet in
the fridge, but on average they are comfortable!) The important
feature about ordinal data is that they can be ordered, but there is
no obvious weighting system. For example it is unclear how to
weight “healthy”, “ill”, or “dead” as outcomes. (Often, as we shall
see later, either scoring by giving consecutive whole numbers to the
ordered categories and treating the ordinal variable as a
quantitative variable or dichomising the variable and treating it as
binary may work well.) Count data, such as numbers of children
per family appear ordinal, but here the important feature is that
arithmetic is possible (2.4 children per family is meaningful). This
is sometimes described as having razio properties. A family with
four children has twice as many children as one with two, but if we
had an ordinal variable with four categories, say “strongly agree”,
“agree”, “disagree”, “strongly disagree”, and scored them 1 to 4,
we cannot say that “strongly disagree”, scored 4, is twice “agree”,
scored 2!

Qualitative data can be formed by categorising continuous data.
Thus blood pressure is a continuous variable, but it can be split
into “normotension” or “hypertension”. This often makes it easier
to summarise, for example 10% of the population have
hypertension is easier to comprehend than a statement giving the

4
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mean and standard deviation of blood pressure in the population,
although from the latter one could deduce the former (and more
besides).

When the dependent variable is continuous, we use multiple
regression, described in Chapter 2. When it is binary we use logistic
regression or survival analysis described in Chapters 3 and 4,
respectively. If the dependent variable is ordinal we use ordinal
regression described in Chapter 6 and if it is count data, we use
Poisson regression, also described in Chapter 6. In general, the
question about what type of data are the independent variables is
less important.

1.4 Significance tests

Significance tests such as the chi-squared test and the ¢ test and
the interpretation of P values were described in Starstics ar Square
One.' The form of statistical significance testing is to set up a null
hypothesis, and then collect data. Using the null hypothesis we test
if the observed data are consistent with the null hypothesis. As an
example, consider a clinical trial to compare a new diet with a
standard to reduce weight in obese patients. The null hypothesis is
that there is no difference between the two treatments in weight
changes of the patients. The outcome is the difference in the mean
weight after the two treatments. We can calculate the probability of
getting the observed mean difference (or one more extreme) if the
null hypothesis of no difference in the two diets were true. If this
probability (the P value) is sufficiently small, we reject the null
hypothesis and assume that the new diet differs from the standard.
The usual method of doing this is to divide the mean difference in
weight in the two diet groups by the estimated standard error of the
difference and compare this ratio to either a ¢ distribution (small
sample) or a Normal distribution (large sample).

The test as described above is known as Student’s ¢ test, but the
form of the test, whereby an estimate is divided by its standard
error and compared to a Normal distribution is known as a Wald
test.

There are, in fact, a large number of different types of statistical
test. For Normally distributed data, they usually give the same P
values, but for other types of data they can give different results. In
the medical literature there are three different tests commonly used
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and it is important to be aware of the basis of their construction
and their differences. These tests are known as the Wald test, the
score test and the lLikelihood rario test. For non-Normally distributed
data they can give different P values although usually the results
converge as the data set increases in size. The basis for these three
tests is described in Appendix 2.

1.5 Confidence intervals

The problem with statistical tests is that the P value depends on
the size of the data set. With a large enough data set, it would be
almost always possible to prove that two treatments differed
significantly, albeit by small amounts. It is important to present the
results of an analysis with an estimate of the mean effect, and a
measure of precision, such as a confidence interval.” To understand
a confidence interval we need to consider the difference between a
population and a sample. A population is a group to whom we make
generalisations, such as patients with diabetes, or middle-aged men.
Populations have parameters such as the mean HbAlc in diabetics, or
the mean blood pressure in middle-aged men. Models are used to
model populations and so the parameters in a model are population
parameters. We take samples to get eszzmates for model parameters.
We cannot expect the estimate of a model parameter to be exactly
equal to the true model parameter, but as the sample gets larger we
would expect the estimate to get closer to the true value, and a
confidence interval about the estimate helps to quantify this. A 95%
confidence interval for a population mean implies that if we took one
hundred samples of a fixed size, and calculated the mean and 95%
confidence interval for each, then we would expect 95 of the intervals
to include the true model parameter. The way they are commonly
understood, from a single sample is that there is a 95% chance that
the population parameter is in the 95% interval.

In the diet example given above, the confidence interval will
measure how precisely we can estimate the effect of the new diet.
If in fact the new diet were no different from the old, we would
expect the confidence interval to contain zero.
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1.6 Statistical tests using models

A 1 test compares the mean values of a continuous variable in
two groups. This can be written as a linear model. In the example
above, weight after treatment was the continuous variable, under
one of two diets. Here the primary predictor variable x is diet,
which is a binary variable taking the value (say) O for standard diet
and 1 for the new diet. The outcome variable is weight. There are
no confounding variables. The fitted model is

Weight=b,+b; diet+residual.

The FIT part of the model is by+b; diet and is what we would
predict someone’s weight to be given our estimate of the effect of
the diet. We assume that the residuals have an approximate Normal
distribution. The null hypothesis is that the coefficient associated
with diet, b, is from a population with mean zero. Thus we assume
that 3;, the population parameter, is zero.

Models enable us to make our assumptions explicit. A nice
feature about models, as opposed to tests, is that they are easily
extended. Thus, weight at baseline may (by chance) differ in the
two groups, and will be related to weight after treatment, so it
could be included as a confounder variable.

This method is further described in Chapter 2 using multiple
regression. The treatment of the chi-squared test as a model is
described in Chapter 3 under logistic regression.

1.7 Model fitting and analysis: exploratory and
confirmatory analyses

There are two aspects to data analysis: confirmatory and
exploratory analysis. In a confirmatory analysis we are testing a pre-
specified hypothesis and it follows naturally to conduct significance
tests. Testing for a treatment effect in a clinical trial is a good
example of a confirmatory analysis. In an exploratory analysis we are
looking to see what the data are telling us. An example would be
looking for risk factors in a cohort study. The findings should be
regarded as tentative to be confirmed in a subsequent study, and P
values are largely decorative. Often one can do both types of analysis
in the same study. For example, when analysing a clinical trial, a
large number of possible outcomes may have been measured. Those

7
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specified in the protocol as primary outcomes are subjected to a
confirmatory analysis, but there is often a large amount of
information, say concerning side effects that could also be analysed.
These should be reported, but with a warning that they emerged
from the analysis and not from a pre-specified hypothesis. It seems
illogical to ignore information in a study, but also the lure of an
apparent unexpected significant result can be very difficult to resist
(but should be)!

It may also be useful to distinguish audiz, which is largely
descriptive, intending to provide information about one particular
time and place, and research which tries to be generalisable to other
times and places.

1.8 Computer-intensive methods

Much of the theory described in the rest of this book requires some
prescription of a distribution for the data, such as the Normal
distribution. There are now methods available which use models but
are less dependent on the actual distribution. They are very computer
intensive and until recently were unfeasible. However they are
becoming more prevalent, and for completeness a description of one
such method, the bootstrap is given in Appendix 3.

1.9 Bayesian methods

The model based approach to statistics leads one to statements
such as “given model M, the probability of obtaining data D is P”.
This is known as the frequentist approach. This assumes that
population parameters are fixed. However, many investigators
would like to make statements about the probability of model M
being true, in the form “given the data D, what is the probability that
model M is the correct one?” Thus one would like to know, for
example, what is the probability of a diet working. A statement of
this form would be particularly helpful for people who have to make
decisions about individual patients. This leads to a way of thinking
known as “Bayesian” and this allows population parameters to vary.
This book is largely based on the frequentist approach. Most
computer packages are also based on this approach. Further
discussion is given in Chapter 5 and Appendix 4.
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1.10 Reporting statistical results in the literature

The reporting of statistical results in the medical literature often
leaves something to be desired. Here we will briefly give some tips
that can be generally applied. In subsequent chapters we will
consider specialised analyses.

For further information Lang and Secic* is recommended and
they describe a variety of methods for reporting statistics in the
medical literature. Checklists for reading and reporting statistical
analyses are given in Altman ez al.’ For clinical trials the reader is
referred to the CONSORT statement.’

e Always describe how the subjects were recruited and how many
were entered into the study and how many dropped out. For
clinical trials one should say how many were screened for entry,
and describe the drop-outs by treatment group.

e Describe the model used and assumptions underlying the
model and how these were verified.

e Always give an estimate of the main effect, with a measure of
precision, such as a 95% confidence interval as well as the P value.
It is important to give the right estimate. Thus in a clinical trial,
whilst it is of interest to have the mean of the outcome, by
treatment group, the main measure of the effect is the difference
in means and a confidence interval for the difference. This can often
not be derived from the confidence intervals of the means for each
treatment.

e Describe how the P values were obtained (Wald, likelihood
ratio, or score) or the actual tests.

e It is sometimes useful to describe the data using binary data (e.g.
percentage of people with hypertension), but analyse the
continuous measurement (e.g. blood pressure).

e Describe which computer package was used. This will often
explain why a particular test was used. Results from “home
grown” programs may need further verification.



STATISTICS AT SQUARE TWO

1

.11 Reading statistics in the literature

From what population are the data drawn? Are the results
generalisable? Was much of the data missing? Did many people
refuse to cooperate?

Is the analysis confirmatory or exploratory? Is it research or
audit?

Have the correct statistical models been used?

Do not be satisfied with statements such as “a significant effect was
found”. Ask what is the size of the effect and will it make a

difference to patients (often described as a “clinically significant
effect”)?

Are the results critically dependent on the assumptions about
the models? Often the results are quite “robust” to the actual
model, but this needs to be considered.

Multiple choice questions

1.  TDypes of data

A survey of patients with breast cancer was conducted.
Describe the following data as categorical, binary, ordinal,
continuous quantitative, and discrete quantitative (count data).

(1) Hospital where patients were treated.

(i1)) Age of patient (in years).

(iii)) Type of operation.

(iv) Grade of breast cancer.

(v) Heart rate after intense exercise.

(vi) Height.

(vii) Employed/unemployed status.

(viii) Number of visits to a general practitioner per patient per
year.

2.  Casuallconfounder/outcome variables
Answer true or false.
In the diet trial described earlier in the chapter:

(1) The outcome variable is weight after treatment.
(i1)) Type of diet is a confounding variable.

10
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(iii)) Smoking habit is a potential confounding variable.
(iv) Baseline weight could be an input variable.
(v) Diet is a discrete quantitative variable.

3.  Basic statistics

A trial of cognitive behavioural therapy (CBT) compared to
drug treatment produced the following result: mean depression
score after 6 months, CBT 5.0, drug treatment 6.1, difference
1.1, P=0.45, 95% CI -5.0 to 6.2.

(i) CBT is equivalent to drug treatment.

(i) A possible test to get the P value is the ¢ test.

(i) The trial is non-significant.

(iv) There is a 45% chance that CBT is better than drug
treatment.

(v) With another trial of the same size under the same
circumstances there is a 95% chance of a mean difference
between —5.0 and 6.2 units.
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2 Multiple linear
regression

Summary

When we wish to model an outcome continuous variable, then
an appropriate analysis is often multiple linear regression. Simple
linear regression was covered in Swinscow.! For simple linear
regression we had one continuous input variable. In multiple
regression we generalise the method to more than one input
variable and we will allow them to be continuous or categorical. We
will discuss the use of dummy or indicator variables to model
categories and investigate the sensitivity of models to individual
data points using concepts such as leverage and nfluence. Multiple
regression is a generalisation of the analysis of variance and analysis
of covariance. The modelling techniques used here will be useful in
subsequent chapters.

2.1 The model

In multiple regression the basic model is the following.
Yi=BotB1 X tBa Xt B Xt 2.1

We assume that the error term &; is Normally distributed, with
mean zero and standard deviation o.

In terms of the model structure described in Chapter 1, the link
is a linear one and the error term is Normal.

Here y; is the output for unit or subject 7 and there are k& input
variables X}y, Xj»,...,X;,. Often y; is termed the dependent variable
and the input variables X, X,,,...,X}; are termed the independent
variables. The latter can be continuous or nominal. However the
term “independent” is a misnomer since the Xs need not be
independent of each other. Sometimes they are called the
explanatory or predictor variables. Each of the input variables is

12



MULTIPLE LINEAR REGRESSION

associated with a regression coefficient 31, By,...3, There is also an
additive constant term (3. These are the model parameters.

We can write the first section on the right hand side of equation
(2.1) as

LP;=Bo+B1 X1 +B2Xpn+..- +BrXir

where LP; is known as the linear predictor and is the value of y;
predicted by the input variables. The difference y,—LP; =g, is the
error term.

The models are fitted by choosing estimates b, b;,...b;, which
minimise the sum of squares of the predicted error. These estimates
are termed ordinary least squares estimates. Using these estimates
we can calculate the fitted values y,/%, and the observed residuals
e; =y;—v;/ as discussed in Chapter 1. Here it is clear that the
residuals estimate the error term. Further details are given in
Draper and Smith.?

2.2 Uses of multiple regression

1. To adjust the effects of an input variable on a continuous
output variable for the effects of confounders. For example, to
investigate the effect of diet on weight allowing for smoking
habits. Here the dependent variable is the outcome from a
clinical trial. The independent variables could be the two
treatment groups (as a 0/1 binary variable), smoking (as a
continuous variable in numbers of packs per week) and
baseline weight. The multiple regression allows one to
compare the outcome between groups, allowing for
differences in baseline and smoking habit.

2. For predicting a value of an outcome, for given inputs. For
example, an investigator might wish to predict the FEV, of a
subject given age and height, so as to be able to calculate the
observed FEV; as a percentage of predicted and to decide if
the observed FEV| is below, say, 80% of the predicted one.

3. To analyse the simultaneous effects of a number of categorical
variables on an output variable. An alternative technique is
the analysis of variance but the same results can be achieved
using multiple regression.

13
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2.3 'Two independent variables

We will start off by considering two independent variables which
can be either continuous or binary. There are three possibilities:
both variables continuous, both binary (0/1) or one continuous and
one binary. We will anchor the examples in some real data.

Example

Consider the data given on the pulmonary anatomical deadspace
and height in 15 children given in Swinscow.' Suppose that of the
15 children, 8 had asthma and 4 bronchitis. The data are given in
Table 2.1

Table 2.1 Lung function data on 15 children.

Child Deadspace Height Asthma Age Bronchitis
number (ml) (cm) (0=No,) (Years) (0=No,
1=Yes) 1=Yes)
1 44 110 1 5 0
2 31 116 0 5 1
3 43 124 1 6 0
4 45 129 1 7 0
5 56 131 1 7 0
6 79 138 0 6 0
7 57 142 1 6 0
8 56 150 1 8 0
9 58 153 1 8 0
10 92 155 0 9 1
11 78 156 0 7 1
12 64 159 1 8 0
13 88 164 0 10 1
14 112 168 0 11 0
15 101 174 0 14 0

2.3.1 One continuous and one binary independent variable

In Swinscow,’ the problem posed was whether there is a
relationship between deadspace and height. Here we might ask, is
there a different relationship between deadspace and height for
asthmatics than for non-asthmatics?

Here we have two independent variables, height and asthma
status. There are a number of possible models:

14
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1. The slope and the intercept are the same for the rwo groups even
though the means are different.

The model is
Deadspace= B+ Byejgn < Height (2.2)

This is illustrated in Figure 2.1. This is the simple linear regression
model described in Swinscow.’

o Non-asthmatics + Asthmatics

120 o
110
100
90
80
70 -
60 -

Deadspace (ml)

50
40

30

T T T T T T T T
110 120 130 140 150 160 170 180
Height (cm)

Figure 2.1 Deadspace versus height ignoring asthma status.

2. The slopes are the same, but the intercepts are different.

The model is
Deadspace=p(+Byeign < Height+ B aghma X Asthma  (2.3)

This is illustrated in Figure 2.2. It can be seen from model (2.3)
that the interpretation of the coefficient 8 54m, i the difference in
the intercepts of the two parallel lines which have slope Byeign,. It
is the difference in deadspace between asthmatics and non-
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120 o Non-asthmatics + Asthmatics

110

Deadspace (ml)

T T T T T T T T
110 120 130 140 150 160 170 180

Height (cm)

Figure 2.2 Parallel slopes for asthmatics and non-asthmatics.

asthmatics for any value of height, or to put it another way, it is the
difference allowing for height. Thus if we thought that the only
reason that asthmatics and non-asthmatics in our sample differed
in the deadspace was because of a difference in height, this is the
sort of model we would fit. This type of model is termed an analysis
of covariance. It is very common in the medical literature. An
important assumption is that the slope is the same for the two
groups.

We shall see later that, although they have the same symbol, we
will get different estimates of BHeight when we fit (2.2) and (2.3).

3. The slopes and the intercepts are different in each group.

To model this we form a third variable x3=HeightXAsthma.
Thus x5 is the same as height when the subject is asthmatic and is
zero otherwise. The variable x3 measures the interaction between
asthma status and height. It measures by how much the slope
between deadspace and height is affected by being an asthmatic.

16
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The model is

Deadspace=
Bot BHeighe < Height+ B Aghma X Asthma+ B3 XHeight X Asthma (2.4)

This is illustrated in Figure 2.3. In this graph we have separate
slopes for non-asthmatics and asthmatics.

120 o Non-asthmatics + Asthmatics
110
100
90
80
70

Deadspace (ml)

60
50 +

40

30+

T T T T T T T T
110 120 130 140 150 160 170 180

Height (cm)

Figure 2.3 Separate lines for asthmatics and non-asthmatics.

The two lines are:
Non-asthmatics

Group=0: Deadspace =+ Byigh X Height

Asthmatics

Group=1: Deadspace=(By+Basthma ) T (BHeight T B3) < Height

In this model the interpretation of Byigp, has changed from
model (2.3). It is now the slope of the expected line for non-

17
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asthmatics. The slope of the line for asthmatics i Bryejgn+B3. We
then get the difference in slopes between asthmatics and non-
asthmatics is given by 3.

2.3.2 Two continuous independent variables

As an example of a situation where both independent variables
are continuous, consider the data given in Table 2.1, but suppose
we were interested in whether height and age together were
important in the prediction of deadspace.

The equation is

Deadspace=0+; XHeight+,X Age.

The interpretation of this model is trickier than the earlier one
and the graphical visualisation is more difficult. We have to imagine
that we have a whole variety of subjects all of the same age, but of
different heights. Then we expect the Deadspace to go up by f; ml
for each cm in height, irrespective of the ages of the subjects. We also
have to imagine a group of subjects, all of the same height, but
different ages. Then we expect the Deadspace to go up by 3, ml for
each year of age, irrespective of the heights of the subjects. The nice
feature of the model is that we can estimate these coefficients
reasonably even if none of the subjects has exactly the same age, or
height.

This model is commonly used in prediction as described in
section 2.2.

2.3.3 Categorical independent variables

In Table 2.1, the way that asthmatic status was coded is known
as a dummy or indicator variable. There are two levels, asthmatic and
non-asthmatic, and just one dummy variable, the coefficient of
which measures the difference in the y variable between asthmatics
and normals. For inference it does not matter if we code 1 for
asthmatics and 0 for normals or vice versa. The only effect is to
change the sign of the coefficient; the P value will remain the same.
However the table describes three categories: asthmatic, bronchitic
and neither (taken as normal!), and these categories are mutually
exclusive (i.e. there are no children with both asthma and
bronchitis). Table 2.2 gives possible dummy variables for a group
of three subjects.
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Table 2.2 One method of coding a three-category variable.

Status X X, X3
Asthmatic 1 0 0
Bronchitic 0 1 0
Normal 0 0 1

We now have three possible contrasts asthmatics vs bronchitics,
asthmatics vs normals and bronchitics vs normals, but they are not
all independent. Knowing two of the contrasts we can deduce the
third (if you are not asthmatic or bronchitic you must be normal!).
Thus we need to choose two of the three contrasts to include in the
regression and thus two dummy variables to include in a
regression. If we included all three variables, most regression
programs would inform us politely that x;, x, and x5 were aliased
(i.e. mutually dependent) and omit one of the variables from the
equation. The dummy variable that is omitted from the regression
is the one that the coefficients for the other variables are contrasted
with, and is known as the baseline variable. Thus if x5 is omitted in
the regression which includes x; and x, in Table 2.2, then the
coefficient attached to x; is the difference between deadspace for
asthmatics and normals. Another way of looking at it is that the
coefficient associated with the baseline is constrained to be zero.

2.4 Interpreting a computer output

We now describe how to interpret a computer output for linear
regression. Most statistical packages produce an output similar to
this one. The models are fitted using the principle of least squares,
which is explained in Appendix 2, and is equivalent to maximum
likelihood when the error distribution is Normal.

2.4.1 One continuous and one binary independent variable

We must first create a new variable Asthma=1 for asthmatics
and Asthma=0 for non-asthmatics and create a new variable
AsthmaHt=AsthmaXHeight for the interaction of asthma and
height. Some packages can do both of these automatically if one
declares asthma as a “factor” or as “categorical”, and fits a term
such as Asthma*Height in the model.
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The results of fitting these variables using a computer program
are given in Table 2.3

Table 2.3 Output from computer program fitting height and asthma status and
their interaction to deadspace from Table 2.1.

Source | SS df MS Number of obs = 15
—————— +-----——--—-—--—-——-—-—-F(3,11) = 37.08
Model | 7124.3865 3 2374.7955 Prob > F = 0.0000
Residual | 704.546834 11 64.0497122 R-squared = 0.9100
—————— +---—-—-—-—-—-——-——-——-———-——- Adj R-squared = 0.8855
Total | 7828.93333 14 559.209524 Root MSE = 8.0031
Deadspace | Coef. Std. Err. t P>|t| [95% Conf. Interval]
______ +______________________________
Height | 1.192565 .1635673 7.291 0.000 .8325555 1.552574
Asthma | 95.47263 35.61056 2.681 0.021 17.09433 173.8509
AsthmaHt | —.7782494 .2447751-3.179 0.009 —1.316996 —.239503
_cons | —99.46241 25.20795—3.946 0.002 —154.9447 —43.98009

We fit three independent variables Height, Asthma and AsthmaHt
on Deadspace. This is equivalent to model (2.4), and is shown in
Figure 2.3. The computer program gives two sections of output.
The first part refers to fit of the overall model. The F(3,11) =37.08
is what is known as an F statistic (after the statistician Fisher),
which depends on two numbers which are known as the degrees of
freedom. The first, k, is the number of parameters in the model
(excluding the constant term ;) which in this case is 3 and the
second is 7 —k—1 where 7 is the number of subjects and in this case
is 15—3 —1=11.The Prob >F is the probability that the variability
associated with the model could have occurred by chance, on the
assumption that the true model has only a constant term and no
explanatory variables, in other words the overall significance of the
model. This is given as 0.0000, which we interpret as P <0.0001. It
means that fitting all three variables simultaneously gives a highly
significant fit. It does nor tell us about individual variables. An
important statistic is the value R2, which is the proportion of
variance of the original data explained by the model and in this
model is 0.91. For models with only one independent variable it is
simply the square of the correlation coefficient described in
Swinscow.! However, one can always obtain an arbitrarily good fit
by fitting as many parameters as there are observations. To allow
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for this, we calculate the R? adjusted for degrees of freedom, which is
R2,=1—(1—-R?)(n—1)/(n—Fk) and in this case is given by 0.89.The
root MSE means the “residual mean square error” and has the
value 8.0031. It is an estimate of ¢ in equation (2.1) and can be
deduced as the square root of the residual MS (mean square) in
left-hand table. Thus V64.0497 =8.0031.

The second part of the output examines the individual
coefficients in the model. We see that the interaction term between
height and asthma status is significant (P =0.009). The difference in
the slopes is —0.778 units (95% CI —1.317 to —0.240). There are
no terms to drop from the model. Note, even if one of the main
terms, asthma or height was not significant, we would 7oz drop it
from the model if the interaction was significant, since the
interaction cannot be interpreted in the absence of the main
effects, which in this case are asthma and height.

The two lines of best fit are:

Non-asthmatics:
Deadspace =—99.46+1.193 XHeight
Asthmatics:

Deadspace=(—99.46+95.47)+(1.193—0.778) X Height
=-3.99+0.425XHeight

Thus the deadspace in asthmatics appears to grow more slowly
with height than that of non-asthmatics.

Quite clearly, the intercepts for these equations are meaningless.
They are the projected values of deadspace assuming the subject
had no height and are completely uninterpretable.

2.4.2 Two independent variables: both continuous

Here we were interested in whether height or age were both
important in the prediction of deadspace. The analysis is given in
Table 2.4.

The equation is

Deadspace=—59.05+0.707XHeight+3.045 X Age

The interpretation of this model is described in section 2.3.2. Note
a peculiar feature of this output. Although the overall model is
significant (P =0.0003) neither of the coefficients associated with

21



STATISTICS AT SQUARE TWO

height and age are significant (P =0.063 and 0.291 respectively!).
This occurs because age and height are strongly correlated and
highlights the importance of looking at the overall fit of a model.
Dropping either will leave the other as a significant predictor in the
model. Note that if we drop age, the adjusted R? is not greatly
affected (R2 = 0.6944 for height alone compared to 0.6995 for age
and height) suggesting that height is a better predictor.

Table 2.4 Output from computer program fitting age and height to deadspace
from Table 2.1.

Source | SS df MS Number of obs = 15
————— +---—-—--—-——"——=——- F(2, 12) = 17.29
Model | 5812.17397 2 2906.08698 Prob > F = 0.0003
Residual | 2016.75936 12 168.06328 R-squared = 0.7424
————— - ———- Adj R-squared = 0.6995
Total | 7828.93333 14 559.209524 Root MSE = 12.964
Deadspace | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____ +_______________________________
Height | 7070318  .3455362 2.046 0.063 —.0458268 1.45989
Age | 3.044691 2.758517 1.104 0.291 —2.965602 9.054984
cons | —59.05205 33.63162 —1.756 0.105 —132.329 14.22495

Bootstrap statistics

Variable | Reps Observed Bias Std. Err.  [95% Conf. Interval]

Height | 1000 .7070318 —.0080937 .3313434 .056823 1.357241 (N)
| .0793041 1.312535 (P)
| .0845788 1.31849 (BC)

Age | 1000 3.044691  .3040586 3.399811 —3.6269 9.716281 (N)
[ —2.586633  10.66853  (P)
| —2.986388  10.29889 (BC)

N = normal, P = percentile, BC = bias-corrected

2.4.3 Use of a bootstrap estimate

In the lower half of Table 2.4 we illustrate the use of a computer-
intensive method, known as a bootstrap, to provide a more robust
estimate of the standard error of the regression coefficients. The
basis for the bootstrap is described in Appendix 3.

This method is less dependent on distributional assumptions
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than the usual methods described in this book and involves
sampling the data a large number of times and recalculating the
regression equation on each occasion. It would be used, for
example, if a plot of the residuals indicated a marked asymmetry in
their distribution. The computer program produces three
alternative estimators, a Normal estimate — a percentile estimate
(PC) and a bias-corrected estimate (BC). We recommend the last.
It can be seen that a bootstrap estimate for the standard error of the
height estimate is slightly smaller than the conventional estimate,
so that the confidence intervals no longer include 0. The bootstrap
standard error for age is larger. This would confirm our earlier
conclusion that height is the stronger predictor here.

2.4.4 Categorical independent variables

It will help the interpretation to know that the mean values (ml)
for deadspace for the three groups are normals 97.33, asthmatics
52.88 and bronchitics 72.25. The analysis is given in Table 2.5.
Here the two independent variables are x; and x, in Table 2.3. As

Table 2.5 Output from computer program fitting two categorical variables to
deadspace from Table 2.2.

Asthma and bronchitis as independent variables

Number of obs = 15, F(2,12) = 7.97,Prob > F = 0.0063
R-squared = 0.5705 Adj R-squared = 0.4990

Asthma | -44.45833 11.33229 -3.923 0.002 -69.14928 -19.76739
Bronch | -25.08333 12.78455 -1.962 0.073 -52.93848 2.771809
| 97.33333 9.664212 10.072 0.000 76.27683 118.3898

Asthma and Normal as independent variables

Number of obs =15, F(2, 12) = 7.97, Prob > F = 0.0063
R-squared = 0.5705, Adj R-squared = 0.4990

y | Coef. Std. Err. t  P>[t|[95% Conf. Interval]

_____ +_______________________________
Asthma | -19.375 10.25044 -1.890 0.083 -41.7088 2.9588
Normal | 25.08333 12.78455 1.962 0.073 -2.771809 52.93848
_cons | 72.25 8.369453 8.633 0.000 54.01453 90.48547
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we noted before an important point to check is that in general one
should see that the overall model is significant, before looking at
the individual contrasts. Here we have Prob> F =0.0063, which
means that the overall model is highly significant. If we look at the
individual contrasts we see that the coefficient associated with
asthma, —44.46, is the difference in means between normals and
asthmatics. This has a standard error of 11.33 and so is highly
significant. The coefficient associated with bronchitics, —25.08, is
the contrast between bronchitics and normals and is not
significant, implying that the mean deadspace is not significantly
different in bronchitics and normals.

If we wished to contrast asthmatics and bronchitics, we need to
make one of them the baseline. Thus we use x; and x5 as the
independent variables to make bronchitics the baseline and the
output is shown in Table 2.5. As would be expected the Prob>F
and the R2 value are the same as the earlier model because these
refer to the overall model which differs from the earlier one only in
the formulation of the parameters. However, now the coefficients
refer to the contrast with bronchitics, and we can see that the
difference between asthmatics and bronchitics has a difference
—19.38 with standard error 10.25, which is not significant.

Thus the only significant difference is between asthmatics and
normals.

This method of analysis is also known as one-way analysis of
variance. It is a generalisation of the  test referred to in Swinscow.!
One could ask what is the difference between this and simply
carrying out two ¢ tests, asthmatics vs normals and bronchitics vs
normals. In fact the analysis of variance accomplishes two extra
refinements. Firstly, the overall P value controls for the problem of
multiple testing referred to in Swinscow.! By doing a number of
tests against the baseline we are increasing the chances of a Type I
error. The overall P value in the F test allows for this and since it is
significant, we know that some of the contrasts must be significant.
The second improvement is that in order to calculate a 7 test we
must find the pooled standard error. In the r test this is done from
two groups, whereas in the analysis of variance it is calculated from
all three, which is based on more subjects and so is more precise.
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2.5 Multiple regression in action

2.5.1 Analysis of covariance

We mentioned that model (2.3) is very commonly seen in the
literature. To see its application in a clinical trial consider the
results of Llewellyn-Jones ez al.,’ part of which are given in Table
2.6. This study was a randomised controlled trial of the
effectiveness of a shared care intervention for depression in 220
subjects over the age of 65. Depression was measured using the
Geriatric Depression Scale, taken at baseline and after 9.5 months
of blinded follow up. The figure that helps the interpretation is
Figure 2.2. Here y is the depression scale after 9.5 months of
treatment (continuous), x; is the value of the same scale at baseline
and x, is the group variable, taking the value 1 for intervention and
0 for control.

The standardised regression coefficient is not universally defined,
but in this case is obtained when the x variable is replaced by x
divided by its standard deviation. Thus the interpretation of the
standardised regression coefficient is the amount the y changes for
one standard deviation increase in x. One can see that the baseline
values are highly correlated with the follow-up values of the score.
The intervention resulted on average, in patients with a score 1.87
units (95% CI 0.76 to 2.97) lower than those in the control group,
throughout the range of the baseline values.

Table 2.6 Factors affecting Geriatric Depression Scale score at follow up.

Variable Regression coefficient Standardised P value
95% CI) regression
coefficient
Baseline score 0.73 (0.56 to 0.91) 0.56 <0.0001
Treatment group —1.87 (-2.97 to -0.76) —0.22 0.0011

This analysis assumes that the treatment effect is the same for all
subjects and is not related to values of their baseline scores. This
possibility could be checked by the methods discussed earlier.
When two groups are balanced with respect to the baseline value,
one might assume that including the baseline value in the analysis
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will not affect the comparison of treatment groups. However, it is
often worthwhile including because it can improve the precision of
the estimate of the treatment effect, i.e. the standard errors of the
treatment effects may be smaller when the baseline covariate is
included.

2.5.2 Two continuous independent variables

Sorensen er al.* describe a cohort study of 4300 men, aged
between 18 and 26, who had their body mass index (BMI)
measured. The investigators wished to relate adult BMI to the
men’s birthweight and body length at birth. Potential confounding
factors included gestational age, birth order, mother’s marital
status, age and occupation. In a multiple linear regression they
found an association between birthweight (coded in units of 250 g)
and BMI (allowing for confounders), regression coefficient 0.82,
SE 0.17, but not between birth length (cm) and BMI, regression
coefficient 1.51, SE 3.87. Thus for every increase in birthweight of
250 g, the BMI increases on average by 0.82kg/m2. The authors
suggest that iz uzero factors that affect birthweight continue to have
an effect even into adulthood, even allowing for factors such as
gestational age.

2.6 Assumptions underlying the models

There are a number of assumptions implicit in the choice of the
model. The most fundamental assumption is that the model is
linear. This means that each increase by one unit of an x variable is
associated with a fixed increase in the y variable, irrespective of the
starting value of the x variable.

There are a number of ways of checking this when x is
continuous:

e For single continuous independent variables the simplest check
is a visual one from a scatter plot of y versus x.

e Try transformations of the x variables (log(x), x2 and 1/x are the
commonest). There is not a simple significance test for one
transformation against another, but a good guide would be if
the R? value gets larger.

e Include a quadratic term (x2) as well as the linear term (x) in
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the model. This model is the one where we fit two continuous
variables x and x2. A significant coefficient for x2 indicates a lack
of linearity.

e Divide x into a number of groups such as by quintiles. Fit
separate dummy variables for the four largest quintile groups
and examine the coefficients. For a linear relationship, the
coefficients themselves will increase linearly.

Another fundamental assumption is that the error terms are
independent of each other. An example of where this is unlikely is
when the data form a time series. A simple check for sequential
data for independent errors is whether the residuals are correlated,
and a test known as the Durbin-Watson test is available in many
packages. Further details are given in Chapter 6, on time-series
analysis. A further example of lack of independence is where the
main unit of measurement is the individual, but that several
observations are made on each individual, and these are treated as
if they came from different individuals. This is the problem of
repeated measures. A similar type of problem occurs when groups of
patients are randomised, rather than individual patients. These are
discussed in Chapter 5, on repeated measures.

The model also assumes that the error terms are independent of
the x variables and variance of the error term is constant (the latter
goes under the more complicated term of heteroscedascity). A
common alternative is when the error increases as one of the x
variables increases, so one way of checking this assumption would
be to plot the residuals, ¢; against each of the independent variables
and also against the fitted values. If the model were correct one
would expect to see the scatter of residuals evenly spread about the
horizontal axis and not showing any pattern. A common departure
from this is when the residuals fan out, i.e. the scatter gets larger as
the x variable gets larger. This is often also associated with non-
linearity as well, and so attempts at transforming the x variable may
resolve the issue.

The final assumption is that the error term is Normally
distributed. One could check this by plotting a histogram of the
residuals, although the method of fitting will mean that the
observed residuals ¢; are likely to be closer to a Normal distribution
than the true ones ¢; The assumption of Normality is important
mainly so that we can use normal theory to estimate confidence
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intervals around the coefficients, but luckily with reasonably large
sample sizes, the estimation method is robust to departures from
normality. Thus moderate departures from Normality are
allowable. One could also use bootstrap methods described in
Appendix 3.

It is important to remember that the main purpose of the
analysis is to assess a relationship, 7oz test assumptions, so often we
can come to a useful conclusion even when the assumptions are not
perfectly satisfied.

2.7 Model sensitivity

Model sensitivity refers to how estimates are affected by
subgroups of the data. Suppose we had fitted a simple regression
(model 2.2), and we were told that the estimates b, and b; altered
dramatically if you deleted a subset of the data, or even a single
individual. This is important, because we like to think that the
model applies generally, and we don’t wish to find that we should
have different models for different subgroups of patients.

2.7.1 Residuals, leverage and influence

There are three main issues in identifying model sensitivity to
individual observations: residuals, leverage and influence. The residuals
are the difference between the observed and fitted data ¢;= y, %5~ y, /.
A point with a large residual is called an outlier. In general we are
interested in outliers because they may influence the estimates, but it
is possible to have a large outlier which is not influential.

Another way that a point can be an outlier is if the values of x;
are a long way from the mass of each x. For a single variable, this
means if x; is a long way from x. Imagine a scatter plot of y against
x, with a mass of points in the bottom left hand corner and a single
point in the top right. It is possible that this individual has unique
characteristics which relate to both the x and y variables. A
regression line fitted to the data will go close, or even through the
isolated point. This isolated point will not have a large residual, yet
if this point is deleted the regression coefficient might change
dramatically. Such a point is said to have high leverage and this can
be measured by a number, often denoted /; where large values of
h; indicate a high leverage.

An influential point is one that has a large effect on an estimate.
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Effectively one fits the model with and without that point and finds
the effect of the regression coefficient. One might look for points
that have a large effect on by, or on b; or on other estimates such
as SE(b;). The usual output is the difference in the regression
coefficient for a particular variable when the point is included or
excluded, scaled by the estimated standard error of the coefficient.
The problem is that different parameters may have different
influential points. Most computer packages now produce residuals,
leverages, and influential points as a matter of routine. It is the task
for an analyst to examine these and identify important cases.
However, just because a case is influential or has a large residual it
does not follow that it should be deleted, although the data should
be examined carefully for possible measurement or transcription
errors. A proper analysis of such data would report such
sensitivities to individual points.

2.7.2 Computer analysis: model checking and sensitivity

We will illustrate model checking and sensitivity using the
deadspace, age and height data in Table 2.1.

Figure 2.1 gives us reassurance that the relationship between
deadspace and height is plausibly linear. We could plot a similar
graph for deadspace and age. The standard diagnostic plot is a plot
of the residuals against the fitted values, and for the model fitted in
Table 2.3 it is shown in Figure 2.4. There is no apparent pattern,
which gives us reassurance about the error term being relatively
constant and further reassurance about the linearity of the model.

The diagnostic statistics are shown in Table 2.7 where the
influence statistics are inf _age associated with age and nf ht
associated with height. As one might expect the children with the
highest leverages are the youngest (who is also the shortest) and the
oldest (who is also the tallest). Notice that the largest residuals are
associated with small leverages. This is because points with large
leverage will tend to force the line close to them.

The child with the most influence on the age coefficient is also
the oldest, and removal of that child would change the standardised
regression coefficient by 0.79 units. The child with the most
influence on height is the shortest child. However, neither child
should be removed without strong reason. (A strong reason may be
if it was discovered the child had some relevant disease, such as
cystic fibrosis.)
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Figure 2.4 Graph of residuals against fitted values for regression model in
Table 2.4 with age and height as the independent variables

Table 2.7 Diagnostics from model fitted in Table 2.4 (output from computer
program)

Height Age resids leverage inf age inf_ht

1. 110 5 10.06 0.33 0.22 —0.48

2. 116 5 -7.19 0.23 —0.04 0.18

3. 124 6 —3.89 0.15 —0.03 0.08

4. 129 7 —8.47 0.15 —0.14 0.20

5. 131 7 1.12 0.12 0.01 —0.02

6. 138 6 22.21 0.13 —0.52 0.34

7. 142 6 —2.61 0.17 0.08 —0.06

8. 150 8 —15.36 0.08 0.11 —0.14

0. 153 8 —15.48 0.10 0.20 —0.26

10. 155 9 14.06 0.09 0.02 0.07
11. 156 7 5.44 0.28 —0.24 0.25
12. 159 8 —13.72 0.19 0.38 —0.46
13. 164 10 0.65 0.14 0.00 0.01
14. 168 11 18.78 0.19 0.29 0.08
15. 174 14 —5.60 0.65 —0.79 0.42
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2.8 Stepwise regression

When one has a large number of independent variables, a natural
question to ask is, what is the best combination of these variables to
predict the y variable? To answer this one may use szepwise regression
which is available in a number of packages. Step-down or backwards
regression starts by fitting all available variables and then discarding
sequentially those that are not significant. Step-up or forwards regression
starts by fitting an overall mean, and then selecting variables to add to
the model according to their significance. Stepwise regression is a
mixture of the two, where one can specify a P value for a variable to
be entered into the model, and then a P value for a variable to be
discarded. Usually one chooses a larger P value for entry (say 0.1)
than for exclusion (say 0.05), since variables can jointly be predictive,
when separately they are not. This also favours step-down regression.
As an example consider an outcome variable being the amount a
person limps. Neither the length of the left or right legs are predictive,
but the difference in lengths is highly predictive. Stepwise regression
is best used in the exploratory phase of an analysis (see Chapter 1), to
identify a few predictors in a mass of data, the association of which can
be verified by further data collection.

There are a few problems with stepwise regression:

e The P values are invalid since they do not take account of the
vast number of tests that have been carried out; different
methods such as step-up and step-down are likely to produce
different models and experience shows that the same model
rarely emerges when a second data set is analysed. One way of
trying to counter this is to split a large data set into two, and run
the stepwise procedure on both separately. Choose the variables
that are common to both data sets, and fit these to the
combined data sets as the final model.

e Many large data sets contain missing values. With stepwise
regression, usually only the subjects who have no missing values
on any of the variables under consideration are chosen. The
final model may contain only a few variables, but if one refits
the model, the parameters change because now the model is
being fitted to those subjects who have no missing values on
only the few chosen variables, which may be a considerably
larger data set than the original.
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If a categorical variable is coded as a number of dummies, some
of these may be lost in the fitting process, and this changes the
interpretation of the others. Thus if we fitted x; and x, fromTable
2.2, and then we lost x, , the interpretation of x; is of a contrast
between asthmatics with bronchitics and normals combined.

Thus stepwise regression is useful in the exploratory phase of an

analysis, but not the confirmatory phase.

2.9 Reporting the results of a multiple regression

As a minimum, report the regression coefficients and standard
errors or confidence intervals for the main independent
variables, together with the adjusted R2 for the whole model.

If a bootstrap estimate of the confidence interval is being used,
state the method used (e.g. bias corrected) and the number of
replications.

If there is one main dependent variable, show a scatter plot of
each independent variable versus the dependent variable with
the best fit line.

Report how the assumptions underlying the model were tested
and verified. In particular is linearity plausible?

Report any sensitivity analysis carried out.

Report all the variables included in the model. For a stepwise
regression, report all the variables that could have entered the
model.

Note that if an interaction term is included in a model, the main
effects must be included.

2.10 Reading the results of a multiple regression

In addition to the points in section 1.11.

Note the value of R2. With a large study, the coefficients in the
model can be highly significant, but only explain a low
proportion of the variability of the outcome variable. Thus they
may be no use for prediction.
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Are the models plausibly linear? Are there any boundaries,
which may cause the slope to flatten?

Were outliers and influential points identified and how were
they treated?

An analysis of covariance assumes that the slopes are the same in
each group. Is this plausible and has it been tested?

Frequently asked questions

1. Does 1t matter how a dummy variable is coded?
If you have only one binary variable, then coding the dummy
variable 0 and 1 is the most convenient. Coding it 1 and 2 is
commonly the method in questionnaires. It will make no
difference to the coefficient estimate or P value. However it will
change the value of the intercept, because now the value in the
group assigned 1 will be a+b and the value in the group assigned
2 will be a+2b. Thus in Figure 2.2 when “Asthma” is coded 0 or
1 the regression coefficient for Asthma is —16.8 and the
intercept is —46.3. If we had coded the variable 1 or 2 we would
find the regression coefficient for Asthma is still —16.8 but the
intercept would be (—46.3—16.8) = —63.1. Coding the dummy
variable to —1 and +1 (as is done for example in the package
SAS) does not change the P value but the coefficient is halved.
If you have a categorical variable with, say, three groups, then
this will be coded with two dummy variables. As shown earlier,
the overall F statistic will be unchanged no matter which two
groups are chosen to be represented by dummies, but the
coefficient of group 2, say, will be dependent on whether group
1 or group 3 is the omitted variable.

2. How do I treat an ordinal independent variable?

Most packages assume that the predictor variable, X, in a
regression model is either continuous or binary. Thus one has
a number of options.

(1) Treat the predictor as if it were continuous. This
incorporates into the model the fact that the categories
are ordered, but also assumes that equal changes in X
mean equal changes in y.
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(i1)) Treat the predictor as if it were categorical, by fitting
dummy variables to all but one of the categories. This
loses the fact that the predictor is ordinal, but makes no
assumption about linearity.

(iii)) Dichotomise the X variable, by recoding it as binary, say
1 if y is in a particular category or above, and zero
otherwise. The cut point should be chosen on external
grounds and not because it gives the best fit to the data.

Which of these options you choose depends on a number of
factors. With a large amount of data, the loss of information by
ignoring the ordinality in option (ii) is not critical and
especially if the X variable is a confounder and not of prime
interest. For example, if X is age grouped in 10-year intervals,
it might be better to fit dummy variables, than assume a linear
relation with the y variable.

3. Do the assumptions underlying multiple regression matter?
Often the assumptions underlying multiple regression are not
checked, partly because the investigator is confident that they
hold true and partly because mild departures are unlikely to
invalidate an analysis. However, lack of independence may be
obvious on empirical grounds (the data form repeated
measures or a time series) and so the analysis should
accommodate this from the outset. Linearity is important for
inference and so may be checked by fitting transformations of
the independent variables. LLack of homogeneity of variance
and lack of normality may affect the standard errors and often
indicate the need for a transformation of the dependent
variable. The most common departure from Normality is when
outliers are identified, and these should be carefully checked,
particularly those with high leverage.

4. I have a variable that I believe should be a confounder but it is
not significant. Should I include it in the analysis?

There are certain variables (such as age or sex) for which one
might have strong grounds for believing that they could be
confounders, but in any particular analysis may emerge as
significant. These should be retained in the analysis because,
even if not significantly related to the outcome themselves, they
may modify the effect of the prime independent variable.
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5. What happens if I have a dependent variable which is 0 or 1?

When the dependent variable is 0 or 1 then the coefficients
from a linear regression are proportional to what is known as
the linear discriminant function. This can be useful for
discriminating between groups, even if the assumption about
Normality of the residuals is violated. However discrimination
is normally carried out now using logistic regression (Chapter 3).

Multiple choice questions

1. Ross ez al.’ regressed mortality in working aged men against
median share of income (i.e. the proportion of total income
accruing to the less well off 50% of households) in 282 USA
metropolitan areas and 53 Canadian metropolitan areas. The
median income for the areas was included as an explanatory
variable. They found the difference in slopes significant
(P<0.01), R2=0.51.
The model is
Vi=a+b X ;+b,X5,+b03X3,+b,Xy;

y; is the mortality per 100000 for metropolitan area i,
i=1...335

X, takes the value 1 for the USA and 0 for Canada

X,; 1s median share of income for area 7 (defined above)
X3,=X,1.X,; (the product of X, and X))

X,; 1s median income for area ¢

(1) Mortality is assumed to have a Normal distribution.

(i) The test to compare slopes is a ¢ test with 330 degrees of
freedom.

@iii) The relationship between mortality and median income is
assumed to be different for the USA and Canada.

(iv) The relationship between mortality and median share of
income is assumed linear.

(v) The variability of the residuals is assumed the same for
the USA and Canada.

2. In a multiple regression equation y=a+b,;X;+b,X,,

(i) The independent variables X; and X, must be
continuous
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@i1)) The leverage depends on the values of y.
@1ii) The slope b, is unaffected by values of Xj.
@Gv) If X, is a categorical variable with three categories, it is

modelled by two dummy variables.

(v) If there are 100 points in the data set, then there are 97

degrees of freedom for testing b;.
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3 Logistic regression

Summary

When we wish to model a binary dependent variable, then an
appropriate analysis is often logistic regression. In Swinscow' we
described the chi-squared test for testing the association of two
binary variables. Logistic regression is a generalisation of the chi-
squared test to examine the association of a binary-dependent
variable with one or more independent variables which can be
binary, categorical (more than two categories) or continuous.
Logistic regression is also useful for analysing case-control studies.
Matched case-control studies require a particular analysis known
as conditional logistic regression.

3.1 The model

The dependent variable can be described as an event which is
either present or absent (sometimes termed “success” and
“failure”). Thus an event might be the presence of a disease in a
survey or cure from disease in a clinical trial. We wish to examine
factors associated with the event. Since we can rarely predict
exactly whether an event will happen or not, what we in fact look
for are factors associated with the probability of an event happening.

There are two situations to consider:

1.  Firstly, when all the independent variables are categorical,
and so one can form tables in which each cell has individuals
with the same values of the independent variables. As a
consequence one can calculate the proportion of subjects for
whom an event happens. For example, one might wish to
examine the presence or absence of a disease by gender (two
categories) and social class (five categories). Thus one could
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form a table with the 10 social class-by-gender categories and
examine the proportion of subjects with disease in each
grouping.

2. Secondly, when the data table contains as many cells as there
are individuals and the observed proportions of subjects with
disease in each cell must be 0 out of 1 or 1 out of 1. This can
occur when at least one of the independent variables is
continuous, but of course can also be simply a consequence
of the way the data are input. It is possible that each
individual is unique and we may not wish to group them.

If the data are in the form of tables most computer packages will
provide a separate set of commands to carry out an analysis.
Preserving the individual cases leads to the same regression
estimates and allows for a more flexible analysis. This is discussed
further in section 3.3.

Recall from Swinscow' that the purpose of statistical analysis is
to take samples to estimate population parameters. In logistic
regression we model the population parameters. If we consider the
categorical grouped case first, denote the population probability of
an event for a cell 7 by ;. This is also called the “expected” value.
Thus for an unbiased coin the population or expected probability
for a “head” is 0.5. The dependent variable y, is the observed
proportion of events in the cell (say the proportion of heads in a set
of tosses) and we write E(y,)=m; where E denotes “expected
value”. Also recall that if an event has probability 7r;, then the odds
for that event are 7/(1—1r;) to 1. Thus the odds of a head to a tail
are 1 to 1.

The model is

loge{ﬂ'l-/(l - 7Ti) }=log1t(71'l) :Bo+ BlXil +...+ BPXiP. (3 1)

where the independent variables are Xj,..., X,

The term on the left-hand side of the equation is the log odds of
success, and is often called the logistic or logir transform.

The reason why model (3.1) is useful is that the coefficients 3 are
related to the odds rario in 2X2 tables. Suppose we had only one
covariate x, which was binary and simply takes the values 0 or 1.
Then the odds ratio associated with x and y is given by exp(3) (note
not “relative risk” as is sometimes stated). If x is continuous then

exp(PB) is the odds ratio associated with a unit increase in x.

38



LOGISTIC REGRESSION

The main justification for the logit transformation is that the
odds ratio is a natural parameter to use for binary outcomes, and
the logit transformation relates this to the independent variables in
a convenient manner. It can also be justified as follows. The right-
hand side of equation (3.1) is potentially unbounded, that is can
range from minus to plus ©©. On the left-hand side, a probability
must lie between 0 and 1. An odds ratio must lie between 0 and oo.
A log odds ratio, or logit, is unbounded and has the same potential
range as the right-hand side of equation (3.1).

Note at this stage that the observed values of the dependent
variable are not in the equation. They are linked to the model by
the Binomial distribution (described in Appendix 2). Thus in cell 7
if we observe y; successes in 7; subjects, we assume that the y, are
distributed Binomially with probability ;. The parameters in the
model are estimated by maximum likelihood, also discussed in
Appendix 2. Of course we do not know the population values
and in the modelling process we substitute into the model the
estimated or fitted values.

Often, by analogy to multiple regression, the model is described
in the literature as above, but with the observed proportion, p;
replacing ;. This misses out on the second part of a model, the
error distribution which links the two. One could, in fact, use the
observed proportions and fit the model by least squares as in
multiple regression. In the cases where p, is not close to 0 or 1, this
will often do well, although the interpretation of the model is
different to that of equation (3.1) because the link with odds ratios
is missing. With modern computers the method of maximum
likelihood is easy and is to be preferred. When the dependent
variable is 0/1, the logit of the dependent variable does not exist.
This may lead some people to believe that logistic regression is
impossible in these circumstances. However, as explained earlier
the model uses the logit of the expected value, not the observed
value, and the model ensures the expected value is greater than 0
and less than 1.

We may wish to calculate the probability of an event. Suppose we
have estimated the coefficients in equation (3.1) to be b, bl,....,bp.
As in Chapter 1 we write the estimated linear predictor as

LP i:b0+b1Xi1+'“+prip
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Then equation (3.1) can be written as

A Lp,
m o= € = (32)
1+e™!

where 7/7\'i is an estimate of m,; and estimates the probability of an
event from the model. These are the predicted or fitted values for
. . . . A
y;- A good model will give predictions m; close to the observed
proportions y;/n;.
Further details of logistic regression are given in Collett* and
Hosmer and Lemeshow.’

3.2 Uses of logistic regression

1. As a substitute for multiple regression when the outcome
variable is binary in cross-sectional and cohort studies and in
clinical trials. Thus we would use logistic regression to
investigate the relationship between a causal variable and a
binary output variable, allowing for confounding variables
which can be categorical or continuous.

2. As a discriminant analysis, to try and find factors that
discriminate two groups. Here the outcome would be a binary
variable indicating membership to a group. For example one
might want to discriminate men and women on psychological
test results.

3. To develop prognostic indicators, such as the risk of
complications from surgery.

4. To analyse case-control studies and matched case-control
studies.

3.3 Interpreting a computer output: grouped analysis

Most computer packages have different procedures for the
situations when the data appear in a grouped table, and when they
refer to individuals. It is usually easier to store data on an individual
basis, since it can be used for a variety of purposes. However, when
the dependent variables are all categorical, the coefficients and
standard errors of a logistic regression analysis will be exactly the
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same for the grouped procedure, where the dependent variable is the
number of successes in the group and for the ungrouped procedure
where the dependent variable is simply 0/1. In general it is easier to
examine the goodness of fit of the model in the grouped case.

Consider the example of given in Swinscow' in which the
association between breast and bottle feeding at 3 months was
examined for printers’ and farmers’ wives. We can define an event
as a baby being breast fed for 3 months or more and we have a
single categorical variable X which takes the value 1 if the mother
were a farmer’s wife and 0 if she were a printer’s wife. The data are
given in Table 3.1.

Table 3.1 Numbers of wives of printers and farmers who breast fed their babies
for less than 3 months or for 3 months or more (from Swinscow Table 8.3)*

Wife < 3months > 3months Total
Printers’ wives 36 14 50
Farmers’ wives 30 25 55
Total 66 39 105

We can rewrite this for the computer either as for a grouped analysis:

Y n Occupation
(1 =printer, 0 =farmer)
36 50 1

30 55 0

or as the following for an ungrouped analysis:

Y (breast feeding) Occupation

(1 for <3 months,

0 for >3 months) (1=printer, 0 = farmer)

1 1
(36 times)

1 0
(30 times)

0 1
(14 times)

0 0
(25 times)
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Table 3.2 Output from a logistic regression program using data in Table 3.1

Logit estimates Number of obs = 105
LR chi2(0) = 0.00

Prob > chi2 = .

Log likelihood = —69.26972 Pseudo R2 = 0.0000
_outcome | Coef.  Std. Err. z P>|z| [95% Conf. Interval]
_____ +______________________________.
cons | 5260931 .2019716 2.605 0.009 .130236 .9219502
Logit estimates Number of obs = 105
LR chi2(1) = 345

Prob > chi2 = 0.0631

Log likelihood = —67.543174 Pseudo R2 = 0.0249
breast | Coef. Std. Err. Y/ P>|z| [95% Conf. Interval]
_____ +______________________________.
Occupatn | —.7621401 .415379 —1.835 0.067 —1.576268 .0519878
_cons | .9444616 .3149704 2.999 0.003 327131 1.561792

breast |Odds Ratio Std. Err. z  P>|z| [95% Conf. Interval]

Occupatn | .4666667 .1938435 —1.835 0.067 .2067453 1.053363

The output for a logistic regression for these data (in the second
form) is shown in Table 3.2. The first section gives the fit for a
constant term and the second the fit of the term occupation. The
output can be requested in terms of either the coefficients in the
model, or the odds ratios and here we give both. The output also
gives the log-likelihood values, which are described in Appendix 2,
and can be thought of as a sort of residual sum of squares.

The log-likelihood for the model without the occupation term is
—69.27 and with the occupation term is —67.54. The difference,
multiplied by —2 is the “LR chi2(1)” term (LR for likelihood
ratio), which is 3.45. This can be interpreted as a chi-squared
statistic with 1 degree of freedom. This is further described in
Appendix 2. It can be seen that the likelihood ratio chi-squared
statistic for this model has 1 degree of freedom, since it has only
one term (occupation), and is not significant (P =0.0631).

The “pseudo R2” is described in Appendix 2 and is based on the
proportionate drop in the log-likelihood. It is analogous to the R2
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term in linear regression which gives the proportion of variance
accounted for by the model. This is less easy to interpret in the
binary case, and it is suggested that one considers only the rough
magnitude of the pseudo R2. In this case a value of 0.0249 implies
that the model does not fit particularly well since only a small
proportion of the variance is accounted for.

The Wald statistic, which is the ratio of the estimate & to its
standard error, i.e. 2=b/SE(b)=(—0.7621/0.4154)=—1.85. The
square of this, 3.3665, is close to the likelihood ratio statistic, and
the corresponding P value (0.067) is close to the LR chi-squared
value.

The conventional chi-squared statistic, described in Swinscow' is
neither the Wald nor the likelihood ratio and is in fact the third of
the statistics derived from likelihood theory, the score statistic (see
Appendix 2). This has value 3.418, and is very close to the other
two statistics.

If b, is the estimate of 3; then exp(b;) is the estimated odds ratio
associated with X;. The odds ratio associated with Table 3.1 is
given by (30X 14)/(36X25)=0.4667.This figure also appears in the
computer output given in Table 3.2. The coefficient in the model is
-0.7621, and the odds ratio (OR) is given by exp (—0.7621)
=0.4667. Thus printers’ wives are nearly half as likely to breast
feed for 3 months or more than farmers’ wives.

A 95% confidence interval for B (which is a log odds) is given by
b*+1.96XSE(b). This is sometimes known as a Wald confidence
interval (see section 3.4) since it is based on the Wald test. Thus a
95% confidence interval for the odds ratio is exp{b—1.96 XSE(b)}
to exp{b+1.96XSE(b)}. This is asymmetric about OR, in contrast
to the confidence intervals in linear regression. For example, from
Table 3.2, the confidence interval for the estimate is exp
(—=0.7621—-1.96%X0.4154) to exp(—0.7621+1.96X0.4154) or
0.207 to 1.053, which is asymmetric about 0.4667. Note the
confidence interval includes one, which is to be expected since the
significance test is non-significant at P=0.05. In general this will
hold true, but there can be slight discrepancies with the
significance test especially if the odds ratio is large because the test
of significance may be based on the likelihood ratio test or the score
test whereas the confidence interval is usually based on the Wald
test.
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3.4 Logistic regression in action

Lavie er al.* surveyed 2677 adults referred to a sleep clinic with
suspected sleep apnoea. They developed an apnoea severity index,
and related this to the presence or absence of hypertension.

The questions that they wished to answer are:

(1) Is the apnoea index predictive of hypertension, allowing for
age, sex and body mass index?

(i) Is sex a predictor of hypertension, allowing for the other
covariates?

The results are given in Table 3.3 and the authors chose to give
the regression coefficients (log odds) and the Wald confidence
interval.

Table 3.3 Risk factors for hypertension*

Risk factor Estimate (Wald 95% CI) Odds

(log odds) ratio
Age (10 years) 0.805 (0.718 t0 0.892) 2.24
Sex (male) 0.161 (—0.061 to 0.383) 1.17
BMI (5 kg/m?2) 0.332 (0.256 to 0.409) 1.39
Apnoea index (10 units)  0.116 (0.075 to0 0.156) 1.12

The coefficient associated with the dummy variable sex is 0.161, so
the odds of having hypertension for a man are exp(0.161)=1.17
times that of a woman in this study. On the odds ratio scale the
95% confidence interval is exp(—0.061) to exp(0.383)=0.94 to
1.47. Note that this includes one (as we would expect since the
confidence interval for the regression coefficient includes zero) and
so we cannot say that sex is a significant predictor of hypertension
in this study. We interpret the age coefficient by saying that, if we
had two people of the same sex, and given that their BMI and
apnoea index were also the same, but one subject was 10 years
older than the other, then we would predict that the older subject
would be 2.24 times more likely to have hypertension. The reason
for the choice of 10 years is because that is how age was scaled.
Note that factors that are additive on the log scale are
multiplicative on the odds scale. Thus a man who is ten years older
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than a woman is predicted to be 2.24x1.17=2.62 times more likely
to have hypertension. Thus the model assumes that age and sex act
independently on hypertension, and so the risks multiply. This can
be checked by including an interaction term between age and sex
in the model as described in Chapter 2. If this is found to be
significant, it implies there is effect modificarion between age and
sex, and so if the interaction was positive it would imply that an
older man is at much greater risk of hypertension than would be
predicted by his age and sex separately.

3.5 Model checking

There are a number of ways the model may fail to describe the
data well. Some of these are the same as those discussed in section
2.7 for linear regression, such as linearity of the coefficients in the
linear predictor, influential observations and lack of an important
confounder. It is easy to imagine the effect on a regression
coefficient of deleting an individual observation, and it is important
also to look for observations whose removal has a large influence
on the model coefficients. These influential points are handled in
logistic regression in a similar way to that described for multiple
regression in Chapter 2. Some computer packages will give
measures of influence for individuals in logistic regression.

Defining residuals is more difficult in logistic regression and
model checking is different to the linear regression situation.
Outlying observations can be difficult to check when the outcome
variable has only two values 0 or 1. Further details are given by
Collett> and Campbell.’

Issues particularly pertinent to logistic regression are: lack of fit;
“extra-Binomial” variation; the logistic transform.

Lack of fit

If the independent variables are all categorical, then one can
compare the observed proportions in each of the cells and those
predicted by the model. However, if some of the input variables are
continuous, one has to group the predicted values in some way.
Hosmer and Lemeshow?® suggest a number of methods. One
suggestion is to group the predicted probabilities from the model ;
into tenths (by deciles), and compute the predicted number of
successes between each decile as the sum of the predicted
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probabilities for those individuals in that group. The observed
number of successes and failures can be compared using a chi-
squared distribution with 8 degrees of freedom' (Chapter 5). A well-
fitting model should be able to predict the observed successes and
failures in each group with some accuracy. A significant chi-squared
value indicates that the model is a poor description of the data.

“Extra-Binomial” variation

Unlike multiple regression, where the size of the residual
variance is not specified in advance and is estimated from the data,
in logistic regression a consequence of the Binomial model is that
the residual variance is predetermined. However, the value
specified by the model may be less (and sometimes greater) than
that observed, and is known as “extra-Binomial variation”. When
the variance is greater than expected it is known as
“overdispersion” and it can occur when the data are not strictly
independent. For example, repeated outcomes within an
individual, or patients grouped by general practitioner. Whilst the
estimate of the regression coefficients is not unduly affected, the
estimates of the standard errors are usually underestimated,
leading to confidence intervals that are too narrow. In the past this
has been dealt with by an approximate method, for example by
scaling the standard errors upwards to allow for the
underestimation, but not changing the estimates of the coefficients.
However, this situation is now viewed as a special case of what is
known as a random effects model in which one (or more) of the
regression coefficients B is regarded as random with a mean and
variance that can be estimated, rather than fixed. This will be
described in Chapter 5.

The logistic transform is inappropriate

The logistic transform is not the only one that converts a
probability ranging from 0 to 1 to a variable that potentially can
range from minus infinity to plus infinity. Other examples are the
probit and the complementary log—log transform given by
log(—log(1—mr)). The latter is useful when events (such as deaths)
occur during a cohort study and leads to survival analyses (see
Chapter 4). Some packages enable one to use different link
functions and usually they will give similar results. The logistic link
is the easiest to interpret and the one generally recommended.

46



LOGISTIC REGRESSION

3.6 Interpreting a computer output: ungrouped
analysis

A consecutive series of 170 patients were scored for risk of
complications following abdominal operations with an APACHE
risk score (C. Johnston, personal communication). Their weight (in
kilograms) was also measured. The outcome was whether the
complications after the operation were mild or severe. The output
is given in Table 3.4. Here the coefficients are expressed as odds
ratios. The interpretation of the model is that, for a fixed weight, a
subject who scores one unit higher on the APACHE will have an
increased odds ratio of severe complications of 1.9 and this is
highly significant (P <0.001).

Table 3.4 Output from a logistic regression on data from abdominal operations
(Fohnston, personal communication)

Logit estimates Number of obs = 170
LR chi2(2) = 107.01
Prob > chi2 = 0.0000
Log likelihood = —56.866612 Pseudo R2 = 0.4848
severity |Odds Ratio Std. Err. z P>1z|[95% Conf. Interval]
_____ +______________________________
apache | 1.898479 .2008133 6.060 0.000 1.543012 2.335836
weight | 1.039551 .0148739 2.711 0.007 1.010804 1.069116

Logistic model for severity, goodness of fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 170
number of groups = 10
Hosmer-Lemeshow chi2(8) = 4.94
Prob > chi2 = 0.7639

As an illustration of whether the model is a good fit, we see the
Hosmer-Lemeshow statistic discussed above is not significant,
indicating that the observed counts and those predicted by the
model are quite close, and thus the model describes the data
reasonably well. In practice, investigators use the Hosmer—
Lemeshow statistic to reassure themselves that the model describes
the data and so they can interpret the coefficients. However, one
can object to the idea of using a significance test to determine
goodness of fit, before using another test to determine whether
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coefficients are significant. If the first test is not significant, it does
not tell us that the model is true, only that we do not have enough
evidence to reject it. Since no model is exactly true, with enough
data the goodness of fit test will always reject the model. However
the model may be “good enough” for a valid analysis. If the model
does not fit, is it valid to make inferences from the model? In
general the answer is “yes”, but care is needed!

A further check on the model is to look at the influential points
and these are available in many packages now. In STATA an overall
influential statistic, labelled Pregibon’s “dbeta” is available, but not
influential statistics for each of the regression parameters as in
multiple regression. A plot of the dbeta against the probability of
severe complications is given in Figure 3.1 and indicates that there
are about five observations that are influential on the coefficients of
the model, and these could be explored in more detail.
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Figure 3.1 A plot of an wfluential statistic against estimated probability of an
event for abdominal data (C. Johnston, personal communication).
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Logit/logistic/llog-linear

Readers of computer manuals may come across a different form
of model known as a log-linear model. Log-linear models are used to
analyse large contingency tables and can be used to analyse binary
data instead of logistic regression. Some earlier computer programs
only allowed log-linear models. However in general they are more
difficult to interpret than logistic regression models. They differ
from logistic models in that:

e There is no clear division between dependent and independent
variables.

e In logistic regression the independent variables can be
continuous.

e In log-linear models one has to include all the variables,
dependent and independent into the model first. An association
between a dependent and independent variable is measured by
fitting an interaction term. Thus for a log-linear model, in the
Lavie er al.* study example, one would first have to split age into
groups, say “young” and “old” (since age is continuous). One
would then have to fit parameters corresponding to the
proportion of subjects with and without hypertension and who
are in the old or young age group before fitting a parameter
corresponding to the interaction between the two to assess
whether age and hypertension were associated. By contrast, in
logistic regression, the presence or absence of hypertension is
unequivocally the dependent variable and age an independent
variable.

3.7 Case—control studies

One of the main uses of logistic regression is in the analysis of
case-control studies. In Swinscow' we saw that it was a happy fact
that an odds ratio is reversible. Thus the odds ratio is the same
whether we consider the odds of printers’ wives being more likely
to breast feed for more than 3 months than farmers’ wives, or the
odds of those who breast feed for more than 3 months being more
likely to be printers’ wives than farmers’ wives. This reversal of
logic occurs in case-control studies, where we select cases with a
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disease and controls without the disease. We then investigate the
amount of exposure to a suspected cause that each has had. This is
in contrast to a cohort study, where we consider those exposed or
not exposed to a suspected cause, and then follow them up for
disease development.

If we employ logistic regression and code the dependent variable
as 1 if the subject is a case and 0 for a control, then the estimates
of the coefficients associated with exposure are the log odds ratios,
which, provided the disease is relatively rare, will provide valid
estimates of the relative risk for the exposure variable.

3.8 Interpreting a computer output: unmatched case-
control study

Consider the meta-analysis of four case control studies described
in Altman er al.® from Wald ez al.” (1986).

Table 3.5 Exposure to passive smoking among female lung cancer cases and
controls in four studies.”

Lung cancer cases Controls
Study Exposed Unexposed Exposed Unexposed Odds ratio
1 14 8 61 72 2.07
2 33 8 164 32 0.80
3 13 11 15 10 0.79
4 91 43 254 148 1.23

For the computer this is rewritten:

—3-(- (cases) n (cases+controls) Exposed Study
14 75 1 1
8 80 0 1
33 197 1 2
etc.

In the above table there are eight rows, being the number of
unique study X exposure combinations. The dependent variable
for the model is the number of cases. One also has to specify the
total number of cases and controls for each row. The output from
a logistic regression program is given in Table 3.6. Here study is a
four level categorical variable, which is a confounder and modelled

50



LOGISTIC REGRESSION

with three dummy variables as described in Chapter 2. This is
known as a fixed effects analysis. Chapter 5 gives a further discussion
on the use of dummy variables in cases such as these. The program
gives the option of getting the output as the log odds (the
regression coefficients) or the odds ratio. The main result is that
lung cancer and passive smoking are associated with an odds ratio
of 1.198, with 95% CI 0.858 to 1.672. The pseudo R2 which is
automatically given by STATA is difficult to interpret and should
not be quoted. It is printed automatically and illustrates one of the
hazards of reading routine output.

Table 3.6 Output from a logistic regression program for the case-control study
i Table 3.3.

Logit estimates Number of obs = 977

LR chi2(4) = 30.15

Prob > chi2 = 0.0000
Log likelihood = —507.27463 Pseudo R2 = 0.0289
_outcome | Coef. Std. Err z  P>|z| [95% Conf. Interval]
_____ +______________________________
Istudy_2 1735811  .292785 0.593 0.553 —.4002669 .7474292

|
Istudy_ 3 | 1.74551 .3673518 4.752 0.000 1.025514 2.465506
Istudy 4 | .6729274 .252246 2.668 0.008 1785343 1.16732
exposed | .1802584 .1703595 1.058 0.290 —.1536401 .5141569

| —1.889435 .2464887—7.665 0.000 —2.372544—1.406326

Istudy_ 2 | 1.189557 .3482845 0.593 0.553 6701412 2.111565
Istudy_3 | 5.728823 2.104494 4.752 0.000  2.788528 11.76944
Istudy 4 | 1.959967 .4943937 2.668 0.008 1.195464 3.213371
exposed | 1.197527 .2040101 1.058 0.290  .8575806 1.672228

3.9 Matched case-control studies

In matched case-control studies each case is matched directly
with one or more controls. For a valid analysis the matching should
be taken into account. An obvious method would be to fit dummy
variables as strata for each of the matched groups. However, it can
be shown® that this will produce biased estimates. Instead we use a
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method known as conditional logistic regression. In a simple 2X2
table this gives a result equivalent to a McNemar test.' It is a
flexible method, that with most modern software allows cases to
have differing numbers of controls; it is not required to have exact
1:1 matching.

The logic for a conditional likelihood is quite complex, but the
argument can be simplified. Suppose in a matched case—control
study with exactly one control per case we had a logistic model
such as equation (3.1), and for pair z the probability of an event for
the case was 1, and for the control m;;. Given that we know that
one of the pair must be the case, i.e. there must be one and only one
event in the pair, conditional on the pair, the probability of the event
for the case is simply m;o/(;5+,1). As an example, suppose you
knew that a husband and wife team had won a lottery, and the
husband had bought five tickets and the wife one. Then if you were
asked the probability that the husband had won the lottery, he
would be five times more likely than his wife, i.e. a conditional
probability of 5/6 relative to 1/6. We can form a conditional
likelihood by multiplying the probabilities for each case-control
pair, and maximise it in a manner similar to that for ordinary
logistic regression and this is now simply achieved with many
computer packages.

The model is the same as equation (3.1), but the method of
estimating the parameters is different, using conditional likelihood
rather than unconditional likelihood. As discussed more extensively
in Swinscow' any factor which is the same in the case-control set,
for example a matching factor, cannot appear as an independent
variable in the model.

3.10 Interpreting a computer output: matched case-
control study

These data are taken from Eason er al.° and described in Altman
et al.® Thirty-five patients who died in hospital from asthma were
individually matched for sex and age with 35 control subjects who
had been discharged from the same hospital in the preceding year.
The adequacy of monitoring of the patients was independently
assessed and the results given in Table 3.7.

For a computer analysis this may be written as a datafile with
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35X2="70 rows, one for each case and control as shown in Table
3.8. For example the first block refers to the 10 deaths and 10
survivors for whom monitoring is inadequate.

Table 3.7 Adequacy of monitoring in hospital of 35 deaths and matched
survivors with asthma.’

Deaths
A
Vs N
Inadequate Adequate
Inadequate 10 3
Survivors
(controls)
Adequate 13 9

Table 3.8 Data from Table 3.7 written for a computer analysis using conditional
logistic regression.

Pair number Case/control(1=death)  Monitoring (1=inadequate)

1 1 1
1 0 1
2 1 1
2 0 1
(for 10 pairs)

11 1 1
11 0 0
12 1 1
12 0 0
(for 13 pairs)

24 1 0
24 1
(for 3 pairs)

28 1 0
28 0 0

(for 9 pairs)

The logic for conditional logistic regression is the same as for
McNemar’s test. When the monitoring is the same for both case
and control, the pair do not contribute to the estimate of the odds
ratio. It is only when they differ that we can calculate an odds ratio.
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From Table 3.7, the estimated odds ratio of dying in hospital
associated with inadequate monitoring is given by the ratio of the
numbers of the two discordant pairs, namely 13/3=4.33.

Table 3.9 Ourput from conditional logistic regression of the matched case-
control study in Table 3.8.

Conditional (fixed-effects) logistic regression Number of obs = 70
LR chi2(1) =  6.74
Prob > chi2 = 0.0094
Log likelihood = —20.891037 Pseudo R2 = 0.1389
deaths |Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

The results of the conditional logistic regression are given in
Table 3.9.

The P value for the Wald test is given as P=0.022, which is
significant, suggesting that inadequate monitoring increases the
risk of death. The P value for the likelihood ratio is 0.0094. Note
the disparity between the likelihood ratio test and the Wald test P
values. This is because the numbers in the table are small and the
distribution discrete and so the approximations that all the
methods use are less accurate. The McNemar’s chi-square (a score
test) is (13—3)2/(13 +3)=6.25 with P=0.012, which is mid-way
between the likelihood ratio and the Wald test. Each value can be
regarded as valid, and in cases of differences it is important to state
which test was used for obtaining the P value and perhaps quote
more than one. This is in contrast to linear regression in Chapter
2, where the three methods will all coincide.

The odds ratio is estimated as 4.33 with 95% confidence interval
1.23 to 15.21. This confidence interval differs somewhat from the
confidence interval given in Altman er al.°, p. 66 because an exact
method was used there, which is preferable with small numbers.

Note that the advantage of conditional logistic regression over a
simple McNemar test is that other covariates could be easily
incorporated into the model. In the above example, we might also
have measured the use of bronchodilators for all 70 subjects, as a
risk factor for dying in hospital.
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3.11 Conditional logistic regression in action

Churchill ez al.' used a matched case-control study in which the

cases were teenagers who had become pregnant over a three-year
period. Three age-matched controls, closest in age to the case, who
had no recorded teenage pregnancy were identified from within the
same practice. The results were analysed by conditional logistic
regression and showed that cases were more likely to have
consulted in the year before conception than controls (odds ratio
2.70,95% CI 1.56 to 4.66).

3.12 Reporting the results of logistic regression

Summarise the logistic regression to include the number of
observations in the analysis, the coefficient of the explanatory
variable with its standard error and/or the odds ratio and the
95% confidence interval for the odds ratio and the P value.

If a predictor variable is continuous, then it is often helpful to
scale it to ease interpretation. For example, it is easier to think
of the increased risk of death every 10 years, than the increased
risk per year, which will be very close to 1.

Specify which type of P value is quoted (e.g. likelihood ratio or
Wald).

Confirm that the assumptions for the logistic regression were
met, in particular that the events are independent and the
relationship plausibly log-linear. If the design is a matched one,
ensure that the analysis uses an appropriate method such as
conditional logistic regression.

Report any sensitivity analysis carried out.

Name the statistical package used in the analysis. This is
important because different packages sometimes have different
definitions of common terms.

Specify whether the explanatory variables were tested for
interaction.
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3.13 Reading about logistic regression

In addition to the points in sections 1.11 and 2.10.

Is logistic regression appropriate? Is the outcome a simple
binary variable? If there is a time attached to the outcome then
survival analysis might be better (Chapter 4).

The outcome is often described as “relative risks”. Whilst this is
often approximately true, they are better described as
“approximate relative risks”, or better “odds ratios”. Note that
for an odds ratio, a non-significant result is associated with a
95% confidence interval that includes one (not zero as in
multiple regression).

Have any sensitivity tests been carried out? Is there evidence of
overdispersion?

If the design is a matched case-control study, has conditional
logistic regression been carried out?

Frequently asked questions

1. Does it marter how the independent variable is coded?

This depends on the computer package. Some packages will
assume that any positive number is an event and zero is a non-
event. Changing the code from 0/1 to 1/0 will simply change
the sign of the coefficient in the regression model.

2. How 1s the odds ratio associated with a continuous variable
interpreted?

The odds ratio associated with a continuous variable is the
ratio of odds of an event in two subjects, in which one subject
is one unit higher than another. This assumes a linear model
which can be hard to validate. One suggestion is to divide the
data into five approximately equal groups, ordered on the
continuous variable. Fit a model with four dummy variables
corresponding to the four higher groups, with the lowest fifth
as baseline. Look at the coefficients in the model (nor the odds
ratios). If they are plausibly increasing linearly then a linear
model may be reasonable. Otherwise report the results of the
model using the dummy variables.
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Multiple choice questions

1. An unmatched case-control study looking at breast cancer
and the oral contraceptive pill included smoking habit (yes/no)
as a potential confounder. The odds ratio of breast cancer
amongst ever pill-takers was 1.5 (95% CI 1.1 to 2.0)
unadjusted and 1.2 (95% CI 0.9 to 1.5) adjusted.

(1) The result allowing for smoking is statistically significant.

@11) It is important to allow for smoking in the analysis.

@1ii) The women are matched for smoking habit.

@iv) The approximate relative risk for breast cancer in a non-
smoking woman who has taken the oral contraceptive pill
is 1.2,

(v) The dependent variable in the model is whether or not a
woman has breast cancer.

2. Consider a case—control study of suicide in psychiatric
patients, in which the cases were matched by age and sex to
alive controls. The study wished to look at the effect of
continuity of care (a binary variable) on suicide risk. The
coefficient in the appropriate model for a breakdown in
continuity of care was 2.

(1) The correct analysis is conditional logistic regression.

(i) One cannot include age in the model as an independent
variable.

@1ii) The odds ratio of suicide for a breakdown of continuity of
care is exp(2)=7.4.

@v) It is important to have exactly the same number of
controls as cases.

(v) An ordinary logistic regression will give very different
results to a conditional logistic regression.
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4 Survival analysis

Summary

When the dependent variable is a survival time, we can use a
model known as a proportional hazard model, also referred to as a
Cox model. In Swinscow' we described the log-rank test, which is
appropriate for a single, binary, independent variable. The Cox
proportional hazard model is a generalisation of this to allow for
multiple independent variables which can be binary, categorical
and continuous.

4.1 Introduction

In Swinscow' we discussed survival analysis, in which the key
variable is the time until some event. Commonly it is the time from
treatment for a disease to death, but in fact it can be time to any
event. Examples include time for a fracture to heal and time that a
nitroglycerine patch stays in place. As for binary outcomes, we
imagine individuals suffering an event, but attached to this event is
a survival time.

There are two main distinguishing features about survival
analysis.

e The presence of censored observations. These can arise in two
ways. Firstly, individuals can be removed from the data set,
without suffering an event. For example in a study looking at
survival from some disease, they may be lost to follow up, or get
run over by a bus and so all we know is that they survived up to
a particular point in time. Secondly, the study might be closed
at a particular time point, as for example when a clinical trial is
halted. Those still in the study are also regarded as censored,
since they were alive when data collection was stopped. Clinical
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trials often recruit over a period of time, so subjects recruited
more recently will have less time to suffer an event than subjects
recruited early on.

e The development of models that do not require a particular
distribution for the survival times, so-called semi-parametric
models. This methodology allows a great deal of flexibility, with
fewer assumptions than are required for fully parametric
models.

A critical assumption in these models is that the probability that
an individual is censored is unrelated to the probability that the
individual suffers an event. If individuals who respond poorly to a
treatment are removed before death and treated as censored
observations then the models that follow are invalid. This is the so-
called unminformative or non-informative censoring assumption.

The important benefit of survival analysis over logistic
regression, say, is that the time an individual spent in the study can
be used in the analysis, even if they did not suffer an event. In
survival, the fact that one individual spent only 10 days in the
study, whereas another spent 10 years is taken into account. In
contrast in a simple chi-squared test or in logistic regression, all
that is analysed is whether the individual suffered an event or not.

Further details are given in Collett? and Parmar and Machin.?

4.2 The model

The dependent variable in survival analysis is what is known as
the hazard. This is a probability of dying at a point in time, but it is
conditional on surviving up to that point in time, which is why it is
given a specific name.

Suppose we followed a cohort of 1000 people from birth to
death. Say for the age group 45-54, there were 19 deaths. In a
10—year age group there are 10X 1000 person-years at risk. We could
think of the death rate per person-year for 45-54 year olds as
19/(10X1000) =1.9 per 1000. However if there were only 910
people alive by the time they reached 45, then the risk of death per
person-year in the next 10 years, having survived to 45 is
19/(10X910)=2.1 per 1000 per year. This is commonly called the
force of mortaliry. In general, suppose X people were alive at the start
of a year in a particular age group, and x people died during a
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period of width z. The risk over that period is x/(zX). If we imagine
the width, z, of the interval getting narrower then the number of
deaths x will also fall but the ratio x/z will stay constant. This gives
us the nstantaneous death rate or the hazard rate at a particular time.
(An analogy might be measuring the speed of a car by measuring
the time ¢ it takes to cover a distance x from a particular point. By
reducing x and ¢ we get the instantaneous speed at a particular
point.)

The model links the hazard to an individual ¢ at time ¢, 2;(2) to a
baseline hazard %, (2) by

Log{hi(t)}=log{ho(®}+B1 X+ tBpX, (4.1

where xy, x,, are covariates associated with individual i.

This can also be written as

hi(®)=ho(Dexp(B;X;+....+B,X,). (4.2)

The baseline hazard () serves as a reference point, and can be
thought of as an intercept B in multiple regression equation (2.1).
The important difference here is that it changes with time, whereas
the intercept in multiple regression is constant. Similar to the
intercept term, the hazard %,(¢) in equation (4.1) represents the
death rate for an individual whose covariates are all zero, which
may be misleading if, say, age is a covariate. However it is not
important that these values are realistic, but that they act as a
reference for the individuals in the study.

Model (4.1) can be contrasted with model (3.1) which used the
logit transform, rather than the log. Unlike model (3.1) which
yields odds ratios, this model yields relarive risks. Thus if we had one
binary covariate X, then exp(p) is the relative risk of (say) death for
X=1 compared to X=0. Model (4.1) is used in prospective studies,
where a relative risk can be measured.

This model was introduced by Cox* and is frequently referred to
as the Cox regression model. It is called the proportional hazards model
because if we imagine two individuals 7z and j, then equation (4.1)
assumes that hz-(t)/h]-(t) is constant over time, i.e. even though /(z)
may vary, the two hazards for individuals whose covariates do not
change with time remain proportional to each other. Since we do
not have to specify 4,(z), which is the equivalent of specifying a
distribution for an error term, but we have specified a model in
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equation (4.1) which contains parameters the model is sometimes
described oxymoronically as semi-parametric.

Given a prospective study such as a clinical trial, imagine we
chose at random an individual who has suffered an event and their
survival time is 7. For any time 7 the survival curve S(2) is P(T>7),
that is the probability of a random individual surviving longer than
t. If we assume there are no censored observations, then the
estimate of S(z) is just the proportion of subjects who survive
longer than 7. When some of the observations can be censored it is
estimated by the Kaplan-Meier survival curve described in
Swinscow.! For any particular time ¢ the hazard is

h(1)=P(T=1)/P(T>7)

Suppose Sy(2) is the baseline survival curve corresponding to a
hazard /,(z), and S,(z) is the survival curve corresponding to an
individual with covariates X,...X,. Then it can be shown that
under model (4.1),

S()=8 @B X+ +Bp Xp) (4.3)

This relationship is useful for checking the proportional hazards
assumption as we will show later.

The two important summary statistics are the number of events,
and the person-years at risk. There can only be one event per
individual.

4.3 Uses of Cox regression

1. As a substitute for logistic regression when the dependent
variable is a binary event, but where there is also information on
the length of time to the event. This may be censored if the
event does not occur.

2. To develop prognostic indicators for survival after operations,
survival from disease or time to other events, such as time to
heal a fracture.

4.4 Interpreting a computer output

The method of fitting model (4.1) is again a form of maximum
likelihood, known as partial hkelihood. In this case the method is
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quite similar to the matched case-control approach described in
Chapter 3. Thus one can consider any time at which an event has
occurred, one individual (the case) has died and the remaining
survivors are the controls. From model (4.1) one can write the
probability that this particular individual is a case, given his/her
covariates, compared to all the other survivors, and we attempt to
find the coefficients that maximise this probability, for all the cases.
Once again the computer output consists of the likelihood, the
regression coefficients and their standard errors. Swinscow!
describes data given by Mclllmurray and Turkie® on the survival of
49 patients with Dukes’ C colorectal cancer. The data are given in
Table 4.1.

Table 4.1 Survival in 49 patients with Dukes' C colorectal cancer randomly
assigned to either lnolenic acid or control trearment (times with “+” are
censored).

Treatment Survival time (months)

~-linolenic acid (n=25) 1+,5+,6,6,9+, 10, 10, 10+, 12, 12,12, 12,
12+, 13+, 154,16+, 20+, 24, 24+, 27+,
32, 34+, 36+, 36+, 44+

Control (n=24) 34,6, 6,6, 6,8, 8, 12, 12, 12+, 15+, 16+,
18+, 18+, 20, 22+, 24, 28+, 28+, 28+, 30,
30+, 33+, 42

The data are entered in the computer as:

Time Event Group (1=+v-linolenic acid, 0=control)
1 0 1

5 0 1

6 1 1

etc.

The Kaplan—Meier survival curve is shown in Figure 4.1. Note
the numbers at risk are shown on the graph. The output for the
Cox regression is shown in Table 4.2

Ties in the data occur when two survival times are equal. There
are a number of ways of dealing with these. The most common is
known as Breslow’s method, and this is an approximate method that
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will work well when there are not too many ties. Some packages will
also allow an “exact” method, but this usually takes more computer
time. An “exact” partial likelihood is shown here, because the large
number of ties in the data may render approximate methods less
accurate.

Kaplan-Meier survival estimates, by group

1.00 L
25
0.75 -
0.50 -
0.25 -
9p 0
0.00 L
T T T
0 20 40

analysis time

Figure 4.1 Kaplan—Meier survival curve for data in Table 4.1.

Ta.ble 4.2 Analysis of y-linolenic acid data (computer output)

Cox regression — exact partial likelihood

No. of subjects = 49 Number of obs = 49
No. of failures = 22
Time at risk = 869

LR chi2(1) = 0.38
Log likelihood = —55.704161 Prob > chi2 = 0.5385

_d | Haz. Ratio Std. Err. Z P>|z| [95% Conf. Interval]

gp | .7592211 .3407465 —0.614 0.539 .3150214 1.82977

From the output one can see that the hazard ratio associated
with active treatment is 0.759 (95% CI 0.315 to 1.830). This has
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associated P values 0.54 by both the likelihood ratio and Wald
methods, which implies there is little evidence of efficacy. The risk
and confidence interval are very similar to those given in
Swinscow,' chapter 12, which used the log-rank test. An important
point to note is that the z statistic is zor the ratio of the hazard ratio
to its standard error, but rather the ratio of the regression coefficient,
i.e. log (hazard ratio) to izs standard error (which is not given in this
output).

4.5 Survival analysis in action

Oddy er al.® looked at the association between breast feeding and
developing asthma in a cohort of children to six years of age. The
outcome was the age at developing asthma and they used Cox
regression to examine the relationship with breast feeding and to
adjust for confounding factors: sex, gestational age, being of
Aboriginal descent and smoking in the household. They stated that
“regression models were subjected to standard tests for goodness-
of-fit including an investigation of the need for additional
polynomial or interaction terms, an analysis of residuals, and tests
of regression leverage and influence”. They found that “other milk
introduced before four months” was a risk factor for earlier asthma
(hazard ratio 1.22, 95% CI 1.03 to 1.43, P=0.02).

4.6 Interpretation of the model

In the model (4.1), the predictor variables can be continuous or
discrete. If there is just one binary predictor variable X, then the
interpretation is closely related to the log-rank test described in
Swinscow.! In this case, if the coefficient associated with X is b,
then exp(bd) is the relarive hazard (often called the “relative risk”)
for individuals for whom X=1 compared with X=0.When there is
more than one covariate, then the interpretations are very similar
to those described in Chapter 3 for binary outcomes. In particular,
since the linear predictor is related to the outcome by an
exponential transform, what is additive in the linear predictor
becomes multiplicative in the outcome, as in logistic regression
section 3.4. In the asthma example the risk of asthma of 1.22 for
children exposed to other milk products before four months
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assumes all other covariates are held constant. The model assumes
multiplicative risks so that if the risk of developing asthma early is
double in boys, then boys exposed to other milk products before
four months will be at 2X1.22=2.44 times the risk of girls not
exposed to milk products.

4.7 Generalisations of the model

Suppose Oddy ez al.® did not wish to assume that the incidence
rate for Aboriginal children was a constant multiple of the
incidence rate of asthma for the non-Aboriginal children. Then we
can fit two separate models to the two groups

log(h;a (1)) =log(hpa () +B1 X +....+BX,

for the aboriginal children and

10g(hina (D) =108 (rgua D) +B1 X, + ... +B, X,

for the non-aboriginal children. This is known as a stratified Cox
model. Note that the regression coefficients, the Bs, for the other
covariates sex, gestational age and smoking in household are
assumed to remain constant. This is an extension of the idea of
fitting different intercepts for a categorical variable in multiple
regression.

The model (4.1) assumes that the covariates are measured once
at the beginning of the study. However, the model can be
generalised to allow covariates to be time dependent. An example
might be survival of a cohort of subjects exposed to asbestos, where
a subject changes jobs over time and so changes his/her exposure
to the dust. These are relatively easily incorporated into the
computer analysis.

Another generalisation is to specify a distribution for 4,(z) and
use a fully parametric model. A common distribution is the Weibull
distribution, which is a generalisation of the exponential
distribution. This leads to what is known as an accelerated failure
time model, so called because the effect of a covariate X is to change
the time scale by a factor exp(—f). Thus rather than say a subject
dies earlier, one may think of them as simply living faster! Details
of this technique are beyond the scope of this book, but it is
becoming widely available on computer packages. Usually it will
give similar answers to the Cox regression model.
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4.8 Model checking

The assumption about linearity of the model is similar to that in
multiple regression modelling described in section 2.6 and can be
checked in the same way. The methods for determining leverage
and influence are also similar to those in multiple regression and so
we refer the reader to section 2.7. There are a number of ways of
calculating residuals, and various packages may produce some or
all of martingale residuals, Schoenfeld residuals or deviance residuals.
Details are beyond this book. However, since the Cox model is a
semi-parametric model, the exact distribution of the residuals is
unimportant. They can be used for checking outliers.

The new important assumption is that the hazard ratio remains
constant over time. This is most straightforward when we have two
groups to compare with no covariates. The simplest check is to plot
the Kaplan—Meier survival curves for each group together. If they
cross, then the proportional hazards assumption may be violated.
For small data sets, where there may be a great deal of error
attached to the survival curve, it is possible for curves to cross, even
under the proportional hazards assumption. However, it should be
clear that an overall test of whether one group has better survival
than the other is meaningless when the answer will depend on the
time that the test is made. A more sophisticated check is based on
what is known as the complementary log—log plot. Suppose we have
two groups with survival curves Sy (z) and S,(z). We assume that the
two groups are similar in all prognostic variables, except group
membership. From equations (4.1) and (4.3), if the proportional
hazard assumption holds true, then

log{—log(S,(9)} =k+log{—log(S,(1)}

where %k is a constant. This implies that if we plot both
log(—log(S;(2)) and log(—log(S,(?))) against z, then the two
curves will be parallel, distance % apart.

This graph is plotted for the data in Table 4.2, and shown in
Figure 4.2. It can be seen that the two curves overlap considerably,
but there is no apparent divergence between them, and so they are
plausibly parallel.

There are also a number of formal tests of proportional hazards
and further details are given in Parmar and Machin (pp. 176-7).?
Most packages will provide a number of such tests. As an example
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Table 4.3 shows the result of a test of proportional hazards, based
on the Schoenfeld residuals and given by STATA.” It can be seen
that this agrees with the intuitive graphical test that there is little
evidence of a lack of proportional hazards.
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Figure 4.2 Log—log plot of survival curve in Figure 4.1.

Table 4.3 Test of proportional hazards assumption (computer output).

Time: Time

The problems of testing proportional hazards are much more
difficult when there are large numbers of covariates. In particular,
it is assumed that the proportional hazards assumption remains
true for one variable independent of all the other covariates. In
practice, most of the covariates will simply be potential
confounders, and it is questionable whether statistical inference is
advanced by assiduously testing each for proportionality in the
model. It is important, however that the main predictors, for
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example treatment group in a clinical trial, be tested for
proportional hazards because it is impossible to interpret a fixed
estimated relative risk if the true risk varies with time.

The other assumptions about the model are not testable from
the data, but should be verified from the protocol. These include
the fact that the events of being censored and suffering an event are
independent. Thus in a survival study, one should ensure that
patients are not removed from the study just before they die.
Survival studies often recruit patients over a long period of time. It
is also important that other factors remain constant over the
period, such as the way patients are recruited into a study, and the
diagnosis of the disease.

4.9 Reporting the results of a survival analysis

e Specify the nature of the censoring, and as far as possible
validate that the censoring is non-informative.

e Report the total number of events, subjects and person-time of
follow up, with some measure of variability such as a range for
the latter. For a trial this should be done by treatment group.

e Report an estimated survival rate at a given time, by group, with
confidence intervals.

e Display the Kaplan—Meier survival curves by group. To avoid
misinterpretation of the right-hand end, terminate the curve
when the number at risk is small, say five. It is often useful to
show the numbers at risk at regular time intervals, as shown in
Figure 4.1. For large studies this can be done at fixed time
points, and shown just below the time axis.

e Specify the regression model used and note sensitivity analyses
undertaken, and tests for proportionality of hazards.

e Specify a measure of risk for each explanatory variable, with a
confidence interval and a precise P value. Note that these can
be called relative risks, but it is perhaps better to refer to relative
hazards.

e Report the computer program used for the analysis. Many
papers just quote Cox* without much evidence of having read
that paper!
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4.10 Reading about the results of a survival analysis

e Is the proportional hazards assumption reasonable and has it
been validated?

e Are the conclusions critically dependent on the assumptions?

e In trials, are numbers of censored observations given by
treatment group?

Frequently asked question

Does it matter how the event variable is coded?

Unlike logistic regression, coding an event variable 1/0 instead
of 0/1 has a major effect on the analysis. Thus it is vitally
important to distinguish between the events (say deaths) and
the censored times (say survivors). This is because, unlike odds
ratios, hazard ratios are not symmetric to the coding and it
matters if we are interested in survival or death. For example,
if in two groups the mortality was 10% and 15% respectively,
we would say that the second group has a 50% increased
mortality. However, the survival rates in the two groups are
90% and 85% respectively, and so the second group has a
5/90=6% reduced survival rate.

Exercise

The table at the end of this chapter is an analysis of some
data given by Piantadosi.® It concerns survival of 76 patients
with mesothelioma, and potential prognostic variables are age
(yrs), sex, weight change (wtchg), performance status (ps)
(high or low) and five histologic subtypes. The analysis has
been stratified by performance status, because it was felt that
this may not have proportional hazards. Two models were
fitted. One with age, sex and weight change, and the second
including histologic status as a set of dummy variables. The
purpose of the analysis was to find significant prognostic
factors for survival.
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Fill in the missing values in the output (A to G)
Model 1
Iteration 0: log likelihood = 188.55165

Stratified Cox regr. —Breslow method for ties

No. of subjects = 76 Number of obs = 76
No. of failures = 63
Time at risk = 32380
LR chi2(A) = B
Log likelihood =-—188.04719 Prob > chi2 = 0.7991
_t
_d | Coef. Std. Err. Z P>|z| [95% Conf. Interval]
. + _______________________________
age | .0038245 .0128157 0.298 0.765 —.0212939 .0289429
wtchg | .2859577 .3267412 0.875  0.381 —.3544433 .9263586
sex |—.1512113 .3102158 C 0.626 D E
Stratified by ps
_t
d | Haz. Ratio Std. Err. 4 P>(z|[95% Conf. Interval]
—_—_—— = + _______________________________

age | 1.003832 .0128648 0.298 0.765 .9789312 1.029366
wtchg | 1.331036 .4349043 0.875 0.381 .7015639 2.525297
sex | .859666 .266682 C 0.626 F G

Stratified by ps
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Model 2

Iteration 0: log likelihood = —188.55165

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 76 Number of obs = 76
No. of failures = 63
Time at risk = 32380

LR chi2(7) = 11.72

Log likelihood = —182.68981 Prob > chi2 = 0.1100

t |
d | Haz. Ratio Std. Err. Z P>|z|[95% Conf. Interval]
. + ________________________________

age | .997813 .0130114 —0.168 0.867 .9726342 1.023644

wtchg | .9322795 .329234 —0.199 0.843 .4666001 1.86272

sex | .782026 .2646556 —0.727 0.468 .4028608 1.518055

Ihist 2| .7627185 .4007818 —0.515 0.606 .2723251 2.136195
Ihist 3| 4.168391 2.87634 2.069 0.039 1.077975 16.11863
Ihist 4| .9230807 .5042144 —0.147 0.884 .3164374 2.692722
Ihist 5| 5.550076 5.264405 1.807 0.071 .8647887 35.6195

Stratified by ps

1. What is likelihood ratio chi-square for histologic type, with its
degrees of freedom?

2. What is the hazard ratio of dying for patients with Histology type
2, compared to Histology type 1, with a confidence interval?

3. What is the change in risk of dying for an individual relative to
someone 10 years younger?
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5 Random effects
models

Summary

Random effects models are useful in the analysis of repeated
measures studies and cluster randomised trials, where the
observations can be grouped, and within the group they are not
independent. Ignoring the clustering can lead to underestimation
of the standard error of key estimates. There are two types of
models: cluster-specific and marginal models. Marginal models are
easier to fit and utilise a technique known as generalised estimating
equations (gee).

5.1 Introduction

The models described so far only have one error term. In multiple
regression, as described by model (2.1) the error term was an explicit
variable, ¢, added to the predictor. In logistic regression, the error
was Binomial and described how the observed and predicted values
were related. However it is possible for there to be more than one
error term. A simple example of this is when observations are
repeated over time on individuals. There is then the random variation
within individuals (repeating an observation on an individual does not
necessarily give the same answer) and random variation due ro
individuals (one individual differs from another). Another example
would be where doctors each treat a number of patients. There is
within-doctor variarion (since patients vary) and between-doctor
variation (since different doctors are likely to have different effects).
These are often known as hierarchical data structures since there is a
natural hierarchy, with one set of observations nested within another.
One form of model used to fit data of this kind is known as a random
effects model. In recent years there has been a great deal of interest in
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this type of model, and results are now regularly appearing in the
medical literature. This chapter can no more than alert the reader to
the importance of the topic.

5.2 Models for random effects

Consider a randomised trial, where there are single
measurements on individuals, but the individuals form distinct
groups, such as being treated by a particular doctor. For
continuous outcomes y;; for an individual ; in group i we assume
that

yl] :Bo+zl+Bl'xll]++BPpr+8l] (5.1)

This model is very similar to equation 2.1, with the addition of an
extra term z,.

Here z; is assumed to be a random variable with E(z;)=0,
Var (z;) =07 and reflects the overall effect of being in group i, where
B indicates Between groups. The xy;;s are the covariates on the kth
covariate on the sth individual in the th group with regression
coefficients 3.

We assume

Var(e;) =02 and thus Var (y;)=02+ oh

Thus the variability of an observation has two components, the
within and between group variances.
The observations within a group are correlated and

2

ag
Corr(y;vi)=p=—;——— if j and k differ
o2+0n

This is known as the ntra-cluster (group) correlation (ICC).

It can be shown that when a model is fitted which ignores each
z; the standard error of the estimate of 3; is usually too small, and
thus in general is likely to increase the Type I error rate. In
particular, if all the groups are of the same size, m, then the
variance of the estimate increases by (1+(m—1)p) and this is
known as the design effect (DE).

For some methods of fitting the model we need to assume also
that z; and &; are Normally distributed, but this is not always the
case.
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Model (5.1) is often known as the random intercepts model, since
the intercepts are ,+z; for different groups 7 and these vary
randomly. They are a subgroup of what is known as mulri-level
models, since the different error terms can be thought of as being
different levels of a hierarchy, individuals nested within groups.
They are also called mixed models because they mix random effects
and fixed effects. Model (5.1) is called an exchangeable model
because it would not affect the estimation procedure if two
observations within a cluster were exchanged. Another way of
looking at exchangeability, is that from equation (5.1), given a
value for z;, the correlation between y;; and yi’ is the same for any
individuals j and ;' in the same group.

Another type of model is known as a random coefficient model,
where we assume that a slope, say 3; can be described as a random
variable, rather than a fixed population value. These are beyond the
scope of this book.

Further details of these models are given in Brown and Prescott.’
Repeated measures are described in Crowder and Hand,? and
Diggle, Liang and Zeger.” Hierarchical models are described by
Goldstein.*

5.3 Random vs fixed effects

Suppose we wish to include a variable in a model that covers
differing groups of individuals. It could be a generic description,
such as “smokers” or “non-smokers” or it could be quite specific,
such as patients treated by Doctor A or Doctor B. The conventional
method of allowing for categorical variables is to fit dummy
variables as described in Chapter 2. This is known as a fixed-effect
model, because the effect of being in a particular group is assumed
fixed, and represented by a fixed population parameter. Thus
“smoking” will decrease lung function by a certain amount on
average. Being cared for by Doctor A may also affect your lung
function, particularly if you are asthmatic. However, Doctor A’s
effect is of no interest to the world at large, in fact is only so much
extra noise in the study. However, the effect of smoking is of
interest generally. The main difference between a fixed and a
random effect model depends on the intention of the analysis. If
the study were repeated, would the same groups be used again? If
not, then a random effect model is appropriate. By fitting dummy
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variables we are removing the effect of the differing groups as
confounders but if these groups are unique to this study, and in a
new study there will be a different set of groups, then we are
pretending accuracy that we do not have. Thus random effects are
sources of “error” in a model due to individuals or groups over and
above the unit “error” term.

5.4 Use of random effects models

5.4.1 Cluster randomused trials

A cluster randomised trial is one in which groups of patients are
randomised to an intervention or control, rather than individual
patients. The group may be a geographical area, a general or family
practice or a school. A general practice trial actively involves
general practitioners and their primary healthcare teams, and the
unit of randomisation may be the practice or healthcare
professional rather than the patient. The effectiveness of the
intervention is assessed in terms of the outcome for the patient.

There are many different features associated with cluster
randomised trials and some of the statistical aspects were first
discussed by Cornfield.” A useful discussion has been given by
Zucker et al.° The main feature is that patients treated by one
healthcare professional tend to be more similar than those treated
by different healthcare professionals. If we know which doctor a
patient is being treated by we can predict slightly better than by
chance the performance of the patient and thus the observations for
one doctor are not completely independent. What is surprising is
how even a small correlation can greatly affect the design and
analysis of such studies. For example with an ICC of 0.05 (a value
commonly found in general practice trials), and 20 patients per
group, the usual standard error estimate for a treatment effect,
ignoring the effect of clustering, will be about 30% lower than a
valid estimate should be. This greatly increases the chance of getting
a significant result even when there is no real effect (a Type I error).

Further discussion on the uses and problems of cluster
randomised trials in general (family) practice has been given
recently.”
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5.4.2 Repeated measures

A repeated measures study is where the same variable is
observed on more than one occasion on each individual. An
example might be a clinical trial to reduce blood pressure, where
the blood pressure is measured 3, 6, 12 and 24 weeks after
treatment. Each individual will have an effect on blood pressure,
measured by the variable z;. The individuals themselves are a
sample from a population, and the level of blood pressure of a
particular individual is not of interest.

A simple method of analysing data of this type is by means of
summary measures.*® Using this method we simply find a
summary measure for each individual, often just the average, and
analyse this as the primary outcome variable. This then eliminates
the within individual variability, and so we have only one error
term, due to between individual variation, to consider. Other
summary values might be the maximum value attained over the
time period, or the slope of the line. For repeated measures the data
are collected in order, and the order may be important. Model
(5.1) can be extended to allow for so-called autoregressive models
which take account of the ordering, but that is beyond the scope of
this book.

5.4.3 Sample surveys

Another simple use of the models would be in a sample survey,
for example to find out levels of depression in primary care. A
random sample of practices is chosen and within them a random
sample of patients. The effect of being cared for by a particular
practice on an individual is not of prime interest. If we repeated the
study we would have a different set of practices. However, the
variation induced on the estimate of the proportion of depressed
patients by different practices s of interest, because it will affect the
confidence interval. Thus we need to allow for between practice
variation in our overall estimate.

5.5 Random effects models in action

5.5.1 Cluster trials

Diabetes from diagnosis was a study of patient centred intervention
for the treatment of newly diagnosed diabetics.” Briefly, 41
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practices were recruited and randomised into two groups: 21 in the
intervention and 20 in the comparison arm. In the intervention
group the health professionals were given 1.5 days’ group training
introducing the evidence for and skills of patient-centred care.
They were also give a patient-held booklet which encouraged
asking questions. The other group were simply given the British
Diabetic Association guidelines on the management of newly
diagnosed diabetics. There were a number of outcomes such as the
HbAlc, the body mass index (BMI) at one year after intervention
and process measures such as patient satisfaction. The important
points are that patients treated by a particular doctor will tend to
have more similar outcomes than patients treated by different
doctors, and the trial is of an intervention package that would be
given to different doctors in any future implementation. The effect
of the intervention was a difference in BMI at one year of
1.90 kg/m? in the two groups (SE 0.82). With no allowance for
clustering the standard error was 0.76, which magnifies the
apparent significance of the effect.

5.5.2 Repeated measures

Doull ez al." looked at the growth rate of 50 children with asthma
before and after taking inhaled steroids. They showed that,
compared to before treatment, the difference in growth rate
between weeks 0 to 6 after treatment was —0.067 mm/week (95%
CI —0.12 to —0.015), whereas at weeks 19 to 24, compared to
before treatment it was —0.002 (95% CI —0.054 to 0.051). This
showed that the growth suppressive action of inhaled
corticosteroids is relatively short lived. The random effect model
enabled a random child effect to be included in the model. It
allowed differing numbers of measurements per child to be
accounted for. The model gives increased confidence that the
results can be generalised beyond these particular children.

5.6 Ordinary least squares at the group level

Cornfield® stated that one should “analyse as you randomise”.
Since randomisation is at the level of the group, a simple analysis
would be to calculate “summary measures” such as the mean value
for each group, and analyse these as the primary outcome variable.

Omitting the covariates from the model for simplicity, except for
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a dummy variable 8; which takes the value 1 for the intervention
and O for the control, it can be shown that

37;':“_’_78{_{_51' (52)
where y; is the mean value for the »; individuals with outcome y;;

for group 7 and

o2

Var(y;)=o i+ P
1

Equation (5.2) is a simple model with independent errors, which
are homogeneous if each #; is of similar size. An ordinary least
squares estimate at group level of 7 is unbiased and the standard
error of estimate is valid provided the error term is independent of
the treatment effect.

Thus, a simple analysis at the group level would be the following:
if each 7, the same or not too different carries out a two sample ¢
test on the group level means. This is the method of summary
measures mentioned in section 5.4.2. It is worth noting that if o2
is zero (all values from a group are the same) then group size does
not matter.

There are a number of problems with a group level approach.
The main one is, how should individual level covariates be allowed
for? It is unsatisfactory to use group averaged values of the
individual level covariates. This method ignores the fact that the
summary measures may be estimated with different precision for
different individuals. The advantage of random effects models over
summary measures is that they can allow for covariates which may
vary with individuals. They also allow for different numbers of
individuals per group.

5.7 Computer analysis

5.7.1 Likelihood and generalised estimating equations

Many computer packages will now fit random effects models
although different packages may use different methods of fitting
model (5.1). The likelihood method first assumes a distribution
(usually Normal) for each z; and then formulates a probability of
observing each Vi conditional on each z;. Using the distribution of
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each z; we can obtain an expected probability over every possible
;. This involves mathematical integration and is difficult. Since the
method calculates the regression coefficients separately for each
group or cluster, this is often known as the cluster-specific model. A
simpler method is known as generalised estimaring equations (gee)
which does not require Normality of the random effects. This
method essentially uses the mean values per group as the outcome,
and adjusts the standard error for the comparison to allow for
within group correlation using what is known as a robust sandwich
estimaror. The gee methodology is based on what is known as a
marginal model. In an ordinary table of data, the edges of the table
are the margins and they contain the mean values; hence the name
marginal model. The gee methodology uses the means per group,
with the correlations within a group as a nuisance factor. Because
the group is the main item for analysis, gee methodology may be
unreliable unless the number of clusters exceeds 20, and preferably
40.

The methods can be extended to allow for binomial errors, so
that one can get random effect logistic regression. The maximum
likelihood method is less likely to be available in computer
packages for logistic regression, and most packages at present only
offer gee methods.

Murray'? gives extensive programs using the computer package
SAS for fitting the random effects models. STATA"” devotes a
whole suite of programs to what it calls cross-sectional time-series
models, but are essentially repeated measures or clustered data. This
type of model is generalised quite naturally to a Bayesian approach
(see Appendix 4). This is beyond the scope of this book but further
details are given in Turner, Omar and Thompson.**

5.7.2 Interpreting computer output

Table 5.1 gives some data which are a subset of data from
Kinmonth ez al."® They consist of the body mass index at one year
on a number of patients in 10 practices, under one of two
treatment groups.

The results are shown in Table 5.2. Table 5.2(i) shows the results
of fitting an ordinary regression without clustering, which yields an
estimate of a treatment effect of 0.42, with standard error 1.90. As
was stated earlier, since this ignores the clustering inherent in the
data the standard error will be too small. Table 5.2(ii) shows the
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Table 5.1 Data on body mass index."

Subject BMI (kg/mz) Treatment  Practice
1 26.2 1 1
2 27.1 1 1
3 25.0 1 2
4 28.3 1 2
5 30.5 1 3
6 28.8 1 4
7 31.0 1 4
8 32.1 1 4
9 28.2 1 5

10 30.9 1 5

11 37.0 0 6

12 38.1 0 6

13 22.1 0 7

14 23.0 0 7

15 23.2 0 8

16 25.7 0 8

17 27.8 0 9

18 28.0 0 9

19 28.0 0 10

20 31.0 0 10

results of fitting a maximum likelihood model, which yields an
estimate of the treatment effect of 0.39, with standard error 2.47.
Note how the standard error is greatly inflated compared to the
model that fails to allow for clustering. The program also gives an
estimate of the intra-cluster correlation coefficient, rho, of 0.85 and
the between and within groups standard deviations, here denoted
sigma_u and sigma_e. The output also states the random effects are
assumed Gaussian, which is a synonym for Normal (after C.F.
Gauss, a German mathematician who first described the
distribution). Using the method of generalised estimating
equations in Table 5.2(iii) also yields a treatment estimate of 0.39,
but a standard error of 2.61. As described earlier, the assumption
underlying this model is that individuals within a group are
exchangeable. The estimate from gee can be contrasted with the
method which uses the average per group as the outcome in Table
5.2(iv). This yields an estimate of 0.41, with an even larger
standard error of 2.74.

82



RANDOM EFFECTS MODELS

Table 5.2 Computer output fitting regression models to data in Table 5. 1.

(1) Regression not allowing for clustering

Source | SS df MS Number of obs = 20
————— +----——-—————-—---—-"F(,18) = 0.05
Model | .881999519 1 .881999519 Prob > F = 0.8279
Residual | 326.397937 18 18.1332187 R-squared = 0.0027
————— t+-—-—————————-—-—-————"Adj Rsquared =-0.0527
Total | 327.279937 19 17.2252598 Root MSE = 4.2583
bmi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____ +______________________________
treat [ 14199999 1.904375 0.221 0.828 —3.580943 4.420943
_cons \ 28.39 1.346596 21.083 0.000 25.56091 31.21909

(1) Maximum likelihood random effects model

Fitting constant-only model:

Iteration 0: log likelihood = —51.281055
Iteration 4: log likelihood = —49.644194
Fitting full model:
Iteration 0: log likelihood = —51.269825
Iteration 4: log likelihood = —49.631613
Random-effects ML regression Number of obs = 20
Group variable (i) : group Number of groups = 10
Random effects u_i ~ Gaussian Obs per group: min = 1
avg = 2.0
max = 3
LR chi2(1) = 0.03
Log likelihood = —49.631613 Prob > chi2 = 0.8740
bmi | Coef. Std. Err. Z P>|z| [95% Conf. Interval]
_____ +______________________________
treat | .3916501 2.467672 0.159 0.874 —4.444899 5.228199
_cons | 28.39 1.740882 16.308 0.000 24.97793 31.80207
_____ +______________________________

/sigma_u | 3.737395 .9099706 4.107 0.000 1.953885 5.520904
/sigma_e | 1.539626 .3430004 4.489 0.000 .8673579 2.211895

Likelihood ratio test of sigma_u=0: chi2(1) = 13.34 Prob > chi2 =
0.0003
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(1) generalised estimating equations

Iteration 1: tolerance = .01850836
Iteration 2: tolerance = .0000438

Iteration 3: tolerance = 1.029e-07
GEE population-averaged model Number of obs = 20
Group variable: group Number of groups = 10
Link: identity Obs per group: min = 1
Family: Gaussian avg = 2.0
Correlation: exchangeable max = 3
Wald chi2(1) = 0.02
Scale parameter: 18.1336 Prob > chi2 = 0.8803
bmi | Coef. Std. Err. z  P>|z| [95% Conf. Interval]
_____ +______________________________
treat | .3937789 2.613977 0.151 0.880 —4.729523 5.51708
_cons | 28.39 1.844712 15.390 0.000 24.77443 32.00557
(iv) Regression on group means
Between regression
(regression on group means) Number of obs = 20
Group variable (i) : group Number of groups = 10
R-sq: within = . Obs per group: min = 1
between = 0.0027 avg = 2.0
overall = 0.0027 max = 3
F(1,8) = 0.02
sd(u_i + avg(e_i.))= 4.34548 Prob > F = 0.8860
bmi | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____ +______________________________
treat | 4066669 2.748323 0.148 0.886 —5.930976 6.74431
_cons | 28.39 1.943358 14.609 0.000 23.90861 32.87139

The methods will give increasingly different results as the
variation between groups increases. In this example the estimate of
the treatment effect is quite similar for each method, but the
standard errors vary somewhat.

5.8 Model checking

Most of the assumptions for random effects models are similar
to those of linear or logistic models described in Chapters 2 and 3.
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The main difference is in the assumptions underlying the random
term. Proper checking is beyond the scope of this book, but the
maximum likelihood method assumes that the random terms are
distributed Normally. If the numbers of measurements per cluster
are fairly uniform, then a simple check would be to examine the
cluster means, in a histogram. This is difficult to interpret if the
numbers per cluster vary a great deal. In cluster randomised trials,
it would be useful to check that the numbers of patients per cluster
are not affected by treatment. Sometimes, when the intervention is
a training package, for example, the effect of training is to increase
recruitment to the trial, so leading to an imbalance in the treatment
and control arms.

5.9 Reporting the results of a random effects analysis
e Give the number of groups as well as the number of individuals.

e In a cluster randomised trial, give the group level means of
covariates by treatment arm, so the reader can see if the trial is
balanced at a group level.

e Describe whether a cluster specific or a marginal model is being
used and justify the choice.

e Indicate how the assumptions underlying the distribution of the
random effects were verified.

5.10 Reading about the results of a random effects
analysis

e What is the main unit of analysis? Does the statistical analysis
reflect this? Repeating a measurement on one individual is not
the same as making the second measurement on a different
individual, and the statistical analysis should be different in
each situation.

e If the study is a cluster randomised trial, was an appropriate
model used?

e If the analysis uses gee methodology, are there sufficient groups
to justify the results?
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Frequently asked question

When should I use a random effects model?

There is currently still much debate on the use of random
effects models. In repeated measures data and cluster
randomised trials they would seem to be the models of choice.
However, there are other areas where their use is still
controversial. For example, the pooling of the results from four
studies described in Table 3.3, is an example of mera-analysis.
The four studies could be regarded as four samples from a
larger pool of potential case—control studies, and so a random
effects model may seem appropriate. However, this is not
universally accepted, and it is wise to consult an experienced
statistician for advice on these issues.
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6 Other models

Summary

This chapter will consider three other regression models that are
of considerable use in medical research: Poisson regression, ordinal
regression and time-series regression. Poisson regression is useful
when the outcome variable is a count. Ordinal regression is useful
when the outcome is ordinal, or ordered categorical. Time-series
regression is mainly used when the outcome is continuous, but
measured together with the predictor variables serially over time.

6.1 Poisson regression

Poisson regression is an extension of logistic regression where
the risk of an event to an individual is small, but there are a large
number of individuals, so the number of events in a group is
appreciable. We need to know not just whether an individual had
an event, but for how long they were followed up, the person-years.
This is sometimes known as the amount of time they were ar risk.
It is used extensively in epidemiology, particularly in the analysis of
cohort studies. For further details see McNeil.!

6.1.1 The model

The outcome for a Poisson model is a count of events in a group,
usually over a period of time, for example number of deaths over
20 years in a group exposed to asbestos. It is a discrete quantitative
variable in the terminology of Chapter 1. The principal covariate is
a measure of the amount of time the group has been in the study.
Subjects may have been in the study for differing lengths of time
(known as the atr risk period) and so we record the time each
individual is observed to give an exposure time ¢;. In logistic
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regression we modelled the probability of an event ;. Here we
model the underlying rate A; which is the number of events
expected to occur E; over a period ¢ divided by the time e;. Instead
of a logistic transform we use a simple log transform.

The model is

IOg(/\i)ZIOg (Ei/ei):BO+BlXi1+"'+BpXip (61)
This may be rewritten as
E;=exp{log(e;,) +Bo+B1X;1+... 7B, X } (6.2)

It is assumed that risk of an event rises directly with ¢; and so in the
model (6.2) the coefficient for log(e; ) is fixed at 1. This is known
as an offser and is a special type of independent variable whose
regression coefficient is fixed at unity.

Note that, as for the logistic regression, the observed counts have
not yet appeared in the model. They are linked to the expected
counts by the Poisson distribution (see Appendix 2). Thus we
assume that the observed count y; is distributed as a Poisson
variable with parameter E;=A;q;

Instead of a measure of the person-years at risk, we could use the
predicted number of deaths, based on external data. For example
we could use the age/sex specific death rates for England & Wales
to predict the number of deaths in each group. This would enable
us to model the standardised mortality ratio (SMR). For further
details see Breslow and Day.?

6.1.2 Consequences of the model

Consider a cohort study in which the independent variable is a
simple binary 0 or 1, respectively, for people not exposed or
exposed to a hazard. The dependent variable is whether they
succumb to disease and we also have the length of time they were
on study. Then the coefficient b estimated from the model is the log
of the ratio of the estimated incidence of the disease in those
exposed and not exposed. Thus exp(b) is the estimated incidence
rate ratio (irr) or relative risk. If the independent variable is
continuous then the regression coefficient measures the percentage
change of the y variable per unit increase of the independent
variable.
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6.1.3 Interpreting a computer output

The data layout is exactly the same as for the grouped logistic
regression described in Chapter 3. The model is fitted by
maximum likelihood.

Table 6.1 gives data from the classic cohort study of coronary
deaths and smoking amongst British male doctors,’ quoted in
Breslow and Day* and McNeil.'

Table 6.1 Coronary deaths from British male doctors.

Deaths Person- Smoker  Age-group Expected (D—-E)
(D) years at start study (E) -
VE
32 52407 1 35-44 27.2 0.92
2 18790 0 35-44 6.8 —1.85
104 43248 1 45-54 98.9 0.52
12 10673 0 45-54 17.1 —1.24
206 28612 1 55-64 205.3 0.05
28 5712 0 55-64 28.7 —0.14
186 12663 1 65-74 187.2 —0.09
28 2585 0 65-74 26.8 0.23
102 5317 1 75-84 111.5 —0.89
31 1462 0 75-84 21.5 2.05

Here the question is what is the risk of deaths associated with
smoking, allowing for age? Thus the dependent variable is number
of deaths per age/smoking group. Smoking group is the causal
variable, age group is a confounder and the person-years is the
offset. The analysis is given in Table 6.2.

The five age groups have been fitted using four dummy
variables, with age group 35-44 years as the baseline. The model
used here assumes that the relative risk of coronary death for
smokers remains constant for each age group. The estimated
relative risk for smokers compared to non-smokers is 1.43, with
95% confidence interval 1.16 to 1.76 which is highly significant
(P=0.001). Thus male British doctors are 40% more likely to die
of a coronary death if they smoke. The LR chi-squared is an overall
test of the model and is highly significant, but this significance is
largely due to the age categories — coronary risk is highly age
dependent. It has five parameters because there are five parameters
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in this particular model. Note, the output is similar to that for
survival analysis, and the z statistic is zor the ratio of the IRR to its
standard error, but rather the ratio of the log(IRR), (log(1.43)) to
its standard error.

Table 6.2 Results of Poisson regression on data in Table 6. 1.

Iteration 0:  log likelihood = —33.823578
Iteration 1:  log likelihood = —33.60073
Iteration 2:  log likelihood = —33.600412
Iteration 3: log likelihood = —33.600412
Poisson regression Number of obs = 10
LR chi2(5) = 922.93
Prob > chi2 = 0.0000
Log likelihood = —33.600412 Pseudo R2 = 0.9321
y | IRR  Std. Err. Z P>|z| [95% Conf. Interval]

smoker | 1.425664 .1530791 3.303 0.001 1.155102 1.7596
Age45-54 | 4.41056 .860515 7.606 0.000 3.008995 6.464962
Age 55-64 | 13.83849 2.542506 14.301 0.000 9.65384 19.83707
Age 65-74 | 28.51656 5.269837 18.130 0.000 19.85162 40.96364
Age75-84 40.45104 7.77548 19.249 0.000 27.75314 58.95862

pyrs | (exposure)

6.1.4 Model checking

The simplest way to check the model is to compare the observed
values and those predicted by the model. The predicted values are
obtained by putting the estimated coefficients into equation (6.2).
Since the dependent variable is a count we can use a chi-squared
test to compare the observed and predicted values and we obtain
X2=12.13, df=4, P=0.0164. This has 4 degrees of freedom
because the predicted values are constrained to equal the observed
values for the five age groups and one smoking group (the other
smoking group constraint follows from the previous age group
constraints). Thus six constraints and ten observations yield 4
degrees of freedom. There is some evidence that the model does
not fit the data. The standardised residuals are defined as
(D-E)/VE since the standard error of D is VE. These are shown
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in Table 6.1 and we expect most to lie between —2 and +2.We can
conclude there is little evidence of a systematic lack of fit of the
model, except possibly for the non-smokers in the age group 75-84
years, but this is not a large difference.

The only additional term we have available to fit is the smoking
X age interaction. This yields a saturated model (i.e. one in which
the number of parameters equals the number of data points, see
Appendix 2), and its LR chi-squared is equal to the lack of fit chi-
squared above. Thus there is some evidence that smoking affects
coronary risk differently at different ages.

When the observed data vary from the predicted values by more
than would be expected by a Poisson distribution we have what is
known as extra-Poisson variation. This is similar to extra-Binomial
variation described in Chapter 3. It means that the standard errors
given by the computer output may not be valid. It may arise
because an important covariate is omitted. Another common
explanation is when the counts are correlated. This can happen
when they refer to counts within an individual, such as number of
asthma attacks per year, rather than counts within groups of
separate individuals. This leads to a random effects model as
described in Chapter 5 which, as explained there, will tend to
increase our estimate of the standard error. Some packages now
allow one to fit random effect Poisson models. A particular model
that allows for extra variation in A; is known as negative Binomial
regression and this is available in STATA, for example.

6.1.5 Poisson regression in action

Campbell er al.* looked at deaths from asthma over the period
1980-1995 in England & Wales. They used Poisson regression to
test whether there was a trend in the deaths over the period, and
concluded that, particularly for the age group 15-44, there had
been a decline of about 6% (95% CI 5% to 7%) per year since
1988, but this downward trend was not evident in the elderly.

6.2 Ordinal regression

When the outcome variable is ordinal then the methods
described in the earlier chapters are inadequate. One solution
would be to dichotomise the data and use logistic regression as
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discussed in Chapter 3. However, this is inefficient and possibly
biased if the point for the dichotomy is chosen by looking at the
data. The main model for ordinal regression is known as the
proportional odds or cumulative logit model. It is based on the
cumulative response probabilities rather than the category
probabilities.

For example, consider an ordinal outcome variable Y with &
ordered categorical outcomes Y denoted by j=1,2,...,k, and let
X5 X, denote the covariates. The cumulative logit or
proportional odds model is

C; Pr(Y=y;)
logit(C))=log| —— | =log | —————— | =t B 1 X +... +B,X),
_Cj Pr(Y.y]-)

0312, k-1

or equivalently as

1+exp(aj+[31X1+...+Bpo)

Pr(Y=y;)= =1,2,...,k—1 (6.4)

where C;=Pr(Y<y) is the cumulative probability of being in
category j or less (note that for ;=k; Pr(Y<y; [X )=1). Here we
have not used coefficients to indicate individuals to avoid cluttering
the notation. Note we have replaced the intercept term (3o which
would be seen in logistic regression by a set of variables
a]~,j=1,2,...k—1. When there are 2=2 categories, this model is
identical to equation (3.1), the logistic regression model. When
there are more than two categories, we estimate separate intercepts
terms for each category except the base category.

The regression coefficient vector 3 does not depend on the
category 7. This implies that the model (6.3) assumes that the
relationship between the covariates x and Y is independent of 7 (the
response category). This assumption of identical log-odds ratios
across the k categories is known as the proportional odds assumption.

The proportional odds model is useful when one believes the
dependent variable is continuous, but the values have been
grouped for reporting. Alternatively the variable is measured
imperfectly by an instrument with a limited number of values. The
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divisions between the boundaries are sometimes known as cut-
points. The proportional odds model is invariant when the codes for
the response Y are reversed (i.e. y; recoded as y,, vy, recoded as
¥,—1 and so on). Secondly the proportional odds model is invariant
under the collapsibility of adjacent categories of the ordinal
response (for example y; and y, combined and y,_; and y,
combined).

Note that count data, described under Poisson regression, could
be thought of as ordinal. However, ordinal regression is likely to be
inefficient in this case because count data form a ratio scale, and
this fact is not utilised in ordinal regression (see section 1.3).

The interpretation of the model is exactly like that of logistic
regression. Continuous and nominal covariates can be included as
independent variables.

6.2.1 Interpreting a computer output

Suppose the length of breast feeding given in Table 3.1 was
measured as less than 1 month, 1-3 months and greater than or
equal to 3 months. Thus the cut-points are 1 month and 3 months.
The data are given in Table 6.3.

Table 6.3 Numbers of wives of printers and farmers who breast fed their babies
for less than 1 month, 1-3 months or for 3 months or more.

Wife < lmonth 1-3 months > 3months Total
Printers’ wives 20 16 14 50
Farmers’ wives 15 15 25 55
Total 35 31 39 105

The outcome variable is now ordinal and it would be sensible to
use an analysis that reflected this. In Swinscow,” we showed how
this could be done using a non-parametric Mann—Whitney U test.
Ordinal regression is equivalent to the Mann—Whitney test when
there is only one independent variable 0/1 in the regression. The
advantage of ordinal regression over non-parametric methods is
that we get an efficient estimate of a regression coefficient and we
can extend the analysis to allow for other confounding variables.
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Table 6.4 Results of ordinal regression on data in Table 6.3.

Iteration 0: log likelihood = —114.89615
Iteration 1: log likelihood = —113.17681
Iteration 2: log likelihood = —113.17539
Ordered logit estimates Number of obs = 105
LR chi2(1) = 3.44
Prob > chi2 = 0.0636
Log likelihood=—113.17539 Pseudo R2 = 0.0150
breast | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____ +______________________________
treat | —.671819.3643271 —1.844 0.065 —1.385887 .0422491
_____ +______________________________
_cutl | —1.03708 .282662 (Ancillary parameters)

_cut2 | .2156908 .2632804

For the analysis we coded printers’ wives as 1 and farmers’ wives
as 0. The dependent variable was coded 1,2,3 but in fact many
packages will allow any positive whole numbers. The computer
analysis is given in Table 6.4. Alas the computer output does not
give the odds ratios and so we have to compute them ourselves.
Thus the odds ratio is exp(—0.672)=0.51 with 95% CI as
exp(—1.386) to exp(0.042), which is 0.25 to 1.04. This contrasts
with the odds ratio of 0.47 (95% CI 0.21 to 1.05) that we obtained
in Table 3.2 when we had only two categories for the dependent
variable. The interpretation is that after 1 month, and after 3
months, a printer’s wife has half the odds of being in the same
breast feeding category or higher as a farmer’s wife.

The LR chi-squared has one degree of freedom,
corresponding to the single term in the model. The P value
associated with it, 0.0636, agrees closely with the Wald P value
of 0.065. The two intercepts are labelled in the output _cutl and
_cut2. They are known as ancillary parameters, meaning that they
are extra parameters introduced to fit the model, but not part of
the inferential study. Thus no significance levels are attached to
them.

Useful discussions of the proportional odds model and other
models for ordinal data have been given by Armstrong and Sloan’
and Ananth and Kleinbaum.® Other models include the
continuation ratio model. Armstong and Sloan’ conclude that the
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gain in efficiency using a proportional odds model as opposed to
logistic regression is often not great. The strategy of dichotomising
an ordinal variable and using logistic regression has much to
recommend it in terms of simplicity and ease of interpretation,
unless the coefficient of the main predictor variable is close to
borderline significance.

6.2.2 Model checking

Tests are available for proportional odds but these tests lack
power. Also the model is robust to mild departures from the
assumption of proportional odds. A crude test would be to examine
the odds ratios associated with each cut-point. If they are all greater
than unity, or all less than unity, then a proportional odds model
will suffice. From Table 6.3 we find the odds are:

<1 month versus > 1 month <3 months vs > 3 months
15X30 30X14

Odds ratio=—=0.56 Odds ratio=—=0.47
20X%X40 36X25

These odds ratios are quite close to each other and we can see
that the observed odds ratio of 0.51 from the proportional odds
model is midway between the two. Thus we have no reason to reject
the proportional odds model. Model testing is much more
complicated when there is more than one input variable and some
of them are continuous, and specialist help should be sought.

6.2.3 Ordinal regression in action

Hotopf er al.® looked at the relationship between chronic
childhood abdominal pain as measured on three consecutive
surveys at ages 7, 11 and 15 and adult psychiatric disorders at the
age of 36, in a cohort of 3637 individuals. A seven-point index of
psychiatric disorder (the “index of definition”) was measured as an
outcome variable. This is an ordinal scale. It was found that the
binary predictor (causal) variable, pain on all three surveys, was
associated with an odds ratio of 2.72 (95% CI 1.65 to 4.49) when
potential confounders sex, father’s social class, marital status at age
36 and educational status were included in the model. Thus the
authors conclude that children with abdominal pain are more likely
to present psychiatric problems in later life. The usual cut-off for
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the index of definition is 5, but use of the whole scale uses more
information and so gives more precise estimates.

6.3 Time-series regression

Time-series regression is concerned with the situation in which
the dependent and independent variables are measured over time.
Usually there is only a single series with one dependent variable
and a number of independent variables, unlike repeated measures
when there may be several series of data.

The potential for confounding in time-series regression is very
high — many variables either simply increase or decrease over time,
and so will be correlated over time.” In addition many
epidemiological variables are seasonal, and this variation would be
present even if the factors were not causally related. It is important
that seasonality and trends are properly accounted for. Simply
because the outcome variable is seasonal, it is impossible to ascribe
causality because of seasonality of the predictor variable. For
example, sudden infant deaths are higher in winter than in
summer, but this does not imply that temperature is a causal
factor; there are many other factors that might affect the result such
as reduced daylight, or presence of viruses. However, if an
unexpectedly cold winter is associated with an increase in sudden
infant deaths, or very cold days are consistently followed after a
short time by rises in the daily sudden infant death rate, then
causality may possibly be inferred.

Often when confounding factors are correctly accounted for, the
serial correlation of the residuals disappears; they appear serially
correlated because of the association with a time-dependent
predictor variable, and so conditional on this variable the residuals
are independent. This is particularly likely for mortality data,
where, except in epidemics, the individual deaths are unrelated.
Thus one can often use conventional regression methods followed
by a check for the serial correlation of the residuals and need only
proceed further if there is clear evidence of a lack of independence.

If the inclusion of known or potential confounders fails to
remove the serial correlation of the residuals, then it is known that
ordinary least squares do not provide valid estimates of the
standard errors of the parameters.
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6.3.1 The model

For a continuous outcome suppose the model is

Vi=BotB1 Xy T B X TYst=1,.5m (6.5)

The main difference from equation (2.1) is that we now index
time ¢ rather than individuals. It is important to distinguish time
points because whereas two individuals with the same covariates
are interchangeable, you cannot swap, say Saturday with Sunday
and expect the same results! We denote the error term by v, and we
assume that v,=¢,—av,_; where the g, are assumed independent
Normally distributed variables with mean zero and variance o and
o is a constant between —1 and +1.The error term is known as an
autoregressive process (of order 1). This model implies that the data
are correlated in time, known as serial correlation. The effect of
ignoring serial correlation is to provide artificially low estimates of
the standard error of the regression coefficients and thus to imply
significance more often than the significance level would suggest,
under the null hypothesis of no association.

6.3.2 Esumation using correlated residuals

Given the above model, and assuming « is known, we can use a
method of generalised least squares known as the Cochrane—Orcutt
procedure.’

For simplicity, assume one independent variable and write
v, =yv,~ay,_; and x",=X,—aX, ;. We can then obtain an estimate
of B using ordinary least squares on y’, and x",. However, since a
will not usually be known it can be estimated from the ordinary
least squares residuals e, by

n n
— 2
o= ezet—l/ E €41
=2 =2

This leads to an iterative procedure in which we can construct
a new set of transformed variables and thus a new set of
regression estimates and so on until convergence. The iterative
Cochrane—Orcutt procedure can be interpreted as a stepwise
algorithm for computing maximum likelihood estimators of « and
B where the initial observation y; is regarded as fixed. If the
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residuals are assumed to be Normally distributed then full
maximum likelihood methods are available, which estimate o and
B simultaneously. This can be generalised to higher-order
autoregressive models and fitted in a number of computer
packages, in particular SAS. However caution is advised in using
this method when the autocorrelations are high, and it is worth
making the point that an autoregressive error model “should not be
used as a nostrum for models that simply do not fit”.

There are more modern methods which do not assume the first
point is fixed, but if the data set is long (say >50 points) then the
improvement is minimal. These models can be generalised to
outcomes which are counts but this is beyond the scope of this
book and for further details see Campbell.'?

Table 6.5 Results of Cochrane—Orcutt regression on data in Table 2.1 assuming
points all belong to one individual equally spaced over time.

Iteration 0: rho = 0.0000
Iteration 1: rho = 0.0432
Iteration 2: rho = 0.0462
Iteration 3: rho = 0.0463
Iteration 4: rho = 0.0463
Iteration 5: rho = 0.0463

Cochrane-Orcutt AR(1) regression iterated estimates

Source | SS df MS Number of obs = 14
————— +---—-—————————-—-—-—-- F(1,12) = 29.29
Model | 4841.31415 1 4841.31415 Prob >F = 0.0002
Residual | 1983.76032 12 165.31336 R-squared = 0.7093
————— +-————-—-—-—-—-——————- AdjR-squared = 0.6851
Total | 6825.07447 13 525.005728 Root MSE = 12.857
Deadspce | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____ +______________________________.
Height | 1.160173 .2143853 5.412 0.000 .6930675 1.627279
_cons |—102.1168 31.78251 —3.213 0.007 —171.3649-32.86861
rho | .0463493
Durbin-Watson statistic (original) 1.834073

Durbin-Watson statistic (transformed) 1.901575
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6.3.3 Interpreting a computer output

Suppose that the data on deadspace and height in Table 2.1 in
fact referred to one individual followed up over time. Then the
regression of deadspace against height is given in Table 6.5 using
Cochrane—Orcutt regression. This method loses the first
observation, and so the regression coefficient is not strictly
comparable with that in Figure 2.1. Note that the output gives the
number of observations as 14, not 15. Note also that the standard
error, 0.214 obtained here, is much larger than the 0.180 obtained
when the points can all be assumed to be independent. The
estimate of «, the autocorrelation coefficient is denoted rho in the
printout and is quite small at 0.046. However the program does not
give a P value for rho.

6.4 Reporting Poisson, ordinal or time-series regression
in the literature

e If the dependent variable is discrete quantitative then Poisson
regression may be the required model. Give evidence that the
model is a reasonable fit to the data by quoting the goodness of
fit chi-squared. Test for covariate interaction or allow for extra-
Poisson variation if the model is not a good fit.

e If the dependent variable is ordinal, then ordinal regression may
be useful. However if the ordinal variable has a large number of
categories (say more than seven) then linear regression may be
suitable. Give evidence that the proportional odds model is a
reasonable one, perhaps by quoting the odds ratios associated
with each cut-point for the main independent variable. If
proportional odds is unlikely, then dichotomise the dependent
variable and use logistic regression. Do not choose the point for
dichotomy by choosing the one that gives the most significant
value for the primary independent variable!

e When the data form a time series, look for evidence that the
residuals in the model are serially correlated. If they are, then
include a term in the model to allow for serial correlation.
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6.5 Reading about the results of Poisson, ordinal or
time-series regression in the literature

e As usual, look for evidence that the model is reasonable.

e In Poisson regression, are the counts independent? If not,
should overdispersion be considered?

e If ordinal regression has been used, how has the result been
interpreted?

e A common error in time series regression is to ignore serial
correlation. This may not invalidate the analysis, but it is worth
asking whether it might. Another common feature is to only use
a first order autoregression to allow for serial correlation, but it
may be worth asking whether this is sufficient.
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Appendix 1
Exponentials and
logarithms

Logarithms

It is simple to understand raising a quantity to a power, so that
y=x2 is equivalent to y = x.x. This can be generalised to y = x" for
arbitrary n so y" =x.x... x n times.

A simple result is that

XM, x M= xntm (Al.1)

for arbitrary »n and m. Thus, for example 32 X34=36=729. It
can be shown that this holds for any values of m and n, not just
whole numbers.

We define x0 =1, because x”? =x0t7=x0 xn =1 x".

A useful extension of the concept of powers is to let n take
fractional or negative values. Thus y=x0-5 can be shown to be
equivalent to y=Vx, because x0-5.x0-5 = x0.5+0.5 = x1 = x and also
Vx. Vx =x.

Also x~ ! can be shown equivalent to 1/x, because x.x !
=xl71=x0=1,

If y =x" then the definition of a logarithm of y to the base x is
the power that x has to be raised to get y. This is written n =log,(v)
or “n equals log to the base x of y”.

Suppose y=x" and z=x". It can be shown from equation (Al.1)
that

log,(v.2) =n+m=log,(y)+log, ()

Thus when multiplying two numbers we add their logs. This was
the basis of the original use of logarithms in that they enabled a
transformation whereby arithmetic using multiplications could be
done using additions, which are much easier to do by hand. In
Appendix 2 we need an equivalent result, namely that
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log ,(y/2) =log,(y) —log,(2)

In other words, when we log transform the ratio of two numbers
we subtract the logs of the two numbers.

The two most common bases are 10, and a strange quantity
e=2.718..., where the dots indicate that the decimals go on
indefinitely. This number has the useful property that the slope of
the curve y =e¥ at any point (x, y) is just y, whereas for all other
bases the slope is proportional to y but not exactly equal to it. The
formula y = e is often written y = exp(x). The logarithms to base e
and 10 are often denoted In and log on calculators, respectively,
and the former is often called the natural logarithm. In this book all
logarithms are natural, that is to base e. We can get from one base
to the other by noting that logl0y =log.y .log; e . To find the value
of e on a calculator enter 1 and press exp. log;q(e) is a constant
equal to 0.4343. Thus log;y v = 0.4343 Xlog, y.

Try this on a calculator. Put in any positive number and press In
and then exp. You will get back to the original number because
exp(In(x)) = x.

Note it follows from the definition that for any x, greater than 0,
log (1) =0. Try this on a calculator for log(1) and In(1).

In this book exponentials and logarithms feature in a number of
places. It is much easier to model data as additive terms in a linear
predictor, and yet often terms, such as risk, behave multiplicatively,
as discussed in Chapter 3. Taking logs transforms the model from
a multiplicative one to an additive one. Logarithms are also
commonly used to transform variables which have a positively
skewed distribution, because it has been found that this often
makes their distribution closer to a Normal distribution. This, of
course, won’t work if the variable can be zero or negative.
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Appendix 2 Maximum
likelihood and
significance tests

Summary

This appendix gives a brief introduction to the use of maximum
likelihood, which was the method used to fit the models in the
earlier chapters. We describe the Wald test and the likelihood ratio test
and link the latter to the deviance. Further details are given in
Clayton and Hills.!

Binomial models and likelihood

A model is a structure for describing data and consists of two
parts. The first part describes how the explanatory variables are
combined in a linear fashion to give a linear predictor. This is then
transformed by a function known as a /Anrk function to give
predicted or fitted values of the outcome variable for an individual.
The second part of the model describes the probability distribution
of the outcome variable about the predicted value.

Perhaps the simplest model is the Binomial model. An event
happens with a probability 7. Suppose the event is the probability
of giving birth to a boy and suppose we had five expectant mothers
who subsequently gave birth to two boys and three girls. The boys
were born to mothers numbered 1 and 3. If 77 is the probability of
a boy the probability of this sequence of events occurring is
TXA—m) XX —1m)X(1—r). If the mothers had different
characteristics, say their age, we might wish to distinguish them
and write the probability of a boy for mother 7 as T, and the
probability of a girl as (1 —17,) and the probability of the sequence
as Ty X (1—1r,) X3 X (1—14) X (1 —"75). For philosophical and
semantic reasons this probability is termed the lLkelihood (in
everyday parlance “likelihood” and “probability” are synonyms) for
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this particular sequence of events and in this case is written
L(71).The likelihood is the probability of the data, given the model.

The process of maximum likelihood is to choose the values of T
which maximise the likelihood. In Chapter 3 we discussed models
for 1 which are functions of the subject characteristics. For
simplicity, here we will consider two extreme cases: the values of T
are all the same so we have no information to distinguish
individuals, or each 1T is determined by the data and we can choose
each 1T by whether the outcome is a boy or a girl. In the latter case
we can simply choose Ty =T3=1and T,=m,=T5=0.Thisis a
saturated model, so called because we saturate the model with
parameters, and the maximum number possible is to have as many
parameters as there are data points (or strictly degrees of freedom).
In this case

L(m)=1X(1—0)X1X(1—0)X(1—0)=1

If the values of 7 are all the same, then L(mw) =X (1—m)
Xa X (1—m) X (1—m) =n2 (1—m)3. In general if there were D boys
in N births then L(w) =wD(1—m)N—D. The likelihood, for any
particular values of m is a very small number, and it is more
convenient to use the natural logarithm of the likelihood instead of
the likelihood itself. In this way

log(L(m))=Dlog(m)+(N—D)log(1 —)

It is simple to show that the value of 7 that maximises the
likelihood is the same value that maximises the log-likelihood.

In this expression, the data provide N and D and the statistical
problem is to see how log(LLw) varies as we vary 1T, and to choose
the value of 7 that most closely agrees with the data. This is the
value of 1T that maximises log(LL). A graph of the log-likelihood
for the data above (two boys and three girls) is given in Figure
A2.1.

The maximum occurs at 7= 0.4, which is what one might have
guessed. The value at the maximum is given by

log(L(mrppa5)) =2l0g(0.4) +3log(1—0.4)=—3.3651

The graph, however is very flat, implying that the maximum is
not well estimated. This is because we have very little information
with only five observations.

For reasons to be discussed later, the equation for the likelihood
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Figure A2.1 Graph of log-likelihood against 7, for a Binomial model with D =2
and N =5.

is often scaled by the value of the likelihood at the maximum, to
give the likelihood ratio, LR(7r).

LR(m)=L(m)/L(T,) 0<m<l
When we take logs(as described in Appendix 1) this becomes
logLR(m)=log {(L(m)} —log{L(Tpa)}

Again the maximum occurs when 7= 0.4, but in this case the
maximum value is zero.

Poisson model

The Poisson model, discussed in Chapter 6, is useful when the
number of subjects N is large and the probability of an event, 7T is
small. Then the expected number of events A=N1T is moderate.

In this case the log likelihood is

log(LL(\))=Dlog(\) —\
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Normal model

The probability distribution for a variable Y which has a Normal
distribution with mean p and standard deviation o is given by

0.3989 -1 [y—n 2
o 2 o

This value changes with differing w and differing o. If o is known
(and thus fixed), then this likelihood is simply equal to the above
probability but now does not vary with o and is a function of w
only, which we denote L().

Suppose we know that adult male height has a Normal
distribution. We do not know the mean, n< but we do know the
standard deviation to be 15cm. Imagine one man selected at
random from this population with height 175cm. Then the log-
likelihood of this observation is

— )2
log(L() ) = 10g(0.3989) —log(15)—; _(IZL

The maximum value of logL.() occurs when w=175. This is
unsurprising, the single observation is the best estimate of the
mean.

The corresponding log-likelihood ratio is given by

—\2
LogLR(p) = — 1_ M (A2.1)
2 15

This is shown in Figure A.2.2 for different values of w.Curves
with this form are called quadraric.
For a series of observations x1, x,,..., X, we can show that

D w?
logLR(p) = — — 15

N | =

To maximise the likelihood we have to minimise the sum on the
right, because the quantity on the right is negative and small
absolute negative values are bigger than large absolute negative
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Figure A2.2 Graph of log-likelihood of a single observation from a Normal
model.

values (—1 is bigger than —2). Thus we have to choose a value to
minimise the sum of squares of the observations from . This is the
principle of least squares described in Chapter 2, and we can see it is
equivalent to maximising the likelihood.

Hypothesis testing: likelihood ratio test

Suppose we believed that the true distribution of height for the
population from which the man described above was drawn was
Normal and had a mean of . We can put this into equation
(A2.1) to calculate the observed log-likelihood ratio.

1 (A75—pg)?
logLR(py) = — — L
2 15

Before we can calculate the hypothesis test, we must first use a
most useful result for the Normal distribution. The result is that
under the Normal distribution,

—2 X (Observed log-likelihood ratio)
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is distributed as a chi-squared distribution with 1 degree of
freedom.

Suppose g was 170. Then —2Xlog-likelihood ratio is
2X(175—170)2/(2X15)=25/15=1.67. This is much less than the
5% value of a chi-squared distribution with 1 degree of freedom of
3.84 and so, with our observation of 175 we cannot reject the null
hypothesis that g =170.

Returning to our birth data, suppose our Null Hypothesis was
o= 0.5, i.e. boys and girls are equally likely. The log-likelihood is
2X10g(0.5)+3X10g(0.5)=—3.4657 and the corresponding log-
likelihood ratio is —3.4657 —(-3.3651)=—0.1006. For non-Normal
data the result that —2X(Observed log-likelihood ratio) is
distributed as a chi-squared distribution is approximately true, and
the distribution gets closer to a chi-squared distribution as the
sample size increases.

We have —2XlogLR =0.20, which is much less than the
tabulated chi-squared value of 3.84 and so we cannot reject the
null hypothesis. Here the approximation to a chi-squared
distribution is likely to be poor because of the small sample size.
Intuitively we can see that, because the curve in Figure A2.1 is far
from quadratic. However as the sample size increases it will
become closer to a quadratic curve.

The log-likelihood is a measure of goodness-of-fit of a model. The
greater the log-likelihood, the better the fit. Since the absolute
value of the log-likelihood is not itself of interest, it is often
reported as a log-likelihood ratio compared to some other model.
Many computer programs report the deviance, which is minus twice
the log-likelihood ratio of the model being fitted and a saturated
model which includes the maximum number of terms in the model
(say as many terms as there are observations). For the birth data
above, the saturated model had five parameters, the likelihood was
1 and the log-likelihood 0, and so the deviance in this case is the
same as the log-likelihood times minus two. The deviance has
degrees of freedom equal to the difference between the number of
parameters in the model and the number of parameters in the
saturated model.

The deviance is really a measure of badness of fit, not goodness
of fit; a large deviance indicates a bad fit. If one model is a subset
of another, in that the larger model contains the parameters of the
smaller, they can be compared using the differences in their
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deviances. The change in deviance is minus twice the log-likelihood
ratio for the two models because the log-likelihood for the
saturated model occurs in both deviances and cancels. The degrees
of freedom for this test are found by subtracting the degrees of
freedom for the two deviances.

Wald test

When the data are not Normally distributed, the shape of the
log-likelihood ratio is no longer quadratic. However, as can be seen
from Figure A2.1, it is often approximately so, especially for large
samples and there can be advantages in terms of simplicity to using
the best quadratic approximation rather than the true likelihood.

Consider a likelihood for a parameter 6 of a probability model
and let M be the most likely value of 6. A simple quadratic
expression is

1 w=o |

logLR(0)=—
2 S

This has a maximum value of zero when M = 0, and can be used
to approximate the true log-likelihood ratio. The parameter S
is known as the standard error of the estimate and is used to scale
the curve. Small values give sharp peaks of the quadratic curve
and large values give flatter peaks. S is chosen to give the closest
approximation to the true likelihood i the region of its most likely
value.

For the binary data given above, with D events out of N the
values of M and S are

M=D/N

A/ Ma—M)
S= N

For D=2 and N=5 we get M=0.4 and $ =0.22.

and
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Under the Null Hypothesis of 8= 0.5, we find that —2 X logLR is
2
0.4—0.5
g =0.21
0.22

This is close to the log-likelihood ratio value of 0.20 and once
again is not statistically significant. This test is commonly used
because computer programs obligingly produce estimates of
standard errors of parameters. This is equivalent to the z test
described in Swinscow? of 5/SE(b).

Score test

The score test features less often and so we will not describe it in
detail. It is based on the gradient of the log-likelihood ratio curve
at the null hypothesis. The gradient is often denoted by U and
known as the score, evaluated at the null value of the parameter 0.
Since the slope of a curve at its maximum is zero, if the null
hypothesis coincides with the most likely value, then clearly
U=0.The score test is based on the fact that under the null
hypothesis U2/V is approximately distributed as a chi-squared
distribution with 1 degree of freedom, where VVis an estimate of the
square of the standard error of the score.

Which method to choose?

For non-Normal data, the methods given above are all
approximations. The advantage of the log-likelihood ratio method is
that it gives the same P value even if the parameter is transformed (such
as by taking logarithms), and so is the generally preferred method. If
the three methods give seriously different results it means that the
quadratic approximations are not sufficiently close to the true log-
likelihood curve in the region going from the null value to the most
likely value. This is particularly true if the null value and the most likely
value are very far apart, and in this case the choice of the statistical
method is most unlikely to affect our scientific conclusions. The Wald
test can be improved by a suitable transformation. For example, in a
model which includes an odds ratio, reformulating the model for a log
odds ratio will improve the quadratic approximation, which is another
reason why the log odds ratio is a suitable model in Chapter 3.

All three methods can be generalised to test a number of
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parameters simultaneously. However, if one uses a computer
program to fit two models, one of which is a subset of the other,
then the log-likelihood or the deviance is usually given for each
model from which one can derive the log-likelihood ratio for the
two models. If the larger model contains two or more parameters
more than the smaller model, then the likelihood ratio test of
whether the enhanced model significantly improves the fit of the
data is a test of all the extra parameters simultaneously.

The parameter estimates and their standard errors are given for
each term in a model in a computer output, from which the Wald
tests can be derived for each parameter. Thus the simple Wald test
tests each parameter separately, not simultaneously with the others.
Examples are given in the relevant chapters.

Confidence intervals

The conventional approach to confidence intervals is to use the
Wald approach. Thus an approximate 95% confidence interval of a
population parameter, for which we have an estimate and a standard
error is given by an estimate plus 2XSE to estimate minus 2 XSE.
Thus for the birth data an approximate 95% confidence interval is
given by 0.6—2X0.22 to 0.6+2X0.22= 0.16 to 1.04. This
immediately shows how poor the approximation is because we
cannot have a proportion greater than 1 (for better approximations
see Altman er al).’> As in the case of the Wald test, the approximation
is improved by a suitable transformation, which is why in Chapter 3
we worked on the log odds ratio, rather than the odds ratio itself.
However it is possible to calculate confidence intervals directly from
the likelihood which do not require a transformation, and these are
occasionally given in the literature. For further details see Clayton
and Hills.!
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Appendix 3
Bootstrapping

Bootstrapping is a computer-intensive method for estimating
parameters and confidence intervals for models that requires fewer
assumptions about the distribution of the data than the parametric
methods discussed so far. It is becoming much easier to carry out
and is available on most modern computer packages.

All the models so far discussed require assumptions concerning
the sampling distribution of the estimate of interest. If the sample
size is large and we wish to estimate a confidence interval for a
mean, then the underlying population distribution is not important
because the central limit theorem will ensure that the sampling
distribution is approximately Normal. However, if the sample size
is small we can only assume a ¢ distribution if the underlying
population distribution can be assumed Normal. If this is not the
case then the interval cannot be expected to cover the population
value with the specified confidence. However, we have information
on the distribution of the population from the distribution of the
sample data. So-called “bootstrap” estimates (from the expression
“pulling oneself up by one’s bootstraps™) utilise this information,
by making repeated random samples of the same size as the
original sample from the data, with replacement using a computer.
Suitable references are Efron and Tibshirani' and Davison and
Hinckley.?

We seek to mimic in an appropriate manner the way the sample
is collected from the population in the bootstrap samples from the
observed data. The “with replacement” means that any observation
can be sampled more than once. It is important because sampling
without replacement would simply give a random permutation of
the original data, with many statistics such as the mean being
exactly the same. It turns out that “with replacement” is the best
way to do this if the observations are independent; if they are not
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then other methods, beyond the scope of this appendix, are
needed. The standard error or confidence interval is estimated
from the variability of the statistic derived from the bootstrap
samples. The point about the bootstrap is that it produces a variety
of values, whose variability reflects the standard error which would
be obtained if samples were repeatedly taken from the whole
population.

Suppose we wish to calculate a 95% confidence interval for a
mean. We take a random sample of the data, of the same size as the
original sample, and calculate the mean of the data in this random
sample. We do this repeatedly, say 999 times. We now have 999
means. If these are ordered in increasing value a bootstrap 95%
confidence interval for the mean would be from the 25th to the
975th values. This is known as the percentile method and although it
is an obvious choice, it is not the best method of bootstrapping
because it can have a bias, which one can estimate and correct for.
This leads to methods, such as the bias corrected method and the bias
corrected and accelerated (BCa) method, the latter being the preferred
option. There is also the “parametric bootstrap” when the residuals
from a parametric model are bootstrapped to give estimates of the
standard errors of the parameters, for example to estimate the
standard errors of coefficients from a multiple regression.

Using the methods above, valid bootstrap P values and
confidence intervals can be constructed for all common estimators,
such as a proportion, a median, or a difference in means provided
the data are independent and come from the same population.

The number of samples required depends on the type of
estimator: 50-200 are adequate for a confidence interval for a
mean, but 1000 are required for a confidence interval of, say, the
2.5% or 97.5% centiles.
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Example

Consider the B-endorphin concentrations from 11 runners
described by Dale et al.’ and also described in Altman et al
chapter 13.* To calculate a 95% confidence interval for the
median using a bootstrap we proceed as follows.

Beta-endorphin concentrations in pmol/l Median
Original sample: 66, 71.2, 83, 83.6, 101, 107.6, 107.6
122, 143, 160, 177, 414
Bootstrap 1: 143, 107.6, 414, 160, 101, 177, 160
107.6, 160, 160, 160, 101

Bootstrap 2: 122, 414, 101, 83.6, 143, 107.6, 122
101, 143, 143, 143, 107.6

Bootstrap 3: 122, 414, 160, 177, 101, 107.6, 122

83.6, 177,177, 107.6, 107.6

etc. 999 times

The medians are then ordered by increasing value. The 25th
and the 975th values out of 1000 give the percentile estimates
of the 95% confidence interval. Using 999 replications we find
that the BCa method gives a 95% bootstrap confidence interval
71.2 to 143.0 pmol/l. This contrasts with 71.2 to 177 pmoll
using standard methods given in chapter 5 of Altman er al.*
This suggests that the lower limit for the standard method is
probably about right but the upper limit may be too high.
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When the standard and the bootstrap methods agree, we can be
more confident about the inference we are making and this is an
important use of the bootstrap. When they disagree more caution
is needed, but the relatively simple assumptions required by the
bootstrap method for validity mean that in general it is to be
preferred.

It may seem that the best estimator of the median for the
population is the median of the bootstrap estimates, but this turns
out not to be the case, and the sample median should be quoted as
the best estimate of the population median.

The main advantage of the bootstrap is that it frees the
investigator from making inappropriate assumptions about the
distribution of an estimator in order to make inferences. A
particular advantage is that it is available when the formula cannot
be derived and it may provide better estimates when the formulae
are only approximate.

The so-called “naive” bootstrap makes the assumption that the
sample is an unbiased simple random sample from the study
population. More complex sampling schemes, such as stratified
random sampling may not be reflected by this, and more complex
bootstrapping schemes may be required. Naive bootstrapping may
not be successful in very small samples (say less than nine
observations), which are less likely to be representative of the study
population. “In very small samples even a badly fitting parametric
analysis may outperform a nonparametric analysis, by providing
less variable results at the expense of a tolerable amount of bias”.!

Perhaps one of the most common uses for bootstrapping in
medical research has been for calculating confidence intervals for
derived statistics such as cost-effectiveness ratios, when the
theoretical distribution is mathematically difficult although care is
needed here since the denominators in some bootstrap samples can
get close to zero.

The bootstrap in action

In health economics, Lambert et al’ calculated the mean
resource costs per patient for day patients with active rheumatoid
arthritis as £1789 with a bootstrap 95% confidence interval of
£1539 to £2027 (1000 replications).
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They used a bootstrap method because the resource costs have a
very skewed distribution. However the authors did not state which
bootstrap method they used.

Reporting the bootstrap in the literature

State the method used, such as percentile or bias corrected.

State the number of replications.
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Appendix 4
Bayesian methods

Consider two clinical trials of equal size for the treatment of
headache. One is an analgesic against placebo, and the other is a
homoeopathic treatment against placebo. Both give identical P
values (<0.05). Which would you believe? The traditional
frequentist approach described in the book does not enable one
formally to incorporate beliefs about the efficacy of treatment that
one might have held before the experiment, but this can be done
using Bayesian methods.

Bayes’ theorem appeared in a posthumous publication in 1763
by Thomas Bayes, a non-conformist minister from Tunbridge
Wells. It gives a simple and uncontroversial result in probability
theory, relating probabilities of events before an experiment (a
priori) to probabilities of events after an experiment (a posteriory).
The link between the prior and the posterior is the lkelihood,
described in Appendix 2. Specific uses of the theorem have been
the subject of considerable controversy for many years and it is only
in recent years a more balanced and pragmatic perspective has
emerged.?

A familiar situation to which Bayes’ theorem can be applied is
diagnostic testing; a doctor’s prior belief about whether a patient
has a particular disease (based on knowledge of the prevalence of
the disease in the community and the patient’s symptoms) will be
modified by the result of the test.” Bayesian methods enable one to
make statements such as “the probability that the new treatment is
better than the old is 0.95”. Under certain circumstances, 95%
confidence intervals calculated in the conventional (frequentist)
manner can be interpreted as “a range of values within which one
is 95% certain that the true value of a parameter really lies”.* Thus
it can be argued that a Bayesian approach allows results to be
presented in a form that is most suitable for decisions. Bayesian
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methods interpret data from a study in the light of external
evidence and judgement, and the form in which conclusions are
drawn contributes naturally to decision-making.’ Prior plausibility
of hypotheses is taken into account, just as when interpreting the
results of a diagnostic test. Scepticism about large treatment effects
can be formally expressed and used in cautious interpretation of
results that cause surprise.

One of the main difficulties with Bayesian methods is the choice
of the prior distribution. Different analysts may choose different
priors, and so the same data set analysed by different investigators
could lead to different conclusions. A commonly chosen prior is an
unminformative prior, which assigns equal probability to all values
over the possible range and leads to analyses that are possibly less
subjective than analyses that use priors based on, say, clinical
judgement. There are philosophical differences between Bayesians
and frequentists, such as the nature of probability, but these should
not interfere with a sensible interpretation of data.

A Bayesian perspective leads to an approach to clinical trials that
is claimed to be more flexible and ethical than traditional methods.®

Bayesian methods do not supplant traditional methods, but
complement them. In this book the area of greatest overlap would
be in random effects models, described in Chapter 5. Further
details are given by Berry and Stangl.”

Reporting Bayesian methods in the literature®

e Report the pre-experiment probabilities and specify how they
were determined. In most practical situations, the particular
form of the prior information has little influence on the final
outcome because it is overwhelmed by the weight of
experimental evidence.

e Report the post-trial probabilities and their intervals. Often the
mode of the posterior distribution is reported, with the 2.5 and
97.5 centiles (the 95% prediction interval). It can be helpful to
plot the posterior distribution.
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Answers to exercises

Chapter 1

1.

Types of data.

(1) Categorical, (i) Continuous (non-Normal), (iii) Categorical,
(iv) Ordinal, (v) Continuous, (vi) Continuous, (vii) Binary,
(viii) Discrete quantitative.

. Casual/confounder/outcome variables.

(1) True, (i1) False (there are two types of diet and they are
causal), (iii) True, (iv) True, (v) False: it is a binary variable.

Basic statistics.

(1) False. Despite being non-significant, the CI value is large. (ii)
True. (iii) True. (iv) False. There is a 45% chance of getting the
observed difference or one more extreme if CBT and drug
treatment were the same. (v) False. A new trial is likely to have
a CI that overlaps the old, but the mean difference for a new
trial is not the population mean.

Chapter 2

1.

(i)False. It is the residuals having allowed for median share of
income, median income and country that is assumed normal.
(i) True (330=282+53—5). (iii)False. It is the relationship
between median share that is assumed different. (iv)True.
(v)True.

(i)False. X; and X, can be discrete. (ii)False. It depends on X
and X,. (ili)False. Changing values of X will alter relationship
with X, and so affect b,. (iv)True. (v)True.
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Chapter 3

1. (1) False (the confidence interval includes 1). (i) True. (iii)
False. The study is unmatched. (iv) True. (v) True.

2. (1) True. (@i1) True. (iii)) True. (iv) False (see discussion of
conditional logistic regression). (v) False. If the matching factors
are of no prognostic value, conditional and unconditional
analyses may agree quite closely.

Chapter 4

A =3 (three parameters in model). B=1.10 (—2X(188.55165—
188.04719). C=-0.487 (=—0.1512/0.3102). Note: It is not the
ratio of the hazard ratio to its standard error. 0.626. D=—0.7592
(=—0.1512—-1.96X%0.3102) E=0.4568 (=—0.1512+1.96X0.3102).
F=0.4680 (= exp(—0.7592)). G=1.5790 (=exp(0.4568)).

1. Likelihood ratio=10.71 (=-—2X(188.0472—182.6898)).
DF=4 (four dummy variables).

2. 0.763 (95% CI —0.272 to 2.136).

3. (0.9978)10=0.9782.
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