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FOREWORD 

Epidemiological and biostatistical studies o n  cancer and other chronic diseases have 
expanded markedly since the 1950s. Moreover, as recognition of the role of environ- 
mental factors in human cancer has increased, there has been a need to develop more 
sophisticated approaches to identify potential etiological factors in populations living 
in a wide variety of environments and under very different socioeconomic conditions. 

Developnzents in many countries have required that appropriate governmental agen- 
cies establish regulations to  control environmental cancer hazards. Such regulations 
may, however, have considerable social and economic impacts, which require that they 
be based on careful risk-benefit analyses. Epidemiological studies provide the only 
definitive information as to  the degree of risk in  man. Since malignant diseases are 
clearly of multifactorial origin, their investigation in man has become increasingly 
complex, and epidemiological and biostatistical studies on cancer require a correspond- 
ingly complex and rigorous methodology. Studies such as these are essential to the 
development of programmes of  cancer control and prevention. 

Dr N.E. Breslow and Dr N.E. Day and their colleagues are to be commended on. 
this volume, which should prove of value not only to established workers but also to all 
who wish to  become acquainted with the general principles of case-control studies, 
which are the basis of modern cancer epidemiology. 

John Higginson, M.D. 
Director, 
International Agency for Research 
on Cancer, Lyon, France 



PREFACE 

Twenty years have elapsed since Mantel and Haenszel published their seminal article 
on statistical aspects of the analysis of data from case-control studies. Their methodology 
has been used by thousands of epidemiologists and statisticians investigating the causes 
and cures of cancer and other diseases. Their article is one of the most frequently cited 
in the epidemiological literature, and there is no indication that its influence is on the 
wane; on the contrary, with the increasing recognition of the value of the case-control 
approach in etiological research, the related statistical concepts seem certain to gain 
even wider acceptance and use. 

The last two decades have also witnessed important developments in biostatistical 
theory. Especially notable are the log-linear and logistic models created to analyse 
categorical data, and the related proportional hazards model for survival time studies. 
These developments complement the work done in the 1920s and 1930s which provided 
a unified approach to continuous data via the analysis of variance and multiple regres- 
sion. Much of this progress in methodology has been stimulated by advances in computer 
technology and availability. Since it is now possible to perform multivariate analyses of 
large data files with relative ease, the investigator is encouraged to conduct a range of 
exploratory analyses which would have been unthinkable a few years ago. 

The purpose of this monograph is to place these new tools in the hands of the 
practising statistician or epidemiologist, illustrating them by application to bona fide 
sets of epidemiological data. Although our examples are drawn almost exclusively from 
the field of cancer epidemiology, in fact the discussion applies to all types of case- 
control studies, as well as to other investigations involving matched, stratified or un- 
structured sets of data with binary responses. The theme is, above all, one of unity. 
While much of the recent literature has focused on the contrast between the cohort 
and case-control approaches to epidemiological research, we emphasize that they in 
fact share a common conceptual foundation, so that, in consequence, the statistical 
methodology appropriate to one can be carried over to the other with little or no change. 
To be sure, the case-control differs from the cohort study as regards size, duration and, 
most importantly, the problems of bias arising from case selection and from the ascertain- 
ment of exposure histories, whether by interview or other retrospective means. Never- 
theless, the statistical models used to characterize incidence rates and their association 
with exposure to various environmental or genetic risk factors are identical for the two 
approaches, and this common feature largely extends to methods of analysis. 

Another feature of our pursuit of unity is to bring together various methods for 
analysis of case-control data which have appeared in widely scattered locations in the 
epidemiological and statistical literature. Since publication of the Mantel-Haenszel 
procedures, numerous specializations and extensions have been worked out for particu- 
lar types of data collected from various study designs, including: 1-1 matching with 
binary and polytomous risk factors; 1 :M matching with binary risk factors; regression 
models for series of 2 x 2 tables; and multivariate analyses based on the logistic func- 
tion. All these proposed methods of analysis, including the original approach based on 
stratification of the data, are described here in a common conceptual framework. 

A second major theme of this monograph is flexibility. Many investigators, once they 
have collected their data according to some specified design, have felt trapped by the 



intransigences of the analytical methods apparently available to them. This has been a 
particular problem for matched studies. Previously published methods for analysis of 
1 :M matched data, for example, make little mention of what to do if fewer controls are 
found for some cases, or how to account for confounding variables not incorporated in 
the design. The tendency has therefore been to ignore the matching in some forms of 
analysis, which may result in considerable bias, or to restrict the analysis to a subset of 
the matched pairs or sets, thus throwing away valuable data. Such practices are no 
longer necessary nor defensible now that flexible analytical tools are available, in particu- 
lar those based on the conditional logistic regression model for matched data. 

These same investigators may have felt compelled to use a matched design in the 
first place in order simultaneously to control the effects of several potential confound- 
ing variables. We show here that such effects can often be handled adequately by in- 
corporation of a few confounding variables in an appropriate regression analysis. Thus, 
there is now a greater range of possibilities for the control of confounding variables, 
either by design or analysis. 

From our experiences of working with cancer epidemiologists in many different 
countries, on projects wholly or partly supported by the International Agency for 
Research on Cancer, we recognize that not all researchers will have access to the latest 
computer technology. Even if such equipment is available at his home institution, an 
investigator may well find himself out in the field wanting to conduct preliminary anal- 
yses of his data using just a pocket calculator; hence we have attempted to distinguish 
between analyses which require a computer and those which can be performed by hand. 
Indeed, discussion of the methods which require computer support is found mostly in 
the last two chapters. 

One important aspect of the case-control study, which receives only minimal attention 
here, is its design. While we emphasize repeatedly the necessity of accounting for the 
particular design in the analysis, little formal discussion is provided on how to choose 
between various designs. There are at least two reasons for this restriction in scope. 
First, the statistical methodology for estimation of the relative risk now seems to have 
reached a fairly stable period in its development. Further significant advances in this 
field are likely to take place from a perspective which is quite different from that taken 
so far, for instance using cluster analysis techniques. Secondly, there are major issues in 
the design of such studies which have yet to be resolved completely; these include the 
choice of appropriate cases and controls, the extent to which individual matching should 
be used, and the selection of variables to be measured. While an understanding of the 
relevant statistical concepts is necessary for such design planning, it is not sufficient. 
Good knowledge of the particular subject matter is also required in order to answer 
such design questions as: What factors are, liable to be confounders? How important are 
differences in recall likely to be between cases and controls? Will the exposure in- 
fluence the probability of diagnosis of disease? Are other diseases liable to be related to 
the same exposure? 

We are indebted to Professor Cole for providing an introductory chapter which reviews 
the role of the case-control study in cancer epidemiology and briefly discusses some 
of these issues. 

N. E. Breslow and N. E. Day 
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LISTS OF SYMBOLS 

To aid the less mathematically inclined reader we provide detailed descriptions of 
the various characters and symbols used in the text and in formulae. These are listed 
in order of appearance at the end of each chapter. You will notice that some letters or  
symbols have two different meanings, but these usually occur in different chapters; 
it will be clear from the context which meaning is intended. 

The following mathematical symbols occur in several chapters: 
x denotes multiplication: 3 x 4 = 12 
2 summation symbol: for a singly subscripted array of I numbers {xi), 

I 
2 or Zixi = xl + . . . + XI. For a doubly subscripted array {xij), Zixij denotes sum- 
i =  1 

mation over the i subscript xlj + . . . + xlj, while Z% denotes double summation 
over both indices. 

1 

I7 product symbol. For a singly subscripted array of I numbers {xi), Il xi or nixi  = 
I =  1 

X1 x Xz X ... X XI. 

log the natural logarithm (to the base e) of the quantity which follows, which may or 
may not be enclosed in parentheses. 

exp the exponential transform (inverse of log) of the quantity which follows, which 
is usually enclosed in parentheses. 
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CHAPTER I 

Only two decades ago the case-control study was an oddity; it was rarely performed, 
poorly understood and, perhaps for these reasons, not highly regarded. But this type of 
study design has increased steadily in use and in stature and today it is an important 
and perhaps the dominant form of analytical research in epidemiology, especially in 
cancer epidemiology. Nonetheless, as a form of research the case-control study continues 
to offer a paradox: compared with other analytical designs it is a rapid and efficient 
way to evaluate a hypothesis. On the other hand, despite its practicality, the case- 
control study is not simplistic and it cannot be done well without considerable planning. 
Indeed, a case-control study is perhaps the most challenging to design and conduct in 
such a way that bias is avoided. Our limited understanding of this difficult study design 
and its many subtleties should serve as a warning - these studies must be designed and 
analysed carefully with a thorough appreciation of their difficulties. This warning 
should also be heeded by the many critics of the case-control design. General criticisms 
of the design itself too often reflect a lack of appreciation of the same complexities 
which make these studies difficult to perform properly. 

The two major areas where a case-control study presents difficulties are in the selec- 
tion of a control group, and in dealing with confounding and interaction as part of the 
analysis. This monograph deals mainly with the analysis of case-control studies and 
with related quantitative issues. This introductory chapter has different objectives: 
(1) to give a perspective on the place of the case-control study in cancer epidemiology; 
(2) to describe the major strengths and limitations of the approach; (3) to describe 
some aspects of the planning and conduct of a case-control study; and (4) to discuss 
matching, a major issue in designating the control group. 

1.1 The case-control study in cancer epidemiology 

Definition 

A case-control study (case-referent study, case-compeer study or retrospective 
study) is an investigation into the extent to which persons selected because they have 

' Prepared by Philip Cole, M.D., Dr. P.H., Division of Epidemiology. Department of Public Health and 
the Comprehensive Cancer Center of the University of Alabama in Birmingham, USA. Supported by a con- 
tract (N01-CO-55195) from the International Cancer Research Data Bank, National Cancer Institute, USA, 
to the International Agency for Research on Cancer, Lyon, France. 
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a specific disease (the cases) and comparable persons who do not have the disease 
(the controls) have been exposed to the disease's possible risk factors in order to 
evaluate the hypothesis that one or more of these is a cause of the disease. This defini- 
tion requires considerable expansion to provide a picture of all the major aspects of 
such studies and the common variations;aome of the more important deserve mention. 

First, while case-control studies usually include only one case group and one control 
group, there are three common departures from this situation. For efficiency an in- 
vestigator may decide to study simultaneously, and in the same way, two or  more di- 
seases whose risk factors are thought to be similar. For example, we recently simul- 
taneously studied cancer of the endometrium (Elwood et al., 1977) and benign breast 
disease (Cole, Elwood & Kaplan, 1978). In addition to the operational efficiencies of 
such "multi-disease" studies, the control groups may be able to be combined to give 
each case-control comparison increased power. (Of course, a multi-disease study could 
be considered as a series of case-control studies, each consisting of two groups.) 

There are ' two more ways in which the use of more than one case series could be 
useful. In one, cases of a second cancer known to be caused by one of the factors under 
study could be included. If the factor is also found to be related to the second cancer, 
that case group would have served as a "positive control", revealing the sensitivity of 
the study. In another, several case series are included, but only one cancer is found to 
be related to the factor under study, and thus the other cancers would have a "negative 
control" function; this would provide some evidence that the association with the 
cancer of primary interest was not merely reflecting a built-in aspect of the study design. 

The second way in which the number of groups is increased beyond two is rarely 
used in the study of cancer; but for some diseases, such as arteriosclerosis, hypertension 
and some mental illness, it may be useful to deal with a group of "para-cases" i.e., 
subjects who are intermediate between the clearly ill and the clearly healthy. The 
decision to designate such an intermediate group might, in fact, be made when the 
study is analysed. 

The third, and most common, way in which case-control studies are expanded is by 
the use of more than one control group. Indeed, it has been suggested that a case- 
control study requires at least two control groups to minimize the possibility of accepting 
a false result (Ibrahim & Spitzer, 1979); the- rationale is that if the same result is not 
achieved in the two case-control comparisons, both the apparent results are suspect. 
Inclusion of a second control group may, however, increase the cost and duration of a 
study by about 50% and this may not be worthwhile. Furthermore, it may be difficult to 
judge whether or not the results of the two comparisons are mutually supportive. 

Usually, it seems judicious to use a single control group - the one which seems best 
suited to the needs of the particular study. But, there are two common circumstances in 
which a second control group may be indicated: (1) in the study of a cancer about 
which so little is known that no strong preference for one type of control group can be 
defended; (2) in the situation where one desirable control group has a specific deficiency 
which can be overcome by another desirable group. For example, in a case-control 
study to evaluate the hypothesis that tonsillectomy causes Hodgkin's disease, Guten- 
sohn et  al. (1975) wanted to control potential confounding by socioeconomic class in 
the study design. This presented a problem since it was not clear whether it was neces- 
sary to control for socioeconomic class in childhood or in adulthood o r  in both. They 
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therefore used two control groups - the siblings and the spouses of the cases. It is 
useful to remember that if the two different case-control comparisons give different 
results the study is not necessarily uninterpretable. The explanation of the discrepancy, 
if one can be deduced, may be very informative. For example, in the study just men- 
tioned, the relative risk of Hodgkin's disease among tonsillectomized persons was 1.4 
using the sibling controls, but 3.1 using the spouses. This suggests that some factor(s), 
which is a correlate of the probability of having a tonsillectomy, which differs between 
spouses and which is over-controlled for by the use of sibling controls, is a cause of 
Hodgkin's disease. Thus, the hypothesis emerges, though not exclusively from this 
finding, that an aspect of lifestyle during childhood - perhaps the pattern of exposure 
to infectious agents - is a cause of Hodgkin's disease (Gutensohn & Cole, 1977). 

The modes of analysis presented in this monograph relate exclusively to the comparison 
of a single group of cases and a single group of controls; simultaneous multi-group 
comparisons are not addressed. This, however, does not prevent use of the techniques 
presented for the analysis of a study with, say, two control groups. Each case group- 
control group comparison can be analysed using these techniques and the results "pooled" 
in a subjective way at the interpretation stage. Also, if the decision is made to pool the 
data from the control groups, one control group has, in effect, been created and the 
techniques are again appropriate. 

A second aspect of case-control studies, which expands the definition offered, is that 
the exposures of interest are not limited to environmental factors; the genotype and 
endogenous factors may be investigated suitably with the case-control design. Similarly, 
a case-control study may relate to factors other than possible etiological agents, includ- 
ing possibly protective factors. Studies of the relationship of oral contraceptives to 
benign breast diseases exemplify this (Vessey, Doll & Sutton, 1971 ; Kelsey, Lindfors & 
White, 1974). Indeed, it may prove possible to extend the case-control design far afield 
from etiological investigations to such subjects as the evaluation of a health service. 
For example, Clarke and Anderson (1979) recently attempted to evaluate the efficacy 
of the Papanicolou smear by the case-control technique. 

Finally, it is worth mentioning that although many techniques of survey research 
(e.g., questionnaire construction, subject selection) are used in case-control and other 
epidemiological studies, these studies are not examples of survey research. No etiological 
investigation, whether epidemiological or experimental, need describe a population; 
and, in a case-control study, neither the cases nor the controls need be representative 
of any population as conventionally designated. It is useful to consider, however, that 
even a case-control study which is not population-based does derive from a hypothetical 
population, being those individuals who, if they were to develop the cancer under study, 
would be included as cases but are otherwise potential controls. It is important that the 
vast majority, and preferably all, of the cases genuinely have the specified disease and 
that the controls are comparable to them; comparability implies the absence of bias, 
especially selection bias and recall bias. 

While the case-control design can be wdified in many ways, discussion is facilitated 
if it is limited to an etiological investigation employing only two groups of subjects, and 
this monograph is so restricted. 
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History 

In 1926 Lane-Claypon reported a case-control study of the role of reproductive ex- 
perience in the etiology of breast cancer (Lane-Claypon, 1926). This appears to be 
the first case-control study of cancer (and possibly of any disease) which meets the 
definition offered above; in fact the study is remarkably similar to a modern investiga- 
tion. Lane-Claypon does not describe how or why she came to adopt this approach. 
Thereafter, until about 1950, there were no further case-control studies - at least of a 
cancer - similar in quality to that of Lane-Claypon. The design came to be used, 
however, for the investigation of outbreaks of acute diseases. For example, a comparison 
would be made between individuals with a foodborne disease and well persons with 
respect to specific foods eaten at a common meal. 

In 1950 two case-control studies which linked cigarette smoking with lung cancer 
were published (Levin, Goldstein & Gerhardt, 1950; Wynder & Graham, 1950); and in 
ensuing years there were numerous similar studies of many cancers. Of these the smok- 
ing and lung cancer investigation by Doll and Hill warrants mention as the prototype 
case-control study (Doll & Hill, 1952). The 1950s also brought the first studies of case- 
control methodology. Especially important was Cornfield's demonstration that the 
exposure frequencies of cases and controls are readily convertible into a parameter of 
greater interest to most public health workers, namely the ratio of the frequency of 
disease among exposed individuals relative to that among the non-exposed (Cornfield, 
1951). This parameter has several different names and somewhat different interpreta- 
tions depending on the particular type of cases used in a case-control study; however, it is 
now widely referred to as the relative risk and is so described in this monograph. An- 
other major paper of the 1950s was the synthesis of Mantel and Haenszel, which clarified 
the objectives of case-control studies, systematized the issues requiring atte~ltion in 
their performance and described two widely-used analytical techniques,a summary 
chi-square statistic and a pooled estimator of the relative risk (Mantel & Haenszel, 1959). 
It is encouraging that in 1977 an enumeration of the citation of papers published in 
the Journal of the National Cancer Institute showed the Mantel-Haenszel paper in 
sixth place and increasing in use (Bailar & Anthony, 1977). 

Current perceptions of the epidemiological aspects of case-control studies are present- 
ed in a recent paper by Miettinen (1976), in the related correspondence (Halperin, 
1977; Miettinen, 1977) and in the proceedings of a symposium on the topic (Ibrahim, 
1979). This monograph represents a synthesis of recent progress regarding statistical 
aspects. 

Present significance 

From the mid-1950s to the mid-1970s the number of case-control studies (not 
necessarily cancer-related) published in two general and two epidemiology-related 
medical. journals increased four- to sevenfold. In the mid-1970s, they comprised 7 %  of 
all papers published (Cole, 1979). More specifically pertinent to cancer, the 1979 edition 
of the Directory of On-going Research in Cancer Epidemiology (Muir & Wagner, 1979) 
includes 1 092 research projects compared with 622 in the 1976 edition (Muir & Wagner, 
1976). Of the 1 092 current projects 320 (29%) were classified as case-control studies, 
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while only 143 (13%) were classified as follow-up (cohort) studies. These figures make 
an impressive statement about the present and possible future role of the case-control 
study in cancer research. More persuasive, however, would be a favourable assessment 
of the results of case-control studies of cancer. While this has to be subjective and per- 
haps reflects only an individual point of view, it is contended that, with the exception 
of our knowledge of carcinogenic occupational exposures (attributable mainly to the 
perspicacity of clinicians and the results of non-concurrent follow-up studies), most of 
our epidemiological knowledge of cancer etiology was established or originated from 
case-control research. In the past few years alone, the case-control study has brought 
to light or improved our understanding of such associations as late first birth and breast 
cancer (MacMahon et al., 1970); diethylstilboestrol and vaginal cancer in young women 
(Herbst, Ulfelder & Poskanzer, 1971); exogenous oestrogens and cancer of the endo- 
metrium (Ziel & Finkle, 1975; Smith et al., 1975); alcohol and tobacco consumption and 
cancer of the oesophagus (Tuyns, Pequignot & Jensen, 1977); the hepatitis B virus carrier 
state and cancer of the liver (Prince et al., 1975; Trichopoulos et al., 1978); and the 
role of dietary factors in cancers of the stomach and large bowel (Haenszel et al., 1972, 
1973, 1976; Modan et al., 1974, 1975). 

Apart from their frequency and the importance of their results, there is a more direct 
justification for placing a high value on the role of the case-control study in cancer 
research: it will be indispensable for the foreseeable future. What could replace it? 
Experimental research can provide persuasive evidence of the carcinogenicity of some 
kinds of agents for animals, but a generalization is required before such evidence can 
be applied to man. For some agents, for example, 2-acetylaminofluorene, a potent blad- 
der carcinogen for several animal species, the generalization is readily made by nearly 
everyone; for others, for example, saccharin, an animal carcinogen under special cir- 
cumstances, the relevance to man is not clear. Furthermore, the experimental approach 
may prove to be nonpersuasive or even inapplicable to the study of the carcinogenicity 
of some aspects of human lifestyles. The concurrent follow-up (prospective cohort) 
study is too expensive and time-consuming to be done often or as an exploratory 
venture. The non-concurrent follow-up (retrospective cohort) study requires the good 
fortune of locating old information on exposure which is relevant to the question at 
hand. Furthermore, follow-up studies usually cannot address interaction and confound- 
ing because the necessary information does not exist or because too few subjects develop 
the cancer of interest. 

It is not by chance that the case-control study developed rapidly in the 1950s and is 
so popular today. Rather, the case-control study is contemporaneous with, and results 
from, the emergence of the chronic diseases as major public health problems requiring 
etiological investigation. The case-control study is uniquely well-suited to the study of 
cancer and other diseases of long induction period, for it permits us to look back through 
time from effects to causes. This is the reverse of the observational sequence of ex- 
perimental research and of follow-up studies whether concurrent or non-concurrent. 
Nonetheless, the case-control study needs no apology since it is not backward, unnatural 
or inherently flawed. Indeed, recent applications of case-control selection procedures 
and analytical methods to follow-up studies show that the same results are achieved as 
from the analysis of the whole cohort but that costs are reduced and efficiency improved 
(Liddell, McDonald & Thomas, 1977; Breslow & Patton, 1979). Furthermore, in every- 
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day human affairs cause-effect relationships are often viewed in reverse temporal se- 
quence, but there is no difficulty in recognizing them. Everyday affairs, however, usually 
have causal pathways that are short, simple and strong. When a causal pathway spans 
decades our ordinary perceptions may not suffice, and this is particularly true if the 
pathway is rather faint because the cause-effect relationship is weak, which it often is for 
cancers. Thus, we had to develop a more refined method of observation to look back 
through time; that refined and still evolving method is the case-control study. 

None of the foregoing support of the case-control study deprecates other forms of 
research, experimental or non-experimental. Nor is it contended that the case-control 
study is flawless; poor case-control studies have been and will continue to be done, and 
even a well-designed and conducted case-control study may produce an erroneous 
result. Considering the frequency with which case-control studies are done, and the 
ease with which such studies can be launched for exploratory purposes, it is to be ex- 
pected that some contradictory results will appear. In this respect, the case-control 
study is no different from other forms of research, including rigorous experimentation. 
Thus it seems inappropriate to use a smattering of conflicting results from case-control 
studies to justify the position that "Certain scientific problems of case-control studies 
are inherent in (their) architecture.. ." (Horwitz & Feinstein, 1979), especially when 
the "problems" are not described. On  the other hand, most of us recognize that the 
case-control design is young and underdeveloped and that it presents many problems 
and challenges (Feinstein, 1979). Most would also agree with the participants in the 
Bermuda Case-Control Symposium that research into the case-control method per se 
should be encouraged and that a set of standards for such studies should be developed 
(Ibrahim, 1979 [Discussion]). These constructive suggestions reflect the realization 
that the case-control study is different from, and more complex than, most experimental 
research designs and that some criteria for a good experiment are not only irrelevant 
to it but would be counter-productive. Criticisms of the case-control design (Sommers, 
1978) which appear to reflect a judgement based on criteria for experiments should not 
be accorded. 

1.2 Objectives 

The principal objective of an etiological case-control study is to provide a valid, and 
reasonably precise, estimate of the strength of at least one hypothesized cause-effect 
relationship. In practice, this objective is usually supplemented by several others. The 
more common of these are the evaluation of several hypotheses and the description of 
the circumstances under which the strength of a cause-effect relationship varies, that is, 
of biological interaction. These objectives are identical to those of follow-up studies 
and even of experimental investigations of etiology. 

The identity of objectives of case-control studies and of, say, experiments emphasizes 
two important things. The first is that generalizability of results is not a principal ob- 
jective, while validity is. This is an important distinction to bear in mind since the two 
objectives validity and generalizability can be in competition. To illustrate this, the 
validity objective suggests that a case-control study should be based on a rather nar- 
rowly-defined case series and on controls highly comparable with them. For example, 
rather than including all women with breast cancer a study could be restricted to pre- 
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menopausal cases (and controls). Subject restriction of this type mimics the experi- 
mental situation in which homogenous animals are used in an effort to improve ef- 
ficiency and to reduce the prospect that confounding could explain the results. 

On the other hand, the wish to achieve the secondary objective of generalizability 
would result in an effort to identify all cases of a disease occurring in a designated 
population and to use a random (or stratified random) sample of that population as 
controls. Two considerations should be kept in mind before generalizability is sought. 
First, if the subjects are highly heterogeneous, the results for any subgroup are likely 
to be imprecise because of random variation. This imprecision leads to a lack of con- 
fidence in the validity of the results which, in turn, precludes generalization. Second, 
the willingness to generalize is ultimately subjective and dependent on knowledge of 
the subject matter, particularly of whether susceptibility to the cause is likely to differ 
between the group studied and the group to which one would like to generalize. Fur- 
thermore, few of us are willing to generalize the results of etiological research until 
there have been similar findings from at least two studies done in different demographic 
settings. These considerations suggest that validity should not be compromised in an 
effort to achieve generalizability; generalizability will follow from a valid result and 
especially from a series of valid results. 

The second thing which follows from the similarity of objectives of case-control 
studies and experiments is the desirability of expressing results in terms which have a 
biological meaning and interpretation. In practice this means providing a measure of the 
difference, if any, in the frequency of disease between exposed and non-exposed per- 
sons, including, if possible, a description of the dose-response relationship. The measure 
to be provided is the relative risk and, if possible, the (absolute) difference in incidence 
rates or prevalences between exposed and non-exposed individuals. It is insufficient to 
provide only the exposure frequencies of the cases and controls with the related p-value 
or to provide only the coefficients and p-values derived from a multivariate model. 

1.3 Strengths 

The major strength of epidemiology compared with experimental research is that it 
applies directly to human beings. In an epidemiological study there is no species barrier 
to overcome in attempting to infer how applicable the results are to man. The major 
strength of the case-control design compared with other types of epidemiological 
research is its "informativeness". A case-control study can simultaneously evaluate 
many causal hypotheses whether they have been previously evaluated or are new. These 
studies also permit the evaluation of interaction - the extent and manner in which two 
(or more) causes of the disease modify the strength of one another. This design also 
permits the evaluation and control of confounding, that is, of an association resulting 
because the factor under study is associated with a known or suspected cause of the 
cancer. The reason for the informativeness is the large number of ill persons who are 
observed in a case-control study. In a follow-up study usually only a few subjects 
develop any one cancer. The others contribute relatively little information. 

There is another way in which a case-control study is highly informative. If a popula- 
tion-based series of incident cases has been assembled, it is possible to describe the 
picture of the disease in that population. That is, one can describe incidence rates ac- 
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cording to age, sex and various risk factors at a point in (in fact during a brief period of) 
time. This cannot be achieved in a follow-up study, even if a general population comprises 
the study group (which is uncommon), unless new sub-cohorts are periodically added 
to the persons under observation. The reason is that a follow-up study group gives a 
broad picture of a cancer only at the start of the study. Thereafter, the group evolves 
and certain subgroups, e.g., the young, "disappear"; another subgroup literally disap- 
pears from the study - those lost to follow-up. On the other hand, the population-based 
case-control study provides a "window" on the totality of a cancer. One example of 
such a study relates to cancer of the bladder (Cole, 1973). 

A second advantage of the case-control design is its efficiency, which is particularly 
impressive in view of its high informativeness. Such studies may be done in a few weeks 
if pre-existing data are used, but more often they take a year or  two especially if the 
subjects are interviewed. Furthermore, the cost of these studies has tended to be low 
because only pre-existing or anamnestic data were gathered on relatively few subjects; 
case-control studies usually include several hundred subjects compared with the many 
thousands in follow-up studies. However, this low cost is becoming less characteristic of 
case-control studies of cancer because the kind of data required is changing. Many 
studies now require that interviews be supplemented with complex biochemical or other 
types of analysis of biological specimens. Despite the increased cost, this change is 
welcome for it is due to improvement in our understanding of the causes of cancer. On 
the other hand, the use of biological specimens in case-control studies may sometimes 
contribute nothing, or even be inappropriate, because the changes found may reflect 
some pathophysiological effect of the cancer rather than a cause. The advantages, then, 
of speed and low cost, while a general attribute of case-control studies, are not charac- 
teristic of all of them. Moreover, speed and low cost are not unique to the case-control 
study, and indeed the non-concurrent follow-up study is usually superior in these aspects. 

A third advantage of the case-control study is its applicability to rare as well as com- 
mon diseases. In this context, all but the three most common cancers (those of the 
breast, lung and colon in the western world) are "rare". In addition, the more rare 
the cancer, the greater is the relative advantage of this design. A disease which is rare 
in general, however, may not be rare in a special exposure group. If this is suspected 
and if such a group can be identified from a period in the past, a non-concurrent follow- 
up study should be considered. 

A fourth advantage is that case-control studies (as well as follow-up studies) permit 
evaluation of the causal significance of a rare exposure. This is often not appreciated, 
and it is a common misconception that a case-control study is inappropriate for study of 
a rare exposure. Insofar as the prevalence of an exposure makes it suitable or unsuit- 
able for a case-control study, it is not the general prevalence (i.e., among potential 
controls) but that among the cases that is relevant. If a factor is rare, but nonetheless 
accounts for a high proportion of the cancer, that is, if the factor is related to a high 
population-attributable risk percent (Cole & MacMahon, 1971), it can be studied. 
Indeed this is a circumstance that maximizes the efficiency of the case-control design 
since it enables a small study to be quite powerful. One example is the case-control 
study of eight young women with clear-cell adnocarcinoma of the vagina and 32 controls 
(Herbst, Ulfelder & Poskanzer, 197 1). Similarly, a large fraction of mesotheliomas of 
the pleura are related to exposure to asbestos (Greenberg & Lloyd Davies, 1974), and 
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benign hepatomas in young women are related to use of the contraceptive pill (Ed- 
mondson, Henderson & Benton, 1976). On the other hand, a common exposure may 
prove unsuitable for a case-control investigation if it accounts for a small proportion of 
the cancer; in this situation a very large study will be required. 

1.4 Limitations 

One limitation suggested to characterize case-control studies is that they permit 
estimation only of relative disease frequency. This requires qualification. If a case- 
control study includes, as many have, an incidence or prevalence survey, it can 
provide risk factor-specific absolute measures of cancer frequency. For example, Salber, 
Trichopoulos and MacMahon (1969) provided incidence rates of breast cancer by 
marital status, and others have provided incidence rates of bladder cancer according to 
cigarette smoking status (Cole et al., 1971) and occupation (Cole, Hoover & Friedell, 
1972). Even when a survey is not included it may be possible to estimate the absolute 
overall frequency of disease among the types of subjects studied and to infer risk 
factor-specific absolute frequencies. This is especially so with respect to cancer be- 
cause of the information on incidence rates available from cancer registries. A method 
for doing this is described by MacMahon and Pugh (1970), and an example is the study 
of oral contraceptives and thromboembolic and gall-bladder disease from the Boston 
Collaborative Drug Surveillance Program (1 973). 

A second proposed limitation of case-control studies remains correct and is important. 
Namely, that these studies are highly susceptible to bias, especially selection bias which 
creates non-comparability between cases and controls. The problem of selection bias is 
the most serious potential problem in case-control studies and is discussed below. Other 
kinds of bias, especially that resulting from non-comparable information from cases 
and controls are also potentially serious; the most common of these is recall (anamnestic 
or rumination [Sackett, 19791) bias which may result because cases tend to consider 
more carefully than do controls the questions they are asked or because the cases have 
been considering what might have caused their cancer. The weakness then of case- 
control studies is that, in the end, the investigator must appeal to subjective or only 
semi-quantitative arguments to the effect that the information that he has from cases 
and controls is equivalent in source and quality. Thus, to a great extent the problem of 
doing a persuasive case-control study is that of avoiding bias. In one sense this is a 
basis for optimism because the sources and nature of biases in epidemiological studies 
have only recently come under scrutiny (Sackett, 1979), and we can expect progress 
in developing methods for their identification and control. Yet, there will be biases 
peculiar to each cancer and to each exposure and even to each study. It may be possible, 
at least, to define the more important biases that commonly affect certain kinds of 
case-control studies; Jick and Vessey (1978) have attempted this for case-control 
studies of drug exposures. 
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1.5 Planning 

T h e  case series 

When a problem has been defined and a case-control study decided upon, attention 
is usually given first to designating .the cases. The goal should be to designate a group 
of individuals who have a malignancy which is, as far as possible, a homogeneous 
etiological entity. It will be easier to unravel a single causal web rather than several at 
one time. For example, only a very limited level of knowledge can be reached in the 
study of the epidemiology of "cancer of the uterus"; but, if adenocarcinoma of the 
uterine corpus is distinguished from squamous-cell carcinoma of the cervix and if 
research is directed at one or  the other, considerable progress can be made. We can go 
further in making these distinctions by not defining diseases solely in terms of mani- 
festational characteristics, no matter how refined we consider them to be. Definitions 
of disease based on their clinical or histological appearance suffice when there is a one- 
cause/one-manifestational-entity relationship. But they do not suffice for cancer. To 
study the complex cause-effect relationships of cancer we should attempt to use all 
existing knowledge, manifestational and epidemiological, to designate a restricted case 
series which is as homogeneous as possible with respect to etiology. The inadequacy of 
using only organ site and histological appearance or cell type to specify an etiological 
entity is made clear from one of the ideas about multiple-causation. In this, it is sug- 
gested that one type of cancer may have more than one independent set of causes. In 
order to identify cases likely to have the same set of causes the case series could be 
restricted according to age, sex, race or  some other appropriate factor. 

The restriction of case characteristics may bring benefits besides providing a series 
homogeneous with respect to cause. For one, the narrower range of possible causative 
factors is more likely to exclude false causes from consideration - "causes" which turn 
out to have no association with the cancer, or an association due only to confounding. 

Another and especially important benefit is that the problem of selection bias may 
be reduced. When there is no association between the factor and the cancer of interest, 
there are nonetheless many ways in which an association may appear in the data of a 
case-control study. (The reverse situation, of no apparent association when in fact there 
is one, may also occur for similar reasons, but is not illustrated here.) One of the most 
important ways in which a false association can be created is by a selection bias. The 
question of selection bias must be considered simultaneously for both the case and the 
control series, since it is a question of their comparability; however, the problem of 
selection bias can most easily be appreciated with reference to case selection. Some 
mechanisms of selection bias may best be minimized by appropriate methods of case 
selection, thus the topic is presented here. By selection bias, I mean the bias which 
results when cases (or controls) are included in (or excluded from) a study because 
of some characteristic they exhibit which is related to exposure to the risk factor under 
evaluation. Often, for cases, the characteristic will be a sign or symptom of the cancer 
under study which is not always due to the cancer. This definition makes it clear 
that selection bias is not a single or  simple phenomenon. It may, for example, represent 
a selection force towards inclusion in the study which operates on cases or  on controls, 
or on both but unequally. Nor is this selection a conscious one; indeed, the parties 
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applying the force will usually not even be aware (because it is usually not known) 
that the selection characteristic is associated with the factor under study. An example 
of a proposed selection bias follows. In 1975 two groups reported a rather strong asso- 
ciation between the use of exogenous oestrogens and cancer of the endometrium (Ziel& 
Finkle, 1975; Smith et al., 1975). Later, Horwitz and Feinstein (1978) proposed that 
the association was due to a selection bias. They pointed out that women who use 
exogenous oestrogens are more likely than those.who do not to experience vaginal bleed- 
ing, a moderately frequent but not serious side effect of the medication. However, 
vaginal bleeding in a postmenopausal woman is a matter of concern since it is a com- 
mon sign of cancer of the endometrium. Thus, a postmenopausal woman who exhibits 
vaginal bleeding is likely to be examined closely for endometrial cancer whether or not 
she takes oestrogens. Usually, this includes a histological examination of tissues taken 
from her endometrium. The basis for this proposed bias is complete if one accepts the 
suggestion that in a high proportion of apparently normal postmenopausal women there 
is a condition which, morphologically, mimics cancer of the endometrium or which 
"is" cancer of the endometrium of an indolent type. Thus, Horwitz and Feinstein 
(1978) proposed that the use of oestrogens was merely attracting attention to a large 
number of these indolent conditions by causing vaginal bleeding and diagnostic evalua- 
tions. (If correct, this would serve as an excellent example of selection bias. However, 
Hutchison (1979) reviewed the Honvitz-Feinstein proposal and concluded on several 
bases that, while the proposed selection bias is credible and may even occur, it is un- 
likely to be sufficiently strong to account for any but a small part of the approximately 
sevenfold excess risk of endometrial cancer among oestrogen users. The fact that the 
association persists when the base series is restricted to women with frankly invasive 
cancer (Gordon et al., 1977) supports this view). 

This type of selection bias is not likely to be a problem in case-control studies of 
cancer. For one reason, virtually by definition, cancer tends to be a progressive condi- 
tion which ultimately comes to diagnosis. The bias is much more likely to operate in 
studies of non life-threatening conditions which produce no, or tolerable, symptoms. 
The bias is also more likely to operate in studies of drug exposure than in those of 
etiological agents in general, for drugs produce many adverse effects some of which 
cause a patient to be subjected to a battery of diagnostic tests. 

The status of cases to be included in a case-control study must also be decided. There 
are three types that are often used - incident, prevalent and, occasionally, decedent. 
The use of decedent cases will not be discussed except to point out that their study 
brings the same problems as the study of prevalent cases plus additional ones. Decedent 
cases probably should not be used except in a preliminary study of a disease based on 
medical record review or in the study of a disease which becomes manifest by causing 
sudden death. 

Incident or newly-diagnosed cases are to be preferred and are the type usually used 
in case-control studies of cancer. They have several advantages over prevalent (pre- 
viously diagnosed) cases. For one, the time of disease onset is closer to the time of 
etiological exposure than is any later time. Thus, an incident case should recall better 
than a prevalent case the experience or exposures under evaluation. Similarly, recent 
medical, employment or other records are likely to be available and more informative 
than older records. In addition, a series of incident cases has not been acted upon by the 
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determinants of survival whereas a series of prevalent cases has. That is, the cases pre- 
valent at any point in time are the survivors of a larger series of incident cases diagnos- 
ed in a preceding period. If incident and prevalent cases differ with respect to risk 
factors, the use of prevalent cases would give an erroneous result. For example, using 
prevalent cases there appeared to be an association between the HLA antigen A2 and 
acute leukaemia (Rogentine et al., 1972). A second study, however, showed that this 
association was due to improved survival among cases with HL-A2, rather than to an in- 
creased risk of developing the disease among persons with HL-A2 (Rogentine et al., 
1973). A third advantage of incident cases is that the effects of the disease are less 
likely to appear as causes. If a case has been prevalent for several years he may have 
changed his environment or lifestyle in a number of ways. Then, unless care is taken 
to restrict inquiry to the pre-morbid circumstances, a false characterization will occur. 
A final advantage of incident cases is that they relate more directly to the usual objective 
of an etiological investigation; i.e., with incident cases one evaluates the way in which 
exposure relates to the incidence rate of a cancer not to its prevalence. 

There is only one advantage to the use of prevalent cases over the use of incident 
cases: they are already available. This might be considered a major advantage, since 
most cancers are sufficiently uncommon that it could take several years of ascertainment 
at several medical centres to assemble an adequate number of incident cases. However, 
the case-fatality of cancer remains sufficiently high that, usually, a large series of pre- 
valent cases cannot be assembled unless cases diagnosed long ago are included. This 
may provide abundant opportunity for determinants of survival to act. For these reasons 
there is usually no appreciable advantage to the exclusive use of prevalent cases. 

When the case series has been defined in terms of characteristics and type, a source 
must be located. In most case-control studies cases are identified by monitoring of pathol- 
ogy department log books, hospital operating-room schedules, or discharge lists. Less 
frequently, the office records of a number of physicians are used. In cancer research, an 
additional source of cases is the hospital or regional cancer registry. However, unless 
a special effort is made, regional cancer registries usually cannot identify cases until 
three months or more after diagnosis. 

The control series 

The designation of the type, number and size of the control group or groups and 
.the problem of selecting the specific control subjects are perhaps the most important 
and most difficult tasks in planning a case-control study. The issue of the number of 
control groups was addressed above. Here the issues of the type and size of the group 
are discussed. The method of selecting the individual control subjects will not be dis- 
cussed as it is almost entirely dependent on study-specific circumstances. One general 
question, however, relates to whether, when using a hospital-based control series, sub- 
jects with conditions known to be associated with the exposure under study should be 
eligible as controls. Most epidemiologists consider it reasonable to exclude them if the 
exposure-related illness is the reason for 'their current hospitalization. 

There is no one type of control group.suitable for all studies and, it must be acknowl- 
edged, there are no firm criteria for what is an acceptable group. The major factors 
which contribute to choice of a control group are the characteristics and source of the 
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cases and knowledge of the risk factors of the cancer to be studied and of how these 
might confound or interact with .the exposure to be investigated. 

The characteristics and source of the case series must heavily influence the type of 
control selected if comparability of the two series is to be achieved, that is, if selection 
bias is to be avoided. In general, if a population-based series of cases has been as- 
sembled, a random or (age and sex) stratified random sample, of the population will 
prove to be a suitable control series. If cases have come from a restricted source it is 
usually appropriate to select controls from the same source. In an extension of the 
latter notion, Horwitz and Feinstein (1978) suggested that reduction of selection bias 
would be achieved if controls were selected from among persons who had undergone 
the same diagnostic test as the cases and found not to have cancer. This is intended to 
overcome bias due to selecting cases from among those who are excessive users of 
medical services. Such people may be highly likely to have had diagnostic tests per- 
formed, even on marginal indications, and may also have an unusual exposure 
experience. However, if controls are also drawn from those who have had the diagnostic 
test, .then they should be more closely comparable with cases in terms of medical 
service use and exposure experience. An example of this approach to the control of 
selection bias is the study by Horwitz and Feinstein (1978) of cancer of the endo- 
metrium; controls were drawn from among women who had been evaluated by uterine 
dilatation and curettage, just as the cases had been. This type of control group would 
appear inappropriate because agents which cause one disease in an organ often cause 
other diseases of that organ, or signs or symptoms referable to it. If such a procedure 
is followed in a study of, say, lung cancer, individuals with chronic pulmonary diseases 
would comprise a high proportion of the control series. An association of lung cancer 
with cigarette smoking would still be perceived, because it is a strong association, but 
it would be muted because smoking causes many diseases of the lung. Despite this 
difficulty, the use of a diagnostic register as a source of controls may be a useful way to 
reduce the possible "medical consumerism" bias described above. However, to be ap- 
propriate, such rosters of potential controls should relate to procedures for the diagnosis 
of conditions of organs other than that organ which is the site of the cancer afflicting 
the cases. 

It has been suggested, for yet another reason, that the control series should have 
undergone or be subjected to the same diagnostic procedures as the cases. The reason 
proposed is that it would permit exclusion of early cases or  "cases-to-be" from the 
control series and thus permit a more appropriate comparison. This exclusion is contrary 
to principle since even cases-to-be are a portion of the at-risk population (whether a 
real or hypothetical population), and their exclusion would distort the estimated fre- 
quency of exposure among the group as a whole (Miettinen, 1976). The exclusion is 
also difficult to accept in practice since it would be expensive, would pose practical 
problems, and for some procedures would be ethically unacceptable. Furthermore, 
since the remaining lifetime risk of developing any specific cancer is 10% or  less (for 
most cancers much less) very few potential controls would be excluded in this way. 

Another consideration in designating the control series is related to the persistent 
opinion that the controls must be like the cases in every respect apart from having the 
disease of interest. The historical basis of this misconception is clear; it comes from the 
axiom of experimental research that control subjects must be treated in every respect 
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like exposed subjects. But in a case-control study this axiom is inapplicable. The con- 
sequences of selecting controls to be like cases with respect to some correlate of the 
exposure under study but to a correlate which is not a risk factor, that is, of "overmatch- 
ing", are now recognized and are discussed in the section on matching. 

A second aspect of control selection is the size of the series. When the number of 
available cases and controls is large and the cost of gathering information from a case 
and a control is about equal, then the selection ratio of controls to cases would be 
unity. The standard issues would then be invoked to estimate the acceptable minimum 
study size. The question becomes more complex when the size of either group is severely 
limited or the cost of obtaining information is greater for either cases or controls. For 
example, it occurs frequently that only a small number of cases is available for study. 
In this circumstance, the selection ratio should be increased to two, three or even four 
controls per case. This is not commonly done, and it is regrettable to see otherwise good 
case-control studies which are non-persuasive because of the unnecessarily small size 
of the control series. The selection ratio should be permitted to vary according to the 
circumstances of the study. But, one must be wary; it is wise to stay within the bounds 
of 4 : 1, except when the data are available at little cost or when they were collected for 
another purpose, and especially if they are in the form of a machine-readable file. The 
reasons for this have been presented by Gail et al. (1976) and by Walter (1977) and 
relate mainly to the small increase in statistical power as the ratio increases beyond 
four. 

A third aspect of the designation of controls and a major factor in case-control studies 
is the source of the control group. Most studies use either hospital patients or the general 
population; restricted population groups, e.g., neighbours of cases or special groups 
such as associates or relatives of cases are much less often used. 

The general population has a major strength as the source of the control series. Such 
controls will be especially comparable with the cases when a population-based series of 
cases has been assembled. This often makes for the most persuasive type of case-control 
study because of the high comparability of the two series and because a high level of 
generalizability of results is achieved. Even when a hospital-based series of cases is 
assembled, the population controls have the attribute of being, in general, well, and 
so causes of disease are not inordinately prevalent among them. Thus, one usually need 
exclude nobody from a population control series. (There are some exceptions to 
this. For one, it is reasonable to exclude people who do not have the organ in which 
the cancer develops. This is of some significance in studies of cancer of the uterus, at 
least in the United States where 30% or more of women aged about 50 years do  not 
have a uterus. For another, it seems reasonable to exclude a control who has been 
previously diagnosed with the cancer under study.) There are, however, three disadvan- 
tages associated with use of the general population as a control group. Firstly, it can be 
extremely expensive and time-consuming to select and to obtain information from such a 
group. Secondly, the individuals selected are often not cooperative and response tends 
to be worse than that from other types of controls. This second disadvantage is especial- 
ly important because it detracts from the presumed major strength of a general popula- 
tion control group. A third disadvantage of a population-based control series may arise 
if it is used in the study of a disease with mild symptoms for which medical attention 
need not be sought. In this instance the factors which lead to seeking medical care, such 
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as, perhaps, affluence, will appear to be correlated with the disease. This problem is 
a small one in studies of cancer in countries where medical care is generally available. 

Other kinds of general population control groups besides a random sample are some- 
times used. Probably the most common of these is a neighbourhood control series. If 
these controls are obtained by having the interviewer actually move physically through 
each neighbourhood, the cost of the study may be extremely high. Furthermore, it may 
be difficult or impossible to characterize or even to enumerate the non-respondents 
(not at home) or the non-cooperators (those who decline to participate). It appears 
that non-cooperation is high when this approach is used. A recent example of a study 
using a neighbourhood control group is that of Clarke and Anderson (1979). For each 
control finally obtained, an average of 12 household contact efforts were required, one 
of which led to a non-cooperator. Thus, the effective proportion of cooperators in 
this study was about 50% and even that was obtained from among a self-selected 
group of respondents. On the other hand, if neighbourhood controls can be selected by 
use of some type of directory or listing and the initial contact made by telephone or 
letter, response should be acceptable. Even so, it is usually difficult to accept the ratio- 
nale offered to justify the use of close neighbourhood controls. Generally, this is stated 
to be the wish to match the controls to the cases with respect to socioeconomic class. 
But, people who live in the same neighbourhood are likely to be similar in more re- 
spects than socioeconomic class and so the potential for overmatching is great. A 
random sample of the general population is usually less costly to obtain and may be 
superior as well. If a factor such as socioeconomic class is to be controlled, this can be 
done in the analysis of a study using controls from the general population, provided 
the relevant information is obtained. 

The 'use of hospital patients as a control group has several advantages. Such people 
are readily available, have time to spare and are cooperative. Moreover, since they are 
hospitalized (or have been recently) they may have a "mental set" similar to that of 
the cases. This should reduce anamnestic bias, one of the most serious potential problems 
in a case-control study. The use of hospital patients as controls may also make the 
cases and controls similar with respect to determinants of hospitalization. This is prob- 
ably useful if the cases have a disease for which hospitalization is elective. Probably it 
is not very important in the study of cancer, unless the case series is assembled from 
one, or a few, highly specialized institutions which have a wide referral area. The use 
of hospital patients as controls has one possibly serious limitation. The controls may 
be in hospital for a condition which has etiological features in common with the disease 
under study. To minimize this problem, controls should be selected from patients with 
conditions in many diagnostic categories. Another limitation of hospital controls has 
arisen only over the past few years, particularly in the United States. Before approach- 
ing hospital patients it is usually necessary to have the approval of a responsible 
physician or surgeon; this is becoming difficult to obtain, presumably because of growing 
concern about the confidentiality of medical information. 

Matching 

In planning a case-control study it must be decided whether the controls are to be 
matched to the cases and, if so, with respect to what factors and how closely. This 
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warrants careful consideration because the decision will have implications for virtually 
every subsequent aspect of the study. Furthermore, an inappropriate decision will prove 
costly in time and money and may lead to an unsatisfactory study result. The issues 
underlying the question of matching received little attention until about ten years ago; 
but recently there have been several efforts at clarification, for example, those of 
Billewicz (1965), Miettinen (1976), McKinlay (1 977), and Rubin (1 979). These ef- 
forts have provided an appreciation of the complexity of what at first appears to be 
a straightforward approach to improving a study. This is an overview of some basic 
considerations relating to matching. In addition to being restricted to the case-control 
setting, this presentation is limited in that it deals primarily with factors which are 
dichotomous and only with matched pairs. These limitations do not distort the essential 
issues and permit them to be expressed more simply. In Chapters 5 and 6 ordinal scale 
exposures and multiple- and variable-ratio matching are considered. 

In a case-control study the main purpose of matching is to permit use of efficient 
analytical methods to control confounding by the factors matched for. By confounding 
I mean the factor of interest is associated with the cancer under study, but this association 
is at least to some extent, and possibly entirely, non-causal. The association occurs be- 
cause the factor of interest (the confounded factor) is associated with a true cause (the 
confounding factor) of the disease. Confounding can be illustrated by the concern ex- 
pressed about the relationship between exogenous oestrogens and endometrial cancer. 
Steckel (1976) suggested that among women who will develop cancer of the endo- 
metrium at a later age, a fairly high proportion might have a rather difficult menopause. 
This is reasonable since cancer of the endometrium is probably caused by some hormonal 
difficulty, as are the signs and symptoms of the menopause. It is also reasonable to 
suggest that women who have a difficult menopause would be more likely than others 
to seek medical attention and to receive treatment with oestrogen, which is often pre- 
scribed for menopausal problems. If this were true, then oestrogens would (validly) 
appear to be associated with endometrial cancer in a case-control study (or in a follow- 
up study, for that matter). The association, however, would be non-causal, being con- 
founded by a true cause of endometrial cancer, the hormonal aberration, which also 
"causes" women to receive oestrogens. (This particular proposed "constitutional con- 
founding" was chosen as an example because it is quite illustrative, but it is almost 
certainly not correct since: (1) there is a dose-response relationship between oestrogen 
use and the relative risk of endometrial cancer; (2) the incidence rate of endometrial 
cancer has risen concurrently with the increase in oestrogen use; (3) the strength of the 
association between oestrogen use and endometrial cancer is similar in populations which 
are very dissimilar in their frequency of oestrogen use; and (4) cessation of oestrogen 
use is followed by a reduction in endometrial cancer incidence.) 

A simpler, and correct, example of confounding is the association of cancer of the 
mouth with the occupation "bartender". Mouth cancer is caused by excessive alcohol 
and tobacco consumption, both of which are relatively common among bartenders. As 
can be seen from these two examples, for a factor to be confounding, it must be as- 
sociated both with the cancer under study (as a cause of the cancer must be) and with 
the exposure of interest. 

Confounding can be controlled in the analysis of a study or it may be eliminated by 
design in one of several ways. Of these ways, matching is by far the most often used, 
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probably because it appears to be a direct and intuitive approach. In addition, when 
there are only dichotomous (exposed, non-exposed) factors under evaluation, the match- 
ed-pairs (one control per case) design permits a straightforward estimation of the rel- 
ative risk and its statistical significance. These features probably explain why pair match- 
ing was the first technique widely used to control confounding and remains popular 
today. But since there are now effective ways to control confounding in the analysis 
of the data the desirability of matching warrants reassessment. 

Matching in a case-control study is an attempt to mimic blocking in an experiment, 
that is, randomizing animals within categories of a factor known (or suspected) to in- 
fluence the outcome under evaluation. However, any analogy between blocking and 
matching is false in one crucial respect. In experimental work, no matter how extensive 
the blocking, the investigator manipulates exposure to the factor under study (usually 
by randomization). This guarantees that the blocking factors will not be correlated with 
the exposure of interest. However, exposure is not manipulated in a case-control study, 
and so a matching factor, unlike a blocking factor, will be associated with any exposure 
which differs between cases and controls. This must include the exposure under study 
if the matching is justified. For, if the matching is justified it will be with respect to a 
confounding factor, necessarily a correlate of the exposure under study. This means 
that any mode of analysis which fails to accommodate the fact that the matching process 
has forced the controls to be more like the cases than they otherwise would be, with 
respect to the exposure of interest, will lead to an estimate of the relative risk which is 
too close to unity. And, if the matching has been carried sufficiently far by matching on 
several variables, the cases and controls will be virtually identical with respect to the 
exposure to be studied. Effectively, time and money will have been spent in a counter- 
productive effort; the study will provide no information or, worse, an erroneous result. 
Thus it is necessary to avoid overmatching, that is, matching for a variable which is relat- 
ed to the exposure under study but which is not an independent risk factor and so can- 
not be a confounding factor. 

It is useful to  distinguish between two types of overmatching. One type occurs when 
the investigator matches for a factor which is part of the mechanism whereby the factor 
under study produces cancer. As an example, consider the prospect of matching con- 
trols to cases for the presence or  absence of endometrial hyperplasia in a study of exog- 
enous oestrogens and endometrial cancer. Hyperplasia is a condition which is caused 
by exogenous oestrogen and which may progress to cancer. The controls will thus be made 
very like the cases in exposure history, and the data, even when appropriately analysed, 
will lead to a relative risk biased towards unity. The second type of overmatching relates 
to matching for a variable which is a correlate of the factor under study, not an inde- 
pendent risk factor and not a part of the causal mechanism. In this instance an appropri- 
ate analysis will provide an inferentially valid estimate of the relative risk. However, the 
study will be inefficient, that is, imprecise, and there may be little confidence in the 
estimate obtained. The way this inefficiency comes about is described below. 

Even matching which is indicated can be expensive and may prolong the data-gather- 
ing phase of a study. The number of matching "strata" is one of the determinants of 
cost and this increases sharply as the number of variables increases. For example, if a 
study involves matching for sex (two categories) and age (say, five categories) there will 
be ten strata. If matching for religion (say, three categories) is added there will be 30 
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strata, and formation of matched pairs will become difficult. The addition of one more 
matching variable, bringing the total number of strata to a minimum of 60, will make 
the search for a matched control tedious even for the more common types of subject. 
And for the less frequent types it may prove impossible to form matched pairs, with the 
consequent exclusion of some cases from the study. In addition to the number of strata, 
the specific variables chosen for matching will also influence the cost and time necessary 
to do the matching. Efforts have been made to match even for variables for which in- 
formation must be obtained by interviewing the potential controls; if a control does 
not match the case for which be was being considered, the cost of contacting and inter- 
viewing him will usually be wasted. Generally, rather than expending resources in fol- 
lowing an elaborate matching scheme, it will prove more efficient to gather data from a 
reasonably large number of potential controls and to evaluate and control confounding 
when the data are analysed. This approach can be especially efficient if the range of the 
subjects is restricted (perhaps one sex and a narrow age range) and if advance informa- 
tion is available as to whether individuals meet the restricted characteristics. 

Matching can be envisioned as an effort to increase the contribution (or informative- 
ness) of each subject to the study. Thus, while there may be relatively few subjects in a 
matched study, any matched pair which is discordant for exposure (one member exposed, 
the other not) makes a moderately large contribution to the evaluation of the relative 
risk and its statistical significance. However, each matched pair which is exposure-con- 
cordant makes no contribution at all. This illustrates the need to avoid matching for 
factors which are correlates of exposure but which do not confound the association of 
interest. The effect of such matching is to create an excessive number of uninformative 
exposure-concordant pairs. 

A final cost of matching may have to be paid when the data are analysed. The match- 
ing process requires that the data first be analysed with the matching taken into ac- 
count. If a stratified analysis is used (see Chapter 5), control for the confounding ef- 
fect of factors other than those matched for will lead to the elimination of much of the 
data. However, if it is necessary to control such factors it may be possible to demon- 
strate that, as is often so, only age and sex are pertinent as matching factors and that 
the matching can be ignored as long as age and sex are carefully controlled in the 
analysis or the results are derived for specific age-sex groups. The analysis may then 
proceed and the effect of an unmatched confounding factor controlled for. If regression 
methods are used in the analysis (see Chapter 7) unmatched and matched factors can 
be controlled directly. 

Some of the problems associated with matching are illustrated by an unusual case- 
control study done to evaluate the hypothesis that tonsillectomy is associated with in- 
creased risk of Hodgkin's disease (Johnson & Johnson, 1972). The study included 85 
persons with Hodgkin's disease and, as their controls, 85 siblings, each sibling being 
matched to the respective case for sex and for age as well as, inherently, for sibship. 
The study was interpreted as showing no association between tonsillectomy and Hodg- 
kin's disease. It seemed likely to others, however, that although the study consisted of 
a control series closely matched to the cases for likely strong correlates of tonsillectomy, 
especially sibship, the matching had been ignored in the analysis (the analysis had not 
been described). The data were then reanalysed (Cole et al., 1973) and a relative risk 
of 2.1 with p = 0.07 was found - a positive result consistent with an earlier report. This 
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illustrates the need to accommodate the matching with an appropriate form of analysis. 
In fact the 85 matched pairs were a subset of a larger series of 174 cases and their 
472 siblings. The reduction to the 85 matched pairs, presumably to control potential 
confounding by sex and age, had caused 74% of the available data to be discarded. When 
all the data were analysed, thus ignoring age and sex, the relative risk was 2.0 (p = lo4). 
The near identity of the two relative risks is evidence that, in this series of subjects, 
there was no confounding by age and sex and that matching for those factors was ir- 
relevant and wasteful. 

The following should be considered when matching is contemplated for a case-con- 
trol study. First, matching is only justified for factors which are known or suspected to 
confound the association of interest; that a factor may be related to the exposure of 
interest is not sufficient justification for matching. Second, matching may also be 
justified for factors which could interact with the exposure of interest in producing 
disease, since it provides more efficient estimates of relative risk within subgroups 
homogeneous with respect to suspected interacting factors. Third, it is usually possible 
to justify the costs in time and money of matching for age, sex and nominal scale 
variables with a large number of realizations (sibship, neighbourhood). However, such 
nominal scale variables should be matched for only if they meet one of the first two 
criteria, and this is uncommon. Fourth, when it is decided to match for a factor the 
matching should be as close as possible, with expense being the constraint to making 
an ever tighter match. For example, age is usually matched for arbitrarily in (plus or 
minus) five- or ten-year units. Frequently, it would cost very little more to match on 
year of birth or perhaps two-year age units. With respect to matching for age in partic- 
ular it would be appropriate to modify the closeness of the match to the age of the 
subjects studied. For children and young adults a very close match is indicated be- 
cause experiences change rapidly at these ages and because a discrepancy of a given 
magnitude, say one year, is a relatively greater proportion of the lifespan than it is in 
middle or old age. Since the principal objective of matching is to eliminate a potential 
confounder as such, the tighter match is to be desired since it minimizes the prospect 
that there would be "residual confounding" within the matching strata. 

1.6 Implementation 

Information gathering 

The methods and problems of gathering information for a case-control study, as for 
other studies, greatly depend on the locale in which the study is done and the informa- 
tion sources used (interview, postal questionnaire, medical or other type of record 
review). Only a few general suggestions are offered. A case-control study usually begins 
with the investigator seeking cooperation from several hospitals or medical practitioners. 
This usually amounts to a request to identify cases, and perhaps controls, from available 
records. At least in the United States, this cooperation is becoming more difficult to 
obtain for several reasons, the major one being concern about litigation by a patient 
who believes that confidentiality has been breached. It is remarkable how deep and 
widespread this concern is, considering the rarity of the problem. For example, in the 
Department of Epidemiology at the Harvard School of Public Health during a period 
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in which at least 15 000 subjects identified from hospital records were requested to 
provide information, there was no such litigation nor serious threat of it. Despite this 
experience, which seems typical of epidemiological research, it is often not possible to 
persuade hospital administrators to cooperate. When non-cooperation is anticipated it 
is useful to make initial contact with a hospital through a staff physician who supports 
the research. 

The next stage is to abstract the medical records of the cases, and of potential controls, 
at locations where cooperation was received. If possible the items on the record abstract 
form should follow the sequence of the medical record, but this may not be possible 
if several different hospitals are involved. If the medical record abstract involves in- 
formation pertinent to the exposures under evaluation, as occurs when the role of drugs 
is in question, it is important to blind the abstractor to the case-control status of the 
record. It is also important to delete from the record or to mask any information relat- 
ing to exposures sustained after the case's cancer was diagnosed, and during the equi- 
valent time for the controls. These things will usually prove difficult and will involve at 
least two people in the record abstracting process. Nonetheless, both are usually justifi- 
able. 

It is best to conduct interviews concurrently for cases and controls. This should mini- 
mize the likelihood that learning by those gathering the data will influence the results. 
It would also minimize any effects of short-term changes, such as those of the seasons, 
or of some unexpected publicity about the cancer or the factors under study. 

It is often recommended that, when they are involved, there should be as few inter- 
viewers as possible, preferably one. The rationale of this is that it will introduce uni- 
formity into data collection. But, if the quality of the work is poor or if the interviewer 
is biased, a study would be ruined by having only one interviewer. It seems wiser, when 
practical, to have several well-trained interviewers. When more than one interviewer is 
used, it may be informative to analyse the principal study factors on an interviewer- 
specific basis. A positive result based on information from only a small proportion of 
the interviewers would be a cause for concern. 

There are several suggestions concerning interviewers which are sound but difficult 
to meet. One of these is to keep the interviewers, and all study staff, unaware of the 
principal hypothesis(es) under evaluation. But even if the investigator attempts this, 
the interviewers usually become aware of what is important from the interview form 
itself or from sources external to the study. Another suggestion is that the interviewers 
be unaware of the status (case or control) of each subject they interview. One way 
of doing this is to have one person arrange the interview and another conduct it. 
This may prove effective for interviews conducted in hospital but is rarely even pos- 
sible for those done at home. The reason is that the subjects, both cases and controls, 
usually want more information than was given them about the objectives of the study 
and the reason for their inclusion. In order to answer such questions in an honest, even 
if ambiguous, way the interviewer usually has to know the subject's status. The need 
for ambiguity often arises because many physicians still do not want their patient told 
of the diagnosis of cancer. Another reason is that the interviewer does not know, or 
should not inform the subjects, about the specific purpose of the study. A third sug- 
gestion concerning interviewers can and should be met: each of them should deal with 
the same ratio of controls to cases as exists in the study as a whole. 
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When a postal questionnaire is used to gather data an effort should be made to make the 
form as simple as possible in both appearance and use. This can be implemented by 
aligning the various insets so that there are as few different margins as possible. It is also 
useful to make the format of the response as uniform as possible, e.g., all boxes to be 
checked or alternatives to be circled, but not both. The instructions to the subject should 
be as brief and clear as possible. There is no disadvantage, however, in terms of response 
frequency, in making the questionnaire itself as long as required, within reason, nor 
does there seem to be any disadvantage (in terms of response frequency) in using 
franked as opposed to stamped mail, nor in using second or third class as opposed to 
first class service. In general, it appears that age and socioeconomic status of the sub- 
jects are determinants of response (younger and better-off subjects respond better), 
while features of the postage and questionnaire are relatively unimportant (Kaplan & 
Cole, 1970). 

In both an interview form and a postal questionnaire, each item should deal with one 
question - compound questions should be avoided. It is usually advisable, especially in 
an interview, to permit unstructured responses; in such cases the space for the response 
shouldbe followed by an indication of the units in which the response is to be expressed. 
Prescribed ranges to classify a response (e.g., <2, 2-4, 4-6, 7+ years) should be 
avoided; it is rarely justified to degrade information in this way at the time of collec- 
tion. Note also that the responses in this example are ambiguous: the second and third 
are not mutually exclusive. All forms should be tested repeatedly to remove ambiguities 
and queries which elicit vague or ambiguous responses. Completed interviews should be 
reviewed by an experienced supervisor and the interviewers informed of the assess- 
ment of their work; part of this process should be undertaken by the investigator. 

Information management 

Information management commences well when good information-gathering forms and 
high-quality gathering and editing procedures are used. One aspect which relates 
particularly to information management is the use of "self-coding" forms. This term 
used to refer to several different formats, including one requiring the subject or inter- 
viewer to select a response and enter a corresponding code into a designated space. 
Generally, mixing information gathering with information management in this way is 
ill-advised; it is conducive to error and may reduce rapport in the interview setting. 
It is better to have all the coding done by two (or more) people (including, if con- 
venient, the interviewers themselves) in a setting free of the stress of information 
gathering. 

The information gathered must be translated into a series of numeric (or, rarely, 
alphabetic) codes. Generally, one item in the code will correspond with one item on 
the form. Each code item should consist of a series of mutually exclusive, collectively 
exhaustive categories. Virtually every item will require the categories "other" and 
"unknown", and rarely is it justified to combine these. No code item should be a "derived 
variable", i.e., a variable whose value is determined from two or more other variables. 
Computing the value of a derived variable is done more accurately, objectively, and 
at lower cost, by a computer. Just as there is no reason to degrade information at the 
gathering stage there is no need to degrade it at the coding stage. In fact, modern 
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analytical techniques argue for the use of highly refined data throughout the study, 
degradation to conventional ranges being reserved for the presentation of the results. 

The early responses should be encoded by a highly experienced person and, if neces- 
sary, the code modified to permit designation of unanticipated responses or  for other 
improvements. The need for this will be minimal if the forms have been well-designed 
and tested. The early work of the coders should be checked carefully to reveal any 
systematic problem resulting from a misunderstanding of how certain responses are to 
be encoded. 

It is still common to have information encoded by one person and checked by another. 
The information is then key-punched and key-verified and a file created on a tape (usu- 
ally for storage or  transportation) or on a disc (for analysis). This procedure may 
serve for studies which gather an enormous amount of information and which can 
tolerate a modest amount of error, as is usually true of a follow-up study. However, most 
case-control studies gather a relatively small amount of information at relatively high 
cost. For these it is better to have each form coded by two people working indepen- 
dently. The code sheets prepared by one are then key-punched and a file created; no 
key-verification is done. The file is then printed out as a listing which is as easy to read 
as possible: triple spacing between lines, blank spaces between items. This printout is then 
checked against the code sheet of the second coder and errors are resolved. In this 
way all errors are caught by a single checking procedure, including coding errors which 
are often missed by the conventional procedure. Finally, a few of each of the computer- 
generated, derived variables are checked against the values generated by one person. 
While these procedures seem tedious they are not much more so than the usual ones, 
and they virtually guarantee that analysis can proceed in the knowledge that, as far as 
is humanly possible, the disc file is an accurate image of the information gathered. 

1.7 Interpretation 

The interpretation of a study involves evaluating the likelihood that the result reflects: 
one or more biases in design or conduct, the role of confounding, the role of chance or 
the role of causality. An approach to interpretation is presented here which is similar 
to that presented in Chapter 3 but is less concerned with quantification. 

The most common basis for suggesting that a case-control study has produced an 
erroneous (biased) result (a suggestion which, of course, usually comes from a re- 
viewer, not from the investigators) is that subject selection was inappropriate. This 
usually implies a selection bias but may refer to inclusion of non-cases in the case series 
(rarely a problem in the study of cancer) or  "cases-to-be" in the control series. A 
second common basis for proposing a biased result is that there has been a systematic 
error in data collection such as that due to recall bias or  to the interviewers knowing the 
case-control status of the subjects. A third basis for suggesting error is.that there may 
have been an inordinate amount of random error in the data gathering. This suggestion 
is commonly offered for studies in which no apparent association emerges in relation to 
a factor acknowledged to be difficult to describe or quantify, such as diet. A fourth basis 
for suggesting error is that an inappropriate analysis has been done. Often the critic will 
suggest that the results are in error and imply that it is because of one or more of these 
reasons. Though it is not commonly done, it would be far more constructive if, in addi- 
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tion to invoking one problem or another, the critic would go further and, in discussion 
with the investigators, attempt to determine in which direction and to what extent the 
study result might be altered by correction of the proposed flaw. It is not rare for the 
critic of a positive study to imply that the correct result is the absence of association 
and to defend his proposal on the basis of a perceived bias which, if it truly existed and 
could be corrected, would probably cause the study result to be even more strongly 
positive. 

A second interpretation to be considered is that the study result reflects confounding 
by some known (or suspected) cause of the cancer. This interpretation, it should be 
remembered, does not imply that the results are false. Rather, it implies that a valid but 
non-causal association exists between the cancer and the factor under study. Until 
recently, efforts were made to exclude confounding as an explanation of study results 
by showing that the proposed confounding factor was not associated to a statistically 
significant extent with the cancer under study. While it is understandable how this 
approach came to be used it is now unacceptable.'~he question of confounding is not 
dealt with in this way. Instead it is necessary to show to what extent the relative risk 
changes, or does not change, when the effect of the proposed confounding factor(s) is 
controlled. This change (if any) in the relative risk is an index of the degree of con- 
founding. The relative risk estimate which persists after control of the confounding 
factor is the one which describes the specific association at issue. 

When an unconfounded estimate of relative risk is available, interpretation turns to 
the possible role of chance. The issue, of course, is the possible role that chance effects 
in subject selection may have played in producing the unconfounded, not the crude, 
estimate of relative risk. This is addressed by estimating the significance level, or 
p-value, associated with the difference observed between cases and controls in their 
exposure histories. If this value is small, say, less than 0.05, it is usually concluded that 
the role of chance is unlikely to explain the observed departure of the relative risk from 
unity. There is nothing wrong with this, but it is a rather limited way to describe the 
role of chance. The confidence limits of the relative risk are more informative, especial- 
ly in a study which shows no association. Use of the p-value and use of confidence limits 
are not mutually exclusive, but there are objections to the use of the p-value alone 
(Cole, 1979). 

Finally, interpretation moves to the prospect that a valid causal association would 
explain the results. Occasionally, the causal inference is made as a "diagnosis of exclu- 
sion". That is, if the result is not perceived as biased and not due to chance or confound- 
ing, then it must be causal. But causality has at least three positive criteria and these 
should be reviewed, in addition to excluding alternative explanations. The strength of 
the association relates to causality. Relative risks of less than 2.0 may readily reflect 
some unperceived bias or confounding factor, those over 5.0 are unlikely to do so. The 
consistency of the association is germane to causality. Is the association seen in all 
subgroups where expected, and is there a dose-response relationship? Both these con- 
siderations relate to internal consistency. The extent to which the study is externally 
consistent, i.e., consistent with previous reports, can also be evaluated to support or 
refute a causal inference. That is, when a similar finding appears in different, especially 
very different, settings the notion of causality is favoured even if only because alter- 
native explanations are less credible. A third criterion of causality is biological credibil- 
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ity; is it understood in biological terms how the exposure under study could produce 
the cancer of interest? However, while pertinent, the response to this question is not 
especially convincing one way or another; it has proven all too easy to propose credible 
biological mechanisms relating most exposures to most cancers; and, on the other hand, 
the failure to perceive such a mechanism may reflect only our ignorance of the state 
of nature. 

For the sake of completeness another criterion of causality is mentioned: this relates 
to how the frequency of disease changes when the proposed cause is removed from 
(or added to) the environment. No doubt the response to manipulation of the exposure 
is the most cogent type of causal argument, but it does not concern the investigator 
dealing with the results of a particular case-control study. 

Finally, there are two further considerations to bear in mind when interpreting a 
result. First, as an alternative to the four interpretations discussed, it could be decided 
that a study is "unevaluable". This decision is usually arrived at by exclusion, that is, 
there may be no basis for placing confidence in any of the other interpretations. The 
most frequent situation occurs when a study has no detectable flaw but its results are 
consistent with a chance effect. While the judgement of "unevaluable" may be tenable, 
it does not .mean that the study is in error or has no value. Unless the study is so small 
as to be hopelessly imprecise, it can still make a contribution, in the context of other 
studies, to evaluating the hypothesis in question. Secondly, it is useful to keep in mind 
that the interpretation decided upon is not immutable. An investigator and the scientific 
community may favour one interpretation today and a different one later, in the light 
of knowledge acquired in the interim. 
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CHAPTER I1 

FUNDAMENTAL MEASURES OF DISEASE 
OCCURRENCE AND ASSOCIATION 

The occurrence of particular cancers varies remarkably according to a wide range 
of factors, including age, sex, calendar time, geography and ethnicity. Etiological studies 
attempt to explain such variation by relating disease occurrence to genetic markers, or 
to exposure to particular environmental agents, which may have a similar variation 
in time and space. The cancer epidemiologist studies how the disease depends on the 
constellation of risk factors acting on the population and uses this information to 
determine the best measures for prevention and control. This process requires a 
quantitative measure of exposure, as well as one of disease occurrence, and some 
method of associating the two. 

In this chapter we introduce the fundamental concepts of disease incidence rates, 
cumulative incidence, and risk. These will allow us to make a precise comparison of 
disease occurrence in different populations. Relative risk is defined and shown to have 
both empirical and logical advantages as a measure of disease/risk factor association, 
especially in connection with case-control studies. The close connection between cohort 
and case-control studies is emphasised throughout. 

2.1 Measures of disease occurrence 

Two measures of disease frequency, incidence and prevalence, are commonly intro- 
duced in textbooks on epidemiology. Point prevalence is the proportion of a defined 
population affected by the disease in question at a specified point in time. The numerator 
of the proportion comprises all those who have the disease at that instant, regardless 
of whether it was contracted recently or long ago. Thus, diseases of long duration tend 
to have a higher prevalence than short-term illnesses, even if the total numbers of 
affected individuals are about equal. 

Incidence refers to new cases of disease occurring among previously unaffected 
individuals. This is a more appropriate measure for etiological studies of cancer and 
other chronic illnesses, wherein one attempts to relate disease occurrence to genetic 
and environmental factors in a framework of causation. The duration of survival of 
patients with a given disease, and hence its prevalence, may be influenced by treat- 
ment and other factors which come into play after onset. Early reports of an associa- 
tion between the antigen HL-A2 and risk for acute leukaemia (Rogentine et al., 1972), 
for example, were later corrected when it was shown that the effect was o n  survival 
rather than- on incidence (Rogentine et al., 1973). Since causal factors necessarily 
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operate prior to diagnosis, a more sensitive indication of their effects is obtained by 
using incidence as the fundamental measure of disease. 

Rates, as opposed to frequencies, imply an element of time. The rate of occurrence 
of an event in a population is the number of events which occur during a specified 
time interval, divided by the total amount of observation time accumulated during that 
interval. For an incidence rate, the events are new cases of disease occurring among 
disease-free individuals. The denominator of the rate can be calculated by summing 
up the length of time during the specified interval that each member of the population 
was alive and under observation, without having developed the disease. It is usually 
expressed as the number of person-years of observation. Mortality rates, of course, 
refer to deaths occurring among those who remain alive. 

The annual incidence rate for a particular calendar year is the number of new cases 
diagnosed during the year, divided by an approximation of the person-years of observa- 
tion, such as the midyear population. If the disease is a common one, the denominator 
should refer more specifically to the subjects who are disease-free at midyear and hence 
at risk of disease development. This correction is rarely needed for cancer occurring at 
specific sites because the number of people alive with disease will be relatively small. 
One exception to this which illustrates the general principle is that of uterine cancer. 
In societies where a substantial fraction of older women have undergone a hysterectomy, 
the denominators used to calculate rates of cervical or endometrial cancer should 
include only women with an intact uterus, as the remainder are no longer at risk 
for the particular disease. This adjustment is particularly important when comparing 
cancer incidence among populations with different hysterectomy rates. 

In calculating incidence rates time is usually taken to be calendar time. An annual 
rate is thus based on all cases which occur between January 1 and December 31 of a 
given year. However, there are other ways of choosing the origin of the time-scale 
besides reference to a particular date on the calendar. 

Chronological age, for example, is simply elapsed time from birth. The fact that 
cancer incidence rates are routinely reported using age as the fundamental "time" 
variable reflects the marked variation of incidence with age which is found for most 
cancer sites. A typical practice is to use J = 18 age intervals, each having a constant 
length of five years (0-4, 5-9, . . . 80-84, 85-89), ignoring cases occurring at age 90 or 
over. Sometimes the first interval is chosen to be of length l1 = 1 (first year of life), 
the second of length 1, = 4 (ages 1-4) and the remainder to have a constant length 
of 5 years. Cases of disease are allocated to each interval according to the age at 
diagnosis. Since individual ages will change during the period of observation, the 
same person may contribute to the person-years denominators for several age intervals. 

Yet another possibility for the time variable is time on  study. In prospective epi- 
demiological investigations of industrial populations, for example, workers may enter 
the study after two or five years of continuous employment. Time is then measured as 
years elapsed since entry into the study. Survival rates for cancer and other diseases 
are presented in terms of elapsed months or years since diagnosis or definitive treat- 
ment. Here of course the endpoint is death for patients with disease. When using time 
on study as the fundamental time variable it is usually quite important to account also 
for the effects of age, whether one is calculating survival rates among cancer patients 
or cancer incidence rates among a cohort of exposed workers. 
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Fig. 2.1 Schematic illustration of age-specific incidence rates. (D = diagnosis of 
cancer; W = withdrawn, disease free.) 

Period 1 Period 2 Period 3 

Number of events 2 4 3 
Total observation time 59.7 93.5 43.6 
rate 0.034 0.04 3 0.069 

Figure 2.1 illustrates schematically the method of calculation of incidence rates for 
a study in which the time axis is divided into intervals: 45-54, 55-64 and 65-72 years 
inclusive. In this case time in fact means age. Subjects are arranged according to their 
age at entry to the study, which for simplicity has been taken to correspond to a 
birthday. The first subject, who entered the study on his 45th birthday and developed 
the disease (D) early in his 57th year, contributes 10 years of observation and no events 
to the 45-54 age period and 2.1 years and one event to the 55-64 age period. The 
third subject, who entered the study at age 47, was withdrawn (W) from observation 
during his 61st year (perhaps due to death from another disease) and hence contributes 
only to the denominator of the rate. 

The least ambiguous definition of a rate results from making the time intervals short. 
This is because populations themselves change over time, through births, deaths or 
migrations, so that the shorter the time interval, the more stable the denominator used 
in the rate calculations. Also, the rate itself may be changing during the interval. If the 
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change is rapid it makes sense to consider short intervals-so that information about the 
magnitude of the change is not lost; but if the intervals are too short only a few events 
will be observed in each one. The instability of the denominator must be balanced 
against statistical fluctuations in the numerator when deciding upon an appropriate 
time interval for calculation of a reasonably stable rate. 

If an infinite population were available, so that statistical stability was not in question, 
one could consider making the time intervals used for the rate calculation infinitesimal. 
As the length of each interval approaches zero, one obtains in the limit an instantaneo~rs 
rate i,(t) defined for each instant t of time. This concept has proved very useful in 
actuarial science, where, with the event in question being death, i.(t) represents the 
force of mortality. In the literature of reliability analysis, where the event is failure of 
some system component, L(t) is referred to as the hazard rate. When the endpoint is 
diagnosis of disease in a previously disease-free individual, we can refer to the instan- 
taneous incidence rate as the force of morbidity. 

The method of calculation of the estimated rate will depend upon the type of data 
available for analysis. It is perhaps simplest in .the case of a longitudinal follow-up study 
of a fixed population of individuals, for example: mice treated with some carcinogen 
who are followed from birth for appearance of tumours; cancer patients followed from 
time of initial treatment until relapse or death; or employees of a given industry or  
plant who are followed from date of employment until diagnosis of disease. A com- 
mon method of estimating incidence or mortality rates with such data is to divide the 
time axis into J intervals having lengths lj  and midpoints tj. Denote by nj the number 
of subjects out of the original population of no who are still under observation and at 
risk at tj. Let dj  be the number of events- (diagnoses or deaths) observed during the 
jth interval. Then the incidence at time tj may be estimated by 

that is; by the number of events observed per subject, per unit time in the population 
at  risk during the interval. Of course the denominator in equation (2.1) is only an 
approximation to the total observation time accumulated during the interval, which 
should be used if available. 

Example: An example of the calculation of incidence rates from follow-up studies is given. in Table 2.1 
which lists the days until appearance of skin tumours for a group of 50 albino mice treated with benzo[a]- 
pyrene (Bogovski & Day, 1977). For the purpose of illustration, the duration of the study has been divided 
into four periods of unequal length: 0-179 days, 180-299 days, 300-419 days and 420-549 days. These 
are rather wider than is generally desirable because of limited data. Nineteen of the animals survived the 
entire 550 days without developing skin tumours, and are listed together at the bottom of the table. The 
contribution of each animal to the number of tumours and total observation time for each period are 
shown. Thus, the mouse developing tumour at 377 days contributes 0 tumours and 180 days observation 
to Period 1, 0 tumours and 120 days observation to Period 2, and 1 tumour and 78 days observation to 
Period 3. 

Tumour incidence rates shown at the bottom of Table 2.1 were calculated in two ways. The first used 
the actual total observation time in each period, while the second used the approximation to this based 
on the number of animals alive at the midpoint (equation 2.1). Thus the incidence rate for Period 1 is 0 
as no tumours were observed. For Period 2, 7 tumours were seen during 5 415 mouse-days of observa- 
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tion for a rate of (7/5 415) x 1 000 = 1.293 per 1 0 0 0  mouse-days. The approximate rate is [7/(47 x 
120)) x 1 000 = 1.241 tumours per 1 000 mouse-days. The rate increases during the third period and 
then falls off. 

Except in rare instances, cancer incidence rates are not obtained by continuous 
observation of all members of a specified population. Since the production of stable 
rates for cancers at most individual sites requires a population of at least one million 
subjects, the logistic and financial problems of attempting to maintain a constant sur- 

Table 2.1 Calculation of incidence rate of skin tumours in mice treated with benzola Ipyrene" 

No. of Day of tumour No. of Contribution to rate calculation by period 
animals if appearance or animals at 
greater than day of death risk at start of Period 1 Period 2 Period 3 Period 4 
one without each day (0-179 days) (1 80-299 days) (30011 19 days) (420-549 days) 

tumour (*) N o . V a y s c  No. Days No. Days No. Days 

Totals 0 8 999 7 5 4 1 5  

No. animals at risk at midpoint 50 47 
Length of interval (days) 180 120 
Rated (per 1 000 mouse-days) 0 1.293 
Ratee (per 1 000 mouse-days) 0 1.241 

" From Bogovski and Day (1977) 
No. of tumours observed during period 

'Contribution to  obse~a t ion  time during period 
Rate calculated using total observation time in  denominator 
Rate calculated from equation (2.1) 
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veillance system are usually prohibitive. The information typically available to a cancer 
registry for calculation of rates includes the cancer cases, classified by sex, age and 
year of diagnosis, together with estimates of the population denominators obtained 
from the census department. How good the estimated denominators are depends on 
the frequency and accuracy of the census in each locality. 

Example: Table 2.2 illustrates the calculation of the incidence of acute lymphatic leukaemia occurring 
among males aged 0-14 years in Birmingham, UK,  during 1968-72 (Waterhouse e t  al., 1976). The num- 
bers of cases (dj), classified by age, and the number of persons (nj) in each age group in 1971, the mid- 
year of the observation period, are shown. In order to approximate the total person-years of observation, 
nj is multiplied by the length of the observation period, namely five years. While this is adequate if the 
population size and age distribution remain fairly stable, this procedure would not suffice for times of rapid 
change in population structure. A better approximation to the denominator for the 1-4  year age group, 
for example, would be to sum up the numbers of 1 - 4  year-olds in the population at mid-1968 plus 
those at mid-1 969 and so on to 1972. As is standard for cancer incidence reporting, the rates are expressed 
as numbers of cases per 100 000 person-years of observation. Table 2.3 presents the calculated rates for 
three additional sites and a larger number of age groups. 

Table 2.2 Average annual incidence rates of acute lymphatic leukaemia for males aged 0-14 Bir- 
mingham region (1968-72)" 

Age Interval No. of Population No. of years of Rateh 
(Years) length cases (1971) observation (per 100 000 

(1) (d) (n) (1 968-72) person-years) 

' From Waterhouse et al. (1976) 

Rate = d v 100 000 
n x 5 

2.2 Age- and time-specific incidence rates 

If the population has been under observation for several decades, cases of disease 
and person-years at risk may be classified usefully by both calendar year and age at 
diagnosis. The situation is illustrated in Figure 2.2. As each study subject is followed 
forward in time, he traces out a 45" trajectory in the age x time plane. Person-years 
of observation are allocated to the various age x time cells traversed by this path, and 
diagnoses of cancer or other events are assigned to the cell in which they occur. Thus, 
the upper left-hand cell in Figure 2.2, corresponding to ages 50-54 years and the 
194044 time period, contains 1 death and 6 person-years of observation for a rate 
of 1/6x 100 = 16.7 events per 100 person-years. An analysis of age-specific rates 
averaged over a certain calendar period would ignore the time axis in this diagram 
(as in Figure 2.1), while an analysis of time-specific rates would ignore the age classi- 
fication. Typical practice is to consider five-year intervals of age and time, so as to be 
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Fig. 2.2 Schematic diagram of a follow-up study with joint classification by age and 
year. (D = diagnosis of cancer; W = withdrawn, disease free.) 

able to study the reasonably fine details of the variation in rates; but this will depend 
on the amount of data available. 

A cross-sectional analysis results from fixing the calendar periods and examining the 
age-specific incidences. Alternatively, in a birth-cohort analysis, the same cancer 
cases and person-years are classified according to year of birth and age. This is pos- 
sible since any two of the three variables (1) year of birth, (2) age and (3) calendar 
year determine the third. In Figure 2.2, for example, the 1890-99 birth cohort would 
be represented by the diagonal column of 45" lines intersecting the vertical axis be- 
tween 40 and 50 years of age in 1940. 

Example: Figure 2.3 shows the age-specific incidence of breast cancer in Iceland during the three 
calendar periods 1910-29, 1930-49 and 1950-72 (Bjarnasson et al., 1974). While the three curves show 
a general increase in incidence with calendar time, they also have rather different shapes. There was a 
decline in incidence with age after 40 years during the 191 1-29 period, a fairly constant incidence during 
1930-49 and an increase in incidence with age during the latest calendar period. 

If the data are rearranged into birth cohorts, a more coherent picture emerges. Figure 2.4 shows 
the age incidence curves for three cohorts of Icelandic women born in 1840-79, 1880-1909 and 1910-49, 
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Fig. 2.3 Age-specific incidence of breast cancer in Iceland for the three time periods 
1911-29, 193049,  1950-72. From Bjarnasson et al. (1974). 

Age (years) 

respectively. Because the period of case ascertainment was limited to the years 1910-72, the age ranges 
covered by these three curves are different. However, their shapes are much more similar than for the 
cross-sectional analysis of Figure 2.3; there is a fairly constant distance between the three curves on the 
semi-logarithmic plot. Since the ratios of the age-specific rates for different cohorts are therefore nearly 
constant across the age span, one may conveniently summarize the inter-cohort differences in terms of 
ratios of rates. 

2.3 Cumulative incidence rates 

While the importance of calculating age- or time-specific rates using reasonably short 
intervals cannot be overemphasized, it is nevertheless often convenient to have a single 
synoptic figure to summarize the experience of a population over a longer time span 
or age interval. For example, in comparing cancer incidence rates between different 
countries, it is advisable to make one comparison for children aged G14, another for 



50 BRESLOW & DAY 

Fig. 2.4 Age-specific incidence of breast cancer in Iceland for three birth cohorts, 1840- 
1879, 1880-1909, 1910-1 949. Adapted from Bjarnasson et al. (1974). 

Age (years) 

young adults aged 15-34, and a third for mature adults aged 35-69. Comparison of 
rates among the elderly may be inadvisable due to problems of differential diagnosis 
among many concurrent diseases. 

The usual method of combining such age-specific rates for comparison across different 
populations is that of direct standardization (Fleiss, 1973). The directly standardized 
(adjusted) rate consists of a weighted average of the age-specific rates for each study 
group, where the weights are chosen to be proportional to the age distribution of some 
external standard population. Hypothetical standard populations have been constructed 
for this purpose, which reflect approximately the age structure of World, European or 
African populations (Waterhouse et al., 1976); however, the choice between them 
often seems rather arbitrary. 

An alternative and even simpler summary measure is the cumulative incidence rate, 
obtained by summing up the annual age-specific incidences for each year in the 
defined age interval (Day, 1976). Thus the cumulative incidence rate between 0 and t 
years of age, inclusive, is 
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t 

A (t) = 2 l ( n )  
n=O 

where the l (n )  give the annual age-specific rates. In precise mathematical terms, the 
cumulative incidence rate between time 0 and t is expressed by an integral 

where l (u )  represents the instantaneous rate. The cumulative incidence between 15 
and 34 years, inclusive, would be obtained from yearly rates as 

In practice, age-specific rates may not be available for each individual year of life 
but rather, as in the previous example, for periods of varying length such as 5 or  
10  years. Then the age-specific rate l ( t i )  for the ith period is multiplied by its length 
li before summing: 

When calculating the cumulative rate from longitudinal data, we have, using (2.1), 

where the di are the deaths and the ni are the numbers at risk at the midpoint of each 
time interval. 

One reason for interest in the cumulative incidence rate is that it has a useful prob- 
abilistic interpretation. Let P(t) denote the net risk, or probability, that an individual 
will develop the disease of interest between time 0 and t. We assume for this definition 
that he remains at risk for the entire period, and is not subject to the competing risks 
of loss or death from other causes. The instantaneous incidence rate at time t then 
has a precise mathematical definition as the rate of increase in P(t), expressed relative 
to the proportion of the population still at risk (Elandt-Johnson, 1975). In symbols 

From this it follows that 

1 -P(t) = exp{-A (t)), 

or, using logarithms' rather than exponentials, 

A (t) = -log{l-P(t)). 

' log denotes the n a t ~ ~ r a l  logarithm. i .e . ,  to the base e .  which is used exclusively throughout the text. 
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These equations tell us that when the disease is rare or the time period short, so that 
the cumulative incidence or mortality is small, then the probability of disease occur- 
rence is well approximated by the cumulative incidence 

P(t) -A (t). 

Example: T o  illustrate the calculation of a cumulative rate, consider the age-specific rates of urinary tract 
tumours (excluding bladder) for Birmingham boys between 0 and 14  years of age (Table 2.3). These 
are almost entirely childhood tumours of the kidney, i.e., Wilms' tumours or  nephroblastomas. The 
period cumulative rate is calculated as (1 x 2.2) + (4 X 1.0) + (5 x 0.4) + (5 x 0.0) = 8.20 per 100 000 
population. Note that the first two age intervals have lengths of 1 and 4 years, respectively, while sub- 
sequent intervals are five years each. Table 2.4 shows the cumulative rates for all four tumours in Table 2.3 
using three age periods: 0-14, 15  -34 and 35-69. Also shown are the cumulative risks, i.e., probabilitiesj 
calculated from the rates according to  equation (2.4). With the excepfion of lung cancer, which has a 
cumulative rate approaching 0.1 for the 35-69 age group, the rates and risks agree extremely well. 

Table 2.3 Average annual incidence per 100 000 population by 
age group for Birmingham region, 1968-72 (males)" 

Age Tumour site 
(years) 

Urinary tract ~ t o ~ a c h  Lung Lymphatic 
(excl. bladder) leukaemia 

"From Waterhouse et al. (1976) 

Estimates of the cumulative rate are much more stable numerically than are estimates 
of the component age- or time-specific rates, since they are based on all the events 
which occur in the relevant time interval. This stability makes the cumulative rate the 
method of choice for reporting results of small studies. An estimate of A(t) for such 
studies may be obtained by applying equation (2.3), with the chosen intervals so fine 
that each event occupies its own separate interval. In other words, we simply sum up, 
for each event occurring before or at time t, the reciprocal of the number of subjects 
remaining at risk just prior to its occurrence. 



MEASURES OF DISEASE 

Table 2.4 Cumulative rates and risks, in percent, of developing cancer be- 
tween the indicated ages: calculated from Table 2.3 

Age period 

(Years) 

Tumour site 

Urinary tract Stomach Lung Acute lymphatic 
(excl. bladder) leukaem~a 

0-1 4 Rate 0.0082 0.0 0.0 0.041 2 
Risk 0.0082 0.0 0.0 0.0412 

15-34 Rate 0.0045 0.0075 0.0245 0.01 15 
Risk 0.0045 0.0075 0.0245 0.01 15 

35-69 Rate 0.3355 1.8810 7.131 0 0.1355 
Risk 0.3349 1.8634 6.8827 0.1 355 

Example: Consider the data on murine skin tumours shown in Table 2.1. Since 49 animals remain at risk 
at the time of appearance of the first tumour, t = 187 days, the cumulative rate is estimated as A(187) = 

1/49 = 0.020. The estimate at t = 243 days is given by 

Note that, the contribution from the three tumours occurring at 243 days, when 47 animals remain at risk, 
is given by (1/47) + (1/46) + (1/45) rather than (3/47). This is consistent with the idea that the 
three tumours in fact occur at slightly different times. which are nevertheless too close together to be 
distinguished by the recording system. 

Only 20 animals remain at risk at the time of the last observed tumour, 549 days, the others having 
already died or developed tumours. Hence this event contributes 1/20 = 0.05 to the cumulative rate. 
bringing the total to 

The risk of developing a skin tumour in the first 550 days is thus estimated to be 1 - exp(-0.457) = 0.367 
for mice in this experiment who survive the entire study period. Figure 2.5 shows the cumulative incidence 
rate plotted as a function of days to tumour appearance. 

In summary, three closely related measures are available for expressing the occur- 
rence of disease in a population: the instantaneous incidence rate defined at each point 
in time; the cumulative incidence rate defined over an interval of time; and the probability 
o r  risk of disease, also defined over an interval of time. Our next task is to consider 
how exposure of the population to various risk factors may affect these same rates 
and risks of disease occurrence. 

2.4 Models of disease association 

The simplest types of risk factors are the binary or  "all or none" variety, as exempli- 
fied by the presence or  absence of a particular genetic marker. Environmental variables 
are usually more difficult to quantify since individual histories vary widely with respect 
to the onset, duration and intensity of exposure, and whether it was continuous or  
intermittent. Nevertheless it is often possible to make crude classifications into an 
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Fig. 2.5 Cumulative incidence of skin tumours in mice after treatment with benzo[a]- 
pyrene. From Bogovski and Day (1977). 

100 200 300 400 500 
Time to diagnosis (days) 



MEASURES OF DISEASE 55 

exposed versus a non-exposed group, for example by comparing confirmed cigarette 
smokers with non-smokers, or  lifelong urban with lifelong rural residents. In order to 
introduce the concept of risk factor/disease association, we suppose here that the 
population has been divided into two such subgroups, one exposed to the risk factor 
in question and the other not exposed. 

As shown in the earlier examples, incidence rates may vary widely within the popula- 
tion according to such factors as age, sex and calendar year of observation. Thus 
whatever measure is used to compare incidence rates in the exposed versus non- 
exposed subgroups, this too is likely to vary by age, sex and time. What is clearly 
desired in this situation is a measure of association which is as stable as possible over 
the various subdivisions of the population; the more nearly constant it is, the greater 
is the justification for expressing the effect of exposure in a single summary number; 
the more it varies, the greater is the necessity to describe how the effect of exposure 
is modified by demographic or  other relevant factors on which information is available. 

Suppose that the population has been divided into I strata on the basis of age, sex, 
calendar period of observation, or  combinations of these and other features. Denote 
by ,Ili the incidence rate of disease in the ith stratum for the exposed subgroup and by 
,Ioi the rate for the non-exposed subgroup in that stratum. The first measure of associa- 
tion we consider is the excess risk of disease, defined as the difference between the 
stratum-specific incidences 

Since the measure is defined in terms of incidence rates, rather than risks, it would 
perhaps be more accurate to refer to it as the excess rate of disease. We follow con- 
vention by allowing the distinction between risks and rates to be blurred somewhat 
in discussing measures of association, except when it is critical to the point in question. 

The intuitive idea underlying this approach is that cases contributing to the "natural" 
or  background disease incidence rate in the ith stratum are due to the presence of 
general factors which operate on exposed and non-exposed individuals alike. Cases 
caused by exposure to the particular agent under investigation are represented in 
the excess risk bi (Rothman, 1976). If these two causes of disease, the general and 
the specific, were in some sense operating independently of each other, one might 
expect the number of excess cases of disease occurring per person-year of observation 
to reflect only the level of exposure and to be unrelated to the underlying natural risk. 
Thus the excess risk would be relatively constant from stratum to stratum, apart from 
random statistical fluctuations. 

The idea of a constant excess risk due to the particular exposure may be formally 
expressed by hypothesizing an additive model for the two dimensional sets of rates. 
With b representing the additive effect of exposure, the model states 

Unfortunately the concept of independence leading to this model is rather simplistic 
and breaks down when one considers plausible mechanisms for the disease process 
(Koopman, 1977). Suppose, for example, that a disease was caused in infancy or 
early childhood but took many years to develop. If the age distribution of the cases 
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produced by the specific exposure were the same as that of the spontaneous cases, the 
differences in age-specific rates would be greater for the ages in which the spontaneous 
incidence was higher, even if the general and specific exposures had operated inde- 
pendently of each other early on. Nonetheless (2.7) may be postulated ad hoc, and 
if it appears to correspond reasonably well to  the data, the estimate of b derived from 
the fitted model may be used as an overall measure of the effect of exposure. 

In technical statistical terms, this model states that there are no interactions between 
the additive effects of exposure and strata on incidence rates; exposure to the risk 
factor has the same effect on disease incidence rates in each of the population strata. 
More generally, the absence of interactions between two factors, A and B, means that 
the effects of Factor B on outcome do not depend on the levels of Factor A. It is 
important to recognize, however, that what we mean by the effect of a factor depends 
very much on the scale of measurement. Since the rates are expressed on a simple 
arithmetic scale in (2.7), we speak of additive effects. As the following example shows, 
whether o r  not there are statistical interactions in the data may depend on the scale 
on which the outcome or  response variable is measured. 

Fig. 2.6 Schematic illustration of concept of statistical interaction. 
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Example: Figure 2.6 illustrates the concept of interaction schematically. Conditions for no interaction 
hold when the two response curves are parallel (Panel I). Note that the definition of interaction is com- 
pletely symmetric; the diagram shows also that the effect of Factor A is independent of the level of 
Factor B. 

The non-parallel response curves shown in Panel 11 of the figure indicate that Factor B has a greater 
effect on outcome at level 1 of Factor A than it does at level O. I t  is apparent, however, that if the out- 
come variable were expressed on a different scale, for example a logarithmic or square root scale which 
tended to bring together the more extreme outcomes, the interaction could be made to disappear. In this 
sense we may speak of interactions which are "removable" by an appropriate choice of scale. 

The situation in Panels 111 and IV, characterized by the response curves either crossing over or having 
slopes of different signs, allows far no such remedy. In Panel 111 the effect of Factor B is to increase the 
response at one level of Factor A, and to decrease i t  at another, while in Panel 1V it is the sign of the A 
effect which changes with B. In the present context this would mean that exposure to the risk factor 
increased the rate of disease for one part of the population and decreased it  for another. No change of 
the outcome scale could alter this essential difference. 

While the excess risk is a useful measure in certain contexts, the bulk of this mono- 
graph deals with another measure of association, for reasons which will be clarified 
below. This is the relative risk of disease, defined as the ratio of the stratum-specific 
incidences: 

The assumed effect of exposure is to multiply the background rate ,Ioi by the quantity 
ri. Absence of interactions here leads to a multiplicative model for the rates such that, 
within the limits of statistical error, these may be expressed as the product of two 
terms, one representing the underlying natural disease incidence in the stratum and 
the other representing the relative risk r. More precisely, the model states 

where P=log(r). Alternatively, if the incidence rates are expressed on a logarithmic 
scale, it takes the form 

log ,Ili = log ,Ioi +p. 

Comparing this with equation (2.7) it is evident that they have precisely the same 
structure, except for the choice of scale for the outcome measure (incidence rate). In 
other words, the multiplicative model (2.8) is identical to an additive model in log 
rates. Such models are called log-linear. 

While excess and relative risk are defined here in terms of differences and ratios of 
stratum-specific incidence rates, analogous measures for the comparison of cumulative 
rates and risks may be deduced directly from equations (2.2) and (2.4). Suppose, for 
example, that the two sets of incidence rates have a (constant) difference of 10 cases 
per 100 000 person-years observation for each year of a particular 15-year time 
period. Then the difference between the cumulative rates over this same period will be 
1 0 x  15 = 150 cases per 100 000 population. On the other hand, if the two sets of 
rates have a (constant) ratio of 5 for each year, the ratio of the cumulative rates will 
also equal 5. 
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Because there is an exponential term in equation (2.4), the derived relationships 
between the probabilities, o r  risks, for this same time period are not so simple. Let 
Po(t) denote the net probability that a non-exposed person develops the disease during 
the time period from 0 to t years, and let Pl(t) denote the analogous quantity for the 
exposed population. If the corresponding incidence rates satisfy the multiplicative 
equation ill(u) = rilo(u) for all u between 0 and t, then 

This relationship is well approximated by that for the cumulative rates 

providing the disease is sufficiently rare, or the time interval sufficiently short, so that 
both risks and rates remain small. In general, the ratio of disease risks is slightly less 
extreme, i.e., closer to unity, than is the ratio of the corresponding rates. 

We have now introduced the two principal routes by which one may approach the 
statistical analysis of cancer incidence data: the additive model, where the fundamental 
measure of association is the excess risk, and the multiplicative model, where the 
effect of exposure is expressed in relative terms. In order to arrive at a choice between 
these two, or  indeed to decide upon any particular statistical model, several considera- 
tions are relevant. From a purely empirical viewpoint, the most important properties 
of a model are simplicity and goodness of fit to the observed data. The aim is to be 
able to describe the main features of the data as succinctly as possible. Clarity is 
enhanced by avoiding models with a large number of parameters which must be 
estimated from the data. If, in one type of model many interaction terms (see 
3 6.1) are required to fit the data adequately, whereas with another only a few are 
required, the latter would generally be preferred. 

The empirical properties of a model are not the only criteria. We also need to 
consider how the results of an analysis are to be interpreted and the meaning that 
will be attached to the estimated parameters. Excess and relative risks inform us about 
two quite different aspects of the association between risk factor and disease. Since 
relative risks for lung cancer among smokers versus non-smokers are generally at least 
five times those for coronary heart disease, one might be inclined to say that the lung 
cancer-smoking association is stronger, but this ignores the fact that the differences in 
rates are generally greater for heart disease. From a public health viewpoint the 
impact of smoking on mortality from heart disease may be more severe than its effect 
on lung cancer death rates. This fact has led some authors to advocate exclusive use 
of the additive measure (Berkson, 1958). Rothman (1976), as noted earlier, has 
argued that it is the most natural one for measuring interaction. 

In spite of these considerations, the relative risk has become the most frequently 
used measure for associating exposure with disease occurrence in cancer epidemiology, 
both because of its empirical behaviour and because of several logical properties it 
possesses. Empirically it provides a summary measure which often requires little quali- 
fication in terms of the population to which it refers. Logically it facilitates the evalua- 
tion of the extent to which an observed association is causal. The next two sections 
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explore these important properties of the relative risk in some detail. We merely point 
out here that, once having obtained an estimate of the relative risk, it is certainly 
possible to interpret that estimate in terms of excess risk provided one knows the 
disease incidence rates for unexposed individuals in the population to which it refers. 
For example, if the baseline disease incidence is 20 cases per year per 100 000 popula- 
tion and the relative risk is 9, this implies that the difference in rates between the 
exposed and unexposed is (9-1) x 20 = 160 cases per 100 000. In our opinion, the 
advantages of using the relative measure in the analysis far outweigh the disadvantage 
of having to perform this final step to acquire a measure of additive effect, if in fact 
that is what is wanted. No measure of association should be viewed blindly, but instead 
each should be interpreted using whatever information exists about the actual magnitude 
of the rates. 

2.5 Empirical behaviour of the relative risk 

Several examples from the literature of cancer epidemiology will illustrate that the 
relative risk provides a stable measure of association in a wide variety of human popu- 
lations. When there are differences in the (multiplicative) effect of exposure for 
different populations, it is often true that the levels of exposure are not the same, or  
that there are definite biological reasons for the discrepancies in the response to the 
same exposure. 

Temporal variation in age-specific incidence 

Table 2.5 shows the age-specific incidence rates for breast cancer in Iceland for two 
of the birth cohorts represented in Figure 2.4.. The ratios of these rates for the two 
cohorts are remarkably stable in the range 1.66-1.81, whereas the differences between 
them triple over the 50-year age span. Thus, while one can describe the relationship 
between birth cohort and incidence by saying that the age-specific rates for the later 
cohort are roughly 1.7 times those for the earlier one, no such simple summary is 
possible using the excess risk as a measure of association. Note that the ratio of the 
cumulative rates summarizes that for the age-specific ones, and that the cumulative risk 
ratio is only slightly less than .the rate ratio despite the 50-year age span. 

Table 2.5 Average annual incidence rates for breast cancer in Iceland, 1910-72, per 100 000 popula- 
tiona 

Year of Age (years) Cumulative (ages 40-89) 
birth 4 0 4 9  50-59 60-69 70-79 80-89 Rate (%) Risk (%) 

Difference 27.20 41.30' 57.80 59.00 91 .OO 2.77 2.63 
Ratio 1.70 1.78 1.81 1.73 1.66 1.73 1.70 

From ~jarnasson et al. (1974) 
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Geographical variation in age-specific incidence 

Figure 2.7 gives a plot of incidence rates against age for stomach cancer occurring 
in males in three countries (Waterhouse e t  al., 1976). In calculating these rates, 
six 5-year age intervals were used: 35-39, 40-4.4, 4 5 4 9 ,  50-54, 55-59, 60-64. Since 
a logarithmic scale is used for both axes, the plotted points appear to lie roughly on 
three parallel straight lines, each with a slope of about 5 or  6. This quantitative 
relationship, which is common for many epithelial tumours, may be expressed sym- 
bolically as follows. Denote by &(t) the average annual incidence rate for the ith area 
at age t, where t is taken to be the midpoint of the respective age interval: t = 37.5, 
42.5, etc. The fact that the log-log plots are parallel and linear means that approximately 

where we arbitrarily set PI = 0, thus using country 1 as a baseline for comparison. 
Raising each side of this equation to the power e, the relationship may also be expressed 
as 

Ai(t) = earitY, (2.10) 
where ri = exp(Pi). 

The values of the parameters in (2.9) which give the best "fit" to the observed 
data points, using a statistical technique known as 'weighted least squares regression' 
(Mosteller & Tukey, 1977, p. 346), are a = -18.79, PI = 0, P2 = 0.67, P3 = 1.99 and 
y = 5.49. Although the deviations of the plotted points about the fitted regression 
lines are slightly larger than would be expected from purely random fluctuations, the 
equations well describe the important features of the data. 

The parameters r (= exp P)  describe the relative positions of the age-incidence 
curves for the three countries. By considering ratios of incidence rates, the relative 
risk of stomach cancer in males in Japan versus those in Connecticut is 

while the relative risk in Birmingham versus that in Connecticut is 

exp @I2d1) = 1.9. 

The most important feature of the above relationships is that, to the extent that 
equations (2.9) or (2.10) hold, the relative risks between different areas d o  not vary 
with age. The chance that a Birmingham male of a given age contract stomach cancer 
during the next year is roughly twice that of his New England counterpart, and the 
same applies whether he is 45, 55 o r  65 years old. On the other hand, the absolute 
differences in the age-specific rates, i.e., J-,(t)A1(t), vary markedly with age. The 
percentage increase in incidence associated with each 10% increase in age is related 
to the parameter y through the equation 

and varies neither with age nor with area. 
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As shown by Cook, Doll & Fellingham (1969), most epithelial tumours have age- 
incidence curves of a similar shape to .that of gastric cancer, differing between popula- 
tions only by a proportionality constant, i.e., relative risk. This is a good technical 
reason for choosing the ratio as a measure of association, since it permits the relation- 
ship between each pair of age-incidence curves to be quite accurately summarized in 
a single number. 

The two epithelial tumours which deviate most markedly from this pattern are those 
of the lung and the breast. For breast cancer we have already shown how irregularities 
in the cross-sectional age curves reflect a changing incidence by year of birth, and 
that a basic regular behaviour is seen when the data are considered on a cohort basis 
(Figures 2.3 and 2.4; Bjarnasson et al., 1974). A similar phenomenon has been noted 
for lung cancer, where a large part of the inter-cohort differences are presumably due 
to increasing exposure to tobacco and other exogenous agents (Doll, 197 1). 

Risk of cancer following irradiation 

Radiation induces tumours at a wide range of sites, and its carcinogenic effects have 
been studied in a variety of population groups, including the atomic bomb survivors 
in Japan and people treated by irradiation for various conditions. As discussed in the 
previous example, the "natural" incidence of most cancers varies widely with age at 
diagnosis. Here we examine how the carcinogenic effect of radiation varies according 
to age at exposure, i.e., the age of the individual when irradiated. 

In the mid 1950s, Court Brown and Doll (1965) identified over 14'000 individuals 
who had been treated by irradiation for ankylosing spondylitis between 1935 and 1954 
in the United Kingdom. The latest report analyses the mortality of this group up to 
1 June 1970 (Smith, 1979). In Figure 2.8 we show the change with age at exposure 
of the relative risk and-of the absolute risks for leukaemia and for other heavily irra- 
diated sites. For both types of malignancy, the relative risk varies little with age at 
exposure, whereas the absolute risk increases rapidly as age at treatment increases. 
The effect of the radiation is thus to multiply the incidence which would be expected 
among people in the general population of the same age by a factor of rounhlv 4.8 for 
leukaemia and 1.5 for other heavily irradiated sites. As a function of time since exposure, 
the relative risk for leukaemia appears to reach a peak after 3-5 years and then decline 
to zero, whereas the effect on heavily irradiated sites may persist for 20 or more years 
after exposure. 

An analysis of the mortality among atomic bomb survivors for the period 1950-74 
(Beebe, Kato & Land, 1977) demonstrates a similar uniformity of relative risk with age 
at exposure, and the corresponding sharp increase in absolute risk. There is, however, 
one major exception to the uniformity of the relative risk. For those aged less than 
ten years at exposure the relative risks are considerably higher than in subsequent age 
groups, which presumably indicates greater susceptibility among young children. 

Studies of breast cancer induced by radiation include those of atomic bomb survivors 
(MacGregor et al., 1977) and of women treated by irradiation for tuberchlosis (Boice & 
Monson, 1977) or a range of benign breast conditions (Shore et al., 1977). The 
relative risk appears higher among women exposed at younger ages and is particularly 
high among those exposed in the two years preceding menarche or during their first 
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Fig. 2.8 Ratio of observed to expected numbers of deaths and excess death rates from 
leukaemia and cancers of heavily irradiated sites according to age at first treat- 
ment with X-rays for ankylosing spondylitis. From Smith (1979). 

Age at first treatment (years) 

- / ,---- cancers of heavily 
irradiated si tes(H.1.S.) 

Age at first treatment (years) 

No.of { 7 8 8 4 leuk. 

deaths 29 80 6s 43 H.I.S. 

pregnancy (Boice & Stone, 1979). The proliferation of breast tissue during menarche or 
first pregnancy would suggest an increased susceptibility to carcinogenic hazards. 

The relative risk thus seems to provide a fairly uniform measure of the carcinogenic 
effect of radiation as a function of age at exposure, except where a difference in the 
relative risk probably reflects differences in tissue susceptibility. 
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Lung cancer and cigarette smoking 

Smoking and irradiation are perhaps the most extensively studied of all carcinogenic 
exposures. Cigarette smoking is related to tumours at a number of sites including the 
respiratory tract, the oral cavity and oesophagus, and the bladder and pancreas. The 
relationship with cancer of the lung has been the most extensively studied, and the 
results of several large prospective studies have quantified the association in some 
detail. 

Table 2.6 presents the change in incidence with age among continuing smokers and 
among non-smokers, as given by Doll (1971), the data for consecutive five-year age 
groups being averaged. The excess risk increases sharply with age, whereas the relative 
risk, although increasing, changes only slowly. 

Table 2.6 Incidence of bronchial carcinoma among non-smokers and con- 
tinuing smokers, per 100 000 person-yearsa 

Age at risk Non-smokers Smokers Relative risk Excess risk 
(Years) 

"From Doll (1971) 
Likely to be unreliable due to under-reporting 

A more appropriate way of looking at the risk of lung cancer associated with ciga- 
rette smoking, however, is in terms of duration of smoking rather than simply age. 
Figure 2.9 presents the incidence of lung cancer for non-smokers as a function of age, 
and for smokers as a function of both age and duration of smoking. The increase in 
relative risk with age is clear, but more striking is the parallellism of the lines for non- 
smokers and for smokers when incidence is related to duration of smoking. Since for 
non-smokers we might regard exposure as lifelong, one could consider that the two 
time scales both refer to duration of exposure. The figure thus displays a constant 
relative difference in incidence when the more relevant time scales are used. 

Breast cancer and age at first birth 

The large international study by MacMahon and associates (MacMahon et al., 1970) 
showed that age at first birth is the major feature of a woman's reproductive life which 
influences risk for breast cancer. Table 2.7, taken from their work, shows the uniformity 
of the relationship between risk and age at first birth over all centres in a collaborative 
study. Furthermore (not shown in the table), these relative risks change little with 
age at diagnosis. The populations included in the study showed a wide range of inci- 
dence levels, and had age-incidence curves of quite different shapes. The ability of the 
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Fig. 2.9 Age-specific mortality rates from lung cancer for smokers and non-smokers. 
From Doll (1971). ( a  - l = cigarette smokers by duration of smoking; 
0-0 = cigarette smokers by age; x-x = non-smokers by age.) 

20 30 40 50 60 7080 

Years 

Table 2.7 Estimates of relative risk of breast cancer, by age at first birthavb 

Centre Nulliparous Parous, age at first birth (years): 
t 2 0  20-24 2 S 2 9  30-34 35 t  

Boston 100 32 55 76 90 117 
Glamorgan 100 3 8 49 67 73 1 24 
At hens 100 51 71 79 1 06 127 
Slovenia 100 81 74 94 112 118 
Sao Paulo 100 49 65 94 84 175 
Taipei 100 54 45 37 89 106 
Tokyo 100 26 49 78 100 138 

All centres 100 50 60 78 94 122 
- 

a From MacMahon et al. (1970) 
Estimated risk relative to a risk of 100 for the nulliparous; adjusted for age at diagnosis 
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relative risk to summarize the relationships among so wide an array of incidence pat- 
terns indicates that, at least in this situation, it reflects a fundamental feature of the 
disease. The absolute differences in age-specific incidence rates by age at first birth 
vary widely between the populations. 

The failure of previous work on the influence of reproductive factors on risk of 
breast cancer to identify the basic importance of age at first birth was probably due to 
inappropriate measures of disease association. As MacMahon et al. concluded, "Previous 
workers seem not to have considered the differences of sufficient importance to 
warrant detailed exploration. An apparent lack of interest in the relationship may have 
resulted from failure to realize the magnitude of the differences in relative risk that 
underlie it. This lack of recognition of the strength of the relationship can be attributed 
primarily to analyses using summary statistics such as means . . .". 

2.6 Effects of combined exposures 

The previous examples have illustrated the extent to which the relative risk remains 
constant over different age strata, or among different population groups. We shall 
now examine the extent to which the relative risk associated with one risk factor varies 
with changing exposure to a second risk factor, and we shall see that in this situation 
one also frequently observes relative uniformity. Consider the simplest situation, with 
two dichotomous variables A and B. There are four incidence rates, denoted LAB, LA,  
lB and lo according to whether an individual is exposed to both, one or neither of 
the factors. The three relative risks, expressed using lo as the baseline incidence, are 
rAB = lAB/AO, rA = lA/10 and rB = AB/AO, respectively. 

Among those exposed to B, the relative increase in risk incurred by also being 
exposed to A is given by lAB/ lB  = rAB/rB. If the relative risk associated with exposure 
to A is the same, whether or not there is exposure to B, we say that the effects of the 
two factors are independent or do not interact (Figure 2.6). In this case rAB/rB = rA, 
from which TAB = rArB. Thus, the independence of relative risks for two or more 
exposures implies a multiplicative combination for the joint effect. But, if the two risk 
factors each have additive rather than multiplicative effects on incidence, then similar 
calculations show that the relative risk for the joint exposure under the no interaction 
assumption is rAB = rA + rB-1. 

The uniformity of relative risk for the exposures considered in the earlier examples 
can also be interpreted as a multiplicative combination of effects. Since the spontaneous 
incidence of leukaemia increases with age and radiation affects the spontaneous inci- 
dence proportionately, the joint effect is simply the product of the spontaneous rate 
and the radiation risk. Women in the United States have an incidence of breast cancer 
about six times higher than that of Japanese women. The joint action of the factor 
responsible for the elevated risk among United States women, whatever it may be, and 
age at first birth is clearly multiplicative. 

Example: As an example of the joint effects of two risk factors, Table 2.8 summarizes results from a 
case-control study of oral cancer as related to alcohol and tobacco consumption (Rothman & Keller, 
1972). The 483 cases and 492 controls were cross-classified according to four levels of consumption of 
each risk factor and also two age categories, under and over 60 years of age. Using methods which will be 
introduced in Chapter 4, age-adjusted relative risks of oral cancer were calculated for each of the 16 
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Table 2.8 Joint effect of alcohol and tobacco consumption on risk for oral 

Alcohol Tobacco (cigarette equiv.1day) Alcohol risk 
(ozlday) 0 1-19 20-39 40+ (adjusted for tobacco) 

0 1 .O 1.6 1.6 3.4 1 .O 
0.14.3  1.7 1.9 3.3 3.4 1.8 
0.4-1.5 1.9 4.9 4.9 8.2 2.9 
1.6+ 2.3 4.8 10.0 15.6 4.2 

Tobacco risk 1 .O 1.4 2.4 4.2 
(adjusted for 
alcohol) 

"From Rothman and Keller (1972) 
Relative risks adjusted for age at diagnosis 

alcohol/tobacco categories shown. These may be denoted rij, where i refers to tobacco level and j to 
alcohol level. Since the category of lowest exposure to both factors is used as a baseline for comparison 
with other groups, r,, = 1.0. 

The multiplicative hypothesis in this framework takes the form 

whereby the relative risk for a given category of tobacco/alcohol consumption is obtained as the product 
of a relative risk for the tobacco level times that for the alcohol level. Again, this expresses the idea that 
relative risks for different tobacco levels do not vary according to alcohol consumption, and vice versa. 
Of course the rij presented in Table 2.8 do not satisfy this requirement exactly. Procedures are presented 
in Chapter 6 for finding estimates of ril and rlj which yield the best fit to the observed data under the 
model. These estimates, shown in the margins of Table 2.8, were used to calculate the expected number 
of cases in Table 2.9. Comparison of the observed numbers of cases with those expected under the model 
shows that agreement between the model and the data is about as good as can be expected, given the 
errors inherent in random sampling. 

Table 2.9 Observed number of cases and controls by smoking and drinking category, and the number 
expected under the multiplicative modela 

Alcohol Tobacco. (cigarette equiv.1day) 
(ozlday) 0 1-19 2 0 3 9  40 + 

Cases Controls Expected Cases Controls Expected ' Cases Controls Expected Cases Controls Expected 
cases cases cases cases 

a From Rothman and Keller (1972) 

The multiplicative effects of alcohol and tobacco have been demonstrated by Wynder 
and Bross (1961) for cancer of the oesophagus, and for cancer of the mouth in an 
earlier publication (Wynder, Bross & Feldman, 1957). 

Example: A second example concerns the joint effect of asbestos exposure and cigarette smoking on 
risk for bronchogenic carcinoma. Selikoff and Hammond (1978) followed 17 800 asbestos insulation 
workers prospectively from 1 January 1967 to 1 January 1977. Smoking histories were obtained for the 
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majority of the cohort. Risk estimates for smoking obtained from the American Cancer Society pro- 
spective study (Hammond, 1966) were applied to generate expected numbers of deaths from lung 
cancer among the insulation workers. Table 2.10 gives the observed and expected numbers of lung cancer 
deaths among continuing smokers and among non-smokers. 

Since the asbestos-related risks in the two groups are about equal, it follows that the risk for cigarette 
smoking asbestos insulation workers, compared with non-smokers not exposed to asbestos, is the product 
of their smoking risk, from which the expected numbers were derived, and their asbestos risk. Similar 
results have been reported by Berry, Newhouse and Turok (1972) and reviewed by Saracci (1977). 

Table 2.10 The joint effect of cigarette smoking and asbestos 
exposure on risk for lung cancer. Lung cancer mortality among 
17 800 asbestos insulation workers, 1967-77" 

Lung cancer deaths 

Observed Expectedb Relative risk 

Non-smokers 8 1.82 4.40 
Smo kers 228 39.7 5.74 

"From Hammond, Selikoff and Seidman (1979) 
Based on age-specific general population rates for men smoking equivalent numbers of 

cigarettes 

The epidemiology of cancer thus provides empirical reasons for choosing relative 
risk as the natural measure of association of cancer and exposure. On many occasions 
similar exposures lead to similar relative risks, almost independent of the population 
group exposed. When appreciable differences in relative risk are observed, these often 
can be expected to reflect real differences in susceptibility or exposure which may not 
be immediately apparent. As an interesting contrast, Table 2.11 gives data for ischaemic 
heart disease (Doll & Peto, 1976), where the biological processes are presumably 
different. The relative risks change markedly with age, and a different measure of 
association might be more appropriate. 

Table 2.1 1 Smoking and risk for ischaemic heart disease, by agea 

Annual death rate per 100 000 menb (no. of deaths in parentheses) 

Age Non-smokers Current smokers, smoking cigarettes only (no./day) 
(years) 

R R 1-14 R R 15-24 R R 25+ RR 

" From Doll and Peto (1 976) 
Indirectly standardized for age to make the four entries in any one line comparable 
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2.7 Logical properties of the relative risk 

In addition to an empirical justification for its use, the relative risk has some pro- 
perties of a logical nature which are useful for appraising the extent to which the 
observed association may be explained by the presence of another agent, or may be 
specific to a particular disease entity. Cornfield et al. (1959) gave a precise statement 
and formal proof of these properties (see also 5 2.9). 

"If an agent, A, with no causal effect upon the risk of disease, nevertheless, because 
of a positive correlation with some other causal agent, B, shows an apparent risk, r, 
for those exposed to A, relative to those not so exposed, then the prevalence of B, 
among those exposed to A, relative to the prevalence among those not so exposed, 
must be greater than r." 

Thus, in order that the smoking-lung cancer association be explained by a tendency 
for people with a cancer-causing genotype to smoke, the putative genetic trait must 
carry a risk of at least ninefold in addition to being at least nine times more prevalent 
among smokers. Spurious associations due to confounding are always weaker than the 
underlying genuine associations when strength of association is measured by relative 
risk. 

Cornfield et al. also note that the relative measure is a sensitive indicator of the speci- 
ficity of the association with a particular disease entity: 

"If a causal agent A increases the risk for disease I and has no effect on the risk for 
disease 11, then the relative risk of developing disease I, alone, is greater than the 
relative risk of developing disease I and I1 combined, while the absolute measure is 
unaffected." 

Thus, if the agent in question increases the risk of a certain histological type of cancer 
at a given site (e.g., "epidermoid" as opposed to other types of lung cancer) but has 
little or no effect on other types, a greater relative risk is obtained when the calculation 
is restricted to the particular histological type than when all cancers at that site are 
considered. But, it makes no difference to the excess risk if the other histological 
types are included or not. 

Finally, from the point of view of case-control studies, there is one compelling reason 
for adopting the relative risk as the primary measure of association even in the absence 
of other considerations. This is simply that, as shown in the next section, the relative 
risk is in principle directly estimable from data collected in a case-control study. Addi- 
tional information, namely knowledge of actual incidence rates for at least one of the 
exposed or non-exposed populations, is required to estimate the excess risk. 

2.8 Estimation of the relative risk from case-control studies - basic concepts 

A full understanding of how .the data from a case-control study permit estimation 
of the relative risk requires careful description of how cases and controls are sampled 
from the population. The studies whose analysis is considered in this monograph involve 
the ascertainment of new (incident) cases which occur in a defined study period. 
Ideally these cases are identified through a cancer registry or some other system which 
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covers a well-defined population; with hospital-based studies the referent population, 
consisting of all those "served" by the given hospital, may be more imaginary than 
real. Most commonly the sample will contain all new cases arising during the study 
period, or at least all those successfully interviewed. Otherwise they are assumed to be 
a random sample of the actual cases. 

The controls in a case-control study are assumed to represent a random sample of 
the subjects who are disease-free, though otherwise at risk. The control sample may 
be stratified, for example on the basis of age and sex, so that it has roughly the same 
age and sex distribution as the cases. Or, the controls may be individually matched to 
cases on the basis of family membership, residence or other characteristics. Under 
such circumstances the controls are assumed to constitute a random sample from 
within each of the subpopulations formed by the stratification or matching factors. 

If infinite resources were available, one would ideally conduct a prospective investiga- 
tion of the entire population. Subjects would be classified at the beginning of the study 
period on the basis of exposure to the risk factor, and at the end of the period according 
to whether or not they had developed the disease. Suppose that a proportion p of the 
individuals at risk in a particular stratum were exposed at the beginning of the study. 
Denote by Pi = Pl(t) the probability that an exposed person in this stratum develops 
the disease during a study period of length t, and by Po = Po(t) the analogous quantity 
for the unexposed. Let Q = 1-P and q = 1-p. Then the expected proportions of indi- 
viduals who fall into each of the resulting four categories or cells.may be represented 
thus: 

Exposed Unexposed Total 

Diseased 

Total P ‘I 1 

If the study period is reasonably short, which means of the order of a year or two 
for most cancers and other chronic disease, the probabilities Pi and Po will be quite 
small. According to 5 2.4, their ratio will thus be a good approximation to the ratio r 
of stratum-specific incidence rates averaged over the study period. In other words, 
we have as an approximation r = ll/lo-Pl/Po. Since Q1 =Qo= 1 under these same 
circumstances, it follows that Pl/Ql ==PI and Po/Qo=Po, and thus that the relative 
risk is also well approximated by the odds ratio w of the disease probabilities: 

The term "odds ratio" derives from the fact that $J may also be written in the form 
(Pl/Ql)+(Po/Qo), i.e., as the ratio of the "odds" of disease occurrence in the 
exposed and non-exposed sub-groups. 
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Example: Suppose the average annual incidence rates for the exposed and non-exposed substrata are 
A ,  = 0.02 and A, = 0.01 and that the study lasts three years. Then the cumulative rates are A ,  = 0.06 
and A. = 0.03, while the corresponding risks (2.4) are PI = 1 - exp(-0.06) = 0.05824 and Po = 1 - 
exp(-0.03) = 0.02956. It follows that the odds ratio is 

as compared with a relative risk r = l1/AO of exactly 2. 

As Cornfield (195 1) observed, the approximation (2.13) provides the critical link 
between prospective and retrospective (case-control) studies vis-a-vis estimation of 
the relative risk. If the entire population were kept under observation for the duration 
of the study, separate estimates would be available for each of the quantities p, PI and 
Po, so that one could determine all the probabilities shown in (2.12). If we were to 
take samples of exposed and unexposed individuals at the beginning. of the study and 
follow them up, this would permit estimation of PI and Po and thus of both excess 
and relative risks, but not of p; of course such samples would have to be rather large 
in order to permit sufficient cases to be observed to obtain good estimates. With the 
case-control approach, on the other hand, sampling is done according to disease rather 
than exposure status. This ensures that a reasonably large number of diseased persons 
will be included in the study. From such samples of cases and controls one may estimate 
the exposure probabilities given disease status, namely: 

p1 = pr(exposed 1 case) = PPI and 
pP1+ qpo 

po = pr(exposed 1 control) = PQI 
pQl+ qQo 

It immediately follows that the odds ratio calculated from the exposure probabilities 
is identical to the odds ratio of the disease probabilities, or  in symbols: 

Consequently the ratio of disease incidences, as approximated by the odds ratio of the 
corresponding risks, can be directly estimated from a case-control study even though the 
latter provides no  information ahout the absolute magnitude of the incidence rates 
in the exposed and non-exposed subgroups. 

Example: As an illustration of this phenomenon, suppose the incidence rates from the previous example 
applied to a population of 10 000 persons, of whom 30% were exposed to the risk factor. If the entire 
population were kept under observation for the study period one would expect to find P, x 3 000 = 175 
exposed cases and Po x 7 000 = 207 non-exposed cases. The data could thus be summarized: 

Exposed Unexposed Total 

Total 3 000 7 000 10 000 
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If, instead of making a complete enumeration of the population, one carried out a case-control study in 
which all 382 cases of disease were ascertained along with a 10% sample of controls, the expected distri- 
bution of the study data would be: 

Exposed Unexposed Total 

Diseased 

Disease-free 

From this we calculate the exposure odds ratio for the case-control sample: 

which differs from the previous figure of yp  = 2.03 only because the expected values in the table have 
been rounded to whole numbers. 

One fundamental sampling requirement to which attention is drawn is that thesampling 
fractions for cases and controls must be the same regardless of exposure category. If 
exposed subjects are more or less likely to be included in the sample than are the 
unexposed, serious bias can result. In the previous example, if only 5 % of the unexposed 
control population had been sampled rather than 10% as for the exposed, the computed 
odds ratio would be 1.02, indicating no apparent effect. This source of bias is especially 
serious when using "hospital-based" controls, since exposure may be related to other 
diagnoses besides those under investigation. 

In studies for which the period of case acquisition is longer than a year or two, several 
potential problems arise. First, the odds ratio approximation to the relative risk does 
not hold when the cumulative rates and risks on which it is based are large. Second, 
the classification of cases and controls according to variables which change over time 
becomes confused; it is not immediately clear, for example, whether a subject's age 
should be recorded at the beginning of the study, at the end, or at the time of diagnosis 
and interview. And finally, whereas the preceding development implicitly assumed 
that the controls remained disease-free for the duration of the study, in practice con- 
trols are usually sampled continuously throughout the study period, along with the 
cases. This raises the possibility that someone interviewed as a control during the first 
year of the study will turn up as a case later on; thus, we must decide whether such a 
person is to be treated in the analysis as a case, a control, both or neither. 

In fact the resolution of these queries and potential difficulties is surprisingly easy. 
W e  simply divide up the time period of the study into a number of shorter intervals 
and use time interval as one of the bases for stratification of the population. Yearly 
intervals are probably more than satisfactory in most instances. Suppose, for example, 
that the population at risk was initially divided into six 5-year age groups from 35-39 
through to 60-64 years. With a 5-year study there would thus be 30 = 5 x 6 age-time 
strata. Most individuals would move from one age group to the next at some point 
during the study, unless its start happened to correspond exactly with their 35th, 40th 
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or similar birthday. A separate estimate of the relative risk would be obtained for each 
stratum by computing the odds ratio of the exposure probability of cases and controls 
in the usual fashion. If the 30 estimates appeared reasonably stable with respect to age 
and time, they would be combined into a single summary of relative risk for the entire 
population. Otherwise variations in the relative risk could be modelled as a function 
of age and/or time in the statistical analysis. 

Partition of the study period into several time intervals resolves each of the problems 
mentioned above. First, by making the intervals sufficiently short, the cumulative 
incidence rates over each one are guaranteed to be so small as to be virtually indistin- 
guishable from the cumulative risks; this means that the odds ratio approximation to 
each relative risk will involve negligible error. Second, the fact that ages are changing 
throughout the study period is explicitly accounted for in that each case and control 
is assigned to the appropriate age category in which he finds himself at the time of 
ascertainment; in practice this means that ages are recorded at the time of interview, 
as is commonly done anyway. Finally, while such an event would usually be rare, a 
person could be included as both a case and a control; having been sampled as a 
disease-free control at one time, he might develop the disease later on and thus be 
re-interviewed as a case. Exclusion of either of his interview records from the statistical 
analysis would, technically speaking, bias the result. 

It is of interest to consider the limiting form of such a partition of the study period 
in which the time intervals become arbitrarily small. The effect is that each case is 
matched with one or more controls who are disease-free at the precise moment that 
the case is diagnosed. Such controls are usually chosen to be of the same age and sex 
and may have other features in common as well. This approach, which in fact accords 
reasonably well with the actual conduct of many studies, avoids completely the odds 
ratio approximation to the relative risk since the relevant time periods are infinitesimally 
small. It implies, however, that the resultant data are analysed so as to preserve intact 
the matched sets of case and control(s). Prentice and Breslow (1978) present a more 
mathematical account of this idea, while in Chapters 5 and 7 we discuss methods of 
analysis appropriate for matched data collected in this fashion [see also Liddell et al. 
(1 977)l. 

In the sequel we will use repeatedly and without further comment the odds ratio 
approximation to the relative risk, assuming that the conditions for its validity as out- 
lined here have been met for the data being analysed. 

2.9 Attributable risk and related measures 

Case-control studies provide direct estimates of the relative increase in incidence 
associated with an exposure. They may also yield unbiased estimates of the distribution 
of exposure levels in the population, provided of course that the control samples have 
been drawn from the population at risk according to a well-defined sampling scheme, 
rather than on the basis of matching to individual cases. By combining the information 
about the distribution of exposures with the estimates of relative risk, one can determine 
the degree to which cases of disease occurring in the population are explained by the 
exposure. Likewise, knowledge of the differences in the distribution of exposure among 
two or more populations permits calculation of the extent to which differences in risk 
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between them are due to confounding by the exposure. In this section we explore 
briefly a few such auxiliary measures derived from the relative risk. While these are 
useful in interpreting the results of a study, questions on the statistical significance of 
.the results should be directed primarily towards the relative risk. 

In order to simplify the discussion, let us ignore the possible agelsexltime variation 
in incidence rates. Suppose that ,Io and ,I1 denote the overall incidence rates for the 
non-exposed and exposed subgroups and let r=,Il/,Io represent the relative risk. Then 
the proportion of the cases of disease occurring among exposed persons which is in 
excess in comparison with the non-exposed is 

a quantity which has been labelled by Cole & MacMahon (1971) as the attributable 
risk for. e x p ~ s e d ' ~ e r s o n s .  If p denotes the proportion of persons in the population 
exposed to the risk factor, then the total disease incidence is 

The excess among the exposed is given by p(,Il-,Io), from which one arrives at the 
expression 

for the population attributable risk (AR), first described by Levin (1953). This repre- 
sents the proportion of cases occurring in the total population which can be explained 
by the risk factor. Walter (1975) has investigated some of the statistical properties of 
this measure. 

Example: To illustrate these calculations. Table 2.12 gives the distribution of cases and controls by 
amount smoked for the Rothman and Keller (1972) data on oral cancer considered in 5 2.6. Assuming 
that the controls are representative, 81 % of the population at risk smokes. Weighting the relative risks 
for each smoking category by the proportion of smokers in that category, we find an overall relative risk 
of 4.1 for smokers versus non-smokers, the same figure obtained from simply collapsing the smoking 

Table 2.12 Distribution of oral cancer cases and controls according to number of cigarettes (or 
equivalent) smoked per daya 

Smoking category None Light Medium Heavy Total 
1-19 20-39 40+ 

Cases 
Controls 

RR 1 .O 2.2 4.1 6.9 - 

% cases explained 
by smoking 0 55 76 88 72 
Oh distribution (controls) 19.0 21.7 44.1 15.2 100.0 

- - - - -- 

a From Rothrnan and Keller (1972) 
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categories into one and calculating a single odds ratio from the resulting 2 x 2 table. The population 
attributable risk is calculated from (2.15) as 

Alternatively we could reason that 55 % of the cancers occurring among light smokers, 76% of those among 
medium smokers and 86% of those among heavy smokers were in excess as compared with non-smokers. 
After consideration of the percentage of smokers in each category, this leads to precisely the same evalua- 
tion of the overall percentage of cases in  the population attributable to smoking, namely 72%. 

An important fact illustrated by this example is that the attributable risk does not 
depend on how the various exposure categories are defined or grouped together, as 
long as there is an unambiguous baseline category. Unfortunately, such a category does 
not exist for continuous variables such as body weight, serum cholesterol, dietary fat 
or  fibre and degree of air pollution. For these the selection of a "lowest level" of 
exposure is essentially arbitrary. Yet it may have a marked effect on the attributable 
risk since the more extreme one makes the definition of the baseline level, the greater 
is the percentage of cases which will be said to be attributable to the higher levels of 
exposure. 

If two factors are both associated with the same disease, and if their combined effect 
on risk is multiplicative or at least more than additive, the sum of the attributable risks 
associated with each of them individually may exceed 100%. The obvious interpretation 
of such a result is that both factors are required to produce the disease in a large 
proportion of the cases, which would presumably not occur if either one was absent. 
This phenomenon calls into question the practice of attributing a certain fraction of 
the cancers occurring at each site to individual environmental agents. When the disease 
has a multifactorial etiology, such an attribution can be rather arbitrary. 

Example: Table 2.13 gives a hypothetical example of a multiplicative relationship between two risk 
factors which, for illustrative purposes, can be considered to be cigarette smoking and asbestos exposure 
among factory workers. Note the positive association between the two, such that persons exposed to 
asbestos are more likely to be smokers and vice versa. The lung cancer risk attributable to smoking is 
calculated to be 5/8 = 62.5% in the low asbestos areas, 20/27 = 74.1% in the high exposure areas. The 
overall attributable risk is then the average of these two figures weighted by the number of cases in the 
low and high asbestos areas, respectively, a figure which will vary with the distribution of asbestos exposure. 
In the present instance, the proportion of cases in the low asbestos area is given by 

Table 2.13 Joint distribution of a hypothetical population 
according to two risk factors, A and B, with relative risks of I 

lung cancer in parentheses 

Factor B Factor A 
(e.g., asbestos (e.g., smoking) 
exposures) Unexposed Exposed Total 

Low 
High 
Total 
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and the overall attributable risk is thus equal to 

Similarly, the attributable risk for asbestos varies from 54.5% among non-smokers to 61.5% among 
smokers and is 60.6% overall. These hypothetical figures tell us that it might be possible to "eliminate" 
70.6% of cancers by eliminating smoking, 59.4% by reducing all asbestos exposures to low levels, and 
88.8% by altering both factors simultaneously. However, all these estimates depend on the degree of 
association between the two risk factors. Thus it is desirable to consider each of the smoking categories 
separately in determining the incidence attributable to asbestos, and vice versa. 

Similar calculations may be performed to indicate how much of the relative difference 
in incidence between two populations is explained by the difference in patterns of 
exposure to a particular risk factor. Suppose there are K levels of exposure besides the 
non-exposed category and let ro = 1, rl, . . ., r~ denote the associated relative risks, 
which are assumed to apply equally to the two populations; let plk be the proportion 
of the first population exposed to level k of the risk factor, and, similarly, PZk for the 
second population. The crude ratio R of overall incidence rates is then 

where Ale and are the incidence rates for the non-exposed in populations 1 and 2, 
and the summation is over all values of k from 0 to K. This ratio may be decomposed 
into the product of two terms, the ratio of rates Ro = 120/110 which would persist if the 
two populations had the same patterns of exposure, and a multiplicative factor w = 
CpZkrk/~plkrk,  which indicates how much Ro is changed by the exposure discrepancy. 
The ratio w has been termed the confounding risk ratio as it measures the degree to 
which the effects of one factor on incidence are confounded by the effects of another 
(Miettinen, 1972 ; Eyigou & McHugh, 1977; Schlesselman, 1978). 

The difference in incidence rates between the two populations is 

which would be reduced to 

if the second population had the same distribution of exposures as the first. One can 
therefore attribute an absolute amount 12&(~2k-~ lk ) rk ,  or a proportional amount 

of the difference in rates to the exposure. This ratio, which might well be called the 
relative attributable risk (RAR), may be written in the form 
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RAR = 
AR2-AR1 - . R-1 

1-AR1 ' R  

where AR1 and AR2 are the attributable risks for populations 1 and 2. It is much less 
sensitive to changes in the definition of the baseline level for continuous variables than 
are the attributable risks themselves. 

Example: Table 2.14 shows the distribution of women in Boston and Tokyo according to age at first 
birth, together with associated relative risks for breast cancer as estimated in an international case-control 
study by MacMahon et al. (1970). The data are essentially the same as shown in Table 2.7 except we 
now use the category "age at first birth under 20" as the baseline or referent category. Breast cancer 
rates for United States women are generally about R = 5 times those in Japan, and we assume that the 
same relationship holds for Boston versus Tokyo. In order to estimate the portion of this increase which 
can be attributed to the fact that more Japanese women tend to have children, and have them at younger 
ages, we calculate 

and 

RAR = 
5 (0.081) 

= 0.094. 
(1.081) 4 

Thus, only 9.4% of the excess risk in Boston can be attributed to the different child-bearing customs 
there as compared with Japan. Even after accounting for the effects of this factor, the relative risk for 
Boston versus Tokyo would be of the order of 5 + 1.081 = 4.63. 

Using the under age 20 category as baseline, the attributable risks may be calculated to be AR, = 0.379 
for Boston and AR, = 0.328 for Tokyo. Suppose that the under age 30 category were used instead, and 
that the relative risks for the remaining categories were changed to 1.8811.25 = 1.50, 2.4411.25 = 1.95 
and 2.0011.25 = 1.60, respectively. The attributable risks would then change to AR, = 0.203 for Boston 
and AR, = 0.139 for Tokyo. But the relative attributable risk would remain nearly constant at RAR = 
0.093. 

Table 2.14 Age at first birth and risk for breast cancera 

Centre Age at first birth (years) 

<20 20-24 25-29 30-34 35 + Nulliparous 

Percentage of women Boston 7.5 27.2 23.5 10.7 4.1 27.0 
in control population Tokyo 7.5 41.4 24.5 6.2 2.2 18.2 

Relative risk (all centres as in 
Table 2.7) 1 .O 1.20 1.56 1.88 2.44 2.00 

"From MacMahon et al. (1970) 

The decomposition (2.16) was essentially provided by Cornfield et al. (1959) in 
the course of proving the assertions of 3 2.7, viz that a confounding factor can explain 
an observed relative risk R between two populations only if the relative risk r associated 
with the confounder, and the ratio of the proportions exposed in each population, are 
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both even greater than R. Consider the above formulation in the case R = 9, Ro = 1 
and K = 1. Let p2 denote the proportion of exposed individuals in population 2 and 
let pl be the same for population 1. In order for the difference between .these two 
proportions to explain completely the ninefold excess we must have w>9, i.e., 
(1-p2) + rp2 > 9{(1-pl) + rpl), which implies both p, > 9p, + 8/(r-1) > 9pl and r > 9. 

We end this chapter with a brief word of caution regarding the interpretation of 
attributable risks, whether relative or absolute. For pedagogic reasons, language was 
occasionally used which seemed to imply that the elimination of a particular risk factor 
would result in a measured reduction in incidence. This of course supposes that the as- 
sociation between risk factor and disease as estimated from the observational study is in 
fact a causal one. Unfortunately, the only way to be absolutely certain that a causal 
relationship exists is to intervene actively in the system by removing the disputed 
factor. In the absence of such evidence, a more cautious interpretation of the attributable 
risk measures would be in terms of the proportion of risk explained by the given factor, 
where "explain" is used in the limited sense of statistical association. The next chapter 
considers in some detail the problem of drawing causal inferences from observational 
data such as .those collected in case-control studies. 
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LIST OF SYMBOLS - CHAPTER 2 (in order of appearance) 

length of jth time interval for rate calculation 
instantaneous event (e-g., incidence) rate at time t 
midpoint of jth time interval for rate calculation 
number of events (e.g., cancer diagnoses) in jth time interval 
number of subjects under observation at midpoint of jth time interval 
cumulative event (e.g., incidence) rate at time t 
cumulative risk or probability of occurrence of an event (e.g., diagnosis 
of disease) by time t 
approximate equality 
estimated cumulative rate 
disease incidence rate in ith stratum among persons exposed to risk factor 
disease incidence rate in ith stratum among persons not exposed to risk 
factor 
difference in incidence rates for exposed versus non-exposed in ith 
stratum 
difference in incidence rates for exposed versus non-exposed in additive 
model 
ratio of incidence rates for exposed versus non-exposed in ith stratum 
ratio of incidence rates for exposed versus non-exposed in multiplicative 
model; rate ratio; relative risk 
logarithm of relative risk for exposed versus non-exposed 
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Plk 
P2 k 

R 
110  

20 

Ro 
W 

RAR 
ARl 
AR2 

cumulative risk or  probability of disease diagnosis among those not 
exposed to the risk factor 
cumulative risk or probability of disease diagnosis among those exposed 
to the risk factor 
average annual incidence rate for ith area at age t 
logarithm of relative risk of stomach cancer for country i versus country 1 
slope in fit of straight line to log-log plot of age-incidence data 
relative risk of stomach cancer for country i versus country 1 
relative risk of exposure to level i of one risk factor and level j of 
another, with reference to the non-exposed 
proportion of population exposed to risk factor 
proportion of non-exposed population which remains disease-free 
proportion of exposed population which remains disease-free 
PIQo/(QIPo); odds ratio of disease probabilities for exposed versus 
non-exposed groups 
probability of exposure among diseased 
probability of exposure among disease-free 
population attributable risk 
proportion of first population exposed to level k of a risk factor 
proportion of second population exposed to level k of a risk factor 
crude ratio of incidence rates between two populations 
incidence rate for non-exposed in population 1 
incidence rate for non-exposed in population 2 
ratio of incidence rates for non-exposed, population 2 to population 1 
(multiplicative) confounding factor 
relative attributable risk 
attributable risk for population 1 
attributable risk for population 2 
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CHAPTER I11 

GENERAL CONSIDERATIONS FOR THE ANALYSIS 
OF CASE-CONTROL STUDIES 

In previous chapters we have introduced disease incidence as the basic measure of 
disease risk in a population. As a measure of the increased risk for a population ex- 
posed to some factor when compared with an otherwise similar population not so exposed, 
we have proposed the use of the proportionate increase in incidence which corresponds 
to the relative risk. We have described the properties of this measure, and its behaviour 
in cancer epidemiology, in order to demonstrate its advantages over an alternative 
measure of disease association, the excess risk. We have explored the logical basis for 
estimation of the relative risk from the results of a case-control study, from which the 
actual incidence rates cannot be estimated. Estimation of relative risks follows from inter- 
preting the case-control study as the result of sampling from a large, probably fictive, 
cohort study from which incidence rates can hypothetically be estimated. In succeeding 
chapters we shall develop the statistical theory and methodology required for the an- 
alysis of case-control data. In this chapter, we shall concern ourselves with the types of 
conclusion that we want to draw from the data, and the steps which must be taken to 
ensure that these conclusions are valid. Strategies for approaching the data, the handling 
of different types of variables, the examination of joint association of several variables, 
and how the design of a study is reflected in the analysis will all be discussed. 

3.1 Bias, confounding and causality 

The purpose of an analysis of a case-control study is to identify those factors under 
study which are associated with risk for the disease. In an analysis, the basic questions 
to consider are the degree of association between risk for disease and the factors under 
study, the extent to which the observed associations may result from bias, confounding 
and/or chance, and the extent to which they may be described as causal. The concepts 
of bias and confounding are most easily understood in the context of cohort studies, 
and how case-control studies relate to them. Confounding is intimately connected to 
the concept of causality. In a cohort study, if some exposure E is associated with disease 
status, then the incidence of the disease varies among the strata defined by different 
levels of E. If these differences in incidence are caused (partially) by some other factor 
C, then we say that C has (partially) confounded the association between E and disease. 
If C is not causally related to disease, then the differences in incidence cannot be caused 
by C, thus C does not confound the disease/exposure association. Often the observed 
extraneous variables will only be surrogates for the factor causally related to disease, 
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age and socioeconomic status being obvious examples, but we should normally consider 
these surrogates also as confounding variables. Confounding in a case-control study has 
the same basis as in a cohort study. It arises from the association in the causal network 
in the underlying study population and cannot normally be removed by appropriate 
study design alone. An essential part of the analysis is an examination of possible con- 
founding effects and how they may be controlled. Succeeding chapters consider this 
problem in detail. 

Bias in a case-control study, by contrast, arises from the differences in design be- 
tween case-control and cohort studies. In a cohort study, information is obtained on 
exposures before disease status is determined, and all cases of disease arising in a given 
time period should be ascertained. Information on exposure from cases and controls 
is therefore comparable, and unbiased estimates of the incidence rates in the different 
subpopulations can be constructed. In case-control studies, however, information on 
exposure is normally obtained after disease status is established, and the cases and 
controls represent samples from the total. Biased estimates of incidence ratios will 
result if the selection processes leading to inclusion of cases and controls in the study 
are different (selection bias) or if exposure information is not obtained in a comparable 
manner from the two groups, for example because of differences in response to a 
questionnaire (recall bias). Bias is thus a consequence of the study design, and the 
design should be directed towards eliminating it. The effects of bias are often difficult 
to control in the analysis, although they will sometimes resemble confounding effects 
and can be treated accordingly (see 5 3.8). 

To summarize, confounding reflects the causal association between variables in the 
population under study, and will manifest itself similarly in both cohort and case-control 
studies. Bias, by contrast, is not a property of the underlying population and should 
not arise in cohort studies. It results from inadequacies in the design of case-control 
studies, either in the selection of cases or controls or from the manner in which the data 
are acquired. 

It is not helpful to introduce the concepts of necessity or sufficiency into the discus- 
sion of causality in cancer epidemiology. Apart from occasional extremes of occupational 
exposure, constellations of factors have not been identified whose presence inevitably 
produces a cancer, or, conversely, in whose absence a tumour will inevitably not appear. 
Thus, we shall use the word "cause" in a probabilistic sense. By saying that a factor is a 
cause of a disease, we mean simply that an increase in risk results from the presence of 
that factor. From this viewpoint a disease can have many causes, some of which may 
operate synergistically. It is sometimes helpful to think in terms of a multistage model, 
and to consider a cause as a factor which directly increases one or more of the rates of 
transition from one stage to the next (Peto, 1977; Whittemore, 1977a). One factor 
may need the presence of another to be effective, in which case one should strictly 
speak of the joint occurrence as being a cause. 

The most one can hope to show, even with several studies, is that an apparent as- 
sociation cannot be explained either by design bias or by confounding effects of other 
known risk factors. There are, nevertheless, several aspects of the data, even from a 
single study, which would make one suspect that an association is causal, which we shall 
now discuss (Cornfield et al., 1959; Report of the Surgeon General, 1964; Hill, 1965). 
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3.2 Criteria for assessing causality 

Dose response 

One would expect the strength of a genuine association to increase both with in- 
creasing level of exposure and with increasing duration of exposure. Demonstration of 
a dose response is an important indication of causality, while the lack of a dose response 
argues against causality. 

In Chapter 2, we saw several examples of a dose response. Table 2.8 shows a smooth 
increase in risk for oral cancer with increasing consumption of both alcohol and tobacco, 
and Table 2.7 displays the increasing risk for breast cancer with increasing age at birth 
of first child. The latter example is not exactly one of a dose response since the dose is 
not defined, but the hypothesis that later age at first birth increases the risk of develop- 
ing breast cancer is given strong support by the smooth trend. 

The opposite situation is illustrated by the association between coffee drinking and 
cancer of the lower urinary tract. Table 3.1 is taken from a study by Simon, Yen and 
Cole (1975). Three previous studies (Cole, 197 1; Fraumeni, Scotto & Dunham, 1971 ; 
Bross & Tidings, 1973) had also shown a weak association between lower ur-inary tract 
cancer and coffee drinking, but with no dose response. The authors of the 1975 paper 
concluded that, taking the four studies together, the association was probably not causal. 
The three arguments they advanced were: (1) the absence of association in some 
groups, (2) the general weakness of the association, and (3) the consistent absence of 
a dose response; the last point was considered the most telling. 

A clear example of risk increasing with duration of exposure is given by studies relat- 
ing use of oestrogens to palliate menopausal symptoms with an increased risk for endo- 
metrial cancer (see Table 5.1). 

Table 3,1 Association between coffee drinking and tumours of 
the lower urinary tracta 

Cups of coffeelday Cases Controls Relative risk 

" Data taken from Simon, Yen and Cole (1975) 

Specificity of risk to disease subgroups 

Demonstration that an association is confined to specific subcategories of disease can 
be persuasive evidence of causality, as indicated by the following examples. 

In earlier days, when the role of cigarette smoking in the induction of lung cancer 
was still being established, a persuasive aspect of the data was the finding that when a 
non-smoker developed lung cancer, it was often the relatively rare adenocarcinoma 
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Table 3.2 Histological types of lung cancer found in Singapore 
Chinese females, 1 968-73, as related to smoking historya 

Histological type Number % smokers 

Epidermoid carcinoma 
Small-cell carcinoma 
Adenocarcinoma 
Large-cell carcinoma 
Other types 
Controls 

"Adapted from MacLennan et al. (1977) 

(Doll, 1969). This feature of the disease is shown in data from Singapore in Table 
3.2 (MacLennan et al., 1977). 

As a second example, the association between benzene exposure and leukaemia is 
restricted to particular cell types, i.e., acute non-lymphocytic (Infante, Rivisky & Wago- 
ner, 1977; Aksoy, Erdern & Din~ol,  1974). The specificity of the association is perhaps 
the major reason for regarding it as causal. 

The tendency for several types of cancer to aggregate in families is often difficult to 
interpret since family members share in part both their environment and their genes. 
Relative risks for first degree relatives are typically of the order of two- to threefold. 
The greatly increased familial risk for bilateral breast cancer especially among pre- 
menopausal women (Anderson, 1974) reduces the chance that the association is a 
reflection of either environmental confounding factors or bias in case ascertainment, 
and 'enhances one's belief in a genetic interpretation. 

Specificity of risk to exposure subcategories 

Belief in the causality of an association is also enhanced if one can demonstrate that 
the disease/exposure association is stronger either for different types of exposures, or 
for different categories of individuals. A dose response, with higher risk among the 
more heavily exposed, is an obvious example. ~nteractions can also provide insight into 
disease mechanisms. As an example, one can cite the risk for breast cancer following 
exposure to ionizing radiation: a greater risk was observed for women under age 20 at 
irradiation than for women irradiated at over 30 years of age (Boice & Monson, 1977; 
McGregor et al., 1977). Subsequent studies showed that risk was in fact greatly elevated 
among girls irradiated either in the two years preceding menarche or during their first 
pregnancy (Boice & Stone, 1978); breast tissue is proliferating rapidly at both these 
periods of a woman's life. 

In Figure 3.1, we show the risk for lung cancer among males associated with smok- 
ing varying numbers of filter and non-filter cigarettes. There is a considerably lower 
risk associated with the use of filter cigarettes, indicating the importance of tars as the 
carcinogenic constituent of the smoke, since volatile components were not significantly 
reduced by filters in use at that time (Wynder & Stellman, 1979). 
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Fig. 3.1 Relative risk for cancer of the lung according to the number of nonfilter (NF) 
or filter (F) cigarettes smoked per day. Number of cases and controls shown 
above each bar. From Wynder.and Stellman (1979). 

Non F NF F NF F NF F NF F NF 
smoker 1-10 11-20 21-30 31-40 41 + 

No. of cigarettes smoked per day 

Strength of association 

Demonstration of a dose response and of variation in risk according to particular 
exposure or disease subcategories have in common the identification of subgroups at 
higher risk. In general terms, the closer the association, the more likely one is to con- 
sider the association causal. One reason follows directly from a property of the relative 
risk described in 5 2.7. If an observed association is not causal, but simply the reflection 
of a causal association between some other factor and disease, .then this latter factor 
must be more strongly related to disease (in terms of relative risk) than is the former 
factor. The higher the risk, the less one would consider that other factors were likely 
to be responsible. One also has the possibility in all case-control studies that patient 
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selection or choice of the control group may introduce bias. Bias becomes less tenable 
as an explanation of an observed association the stronger the association becomes. An 
example of this is found in the original report on the role of diethylstilboestrol ad- 
ministered to mothers during pregnancy in the development of vaginal adenocarcino- 
mas in the daughters (Herbst, Ulfelder & Poskanzer, 1971). The study was based on 8 
cases each with 4 matched controls; 7 out of the 8 cases had been exposed in utero to 
diethylstilboestrol, in contrast to none of the 32 controls. The magnitude of this as- 
sociation persuades one of its causal nature, even though recall of drug treatment some 
20 years previously is a potential source of serious bias. 

Temporal relation of risk to exposure 

For most epithelial tumours, one expects a latent period of at least 15 years. Typical- 
ly, when exposure is continuous, there is little risk until some 10-15 years after ex- 
posure starts, the relative risk then increasing to reach a plateau after 30 years or more 
(Whittemore, 1977b). For radiation-induced leukaemia this risk increases more quickly 
(Smith & Doll, 1978), and among recipients of organ transplants the risk for some lym- 
phomas can increase strongly within a year (Hoover & Fraumeni, 1973). Although in 
principle both cohort and case-control studies should demonstrate the same evolution 
of relative risk, in practice the temporal evolution of risk following exposure has played 
a greater role in assessing causality in cohort studies. The reason lies in the nature of 
the observations. In cohort studies, it is precisely the increase in risk in the years after 
exposure starts that one observes. Referring back to the discussion of lung cancer risk 
among smokers in Chapter 2, a prospective study leads to a description of evolution of 
risk as shown in Figure 2.9 and Table 2.6, whereas a case-control study gives only the 
relative risk shown in Table 2.6, with most cases probably over age 50. The evolution 
of risk over time, clear from the changes in the absolute risk in Figure 2.9, is less distinct 
when considering only the relative risk. 

More attention to this aspect of case-control study data may well prove beneficial. 

Lack of alternative explanations 

In the data being analysed, association between exposures of interest and disease 
must be shown not to be the effect of some further factor which is itself causally as- 
sociated with both disease and the exposure. Treatment of potential confounding vari- 
ables is discussed at length in 5 3.4. 

Spurious associations can also arise from biased selection of cases or controls, or 
from biased acquisition of information from either group. Questions of bias are usually 
more difficult to resolve by considerations internal to the actual data than are problems 
of confounding. However, if several control groups have been chosen (see 5 3.7) or if 
the data were acquired in a manner in which disease status could not have intervened, 
the extent to which bias might provide an explanation of the observations is usually 
reduced. 
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Considerations external to the study 

Magnitude and specificity of risk, dose response and the inability to find alternative 
explanations are criteria which can be satisfied at least partially by adequate treatment 
of the data from a single study, and analyses should be aimed in this direction. Compari- 
son can also be made with the trends in the general population, both in terms of the 
exposure under study and the tumour experience. The early case-control studies of 
lung cancer were instigated by the parallel increase in cigarette smoking and incidence 
of the disease. In the paper by Jick et al. (1979) on endometrial cancer, figures are 
given showing the rise and fall of oestrogen use in the general population and the cor- 
responding rise and fall in the incidence of the disease, together with data showing the 
high risk among long-term users and the great reduction in risk for individuals who 
stop taking oestrogens. Arguments offering explanations other than causality for these 
results would have to be unusually tortuous. 

It is rare, however, for a single study to provide convincing evidence of causality. 
Other studies performed in different populations and using different methodologies are 
normally required. Demonstration of a reduction in risk after exposure has terminated 
is further persuasive evidence, although the absence of a reduction is no indication of 
lack of causality, as asbestos exposure exemplifies (Seidman, Lilis & Selikoff, 1977). 
Biological plausibility or the demonstration of carcinogenicity in the laboratory provide 
additional evidence. 

General acceptance of the causal nature of an association normally would result only 
if these more general criteria were satisfied, with several corroborating studies and 
demonstrations of plausible biological pathways. Nevertheless, even if the results of 
a single study seldom furnish conclusive evidence of causality, the aim of the analysis 
should be to extract the fullest evidence for or  against causality that the study can 
provide. 

3.3 Initial treatment of the data 

The first step in any analysis will be a description of the distribution among cases 
and among controls of the different variables included in the study. This description 
should include the correlations, or some other measure of association, between the ex- 
posure variables of interest. Such correlations are best computed separately for cases 
and controls. One would also expect to see a description of the cases and controls in 
terms of age, sex, and such factors as race, country of birth, hospital attended and 
method of diagnosis, which although not the object of the study, provide the setting for 
the interpretation of the later results. It must not be overlooked that the results refer to 
the sample studied, and generalization from these results usually depends on non- 
statistical arguments. 

Information on exposures which are considered of importance for the cancer site 
under investigation will usually consist of more than a single measure. For cigarette 
smoking, for example, one would normally obtain information not only on the daily 
consumption of cigarettes, but also the age at which smoking started, and stopped if 
the individual no longer smokes. One may be tempted to proceed directly to a compos- 
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ite measure, such as cumulative exposure; such a procedure, however, may obscure 
important features of the disease/exposure association. 

For continuing smokers, with data on cigarette consumption obtained retrospectively, 
one might expect lung cancer incidence to be proportional to the fourth power of dura- 
tion of smoking, but related linearly to the average daily consumption of cigarettes 
(Doll, 1971). A man aged 60 who has smoked 20 cigarettes a day since age 40  will 
have one eighth the risk of a man of the same age who has smoked 10  cigarettes a day 
since age 20. The total cigarette consumption is the same in the two cases, but the dif- 
ference in risk is eightfold. Similar differences will be seen if one considers ex-smokers. 
Twenty years after stopping smoking, the lung cancer risk is approximately 1 0 %  that of 
a man of the same age who had continued to smoke at the same daily level (Doll & 
Peto. 1976). Thus, if one man starts smoking at age 20 and smokes 10 cigarettes a 
day, and a second man smokes 20 cigarettes a day between ages 20 and 40 and then 
stops, by age 60 the latter will have (20/10) x 1 0 %  = 20% of the risk of the former. 
Total cigarette consumption is the same. 

These examples illustrate the danger of condensing the different types of informa- 
tion on exposure into a single measure at the start of the analysis. Each facet of exposure 
should be examined separately, and only combined, if at all, at a later stage in the an- 
alysis. 

The preliminary analyses associating the factors under study with disease risk will 
treat each factor separately. For dichotomous variables, a simple two-way table relat- 
ing exposure to disease can be constructed. The frequency of the exposure among the 
controls together with an estimate of the relative risk, with corresponding confidence 
intervals, gives a complete summary of the data. 

For qualitative or, as they are sometimes called, categorical variables, which can 
take one of a discrete set of values, direct calculation of relative risk is again straight- 
forward. A specific level would be selected as a baseline or  reference level, and risks 
would be calculated for the other levels relative to this baseline. Choice of the baseline 
level depends on whether the levels are ordered, such as parity or birth order, o r  un- 
ordered, as in the case of genetic phenotypes. In the latter situation, a good choice of 
baseline is the level which occurs most frequently. The choice is particularly important 
when using the estimation procedures which combine information from a series of 
2 x 2 tables, since the estimates of relative risk between pairs of levels can vary depend- 
ing on which one was selected as baseline (see § 4.5). 

For ordered categorical variables, one would often choose either the highest or the 
lowest level, with infrequently occurring extreme levels perhaps being grouped with 
the next less extreme. 

By choosing an extreme level as baseline, one expects to see a smooth increase (or 
decrease) away from unity in the relative risk associated with increasing (or decreasing) 
level of the factor, if the factor plays a role in disease development. In the early stages 
of an analysis, it is usually bad practice to  group the different levels of a categorical 
variable before one has looked at  the relevant risks associated with each level. The risks 
of overlooking important features of the data more than outweigh the theoretical 
distortion of subsequent significance levels. 

Quantitative variables are those measured on some continuous scale, where the num- 
ber of possible levels is limited only by the accuracy of the recording system. Variables 
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of this type can be treated in two ways. They can be converted into ordered categorical 
variables by division of the scale of measurement, or they can be treated as continuous 
variables by postulating a specific mathematical relationship between the relative risk 
and the value of the variables. In preliminary analyses the former approach would 
usually be employed, since it provides a broad, assumption-free description of the change 
of risk with the changing level of the factor. The choice of mathematical relationship 
used in later analysis would then be guided by earlier results. 

In deciding on the grouping of continuous variables, the prime. objective should be 
to display the full range of risk associated with the variable, and also to determine the 
extent to which a dose response can be demonstrated. With these ends in view, the 
following guidelines are often of value: 
1. A pure non-exposed category should be the baseline level if the numbers appear 

adequate (e.g., more than five to ten individuals in both case and control groups). 
Thus, to examine the effect of smoking, where consumption might be measured in 
grams of tobacco smoked per day, a clearer picture of risk is obtained by comparing 
different smoking categories to non-smokers than by pooling light smokers with 
non-smokers (Tables 6.6 and 6.8). 

2. A simple dichotomy may conceal more information that it reveals. The thirtyfold 
range in risk for lung cancer between non-smokers and heavy cigarette smokers is 
greatly obscured if smoking history is dichotomized into, say, one group composed of 
non-smokers and smokers of less than ten cigarettes a day as opposed to another 
group of smokers of ten or more cigarettes a day. 

3. Use of more than five or six exposure levels will only rarely give added insight to 
the data. The trends of risk with exposure as defined by a grouping into five levels 
are usually sufficient. Three levels, in fact, are often adequate, particularly when the 
data are too few to demonstrate a smooth increase of risk with increasing dose (Cox, 
1957; Billewicz, 1965). 

Example: Table 3.3 shows relative risks for breast cancer associated with age at first birth among a cohort 
o f  31 000 Icelandic women who had visited a cervical cancer screening programme at least once by 1974 
(Tulinius et  al., 1978). The lowest risk group, women who gave birth before 20 years of age, is taken as the 
baseline level. The alternative analysis based on a dichotomy at 25 years is presented for comparison. 
Even as a preliminary analysis, the greater range of risk, together with the smooth trend, makes the finer 
categorization of age at first birth considerably more informative. 

Table 3.3 Relative risk of breast cancer associated with age 
at first birth, after adjusting for year of birth, among 31 000 
Icelandic womena 

Age at first birth Relative risk 

30-34 
35+ 
Nulliparous 
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Once the general form of the relationship between exposure level and risk has been 
ascertained, the change of risk can be modelled in terms of a mathematical relationship. 
The advantages of using mathematical models for expressing the change in risk over 
a range of exposure levels are economy in the number of parameters required, and a 
smoothing of the random fluctuations in the observed data. The advantages, in fact, 
are those that generally result from using a regression equation to summarize a set of 
points. This topic is discussed further in 5 3.6 and in detail in Chapters 6 and 7. 

Further analyses will investigate in a series of stages the combined action of factors 
of interest. First, we may wish to consider individual factors separately and to examine 
how the other variables modify their effect. This modification may consist of a general 
confounding effect, in which the association between the different exposures distorts 
the underlying disease exposure associations, or  of interaction when -the exposure risk 
may be heterogeneous over the different values of the other variables. Second, we may 
want to examine the joint effect of several exposures simultaneously. 

We shall start by consideration of confounding effects. 

3.4 Confounding 

Confounding is the distortion of a disease/exposure association brought about by the 
association of other factors with both disease and exposure, the latter associations 
with the disease being causal. These factors are called confounding factors. One can 
envisage two simple types of situation. First, we might have a confounding factor that 
has two levels, in which disease and exposure were distributed as follows: 

Level 1 High risk for disease 
High prevalence of exposure 

Confounder 
Level 2 Low risk for disease 

Low prevalence of exposure 

As an example, the disease could be lung cancer, the exposure some occupation 
primarily of blue-collar workers, and the confounder cigarette smoking. At least in the 
United States, cigarette smoking is considerably more frequent among blue-collar 
workers than among managers o r  professional workers. 

One can see in this situation that ignoring the confounder will make the association 
between exposure and disease risk more positive than it would otherwise be. High risk 
for disease and high prevalence of exposure go together, as do low risk for disease and 
low prevalence of exposure. 

A second type of situation that might arise would be: 

i 
Level 1 High risk for disease 

Low prevalence of exposure 
Confounder 

Level 2 Low risk for disease 
High prevalence of exposure 

One might take as an example a study relating breast cancer to use of oestrogens for 
menopausal symptoms, the confounder being age at menopause. Early menopause 
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decreases breast cancer risk, but leads to greater use of replacement oestrogens (Casa- 
grande et al., 1976). Here ignoring the confounding variable will make the association 
between the disease and exposure appear less positive than it should be. 

We shall begin our discussion of confounding by a treatment of the statistical concepts, 
the occasions on which confounding is likely to occur, and to what degree, and the 
steps that can be taken both in design and analysis to remove the effect of confounding 
on observed associations. However, confounding cannot be discussed solely in statistical 
terms. Occasions arise in which the association of one factor with disease appears at 
least partially to be explained by a second factor (associated both with disease and with 
the first factor), but where the two factors are essentially measuring the same thing, or 
where the second factor is a consequence of the first. Under these circumstances, it 
would be inappropriate to consider the second factor as confounding the association of 
the first factor with disease. This problem is related to that of overmatching, which we 
shall consider after we have discussed the statistical aspects of confounding. 

Statistical aspects of confounding: dichotomous variables 

We shall start by considering two dichotomous variables, one of which we shall regard 
as the exposure of interest (E), the other a potential confounding variable (C). 

Suppose we had obtained, when cross-tabulating disease status against exposure E, 
the following result based on pooling the data over levels of the confounder (C): 

Exposure E 

Case 

Control 

As we saw in Chapter 2, the risk ratio associated with exposure to E is well approxi- 
mated by the odds ratio in the above table. 

where the p subscript means that qp is calculated from the pooled data. 
If, now, we consider that the association between E and disease may be partly a 

reflection of the association of C with both E and disease, than we should be concerned 
with the association between E and disease for fixed values of C. That is, we shall be 
interested in the tabulation of disease status against E obtained after stratifying the 
study population by variable C, as follows: 
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Case 

Control 

Factor C+ 
Exposure E 

+ - 

Factor C- 
Exposure E 

+ - 

mil mo1 N1 m12 m02 N2 

Odds ratio = v Odds ratio = v2 

It is clear that the association between E and disease within each of these two 2 x 2 
tables is independent of C since within each table C is the same for all individuals. 

We shall assume in this section that v1 = v2, i.e., that the association between E and 
disease is the same in the two strata, and call the common value q .  In 5 3.5, we shall 
examine situations where this assumption does not hold. Throughout this section, we 
are considering the odds ratios as population values rather than sample values, so that 
the equality q1 = v2 refers to the underlying population. 

The odds ratio q represents the association between E and disease after removing 
the confounding effect of C. Confounding occurs if, and only if, both the following 
conditions hold: 
1. C and E are associated in the control group (which, from the assumption = v2, 

means also in the case group). 
2. Factor C is associated with disease after stratification by E. 

Factor C is said to confound the association between E and disease status if, and 
only if, vp # v ,  that is, if stratifying by C alters the association between E and disease. 

These conditions are sometimes loosely expressed by saying that C is related both 
to exposure and to disease. It should be stressed that the association of C with E must 
be considered separately for diseased and disease-free persons, and that the association 
between C and disease must be considered separately among those exposed to E and 
those not exposed to E. 

A distinction is usefully made between confounding effects which create a spurious 
association and confounding effects which mask a real association. With the former, the 
crude odds ratio vp will be further from unity than the post-stratification odds ratio v. 
This situation is called positive confounding. In the latter situation, the crude odds 
ratio v, will be closer to unity than the post-stratification odds ratio v. This effect is 
called negative confounding. Situations may even arise in which the crude odds ratio 
is on the opposite side of unity from the post-stratification odds ratio, but they are 
infrequent. 

Confounding, as we have just seen, depends on the association of the confounding 
variable both with disease and with the exposure, and we can express quantitatively 
the degree of confounding in terms of the strength of these two associations. In § 2.9, we 
discussed attributable risk, and the extent to which differences in risk between two 
populations could be explained by some factor. The situation here is directly analogous; 
we are considering the degree to which the difference in risk between those exposed to 
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E and those not exposed to E can be explained by factor C. Equation (2.16) is then 
directly applicable, and we have: 

where vc is the odds ratio associating C with disease after stratification by E, p, is the 
proportion of controls among those exposed to E who are also exposed to C, and p2 is 
the proportion of controls among those not exposed to E who are exposed to C (see 
Schlesselmann, 1978, for example). When either vc = 1 or p, = p2, then qp = q and 
there is no confounding effect, giving algebraic expression to the two conditions stated 
earlier in this section. Expression 3.1 generalizes the result of Cornfield given in § 2.7. 

The ratio qp/q (= w, say) is a measure of the degree of confounding and has been 
referred to as the confounding risk ratio (Miettinen, 1972). Table 3.4 gives the value 
of the confounding risk ratio for various degrees of association between C and disease, 
and for different values of p, and pZ. It is of interest to note that the confounding risk 
ratio is considerably less extreme than the association of either C with disease or C 
with exposure E. Confounding factors have to be strongly associated with both disease 
and exposure to generate spurious risk ratios greater than, say, two (see, for example, 
Bross, 1967). One should stress that the aim of the analysis is not to estimate the con- 

Table 3.4 Confounding risk ratios associated with varying relative risk (yl,), frequency of occur- 
rence of the confounding variable among controls exposed to E (p,) and not exposed to E (p,) 

Value of p, 

0.1 
0.3 
0.5 
0.8 

Value of p2 

0.1 
0.3 
0.5 
0.8 

Value of p2 

0.1 
0.3 
0.5 
0.8 

(Itc = 2 
Value of p, 
0.1 0.3 0.5 

(Ifc = 5 
Value of p, 
0.1 0.3 

( I 1 ,  = 10 
Value of p, 
0.1 0.3 0.5 0.8 
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founding risk ratio, but to remove the confounding effects. The purpose of Table 3.4 is 
simply to indicate how large these effects may be. 

From- (3. I), we see that q,/q, the confounding risk ratio, is greater than unity if, 
and only if, either (a) C is positively associated with both E and with disease (q,> 1 
and p1>p2) or (b) C' is negatively associated with both E and with disease (qc< 1 
and pl<p2). Consequently, if the signs of E and C are arranged to make both E and 
C positively associated with disease, then negative confounding will only occur if the 
association between E and C is negative. This result is of some value as it provides a 
mechanism for drawing one's attention to the concealed associations that may result 
hom negative confounding. (Strictly speaking, E and C should be made positively 
associated with disease after stratification by the other variable; however, in practice, 
the pre- and post-stratification risk ratios will usually be on the. same side of unity). 

More general confounding variables 

In the previous section we have considered, for a simple dichotomous confounding 
variable, one of the two major approaches to the treatment of confounding variables, 
the approach via stratification. The extension of this approach to variables taking 
several levels, or to situations where there are more than two categorical factors under 
consideration simultaneously, introduces no new conceptual problems. For a polytomous 
variable which is suspected of being a confounder, one simply stratifies individuals into 
groups according to the level this variable takes. When several categorical variables are 
all considered to be potentially confounding, one stratifies simultaneously by them all. 
For example, if Factor C, takes three levels (I, 11, 111) and Factor C2 four levels (1, 
2, 3, 4), and both are thought to confound the association of Factor E (which we shall 
take to be dichotomous) with disease, then the data have to be grouped into 12 strata, 
and the 2 x 2 tables relating Factor E to disease constructed for each as follows: 

Factor C2 

Factor C ,  1 2 3 4 
Exposure E Exposure E Exposure E Exposure E 
+ + - + - + - 

I Case 

Control 

I 1  Case 

Control 

I l l  Case 

Control 
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The confounding effects of C1 and C2 have been eliminated, and we can estimate the 
independent association of E with disease. Methods for constructing summary estimates 
of the relative risk associated with E, and summary significance tests, are given in the 
next chapter. Continuous variables can be incorporated into this approach by dividing 
up the scale of measurement and treating them as ordered categorical variables. 

When the confounding variables take more than two levels, the criteria we discussed 
for assessing when a dichotomous variable might confound an exposure/disease as- 
sociation need to be slightly relaxed. For dichotomous variables, a factor confounds an 
association if, and only if, it is associated both with disease and exposure. The "only if" 
part of this criterion holds for all potentially confounding variables, but with polytomous 
factors we can construct examples in which a factor is related both to disease and to ex- 
posure, but does not confound the disease-exposure association (Whittemore, 1978). 

There also needs to be some modification of criteria for assessing confounding when 
more than one confounding variable is present. In the following example, from Fisher 
and Patil (1974), we have two confounding variables, C1 and C2. Neither one alone 
confounds the association of E with disease, but the two jointly do confound the associa- 
tion. Stratifying by each of the two possible confounders, in turn, we have: 

Stratification by C1 Stratification by C2 

No stratifi- Factor Cl+ Factor Cl- Factor C2+ Factor C2- 
cation 

Exposure E Exposure E Exposure E Exposure E Exposure E 
+ - + - + - + - + - 

Case 

Control 

Odds ratio 2.2 2.2 2.2 2.2 

But, when we stratify by both confounders jointly we have: 

Joint stratification by C1 and C2 

Case 

Control 

Odds ratio 

Factor Factor Factor Factor 
C, + C2+ C, + C2- C1-C2+ C1-C2- 

Exposure E Exposure E Exposure E Exposure E 
+ - + - + - + - 
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The crude association between E and disease, unaffected by stratification by either 
C1 or C2 alone, disappears upon stratification by both confounders simultaneously. 
One has to distinguish between the individual confounding effects that variables may 
have, and the joint confounding effects when variables are considered together. 

In the latter case, when considering a set of potential confounders, we can see that 
there is a joint effect only if the joint distribution of the confounding variables varies 
with E conditional on disease status, and varies with disease status conditional on E. 
The corresponding "if" part of this statement need not apply for a set of confounders, 
in analogous fashion for a single polytomous variable. 

Such situations, however, can be regarded as exceptional, and are mentioned mainly 
for logical completeness. Normal epidemiological practice is to treat any factor related 
to disease and exposure as a potential confounder, and there would be few occasions 
on which one would investigate whether the criteria for joint confounding held (Miet- 
tinen, 1974). 

Degree of stratification 

With several confounding variables, or a single confounder with many values, there 
is the problem of how fine to make the stratification. If the data are divided into an 
excessive number of cells, information will be lost; but, if the stratification is too coarse 
then its object will not be achieved and some confounding will remain. Guidelines can 
be provided by considering the confounding risk ratio resulting from different levels of 
stratification. Suppose we have a confounding factor C which can take K levels, and 
after stratification by E the K levels have associated relative risks r1 = 1, r2, .. ., rK 
(level 1 is baseline). We suppose that these levels occur with frequencies pll, . .., pIK, 
respectively, among ,the controls exposed to the factor of interest E, and frequencies pzl, 
.. . , P ~ K  among controls not exposed to E. As an extension of (3.1) following from 
(2.16), the confounding risk ratio, which we shall write as w, is the ratio of the odds 
ratio vp associated with E before stratification by C to the odds ratio I$ after stratifica- 
tion by C, and is given by: 

Now suppose the K levels of C are grouped into a smaller number of levels, say J. 
Since the plk and p2, are not the same, the risk among one set of pooled levels relative 
to the risk among the lowest set of pooled levels may differ between those exposed to 
E and those not exposed to E. Thus, pooling levels of C may have generated an inter- 
action between C and E. This effect, however, will usually be small, and we shall con- 
sider the relative risks in those not exposed to E as summarizing the relative risks in the 
pooled levels of C. The frequency of occurrence of the J pooled levels of C we shall 
denote by p*lj among those exposed to E and by p*2j among those not exposed to E, 
j = 1, .. ., J. The relative risk in the jth pooled level (among those not exposed to E) 
we shall write as r*j, j = 1, . . . , J, with r*j = 1. The confounding risk ratio for the pooled 
levels of C, w*, say, is then given by: 
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Comparison of w* with w enables one to assess the extent to which the grouped 
levels of C remove the full confounding effect. The ratio wlw* is a measure of the resid- 
ual confounding effect. 

The relationship between w* and w can be examined more closely. The K levels of C 
have been classed into J groups. Within each group of levels, if the risk ratios and the 
ratios (plk/pZk) are not identical, there will be a residual confounding effect and a 
corresponding residual confounding risk ratio, which for the jth group we will write 
as w * ~  (j  = 1, . . . , J). 

We can then express the overall confounding risk ratio w in terms of the w * ~  as: 

which gives, from (3.3) 

The overall measure of residual confounding (wlw*) is the weighted average over the 
J groups of the residual confounding risk ratio within each of the grouped levels of C. 
Computation of the different w * ~  will identify those groups for which finer stratification 
may be necessary. 

As an example, we might consider a study of lung cancer in which interest was focus- 
ed on an exposure E, other than smoking, and cigarette smoking is to be treated as a 
confounder. Table 3.5 gives the confounding risk ratio for various possible groupings 
of cigarette consumption. Data from Doll and Peto (1978) are used for the risk ratios, 
and the distribution of cigarette consumption among British doctors is used as the distri- 
bution among those not exposed to E, i.e., as the values of pzk. The smoking distribution 
plk represents a heavy smoking population, an industrially exposed group, for example. 

This example has some interesting features. One can see that the grouping 0, 1-9, 
10-19, 20-29, 30-40 leaves an inappreciable residual confounding effect and that the 
grouping 0, 1-19, 20-40 leaves a residual confounding risk ratio of 1.16 at most. A 
considerable residual confounding effect remains if non-smokers are grouped even 
with those smoking 1-4 cigarettes a day, underlining the importance of keeping an 
unexposed group, as stressed in § 3.3. This residual effect makes only a minor contribu- 
tion to the total confounding effect, as most weight is attached to the heavy smokers 
(see equation 3.4), but if one is interested in light smokers, this effect is obviously 
important. 
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Table 3.5 Residual confounding effects after various degrees of stratification by cigarette consump- 
tion 

a Data adapted from Doll and Peto (1978) 

When stratifying by several confounding variables simultaneously, the joint con- 
founding risk ratio will often be more extreme than either one singly. In fact, if the 
confounding variables are mutually independent, the joint confounding risk ratio will 
be the product of the individual confounding risk ratios. If the levels of the different 
confounding variables are grouped, then the overall residual confounding risk ratio is 
the product of the individual residual risk ratios. For example, suppose we had two 
independent confounding variables like that in Table 3.5. The joint confounding risk 
ratio would be (1.93)' = 3.72. If both variables are grouped as in column 11, the in- 
dividual residual confounding risk ratibs are 1.93/1.68 = 1.15, whereas the joint residual 
confounding risk ratio is (1.15)' = 1.32. Thus for the same level of stratification, the 
residual confounding effect tends to  increase with the number of confounding variables. 
An increasing penalty is paid if one yields to the temptation to  coarsen the stratifica- 
tion as the confounding variables increase in number. The control of confounding by 
stratification clearly runs into trouble as the number of confounding variables increases, 
unless one has very large samples. What is required is a method, after a relatively fine 
stratification of each variable, of combining different strata into roughly homogeneous 
groups. Various ad hoc methods have been proposed, such as the sweep and smear 
technique (Bunker et  al., 1969) o r  the confounder score index (Miettinen, 1976), but 
these methods can give incorrect answers (Scott, 1978; Pike, Anderson & Day, 1979), 
and the unified approach via logistic regression is recommended (see Chapters 6 and 7). 

Effect of study design on confounding effects 

Average 
daily 
cigarette 
consumption 

0 
1 -4  
5-9 
1 0-1 4 
15-1  9 
20-24 
25-29 
3 0 3 4  
35-40 

Grouping, with residual confounding risk ratio within each group 

An extreme but not unusual example of positive confounding would be data such 
as the following: 

Confounding risk ratio = 1.93 
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Case 

Control 

Odds ratio 

Factor C+ 
Exposure E 
+ - 

Factor C- 
Exposure E 
+ - 

Pooled levels of C 
Exposure E 
+ - 

From these tables it can be seen that the cell entries when C is positive differ 
markedly from the cell entries when C is negative. This lack of balance has- two con- 
sequences. First, the unequal ratio of cases to controls and the unequal proportion of 
those exposed to E, in the two post-stratification tables, lead to strong positive con- 
founding. Second, as a reflection of the confounding the minimum cell entries in the 
two tables obtained after stratification are both much smaller (both equal to one, in 
fact) than half the minimum cell entry in the pooled table (equal to 19). Thus one 
can expect the estimate of the odds ratio to be considerably less precise than an estimate 
obtained from more balanced tables. Both effects can be mitigated by equalizing the 
ratio of cases to controls in those exposed and those not exposed to a confounder C, 
in which case we say the design is balanced for Factor C. The results could be repre- 
sented as follows: 

Case 

Control 

Factor C+ 
Exposure E 
+ - 

Factor C- Pooled levels of C 
Exposure E Exposure E 
+ - + - 

Odds ratio II, II, 

Balancing or even equalizing cases and controls in each stratum does not eliminate 
confounding, as the following example illustrates: 

Case 

Control 

Odds ratio 

Factor C+ 
Exposure E 
+ - 

Factor C- 
Exposure E 
+ - 

Pooled levels of C 
Exposure E 
+ - 



GENERAL CONSIDERATIONS 103 

However, using expression (3.1) and the balance in the design one can show that 
the odds ratio in the pooled table, p,, lies between unity and p ,  that is we have: 

Thus, in contrast to the unbalanced situation, where the confounding effects can be 
either positive or negative and where the pooled odds ratio can be the opposite side of 
unity from the within-stratum odds ratio, with a balanced design the expected pooled 
odds ratio is both on the same side of and closer to unity than the expected within- 
stratum odds ratio. An unstratified analysis will bias the odds ratio towards unity, 
unless the confounding and exposure variables are (conditional on disease status) 
independent, but not change the side of unity on which the odds ratio lies. 

Obviously the odds ratio of C with disease bears no relation to the true association. 
If a factor has been balanced, the data so generated give no information on-the asso- 
ciation of that factor with disease. Interaction can still be estimated, however, as is 
discussed in 5 3.5. 

Balance, as described above, where the control series is chosen to ensure equal 
frequency of cases and controls in different strata, is sometimes referred to as frequency 
matching. On other occasions, where for each case a set of controls is chosen to have 
the same, or nearly the same, values of prescribed covariates, we speak of individual 
matching. In later chapters matching refers specifically to individual matching. 

Incorporation of matching factors in the analysis 

The purpose of matching, as we have just seen, is to control confounding and increase 
the lnformation per observation in the post-stratification analysis. Most studies, and 
certainly those of cancer, would match for age and sex, since both could confound the 
effect of most other factors. A large number of studies match on additional variables, 
often to the point where each case may be associated with a set of controls in an 
individual stratum. One purpose of this matching, as we have mentioned, is to improve 
the precision of the estimates of the relevant relative risks obtained from a stratified 
analysis. Some matching factors, such as place of residence or membership of a sibship, 
represent a complex of factors. Then, the purpose of the matching is to eliminate the 
confounding effect of a range of only vaguely specified variables, since the matching 
provides a stratification by these variables which would otherwise be difficult to per- 
form because of their indeterminate nature. In these circumstances, matching can be 
an important way of eliminating bias in the risk estimate. The result given for a 
dichotomous matching variable can be extended without difficulty to any complexity 
of matching variables. The expected odds ratio resulting from an analysis incorporating 
the matching is always more extreme than the expected odds ratio obtained ignoring 
the matching (Seigel & Greenhouse, 1973). 

Now, the purpose of matching implies that the matching factors must a priori be 
considered as ones for which stratification would be necessary, that is, as confounding 
variables. It would follow that variables which have been used for matching in the 
design should be incorporated in the analysis as confounding variables. Until recently, 
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there were limitations on the type of analysis that could be done which fully incorporated 
the matching. However, the analytical methods now available do not suffer from these 
limitations. 

The extent to which the analysis should incorporate the matching variables will 
depend on how the variables are used for matching. If matching is performed only on 
age and sex then a stratified analysis rather than one which retains individual matching 
may be more appropriate. Individual matching in the analysis is only necessary if 
matching in the design was genuinely at  the individual level. However, preservation of 
individual matching, even if artificial, can sometimes have computational advantages 
and often means little loss of information (see 5 7.6). 

Overmatching 

It might be inferred from our discussion that the post-stratification analysis is always 
the one of interest, that if we can find a variable which appears to alter the association 
between disease and the exposure then we should treat that variable as a confounder, 
but this approach ignores the biological meaning of the variables in question and 
their position in the sequence of events which leads to disease. 

A diagrammatic representation of (positive) confounding might be as follows: 

C Confounding 

In many situations, however, such a figure does not correspond to the true state of 
affairs. Two such situations merit particular attention. The first is when an apparent 
confounding variable in fact results from the exposure it appears to confound. We 
could represent this occurrence diagrammatically as 

E-C-D Overmatching 

where C is part of the overall pathway 

Chronic cough, smoking, and lung cancer can be cited as an example. One would 
expect the pattern of cigarette smoking among those with chronic cough to be closer 
to the smoking pattern of lung cancer cases than to that of the general population. The 
result of stratifying by the presence of chronic cough before diagnosis of lung cancer 
might almost eliminate the lung cancer-smoking association. The real association be- 
tween smoking and lung cancer is obscured by the intervention of an intermediate 
stage in the disease process. A similar example is given by cancer of the endometrium, 
use of oestrogens and uterine bleeding. If use of oestrogens by postmenopausal women 
induces uterine bleeding, itself associated with endometrial cancer, then one might 
expect stratification by a previous history of uterine bleeding to reduce the association 
between endometrial cancer and oestrogens. If history of chronic cough or a history of 
uterine bleeding were used as stratifying factors in the respective analyses, or  as a 
matching factor in the design, then one would call the resulting reductions in the 
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strength of the disease/exposure association examples of overmatching. In both these 
examples, the overmatching consists of using as a confounding factor a variable whose 
presence is caused by the exposure. 

A second way in which overmatching may occur is when both the exposure and the 
confounder represent the same underlying cause of the disease. We might represent 
such a situation as: 

Composite variable 

C and E now represent different aspects of the same composite factor causally related 
to disease. For example, C and E might both be aspects of dietary fibre, or alternative 
measures of socioeconomic status. From the diagram it is clear that both should have 
equal status as associates of disease. One might, somewhat arbitrarily, decide to take 
one of the two, or even attempt to form a composite variable using regression methods. 
It would clearly be inappropriate to consider one as confounding the effect of the 
other, or to consider the association of one with disease after stratification by the other. 

In both the above situations, overmatching will lead to biased estimates of the relative 
risk of interest. 

A third way in which overmatching may occur is through excessive stratification. The 
standard errors of post-stratification estimates of relative risk tend to be larger than 
the standard errors of pre-stratification estimates (see 5 7.0). Stratification by factors 
which are not genuine confounding variables will therefore increase the variability of 
the estimates without eliminating any bias, and can be regarded as a type of over- 
matching. It is commonly seen when data are stratified by a variable known to be 
associated with exposure but not in itself independently related to disease. It does not 
give rise to bias. If one recalls the section of Chapter 1 relating to overmatching in the 
design of a study, one can see close parallels between the different manifestations of 
overmatching in the design and the analysis of a study. 

We may represent diagrammatically the situation in which a variable is related to 
exposure but not to disease as: 

No confounding 

C is not a genuine confounding variable. Simply by chance, however, substantial 
confounding may appear to occur, as the result of random sampling. This eventuality 
will arise more often the more strongly E and C are associated. It may be difficult to 
decide whether such an event has occurred, and this will normally require consideration 
of how C and disease could, logically or  biologically, be related. If several studies 
have been performed, such confounding may appear as an inconsistency in the results, 
with different factors appearing to have confounding effects in different studies. Good 
evidence may be available from previous studies that C is not causally related to disease, 
in which case it should not be incorporated as a confounder. If, nevertheless, it appears 
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to have a strong confounding effect, the design of the study should be carefully exam- 
ined to ensure that it is not acting as a surrogate for some other potential confounder, 
and in particular that it is not acting through selection bias (see 3 3.7). 

Note that the situation 
0 

AL 
E-D 

may lead to genuine confounding when the variables are measured with error. Con- 
sider as an example: 

Case 

Control 

Factor C+ 
Exposure E 
+ - 

Factor C- 
Exposure E 
+ - 

Pooled levels of C 
Exposure E 
+ - 

Odds ratio 100 100 100 

Suppose now that E is misclassified 10% of the time, yielding a variable which we 
shall denote by E*. The tables become, approximately: 

Case 

Control 

Factor C+ 
Exposure E* 
+ - 

Factor C- 
Exposure E* 
+ - 

'I, 
Pooled levels of C 

Exposure E* 
+ - 

odds ratio 9 9 22.9 

The post-stratification odds ratio relating E* to disease is much less than that relating 
E to disease but in addition a confounding effect has arisen, with a confounding risk 
ratio of 22.919 = 2.54. The odds ratio relating C to disease, after stratification by E*, 
is 9 rather than 1. The reason is clear: both E* and C are correlates of E, and both are 
related to disease only through E. Only if E is exactly known does knowledge of C 
contribute nothing extra to assessment of disease risk. 

It is clear from our discussion of confounding that it is not an issue which can be 
settled on statistical grounds. One has to consider the nature of the variables concerned, 
and of their relationships with each other and with disease. 

Variables to be included as confounding variables 

We have considered the conditions under which an observed association may be the 
result of a confounding effect, and when overmatching might occur, and have discussed 
the criteria for deciding which factors to incorporate in the analysis as confounding 
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factors when confronting the data from a particular study. Normally there will be two 
basic aims: first, to remove from the disease/exposure associations of interest all the 
confounding effects present in the study data set, whether positive or negative; second, 
to ensure that genuine associations are not reduced by overmatching. 

To satisfy the first aim, questions of statistical significance are irrelevant. Given that 
a confounding factor has to be associated both with disease and with exposure, 
one might contemplate testing whether both associations are significant in the available 
data. If their association were not significant, then one might discard the factor as a 
potential confounder.  h his approach is incorrect (Dales & Ury, 1978), and it can lead 
to substantial confounding effects remaining in the association, as the following example 
shows: 

Stratification by potential confounder 

Case 

Control 

Factor C+ 
Exposure E 
+ - 

Factor C- 
Exposure E 
+ - 

Pooled levels of C 
Exposure E 
+ - 

odds ratio 1 1 1.73 (j2 = 3.91) 

The association between E and C, after cross-classification by disease status, does 
not achieve significance at the 5 % level: x2 = 1.63 using the Mantel-Haenszel x2 given 
by equation (4.23). Thus, in the data C and E are not significantly associated, but an 
appreciable and statistically significant (at least in the formal sense) association be- 
tween E and disease exists before stratification by C, which vanishes upon stratification. 

With this example in mind, and recalling the initial discussion of overmatching, we 
can propose three criteria for treating a variable as a confounding variable in the 
analysis. 
1. If a variable C is known from other studies to be related to disease, and if this 

association is not subsidiary to a possible exposure/disease association, then C 
should be treated as a confounding variable. The significance of the association 
between C and disease in the data at hand is of no relevance. Irrespective of 
the association between E and C in the general population, if there is an association 
between E and C in the study sample then part of the association between E and 
disease in the study sample will be a reflection of the causal association between C 
and disease. The contribution of C to the E-disease association must be elimi- 
nated before proceeding to further considerations of a possible causal role for E 
in disease development. Age and sex will almost always be confounding variables, 
and should be treated as such. 

2. If a variable C is related to disease, but this association is subsidiary to the associa- 
tion between E and disease, by which we mean that either C is caused by E or forms 
a part of the chain of events by which disease develops from E, then C should not 
be considered as a confounder of the disease/exposure association. 
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3. If a factor is thought important enough to be incorporated in the design of the 
study as a matching or balancing factor, then it should be treated as a confounding 
variable in the analysis. 
In the situation when E and C are known to be related, and if in the data C is also. 

related to disease, then there will be an apparent confounding effect. In this situation, 
unlike the previous one, it is less clear what the interpretation should be in terms of 
causality. Incorporating C as a confounding variable implies that one is giving the 
C-disease association precedence over the E-disease association, which one would not 
always want to do, as for example when C and E are different measures of the same 
composite factor. The possibility must be considered that selection bias has operated 
with respect to C in the choice of either cases or controls or in the manner of acquiring 
information. Control of this bias may be possible by treating it as if it were a confound- 
ing effect. This is discussed in § 3.7. 

3.5 Interaction and effect modification 

In our discussion of the joint effect of different factors, and specifically in the context 
of confounding, we have assumed that the odds ratio associating one factor to disease 
is unaltered by variation in the value of other factors. This simple assumption can only 
be an approximation, although as we saw in Chapter 2, on many occasions the approxi- 
mation is fairly close. On other occasions, appreciable variations in the odds ratio were 
noted, and these variations themselves were of biological importance. 

If the odds ratios associating factor A and disease vary with the level of a second 
factor B, then it is common epidemiological parlance to describe B as an effect modifier. 
The term is not a particularly happy one, however. A departure from a multiplicative 
model might arise, for example, if two factors operated in the same way at the cellular 
level and their joint effect were additive, which would make little sense biologically to 
describe as effect modification. We prefer to use the term 'interaction', in keeping witht 
usual statistical terminology. 

The main reasons for studying interactions are first because they may modify the 
definition of high risk groups, and second because they may provide insight into disease 
mechanisms. Interaction implies that in certain subgroups the relative risk associated 
with exposure is higher than in the rest of the population. Both the specificity of risk 
for these subgroups, and the fact that the level of exposure-associated risk will be 
higher than the general risk in the population would tend to increase one's belief in 
the causal nature of the association, as was discussed earlier in the chapter. The aim 
should not be to eliminate interactions by suitable transformations, but rather to under- 
stand their nature; this point is well made by Rothman (1974). 

One should note that using a variable as a matching factor in the design, so that its 
individual effect on risk cannot be studied, does not alter the interactive effects that 
the factor may have with other exposures. A simple example will illustrate the point. 
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Factor B+ 
Factor A 

+ - 

Factor B- 
Factor A 

+ - 

Case 

Control 

Odds ratio 1 4 

Suppose now that the ratio of controls to cases were the same for each level of B. 
The results would then be, for example: 

Case 

Control 

Factor B+ 
Factor A 

+ - 

Factor B- 
Factor A 

+ - 

Odds ratio 1 4 

Thus, the two odds ratios relating factor A to disease for the two levels of B are un- 
altered, but the odds ratio relating B to disease is greatly modified. Matching does not 
alter interaction effects between variables used for matching and those not so used. 

Analysis of interaction effects 

The first step is to investigate if appreciable interactions are present. In the simplest 
situation, one may just wish to test whether the relative risks in two groups, defined 
perhaps by age or some other dichotomized variable, are the same; the type of test 
proposed in Chapter 4 would be appropriate. In more complex situations, two ap- 
proaches are possible. First, the observed distribution of the exposure variables among 
the cases and controls can be compared with the distribution under the multiplicative 
model (see 5 2.6). Patterns in the departures of observed from expected may indicate 
the superiority of an alternative model for the joint action. With two or three variables 
which can be stratified into a few categories each, the presentation is simple, as shown 
in Table 3.6 for data relating oral cancer risk to use of tobacco and alcohol (from Wyn- 
der, Bross & Feldman, 1957; see also Rothman, 1976). The expected values, obtained 
using unconditional maximum likelihood methods (Chapter 6, particularly 5 6.6) enable 
one to examine the adequacy of the overall fit of the multiplicative model. In Table 3.6, 
the fit is good. A feature of Table 3.6 is that apparently substantial differences in the 
odds ratios can arise from fairly small differences between observed and expected 
numbers of cases and controls in a cell. The cell corresponding to < 1 units of alcohol/ 
day and 34+ cigarettedday is an example. 
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Table 3.6 Risk for oral cancer associated with alcohol and tobaccoa 

A. Observed and expected number of cases in each smoking and drinking category, with the 
observed number of controls 

Alcohol (average Tobacco(cigarettes/day) 
consumption in 
unitslday) 5 1  5 1 6-20 

B. Observed and expected relative risks in each smoking and drinking category 

Obs. Obs. Exp. 
Cont. Cases Cases 

31 16 18.84 
8 7 6.07 
8 20 18.47 
2 10 9.62 

Alcohol (average Tobacco (cigaretteslday) 
consumption in 
unitslday) 5 1  5 16-20 2 1 3 4  34 + 

Obs. Obs. Exp. 
Cont. Cases Cases 

19 25 22.54 
18 19 19.10 
16 40 42.14 
5 30 30.22 

a From Wynder. Bross and Feldman (1957) 

Obs. Exp. 

1 .OO 1 .OO 
1.70 1 .OO 
4.85 2.85 
9.70 6.03 

If significant or appreciable interaction terms are present, one would then attempt 
to understand the nature of their effect. First, examination of the discrepancies between 
the observed numbers and those expected under the no-interaction model may indicate 
that the interaction corresponds to unsystematic but excessive variation. It is a com- 
mon feature of epidemiological data to show variation slightly higher than that theo- 
retically expected on the basis of random sampling considerations. Since the excess 
variation probably arises from minor unpredictable irregularities in data collection, one 
would suspect that it is due mainly to chance, augmented perhaps by variation of 
extraneous factors. 

A second interpretation of the departures from a multiplicative model may be that 
the variables interact in a different way. An obvious alternative would be to try to fit 
an additive model for the relative risks. The data on occupational exposure, cigarette 
smoking and bladder cancer from Boston (Cole, 1973) suggest a better fit for an 
additive model, as do data on use of oestrogens at the menopause, obesity and risk for 
endometrial cancer (Mack et al., 1976). 

A third interpretation is that specific groups, as defined by the interactive factors, 
are at higher risk due either to greater susceptibility or to greater exposure. An example 
of greater susceptibility with age at exposure is provided by the variation in risk for 
breast cancer due to irradiation (Boice & Stone, 1978). An example of differences in 
exposure is given by the risk for cancer of the lung and nasal sinuses among nickel 
refinery workers in South Wales (Doll, Mathews & Morgan, 1977). The risk appears 

Obs. Obs. Exp. 
Cont. Cases Cases 

13 12 13.67 
5 5 5.51 
5 24 22.54 
4 35 34.28 

Obs. Obs. Exp. 
. Cont. Cases Cases 

3 13 10.96 
5 10 10.32 
4 19 19.84 
4 40 40.88 

0 bs. Exp. 
2.55 1.57 
2.05 1.57 
4.85 4.47 

11.64 9.47 

0 bs. Exp. 
1.79 1.80 
1.94 1.80 
9.31 5.1 0 

16.98 10.85 

0 bs. Exp. 
8.41 3.24 
3.88 3.24 
9.21 9.23 

19.37 19.53 
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confined to those first employed before 1930. Changes in the operation of the refinery 
at that time could, quite plausibly, have removed the carcinogenic agents, and the 
change in risk assists in identifying what those agents may have been. 

3.6 Modelling risk 

The use of stratification and cross-tabulation to investigate the joint effect on risk 
of two variables, in terms of how the two factors mutually confound each other and 
interact, is reasonably straightforward. However, even with two variables, as the number 
of values each variable can take increases, the control of confounding by means of 
stratification can lead to substantial losses of information, and tests for interaction will 
lack power. As the complexity of the problem increases, the approach via stratification 
becomes not only unwieldy but increasingly wasteful of information. The different 
effects associated with different levels of a variable will not normally be unrelated, and 
can be expected to change smoothly. For example, for a quantitative variable, risk will 
usually vary in a manner which can be described by a simple family of curves. It would 
be rare to need more than second degree terms, after perhaps some initial transforma- 
tion of the scale. 

Similarly, interactive effects between several variables will not normally vary in a 
structureless way, and general experience has been that most situations are well de- 
scribed by some simple structure of the interactions. These considerations lead to the 
use of regression methods, in which the risk associated with each variable is expressed 
as some explicit function, and interaction effects are described in terms of the specific 
parameters of interest. Chapters 6 and 7 are devoted to the development of these 
methods, which will not be further discussed here except to outline briefly their advan- 
tages. These can be summarized as follows: 
1. One can study the joint effect of several exposures simultaneously. The stratifica- 

tion approach we considered earlier places the emphasis on one specific exposure. 
Study of the combined risk associated with several exposures is an important com- 
plement of the single exposure analysis. 

2. When the number of levels of the confounding variables increases, one can remove 
their effect as fully as by fine stratification but with less loss of information. 

3. One can test for specific interaction effects of interest with the considerable increase 
in power this provides. One also obtains a parametric description of the interaction. 

4. The risk associated with different levels of a quantitative variable can be expressed 
in simple and descriptive terms. 

In studies where controls are individually matched to cases, these advantages are 
accentuated, as Chapters 5 and 7 make apparent. But regression methods should not 
replace analyses based on cross-tabulation, rather they should complement and extend 
them, as we illustrate in Chapter 6. 

3.7 Comparisons between more than two groups 

So far, we have considered methods of analysis appropriate for comparisons between 
one case group and one control group. Situations occur, however, when comparisons 
among more than two groups are required. One may want to test whether the relative 
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risk for some factor is the same over different subcategories of disease, for example, 
different histological types of lung cancer or different subsites of the oesophagus or the 
large bowel. Or one may want to test whether the results obtained using different 
control groups can be taken as equivalent, or whether observed differences are easily 
explained as chance phenomena. The approach most commonly taken is an informal 
one, in which one calls attention to appreciable differences in risk when comparisons 
are made between different pairs of groups, but one does not attempt a formal test of 
significance. 

The methods presented in Chapters 6 and 7 can be extended to the comparison 
of more than two groups. In particular, if the study design incorporated individual 
matching, then a dummy variable, indicating disease subcategory could be introduced 
and interaction examined between this dummy variable and the exposure of interest. 
However, investigating heterogeneity of disease subcategory or of type of control group 
by introducing interaction terms is only appropriate if, for each stratum, every individual 
belongs to one disease subcategory or one control group. If within a stratum more 
than two groups are represented, then the underlying probability structure needs exten- 
sion. One cannot simply write 

One has to generalize this expression to 

Zpr(case, disease category i) + Zpr(contro1, type j) = 1 
I I 

Mantel (1966) and Prentice and Breslow (1978) have indicated how a generalized 
logistic function, appropriate to this situation, can be formed and how the various 
estimation and hypothesis-testing procedures can be derived. The only difficulty in 
practical use is that the number of parameters can become unwieldy. 

One would anticipate that the generalized logistic model will be used more in the 
future than it has been in the past, at least in the context of epidemiological studies. 
But, in this monograph we will not consider its development any further, since computer 
programmes are not readily available to put the techniques in operation, and no impor- 
tant matter of principle is involved. Extensions of the regression models of Chapters 6 
and 7 are conceptually simple, and with some labour could be made operational. 

3.8 Considerations affecting interpretation of the analysis 

The interpretation of a study will depend not only on the numerical results of various 
analyses, but also on more general considerations of how the study was conducted, the 
nature of the factors under investigation and the consistency with other studies done 
in the same field. We conclude this chapter by a brief discussion of some of these 
aspects. 

Bias 

Bias is a property of the design of a study and was discussed in Chapter 1. Various 
features can be incorporated in the design which permit at least partial assessment of 
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the extent of possible bias; these features are selection of different types of control 
groups, different series of cases, or  different ways of obtaining similar information. 

One can include in the study, for example, cases of cancers at different sites, to 
demonstrate whether the observed effects are specific for the site of interest. An 
example of this procedure is given by Cook-Mozaffari et al. (1979) in a study of 
oesophageal cancer in Iran. Frequent practice is to use both a hospital and a population 
series of controls. If recall and selection bias are present then they should be different 
in the two groups, and the divergence between the results should indicate the extent 
of the biasing effect. 

The effects of design bias can sometimes be controlled in the analysis in the same 
way as one controls for confounding. Thus suppose that, whether by selection bias or 
differential recall, the relative representation of some factor in the case and control 
groups is different from the relative representation in the study population, and that 
this factor is related to the exposure of interest. Then, even if the factor does not 
confound the exposure/disease association in the underlying population, an apparent 
confounding effect will be seen in the data at hand which can be controlled in the 
same way as other confounding effects. Care must be taken to ensure that overmatching 
does not result. Stratification or adjustment by a factor leads to an increase in the 
variance of the estimates of parameters of interest and routine adjustment by factors 
for which there is no reason to suspect bias will lead to a loss of information. 

More generally, the effects of bias will often be the creation of apparent confounding 
effects, but little information may be available on the specific variable involved. As in 
5 3.4, one can assess the strength of association that must exist between these hidden 
confounding variables and both disease risk and the exposure of interest for the ob- 
served association to be due to bias. Biases have to be strong to generate relative risks 
greater than twofold. 

Missing data 

Sufficient control should normally be exercised over the conduct of a study to ensure 
that few, if any, of the data that one intended to collect are missing. Sometimes, how- 
ever, source documents such as hospital records may be lost or  otherwise missing, or 
respondents may be unable to supply the information required or be unwilling to 
answer certain questions. The essential point when faced with missing data is to be 
aware that the occurrence is usually not a random event. The probability that data are 
missing will be associated with the exposures one is studying, or  with disease status or 
both. If information on some variable is unavailable for any more than a small per- 
centage of individuals, then inferences about that variable will be of doubtful value. 

Common practice is to eliminate from analyses including a certain variable all 
individuals for whom information on that variable is missing. In a matched pair design, 
the individual matched to an eliminated individual will also be eliminated. Since the 
individuals eliminated will often form a selected group, their elimination can lead to a 
biased estimate of relative risk. An attempt can be made to estimate the degree of 
bias involved. One approach is to replace missing values by the two extreme values, 
thus bracketing the true results. An alternative, for categorical variables, is to create 
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an additional category for missing data. The relative risk for this category will give an 
indication of the degree of bias. 

If one can be sure that no bias relates to the absence of data, for example, the acci- 
dental loss of biological samples, then one might consider using some of the powerful 
techniques that have recently been developed for data missing at random (Demster, 
Laird & Rubin, 1977). These techniques have the advantage that an individual's entire 
record is not discarded just because a single datum is missing. 

Errors of classification 

Errors in classifying disease status and in measuring the exposure variables may 
both be appreciable. For the former, it has long been realized that a certain proportion 
of the controls may be at an early stage of disease and should have been diagnosed as 
cases. Under most circumstances, one might expect this proportion and hence the 
effect to be small, but when the disease under study is particularly common, the effect 
may become appreciable. The consequence is the same as when misdiagnosed cases are 
included in the disease group. Both errors lead to underestimates of the relative risk. 

Errors of measurement in the exposure variables have been considered by several 
authors (Bross, 1954; Newell, 1963; Goldberg, 1975; Barron, 1977). Here the effect 
is also to reduce the apparent risk, unless the errors are linked in some unusual manner 
to confounding variables. For a dichotomous exposure variable, with a probability @ 
of misclassifying an exposed case or control and a probability 6 of misclassifying a non- 
exposed person, we have: 

True odds ratio I# = pl(l-po)/po(l-p,) 
but 

Observed odds ratio = 
(PI + 6/d) ((1-po) + @/dl 
(PO + 6/d) ((1-p1) + @/d) 

where pl is the true probability of exposure among cases, po the exposure probability 
for controls, and d = 1 - @ - 6. 

For example, if po = 0.3 and p, = 0.1, with the true relative risk = 3.9, then misclas- 
sification rates of 10% (@ = 6 = 0.1) will reduce the relative risk to 2.4, and misclassi- 
fication of 20% reduces the relative risk to 1.7. It should be remembered that some- 
times one is not measuring precisely the factor of interest, and that for this reason 
assessments of the importance of a factor may be too modest. Dietary items would be 
clear examples; current epidemiological methods are certainly inadequate for estimating 
retrospectively the intake of dietary fibre or animal fat. Demonstration of an effect for 
either of these items in a case-control study would be virtually all one could expect, 
and estimates of relative risk, or attributable risk, are likely to be serious understate- 
ments of the real effect. As another example, weak associations (i.e., relative risks of 
1.5 or 2) between HLA antigens and disease, particularly locus A or B antigens, are 
often interpreted as indicating the existence of genes at other loci of the HLA region 
which are strongly associated with disease. 
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The problem of multiple comparisons 

The results of studies are often presented as if the only variables included in the study 
were those which a posteriori showed association with disease. One has to distinguish 
between factors which are clearly part of the main hypothesis motivating fhe study, and 
those which were included in the study for less obvious reasons. Disease associations 
demonstrated for the former can be interpreted without consideration of multiple com- 
parisons, but for the latter one or two factors out of a hundred in the study are expected 
to be significant at the 1 % level (this issue is well discussed in the paper by Mantel and 
Haenszel, 1959). The area where this consideration is most explicitly acknowledged 
is in the study of genetic polymorphisms and disease, perhaps because non-confirmatory 
repeat studies are relatively easy to perform. In studies of HLA antigens, for example, 
it is now required practice to correct nominal significance levels obtained from the 
2 x 2 tables for each antigen by the number of antigens tested (i-e., comparisons). This 
correction may in fact be over-conservative, especially if interest is mainly directed at 
the more common antigens, but correction procedures based on, say, a full Bayesian 
analysis would probably be too complex. A test of association not requiring correction 
for the number of antigens, based on the multivariate estimates of gene frequencies, 
has been proposed in this context (Rogentine et al., 1972). 

In other areas, when a study has investigated many factors, a few of which achieve 
nominal significance in the analysis, the interpretation must be cautious, and further 
studies would be needed to confirm the association. A good example is given by the 
first report of an association between use of reserpine and risk for breast cancer (Boston 
Collaborative Drug Surveillance Program, 1974). This study emanated from the Boston 
Drug Surveillance Program,-and the reported association was one out of several hundred 
possible comparisons (i.e., perhaps 20 tumour sites and 10 or 15 different drugs). As 
the result on its own was thus uninterpretable, publication was delayed until two further 
studies had been performed (Armstrong, Stevens & Doll, 1974; Heinonen et al., 1974). 

It must always be recognized that no study can be regarded in isolation; the results 
of each must be viewed in the light of all other relevant information. 
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nl Number of cases 
no Number of controls 
ml Number exposed 
mo Number non-exposed 
N Total number 
tpp = ad/bc Pooled odds ratio relating E and disease 
a 1 Number of exposed cases at 1st level of C 
a2 Number of exposed cases at 2nd level of C 
(similarly for b, c, d, nl, no, m,, mo, N) 

aldl - V ~ = b , c , -  odds ratio relating E and disease at level 1, factor C 

a2d2 - odds ratio relating E and disease at level 2, factor C t p 2 = = -  

' P C  

P 1 

P2 
w = $lp/lp 

r k 

Plk 
P2k 
r*j 
p*lj 

common value of 99, and v2 ,  assuming they are equal; within stratum 
odds ratio 
odds ratio relating C and disease after stratification by E 
proportion of exposed controls who are at level I (+ )  of C 
proportion of non-exposed controls who are at level l ( + )  of C 
confounding risk ratio 
relative risk associated with level k of a confounder C 
proportion of exposed controls who are at  level k of factor C 
proportion of non-exposed controls who are at level k of factor C 
relative risk associated with jth combination of levels of a confounder C 
proportion of exposed controls having the jth combination of levels of 
factor C 
proportion of non-exposed controls having the jth combination of levels 
of factor C 
confounding risk ratio when K levels of factor C are grouped into J 
combinations (see equation 3.3) 
ratio of controls to cases in a balanced design 
probability that an exposed case or control is mistakenly classified as 
non-exposed 
probability that a non-exposed case or  control is mistakenly classified 
as exposed 
exposure probability for cases 
exposure probability for controls 
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CHAPTER IV 

CLASSICAL METHODS OF ANALYSIS OF GROUPED DATA 

This chapter presents the traditional methods of analysis of case-control studies based 
on a grouping or  cross-classification of the data. The main outlines of this approach, 
which has proved extremely useful for practising epidemiologists, are contained in the 
now classic paper by Mantel and Haenszel (1959). Most of the required calculations 
are elementary and easily performed on a pocket calculator, especially one that is 
equipped with log, exponential and square-root keys. Rothman and Boice (1979) have 
recently published a set of programmes for such a calculator which facilitates many 
of the analyses presented below. 

The statistical procedures introduced in this chapter are appropriate for study designs 
in which stratification or "group-matching" is used to balance the case and control 
samples vis-a-vis the confounding variables. The following chapter develops these same 
methods of analysis for use with designs in which there is individual matching of cases 
to controls. While our treatment of this material attempts to give the reader some 
appreciation of its logical foundations, the emphasis is on methodological aspects rather 
than statistical theory. Some of the more technical details are labelled as such and can 
be passed over on a first reading. These are developed fully in the excellent review 
papers by Gart (1971, 1979) on statistical inferences connected with the odds ratio. 
Fleiss (1973) presents an elementary and very readable account of many of the same 
topics. Properties of the binomial, normal and other statistical distributions mentioned 
in this chapter may be found in any introductory text, for example Armitage (197 1). 

4.1 The Ille-et-Vilaine study of oesophageal cancer 

Throughout this chapter we will illustrate the various statistical procedures developed 
by applying them to a set of data collected by Tuyns et al. (1977) in the French depart- 
ment of Ille-et-Vilaine (Brittany). Cases in this study were 200 males diagnosed with 
oesophageal cancer in one of the regional hospitals between January 1972 and April 
1974. Controls were a sample of 778 adult males drawn from electoral lists in each 
commune, of whom 775 provided sufficient data for analysis. Both types of subject 
were administered a detailed dietary interview which contained questions about their 
consumption of tobacco and of various alcoholic beverages in addition to those about 
foods. The analyses below refer exclusively to the role of the two factors, alcohol and 
tobacco, in defining risk categories for oesophageal cancer. 

Table 4.1 summarizes the relevant data. Since no attempt had been made to stratify 
the control sample, there is a tendency for the controls to be younger than the cases, 
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Table 4.1 Distribution of risk factors for cases and con- 
trols: Ille-et-Vilaine study of oesophageal cancera 

Cases Controls 

Age (years) 
25-34 
35-44 
45-54 
55-64 
65-74 
75+ 

Mean 
S.D 

Alcohol (glday) 
0-39 

40-79 
80-1 19 

120+ 
Mean 
S.D 

Tobacco (glday) 
0-9 

1 0-1 9 
20-29 
30+ 

Mean 
S.D 

a Data taken from Tuyns et al. (1977) 

Table 4.2 Correlations between risk variables in the control sample: 
Ille-et-Vilaine study of oesophageal cancera 

Age Tobacco Alcohol 

Age 
Tobacco 
Alcohol 

" Data taken from Tuyns et al. (1977) 

a feature which has to be accounted for in the analysis. Cases evidently have a history 
of heavier consumption of both alcohol and tobacco than do members of the general 
population. Correlations among these risk variables in the population controls indicate 
that there are no systematic linear trends of increased or decreased consumption with 
age, and that the two risk variables are themselves only weakly associated (Table 4.2). 

To take an initial look at the relationship between alcohol and risk using traditional 
epidemiological methods, we might dichotomize alcohol consumption, using as a cut-off 
point the value (80 glday) closest to the median for the cases, as there are many more 
controls. This yields the basic 2 x 2 table: 
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Average daily alcohol consumption 

80+ g 0-79 g Total 

Cases 

Controls 

Total 205 770 97 5 

Of course such a simple dichotomization into "exposed" and "unexposed" categories 
can obscure important information about a risk variable, particularly concerning dose- 
response (§ 3.2). Summarizing the entire set of data in a single table ignores the 
possible confounding effects of age and tobacco (§ 3.4); these two deficiencies are 
momentarily ignored. 

From the data in this or any similar 2 x 2 table one wants to estimate the relative 
risk and also to assess the degree of uncertainty inherent in that estimate. We need to 
know at what level of significance we can exclude the null hypothesis that the true 
relative risk W is equal to unity, and we need to determine a range of values for I# which 
are consistent with the observed data. Appropriate methods for making such tests and 
estimates are presented in the next two sections. 

4.2 Exact statistical inference for a single 2 X 2 table' 

When a single stratum of study subjects is classified by two levels of exposure to a 
particular'risk factor, as in the preceding example, the data may be summarized in the 
ubiquitous 2 x 2 table: 

Exposed Unexposed 

Diseased 

A full understanding of the methods of analysis of such data, and their rationale, 
requires that the reader be acquainted with some of the fundamental principles of 
statistical inference. We thus use this simplest possible problem as an opportunity to 
review the basic concepts which underlie our formulae for statistical tests, estimates and 
confidence intervals. 

Inferential statistics and analyses, as opposed to simple data summaries, attempt not 
only to describe the results of a study in as precise a fashion as possible but also to 
assess the degree of uncertainty inherent in the conclusions. The starting point for 

' Parts of this section are somewhat technical and specialized; they may be skimmed over at first reading. 
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such analyses is a statistical model for the observed data which contains one or more 
unknown parameters. Two such models for the 2 x 2 table were introduced implicitly in 
the discussion in 5 2.8. According to the first, which can be called the cohort model, the 
marginal totals of m, exposed and mo unexposed persons are regarded as fixed numbers 
determined by the sample size requirements of the study design. There are two unknown 
parameters, the probabilities P, and Po of developing the disease during the study 
period. Since subjects are assumed to be sampled at random from the exposed and 
unexposed subpopulations, the sampling distribution of the data is thus the product of 
two binomial distributions with parameters (Pl,ml) and (Po,mo). In the second 
model, which is more appropriate for case-control studies, the marginal totals n, and 
no are regarded as fixed by design. The distribution of the data is again a product of 
two binomials, but this time the parameters are (pl,nl) and (po,no) where p, and po 
are the exposure probabilities for cases and controls. 

According to 5 2.8 the key parameter for case-control studies is the odds ratio p ,  
partly because it takes on the same value whether calculated from the exposure or the 
disease probabilities. The fact that the probability distributions of the full data depend 
on two parameters, either (Pl,Po) or (pl,po), complicates the drawing of conclusions 
about the one parameter in which we are interested. Hypotheses that specify particular 
values for the odds ratio, for example, the hypothesis Ho: $J = 1 of no association 
between exposure and disease, do not completely determine the distribution of the 
data. Statistics which could be used to test this hypothesis depend in distribution on 
nuisance parameters, in this case the baseline disease or exposure probabilities. Infer- 
ences are much simpler if we can find another probability distribution, using perhaps 
only part of the data, which depends exclusively on the single parameter of interest. 

A distribution which satisfies this requirement is the conditional distribution of the 
data assuming all the marginal totals are fixed. Cox (1970) and Cox and Hinkley 
(1974) discuss several abstract principles which support the use of this distribution. Its 
most important property from our viewpoint is that the (conditional) probability of 
observing a given set of data is the same whether one regards those data as having 
arisen from a case-control or a cohort study. In other words, the particular sampling 
scheme which was used does not affect our inferences about p. Regardless of which of 
the two product binomial models one starts with, the probability of observing the data 
(4.1) conditional on all the marginal totals nl,no,m,,mo remaining fixed is 

Here (:) denotes the binomial coefficient 

which arises in the binomial sampling distribution. The summation in the denominator 
is understood to range over all values u for the number of exposed cases (a) which 
are possible given the configuration of marginal totals, namely 0, ml-no 5 US ml,nl. 
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Two aspects of th.e conditional probability formula (4.2) are worthy of note. First, 
we have expressed the distribution solely in terms of the number a of exposed cases. 
This is adequate-since knowledge of a, together with the marginal totals, determines 
the entire 2 x 2 table. ' ~ x ~ r e s s i n ~  the distribution in terms of any of the other entries 
(b, c or d) leads to the same formula either for ly or for ly-'. Second, the formula 
remains the same upon interchanging the roles of n and m, which confirms that it 
arises from either cohort or case-control sampling schemes. 

As an example, consider the data 

The possible values for a determined by the margins are a = 1, 2 and 3, corresponding 
to the two tables 

4 and 

in addition to that shown in (4.3). Thus the probability (4.2) for a = 2 may be written 

Similarly, the probabilities of the values a = 1 and a = 3 are 1/(1+ 4q + 2q2) and 
2q2/(1 + 4q + 2q2), respectively. 
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Estimation of q 

The distribution (4.2) for q # 1 is known in the probability literature as the non- 
central hypergeometric distribution. When q = 1 the formula becomes considerably 
simpler and may be written 

which is the (central) hypergeometric distribution. So called exact inferences about the 
odds ratio are based directly on these conditional distributions. The conditional 
maximum likelihood estimate Qcond, i.e., the value which maximizes (4.2), is given 
by the solution to the equation 

where E denotes the expectation of the discrete distribution. For example, with the 
data (4.3) one must solve 

a quadratic equation with roots + --, of which the positive solution is the one required. & 
Note that this estimate, Qcond = = 0.707, differs slightly from the empirical odds h- 
ratio ad = 2 = 0.667. Unfortunately, if the data are at all extensive, (4.5) defines a 

bc 3 
polynomial equation of high degree which can only be solved by numerical methods. 

Tests of significance 

Tests of the hypothesis that q takes on a particular value, say H : q  = qo ,  are 
obtained in terms of tail probabilities of the distribution (4.2). Suppose, for example, 
that q0 = 10. The conditional probabilities associated with each of the three possible 
values for a are then: 
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Having observed the data (4.3), in which a = 2, the lower tail probability, pL = 0.004 + 
0.166 = 0.17, measures the degree of evidence against the hypothesis H :v = 10 in 
favour of the alternative hypothesis that +< lo .  While the data certainly suggest that 
p<10, the fact that pL exceeds the conventional significance levels of 0.01 or 0.05 means 
that the evidence against H is weak. Much stronger evidence would be provided if 
a = 1, in which case the p-value or attained significance level is 0.004. 

More generally, the lower tail probability based on the distribution (4.2) is defined 
by 

p~ = z p r ( u  I nl,no,ml,mo; vo) 
u S a  

(4.6) 

and measures the degree of evidence against the hypothesis H : +  = qo in favour of 
p<v0. Similarly, the upper tail probability 

measures the degree of evidence against H and in favour of v >vo. In both cases the 
summation is over values of u consistent with the observed marginal totals, with u less 
than or  equal to the observed a in (4.6) and greater than or  equal to a in (4.7). If 
no alternative hypothesis has been specified in advance of the analysis, meaning we 
concede the possibility of a putative "risk factor" having either a protective o r  dele- 
terious effect, it is common practice to report twice the minimum value of pL and pu 
as the attained significance level of a two-sided test1. 

The hypothesis most often tested is the null hypothesis Ho:v = 1, meaning no 
association between risk factor and disease. In this case the tail probabilities may be 
computed relatively simply from the (central) hypergeometric distribution (4.4). The 
resulting test is known as Fisher's exact test. For the data in (4.3) the exact upper 
p-value is thus 

while the lower p-value is 

neither of them, of course, being significant. 

Confidence intervals 

Confidence intervals for v are obtained by a type of testing in reverse. Included in the 
two-sided interval with a specified confidence coefficient of 100(1-a)% are all 
values vo which are consistent with the data in the sense that the two-sided p-value 

' A n  alternative procedure for computing two-sided p-values is to add pmi, = min(pL,pu) to the prob- 
ability in the opposite tail of the distribution obtained by including as many values of the statistic as possible 
without exceeding pmi,. This yields a somewhat lower two-sided p-value than simply doubling pmi,, 
especially if the discrete probability distribution is concentrated on only a few values. 
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for the test of H : q  = qo exceeds a. In other words, the confidence interval contains 
those qo such that both pL and b exceed a/2, where pL and I>U depend on q0 as 
in (4.6) and (4.7). In practice, the interval is determined by two endpoints, a lower 
confidence limit pL and an upper confidence limit qU. The upper limit satisfies the 
equation 

while the lower limit satisfies 

Thus the exact upper lOO(l-cr)% = 80% confidence limit for the data (4.3) is obtained 
from the equation 

with solution pU = 18.25, while the lower limit solves 

with solution pL = 0.0274. Since there are so few data in this example, most reason- 
able values of p are consistent with them and the interval is consequently very wide. 

Although such exact calculations are feasible with small 2 x 2 tables like (4.3), as 
soon as the data become more extensive they are not. The equations for conditional 
maximum' likelihood estimation and confidence limits all require numerical methods of 
solution which are not possible with pocket calculators. Thomas (1971) provides an 
algorithm which enables the calculations to be carried out on a high-speed computer, 
but extensive data will render even this approach impracticable. Fortunately, with 
such data, the exact methods are not necessary. We next show how approximations 
may be obtained for the estimates, tests and confidence intervals described in this 
section which are more than accurate enough for most practical situations. Occasionally 
the exact methods, and particularly Fisher's exact test, are useful for resolving any 
doubts caused by the small numbers which might arise, for example, when dealing with 
a very rare exposure. The exact procedures are also important when dealing with 
matched or finely stratified samples, as we shall see in Chapters 5 and 7. 

4.3 Approximate statistical inference for a 2 x 2 table 

The starting point for approximate methods of statistical inference is the normal 
approximation to the conditional distribution. When all four cell frequencies are large, 
the probabilities (4.2) are approximately equal to those of a continuous normal distri- 
bution whose mean A = A(q) is the value which a must take on in order to give an 
empirical or calculated odds ratio of (Hannan & Harkness, 1963). In other words, 
to find the asymptotic mean we must find a number A such that when A replaces a, 
and the remaining table entries are filled in by subtraction 
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we have 

This is a quadratic equation, only one of whose roots yields a possible value for A in 
the sense that A, B, C and D are all positive. Under the special null hypothesis 
Ho : = 1, the equation simplifies and we calculate 

which is also the mean of the exact distribution (4.4). The quantities A, B, C and D 
in (4.10) are known as fitted values for the data under the hypothesized I/J. 

Once A is found and the table is completed as in (4.10), the variance Var = Var(a;v) 
of the approximating normal distribution is defined in terms of the reciprocals of the 
fitted values 

When = 1 this reduces to 

Var (a; I/J = 1) = nlnomlmo 
N3 

7 

whereas the variance of the corresponding exact distribution is slightly larger 

Using the approximating normal distribution in place of (4.2) leads to computationally 
feasible solutions to the problems outlined earlier. 

Estimation 

The asymptotic maximum likelihood estimate is obtained by substituting the asymp- 
totic mean A(q) for the right-hand side of (4.5) and solving for p. This yields 

the observed or  empirical odds ratio, whose use in (4.11) leads to A($) = a as 
required. It is reassuring that these somewhat abstract considerations have led to the 
obvious estimate in this simple case; in other more complicated situations the correct 
or "best". estimate is not at all obvious but may nevertheless be deduced from 
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analogous considerations. The empirical odds ratio is also the unconditional maximum 
likelihood estimate based on the two parameter product binomial distribution men- 
tioned earlier. 

Tests of significance 

Large sample hypothesis tests are obtained via normal approxima.tions to the tail 
probabilities (4.6) and (4.7) of the discrete conditional distribution. Figure 4.1 illus- 
trates this process schematically. The approximating continuous distribution is first 
chosen to have the same mean and variance as the discrete one. Probabilities for the 
continuous distribution are represented by areas under the smooth curve, and for the 
discrete distribution by the areas of the rectangles centred over each possible value. 
Thus the exact probability in the right tail associated with the observed value 8 consists 
of the sum of the areas of the rectangles over 8, 9 and 10. It is clear from the diagram 
that this is best approximated by taking the area under the continuous curve from 
7'1, to infinity. If we did not subtract 'I2 from the observed value but instead took 
the area under the normal curve from 8 to infinity as an approximate p-value, we 
would underestimate the actual tail probability of the discrete distribution. More 
generally, if the values of the discrete distribution are spaced a constant distance A 
units apart, it would be appropriate to reduce the observed value by 'I2 A before 
referring it to a continuous distribution for approximation of an upper tail probability. 
Similarly, in the lower tail, the observed value would be increased by '1, A .  Such an 
adjustment of the test statistic is known as the continuity correction. 

Since the hypergeometric distribution takes on integral values, for the problem ,at 
hand A = 1. Thus the approximating tail probabilities may be written 

and 

where A and Var are the null mean and variance defined in (4.12) and (4.14), and 
@ is the cumulative of the standard normal distribution. 'For a one-tailed test we gener- 
ally report the upper tail probability, provided that the alternative hypothesis 11, > 1 
has been specified before the study or it was the only one plausible. Similarly, for a 
one-tailed test against V < 1  we report pL; however, for a two-tailed test, appropriate 
when the direction of the alternative cannot be specified in advance, we report twice 
.the minimum value of pL and p,. 

A convenient way of carrying out these calculations is in terms of the corrected chi- 
square statistic ': 

' N-1 is often replaced by N in this expression. 
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Fig. 4.1 Normal approximation to discrete probability distribution. Note that the 
discrete probabilities for the values 8, 9 and 10 are better approximated by 
the area under the normal curve to the right of 7'12 than by the area under 
the normal curve to the right of 8. 

= normal distribution from 7'12 to infinity 
= discrete probabilities for the values 8, 9, and 10. 

Observed value 
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Referring this statistic to tables of percentiles of the chi-square distribution with one 
degree of freedom yields the approximate two-sided significance level, which may be 
halved to obtain the corresponding single-tail test. 

There is no doubt that the '/, continuity correction in (4.15) and (4.16) results 
in a closer approximation to the p-values obtained from the exact test discussed in the 
last section (Mantel & Greenhouse, 1968). Since the conditional distribution involves 
only the odds ratio as a parameter, and thus permits the derivation of point estimates, 
confidence intervals and significance tests in a unified manner, we feel it is the most 
appropriate one for assessing the evidence from any given set of data, and we there- 
fore recommend the '/, correction. This point, however, is somewhat controversial. 
Some authors argue that the exact test is inappropriate and show that more powerful 
tests can be constructed (for example, Liddell, 1978). These tests are not based on the 
conditional distribution, and their significance values are influenced by nuisance para- 
meters. 

It is important to recognize that when the sample is small we cannot rely on the 
asymptotic normal distribution to provide a reasonable approximation to the exact 
test. A general "rule of thumb" is that the approximations to significance levels in the 
neighbourhood of 0.05 or larger are reasonably good, providing that the expected 
frequencies for all four cells in the 2 x 2 tables are at least 5 under the null hypothesis 
(Armitage, 1971). These expectations may need to be considerably larger if p-values 
less than 0.05 are to be well approximated. For smaller samples, or when in doubt, 
recourse should be made to Fisher's exact test. 

Cornfield's limits 

Cornfield (1956) suggested that confidence intervals for the relative risk be obtained 
by approximating the discrete probabilities in (4.8) and (4.9). This leads to the equa- 
tions 

a-A(vL)-'12 = & ,,vVar(a; vL) 
and (4.17) 

a-A(vU) + = -&12dVar(a; v u )  

for the lower and upper limit, respectively. Here Za12 is the 100(1+/2) percentile 
of the standard normal distribution (e.g., Z.,,, = 1.96), while A(v) and Var(a; I#) 
are defined by (4.11) and (4.13). Cornfield's limits provide the best approximation 
to the exact limits (4.8) and (4.9), and come closest to achieving the nominal spe- 
cifications (e.g., 95% confidence) of any of the confidence limits considered in this 
section (Gart & Thomas, 1972). Unfortunately the equations (4.17) are quartic equa- 
tions which must be solved using iterative numerical methods. While tedious to obtain 
by hand, their solution has been programmed for a high-speed computer (Thomas, 
1971). 

The rule of thumb used to judge the adequacy of the normal approximation to the 
exact test may be extended for use with these approximate confidence intervals 
(Mantel & ~leiss ,  1980). For 95% confidence limits; -one simply establishes that the 
ranges A(vL) +2vVar(a; pL) and A ( w ~ )  + 2dVar(a; pU)  are both contained within 
the range of possible values for a. More accurate confidence limits are of course ob- 
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tained if the mean and variance of the exact conditional distribution are substituted in 
(4.17) for A and Var; however, this requires solution of polynomial equations of an 
even higher order. 

Logit confidence limits 

A more easily calculated set of confidence limits may be derived from the normal 
approximation to the distribution of log & (Woolf, 1955). This has mean log q and a 
large sample variance which may be estimated by the sum of the reciprocals of the 
cell entries 

1 1 1  1 VarClog I)) = - + - + - + - . 
a b c d  

Consequently, approximate lOO(1-a) % confidence limits for log q are 

which may be exponentiated to yield q, and qU. Gart and Thomas (1972) find that 
such limits are generally too narrow, especially when calculated from small samples. 
Since log $3 is the difference between two logit transformations (see Chapter 5), the 
limits obtained in this fashion are known as logit limits. 

Test- based confidence limits 

Miettinen (1976) has provided an even simpler and rather ingenious method for 
constructing confidence limits using only the point estimate and x2 test statistic. Instead 
of using (4.18), he solves 

for the variance of log(@), arguing that both left and right side provide roughly 
equivalent statistics for testing the null hypothesis I,L~ = 1. This technique is of even 
greater value in complex situations where significance tests may be fairly simple to 
calculate but precise estimates for the variance require more effort. 

Substituting the test-based variance estimate into (4.19) yields the approximate 
limits 

where is raised to the power (1 + Zalzlx). Whether q~~ corresponds to the - sign in 
this expression and qu to the + sign, or vice versa, will depend on the relative magni- 
tude of and x. The x2 statistic (4.16), however, should be calculated without 
the continuity correction especially when I) is close to unity, since otherwise the variance 
may be overestimated and the limits too wide. In those rare cases where $J is exactly 
equal to unity, the uncorrected x2 is equal to zero and the test-based limits are con- 
sequently undefined. 
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Halperin (1977) pointed out that the test-based variance estimate is strictly valid 
only if I# = 1. When case and control sample sizes are equal (nl = no) the variance 
for other values of I# is systematically underestimated by this approach, the true average 
probability is less than the nominal 100(1-a)%, and the resulting confidence limits 
are too narrow (Gart, 1979). If there are large differences in the numbers of cases and 
controls, the true variance of log I) may sometimes be overestimated and the resulting 
limits will be too wide. Nevertheless the test-based limits may be advocated on the 
basis of their simplicity since they yield numerical results which are often in reasonable 
agreement with the other procedures and of sufficient accuracy for many practical 
purposes, at least when the estimated relative risk is not too extreme. They also provide 
convenient initial values from which to start the iterative solution of the equations 
for the more accurate limits, if these are desired. 

Example: We illustrate these calculations with data from the 2 X 2 table shown in fj 4.1, The (uncon- 
ditional) maximum likelihood estimate of the relative risk is: 

while the corrected x2 test statistic is 

corresponding to a two-sided significance level of p<0.0001. The uncorrected x 2  is slightly larger at 
110.14. We use this latter value for determining the test-based 95 % confidence intervals. These are 

q U ,  qL = 5.64 (1*1.961m = 4-08, 7.79. 

To calculate the logit limits we need 

leading to limits for log of log 5.65 + 1.96 x = 1.730 f 0.343, i.e., qL = 4.00 and q u  = 7.95. 
By way of contrast, the Cornfield limits (4.17) yield q L  = 3.94 and q u  = 8.07. 

For these data the logit limits are wider than the test-based limits, reflecting the fact that the estimated 
odds ratio is far from unity and the test-based variance is therefore too small. ' ~ 0 t h  the logit and the 
test-based limits are too narrow in comparison with Cornfield's limits, but the magnitude of the dis- 
crepancy is not terribly great from a practical viewpoint. To gauge the accuracy of the normal approxi- 
mation used to derive the Cornfield limits, following the procedure suggested by Mantel and Fleiss, we 
need to calculate the means and variances of the number of exposed cases under each of the two limits. 
The means are obtained as the solution for A = A(q) in the quadratic equations (4.1 1) 

for q = lyL and I#,, namely: 

A(+,) = A(3.94) = 84.22 

corresponding to fitted frequencies of 
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and variance of 

and 

A(vu) = A(8.07) = 107.48 

with fitted frequencies 

and variance of 

It is instructive to verify that the empirical odds ratios calculated from the fitted frequencies satisfy 

and 

respectively. The actual range of possible values for a is max(0,205-775) to min(200,205), i.e., (0,200). 
This is much broader than the intervals including two standard deviations on both sides of the fitted 
means 84.22 + 2qm = (72.7, 95.7) and 107.48 k 2 m 0  = (96.3, 118.7). Hence there is little doubt 
about the accuracy of the normal approximation for these data. 

4.4 Combination of results from a series of 2 x 2 tables; control of confounding 

The previous two sections dealt with a special situation which rarely occurs in practice. 
We have devoted so much attention to it in order to introduce, in a simplified setting, 
the basic concepts needed to solve more realistic problems, such as those posed by the 
presence of nuisance or confounding factors. Historically one of the most important 
methods for control of confounding has been to divide the sample into a series of 
strata which were internally homogeneous with respect to the confounding factors. 
Separate relative risks calculated within each stratum are free of bias arising from 
confounding ( 5  3.4). 

In such situations one first needs to know whether the association between exposure 
and disease is reasonably constant from stratum to stratum. If so, a summary measure 
of relative risk is required together with associated confidence intervals and tests of 
significance. If not, it is important to describe how the relative risk varies according 
to changes in the levels of the factors used for stratum formation. In this chapter we 
emphasize the calculation of summary measures of relative risk and tests of the 
hypothesis that it remains constant from stratum to stratum. Statistical models which 
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are particularly suited to evaluating and describing variations in relative risk are 
introduced in Chapters 6 and 7. 

Example continued: Since incidence rates of most cancers rise sharply with age, this must always be 
considered as a potential confounding factor. We have already noted that the Ille-et-Vilaine cases were 
on average about ten years older than controls (Table 4.1). If age were also related to alcohol consump- 
tion, this would indicate that confounding existed in the data and we would expect to see the age-adjusted 
relative risk change accordingly. We know from Table 4.2, however, that age and alcohol are not strongly 
correlated, so that in this case the confounding effect may be minimal. Nevertheless we introduce age- 
stratification in order to illustrate the basic process. 

Dividing the population into six 10-year age intervals yields the following series of 2 x 2 tables, whose 
sum is the single 2 x 2 table considered earlier (9 4.1): 

Daily alcohol consumption 
80+ g 0-79 g 

Odds ratio 

Case 

Control 

Case 

Control 

Case 

Control 

Case 

Control 

Case 

Control 

75 + Case 

Control 

Some 0 cells occur in the youngest and oldest age groups, which have either a svall  number of cases or a 
small number of exposed. While these two tables do not by themselves provide much useful information 
about the relative risk, the data from them may nevertheless be combined with the data from other 
tables to obtain an overall estimate. There appears to be reasonable agreement between the estimated 
relative risks for the other four age groups, with the possible exception of that for the 65-74-year-olds. 

A full analysis of such a series of 2 x 2 tables comprises: (1) a test of the null hypo- 
thesis that I/J = 1 in all tables; (2) point and interval estimation of assumed to be 
common to all tables; and (3) a test of the homogeneity or no-interaction hypothesis 
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that q is constant across tables. Of course if this latter hypothesis is rejected, the results 
from (1) and (2) are of little interest. In this situation it is more important to try to 
understand and describe the sources of variation in the relative risk than simply to 
provide a summary measure. 

The entries in the ith of a series of I 2 x 2 tables may be identified as'follows: 

Exposed Unexposed 

Cases 

Controls 

Conditional on fixed values for the marginal totals nli, noi, moi in each table, the 
probability distribution of the data consists of a product of I non-central hypergeometric 
terms of the form (4.2). A completely general formulation places no restriction on 
the odds ratios qi in each table, but in most of the following we shall be working under 
the hypothesis that they are equal, q i  = q .  

Summary chi-square: test of the null hypothesis 

Under the hypothesis of no association, the expectation and variance of the number 
of exposed cases ai in the ith table are: 

and 

respectively (see equations 4.12 and 4.14). If the odds ratio is .the same in each table, 
we would expect the ai to be generally either larger (q > I )  or smaller (I/J < I )  than 
their mean values when I/J = 1. Hence an appropriate test is to compare the total Eiai 
of the exposed cases with its expected value under the null hypothesis, dividing the 
difference by its standard deviation. The test statistic, corrected for the discrete nature 
of the data, may be written 

This summary test was developed by Cochran (1954) and by Mantel and Haenszel 
(1959), with the latter suggesting use of the exact variances (4.22). Referring x2 to 
tables of the chi-square distribution with one degree of freedom provides two-sided 
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significance levels for evaluating the null hypothesis; these may be halved for a one-tail 
test. 

Mantel and Fleiss (1980) suggest an extension of the"'ru1e of 5" for evaluating the 
adequacy of the approximation to the exact p-value obtained from the summary chi- 
square statistic. They first calculate the maximum and minimum values that the total 
number of the exposed cases Zai may take subject to fixed marginals in each of the 
contributing 2 x 2 tables. These are Zmin(mli,nli) for the maximum and Zmax(O,mli-noi) 
for the minimum, respectively. Provided that the calculated mean value under the null 
hypothesis ZAi(l)  is at least five units away from both these extremes, the exact and 
approximate p-values should agree reasonably well for p7s in the range of 0.05 and 
above. Similar considerations apply when evaluating the accuracy of the normal approxi- 
mation in setting confidence limits (see equation 4.27 below). Here the mean values 
ZAi($)) calculated at the confidence limits qL and qU for the odds ratio should both 
be at least 2VZivar(ai; I#) units away from the minimum and maximum values. 

Logit estimate of the common odds ratio' 

Woolf (1955) proposed that a combined estimate of the log relative risk be calculated 
simply as a weighted average of the logarithms of the observed odds ratios in each 
table. The best weights are inversely proportional to the estimated variances shown 
in (4.18). Thus the logit estimate @, is defined by 

zwi10g (2) 
log @, = 

z w i  

The variance of such an estimate is given by the reciprocal of the sum of the weights, 
namely 

While the logit estimate behaves well in large samples, where all cell frequencies in 
all strata are of reasonable size, it runs into difficulty when the data are thin. For one 
thing, if any of the entries in a given table are 0, the log odds ratio and weight for 
that table are not even defined. The usual remedy for this problem is to add to 
each entry before calculating the individual odds ratios and weights (Gart & Zweifel, 
1967; Cox, 1970). However the estimate calculated in this fashion is subject to un- 
acceptable bias when combining information from large numbers of strata, each con- 
taining only a few cases or controls (Gart, 1970; McKinlay, 1978); thus it is not 
recommended for general use. 

'This and the following subsections may be omitted at a first reading as they discuss, for the sake of 
completeness, estimates of the common odds ratio which are not used in the sequel. 
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Maximum likelihood estimate 

The maximum likelihood estimate (MLE) of the common odds ratio is found by 
equating totals of the observed and expected numbers of exposed cases: 

For the exact or conditional MLE the expectations E(ai) are calculated under the non- 
central hypergeometric distribution~ (4.2), which means solution of a high degree 
polynomial equation. While the computational burden is thus sufficient to rule out 
use of this estimate for routine problems, a computer programme is available for 
special circumstances (Thomas, 1975). Calculation of the variance of the conditional 
MLE requires the variance of the conditional distribution and access to another com- 
puter programme (Zelen, 1971 ; Breslow, 1976). 

For the unconditional MLE, based on the distribution of all the data without assum- 
ing fixed margins for each 2 x 2 table, the expectations E(ai) in (4.25) are those of 
the approximating normal distributions. Thus the estimation procedure requires finding 
fitted frequencies for all the cells, as in (4.10), such that the total of the observed and 
fitted numbers of exposed cases agree (Fienberg, 1977). While iterative calculations 
are also required here, they are generally less arduous than for the exact estimate and 
do not become any more complicated when the numbers in each cell are increased. 
As discussed in 5 6.5, general purpose computer programmes for fitting logistic regres- 
sion or log linear models may be used to find the unconditional MLE and estimates of 
its variance. 

When there are many strata, each containing small numbers of cases and controls, 
the unconditional MLE is biased in the sense of giving values for which are systemati- 
cally more extreme (further from unity) than the true odds ratio. Numerical results 
on the magnitude of this bias in some special situations are given in Chapter 7. While 
the conditional MLE is not subject to this particular problem, it may be computationally 
burdensome even when there is ready access to an electronic computer. Hence none 
of the estimates considered so far are sufficiently simple or free of bias to be recom- 
mended for general use by the non-specialist. 

The Mantel- Haenszel (M-H) estimate 

Mantel and Haenszel (1959) proposed as a summary relative risk estimate the 
statistic 

which can be recognized as a weighted average of the individual odds ratios gi = (aidi)/ 
(bici), with weights bici/Ni which approximate the inverse variances of the individual 
estimates when V is near 1. 

The Mantel-Haenszel (M-H) formula is not affected by zero cell entries and will 
give a consistent estimate of the common odds ratio even with large numbers of small 
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strata. When the data in each stratum are more extensive it yields results which are in 
good agreement with the MLEs (Gart, 1971; McKinlay, 1978). In view of its com- 
putational simplicity, it thus appears to be the ideal choice for the statistician or  epidemi- 
ologist working with a pocket calculator on tabulated data. Its only major drawback 
is the lack of a robust variance estimate to accompany it. 

Approximate confidence intervals 

Exact confidence limits for this problem are discussed by Gart (1971) and have 
been programmed by Thomas (1975). Since their calculation is quite involved, however, 
we limit our discussion to the three types of approximate limits considered for the 
single 2 x 2 table. Following the same line of reasoning used to derive the Cornfield 
limits (4.17), normal approximations to the exact upper and lower lOO(l-cr)% con- 
fidence bounds are obtained as the solution of 

and 

respectively. Since Ai(p)  and Var(ai; p )  are defined as in (4.11) and (4.13), the 
calculation requires iterative solution of a series of quadratic equations (Thomas, 1975). 
The approximation is improved by use of the exact means and variances in place of 
the asymptotic ones. Though this requires even more calculation, use of the exact 
(conditional) moments is especially important when the number of strata is large 
and the data thin. 

The logit limits are more easily obtained with a pocket calculator. These are defined 
by 

where Q, is the logit estimate and the wi are the associated weights (4.24). Problems 
can be anticipated with their use in those same situations where the logit estimate has 
difficulties, namely when stratification becomes so fine that individual cell frequencies 
are small. 

Miettinen's test-based limits require only a point estimate and test statistic. We 
recommend use of the M-H estimate for this purpose, and also use of the uncorrected 
version of x2. Thus 
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For reasons discussed in the previous section, these test-based limits become less 
accurate when the estimated relative risk is far from unity. They should not, however, 
be subject to the same tendency to increasing bias with increasing stratification as is 
the case with the logit 1.imits. 

Test for homogeneity of the odds ratio 

All the procedures discussed so far in this section have been developed under the 
hypothesis-that the odds ratio is constant across strata. If this were not the case, and a 
particular stratum had an odds ratio which was much larger than average, then we 
would expect the observed number of exposed cases ai for that stratum to be larger 
than the expected number Ai(@) based on the overall fitted odds ratio. Similarly, if 
the stratum odds ratio were small, we would expect ai to be smaller than A,(@). Thus 
a reasonable test for the adequacy of the assumption of a common odds ratio is to 
sum up the squared deviation; of observed and fitted values, each standardized by its 
variance : 

If the homogeneity assumption is valid, and the size of the sample is large relative to the 
number of strata, this statistic follows an approximate chi-square distribution on 1-1 
degrees of freedom. While this is true regardless of which estimate $3 is inserted, use 
of the unconditional MLE has the advantage of making the total deviation Zi{ai-Ai($3)) 
zero. The statistic (4.30) is then a special case of the chi-square goodness of fit statistic 
for logistic models ( 5  6.5); however, the M-H estimate also gives quite satisfactory 
results. 

Unfortunately the global statistic (4.30) is not as useful as it may seem at first sight. 
If the number of strata is large and the data thinly spread out, the distribution of the 
statistic may not approximate the nominal chi-square even under the hypothesis of 
homogeneity. This is precisely the situation where the unconditional NILE breaks 
down. More importantly, even where it is valid the statistic may lack power against 
alternatives of interest. Suppose, for example, that the I strata correspond to values xi 
of some continuous variable such as age and that the observed odds ratios systematically 
increase or decrease with advancing age. Such a pattern is completely ignored by the 
global test statistic, which is unaffected by the order of the strata. In such situations 
one should compute instead 

referring its value to tables of chi-square with one degree of freedom for a test of trend 
in qi with xi. If the x's are equally spaced, a continuity correction should be applied 
to the numerator of this statistic before squaring. Additional tests for trends in relative 
risk with one or several variables are easily carried out in the context of the modelling 
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approach. (In fact [4.311 is the "score" statistic for testing fi = 0 in the model log 
pi = a +fixi. [See 5 6.4, especially equation 6.18, and also 5 6.12.1) 

In a similar context, suppose the I strata can be divided into H groups of size 
I = 11+ I2 + .. . + IH, and that we suspect the odds ratios are homogeneous within 
groups but not between them. Then, in place of the statistic (4.30) for testing overall 
homogeneity, we would be better advised to use 

where the notation 2 denotes summation over the strata in the hth group. This 
statistic will be chi-s$are with only H-1 degrees of freedom under the homogeneity 
hypothesis, and has better power under the indicated alternative. 

An alternative statistic for testing homogeneity, using the logit approach, is to take 
a weighted sum of the squared deviations between the separate estimates of log relative 
risk in each table and the overall logit estimate log $,. This may be written 

where the Qi denote the individual odds ratios and wi the weights (4.24), both calculated 
after addition of to each cell entry. While this statistic should yield similar values 
to (4.30) when all the individual frequencies are large, it is even more subject to 
instability with thin data and is therefore not recommended for general practice. 

Some other tests of homogeneity of the odds ratio which have been proposed are 
incorrect and should not be used (Halperin et al., 1977; Mantel, Brown & Byar, 1977). 
As an example we should mention the test obtained by adding the individualx2 statistics 
(4.16) for each table and subtracting the summary xZ statistic (4.23) (Zelen, 1971). 
This does not have an approximate chi-square distribution under .the hypothesis of 
homogeneity unless all the odds ratios are equal to unity. 

Example continued: Table 4.3 illustrates these calculations for the data for six age groups relating 
alcohol to oesophageal cancer introduced at the beginning of the section. The summary X 2  statistic (4.23) 
for testing q = 1 is obtained from the totals in columns (2), (3) and (4) as 

which yields an equivalent normal deviate of x = 9.122, p<0.0001. This is a slightly lower value than that 
obtained without stratification for age. Following the suggestion of Mantel and Fleiss (1980) for evaluat- 
ing the adequacy of the normal approximation, we note that the minimum possible value for Zai con- 
sistent with the observed marginal totals is 0, while the maximum is 167, and that both extremes are 
sufficiently distant from the null mean of 48.890 to permit accurate approximation of p-values well 
below 0.05. 

The logit estimate of the common odds ratio is calculated from the totals in columns (5) and (6) as 
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Similarly, from columns(7) and (8) we obtain the M-H estimate 

By way of contrast, the conditional and asymptotic (unconditional) maximum likelihood estimates for 
this problem are $lcond = 5.25 1 and $I,, = 5.3 12, respectively. These numerical results confirm the tendency 
for the '/, correction used with the logit estimate to result in some bias towards unity, and the opposite 
tendency for the estimate based on unconditional maximum likelihood. However, since the cell frequencies 
are of reasonably good size, except for the most extreme age groups, these tendencies are not large and 
all four estimates agree fairly well. 

In practice one would report the estimated odds ratio with two or three significant digits, e.g., 5.2 or 
5.16 for $I,,. We have used more decimals here simply in order to illustrate the magnitude of the dif- 
ferences between the various estimates. 

Ninety-five percent logit confidence limits, starting from the logit estimate, are 

log qU,qL = 1.614 + 1.96/- 

However, since we know the logit point estimate is too small, these are perhaps best centered around 
log Gmh instead, yielding 

Test-based limits centred about the M-H estimate are computed from (4.29) as 

where x = 9.220 = is the uncorrected test statistic, rather than the corrected vaIue of 9.122. 
These limits are noticeably narrower than the logit limits. By way of contrast the Cornfield (4.27) limits 
qL = 3.60 and qu = 7.84, while yielding a broader interval (on the log scale) than either the logit or 
test-based limits, show the same tendency towards inflated values as does the unconditional maximum 
likelihood estimate. Thus, while all methods of calculation provide roughly the same value for the lower 
limit, namely 3.6, the upper limit varies between about 7.3 and 7.8. 

In order to carry out the test for homogeneity we need first to find fitted values (4.1 1) for all the cell 
frequencies under the estimated common odds ratio. Using the (unconditional) MLE $,, = 5.312, we 
solve for A in the first table via 

which gives A(5.312) = 0.328. Fitted values for the remaining cells are calculated by subtraction, so as 
to yield a table with precisely the same marginal totals as the observed one, viz: 

The variance estimate (4.13) is then 

Var (ai; I# = 5.3 12) = 1 +-+- I + .  = 0.215. 
0.328 0.672 9.672 105.328 
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Table 4.3 Combination of data from a series of 2 x 2 tables 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Stratum Data Test of null Logit Mantel-Haenszel Test of 
(age in hypothesis" estimateb estimate homogeneityc 
years) n I 

Totals 200 48.890 26.106 45.60gd 28.261 58.439 11.330 96.000 27.819 
(except 
as 775 
noted) 

205 770 975 

" Mean A(l)  and variance V(l)  of a under qn = 1 from (4.12) and (4.14) 
Log relative risk estimates and weights from (4.24); '1, added to each cell 
' Mean and variance from (4.1 1) and (4.13) for t = C,,, the unconditional MLE (4.25) 

Sum of log @ weighted by w 
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These values are listed at the head of columns (9) and (10) of Table 4.3; subsequent entries are cal- 
culated in precisely the same fashion for the other 2 X 2 tables. Thus the homogeneity chi-square (4.30) 
becomes 

which when referred to tables of chi-square on I-1=5 degrees of freedom yields p = 0.10. 
Notice that the total of the fitted values A(+) in column (9) of Table 4.3 is precisely equal to the 

observed total, namely 96. In fact this relation is the defining characteristic of the unconditional MLE (see 
equation 4.25). If the fitted values are obtained instead from the M-H estimate, +,, = 5.158, they total 
95.16 and give a value 9.28 to the homogeneity chi-square, very close to that already obtained. Thus 
it is perfectly feasible to carry out the test for homogeneity without having recourse to an iteratively 
computed estimate. 

The alternative logit test statistic for homogeneity (4.33) is calculated as 0.360(3.515), + 2.233(1.625)' + 
. . . + 0.429(3.708)' - (45.609)'/28.261 = 6.93 (p=0.23). The reason this takes a smaller value is that 
for the extreme age categories, which contribute the most to the homogeneity chi-square, the addition 
of '/, to the cell frequencies brings the odds ratios closer to the overall estimate. 

Neither version of the formal test thus provides much evidence of heterogeneity. However, since the test 
lacks power it is important to continue the analysis by searching for patterns in the deviations between 
observed and fitted values which could indicate some sort of trend in the odds ratios. Certainly there is 
no obvious linear trend with age. This may be confirmed by assigning "dose" levels of x, = 1, x, = 2, 
..., x6 = 6 to the six age categories and computing the single degree of freedom chi-square for trend (4.31). 
We first need the intermediate quantities 

from which we may calculate the test statistic 

When referred to tables of chi-square on one degree of freedom, this gives p = 0.58, i.e., no evidence 
for a trend. 

4.5 Exposure at several levels: the 2 x K table 

The simple dichotomization of a risk variable in a 2 x 2 table with disease status 
will often obscure the full range of the association between exposure and risk. Qualita- 
tive exposure variables may occur naturally at several discrete levels, and more informa- 
tion can be obtained from quantitative variables if their values are grouped into four 
or five ordered levels rather than only two. Furthermore, this is the only way one can 
demonstrate the dose-response relationship which is so critical to the interpretation of 
an association as causal ( 5  3.2). Hence there is a need for methods of analysis of 
several exposure levels analogous to those already considered for two levels. 

Unstratified analysis 

Suppose that there are K>2 levels of exposure and that the subjects have been 
classified in a single 2 x K table relating exposure to disease: 
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Cases 

Controls 

Exposure level 
1 2 ... K Totals 

Totals ml m2 ... m~ N 

The usual approach to data analysis in this situation is to choose one exposure level, 
say level 1, as a baseline against which to compare each of the other levels using the 
methods already given for 2 x 2 tables. In this way one obtains relative risks rl = 1, 
r2, r3, . . ., rK for each level, confidence intervals for these relative risks, and tests of 
the hypothesis that they are individually equal to unity. 

To aid the interpretation of the results of such a series of individual tests, some of 
which may reach significance and others not, it is helpful to have available an overall 
test of the null hypothesis that the K relative risks rk are all simultaneously equal to 
unity, i.e., that there is no effect of exposure on disease. Under this hypothesis, and 
conditional on the marginal totals nl, no, ml, :. ., mK, the numbers of cases exposed at 
the kth level have the expectations 

variances 

and covariances (k # h) 

of the K-dimensional hypergeometric distribution. The test statistic itself is the usual 
one for testing the homogeneity of K proportions (Armitage, 1971), namely 

which may be referred to tables of chi-square on K-1 degrees of freedom1. 
When the levels of the exposure variable have no natural order, as for a genetic 

polymorphism, this approach can be taken no further. However, for quantitative or 
ordered qualitative variables the overall chi-square wastes important information. 
A more sensitive way of detecting alternative hypotheses is to test for a trend in 

' The leading term is often ignored. 
(N) 
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disease risk with increasing levels of exposure. Suppose that there are "doses" xk 
associated with the various levels of exposure, where we may simply take xk = k for 
an ordered variable. An appropriate statistic for testing trend is to consider the regres- 
sion of the deviations (ak<k) on xk (Armitage, 1955; Mantel, 1963). When squared 
and divided by its variance this becomes 

which should be referred to tables of chi-square on one degree of freedom. If the xk 
are spaced one unit apart, as in the case of xk = k, an appropriate correction for con- 
tinuity is to reduce the absolute value of the numerator term Zxk(ak-ek) by 'I2 before 
squaring. Estimation of the quantitative trend parameter is best discussed in terms of 
the modelling approach of Chapter 6. 

Adjustment by stratification 

Confounding variables may be incorporated in the analysis of 2 x K tables by stra- 
tification of the data just as described in 5 4.4 for a 2 x 2 table. The frequencies of 
cases and controls classified by exposures for the ith of I strata are simply expressed 
by the addition of subscripts to the entries in (4.34): 

Stratum i 

Cases 

Controls 

Exposure level 
1 2 ... K Totals 

Totals mli m2i ... m ~ i  Ni 

Methods for analysis of a series of 2 x 2 tables may be used to estimate the adjusted 
relative risk for each level of exposure relative to the designated baseline level, to put 
confidence limits around this estimate, to test the significance of its departure from 
unity, and to test whether it varies from stratum to stratum. A peculiarity which results 
from this procedure when there is more than one 2 x K table is that the estimated 
relative risks may not be consistent with each other. More precisely, if rzl is the sum- 
mary estimate of the odds ratio comparing level 2 with level 1, and r31 the summary 
measure for level 3 compared with level 1, their ratio r31/r21 is not algebraically identical 
to the summary odds ratio r32 comparing level 3 with level 2. This problem does not 
arise with a single table, since it is true for this case that 
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Nor will it arise with a series of tables in which the relative risks comparing each pair 
of levels are the same from table to table. Therefore, inconsistency can be regarded as 
a particular manifestation of the problem of interaction (see 5 5.5). Recourse must 
be made to the methods in Chapters 6 and 7 in order to have adjusted estimates of 
relative risk which display such consistency, and for general tests of interaction. Other- 
wise one is well advised to use as baseline category the one which contains the most 
information, i.e., the k such that the sum of the reciprocals of the numbers of cases and 
controls. 

is a minimum. 
The generalization to stratified data of the statistic (4.38), which tests the global 

null hypothesis, is somewhat more complicated as it involves matrix- manipulations 
(Mantel & Haenszel, 1959). Let us denote by ei the K-1 dimensional vector of expecta- 
tions ei = E(ai) = E(ali, . . ., of numbers of cases exposed to each of the first K-1 
levels in the ith stratum, and by Vi the corresponding K-1 x K-1 dimensional 
covariance matrix. These are calculated as in formulae (4.35), (4.36), and (4.37) 
with the addition of i subscripts to all terms. Let e. = Zei, V. = ZVi, and a. = Zai denote 
the sums of these quantities cumulated over .the I strata. Then the global null hypo- 
thesis that there is no effect of exposure on disease, after adjustment by stratification, 
may be tested by referring the statistic 

to tables of chi-square with K-1 degrees of freedom. This reduces to (4.38) if I = 1, 
i.e., there is only a single stratum. 

Calculation of this statistic requires matrix inversion, and while perfectly feasible to 
perform by hand for small values of K (say K=3 and 4), it becomes more difficult for 
larger values. Various approximate statistics have therefore been suggested (Armitage, 
1966). One conservative approximation, which always yields values less than or equal 
to those of (4.41), is given by 

Unfortunately, the difference between (4.42) and (4.41) increases as the distributions 
of exposures among the combined case-control sample in each stratum become more 
disparate, which is one situation in which stratification may be important to reduce bias 
(Crowley & Breslow, 1975). 

The statistic for the adjusted test of trend which generalizes (4.39) is more easily 
obtained as 
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Here the numerator term represents the regression of the x's on the differences be- 
tween the total observed and expected frequencies, while the denominator is its variance 
under the null hypothesis (Mantel, 1963). This statistic also should be referred to 
tables of chi-square with one degree of freedom, and a continuity correction applied 
to the numerator if the xk values are equally spaced. 

Example continued: As an illustration of the analysis of the effects of a risk factor taking on several 
levels, Table 4.4 presents data from Ille-et-Vilaine with alcohol consumption broken down into four levels 
rather than the two shown in 5 4.1. Relative risks are calculated for each level of consumption against a 
baseline of 0-39 glday as the empirical odds ratio for the corresponding 2 x 2 table. Each of these is 
individually highly significant as judged from the xZ test statistics, all of which exceed the critical value of 
15.1 for significance at the p = 0.0001 level. Moreover, there is a clear increase in risk with increasing 
consumption. The confidence limits shown are those of Cornfield. It is perhaps worth remarking that the 
test-based limits are in better agreement with those for the lower levels (e.g., 2.29-5.57 for 40-79 glday) 
than for the higher ones (16.22-45.92 for 120+ glday), as would be expected in such a situation with a 
trend of risk. 

While there is no doubt regarding the statistical significance of the observed differences in risk, and 
in particular the trend with increasing consumption, we nevertheless compute the chi-square test statistics 
(4.38) and (4.39) for pb?poses of illustration. The first step is the calculation of the table of expected 
values under the null hypothesis, 

Table 4.4 Distribution of alcohol consumption for cases and controls: relative risks and confidence 
limits for each level, with and without adjustment for age . . 

Cases 

Controls 

~ l c o h o l  consumption (glday) 
0-39 40-79 80-1 19 120+ 

Totals 41 5 355 138 67 

Unadjusted analysis 
RR (y^l) 1 .O 3.57 7.80 27.23 
x - 31.54 72.77 156.14 

95% confidence limit - 2.21-5.77 4.54-1 3.46 13.8-54.1 8 

Global test of H,: x g  = 158.8 Test for trend: X :  = 151.9 

Adjusted for age 
RR (Grnh) 1 .O 4.27 8.02 28.57 
RR (Grn~) 1 .O 4.26 8.02 37.82 
x2 - 36.00 57.1 5 135.49 

95% confidence limit - 2.56-7.13 4.37-1 4.82 16.69-87.73 
Test for 
homogeneity (x:) 6.59 6.69 10.33 

Totals 

200 

775 

975 

Global test of H,: X- =. 141.4 Test for trend: X :  = 134.0 
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Cases 

Controls 

Alcohol consumption (g/day) 
0-3 9 40-79 80-1 19 120+ Totals 

Totals 415.00 355.00 138.00 67.00 975.00 

where the first row consists of the expected values ek for cases and the second consists of the expected 
values mk+, for controls. Thus, for example, 

and ml+, = 415-85.13 = 329.87. Note that the row and column totals of the observed and expected 
values agree. We then have from (4.38) 

which would normally be referred to  tables of chi-square with three degrees of freedom. 

Table 4.5 Distribution of alcohol consumption for cases and controls: in six age strata 

Alcohol consumption (glday) 
0-39 40-79 80-119 120+ Total 

2 5 3 4  
Cases 
Controls 
Total 

35-44 
Cases 
Controls 
Total 

45-54 
Cases 
Controls 
Total 

55-64 
Cases 
Controls 
Total 

Cases 
Controls 
Total 

Cases 4 4 2 3 13 
Controls 23 8 0 0 3 1 
Total 27 12 2 3 44 
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In calculating the chi-square for trend (4.39) we assign "doses" of xl = 0, x2 = 1, x3 = 2, and x4 = 3 
to the four consumption levels, this assignment being justified on the grounds that the levels are more or 
less equally spaced. This yields 

Hence most of the heterogeneity represented in the three degrees of freedom chi-square is "explained" 
by the linear increase in risk with dose. 

In order to adjust these results for the possible confounding effects of age, we again stratify the popula- 
tion into six strata as shown in Table 4.5. Adjusted estimates of relative risk (Table 4.4) are obtained 
from the series of six 2 x 2 tables comparing'each level with baseline, using the techniques already de- 
scribed in § 4.3. Since there was little correlation between age and alcohol consumption in the sample, and 
hence little confounding, the adjusted and unadjusted estimates do not differ much. If we calculate directly 
the relative risks for 120+ g/day versus 40-79 g/day using the series of six corresponding 2 x 2 tables 
we find a M-H summary odds ratio of I),, = 8.71 and MLE of I),, = 9.63. Neither of these agrees with 
the ratio of estimates for those two levels relative to 0-39 g/day shown in the table, i.e., 28.57/4.27 = 

6.69 and 37.82/4.26 = 8.88, respectively. As mentioned earlier, the only way to achieve exact consistency 
among the summary measures is to build it into a modelling approach (Chapters 6 and 7). 

The tendency of the unconditional MLE towards inflated values with thin data is evident for the 
120 g/day category; in this case the conditional MLE is I),,,d = 34.90. Adjustment results in slightly 
less significant chi-squares and wider confidence limits, in accordance with the idea that "unnecessary" 
stratification leads to a slight loss of information or efficiency (§ 7.6). There is some evidence that the 

Table 4.6 Expectations and covariances under the null hypothesis for the data in Table 4.5 

Age Expected number of cases by level of alcohol (glday) Covariance matrix" 
(years) 0 3 9  40-79 80-1 19 120+ 0-39 40-79 80-1 19 

34.17 -20.34 -9.41 
Totals 81.59 69.54 33.36 15.52 -20.34 32.63 -8.40 C -9.41 -8.40 19.68 1 

"The final row and column of this matrix, corresponding to the fourth level of 120+ glday, are not shown as they are not needed 
for the subsequent calculations. They could be obtained from the fact that the sum of the matrix elements over any row or column is 
zero. 
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relative risk for the highest consumption level may vary with age, but the chi-square of 10.33 on five 
degrees of freedom does not quite attain nominal significance at p = 0.05, and considerable doubt exists 
as to the true significance level because of the small numbers in some tables. There is no evident trend 
in the relative risk with increasing age. 

Expected values and covariances for the exposure frequencies of the cases within each stratum, cal- 
culated according to formulae (4.35)-(4.37), are presented in Table 4.6. For example, in the second 
stratum we have 

and 

The cumulated vector of expected exposures e. and covariance matrix V. are shown at the bottom of the 
table. 

The adjusted global test (4.41) df the null hypothesis is calculated from the total observed values shown 
in Table 4.4 and the totals shown at the bottom of Table 4.6 as 

where the 3 x 3 matrix is the inverse of the cumulated covariance matrix. To find the conservative 
approximation to this we compute from (4.42) 

(29-81.59)' 

In calculating the adjusted single degree of freedom test for trend (4.43), we first find the denominator 
terms 
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and then use these in 

The test statistics are little affected by the adjustment process in this particular example, and the trend 
continues to account for the major portion of the variation1. 

Table 4.7 presents a summary of the results for tobacco analogous to those for alcohol shown in Table 4.4. 
While there is a clear association between an increased dose and increased risk, the relationship is not as 
strong as with alcohol nor does the linear trend component account for as much of it. In this case 
adjustment for age appears to increase the strength of the association, especially for the highest exposure 
category. 

Table 4.7 Distribution of tobacco consumption for cases and controls: relative risks and confidence 
limits for each level, with and withoutadjustment for age 

Cases 

Controls 

Tobacco consumption (g/day) 
0-9 10-1 9 20-29 30' 

Total 525 236 132 82 

Unadjusted analysis 
RR ($) 1 .O 1.87 1.91 3.48 
X2 9.81 7.01 23.78 
95% confidence limit 1.25-2.78 1.1 73.1 1 2.03-5.96 

Total 

200 

775 

975 

Global test of Ha: Xi = 29.3 Test for trend: X: = 26.9 

Adjusted for age 
RR (Gmh) 1 .O 1.83 1.98 6.53 
RR ($,I) 1 .O 1.85 1.99 6.60 
X2 8.29 6.76 37.09 
95% confidence limit 1.21-2.82 1.183.37 3.33-13.14 

Global test of Ha: X: = 39.3 Test for trend: xf = 34.2 

4.6 Joint effects of several risk factors 

By defining each exposure category as a particular combination of factor levels, 
these same basic techniques can be used to explore the joint effects of two or more 
factors on disease risk. Relative risks are obtained using as baseline the category corre- 
sponding to the combination of baseline levels of each individual factor. Summary 
estimates of relative risk for one factor, adjusted for the effects of the others, are 

' N.B. Since the intermediate results shown here are given only to two significant figures, whereas the 
exact values were used for calculation, some slight numerical discrepancies may be apparent when the 
reader works through these calculations himself. 
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obtained by including the latter among the stratification variables. Rather than attempt 
a discussion in general terms, details of this approach are best illustrated by a continua- 
tion of our analysis of the Ille-et-Vilaine data. 

Example continued: The joint distribution of alcohol and tobacco consumption among cases and con- 
trols is shown in Table 4.8. Using the 0-9 g/day tobacco and 0-39 g/day alcohol categories as baseline, 
relative risks for each of the 15 remaining categories were obtained after stratification of the population 
into six age groups (Table 4.9). One of the difficulties of this method is that, as the data become more 
thinly spread out, an increasing fraction of the 2 x 2 tables from which the relative risks are calculated have 
at least one zero for a marginal total. This means that more and more data are effectively excluded from 
analysis since such tables make absolutely no contribution to any of the summary relative risk estimates 
or test statistics considered earlier. For example, only three out of the six tables contrasting the 30+ g/day 
tobacco, 120+ g/day alcohol exposure with the baseline level, namely those for the 45-54, 55-64 and 
65-74 year age groups, were actually used to calculate the summary risk measure of 240.63. The remain- 
der had at least one zero in a marginal total. This may explain the notable difference between the age- 
adjusted estimate and the crude relative risk estimate of ( l o x  252)/(3 x 9) = 93.33. It is never- 
theless apparent that people in this category of high alcohol/high tobacco consumption are at exceptional 
risk. 

Table 4.9 shows a clear trend of increased risk with increased alcohol consumption within each tobacco 
category and likewise a trend with tobacco for each alcohol. level. As neither of these variables accounts 
for the effects of the other, we say that they operate independently in producing their effects. Evidence for 
the lack of confounding in this instance comes from comparing the relative risks for alcohol which are 
simultaneously adjusted for age and tobacco (margin of Table 4.9) with those adjusted for age only 
Table 4.4). There is good agreement except perhaps for the highest level, where tobacco adjustment 
reduces the Mantel-Haenszel estimate from 28.6 to 22.8. Likewise the tobacco risks adjusted for alcohol 
and age do not depart greatly from those adjusted for age only (Table 4.7). Of course in other situations 
there may be risk factors which are partially confounded, some of their effect being due to the association 
with the other factor and some independent of it; and if there is complete confounding the effects of 
one may disappear after adjustment for the other. 

Table 4.8 Joint classification of cases and controls by consumption of alcohol and tobacco 

Alcohol 
b a y )  

Tobacco (glday) 
0-9 10-19 20-29 30 + 

Cases Controls Cases Controls Cases Controls Cases Controls 

Table 4.9 Age-adjusted relative risks for joint exposure to alcohol and tobacco 

Alcohol 
(glday) 

Tobacco (glday) 
10-19 20-29 30 + 

Adjusted for 
tobacco 

0-39 1 .O 3.90 4.17 9.44 1 .O 
40-79 8.18 8.63 10.57 52.47 4.05 
80-1 19 12.94 13.88 17.97 155.62 7.49 

120+ 51.45 67.21 108.66 240.63 22.80 
Adjusted for alcohol 1.0 1.51 1.56 8.1 0 
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Computation of each of the simultaneously adjusted estimates shown in the margins of Table 4.9 in- 
volved the summarization of 24 2 x 2 tables, although many of these are omitted from the calculation 
because of zero marginals (for example, only 12 tables were used in the estimation of the relative risk 
of 8.10 for the highest tobacco level). Implicit in this calculation is the assumption that the odds ratios are 
constant over those tables being summarized, i.e., that the relative risks for tobacco do not depend on 
alcohol or age, while those for alcohol are independent of tobacco. Thus the relative risks shown in the 
margin of Table 4.9 are those obtained under the multiplicative hypothesis that the joint effect of alcohol 
and tobacco on incidence is the product of their individual effects (3 2.6). Smoothed estimates of the 
relative risks for the combined categories under the multiplicative model are obtained by multiplying 
together the summary relative risks for each factor adjusting for the other. Thus the smoothed estimate 
for the 40-79 g/day alcohol, 10-19 g/day tobacco category is 1.51 x 4.05 = 6.12, compared with the 
individual. cell estimate of 8.63. 

Although we have shown that the method of stratification can be used to study the 
joint effects of two or more risk factors, it is not, in fact, well suited to this task. Com- 
putations become burdensome to perform by hand because so many strata must be 
created. Spreading the data out thinly may result in the loss of a large part of it from 
analysis. Hence, such multivariate analyses are best carried out using the regression 
models of Chapters 6 and 7, which permit a more economic, systematic and quantitative 
description of the effects of the several factors and their interactions. 
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LIST OF SYMBOLS - CHAPTER 4 (in order of appearance) 

q odds ratio (approximate relative risk) 
a number of exposed cases 
b number of unexposed cases 
c number of exposed controls 
d number of unexposed controls 
n 1 number of cases (subtotal) 
no number of controls (subtotal) 
m1 number of exposed (subtotal) 
m~ number of unexposed (subtotal) 
N total number of cases and controls 
p I probability of disease development for exposed 
Po probability of disease development for unexposed 
PI probability of exposure for a case 
Po probability of exposure for a control 

the null hypothesis that exposure has no effect on risk (q = 1) z) binomial coefficient (see p. 125); there are (9 ways of choosing u 
objects from n objects 

p r (  ) the probability of an event ( ) 
p r ( 1 )  the probability of one event conditional on another 
$ cond conditional maximum likelihood estimate of the common odds ratio 
E m  expectation of one random variable conditional on the values of another 
H a statistical hypothesis regarding the value of some parameter, for 

example q = q0 
PL lower tail probability or p-value 
Pu upper tail probability or p-value 
VL lower confidence limit on the odds ratio 
4'u upper confidence limit on the odds ratio 
a size of a statistical test, predetermined significance level such that if 

the p-value falls below a one rejects the hypothesis 
A = A(+) expected number (asymptotic) of exposed cases when marginal totals 

of the 2 x 2 table are fixed, when the true odds ratio is q ;  fitted value 
for number of exposed cases when the true odds ratio is q 

B, C,  D fitted values for remaining entries in the 2 x 2 table 
Var=Var(a;p) variance (asymptotic) of the number a of exposed cases when the 

marginal totals of the 2 x 2 table are fixed and the true odds ratio is 
$ an estimate of the odds ratio 
A distance between adjacent observations of a discrete distribution 

(assumed constant) 
@ cumulative distribution function of the standard normal distribution,. 

e.g., @(-1.96) = 0.025, Q(1.96) = 0.975 
1x1 absolute value of a number x; the positive part of x; 13 1 = 1-3 1 

= 3 
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Cov(x,y) 
Var (x) 
ei 

the 100(1-12) percentile of the standard normal distribution: 
cD(Gl2) = 1-12 
the natural logarithm; log to the base e 
a statistic which has (asymptotically) a chi-square distribution under 
the null hypothesis 
the square root of a x2 statistic 
subscript added to denote the ith stratum, e.g., ai = number of exposed 
cases in the ith stratum, vi odds ratio in ith stratum, etc. 
"logit" estimate of the common odds ratio in a series of 2 x 2 tables 
weights associated with the logit estimate in the ith stratum 
(unconditional) maximum likelihood estimate (MLE) of the odds 
ratio 
Mantel-Haenszel (M-H) estimate of the common odds ratio in a 
series of 2 x 2 tables 
number of cases exposed to level k of a polytomous factor 
number of controls exposed to level k of a polytomous factor 
number of subjects (cases + controls) exposed to level k of a polyto- 
mous factor 
expected number of cases exposed to level k under the nu.11 hypothesis 
and assuming fixed marginals in a 2 x K table 
covariance between two variables x and y 
variance of a variable x 
vector of expected values of the numbers of cases exposed to the first 
K-1 levels of a polytomous factor in the ith stratum 
variance-covariance matrix of the numbers of cases exposed to the 
first K-1 levels of a polytomous risk factor in the ith stratum 
denotes summation over the subscript which it replaces; e.g., for the 
doubly subscripted array {aki), ak. = Eiaki = a,, + . . . + akl 
a statistic which has (asymptotically) a chi-square distribution with v 
degrees of freedom under the null hypothesis 
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CHAPTER V 

CLASSICAL METHODS OF ANALYSIS OF MATCHED DATA 

As a technique for the control of confounding, stratification may be introduced either 
at the design stage of a study or during the analysis of results. An advantage of using 
it in design, keeping a constant ratio of controls to cases in each stratum, is that one 
avoids the inefficiencies resulting from having some strata with a gross imbalance of 
cases and controls. In the Ille-et-Vilaine study, for example, the 115 controls ascertained 
between 25 and 34 years of age are effectively lost from the analysis, or make only a 
minimal contribution to it, because there is only a single case with which to compare 
them (Table 4.1). Of course such gains in efficiency are only achieved if the analysis 
takes proper account of the stratification, which must be done in general anyway in 
order to avoid biased estimates of the relative risk (§ 3.4). 

The ultimate form of a stratified design occurs when each case is individually matched 
to a set of controls, usually one or two but sometimes more, chosen to have similar 
values for certain of the important confounding variables. Some choices of control 
population intrinsically imply a matched design and analysis, as with neighbourhood or 
familial controls. If the exposure levels of the risk factor to be analysed are dichotomous 
or polytomous, the tests and estimates developed in the last chapter may be employed 
directly by considering each matched pair or set to be a separate stratum. Of course 
those "asymptotic" techniques which lead to trouble with sparse data should be 
avoided, while some of the "exact" procedures which were not considered feasible with 
general strata are quite tractable and useful with matched data. In this chapter we take 
advantage of the special structure imposed by the matching, so as to express many of the 
previously discussed tests and estimates in simple and succinct form. 

5.1 Los Angeles retirement community study of endometrial cancer 

An example which we shall use to illustrate the. methods for matched data analysis 
is the study of the effect of exogenous oestrogens on the risk of endometrial cancer 
reported by Mack et al. (1976). These investigators identified 63 cases of endometrial 
cancer occurring in a retirement community near Los Angeles, California (USA) from 
1971 to 1975. Each case was matched to four control women who were alive and living 
in the community at the time the case was diagnosed, who were born within one year 
of the case, who had the same marital status and who had entered the community at 
approximately the same time. In addition, controls were chosen from among women 
who had not had a hysterectomy prior to the time the case was diagnosed, and who 
were therefore still at risk for the disease. 
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Information on the history of use of several specific types of medicines, including 
oestrogens, anti-hypertensives, sedatives and tranquilizers, was abstracted from the medi- 
cal record of each case and control. Other abstracted data relate to pregnancy history, 
mention of certain diseases, and obesity. Table 5.1 summarize? the distribution of 
cases and controls according to some of the key variables. Note the almost perfect 
balance of the age distribution of cases and controls, a consequence of the matching. 

The analysis of these data is aimed at studying the risk associated with the use of 
oestrogens as well as with a history of gall bladder disease, and how these risks may be 
modified by the other factors shown in Table 5.1. When illustrating methods which 
involve matching a single control to a single case, the first of the four selected controls 
is used. A listing of the complete set of data is presented in Appendix 111. 

Table 5.1 Characteristics of cases and controls in Los Angeles study of endometrial cancer 

Variable Level Cases Controls RR" 

Age (years) 

Mean 
S.D. " 

Gall-bladder disease Yes 
N 0 

Hypertension Yes 
No 

Obesity Yes 
No 
Unk 

Other drugs 
(non-oestrogen) 

Oestrogens (any) 

Yes 
No 

Yes 
No 

Conjugated 
oestrogen: amount 
(mglday) 

None 
0.1-0.299 
0.3-0.625 
0.626+ 
Unk 

Conjugated 
oestrogen: duration 
(months) 

None 
1-1 1 

12-47 
48-95 
96 + 
Unk 

a Relative risks calculated from unmatched data; RR = 1.0 identifies baseline category 
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5.2 Matched pairs: dichotomous exposure 

The simplest example of matched data occurs when there is 1 : 1 pair matching of 
cases with controls and a single binary exposure. This is a special case of the situation 
considered in 5 4.4, wherein each stratum consists of one case-control pair. The possible 
outcomes are represented by four 2 x 2 tables: 

Exposure 
+ - + - + - + - Total 

Case 

Control 

Total 2 0 1 1 1 1 0 2 2  

Number of 
such tables: n11 

The most suitable statistical model for making inferences about the odds ratio with 
matched or very finely stratified data is to determine the conditional probability of the 
number of exposed cases in each stratum, assuming that the marginal totals of that 
stratum are fixed (5 4.2). For tables in which there are zero marginal totals, i.e., for 
the extreme tables in which either both or neither the case or control are exposed to the 
risk factor, this conditional distribution assigns a probability of' one to the observed 
outcome and hence contributes no information about the odds ratio. The statistical 
analysis uses just the discordant pairs, in which only the case or only the control is 
exposed. Denoting by pl = 1-ql and po = 1-qo the exposure probabilities for case and 
control, respectively, the probability of observing a case-control pair with the case only 
exposed is plqo while that of observing a pair where only the control is exposed is 
qlpo. Hence the conditional probability of observing a pair of the former variety, 
given that it is discordant, is 

a function of the odds ratio v .  This is a special case of the general formula (4.2) in 
which a = nl = no = ml = = 1. It follows that the conditional probability of observ- 
ing nlo pairs with the case exposed and control not, conditional on there being 
nlo+ nol discordant pairs total, is given by the binomial formula with probability 
parameter n 

While we will derive all statistical procedures for making inferences about I) directly 
from this distribution, many can also be viewed as specializations of the general methods 
developed in 5 4.4 for stratified samples. 
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Test of the null hypothesis 

When + = 1, i.e., there is no association, the probabilities of the two different kinds 
of discordance are equal. Hence for small samples, say either nlo or no, smaller than 
ten, the null hypothesis Ho: 11, = 1 may be tested by calculating the exact tail proba- 
bilities of the binomial distribution with probability x = Otherwise we use the 
continuity corrected version of the chi-square statistic based on the standardized value 

which is a special case of (4.23). Known as McNemar's (1947) test for the equality 
of proportions in matched samples, it is often expressed 

Estimating the odds ratio 

Since the maximum likelihood estimate (MLE) of the binomial parameter x is 
simply the observed proportion of discordant pairs in which the case is exposed, it 
follows that the MLE of 11, is 

i.e., the ratio of the two types of discordant pairs. This is essentially the only instance 
when the conditional MLE (4.25) discussed for stratified data can readily be cal- 
culated. It is interesting that I) is also the Mantel-Haenszel (M-H) estimate (4.26) 
applied to matched pair data. 

Confidence limits 

Exact 100(1-a)% confidence intervals for the binomial parameter x in (5.2) may 
be determined from the charts of Pearson and Hartley (1966). Alternatively, they 
may be computed from the tail probabilities of the binomial distribution, using the 
formulae 

and 

Here F,~2(v1,v2) denotes the upper 100(a/2) percentile of the F distribution with 
v, and v2 degrees of freedom, in terms of which the cumulative binomial distribution 
may be expressed (Pearson & Hartley, 1966). 
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Approximate confidence limits for x are based on the normal approximation to the 
binomial tail probabilities. These are computed from the quadratic equations 

and 

where is .the upper 100a/2 percentage point of the normal distribution. 
Once limits for x are found, whether from (5.7) or (5.8), they are converted into 

limits for + by using the inverse transformation 

Alternatively, substituting for x, and xu in (5.8), one can write the equations some- 
what more simply as 

and solve directly for $ 1 ,  and vu. 

Adjustment for confounding variables 

One problem which occurs frequently in practice is that of adjusting for the con- 
founding effects of a variable on which cases and controls have not been matched. In a 
study of the effects of a particular occupational exposure on lung cancer, for example, 
cases and controls may be matched on age and calendar year of diagnosis but not on 
smoking history. It would have been standard procedure in the past to adjust for the 
smoking effects by restricting the analysis to those case-control sets which were homo- 
geneous for smoking according to some prescribed definition. Depending upon the 
stringency of the criteria for "same smoking history", this procedure could well result 
in the loss of a major portion of the data from analysis and is therefore wasteful. A 
much more satisfactory technique for control of confounding in a matched analysis is to 
model the effects of the confounding variables in a multivariate equation which also 
includes the exposures of interest (see 5 7.2). 

Testing for heterogeneity of the relative risk 

It is important to note that the modifying effect of a variable is not altered by its 
use for case-control matching. Interaction effects can be estimated just as well from 
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matched as from unmatched data. For example, if both the incidence of the disease and 
the prevalence of a confounding variable vary throughout the region of study, one 
might well choose controls matched for place of residence. It would be appropriate and 
prudent to investigate if the relative risk associated with the exposure of interest was the 
same throughout the region. Partitioning the matched case-control pairs into subgroups 
on the basis of the variable of interest, in this case place of residence, enables separate 
relative risk estimates to be calculated for each subgroup and compared. 

This approach could also be used to study,the interaction effects of variables besides 
those used for matching. But, it then entails the same loss of information noted to 
occur when controlling for the confounding effects of such variables, since the analysis 
must be restricted to matched sets which are homogeneous for the additional variable(s). 

With 1 : 1 pair matching the easiest way to test for the homogeneity of the odds 
ratios ly in several subgroups is in terms of the associated probabilities x defined by 
(5.2). With H separate subgroups, one simply arranges the frequencies of discordant 
pairs in a 2 x H table 

Subgroup 
1 2 ... H 

and carries out the appropriate test for independence or trend (see 5 4.5). More 
advanced and flexible techniques for modelling interaction effects are presented in 
Chapter 7. 

Example: We begin the illustrative analysis of the Los Angeles endometrial cancer study by confining 
attention to the first of the four controls and considering exposure as "ever having taken any oestrogen". 
This yields the following distribution of the 63 case-control pairs: 

Control 
Exposed Non-exposed 

Exposed 

Case 
Non-exposed 

Hence the ML estimate of the relative risk is 29/3 = 9.67 and the statistic (5.4) for testing the null 
hypothesis is 

corresponding to a significance level of p = 0.000005. 
Ninety-five percent confidence limits based on the exact binomial distribution (5.7) are. 

and 

,7~ = 
29 

= 0.75 corresponding to y g L  = 3.0 
29 + 4(2.42) 

30(4.96) 
JTU = = 0.97 corresponding to y v u  = 49.6 

3 + 30(4.96) 
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where 2.42 = F.,,, (8,58) and 4.96 = F.,,, (60,6). Limits based on the normal approximation are found 
as solutions to the equations (5.10) 

29-3y~,-'/,(l + yl,) = 1.96 
and 

29-3ylu+'/2(l+ylu) = -1.96 , 

the solutions being ylL = 2.8 and y t u  = 39.7, respectively. 
Similar calculations may be made for the effect of a history of gall-bladder disease on endometrial 

cancer incidence. Here the overall matched pair data are 

Control 
+ - 

+ 
Case 

- 

Dividing the pairs according to the age of the case (and hence also the control) we find 

+ 
Case 

- 

Under 7 0  years 

Control 
+ - 

7 0  years and older 

Control 
' + - 

where the two p-values were obtained from the tail probabilities of the binomial distribution with x = '/, 
in view of the small numbers. To test for the homogeneity of the two relative risks in the different age 
groups we form the 2 x 2 table 

A g e  
1 7 0  2 7 0  

for which the usual (corrected) chi-square is x Z  = 0.59, p = 0.44. Thus there is no evidence for a modi- 
fying effect of age on the relative risk for gall-bladder disease. 

If we try to evaluate hypertensive disease as a confounding or modifying factor in a similar fashion, we 
find there is a severe loss of data because of the restriction to case-control pairs which are homogeneous 
for hypertension: 

Hypertensive positive Hypertensive negative 
Control Control 

+ - + - 

+ 
Case 

- 
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Only 32 of the original 63 pairs are available to estimate the relative risk associated with gall bladder 
disease while controlling for hypertension, and the number of discordant pairs actually used in the estima- 
tion is reduced from 18 to 8. As a measure of relative risk adjusted for hypertension we thus calculate 

R R  = 7/1 = 7.0 

and for an adjusted test of the null hypothesis 

There is clearly almost no information left about how hypertension may modify the effect of a history of 
gall-bladder disease on cancer risk. Since only one discordant pair remains among those for which cast: 
and control are both positive for hypertension, the only possible estimates of relative risk in this category 
are RR = 0 and RR = m. In Chapter 7 we will see how the modelling approach, which assumes a certain 
structure for the joint effects of the two risk factors in each matched set, allows us to use more of the 
data to obtain adjusted estimates and tests for interaction between the two factors. 

5.3 1 : M matching: dichotomous exposures 

One-to-one pair matching provides the most cost-effective design when cases and 
controls are equally "scarce". However when control subjects are more readily obtained 
than cases, which is often the case with rare forms of cancer, it may make sense to 
select two, three or even more controls matched to each case. According to the results 
of Ury (1975) (see also Breslow and Patton, 1979), the theoretical efficiency of a 
1 :M case-control ratio for estimating a relative risk of about one, relative to having 
complete information on the control population (M = a), is M/(M+ I). Thus one 
control per case is 50% efficient, while four per case is 80% efficient. It is clear that 
increasing the .number of controls beyond about 5-10 brings rapidly diminishing 
returns, unless one is attempting to estimate accurately an extreme relative risk. 

Just as for one-to-one pair matching, we can consider each case and the correspond- 
ing controls as constituting an individual stratum. With M matched controls per case, 
there are 2(M+ 1) possible outcomes depending upon whether or not the case is 
exposed and upon the number of exposed controls. Each outcome corresponds to a 
2 x 2 table. 

Case + 

Control - 

Total M + 1  0 

+ - 

Case + 

Control - 

Exposure 
+ - + - Total 

Exposure (5.11). 
+ - + - 

Total M 1 M-1 2 0 M+1 M + 1  
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The first and last tables have no alternative configuration, given the marginals, and 
hence contain no information with regard to v .  The 2M remaining tables may be 
paired into sets of two, each having the same marginal total of exposed. For example, 
assuming M 2 3, the table with both the case and two controls positive is paired with 
the table with three controls positive and the case negative. More ge'nerally, we pair 
together the two tables 

1 1 
(5.12) 

M M 
and 

m M-m+l M + l  m M-m+l M + l  

for m = 1,2, ..., M. If, as usual, pl.denotes the probability that the case is exposed and 
po the probability that a control is exposed, the probabilities of the two alternative 
outcomes in (5.12) may be written 

respectively. Therefore the conditional probability of the outcome shown on the left, 
given the marginal totals, is 

pr(case exposed I m exposed among case + controls) = mlC' 
mv + M-m+ 1 

. (5.13) 

This illustrates once again the fact that consideration of the conditional distribution 
given the marginals eliminates the nuisance parameters and leaves the probabilities 
expressed solely in terms of the odds ratio v .  

The full results of such a matched study may be summarized in the table: 

Number of controls positive 
0 1 2 . . . M 

Positive 
Case 

Negative 

where the entry n,,,, for example, is the number of matched sets in which the case and 
exactly two of the controls are exposed. The diagonal lines in (5.14) indicate the 
pairing of frequencies according to (5.12), i.e., nl,, with no,,, while-the totals T,,, = 
nl,,l + no,, are the number of matehed sets with exactly m subjects exposed. The 
conditional probability of the entire set of data may be written as a product of binomial 
distributions with probabilities (5.13) and is proportional to 
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mv Jllml ( M-m+l 
mv+M-m+1 

(5.15) 
mv+M-m+ 1 

Conditional means and variances of the basic frequencies are 

and 

respectively. 

Estimation 

The conditional MLE i.e., the value $ which maximizes (5.15), is obtained as the 
solution of the equation 

equating the total observed and expected numbers of exposed cases (see 4.25)'. 
While its solution in general requires iterative numerical calculations, a closed form 
expression for the case M = 2 is available (Miettinen, 1970). A more simply computed 
estimate is given by the robust formula (4.26) of Mantel and Haenszel, which in this 
case reduces to 

Test of null hypothesis 

As usual this is obtained by comparing the total number of exposed cases with its 
expectation under the null hypothesis. When rl, = 1 the means and variances (5.16) 
reduce to Tmm/(M+ 1) and Tmm(M-m+ l)/(M+ I)', respectively. Hence the 
continuity corrected test statistic may be written 

' Note that the number n,., of  sets with the case and all the controls exposed contributes equally to both 
observed and expected values and is hence ignored. 
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This is a special case of the summary chi-square formula (4.23), which has been 
derived both by Miettinen (1970) and Pike and Morrow (1970). 

Confidence limits 

Approximate confidence limits for ly analogous to those of (4.27) are obtained from 
the chi-square statistic for testing hypotheses of the form H:q=qo.  This is similar to 
(5.19) but with means and variances valid for arbitrary q. The equations for upper 
and lower lOO(1-a) % limits may thus be written 

and 

where E and Var are as defined in (5.16). Numerical methods are required to solve 
these equations. 

Somewhat easier to calculate are the limits for log q proposed by Miettinen (1970) and 
based on the large sample properties of the conditional probability (5.15). According to 
the general theory outlined in the following chapter ( 5  6.4), the approximate variance 
of log $3 is 

Substituting either the MLE or M-H estimate of q in (5.21) to yield an estimated 
variance, approximate confidence limits are thus 

Alternatively, the test-based procedure (4.20) may be used to approximate the vari- 
ance, and thus the confidence limits, using only the point estimate andchi-square test 
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statistic. This is subject to the usual problem of underestimating the variance when I# 
departs markedly from unity. 

Homogeneity of the relative risk 

Suppose that the matched sets have been divided into H subgroups, and that separate 
estimates of the odds ratio are obtained for each one. In order not to lose too much 
data from analysis, due to non-homogeneity of cases and controls, such subgroups are 
most usefully formed on the basis of variables already used for matching. The approach 
we shall continue to use for evaluating the statistical significance of the heterogeneity 
of the different estimates is to compare the observed number of exposed cases within 
each subgroup to that expected under the hypothesis that the same relative risk applies 
to all of them. Thus the statistic is a special case of that suggested in (4.32), with each 
matched set forming a stratum, except that the exact conditional means and variances 
(5.16) are used in place of the asymptotic ones. 

More formally let us denote by II,,,,~ the number of matched sets with the case and 
m out of M controls exposed in the hth group, by no,,,, the number of matched sets 
where the case is unexposed, and set Tm,h = nl,,+l,h + no,,,,,. Then the statistic for 
heterogeneity may be written 

where $ is an overall estimate of the odds ratio (MLE or M-H) based on the combined 
data from all H subgroups. This statistic should be referred to tables of chi-square on 
H-1 degrees of freedom. 

If the subgroups correspond to levels xl, ..., x~ of some quantitative variable, a 
single degree of freedom chi-square test for a trend in the odds ratios is obtained as 

M 
where the Varh = PVar(nl, , l ,hI~m,h;~) are the variances for each subgroup shown 

m = l  

in the denominator of (5.23). Note the similarity in form between this statistic and 
its analog (4.31) for stratified data. When the x's are equally spaced A units apart, 
then a continuity correction of A/2 should be applied to the numerator before squaring. 

Example continued: To illustrate these methods we repeat the analyses carried out at the end of the last 
section, but this time we use all four controls for each case rather than just a single one. Considering as 
the exposure variable whether or not the subject ever used oestrogen, the basic data (5.14) are 
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Exposed 

Case 

Unexposed 

Number of controls exposed 
0 1 2 3 4 Total 11 56 

7 

7 18' 17 16 

The total number of exposed cases in the paired sets is 3 + 17 + 16 + 15 = 51. According to (5.17), we 
find the MLE by equating this figure to its expected value, 

The solution I) = 7.95, obtained by numerical means, is almost identical to that calculated from the 
unmatched data (Table 5.1). It may be compared with the M-H estimate, determined from (5.18) as 

The chi-square statistic (5.19) for testing H, is 

which is of course highly significant (p < 0.000001). 
To obtain approximate 95% confidence limits for y2 we solve the equations (5.20) 

and 

this requiring numerical methods, and obtain yl, = 3.3 and yl, = 19.9. It is considerably easier to cal- 
culate the variance of log I) using (5.20), 

where we have inserted the MLE I$ = 7.95. Consequently approximate 95% limits on log yp are 
log(7.95) + 1 . 9 6 m ,  or 1.249-2.899, corresponding to limits on yl of 3.5-18.1. Finally, the test-based 
procedure centred about the MLE gives 

+ 1 . 9 6 l W 6 )  
ylL,ylU = 7.95- 
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or  limits of 3.8-16.4, which are somewhat narrower than the others as is typical of this approximate 
method, where the uncorrectedX2 of 31.16 has been used, rather than the corrected value of 29.57. 

Table 5.2 illustrates the procedures for evaluating the statistical significance of differences in the relative 
risk obtained from three different age strata. The data shown in column (1) sum to the pooled data from 
all three strata just analysed. We begin by calculating the means and variances of the frequencies nl,,-l 
in each stratum, under the hypothesis that the relative risk is constant across strata. Inserting the MLE 
gl = 7.95 in (5.16), for example, we have 

and so on for the remaining entries in columns (5) and (7). The subtotals shown in columns (6) and 
(8) are the means and variances of the number of exposed cases in each stratum, excluding of course the 
contributions n , ~  from matched sets in which the case and all controls are exposed. These quantities are 
inserted in (5.23) to obtain the test statistic, with two degrees of freedom 

Hence, there is no evidence (p = 0.68) of heterogeneity, the variations between the stratum-specific 
relative risk estimates shown in columns (2) and (3) being attributable to the small numbers in each 
table. 

For the sake of completeness we compute also the single degree of freedom chi-square (5.24) for a 
trend in relative risk with age, although we know already that its value cannot exceed the 0.76 just obtained 
for the overall comparison. Assigning "doses" of x, = 0, x2 = 1 and x, = 2 to the three age strata, we 
have 

where a continuity correction of is applied to the numerator in view of the fact that the x's are spaced 
one unit apart. 

5.4 Dichotomous exposure: variable number of controls 

Although the study design stipulates that a fixed number of controls be matched to 
each case, in practice it may not always be possible to locate the full complement of 
controls. Even for sets in which all controls are available, some may lack information 
regarding certain of the risk factors. If the original design calls for 1 :4 matching, for 
example, one may end up with most of the matched sets having data on 1 case and 4 
controls, while a lesser number have 3, 2 or 1 controls. Of course, sets in which data 
are available only for the case, or only for the controls, provide no information about 
the relative risk in a matched analysis and hence need not be considered. 

One approach to the analysis of matched sets containing a variable number of controls 
is simply to discard all those which do not contain the full number specified by design. 
Clearly this is a waste of important information and would be considered only if the 
number of sets to be discarded represented a small fraction of the total. A slight infor- 
mation loss might then be tolerated in order not to increase the computational burden. 

Fortunately, the extra computation required is not that great. All of the tests and 
estimates considered in the previous section may be broken down into component 
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parts consisting of sums or linear combinations of the observed frequencies (5.14), 
their means and their variances. The corresponding statistic may be generalized for use 
with a variable number of controls simply by computing each component part separately 
for the matched sets having a specified case-control ratio, and then reassembling the 
parts. 

Arranging the data as in Table 5.3, let n,,,,, denote the number of matched sets 
containing M controls of which m are exposed and the case is (i = 1) or is not (i = 0) 
exposed. Let Tm,M = n l , m - ~ , ~ + n o , m , ~  denote the number of such sets having a total 
of m exposed. The M-H estimateof relative risk may then be written 

where Zdenotes summation over the data in the sub-tables formed for each case- 
M 

control ratio. The MLE is found as before by equating the observed and expected 
numbers of exposed cases, as in (5.17), except that there will be a separate contribu- 
tion to the left and right hand sides of the equation for each value of M: 

Similarly, the statistic (5.19) for testing the null hypothesis may be written in terms of 
separate contributions to the observed and expected values, as well as the variance, 
from each sub-table: 

Corresponding adjustments are made to the equations (5.20) and (5.21) used to find 
confidence intervals, as well as to the. statistics (5.23) and (5.24) used to test the 
heterogeneity of the odds ratio in different strata. 

Kodlin and McCarthy (1978) note that the M-H estimate (5.25) and summary 
chi-square (5.27) may each be represented in terms of weighted sums of the basic 
data appearing in Table 5.3. Appropriate coefficients for weighting each entry are 
shown in Table 5.4, of which the five parts correspond, respectively, to the numerator 
and denominator of the M-H estimate, the observed and expected numbers of exposed 
cases (excluding sets where the case and all controls are exposed), and the variance 
of the number of exposed cases. For example, using Part A of the table the numerator 
of the M-H statistic would be calculated as 
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Table 5.3 Data layout for a matched study involving variable number of controls 

Case : control Exposure of case Number of controls exposed 
ratio 0 1 2 ... M 

Example continued: To illustrate the procedure to be followed with variable numbers of controls per 
case we selected another risk variable, dose of conjugated oestrogen, for which several subjects had missing 
values (Table 5.1). Four matched sets in which the case had a. missing value were excluded from this 
analysis. The 59 remaining sets could be divided into two categories, 55 having 4 controls and 4 having 
3 controls. Thus, defining "exposed" to be anything above a zero dose of conjugated oestrogen, the 
results were summarized: 

Case: control Exposure 
ratio for case 

Number of controls exposed 
0 1 2 3 4 Total 
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Table 5.4 Coefficients used for weighted sums in calculation of the M-H  estimate and summary 
chi-square from matched sets with variable numbers of controlsa 

Case : control ratio Case exposure Number of controls exposed 
0 1 2 3 ... 

A. Numerator of M-H estimate 

. . . 

B. Denominator of M-H estimate 
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Case : control ratio Case exposure Number of controls exposed 
0 1 2 3 . . . M 

C. O b s e r v e d  number o f  e x p o s e d  c a s e s  

+ 

D. E x p e c t e d  number o f  e x p o s e d  c a s e s  (H,) 
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Case : control ratio Case exposure Number of controls exposed 
0 1 2 3 . . . M 

E. Variance of numbers of exposed cases (H,) 

- 

a When parts of the data are not shown, the corresponding coefficients are zero. 

Accordingly, the M-H estimate, calculated from (5.25), is 

while the equation (5.26) to be solved for the MLE is 

yielding @ = 5.53. To test the null hypothesis we first find the mean value 

and the variance 
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= 11.82, 

from which the test statistic (5.27) is 

Ninety-five percent confidence limits for log yt based on (5.21) are found by calculating the variance 
with separate contributions for M = 3 and M = 4: 

where we have inserted the MLE for yt .  Consequently the confidence limits are 

5.5 Multiple exposure levels: single control 

Restriction of a risk variable to two levels may waste important information about 
the effects of the full range of exposures actually experienced ( 5  4.5). More detailed 
results are obtained if the case and control in each matched pair are classified instead 
into one of several 'exposure categories. The data are usefully summarized as in 
Table 5.5, where the entry nk, denotes the number of pairs in which the case is exposed 
at level k and the control at level h of K possible levels. The marginal totals nk. and 
n., represent, respectively, the total number of cases and total number of controls 
which are exposed at level k. This situation has been studied in some detail by Pike, 
Casagrande and Smith (1 975). 

Table 5.5 Representation of data from a matched pair study with K exposure 
categories 

Exposure level 
for case 

Exposure level for control 

1 2 ... K Total 

Total n.1 n.2 n . ~  n. . 
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Following the general principles of conditional inference outlined in 3 4.2 and 5 4.3, 
we approach the analysis of such data by considering the probability of the outcome in 
each matched pair conditional on the combined set of exposures for case and control. 
Pairs in which both members are exposed to the same level are uninformative about 
the relative risk since for them the conditional probability of the observed outcome is 
unity. Hence the statistical analysis does not utilize the diagonal entries nkk in Table 5.5. 
The off-diagonal entries in the table may be grouped into sets of two representing all 
pairs having a particular combination of different exposures. Thus, for k#h, Nkh = 
nkh+nhk represents the number of matched pairs in which the exposures are at levels k 
and h, without specifying which is associated with the case and which with the control.. 
If vkh denotes the relative risk of disease for level k versus that for level h, 'then the 
conditional distribution of nkh given Nkh is binominal (cf. 5.3): 

The (conditional) distribution of the entire set of data consists of the product of 
K(K-1)/2 such binomials, one for each of the entries nkh above the diagonal (k<h) 
in Table 5.5. 

Estimation of relative risk 

As noted in 5 4.5 for the combination of multiple exposure level data across s e v e ~ l  
strata, the summary estimates of relative risk for different pairs of exposure levels may 
not display the consistency expected of them. The same phenomenon occurs with 
matched pairs. Here the odds ratio relating levels k and h of exposure may be calculated 
from the pairs showing exposure to these two levels only (cf. 5.6) as the ratio 

According to their interpretation as ratios of incidence rates for level k versus level h, 
assumed to be constant across the matching factors, the estimated odds ratios ought to 
satisfy, within the bounds of sampling error, the consistency relationship 

where vk = ylkl and y+, = yhl denote the odds ratios for levels k and h relative to level 1 
(baseline). To the extent that the individual estimates qfi do not satisfy this condition, 
at least within the limits of random variation, the assumption of constant relative risks 
across the factors used for matching is called into question. 

In order to ensure that the estimated relative risks do display such consistency it is 
necessary to build the relationship into a model for the observed data. The model will 
contain K-1 parameters vZ ,  . . ., vK whose ratios are assumed to represent the relative 
risks for each pair of levels as in (5.29). It is an example of the general conditional 
model for matched data which will be discussed at greater length in Chapter 7. MLEs 
for the parameters in the model are found from the usual set of formulae equating 
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observed and expected values of the numbers of cases exposed to each level. There 
are K-1 equations in K-1 unknowns, namely1 

for k = 2, . . ., K. Solution requires numerical methods. Variances for the estimates are 
also available, but discussion of their derivation and computation is perhaps best left 
until presentation of the general model ( 5  7.3). Approximate confidence limits for the 
parameters Vk  may be based on these variances. 

Test of the null hypothesis 

A test of the hypothesis Ho :V2 = v3 = . . . = vK = 1 that there is no effect of exposure 
on risk is obtained by comparing the observed numbers of cases exposed at each level 
to that expected, standardizing by the corresponding variance-covariance matrix. Since 
all the probabilities Vk/(Vk+Vh) in (5.30) are equal to '/, under Ho, the means, vari- 
ances and covariances of the marginal totals shown in Table 5.5 are readily calculated 
to be 

and 

E(nk.) = '/2 (nk*+n.k) 
Var(nk.) = '14 (nk.+n.k)-'/, n,k 

Cov(nk.,nh.) = -'14 Nkh, for h # k., 

respectively. Only the first K-1 of these are used to form the test statistic, defined by 

where 0 and E denote the K-1 dimensional vectors of observed and expected values 
of the nk., while V is the corresponding (K-1) x (K-1) dimensional covariance matrix. 
This has a nominal xi-, distribution under the null hypothesis. First proposed by 
Stuart (1955), it is a special case of the general summary chi-square (4.41) used for 
testing homogeneity with stratified data (Mantel & Byar, 1978). 

If dose levels xl, ..., XK are assigned to the K exposure levels, a test for a linear 
trend in the (log) relative risks vk with increasing dose may be based on the statistic2 

To make a continuity correction the absolute value of the numerator term inside the 
brackets is reduced by half of the difference between adjacent doses, provided these 

'Here 2 means summation over the indices h which are not equal to a fixed k, i.e., Z n3,, = 
h:h#k h :  h#3 

n3' + n3z + n34 + . . . 
Here and below ZZ denotes summation over all K(K-1)/2pairs of indices (k, h) with k<h. 

k< h 
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are equally spaced. This statistic, a special case of (4.43), should be referred to tables 
of chi-square with one degree of freedom. 

Testing for consistency of the odds ratio 

In order to test for consistency in the estimated odds ratios, which as explained 
earlier ( 5  4.5) is a consequence of our usual assumptions about the constancy of the 
relative risk, we compare the frequencies observed in Table 5.5 with those expected 
under the hypothesis (5.29) using the usual chi-square formula. More specifically, 
the test statistic is defined by 

k t h  

= 22 @kh$ h-nhk$ k)2 
k t h  Nkh$ k$ h 

7 

where the $3, are the ML estimates obtained from (5.30). 
This statistic should be referred to tables of chi-square with K(K-1)/2-(K-1) 

= (K-l)(K-2)/2 degrees of freedom. A significant result would lead one to reject 
the hypothesis of consistency and to search for matching variables which modified the 
relative risks. However, this test is not likely to be as sensitive to such interactions as 
the more direct methods based on the modelling approach. 

Example continued: We have already remarked that for 4 of 63 cases from the Los Angeles endometrial 
cancer study the dose level of conjugated oestrogen was unknown. However, this variable was known for 
the first matched control in all sets. Using four levels of exposure, (1) none, (2) 0.1-0.299 mg, (3) 
0.3-0.625 mg and (4) 0.626+ mg, the data for the 59 matched pairs are presented in Table 5.6. 

To estimate the relative. risk parameters q2, q3, q4, for levels 2, 3 and 4 versus level 1, assuming 
consistency, we set up the equations (5.30): 

Table 5.6 Average doses of conjugated oestrogen used by cases and matched controls: 
Los Angeles endometrial cancer study 

Average dose Average dose for control (mg) 
for case (mg) 

0 0.1-0.299 0.3-0.625 0.626+ Total 

0 12 

0.1-0.299 16 

0.3-0.625 15 

0.626+ 16 

Total 36 9 10 4 59 
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Their solution, obtained by numerical methods, is I), = 4.59, q3 = 3.55 and q4 = 8.33. These values may 
be inserted in (5.34) to test the assumption of consistency, yielding 

which when referred to tables of chi-square with (4-1)(4-2)/2 = 3 degrees of freedom gives p = 0.93. 
In other words, the observed data satisfy the consistency hypothesis extremely well. 

In order to carry out the global test of the null hypothesis we calculate the means 

variances 

and covariances 

according to (5.31). The test statistic (5.32) is then 

which is highly significant (p = 0.001) as shown by reference to tables of chi-square with three degrees of 
freedom. Assigning dose levels of x1 = 1, x, = 2, x3 - 3 and x4 = 4 to the four exposure levels, we next cal- 
culqte the test for trend using (5.33). This is 

an even more significant result (p = 0.0001) which indicates that most of the variation in risk among 
the four exposure levels is accounted for by the linear increase. The contribution of 16.96-14.43 = 2.53 



ANALYSIS OF MATCHED DATA 1 87 

from the remaining two degrees of freedom is not statistically significant. Note that we have used the 
continuity correction of '/, in the numerator of this statistic, as is appropriate since the assigned x's are 
spaced one unit apart. 

5.6 More complex situations 

One lesson learned from the preceding sections is that the types of matched data 
which can be analysed easily &ing elementary methods are extremely limited. While 
.the calculations are reasonably tractable in the case of a single dichotomous risk vari- 
able, with both single or mu.ltiple controls, estimation of a consistent set of relative 
risks for polytomous exposures requires solution of a system of non-linear equations 
even for matched pairs. More complicated still are the situations involving multiple 
controls together with a single exposure variable at multiple levels, or multiple exposure 
variables with any combination of controls. The control of confounding, or evaluation 
of effect modification, by variables not used for matching may require that we discard 
from analysis much of the relevant data. 

Certain of the limitations imposed by the elementary methods can be overcome using 
multivariate analysis. Just as we noted earlier for stratified samples, multivariate analysis 
of matched data is carried out in the context of an explicit mathematical model relating 
each individual's exposures to his risk for disease. Such modelling is especially valuable 
in dealing with quantitative variables as it permits their effect on risk to be summarized 
by a few parameters. Chapter 6 introduces for this purpose the linear logistic regression 
model, showing that its structure is well suited for determining the multiplicative 
effects of one or more risk factors on disease rates. Chapter 7 extends the model for 
use with matched or finely stratified samples. Since all the tests and estimates considered 
in this chapter occur as special cases of those derived from the general model, the 
general-purpose computer programmes (Appendix IV) which are available to fit the 
multivariate model can be used (and in fact were used) to solve the equations for 
maximum likelihood estimation which occur in those particular problems considered 
above. 
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LIST OF SYMBOLS - CHAPTER 5 (in order of appearance) 

number of matched pairs with both case and control exposed 
number of matched pairs with case exposed and control not 
number of matched pairs with control exposed and case not 
number of matched pairs with neither case nor control exposed 
probability of exposure for case 
probability of non-exposure for case 
probability of exposure for control 
probability of non-exposure for control 
odds ratio 
probability that in a discordant matched pair it is the case who is 
exposed rather than the control 
expectation of a quantity ( ) 
variance of a quantity ( ) 
binomial coefficient; number of ways of drawing samples of n1 objects 
from a total of nl + n2 
absolute value of a number x 
lower confidence limit for n 
upper confidence limit for n 
lower confidence limit for II, 
upper confidence limit for v 
upper 100a/2 percentile of the standard normal distribution 
probability of an event ( ) 
probability of one event conditional on another 
number of controls in each matched set 
number of matched sets with case exposed and m controls exposed 
number of matched sets with case not exposed and m controls exposed 
number of matched sets with m exposed among case + controls 
(additional subscripts are added to distinguish various groups) 
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expectation of a quantity conditional on the values of another 
variance of a quantity conditional on the values of another 
subscript indicating the hth of H groups of matched sets; e.g., nl,m,h 
is the number of matched sets with the case and m controls exposed in 
the hth group 
subscript indicating the number of controls in matched set data having 
a variable number of controls per case; e.g., n,,,,, is the number of 
sets in which the case and m of M controls are exposed 
a statistic whose (asymptotic) distribution under the null hypothesis is 
that of chi-square on v degrees of freedom (when v is not specified it 
is meant to be 1)  
number of levels of a polytomous risk factor 
number of matched pairs where the case is exposed at level k of a 
polytomous variable and the control at level h 
number of matched pairs in which one member is at level k and the 
other at level h (k # h) 
sum of nkh over h; number of matched pairs where the case is exposed 
at level k 
sum of nhk over h; number of matched pairs where the control is 
exposed at level k 
odds ratio expressing relative risk for exposure to level k versus level 
h of a polytomous variable 
odds ratio expressing relative risk of disease for a person exposed to 
level k of a polytomous factor, using level 1 as baseline ( v l  = 1) 
denotes an estimate, e.g., $3, is an estimate of the odds ratio "4, 
K-1 dimensional vector of numbers of matched pairs in which the 
case is exposed to one of the first K-1 levels of a polytomous factor; 
0 = (k.7 n2.7 . . - 7  n~- l . )  
K-1 vector of expectations E = E ( 0 )  = [E(nl.), E(n2.), . . ., E(n,,,.)] 
K-1 x K-1 variance-covariance matrix of which the (k,h) element is 
Cov(nk.,nh.) = -1/4Nkh for k # h or Var(nk.) = '/4(nk. + nak)-'/,nkk for 
k=h (see equation 5.3) 
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CHAPTER 6 

UNCONDITIONAL LOGISTIC REGRESSION 
FOR LARGE STRATA 

The elementary techniques described above for stratified analysis of case-control 
studies, and in particular the Mantel-Haenszel combined relative risk estimate and 
test statistic, have served epidemiologists well for over two decades. Most of the cal- 
culations are simple enough for an investigator to carry out himself, although this often 
means devoting considerable time to routine chores. Some of the boredom may be 
alleviated through the use of modern programmable calculators, for which the methods 
are ideally suited. By working closely with his data, examining them in tabular form, 
calculating relative risks separately for each stratum, and so on, the researcher can 
spot trends or inconsistencies he might not otherwise have noticed. Errors in the data 
may be discovered in this way, and new hypotheses generated. 

Nevertheless there are certain limitations inherent in the elementary techniques 
that must be recognized. If many potentially confounding factors must be controlled 
simultaneously, a stratified analysis will ultimately break down. Individual strata simply 
become so large in number and small in size that many of them contain only cases or 
only controls. This means that substantial amounts of data are effectively lost from the 
analysis. There are similar limits on the number of categories into which continuous 
risk factors can be broken down for calculation of separate estimates of relative risk. 
It is desirable to leave them as continuous variables for purposes of interpolation and 
extrapolation. The inconsistencies arising from the selection of different levels of a 
variable to serve as baseline have already been noted, and while often relatively minor, 
these can be irritating. Limitations are likewise imposed on the extent to which one 
can analyse the joint effects of several risk factors. Perhaps even more important are 
the deficiencies in the elementary methods for evaluating interactions among risk and 
nuisance variables. The usual tests are notoriously lacking in statistical power against 
patterns of interaction which one might well expect to observe in practice. Other than 
calculating a separate estimate for each stratum, no provision is made for incorporating 
such interactions into the estimates of relative risk. 

Access to high-speed computing machinery and appropriate statistical software 
removes these limitations and opens up new possibilities for the statistical analysis of 
case-control data. By entering a few simple commands into a computer terminal, the 
investigator can carry out a range of exploratory analyses which could take days or 
weeks to perform by hand, even with a programmable calculator. He has a great deal 
of flexibility in choosing how variables are treated in the analysis, how they are cate- 
gorized, or how they are transformed. The possibilities for multivariate analysis are 
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virtually limitless. Such methods should, of course, be used in conjunction with tabular 
presentation of the basic data. Liberal use of charts and graphs to represent the results 
of the analyses is also recommended. 

The basic tool which allows the scope of case-control study analysis to be thus 
broadened is the linear logistic regression model. Here we introduce the logistic model 
as a method for multivariate analysis of prospective or cohort studies, which reflects 
the historical fact that the model was specifically designed for, and first used with, such 
investigations. Its equal suitability for use in case-control investigations follows as a 
logical consequence. We replicate the stratified analyses of Chapter 4 using the 
modelling approach, and then extend these analyses by the inclusion of additional 
variables so as to illustrate the full power and potential of the method. 

Unfortunately the level of statistical sophistication demanded from the reader for 
full appreciation of the modelling approach is more advanced than it has been in the 
past. While we have attempted to make the discussion as intelligible as possible for the 
non-specialist, familiarity with certain aspects of statistical theory, especially linear 
models and likelihood inference, will undoubtedly facilitate complete understanding. 

6.1 Introduction to the logistic model 

Whether using the follow-up or case-control approach to study design, cancer epi- 
demiologists typically collect data on a number of variables which may influence disease 
risk. Each combination of different levels of these variables defines a category for 
which an estimate of the probability of disease development is to be made. For example, 
we way want to determine the risk of lung cancer for a man aged 55 years who has 
worked 30 years as a telephone linesman and smoked 20 cigarettes per day since his 
late teens. 

If a large enough population were available for study, and if we had unlimited time 
and money, an obvious approach to this problem would be to collect sufficient numbers 
of subjects in each category in order to make a precise estimate of risk for each category 
separately. Of course in the case-control situation these risk estimates would not be 
absolute, but instead would be relative to that for a designated baseline category. 
With such a vast amount of data there would be no need to borrow information from 
neighbouring categories, i.e., those having identical levels for some of the risk variables 
and similar levels for the remainder, in order to get stable estimates of risk. 

Epidemiological studies of cancer, however, rarely even come close to this ideal. 
Often the greatest limitation is simply the number of cases available for study within a 
reasonable time period. While this number may be perfectly adequate for assessing 
the relative risks associated with a few discrete levels of a single risk factor, it is usually 
insufficient to provide separate estimates for the large number of categories generated 
by combining even a few more or less continuous factors. Thus we are faced with the 
problem of having to make smoothed estimates which do utilize information from 
surrounding categories in order to estimate the risks in each one. 

Such smoothing is carried out in terms of a model, which relates disease risk to the 
various combinations of factor levels which define each risk category via a mathematical 
formula. The model gives us a simplified, quantitative description of the main features 
of the relationship between the several risk factors and the probability of disease 
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development. It enables us to predict the risk even for categories in which scant infor- 
mation is available. Important features for the model to have are that it provide mean- 
ingful results, describe the observed data well and, within these constraints, be as 
simple as possible. In view of the discussion in Chapter 2, therefore, the parameters of 
any proposed model should be readily interpretable in terms of relative risk. The 
model should also allow relative risks corresponding to two or more distinct factors 
to be represented as the product of individual relative risks, at least as a first approxi- 
mation. 

A model which satisfies these requirements, indeed which has in part been developed 
specifically to meet them, is the linear logistic model. It derives its name from the fact 
that the logit transform of the disease probability in each risk category is expressed as a 
linear function of regression variables whose values correspond to the levels of exposure 
to the risk factors. In symbols, if P denotes the disease risk, the logit transform y is 
defined by 

y = logit P = log - 
(1:P)' 

or, conversely, expressing P in terms of y, 

Since P/(1-P) denotes the disease odds, another name for logit is log odds. Cox (1970) 
develops the theory of logistic regression in some detail. 

The simplest example of logistic regression is provided by the ubiquitous 2 x 2 table 
considered in 5 2.8 and 5 4.2. Suppose that there is but a single factor and two risk 
categories, exposed and unexposed, and let PI and Po denote the associated disease 
probabilities. According to the discussion in 5 2.8 the key parameter, which is both 
estimable from case-control studies and interpretable as a relative risk, is the odds ratio 

Its logarithm, i.e., the log relative risk, may be expressed 

p = log II, = logit PI - logit Po 

as the diflerence between two logits. Let us define a single binary regression variable 
x by x = 1 for exposed and x = 0 for unexposed. If we write P(x) for the disease prob- 
ability associated with an exposure x, and r(x) = P(x)Qo/PoQ(x) for the relative 
risk (odds ratio relative to x = 0), we have 

log r(x) = px 

where a = logit Po. There is a perfect correspondence between the two parameters a 
andp in the mod'el and the two disease risks such that 
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and 

The formulation (6.3) focuses on the key parameter, P, and suggests how to extend 
the model for more complex problems. 

A more interesting situation arises when there are two risk factors A and B, each at 
an exposed (+) and unexposed (-) level ( 5  2.6). The combined levels of exposure 
yield four risk categories with associated disease probabilities Pij: 

Factor B 
Factor A + - 

Taking Po, as the baseline disease risk, there are three relative risks to be estimated, 
corresponding to the t h ~ e e  odds ratios 

and 

Here rA, rB and rAB are relative risks for single and joint exposures, relative to no 
exposure, as defined in 5 2.6. 

We are particularly interested in testing the multiplicative hypothesis TAB = rArB 
under which the relative risk for exposure to A is independent of the levels of B or, 
equivalently, the relative risk for B is independent of exposure to A. Expressed in 
terms of the odds ratios this becomes 

lyll = lyl0ly01. (6.5) 

If the-hypothesis appears to fit the observed data, we should be able to summarize the 
risks for the three exposure categories relative to the baseline category in two numbers, 
viz the estimated relative risks for factors A and B individually. Otherwise a separate 
estimate for each of the three exposure categories will be required. We considered in 
5 4.4 some ad hoc tests for the multiplicative hypothesis and suggested that the Mantel- 



196 BRESLOW & DAY 

Haenszel formula be used to estimate the individual relative risks if the hypothesis were 
accepted. 

Estimates and tests of the multiplicative hypothesis are simply obtained in terms of 
a logistic regression model for the disease probabilities (6.4). Define the binary regres- 
sion variable xl = 1 or 0 according to whether a person is exposed to Factor A or not, and 
similarly let x2 indicate the levels of exposure to Factor B. Variables such as xl and 
x2, which take on 0-1 values only, are sometimes called dummy or indicator variables 
since they serve to identify different levels, of exposure rather than expressing it in 
quantitative terms. Note that the product xlx2 equals 1 only for the double exposure 
category. Let us define P(xl,x2) as the disease probability, and r(xl,x2) as the 
relative risk (odds ratio) relative to the unexposed category xl = x2 = 0. Then we can 
re-express the relative risks, or equivalently the probabilities, using the model 

Since there are four parameters a,Pl,P2 and y to describe the four probabilities Pij, we 
say that the model is completely saturated. It imposes n o  constraints whatsoever on the 
relationships between the four probabilities or the corresponding odds ratios. Thus we 
may solve equation (6.6) explicitly for the four parameters, obtaining 

as the logit transform of the baseline disease probability, 

and 

as the log relative risks for individual exposures, and 

as the interaction parameter. It is clear from (6.7) that exp(y) represents the multi- 
plicative factor by which the relative risk for the double exposure category differs from 
the product of relative risks for the individual exposures. If y > 0, a positive inter- 
action, the risk accompanying the combined exposure is greater than predicted by the 
individual effects; if y < 0, a negative interaction, the combined risk is less. Testing 
the multiplicative hypothesis (6.5) is equivalent to testing that the interaction param- 
eter y in the logistic model is equal to 0. 

If the hypothesis y = 0 is accepted by our test criterion, we would consider fitting to 
the data the reduced three parameter model 
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which re-expresses the multiplicative hypothesis in logit terms. This model does impose 
constraints on the four disease probabilities Pij. For example, since 

v 11 P I =  logvlo = log- 
v01 

now represents the log relative risk for A whether or not exposure to B occurs, it would 
be estimated by combining information from the 2 x 2 tables 

Cases 

Controls 

Factor B + 
Factor A 

Factor B - 
Factor A 

Odds ratio ~ I I / ~ ~ O I  v 10 

Likewise the estimate of 

4'11 P z  = log V0l = log 

would combine information from both the tables 

Factor A + 
Factor B 

Factor A - 
Factor B 

Cases 

Controls 

Odds ratio 

The difference between the interpretation of PI in (6.6) and the same parameter 
in (6.8) illustrates that the meaning of the regression coefficients in a model depends 
on what other variables are included. In the saturated model PI represents the log 
relative risk for A at level 0 of B only, whereas in (6.8) it represents the log relative 
risk for A at both levels of B. Testing the hypothesis PI = 0 in (6.8) is equivalent to 
testing the hypothesis that Factor A has no effect on risk, against the alternative hypo- 
thesis that there is an effect, but one which does not depend on B. It makes little. sense 
to test pl = 0 in (6.6), or more generally to test for main effects being zero in the 
presence of interactions involving the same factors. Models which contain interaction 
terms without the corresponding main effects correspond to hypotheses of no practical 
interest (Nelder, 1977). 

The regression approach is easily generalized to incorporate the effects of more than 
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two risk factors, or risk factors at more than two levels. Suppose that Factor B occurred 
at three levels, say 0 = low, 1 = medium and 2 = high. There would then be six disease 
probabilities 

Factor A 

Exposed 

Unexposed 

and five odds ratios 

Factor B 

High Medium Low 

Pij QOO 
Vij = 

POO Qij ' 

where all risks are expressed relative to Poo as baseline. In order to identify the three 
levels of Factor B, two indicator variables x2 and x3 are required in place of the single 
x2 used earlier. These are coded as follows: 

Factor B 

High Medium Low 

More generally, for a factor with K levels, K-1 indicator variables will be needed to 
describe its effects. With xl defining exposure to A as before, the saturated model with 
six parameters is written 

where the values of the x's are determined from the factor levels i and j. Now the 
multiplicative hypothesis 

corresponds to setting both interaction parameters y12 and yl3 to zero, in which case 
the coefficients p2 and p3 represent the log relative risks for levels 1 and 2 of Factor B 
as compared with level 0. 

If instead there are three factors A, B and C each at two levels, the disease prob- 
abilities may be denoted 
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Factor A 

+ 

- 

Factor C + 
Factor B 

Factor C - 
Factor B 

+ - 

Here there are seven odds ratios vijk = QOoo to be estimated. The fully saturated 
POOO Qijk 

model may be written 

where xl, x2 and x3 are indicator variables which identify exposures to factors A, B 
and C, respectively. The last parameter d123 denotes the second order interaction 
involving all three variables. It has several equivalent representations in terms of the 
odds ratios or disease probabilities. One of these, for example, is 

v111 4'110 
6 123 = log - log 

v101v011 v1oovo10 

= logit Pill - logit PIOl - logit Poll + logit Pool 

- {logit Pllo - logit Ploo - logit Polo + logit Pooo), 

viz the difference between the AB interaction at level 1 of Factor C and that same 
interaction at level 0 of Factor C. Other representations would be the difference be- 
tween the AC interactions at the two levels of B, or the difference between the BC 
interactions at the two levels of A. 

The advantage of expressing the disease probabilities in an equation such as (6.9) 
is that the higher order interactions generally turn out to be negligible. This permits 
the relative risks for all the cells in the complete cross-classification to be estimated 
using a smaller number of parameters which represent .the main multiplicative effects 
of the important risk factors plus occasional lower order interactions. By reducing the 
number of independent parameters which must be estimated from the data, we achieve 
the smoothing which was noted earlier to be one of the primary goals of the analysis. 
If high-order interactions are found to be present, this alerts us to the fact that risk 
depends in a complicated way on the constellation of risk factors, and mav not easily 
be summarized in a few measures. 

Example: As an example of the interpretation of a three-factor regression model, suppose that in (6.9) 
the three main effects are present along with the two-factor AC interaction. Assume further that the 
values of the parameters are given by 
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and 

Then we can reconstruct the seven odds ratios for the three-dimensional cross-classification as the entries 
in the tables 

Factor C + 
Factor B 

Factor C - 
Factor B 

Factor A + - + - 

The relative risk of A is twice as great for those exposed to C as for those not so exposed, and vice versa. 
Otherwise the risks combine in a perfectly multiplicative fashion. 

Further details concerning the fitting and interpretation of logistic and log linear 
models of the type introduced in this section are given in the elementary text by 
Fienberg (1977). More comprehensive accounts are given by Bishop, Fienberg and 
Holland (1975), Haberman (1974) and Cox (1970). Vitaliano (1978) conducts an 
analysis of a case-control study of skin cancer as related to sunlight exposure, using 
a logistic regression model with four factors, one at four levels and the remainder at 
two. 

6.2 General definition of the logistic model 

So far the logistic model has been used solely as a means of relating disease prob- 
abilities to one or  more categorical risk factors whose levels are represented by indicator 
variables. More generally the model relates a dichotomous outcome variable y which, 
in our context, denotes whether (y = 1) or not (y = 0) the individual develops the 
disease during the study period, to a series of K regression variables = (xl, ..., xK) 
via the equation 

or, equivalently, 
K 

logit pr(y = 11 x) = a + k= EPkxk.  I 

This formulation implies that the relative risk for individuals having two different sets 
x* and x of risk variables is 
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Thus a represents the log odds of disease risk for a person with a standard (x = 0) 
set of regression variables, while exp(P,) is the fraction by which this risk is increased 
(or decreased) for every unit change in x,. A large number of possible relationships 
may be represented in this form by including among the x's indicator variables and 
continuous measurements, transformations of such measurements, and cross-product 
or interaction variables. 

As we saw in the last chapter, one important means of controlling the effects of 
nuisance or confounding variables is by stratification of the study population on the 
basis of combinations of levels of these variables. When conducting similar analyses in 
the context of logistic regression, it is convenient to generalize the model further so as 
to isolate the stratum effects, which are often of little intrinsic interest, from the effects 
of the risk factors under study. With Pi(x) denoting the disease probability in-stratum 
i for an individual with risk variables x, we may write 

If .none of the regression variables are interaction terms involving the factors used for 
stratification, a consequence of (6.12) is that the relative risks associated with the risk 
factors under study are constant over strata. By including such interaction terms among 
the x's, one may model changes .in the relative risk which accompany changes in the 
stratification variables. The fact that the parameters of the logistic model are so easily 
interpretable in terms of relative risk is, as we have said, one of the main reasons for 
using the model. 

The earliest applications of this model were in prospective studies of coronary heart 
disease in which x represented such risk factors as age, blood pressure, serum cholesterol 
and cigarette consumption (Cornfield, 1962; Truett, Cornfield & Kannel, 1967). In 
these investigations the authors used linear discriminant analysis to estimate the param- 
eters, an approach which is strictly valid only if the x's have multivariate normal 
distributions among both diseased and non-diseased (see 5 6.3). The generality of the 
method was enhanced considerably by the introduction of maximum likelihood estima- 
tion procedures (Walker & Duncan, 1967; Day & Kerridge, 1967; Cox, 1970). These 
are now available in several computer packages, including the General Linear Inter- 
active Modelling system (GLIM) distributed by the Royal Statistical Society (Baker & 
Nelder, 1978). 

We noted in 5 2.8 that for a long st.udy it is appropriate to partition the time axis 
into several intervals and use these .as one of the criteria for forming strata. In the 
present context this means that the quantity Pi(x) refers more specifically to the 
conditional probability of developing disease during the time interval specified by the 
ith stratum, given that the subject was disease-free at its start. For follow-up or cohort 
studies, if we are to use conventional computer programmes for logistic regression with 
conditional probabilities, separate data records must be read into the computer for 
each stratum in which an individual appears. Thomson (1977) discusses in some detail 
the problems of estimation in this situation. 

A limiting form of the logistic model for conditional probabilities, obtained by allow- 
ing the time intervals used for stratification to become infinitesimally small, is known 
as the proportional hazards model (Cox, 1972). Here the ratio of incidence rates for 
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individuals with exposures x* and x is given exactly by the right-hand side of equation 
(6.11). This approach has the conceptual advantage of eliminating the odds ratio 
approximation altogether, and thus obviates the rare disease assumptipn. The model 
has a history of successful use in .the statistical analysis of survival studies, and it is 
becoming increasingly clear that many of the analytic techniques developed for use 
in that field can also be applied in epidemiology (Breslow, 1975, 1978). Prentice and 
Breslow (1978) present a detailed mathematical treatment of the role of the propor- 
tional hazards model in the analysis of case-control study data. Methodological tech- 
niques stemming from the model are identical to those presented in Chapter 7 on 
matched data. 

6.3 Adaptation of the logistic model to case-control studies1 

According to the logistic model as just defined, the exposures x are regarded as 
fixed quantities while the response variable y is random. This fits precisely the cohort 
study situation because it is not known in advance whether or not, or when, a given 
individual will develop the disease. With the case-control approach, QII the other hand, 
subjects are selected on the basis of their disease status. It is their history of risk factor 
exposures, as determined by retrospective interview or other means, which should 
properly be regarded as the random outcome. Thus an important question, addressed 
in this section, is: how can the logistic model for disease probabilities, which has such 
a simple and desirable interpretation vis-a-vis relative risk, be adapted for use with a 
sample of cases and controls? 

If there is but a single binary risk factor with study subjects classified simply as ex- 
posed versus unexposed, the answer to this is perfectly clear. Recall first of all our 
demonstration in 5 2.8 that the odds ratio q of disease probabilities for exposed versus 
unexposed is identical to the odds ratio of exposure probabilities for diseased versus 
disease-free. When drawing inferences about on the basis of data in 2 x  2 tables 
(4.1), it makes absolutely no difference whether the marginal totals ml and mo cor- 
responding to the two exposure categories are fixed, as in a cohort study, or whether 
the margins nl and no of diseased and disease-free are fixed, as in a case-control study. 
The estimates, tests and confidence intervals for q derived in 5 4.1 and 5 4.2 in no 
way depend on how the data in the tables are obtained. Hence we have already de- 
monstrated for 2 x 2 tables that inferences about relative risk are made by applying to 
case-control data precisely the same set of calculations as would be applied to cohort 
data from the same population. 

This identity of inferential procedures, whether sampling is carried out according to a 
cohort or case-control design, is in fact a fundamental property of the general logistic 
model. We illustrate this feature with a simple calculation involving conditional prob- 
abilities (Mantel, 1973; Seigel & Greenhouse, 1973) which lends a good deal of plau- 
sibility to the deeper mathematical results discussed afterwards. It suffices to consider 
the model (6.10) for disease probabilities in a single population, as results for the 

'This section, which is particularly abstract, deals with the logical basis for the application of logistic 
regression to case-control data. Readers interested only in practical applications can go directly to 5 6.5. 
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stratified situation are quite analogous. Suppose the indicator variable z denotes whether 
(z = 1) or not (z = 0) someone is sampled, and let us define 

to be the probability that a diseased person is included in the study as a case and 

to be the probability of including a disease-free person in the study as a control. 
Typically x1 is near unity, i.e., most potential cases are sampled for the study, while 
xo has a lower order of magnitude. 

Consider now the conditional probability that a person is diseased, given that he has 
risk variables x and that he was sampled for the case-control study. Using Bayes' 
Theorem (Armitage, 1975) we compute pr(y = 1 1 z = 1,x) 

where a* = u +log ( J Z ~ / X ~ ) .  In other words, the disease probabilities for those in the 
sample continue to be given by the logistic model with precisely the same ps, albeit a 
different value for a. This observation alone would suffice to justify the application of 
(6.10) to case-control data provided we could also assume that the probabilities of 
inclusion in the study were independent for different individuals. However, unless a 
separate decision was made on whether or not to include each potential case or control 
in the sample, this will not be true. In most studies some slight dependencies are 
introduced because the total numbers of cases and controls are fixed in advance by 
design. Hence a somewhat more complicated theory is required. 

One assumption made implicitly in the course of this derivation deserves further 
emphasis. This is that the sampling probabilities depend only on disease status and not 
on the exposures. In symbols, pr(z = 1 1 y,x) = pr(z = 1 1 y) = n, for y = 1 and 0. 
With a stratified design and analysis these sampling fractions may vary from stratum 
to stratum, but again should not depend on the values of the risk variables. An illustra- 
tion of the magnitude of the bias which may accompany violations of this assumption 
was made earlier in 5 2.8. 

Since case-control studies typically involve separate samples of fixed size from the 
diseased and disease-free populations, the independent probabilities are those of risk 
variables given disease status. If the sample contains nl cases and no controls, the 
likelihood of the data is a product of nl terms of the form pr(x1 y = 1) and no of the 
form pr(x1 y = 0). Using basic rules of conditional probability, each of these can be 
expressed 
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as the product of the conditional probabilities of disease given exposure, specified by 
the logistic model, times the ratio of unconditional probabilities for exposure and 
disease. 

How one approaches the estimation of the relative risk parameters P from (6.13) 
depends to a large extent on assumptions made about the mechanism generating the 
data, i.e., about the joint probability distribution for x and y. The key issue is whether the 
x variables themselves, without knowledge of the associated y's, contain any informa- 
tion about the parameters of interest. Such a condition would be expressed mathe- 
matically through dependence of the marginal distribution pr(x) on & as well as on 
other parameters, in which case better estimates of P could in principle be obtained by 
using the entire likelihood (6.13) rather than by using only the portion of that likelihood 
specified by (6.10). 

An example in which the x's do contain information on their own about the relative 
risk was alluded to in tj 6.2. In early applications of logistic regression to cohort studies, 
the regression variables were assumed to have multivariate normal distributions in 
each disease category (Truett, Cornfield & Karrel, 1967). If such distributions are 
centred around expected values of g1 for diseased individuals and p0 for controls, 
and have a common covariance matrix 1, then the corresponding r e l a h e  risk param- 
eters can be computed to be 

Estimation of from the full likelihood (6.13) thus entails calculation of the sample 
means x1 and xo of the regression variables among cases and controls, of the pooled 
covariance matrix Sg, and substitution of these quantities in place of bl, uo and 1 ,  
respectively. While this procedure yields the most efficient estimates of f.3 - provided 
the assumptions of multivariate normality hold, severe bias can result if they do not 
(Halperin, Blackwelder & Verter, 1971; Efron, 1975; Press & Wilson, 1978). It is there- 
fore not recommended for estimation of relative risks, although it may be useful in the 
early exploratory phases of an analysis to help determine which risk factors contribute 
significantly to the multivariate equation. 

In most practical situations, the x variables are distinctly non-normal. Indeed, many 
if not all of them will be discrete and limited to a few possible values. It is therefore 
prudent to make as few assumptions as possible about their distribution. This can be 
accomplished by allowing pr(x) in (6.13) to remain completely arbitrary, or else to 
assume that it depends on a (rather large) set of parameters which are functionally 
independent of &. Then, following general principles of statistical inference, one could 
either try to estimate and pr(x) jointly using (6.13); or else one could try to eliminate 
the pr(x) term by deriving an appropriate conditional likelihood (Cox & Hinkley, 
1974). 

If we decide on the first course, namely joint estimation, a rather remarkable thing 
happens. Providing pr(x) is assumed to remain completely arbitrary, the joint maximum 
likelihood estimate turns out to be identical to that based only on the portion of the 
likelhood which is specified by the linear logistic model. Furthermore, the standard 
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errors and covariances for generated from partial and full likelihoods also agree. 
This fact was first noted by Anderson (1972) for the case in which x was a discrete 
variable, and established for the general situation by Prentice and Pyke (1979). 

Another approach to the likelihood (6.13) is to eliminate the nuisance parameters 
through consideration of an appropriate conditional distribution. Suppose that a case- 
control study of n=n, +no  subjects yields the exposure vectors x,, ..., x,, but it is not 
specified which of them pertain to the cases and which to the controls. The conditional 
probability that the first n, x's in fact go with the cases, as observed, and the remainder 
with the controls may be written 

where the sum in the denominator is over all the (:,) ways of dividing the numbers 

from 1 to n into one group {I,, .. ., I,,) of size n, and its complement {I,,,~, . . ., 1 , ) .  

Using (6.10) and (6.13) it can be calculated that (6.14) reduces to 

where xjk denotes the value of the kth regression variable for the jth subject and the 
sum in the denominator is again over all possible choices of n, subjects out of n 
(Prentice & Breslow, 1978; Breslow et al., 1978). This likelihood depends only on the 
p parameters of interest. However, when n, and no are large, the number of s u m m a ~ d s  
rn the denominator is so' great as to rule out its use in practice. Fortunately, as these 
quantities increase, the conditional maximum likelihood estimate and the standard 
errors based on (6.15) are almost certain to be numerically close to those obtained 
by applying the unconditional likelihood (6.10) (Efron, 1975; Farewell, 1979). 

In summary, unless the marginal distribution of the risk variables in the sample is 
assumed to contain some information about the relative risk, methods of estimation 
based on the joint exposure likelihood yield essentially the same numerical results as 
do those based on the disease probability model. This justifies the application to case- 
control data of precisely the same analytic techniques used with cohort studies. 

6.4 Likelihood inference: an outline' 

We have now introduced the logistic regression model as a natural generalization of 
the odds ratio approach to relative risk estimation, and argued that it may be directly 

'This  section also treats material which is quite technical and is not required for appreciation of the 
applications of the methods. The  reader who lacks formal mathematical o r  statistical training is advised to 
skim through it o n  a first reading, and then refer back to the section while working through the examples. 
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applied to case-control study data with disease status (case versus control) treated as 
the "dependent" or response variable. Subsequent sections of this chapter will illus- 
trate its application to several problems of varying complexity. With one exception, 
the illustrative analyses may all be carried out using standard computer programmes 
for the fitting of linear logistic models by maximum likelihood. 

Input to GLIM or other standard programmes is in the form of a rectangular data 
array, consisting of a list of values on a fixed number of variables for each subject in the 
study, with different subjects on different rows. The variables are typically in the order 
(y,xl, . .., xK), where y equals 1 or 0 according to whether the subject is a case or 
control, while the x's represent various discrete and/or continuous regression variables 
to be related to y. Output usually consists of estimates of the regression coefficients 
for each variable, a variance/covariance matrix for the estimated coefficients, and one 
or more test statistics which measure the goodness of fit of the model to the observed 
data. It is not necessary to have a detailed understanding of the arithmetical operations 
linking the inputs to the outputs in order to be able to use the programme. Researchers 
in many fields have long used similar programmes for ordinary (least squares) fitting 
of multiple regression equations, with considerable success. Nevertheless, some apprecia- 
tion of the fundamental concepts involved can help to dispel the uneasiness which 
accompanies what otherwise might seem a rather "black box" approach to data 
analysis. In this section we outline briefly the key features of likelihood inference in the 
hopes that it may lay the logical foundation for the interpretation of the outputs. More 
detailed expositions of this material can be found in the books by Cox (1970), Haber- 
man (1974), Bishop, Fienberg and Holland (1975) and Fienberg (1977). 

Statistical inference starts with an expression for the probability, or likelihood, of the 
observed data. This depends on a number of unknown parameters which represent 
quantitative features of the population from which the data are sampled. In our situa- 
tion the likelihood is composed of a product of terms of the form (6.10), one for each 
subject. The a's and P's are the unknown parameters, inte;est being focused on the 
P's because of their ready interpretation vis-ci-vis relative risk. 

Estimates of the parameters are selected to be those values which maximize the likeli- 
hood or rather, and what is equivalent, those which maximize its logarithm. The param- 
eters thus estimated, which are often denoted a and p, are inserted back into the 
individual likelihoods (6.10) to calculate the fitted or predicted probability P of being 
a case for each study subject. If we subtract twice the maximized log likelihood from 
zero, which is the absolute maximum achieved as all the'fitted values P approach the 
observed y's, and sum up over all individuals in the sample, we obtain the expression 

G = -= {ylog P + (l-y)log(l-~)} 

for the log likelihood statistic1. Although G as given here does not have any well 
defined distribution itself, differences between G statistics for different models may be 
interpreted as chi-squares (see below). 

Other important statistics in likelihood analysis are defined in terms of the first and 
second derivatives of the log likelihood function. The vector of its first partial derivatives 

'The statistic (6.16) is called the deviance in GLIM. 
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is known as the efficient score, S = S(a,P), while the negative of the matrix of second 
partial derivatives is the information matrix, denoted I = I(a,P). The variance/ 
covariance matrix of the estimated parameters is obtained from the inverted informa- 
tion matrix, evaluated at the maximum likelihood estimate (MLE): 

Covariance matrix for (6,)) = I-'(& ,)). (6.17) 

Another specification of the MLE is as the value a , p  for which the efficient score is 
zero. 

Likelihood inference typically proceeds by fitting a nested hierarchy of models, each 
one containing the last. For example, we might start with the model 

(1) logit pr(y ( x) = a 

which specifies that the disease probabilities do not depend on the regression variables, 
i.e., that the log relative risk for different x's is zero. This would be elaborated in a 
second model 

for which the log relative risk associated with risk factor x1 is allowed to  be non-zero. 
A further generalization is then to 

in which the coefficients for two more variables, one of which might for instance be an - 

interaction involving xl, are also allowed to be non-zero. 
At each stage we obtain the MLEs of the coefficients in the model, together with 

their estimated variances and covariances. We also carry out a test for the significance 
of the additional parameters, which is logically equivalent to testing whether the current 
model fits better than the last one. Three tests are available. The likelihood ratio test 
is simply the difference of the maximized log likelihood statistics (6.16) for the two 
models. If GI, G2 and G3 denote the values of these statistics for models 1, 2 and 3, 
respectively, then necessarily G3 5 G2 5 GI. Each hypothesis is less restrictive than 
the last and its fitted probabilities P will therefore generally be closer to the observed 
y's. GI-G2 tests the hypothesis P1 = 0, i.e., the significance of x1 as a risk factor, 
while G2-G3 evaluates the additional contributions of x, and x3 after the effect of 
x1 is accounted for. 

The score statistic for testing the significance of the additional parameters is based 
on the efficient score evaluated at the MLE for the previous model, appropriately 
augmented with zeros. For example, the score test of ~ o d e l  2 against Model 1 is given 
by 

S2 = S(&,O)T I-l(&,O) S(&,O) (6.18) 

where S and I are calculated for Model 2 whereas 6 is the MLE for Model 1. Similarly 
the score test of the hypothesis P2 = P3 = 0 in Model 3 is 

A third test for the significance of the additional parameters in a model is simply to 
compare their estimated values against 0, using their standard errors as a reference. 
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Thus to test P1 = 0 in Model 2 we would calculate the standardized regression coeffi- 
cient 

where var(8,) was the appropriate diagonal term in the inverse information matrix 
for Model 2. A test statistic analogous to the previous two is based on the square of 
this value 

n 2 

Similarly, the test of P2 = P3 = 0 in Model 3 is given by the statistic 

where is the estimated variance/covariance matrix for (P2,B3) in Model 3. 
In large samples all three of these statistics are known to give approximately equal 

numerical results under the null hypothesis, and to have distributions which are chi- 
square with degrees of freedom equal to the number of additional parameters (Rao, 
1965). In other words, if Model 1 holds we should have approximately 

Similarly, all three statistics for the hypothesis p2 = P3 = 0 in Model 3 should yield 
similar numerical results, and will have approximate x,2 distributions, if Model 2 ade- 
quately summarizes the data. The first and third statistics are most easily calculated 
from the output of standard programmes such as GLIM. The score statistic, while not 
routinely calculated by standard programmes, is mentioned here for two reasons. First, 
in simple situations it is identical with the elementary test statistics presented in Chap- 
ter 4, and thus provides a link between the two approaches (Day & Byar, 1979). Second, 
the nominal chi-square distribution is known to approximate that of the score statistic 
more closely in small samples, so that its use is less likely to lead to erroneous conclu- 
sions of statistical significance (Lininger et al., 1979). 

Two other statistics should be mentioned which are useful for evaluating goodness of 
fit with grouped data. These arise when there are a limited number of distinct risk 
categories, i.e., when the number of x values is sufficiently small compared with the size 
of the study population that quite a few individuals within each stratum have the same 
x. In this case, rather than consider each data record on its own for the analysis, it 
makes sense to group together those records within each stratum which have the same 
set of exposures. Suppose that N denotes the total number of individuals in a particular 
group, of whom nl are cases and no are controls. Since the exposures are identical, the 
estimated probabilities P will apply equally to everyone in the group. NP may there- 
fore be interpreted as the expected or fitted number of cases, while ~ ( 1 - p )  is the 
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expected number of controls. An appropriate version of the likelihood ratio statistic 
for this situation is 

G = 2 C[nl1og(nl/NP) + nolog{no/N(l-P)}] (6.20) 

where the sum is over all the distinct groups or risk categories. Another measure of 
goodness of fit of model to data is the ubiquitous chi-square statistic 

Unless the data are quite "thin", so that the fitted values of cases or controls for many 
groups are less than five, these two expressions should yield reasonably close numerical 
answers when the model holds. 

The formulae (6.20) and (6.21) may be expressed in more familiar terms, as func- 
tions of the observed ( 0 )  and expected (E) numbers in each cell, provided we remember 
that the cases and controls in each group constitute separate cells and thus make 
separate contributions. The likelihood ratio statistic becomes 

while the chi-square measure is 

Provided the number of groups is small in relation to the total number of cases, each 
of the statistics G and 6 have asymptotic chi-square distributions under the null hypo- 
thesis. Degrees of freedom are equal to the number of groups less the number of 
parameters in the logistic model. While they provide us with an overall evaluation of 
how well the model conforms to the data, these tests may be rather insensitive to 
particular types of departure from the model. Better tests are obtained by constructing 
a more general model, with a limited number of additional parameters which express 
the nature of the departure, and then testing between'the two models as outlined 
earlier. 

It should be emphasized that the methods discussed in this section, and illustrated in 
the remainder of the chapter, are based on unconditional likelihoods (6.10) and (6.12) 
and involve explicit estimation of the a nuisance parameters as well as of the P's. For 
some. of the simpler problems, e.g., the combination of results from 2 x 2 tables, infer- 
ence may be carried out also in terms of conditional likelihoods which depend only on 
the parameters of interest. If the number of nuisance parameters is large, and the data 
thin, this approach avoids some well known problems of bias (see 5 7.1). It also 
enables exact inferences to be made (5 4.2). Since many of the procedures in Chapter 4 
and all of those in Chapters 5 and 7 are based on such conditional likelihoods, the 
methods discussed there would be expected to yield more accurate results for finely 
stratified or matched data than those presented in this chapter. However, the exact 
conditional procedures are too burdensome computationally for many of the problems 
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which confront us. Thus, while we may lose some accuracy with the logistic regression 
approach, what we gain in return is a coherent methodology capable of handling a wide 
variety of problems in a uniform manner. 

6.5 Combining results from 2 x 2 tables 

As our first worked example using the logistic model, we return to the problem of 
combining information about the relative risk from a series of 2 x 2 tables. In this case 
there is a single exposure variable x, coded x = 1 for exposed and x = 0 for unexposed. 
The model (6.12) for the probabilities Pi(x) of disease in the ith of I strata becomes 

which expresses the idea that the relative risks in each stratum are given by the constant * = = X P ( ~ ) *  
Simultaneous estimation of the ai and ,Ll parameters as outlined in the last section 

leads to the estimate $?J = exp(?) identified in § 4.4 as the unconditional or asymptotic 
maximum likelihood estimate (MLE). This has the property that the sum of the fitted 
values of exposed cases over all I strata is equal to the sum of the observed values. 
More precisely, suppose the data are laid out as in (4.21). Denote the fitted values by 

and for the remaining cells by subtraction, ti = mIi - $, di = moi - bi. Agreement of the 
observed and marginal totals means Eli = Pai7 Pbi = Pbi7 and so on. Since the squared 
deviations of observed and fitted values for the four cells in each stratum agree, i.e., 
(ai-Q2 = (bi-bi)2 = (ci -ti)2 = (di-di)27 it follows that the chi-square statistic 
(6.23) for testing goodness of fit of the model may be written 

where we have used the variance formula (4.13). This chi-square agrees precisely with 
the goodness of fit statistic (4.30) derived earlier, except that we now use MLE for the 
parameters. 

Example: To illustrate these calculations we reanalyse the grouped data from the Ille-et-Vilaine study 
of oesophageal cancer summarized in Table 4.1. Here the six strata are defined as ten-year age groups 
from 25-34 through 75+ years, while average alcohol consumption is treated as a binary risk factor 
with 0-79 g/day (up to one litre of wine) representing "unexposed" and anything over this amount 
"exposed". The data would be rearranged for computer entry as shown in Table 6.1, where 12 risk 
categories or groups are defined by the six strata and two levels of exposure. Within each of these the 
total N of cases + controls is regarded as the denominator of an observed disease proportion, while'the 
number of cases is the numerator. The numerical results should be compared closely with those already 
obtained in 8 4.4. 
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Table 6.1 Data from Table 4.5 reorganized for entry into a com- 
puter programme for linear logistic regression 

Age Exposure Cases Total 
stratum (x=l  for 80+ glday) (cases + controls) 

Results of fitting several versions of the model to these data are summarized in Table 6.2. In the first 
version, with six parameters, the disease probabilities may vary with each age group but not with exposure 
(/? = 0). Considering the huge goodness of fit statistics, this assumption is clearly not tenable (p<0.00001). 
When a single relative risk parameter (/3) is introduced the fit improves considerably. However, the chi- 
square (6 = 9.32, p = 0.15) and log likelihood (G = 11.04, p = 0.05) statistics give somewhat different 
answers as to whether the differences in relative risk between strata are significantly different. Both are 
sufficiently large to alert us to the possibility of systematic variations in the relative risk for different age 
groups, which should be investigated further. 

Inferences about the relative risk are made in terms of the estimate f i  = 1.670 and its standard error 
0.190'. We compute $ = exp(1.670) = 5.31 as the point estimate of relative risk. Ninety-five percent 
confidence limits for/? are given by/?, = 1.670-1.96 x 0.190 = 1.30 andPU = 1.670 + 1.96 x 0.190 = 2.04. 
These correspond to bounds of y l ,  = exp(pL) = 3.66 and yiu = exp(/?,) = 7.71 on the relative risk, 
which compare well with those derived in § 4.4 using two other methods. 

The third model shown in Table 6.2 was fitted to see whether there was a systematic trend in relative 
risk with age. This took the form 

where now /? represents the log relative risk for a "typical" age (i = 3.5), while y represents the linear 
trend in this depending on the age group indicator i. The lack of a significant improvement in the goodness 
of fit statistics, and the small value of 7 as compared with its standard error, tell us that there is little evidence 
for such a trend. 

More information about the sources of departure from model assumptions can be obtained from an 
examination of the residuals, the differences between the observed and fitted numbers of disease cases 
in each category (Table 6.3). As an illustration of their calculation, the fitted values for the 35-44 age 
category are found from (6.24) and the estimated coefficients in Table 6.2 to be 

and 

' The standard error of an estimate is the square root of its estimated variance. 



Table 6.2 Results of fitting several versions of the linear logistic model (6.3) to the data in Table 6.1 

Model, No, of D F Goodness-of-fit Regression coefficients 
para- statistics Age strata (years) Log relative risk and interactions 

% 
rn 

meters Log likeli- Chi- Alcohol Alcohol x age V) 

hood square 25-34 35-44 45-54 5544 65-74 75+ f l +  S.E. 3 + S.E. 
G 6 61 6 2  f i3 h4 65 66 

6 z 
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Table 6.3 Residuals from fitting model 2 of Table 6.2 to data in Table 6.1 

Age stratum Exposure Numbers of cases Variance Standardized 
(Years) Observed Expected residual 

Total 200 200.00 

We easily verify that the sum of the fitted numbers of exposed cases over the six strata, 0.33 +4.10+ 
24.50+40.13 +23.74+ 3.20, equals the sum of the observed number, namely 96. This confirms the 
property of the maximum likelihood estimate mentioned earlier. 

Variances for the 0-E residuals are calculated as NPQ, where N is the denominator (total of cases and 
controls), P is the estimated disease probability and Q = 1 - P. Dividing each residual by its standard 
error gives us the standardized residuals, which when squared and summed produce the 6 goodness of fit 
statistic. The greatest contribution to this comes from the last two age groups. For the 65-74 year-olds 
the deficit of 19 exposed cases compared with 23.74 expected indicates a relative risk smaller than that of the 
other groups; while for the 75+ group the excess of 5 observed to 3.20 expected implies a larger than 
average relative risk. The contribution from the youngest age group can be largely discounted because 
only one case appears. Since there does not seem to be any obvious pattern to the residuals, we feel 
comfortable in attributing the observed departures from the fitted model to chance phenomena. 

6.6 Qualitative analysis of grouped data from Ille-et-Vilaine 

In 5 4.6 we applied classic Mantel-Haenszel methodology to study the joint effects 
of two risk factors, alcohol and tobacco, on the relative risk of oesophageal cancer in 
Ille-et-Vilaine. Both factors were partitioned into four levels, yielding 16 risk categories 
in all. Our first approach was to compute separate estimates of the age-adjusted relative 
risk for each such category, assigning the value 1.0 to the low alcohol, low tobacco cell. 
Later we estimated relative risks for each alcohol level, simultaneously adjusting for 
age and tobacco, and each tobacco level, simultaneously adjusting for alcohol and age. 
This was a cumbersome procedure which required that we construct and summarize 
several different series of 24 2 x 2 tables. The relative risks obtained for each alcohol 
and tobacco level were multiplied together to estimate the joint effect of these two 
variables. However, there was no very satisfactory way of testing the validity of the 
multiplicative hypothesis, and the relative risks obtained in this fashion lacked the 
desirable property of consistency. 

In this section we demonstrate that a comprehensive and integrated analysis, which 
parallels the Mantel-Haenszel approach, may be carried out quite simply using the 



21 4 BRESLOW & DAY 

logistic model with stratification (6.12). The starting point is the grouping of the 200 
cases and 775 controls into 4 x 4 x 6 = 96 cells, each of which represents a combina- 
tion of the categories of alcohol, tobacco and age. According to the principles outlined 
in 5 6.3, the observations in each cell are trea+.ed in the statistical analysis as indepen- 
dent binomial observations, with cases representing the numerator and cases + controls 
the denominator. Appendix I lists the 96 binomial observations so formed. In fact, 
since 8 of the cells were devoid of cases and controls there are effectively only 88 
observations and it is this figure that one uses to determine degrees of freedom. 

As only the qualitative or categorical aspects of the data are to be considered here, 
the regression variables x appearing in the model are indicator variables which take the 
value 1 or 0 according to whether the cell (observation) in question corresponds to a 
given level or combination of levels of the various study factors. Even the parameter ai 
in (6.12) can be regarded as the coefficient of an indicator variable which takes the 
value 1 for the ith stratum and 0 otherwise. Sophisticated programmes such as GLIM 
will automatically construct such indicators for all factors specified by the user as being 
categorical. 

Table 6.4 shows explicitly the values of the regression variables so constructed. Since 
they depend only on alcohol and tobacco it suffices to show their values for the first 
age group only. The first three variables define the main effects of each alcohol category 
on risk, while the next three define the main effects of tobacco. Thus, x2 = 1 for the 
third alcohol group and 0 otherwise, while = 1 for the fourth tobacco group and 0 
otherwise. Cells having 0 values for all six of these variables correspond to the lowest 
consumption levels of both factors and are assigned a baseline relative risk of unity. 

Variables x7 to x15 define the totality of qualitative interactions between alcohol and 
tobacco. They are obtained by multiplying together the dummy variables representing 
the main effects: 

Inclusion of all six main effect and all nine interaction variables in the equation imposes 
no constraints on how the relative risks vary over the l(j alcohol/tobacco cells. The 
15 parameters in the model yield 15 estimated relative risks, with the value 1.0 being 
assigned to the baseline category. Thus the log relative risk for the third alcohol and 
fourth tobacco group is estimated as 8, +b6 +BIZ, i.e., as a contribution from the alcohol 
level plus one from the tobacco level plus the interaction. One obvious drawback to 
this method of parameterizing the interactions is that it does not lead to the ready 
identification of quantitative patterns which may be of particular interest. Alternative 
parameterizations are considered in the next section. 

Table 6.5 summarizes the results of fitting several regression models using qualitative 
regression variables, By subtracting the goodness-of-fit (G) measures for Models 2 
and 3 from that for Model 1 we obtain X: statistics of 141.0 and 36.6, respectively, for 
testing the significance of alcohol and tobacco, ignoring the effects of the other variable. 
Both factors have an enormous influence on risk. Subtracting the G's for Model 4 from 
those for Models 2 and 3 yields X: statistics of 128.0 and 23.6. These determine the 
significance of alcohol and tobacco while adjusting for the effects of the other variable. 
The adjusted chi-squares are a little smaller than the unadjusted ones, reflecting the 
slight correlation between alcohol and tobacco consumption. However, their magnitude 
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Table 6.4 Values of qualitative risk variables for the first 16 of 96 grouped data records: Ille-et- 
Vilaine study of oesophageal cancer 

Obser- Levels of Alcohol main Tobacco main Alcohol x tobacco interaction 
vation age alc tob x ,  x, x3 X4 X~ X6 x 7  XB x 9  XIO X~~ X~~ X13 X14 X~~ 

Table 6.5 Summary of goodness of fit of several logistic regression models: grouped data from the 
Ille-et-Vilaine study of oesophageal cancer 

- - - - - - - - - 

Model Regression No. of OF Goodness of fit Hypothesis tested and/or interpretation 
variables includeda parameters G 

- - - - - - 

6 82 246.9 No effect of alcohol or 
tobacco 

2 Age 9 79 105.9 Effect of alcohol only, 
Alcohol ( 1 3 )  adjusted for age 

3 Age 9 79 21 0.3 Effect of tobacco only, 
Tobacco (4-6) adjusted for age 

- -- -- - 

4 Age 12 76 82.3 Main effects for alcohol and 
Alcohol ( 1 3 )  tobacco (multiplicative hypo- 
Tobacco (4-6) thesis), adjusted for age 

a Numbers in parentheses correspond to variable numbers shown in Table 6.4 

indicates that both variables have strong independent effects which are not explained 
by the contribution of the other. 

The estimated regression coefficients for Model 2, when exponentiated, yield esti- 
mates of the risk for each alcohol level relative to baseline (0-39 g/day) which are 
adjusted for age but not for tobacco. Thus, exp@,) = exp(1.43) = 4.2 is the relative 
risk for the 40-79 g/day group, while for the higher levels of consumption the figures 
are exp(),) = 7.4 and exp@,) = 39.7. These may be contrasted with the correspond- 
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Fig. 6.1 Log relative risk of oesophageal cancer according to four levels of alcohol con- 
sumption 

Average alcohol consumption (glday) 
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ing figures of 4.3, 8.0 and 28.6 obtained by the Mantel-Haenszel (M-H) method 
(Table 4.4). There is reasonably good agreement except for the highest exposure category, 
where there were few cases and controls in some strata. For this category the conditional 
maximum likelihood estimate (5 4.4) was 34.9, midway between the M-H estimate 
and unconditional MLE. The latter estimate is probably a bit exaggerated here 
because of the thin data (5 7.1). 

One disadvantage of the elementary methods was that the relative risks obtained 
upon varying the choice of baseline category were not consistent. For example, the 
direct M-H estimate of the risk for the fourth alcohol level relative to the second is 
8.7 rather than 28.6/4.3 = 6.7. Use of the logistic modelling approach avoids such 

Fig. 6.2 Log relative risk of oesophageal cancer according to four levels of tobacco 
consumption 

Average tobacco consumption (g/day) 
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discrepancies. Estimates of the log relative risks between any two categories are always 
obtained as the differences in the regression coefficients for those categories (with the 
proviso that the coefficient for the baseline category is O), and such differences are not 
affected by the choice of the baseline category. Thus exp(), -8,) = 9.4 represents the 
risk of level four relative to level two regardless of how the indicator variables repre- 
senting the alcohol effects are coded. 

Model 4 is the first reasonably satisfactory one in the sense that the goodness of fit 
chi-square is not significantly higher than its degrees of freedom 01;6 = 82.34, 
p = 0.48). The fitted regression coefficients are: for alcohol 8, = 1.44, 8, = 1.98 and 
8, = 3.60; and for tobacco fi4 = 0.44, B5 = 0.51 and 8, = 1.64 (6.11). These show a 
reasonably smooth linear increase with increasing levels of consumption (Figures 6.1 and 
6.2). Taking exponentials, we find estimates of relative risk for each alcohol and tobacco 
category relative to baseline which, according to the model, combine multiplicatively 
to yield the results for joint exposures to the two factors shown in Table 6.6. In view 
of the rather weak correlation between alcohol and tobacco consumption (Q = 0.15, 
see Table 4.22), it is not surprising that the alcohol relative risks obtained after adjust- 
ment for age and tobacco are only slightly smaller than those obtained after adjustment 
for age alone. Further evidence for the goodness of fit of the multiplicative model is 
presented in Table 6.7. Its entries, obtained by summing observed and fitted values 
over the six age categories, show consistently good agreement throughout the range of 
both risk factors. The greatest discrepancy is in the baseline category, with nine cases 
of disease against 13.7 expected. While not statistically significant, the slight lack of fit 

Table 6.6 Age-adjusted relative risks for each alcohol/tobacco 
category according to multiplicative model: Ille-et-Vilaine oe- 
sophageal cancer study 

Alcohol Tobacco (glday) 
(g lda~ )  0-9 1&19 20-29 30+ 

Table 6.7 Observed and expected (age-adjusted) numbers of cases for each alcohol/ 
tobacco category according to multiplicative model: Ille-et-Vilaine oesophageal cancer 
study 

Alcohol Tobacco (glday) 
(glday) &9 1&19 2&29 30+ 

0 E 0 E 0 E 0 E 
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for this category indicates that the relative risk for the other levels of exposure might 
possibly be even greater than that suggested by the model. 

One drawback to the choice of grouping intervals used in this analysis is that in 
neither case does the lowest level correspond to zero consumption. To some extent the 
choice was dictated by necessity in that no diseased individuals abstained completely 
from both alcohol and tobacco, and even among controls there were very few who did 
not consume some alcohol. However there were a substantial number of non-smokers 
in the population. Thus a similar analysis was carried out using five levels of consump- 
tion for each variable: 0-24, 2 5 4 9 ,  50-74, 75-99 and 100+ g/day for alcohol and 
0, 1-4, 5-14, 15-29 and 30+ g/day for tobacco. Results shown in Tables 6.8 and 6.9 
and in Figures 6.3 and 6.4 confirm the multiplicative relationship and the linear effect 
of alcohol on the log relative risk. The trend with tobacco, on the other hand, is con- 
siderably changed in appearance. Even a small amount appears to increase the risk 
substantially and there are contra-indications to the linearity of the relationship. 
Figures 6.3 and 6.4 also show for comparison relative risks estimated from the quanti- 
tative regression models discussed in the next two sections. 

It would be tempting to try to subdivide the alcohol and tobacco variables further, 
say into ten levels each. However even with five levels per variable there are already 
5 x 5 x 6 = 150 groups, and with ten levels there would be 600. The larger the number 
of parameters in the model, the less information there is available for estimating each 
one; this is reflected in increased standard errors. Further subdivision would lead one 
to anticipate increasingly erratic behaviour in the estimates, such as the apparent 
decrease in risk between the 5-14 and 15-29 g/day tobacco categories (Figure 6.4). 

Table 6.8 Estimated relative risks for each alcohol/tobacco category accord- 
ing to the multiplicative model: Ille-et-Vilaine oesophageal cancer study 

Alcohol Tobacco (glday) 
@/day) 0 1 4  5-1 4 15-29 30 + 

Table6.9 Observed and expected (age-adjusted) numbers of cases for each alcohol/tobacco 
category according to the multiplicative model: Ille-et-Vilaine oesophageal cancer study 

Alcohol Tobacco (glday) 
(glday) 0 1 4  5-14 1 5 2 9  30+ 

0 E 0 E 0 E 0 E 0 E 
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6.3 Log relative risk of oesophageal cancer according to five levels of alcohol con- 
sumption 

50 100 

Average alcohol consumption (glday) 



LOGISTIC REGRESSION FOR LARGE STRATA 221 

Fig. 6.4 Log relative risk of oesophageal cancer according to five levels of tobacco con- 
sumption 

10 20 30 - 

Average tobacco consumption (g/day) 

6.7 Quantitative analysis of grouped data 

An important feature of the Ille-et-Vilaine data which was ignored in the preceding 
section is that different levels of the two risk factors have a prescribed order. It is pos- 
sible to assign to each of them a quantitative value of exposure, for example the mid- 
point of the respective interval, or the average over the sample of the values of the 
underlying continuous variable within that interval. Natural values to assign to the four 
levels of alcohol are 20, 60, 100 and 150 g/day (Figure 6.1), which are interval mid- 
points except that 150 represents the approximate median of the values in the last 
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open-ended interval above 120 glday. Similarly, for tobacco, natural values are 5, 15, 
25 and 40 glday (Figure 6.2). Even the stratification variable is quantitative, with 
equally-spaced intervals centred about 30, 40, 50, 60, 70 and 80 years of age. 

Quantitative aspects of the data may be accounted for in the analysis by using con- 
tinuous regression variables in place of the categorical ones. There are several advantages 
in this approach. First, the data can often be adequately summarized by a smaller 
number of parameters, which facilitates interpretation. Tests for the significance of 
individual regression coefficients are single degree of freedom tests for trend which, as 
we have repeatedly emphasized, are generally more powerful than tests directed against 
global alternatives to the null hypothesis. This feature is especially important in 
exploring possible interactions, since chi-square statistics based on qualitative inter- 
action variables tend to have rather large numbers of degrees of freedom. Quantitative 
interaction variables, obtained as the product of the quantitative variables representing 
the main effects of the corresponding factors, enable us to identify particular patterns 
of departure from the basic linear model. 

Suppose for the moment that a single risk factor has been divided into K levels 
corresponding to values XI, .. ., x~ of a quantitative variable. Cases and controls may 
be classified into one of IK cells on the basis of stratum (i) and risk factor (k). A 
partial selection of logistic regression models which would be appropriate to fit to the 
disease probabilities Pi(xk) may be outlined as follows: 

Model equation No. of Goodness- Interpretation/Description 
logit Pi(xk) = independent of-fit statistic 

parameters G 

i I GI Relative risk of unity in all strata: no 
effect of risk factor 

ai+plxk I +  1 G2 Linear increase in log-relative risk with 
exposure, same slope for each stratum 

ai +@ixk +@2~: 1 + 2  G3 Quadratic effect of exposure on log- 
relative risk 

ai +pix, 21 G4 Linear effect of exposure, but slope 
varies depending on stratum 

ai+pk I + K - 1  G5 Individual relative risk for each exposure 
level 

ai +pk+~ik  IK G6 = o NO constraints at all: separate relative 
risks in each stratum 

pk = yik = 0 by convention for k = 1 and all i .  

By comparing the statistics corresponding to different models one may test several 
2 hypotheses. For example GI-G,, a x,, statistic, provides an unstructured (quali- 

tative) test for the effects of the risk factor like those considered in the last section. 
Its value would not be changed by a re-ordering of the exposure categories. G I G 2 ,  
which has but a single degree of freedom, yields a much more specific test for linear 
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trend in log relative risk with increasing exposure. A global test of departures from the 
linear' model is provided by Gz-G5, on K-2 degrees of freedom, while Gz-G3 is 
a X: statistic specifically designed to test for curvature in the regression line. Finally, 
Gz-Gq is a xi-' statistic testing the parallelism of the regression lines in the I strata. 
Lack of parallelism means that the relative risks for different exposure levels vary from 
one stratum to another, i.e., that there are interactions between stratification variables 
and risk factors. Notice that the goodness-of-fit statistic for model 6 is 0. Since the 
number of independent parameters equals the number of observations, there is perfect 
agreement between model and data in this case. 

A similar but somewhat more elaborate set of models was fitted to the 96 grouped 
data records from Ille-et-Vilaine, treating fhe two risk factors alternately as qualitative 
and quantitative variables at four levels'each. The values assigned to each level are as 
indicated. above, namely 20, 60, 100 and 150 g/day for alcohol and 5, 15, 25 and 
40 g/day for tobacco. In fact these x values were not used in the regression analyses 
in their original form, since this would have led to computational problems, especially 
with the square terms. Instead, alcohol consumption was expressed in units of 100 g/day, 
with values 0.2, 0.6, 1.0 and 1.5, while tobacco was expressed in units of 10 g/day. It 
is sometimes helpful to go even further and to standardize all regression variables, i.e., 
scale and centre them so that they have approximate mean values of zero and variances 
of unity, before proceeding with the numerical analyses. 

Table 6.10 summarizes the results. In identifying the various models we have used 
the following shorthand: ALCGRP and TOBGRP denote the qualitative effects of 
alcohol and tobacco, each representing three indicator regression variables; ALC 
and TOB are single variables which represent the quantitative effects. All models 
contain the six stratum parameters ai which express the qualitative effects of age. 
Model 1 is identical with Model 4 of Table 6.5, both alcohol and tobacco consumption 
being treated as qualitative factors which combine multiplicatively. 

Comparing Models 1 and 2 there is some slight evidence that the increase in log 
relative risk with alcohol may not be purely linear (y; = 5.07, p = 0.08); however, since 
the specific test for curvature obtained by comparing Models 2 and 3 is not at all signi- 
ficant (y: = 0.11, p = 0.95), we feel reasonably confident in attributing these devia- 
tions from a straight line relationship to chance. Linearity of the trend with tobacco, 
at least as based on the grouping into four levels, seems quite adequate; compare 
Model 4 with Models 1 and 5. Thus, Model 6, containing just one term for each of 
alcohol and tobacco, fits the data nearly as well as a model with four more parameters 
representing the non-linear effects of the two risk variables. From the regression coef- 
ficients' for Model 6, bALc = 2.55 and b,, = 0.409, we estimate that the risk of 
oesophageal cancer increases by a factor of exp(0.255) = 1.29 for every additional 
10 grams of alcohol consumed per day, and by exp(0.409) = 1.51 for each additional 
10 grams of tobacco. 

Model 7 contains a quantitative term representing the linear x linear interaction of 
alcohol and tobacco. A significant value for its coefficient would have indicated a trend 
in the slope of the alcohol relationship with increasing consumption of tobacco, or 

' Remember that for these calculations alcohol was expressed in units of 100 g/day and tobacco in 10- 
gram units. 
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Table 6.10 Results of fitting various logistic models with qualitative and quantitative regression 
variables to grouped data from the Ille-et-Vilaine study of oesophageal cancer 

Model Parameters fitted (in addition to DF Goodness Hypothesis testedlinterpretation , 
stratum or age effects) of fit 

G 
- - - - - - - - - 

1 ALCGRP + TOBGRP 76 82.34 Multiplicative model with qualitative risk 
variables 

2 TOBGRP + ALC 78 87.41 Linear effect of alcohol 
- - - - 

3 TOBGRP + ALC + ALCZ 77 87.01 Linear + quadratic effects of alcohol 

4 ALCGRP + TOB 78 84.53 Linear effects of tobacco 

5 ALCGRP + TOB+ TOB2 77 83.73 Linear + quadratic effects of tobacco 

6 ALC + TO6 80 89.02 Linear effects of alcohol and tobacco 

7 ALC + TOB + ALC x TOB 79 88.05 Linear x linear alcohol/tobacco interaction 

8 ALCGRP + TOBGRP 75 81.37 Linear x linear alcohol/tobacco interaction 
+ ALC x TOB in qualitative model 

9 ALCGRP + TOBGRP 75 80.08 Linear increase i'n slope of alcohol 
+ ALC x AGE effect with age 

10 ALCGRP + TOBGRP 75 82.33 Linear increase in slope of tobacco 
+ TOB x AGE effect with age 

KEY: ALCGRP = indicator variables for alcohol levels 
TOBGRP = indicator variables for tobacco levels 
AGE = quantitative age variable 
ALC = quantitative alcohol variable 
TOB = quantitative tobacco variable 

equivalently a trend in the tobacco relationship with alcohol. However, there is no 
evidence for such a trend &: = 0.97, p = 0.32). Model 8 illustrates that quantitative 
interaction terms may be used even when the model expresses the main effects quali- 
tatively. Subtracting G8 from GI leads to a nearly identical test for the quantitative 
alcoholx tobacco interaction &: = 0.97, p = 0.32). Quantitative interaction variables 
may be quite valuable in giving some specificity to the search for interactions even if 
one does not want to assume a particular form for the main effects. 

The last two models search for similar quantitative interactions with the stratification 
variable. A negative regression coefficient for the ALCx AGE term in Model 9 
indicates a tendency for the alcohol relative risk to diminish with advancing age. How- 
ever, it is not. a significant trend &; = 2.28, p = 0.13). There is no indication at all of a 
systematic change in the tobacco effect with age. Thus our previous conclusions based 
on the qualitative analysis of interactions are in this example further supported by the 
quantitative approach. 
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6.8 Regression adjustment for confounders 

Stratification, whether in the context of M-H methodology or logistic regression, has 
traditionally been used to control the confounding effects of nuisance factors. Typically, 
we define a separate stratum for each combination of levels of the nuisance factors, 
assigning to each one a parameter in the model. If there are several such factors, or if 
they occur at very many levels, the total number of strata can become quite large. For 
example, with three stratifying factors at 3, 4 and 5 levels, respectively, the total number 
of a parameters in (6.2) is 3 x 4 x 5 = 60. Since the available data usually place severe 
limitations on the number of strata which may be incorporated in the analysis, alter- 
native methods for the control of confounding must be considered. 

From the discussion in 5 6.1 it is clear that the practice of stratification is tantamount 
to saturating the effects of the nuisance factors with parameters. Not only the main 
effects, but also all the first and higher order interaction terms are represented. This 
practice is unnecessary, however, unless we have good reason to believe that such 
higher order interactions are present. An obvious alternative to stratification for the 
control of confounding variables is to incorporate their effects directly into the model. 
This allows us much more flexibility in deciding which of the higher order interaction 
terms to retain and which to discard. The approach may be especially efficacious with 
continuous nuisance factors whose effects can be adequately summarized in a few 
quantitative regression variables. 

This does not mean, however, that risk and nuisance variables are treated sym- 
metrically in the analysis. For risk factors our goal is to identify the most important 
ones and quantify their influence in a precise and meaningful way. This implies that 
we economize on the number of parameters used to represent them and that we retain 
in the multivariate risk equation only those which have reasonably significant effects. 

For nuisance factors, on the other hand, the effects on disease have presumably 
already been conceded, or in any event are not the specific concern of the study. They 
are included only to ensure that the estimates of relative risk are free from possible 
confounding effects, and no specific meaning is to be attached to their coefficients. 
Hence, known confounding variables should be included in the equation regardless 
of statistical significance if such inclusion changes the estimated coefficients of the 
risk variables by any appreciable degree (5 3.4). 

We illustrate the regression adjustment for confounding effects with the grouped data 
from llle-et-Vilaine, specifically the age adjustment of estimates in the qualitative 
multiplicative model (Model 4, Table 6.5). Table 6.1 1 compares the previous estimates, 
obtained using stratification in six age groups, to estimates for which quantitative 
adjustments were made by introducing polynomial expressions in age group into the 
equation. Let i denote the age stratum, j the alcohol group, and k the tobacco group. 
The left-hand column presents the unadjusted estimates, based on an equation of the form 

where age does not appear at all. The next column shows the changes in .the alcohol 
and tobacco coefficients upon introduction of a single linear term in age 
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logit Pijk = a. + a l i  + pj(alc) + pk(tob). 

The third column shows the effect of adding a quadratic age term a2i2, and so on. 
Comparing G's for the extreme left- and right-hand columns of Table 6.1 1 it is clear 

that age has an enormous influence on risk (y,2 = 126.5). Nevertheless, the differences 
between these two columns in the relative risk estimates for alcohol and tobacco are 
rather minor, which implies that the confounding effects of age are quite weak. The 
explanation for this phenomenon has been given in 5 3.3. While age is strongly related 
to risk, it has only a weak correlation with the level of exposure to alcohol and tobacco 
(Table 4.2) and hence would not be expected to be a strong confounder. 

Inclusion of a single linear term in age group results in an enormous improvement 
in overall fit and brings the estimated coefficients quite close to those obtained via 
stratification. Fitting both linear and quadratic terms yields results which are virtually 
identical to those obtained with higher degrees of adjustment. These comparisons, which 
are typical of our experience with quantitative nuisance factors, indicate that effective 
control of confounding is often obtainable by inclusion of a few polynomial terms in 
the regression equation, thus obviating the need for stratification. The regression 
method of adjustment should generally work well unless disease incidence o r  the 
exposure to other risk factors depends in a complicated, non-linear way on the nuisance 
variables. 

Table 6.11 Estimate of log relative risk for each alcohol and tobacco category according to the 
degree of adjustment for age: Ille-et-Vilaine oesophageal cancer study 

Risk category Type of analysis 
Unadjusted Polynomial adjustment for age group Stratification in 

Linear Quadratic Cubic Quartic six age groups 

Tobacco 
(glday) 
0-9 0.0 0.0 0.0 0.0 0.0 0.0 
10-19 0.39 0.46 0.44 0.43 0.43 0.44 
20-29 0.43 0.55 0.51 0.50 0.50 0.51 
30+ 0.99 1.52 1.63 1.63 1.64 1.64 

Alcohol 
(glday) 
0-39 0.0 0.0 0.0 0.0 0.0 0.0 
40-79 1.23 1.53 1.44 1.44 1.44 1.44 
80-1 19 2.00 2.17 1.99 2.00 1.99 1.98 
120+ 3.1 8 3.60 3.57 3.58 3.59 3.60 

Goodness-of-fit 
statistic G 208.8 101.9 84.6 84.0 83.8 82.3 

Degrees of 
freedom 8 1 80 79 78 77 76 



LOGISTIC REGRESSION FOR LARGE STRATA 227 

6.9 Analysis of continuous data 

The full power of the regression approach to case-control studies is obtained when 
continuous risk variables are analysed in the original form in which they were recorded, 
rather than by grouping into intervals whose endpoints are ofien arbitrarily chosen. 
This permits the incorporation of many more variables than would be possible using 
grouped data, their joint effects being summarized by a relatively small number of 
parameters. Of course such an increase in power and flexibility is not without associated 
costs. Perhaps the most serious are potential errors in the estimated relative risks 
arising from a rnis-specification of the model. Careful exploration of the adequacy of 
the postulated relationships is essential to avoid over-interpretation of the data. 
Transformations and interaction terms should be used where required to improve the fit. 

Another cost associated with the use of continuous risk variables is monetary. Since 
individual data records for each subject must be processed repeatedly during the 
iterative fitting process, large amounts of computer time can be required to analyse a 
comprehensive series of models. With the llle-et-Vilaine study, for example, only 88 
data records were required for the grouped data analyses of 5 6.6 and 6.7. All 975 
records, one for each subject, were needed for the continuous analysis, and computer 
costs for fitting equivalent models were 5-10 times higher. Of course additional informa- 
tion is contained in the original, continuous data which is undoubtedly worth the price 
of extraction, especially when one considers that costs of data processing and analysis 
are only a small part of the total cost of any study. 

In the first series of continuous models fitted to the llle-et-Vilaine data we used 
quantitative variables representing alcohol and tobacco consumption as well as various 
transformations of these. "Alcohol" (ALC) was a true continuous variable in that 
it took on 163 separate values between 0 and 268 g/day (inclusive) among the 975 
study subjects. 'Tobacco" (TOB), on the other hand, had been recorded as a discrete 
variable with nine levels. For the analyses reported here quantitative values were 
assigned to each such level, as they had been earlier for the grouped data analyses: 

Coding of quantitative tobacco variable 

Level Interval Assigned value 
W a y )  (x) 

As an alternative to using ALC and TOB as linear terms in the model, transforma- 
tions of each of these were considered. A particularly appropriate transformation for 
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variables which represent dose rates of continuous exposures is the log transform. 
Postulating a log-linear relation of the form log RR(x) = a +P log(x) means that risk 
itself is proportional to a power of dose, xp, a relationship known to occur frequently 
from both human and animal studies (see 5 6.11). Since both ALC and TOB took on 
0 values it was necessary to "start" the logs by adding 1 to each before transforming 
it, in order to avoid infinities. Note that with either the original (ALC and TOB) or 
the transformed [LOG(ALC+ 1) and LOG(TOB+ I)] variables, non-consumers of 
both tobacco and alcohol are automatically assigned relative risks of 1.0. This is be- 
cause the values of all risk variables are 0 for individuals consuming no alcohol and 
no tobacco. 

Table 6.12 presents the results. The first model, which includes linear terms for each 
of alcohol and tobacco, may be compared with Model 6, Table 6.10, of the grouped 
data analysis. Agreement between the two sets of coefficients is remarkably good: 
the log relative risk is estimated to increase by 0.255 (grouped) or 0.260 (continuous) 
for every additional 10 grams of alcohol, while for 10 grams of tobacco the correspond- 
ing .figures are 0.409 and 0.405. 

In contrast to the situation with grouped data, the goodness-of-fit statistics shown 
in the fourth column of Table 6.12 should not be interpreted as chi-squares with the 
indicated degrees of freedom. Because the number of cases in each "group" is 0 or 1 
according to whether the record refers to a case or control, a direct comparison of 
observed and expected numbers is not helpful in determining the adequacy of the 
model. Instead the differences between the measures for nested models evaluate their 
relative goodness of fit, as explained in 5 6.4. 

Table 6.12 Logistic regression analysis of continuous risk variables: Ille-et-Vilaine oesophageal 
cancer study 

Model No. of DF Goodness Regression coefficients for each risk variable 
param- of fit (standardized coefficients in par en these^)^ 
etersa G ALC TOB LOG LOG ALC2 TOB' LOG2 

(ALCi1) (TOBi1)  (TOBi1) 

"Includes the six age terms ai in addition to the alcohol and tobacco parameters shown 

Both ALC and TOB are expressed in units of g/day. 
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For Model 2 of Table 6.12, the effect of alcohol consumption is expressed on a 
logarithmic rather than an arithmetic scale. In view of the marked decrease in the log 
likelihood, the log scale is clearly not appropriate for alcohol. On the other hand, the 
fit is substantially improved when the effect of tobacco is expressed in this way 
(Model 3). Addition of square terms in ALC (Model 6 ) o r  LOG(TOB+l) (Model 7) 
do not result in a statistically significant improvement over the model containing these 
two variables alone (G3 - G6 = 0.4, p = 0.5; G2 -G7 = 2.1, p = 0.15). It is of 
interest to note that not even use of both linear and quadratic terms in TOB (Model 5) 
achieves the goodness of fit produced by expressing this variable on a log scale. 

Taking ALC and LOG(TOB+l) as the basic risk variables, tests were made for 
interaction effects between these two factors, as well as between each of them and age. 
Addition of an ALCxLOG(TOB+I) interaction term to the model reduced the 
goodness-of-fit statistic very little, to 682.6 &: = 0.6, p = 0.4). Likewise, no inter- 
actions of alcohol with age &: = 1.1, p = 0.3) nor of tobacco with age &: = 0.2, 
p = 0.7) were apparent. Thus the quantitative regression analysis of the continuous 
data confirms the lack of interaction effects noted previously in our analysis of the 
grouped data. 

In summary, the changes in risk of oesophageal cancer associated with increased 
alcohol and tobacco consumption are well represented by a model in which the effects 
of the two factors combine multiplicatively. The proportional increase in risk accompany- 
ing additional quantities of alcohol and tobacco, expressed in units of g/day, is estimated 
to be 

(TOB+ 1)0-54exp(0.025 x ALC). 

Standard errors of the regression coefficients, 0.0026 for alcohol and 0.058 for tobacco, 
may be used to put approximate confidence limits about the estimates. Dividing the 
standard errors into the coefficients themselves yields the standardized values (Table 
6.12), which may be referred to tables of the normal distribution to test for the signi- 
ficance of individual terms in the regression equation. Clearly both alcohol and tobacco 
have highly significant independent effects, as has already been established using other 
methods. 

A plot of the estimated linear increase in log relative risk with alcohol (Figure 6.3) 
shows excellent agreement with the results of the qualitative analyses. Similar plots for 
tobacco are shown in Figure 6.4. Here the situation at first appears somewhat para- 
doxical. The estimated relative risks from the qualitative analysis lie entirely above 
those based on the log transform, which in turn lie above those derived from the linear 
model. The explanation for this apparently bizarre phenomenon is not hard to find. 
It is due to the arbitrary selection of 0 as a baseline value for tobacco, which constrains 
all three curves to pass through the origin of the graph. Any other value for tobacco 
could just as well have been chosen as baseline and assigned a 0 log relative risk, in 
which case the curves would all be displaced so as to pass through 0 at that point. In 
other words the origin of the scale of log-relative risk is completely arbitrary and it is 
only the shapes of the curves which have any meaning. To compare and contrast these 
shapes better, Figure 6.5 shows the same three curves except that the linear curve has 
been displaced upwards 0.96 units and the log curve up 0.48 units. The superior fit 
of the model using the log term is evident from this graph. 
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Fig. 6.5 Log relative risk of oesophageal cancer according to five levels of tobacco con- 
sumption: not constrained to pass through origin 

10 20 30 

Average tobacco consumption (g/day) 

We conclude this section with an illustration of the ability of the logistic regression 
model to investigate the simultaneous effects of a large number of continuous risk 
variables. In order to estimate the average daily amount of alcohol consumed by each 
study subject, interviewers posed separate questions regarding the pattern and frequency 
of use of wine, beer, cider, aperitifs and digestives. The last two categories included 
distilled beverage such a s  whisky (an aperitif) and brandy (a digestive). Separate 
variables representing the average daily consumption of alcohol in each form were 
available in the computer file. These had been obtained from the reported amounts 
drunk by consideration of the usual alcoholic content: 8 % by weight for wine; 3 % for 
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beer and so on. Table 6.13 shows the distribution of each of the five beverage variables 
separately for cases and controls. Note that the sums of their mean values equal the 
means for alcohol (Table 4.1), as they should since ALC is obtained as the total of 
the component variables. The contributions from wine and cider are of roughly equal 
importance and those for beer and digestives, while lesser, are certainly not negligible. 
However, since so few people in this population report that they consume more than a 
few grams per day of aperitifs, we are already aware that it may be impossible to 
evaluate aperitifs as a separate risk factor. 

Correlations among the five beverage variables, and of these with age and tobacco, 
are presented in Table 6.14 for the control population. The lack of strong correlations 
with age and tobacco inform us that these two variables are unlikely to confound the 
beverage effects to any appreciable degree. Even among the beverage variables the 
correlations are relatively weak, the strongest being between cider and digestives 
(Q = 0.31). Evidently cider drinkers tend to consume less wine, beer and aperitifs, but 
more digestives, than non-cider drinkers. 

The rationale for using the summary alcohol variable in the statistical analysis, as 
done earlier, is the belief that the alcohol content of the beverages is responsible for 
the apparent association with oesophageal cancer and not some other characteristic 
such as impurities. In order to evaluate this hypothesis we fitted a series of models in 
which five separate beverage variables were used in place of total alcohol. The results 

Table 6.13 Distribution of average daily amounts of alcohol consumption by type of beverage, for 
cases and controls: Ille-et-Vilaine study of oesophageal cancer 

Average Type of beverage 
daily Beer Cider Wine Aperitif Digestive 
amount Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls 

(9) 

Mean 9.1 5.7 30.7 15.5 34.3 17.8 1.1 1.1 9.7 4.3 
SD 22.7 13.7 37.4 21.6 37.1 21.2 2.6 2.0 15.1 8.9 

Table 6.14 Correlations between alcoholic beverage variables, tobacco and age in control popula- 
tion: Ille-et-Vilaine study of oesophageal cancer 

Age Tobacco Beer Cider Wine Aperitif Digestive 

Beer -0.18 0.20 1 .OO 
Cider 0.08 -0.10 -0.16 1 .OO 
Wine -0.04 0.16 0.07 -0.27 1 .OO 
Aperitif -0.09 0.1 5 0.09 -0.1 1 0.21 1 .OO 
Digestive 0.1 3 0.04 -0.03 0.31 -0.02 0.06 1 .OO 
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Table 6.15 Logistic regression analysis of continuous beverage variables: Ille-et-Vilaine oesophageal 
cancer study 

Model No. of DF Goodness Regression coefficients for each risk variable 
para- of fit (standardized coefficients in parentheses) 
metersa G LOG ALC Beer Cider Wine Aperitif Digestive 

(TOB+1) 

a Includes six age parameters in addition to those shown 

are shown in Table 6.15, of which the first line is simply a repeat of Model 3, Table 6.12 
Model 2 shows that beer, cider and wine each have highly significant independent 
effects on the risk of oesophageal cancer. It is remarkable how close all three coeffi- 
cients are to the 0.0252 estimated for total alcohol, which lends support to the idea 
that alcohol per se is responsible for the effect. On the other hand, the coefficients for 
the two distilled beverage categories are not significantly different from zero, and that 
for aperitifs is even negative. 

Before jumping to the conclusion that the aperitifs and digestives have a lesser effect, 
or even no effect in proportion to their alcohol content, we should consider the data 
presented in Table 6.13. Since fewer people in the population consume large amounts 
of aperitifs or digestives there is less information available for evaluating their role, a fact 
which is reflected in higher standard errors for their coefficients in comparison with the 
other variables. The upper 95 % confidence intervals for the log relative risks are 0.02 16 
for aperitifs and 0.0288 for digestives, and the latter at least is quite consistent with the 
range of values for beer, cider and wine. To test formally the hypothesis that the 
coefficients for all five beverage variables are equal we have merely to compare the 
goodness-of-fit statistics for Models 1 and 2. Since Model 1 uses the sum of the beverage 
variables as a single regression variable (ALC), it constrains the coefficients to be 
equal and is consequently contained in Model 2. The value of the test statistic is GI-G2 
= 8.9 which, when referred to tables of xi, gives p = 0.06, a result bordering on statis- 
tical significance. 
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To go one step further we can partition the value into single degree of freedom 
components by considering two intermediate models: lA, in which the coefficients for 
beer, cider and wine only were assumed equal; and lB, in which all coefficients were 
assumed equal except for aperitifs. These yield goodness-of-fit statistics of GIA = 
678.9 and GIB = 675.3. Hence we may write G1 - G2 = (GI - GIA) + (GIA - GIB) + 
(GI,-G2), i.e., 8.9 = 4.3 + 3.6 + 1.0, partitioning the statistic into two x:'s 
and one ~ 2 .  The first, GI-GIA, tests whether aperitifs have an effect different from 
the average of the remaining beverages (p = 0.04); the second, GIA - GIB, whether 
digestives differ from the remaining three (p = 0.06); and the last, GIB-G2, tests for 
differences among the coefficients of beer, cider and wine (p = 0.60). But, since the 
particular partitioning was suggested by the data rather than from a priori considera- 
tions, we are faced with a multiple comparisons dilemma and should discount the observed 
p values. 

In the last analysis the situation is somewhat ambiguous. While digestives appear to 
have lesser effects than the other variables, and aperitifs no effect at all, we cannot rule 
out at conventional levels of statistical significance the possibility that all beverages 
contribute to the risk in proportion to their alcohol content. 

6.10 Interpretation of regression coefficients 

The preceding example considered a model with 12 independent parameters, each 
of which had a reasonably clear and straightforward interpretation. Six of the para- 
meters, the a's attached to the six'age strata, were included only to account for possible 
confounding effects of age. Since age effects were not of special interest, their estimates 
were not even presented in Table 6.15. However, the controls were obtained as a 
reasonably random sample of the adult male population so that differences between 
the a's could be interpreted in terms of log relative risks for the corresponding age 
groups. (From the a coefficients in Table 6.2, for example, it appears that risk does 
not change much with age beyond 55 years.) On the other hand, had the sample been 
stratified by design on the basis of age, no meaning at all could be attached to the a 
parameters since the effects of age on risk would then be completely confounded with 
the sampling fractions for different ages (§ 6.3). 

While there is generally little interest in the actual values taken on by the a estimates, 
apart from knowing that the variables they represent have been "accounted for", this 
is hardly true for the B's. These we have repeatedly interpreted as indicating the change 
in risk associated with changes in the corresponding regression variables. It is a little 
disconcerting, therefore, to realize that the estimated regression coefficients may change 
drastically according to what other variables are included in the model. Such changes 
are to be anticipated whenever there is collinearity among the regression variables, 
meaning simply that their,values tend to be correlated in the sampled data. Mosteller 
and Tukey (1977) provide a good discussion of this problem, which is fundamental to 
all regression models. Here we consider a few of the main issues, mostly by means of 
example. 

In the Ille-et-Vilaine data there was a remarkable lack of collinearity among age and 
the levels of consumption of tobacco and total alcohol (Table 4.2). Consequently the 
estimated relative risks associated with each of these factors were little affected by 
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which others were accounted for in the equation. For example, the (age-adjusted) 
relative risks for the four alcohol categories were 1.0, 4.2, 7.4 and 39.7 without inclu- 
sion of tobacco in the analysis, and 1.0,4.2, 7.2 and 36.6 with such inc,lusion (Table 6.6). 

A better illustration of the effects of collinearity is provided by the analyses of the 
contributions of individual alcoholic beverages (Table 6.15). We note first that neither 
the coefficients nor the standard errors of beer, cider and wine are much affected by 
the presence or absence of aperitif or digestive in the equation (Models 2 4 ) ,  provided 
all three of .the alcoholic beverages with significant effects are included. One would 
anticipate such a result if either (1) there was no correlation between the beverage 
variables, or (2) aperitif and digestive had no effect on risk beyond that explained by 
such a correlation (§ 3.4). However, when any one of beer, cider or wine is used as the 
only alcohol variable (Models 5-7), its coefficient and degree of statistical significance 
are noticeably reduced. This reflects the fact that cider is negatively correlated with 
both wine (Q = -0.27) and beer (Q = -0.16). Since an individual consuming a large 
amount of cider tends to consume less than the average amount of'the other beverages, 
his apparent cancer risk relative to someone who drinks no cider is reduced unless the 
effects of these other beverage variables are accounted for by inclusion in the equation. 

A different type of change occurs when digestive is used as the only alcohol variable 
(Model 9). Here the coefficient increases markedly from its value when all alcoholic 
beverage variables are included, and attains an apparently high level of statistical 
significance. The explanation now is the positive correlation of digestive with cider 
(Q = 0.31), such that when cider is not included in the equation, digestive serves, at least 
partially, as a proxy for its effects. After accounting for the effects of cider the coeffi- 
cient for digestive falls to a non-significant level. On the other hand, since the correla- 
tions of digestive with beer and wine are essentially zero (Table 6.14), one would not 
expect the digestive coefficient to be much altered by the presence of these latter two 
variables. 

Collinearity is bound to arise when both a variable and its square are included in the 
same equation. Compare, for example, Model 3 with Model 7 in Table 6.12. Introduc- 
tion of the square term in LOG(T0B + 1) results in an almost doubling of the coeffi- 
cient for the linear term, from 0.539 to 0.965. At the same time the standardized value 
decreases, from 9.33 to 3.05, indicating a roughly sixfold increase in the standard error. 
This is true in spite of the fact that the coefficient of the added variable, L O G 2 ( ~ O ~ +  I) ,  
is not statistically significant at all. Indeed, if we were to evaluate the significance of 
the tobacco effect only on the basis of the standardized coefficients in the quadratic 
model, we would be sorely misled. The significance of the trend in risk with increased 
tobacco consumption is well expressed by the single linear term in Model 3; and the 
large standard errors for LOG(TOB+ 1) and LOG"TOB+ 1) in Model 7 tell us not 
that these variables are unimportant, but rather that there are many different sets of 
coefficients for them which express more or less equally well the relationship found in 
the data. This example illustrates that there is little point in trying to interpret individual 
coefficients and standard errors in a polynomial regression. A plot of the fitted relation- 
ship over the range of the regression variables conveys a much more accurate impres- 
sion of what the equation means. 

A similar type of artificial association can arise between one variable representing 
the main effects of a factor and others representing its interactions, at least if care is not 
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taken in how these interactions are coded. For example, in order to investigate the 
interaction between age and alcohol we added to Model 3 of Table 6.12 a variable 
ALC x AGEGRP, where AGEGRP took on the values 1 to 6 of the age group. Al- 
though this improved the goodness of fit only slightly, from G = 683.2 to G = 682.1, 
and the interaction terms had a non-significant regression coefficient, its inclusion in 
the equation markedly affected the coefficient of ALC. The estimated regression 
equation (ignoring age effects) changed from 

0.0252 ALC + 0.539 LOG(TOB+ 1) 
(9.66) (9.33) 

0.0348ALC + 0.536LOG(TOB+ 1) - 0.00246ALC x AGEGRP, 
(3.5 8) (5.76) (-1.04) 

and by comparing the standardized coefficients (shown in parentheses), we see that 
the standard error of ALC increased from 0.00261 to 0.00972. Again the explanation 
is the high degree of collinearity between ALC and ALCx AGEGRP, which can be 
substantially reduced by subtracting from AGEGRP its modal value of 4 before multi- 
plying. This leads to an equation 

which represents exactly the same relationship as the previous one. However, because 
the main effect and interaction variables have been coded to reduce the correlation 
between them, the changes in the coefficient and standard error of the main effect 
variable are much reduced. Routine coding of interaction or cross-product variables 
by subtracting mean or modal values from their component parts before multiplying is 
recommended to avoid the anomalies provoked by such artificial collinearity. 

A less artificial example of high correlation between two regression variables occurs 
when both are measuring the same fundamental quantity in a somewhat imperfect way. 
In attempting to relate arsenic exposure to cancer risk, for example, we might determine 
the arsenic concentration of both fingernails and hair of cases and controls, and use 
each as an indicator of chronic exposure. If these two measures turned out to be highly 
correlated, as they would if both were good indicators of long-term exposure, it would 
make little sense to attempt to evaluate their separate effects on risk by including them 
both in the regression equation. Instead we would take an average or composite of the 
two values as a single measure of arsenic exposure, and use this along with variables 
representing other risk factors. 

Of course in some problems the collinearity between regression variables will reflect 
a real association between the corresponding risk factors in the population. While regres- 
sion analysis is the most powerful tool available for separating out the independent 
associations with risk, unambiguous answers are simply not possible when collinearity 
is high. In some cases a judgement as to which is the proper variable, or which risk 
factor is more likely to play a causal role, will dictate which variables to leave in the 
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equation. If such a judgement cannot be made, one must simply admit that precise 
identification of the factor responsible for the effect is impossible. To quote from 
Mosteller and Tukey (1977): "We must be prepared for one variable to serve as a 
proxy for another and worry about the possible consequences, in particular, whether the 
proxy's coefficient siphons off some of the coefficient we would like to have on the 
proper variable, or whether a variable serves well only because it is a proxy. In either 
case, interpretation of the regression coefficient requires very considerable care." 
Much of the discussion in 5 3.4 on whether or not one should adjust for apparent con- 
founding variables is relevant here. 

6.11 Transforming continuous risk variables 

One of the more perplexing issues facing the analyst who uses quantitative regres- 
sion methods is the choice of appropriate scales on which to express continuous risk 
variables. He must decide between original measurements, as recorded by machine or 
interviewer, and such transforms as logs, square roots, reciprocals, or any number of 
other possibilities. Since the object is to achieve a near-linear relationship between the 
quantitative regression variable and log risk, it usually helps to make some plots of 
relative risks for grouped data as we did in Figures 6.1 to 6.4. If the data are sufficiently 
extensive, so that a regular pattern emerges, one can at least rule out some of the 
possible choices on the grounds of lack of fit. For example it was fairly clear from both 
graphical and quantitative analysis of the Ille-et-Vilaine data that the effects of alcohol 
were best expressed on the original linear scale, while for tobacco a log transform was 
required. 

However epidemiological data are rarely sufficient to enable fine distinctions to be 
made between rather similar functional forms for the dose-response relationship on 
statistical grounds alone. Accurate measurements of human exposure to potential risk 
factors are not often available. Hence recourse is made to animal experimentation for 
elucidating fundamental aspects of the carcinogenic process. Such experiments allow 
one to control fairly strictly the amounts of carcinogen administered to homogenous 
subgroups of animals, and data derived from them are more amenable to precise quanti- 
tative analysis than are data from observational studies of human populations. 

Example: One animal model which has been used to suggest relationships for human epithelial tumours 
is that of skin-painting experiments in mice. In an experiment reported by Lee and O'Neill (1971), mice 
were randomly assigned to  four dosage groups each containing 300 animals. Starting at about three weeks 
of age, benzo[alpyrene (BP) was painted on  their shaved backs in the following dosages: 

Group 1 6 p g  BP/week 
Group 2 1 2 p g  BP/week 
Group 3 24 p g  BP/week 
Group 4 4 8 p g  BPlweek 

The animals were examined regularly, and the week of tumour occurrence was taken to be the first week 
that a skin tumour was observed. Age-specific incidence rates of skin tumours were estimated for each 
dosage group according to  the methods of § 2.1. The  number of animals developing a skin tumour for the 
first time during any one week was divided by the number still alive and free of skin tumours a t  the middle 
of that week. Since few new tumours would arise in any given week, these age-specific estimates tended 
t o  be highly unstable. Consequently, the four dosage groups were compared in terms of the age-specific 
cumulative incidence rates (5 2.3). 
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Figure 6.6 shows log-log plots of cumulative incidence against week. These are well described by four 
parallel straight lines, with distances between the lines for successive dosages roughly equal. In fact the 
cumulative incidence A(t;  x) of skin tumours which occur by week t, among animals receiving BP at  dose 
x, is well described by the equation 

log A(t;x) = -17.6 + 1.78 log(x) + 2.95 log(t-18), 

A (t;x) = C~' .~ ' ( t - l  8)2.95, 

where C is a constant. It follows that the ratios of cumulative incidence rates for successive dosage groups 
A(t;2x) +- A(t;x) and hence the ratios of the age-specific rates A(t;2x) +- A(t;x), are equal to  21.78 = 3.41. 
Thus, within the range of dosage and ages of animals considered in this experiment, the effect of BP on 
incidence can be  described very simply: a doubling of dose will lead to an approximate 3.4-fold increase 
in the age-specific skin tumour incidence rates. 

The  same investigators have shown in later work (Peto e t  al., 1975) that the relevant time variable is 
in fact not the age of the animal, but rather the duration of exposure to BP. They also point out  that, 
since the powers of  dose x and time t in the fitted formula for cumulative incidence are roughly 2 and 3,  

Fig. 6.6 Estimated cumulative incidence rates of skin tumours occurring among female 
albino mice given weekly paintings of benzo[a]pyrene at four dosages, with 
parallel regression lines fitted by maximum likelihood (from Lee & O'Neill, 
1971) 

2 3 4 
log, (t-18) 
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respectively, the data are consistent with a multi-stage theory for the origin of cancer wherein two of the 
three stages are affected by the carcinogen (Peto, 1977). Recent data for cigarette smoking and lung 
cancer in the British doctor study likewise suggest that incidence is proportional to the square of the 
dose rate (Doll & Peto, 1978). 

If the linear logistic model were to be used to represent the data in the above ex- 
periment, this would take the form 

for the probability that an animal treated with x units of BP who is still at risk at age 
ti develops a skin tumour within that week. The ai parameters in turn could be modelled 
ai = a + y log(ti) as a linear function of log age. There is no problem here with the 
fact that .the logarithm of a zero dose is - and thus the estimated probability of 
tumour development 0, since skin tumours do not appear spontaneously on the backs 
of mice without treatment. For other studies, especially with humans, one could sub- 
stitute a dose metameter of the form z = log(x+ xo), where x was the measured dose 
while xo represented a small background dose which was presumably responsible for 
any spontaneous cases. Although in principle it is possible to estimate xo from the data 
by maximum likelihood, this is rarely done. Special programmes would be required for 
such estimation since xo does not enter the regression equation in the same linear 
fashion as the other parameters. Furthermore, since different combinations of xo and 
/? can give virtually identical fits to the data, the standard errors and covariances for the 
jointly estimated parameters tend to be large. Hence the best practice may simply be to 
assign xo some small value on the basis of a priori considerations. With the Ille-et- 
Vilaine tobacco data, we set xo = 1 and noticed that the resulting curve seemed to fit 
the observed data reasonably well (Figure 6.5). 

6.12 Studies of interaction in a series of 2 x 2 tables 

One of the principal advantages of using the logistic regression model is that it 
encourages quantitative description of how the changes in risk associated with one 
factor are modified by the interaction effects of other risk or nuisance variables. Since 
the Ille-et-Vilaine data are notably lacking in such interactions, they cannot be used 
to illustrate this important feature of statistical modelling. Hence in this section we 
analyse another set of published data, which happen to be in the form of a series of 
2 x 2 tables, for which strong interaction effects are present. 

Presence of interaction effects in a. series of 2 x 2 tables means that the odds ratios 
depend systematically on the variables used for strata formation. Such dependence 
may have important implications for the nature of the disease process. The data we 
shall consider are those of Stewart and Kneale (1970) who hypothesized that the 
distribution of age at diagnosis for childhood cancers caused by obstetric X-rays was 
more concentrated or "peaked" than the age distribution of idiopathic childhood 
cancers. If this were so the risk ratio for irradiated versus non-irradiated children would 
also show a peak when plotted against age. The effect would presumably occur because 
the time of exposure for the radiogenic cases is limited to the period of gestation, while 
for other cancers it could vary over a broader age span. 
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Such variations are detected by the addition of interaction terms to the logistic 
model. In 5 6.5 we considered a model in which the log relative risk was assumed to 
change linearly over the six age strata. More generally one might define several dif- 
ferent regression variables, including tra.nsformations and cross-product terms, from 
factors such as age and time which are used to define strata. Let us denote by zil the 
value of the lth variable for the ith stratum (i = 1, .. ., I; 1 = 1, ..., L). Then the inter- 
action model may be written 

where as usual Pi(x) denotes the disease probability in the ith stratum for an exposed 
(x = 1) or unexposed (x = 0) individual. A consequence of this formulation is that the 
log relative risk for the ith stratum is expressed 

pi(1 )Qi(o) L log 7# = log 
pi(o)Qi(l) 

= P + I= 2 1 ~lzil 

as a linear function of the regression variables z, with the "constant" term P denoting 
the baseline log relative risk for the group having covariate values z = 0. It is best to 
code the covariates in such a way that z = 0 corresponds to some "typical" individual. 

Summary data from the Oxford Childhood Cancer Survey and associated studies 
reported by Kneale (1971) are presented in Appendix 11. Cases were ascertained as 
all children under ten years of age in England and Wales who died of cancer (leukaemia 
or solid tumours) during the period 1954-65. For each of these a neighbourhood 
control of the same age was selected who was alive and well at the time the case died. 
Only "traced" pairs, for whom both case and control mothers could be found and 
interviewed, were analysed. The published data ignore the exact pairing but do preserve 
the stratification by age and year of birth. 

Exposure in this example is simply a question of whether or  not the study subjects 
received in utero irradiation, as reported by the mother. The stratification variables 
were age at death, from 0 to 9 years, and year of birth, from 1944 to 1964. Because of 
the limited period of case ascertainment, not all 210 possible combinations of these 
factors appear. For example, among childhood cancer patients born in 1944, only those 
who died at age 9 are represented. A total of 120 such strata were available. 

In order to estimate the overall relative risk of obstetric radiation, and to determine 
whether, and if so how, it varied with age and year, we fitted several versions of the 
model (6.25). Five different regression variables were used: zl = year of birth, coded 
zl = -10 for 1944, . . ., z1 = 10 for 1964; z, = z: -22; z, = age at death, coded -9 for 
age 0, -7 for age 1, . .., 9 for age 9; ~q = z i  -33; and z, = z, x z,. Different subsets 
of these were entered into the regression equation so as to detect particular kinds of 
trends and patterns in the relative risk. 

Results of the analysis are shown in Table 6.16. Degrees of freedom (DF) for each 
model were obtained in the usual manner by subtracting the number of parameters, 
in this case the 120 a's plus additional P and y terms, from the number of binomial 
observations, namely 240. The first model, which includes only the a's, assumes that 
the relative risk is unity in each stratum. In view of the large goodness-of-fit statistics, 
this supposition is clearly untenable. The second model specifies a constant relative 



Table 6.16 Results of fitting several logistic regression models with interactions: Oxford study of obstetric radiation and childhood cancera 
- 

Mo- No. of DF Goodness-of-fit Regression coefficients 2 S.E. 
del para- statistics Log RR Interactions with 

meters G 6 YRb YR2 - 22' AGEd AGEZ - 33' YR x AGE 

'From Breslow (1976); data from Kneale (1971) 
YR is coded as follows: 1944 = -10, 1945 = -9, . . ., 1963 = 9. 1964 = 10. 
Constants-subtracted from square of AGE and YR so that variables sum to zero over tables 

dAGE is coded as follows: 9 years = 9, 8 years = 7,7 years = 5, . . ., 1 year = -7,0 year = -9. 
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risk for obstetric radiation, estimated as $ = exp(0.5102) = 1.67. Since the chi-square 
statistics for it are close to their mean values (DF), they might be taken as evidence 
of a good fit. However the introduction of a linear interaction term in year of birth 
(Model 3) results in a significant improvement (G2 - G3 = 124.29 - 1 16.96 = 7.3, 
p = 0.007). Hence there is reasonably strong evidence for a decrease in relative risk 
with year of birth. Additional improvement in fit occurs when a quadratic term in year 
is added to the model, which would indicate a degree of curvature in the regression 
line. However it is of lesser statistical significance (G3 - G4 = 5.39, p = 0.02). Figure 6.7 
shows age-adjusted estimates of the log-relative risk for each year, together with linear 
and quadratic regression lines as fitted by Models 3 and 4. This illustrates graphically 
the nature of the decline in the radiation effect over time. 

Absolutely no improvements in fit accompanied the addition to the model of either 
linear or quadratic terms in age: compare Models 3 versus 5 and 4 versus 6. The 
quadratic term would be expected to be particularly sensitive to a peak in relative risk 
as a function of age. The lack of evidence for any such peak argues against the hypo- 
thesis that the age distributions for radiogenic and idiopathic cancers are different. 
Improvements in radiological technology probably account for the declining effect with 
year of birth (Bithel & Stewart, 1975). 

Fig. 6.7 Age-adjusted estimates of log relative risk (odds ratio) for obstetric radiation 
each with approximate 80 percent confidence limits and both linear and 
quadratic regression lines (from Breslow, 1976; data from Kneale, 1971) 

Year of birth 
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Table 6.17 Comparison of the log relative risk and its interaction with year of birth, depending on 
the degree of polynomial adjustment for age and year: Oxford study of obstetric radiation and child- 
hood cancera 

Degree of No. of D F Goodness of fit Estimates of log-relative risk and interaction 
polynomial parameters 6 f l ?  S.E. p, 2 S.E. 
in age and year 

a From Breslow and Powers (1978); data from Kneale (1971) 
From Model 3, Table 6.16 

As shown in 3 6.8, an alternative to a stratified analysis is simply to model the effects 
of the nuisance factors on disease incidence, replacing the ai  in the logistic model by 
quantitative terms. In order to compare the results from such an analysis with those just 
obtained, we considered analogs of Model 3 in which the log-relative risk was assumed 
to decline linearly with year of birth. Polynomials of increasing degree in age and year 
were used to give different degrees of adjustment for the confounding effects of these 
factors. Thus the models fitted were of the form 

a o  + px + ylxzil (unadjusted) 

logit Pi(x) = a. + alzil + a3zi3 + px + ylxzil (linear) 
6 

a. + Talzil + px + ylxzil (quadratic) 

and so on, using third, fourth and fifth degree polynomials. The results in Table 6.17 
show that increasing the degree of polynomial adjustment leads to better agreement 
with results of the stratified analysis (Breslow & Powers, 1978). It is somewhat sur- 
prising that there is so little improvement in the fit, and so little change in the estimated 
relative risks, as more terms of age and year are included. A partial explanation is, of 
course, that the sample was deliberately stratified to ensure that the numbers of cases 
and controls in each age/year stratum were equal. Thus one might not expect these 
two factors to contribute significantly to a model designed to discriminate cases from 
controls. However, as discussed in 5 3.4, this identity of the marginal distributions of 
age and year for cases and controls is not sufficient to justify ignoring these factors in 
the analysis. In general, variables used for stratification or matching in the design stage 
must also be accounted for in the analysis in order to obtain unbiased estimates of the 
relative risk. An example which better illustrates this point is presented in 5 7.6. If 
strata are formed at the time of analysis, rather than by design, there will be imbalances 
in the numbers of cases and controls within strata, and the differences between the 
stratified and unadjusted analyses will be more obvious than they are in Table 6.17. 



LOGISTIC REGRESSION FOR LARGE STRATA 

REFERENCES 

Anderson, J. A. (1972) Separate sample logistic discrimination. Bwmetrika, 59, 19-35 
Armitage, P. (1975) Statistical Methods in Medical Research, Oxford, Blackwell 
Baker, R.J. & Nelder, J.A. (1978) The GLIM System. Release 3, Oxford, Numerical 

Algorithms Group 
Bishop, Y. M.M., Fienberg, S. E. & Holland, P. W. (1975) Discrete Multivariate Analysis: 

Theory and Practice, Cambridge, Mass., MIT Press 
Bithel, J. & Stewart, A. (1975) Pre-natal irradiation and childhood malignancy: a review 

of British data from the Oxford Survey. Br. J. Cancer, 31, 271-287 
Breslow, N. E. (1975) Analysis of survival data under the proportional hazards model. 

Rev. Int. Stat., 43, 45-58 
Breslow, N. E. (1976) Regression analysis of the log odds ratio: a method for retrospective 

studies. Biometries, 32, 4 0 9 4  16 
Breslow, N. E. (1978) The proportional hazards model: applications in epidemiology. 

Comm. Stat.-Theor. Meth., A7, 3 15-332 
Breslow, N. E., Day, N. E., Halvorsen, K.T., Prentice, R.L. & Sabai, C. (1978) Estima- 

tion of multiple relative risk functions in matched case-control studies. Am. J. Epi- 
demiol., 108, 299-307 

Breslow, N .  E. & Powers, W. (1978) Are there two logistic regressions for retrospective 
studies? Biometrics, 34, 100-105 

Cornfield, J. (1962) Joint dependence of the risk of coronary heart disease on serum 
cholesterol and systolic blood pressure: a discriminant function analysis. Fed. Proc., 
21, 58-61 

Cox, D. R. (1 970) The Analysis of Binary Data, London, Methuen 
Cox, D.R. (1972) Regression models and life tables (with discussion). J. R. stat. 

SOC. B, 34, 187-220 
Cox, D. R. & Hinkley, D. V. (1 974) Theoretical Statistics, London, Chapman & Hall 
Day, N. E. & Byar, D. P. (1979) Testing hypotheses in case-control studies - equivalence 

of Mantel-Haenszel statistics and logit score tests. Biometries, 35, 623-630 
Day, N. E. & Kerridge, D.F. (1967) A general maximum likelihood discriminant. Bio- 

metries, 23, 3 13-323 
Doll, R. & Peto, R. (1978) Cigarette smoking and bronchial carcinoma: dose and time 

relationships among regular smokers and lifelong non-smokers. J. Epidemiol. Com- 
munity Health, 32, 303-3 13 

Efron, B. (1975) The efficiency of logistic regression compared to normal theory 
discriminant analysis. J. Am. stat. Assoc., 70, 892-898 

Farewell, V.T. (1979) Some results on the estimation of logistic models based on 
retrospective data. Biometrika, 66, 27-32 

Fienberg, S. E. (1977) The Analysis of Cross-Classified Data, Cambridge, Mass., MIT 
Press 

Haberman, S.J. (1974) The Analysis of Frequency Data, Chicago, University of Chi- 
cago Press 

Halperin, M., Blackwelder, W.C. & Verter, J. I. (1971) Estimation of the multivariate 
logistic risk function: a comparison of the discriminant function and maximum likeli- 
hood approaches. J.  chron. Dis., 24, 125-158 



244 BRESLOW & DAY 

Kneale, G. W. (1971) Problems arising in estimating from retrospective survey data 
the latent period of juvenile cancers initiated by obstetric radiography. Biometrics, 27, 
563-590 

Lee, P. & O'Neill, J. (1971) The effect of both time and dose on tumour incidence 
rate in benzopyrene skin painting experiments. Br. J. Cancer, 25, 759-770 

Lininger, L., Gail, M., Green, S. & Byar, D. (1979) Comparison of four tests for 
equality of survival curves in the presence of stratification and censoring. Biometrika, 
63, 419-428 

Mantel, N. (1973) Synthetic retrospective studies and related topics. Biometrics, 29, 
479-486 

Mosteller, F .  & Tukey, J.W. (1977) Data Analysis and Regression: a Second Course 
in Statistics, Reading, Mass., Addison & Wesley 

Nelder, J.A. (1977) A reformulation of linear models. J. R. stat. Soc. A,  140, 48-77 
Peto, R. (1977) Epidemiology, multistage models and short-term mutagenicity tests. 

In: Hiatt, H. H., Watson, J. D. & Winsten, J. A., eds. Origins of Human Cancer, Cold 
Spring Harbor, NY, Cold Spring Harbor Publications, Vol. 4, pp. 1403-1421 

Peto, R., Roe, F., Lee, P., Levy, L. & Clark, J. (1975) Cancer and ageing in mice and 
men. Br. J. Cancer, 32, 4 11-426 

Prentice, R.L. & Breslow, N.E. (1978) Retrospective studies and failure time models. 
Biometrika, 65, 153-1 58 

Prentice, R.L. & Pyke, R. (1979) Logistic disease incidence models and case-control 
studies. Biometrika, 66, 403-4 1 1 

Press, S. J. & Wilson, S. (1978) Choosing between logistic regression and discriminant 
analysis. J. Am. stat. Assoc., 70, 699-705 

Rao, C. R. (1965) Linear Statistical Inference and its Applications, New York, Wiley 
Seigel, D. G. & Greenhouse, S. W. (1973) Multiple relative risk functions in case-control 

studies. Am. J. Epidemiol., 97, 324-331 
Stewart, A. & Kneale, G.W. (1970) Age-distribution of cancers caused by obstetric 

x-rays and their relevance to cancer latent periods. Lancet, ii, 4-8 
Thomson, W.A., Jr (1977) On the treatment of grouped observations in life studies 

Biometrics, 33, 463-470 
Truett, J., Cornfield, J. & Kannel, W. (1967) A multivariate analysis of the risk of 

coronary heart disease in Framingham. J. chron. Dk.,  20, 51 1-524 
Vitaliano, P.O. (1978) The use of logistic regression for modelling risk factors: with 

application to non-melanoma skin cancer. Am. J. Epidemiol., 108, 402-414 
Walker, S.H. & Duncan, D.B. (1967) Estimation of the probability of an event as a 

function of several independent variables. Biometrika, 54, 167-179 

LIST OF SYMBOLS - CHAPTER 6 (in order of appearance) 

logit(p) P the logistic transform of a proportion p; log(-) 
1-P 

x risk variable 
V odds ratio 
P log odds ratio 
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Qij 
Wij 

disease probability for exposed 
disease probability for unexposed 
disease probability for exposure to an amount x 
relative risk of disease associated with exposure to an amount x 
log odds for disease among unexposed 
disease probability associated with exposure to level i of factor A and 
level j of factor B 
1 -P, 
odds ratio associated with exposure to level i of factor A and level j of 
factor B (Woo = 1) 
relative risk of exposure to factor A 
relative risk of exposure to factor B 
relative risk of exposure to both factor A and factor B 
log odds ratio associated with exposure to factor A 
log odds ratio associated with exposure to factor B 
(multiplicative) interaction parameter; log of the ratio of the relative 
risk for combined exposure divided by the product of relative risks for 
individual exposures 
disease probability associated with exposure to an amount xl of factor A 
and x2 of factor B 
coefficient of variable xk in logistic regression equation; log relative risk 
associated with unit increase in xk 
coefficient of cross product variable xkxl in logistic regression equation; 
interaction parameter 
disease probability associated with exposure to levels i of A, j of B and 
k o f C  
1 -Pijk 
relative risk associated with exposures to levels i of A, j of B and k of C 
coefficient of variable xixjxk in logistic regression equation; second order 
interaction parameter 
probability of one event given the occurrence of another 
subscript indicating one of I strata 
vector of risk variables associated with an individual 
disease probability associated with a vector x of risk variables in the ith 
stratum of the population 
binary response variable; y = 1 for diseased, y = 0 for disease-free 
sampling fraction for cases; probability that a diseased person is included 
in the study as a case 
sampling fraction for controls; probability that a disease-free person is 
included in the study as a control 
indicator sampling variable: z = 1 for inclusion in the study, z = 0 other- 
wise 
covariance matrix for the distribution of risk variables, assumed common 
for cases and controls 
expected values of risk variables among cases 
expected values of risk variables among controls 
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- 

XI sample mean of risk variables x among cases 
- 
xo sample mean of risk variables x among controls 

s; covariance matrix of risk variables pooled from separate samples of 
cases and controls 

1 denotes a partition of the integers from 1 to n into two groups, one of 
size nl and the other of size no = n-nl; e.g., if nl = 2 and no = 3 a 
possible partition is 1, = 3,1, = 4, 1, = 1, = 2,1, = 5 or 1 = (3,4,1,2,5) 

Xj vector of risk variables for jth study subject 
G goodness-of-fit statistic based on the log likelihood 
S efficient score; vector first of first derivatives of the log likelihood function 
I information matrix; matrix of negatives of second partial derivatives of 

the log likelihood function 
Z standardized regression coefficient (equivalent normal deviate) 
(3 chi-square goodness-of-fit statistic for grouped data, based on differences 

between observed and expected values 
(N.B. Subscripts on the above quantities G, G, S, I, and Z denote their values under 
different models) 
0 observed number of cases (or controls) in a particular cell with grouped 

data 
E expected number of cases (or controls) in a cell, predicted by fitted model 
Q correlation coefficient between two variables 
A (t;x) cumulative incidence of skin tumours by week t amonghnimals continu- 

ously exposed to BP at a dose rate x 
1 (t;x) age-specific incidence of skin tumours at week t among animals continu- 

ously exposed to BP at a dose rate x 
L number of regression variables (covariates) associated with each of a 

series of 2 x 2 tables 
1 lth of L covariates associated with a series of 2 x 2 tables 
Zil value of the lth covariate for the ith of a series of 2 x 2 tables ,. when placed over another symbol this indicates an estimate of a popula- 

tion parameter calculated from the sampled data; or  a fitted cell fre- 
quency predicted from a model; e.g., B is an estimate of @ 
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CHAPTER VII 

CONDITIONAL LOGISTIC REGRESSION 
FOR MATCHED SETS 

One of the methods for estimating the relative risk parameters P in the stratified 
logistic regression model was conditioning (5 6.3). We supposed that for a given 
stratum composed of nl cases and no controls we knew the unordered values xl, . .., x, 
of the exposures for the n = n1 + no subjects, but did not know which values were asso- 
ciated with the cases and which with the controls. The conditional probability of the 
observed data was calculated (6.15) to be a product of terms of the form 

where I ranged over the choices of nl integers from among the set {1,2, . .., n). 

With a single binary exposure variable x, coded x = 1 for exposed and x = 0 for un- 
exposed, knowing the unordered x's meant knowing the total number exposed in the 
stratum, and thus knowing all the marginal totals in the corresponding 2 x 2 table. The 
complete data were then determined by the number of exposed cases. In these circum- 
stances the conditional probability (7.1) is proportional to the hypergeometric distribu- 
tion (4.2), used as a starting point for exact statistical inference about the odds ratio 
in a 2 x 2 table. 

The conditional likelihood offers important conceptual advantages as a basis for 
statistical analysis of the results of a case-control study. First, it depends only on the 
relative risk parameters of interest and thus allows for construction of exact tests and 
estimates such as were described in Chapters 4 and 5 for selected problems. Second, 
precisely the same (conditional) likelihood is obtained whether we regard the data as 
arising from either (i) a prospective study of n individuals with a given set of exposures 
xl, . . ., x,, the conditioning event being the observed number n, of cases arising in the 
sample; or (ii) a case-control study involving nl cases and n, controls, the conditioning 
event being the n observed exposure histories. The observation that these two condi- 
tional likelihoods agree, which was made in 5 4.2 for the 2 x 2 table, confirms the 
fundamental point that identical methods of analysis are used whether the data have 
been gathered according to prospective or retrospective sampling plans. 

Unfortunately, whenever the strata contain sizeable numbers of both cases and 
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controls, the calculations required for the conditional analysis are extremely costly if 
not actually impossible even using large computers. Since the analysis based on the 
unconditional likelihood (6.12) yields essentially equivalent results, it would seem to be 
the method of choice in such circumstances. The conditional approach is best restricted 
to matched. case-control designs, or to similar situations involving very fine stratification, 
where its use is in fact essential in order to avoid biased estimates of relative risk. We 
begin this chapter with an illustration of the magnitude of the bias which arises from 
analysing matched data with the unconditional model. Next, the conditional model is 
examined for several of the special problems considered in Chapters 4 and 5; many 
of the estimates and test statistics discussed earlier for these problems are shown to 
result from application of the general model. Finally, we explore the full potential of the 
conditional model for the multivariate analysis of matched data, largely by means of 
example, and discuss some of the issues which arise in its implementation. 

7.1 Bias arising from .the unconditional analysis of matched data 

Use of the unconditional regression model (6.12) for estimation of relative risks 
entails explicit estimation of the a stratum parameters in addition to the P coefficients 
of primary interest. For matched or finely stratified data, the number of a parameters 
may be of the same order of magnitude as the number of observations and much greater 
than the number of P7s. In such situations, involving a large number of nuisance para- 
meters, it is well known that the usual techniques of likelihood inference can yield 
seriously biased estimates (Cox & Hinkley, 1974, p. 292). This phenomenon is perhaps 
best illustrated for the case of 1-1 pair matching with a single binary exposure variable x. 

Returning to the general set-up of 5 6.2, suppose that each of the I strata consists 
of a matched case-control pair and that each subject has been classified as exposed 
(x = 1) or unexposed (x = 0). The outcome for each pair may be represented in the 
form of a 2 x 2 table, of which there are four possible configurations, as shown in (5.1). 
The model to be fitted is of the form 

where #? = log is the logarithm of the relative risk, assumed constant across matched 
sets. 

According to a well-known theory developed for logistic or log-linear models (Fien- 
berg, 1977), unconditional maximum likelihood estimates (MLEs) for the parameters 
a and #? are found by fitting frequencies to all cells in the 2 x 2 x K dimensional con- 
figuration such that (i) the fitted frequencies satisfy the model and (ii) their totals 
agree with the observed totals for each of the two dimensional marginal tables. For 
the noo concordant pairs in which neither case nor control is exposed, and the nll 
concordant pairs in which both are exposed, the zeros in the margin require that the 
fitted frequencies be exactly as observed. Such tables provide no information about the 
relative risk since, whatever the value of p ,  the nuisance parameter ai may be chosen 
so that fitted and observed frequencies are identical (ai = 0 for tables of the first :type 
and ai = 4 for tables of the latter to give probability I/, of being a case or control). 
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The remaining nlo + no, discordant pairs have the same marginal configuration, and 
for these the fitted frequencies are of the form 

Exposure + - 

Case 

Control 

where 

and 

which can be expressed as 

The additional constraint satisfied by the fitted frequencies is that the total number of 
exposed cases, nlo+nll, must equal the total of the fitted values, namely 
(nlo + nol)p + nll. This implies ,A = nlo/(nlo + nol) and thus that the unconditional 
MLE of the relative risk is 

the square of the ratio of discordant pairs (Andersen, 1973, p. 69). 
The estimate based on the more appropriate conditional model has already been 

presented in 3 5.2. There we noted that the distribution of nl0 given the total nlo+ nol 
of discordant pairs was binomial with parameter n = vI(1 +v). It followed that the 
conditional MLE was the simple ratio of discordant pairs 

Thus the unconditional analysis of matched pair data results in an estimate of the odds 
ratio which is the square of the correct, conditional one: a relative risk of 2 will tend 
to be estimated as 4 by this approach, and that of '1, by I/,. 

While the disparity between conditional and unconditional analyses is particularly 
dramatic for matched pairs, it persists even with other types of fine stratification. Pike, 
Hill and Smith (1979) have investigated by numerical means the extent of the bias 
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in unconditional estimates obtained from a large number of strata, each having a fixed 
number of cases and controls. Except for matched pairs, the bias depends slightly on 
the proportion of the control population which is exposed, as well as on the true odds 
ratio. Table 7.1 presents an extension of their results. For sets having 2 cases and 2 
controls each, a true odds ratio of 2 tends to be estimated in the range from 2.51 to 
2.53, depending upon whether the exposure probability for controls is 0.1 or 0.3. Even 
with 10 cases and 10 controls per set, an asymptotic bias of approximately 4% remains 
for estimating a true odds ratio of q = 2, and of about 15% for estimating I@ = 10. 

These calculations demonstrate the need for considerable caution in fitting uncondi- 
tional logistic regression equations containing many strata or other nuisance parameters 
to limited sets of data. There are basically two choices: one should either use individual 
case-control matching in the design and the conditional likelihood for analysis; or else 
the stratum sizes for an unconditional analysis should be kept relatively large, whether 
the strata are formed at the design stage or post hoc. 

7.2 Multivariate analysis for matched 1 : M designs: general methodology 

One design which occurs often in practice, and for which the conditional likelihood 
(7.1) takes a particularly simple form, is where each case is individually matched to 
one or several controls. The number of controls per case may either be a fixed number, 
M, say, or else may be allowed to vary from set to set. We considered such designs in 
5 5.3 and 5 5.4 for estimation of the relative risk associated with a single binary ex- 
posure variable. 

Suppose that the ith of I matched sets contains Mi controls in addition to the case. 
Denote by xi0 = (xiol, . . ., xiOK) the K-vector of exposures for the case in this set and 
by xij = (xijl, . . ., xijK) the exposure vector for the jth control (j = 1, . . ., Mi). In 
other words, xijk represents the value of the kth exposure variable for the case (j = 0) 
or jth control in the ith matched set. We may then write the conditional likelihood in 
the form (Liddell, McDonald & Thomas, 1977; Breslow et al., 1978): 

It follows from this expression that if any of the x's are matching variables, taking the 
same value for each member of a matched set, their contribution to the likelihood is 
zero and the corresponding /3 cannot be estimated. This is a reminder that matched 
designs preclude the analysis of relative risk associated with the matching variables. 
However by defining some x's to be interaction or cross-product terms involving both 
risk factors and matching variables, we may model how relative risk changes from one 
matched set to the next. 



Table 7.1 Asymptotic mean values of unconditional maximum likelihood estimates of the odds ratio from matched sets consisting of n, 
cases and no control$ 

True odds ratio No. of controls Proportion of controls positive 
W per set (no) po = 0.1 po = 0.3 

No. of cases per set (n,) No. of cases per set (n,) No. of cases per set (n,) 
1 2 4 10 1 2 4 10 1 2 4 10 



LOGISTIC REGRESSION FOR MATCHED SETS 253 

If there is but a single matched control per case, the conditional likelihood simpli- 
fies even further to 

1 4 

This may be recognized as the unconditional likelihood for the logistic regression model 
where the sampling unit is .the pair and the regression variables are the differences in 
exposures for case versus control. The constant (a) term is assumed to be equal to 
0 and each pair corresponds to a positive outcome (y = 1). This correspondence permits 
GLIM or other widely available computer programmes for unconditional logistic regres- 
sion to be used to fit the conditional model to matched pair data (Holford, White & 
Kelsey, 1978). 

While not yet incorporated into any of the familiar statistical packages, computer 
programmes are available to perform the conditional analysis for both matched (Ap- 
pendix IV) and more generally stratified designs (Appendix V), using the likelihoods 
(7.2) and (7.1), respectively (Smith et al., 1981). These programmes calculate 
the following: (i) the (conditional) MLEs of the relative risk parameters; (ii) minus 
twice the maximized logarithm of the conditional likelihood, used as a measure of good- 
ness of fit; (iii) the (conditional) information matrix, or negative of the matrix of 
second partial derivatives of the log likelihood, evaluated at the MLE; and (iv) the 
score statistic for testing the significance of each new set of variables added in a series 
of hierarchical models. These quantities are used to make inferences about the relative 
risk just as described in 5 6.4 for the unconditional model. For example, the difference 
between goodness-of-fit (G) measures for a sequence of hierarchical models, in which 
each succeeding model represents a generalization of the preceding one, may be used 
to test the significance of the additional estimated parameters. This difference has an 
asymptotic chi-square distribution, with degrees of freedom equal to the number of 
additional variables incorporated in the regression equation, provided of course that 
the p coefficients of these variables are truly zero. Similarly, asymptotic variances and 
wvariances of the parameter estimates in any particular model are obtained from the 
inverse information matrix printed out by the programme. 

Now that the technology exists for conditional logistic modelling, all the types of 
multivariate analysis of stratified samples which were discussed in Chapter 6 can also 
be carried out with matched case-control data. In the next few sections we introduce 
these techniques by re-analysing the data already considered in Chapter 5. This will 
serve to indicate where the model yields results identical with the "classical" tech- 
niques, and where it goes beyond them. Later sections will extend the applications to 
exploit fully the potential of the model. 

7.3 Matched pairs with dic.hotomous and polytomous exposures: applications 

Our first application of the general conditional model is to analyse in this framework 
the matched pair data already considered at the end of 5 5.2. There we used the 63 
pairs consisting of the case and the first control in each matched set from the Los 
Angeles study of endometrial cancer (Mack et al., 1976). The analysis was directed 
towards obtaining an overall relative risk for oestrogens, detecting a possible inter- 
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action with age for the risk associated with gall-bladder disease, and examining the 
joint effects of gall-bladder disease and hypertension. Further analysis of these same 
matched pairs was carried out in 5 5.5 to investigate the relative risks attached to dif- 
ferent dose levels of conjugated oestrogens. 

In order to carry out parallel analyses in the context of the logistic model, we defined 
a number of regression variables as shown in Table 7.2. The first four of these (EST, 
GALL, HYP, AGEGP) are dichotomous indicators for history of oestrogen use, gall- 
bladder disease, hypertension, and age, respectively. AGE is .a continuous variable, 
given in years. In cases where the ages of case and control differed, although this was 
never by more than a year or two, AGE and AGEGP were defined as the age of the 
case. Hence they represent perfect matching variables which are constant within 
each matched set. The three binary variables, DOSI, DOS2 and DOS3, represent the 
four dose levels of conjugated oestrogen and thus should always appear in any equation 
as a group or not at all. The last variable, DOS, represents the coded dose levels of 
this same factor, and is used to test specifically for a trend in risk with increasing dose. 

Table 7.3 shows the results of a number of regression analyses of the variables defined 
in Table 7.2. The statistic G for the model with no parameters, i.e., all p's assumed 
equal to zero, evaluates the goodness of fit to the data of the null hypothesis that none 
of the regression variables affects risk. Part A of the table considers the relative risk 
associated with a history (yes or no) of exposure to any oestrogen, as indicated by the 
binary variable EST. The estimated relative risk is $ = exp@) = exp(2.269) = 9.67, 
which is precisely the value found in 5 5.2 as the ratio 29/3 of discordant pairs. This 

Table 7.2 Definition of regression variables used in the matched pairs analysis 

Variable Code 

EST 

GALL 

HYP 

AGEGP 

AGE 

DOS 1 

DOS 2 

DOS 3 

DOS 

No 
History of any oestrogen use Yes 

0 
1 No History of gall-bladder disease Yes 

No 
Yes History of hypertension 

0 Age 55-69 years 
1 Age 70-83 years 

Age in years (55-83) 

1 0.1-0.299 mglday conjugated oestrogens 
0 otherwise 

1 0.3-0.625 mglday conjugated oestrogens 
0 otherwise 

1 0.626+ mglday conjugated oestrogens 
0 otherwise 

0 None 
1 0.1-0.299 mglday 
2 0.3-0.625 mglday ) conjugated oestrogen 
3 0.626+ mglday 
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Table 7.3 Results of fitting the conditional logistic regression model to matched pairs consisting of 
the case and first matched control: Los Angeles study of endometrial cancer 

No. of Goodness of fit Score testa Regression coefficients f standard error for each variable in equation 
parameters (G) 

A. Any oestrogens 

EST 
2.269 f 0.606 

B. Gall-bladder disease and age 

GALL GALL x AGEGP 
3.56 0.956 f 0.526 
1.68 1.946 f 1.069 -1.540 k 1.249 
0.3Sb 1.052 k 0.566 

C. HypertensionIGall-bladder disease 

GALL HYP 
0.81 0.325 + 0.364 
3.61 0.970 f 0.531 0.348 + 0.364 
2.01 1.51 7 k 0.699 0.627 f 0.435 

D. Gall-bladder disease1Hypertension 

GALL HYP 
1 83.65 3.56 0.956 f. 0.526 
2 82.79 0.86 0.970 k 0.531 0.348 f 0.377 
3 80.84 2.01 1.51 7 f 0.699 0.627 f 0.435 

E. Dose levels of conjugated oestrogen 

F. Coded dose of conjugated oestrogen 

DOS DOS x AGE 
1 65.50 14.71 0.690 k 0.202 
2 65.50 0.00 0.693 f 0.282 -0.001 f 0.403 

GALL x (AGE-70) 

GALL x HYP 

GALL x HYP 

-1.548f 1.125 

"Score statistic comparing each model with the preceding model in each set, unless otherwise indicated. The first model in each 
set is compared with the model in which all p's are 0. 

After fitting one parameter model with GALL only 

reflects .the fact that the conditional likelihood (7.2) is identical (up to a constant of 
proportionality) to that used earlier as a basis of inference (5.3), so that the two 
analyses are entirely equivalent. Likewise, the score statistic for the test of the null 
hypothesis, Ho: 11, = 1, is identical with the uncorrected (for continuity) value of the x2  
defined in (5.4), namely 
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This illustrates the point that many of the elementary tests are in fact score tests based 
on the model (Day & Byar, 1979). The corrected chi-square value is of course the 
more accurate and preferred one, but it has not been incorporated in the computer 
programme written for the general regression analysis, since it is not applicable in other 
situations. 

Two other statistics are available for testing the null hypothesis. These are the differ- 
ences in goodness-of-fit measures, 87.34-62.89 = 24.45, and the square of the stan- 
dardized regression coefficient, (2.269/0.606)2 = 13.99, each of which also has a 
nominal X; distribution under the null hypothesis. Although the three values are some- 
what disparate with these data, they all indicate a highly significant effect. The test 
based on the corrected score statistic is preferred when available, as this comes closest 
to the corresponding exact test. 

Asymptotic 95% confidence limits for 11, are calculated as exp(2.269 + 1.96 x 0.606) = 
(2.9, 31.7), the upper limit being noticeably smaller than that based on the exact 
conditional (binomial) distribution (VU = 49.6) or the normal approximation to it 
(vu = 39.7) which were calculated in 5 5.2. 

Part B of Table 7.3 presents the relative risk estimate for gall-bladder disease and 
its relationship to age. Just as for EST, the estimate of relative risk associated with 
GALL, exp(0.956) = 2.6 = 13/5, and the (uncorrected) score statistic, 3.56 = 
(13-5)2/18, must agree with the values found earlier. There is better concordance 
between the three available tests of the null hypothesis in this (less extreme) case: 
87.34-83.65 = 3.69 for the test based on G, and (0.956/0.526)2 = 3.30 for that 
based on the standardized coefficient, are the other two values besides the score test. 

For the second model in Part B the coefficient of GALL represents the log relative 
risk for those under 70 years of age, exp(1.946) = 7.0 = 7/1, while the sum of the 
coefficients for GALL and GALLx AGEGP gives the log relative risk for those 70 
and over, exp(1.946-1.540) = 1.50 = 6/4. These are the same results as found before. 
Similarly, the score statistic for the additional parameter GALL x AGEGP, which tests 
the equality of the relative risk estimates in the two age groups, is identical to the 
uncorrected chi-square test for equality of the proportions 7/8 and 6/10, namely 

In 5 5.2 we reported the corrected value of this chi-square as x2 = 0.59. 
The third line of Part B of the table introduces an interaction term with the continu- 

ous matching variable AGE. Here the coefficient of GALL gives the estimated relative 
risk for someone aged 70, exp(1.052) = 2.86, while the relative risk for other ages is 
determined from exp(1.052-0.066(AGE-70)). In other words, the RR is estimated 
to decline by a factor exp(4.066) = 0.936 for each year of age above 70 and increase 
by a factor exp(0.066) = 1.068 for each year below. However this tendency has no 
statistical significance; all three of the available tests for homogeneity give a chi-square 
of about 0.35 (p = 0.56). Such continuous variable modelling is of course not avail- 
able with the elementary techniques. 

Part C of Table 7.3 illustrates the increased analytical power which is available using 
regression methods. In order to estimate and test the relative risk of gall-bladder 
disease, while controlling for hypertension, we start with an equation containing the 
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single variable HYP. When we add to this a second term for gall-bladder disease 
(line 2, part C), the model then specifies that the relative risks associated with these 
two variables are multiplicative, and moreover that their joint effect is multiplicative 
with those of the matching variables. The relative risk for GALL, adjusted for the 
multiplicative effects of hypertension, is estimated as $3 = exp(0.970) = 2.65, scarcely 
different from the unadjusted value. Likewise the null hypothesis that ly = 1 is tested 
by x2 = 3.61 (uncorrected), which is also rather close to the unadjusted value. By way 
of contrast, the adjusted estimate of RR for GALL obtained in § 5.2, where we re- 
stricted attention to the eight case-control pairs which were homogeneous for HYP 
and heterogeneous for GALL, gives the relatively unstable value of $3 = 711. The 
difference is explained by the fact that the model uses all the case-control pairs which 
are discordant for at least one of GALL and HYP (see Table 7.4) to estimate the 
main effects of both variables. The five pairs which are discordant for both variables, 
not used in the elementary analysis, now contribute to the estimate of the coefficient 
of GALL. 

In case the reader is left with the impression that something has been gained for 
nothing by this procedure, we hasten to point out that the elementary estimate is 
strictly valid under a weaker set of assumptions than that based on the model. In 
Chapter 5 we effectively assumed only that the relative risk of GALL was constant with 
respect to HYP and the matching variables. The modelling procedure supposes in 
addition that HYP combines multiplicativelv with the matching variables; it could lead 
to biased estimates of the coefficient of G ~ L  if interactions were present. Of course, 
in some situations, such interactions involving the matching and other confounding 
variables might also be modelled and addcd to the equation as a means of further 
adjustment. For example, if we suspected that not only the main effects of HYP but 
also the interaction between HYP and AGE were confounding the estimate of the 
GALL coefficient, we would fit the equation with terms for GALL, HYP and 
HYPx AGE. Fortunately, the higher order interactions which might necessitate such 
a procedure are rarely present in epidemiological studies (Miettinen, 1974). 

Further insight into the assumptions which underlie the model is given by considera- 
tion of line 3 of Part C, Table 7.3. Here the addition of the interaction term 
GALLx HYP allows us to estimate the relative risk of each possible combination of 
exposures to these two risk factors, relative to those who are exposed to neither. Thus 
I),, = exp(1.517) = 4.56 is the estimated RR for those with gall-bladder disease only, 
go, = exp(0.627) = 1.87 for those with hypertension only, and qll = exp(1.517+ 
0.627-1.548) = 1.81 for those having a positive history of both diseases. In summary, 
the relative risks are given by this bizarre-looking table: 

Gall-bladder disease 

Hypertension 

+ 



258 BRESLOW & DAY 

However the interaction effect is not significant, as indicated by the score statistic 
comparing lines 2 and 3 of Table 7.3, Part C. 

In effect what we have now done is to create out of GALL and HYP a joint risk 
variable with four exposure categories: (-, -), (-, +), (+, -), and (+, +). The 
estimation problem is as described in § 5.5 for matched-pair studies with a polytomous 
risk variable. Table 7.4 presents the distribution of the 63 matched pairs according to 
the joint response of case and control, following the format of Table 5.5. We readily 
verify that the maximum likelihood equations (5.30) for data of this type, namely 

are solved by the estimates just derived using the general computer programme. 
The analysis shown in Part D of Table 7.3 is identical with that in Part C except for 

the order of entry of the variables into the equation. If our interest is in the effects of 
GALL after adjustment for HYP, we would follow the sequence shown in Part D. In 
this example, the estimated coefficients and standard errors are not much affected by 
the presence of the other variable in the equation, which means that they are not 
confounded to any appreciable degree. 

Another example of the analysis of matched-pair data with a polytomous exposure 
variable was presented at the end of § 5.5. There we estimated the relative risks of 
endometrial cancer for each of three increasing dose levels of conjugated oestrogens, 
using the no-dose category as baseline. In order to carry out an essentially identical 
analysis in the present framework, we first define the three indicator variables DOS1, 
DOS2 and DOS3, whose P coefficients represent the log odds ratios for each of the 

Table 7.4 Histories of gall-bladder and hypertensive disease for cases and matched 
controls: Los Angeles study of endometrial cancer 

Exposures of cases Exposures of controls 

Gall bladder Hypertension 

+ + 

Total 

Total 
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dose levels shows in Table 7.2 relative to baseline. The conditional logistic regression 
model (7.3) in this case is merely a restatement of the model (5.29), in which the 
odds ratios corresponding to each category of exposure are assumed to be constant 
over the matching variables. By definition they satisfy the consistency relationship 
discussed earlier in 5 5.5. 

Part E of Table 7.3 presents the results. Regression coefficients for the three dose 
variables do indeed correspond to the odds ratios already estimated: exp(1.524) = 
4.59 for the 0.1-0.299 mglday dose level; exp(1.266) = 3.55 for 0.3-0.625 mglday; 
and exp(2.120) = 8.33 for over 0.625 mglday. Likewise the score statistic for testing 
the null hypothesis is identical with the statistic (5.32) derived earlier, taking .the 
value 16.96 for these data. The only important additional quantities available from 
the computer fit of the model are the standard errors of the parameter estimates, which 
enable us to put approximate confidence limits on the estimated relative risks. For 
example, exp(1.524+ 1 . 9 6 ~  0.618) = (1.37, 15.4) are the 95% limits for the 
0.1-0.299 mglday category. 

In order to test for a trend in risk with increasing dose we use the single, coded dose 
variable DOS. Estimated relative risks for the three dose levels are then exp(0.690) = 
1.99, exp(2 x 0.690) = 3.98 and exp(3 x 0.690) = 7.94, respectively. Comparing the 
G statistics for the two dose-response models yields 65.50-62.98 = 2.52, nominally a 
chi-square with two degrees of freedom, for testing the extent to which the linear trend 
adequately explains the variation in risk between dose levels. The observed departure 
from trend is not statistically significant (p = 0.28). On the other hand, the trend itself 
is highly significant (p<0.0001) as demonstrated by the value 14.71 for the score 
statistic. This too is identical to the trend statistic derived earlier (5.33), except that 
the continuity correction is not used by the computer programme. Note that there is 
not the slightest hint of interaction between dose and age (line 2, part F, Table 7.3). 

In summary, analyses of matched-pair data via the conditional logistic model yield 
results identical to those of the "classical" procedures presented earlier for binary 
and polytomous risk factors. This is hardly surprising, as the previously discussed 
methods were themselves based on conditional likelihoods worked out in detail for 
each separate problem. Never.theless it is an important fact since it shows that the 
very general methodology developed here is well integrated with the techniques used 
in the past. Even more important, of course, are extensions to problems involving 
multiple andlor continuous risk variables which we next consider in the more general 
context of 1 : M matching. 

7.4 1: M matching with single and multiple exposure variables: applications 

While the regression variables defined in Table 7.2 have so far in this Chapter been 
used exclusively with the matched-pair data, their coefficients can in fact be better 
estimated by taking account of the full complement of controls selected for each case. 
Table 7.5 presents the results of several analyses, based on the conditional likelihood 
(7.2), which used all the available data. Since no information was available regarding 
the dose andlor duration of conjugated oestrogen use by certain of the women, .their 
data records were excluded from the analysis when fitting equations containing these 
variables. While a missing value for the case leads to exclusion of the entire matched 
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Table 7.5 Results of fitting several conditional logistic regression models to the matched sets con- 
sisting of one case and four controls: Los Angeles study of endometrial cancer 

No. of Goodness of fit Score test Regression coefficients + standard error for each variable in the equation 
parameters G 

A. Oestrogen use and age level 
(based on all 63 matched sets, 31 5 observations) 

EST EST x AGE1 

B. Oestrogen use and coded age level 
(based on all 63 matched sets, 315 observations) 

EST EST x AGE3 
31.16 2.074 + 0.421 
0.39 1.664 +- 0.750 0.385 f 0.616 

C. Conjugated oestrogen use and age 
(based on 59 matched sets, 291 observations) 

CEST CEST x AG El  

EST x AG E2 

0.780 k 1.1 54 

CEST x AGE2 

set, a missing value in a control record might simply mean that the number of controls 
in that set was reduced by one. 

In order to estimate the overall relative risk associated with a history of exposure 
to any oestrogen, we employed the general purpose computer programme with the single 
binary variable EST (Part A, Table 7.5). This yields $3 = exp(2.074) = 7.95, which 
is of course the same value as found in 5 5.3 by solving the equation (5.17) for condi- 
tional maximum likelihood estimation. The standard error 0.421 = V W ,  given by 
formula (5.21), has already been used to place an approximate 95% confidence 
interval of exp(2.074 + 1.96 x 0.421) = (3.5, 18.1) about the point estimate. Like- 
wise the score test statistic is identical to the summary chi-square defined in (5.19), 
but calculated without the continuity correction so as to give (1 10-13)2/302 = 31.16 
in place of the corrected value 29.57 found earlier. 

Continuing the lines of the analysis shown in Table 5.2, we investigated a possible 
difference in the relative risk for EST in the three age groups 55-64, 65-74 and 75+ 
by adding to the regression equation interaction terms involving EST and age. In order 
to account for the breakdown of age into three groups, two binary indicator variables 
were defined: AGE1 = 1 for 65-74 years, and 0 otherwise; and AGE2 = 1 for 75+ 
years, 0 otherwise. Thus, from line 2, Part A, Table 7.5, exp(1.431) = 4.18 is the 
estimated relative risk for women aged 55-64 years, exp(1.431+ 0.847) = 9.76 for 
those 65-74 years, and exp(1.431+0.780) = 9.12 for the 75+ year olds, these results 
agreeing with those shown in Table 5.2. While there is an apparent increase in the 
relative risk for the women aged 65 or more years, the score test of 0.76 shows that 
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the differences are not statistically significant (p = 0.68). Note that this value agrees 
with that calculated earlier from the explicit formula (5.23) for the score test of inter- 
action. 

A single degree of freedom test for a trend in relative risk with increasing age is 
obtained by fitting a single interaction term as shown in Part B of Table 7.5. Coding 
AGE3 to be 0, 1 or 2 according to the subject's age group, the resulting score test for 
interaction is the uncorrected version of the statistic (5.24), taking the value 0.39. 
The corrected value calculated earlier was 0.09. Estimated relative risks for the three 
age categories are in this case exp(1.664) = 5.28, exp(1.664 + 0.385) = 7.76 and 
exp(1.664+2x 0.385) = 11.40, respectively. However since there is no evidence 
that the apparent trend is real, such estimates would not normally be reported. 

The flexibility of the regression approach is particularly evident when dealing with 
matched sets containing a variable number of controls. Part C of Table 7.5 presents 

Table 7.6 Matched univariate analysis of Los Angeles study of endometrial cancer: all cases and 
controls used except as noted 

Variable Levels RR XI a DF P 

Gall-bladder 
disease 

Hypertension 

Yes 
N 0 

Yes 
N 0 

Obesity Yes 
No 
Unk 

Obesity Yes 
No/Unk 

Other drugs 
(non-oestrogen) 

Yes 
No 

Yes 
N 0 

Any oestrogens 

Conjugated oestrogensb: 
dose in mg/day 

None 
0.1-0.299 
0.3-0.625 

0.625+ 
Trendc 

Conjugated oestrogensd: 
duration in months 

None 
1-1 1 
12-47 
48-95 
96 + 
Trende 

"Uncorrected score test 
Based on 59 sets. 291 observations 
' Regression on coded dose levels: 0 = none; 1 = 0.14.299 mgtday; 2 = 0.34.625 mgtday; 3 = 0.625+ mgtday 

Based on 57 sets, 277 observations 
'Regression on coded duration: 0 = none; 1 = 1-1 1 months; . . .; 4 = 96+ months 
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the regression analysis of the data considered in § 5.4 on use of conjugated oestrogens. 
Of 59 matched sets for whom the case history of conjugated oestrogen use was known, 
55 had the full complement of 4 controls while for each of the 4 others, one control 
was lacking information. Running the computer programme with a single binary 
variable CEST representing the history of use of conjugated oestrogens, we easily 
replicate the results already obtained: $3 = exp(l.710) = 5.53 for the estimate of 
relative risk and x2 = 27.57 for the uncorrected chi-square test of the null hypothesis. 
It is also easy to test for constancy of the relative risk over the three age groups by 
addition of the interaction variables CESTx AGE1 and CESTX AGE2 to the equa- 
tion. The score test for this addition, which is the generalization of (5.24) discussed in 
5 5.4, yields the value X$ = 0.89 (p = 0.64). We did not report this result earlier be- 
cause of the labour involved in the hand calculation. ' 

Thus far in this section we have used the general methods for matched data analysis 
primarily in order to replicate the results already reported in Chapter 5 for particular 
elementary problems. The emphasis has been on demonstrating the concordance be- 
tween the quantities in the computerized regression analysis, and those calculated 
earlier from grouped data. In the remainder of the section we carry out a full-scale 
multivariate analysis of the Los Angeles data much as one would do in actual practice. 

As an initial step in this process, Table 7.6, which summarizes and extends the results 
obtained so far, presents relative risk estimates and tests of their statistical significance 
for each risk variable individually. Comparing the entries there with those in Table 5.1 
we see that there is little to choose between the matched and unmatched analyses for 
this particular example (see § 7.6, however). The rather large number of "unknown" 
responses for obe,sity indicated lack of information on this item in the medical record. 
Grouping these with the negatives led to only a slight decrease in the goodness of fit 
0112 = 0.75, p = 0.39) and to a slight increase in the relative risk associated with a 
positive history. We therefore decided to use the dichotomy positive versus negative/ 
unknown in the subsequent multivariate analyses. This meant that the final analyses 
used the five binary variables GALL-bladder disease, Hypertension, OBesity, NON- 
oestrogen drugs and any oESTrogen, none of which had missing values. There were 
also two polytomous variables representing DOSe and DURation of conjugated 
oestrogen, both of which had missing values. 

Table 7.7 presents the results for a series of multivariate analy s involving the five 
binary risk factors and several of their two-factor interactions. X" ode1 2 contains just 
the main effects of each variable. Their P coefficients have been exponentiated for 
presentation so as to facilitate their interpretation in terms of relative risk. In fact the 
estimates of RR for gall-bladder disease and oestrogen use do not changemuch from 
the univariate analysis (Table 7.6), while those for the other three variables are all 
somewhat smaller. The coefficient for hypertension becomes slightly negative, while those 
for obesity and non-oestrogen drugs are reduced to non-significant levels. The reduction 
for non-oestrogen drugs is particularly striking, and inspection of the original data 
indicates this is due to a high degree of confounding with oestrogen use: for the controls, 
only 16 or 21.1 % of 76 who did not take non-oestrogen drugs had a history of oestrogen 
use, versus 111 or 63.1 % of 176 who did take non-oestrogen drugs (Table 7.8). 

Models 3-5 explore the consequences of dropping from the equation those variables 
which do not have significant main effects. The confounding between other drugs and 



Table 7.7 Matched multivariate analysis o f  five binary risk factors and their interactions: Los Angeles study of endometrial cancer 

Model No. of Goodness Score Relative risks (exponentiated regression coefficients) for each variable in the equation 
parameters of fit testa Standardized regression coefficients in parentheses 

G GALL HYP OB NON EST GALLx EST OBx EST NONxEST GALL x OB GALLxNON 

a Score test with respect to preceding model, unless otherwise noted 
Score test for all variables in  model (with respect to Model 1) 
Score test versus Model 4 
Score test versus Model 5 
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Table 7.8 Joint distribution of cases and controls according to selected risk factors: Los Angeles 
study of endometrial cancer 

Cases 

Controls 

- - - 

A. Gall-bladder disease and oestrogens 

Gall-bladder disease 
negative 

Oestrogen- Oestrogen+ 

Relative risks 

Unmatched 1 .o 15.1 
Matcheda 1 .o 14.9 

Cases 

Controls 

Gall-bladder disease 
positive 

Oestrogen- Oestrogen+ 

B. Oestrogen and non-oestrogen drug use 

Other drugs 
negative 

Oestrogen- Oestrogen+ 

Relative risks 

Unmatched 1 .o 22.5 
Matchedb 1 .o 54.6 

Other drugs 
positive 

Oestrogen- Oestrogen+ 

Totals 

Totals 

"From Model 7, Table 7.7. 
From Model 12. Table 7.7 (hence adjusted for gall-bladder disease) 

oestrogen is evident from the fact that the coefficient for the latter depends most notice- 
ably on whether or not the former is present. Subtracting the goodness-of-fit statistics 
between Models 6 and 2 yields X; = 4.00 (p = 0.26) for testing the joint contribution 
of hypertension, obesity and non-oestrogen drug use to the equation. 

The contrast between Models 7 and 6 shows that there is a strong and statistically 
significant (p = 0.03) negative interaction between the two variables that have sub- 
stantial main effects on risk, namely gall-bladder disease and oestrogens. The basic data 
contributing to this negative interaction are shown in Part A of Table 7.8, together with 
relative risks estimated via the model, e.g., RR = 14.9 x 18.1 x 0.128 = 34.5 for the 
double exposure category. The interaction effect itself is perhaps best illustrated by 
contrasting the RR of 14.9 for oestrogens among those who had no history of gall- 
bladder disease with the RR of 34.5/18.1 = 1.9 among those with such a history. 

Similar negative interactions are evident in Models 10 and 12 for obesity with oestro- 
gens, and other drugs with oestrogens, respectively. From the unmatched data, shown 
in Part B of Table 7.8, we see that the instability in the regression coefficients for 
Model 12 stems from the fact that only a single case falls in the joint "non-exposed" 
category. While they are statistically significant only in the case of gall-bladder disease, 
the data suggest that there are negative interactions of oestrogen use with the other 
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factors which are possibly linked to endometrial cancer. Given that a woman is already 
at elevated risk from her history of gall-bladder disease, obesity, or non-oestrogen drug 
use, the further increase in risk from use of oestrogens is not nearly as important as 
when she is not exposed to other risk factors. This same observation, that oestrogen 
use interacts negatively with traditional risk factors for endometrial cancer, such as 
hypertension and obesity, has been made in other case-control studies (Smith et al., 
1975). It suggests that the effects of oestrogen use are more likely to combine additively 
rather than multiplicatively with those of other factors. Another interesting feature 
of the relationship, which could not be investigated in the Los Angeles study, is that 
the excess risk is much smaller among ex-users compared with continuing users of 
oestrogen (Jick et al., 1979). 

So far our analysis has accounted only for the fact of oestrogen use and not of dose 
or duration. Unfortunately, information about one or both of these items was lacking 
for nine cancer cases, leading to the exclusion of the corresponding matched sets from 
the analysis, and for one control in each of seven of the remaining 54 sets. Moreover, 
the drug tended to be administered at one of a few standard doses, which precluded 
analysis of this variable as a true continuous variable. Instead both dose and duration 
were treated as ordered categorical variables, and arbitrary scale values were assigned 
to the increasing levels for regression analysis of trends (see Tables 7.2 and 7.6). 

A series of analyses which investigate the effect of dose and/or duration of con- 
jugated oestrogen exposure on risk is presented in Table 7.9. In part A of the table we 
first fit the main effect for oestrogen exposure followed by a single variable DOS re- 
presenting the trend in risk with coded dose level. Since women with EST = 1 but 
DOS = 0 use oestrogens but not the conjugated variety, the coefficient of EST deter- 
mines the relative risk for women taking only non-conjugated oestrogens, exp(1.451) 
= 4.3. Estimated relative risks for the three dose levels of conjugated oestrogen are 
exp(1.451+ 0.402) = 6.4, exp(1.451+ 2 x 0.402) = 9.5 and exp(1.451+ 3 x 0.402) 
= 14.3, respectively. The third model is a generalization of the second in that the 
effects of the individual dose levels are allowed to vary independently rather than 
being determined by the trend. While the estimated relative risks for dose levels 1 
and 2 are rather similar, there is no strong evidence for a deviation from the 
fitted trend (y$ = 2.41, p = 0.30). As shown in Model 4, there is a significant trend 
with duration, even after accounting for the dose effects. 

Part B of the table considers in a similar way the effect of duration of exposure. Here 
there is a smooth progression in risk, and the fit of the linear trend in coded duration 
level seems quite adequate 012 = 1.11, p = 0.78). The trend in dose continues to be 
significant even after adjustment for duration (Model 3, Part B). 

In Part C of the table we simultaneously fit separate effects for both dose and dura- 
tion. Since the sums of both DOSl + DOS2 + DOS3 and DUR1 + DUR2 + DUR3 + 
DUR4 equal the variable CEST defined above, it was necessary to drop one of these 
indicator variables from the equation in order to avoid linear dependence among the 
variables and to obtain unique estimates of all coefficients; this explains the absence of 
DOSl from the list of variables. Comparing Model 2 with Model 1 shows that the 
effects of dose and duration are reasonably multiplicative; addition of the linear 
interaction term results in only a slight improvement in goodness of fit(yi = 0.59, 
p = 0.44). In Models 3-6 we consider the effects of some of the other risk factors after 



Table 7.9 Multivariate analysis of effects of dose and duration of conjugated oestrogens: Los Angeles study of endometrial cancer 

- 
Model NO. of Goodness Score Regression coefficients for each variable in the equation (standardized coefficients in parentheses) a 

para- of fit testb m 
meters G 

(I, 

6 
A. Effect of dose z 

Po 
EST DOS DOS1 DOS2 DOS3 DUR 

1 1 139.86 27.22 2.088 
(4.60) 

2 2 135.63 4.19 1.451 0.402 
(2.59) (2.01) 

3 4 133.20 2.41 1.856 0.029 0.023 1.141 
(2.74) (0.05) (0.04) (1.80) 

4 5 128.32 4.82 1.987 -1 .I01 -1.116 4.013 0.420 
(2.86) (-1.33) (-1.32) (-0.02) (2.1 5) 

B. Effect of duration 

EST DUR DUR1 DUR2 DUR3 DUR4 DOS 
1 . 2  134.84 4.91" 1.431 0.309 

(2.58) (2.1 7) 
2 5 133.76 1.1 1 1.868 -0.418 0.122 0.596 0.899 

(2.73) (-0.58) (0.1 9) (0.88) (1.43) 
3 6 129.52 4.22 1.946 -1.655 4 .876  4 .586  4 .296  0.578 

(2.83) (-1.70) (-1.08) (-0.65) (4.34) (2.01) 



Table 7.9 (contd) 

C. Dose, duration and other variables 

EST DOS2 DURx GALL 
DOS 

GALLx EST NON OB 

Based on 54 matched sets, 263 observations having known values for both dose and duration of conjugated oestrogen use 
Score test relative to preceding model in each Part, unless otherwise indicated 
Relative to Model 1, Part A 

*Relative to Model 2, Part A 
' Relative to Model 1, Part B 
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more complete adjustment for oestrogen than was possible using the binary variable 
EST alone. The coefficients for these variables should be contrasted with those shown 
in Table 7.7. Gall-bladder disease continues to stand out as an important, independent 
risk factor with an estimated relative risk of exp(1.498) = 4.5 compared with the 
3.6 found earlier (Model 6, Table 7.7). The interaction of gall-bladder disease with 
oestrogen use is no longer statistically significant when the dose and duration variables 
are included in the equation. While the coefficient for non-oestrogen drugs is little 
changed, obesity is now estimated to carry a relative risk of exp(1.059) = 2.9, which 
is significantly different from 1 at the p = 0.02 level. Part of these differences, of 
course, may result because slightly different data sets were used. 

In conclusion, we can simply reiterate a point which is well illustrated by the pre- 
ceding example: all the techniques of multivariate analysis which were once restricted 
to unmatched studies are now available for use with matched data as well. 

7.5 Combining sets of 2 x 2 tables 

Besides individual case-control matching, another situation in which the calculations 
based on .the exact conditional likelihood may be quite feasible is when information is 
combined from a set of 2 x 2 tables. We noted earlier that the conditional likelihood 
in this case took the form of a product of non-central hypergeometric distributions 
(see 5 4.4 for notation): 

As usual, the summations in the denominator range over all possible values u which 
are consistent with the observed marginals in the ith table, namely max(0, nli-moil 
( u s  min(mli, nli). Calculation of exact tail probabilities (4.6, 4.7) and confidence 
intervals (4.8, 4.9) based on this distribution requires that all possible sets of tables 
which are compatible with the given marginals are evaluated. Their number is 

i.e., the product of the number of possible tables at each level, which can rapidly be- 
come prohibitively large (Thomas, 1975). On the other hand, evaluation of the log- 
likelihood function and its first and second derivatives requires calculations which 
increase only in proportion to the sum 

of the number of possible tables at each level. Hence a conditional likelihood analysis, 
similar to those already developed in this chapter for matched designs, is often possible 
for problems involving sets of 2 x 2 tables, even where the completely exact analysis 
would be unfeasible. Only if the entries in some of the tables are very large will problems 
be encountered in the evaluation of the binomial coefficients appearing in (7.4). 
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Usually cases and controls will have been grouped into strata (tables) on the basis 
of covariables which are thought either to confound or to modify the effect of exposure 
on disease. Suppose that a vector zi of such covariables is associated with the ith table. 
Then there are several hypotheses about the odds ratios vi  which are of interest: 

H3: No restrictions on vi .  

In Chapter 4 we concentrated on the estimation of v under HI, tests of the null 
hypothesis Ho, and tests for constancy in the relative risk (HI) against global alter- 
natives (H3). We have remarked on several occasions that these latter may be in- 
sensitive to particular patterns of interaction and that a preferred strategy is to model 
specific variations in the relative risk associated with the covariables using Hz. In 
5 6.12 several such models were fitted to the Oxford Childhood Survey data using 
unconditional logistic regression in which a separate a parameter was estimated for 
each stratum. As we saw in § 7.2, however, it is possible seriously to overestimate the 
relative risk with this procedure if the data are thin. Hence it will often be preferable 
to use instead the conditional likelihood, which may be written 

A listing of a computer programme for fitting models of the form H2 to sets of 
2 x 2 tables using the conditional likelihood is given in Appendix VI. This programme 
may be used as an alternative to that of 'Thomas (1975) for finding the exact MLE 
of the relative risk in HI, provided of course that exact tests and confidence intervals 
are not also desired. Zelen (1971) develops exact tests -for the constancy of the odds 
ratio against alternatives of the form H2 with a single covariable, and also against the 
global alternative H3. We presented in (4.31) the score statistic based on (7.5) for 
testing H1 against H2 with a single covariable. 

If the data in each table are truly extensive it may be burdensome to evaluate the 
binomial coefficients in (7.5). In this case an asymptotic procedure is available. Rather 
than use the exact conditional means and variances of the table entries ai under hypo- 
thesized values for the odds ratios vi ,  which are required by the iterative likelihood 
fitting procedure, one can use instead the asymptotic means and variances defined by 
(4.11) and (4.13). This substitution yields likefihood equations and an information 
matrix which are identical to those obtained by applying a two-stage maximization 
procedure to the unconditional likelihood function whereby one first solves the equa- 
tions for the a coefficients in terms of and y (Richards, 1961). The estimates and 7 
so obtained, as well as their standard errors ajld covariances, are thus identical to those 
obtained using unconditional logistic regression (Breslow, 1976). The advantage is 
that the unconditional model is fitted without explicit estimation of all the nuisance 



270 BRESLOW & DAY 

parameters. This is a serious consideration if there are many tables, since the required 
number of parameters may exhaust the capacity of the available computer. Nevertheless, 
no matter how they are calculated, the unconditional estimates may be subject to bias 
in such circumstances and the conditional analysis is preferred whenever it is compu- 
tationally feasible. 

To illustrate the use of the conditional likelihood with a set of 2 x 2 tables we found 
new estimates of the parameters /3 and yl, representing the log relative risk of obstetric 
radiation and its linear decrease with calendar time, which we estimated earlier from the 
Oxford Childhood Cancer Survey Data using unconditional logistic regression (6.12). 
We recall that several estimates for these parameters were made depending on the 
degree of polynomial ad.justment for the stratifying variables age and calendar year. 
In fact, for the last line in Table 6.17 where the confounding effects of age and year 
were completely saturated, we avoided explicit estimation of separate a parameters for 
each of the 120 2 x 2 tables by using the technique just discussed. 

The parameter estimates and standard errors calculated directly from the conditional 
likelihood (7.5) were 

B = 0.5165k0.0564 
and 

PI = -0.0385 + 0.0144 . 

It is of considerable theoretical interest that these quantities are closer to those ob- 
tained from the unconditional fifth degree polynomial model than to those obtained 
with the saturated model (see last two lines, Table 6.17). This suggests that the con- 
founding effects of age and year are suitably accounted for by the polynomial regres- 
sion, and that inclusion of additional nuisance parameters in the equation serves only 
to increase bias of the type considered in fj 7.1. However, because of the exceptionally 
large sample (over 5 000 cases and controls) the inflation of the relative risk estimates 
due to the excess of nuisance parameters was not terribly serious. 

7.6 Effect of ignoring the matching 

Prior to the advent of methods for the multivariate analysis of case-control studies, 
in particular those based on the conditional likelihood (7.2), it was common practice 
to ignore the matching in the analysis. In simple problems one often found that taking 
explicit account of the matched pairs or sets did not seriously alter the estimate of 
relative risk. With the Los Angeles study of endometrial cancer, for example, there 
were only slight differences between the unmatched (Table 7.5) and matched (Table 
7.6) estimates fdr each risk variable considered individually. However, the agreement 
is not always as good, and there has been considerable confusion regarding the con- 
ditions under which incorporation of the matching in the analysis is necessary. 

A sufficient and widely-quoted condition for the 'poolability' of data across matched 
sets or strata is that the stratification variables are either: (i) conditionally independent 
of disease status given the risk factors; or (ii) conditionally independent of the risk 
factors given disease status. If either of these conditions is satisfied, both pooled and 
matched analyses provide (asymptotically) unbiased estimates of the relative risk for 
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a dichotomous exposure (Bishop, Fienberg & Holland, 1975). [Whittemore (1978) has 
shown that, contrary to popular belief, both types of analyses may sometimes yield 
equivalent results even if conditions (i) and (ii) are both violated.] In matched 
studies condition (i) is more relevant since the matching variables are guaranteed to 
be uncorrelated with disease in the sample as a whole. Of course this does not ensure 
that they have the same distributions among cases and controls conditionally, within 
categories defined by the risk factors. Therefore an unmatched analysis may give 
biased results. 

One result of using an unmatched analysis with data collected in a matched design, 
however, is that the direction of the bias tends towards conservatism. Relative risk 
estimates from the pooled data tend on average to be closer to unity than those cal- 
culated from the matched sets. This phenomenon was noted in 5 3.4 when pooling data 
from two 2 x 2 tables, where the ratio of cases to controls in each table was constant. 
Seigel and Greenhouse (1973) show that the same thing happens if matched pairs are 
formed at random from among the cases and controls within each of. two strata, and 
the data are then pooled for analysis. Armitage (1975) gives a slightly more general 
formulation. He supposes that there are I matched sets with exposure probabilities 
pli = 1-qli for the cases and poi = 1-qoi for the controls, and that the odds ratio 
p. = pliqoi/(poiqli) is constant across all sets. It follows that the estimate of relative 
risk calculated as the cross-products ratio from the 2 x 2 table formed by pooling all 
the data tends towards the value 

where 6, = poiIq0i. For v >  1 the bias term multiplying in (7.6) is less than one, 
unless the exposure probabilities poi are constant across sets (in which case there is no 
bias). Similarly, for p < 1, the bias term exceeds unity. Thus, failure to account for the 
matching in the analysis can (and often does) result in conservatively biased estimates 
of the relative risk. 

A related question is to consider the cost, in terms of a loss of efficiency in the 
analysis, of using a matched analysis when in fact the matching was unnecessary to 
avoid bias. Suppose that the exposure probabilities poi in the above model are all 
equal to the constant po, so that both matched and unmatched analyses tend to estimate 
correctly the true odds ratio v .  According to (4.18), the large sample variance of the 
pooled estimate of log t/~ is 

Standard calculations show that the large sample variance of the estimate of log I,LJ 

based on the matched pairs in this situation is 
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Consequently, using the ratio of variances to measure the relative precision of the two 
estimates, the efficiency of the matched pairs analysis when pairing at random is 

eff = P191+ Poclo 
P19o+Po91 ' 

When q = 1, i.e., pl = po, the matched pairs estimate is thus seen to be fully efficient. 
Otherwise eff < 1, reflecting the loss in information due to the random pairing. Never- 
theless Figure 7.1 shows that the loss, which tends to be worse for intermediate values 

Fig. 7.1 Loss in efficiency with a matched-pair design of using a matched statistical 
analysis, when the matching was unnecessary to avoid bias. Different curves 
correspond to different proportions exposed in the control population. 
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of po, is not terribly important unless the odds ratios being estimated are rather 
extreme. Pike, Hill and Smith (1979) reach similar conclusions on the basis of studies 
of the power of the chi-square test of the null hypothesis computed from the matched 
versus unmatched data. 

While no additional theoretical studies have yet been made, it is likely that these 
same general conclusions regarding the bias and efficiency of matched versus un- 
matched analyses apply also to the estimation of multiple relative risk functions. Two 
numerical examples will serve to illustrate the basic points. The first contrasts the 
fitting of both conditional and unconditional logistic regression analyses to data from 
an IARC sponsored study of oesophageal cancer occurring among Singapore Chinese 
(de Jong et al., 1974). The analysis was based on 80 male cases and on 320 matched 
controls whose ages were within five years of the corresponding case. Two controls for 
each case were drawn from the same hospital ward as the case, while two others were 
selected from an orthopaedic unit. However, as there were no important differences 
in exposure histories between the two control groups, they were not separated in the 
analysis. 

Table 7.10 Coefficients (+ standard errors) of variables in the multiple relative risk 
function, estimated using linear logistic regression analyses appropriate for both 
matched and unmatched samples. IARC study of oesophageal cancer among Singapore 
Chinesea 

Variables in equationb Matched analysis 
Coefficient + S.E. 

Unmatched analysis 
Coefficient f S.E. 

A. Interaction term excluded 

xo Constant 
x, Dialect 1.2570 f 0.3273 
x2 Samsu 0.5064 k 0.2936 
x3 Cigarettes 0.01 22 + 0.0099 
x4 Beverage temperature 0.7846 + 0.1 640 
Goodness-of-fit statistic (G) 197.43 

6 .  Interaction term included 

xo Constant 
x, Dialect 1.2559 + 0.3280 
x2 Samsu 0.5072 + 0.2941 
x3 Cigarettes 0.01 23 f 0.0099 
x, Beverage temperature 0.7872 + 0.1726 
x, = x4 x (age-60) --0.0009 t 0.01 79 
Goodness-of-fit statistic (G) 197.43 

" de Jong et al. (1 974) 
Coding of risk variables: 

XI = Hokkienrreochew x, = No. of cigaretteslday average 
0 Cantoneselother 

X2 = 1 Drinkers (Samsu) x., = No. of beverages (W) drunk "burning hot" 
0 Abstainers 



274 BRESLOW & DAY 

Information was obtained regarding diet, alcohol and tobacco usage, and on various 
social factors including dialect group, which indicates the patient's ancestral origin 
within China. Only four variables are considered here: dialect group, cigarettes, 
samsu (a distilled liquor made from a mixture of grains) and beverage temperature 
(the number of beverages among tea, coffee and barley wine that the patient reported 
drinking at "burning hot" temperatures). The coding of these variables has been 
simplified from that used in the original analysis, and an interaction term between 
beverage temperature and age (a matching variable) was introduced to see if the log 
relative risk for beverage temperature changed linearly with age. 

Table 7.10 presents the estimated regression coefficients and standard errors obtained 
by fitting the unconditional logistic model with a single stratum parameter a to the 
pooled data. Shown for comparison are the same quantities estimated from the condi- 
tional likelihood. With the exception of that for dialect group, the standard errors of 
the matched analysis are slightly larger than those for the unmatched. Small changes are 
evident in the regression coefficients themselves, so that this is evidently a situation 
in which the matching variables either have little relationship to the exposures con- 
ditional on disease status or else have little relationship* to disease status conditional 
on exposure. As a partial confirmation of the latter interpretation, Table 7.11 shows 
that cases and controls have roughly equivalent average ages even within the levels of 
each risk factor. This analysis is incomplete, since it involves only averages and ignores 
possible higher order interactions of age with risk factor combinations. Nevertheless, 
it is consistent with the notion that the matching variables are conditionally independent 
of disease status given the exposures, and thus that the requirements for 'poolability'of 
matched data are satisfied. 

Table 7.11 Average ages f standard errors for cases and controls within levels of each risk factor: 
IARC study of oesophageal cancer among Singapore Chinesea 

Risk factor Level Cases Controls Totals 
n Mean + S.E. n Mean f S.E. n Mean f S.E. 

Dialect group 

Samsu 

Cigarettes 

Beverage 
temperature 

(no. "burning 
hot") 

Totals 

HokkienITeochew 
Cantoneselother 

Drinkers 
Abstainers 

None 
1-10 per day 
1 1-20 per day 
21 + per day 

0 
1 
2 
3 

All 

a de Jong et al. (1974) 



Table 7.12 Coefficients (f standard errors) of variables in the multiple relative risk function, using a variety of analyses: Iran/lARC 
case-control study of oesophageal cancer in the Caspian littoral of Irana 

6 
0 
G 

Type of analysis g 
Variables in equation Stratified into a 

rn 
0 

Fully matched 7 Regions, 4 Regions, 4 Regions 4 Age groups Unmatched a 
4 Age groups 4 Age groups rn 

cn 
cn 

Social class -1 .I25 k 0.254 -0.808 + 0.21 2 -0.782 f 0.206 -0.745 + 0.201 -0.684 a 0.1 80 -0.682 + 0.1 79 0 z 
Ownership of garden -0.81 5 k 0.250 -0.614 f 0.222 -0.602 f 0.21 9 -0.592 + 0.21 8 -0.326 + 0.1 91 -0.307 + 0.1 90 
Consumption of raw z 

green vegetables -0.552 f 0.220 -0.459 + 0.203 -0.439 k 0.1 99 -0.432 k 0.1 98 -0.429 k 0.1 88 -0.440 + 0.1 87 a 

Consumption of D Z 
cucumbers -0.640 + 0.217 -0.539 k 0.1 96 -0.548 k 0.1 92 -0.562 + 0.1 92 -0.466 _+ 0.1 82 -0.449 f 0.1 81 -I 

Goodness-of-fit (G) 375.38b 776.54 777.60 780.80 787.04 789.56 ? 
rn 
0 

a Cook-Mozaffari et al. (1979) 
Based on the conditional model and hence not comparable to the others cn 

1 cn 
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In general one must anticipate that the degree to which the matching variables are 
incorporated in the analysis will affect the estimates of relative risk. An example which 
better illustrates this phenomenon is provided by the joint Iran/IARC study of oesoph- 
ageal cancer on the Caspian littoral (Cook-Mozaffari et al., 1979). In that part of the 
world both cancer incidence and many environmental variables show marked geo- 
graphical variation. Cases and controls were therefore individually matched according 
to village of residence, as well as for age. Just as in the preceding example, the data 
were analysed using both the conditional fully matched analysis based on (7.2) and 
the unconditional analysis based on (6.10) in which the entire sample was considered 
as a single stratum. Intermediate between these two extremes, additional analyses were 
performed which incorporated various levels of stratification by age and by geographical 
area, the latter grouping the villages into regions with roughly homogeneous incidence. 

Table 7.12 presents the results for males for four risk variables which appeared to 
be the best indicators of socioeconomic and dietary status. Substantial bias of the regres- 
sion coefficients towards the origin, indicating a lesser effect on risk, is evident with 
the coarsely stratified and unmatched analyses. This confirms the theoretical results 
regarding the direction of the bias which were noted above to hold for the univariate 
situation. While the standard errors of the estimates increase as greater account is 
taken of the matching, the changes are not great and seem a small price to pay for 
avoiding bias. 

In summary, both theoretical and numerical studies confirm that the pooling of 
matched or stratified samples for analysis will result in relative risk estimates which 
are conservatively biased in comparison with those which would be obtained using the 
appropriate matched analysis. In some situations, where the matching was not essential 
to avoid bias, the pooled and matched estimates may scarcely differ at all. Even then, 
however, the additional information gained from the pooled data, as reflected in the 
variances of the estimates, is not great. Consequently, now that appropriate and flexible 
methods are available for doing so, the matching should be accounted for in the analysis 
whenever it has been incorporated in the design. 

While the availability of methods for multivariate analysis of matched samples cer- 
tainly makes such designs more attractive, it does not follow that they should always 
be used. Close pair matching may result in a number of cases being lost from the study 
for want of an appropriate match. It may also impose severe administrative costs which 
could be avoided with a less restrictive design. Increasing use is being made of "popula- 
tion controls" obtained as an age-stratified random sample of the population from 
which the cases were diagnosed. Many epidemiologists believe that this is the best way 
to avoid the selection bias inherent in other choices of the control population. The 
confounding effects of other factors which are causally related to disease may be 
accounted for by post-hoc stratification of the sample, or by modelling them in the 
analysis. Such designs and analyses accomplish many of the aims intended by the use 
of matching, and constitute a practical alternative which may be preferred in many 
situations. 
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LIST OF SYMBOLS - CHAPTER 7 (in order of appearance) 

log relative risk associated with unit change in kth risk variable 
vector of risk variables for jth study subject; xj = (xi,, . . ., xjk) 
number of cases 
number of controls 
total number of study subjects 
denotes a partition of the integers from 1 to n into two groups, one of 
size n, and the other of size no = n-n,; e.g., if nl'= 2 and no = 3 a pos- 
sible partition is 1, = 3, l2 = 4, l3 = 1, L = 2, l5 = 5 or 1 = (3,4,1,2,5) 
logit of &sease probability for an individual with a standard (x = 0) set 
of risk variables in the ith stratum 
disease probability in the ith stratum for an individual with value x for 
the risk variable 
odds- ratio 
log relative risk (binary exposure) 
number of matched pairs with neither case nor control exposed 
number of matched pairs with case unexposed and control exposed 
number of matched pairs with case exposed and control unexposed 
number of matched pairs with both case and control exposed 
in discordant matched pairs with a binary exposure variable, denotes the 
fitted number of exposed cases under the unconditional model 
conditional probability that in a discordant matched pair it is thecase 
which is exposed 
number of controls per case (fixed) 
number of controls per case in the ith matched set 
number of matched sets 
value of kth exposure variable (k = 1, .. ., K) for case (j = 0) or j" 
control (j = 1, . . ., Mi) in the ith matched set 
(xijl, . . ., xijK) exposure vector for jth subject in ith set 
goodness-of-fit statistic based on the (conditional) log likelihood 
number of exposed cases in ith of I 2 x 2 tables 
number of cases in ith table 
number of controls in i" table 
(expected) odds ratio associated with ith of I 2 x 2 tables 
value of lth wvafiable for ith 2 x 2 table 



LOGISTIC REGRESSION FOR MATCHED SETS 279 

Zi vector of covariable values for ith table 

Y vector of interaction parameters in logistic model for a series of 2 x 2 
tables 

Pli exposure probability for cases in the ith stratum 
qli l-p~i 
Po i exposure probability for controls in the it" stratum 
qoi l-poi 
6i poi/qoi 



APPENDIX I: 

GROUPED DATA FROM THE ILLE-ET-VILAINE STUDY OF 
OESOPHAGEAL CANCER USED FOR ILLUSTRATION 

IN CHAPTERS 4 AND 6 

ALCOHOL TOBACCO 
(GM/DAY) (GE.I/DAY) 

CASES CONTROLS 
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AGE (YRS) ALCOHOL 
(GM/DAY) 
-- -----4 

TOBACCO 
(GM/DAY 
-------- 

CASES CONTROLS 



OESOPHAGEAL CANCER STUDY 

AGE (YRS) ALCOHOL 
(GM/DAY 1 

TOBACCO 
(GM/DAY) 

CASES CONTROLS 



APPENDIX 11: 

GROUPED DATA FROM THE OXFORD CHILDHOOD CANCER SURVEY 
USED.FOR ILLUSTRATION IN CHAPTERS 6 AND 7 

YEAR OF DEATH AGE AT DEATH X-RAYED CASES CONTROLS 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
IN0 

YES 
NO 

YES 
IN0 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 
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YEAR OF DEATH AGE A T  DEATH X-RAYED CASES 

YES 
IN 0 

YES 
NO 

YES 
IN0 

YES 
NO 

YES 
1'40 

YES 
N O  

YES 
N O  

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
N O  

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
N O  

YES 
NO 

CONTROLS 
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YEAR OF DEATH AGE AT DEA-rH X-RAYED 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
IVO 

YES 
NO 

YES 
1'40 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
1'40 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

CASES CONTROLS 
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YEAR OF DEATH AGE A T  DEATH X-RAYED CASES 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

CONTROLS 
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YEAR OF DEATH AGE AT DEATH X-RAYED 
. - 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
IN0 

YES 
NO 

YES 
IN0 

YES 
N O  

YES 
IN0 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

CASES CONTROLS 



YEAR OF DEATH 

CHILDHOOD CANCER SURVEY 

AGE AT D E A M  X-RAYED 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
IVO 

YES 
NO 

CASES CONTROLS 
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MATCHED DATA FROM THE LOS ANGELES STUDY 
OF ENDOMETRIAL CANCER USED FOR ILLUSTRATION IN 

CHAPTERS 5 AND 7 

CASE OR 
CONTROL 

CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CmlTP.OL 
CONTROL 
CWTROL 
CWTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CCNTROL 
CWTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CCNTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CCNTROL 

AGE GALL 
BLADDER 
D I SEASE 

NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 

YES 
NO 
NO 

YES 

HYPER 
TENS ION 

NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 

YES 
YES 
YES 
YES 

NO 
NO 
NO 
NO 

YES 
NO 
NO 

YES 
NO 
NO 
NO 

YES 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
YES 

NO 
NO 

OBESITY ESTROGEN 
(ANY 1 
USE 

CONJUGATED 
DOSE (SEE 
CODE) 

ESTROGEN 
DURAT I ON 
(MONTHS) 

NON 
ESTROGEN 
DRUG 

YES 
UNK 
UNK 
LNK 
YES 

NO 
NO 

YES 
NO 
NO 

YES 
YES 

NO 
YES 

NO 
UWK 

NO 
NO 

YES 
YES 
YES 

NO 
YES 

NO 
UNK 
YES 

NO 
YES 
YES 
UNK 

NO 
UNK 

IN0 
NO 

YES 
YES 
UNK 
YES 
UNK 

YES 
NO 
NO 
NO 

YES 
YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
YES 

NO 
YES 

NO 
NO 

YES 
NO 

YES 
YES 
YES 
YES 

NO 
NO 

YES 

3 
0 
0 
0 
1 
3 
3 
0 
2 
2 
1 
2 
1 
2 
1 

LNK 
2 
0 
2 
2 
2 
1 
2 
0 
0 
2 
0 
3 
0 
0 
1 
0 
3 
2 
2 
1 
0 
0 
0 

YES 
NO 
NO 
NO 

YES 
YES 

NO 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

F1O 
YES 

NO 
YES 

NO 
NO 

YES 
NO 

YES 
YES 

NO 
YES 
YES 
YES 

NO 
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CASE OR 
CONTROL 

CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
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CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 

AGE GALL 
BLADDER 
DISEASE 

HYPER 
TENS I ON 

OBES I TY ESTROGEN 
(ANY 
USE 

CONJUGATED 
DOSE (SEE 
CODE ) 

ESTROGEN 
DURAT I ON 
(MONTHS) 

NON 
ESTROGEN 
DRUG 

NO 
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CASE OR 
CONTROL 
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DISEASE 

HYPER 
TEI\IS I O N  

OBES I T Y  ESTROGEN 
(ANY ) 
USE 

CON JUGATE D 
DOSE (SEE 
CODE ) 

ESTROGEN 
DURATION 
(MONTHS) 

NON 
ESTROGEN 
DRUG 

CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CCNTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CCNTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 

NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
N O  
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 

YES 
NO 

YES 
NO 
NO 

YES 
NO 
NO 
NO 

YES 
NO 
NO 
NO 

YES 
NO 

YES 
YES 

NO 
YES 
YES 
YES 

NO 
NO 

YES 
YES 

NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
YES 

NO 
YES 

NO 
NO 
NO 

YES 
NO 
NO 

YES 
NO 

UNK 
UNK 

NO 
UNK 
UNK 
UNK 
YES 
UNK 
UNK 
YES 
YES 
YES 
YES 

NO 
YES 
YES 

NO 
NO 

YES 
YES 
YES 
YES 
UNK 

NO 
UNK 
YES 

NO 
UNK 

NO 
YES 

NO 
YES 

NO 
YES 

NO 
YES 

NO 
NO 
NO 
NO 
NO 

NO 
YES 
YES 

NO 
YES 

NO 
YES 
YES 

NO 
NO 
NO 

YES 
YES 

NO 
NO 

YES 
YES 
YES 
YES 

NO 
YES 
YES 

NO 
NO 
NO 

YES 
YES 

NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
YES 

0 
0 
6 
0 

46 
0 
0 

96+ 
0 
0 
0 

48 
96+ 

0 
0 

12 
4 
0 

24 
0 
9 

29 
0 
0 
0 

10 
96+ 

0 
0 
0 
0 

LlNK 
0 
0 
0 
0 

LlNK 
0 

60 
6 

UNK 
6 0 
96+ 
25 
0 

96+ 

YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 

NO 
YES 

NO 
YES 
YES 
YES 

NO 
YES 
YES 
YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
NO 

YES 
NO 

YES 
YES 

NO 
NO 
NO 
NO 

YES 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 
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CASE OR AGE 
CONTROL 

CASE 7 2 
CONTROL 72 
CONTROL 72 
CONTROL 72 
CONTROL 72 
CASE 5 7 
CONTROL 57 
CONTROL 58 
CONTROL 57 
CONTROL 57 
CASE 7 4 
CONTROL 74 
CONTROL 73 
CONTROL 75 
CONTROL 75 
CASE 6 2 
CONTROL 6 2  
CONTROL 6 2  
CONTROL 6 3  
COIUTROL 61 
CASE 7 3 
CONTROL 72 
COWTROL 73 
CONTROL 73 
CONTROL 73 
CASE 7 1 
CONTROL 71 
CONTROL 71 
CONTROL 71 
CONTROL i l  
CASE 6 4  
CONTROL 65 
CONTROL 6 4  
CONTROL 64 
CONTROL 6 4  
CASE 63 
CONTROL 6 4  
CONTROL 6 2  
CONTROL 6 4  
CONTROL 6 4  
CASE 79 
CONTROL 78 
CONTROL 79 
CONTROL 79 
CONTROL 78 

GALL 
BLADDER 
D I SEASE 

HYPER 
TENS ION 

OBESITY ESTROGEN 
(ANY 
USE 

CONJUGATED 
DOSE (SEE 
CODE) 

ESTROGEN 
DURATION 
(MONTHS) 

NON 
ESTROGEN 
DRUG 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 

YES 
YES 

NO 
NO 
NO 

NO 
YES 
YES 
YES 
YES 

NO 
YES 

NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 

YES 
YES 

NO 
NO 

YES 
YES 
YES 

NO 
NO 
NO 

YES 
YES 

NO 
NO 
NO 
NO 
NO 
NO 
Id0 
NO 

YES 
YES 
YES 

NO 
YES 

NO 

YES 
uw 
YES 

NO 
YES 

NO 
YES 
YES 

NO 
NO 

YES 
YES 
YES 
YES 
Ll NK 
YES 
YES 
YES 
UNK 
YES 
YES 

NO 
NO 
NO 
NO 

YES 
UNK 

NO 
NO 
NO 

YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 

NO 
YES 
YES 
YES 
YES 

NO 
YES 

NO 
NO 
NO 

YES 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
NO 

YES 
NO 
NO 

YES 
YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 

NO 
YES 

NO 
NO 
NO 

YES 
NO 

YES 
YES 
YES 
YES 
YES 

NO 
NO 

YES 
YES 
YES 
YES 

NO 
YES 
YES 

0 
0 
0 
1 
0 
3 
0 
1 
1 
0 
0 
0 
2 
0 
0 
2 
2 
2 
0 
3 
1 
2 
3 
1 
0 
1 
0 
0 
0 

uw 
0 
3 
3 
2 
3 

UNK 
0 
0 
1 
3 
1 
1 
0 
0 
1 

0 
0 
0 

4 8 
0 

12  
0 

3 6 
36 

0 
0 
0 
2 
0 
0 
6 

3 7 
6 3 

0 
96+ 

4 
9 0 

5 
15 
0 

UNK 
0 
0 
0 

UNK 
0 

96+ 
96+ 
3 6 
96+ 
96+ 

0 
0 

18 
UNK 
96+ 
96+ 

0 
0 

24 

YES 
NO 

YES 
YES 
YES 

NO 
YES 
YES 

NO 
NO 

YES 
YES 
YES 
YES 

NO 
YES 
YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 

NO 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 
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CASE OR 
CONTROL 

CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
cmmoL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 

AGE 

- 

8 0 
8 1  
8 1  
8 0 
80 
8 2  
8 2  
8 1  
8 1  
8 2  
7 1 
7 1  
7 1  
7 1  
7 1  
8 3  
8 3  
8 3  
8 3  
8 3  
6 1  
60 
6 1  
6 2  
6 1  
7 1  
7 1  
7 1 
70 
7 1  
69 
69 
7 0 
70 
70 
7 7 
76 
76 
77 
77 
6 4 
6 4  
6 3 
6 3 
63 

GALL 
BLADDER 
DISEASE 

tlYPER OBESITY 
TENS ION 

ESTROGEN 
(ANY 
USE 

CONJUGATED 
DOSE (SEE 
CODE) 

ESTROGEN 
DURAT I ON 
(MONTHS) 

N r n  
ESTROGEN 
DRUG 

NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
YES 

NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 

N O  
YES 

NO 
NO 
NO 

YES 
NO 
NO 

NO YES 
YES YES 
YES NO 

NO YES 
YES YES 
YES YES 

NO YES 
YES UNK 
YES YES 
YES YES 
YES NO 
YES YES 

NO YES 
NO YES 
NO NO 

YES YES 
YES YES 

NO NO 
YES YES 

NO NO 
YES NO 

NO NO 
NO NO 
NO YES 
NO NO 
NO NO 
NO YES 

YES YES 
NO NO 

YES YES 
YES YES 

NO YES 
YES NO 
YES NO 

NO YES 
NO YES 

YES. NO 
YES YES 
YES YES 
YES NO 

NO YES 
NO YES 
NO YES 

YES NO 
YES YES 

YES 
NO 

YES 
YES 

NO 
YES 

NO 
NO 

YES 
YES 
YES 

NO 
NO 

YES 
YES 
YES 

NO 
NO 

YES 
NO 

YES 
NO 

YES 
NO 

YES 
YES 

NO 
NO 
NO 

YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 

NO 
YES 

NO 

1 
0 
1  
2  
0 
2  
0 
0 
1  
2  

UNK 
0 
0 
1 
1  
3  
0 
0 
2  
0 
3  
0 
1 
0 
0 
1 
0 
0 
0 
1  
2  
0 
0 
1  

UNK 
3 
0 
0 
0 
0 
1 
3 
0 

U M  
0 

- 

15 
0 

18 
7 4 

0 
6 
0 
0 

12 
13 
8 4 

0 
0 

96+ 
30 
1 4  

0 
0 

16 
0 

96+ 
0 

2  4 
0 
0 

96+ 
0 
0 
0 
3  

40 
0 
0 

3  2  
UNK 
7 3  

0 
0 
0 
0 

37 
6 
0 

UNK 
0 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
NO 
NO 

YES 
YES 
YES 
YES 
YES 
YES 
Y E.S 
YES 
YES 
YES 
YES 

NO 
NO 
NO 

YES 
YES 
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CASE OR 
CrnTROL 

AGE GALL 
BLADDER 
DISEASE 

HYPER 
TENS ION 

CASE 
CrnTROL 
CONTROL 
CCNTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 

YES 
NO 
NO 
NO 

YES 
YES 

NO 
NO 

YES 
NO.  
NO 
NO 
NO 
NO 
NO 

YES 
YES 
YES 

NO 
NO 
NO 
NO 
NO 

YES 
YES 
YES 
YES 

NO 
YES 
YES 
YES 

NO 
NO 
NO 
NO 

OBESITY 

NO 
YES 

NO 
YES 

NO 
NO 

YES 
UNK 

NO 
NO 

YES 
UNK 
YES 
YES 
YES 
YES 
YES 

NO 
YES 

NO 
UNK 

NO 
YES 

NO 
NO 

YES 
YES 
YES 
YES 
YES 
YES 

NO 
NO 

YES ' 

YES 
YES 
YES 
UNK 
YES 
YES 
YES 

NO 
LINK 
YES 

NO 

ESTROGEN 
(ANY 
USE 

CONJUGATED 
DOSE (SEE 
CODE) 

ESTROGEN 
DURAT I ON 
(MONTHS) 

NON 
ESTROGEN 
DRUG 

NO 
YES 

NO 
NO 
NO 

YES 
YES 

NO 
YES 

NO 
YES 

NO 
NO 

YES 
NO 

YES 
YES 

NO 
YES 

NO 
YES 

NO 
YES 
YES 

NO 
YES 

NO 
NO 

YES 
NO 

YES 
YES 

NO 
YES 
YES 
YES 
YES 

NO 
NO 
NO 

YES 
NO 
NO 
NO 

YES 

0 
1 
0 
0 
0 
0 
2  
0 
2  
0 
3 
0 
0 
0 
0 
2  
1 
0 
1 
0 

UNK 
0 
2  
1 
0 
1 
0 
0 
1 
0 
3 
0 
0 
3 
3 
1 
1 
0 
0 
0 
2  
0 
0 
0 
2  

0 
UNK 

0 
0 
0 
0 

5 7  
0 

96+ 
0 

96+ 
0 
0 
0 
0 

60 
1 
0 

96+ 
0 

UNK 
0 

48 
96+ 

0 
6 7  

0 
0 

UNK 
0 

60 
0 
0 

96+ 
1 2  
27 

3 
0 
0 
0 

16 
0 
0 
0 
3 

NO 
YES 

NO 
NO 
NO 

YES 
YES 

NO 
YES 
YES 
YES 

NO 
NO 

YES 
YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 
YES 

NO 
NO 

YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 
YES 

NO 
NO 

YES 
NO 
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CASE OR 
CONTROL 

CASE 
CrnTROL 
CONTROL 
CrnTROL 
CONTROL 
CASE 
CrnTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
COlVTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONl'ROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 
CASE 
CONTROL 
CONTROL 
CONTROL 
CONTROL 

AGE GALL 
BLPDDER 
D I  SEASE 

HYPER 
TENSION 

OBESITY ESTROGEN 
(ANY) 
USE 

CONJUGATED 
DOSE (SEE 
CrnE 

ESTROGEN 
DURATI OF4 
(MONMS ) 

NON 
ESTROGEN 
DRUG 

NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
YES 

NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 

YES 
NO 

YES 
YES 

NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 

YES 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
YES 

NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 
NO 

YES 
NO 
NO 

YES 
NO 
NO 
NO 
NO 

YES 
YES 

YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
UNK 
UNK 
YES 

NO 
UNK 
UNK 
UNK 
LINK 

NO 
UNK 
UNK 
YES 
UNK 
YES 
YES 

NO 
YES 
YES 
UNK 

NO 
YES 
YES 
YES 
YES 

NO 
YES 

NO 
YES 
YES 
YES 
YES 
YES 

NO 
UNK 

NO 
NO 

YES 
YES 
U M  
YES 

NO 

YES 
YES 

NO 
YES 
YES 
YES 

NO 
YES 

NO 
NO 

YES 
NO 
NO 

YES 
NO 
NO 
NO 

YES 
NO 
NO 

YES 
NO 
NO 
NO 
NO 

YES 
YES 

NO 
NO 

YES 
YES 
YES 
YES 
YES 

NO 
YES 
YES 

NO 
NO 
NO 

YES 
NO 
NO 
NO 

YES 
YES 
YES 

NO 
YES 
YES 

96+ 
5 6 

0 
UNK 
34 
96+ 

0 
4 
0 
0 

36 
0 
0 

UNK 
0 
0 
0 
6 
0 
0 
0 
0 
0 
0 
0 

96+ 
40 

0 
0 

96+ 
UNK 
1 2  
96+ 
96+ 

0 
96+ 
96+ 

0 
0 
0 
9 
0 
0 
0 

4 1 
18 
96+ 

0 
9 2 
5 9 

YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
NO 
NO 

YES 
NO 
NO 

YES 
NO 

YES 
YES 
YES 
YES 

NO 
YES 
YES 

NO 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 
YES 

NO 
NO 

YES 
YES 
YES 

NO 
YES 
YES 

YES 
YES 

NO 
YES 
YES 
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LISTING OF PROGRAM MATCH 

The following main program and subroutine perform the conditional logistic regression analysis 
for matched sets consisting of a single case and a variable number of controls, as described in 
fj 7.4. T o  illustrate how the program works we have input the data from the Los Angeles endo- 
metrial cancer study shown in Appendix 111. Four different models were fit in hierarchical fashion 
using the variables GALL, OB, EST and GALLx  EST (see Table 7.2). The last two of these 
correspond precisely to Models 4 and 8 of Table 7.7. Note the use of the SCORE statistic, 
calculated at the first iteration of each fit with the estimated regression coefficients from the 
previous model, to test the significance of the added variable(s). 

The subprogram calls the IBM scientific subroutine SINV for inversion of symmetric matrices. 



APPENDIX IV 

MAIN PROGRAM 

.C MASTER MAIN 
DIMENSION NR(631, IVAR(6),W(6),EZB(6), 

x z ( ~ , ~ , ~ ~ ) , B ( ~ ) , s c o R E ( ~ ) , c o v ( ~ ~ ) , c o v I ( ~ ~ )  
C 
C DIMENSION IvAR(NM),NcA(NS),NCT(NS), IP(NMAX~),W(NM),~~\~~(NM), 
c ::z(NM, NRMAX, NS), B(NM), SCORE(NM),COV(NMI ),COVI(NMI 1 
C SEE SUBROUTINE FOR DEFINITIOlVS 
C 

DATA hlR/63::5/,B/6::0 .O/, IVAR/ l ,  2,3,4,5,6/, NP/6/ 
DATA NM,NRMAX,NIT,EPS/~,~, 10,O .0001/ 
NM 1 =I\YV1::(lVM+1) / 2 
1-0 
READO, 100) GALL,OB,EST 

1000 CONTINUE 
100 FORMAT(~OX,F~.O,~X,F~ .0,15X,F5.0) 

C 
C I I S  THE ORDER NUMBER OF THE SET 
C 

I=I+l 
K=O 
DO 6 KK-1,s 
K=K+l 
Z( 1, K, I )=2-GALL 
I F  (OB.EQ.~) OB=2 
Z(2, K, I )=2-OB 
Z( 3, K, I )=2-EST 
Z(4,K, I )=(~%ALL)::(~-EST) 
Z(5, K, I)=( 2-OB)::(2-EST) 
z(~,K,I)=(~-GALL)~(~-OB) 
READ( 1 ,10O,~N~=2000)  GALL,OB,EST 

6 CONTINUE 
GOT0 1000 

2000 CCNTINUE 
NS = I 
DO 2 I=l,NP 
B(I)=O .O 

2 CALL MATCH(NS,NR, NRMAX,NM, I ,NIT,B, Z,SCORE,COVI,COV, 
:: EZB, IVAR, NMI , EPS, W) 

STOP 
END 



PROGRAM MATCH 

SUBPROGRAM MATCH 
C 
C REFERENCES : 
C N. E. BRESLOW,N.E. DAY,K. T. HALVORSEN, R. L .  PRENTICE,C. SABAI : 
C ESTIMATION OF MULTIPLE RELATIVE RISK FUNCTIONS I N  MATCHED 
C CASE-CONTROL STLID I ES . ANERICAN JOURNAL OF EPIDEMIOLOGY 
C VOL108,N04, P 299-307 , 1978 
C 
C THIS SUBROUTINE COMPUTES A LINEAR LOGISTIC REGRESSION ANALYSIS FOR 
C MATCHED SETS OF 1 CASE A VARIABLE NO. OF CONTROLS PER CASE 
C M E  VARIABLES APPEARING 'IN M E  CALL STATEMENT ARE DEFINED AS FOLLO 
C NS NUMBER OF MATCHED SETS 
C NR VECTOR OF NO. OF CONTROLS I N  EACH SET + 1 
C NRMAX (MAX NO. OF CONTROLS PER CASE)+1 
C NM MAXIMUM NUMBER OF VARIABLES TO BE ANALYZED 
C IVP NUMBER OF VARIABLES ANALYZED I N  M I S  RUN 
C N I T  MAXIMUM NUMBER OF ITERATIONS OF THE NE\.ITON-WPHSOIV TYPE 
C B PARAMETER VECTOR OF LENGTH NM 
C Z NM BY NRMAX BY NS MATRIX CONTAINING COVARIATES 
C SCORE FIRST DERIVATIVE OF M E  LN-LIKELIHOOD OF LENGTH NM 
C COVI INFORMATION MATRIX(2ND DERIVATIVE OF LN-LIKELIHOOD) 
c cov INVERSE INFORMATION MATRIXCESTIMATED COVARIANCE MATRIX) 
C EZB WORKING VECTOR OF LENGTH NRMAX 
c IVAR VECTOR OF VARIABLES USED IN THIS RUN (DIMENSION NM) 
C NM1 = NM::(NM+~)/~ DIMENSION OF COVI AND COV 
C EPS CHANGE I N  LIKEL[HOOD BELOW WHICH ITERATION STOPS 
C W WORKING VECTOR OF LENGTH W\I 
C 
C NOTE(Z, J, K, I I s THE VALLIE OF THE JTH COVAR I ATE FOR THE KTH 
C MEMBER I N  THE I T H  SET.IT I S  ASSUMED THAT THE FIRST MEMBER I S  THE 
c CASE AND THAT THE REMAINING IVR(I)-I MEMBERS ARE CONTROLS. 
C 
C NOTECZ MUST BE DIMENSIONED TO HAVE NM RWS,NRMAX COLUMNS 
C AND AT LEAST NS SLICES [N  THE MAIN PROGRAM, 
C COVI AND COV ARE ARRAYS OF LENGTH WI.~:~NM+I)/~ SINCE THEY USE 
C M E  SYMMETRIC STORAGE MODE. 
C 

SUBROUTINE MATCHCNS, NR, NRMAX, MI, NP, N I  T, B, Z, SCORE,COVI,COV, 
:: EZB, IVAR, mi, EPS, W) 

DIMENS ION Z(W, NRMAX, NS), BCNM), EZBCNRMAX), SCORE(NM),COV(WV~I 1, 
:: COVI(NMI 1, IVAR(NM), NRCNS), W(NM) 

REAL LOGLI K 
DATA TEST/1 .0/, I  SUB/^ / 
WRITE(6,lOO) 

100 FORMAT(///' LOGISTIC REGRESSION ANALYSIS FOR MATCHED SETS', /) 
WRITE(6,lO 1 )Ns 

1 0 1 FORMAT( 1 H , ' IVUMBER OF MATCHED SETS', 14) 
 WRITE(^, 102)((1,NR(1)), I=l,NS) 

102 FORMATCIH ,'SET NUMBER AND NUMBER OF MEMBERS', 
::' I N  EACH SET, (INCLUDING CASE)' ,/,50(1X, lO(I4, I3), /)) 

WRITE(6,103)IVP, (IVAR(J), J=l ,NP) 



300 APPENDIX IV 

103 FORMAT(1H ,'NUMBER OF VARIABLES I N  M I S  ANALYSIS=',13, 
::/,' THESE VAR.IABLES ARE NUMBERs1,3013) 

wRITE(6,104)NIT 
104 FoRMAT(~H ,'MAXIMUM NLIMBER OF I T E R A T I o N S ' , ~ ~ )  

wRITE(6,106) 
106 FORMAT(' ITER LOG-LIKELIHOOD SCORE',~X,'PARAMETER ESTIMATES') 

I TS=O 
IF(ISUB.NE.I)GOTO 1 

C SLIBTRACT VALUE OF COVARIATES FOR THE CASE FROM THOSE OF CONTROLS 
C M I S  OIYLY NEEDS TO BE DONE AT M E  FIRST CALL OF THE SUBROUTINE 

L = l  
DO 99 I=1,NS 
NRI =NR( I ) 
DO 99 J=2,NRI 
DO 99 K=1,NM 
z(K, J, I)=Z(K, J, I)-Z(K, L, I) 

9 9 CONT INLIE 
I SUB=O 

1 CON T I NUE 
ITS= ITS+ l  

C CLEAR ARRAYS PRIOR TO NEXT ITERATION 
LOGLIK=O .O 
K=O 
DO 2 J=l,NP 
SCORE(J)=O .O 
DO 2 JJ=J,NP 
K=K+l 

2 COVI(K)=O .O 
C CALCULATE LCGLIK,SCORE,COVI 

DO 7 I=l,NS 
DENOM=O .O 
NRI=NR(I) 
DO 4 K=2,1YRI 
ZB=O .O 
DO 3 J=1,NP 
L=IVAR( J) 

3 ZB=ZB+B( J)::z( L, K, I ) 
EZB(K)=EXP(ZB) 

4 DENOM=DENOM+EZB(K) 
DENOM=.l . 0 +DENOM 
LOGL IK=LOGLIK-ALOG(DENOM) 
KJ=O 
DO 7 J=1,NP 
L=IVAR( J) 
EZJ=O .O 
NR I =IYR( I ) 
DO 5 K=2,NRI 

5 EZJ=EZJ+EZB(K)::Z(L, K, I 
SCORE(J>=SCORE( J)-EZJ/DENOM 



PROGRAM MATCH 

DO 7 JJ=l,J 
LL=IVAR(JJ) 
EZJJ=O .O 
EZZ=O .O 
NRI=NR(I) 
DO 6 K=2,NRI 
EZJJ=EZJJ+EZB(K)::Z(LL, K, I ) 

6 EZZ=EZB(K)::Z(L, K, I )::z( LL, K, I )+EZZ 
KJ=KJ+1 
COVI (KJ>=COVI (KJ)+(EZZ/DENOM)-EZJ::EZJJ/(DENOM>:DENOM) 

7 CONT I NUE 
DO 500  I=l,NM1 
cov(I)=covI(I) 

5 0 0  CONTINUE 
CALL SI NV(COV, NP, EPS, IER) 
I F  ( IER .IVE .O) WRITE (6,501 ) I E R  

5 0 1  FORMAT(" IER = ' , I3)  
TEMP=O .O 
K=O 
DO 5 1  J=l,NP 
DO 5 1  JJ=l,J 
K=K+ 1 
G=l  .O 
I F  (J.NE .JJ) G=2.0 
TEMP=TEMP+G::SCORE( J)::SCORE( JJ)::COV(K) 

5 1  CONTINUE 
C WRITE OUT ITERATION NUMBER AND LOG-LIKELIHOOD AVD B ' S  

WRITE(6,107)ITSf LOGLIK,TEMP,(B(J) , J=1 , NP) 
1 0 7  FORMAT(1X,14,F14.4,F11.3,2X,8F12.4,20(/,21X,8F12.4) 
C TEST FOR CONVERGENCE 

TEST=ABS(TEST-LOGLIK) 
IF(TEST .LE.EPS.OR.ITS.GE .NIT)GO TO 9 
TEST=LOGLI K 

C CALCULATE NEW VALUE OF PARAMETER ESTIMATE AND REPEAT 
c CALL SYMINV(COVI, NP, COV, W, NULLTY, I FAULT, NMI) 

DO 180 I= l ,NP 
W ( I  )=0 .o 
DO 181 J=l,I 
K = I Y I  -1 )/2+d 

18  1 W( I )=w( I )+SCORE( J)::COV(K) 
I 1  = I+1 
I F ( I  1 .GT .NP)GOTO 180 
DO 1 8 2  K=I l ,NP 
J=K':(K -1 ) /2+ I  

1 8 2 W( I )=W( I )+SCORE(K)::C@V( J) 
180  CONTINUE 

DO 1 8 3  I= l ,NP 
1 8 3  SCORE(1 ) = W ( I )  

DO 8 J=l,NP 
8 B( J)=B( J)+SCORE( J) 
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C UPON CONVERGENCE OF MAXIMUM ITERATIONS WRITE OUT RESULTS 
GO TO 1 

9 wRITEC~, 108)(B(J>, J=l ,NP) 
108 FORMAT(' ESTIMATED PARNETER VECTOR',(/lX,lOF12.6)) 

WRITE(6,109>(SCORE(J), J=l ,NP) 
109 FORMAT(' FIRST DERIVATIVE LOG-LIKELIHOOD', (/1X, 10F12.6)) 

WRITE(6,llO) 
110 F O R ~ T ( '  INFORMATION MATRIX') 

DO 10 J=l,NP 
K=J::( J-1 )/2+1 
JJ=J::(J+l)/? 

10  WRITE(^, 11 1) (COVI(I), I=K, JJ) 
11 1 FORMAT(lX, 10F12.6) 
C INVERT INFORMATION M4TRIX WID WRITE OUT 
C CALL SYM'[NV(COV I, NP, COV, W, NULLTY, I FAULT, NM1) 

DO 600 I=l,NMl 
COv(I)=CovI( I )  

600 CONTINUE 
CALL SINV(COV,IVP, EPS, IER) 
I F  (IER.NE.0) WRITE (6,501 ) IER 
WRITE(6,112) 

11 2 FORM4T(' ESTIMATED COVARIANCE MATRIX') 
DO 11 J=l,NP 
K=J::( J- 1 )/ 2+ 1 
JJ=J::(J+I ) /2  
SCORE(J~=B(J~/SQRT(COV(JJ)) 

11 WRITE(6,ll l)(COV(I), I=K, JJ) 
W R I T E ( ~ , ~ ~ ~ ) ( S C O R E ( J ) ,  J=l ,NP) 

113 FORMAT(' STANDARDIZED REGRESSION COEFFICIENTS',(/lX,1OOF12.6)) 
RETURN 
END 



PROGRAM MATCH 

MODEL WITH SINGLE VARIABLE: GALL 

LOGISTIC REGRESSION ANALYSIS FOR MATCHED SETS 

NUMBER OF MATCHED SETS 63  
SET IVUMBER AND NUMBER OF MEMBERS I N  EACH SET, (INCLUDIIVG CASE) 

1 5  2 5  3 5  4 5  5 5  6 5  7 5  8 5  9 5 1 0 5  
1 1  5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 
21 5 2 5 23 5 24 5 25 5 26 5 27 5 28 5 29 5 30 5 
31 5 32 5 33 5 34 5 35 5 36 5 37 5 38 5 39 5 40 5 
41 5 42 5 43 5 44 5 45 5 46 5 47 5 48 5. 49 5 50 5 
51 5 52 5 53 5 54  5 55 5 56 5 57 5 58 5 59 5 60 5 
61 5 62  5 6 3  5 

NUMBER OF VARIABLES. I N  THIS  ANALYSIS = 1 
THESE VARIABLES ARE NUMBERS 1 
MAXIMUM NUMBER OF ITERATIONS 10 
I TEK LOG-LIKELIHOOD SCORE PARAMETER ESTIMATES 

1 -101.3945 13.829 0 . O  
2 -95.6566 0.51 2 1 ,5714 
3 -95 ,4043 0 . O O O  1 .3011 
4 -95.4043 0.000 1 .3061 

ESTIWTED PARAMETER VECTOR 
1 .306142 

FIRST DERIVATIVE LOG-LIKELIHOOD 
0.000010 

I NFORMATI ON M4TR I X 
7.232518 

ESTIMATED COVARIANCE MATRIX 
0 .I38264 

STANDARDIZED REGRESSION COEFFICIENTS 
3.51 2652 
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MODEL WITH 2 VARIABLES: GALL + OB 

LOGIST I C  REGRESS IOlN ANALYS I S  FOR MATCHED SETS 

NUMBER OF MATCHED SETS 63  
SET NUMBER AND NUMBER OF MEMBERS I N  EACH SET,(IIVCLUDIIVG CASE) 

1 5  2 5  3 5  4 5  5 5  6 5  7 5  8 5  9 5 1 0 5  
1 1  5 1 2  5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 
21 5 2 2  5 23 5 24 5 25 5 26 5 27 5 28 5 29 5 30 5 
31 5 32 5 33 5 34 5 35 5 36 5 37 5 38 5 39 5 40 5 
41 5 42 5 43 5 44 5 45 5 46 5 47 5 48 5 49 5 50 5 
51 5 52 5 53 5 54 5 55 5 56 5 57 5 58 5 59 5 60 5 
61 5 62 5 63  5 

NUMBER OF VARIABLES I N  THIS AWLYSIS  = 2 
M E S E  VARIABLES ARE INUMBERS 1 2 
MAXIMUM NUMBER OF ITERATIONS 10 

ITER LOG-LIKELIHOOD SCORE PARAMETER ESTIMATES 
1 -95 .40 43 5.031 1.3061 0 .O 
2 -92.8562 0.016 1 ,2673 0.7044 
3 -92.8483 0 . O O O  1 .3085 0.7254 
4 -92.8484 0 . O O O  1 .3086 0.7255 

ESTIMATED PARAMETER VECTOR 
1.308584 0.725526 

FIRST DERIVATIVE LOG-LIKELIHOOD 
-0.000000 0.00000 1 

INFORMATION MATRIX 
7.1 15846 

-0.413175 9.369903 
ESTIMATED COVARIANCE MATRIX 

0 .I40892 
0 .006 21 3 0.106999 

STANDARDIZED REGRESSION COEFFICIENTS 
3.486 248 2.218012 



PROGRAM MATCH 

MODEL WITH 3 VARIABLES: GALL + OB + EST 
(model 4, Table 7.7) 

LOGISTIC REGRESSION ANALYSIS FOR MATCHED SETS 

NUMBER OF MATCHED SETS 6 3  
SET NUMBER AND NUMBER OF MEMBERS IN EACH SET,(INCLUDING CASE) 

1 5  2 5  3 5  4 5  5 5  6 5  7 5  8 5  9 5 1 0 5  
11 5 1 2  5 13 5 1 4  5 15 5 16 5 17 5 18 5 19 5 20 5 
21 5 22 5 23 5 24 5 25 5 26 5 27 5 28 5 29 5 30 5 
31 5 32 5 33 5 34 5 35 5 36 5 37 5 38 5 39 5 40 5 
41 5 4 2  5 43 5 44 5 45 5 46 5 47 5 48 5 49 5 50 5 
5 1  5 52  5 53 5 5 4  5 55 5 56 5 57 5 58 5 59  5 60 5 
6 1  5 6 2  5 6 3  5 

NUMBER OF VARIABLES I N  T H I S  A W L Y S I S  = 3 
THESE VARIABLES ARE NUMBERS 1 2 3 
MAXIMUM IIUMBER OF ITERATIONS 10 

ITER LOG-LIKELIHOOD SCORE PARAMETER ESTIMATES 
1 -92.8484 26.837 1.3086 0.7255 0.0 
2 -78.4750 1.213 1 .0256 0.4851 1.6166 
3 -77.8264 0.017 1.2543 0.5086 1.9860 
4 -77.8179 0 . O O O  1.2746 0.5113 2.0394 
5 -77.8 179 0 .OOO 1.2748 0.5113 2.0403 

ESTIMATED PARAMETER VECTOR 
1 .274839 0.5 11 342 2.040 298 

FIRST DERIVATIVE LOG-LI KELIHOOD 
0.000004 0.000002 0.000004 

INFORMATION MATRIX 
5.996700 

-0.295261 7.917870 
-0.581349 0.554122 5.222640 

ESTIMATED COVARIANCE MATRIX 
0.168775 
0.005016 0.1 27390 
0.018255 -0.012958 0.194881 

STANDARDIZED REGRESSION COEFFICIENTS 
3.103139 1.432659 4.621776 
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MODEL W I T H  4 V A R I A B L E S :  GALL + OB + E S T  + G A L L x E S T  

( m o d e l  8 ,  T a b l e  7.5) 

LOGISTIC REGRESSION ANALYSIS FOR MATCHED SETS 

NUMBER OF MATCHED SETS 63 
SET NUMBER AND NUMBER OF MEMBERS I N  EACH SET,(INCLUD'ING CASE) 

1 5  2 5  3 5  4 5  5 5  6 5  7 5  8 5  9 5 1 0 5  
1 1  5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 5 
21 5 22 5 23 5 24 5 25 5 26 5 27 5 28 5 29 5 30 5 
31 5 32 5 33 5 34 5 35 5 36 5 37 5 38 5 39 5 40 5 
41 5 42 5 43 5 44 5 45 5 46 5 47 5 48 5 49 5 50 5 
51 5 52 5 53 5 54 5 55 5 56 5 57 5 58 5 59 5 60 5 
61 5 62 5 63 5 

NUMBER OF VARIABLES I N  THIS  ANALYSIS = 4 
THESE VARIABLES ARE NUMBERS 1 2 3 4 
MAXIMUM NUMBER OF ITERATIONS 10 

ITER LOG-LIKELIHOOD SCORE PARAMETER ESTIMATES 
1 -77.8179 4.392 1.2748 0.5113 2.0403 0.0 
2 -75 .go31 0.221 3.0331 0.4859 2.5096 -2.2027 
3 -75.7909 0 . O O O  2.8467 0.4901 2.6172 -2.0003 
4 -75.791 0 0 . O O O  2.8446 0.4901 2.6206 -1 .9975 

ESTIMATED PARAMETER VECTOR 
2.844563 0.490130 2.620620 -1 .997451 

FIRST DERIVATIVE LOG-LIKELIHOOD 
-0 . O O O O O  1 0.000004 0 . O O O O  20 0.000006 

INFORMATION MATRIX 
6.692919 

-0.287091 7.667604 
-1 .389089 0.432648 4.504435 
4.758762 -0 .I33908 0.584442 4.981014 

ESTIMATED COVARIANCE MATRIX 
0.774399 

-0.003830 0.131 275 
0.340368 -0.014950 0.376377 

-0.779885 0.008943 -0.369744 0.989473 
STANDARDIZED REGRESSION COEFFICIENTS 

3.232460 1.352757 4.271620 -2.008047 
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LISTING OF PROGRAM STRAT 

The following main program and subroutine perform the conditional logistic regression analysis 
for. matched sets consisting of a variable number of cases and a variable number of controls, 
using the general likelihood (7.1). It was written by Mr Peter Smith as a generalization of the 
program MATCH. To illustrate its operation we have used exactly the same data as used with 
MATCH, n'amely those corresponding to several of the models in Table 7.7. Slight differences 
in the numerical output are due to the use of different computing formulae. 

The program is completely self-contained, with the subroutines SYMINV, CHOL, and TWIDL 
which it calls being listed also. 



APPENDIX V 

MAIN PROGRAM 

DIMENSION NCT(63),NCA(63), IVAR(61, IP(7),W(20),WW(20), 
:: Z(6,5,63) ,B(~),scORE(G),COV(~~ ),COVI(21) 

DATA NCA/63::1/,NCT/63::4/,NS,Nvl,NM4X,NIT,~PS/63,6,5, 10,0 .OOO1/ 
DATA B/6::0.0/, IVAR/l, 2,3,4,5,6/,NP/6/ 
N W  2 = W X + 2  
W l  =NM::(NM+1)/2 
DO 6 I=l,NS 
N=NCT( I )+NCA( I 
DO 6 J=1,N 
L=N+1 -J 
READ( I, 100) GALL,OB, EST 

100 FORMAT(~OX,F~ .0,5X,F5 .O, 15X,F5 .O) 
Z( 1, L, I )=2-GALL 
:IF (OB.Eo.9) 0 0 1 2  
Z(2, L, I )=FOB 
Z( 3, L, I )=2-EST 
~ ( 4 ,  L, I )=( 2-GALL)::C 2-EST) 
Z(5, L, I )=( ~-OB)::( 2-EST) 
Z(6, L, I )=( Z-GALL)::( 2-00) 

6 CONT I NUE 
DO 2 I=l,NP 
B(I)=O .O 

2 CALL STRAT(NS, NCA, IVCT, NMAX, NM, I, NIT, B, Z, SCORE, COV I, COV, 
::IVAR, EPS, NM1 ,W,W, I P, W X 2 )  

99 STOP 
END 



PROGRAM STRAT 

SUBPROGRAM STRAT 

SUBROUTINE STRATCNS, NCA,NCT,NMAX,NM, NP, NIT, B, Z, SCORE, COVI, COV, 
::IVAR, EPS, NM1 ,W, WW, IP, W X 2 )  

THIS SUBROUTINE COMPUTES A LINEAR LOGISTIC REGRESSION ANALYSIS 
FOR STRATIFIED SETS CONSISTING OF NCACI) CASES AND NCT(I) CONTROLS 
THE ITH STRATWl 
THE VARIABLES APPEARING INTHE CALL STATEMENT ARE DEFINED AS FOLLO 
NS NUMBER OF STRATA 
NCA VECTOR OF THE NUMBER OF CASES I N  EACH STRATUM 
NCT VECTOR OF THE NUMBER OF CONTROLS I N  EACH STRATUM 
NMAX MAXIMUM NUMBER OF CASES + CONTROLS I N  ANY STRATUM 
WV1 MAXIMUM NUMBER OF VARIABLES TO BE ANALYSED 
NP NUMBER OF VARIABLES TO BE ANALYSED I N  THIS RUN 
N I T  MAXIMUM NUMBER OF ITERATIONS OF THE NEWTON-RAPHSON TYPE 
B PARAMETER VECTOR OF LENGTH NM 
Z WC1 BY WV14X BY NS MATRIX CONTAINING COVARIATES 
SCORE FIRST DERIVATIVE OF THE LN-LIKELIHOOD OF LENGTH NM 
COVI INFORMATION MATRIX (2ND DERIVATIVE OF LN-LIKELIHOOD) 
COV INVERSE INFORMATION MATRIX : ESTIMATED COVARIANCE MATRIX 
IVAR VECTOR OF VARIABLE NUMBERS USED I N  THIS RUN 
EPS CHANGE IIV LIKELlHOOD BELOW WHICH ITERATION STOPS 
NM1 NM::(WC1+1)/2 
WW WORK ING VECTOR OF LENGTH NM 
I P WORKING VECTOR OF LENGTH W X 2  
NMAX2 NMAX+2 
NOTE: I N  THE ARRAY Z INDIVIDUALS ARE INDEXED BY THE 2ND 
SUBSCRIPT,WITHIN EACH STRATUM DATA ON CONTROLS MUST BE STORED 
FIRST FOLLOWED BY THOSE ON CASES. 
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C REFERENCES : 
C N. E.BRESLOW, N.E. DAY, K .  T .  HALVORSEN,R. L .  PRENTICE,C. SABAI: 
C ESTIMATION OF MULTIPLE RELATIVE RISK FUNCTIONS I N  MATCHED 
C CASE CONTROL STUDIES . AM. J EPIDEMIOL 108:299-307, 1978 

DIMENSION Z(NM, W X ,  NS), B(NM),sCORE(W\?),COV(NM~ ),COVI(NMl ) 
::, IVAR(NM), NCA(NS),NCT(NS),W(NM),W(I\IM), I P(NMAX~) 

REAL LOGLIK 
DATA TEST/I .o /  
WRITE(6,lOO) 

100 FORMAT(lHl,///' LOGISTIC REGRESSION ANALYSIS I N  STRATAf,/) 
WRITE(6,lO 1)NS 

101 FORWT(1H ,'NUMBER OF STRATAf,14) 
WRITE(6,102)(1,NCA(I),NCT(I), 1=1 ,NS) 

1 o 2 FORMAT( 1 H , ' STRATUM NUMBER AND NUMBERS OF CASES AND CONTROLS ', 
::so(ix, io(14,13,13),/)) 

WRITE(6,103)NP, (IVARCJ), J=l ,NP) 
103 F O W T ( 1 H  , 'NUMBER OF VARIABLES I N  THIS ANALYSIS', I3,/, 

::' THESE VARIABLES AREf,3013) 
 WRITE(^, 104)NIT 

104 F O W T ( 1 H  ,'MAXIMUM NUMBER OF ITERATIONSt,14) 
wRITE(6,106) 

106 FORMAT( 1 H , ' ITER LOG-LIKELIHOOD SCORE PARAMETER ESTIMATES ' ) 
ITS=O 

1 ITS=ITS+ l  
LOGLIK=O .O 
K=O 
DO 2 J=l,NP 
SCORE( J)=O .O 
DO 2 JJ=l,J 
K=K+ 1 

2 COVI(K)=O .O 
C CALCULATE LOGL I K, SCORE WID COVI 

DO 27 I=l,NS 
I FG=O 
SX=O .O 
K=O 
DO 8 J=l,NP 
W(J)=O .o 
w(J)=O .O 
DO 8 JJ=1, J 
K=K+ 1 

8 COV(K)=O .O 
M=NCA( I 
N=M+NC T( I ) 
XX=1 .o 
X=O .O 
I P( 1 )=N+l 
IP(N+2)=-2 
NMXZN-M+l 
DO 30 J=2,NMX 
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I PC J)=O 
DO 31 J=1,M 
I P(NMX+J)=J 
KK=N-M+l 
DO 1 2  J=KK,N 
DO 1 2  K=l,NP 
L=IVAR(K) 
w(K)=w(K)+z(L, J, I) 
X=X+B(K)::Z(L, J, I) 
XX=EXP(X) 
SX=SX+XX 
IF(IFG.NE .O)GOTO 13 
LOGLIK=LOGLIK+AL@G(SX) 
DO 17 K=l,NP 
SCORE(K>=SCORE(K>+W(K) 
I FG= 1 
L=O 
DO 14 K=l,NP 
WW(K)=WW(K)+XX::W(K) 
DO 1 4  KK=l,K 
L=L+l 
c o v ~ ~ ~ = c o v ~ ~ ~ + x x ~ ~ w ~ ~ ~ ~ : ~ ~ ~ ~ ~  
I D=O 
CALL lWIDL(IPS, IM, IZ, ID;IP,NMAX2) 
IF(ID.EQ.I)GOTO 20 
DO 15 K=l,NP 
L=IVAR(K) 
ZC=Z(L, r PS, I 1-Z(L, IM, I 
w(K)=W(K)+ZC 
X=X+B (K)::ZC 
GOT0 11 
LOGLIKzLOGLI K-ALOG(SX) 
L=O 
DO 21 J=l,NP 
SCORE( J>=SCORE( J)-WW( J)/SX 
DO 21 K=l,J 
L=L+l 
COVI (L)=COVI (L)+(sx::COV(L)-w(J)::ww(K))/sx::::~ 
CONTINUE 
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CALL SYMINV~COVI,NP,COV,W,NULLTY, I F A U L T , ~ ~ )  
TEMP=O .O 
K=O 
DO 51  J=l,NP 
DO 51  JJ=l,J 
K=K+l 
G=1.0 
I F  (J.NE.JJ) G=2.0 
TEMP=TEMP+G::SCORE ( J )::SCORE ( J J )::cov(K) 
CONT I NUE 
WRITE OUT ITERATION NUMBER AND LOG-LIKELIHOOD AND B 'S  
WRITE (6, ~O~)ITS,LOGLIK,TEMP,(B(J), J=1 ,NP) 
FORM~T(~X,  I4,F14.4, F11 .3,2X,8F12.4,20(/, 21X,8F12.4)) 
TEST FOR CONVERGENCE 
TEST=ABS(TEST-LOGLIK) 
I F  (TEST .LE .EPS .OR. I T S  .GE .NIT)GoTO 9 
TEST=LOGLI K 
CALCULATE NEW VALLIE OF PARAMETER ESTIMATE AND REPEAT 
DO 180 I=l,NP 
W( I ) = O  .o 
DO 181 J=l,I 
K=I::(I- l) /2+J 
W ~ I ~ = W ~ I ~ + S C O R E ~ J ~ : ~ C O V ~ K ~  
I 1  =I+1 
I F (  I 1 .GT .NP)GOTO 180 
DO 182  K=I l ,NP 
J=K:'(K- 1 ) /2+I  
W( I )=w( I )+SCORE(K)::COV( J) 
CONT I NUE 
DO 183 I=l ,NP 
SCORE(I)=W(I) 
DO 18 J=l,NP 
B( J)=B( J)+SCORE( J) 
LIPON CONVERGENCE OR MAXIMUM ITERATIONS WRITE OUT RESULTS 
GOT0 1 
WRITE(6,108)(B(J), J=l ,NP) 
FORMAT(IHO, 'ESTIMATED PARAMETER VECTOR', (/IX, IOFI 2.6)) 
WRITE(6, ~O~>(SCORE(J>,  J=l ,NP) 
FORMAT(IkI0, 'F IRST DERIVATIVE LOG-LIKEL[HOOD',(/lX,lOFl 2.6)) 
WRITEC~, 110) 
FORMAT(IHO,~INFORMATION MATRIX') 
DO 10 J=l,NP 
K=J::(J-1)/2+1 
JJ=J::( J+I ) / 2  
WRITE (6,111) (COVI(I),I=K, JJ) 
FORM4T(lX, 10F12.6) 
INVERT INFORMATION MATRIX AND WRITE OUT 
CALL SYMINV(COVI,NP,COV,W,NULLTY, IFAULT, Wl )  
WRITE(6,112) 
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112 FOWT(lHO,'ESTIM4TED COVARIANCE MATRIX') 
DO 19 J=l,NP 
K=~::(J-1)/2+1 
JJ=J::( J+1)/2 
~ c ~ R E ~ J > = B ( J ~ / ~ Q R T ( c ~ ~ ( J J ) )  

1 9  w R I T E ( ~ , ~ ~ ~ ) ( C O V ( I ) , I = K , J J )  
WRITE(~,~~~)(SC@RE(J),J=~,NP) 

1 1 3  FORMAT(IHO, 'STNDIZED REGRESSION COEFFIC1ENTS1,(/1X, 100F12.6)) 
RETURN 
END 
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SUBROUTINE SYMINVCA, N, C,W, NULLTY, IFAULT, NFAC) 
DIMENSION A(NFAC),C(NFAC),W(N) 

ALGORITHM AS7 J .R. STATIST.SOC .C .(1968) VOL. 17,N0.2 

NROW=N 
I FAULT= 1 
IF(NROW.LE.O)GOTO l o o  
I FAlJLT=O 
CALL CHOLCA, NRCW, C, NLILLTY, I FAULT, MFAC) 
IF(IFAULT.NE.O)GOTO l o o  
IUI\I=(NROW::(NROW+I I)/ 2 
I ROW =NROW 
NDIAG=NN 
IF(C(NDIAG> .EQ .090 )GOTO 1 1 
L=ND IAG 
DO 10 I=IRCW,NROW 
W ( I  )=C(L) 
L=L+l 
CON T I NUE 
ICOL=NROW 
JCOL=NN 
MD I AG=NN 
L=JCOL 

K= NROW 
IF(K .EQ. 1ROW)GOTOlZ 
x=x-w(K)::c(L) 
K=K-1 
L=L-1 
I F( L .GT .MD IAG)L=L-K+I 
GOT0 13 
C(L)=X/W(IROW) 
IF( ICOL .EQ. IROW)GOTO 1 4  
MD IAG=MD IAG -I COL 
ICOL=ICOL-1 
JCOL=JCOL-1 
GOT0 15 
L=ND I AG 
DO 1 7 J= I ROW, IUROW 
C(L)=O .o 
L=L+J 
CONTINUE 
ND I AG=ND I AG - I ROW 
I RCWIROW-1 
IF(IRCW.NE.O)GOTO 16 
RE TLIRN 
END 
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SUBROUTIIVE CK)L(A,N, U, NULLTY, 'IFAULT, NFAC) 
DIMENS ION ACNFAC), UCNFAC) 
REAL ETA 
DATA ETA/0.000001/ 

ALGORITHM AS6 J.R.STATIS. SOC. C. (1968). VOL.17, N0.2 

I FAULT= 1 
IF(N.LE.O)GOTO 100 
I FAULT=:! 
NI,ILLTY=O 
J= 1 
K=O 
DO 10 ICOL=l,N 
L=O 
DO 11 IROW=l,ICOL 
K=K+ 1 
W=A(K) 
M=J 
DO 12 I=l,IROW 
L=L+1 
I F ( 1  .EQ.IROW-GOT0 13 
w =W -U( L)::U(M) 
M=M+ 1 
CONTINUE 
IF(IROW.EQ.ICOL)GOTO 1 4  
:[F(u(L) .EQ.O .O)GOTO 21 
u(K)=w/u(L) 
GOT0 11 
U(K)=O .O 
CONTINUE 
I F(ABS(W) . LT .ABS(ETA::A(K))) GOTO 20 
IF(w.LT.O .O)GOTO 100 
U(K)=SQRT(W) 
GOT0 15 
UCK)=O .O 
NULLTY=NULLTY+l 
J=J+I COL 
CONTINUE 
I FAULT=O 
RETURN 
END 
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SUBROUTINE TWIDL(X, Y, Z, DONE, P,N2) 
INTEGER X, Y, Z,DONE, N2, P(N2) 

THIS SUBROUTIIVE I S  A FORTRAN VERSION OF CACM 382  
FOR SELECTING A L L  POSSIBLE COMBINATIONS OF M THINGS 
OUT OF. N 0BJECTS.OUTSIDE OF THE SUBROUTINE 
I N I T I A L L Y  SET ~(l)=N+l,P(N+2)=-2,P(2) TO 
P(N-M+l -)O, P(N-M+2) TO P(IV+l )=I TO M 
RESPECTIVELY . I F  M=O,P(2)=1 
I N I T I A L L Y  SET DONE =O M I D  THE S/R SETS THIS TO 
1 WHEN A L L  COMBINATIONS HAVE BEEN SELECTED 
SUPPOSE THE N OBJECTS ARE I N  A ( l  :IV) AND 
SUCCESSIVE COMBIMTIONS ARE STORED I N  C(1:M) 
:INITIALLY SET c ( i  TO c(M)=A(N-M+I TO A(N) 
THEN CALL TWIDL I F  DONE=1 A L L  COMB:[NATIONS 
HAVE BEEN GENERATED, OTHERWI SE SET C(Z)=P(X) 
ALTERMTIVELY STORE (N-M) 0 ' s  AND M 1 ' s  I N  
B(1:N) I N  'THAT ORDER THEN CALL TWIDL. 
I F  DOIVE .NE .1 SET B(X)=l AND B(Y)=O 
AND CONTINUE I N  M I S  WAY UIVTIL DOlVE=1 

J=O 
J=J+1 
IF(P(J+I).LE.O)GOTO 1 
IF(P(J) .NE.O)GOTO 5 
J l=J-1 
I F ( J 1  .LT.2)GOTO 6 
DO 7 I=2,J1 
K=J1-1+2 
P(K+I )=-I 
P(J+1)=0 
P(2)=1 
X= 1 
z= 1 
Y=J 
GOT0 4 
CONT INUE 
I F(J .GT .I )PC J)=O 
J=J+1 
IF(P(J+I).GT.O)GOTO 2 
I=J -1  
K=J-1 
I = I + 1  
IF(P( I+1)  .NE .O)GOTO 8 
P(I+1 )=-I 
GOT0 3 
COlVTI NUE 



PROGRAM STRAT 

IF(P(I+~).NE.-I)GOTO 9 
P(I+1 )=P(K+1) 
Z=PCK+1) 
X= I 
Y =K 
P(K+ 1 )=- 1 
GOT0 4 

9 CONT I NUE 
IF (1  .NE.P(l)) GOT0 10 
DONE = 1 
GOT0 4 

10 Z=P( I +1) 
P( J+1 )=Z 
P(I+1 )=O 
X=J 
Y=I 

4 RETURN 
END 
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MODEL WITH S I N G L E  VARIABLE:  GALL 

LOGISTIC REGRESSION ANALYSIS I N  STRATA 

NUMBER OF STRATA 63 
STRATUM NUMBER AND NUMBERS OF CASES AND CONTROLS 

1 1 4  2 1 4  3 1 4  4 1 4  5 1 4  
9 1 4 1 0 1 4 1 1 1 4 1 2 1 4 1 3 1 4  

1 7 1 4 1 8 1 4 1 9 1 4 2 0 1 4 2 i  1 4  
2 5 1 4 2 6  1 4 2 7 1 4 2 8 1 4 2 9 1 4  
33 1 4 3 4 1  4 3 5  1 4 3 6  1 4 3 7  1 4  
41 1 4 4 2 1  4 4 3 1  4 4 4 1  4 4 5  1 4  
49 1 4 5 0  1 4 5 1  1 4 5 2  1 4 5 3  1 4  
57 1 4  58 1 4 5 9  1 4 6 0  1 4 6 1  1 4  

NUMBER OF VARIABLES I N  THIS ANALYSIS 1 
THESE VARIABLES ARE 1 
MAXIMUM NUMBER OF ITERATIONS 10 
ITER LOG-LIKELIHOOD SCORE PARAMETER ESTIM4TES 

1 -101 .3945 13.829 0 .O 
2 -95.6567 0.512 1.5714 
3 -95 -4042 0 . O O O  1 .3011 
4 -95.4041 0 . O O O  1.3061 
5 -95.4041 0 . O O O  1.3061 

ESTIM4TED PARAMETER VECTOR 
1.306143 

FIRST DERIVATIVE LOG-LIKELIHOOD 
0.000002 

I NFORMATI ON M4TR I X 
7.232529 

ESTIMATED COVARIANCE MATRIX 
0 .I38264 

STNDIZED REGRESSION COEFFICIENTS 
3.5 12656 



PROGRAM STRAT 

MODEL WITH 2 V A R I A B L E S :  GALL + OB 

LOGISTIC REGRESSION AN4LYSIS IIV STRATA 

NUMBER OF STRATA 63 
STRATUM NUMBER AND NUMBERS OF CASES AND CONTROLS 

1 1 4  2 1 4  3 1 4  4 1 4  5 1 4  
9 1 4 1 0 1 4 1 1 1 4 1 2 1 4 1 3 1 4  

1 7 1 4 1 8 1 4 1 9 1 4 2 0 1 4 2 1  1 4  
2 5 1 4 2 6 1 4 2 7 1 4 2 8 1 4 2 9 1 4  
3 3 1 4 3 4 1 4 3 5 1 4 3 6 1 4 3 7 1 4  
41 1 4 4 2  1 4 4 3  1 4 4 4  1 4 4 5  1 4  
49 1 4 5 0  1 4 5 1  1 4 5 2 1  4 5 3  1 4  
5 7 1 4 5 8 1 4 5 9 1  4 6 0 1 4 6 1  1 4  

NUMBER OF VARIABLES I N  T H I S  ANALYSIS 2 
THESE VARIABLES ARE 1 2 
M4XIMUM NUMBER OF ITERATIONS 10 
I TER LOG-LIKEL IHOOD SCORE PARAMETER EST1 MATES 

1 -95.4041 5.031 1.3061 0 .@ 
2 -92.8559 0.016 1.2673 0.7044 
3 -92.8481 0 .OOO 1 .3085 0.7254 
4 -92.8483 0 . O O O  1.3086 0.7255 
5 -92.8483 0.000 1 .3086 0.7255 

ESTIM4TED PARAMETER VECTOR 
1 .308584 0.725525 

F IRST DERIVATIVE LOG-LIKELIHOOD 
-0.000006 0.000004 

[ NFORM4TI ON M4TR I X 
7.115862 

-0,413175 9.369920 
ESTIM4TED COVARIANCE MATRIX 

0.140892 
0.00621 3 0.106998 

STNDIZED REGRESSION COEFFICIENTS 
3.486253 2.218013 
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MODEL WITH 3 VARIABLES: GALL + OB + EST 

(Model 4 ,  Table 7.7) 

LOGISTIC REGRESSION ANALYSIS I N  STRATA 

NUMBER OF STRATA 63  
STRATUM NUMBER AND NUMBERS OF CASES AND CONTROLS 

1 1 4  2 1 4  3 1 4  4 1 4  5 1 4  6 1  
~ 1 4 1 0 1 4 1 1 1 4 1 2 1 4 1 3 1 4 1 4 1  

1 7 1 4 1 8 1 4 1 9 1 4 2 0 1 4 2 1  1 4 2 2 1  
2 5 1 4 2 6 1 4 2 7 1 4 2 8 1 4 2 9 1 4 3 0 1  
3 3 1 4 3 4 1  4 3 5  1 4 3 6  1 4 3 7 1 4 3 8  1 
41 1 4 4 2  1 4 4 3  1 4 4 4  1 4 4 5  1 4 4 6  1 
49 1 4 5 0  1 4 5 1  1 4 5 2 1  4 5 3  1 4 5 4 1  
57 1 4 5 8  1 4 5 9  1 4 6 0  1 4 6 1  1 4 6 2  1 

NUMBER OF VARIABLES I N  THIS AWLYSIS 3 
THESEVARIABLESARE 1 2 3 
WXIMUM NUMBER OF ITERATIONS 10 
ITER LOG-LIKELIHOOD SCORE PARAMETER ESTIM4TES 

1 -92.8483 26.837 1 .3086 0.7255 0.0 
2 -78.4745 1 .213 1.0256 0.4851 1.6166 
3 -77.8 259 0.017 1.2543 0.5085 1.9860 
4 -77.81 76 0.000 1.2746 0.5113 2.0394 
5 -77.8 177 0.000 1.2748 0.5113 2.0403 
6 -77.8 1 78 0 . O O O  1.2748 0.5113 2.0403 

ESTIM4TED PARAMETER VECTOR 
1 .274838 0.511341 2.040295 

FIRST DERIVATIVE LOG-L [KELIHOOD 
-0 . O O O O O  2 -0 .OOOO 16 -0 .OOOO 12 

INFORWTIGN W T R I X  
5.996716 

-0.295262 7.917883 
-0.581353 0.5541 15 5.222651 

ESTIM4TED COVARIANCE M4TRI X 
0.168775 
0.005016 0.127390 
0.018255 -0.012958 0.194880 

STNDIZED REGRESSION COEFFICIENTS 
3.103141 1 .432656 4.621 776 



PROGRAM STRAT 

MODEL WITH 4 V A R I A B L E S :  GALL + OB + E S T  + GALLxEST 

(Model 8, Table 7.7) 

LOGISTIC REGRESSION ANALYSIS I N  STRATA 

NUMBER OF STRATA 63 
STRATUM NUMBER AND NUMBERS OF CASES AND CONTROLS 

1 1 4  2 1 4  3 1 4  4 1 4  5 1 4  6 1  
9 1 4 1 0 1 4 1 1  1 4 1 2 1 4 1 ' 3 1 4 1 4 1  

1 7 1 4 1 8 1 4 1 9 1  4 2 0 1 4 2 1  1 4 2 2 1  
2 5 1 4 2 6 1 4 2 7 1 4 2 8 1 4 2 9 1 4 3 0 1  
33 1 4 3 4 1 4 3 5  1 4 3 6  1 4 3 7  1 4 3 8 1  
41 1 4 4 2  1 4 4 3  1 4 4 4  1 4 4 5  1 4 4 6  1 
4 9 1 4 5 0  1 4 5 1  1 4 5 2 1  4 5 3  1 4 5 4 1  
57 1 4 5 8  1 4 5 9  1 4 6 0  1 4 6 1  1 4 6 2  1 

NUMBER OF VARIABLES I N  THIS ANALYSIS 4 
THESE VARIABLES ARE NUMBERS 1 2 3 4 
M4XIMUM N W E R  OF ITERATIONS 10 
I TER LOG-LIKELIHOOD SCORE PARAMETER ESTIM4TES 

1 -77.8178 4.392 1.2748 0.5113 2.0403 
2 -75 .go28 0.221 3.0330 0.4859 2.5096 
3 -75.7904 0.000 2.8467 0.4901 2.6172 
4 -75.7906 0.000 2.8446 0.4901 2.6206 
5 -75.7907 0.000 2.8446 0.4901 2.6206 
6 -75 .7904 0.000 2.8446 0.4901 2.6 206 
7 -75.7906 0.000 2.8446 0.4901 2.6206 
8 -75.7906 0.000 2.8446 0.4901 2.6206 

EST IWTED PARAMETER VECTOR 
2.844558 0.490128 2.620618 -1.997445 

FIRST DERIVATIVE LOG-LIKELIHOOD 
0.000001 -0.000002 0.000000 0.000002 

I N F O W T I  ON M4TR I X 
6.692931 

-0.287092 7.667618 
-1.389091 0.432643 4.504441 
4.758771 -0 .I33909 0.584442 4.981022 

ESTIM4TED COVARIANCE MATRIX 
0.774393 

-0.003830 0.1 31 275 
0.340365 -0 .O 14950 0.376375 

-0.779880 0.008943 -0.369741 0.989468 
STNDIZED REGRESSION COEFFICIEIVTS 

3.232466 1.352753 4.271628 -2.008047 
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LISTING OF PROGRAM LOGODD 

The following main program and subroutine perform the regression analysis of a set of 2 x 2 
tables as described in 3 7.5. For illustration we have used the data from the Oxford Childhood 
Cancer Survey published by Kneale (1971) and listed in Appendix 11. Two different models 
were fit, the first with just the coefficient p representing the overall log relative risk for radia- 
tion, and the second with both ,LI and the coefficient y ,  representing the linear change in the log 
relative risk with year. The option for an 'exact' analysis was selected, giving numerical results 
as shown in 3 7.5. (The last line in Table 6.17 shows the results which are obtained using the 
option for an 'approximate' analysis.) Following the fitting of the two parameter model, the 
programme was instructed (IPRINT = 1) to print out the observed and fitted entries for each 
table, the variance associated with that table (equation 4.13), the contribution it makes to the 
log likelihood, the estimated value of the odds ratio, and the associated covariates of which the 
first is the constant term and the second the coded year. 



PROGRAM LOGODD 

M A I N  PROGRAM 

INTEGER P 
DOUBLE PRECISIOIV JNFo(~O, ~ ~ ) , L O G L I K , B ( ~ ~ ) , S C O R E ( ~ ~ ) , S C O R E ~ ( ~ O )  
DOUBLE PRECISION Z( 10,12O),T(4,120), PROB,E,V,DETER,CHIS,ULL 
REAL FMT(60 ),RT(4), RZ( 10) 
DIMENS ION 1VAR( 10) 
DATA NM/lO/  
EQUI VALENCE(P, NP) 
E P S = l .  E-4 

1000  READ(^, 150,E~D=900) P,NFORMT, ITS, ITAPE, IME, IBETA, I P R I N T  
150 FORfWT(1515) 
9 9 9  I NF=20::I NFORMT 

~ ~ A D ( 5 , 1 5 5 )  (FMT(I) , I=~, INF) 
1 5 5 FORfWT( 20A4) 

IF(P.GT.10 .OR.P.LT.l .OR.ITS.GT.~O .OR.NFORMT.GT3)GO TO 996 
C NOW READ DATA ONE TABLE AND ASSOCIATED COVARIATES PER L I N E  

K=O 
7 K=K+l 

READ(ITAPE,FMT,END=~O)(RT(I), 1=1,4)~1, ~2 
RZ( 1 )=Z1 
RZ(2)=Z2 

8 6  I F(K .GT .120)GO TO 9 
IF(RT(~).EQ.O .O .AND.RT(~ ) .EQ.~  .O .AIUD.RT(~).EQ.O .O .AND.RT(~).EQ.o .O 

A)GO TO 10 
DO 8 I=1,4. 

8 T(I,K)=RT(I) 
DO 85 I=1,2 

85 Z(I,K)=RZ(I) 
GO TO 7 

9 WRITE(6,154) 
1 5 4  FORMAT('0DATA EXCEEDS MAXIMUM OF 120 TABLES') 

GO TO 900  
10 NTAB = K-1 

NP=1 
DO 1 4  K=l,NP 

1 4  B(K)=O.O 
IVAR( 1 )=I 
JPR INT=O 
CALL LOGODD(NM,NP,NTAB, B, SCORE, ITS,EPS, IME, JPR [IVT, Z, IIUFO,T, IVAR, 

::SCORE 1 ) 
IVAR( 1 )=I 
IVAR(Z)=Z 
NP= 2 
CALL LOGODD(NM, NP, NTAB, B, SCORE, ITS, EPS, IME, I PRI  NT, Z, INFO, T, I V M ,  

::SCORE 1 ) 
900  CONTINUE 
996 STOP 

END 
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SUBPROGRAM LOGODD 

SUBROUTINE LOGODDCNM, IVP,NTAB, B, SCORE, ITS, EPS, IME, IPRINT, Z, INFO, T, 
:: IVAR, SCORE 1 ) 

C PROGRAM FOR M E  REGRESSION A W L Y S I S  OF THE LOG ODDS RATIO 
DOUBLE PRECISION INFO(NM,I),LOGLIK,B(I),SCORE(I) 
DOUBLE PRECISION Z(W, 11, T(4,1), PROB,E,V,DETER,CHIS,ULL 
DOUBLE PREC I S  ION TEMP, SCORE 1 (1 ) 
DIMENSION IVAR(1) 

C I T S  = MAXIMUM NUMBER OF ITERATIONS 
C IME = 1 I F  WAIVT EXACT CALCULATIONS 
C IME = 2 I F  WANT APPROXIMATE CALCULATIONS 
C IPRINT = 1 I F  WANT OBSERVED AND FITTED TABLES 
C PRINTED OUT AT I ST AND LAST ITERATIONS 

 WRITE(^, 149) 
1 49 FORMAT(' 1 REGRESSION AN~LYSI s OF LOG ODDS RATIO' /) 

 WRITE(^, 15 1 )NTAB 
151 FORMAT(' NUMBER OF TABLES = ' , I3)  

1F(IME .EQ. 1 )wRITE(6,152) 
IF(IME .EQ .2)~R1TE(6,153) 

1 5 2  FORMAT(' EXACT AN4LYSiS')  
153 FORMAT( ' APPROX IWTE ANALYS I s 

 WRITE(^, ~~O)NP,(IVAR(K),K=~ ,IvP) 
150 FORMAT(' NUMBER OF VARIABLES I N  THIS ANALYSIS =',I3, 

::/, ' THESE VARIABLES ARE NUMBERS', 30 13) 
WRITE(6,154)ITS 

154 FORMAT( ' MAXIMUM NUMBER OF ITERATIONS' , I 4 )  
C I N I T I A L I Z E  BETA TO ZERO 

15 NFLAG=O 
DO 60 I I=1, I T S  
I F ( 1  I .EQ.ITS)NFLAG=l 

I 1 = 0  
CALL CALCCNTAB, NP, NM, IME, 11, SCORE, IhlFO, LOGLIK, B,CHIS, ULL, Z, T, IVAR) 
TEST=O .O 
DO 20 K=1, NP 
S=SNGI .(SCORE(K)) 
SCORE 1 (K)=SCORE(K) 

20 TEST=TEST+ABS(S) 
I F(TEST .LT .EPS)NFLAG=l 
I F(NFLAG .EQ .1) GOT0 47 

48 CALL I M/R( I MFO, NP, SCORE, 1, DETER, NM, NP) 
TEMP=O .O 
DO 10 I=l ,NP 
TEMP=TEMP+SCORE( I )::SCORE 1 (I ) 

10 CONTINLIE 
I F ( I 1  .EQ.~>wRITE(~, 116) 

116 FORMAT(' ITER LOG-LIKEL'iHOOD SCORE PARAMETER EST IMA 
::TES ' ) 

47 CONTINUE 



PROGRAM LOGODD 

wRITE(6, ~~~)II,LOGLIK,TEMP,(B(J), J=I,NP) 
107 FORMAT(~X, 14,~17.4,F13.4,2X,8F12.4,20(/,36~,8~12.4)) 

1 F(NFlAG .EQ .1 )GO TO 99 
CALCULATE NEW VALUE OF BETA 

5 2  CONTINUE 
DO 55 K=1 ,NP 

55 B(K)=B<K)-SCORE(K) 
60 CONTINUE 
99 CONTINUE 

wRITE(6, 10 1 )(B(J), J=1 ,NP) 
101 F O W T ( '  ESTIMATED PARAMETER VECTOR'/,(lX,lOFl2.6) 

wRITE(6, 102)(SCORE(J), J=l ,NP) 
102 FOWT(' FIRST DERIVATIVE L O G - L I K E L I H ~ D ~ / , ( ~ X , ~ O F I ~ . ~ ) )  

WRJTE(6,103) 
103 FORMAT(' INFORMATION MATRIX') 

DO 11 I=l,NP 
WRITE(6,104)( INFO( I, J), J=1, I ) 

11 CONTINUE 
104 FORMAT(lX,lOF12.6) 

CALL I M/R( INFO, NP, SCORE, 1, DETER, NM, NP) 
WRITEC~, 105) 

105 FORMAT(' ESTIMATED COVARIANCE MATRIX' ) 
DO 12 I=l,NP 
SCOREI(I>=B(I>/DSQRT(INFO(I,I)) 

C SCORE1 I S  USED TO CALCULATE STANDARDISED COEFFICIENTS 
WRITEC~, 104)(INF0(1, J), J=1, I) 

12 CONTINUE 
wRITE(6, 106)(sCOREl(I), I = 1  ,NP) 

106 FORMAT('0STANDARDISED REGRESSION COEFFICIENTS'/(lX,lOFl2.6)) 
4 CONT I IVUE 

WRITE(6,156)CHIS 
1 56 FORMAT( ' OCH I -SQUARE GOODNESS OF F I  T ' , F12.4) 

WRITE(6,157)ULL 
157 FORMAT('02XLR RATIO GOODNESS OF F I T  ',F12.4) 

I =NTAB -N P 
WRITE(6,158)1 

158 FORMAT('0DEGREES OF FREEDOM ',I5) 
IF(TPRTNT.NE .I)GO TO 899 
WRITE(6,290)(B(J), J-1 ,NP) 

290 FORMAT( ' 1 FITTED VALUES EACH TABLE FOR BETA VALUES : ' , 9F9.4/(43X, 
:: 9F9.4)) 
CALL CALC(NTAB,NP,NM, IME, 1 ,SCORE, INFO, LOGLIK,B,CHIS,ULL, z, T, IVAR) 

899 CONTINUE 
900 WR ITE(6,667) 
667 FORMATC'O '// 'ORUN TERMINATES SUCCESSFULLY 

RETURN 
E ND 
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SUBROUTINE CALC(NTAB,P,NM, IME, IPRINT,SCORE, INFO,LOGLIK,B,CHIS,ULL 
:: Z, T, IVAR) 

DOUBLE PRECISION  SCORE(^ ),lNFO(I\UV1, 1 ),LOGLIK, Z(I\P1,1 )B( l )  
DOUBLE PRECISION ~(4,1),sUM, PRoB,E,V,CHIS,ULL,T~ , ~ 2 , ~ 3 , ~ 4 , ~ 5 ,  

::T6, T7, T8 
DIMENSION IVAR(1) 
INTEGER P 
CHIS=O .O 
LOGLIK=O .O 
ULL=O .o 
IF(IPRINT.ME .I) GOTO 1 
 WRITE(^, 29C) 

290 F o W T ( / / ' O  T A B L E ' , ~ X , ' A ' , ~ ~ X , ' B ' , ~ ~ X , ' C ' , ~ ~ X , ' D ' ,  8X,'VARIANCE 1 
::OG-LIKE', 4X, 'PSI  COVARIATES ' /6X, 4(4X, ' 0  ' , 4X, 'E' ,2X)) 

1 CONTI NLIE 
DO 5 K=l,P 
SCORE(K)=O .O 
DO 5 KK=l,P 

5 I NFOCK, KK)=O . o 
DO 20 I=l,NTAB 
SUM=O .O 
DO 10 K=1,P 
L=IVAR(K) 

1 o SUM=SUM-Z(L, I )::B(K) 
CALL MysT(T(1, I),suM,PROB,E,V,P, IME) 
PROB=DLOG( PROB) 
LOGL I K=LOGL I K+PROB 
CHIS=CHIS+((T(~, I)-E)::(T(~, I )-E))/V 
DO 15 K=1,P 
L=IVAR(K) 
SCC!RE(K)=SCORE(K)+Z(L, I )::(T( 2, I ) - E l  
DO 15 KK=l,P 
LL=IVAR(KK) 

15 INFO(K, KK)=INFO(K,KK)+Z(L, I )::Z(LL, I )::V 
TlZT(1, I) 
T2=T( 2, I ) 
T3=T(3, I) 
T4=T(4, I) 
T6 =E 
T5=T(1,1)+T(2, I )-T6 
T~=T(~,I)+T(~, I )-T5 
T8=T(3, I ) +T(4, I 1-T7 
1 F(1-1 .GT .O .O)ULL=ULL+T~ ::DLOG(T~/TI ) 
I F ( T ~  .GT .O .O)ULL=ULL+T~::DLOG(T~/T~) 
IF(T3 .GT .O .O)ULL=ULL+T~:~DLOG(T~/T~) 
I F(T4. GT .O . 0 )uLL=uLL+T~::DLOG( T8 / T4) 
IF(IPRINT.EQ.I)GO TO 21 
GO TO 20 

21 CONTINUE 



PROGRAM LOGODD 

I l = T l  
12=T2 
I 3=T3 
I4=T4  
~ ~ 1 T E ( 6 , 2 9 1 )  I,I~,T~,I~,T~,I~,T~,I~,T~,V,PROB,SUM,(Z(IVAR(K),I),K= 
::I, P) 

291 FORM'AT(I4,2X,4(1X, 14,F7.2),3F10.3,8F6.2,20(/,84X,8F6.2)) 
20 CONTINUE 

ULL=-2 .O::ULL 
RETURN 
END 
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SUBROUTINE MYSTCT, SUM, PROB, E,V, P, IME) 
C THE EXTERNALS ::::QUAD:::: AND ::::B INCOF:::: ARE NECESSARY TO USE THIS 
C SUBROUTINE 

INTEGER P 
DOUBLE PREC I S  ION T, PROB, E, V,TOT, B INCOF, P I  
DIMENSION T(4) 
DOUBLE PRECISION SUM,EM,EN,TEE ,ENMT,A,B,C,U,G,H,HH 

b P I =  3 . I 4 1 5 9  26535 89793 23846 26433 
u=o . 
H=O . 
G=O . 
HH=O . 
EM = T ( l ) + T ( 3 )  
EN = T(2) + T(4) 
TEE = T(1) + T(2) 
ENMT = T(3) + T(4) 

C VARIABLE ::IME:: I S  THE FLAT TO DETERMINE EXACT OR ASYMPTOTIC COMP 
C IME = 1 GIVES EXACT 
C IME = 2 GIVES ASYMPTOTIC 

IF(IME.LT.2) GO TO 100 
GO TO 101 

C EXACT CALCULATIONS 
100 SAP=SNGL(DEXP(SUM)) 

'[F(SAP .EQ.1 .O)GO TO 403 
A=BINCOF (EM, TEE-T( 2)) 
B=BINCOF(EN, T(2)) 
C = DEXP(T(2) :: SUM) 
FNUM = A::B::c 
KK = ID[NT(TEE + 1.) 
DO 1 4  J=l,KK 
A=BI NCOFCEM, TEE-U) 
B=B INCOF(EN, U) 
C =DEXP(U::SUM) 
H = A : : B : : C + H  
G = A::B::c::u + G 
HH = A::B::C::U::::2 + HH 

1 4 U = U + 1 .  
PROB= FNUM/H 
E = G/H 
V = HH/H - E::::2 

SUM=DEXP(SUM) 
GO TO 677 

403 A=BINCOF(TEE,T(2)) 
B=BINCOF(ENMT, T(4)) 
TOT = ENMT + TEE 
c = BINCOFCTOT, EN) 
PROB = (A::B)/c 
EN T(2) + T(4) 
E = TEE :: (EN/(TOT)) 
v = (EM::EN::TEE::ENMT)/( TOT::TOT::( TOT- 1 ) ) 
SUM=DEXP(SUM) 
GO TO 677 



PROGRAM LOGODD 

C ASYMPTOT I C--MEMOD 
101 SUM =DEXP(SUM) 

SAP =SNGL( SUM) 
IF(SAP-1 .0)16,15,16 

15 E = TEE :: (EN/(ENMT + TEE)) 
GO TO 1 0 2  

16 A = (1 .  - SUM) 
B = EM - TEE + (SUM::TEE) + (SUM::EN) 
C = -(SUM::TEE::EN) 
E = QUAD(A, B , C , TEE, EN) 

1 0 2  V = 1 ./((I . / E l  + (1 ./(TEE-E)) + (1 ./(EN-E)) + (1 ./(EM-TEE+E))) 
PROB= 1 . /(DSQRT( 2 .::PI::V)) 
PROB=PROB::DEXF(-(0 .502: ((T(2) - E)::::Z/V))) 

677  CONTINUE 
RETURN 
END 
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DOUBLE PRECISION FUNCTION QUAD(A,B,C,TEE,EN) 
DOUBLE PRECISION A,B,C,TEE,EN 
c = B>:>:2 - (4.::A>:C) 
GA = SNGLCTEE) 
GB = SNGLCEN) 
G = SNGL(C) 
IF(G) 32,40,40 

40 c = DSQRTCC) 
QUAD = ((-B) -C)/(2. :: A) 
G = SNGLCQUAD) 
IF(G.GT .O .O .AND .G.LT.AMINl (GA,GB)) RETURN 
QUAD = ((-B) + C)/(2. " A) 
G = SNGLXQUAD) 
IF(G .GT .O .O .AND .G.LT .AMIN1 (GA,GB)) RETURIV 

3 2  WRITE(6,lOO) 
100 FORMAT(' ERROR I N  QUAD COMPLEX SOLUTION') 

STOP 
E MD 

DOUBLE PRECISION FUNCTION BINCOF(X,Y) 
DOUBLE PRECISIOIV UPPER,BELOW,X,Y 
UUPER=X 
BE LOW=Y 
B'LNCOF=O . 
A = SNGL(UPPER) 
B = SNGL(BEL0W) 
I F(A-B . LT  .B) BELOW= UPPER - BELOW 
K = I D 1  NT(BELOW) 
IF(K.LT.O)GO TO 2 
BINCOF = 1 .  
IF(K.EQ.O)GO TO 2 
DO 41  I=1,K 
BI NCOF =(UPPER/BELOW) :: BINCOF 
UPPER = UPPER - 1 .  

4 1  BELOW = BELOW - 1 . 
2 RETURN 

ElVD 
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SUBROUTINE INVR(A,N,B,M,DETERM,ISIZE,JSIZE) 
DIMENSION l P I V O T ( 1 0 0 ) , ~ ~ ~ E X ( 1 0 0 , 2 )  
DOUBLE PRECISION A~ISIZE,JSIZE~,B~ISIZE,M),PIVOT~~OO~,AMAX,T 

ASWAP, DETERM 
EQUIVALEIVCE ( IROW, JROW), (ICOLUM, JCOLUM), (AMAX, T, SWAP) 

C 
10 DETERM=1 .0 
15 DO 20 J=1,N 
20 I PIVOT(J)=O 
30 DO 550 I=1,N 

C 
C SEARCH FOR PIVOT ELEMENT 
C 

40 PMAX=O - 0  
45 DO 105 J=1,N 
5 0  I F  (IPIVOT(J)-1) 60, 105, 6 0  
60  DO 100 KG1,N 
70 I F  (IPIVOT(K)-L) 80, 100, 740 
80  IF(DABS(R44X)-DABS(A(J,K)))85,1@0,100 
8 5  IROW=J 
90 ICOLUM=K 
95 W X = A ( J ,  K) 

100 CONTINUE 
105 CONTINUE 
110 I P I ~ ~ T ~ I C ~ L ~ M ~ = ~ P I ~ ~ T ~ I C O L U M ) + ~  

C 
C INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL 
C 

130 I F  (IROW-ICOLUM) 140, 260, 140 
140 DETERMz-DETERM 
150 DO 200 L=1,N 

160 swAP=A(IROW,L) 
1 70 A( I ROW, L)=A( I COLUM, L) 
200 A( ICOLUM, L)=SWAP 
205 IF(M) 260, 260, 210 
210 DO 250 L=l, M 
220 swAp=B( I ROW, L) 
230 B( IROW, L)=B( ICOLUM, L) 
250 B( ICOLUM, L)=swAP 
260 INDEX(T,1 )=IROW 
270 INDEx(1, 2)=1COLUM 
3 1 0 P 1VOT( I )=A( ICOLUM, ICOLUM) 
3 20 DETERM-DETERM::~ IVOT( I ) 

C 
C D I V I D E  PIVOT ROW BY PIVOT ELEMENT 
C 

330 ACICOLUM, ICOLUM)=1 .O 
340' DO 350 L=1 ,N 
350 A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(I~ 
355 IF(M) 380, 380, 360 
360 DO 370 L=1,M 
370 B(Ico~UM, L)=B(ICOLUM,L)/PIVOT(I) 
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C 
C REDUCE NON-PIVOT ROWS 
C 

380 DO 550 L1=1,N 
390 IF(L1-ICOLUM) 400, 550, 400 
400 T=A(LI, ICOLUM) 
420 A(L1, ICOLUM=O .O 
430 DO 450 L=1,N 
450 A(LI, L)=A(LI, L)-A(ICOLUM, L,)::T 
455 IF(M) 550, 550, 460 
460 DO 500 L=1,M 
500 B(LI, L)=B(LI, L)-BOCOLUM, LFT 
550 CONTINUE 

C 
C INTERCHANGE COLUMNS 
C 

600 DO 710 I= l ,N 
610 L=N+1-I 
620 I F  (INDEXCL, I)-IRIDEx(L,~)) 630, 710, 630 
630 JROW=INDEX(L, 1) 
640 JCOLUM=INDEX(L,2) 
650 DO 705 K=1,N 
660 SWAP=A(K, JROW) 
670 A(K,JROW)=A(K,JCOLUM) 
700 A(K, JCOLUM)=SWAP 
705 COlVTINUE 
710 CONTINUE 
740 RETURN 

E hlD 



PROGRAM LOGODD 

MODEL WITH CONSTANT TERM ONLY 

REGRESSION ANALYSIS OF LOG ODDS RATIO 

IUUPIBER OF TABLES = 120 
EXACT ANALYSIS 
NUMBER OF VARIABLES I N  THIS AWLYSIS  = 1 
THESE VARIABLES ARE NUMBERS 1 
MAXIMUM IUUMBER OF ITERATIONS 15 
I TER LOG-LIKELIHOOD SCORE PARAMETER ESTIMATES 

1 -261 .4516 82.1955 0.0 
2 -220.0785 0.0152 0.4982 
3 -220.0708 0 .OOOO 0.5051 
4 -220.0708 0.0000 0.5051 

ESTIMATED PARPMETER VECTOR 
0.505080 

FIRST DERIVATIVE LOG-LIKELIHOOD 
-0 .oooooo 

I NFORMAT I ON MATR I X 
313.718469 

ESTIMATED COVARIANCE MATRIX 
0.003147 

STANDARDISED REGRESSION COEFFICIENTS 
9 .OO 2886 

CHI -SQUARE GOODNESS OF F I T  11 7.3498 
2XLR RATIO GOODNESS OF F I T  124.1829 
DEGREES OF FREEDOM 119 



MODEL W I T H  L I N E A R  E F F E C T  O F  YEAR 

REGRESSION ANALYSIS OF LOG ODDS RATIO 

NUMBER OF TABLES = 1 20 
EXACT ANALYSIS 
NUMBER OF VARIABLES I N  THIS ANALYSIS = 2 
THESE VARIABLES ARE NWBERS 1 2 
MAXIMUM NUMBER OF ITERATIONS 1 5  

I TER LOG-LI KEL IHOOD SCORE PARAMETER ESTIMATES 
1 -220.0708 7.2135 0 . 5 0 5 i  o .o 
2 -216.4595 0 .0013 0.5144 -0.0384 
3 -216.4588 0 . O O O O  0 .5165 -0.0385 
4 -216.4588 0.0000 0.5165 -0 .0385 

ESTIWTED PARAMETER VECTOR 
0.516496 -0.038542 

FIRST DERIVATIVE LOG-LIKELIHOOD 
-0.000000 0.000000 

INFORMATION MATRIX 
316.476245 
110 . I82468 4876.820615 

EST IMATED COVAR I N C E  MATR I X 
0.003185 

-0.000072 0.000207 
STANDARD ISED REGRESS ION COEFFI C IENTS 

9.15 21 42  -2.680950 
CHI-SQUARE GOODNESS OF F I T  111.2280 
2XLR RATIO GOODNESS OF F I T  116.8751 
DEGREES OF FREEDOM 1 18 



0BSEY.VED AND EXPECTED VALUES FOR MODEL 2 

FITTEDVALUES EACH TABLE FOR BETAVALUES : 0.5165 -0.0385 

TABLE A B C 
0 E 0 E 0 E 

1 3 2.11 0 0.89 25 25.89 
2 5 4 .74 2 2.26 16 16.26 
3 2 2.78 2 1 . 2 2 3 0  29.22 
4 7 5 .42  1 2.58 28 29.58 
5 7 6 .08 2 2.92 28 28.92 
6 2 1 .39 0 0.61 36 36.61 
7 5 4 .04 1 1.96 25 25.96 
8 3 2.73 1 1 .27 40 40.27 
9 5 4.07 1 1 .93 44 44.93 

10 11 8.69 2 4.31 42 44.31 
11 6 6.55 4 3.45 25 24.45 
12 6 6.58 4 3 .42 29 28.42 
13 11 8 .55 2 4.45 35 37.45 
14 4 3.36 1 1 .64 49 49.64 
15 4 7.32 7 3.68 57 53.68 
16 2 3.96 4 2.04 38 36.04 
17 8 7.07 3 3.93 21 21 .93 
18 8 8 .43 5 4.57 36 35.57 
19 6 5.93 3 3.07 46 46.07 
2 0 5 4 .63 2 2.37 50 50.37 
2 1 15 12.30 4 6.70 46 48.70 
22 4 3.26 1 1.74 27 27.74 
2 3 9 8.36 4 4.64 39 39.64 
24 9 8.95 5 5 .05 35 35.05 

4 3.92 2 2 . 0 8 3 8 3 8 . 0 8  
25 26 12 12.08 7 6.92 41 40.92 
2 7 8 8 .39  5 4.61 48 47.61 
2 8 8 10.33 8 5 .67 63  60.67 
2 9 6 5 .13  2 2.87 37 37.87 
3 0 8 7.00 3 4.00 35 36.00 

VARIANCE LOG--LIKE PSI  COVAR IATES 



TABLE A 
0 E 

3 1 1 2  10 .64  
3 2  4 5 . 1 2  
3 3 7 5 .13  
3 4 16 13.89 
3 5 1 2  10.84 
3 6 9 12.68 
3 7 4 5 .67 
38 7 5 . 6 4  
39 8 8 .12  
4 0 11 11.73 
4 1 5 6 .31  
4 2  1 2  11.22 
4 3  8 8 .82  
4 4  17  16.87 
45 9 9 .92  
46 3 4 .99 
4 7  2 4.37 
48 7 5 .57  
4 9 6 8 .67  
5 0 5 3.77 
5 1 11 14.77 
5 2 1 4  14.10 
5 3  13 14.73 
5 4  8 10.53 
5 5 6 6 .24  
5 6 4 4.89 
5 7 8 9.65 
58 4 6 .06 
5 9  8 9 .72  
6 0 7 7.92 

VARIANCE LOG-LIKE PSI COVARIATES 



TABLE A 
0 E 

6 1  15 13.90 
6 2  15 1 7 . 5 2  
6 3  9 9 .16 
6 4  9 8.59 
6 5 5 6 .14  
6 6  6 4 . 8 2  
6 7  3 4 .25 
6 8 9 6 . 5 9  
69 1 2  12.44 
70 1 4  11.39 
71 16 13.11 
7 2  17 14.41 
7 3 8 7 .87  
7 4  8 10.78 
75 9 7.16 
76 5 4 .18 
7 7 9 5 .98 
78 11 10.56 
7 9 6 8 .88  
80  1 4  15.83 
8 1  21 17.60 
8 2  16 15.88 
8 3  6 5.97 
8 4  9 10.05 
8 5 8 5.85 
8 6 9 7.00 
87 8 8 .80  
8 8  4 4 .73 
8 9  11 1 0 . 5 2  
90 11 9 .40 

VARIANCE LOG-LIKE COVAR I ATES 



TABLE A B 
0 E 0 E 

9 1 6 7.06 6 4 .94  
9 2  9 8 .73 6 6 .27 
9 3  4 5.21 5 3 .79 
9 4  4 5 .82  6 4.18 
9 5  9 10.40 9 7.60 
96 9 9.25 7 6 .75 
9 7  10 9.89 7 7 . 1 1  
98 1 4  12.08 7 8 .92  
9 9  6 5 .81 4 4.19 

100 3 2.89 2 2.11 
10 1 4 4.03 3 2.97 
10 2 6 5.75 4 4.25 
103  10  11.38 10 8 .62  
1 0 4  4 4.03 3 2.97 
105 3 4 .02 4 2.98 
106 3 2.84 2 2.16 
107  10 11.20 10 8.80 
108 4 5.10 5 3.90 
109 10 7.87 4 6 . 1 3  
110 5 5 .63 5 4 .37  
111 4 4.45 4 3.55 
1 1 2  3 5.01 6 3.99 
113 13  9.93 5 8 . 0 7  
1 1 4  1 2.24 3 1.76 
115  7 4.93 2 4 .07 
116 5 3.84 2 3.16 
117  7 6.00 4 5.00 
118 6 6 .45 6 5.55 
119  3 3.78 4 3 .22 
1 20 7 4.23 1 3.77 

VAR IANCE LOG-L I KE 

0 
0 
03 

P S I  COVARIATES 



SUBJECT INDEX TO VOLUMES I AND I1 

Additive effect, 1.55 
Additive models, 1.55, I.58,11.122-31 

choice between additive and multiplicative 
models, 11.142-46 

Age-incidence curves, 11.55 
Age-specific rates, 11.49-51,II. 193-95 
Age-specific ratios, II.61,II.72 
Age standardization, 1.254 

of mortality rates, 11.51-70 
Age-standardized death rates, 11.91 
Age-standardized mortality ratios. See 

Standardized mortality ratios 
(SMRs) 

Agelstratum-specific rates, 11.61 
Age-time specific comparisons, 11-48 
Alcohol consumption 

in relation to oesophageal cancer, 1.216, 
1.218-20,1.223-24,1.227-35 

in relation to oral cancer, 1.66,1.67,1.86, 
1.109,I.llO 

Alternative explanation of observed 
relationships, 1.89 

AMFIT program, 11.175 
Analysis of variance, multiplicative model 

for SMRs, 11.158 
Animal models, I .236 
Ankylosing spondylitis, irradiation for, 1.62 
Annual incidence rates, 1.43, 1.47 
Armitage-Doll model, 11.256,11.264 

see also Multistage models of 
carcinogenesis 

Asbestos exposure, 1.21,1.90,11.31-34, 
11.38, 11.103 

and lung cancer, 11.242-44,11.262 
and mesothelioma, 11.237-39,II.261 

combined with cigarette smoking, 1.66-68, 
11.352-53 

Association. See Disease association 
Association strength, 1.88-89 
Asymptotic normality, 11.133-35 
Atomic bomb survivors, 1.62,11.22 

life-span study, 11.340-44 
Attained significance level, I. 128 
Attributable risk, 1.73-78,II.21 

for exposed persons, 1.74 
population risk, 1.74 
relative attributable risk, I. ,76 

Background rates 
incorporation into multiplicative model, 

11.151-53 
non-parametric estimation of, 

11.192-99 
Bandwidth, choice of kernel estimates, 

11.193-95 
Benzene exposure, risk of leukaemia, 1.87 
Benzidine exposure and bladder cancer, 

11.252 
Benzo[a]pyrene, and incidence of skin 

tumours, 1.237 
Bermuda Case-Control Symposium, I. 19 
Bernoulli distribution, 11.132 
Biases, 1.22,1.35,1.73,1.84-85,1.89, I. 105, 

1.113,11.9,11.16,11.73 
arising from unconditional analysis of 

matched data, 1.249-51 
due to errors of measurement, 11.41-42 
see also Recall bias; Selection bias 

Binomial coefficient, definition, I. 125 
Binomial distribution, definition, I. 125 
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Biological monitoring, 11.20 
Birth cohort analysis, 1.48 
Bladder cancer, 11.21, 11.30 

and benzidine exposure, 11.252 
in chemical industry, 11.11 

Bone tumours, and radiation exposure, 
11.249-50 

Boston Drug Surveillance Program, 1.22, 
1.115 

Breast cancer, 11.21 
age at first birth, 1.64-66,1.77,1.86 
age-specific incidence rates, 1.49, 1.50, 

1.59,1.60, 11.129 
and radiation exposure, 11.247-49,II.262 
bilateral, 1.87 
cohort analysis of Icelandic data, 11.126-31 
comparison of indirect standardization and 

multiplicative model fitting, 11.130 
example of negative confounding, 1.93-94 
influence of reproductive factors, 1.66 
irradiation-induced, I. 62 
relative risks for, 1.92 
reproductive experience in, I. 17,1.66 

Breast disease, benign, 11.187 
British doctors study, 11.27,11.28,11.101, 

11.163-65,II. 168-70, 11.236, 
11.336-39 

Calendar period-specific rates, 11.49-51 
Calendar time, 1.43 
Carcinogenesis, multistage models of, 

11.256-60 
Case-control sampling, II.205,11.289-302 

see also Risk set sampling 
Case-control studies 

applicability, 1.21 
as related to cohort studies, 11.3-22, 

11.35-36,II.42, 11.44 
chi-squared test statistic 

1 D.F. test for trend, 1.147--50 
combination of 2 x K table, I. 149 
goodness-of-fit , 1.209-10 
in logistic regression, 1.208-10 

goodness-of-fit, 1.208,1.222,1.273 
matched pairs (McNemar test), I. 165, 

I. 184 
for homogeneity of relative risk, 

1.166-69,1.185 
1 D.F. test for trend, 1.184 

matched samples (1 : M), 1.171, I. 177 
for homogeneity and trend in relative 

risk, 1.173-76 
series of 2 x 2 tables (Mantel-Haenszel 

statistic), I. 138 
for homogeneity of relative risk, 

1.142,1.143 
for trend in relative risk, I. 142 

series of 2 x K tables, 1.149 
trend test, 1.149 

summary chi-squared for combination of 
2 x 2 table (Mantel-Haenszel 
statistic), I. 138 

test of homogeneity, 1.166-69 
2 x 2 table, 1.131-32 
2 x K table, 1.147 

contradictory results, 1.19 
definition, 1.14-16 
design considerations, 11.272, 11.289-302 

choice of case, 1.23-25 
choice of control, 1.25-28 

efficiency of, 1.21 
future role of, 1.18 
general considerations, I. 14-40 
history, I. 17 
limitations, 1.22 
low cost of, 1.21 
major strengths of, 1.20-22 
objectives of, I. 17, I. 19-20 
planning, 1.23-32 
present significance, I. 17-19 
status of cases, 1.24 
unmatched design considerations, 

11.289-94, 11.302-4 
Causality, 1.84-85 

criteria, 1.36-37,1.86-90 
evidence of, 1.90 

Chi-squared test statistic. See under Case- 
control studies; Cohort studies 

Childhood cancers, 1.239-42 
Chronological age, 1.43 
Cigarette smoking. See Tobacco 

consumption 
Classification errors, I. 114 
Coding of disease, 11.30 
Coffee drinking, lack of dose response for 

bladder cancer, I .86, 
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Cohort studies 
chi-squared test statistic, 11.68, 11.94, 

11.137 
comparison of two SMRs, 11.94 
for SMR, II.68,11.69 
goodness-of-fit test for grouped data, 

11.129 
heterogeneity of SMR, 11.96 
1 d.f. test for trend of SMR, 11.96 
summary test for equality of relative 

risk, 11.108, 11.113 
test for heterogeneity of relative risk, 

11.112 
test for trend in relative risk, 11.112 

definition, 11.2 
design and execution, 11.22 
design considerations, 11.271-88 
further information from, 11.28-29 
general considerations, 11.2-46 
historical, 11.2, 11.5-11, 11.19, 11.21, 11.32, 

11.33, 11.35, 11.37, 11.42 
identification of cancer cases, 11.28 
implementation, 11.22-36 
interpretation, 11.36-45 
limitations of, 11.20-22 
present significance of, 11.11-20 
problems in interpretation of, 11.39-45 
prospective, 11.2, 11.20, 11.33, 11.35, 11.37 
retrospective. See historical (above) 
sample size for 

comparison with external standard, 
2.273-79 

comparison with internal control group, 
2.279-85 

specific strengths of, 2.11-20 
Combined exposures, 1.66-68 

see also Joint effects 
Comparative mortality figure (CMF), 11-48, 

11.61-63, 11.90, 11.125, 11.126 
instability of, 11.63 
standard error of, 11.64 
versus SMR, 11.72 

Comparison groups, choice of, 11.33-34, 
11.39-40, 11.61 

Comparisons with several disease or control 
groups, 1.111-12 

Composite variables, I. 105 
Computer programs, II.175,II. 192,11.206 

AMFIT, 11.175 

GLIM. See GLIM 
LOGODDS, 1.322-38,II. 189 
MATCH, 1.297-306 
PECAN, 11.206 

Conditional analysis, 1.249 
Conditional distribution 

for 2 x 2 table, 1.125 
for series of 2 x 2 tables, 1.138 

Conditional likelihood, 1.204,1,209,1.248, 
1.251,1.253, 1.255,1.270 

Conditional logistic regression analysis for 
matched sets, 1.248-79, 1.297-306 

Conditional maximum likelihood estimate 
for 2 x 2 table, I. 127 

Confidence coefficient, definition, I. 128 
Confidence intervals, I. 134,1.165-67, I. 182 

definition, I. 128-29 
for common odds ratio in series of 2 x 2 

tables, I. 141-42 
for odds ratio in 2 x 2 table 

Cornfield, I. 133-34 
exact, I. 129 
logit, 1.134 
test based, I. 134 

for ratio of SMR, 11.95 
for relative risk in matched pairs, 1.163-67 
for relative risk in matched sets ( l : ~ ) ,  

1.172-76, 1.182 
for the SMR, 11-69-71 
logistic regression parameters. See 

Covariance matrix of logistic 
regression parameters 

test based, 1.134, I. 135 
see also Standard error of Mantel-Haenszel 

estimate 
Confounding, residual, I. 100, I. 101 
Confounding effects, 1.84-85,1.93-108,II.87 

and misclassification, I. 106 
control -of, 1.29-30, 1.36, I. 11 1, I. 136-56, 

1.162,1.166 
effect of study design on, 1.101-3 
negative, 1.95 
of nuisance factors, 1.225-26 
on sample size requirements, 11.304-6 
statistical aspects of, 1.94-97 
see also Logistic model and logistic 

regression; Standardized mortality 
ratios (SMRs), bias in the ratio of 
Stratification 
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Confounding risk ratio, 1.76, 1.96-97, 
1.99-101, 11.33 

Confounding score index, I. 101 
Conjugated oestrogen dose, 1.178 
Continuity correction, I. 13'1-34, 11.296, 

11.301 
Continuous data, fitting models to 

11.178-229 
Continuous data analysis, 1.227-33 

choice of basic time variable, 11.180-81 
comparison with grouped data analysis, 

11.211-12 
construction of exposure functions, 

11.181-82 
external standard rates, 11.183-84 
fundamentals of, 11.179-84 
in matched studies, 1.265-68 
model equations, 11.182-83 
of Montana smelter workers, 11.206-18 
of South Wales nickel refiners - nasal sinus 

cancer, 11.218-29 
Continuous variables, 1.92 
Contour plot of deviances, 11.169 
Controls 

choice of control series, 1.25-28 
selection procedure, 11.205-6 
see also Case-control studies; Matching; 

Risk set sampling 
Cornfield's limits, I. 133-34 
Coronary disease among British male 

doctors, 11.112, 11.145, 11.146 
Corrected chi-squared statistic, 1.131 
Covariance matrix of logistic regression 

parameters, 1.207 
Cross-classification. See Stratification 
Cross-sectional analysis of incidence rates, 

I .48 
Cross-tabulation. See Stratification 
Cumulative background rates, estimation of, 

11.192-97, 11.204-5 
Cumulative incidence rates, 1.49-53 
Cumulative rate, 11.57-58 

standard error, 11.58-61 
Cumulative ratio, kernel estimation of, 

11.193-95 
Cumulative relative rates, 11.204-5 
Cumulative standardized mortality ratio, 

11.207 

Data acquisition, 11.36 
Data collection, 11.35, 11.42 
Data points, influence of, 11.139-4jl 
Death rates, US national, 11.358-61 
Denominator information, 11.26-28 
Design considerations. See under Case- 

control studies; Cohort studies; 
Matching 

Deviances 
contour plot of, 11.169 
see also Likelihood inference 

Dichotomous exposure 
l:M matching, I. 169-76 
in unmatched studies, I. 124-46 
matched pairs, I. 164-76 
variable number of controls, 1.176-82 

Dichotomous variables, 1.91,1.94-97 
Directly standardized rate, 1.50, 11.52-57, 

11.89-91 
standard error, 11.58-61 
see also Comparative mortality figure 

(CMF) 
Disease association models, 1.53-59 
Disease occurrence, measures of, 1.42-47 
Dose metameter selection, 11.98-99 
Dose-response analysis, 11.105, 11.115-18 

see also Logistic model and logistic 
regression; Regression analysis; 
Trend tests 

Dose-response relationship, 1.86, 1.88, 11.37, 
11.41, 11.42, 11.82, 11.83, 11.88, 
11.97, 11.96, 11.159, 11.232 

multistage models, 2.262-63 
see also Joint effects 

Dose-time relationships, 11.233-55 
Dose-time-response relationships, 11.120 
Dose transformations, 11.159 
Dummy variables for logistic regression 

models, 1.196,1.214 

Ecological studies, 11.4 
Effect modification. See Interaction 

(modifying) effects 
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Efficiency calculations for matched designs, 
11.302-4 

Empirical odds ratio, I. 127 
Endometrial cancer, I .24, 1.29, 1.90, I. 104, 

1.265 
Los Angeles study of, I. 162-63, I. 185, 

1.253, 1.255, 1.258, 1.260, 1.261, 
I.263,1.264,I.266,1.290-96 

Endometrial hyperplasia, 1.30 
Epithelial tumours, age-specific rates and 

latent period, 1.60, 1.62, 1.89 
Errors of classification and of measurement, 

1.114, 11.41-42, 11.265-66 
generating confounding, I. 106 

Estimation of odds ratio 
combination of 2 x 2 table 

logit estimate, 1.139 
Mantel-Haenszel estimate, I. 140, I. 141 
maximum likelihood estimate, I. 140 

2 x 2 table 
asymptotic maximum likelihood, I. 130 
exact conditional maximum likelihood, 

I. 124 
see also Logistic regression 

Excess mortality ratio (EMR), 11.174, 11.175, 
11.268 

Excess risk, 1.55, I .58, I. 64, I. 84, 11.45 
Excess risk model 

fitting to grouped data, 11.171-76 
see also Additive models 

Exponential dishbution, 11.132 
Exponential survival times, 11.131-32 
Exposure functions, 11.181-82 
Exposure index, 11.172-73 
Exposure information, 11.30-33,11.37 
Exposure probability, 1.71 
Exposure variables, lagging of, 11.48, 11.87 
External standard rates, 11.212-14 
Extra Poisson variability, 11.99-100 

Familial risk, 1.87 
Fisher's exact test, 1.128, 1.129, 1.133 
Fitted values in 2 x 2 table, 1.130 
Follow-up losses, 11.40-41,II.49 
Follow-up mechanisms, 11.17, 11.25-29 
Follow-up period, 11.288-89 

Follow-up schema, 11.50 
Force of morbidity, 1.45 
Force of mortality, 1-45 
Forerunners of disease, 11.44 

Gall-bladder disease, 1.22, I. 168,1.254-59, 
1.262, 1.264, 1.265 

Gastric cancer, age-specific incidence rates, 
1.62 

GLIM computer program, 1.206, 1.208, 
1.214, 1.253, 11.128, 11.136-37, 
11.139, 11.14.1-143, 11.160, 11.162, 
11.163, 11.167, 11.174, 11.175 

Global statistic for homogeneity test, 1.142 
Global test, 1.153 
Goodness-of-fit, I. 142, 11.161, 11.190, 11.199 

analysis of residuals, 11.138-39, 11.144-46 
in logistic regression, 1.208, 1.222, 1.273 
influential data points, 11.139-40, 

11.144-46 
multiplicative models, 11.148, 11.149 
statistics, 11.141, 11.144 
summary of measures of, 11.137-38 
see also Case-control studies, chi-squared 

test statistic; Cohort studies, chi- 
squared test statistic 

Greenwood's formula, 11.192 
Group-matching, I. 122 
Grouped data, fitting models to, 11.120-76 
Grouped data analysis 

case-control studies, I. 122-59 
goodness-of-fit in logistic regression, 

1.208, 1.222, 1.273 
Ille-et-Vilaine study of oesophageal 

cancer, 1.281-83 
Oxford Childhood Cancer Survey, 

1.284-89 
qualitative analysis of, 1.213-19 
quantitative analysis of, 1.221-24 

cohort studies, 11.106-15 
comparison with continuous data 

analysis, 11.211-12 
conservatism of indirect standardization, 

11.114-15 
extensions to K > 2 exposure classes, 

11.113-114 
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Grouped data analysis-contd. 
cohort studies4ontd. 

heterogeneity of relative risk, 11.110-13 
Mantel-Haenszel estimate, 11.109-13 
Montana cohort, 11.146-50,11.155-59 
restrictions on, 11.178 
summary test of significance, 11.108 
two dose levels, exposed versus 

unexposed, 11.107-8 
maximum likelihood estimate, 11.108-13 

Hat matrix in residual analysis, 11.138-40 
Hazard rate, 1.45 
Hazards, proportional, 1.201 
Healthy worker effect, 11.17, 11-39-40, 11.87, 

11.98 
Heterogeneity, 11.75-76 

see also Case-control studies, chi-squared 
test statistic; Cohort studies, chi- 
squared statistic 

Historical cohort studies, 11.2, 11.19 
HLA antigen A2 and leukaemia, association 

with survival, 1.25 
HLA antigens and multiple comparison, 

1.115 
Hodgkin's disease and tonsillectomy, 1.16, 

1.31 

jomogeneity of relative risk 
in matched pairs, 1.166-67 
in matched sets (l:M), 1.173-74 
in series of 2 X 2 tables, 1.137, 1.142-43 
tests for homogeneity, see under Case- 

control studies; Cohort studies 
Homogeneity test, global statistic for, 1.142 
Hypergeometric distribution 

central, definition, I. 127 
K-dimensional, I. 147 
non-central, definition, 1.127 

Hypertension, I. 168, I. 169,1.254-59 

Ille-et-Vilaine study of oesophageal cancer, 
I. 122-24,1.162,1.210,1.213-33, 
1.238,1.281-83 

Implementation 
in case-control studies, 1.32-35 

in cohort studies, 11.22-36 
Incidence cohorts, 11.25 
Incidence rates, 1.43, 1.66, 1.71 

age-specific, 1.44, 1.47-48, 1.59-61 
calculation of, 1.44 
cumulative, 1.49-53 
directly standardized, 1.50 
estimation of, 1.45 
logarithmic transformation of, 1.57 
overall, 1.76 
time-specific, 1.47-48 
variations in, 1.55 

Indicator variables. See Dummy variables 
Indirect standardization, 11.48 

see also Standardized mortality ratios 
(SMRs) 

Influence of individual data points, 
11.139-40, 11.144-46 

Information matrix, 1.207 
Initial treatment of data, 1.90-93 
Instantaneous rate, 1.45 
Insulation workers, 2.103 
Interaction (modifying) effects, I. 108-1 1, 

1.167,II.llO-13 
definition of, 1.108-11 
effect on sample size requirement and 

matching, 11.308-10 
in conditional logit analysis, 1.262-68, 

1.273 
in logistic model 

definition of, I. 196-200 
test for, 1.221-24 

in series of 2 x 2 tables, 1.238-42 
negative, I. 196 
see also Case-control studies; Cohort 

studies 
Interaction parameter 

in logistic regression, I. 196 
Internally standardized mortality ratios, 

11.103-6 
International Classification of Diseases 

(ICD), 11.30, 11.355-57 
Interpretation, basic considerations, 1-35-37, 

1.112-15 
Interviews, 1.33-34 

questionnaires, 1.34 
Iran, oesophageal cancer in Caspian littoral 

of, 1.275, 1.276 
Irradiation 

obstetric, and associated cancer risk, 
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1.239-42 
risk of cancer following, 1.62-63 

Ischaemic heart disease, and cigarette 
smoking, 1.68 

Joint distribution, 1.99 
Joint effects of multiple exposures, 1.66-68, 

I.99,1.1117 1.154-56,1.227, 
11.266-67 

see also Interaction (modifying) effects 

Kernael estimation of cumulative ratio, 
11.193-95 

Lagging of exposure variables, II.48,II.87 
Large strata, unconditional logistic 

regression for, I. 192-246 
Latency function, 11.181-82, 11.216- 17, 

11.264-66 
Latent period, 1.89 
Least-squares analyses, 11.161 
Least-squares linear regression analysis, 

11.99-103 
Leukaemia, and radiation exposure, 

11.244-47 
Likelihood inference: outline of 1.205-10 

likelihood ratio statistic, 1.209 
likelihood ratio test, 1.207 
log-likelihood analysis, 1.206 
log-likelihood function, I.206,II. 134, 

11.184-92, 11.202-3 
see also Partial likelihood 

log-likelihood statistic, 1.206 
log-normal distribution, 11.181 

Log-linear models, definition, 1.57 
Log odds. See Logit transform 
Log relative risks as logistic regression 

parameters, I. 196 
Logistic model and logistic regression, 1.142 

case-control studies, I. 202-5 
general definition of, 1.200-2 

introduction to, I. 193-200 
results of fitting several versions of, 1.212 

Logistic regression model, 11.153-54 
dummy variable for, 1.196, 1.214 

Logit confidence limits from combination of 
2 x 2 tables, 1.134 

Logit estimate, I. 139 
Logit limits, 1.141 
Logit transform, I.194,1.196 
LOGODDS program listing, 1.322-38, 

11.189 
Longitudinal studies, 11.2 
Los Angeles study of endometrial cancer, 

1.162-63,1.185, I.253,1.255, 1.258, 
1.260,1.261, 1.263, 1.264, 1.266, 
1.290-96 

Losses to follow-up, 11.40-41, 11-49 
Lost-to-follow-up subjects, 11.49 
Lung cancer, 11.38, 11.39, II.43,11.1007 

11.103 
age- and year-specific death rates, 

11.391-94 
and asbestos exposure, 11.242-44,II.262 
and uranium miners, 11.253-55 
British male doctors, 11.163-65, 11.168, 

II.169,II.170 
in relation to tobacco consumption, 1.17, 

1.55,1.58,1.64, 1.66-69, 1.75, 
1.86-93,1.100,1.101, 1.104,1.166, 
I.193,II.5-9, 11.15, 11.234-36, 
11.261 

combined with asbestos exposure, 
I. 66-68 

relative risk of, 11.235 
South Wales nickel refiners, II.171,II. 174, 

II.268,11.347-48 

McNemar7s test, I. 165 
Mantel test for trend, 1.148 
Mantel-Haenszel analysis, 11.82 

estimate for cohort studies, 11.109-113, 
II.147,11.285 

for case-control studies, I. 138-42, I. 144, 
1.165,1.171,1.172,1.174,1.177, 
I. 179,1.181,1.192, I. 195-96 

test for cohort studies, 11.189 
Mantel-Haenszel statistic,. I. 138 
MATCH program listing, 1.297-306 
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Matched case-control studies, 11.297 
design 

comparison with unmatched design, 
11.306 

number of controls per case, 11.304 
sample size requirements for 

dichotomous exposure, 11.294-302 
Matched data analysis, 1.162-89 

conditional logistic regression analysis for, 
1.248-79,1.297-306 

conditional logistic regression, 1.248-79, 
1.297-306 

dichotomous variables 
1:l matching, I. 164-69 
l:M matching, I. 169-76 
variable number of controls, 1.176-82 

polytomous variables, I. 182-87 
Matched designs, efficiency calculations for, 

1.270-76,II.302-4 
Matched versus unmatched analyses, 

I. 102-6,1.249-51,1.270-76 
Matching 

by strata, 1.30-31 
in choice of controls, 1.28-32 
problems associated with, 1.31 

Maximum likelihood estimate (MLE). See 
Estimation of odds ratio; 
Likelihood inference 

Mesothelioma 
and asbestos exposure, 11.237-39,II.261 
of the pleura, 1.21 

Misclassification, I. 114 
see also Biases; Errors of classification and 

of measurement 
Misclassification rates, 11.42 

see also Biases, due to errors of 
measurement 

Missing data, I. 113-14 
Model selection, 11.203-4 

biological basis for, 11.125 
Modelling risk, I. 11 1 
Models, disease association, 1.53-59 
Modifying effect. See Interaction 
Montana smelter workers 

cohort studies, 11.18, 11.23,11.32, 11.37, 
11.52,11.53,11.60,11.78, 11.79, 
11.86-99,II. 105,II. 114, 11.148, 
11.149,II. 152,II. 154, 11.206-18, 
11.232,11.349-50 

grouped data analyses, 11.146-50, 
11.155-59,11.363-65 

multiplicative models, 11.146-50,11.211, 
11.213, 

numbers alive and under observation, 
11.202 

regression analyses, 11.157-59 
respiratory cancer, 11.157,II. 158 

Mortality, proportional, 11.45-46, 11.76, 
11.115-18 

Mortality rates, 1.43 
age-specific, 1.65 
age standardization of, 11.51-70 
estimation of, 1.45 

Mortality ratios, standardized. See 
Standardized mortality ratios 

Mouth cancer. See Oral cancer 
Multiple comparison, I. 115, 11.43-44 
Multiple exposure levels, I. 189 

matched studies, I. 146-54, I. 182-87 
see also Logistic model and logistic 

regression 
Multiplicative models, 1.57, 1.58, 1.67, 

11.122-31,II. 135-42 
choice between additive and multiplicative 

models, 11.142-46 
comparison with indirect standardization, 

11.125-31 
estimating base line rates under, 11.195-99 
fitting of, 11.148 
general form of, 11.136 
goodness-of-fit, 11.148, 11.149 
incorporating external standard rates, 

11.151-53 
Montana smelter workers, 11.146-50, 

11.211, 11.213 
nasal sinus cancer in South Wales nickel 

workers, 11.223, 11.224, 11.226, 
11.227 

partial likelihood for, 11.185-86 
regression coefficients, 11.158 

Multistage models of carcinogenesis, 
11.256-60 

dose-response relationship, 11,262-63 
interpretation of epidemiological data in 

terms of, 11.261-62 
metameters of dose when dose levels vary, 

11.263-65 
Welsh nickel refinery data, 11.267-70 
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Multivariate analysis. See Logistic model and 
logistic regression 

Multivariate normality, 1.204 

Nasal sinus cancer in South Wales nickel 
refinery workers, 11.105, 11.106, 
11.142, 11.172, 11.218-29, 11.268, 
11.367, 11.369-74 

age- and year-specific death rates, 
11.391-94 

fitting relative and excess risk models to 
grouped data, 11.171-76 

multiplicative model, 11.223, 11.224, 
11.226, 11.227 

see also Continuous data analysis 
Negative confounding, 1.95 
Negative interaction, I. 196 
Negative results, 11.44-45 
Nested hierarchy of models, 1.207 
Nickel workers. See South Wales nickel 

refiners 
Non-central hypergeometric distribution, 

definition, I. 127 
Non-identifiability problem, 11.128 
Non-multiplicative models and partial 

likelihood, 11.191 
Non-oestrogen drug use, 1.262, 1.264,1.265 
Non-parametric estimation 

background rates, 11.192-99 
relative mortality functions, 11.197-99 

Normal approxiination to exact distribution 
for 2 X 2 table, 1.129 

Nuisance factors, confounding effects of, 
I .225-26 

Nuisance parameters, 1.205 

Obesity and risk of endometrial cancer, 
1.262,1.265 

Obstetric radiation and associated risk of 
cancer, 1.239-42 

Odds ratio, 1.70, 1.73, 1.94-96, 1.99, I. 102, 
1.103,1.106, 1.108, 1.130-31, 1.135, 
1.139,1.140, 1.196, 1.250-10, 1.241, 
1.252 

empirical, I. 172 

equivalence to relative risk, 1.70-72 
estimation of. See Estimation of odds ratio 
test for consistency, I. 185-87 
test for homogeneity, I. 142-46, I. 167 

Oesophageal cancer, 11.36, 11.45, 11.159 
among Singapore Chinese, 1.274 
dose-response, 11.263 
Ille-et-Vilaine study of, 1.222-24, I. 162, 

1.210,1.213-33, 1.238,1.281-83 
in Caspian littoral of Iran, 1.275, 1.276 
in relation to alcohol consumption, 1.216, 

1.218-20,1.223-24, 1.227-35 
in relation to tobacco consumption, 1.154, 

I. 155,1.217-19, 1.221,1.223-24, 
1.227-35, 11.266 

log relative risk, 1.216, 1.217, 1.220, 1.221 
Oestrogen use, 1.24, 1.29, 1.90,1.93, I. 104, 

1.254-59, 1.262, 1.264, 1.265 
Oral cancer in relation to alcohol and 

tobacco consumption, 1.66,1.67, 
1.86, 1.109, 1.110 

Oral contraceptives, 1.22 
Overmatching, I. 104-6 
Oxford Childhood Cancer Survey, 1.239-42, 

1.270, 1.284-89, 1.322 

p-values as measure of degree of evidence, 
1.128 

Partial likelihood, 11.186, 11.188, 11.189 
for multiplicative models, 11.185-86 

Partial likelihood analysis, 11.200, 11.212-14, 
11.212 

PECAN program, 11.206 
Person-years, algorithm for exact calculation, 

11.362 
Person-years allocation, 11.49-51, 11-83, 

11.85-86, 11.88 
to time-dependent exposure categories, 

11.82-86 
Poiilt prevalence 1.42 
Poisson distribution, 11.68, 11.69, 11.70, 

11.274 
Poisson models 

and the Poisson assumption, 11.131-35 
for grouped data, 11.185 

Poisson rates, fitting general models to, 
11.160-67 
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Poisson variability, 11.99, 11.100 
Poolability of data. See Matched data 

analysis 
Population attributable risk, 1.74, 11.21 
Population controls, 1.276 
Portsmouth (USA) Naval Shipyard workers, 

11.99 
Positive confounding, 1.95, I. 101 
Positive interaction, I. 196 
Potential confounding, I. 107 
Power considerations, 11.34-35 

see also Case-control studies, design 
considerations; Cohort studies, 
design considerations 

Power to detect interaction, 11.308-10 
Prevalence, point, 1.42 
Prevalence cohorts, 11.25 
Proportional hazards, 1.201 
Proportional mortality, 11.45-46, 11.76, 

11.115-18 
analysis 11.153-55, 11.216 
incorporating standard rates, 11.154-55 
risk functions for, 11.168-71 

Proportionality assumption, 11.93 
Prospective cohort studies, 11.2 

Questionnaires, 1.34 
information management, 1.34-35 

Radiation exposure 
and bone tumours, 11.249-50 
and breast cancer, 11.247-49,11.262 
and'cigarette smoking, 11.254 
and leukaemia, 11.244-47 

Rate of occurrence, 1.43 
Rates and rate standardization, 11.48-79 

cumulative rate, 11.57-58 
directly standardized rate, 11-52-57 
standard error of cumulative or directly 

standardized rate, 11.58-61 
standardized to world population, 11.55-57 
summary measures, 11-51 
see also Incidence rates; Mortality rate; 

Standardized mortality ratios 
(SMRs) 

Recall bias, I.22,1.35, 1.84-85, I. 113, 11.16 

Regression adjustment for confounders, 
1.225-26 

Regression analysis, 1.232, 11.91, 11.99, 
11.100 

Montana smelter workers, 11.157-59 
see also Logistic model and logistic 

regression 
Regression coefficients, 1.197, 1.215, 1.218, 

1.224,1.274, 11.140, 11.142 
interpretation of, 1.233-36 
multiplicative model, 11.158 
standardized, 1.208 

Regression diagnostics, 11.138-42,II. 146, 
11.161, 11.203-4 

Regression models, 1.214,1.215, 1.222, 1.240 
Regression variables, I.239,1.254-59 
Relative attributable risk (RAR), 1.76 
Relative mortality functions, nonparametric 

estimation, 11.197-99 
Relative mortality index (RMI), 11.75 
Relative risk, I .57-67, 1.69-73, I .77,1.84, 

1.87-89,1.110,1.113,'I1.106-14, 
11.142 

additive, 11.160 
see also Odds ratio 

Relative risk estimation, 11.94-95,II. 108-10, 
11.147 

general models of, 11.159-71 
incorporating external standard rates, 

11.167 
see also Estimation of odds ratio; Mantel- 

Haenszel analysis 
Relative standardized mortality ratio 

(RSMR), 11-77-78 
Reproductive factors in breast cancer, 1.66 
Residual analysis, Hat matrix in, 11.138-40 
Residual confounding, 1.100,I.lOl 
Residuals, standardized, 1.213 
Respiratory cancer, II.60,II. 105, 11.207 

standard death rates, 11.88 
standard proportion of deaths due to, 

11.155 
Retirement, 11.27 
Risk, 1.51, 1.53 

see also Excess risk; Relative risk 
Risk-dose-time relationship, modelling, 

11.232-70 
Risk factors, 1.25,1.53,1.55,1.56, 1.58, 1.66, 

1.76,1.123,1.128 
binary, 1.263 
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constellation of, I. 199 
joint effects of, 1.154-56 
more than two levels, 1.198 

Risk ratio. See Relative risk; Odds ratio 
Risk set sampling, 11.199-206, 11.214-16, 

11.302-4 
Risk specificity 

disease subgroups, 1.86-87 
exposure subcategories, 1.87 

Risk variables, 1.123 
transforming continuous, 1.236-38 

Rule of 5,1.139 

Sample size. See Case-control studies, design 
considerations; Cohort studies, 
design considerations; Confounding 
effects; Interaction; Matching 

Sampling requirements, 1.72 
Score statistic, 1.207 
Second order interaction, I. 199 
Selection bias, 1.22,1.35, 1.85, 1.89, I. 113, 

II.17,11.49 
Serial measurements, 11.20 
Significance level 

attained, 1.218 
two-sided, I. 133 

Significance tests, 1.127, I. 131-33 
Single-tail test, 1.133 
Skin cancer, case-control study of, 1.200 
Skin tumours, 1.236 

estimated cumulative incidence rates, 1.237 
in mice, 1.46, 1.53, 1.54 

South Wales nickel refiners, 11.23-25,II.32, 
II.37,II. 142, 11.143, 11.218-29, 
11.233 

continuous data 11.374-90 
lung cancer in 11.171, 11.174, 11.268, 

11.347-48 
mortality experiences, 11.171 
multistage models, 11.267-70 
nasal sinus cancer, 11.268, 11.365-67, 

11.369-74 
Spurious associations, 1.89 
Standard error 

of CMF, 2.64 
of Mantel-Haenszel estimate, 11.109 
of SMR, 11.67 

Standard populations, 11.54-55 
Standardized mortality ratios (SMRs), 11.49, 

11.65-68,II.83, 11.88, 11.125, 11.126, 
II.128,11.151, 11.152, 11.157, 11.158, 
11.173, 11.175, 11.197-98,II.268 

advantages over CMF, 11-65-66 
approximate limits for, 11.70 
bias in the ratio of, 11.72-75, 11.92 
by years since first employed, 11.217-18 
comparison of 11.91-103 
confidence intervals for, 11.69-72 
testing for heterogeneity and trend in, 

11.96-97 
testing significance of, 11.68-69 
versus CMF, 11.72 

Standardized regression coefficient, 1.208 
Standardized residuals, 1.213 
Statistical inference, 1.124-29, 1.206 

approximate methods of, I. 129 
see abo Likelihood inference 

Statistical interaction, definition, 1.56 
Statistical modelling, advantages and 

limitations of, 11.120 
Stomach cancer, age-specific incidence rates, 

1.60,1.61 
STRAT program listing, I. 307-21 
Strata matching, 1.30-31 
Stratification, 1.89, 1.105, 1.111, 1.122, 1.225, 

I. 242 
see also Confounding, control of 

Stratification degree, 1.99-101 
Summary chi-squared test for combination of 

2 x 2 tables. See under Case-control 
studies; Cohort studies 

Summary measures 
of goodness-of-fit, 11.137-38 
of rates, 11.51-61 

Survival rates, 1.43 
Survival times, 11.131-32 

Tail probabilities, 1.27 
Time-dependent exposure categories, 

person-years allocation to, 11.82-86 
Time on study, 1.43 
Time relationships, 11.37-39 
Tobacco consumption, 11.43, 11.46, 11.88, 

11.101, 11.103 
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Tobacco consumption+ontd. 
and mortality, 11.6 
and radiation exposure, 11.254 
in relation to lung cancer, I. 17,1.55, 1.58, 

1.64,1.66-69,1.75,1.86-93,1.100, 
I. 101, I. 104, 1.166, I. 193,11.5-9, 
11.15,11.234-36, 11.261 

combined with asbestos exposure, 
1.66-68,11.352-53 

in relation to oesophageal cancer, 1.154, 
I.155,1.217-19,1.221,1.223-24, 
1.227-35, 11.266 

in relation to oral cancer, 1.66-69, 1.86, 
1.110 

Tonsillectomy and Hodgkin's disease, I. 16, 
1.31 

Trend tests 
for exposure effect versus trend test for 

dose-response, 11.97-98 
see also under Case-control studies, 

chi-squared test statistic; Cohort 
studies, chi-squared test statistic 

2 x 2 table, 1.126,1.146, I. 148, I. 154,1.169 
approximate statistical inference for, 

I. 129-44 
combining results from, I. 136-56, 

1.210-13 
combining sets of, 1.268-70 
conditional distribution for, I. 125, I. 138 
conditional maximum likelihood estimate 

for, 1.127 
equivalence of odds ratio and relative risk, 

1.70-72 
exact statistical inference, I. 124-29 
interaction in, 1.238-42 
odds ratio in, 1.248 

2 x K table, I. 146-54 
Two-sided significance level, I. 133 
Two-sided test, I. 128 

Unconditional analysis of matched data, bias 
arising from, 1.249-51 

TJnconditional likelihood for logistic 
regression, 1.209, 1.253 

Unconditional likelihood function, 1.269 
Unconditional logistic regression, 1.269 

for large strata, 1.192-46 
Unconditional model, 1.269 
Unknown parameters, 1.125 
Unmatched analysis, 1.271-76 
Unmatched case-control studies, design 

considerations, 11.289-94, 11.302-4 
Unstratified analysis, I. 146-47 
Uranium miners, and lung cancer, 11.253-55 
Urinary tract tumour, 1.52, 1.86 
US national death rates, 11.358-61 
Uterine bleeding, I. 104 
Uterine cancer, 1.27 

Vaginal adenocarcinoma, 1.89 

Weighted least squares regression, 1.60 
Welsh nickel refiners. See South Wales nickel 

refiners 
Woolf estimate. See Logit estimate 

Yates correction. See Continuity correction 




