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Preface

The estimation of epidemiological indices plays an important role in epidemi-
ological investigations. One aim of this book is to provide biostatisticians,
epidemiologists, and medical researchers with a useful resource on the differ-
ent estimators of the most commonly used measures of risk in a variety of designs.
Through a systematic presentation and discussion, it is hoped that the reader will
appreciate better the use and limitations of, and the relationships among, these
indices. Because the material in each chapter is generally self-contained, readers
may choose chapters according to their own interests without the need to read
through all the preceding chapters. This may increase the utility of the book,
although I must admit that some definitions are repeated between chapters to
avoid ambiguities in the formulae.

This book is intended for postgraduates and researchers who have one year
of training in biostatistics and possess some basic knowledge of epidemiolog-
ical terms, such as prevalence, risk difference, odds ratio, relative risk, and
attributable risk. It is also intended for students of biostatistics and epidemi-
ology as a one-semester graduate course, focusing on statistical estimation of
risk in epidemiology. Because research on estimation of epidemiological risk has
been quite intensive in the last two decades, to provide readers with up-to-date
information I have included many recently developed estimators and relevant
references. Thus, this book may also be used as a desk reference for established
researchers. Although the book is mainly directed at biostatisticians and epi-
demiologists, because measures such as the risk difference, relative difference (or
relative risk reduction), and number needed to treat are often used to report
clinical findings, the book should be useful for statisticians and clinicians working
in pharmaceutical areas as well.

When the underlying disease is rare, the probability of obtaining only a few or
zero cases in a sample under binomial sampling can be large or non-negligible.
To ensure that a reasonable number of cases are obtained, we may consider
use of inverse sampling, a fact which has not been widely familiar among
practicing biostatisticians or epidemiologists. This may be the first book to attempt
to systematically introduce in a unified manner statistical methods relevant to

xiii



xiv Preface

inverse sampling in epidemiology. In contrast to binomial sampling, we show
that the bias of estimators for the relative risk or the odds ratio in paired-sample
data can easily be avoided by using inverse sampling. Furthermore, when the
sample size is small, asymptotic interval estimators for the relative difference, the
attributable risk in case—control studies when the underlying disease is rare, or
the odds ratio in paired-sample data may be inappropriate. We note that under
inverse sampling the derivation of exact confidence intervals for these indices is
straightforward. The results and discussions on inverse sampling presented in this
book can provide readers with an alternative way to design their studies.

When theresponse variable is on an ordinal scale with more than two categories,
the odds ratio is inapplicable without arbitrarily collapsing the data. This book
also includes a chapter (Chapter 6) focusing on the generalized odds ratio. This
measure has an easy interpretation and should be useful for epidemiologists and
clinicians when they wish to provide a quantitative measure of the strength of
association for ordinal data between two comparison groups without assuming
any parametric models.

The attributable risk (AR), representing the proportion of cases that may
be prevented if the underlying risk factor under investigation is completely
eliminated, is probably one of the most important indices for public health
administrators to rank the relative importance of risk factors for intervention.
Although there have been numerous recent publications that focus estimation
on this useful measure in a variety of designs, many textbooks have touched
this topic superficially by considering only the simplest cases in which there
are no confounders. I discuss estimation of the AR from the simplest case —no
confounders under a variety of designs—to the more complicated case with
confounders. I also discuss estimation of the AR for paired-sample data. I further
consider the situation in which the exposure variable has multiple levels, and the
situation in which one applies the logistic regression model to adjust for the effects
of confounding variables in case—control studies. A brief discussion on estimation
of the AR under inverse sampling has also been included. The discussions on
the AR presented in this book should be useful for researchers working in public
health administration by providing relatively complete information on recent
developments.

Upon the request of an anonymous reviewer, I have also included a chapter
that discusses the use of the ‘number needed to treat’ (NNT). Because it can
be easily understood by clinicians, this index has frequently been employed in
randomized trials and evidence-based medicine. However, it has been subject to
criticism by statisticians due to misuse and misunderstanding. For example, there
are published papers that report the union of two disjoint open intervals as a
confidence interval for the NNT, or provide a confidence interval that does not
even contain the NNT point estimate. I have tried to present this index in such
a way that these criticisms can be avoided. I sincerely hope that readers find the
discussion presented here useful in clarifying the limitations of the NNT and in
computing interval estimators for it.
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1

Population Proportion
or Prevalence

To quantify the impact of a given disease on public health in a community, or
in studying the variation of a disease distribution between geographical regions
to locate the potential causes, we may wish to first estimate the prevalence
of the disease, defined as the population proportion of subjects who have it.
In this chapter, we start by discussing the estimation of population prevalence
under the most commonly assumed case — binomial sampling, in which we take
a random sample of n subjects and obtain X cases. For example, to estimate
the prevalence of HIV-infected subjects, we may take a random sample of (n =)
1000 subjects in a local community and obtain (x =) 5 subjects with positive
results from an HIV-antibody test. In practice, however, a complete list of the
sampling population needed to employ binomial sampling may not be available.
We therefore discuss estimation under cluster sampling, in which the sampled
unit is the cluster itself rather than the individual subject. As an example, we
take a random sample of households and estimate the proportion of people who
went to see a doctor in the last 12 months (Cochran, 1977). In this case, the
sampled units are households rather than individuals. Other examples of the use
of cluster sampling include the study of the effect of an educational intervention
program on the use of solar protection among children (Mayer et al., 1997) and
the effect of vitamin A supplementation on child mortality (Herrera et al., 1992).
As noted by Cochran (1977), the estimate of the population prevalence can be
subject to a large relative error when the underlying population prevalence is
small under binomial sampling. Furthermore, when the disease is rare, we may
even obtain O cases in the sample. To alleviate these concerns, we discuss the use
of inverse sampling (Haldane, 1945), in which we continue sampling subjects
until we obtain a predetermined number x of cases. For example, we may decide
to sample subjects until we obtain, say, 5 HIV-infected cases when estimating
the prevalence of HIV-infected subjects in a community. In contrast to binomial
sampling, the number of cases x under inverse sampling is fixed, but the total
number of sampled subjects N needed to obtain these x cases is random. Except
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2 Population proportion or prevalence

for specifically referring to the incidence rate, calculated as the number of events
divided by the number of person-years of follow-up time, we will generally use the
terms probability, proportion, risk, and rate synonymously in this book (Fleiss,
1981). An excellent discussion on explicit definitions of these terms as used in
epidemiology appears elsewhere (Selvin, 1996).

1.1 BINOMIAL SAMPLING

Suppose that a random sample of size n is taken from a very large population so
that we can reasonably assume that the probability of a randomly selected subject
being a case equals a constant 7 and the events for each randomly selected subject
of being a case or a non-case are all mutually independent. Let X denote the
random number of cases among these n sampled subjects. The random variable X
then follows the binomial distribution with parameters n and 7:

P(X = x|7) = (Z) 751 — )", (1.1)

where x =0,1,...,n,0 <m < 1, and 7 denotes the underlying population
proportion of cases. The most commonly used point estimator of the parameter
is simply the sample proportion of cases:

%= X/n. (1.2)

Note that under distribution (1.1), the point estimator 77 (1.2) has the expectation
E(7) = 7 (i.e., 7 is an unbiased estimator of the population proportion 7) and
the variance Var(7) = 7(1 — 7)/n (Exercise 1.1). In fact, the estimator 7
is the uniformly minimum variance unbiased estimator (UMVUE) of 7= under
(1.1). By the central limit theorem, the random quantity (# — 7)//Var(%)
has the asymptotic standard normal distribution as n — oo. Thus, by Slutsky’s
theorem (Casella and Berger, 1990), we obtain an asymptotic 100(1 — «) percent
confidence interval for & using Wald's statistic (Agresti and Coull, 1998),

[max{r — Zo/oy/A(1 —7)/n, 0}, min{7 + Z,n/7 (1 —7)/n, 1} (1.3)

Note that when 7 = 0 or 7 = 1, the estimated variance 7 (1 — 7)/n equals O.
Obviously, this underestimates the true variance. Therefore, whenever 7 = 0
or 7 = 1, we recommend use of 7*(1 — 7*)/n to estimate the variance, where
a* = (X + 0.5)/(n+ 1).Notealso that although interval estimator (1.3) iseasy to
use, itis well known that when nisnot solarge thatbothnz > Sandn(l1 — ) > 5
hold, (1.3) is not expected to perform well due to the possibly skewed sampling
distribution of 7. To improve the performance of (1.3), we consider the probability
P([(7 — m)//Var(®)]* < Zﬁ/z) = 1 — « as nis large. This leads us to obtain the



Binomial sampling 3

following quadratic equation (Wilson, 1927; Fleiss, 1981; Casella and Berger,
1990; Newcombe, 1998):

An? —2Br +C <0, (1.4)

where A= 1+7;,/n,B=# +7;,/(2n), and C = *. Because A > 0, (1.4) is
always convex. Furthermore, we can show that B> — AC > O (Exercise 1.2)
and hence the two distinct roots of Aw? — 2Bm + C = 0 always exist. Thus, an
asymptotic 100(1 — «) percent confidence interval, which can also be derived
from the score test (Wilson, 1927; Agresti and Coull, 1998; Casella and Berger,
1990; Newcombe, 1998; see also the Appendix), is given by

[(B—+/B2—AC)/A, (B++/B*—AC)/A] (1.5)

Note that an asymptotic confidence interval similar to (1.5) but with a continuity
correction can be found elsewhere (Fleiss, 1981; Newcombe, 1998). Using a
continuity correction can always increase the coverage probability through
an increase in the length of the resulting interval estimate, but may produce
a conservative confidence interval (Agresti and Coull, 1998). Note also that
although interval estimator (1.5) generally outperforms (1.3), both of these
confidence intervals are derived from large-sample theory. When n is small, for
X = x > 0, we may consider using the confidence interval derived on the basis
of the exact distribution (1.1) (Casella and Berger, 1990; Clopper and Pearson,
1934; Jowett, 1963):

[x/{x + (= x4+ DF30—xt1).2x.0/2}
{(x + D F2es1),20=x.072} /{1 = %) + (¢ + D) Faes1),20-00.0/21] (1.6)

where Fy, 1, o is the upper 100«th percentile of the central F distribution with f;
and f, degrees of freedom. If x = O, then we would define the lower limit of (1.6)
to be 0. Similarly, if x = n, then we would define the upper limit of (1.6) to be 1.
Applying interval estimator (1.6) can always guarantee the coverage probability
to be larger than or equal to the desired confidence level 100(1 — «) percent
for any positive integer n. Details of the derivation of confidence limits (1.6) are
given in Exercises 1.3 and 1.4. However, it is well known that (1.6) is likely
to be conservative, especially when n is not large. Blyth and Still (1983) propose
another exact binomial confidence interval that satisfies a few desirable statistical
properties. To facilitate the use of their interval estimator, Blyth and Still (1983)
tabulate the 95% and 99% confidence limits for n < 30. They note that in some
cases the interval estimate they propose can actually be contained in the resulting
estimate using (1.6). Vollset (1993), Agresti and Coull (1998), and Newcombe
(1998) all provide good systematic discussions comparing the performance of
different interval estimators for a binomial proportion. Other closed-form interval
estimators using transformations of 7 appear in Exercises 1.5 and 1.6.



4 Population proportion or prevalence

Example 1.1 We are interested in estimating the prevalence 7 of subjects with
hypertension in a city. Suppose that a random sample of size 200 is taken,
and 35 of these 200 sampled subjects are identified to be cases. Given these
data, the point estimate 7 (1.2) of the hypertension prevalence 7 is 0.175. The
interval estimators (1.3), (1.5), and (1.6) give 95% confidence intervals for 7 of
[0.122,0.228],[0.129, 0.234], and [0.125, 0.235], respectively. Because both
the estimates nw and n(1 — 7) are reasonably large (at least 5), these resulting
interval estimates are similar to one another; they are all appropriate for use.

Example 1.2 In a pilot study of a rare disease, suppose that we obtain only a
single case with exposure to a risk factor of interest out of a random sample of
10 cases. We are interested in estimating the exposure prevalence 7 in the case
population. Employing (1.3), (1.5), and (1.6), the corresponding 95% confidence
intervals for 7 are [0, 0.286], [0.018, 0.404], and [0.003, 0.445]. Note that the
interval estimate using (1.3) tends to shift to the left as compared with the those
using (1.5) and (1.6) and therefore may not appropriate for use in this situation.
It may come as no surprise that the interval estimate obtained using (1.6) is the
longest of the three. This is because the coverage probability of (1.6) can be larger
than the desired confidence level when n is small.

1.2 CLUSTER SAMPLING

Because of the practical difficulty of obtaining a complete list of subjects in a
population, it will often be convenient to employ cluster sampling to collect data.
In fact, in many circumstances clustering is unavoidable; it may even occur by
study design. For example, in a study concerned with an educational intervention
program on behavior change, the data are grouped into small classes (Mayer
etal., 1997; Lui et al., 2000) and hence it is natural to treat the classes as the
sampled units. When any two subjects are randomly selected from the same
class, the events that these two subjects have the outcome of interest are likely
to be positively correlated. Thus, the interval estimators (1.3), (1.5), and (1.6)
of 7, in which the intraclass correlation is not taken into account, will tend to
overestimate the precision of the resulting estimate, so that the actual coverage
probability of these estimators under cluster sampling will likely be less than the
desired confidence level. The results presented in this section can also be useful in
the situation where the measurement of the underlying response on subjects is
unreliable or the cost of obtaining a new subject is much higher than obtaining
a measurement from someone who is already a sampled subject (Lui, 1991). In
this case, we may consider taking more than one measurement per subject to
increase the efficiency or reduce the expense of a study. The number of repeated
measurements taken from each subject then forms a cluster.

Suppose that a random sample of n clusters with varying cluster size m;(i =
1,2,...,n) is taken. Define Xj; =1 if the jth (j =1, 2, ..., m;) subject in the
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ith cluster is a case, and Xj; = O otherwise. Let p; denote the probability that
a randomly selected subject from cluster i is a case; that is P(Xj; = 1) = p; and
P(X; = 0) =1 — p;, where O < p; < 1. To account for the intraclass correlation
between the outcomes of subjects within clusters, we assume that the p; indepen-
dently and identically follow a beta distribution beta(x, ) with mean = = «/T
and variance (1 — 7)/(T + 1), where T = « + 8, because this family is rich
in shapes and is commonly used to model Bernoulli data (Johnson and Kotz,
1969). On the basis of the above model assumptions, we can easily show that the
intraclass correlation between the outcomes Xj; and X, j # j/, within cluster i
is p = 1/(T + 1), which is always positive (Exercise 1.7). We can further show
that the probability of a randomly selected subject being a case under the above
model assumption is simply E(X;) = E(E(Xjj|p;)) = E(py) = 7.

Given p; fixed, the conditional distribution of X; = Zi Xjj follows the binomial
distribution with m; and p;. Define

A=Y Xi/m. (1.7)

where m, = ), m; is the total number of sampled subjects. Note that 7 is simply
the sample proportion of subjects who are the cases. We can easily show that 7 is
an unbiased estimator of 7 under cluster sampling as well. Furthermore, we can
show that the variance Var(7) (Exercise 1.8) is equal to

Var(7) =7 (1 — 7)f(m, p)/m., (1.8)

where m' = (my, my, ..., my,) and f(m, p) is the variance inflation factor due
to the intraclass correlation p and equals ), m;[1 + (m; — 1)p]/m,, which is
always greater than or equal to 1. The larger the value of p, the larger is the
value of f(m, p). When the intraclass correlation p between the outcomes of all
subjects within clusters equals O, f(m, 0) = 1 and hence the variance Var(7)
reducesto (1 — 7r)/m.. On the other hand, when p equals 1, f(m, p) reaches the
maximum Y m}/m.. For a given total number of subjects m., using equal cluster
size m; will minimize the inflation factor f(m, o). To estimate p, we can apply the
traditional intraclass correlation estimator (Fleiss, 1986; Lui et al., 1996; Elston,
1977; Yamamoto and Yanagimoto, 1992)

p = (BMS — WMS)/[BMS + (m* — 1)WMS],

where

B 2

WMS = | > X, - Z(Xf/mi)} / [Z(mi — 1)}
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are the between mean-squared and within mean-squared errors, respectively, and

| () -3 /o]

Note that under the common correlation model (Mak, 1988), the variance formula
(1.8) and the traditional intraclass correlation p as given above are still valid
(Exercise 1.9).

On the basis of the above results, an asymptotic 100(1 — «) percent confidence
interval for 7 is

[max{# — Zu/2y/# (1 — #)f(m, p)/m_, O},
min{# + Z2v/# (1 — #)f(m, p)/m_, 1}]. (1.9)

Note that when the cluster size m; = 1 for all i, interval estimator (1.9) reduces
to (1.3). Thus, when the number of subjects m, is small, (1.9), although simple
to use, is unlikely to perform well. Following ideas similar to those for deriving
interval estimator (1.5), we consider the following quadratic equation in 7:

An? =2Br +C<0 (1.10)

where A =[1+7,f(m, p)/m],B=[7+7,,/(m,()/(2m)], and C=7">.
Because A > 0, (1.10) is always convex. Furthermore, we can show that
B> — AC > 0 and hence an asymptotic 100(1 — «) percent confidence interval
for 7 is given by

[(B—VB*—AC) /A, (B+ VB> —AC)/ AL (1.11)

When m; = 1 for all i, as expected, interval estimator (1.11) reduces to (1.5).

In an effort to improve the performance of (1.9), we consider use of the
logarithmic transformation to improve the normal approximation of 7 (Exercise
1.5). By the delta method (Agresti, 1990; Casella and Berger, 1990; see also
the Appendix), we can show that the asymptotic variance of log(7) is Var(7) =
(1 —m)f(m, p)/(m 7). Therefore, we obtain an asymptotic 100(1 — «) percent
confidence interval for 7 to be

[# exp(=Zo/2v/ (1 — A)f(m, p)/(M.7)), 7 exp(Zej2y/ (1 — R)f (m, p)/(m.7))].
(1.12)
Note that when 7 = 0, log() is not defined, and when 7 = 1, the estimated
variance of log(7) is 0. In these cases, we may apply a commonly used ad hoc
adjustment procedure for sparse data by substituting (Z Xi. + 0.5) /(m, + 1) for
win(1.12).
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Example 1.3 Consider the study of an educational intervention program on
behavior change with regard to solar protection (Mayer et al., 1997). There are
29 classes with sizes ranging from 1 to 6 in the intervention group and 29 classes
with sizes ranging from 1 to 4 in the control groups (Lui et al., 2000). Suppose
that we are only interested in estimating the prevalence rate 7 of children who
do not have an adequate level of solar protection in the intervention group. The
class size and the corresponding number of children not possessing an adequate
level of solar protection in this group are given in Table 1.1. The point estimate 7
in the intervention group is 0.422. Applying (1.9), (1.11), and (1.12), we obtain
95% confidence intervals for 7 0of [0.273,0.570],[0.286,0.571],[0.297, 0.600],
respectively. As seen for the binomial sampling (i.e., m; = 1 for all i), interval
estimate (1.9) using Wald’s statistic tends to shift to the left as compared with the
other two estimates.

Example 1.4 A simple random sample of 30 households of size m; ranging from 1
to 6 persons is drawn from a census taken in 1947 in wards 5 and 6 of the Eastern
Health District of Baltimore (Cochran, 1977, p. 67). For each of these 30 sampled
households, we ask how many persons went to see a doctor in the last 12 months.
We summarize the data in Table 1.2. Suppose that we want to estimate the
proportion 7 of people who consulted a doctor. From Table 1.2, the point estimate
7 is 0.288. The 95% confidence intervals for = obtained from (1.9), (1.11), and
(1.12)are[0.148,0.429],[0.177,0.469],and [0.172, 0.442], respectively. Note
that if we employed the ratio estimator discussed elsewhere (Cochran, 1977) to
estimate 7 under cluster sampling, we would obtain a 95% confidence interval
for w of [0.147, 0.430], which is almost the same as that obtained using (1.9),
but is less preferable to interval estimates using (1.11) or (1.12).

Table 1.1 The class size and (in parentheses) the observed number of children with an
inadequate level of solar protection in the intervention and control groups.

Intervention group
+3(2), 1(1), 2(2), 2(2), 2(1), 1(1), 3(2), 1(1), 3(2), 2(2), 2(0),
(2), 2(1), 2(1), 1(1), 1(1), 1(0), 1(0), 1(0). 1(0)
Control group
,4(2), 2(1), 2(1), 3(3), 2(2), 2(1), 4(1), 3(3), 2(2), 3(3),
+3(2), 4(4), 1(1), 1(1), 1(1), 1(0), 1

E
[
L
[

Source: Lui et al. (2000).

Table 1.2 Household size and (in parentheses) the observed number of people who
consulted a doctor in the last 12 months for a random sample of 30 households.

5(5), 6(0), 3(2), 3(3), 2(0), 3(0), 3(0), 3(0), 4(0), 4(0), 3(0), 2(0), 7(0), 4(4), 3(1), 5(2),
4(0), 4(0), 3(1), 3(3), 4(2), 3(0), 3(0), 1(0), 2(2), 4(2), 3(0), 4(2), 2(0), 4(1)

Source: Cochran (1977).
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1.3 INVERSE SAMPLING

When the underlying disease is rare (i.e., w = 0), the coefficient of variation
(A —m)/(nm) for estimator 7 (1.2) under binomial sampling (1.1) is large.
Furthermore, when 5 is extremely small, the probability of obtaining O cases
in our sample under (1.1) is no longer negligible for a small or even moderate
sample size n. To alleviate this practical concern, we may apply inverse sampling
(Haldane, 1945), in which we continue sampling subjects until we obtain a
predetermined number x of cases. Let Y denote the number of non-cases before we
obtain exactly x cases. The random variable Y then follows the negative binomial
distribution with parameters x and 7:

x+y—1
y

P(Y:y|n)=( )nx(l—rr)”, y=0,1,2,.... (1.13)

Under distribution (1.13), we can show that the maximum likelihood estimator
(MLE) of 7 is given by
7 =x/N, (1.14)

where N = x+ Y. Note that (1.14) is actually a biased estimator of . The
asymptotic variance Var(#) can be shown to equal 7n%(1 — 7)/x (Exercise
1.11). Thus, the asymptotic coefficient of variation of 7 under distribution (1.13)
is+/(1 — m)/x, which is approximately equalto /1 /x asthe underlying prevalence
rate 7 = 0. In contrast to binomial sampling, we can ensure that the relative
error is smaller than a given precision by simply increasing the predetermined
number x of cases. Furthermore, an asymptotic 100(1 — «) percent confidence
interval for = using Wald'’s statistic is given by

[max{# — Zu/2v/72(1 — 7)/x, 0}, Min{# + Zo/py/A2(1 — 7)/x, 1}].  (1.15)

As noted before, 7 is a biased estimator of 7. To alleviate this concern, for x > 1
we may consider use of the unbiased estimator

AW =(x—-1)/(N-1), (1.16)

which is, in fact, the UMVUE of 7= (Exercise 1.12).Best (1974) derives a
closed-form expression for the variance of this estimator:

x—1

Var(#@) = (x = (1 — ) [Z(—n/(l —m)f/(x =k

k=2

— (—n/(1 - n))xlog(n):| — 2. (1.17)
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As shown in Exercise 1.13, an unbiased estimator of Var(# W) (1.17) for x > 2
is given by (Finney, 1949)

Var(7®) = #®W(1 — #®) /(N — 2). (1.18)

When x > 2, (1.16) and (1.18) lead to an asymptotic 100(1 — «) percent
confidence interval for 7 given by

[max{zn @ — Za/z\/ﬁ@(l — W) /(N = 2), 0},

min{# @ 4 Z,2v/7W(1 — 7W)/(N - 2), 1}]. (1.19)

Note that both interval estimators (1.15) and (1.19) may not be appropriate
for use when N is not large. When N (= x + y) is small, we may consider
using the exact 100(1 — «) percent confidence interval [rrl(e), 7(®] on the basis
of distribution (1.13), where 7 and 7(© are the solutions of the following two
equations: ), P(Y = y/|rrl(e)) =a/2and ) P(Y = y'|7{?) = /2 (Casella
and Berger, 1990). From Exercises 1.3 and 1.14, for Y = y > 0 we obtain an
exact 100(1 — «) percent confidence interval for 7 (Exercise 1.15; Casella and
Berger, 1990), given by

[x/{x + W+ Fr441),2v0/2 XF22y.072/{XF2x 25072 + Y} (1.20)

When y = 0, we define the upper limit of (1.20) to be 1 for convenience. Note
that the confidence limits proposed by George and Elston (1993) are actually a
special case of (1.20) when x = 1. Lui (1995) discusses the expected length of
(1.20) as a function of x and the relationship between (1.20) and the confidence
limits on the expected number of trials in reliability studies previously discussed
by Clemans (1959). When the underlying disease is rare (i.e., 7 is small), Bennett
(1981) proposes an approximate 100(1 — «) percent confidence interval for 7 on
the basis of the x 2 distribution. Details of this can be found in Exercise 1.20.

Example 1.5 Suppose that we employ inverse sampling and collect 100 non-
cases before obtaining exactly 20 cases. Applying interval estimators (1.15),
(1.19), and (1.20), we obtain 95% confidence intervals for 7 of [0.100, 0.233],
[0.094, 0.226], and [0.105, 0.238]. Given such an adequate number of cases,
these resulting interval estimates are all similar to one another.

Example 1.6 Under inverse sampling, suppose that we decide to continue sam-
pling subjects until we obtain exactly 2 cases. Suppose we obtain 10 non-cases
in our sample. Applying interval estimators (1.15), (1.19), and (1.20), we obtain
95% confidence intervals for 7 of [0.000, 0.378], [0.000, 0.269], and [0.021,
0.413]. As compared with the exact 95% confidence interval, interval estimators
(1.15) and (1.18), derived from large-sample theory, tend to shift to the left and
are probably inadequate for use in this case.
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Note that the sum ), X; of independent random variables X;, each following
the binomial distribution (1.1) with parameters n; and 7, follows the binomial
distribution with parameters ) _ n; and rr. Furthermore, the sum >, Y; of indepen-
dent negative binomial random variables Y;, each following the negative binomial
distribution (1.13) with parameters x; and 7, follows the negative binomial with
parameters ) ; x; and 7 (Hoel et al., 1971). Thus, in practice, we can simultane-
ously send several surveyors to a homogeneous population and ask each surveyor
to sample a desired number of subjects n; under binomial sampling (or continue
sampling subjects until he/she has obtained a predetermined number x; of cases
under inverse sampling). We can then combine all these samples into a single
database and calculate the confidence limits by simply substituting > . n; for n
and ), X; for X under the binomial distribution (1.1) (or ), x; for xand ), Y; for
Y under the negative binomial distribution (1.13)), respectively. All the results
derived here can then be employed. Note also that when studying a rare disease
in a follow-up study, we often assume that the number of cases follows a Poisson
distribution. We present some useful results on estimation of the disease incidence
rate under this distribution in Exercise 1.21. We will discuss the use of Poisson
sampling in much more detail in Chapters 2 and 4.

EXERCISE

1.1. Suppose that the random variable X follows the binomial distribution (1.1)
withnand .

(a) Show that E(7) = 7w and Var(7) = (1 — 7)/n.

(b) Find an unbiased estimator of Var(7).

1.2. Suppose that the random variable X follows the binomial distribution (1.1)
with parameters n and . Show that the inequality B> — AC > 0O always holds,
where A =1+ Zé/z/n, B=7 +Zi/2/(2n), C=7a?2, and # = X/n, and that the
two distinct roots of Aw? — 2Bmw 4+ C = 0 always fall between O and 1 when
7 > 0.

1.3. (a)Prove

X

1-m
n k n—k n n—x—1 X
1- =n-x t 1—1t)*dt.
E (k)ﬂ( ) (n \)(x)fo ( )

k=0

(Hint: use a similar principle to mathematical induction.)

(b) Show that if F follows the F distribution with p and g degrees of freedom, then
(p/QF/[1 4+ (p/q)F] follows the beta distribution beta(p/2, q/2).

(c) On the basis of the results in (a) and (b), show that

( n—x)m )
PX<x)=P(F> —— 27 ),
(x+ D —m)

where X is binomial with parameters nand 7, and F ~ F3y41),2(n—x), respectively.
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1.4. Based on the result in part (c) of Exercise 1.3, derive the confidence
limits (1.6).

1.5. Using the delta method (Agresti, 1990), show that the asymptotic variance
of log() is (1 — m)/(nm) under distribution (1.1) and discuss how to apply this
result to derive an asymptotic 100(1 — «) percent confidence interval for 7.

1.6. Using the delta method, show that the asymptotic variance of 2 sin™! v/7
is 1/n under distribution (1.1) and discuss how to apply this result to derive an
asymptotic 100(1 — «) percent confidence interval for 7.

1.7. Suppose that the Bernoulli random variable Xj; has the probability mass
function P(Xj; = 1) = p; and P(Xj; = 0) = 1 — p;, where p; follows the beta dis-
tribution with mean E(p;) = 7 and variance # (1 — n)/(T+ 1)(i=1,2,..,n,j=
1,2,..., m). Suppose further that, given p; fixed, Xj; and X are conditionally
independent for j # j'. Show that the intraclass correlation between Xj; and Xj;
(where j # j') within clusteriis p = 1/(T + 1).

1.8. Show that the variance of # (=) ., X;./m, where X; = 2;11 X
and m, = ) ;m;) under the model assumption in Exercise 1.7 is Var(7) =
7(1 —m)f(m, p)/m.,, where m’ = (m;, my,...,m,) and f(m, p) => m[l+

1

(m; — Dp]/m..

1.9. Under the common correlation model, we assume that the joint probabilities
of any two different dichotomous responses Xj; and Xj; within a given cluster i are
defined as follows:

PXj=1,Xy =1 =n"+pn(l—n),
PXjj=0,Xy =0) =1 -m[(l —n)+ pr],

(a) Show that the intraclass correlation between Xj;; and Xy is equal to p.

(b) Show that the variance Var(w) (where 7# = ) | X;./m,) is equal to 7w (1 —
m)f(m, p)/m,, where f(m, p) = >, m[1 + (m; — 1)p]/m,. This is actually the
same as that given under the beta-binomial model for p = 1/(T + 1).

(c) Show that the expectation ECEWMS) = n(1 — 7)(1 — p) and EBMS) = 7 (1 —

7)1 — p) + m*z (1 — 7)p, where m* = [(21 ml-)2 -3 mlz] / [(n -1 mi].

Thus, we may apply the traditional intraclass correlation estimator p = (BMS —
WMS)/[BMS + (m* — 1)WMS] to estimate p.

1.10. Consider the data for the control group in Table 1.1. (a) What is the MLE
7 of the prevalence of children with an inadequate level of solar protection in the
control group? (b) What are the corresponding 95% confidence intervals for =
using (1.9), (1.11), and (1.12)?
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1.11. Show that the asymptotic variance Var(z) under distribution (1.13) is
72(1 — m)/x, where # is given in (1.14). Thus, the coefficient of variation of 7 is

V(1 —m)/x.

1.12. Show that #W(= (x — 1)/(N — 1)) is an unbiased estimator of = under
distribution (1.13). Note that because 7™ is a function of complete sufficient
statistic, 7V is the UMVUE of 7 (Casella and Berger, 1990).

1.13. Show that for x > 2, we have E[#®W(1 —A#W™)/(N — 2)] = Var(z ),
where the expectation is taken with respect to distribution (1.13) (Finney,
1949).

1.14. Show that the cumulative distribution Zg/:() P(Y = y/|7), where Y follows
the negative binomial distribution (1.13) with parameters x and 7, equals
Zi’,zo P(X = «x'|1 — 7), where X has the binomial distribution with parameters

n=x+yandl — m (Morris, 1963).

1.15. On the basis of the results found in Exercises 1.3 and 1.14, for
y > 0 derive the 100(1 — &) percent confidence limits [nl(e), 7] given in (1.20)
Whereﬂl(e) =x/[x + Y+ DF2y41)2v.0/2), and 1 = xFay 2y a/2/[¥Fx 25,072 + Y,
respectively.

1.16. Consider an experiment consisting of x randomly selected devices (where
x is fixed), each subject to a series of independent and identical trials until it
fails. Suppose that the failure probability at each trial equals a constant 7 and
all these failures between trials are mutually independent. Discuss how we can
apply formula (1.20) to derive a 100(1 — «) percent confidence interval for the
expected number of trials (1 — ) /7 before the failure of a given device. (Hint:
f@Gr) = (1 — w)/m is a monotonically decreasing function of r.)

1.17. Using the delta method, show that 2 sinh ™' (,/Y/x), where Y follows the
negative binomial distribution (1.13) has the asymptotic variance 1/x. Thus,
the transformation 2 sinh~!(/Y/x) can be used to stabilize the variance of the
negative binomial random variable Y.

1.18. Suppose that a random sample of size 1000 subjects is taken. Suppose
further that we find 5 cases in this sample. What are the 95% confidence intervals
for the prevalence of cases using (1.3), (1.5), and (1.6)?

1.19. Let Y; denote the number of trials before failure for devicei(i=1, 2, ..., 5)
in Exercise 1.16. Suppose that }_ Y; = 100. What s the 95% confidence interval
for the expected number of trials (1 — )/ before failure for a given device.

1.20. When the underlying prevalence rate n is small, show that 2(x + Y)r,
where Y follows the negative binomial distribution (1.13), follows approximately
the x?2 distribution with 2x degrees of freedom (Bennett, 1981). How can we
apply this result to derive an approximate 100(1 — «) percent confidence interval
for 7 ?
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1.21. When the underlying disease incidence rate A is small in cohort stud-
ies, the number X of cases is often assumed to follow a Poisson distribution:
exp(—An*)(An*)X /X!, where n* is a known total of follow-up time in person-years
andX=0,1,2,....

(a) Show that A = X /n* is the MLE and an unbiased estimator of A with variance
A n*.

(b) Show that an asymptotic 100(1 — «) percent confidence interval for A is given
by A & Zyjan/ A/10".

(c) Show that an asymptotic 100(1 — «) percent confidence interval for A can
be given by solving the two distinct roots of the following quadratic equation:
ATA2 —2BTA 4+ (T =0,AT =1, B =1 +22,,/(2n"), and CT = 2.

(d) Using the fact that

X0

> exp(—an") () /Xt = P(x3 1) > 21°),
X=0

where X22(x[) L1 isa chi-squared random variable with 2 (xg + 1) degrees of freedom
(Casella and Berger, 1990), show that an exact 100(1 — &) percent confidence
interval for A is [Xzzx[),l—a/z/(zn*)’ Xzz(xo+1),a/z/(2n*)], where sz,a is the upper
100ath percentile of the central x? distribution with f degrees of freedom. Note
that if xo = 0, we define the lower limit to be 0.)

1.22. Suppose that in Exercise 1.21, we follow a group of 25 subjects for 2 years
and obtain X = 10 cases.

(a) What is the MLE X of the disease incidence rate A?

(b) What is the 95% confidence interval for A using Wald's statistic?

(c) What is the 95% confidence interval for A using the quadratic equation in
Exercise 1.21?

(d) What is the exact 95% confidence interval for A?
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2
Risk Difference

When we determine the relative order of importance of diseases in terms of public
health issues, it is appealing to use an index that can reflect the magnitude of the
excess mortality attributed to each disease. This leads us to consider the use of the
mortality risk difference (RD) between the two groups determined by the presence
or the absence of the disease. In fact, Berkson (1958) strongly criticizes the use of
the ratio of two rates as a measure of association by noting that the level of rate
can be lost when a ratio is used. For example, a tenfold increase with respect to a
rate of one per million is the same as a tenfold increase with respect to a rate of
one per thousand, even though the latter increase might have far more serious
implications than the former, especially if the rates are deaths from some disease
(Fleiss, 1981). Therefore, Berkson contends that the simple difference between
two rates should be used as the index to measure the association. Similarly, when
allocating limited resources to reduce the occurrence of a disease, we may want
to search for risk factors which, if eliminated, can result in the largest possible
reduction in the underlying disease rate. To help investigators locate these risk
factors, we may compare the morbidity RDs among the potential risk factors
under investigation. When we calculate the RD from a cohort of subjects who are
originally free of the disease, RD represents the incidence RD. When we calculate
the RD from a cross-sectional study, in which we simultaneously determine the
status of each sampled subject with respect to the exposure and outcome, RD
represents the prevalence RD. Because the methods of estimation in the following
discussion are generally applicable to both of these RDs, we use RD for brevity
unless there is a need to distinguish between them. By definition, the range
of RD between two population proportions is —1 < RD < 1. When there is no
association between the risk factor and the disease, RD = 0.

We first discuss estimation under the simplest case —independent binomial
sampling. We then extend this to accommodate the situation in which we
employ pre-stratified sampling in multicenter studies or meta-analysis. Also,
because clustered data commonly occur in health-related and epidemiologi-
cal studies, we discuss estimation of RD while accounting for the intraclass
correlation under independent beta-binomial sampling. Furthermore, we may
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often encounter paired-sample data in surveys (Agresti, 1990; Fleiss, 1981), we
consider estimation of RD in this situation as well. When the underlying disease
is rare, to ensure that we can obtain an appropriate number of cases we include
a brief discussion on estimation of RD under independent negative binomial (or
inverse) sampling. Finally, when assessing the effect of a risk factor on the inci-
dence rate of a rare chronic disease in cohort studies, to account for the possible
difference in the follow-up time in person-years between two comparison groups,
we discuss estimation of the incidence RD under Poisson sampling.

2.1 INDEPENDENT BINOMIAL SAMPLING

Suppose that we independently sample n; subjects from a population with exposure
(i=1) and a population with non-exposure (i = 0) to a risk factor. Suppose
further that we obtain X; cases from group i. The random variable X; then follows
the binomial distribution (1.1) with parameters n; and n;, where 7; denotes the
probability that a randomly selected subject from population i is a case. The RD
is defined as A = w1 — . Because E(7;) = m; under (1.1), where 77; = X;/n;, the
simple difference between the two sample proportions,

~

A =7 — %o, (2.1)

is an unbiased estimator of RD (Exercise 2.1). Furthermore, the variance of A is
equal to
Var(A) = mi (1 —m)/m + mo(1 — 7o) /no. (2.2)

By the central limit theorem, we may claim that (A —A) / \/Var(A) has the
asymptotic standard normal distribution as n — oco. Thus, by Slutsky’s theorem
(Casella and Berger, 1990), an asymptotic 100(1 — «) percent confidence interval
for A using Wald'’s statistic is given by

[max{A — Z,/»/71(1 — 71)/m + #0(1 — 7) /g, —1},
min{A + Zy/2v/71(1 — 1) /1 + 7201 — 720) /no, 1}], (2.3)

where Z, is the upper 100«th percentile of the standard normal distribu-
tion. Note that 7;(1 — 7;)/(n; — 1) is an unbiased estimator of m;(1 — m;)/n;
(Exercise 2.2), and substituting 7;(1 — 7;)/(m; — 1) for 7;(1 — ;) /n; in (2.3)
may improve its performance when n; is not large. Note also that a conti-
nuity correction is commonly applied to (2.3) by subtracting (1/n; + 1/ny)/2
from the lower limit and adding the same quantity to the upper limit of A
Za/zJﬁl(l — 11)/n + 7o(1 — 7p) /ng, subject to A remaining strictly between
—1 and 1 (Fleiss, 1981). When both n; are large, such continuity correction is
unnecessary as it has little or no effect on the interval estimates. Readers who are
interested in use of the continuity correction may refer to Hauck and Anderson
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(1986), who use simulation methods to provide a systematic evaluation of various
continuity correction schemes.

Recall that the probability P([(A — A)//Var(A)]? < Zi/z) =1 —« as both
n; are large. Define 7= m, + my. Then 7, = (7+ A)/2 and 7y = (7— A)/2.
Thus, we can express the variance Var(A) (= Zilz() (1 — ;) /ni) in terms of
parameters 7 and A. These results lead us to consider the following quadratic
equation in A (Exercise 2.3):

AA* —2BA +C <0, (2.4)
where
A=1+1/m + 1/no)z§/2/4,
B=# —fo+ (1= D(A/m — 1/n0)Z; /4,
C= (1 —#0)* — T2 —DA/m + 1/n0)Z;,, /4.

Because A > 0, (2.4) is always convex. If B> — AC > 0, then an asymptotic
100(1 — &) percent confidence interval for A for a given 7 would be [A(7),
Au(D], where A(7) = max{(B — +B%? — AC)/A, —1} and A (7) = min{(B +
/B2 — AC)/A, 1} are the two distinct roots such that the equality in (2.4) holds,
subject to A lying in the range (—1, 1). But since the nuisance parameter 7 is
often unknown in practice, the interval estimator [A;(7), Ay (7)] cannot be used.
In the following discussion, we consider a few methods for estimating 7, each of
which produces a slightly different interval estimator for A.

First, we consider the simplest unbiased estimator '3'1 = 711 + 71 of 7. Hence, we
obtain an asymptotic 100(1 — «) percent confidence interval for A from (2.4):

[ATY), Au(TD)]. (2.5)

Note that if 7; were extremely small (or extremely close to 1), the probabil-
ity that the resulting estimate @(ﬁi)(z (1 — 7)) /n;) is 0 would be non-
negligible. This obviously underestimates the variance Var(s;), and hence
estimators (2.3) and (2.5) are not likely to perform well in this case. Thus,
in application of (2.3), whenever either of 7y or 71 equals O or 1, we recom-
mend use of the ad hoc adjustment procedure of adding 0.5 for sparse data and
applying 7;*(1 — 7;*)/n; to estimate Var(s;), where 7 = (X; + 0.5)/(n; + 1).
Similarly, when either of 77y or 77 equals O or 1, we may use 'j'z =7a7+ 75 to
estimate 7 in application of (2.5). In fact, Beal (1987) also notes that interval
estimator (2.5) without use of the above adjustment procedure may occasion-
ally result in too short an interval estimate. Beal (1987) proposes use of ATZ to
estimate 7 regardless of whether 77; = O or 1. Thus, our asymptotic 100(1 — «)
percent confidence interval for A is

[A(T2), Au(To)]. (2.6)
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Note that interval estimator (2.6), in which the parameter 7 is estimated by 5’2
is slightly different from (2.5), in which 7 is estimated by 5’1 when neither 7
nor 77 equals O or 1, and by 7’2 when either 7o or 71 equals O or 1. Note also
that Beal (1987) refers to (2.5) and (2.6) as Haldane and Jeffreys—Perks intervals,
respectively.

The derivation of interval estimators (2.5) and (2.6) does not incorporate
the condition 7, — 7y = A into estimation of 7. Conditional upon 71 — 7y =
A, Mee (1984) proposes an estimator of 7 that requires use of a doubly iter-
ative procedure. To simplify Mee's calculation procedure, conditional upon
A = m — g, Wallenstein (1997) proposes the weighted least-squares (WLS) esti-
matorsija =7 + Ang/n, and7iga = T — An;/n,,wherew = (m7; + nosg)/n,
and n, = n; + ny, for estimating 7; and 7y (Exercises 2.4 and 2.5). However,
applying Wallenstein's procedure not only involves a tedious ad hoc adjustment
procedure, but also loses efficiency with respect to the average length of the
confidence interval (Lui, 2001a). Newcombe (1998) provides a systematic dis-
cussion comparing the performance of 11 methods, including (2.3), (2.5), and
(2.6). Newcombe also notes that interval estimators (2.5) and (2.6) are generally
preferable to (2.3). While referring readers to this paper for details, we note that
Newcombe recommends the following asymptotic 100(1 — «) percent confidence
interval for A:

[max{A — Zg/2/li(1 — L) /n1 + uo(1 — up)/no, —1},

min{A + Zy2/in (1 = w)/m + Io(1 = o) /o, 1}], (2.7)
where I, and u; are the smaller and larger roots of m;: |7 —m| =
Zas2+/7i(1 — 7;) /n;. Note that interval estimators (2.3) and (2.5)—(2.7) are all
derived on the basis of large-sample theory. Santner and Snell (1980) develop
small-sample interval estimators for A. Except for the conditional method,
however, the approaches proposed by Santner and Snell are quite sophisticated,
and we do not present these procedures here to save space. Discussions on interval
estimation of RD for small-sample cases are given by Coe and Tamhane (1993)
and Santner and Yamagani (1993).

Example 2.1 Consider the study of mortality due to heart disease for two
treatments, tolbutamide and placebo, among patients with adult-onset diabetes
(Miettinen, 1985, p. 142). The data show that 19 patients died of heart disease
among 204 patients taking tolbutamide, while only 5 died out of 205 patients
taking the placebo. Given these data, the estimate A (2.1) is 0.069. Applying
interval estimators (2.3), and (2.5)—(2.7), we obtain 95% confidence intervals
for A of [0.024, 0.114], [0.023, 0.113], [0.022, 0.114], and [0.023, 0.118],
respectively. Because the sample sizes in both groups are reasonably large, all
these interval estimates are similar to one another. Since all the lower limits
are above 0, we may conclude that the risk of dying from heart disease in the
tolbutamide treatment is significantly higher than that in the placebo group at
the 5% level.
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Example 2.2 Consider the double-blind, placebo-controlled study of topiramate
in patients with refractory partial epilepsy (Sharief et al., 1996), in which 47
patients are randomly assigned to either topiramate (n; = 23) or placebo (ny =
24) treatment for a 3-week titration and an 8-week stabilization period. We obtain
8 patients in the topiramate group versus 2 patients in the placebo group who
have a 50% or greater reduction from baseline in seizure rate during the double-
blind phase. On the basis of these data, we estimate A (2.1) to be 0.264. Applying
interval estimators (2.3), and (2.5)—(2.7), we obtain 95% confidence intervals
for A of [0.041, 0.488], [0.029, 0.461], [0.025, 0.466], and [0.027, 0.476]
respectively. The interval estimates from (2.5)—(2.7) are similar to one another,
while that from (2.3) is shifted to the right. Because the number of subjects with
50% reduction is only 2 in the placebo group, use of interval estimator (2.3) in this
case can be misleading. Since all the lower limits are above 0, there is significant
evidence at the 5% level that use of topiramate tends to increase the proportion of
patients with 50% reduction in seizures.

2.2 A SERIES OF INDEPENDENT BINOMIAL
SAMPLING PROCEDURES

Suppose that we employ a pre-stratified sampling procedure with S strata. The
strata can be formed by centers or hospitals in a multicenter study, or different
studies in a meta-analysis. From stratum s (s = 1, 2, ..., S), we independently
sample n;; subjects from the exposed (i = 1) and non-exposed populations (i = 0).
Suppose we obtain X;; cases among n;; subjects. Let m;; denote the probability
that a randomly selected subject from the ith population in the sth stratum
is a case. Define Ay = 715 — mos and 7s = w15 + 7o, SO that w13 = (A + 75)/2
and mg; = (73 — Ay)/2. Under the above assumptions, the joint probability mass
function of the random vector X' = (X/, X{,), where X; = (Xi1, Xp, . .., Xig), is
given by

N X nys—x
s QS /]'s Als 2 ﬁs ']’S 1s 1s
s=1 s

T, — Ag X0s 2 — ’]: Aq Nos—Xos
« Nog s R s+ A 7 (28)
X0s 2 2

where Xis = 07 17 27 e Mg, n = (nllv niz,...,NMs, No1, No2, - - ., nOS)’ A/=(A19
!
A A and T = (T, T, ..., T5).

2.2.1 Summary interval estimators

[AJnder distribution (2.8), the MLEs of A and 7 are simply Ay = 715 — #os and
T, = 715 + Tos, respectively, where 7, = Xjs/njs. As given in (2.2), the variance
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Var(Ay) is m5(1 — m15)/N1s + mos(1 — mos) /Ngs. In this subsection, we assume
that Ag is constant across all strata and we denote this common value by A..
Note that the restricted MLE of A. subject to the condition A} = Ay = ... = Ag
under (2.8) is not in closed form and requires the use of an iterative numer-
ical procedure. On the other hand, if we took a reasonably large sample size
from each stratum and if the variance Var(AS) were known, we could con-
sider the WLS estimator of stratum-specific estimators, » ; W A/ > Wi, where

=1 /Var(A .) (Exercise 2.6). Ontheotherhand lfVar(A .) were unknown, we
Imght substitute the unbiased estimator Var(A ) = 15(1 — 715) /(s — 1) +
os(1 — 7Tos) /(nos — 1) forVar(A‘)and obtain the commonly used point estimator

Awis =Y WAy Y W, (2.9)
N N

where WS = 1/\7&(&). Furthermore, note that the variance Var((}_ WSAS) /
Q- Wy)) =1/ W This leads us to obtain an asymptotic 100(1 — &) percent
confidence interval for A, given by

A, A,

max SX:VAV — Zay2 ,—1¢, min iw + Za2 , 1
RN DL RN L

(2.10)
To ensure that estimators (2.9) and (2.10) perform well we need to take a reason-
ably large sample size from each stratum (Greenland and Robins, 1985). When
the stratum sizes are not large, Greenland and Robins propose a Mantel —-Haenszel
type estimator of A,

Z(Xlsn()s - X()snls)/n.s
Ay = — : (2.11)

E nlsn()s/n.s
s

which is actually a weighted average of As with weights proportional to nisngg/n.s.
This estimator is consistent for sparse data. Greenland and Robins further derive
an asymptotic variance of Ay However, as noted by Sato (1989), this variance is
consistent only for large strata. Sato develops the following estimated asymptotic
variance of Ay, which is consistent for both sparse data and large strata:

A Y Pi+ Y O,
s s .
(Z nls”Os/”.s)

Var(Ayy) =

, (2.12)
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where
b Moy = mXas + (msnos (nos = my)/2)
s — nz
.S
O _ Xls(”Os - XOS)/n.S + XOs(nls - Xls)/n.s
s — .
2

On the basis of (2.11) and (2.12), we obtain an asymptotic 100(1 — «) percent
confidence interval for A.:

[max{A gy — Zos2n/ Var(Ayn), =1},  min{Ayy + Zaj2/ Var(Aym), 1}].

(2.13)

2.2.2 Test for the homogeneity of risk difference

Before employing a summary estimator as discussed in Section 2.2.1, we may
wish to examine whether the assumption that the RD is constant across strata is
satisfied by our data. That is, we wish totest Hy : A1 = Ay = ... = Ag. When all
n;s are large, we may apply the WLS test statistic (Fleiss, 1981)

N
Twis = Y Wi(Ag — Awig). (2.14)
s=1

As all nj; — o0, we can approximate the sampling distribution of test statistic
(2.14) by the chi-squared distribution with S — 1 degrees of freedom. We reject
Hy at level 2 when Twis > x§_, , where x§_, , is the upper 100ath percentile of
the x 2 distribution with S — 1 degrees of freedom.

As an alternative to the above chi-squared approximation, when S is also
large, Lipsitz et al. (1998) proposes the test statistic

Zywis = [Twis — (S — 1D)]/v/2(S = 1), (2.15)

which asymptotically follows the standard normal distribution under Hy. Note
that when the assumption of RD homogeneity does not hold, the Ty s test statistic
(2.14) is expected to be larger than that under Hy. In other words, we should
reject Hy only when Ty is large. Thus, we should do a one-sided test and reject
Hy at level « when the test value Zws (2.15) is larger than Z,.

To try to improve the normal approximation of a chi-squared distribution,
following Fisher (1928), we may consider use of a logarithmic transformation of
Twrs. This leads us to consider the test statistic (Lui and Kelly, 2000)

Ziwis = {log(Twes/(S — 1))/2 + 1/[2(S = DI}/v1/[2(S = D]. (2.16)

Again, we reject the null hypothesis Hy at level @ when Zwigs is larger than Z,.
Note that when 7;; = O or 1 in applications of test statistics (2.14)—(2.16), the
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estimated variance @(AS) is certainly inappropriate, and hence we recommend
use of the ad hoc procedure for sparse data involving adding 0.50 to each cell of
the sth stratum. In fact, on the basis of simulation, Lui and Kelly (2000) note that
using this adjustment procedure can substantially improve the performance of
test statistic (2.14), especially when the stratum size is moderate. Lui and Kelly
(2000) also note that test procedure using (2.16) is generally preferable to that
using (2.14) in a variety of situations. However, this is not true for test procedure
using (2.15), which often has Type I error much larger than the nominal level
«. In an effort to improve the performance of test statistics (2.14)—(2.16), Lipsitz
etal. (1998) propose three other weighted test statistics as well. However, test
procedures using these statistics are generally conservative when the stratum
sizes are small (Lui and Kelly, 2000).

Example 2.3 Consider the all-cause mortality data from six trials comparing
aspirin (i = 1) with placebo (i = 0) in post-myocardial infarction patients (Can-
ner, 1987). These include the two trials (s = 1, 2) carried out in the United
Kingdom (Elwood etal., 1974; Elwood and Sweetnam, 1979), the Coronary
Drug Project (1976) aspirin study (s = 3), the German—Austrian multicenter
study (Breddin et al., 1979) (s = 4), the Persantine-Aspirin Reinfarction Study
(1980) (s = 5), and the Aspirin Myocardial Infarction Study (1980) (s = 6).
We summarize these data in Table 2.1. Applying test procedures (2.14)—(2.16)
to test the homogeneity of the RD over these six trials, we obtain p-values
0.089, 0.075, and 0.090; there is weak evidence against the homogene-
ity of the RD. Calculating point estimates A, for s=1,...,6, we obtain
—0.028, —0.026, —0.025, —0.018, —0.023, and 0.011. Except for the last trial,
the resulting estimates Ay are similar to one another. In fact, after a careful
comparison of these trials, Canner (1987) notes that the baseline imbalance of
medical conditions between the aspirin and placebo groups in the sixth trial may
partially explain the apparent difference of mortality between that trial and the
other five. Applying test procedures (2.14)—(2.16) to test the homogeneity of the
RD over the first five trials again, we obtain p-values 0.998, 0.915, and 1.00.
This suggests that the assumption that RDy for the first five trials is constant
should be reasonable. Applying (2.9) and (2.11) to the data for these five trials
(s=1,2,...,5), weobtain —0.025 for both point estimates of A. Furthermore,
we obtain 95% confidence intervals for A, of [—0.040, —0.010] using both (2.10)
and (2.13). Since the upper limit is below 0, there is significant evidence at the

Table 2.1 All-cause mortality data: the number of deaths/the number of patients in the
aspirin and placebo groups in (S =)6 clinical trials.

s= 1 2 3 4 5 6

Aspirin 49/615 102/832 44/758 27/317 85/810 246/2267
Placebo 67/624 126/850 64/771 32/309 52/406 219/2257
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5% level to support the hypothesis that taking aspirin may reduce the all-cause
mortality as compared with the placebo group.

Example 2.4 Consider the data from a Cancer and Leukemia Group B randomized
trial comparing two chemotherapy treatments with respect to survival rate by the
end of the study in patients with multiple myeloma (Cooper et al., 199 3; Lipsitz
etal, 1998, p. 149). We summarize these data in Table 2.2. There are 21
institutions with the number of eligible patients accrued n;; ranging from 2 to
12. Applying test statistics (2.14)—(2.16) with the ad hoc adjustment procedure
for sparse data for testing the homogeneity of the RD, we obtain p-values of
0.634, 0.666, and 0.619. Therefore, we may reasonably assume that the RD of
survival rates between these two chemotherapy treatments is constant over these
21 institutions. When using Aws (2.9) and Ayy (2.11), we obtain summary
point estimates 0.024 and 0.057, respectively. Because the number of patients
n;s in each institution is small, this resulting estimate Awis can be misleading.
Applying interval estimator (2.13), we obtain a 95% confidence interval for A of

Table 2.2 Survival data from a Cancer and Leukemia
Group B randomized trial: the number X of surviving
patients and the number n;; of patients assigned to each of
two chemotherapy treatments over 21 institutions.

s Treatment I Treatment IT
Institution no. [—— Eh—
S Ny Xls Nos X()s

1 4 3 3 1
2 4 3 11 8
3 2 2 3 2
4 2 2 2 2
5 2 2 3 0
6 3 1 3 2
7 2 2 3 2
8 5 1 4 4
9 2 2 3 2
10 2 0 3 2
11 3 3 3 3
12 2 2 2 0
13 4 1 5 1
14 3 2 4 2
15 4 2 6 4
16 12 4 9 3
17 2 1 3 2
18 3 3 4 1
19 4 1 3 2
20 3 0 2 0
21 4 2 5 1

Source: Lipsitz et al. (1998).
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[—0.099, 0.214]. This result suggests that the RD of survival rates between the
two chemotherapy treatments is not significant at the 5% level.

2.3 INDEPENDENT CLUSTER SAMPLING

In practice, it is quite common not to be able to obtain a complete list of subjects
for the entire population i(i = 1, 0) and so not to employ binomial sampling
to estimate m; as considered in Section 2.1. Indeed, we may encounter many
situations in which subjects are naturally grouped into clusters. For example,
suppose that we want to study the relationship between goiter and iodine
deficiency and collect the data from two geographical regions. One region is rich
in iodine and the other is not. Because it is much easier to obtain a complete
list of villages than a complete list of inhabitants in a region, we may wish to
apply cluster sampling, in which we first take a random sample of villages from a
region and then draw a random sample of individual subjects from each sampled
village. Since the outcomes of subjects within villages (or clusters) are likely
positively correlated, it is important to account for this intraclass correlation to
avoid overestimating the precision of our inference. Similarly, for administrative
convenience, cluster randomization trials, in which the unit of randomization is a
school, a class, or a household are also widely used for evaluating an intervention
for the prevention of disease (Cornfield, 1978; Donner etal., 1981;Klar and
Donner, 2001; Lui et al., 2000; Herrera et al., 1992). As an example, consider a
study in which spouse pairs are randomly assigned to either a control group or
an experimental group receiving a reduced amount of dietary sodium (Donner
etal., 1981). The clusters in this study are spouse pairs, in which the responses of
husband and wife are likely to be positively correlated.

Suppose that we independently sample n; clusters of varying size m;; from a
population with exposure (i = 1) and a population with non-exposure (i = 0)
to a risk factor of interest, respectively. We define the random variable Xj = 1
if the kth (k=1, 2, ..., my) subject in the jth = 1,...,n;) cluster from the
ith population (i=1,0) is a case, and Xy = O otherwise. We assume that
the probability P(Xjx = 1) = p; and P(Xj = 0) = 1 — pj;, respectively, where
0 < p; < 1.Because the outcomes of subjects within clusters are likely correlated,
we assume that the p;; independently and identically follow a beta distribution
beta(w;, B;) with mean n; = «;/T; and variance 7;(1 — ;) /(T; + 1), where T; =
a; + Bi. As noted by Johnson and Kotz (1970), the beta family is rich and flexible
in shapes and includes the uniform distribution over (O, 1) as a special case
for 7; = 0.50 and T; = 2. On the basis of the model assumptions, the intraclass
correlation between X and Xy fork # k'is p; = 1/(T; + 1) (Exercise 1.7). Note
that under the model assumptions, the probability of a randomly selected subject
being a case in population i is equal to E(Xjix) = m;.

Given p; fixed, the conditional distribution of Xy, = >, Xy is the binomial
distribution with parameters my; and pj. Define 7; = Zj Xjj./m;,, where m;, =
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Zj my; is the total number of sampled subjects from population i. The sample
proportion of cases 7; is an unbiased estimator of 7r; with variance Var(sw;) equal
to (1 — 7y)f (my, p;)/m;,, where m; = (m;;, mya, ..., my,), and f(my, p;) is the
variance inflation factor due to the intraclass correlation p; and equals > smy[1 +
(mj; — 1)p;]/m;, (Exercise 1.8). As noted in Chapter 1, we can easily see that
f(m;, p;) is an increasing function of p; and reaches its maximum when p; = 1.
First, note that the estimator

A= -7 (2.17)
is an unbiased estimator of A(= 71 — 7y) under the beta-binomial distribution
with variance equal to

Var(A) = 1 (1 — m)f (my, p1)/my. + mo(1 — 70)f (mg, po)/mo.. (2.18)

We can simply substitute 7; for 7; and p; for p; in (2.18) to obtain the estimated
variance Var(A), where

i = (BMS; — WMS;)/[BMS; + (m} — 1)WMS;]; (2.19)

here
2

BMS; = | > (X; /my) — [ DX / > my | | /(i —1) and
| j j

WMS; = ZXU‘. - Z(Xi?,/mij) / Z(mij -1
L/

j j

are the between mean-squared and within mean-squared errors, respectively, and

2
ml* = Z ml']' — Z mlzl / (l’lj — 1) Z mi]‘
j j j

(Fleiss, 1986; Elston, 1977; Lui et al., 1996).
Therefore, an asymptotic 100(1 — «) percent confidence interval for A is

[max{A — Zy2y/Var(A), =1}, min{A + Z,»\/Var(A), 1}], (2.20)

where Var(A) = 71(1 — 71)f(my, p1)/my. + 7o(1 — 79)f (Mg, po)/mo.. Note
that since the sampling distribution of A can be skewed, interval estimator
(2.20) may not perform well, especially when the expected number of cases
in either of the two comparison groups is small. To improve the performance
of (2.20), we generalize interval estimators (2.5)—(2.7) to accommodate the
correlated data under cluster sampling.

First, recall that the probability P([(A —A)/ Var(&)]2 < Zé/z) =1—q«a as
both m;, are large. Following ideas similar to those for binomial sampling, we
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consider the following quadratic equation in A:

ATA? —2BTA +CT <0, (2.21)
where

AT =1+ [fmy, p1)/my. + f(mo, po)/mo.1Z2;5/4.
B = A+ (1= Dlfmy, p1)/my. — f(mo, po)/mo 122,,/4.
Ct = A> = T2 = DIf(my, p1)/my. + f(mo, po)/mo 1%, /4.

Equation (2.21)isalwaysconvex, since A" > 0.IfBf2 — ATCT > 0,thenanasymp-
totic 100(1 — &) percent confidence interval for A is given by [A(7), Au(D)],
where A(7) = max{(B" — v/Bf2 — ATCT)/AT, =1} and A.(7) = min{(B" +
/B2 — ATCT)/AT, 1} are the two distinct roots in the interval (—1, 1) such
that the equality in (2.21) holds. Following similar arguments to those presented
in Section 2.1, we obtain the following three estimators.

First, consider the use of ?’1 = 711 + 7 to estimate 7. We obtain an asymptotic
100(1 — @) percent confidence interval for A of the form

(AT, Au(TD)]. (2.22)

Notethat when eitherofthe 7; = Oor 1, we propose using 7, (1 — 7;*)f(my, p;)/m;,
to estimate Var(sw;) in (2.20) and T = ¥ + 7§ to estimate 7 in (2.22), where
Al = X..+0.5)/(m; + 1).

Following Beal (1987), we may also consider using T> to estimate 7 regardless
of whether 77; = 0 or 1. Thus, we obtain an asymptotic 100(1 — «) percent
confidence interval for A given by

(AT, Au(To)]. (2.23)

Finally, following Newcombe (1998), we may extend (2.7) to account for the
intraclass correlation between responses within clusters. We obtain an asymptotic
100(1 — @) percent confidence interval for A given by

[max{A — Zg2y/f(my, pOL (1 — 1) /my, + f(mo, po)uo(1 — uo)/mo., —1},

min{A + Zyov/f(my, p1)ug (1 — py)/my, + f(mg, po)lo(1 — Ip)/mo., 1}],

(2.24)
where I, and u; are the smaller and larger roots of m;: |7 —m| =
Zo,/z\/f(mi, o mi(1 — 7)) /my, for i = 1, 0. Note that when m;; = 1 for all i and j,
all interval estimators (2.20) and (2.22)—(2.24) under cluster sampling reduce
to (2.3) and (2.5)—(2.7) under independent binomial sampling. Lui (2001a)
evaluates and compares the performance of estimators (2.20), (2.22), and (2.23)
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in the context of repeated measurements per subject, focusing on situations in
which the cluster size is small (e.g., households), and finds that (2.22) and (2.23)
generally outperform (2.20).

Example 2.5 Consider the data in Table 1.1 for an educational intervention
program with emphasis on behavior change with regard to solar protection
(Mayer et al., 1997). We assign 29 classes to each of the intervention and placebo
groups. Because classes are randomly assigned to one of these two groups, we
may assume that the intraclass correlations of the intervention and placebo
groups are equal (i.e., p1 = po = pc). We use p. = (m1.p01 + mo. o)/ (M1, + mo,)
to estimate this common intraclass correlation, and obtain . = 0.30. Let
w1 and my denote the proportion of children with an inadequate level of
solar protection in the intervention and control groups, respectively. Apply-
ing (2.20) and (2.22)—(2.24), we obtain 95% confidence intervals for A
of [-0.405,0.013],[-0.392,0.017],[—0.392,0.017], and [—-0.385, 0.016].
Because both 77 = 0.422 and 7y = 0.618 are not close to the boundary of 0, the
interval estimators considered here are all adequate for use (Lui, 2001a).

2.4 PAIRED-SAMPLE DATA

Toincrease theefficiency of a clinical trial, we may consider matching subjects with
respect to some strong nuisance confounders to form paired-sample data. For each
given matched pair, we randomly assign one subject to receive the experimental
treatment under investigation and the other to receive the standard treatment or
placebo. We then want to compare the probability of responses between the two
treatments. Similarly, in surveys we may follow a group of sampled subjects and
record their responses on two occasions. We then want to investigate whether
there is a change in response rates between these two occasions. For example,
consider a example (Agresti, 1990, p. 350), in which a random sample of 1600
voting-age Americans is taken. Among these, 944 people originally indicate
approval of the President’s performance in office, but only 880 people indicate
approval a month later. We want to study whether there is a significant change
in approval rates between the two surveys. Because the responses between the
two surveys are taken from the same group of subjects, the responses on the
same subject are likely correlated. Interval estimators of the RD presented for
independent binomial sampling are inappropriate for use in this situation. For
clarity, we use the following table to summarize the possible outcomes:

Second survey

Yes No
First Yes T 10 1.
survey No o1 00 0.

.1 .0
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where O < mj; < 1(i =0, 1andj = 0, 1) are the cell probabilities, 7r;, = ;1 + 7o,
and r; = myj + mo;. We define the RD in paired-sample data as A = 7y, — 7,1 =
19 — mo1. The range of A is —1 < A < 1. Let 7= w19 + o1 represent the
probability of discordance between responses within a given pair. Thus, we have
10 = (T+ A)/Z and Tl = (T— A)/Z

Suppose that we have n matched pairs. Let Nj denote the observed fre-
quency of pairs falling in the cell with probability 7;;. The random vector
N’ = (N11, N1o, No1, Noo) then follows the multinomial distribution with param-
eternand n’ = (711, T10, To1, T00):

n!
fnmin, m) = ———— a1 7 7)) mol, (2.25)

ma1!nig!no:!neo
where n = (I’lll, nio, No1, I’l()())/, Nij > 0, Zi Z]- Nl']‘ =n, and Zi Z]- Tjj = 1.
Under (2.25), the MLE 7t;; of rj; is Nj;/n. Define A = 719 — #01. Note that the
expectation E(A) = A. Note further that we can easily show that the variance
Var(A) = [m10 + o1 — (10 — mo1)%]/n (Exercise 2.7). These lead us to obtain
an asymptotic 100(1 — «) percent confidence interval for A of

[max{—1, A — Z,»\/Var(A)}, min{1, A 4 Z,/,+/Var(A)}]. (2.26)

where \75‘(5) = [#10 + o1 — (10 — Ro1)?]/n. Except for the minor adjustment
to ensure the resulting confidence limits fall in the range (—1, 1) of A, the
above interval estimator is, in fact, the most frequently used interval estimator of
A for paired-sample data and appears in many textbooks (Fleiss, 1981; Agresti,
1990; Dixon and Massey, 1969; Selvin, 1996). Note thatinterval estimator (2.26)
depends on only the marginal cell frequencies (N1, No1), which have marginal
probability mass function

n!
nioMe1!(n — nyp — ng1)!
X [(A + 7’)/2]"10[(7’_ A)/z]nm (1 _ 7’)("*"10*"01)_ (22 7)

an),N(n (10, no1In, A, 7T) =

Given a sample vector (11, no1), the log-likelihood of (2.27) is then

log{L(A, TIn19, ng1)} = C + niglog(A + 1) + ng1 log(7— A)
+ (n—nyp — no1) log(1 — 7, (2.28)

where C is a constant that does not depend on parameters A and 7. Under the
trinomial distribution (2.27), we can also show that the MLEs of A and 7 are
given by A = 710 — o1 and T= 710 + Ro1, respectively (Exercise 2.8). We can
further derive interval estimator (2.26) on the basis of the asymptotic properties
of the MLE A (Exercise 2.9).

Consider testing Hy : A = Ay versus H, : A # Ag. When one applies the

asymptotic likelihood ratio test on the basis of the log-likelihood (2.28), the
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acceptance region (Casella and Berger, 1990) consists of all sample points
(n19, no1) such that

2[n10log(A + Ty + np1 log(T— A) + (n — nyo — noy) log(1 — 7
— (m1olog(Ag + T(Ay)) + no1 log(T(Ag) — Ag)
+ (n— n1o — np1) log(1 — TA)N)] < x2,

where ?’(Ao) denotes the restricted MLE of 7, given a fixed A¢, and x? is the
upper 100«th percentile of the central x 2 distribution with one degree of freedom.
Therefore, by inverting the acceptance region (Casella and Berger, 1990; see also
Appendix), we obtain an asymptotic 100(1 — «) percent confidence interval for
A given by

(A, A%, (2.29)

where —1 < Af < A% < 1 are the smaller and the larger roots of A, such that

2[niolog(A + Ty 4 noy log(T— A) + (n — myg — noy) log(1 — 7
— (molog(Ag + T(Ag)) + no1 log(T(Ag) — Ag)
+ (n— mg — no1) log(1 — T(Ap))] = x2. (2.30)

Details of how to find the restricted MLE ’AT(AO), given A = A, appear in
Exercise 2.11.

NotethatwecanrewrlteVar(A)as (T— A*)/n. Thus, ifnislarge, the probability
P((A — A)? J(T— A%)/n) < Za/Z) = 1 — a. Because 7Tis a consistent estimator of

7, the above probability still holds when we substitute T for T (Casella and Berger,
1990). These results lead to the following quadratic equation:

AFA? —2BFA 4+ CF <0, (2.31)

where A = (1+ZZ/2/n) Bf = A, and Cf= Z@ﬁ’/n. An asymptotic
100(1 — «) percent confidence interval for A is then (Lui, 1998; May and
Johnson, 1997)

[max{(Bf — v/ B2 — AtCt)/A*, —1}, min{(B* + VB2 — AtCH)/A%, 1}]. (2.32)

Note that because A* > 0, (2.31) is convex. Furthermore, if both n; and ny;, were
positive, then the condition that B¥ — A*C* > 0 would be true and hence the
confidence limits (2.32) would exist.

In order to attempt to improve the normal approximation of A, we may consider
use of the tanh ™! (x) = % log((1 4+ x)/(1 — x)) transformation (Edwardes, 1995).
Using the delta method, we can easily show that the estimated asymptotic
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variance Var(tanh~'(A)) = Var(A)/(1 — A?)? (Exercise 2.12). Therefore, an
asymptotic 100(1 — «) percent confidence interval for A is given by

[tanh(tanh ™ (A) — Z,5/Var(A)/(1 — A?)),

tanh(tanh ™ (A) + Z,/2+/ Var(A)/(1 — A%))]. (2.33)

Notethat wheqnlo = 0,n91 = 0,orn — n;g — ng1 = 0, therespective estimates
10, o1, or 1 — Tequal O, on the boundary of the range for the corresponding
parameters. Therefore, all the interval estimators (2.26), (2.29), (2.32), and
(2.33) are inappropriate for use in these cases. Thus, whenever any of the above
cell frequencies equals O, we apply the adjustment procedure for sparse data by
adding 0.50 to each cell. Lui (1998) notes that when n is small (less than 30),
7> 0.30, and A < 0.20, applying interval estimator (2.26) is likely to produce
a confidence interval with coverage probability less than the desired confidence
level, but with average length longer than those of (2.29) and (2.32). Lui (2002)
further notes that except for the few extreme cases in which 7 is large (0.50 or
greater) and g is small (0.025 or less) (or 77 is small (0.025 or less) and g is
large (0.5 or greater)), interval estimator (2.32) is generally preferable to (2.33).
However, when n is small (less than 30) in these extreme cases, interval estimator
(2.33) can actually perform quite well without essentially losing efficiency as
compared with (2.29) and hence (2.3 3) is recommended for use on account of its
simplicity. When n is large, all interval estimators considered here are essentially
equivalent with respect to coverage probability and average length. To avoid use
of an iterative numerical procedure in application of (2.29) in this case, interval
estimators (2.26), (2.32), and (2.3 3) can be employed.

Example 2.6  Consider the example of a random sample of 1600 voting-age
Americans (Agresti, 1990, p. 350). There are (n;op =)150 people who originally
indicate approval of the President’s performance in office, but indicate disapproval
in the second survey, while there are only (ng; =)86 people who originally
indicate disapproval but indicate approval in the second survey. Given these data,
we obtain 95% confidence intervals for A(= 19 — 1) of [0.0213, 0.0587],
[0.0214,0.0589],[0.0212,0.0586],and [0.0213,0.0587] using (2.26), (2.29),
(2.32),and (2.33), respectively. Because the sample size in this example is large, all
interval estimators considered here are adequate for use. Since all these resulting
confidence intervals exclude O, there is significant evidence at the 5% level that
the approval rate in the first survey is higher than that in the second survey.

Example 2.7 Consider the numerical example in Rosner, (1990, pp. 342-343),
in which we compare two treatments for a rare form of cancer. Within each
pair, we randomly assign patients to receive either chemotherapy or surgery,
and determine vital status, survival or death, at the end of a 5-year follow-up.
There are (n =)621 pairs of patients matched with respect to age, sex, and
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clinical condition. We obtain n;g = 16 (the number of pairs in which the patient
receiving chemotherapy survives, but the patient receiving surgery dies), and
np1 = 5 (the number of pairs in which the patient receiving surgery survives,
but the patient receiving chemotherapy dies). Given these data, we obtain
95% confidence intervals of [0.0033, 0.0321], [0.0037, 0.0335], [0.0033,
0.0320], and [0.0033, 0.0321] using estimators (2.26), (2.29), (2.32), and
(2.33), respectively. Because all these confidence intervals exclude 0, using any
of these interval estimators indicates significant evidence at the 5% level that
chemotherapy is preferable to surgery with respect to vital status at 5-year
follow-up. However, this improvement in survival rate over the follow-up period
is small.

Using the Dirichlet-multinomial model, Lui (2001b) hasextended the discussion
of the estimation of the RD for paired-sample data to the situation where pairs
of observations are collected under cluster sampling. Lui (2000) also discusses
estimation of the RD with regard to attack rates between successive infections for
an incomplete 2 x 2 table.

2.5 INDEPENDENT NEGATIVE BINOMIAL SAMPLING
(INVERSE SAMPLING)

When the underlying disease is rare, the number of cases in a sample can be small
or even 0 under binomial sampling. To ensure that we obtain an appropriate
number of cases in our sample and to control the relative error of estimation
(Cochran, 1977; see also Exercise 1.11), we may employ inverse sampling
(Haldane, 1945) or negative binomial sampling. Therefore, we now discuss
estimation of the RD under this sampling distribution.

Suppose that we employ independent inverse sampling, in which we continue
sampling subjects until we obtain a predetermined number x; > O of cases from
the exposed (i = 1) and the unexposed (i = 0) groups, respectively. Let Y; denote
the number of non-cases collected before obtaining exactly the desired number, x;,
of cases from group i. The random variable Y; then follows the negative binomial
distribution (1.13) with parameters x; and 7;. Under independent negative
binomial sampling, we can easily show that the MLEs of 7and A are T= 1 + 7o
and A = #; — 7, respectively, where #; = xi/Nj, N; = x; + Y; (Exercise 2.13)
with the estimated asymptotic variance of A equal to (Exercise 2.14)

Var(A) = #2(1 — #1)/x1 + #2(1 — #g) /x0. (2.34)

Thus, an asymptotic 100(1 — «) percent confidence interval for A is given by

[max{—1, A — Z,2\/Var(A)}, min{1, A + Z,»+/ Var(A)}]. (2.35)

Note that 77; is a biased estimator of 7r; under (1.13), and hence 77 — 7 is a biased
estimator of A as well. On the other hand, it is well known that the UMVUE
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of m; is fri(u) =(x—1)/x+Y;—1) when x; > 1 (Exercise 1.12; Haldane,
1945; Mikulski and Smith, 1976). Thus, the UMVUE of A is A® = 7™ —
7. Best (1974) derives the variance of 7" in closed form:

xi—1
Var(@") = (x; — 1)(1 — ;) [Z(—m/(l — 7))/ (i = b
k=2
— (=mi/(1 — 7)™ log(m)} -l (2.36)

Thus, the variance Var(A™) is simply given by Y., Var(#™). Further-
more, since

Var(AW) = 21 = 2") /01 + Y1 — 2) + 20 — 28/ (x0 4 Yo — 2)

for x; > 2 is an unbiased estimator of the variance Var(A®) (Finney, 1949;
Exercise 1.13), we obtain an asymptotic 100(1 — «) percent confidence interval
for A of

[max{A® — Z,,,\/Var(AW), —1}, min{A® + Z, >,/ Var(A®), —1}]. (2.37)

Consider testing Hy : A = Ag versus H, : A # Ay. When applying the asymp-
totic likelihood ratio test, the acceptance region consists of all (Y1, Yy) such that

2[xq log(A + '33 + yp log(2 — A— ’3) + xo log(’AT— A)
+yolog(2 — T+ A) — x1log(Ag + T(Ag)) — y1 log(2 — Ay — T(Ag))
— %0 log(T(Ag) — Ag) — yolog(2 — T(Ag) + Ag)] < X2, (2.38)

where 5’(A0) denotes the restricted MLE of 7, given a fixed Ay, and X‘f is the
upper 100«th percentile of the central x 2 distribution with one degree of freedom.
Therefore, we can obtain an asymptotic 100(1 — &) percent confidence interval
for A by simply inverting the acceptance region (Casella and Berger, 1990; Cox
and Oakes, 1984; see also Appendix) to give

[A]*, AT, (2.39)

where —1 < A < A¥ < 1 are the smaller and the larger roots of Ay such
that equality holds in (2.38). Details of the doubly-iterative procedure for finding
these two roots of Ay can be found in the Appendix of Lui (1999). Note that
we can also derive an asymptotic likelihood ratio test-based confidence interval
under binomial sampling as for deriving interval estimator (2.39). In fact, when
X; = x; and n; — X; = Y;, the asymptotic likelihood ratio test-based confidence
intervals under these two different samplings are identical. Note also that the
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likelihood ratio test-based confidence interval (2.39) is generally preferable to
Wald'’s confidence interval (2.35).

Lui (1999) evaluates and compares the performance of the 95% confidence
intervals (2.35), (2.37), and (2.39) in a variety of situations. He finds that
even when both x; are as small as 5, the coverage probability of all these
estimators can be either larger than or approximately equal to the desired 95%
confidence level. When both x; > 50, estimators (2.35), (2.37), and (2.39) are
essentially equivalent with respect to both coverage probability and expected
length. Furthermore, when 7, < 0.10, Lui notes that the expected length of
(2.37) seems to be the shortest, while maintaining a coverage probability equal
to or greater than the desired 95% confidence level. Because applying interval
estimator (2.37) does not involve a numerical procedure, we may wish to use this
estimator in these situations.

Note that the probability that the MLE 7; is on the boundary as a result of either
Y; being equal to O can be shown to be 7" + 7" — 77" 7" (Exercise 2.15).
Because the underlying proportions 7; of cases are frequently small in practice,
this probability should be negligible in most practical instances. On the other
hand, if this should occur, we may apply the commonly used adjustment of
adding 0.50 to each of Y; whenever either of Y; equals O to avoid this practical
concern in estimation of variances Var(&) or Var(A(“)).

Example 2.8 Suppose that we wish to provide an interval estimate of the preva-
lence RD between two populations. Suppose further that from each of these
two populations we decide to continue independently sampling subjects until we
obtain exactly (x; = x¢y =)30 cases. Suppose we obtain y; = 120 and yo = 270.
On the basis of these data, the MLE A and the UMVUE A®™ are then 0.075 and
0.073, respectively. Estimators (2.35), (2.37), and (2.39) give [0.028, 0.172],
[0.026,0.170], and [0.031, 0.176], respectively. Since the predetermined num-
bers of index cases are reasonably large, these interval estimates are all similar to
one another.

Note that the total number n; of subjects under binomial sampling is fixed,
but the number of cases x; is random and can be O with a positive probability.
By contrast, the total number of subjects N; under inverse sampling is random,
but the number of cases x; is fixed and is determined by the investigator. We
can show that E(NV;) = x;/7; (Exercise 2.16). When the underlying disease is
not rare, we may wish to use binomial sampling due to its simplicity and many
well-understood statistical properties. When the underlying disease is rare and
the data arrive sequentially, it may be natural to consider use of inverse sampling
so that one can ensure that the relative error is less than or equal to a given desired
precision. On the other hand, if the underlying disease were chronic, it would
be practically impossible to employ inverse sampling for cohort studies. This is
because it is not appropriate to wait for a long time to determine the disease status
of each sampled subject before we decide if we should sample the next subject.
When the underlying disease is acute, or when we use a historical cohort design
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or take a survey, in which the disease status for each sampled subject can be
quickly determined, inverse sampling can be a useful alternative sampling design
to binomial sampling.

2.6 INDEPENDENT POISSON SAMPLING

When employing a cohort study design to investigate the effect of a risk factor
on the incidence rate of a chronic disease, such as cancer (Rosner, 2000) or
cardiovascular disease (Doll and Hill, 1966), we often need to follow up a large
number of subjects for a long period of time. Because some of these subjects are
likely to drop out of the study during the lengthy follow-up period, the number of
person-years at risk will likely vary between comparison groups. In this situation
the Poisson model, which can easily account for various lengths in person-years
at risk between groups, is often assumed (Breslow, 1984; Newman, 2001). In
fact, when the underlying disease is rare and the occurrence of a case is random,
one can show mathematically that the incident number of cases in a fixed time
interval follows a Poisson process (Bailey, 1964).

Suppose that we want to compare the incidence rates A; of two comparison
groups distinguished by exposure (i = 1) or non-exposure (i = 0) to a risk factor.
Suppose further that we follow n; subjects and obtain X; cases from group i. We
assume that X; follows the Poisson distribution with parameter n}1;, where n} is
the number of person-years at risk over these n; subjects. The likelihood function
is then given by

1
[T 20 exp(—nirn /X, (2.40)
i=0

where X; =0, 1,.... The incidence RD, denoted by A*, is simply equal to
A1 — Ag. Define ’Z* =AM +k0 We can eas1ly show that the MLEs of A* and
T* are given by A* =i — Ao and T = A1+ Ao, respectlvely, where A=
Xi/n! (Exercise 2.22). Furthermore, the variance of A* is Var(A*) = (T* +
A*)/(2n7) + (TF — A*)/(2nf). Thus, we obtain an asymptotic 100(1 — o) per-
cent confidence interval for A*, using Wald’s statistic, of

[A* = Zoya (T + Ay + (F — A% /2mp),

A 4 70T+ Anj@n + F = Avyjanpl. (241

Because the sampling distribution of A* can be skewed, interval estimator (2.41)
may not perform well, especially when the underlying disease is rare. When both

n* arelarge, we have the probability P(((A* — A*)/,/Var(A*))? < Zé/z) =1—a.
This leads us to consider the following quadratic equation in A* (Exercise 2.23):

AA*)2 = 2BA* + ¢ <0, (2.42)
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where 2 =1, %8 = A* + (1/n} — 1/n)Z2,,/4, and € = (A")? — (1/n} + 1/n5)
%Zﬁ J2/2. If either x; is positive, we can show that the inequality 82 — A¢ >
0 holds and hence the two distinct roots of (2.42) exist. An approximately
100(1 — &) percent confidence interval for A* is then given by

[(B — VB2 —2AC)/A, (B + VB2 — AC) /A]. (2.43)

Note that when x; or x( equals O, using the variance estimate @(A*)(:
il/n’{ + Ao /ng) tends to underestimate the true variance Var(A*). To allevi-
ate this concern, we may employ the ad hoc adjustment procedure for sparse
data using (x; + 0.50)/(n} + 0.50) to estimate A; for both i whenever x; or
xo equals O. Thus, with use of this adjustment, the confidence limits (2.43)
always exist.

Based on Monte Carlo simulation, Lui and Lin (2003) evaluate and compare
the performance of (2.41) with (2.43) as well as the other two test-based interval
estimators involving iterative numerical procedures. Lui and Lin (2003) find that
when the underlying disease is rare, the coverage probability of (2.41) tends
to be smaller than the desired confidence level. Interval estimator (2.43) can
generally improve the coverage probability of (2.41) and perform reasonable
well in a variety of situations. Lui and Lin further observe that the two test-
based interval estimators (which are not presented here to save space) may
even be slightly preferable to (2.43). When the underlying disease in the non-
exposure group is not rare (Ao > 0.10) and the number of person-years at risk
is reasonably large, however, all interval estimators are essentially equivalent. In
this case, we may use (2.41) or (2.43) for simplicity. See Lui and Lin (2003) for
further details.

Example 2.9 Consider the data in Table 2.4 collected from the Nurses’ Health
Study to assess the effect of current use of estrogen replacement therapy and the
risk of breast cancer (Colditz et al., 1990). For illustration purposes, let us consider
only the data for women aged 50—54 years (Rosner, 2000, p. 695). There were
51 cases amounting 24 948 person-years at risk in the group of current users

Table 2.3 The number of deaths/the number of cases with
breast cancer at stages I, II, and III between the groups with
low and high levels of estrogen receptor in 192 women over a
maximum 5 years of follow-up.

Disease stage

I I I
Receptor level Low 2/12 9/22 12/14
P High 5/55 17/74 9/15

Source: Newman (2001).
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Table 2.4 The number of cases with breast
cancer/the number of person-years at risk
between current and never users of hormone
in postmenopausal women of ages 39—64.

Age Current users Never users
39-44 12/10199 5/4722
45-49 22/14044 26/20812
50-54 51/24948 129/71746
55-59 72/21576 159/73413
60—-64 23/4876 35/15773

Sources: These data are abstracted from a data
set originally reported by Colditz et al. (1990) and
quoted by Rosner (2000).

(i=1) and 129 cases amounting 71 746 person-years at risk in the group of
non-users (i = 0). The MLE A*(= A; — A¢) is 0.00025. Applying (2.41) and
(2.43), the 95% confidence intervals for A* are given by [—0.00039, 0.00089]
and [—0.00037, 0.00091], respectively. Since both interval estimates include
0, there is no significant evidence at the 5% level that current hormone use in
postmenopausal women aged 50— 54 increases the risk of breast cancer.

2.7 STRATIFIED POISSON SAMPLING

When comparing incidence rates between exposed (i = 1) and non-exposed
(i = 0) groups, we may often need to adjust for the effect of confounders to avoid
inferential bias. For example, when assessing the effect of estrogen replacement
therapy on the risk of breast cancer in Table 2.4, we adjust for the effect of
age, believed to be associated with hormone use and breast cancer. Here, we
focus discussion on using stratified analysis to control the confounders. From
each stratum j(j =1, 2,...,S), suppose that we obtain Xj cases amounting
to nj person-years at risk in group i(i = 1, 0). We assume that the random
variables Xj independently follow the Poisson distribution with parameters
Ayng, where Aj; is the disease incidence rate. Breslow and Day (1987) provide
arguments to justify the fact that the random variables Xj; can still be regarded
as independent even when the same person may contribute observation time to
several contiguous age categories. On the basis of the above model assumptions,

the likelihood is L s

[ TT Tmi)™ exp—Guymi)/xip. (2.44)
i=0 j=1
The incidence RD in stratum j is then simply equal to A} = A;; — Ag;. We can
easily show that the MLE of A]’-k is A]* where Af = )A\lj — ):()j and 5‘1'1’ = Xij/n;. In
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the following discussion, we assume that A} = A3 = ... = A} and denote this
common incidence RD by A}. We are interested in providing an interval estimator
of AL,

First, consider the most coznmonly u§ed intervalAestimEt\or based on the WLS
point estimator Ajyis = X WiAF/ W), where W = Var(Af) ™! = (hy/n}; +
Aoj /n;ﬁj)_l. Thus, we obtain an approximately 100(1 — «) percent confidence
interval for A} given by

[A;VLS - za/z/ > Wi Aus +za/2/ /ZVV,-]. (2.45)

When the number of person-years at risk (or when the expected number of
cases) is small in each stratum, the WLS interval estimator (2.4 5) will likely not
perform well. Thus, we consider interval estimator based on the Mantel —-Haenszel
estimator (Greenland and Robins, 1985)

Apy = | D nijmiAr /s / > gy | (2.46)
j j

]

Note that A%y, is actually identical to the WLS estimator Aj, ¢ with weights
inversely proportional to Var(A7) under the null condition that A} = O for all j.
Furthermore, one can easily show that the variance of Af\‘/IH (Exercise 2.25) is
given by

2 2 2
N naj * njfj * * % *
Var(Ayy) = E pey ”17)‘11“*‘ ey rl()j)»o; Z”Ojnli/”.i ,
j g g j
(2.47)

which is a function of unknown parameters ;. We can simply substitute the
MLEs A for A;; in (2.47) to obtain the estimated variance

2 2 2

— . ng ni,

Var(Ajy) = > (n—‘f) Xl,-+<n—if) Xo; / > gy | (2.48)
j g J j

Thus, an asymptotic 100(1 — «) percent confidence interval for A% based on AK/IH
is given by

[Afg = Zajo/ Var(Aly), Al + Zujay/ Var(Alp]. (2.49)

To improve the normal approximation of AK/IH following Edwardes (1995), we
may also consider using the tanh™!(x) transformation. Using the delta method,
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we can show that the asymptotic variance \7&5‘(tanh_1 (AR‘&H)) = Veﬁ( AK/IH) /(1=
(AKAH)Z)Z (Exercise 2.12). Therefore, we obtain an asymptotic 100(1 — «)
percent confidence intervals for A* given by

[tanh{tanh ™ (Ajyy) — Zujay/ Var(Aig) /(1 — (M)},

tanh{tanh™ (Al + Zajay/ Var(Al) /(1 — AL DI (2.50)

Based on Monte Carlo simulation, Lui (2003) evaluates and compares the
performance of several interval estimators of A%, including (2.45), (2.49), and
(2.50). Because the number of person-years at risk is usually quite large in
cohort studies, if the underlying disease were not rare, all these three inter-
val estimators would be appropriate for use. However, when the number of
person-years at risk is moderate, the coverage probability of (2.45) can be
much less than the desired confidence level, especially when the number S of
strata is large and the underlying disease is rare. By contrast, interval esti-
mators (2.49) and (2.50) can consistently perform well. Thus, in these cases
we may wish to use the latter. To test the homogeneity of the incidence
RD across strata, given a reasonably large number of person-years at risk
in each stratum, we may apply the WLS test statistic ZVV,-(A]’-" — A;‘NLS)Z,
where W, = Var(A")~!. When S WA = Ajyp)? > X314 We reject Hy
A} = A5 = ... = A} at level a. If we should reject this Hy at a small given
level o, we may not want to provide a summary estimator for A% to avoid over-
looking a possibly important association between the exposure and the disease at
certain stratum levels.

Example 2.10 Consider the data (Table 2.4) discussed in Example 2.9. Suppose
that we wish to provide a summary estimate of the effect due to estrogen
replacement therapy on the risk of breast cancer in postmenopausal women,
while controlling the confounding effect of age by means of stratified analysis.
Applying the WLS statistic to test the homogeneity of RD, we obtain a p-value of
0.124.Thus, thereis only weak evidence that RD varies between strata. Assuming
constant RD across age categories, we obtain the point estimates A;j\,LS = 0.00054
and AR‘,[H = 0.00072. Applying interval estimators (2.45), (2.49), and (2.50), we
obtain 95% confidence intervals for A¥ given by [0.00014, 0.00093], [0.00030,
0.00114], and [0.00030, 0.00114], respectively. We can see that the resulting
WLS interval estimate (2.45) tends to shift to the left as compared with the other
two estimates. Although the number of person-years at risk in Table 2.4 is quite
large, the underlying disease rate is (as given by the above two point estimates)
really small. In this case, we may want to apply the WLS interval estimator (2.45)
with caution. Because all the above lower limits are above 0, there is significant
evidence at the 5% level that use of estrogen replacement therapy can increase
the risk of breast cancer. Based on the above resulting interval estimates using
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(2.49) and (2.50), we have 95% confidence that the increase in the number of
cases of breast cancer due to estrogen use should be between 30 and 114 per
100000 person-years.

EXERCISES

2.1. Under independent binomial sampling, show that the difference A between
the two sample proportions in (2.1) is an unbiased estimator of RD with variance
Var(A) given by 71 (1 — 1) /n1 + mo(1 — 7o) /no.

2.2. Show that 7;(1 — 7;)/(n; — 1) is an unbiased estimator of m;(1 — m;)/n;,
where 7; = X;/n;, and X; follows the binomial distribution (Z’) (1 — ),
i

xi=0,1,...,n

2.3. From the results of Exercise 2.1, show that the inequality ((A —

A)/,/Var(A))2 < Zi/z can be rewritten as AAZ — 2BA + C < 0, where the
coefficients A, B, and C are defined in (2.4).

2.4. When the weight is proportional to the sample size n; from population i(i =
1, 0), conditional upon A = 71 — 7o, show that 71 » =7 + Ang/n, and 77ga =
T — Any/n, where T = (n1711 + ngsg)/n. and n, = n; + ngy, are the weighted
least-squares estimators of 77, and 7, respectively (Wallenstein, 1997).

2.5. On the basis of the weighted least-squares estimators in Exercise 2.4,
following similar arguments to those for deriving (2.4), show that we can derive
the quadratic equation AA% — 2BA +C < 0, where A = 1 + [(1/n1)(ng/n.)? +
(1/no)(m/n)?1Z;,5 B = 11 — 7o + (1 = 2m)[(1/m)(no/n.) — (1/ng)(n1/n)]

a/z/Z, and C= (1 —p)> — 7 —m)[1/m + l/nO]Zﬁ/z. If B - AC> 0, an
approximately 100(1 — «) percent confidence interval for A would be given
by [max{(B— /B*— AC)/A, —1}, min{(B + +/B? — AC)/ A, 1}]. As noted by
Wallenstein (1997), this interval estimator is valid only when the estimates
Ta =T + Ang/n, and 7ga =7 — Any/n, fall between O and 1 when A is
replaced by either of these limits. A tedious ad hoc procedure to solve this problem
when either of these estimates 7714 or 77oa does not fall in (0, 1) can be found in
Wallenstein’s paper.

2.6. If the random variables X,(s =1, 2, ..., S) are independently distributed
with a common mean p and known variance o2, then the weighted average
estimator ) . WX, where W} is proportional to 1/ 02, has the minimum variance
among all possible linear cornblnatlons > W X;. Note that because ) W, =
1, > WX, is an unbiased estimator of u.

2.7. Under the multinomial distribution (2.25), show that the expectation
E(710 — 7o1) = A, where 7; = Nj;/n, and the variance Var(719 — #o1) = [710 +
mor — (10 — 7o1) %]/
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2.8. Under the trinomial distribution (2.27), show that the MLEs of A
and 7 are A = 719 — 77 and T= 10 + o1, respectively. (Hint: solve the
equations dlog(L)/dA = nyo/(A+T) —np /(T—A)=0 and dlog(L)/07 =
no/(A+71) +np /(T—A) —(n—nyp —no1)/(1 —7) =0.)

2.9. Under distribution (2.27), show that the asymptotic variance of A(= 71y —
7o1) obtained from the inverse of the Fisher information matrix is equal to

[10 + 701 — (w10 — 701) ] /1.

2.10. Show that for the case where nj3 = ngs = 1, the estimated variance
Var(Aug) (2.12) reduces to [#10 + o1 — (F1o — 7o1)2]/n when the number
S of strata is n.

2.11. Discuss how to find the restricted MLE of 7, given A = Ay under the
trinomial distribution (2.27). (Hint: Given a fixed A = Ag, where —1 < Ag < 1,
as 7 increases from max{A,, —Ag} to 1, the value of d log(L)/37 monotonically
decreases from oo to —oo. Furthermore, d log(L)/d7is a continuous function of 7
from max{Ag, —Ag} to 1. Based on these results, the restricted MLE ’3’(A0) of Tis
simply the unique root, for 7 falling in the range max{Ag, —Ay} < 7 < 1, of the
equation 9 log(L)/97 = O with A replaced by A(. For a fixed A(, we can obtain
the restricted MLE AT(AO) by means of trial and error.)

2.12. Underthe trlnornlal distribution (2.2 7) show that the estimated asymptotic
variance of tanh ™' (A) is given by Var(tanh L(A)) = Var(A)/(l A%)2,

2.13. Show that when the random variables Y;(i = 1, 0) independently follow
the negative binomial distribution (1.13) with parameters x; and 7;, the MLEs
of T=m +mp and A = 7y — 7y are given by 7= 7, + 7o and A = 71 — 7o,
respectively, where 7; = x;/(x; + Y5).

2.14. Under independent negative binomial sampling, show that the asymptotic
variance of the MLE A = 77 — 71 is nlz(l —m)/x1 + 713(1 — 1) /X0

2.15. Show that the probability that either Y; or Yy equals O is 7y' + 7" —
my'm;,", where the Y; independently follow the negative binomial distribution

(1.13) with parameters x; and ;.

2.16. Under negative binomial sampling (1.13) with parameters x; and ;, show
that the expectation E(N;), where N; = x; 4+ Y; is the total number of sampled
subjects, is equal to x;/;.

2.17. Suppose that we compare two treatments under independent binomial
sampling. Suppose further that we obtain 15 subjects with positive responses
out of 100 subjects assigned to the experimental treatment (i = 1), and only
5 out of 80 subjects assigned to the standard treatment (i = 0). Let ; denote
the proportion of positive responses for treatment i(i = 1, 0). What are the 95%
confidence intervals for A(= 7; — 7p) when we use (2.3) and (2.5)—(2.7)?
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2.18. Consider the data consisting of 192 cases with breast cancer at stage I, II,
or I1I, collected by the Northern Alberta Breast Cancer Registry (Newman, 2001).
One important predictor of survival for beast cancer is the amount of estrogen
receptor that is present in breast tissue. For illustration purposes, the estrogen
receptor variable has been dichotomized into low (i = 1) and high (i = 0) levels
using a conventional cutoff value. As reported elsewhere (Newman, 2001, p. 99),
23 out of 48 cases in the low-level group died of breast cancer over a maximum
5 years of follow-up, while only 31 out of 144 cases died in the of high-level group.
(a) What is the point estimate A (2.1)? (b) What are the 95% confidence intervals
for the RD (= m; — 7y, where 7; denotes the mortality risk for group i,i = 1, 0)
when we use (2.3) and (2.5)—(2.7)?

2.19. Consider the data consisting of 192 females with breast cancer in Table 2.3
(Newman, 2001, p. 126). The data are stratified by various stages of breast
cancer. Assume that the underlying RD Ay(= w1 — 7o, S = 1, 2, 3) of death
rates between the two groups with low and high levels of estrogen receptor is
constant across different stages and equals A..

(a) What are the point estimates of A, using (2.9) and (2.11)?

(b) What are the 95% confidence intervals for A, using (2.10) and (2.13)?

(c) If we apply (2.14)—(2.16) to examine the assumption that the above assump-
tion Ay is constant, what are the corresponding p-values?

2.20. Dixon and Massey (1969, p. 250) present data on 105 individuals who are
asked a question on public affairs both before and after a propaganda lecture; a
yes/no answer is required. Fifteen individuals answer no before and yes after the
propaganda, while nine answer yes before and no after the propaganda. What are
the 95% confidence intervals for the difference in the ‘no’ rates before and after
propaganda using (2.26), (2.29), (2.32), and (2.33)?

2.21. Suppose that we decide to continue independently sampling subjects
until we obtain exactly (x; = xg =)20 cases from each of the two comparison
populations (i = 1, 0), respectively. Suppose further that we obtain y; = 60 and
Yo = 180.

(a) Calculate the MLE A and the UMVUE A® of A(= 7, — m0).

(b) Using estimators (2.35), (2.37), and (2.39), what are the 95% confidence
intervals for A?

2.22. Assume that the numbers X;(i = 1, 0) of cases for group i independently
follow a Poisson distribution (n}1;)% exp(—n}A;)/X;!, where X; = 0, 1, ... and n}
is the number of person-years at risk.

(a) Show that the MLEs of A*(= A1 — Ag) and 7T*(= A1 + Ag) are given by
A* = A1 — Ao and T = AL+ Ao, respectively, where A= Xi/n}.

(b) Show that A* is an unbiased estimator of A1 — Ao.

(c) Show that the variance of A* is Var(A*) = (T* + A*)/@2ny) + (TF — A/
Q).
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2.23. Show that from P(((A* — A*)/\/Var(A*))> <72,,) =1 —a, we can
obtain an asymptotic 100(1 — «) percent confidence interval for A* given
by the two distinct roots of the following quadratic equation in A*:
AA*)? = 2BA*+ € =0, where A=1,B = A*+ (1/n} — 1/n3)Z2,/4. and
¢ = (A" — (U/n} + 1/m5)T72 /2. B2 — AC > 0.

2.24. Consider only those women aged 39—44 years in the study of breast cancer
in postmenopausal women (Table 2.4). There are 5 cases over 4722 person-years
in the group who have never used estrogen replacement therapy (i = 0) and 12
cases over 10199 person-years among current users (i = 1).

(a) What is the MLE A — Ao?

(b) What is the 95% confidence interval for A* when we apply A — Ao £

Zjan) A1 /15 4 Ao/mis?
(c) What is the 95% confidence interval for A; — Ao using interval estima-
tor (2.43)?

2.25. Show that the variance of A;IH (2.46) under stratified Poisson sampling is
given by

* 2 * 2
ar(Ayp) = pe A1 " NpjA0j No;y; /105
. y -

j J

2.26. Suppose that we concentrate our attention on studying the effect of
hormone use on the risk of breast cancer for women aged between 39 and
54 years in Table 2.4.

(a) What is the p-value of the test the homogeneity of the RD across these three
different age categories?

(b) What are the point estimates using A%, s and A%y, of the underlying com-
mon A}?

(c) What are the 95% confidence intervals for A’ using interval estimators (2.45),
(2.49), and (2.50)?

REFERENCES

Agresti, A. (1990) Categorical Data Analysis. Wiley, New York.

Aspirin Myocardial Infarction Study Research Group (1980) A randomized controlled
trial of aspirin in persons recovered from myocardial infarction. Journal of the American
Medical Association, 243, 661-669.

Bailey, N. T.J. (1964) The Elements of Stochastic Processes with Application to the Natural
Sciences. Wiley, New York.

Beal, S. L. (1987) Asymptotic confidence intervals for the difference between two binomial
parameters for use with small samples. Biometrics, 43, 941-950.

Berkson, J. (1958) Smoking and lung cancer: some observations on two recent reports.
Journal of the American Statistical Association, 53, 28—38.



References 43

Best, D. J.(1974) The variance of the inverse binomial estimator. Biometrika, 67,385—386.

Breddin, K., Loew, D., Lechner, K., Uberla, K. and Walter, E. (1979) Secondary preven-
tion of myocardial infarction. Comparison of acetylsalicylic acid, phenprocoumon and
placebo. A multicenter two year-prospective study. Thrombosis and Haemostasis, 40,
225-236.

Breslow, N. E. (1984) Elementary methods of cohort analysis. International Journal of
Epidemiology, 13,112-115.

Breslow, N. E. and Day, N. E. (1987) Statistical Methods in Cancer Research, Vol II: The Design
and Analysis of Cohort Studies. International Agency for Research on Cancer, Lyon,
France.

Canner, P. L. (1987) An overview of six clinical trials of aspirin in coronary heart disease.
Statistics in Medicine, 6, 255—263.

Casella, G. and Berger, R. L. (1990) Statistical Inference. Duxbury, Belmont, CA.

Cochran, W. G. (1977) Sampling Techniques, 3rd edition. Wiley, New York.

Coe, P. R. and Tamhane, A. C. (1993) Small sample confidence intervals for the difference,
ratio and odds ratio of 2 success probabilities. Communications in Statistics — Simulation
and Computation, 22, 925-938.

Colditz, G. A., Stampfer, M. J., Willett, W. C., Hennekens, C. H., Rosner, B. and Speizer, F. E.
(1990) Prospective study of estrogen replacement therapy and risk of breast cancer in
post-menopausal women. Journal of the American Medical Association, 264, 2648—-2653.

Cooper, M. R., Dear, K. B. G., McIntyre, O.R., Ozer, H., Ellerton, J., Cannellos, G., Bern-
hardt, B., Duggan, B., Faragher, D. and Schiffer, C. (1993) A randomized clinical trial
comparing melphalan/prednisone with or without interferon «-2b in newly diagnosed
patients with multiple myeloma: A Cancer and Leukemia Group B study. Journal of
Clinical Oncology, 11, 155-160.

Cornfield, J. (1978) Randomization by group: a formal analysis. American Journal of
Epidemiology, 108, 100-102.

Coronary Drug Project Research Group. (1976) Aspirin in coronary heart disease. Journal
of Chronic Diseases, 29, 625—-642.

Cox, D. R. and Oakes, D. (1984) Analysis of Survival Data. Chapman & Hall, London.

Dixon, W.J. and Massey, F.]. Jr. (1969) Introduction to Statistical Analysis, 3rd edition.
McGraw-Hill, New York.

Doll, R. and Hill, A. B. (1966) Mortality of British doctors in relation to smoking: observa-
tions on coronary thrombosis. National Cancer Institute Monograph, 19, 205-268.

Donner, A., Birkett, N. and Buck, C. (1981) Randomization by cluster sample size require-
ments and analysis. American Journal of Epidemiology, 14, 906—914.

Edwardes, M. D. (1995) A confidence interval for Pr(X < Y) — Pr(X > Y) estimated from
simple cluster samples. Biometrics, 51, 571-578.

Elston, R. C. (1977) Response to query: estimating ‘inheritability’ of a dichotomous trait.
Biometrics, 33, 232-233.

Elwood, P. C. and Sweetnam, P. M. (1979) Aspirin and secondary mortality after myocar-
dial infarction. Lancet, 2, 1313-1315.

Elwood, P. C., Cochrane, A. L., Burr, M. L., Sweetnam, P. M., Williams, G., Welsby, E.,
Hughes, S.J. and Renton, R. (1974) A randomized controlled trial of acetyl salicylic
acid in the secondary prevention of mortality from myocardial infarction. British Medical
Journal, 1, 436-440.

Finney, D. J. (1949) On a method of estimating frequencies. Biometrika, 36, 233—-234.

Fisher, R. A. (1928) On a distribution yielding the error functions of several well known
statistics. InJ. C. Fields (ed.), Proceedings of the International Mathematical Congress, Vol. 2.
University of Toronto Press, Toronto, pp. 805-813.

Fleiss, J. L. (1981) Statistical Methods for Rates and Proportions, 2nd edition. Wiley, New
York.

Fleiss, J. L. (1986) The Design and Analysis of Clinical Experiments. Wiley, New York.



44 Risk difference

Greenland, S. and Robins, J. M. (1985) Estimation of a common effect parameter from
sparse follow-up data. Biometrics, 41, 55—68.

Haldane, J. B. S. (1945) On a method of estimating frequencies. Biometrika, 33, 222—225.

Hauck, W. W. and Anderson, S. (1986) A comparison of large-sample confidence interval
methods for the difference of two binomial probabilities. American Statistician, 40,
318-322.

Herrera, M. G., Nestel, P., El Amin, A., Fawzi, W. W., Mohamed, K. A. and Weld, L. (1992)
Vitamin A supplementation and child survival. Lancet, 340, 267-271.

Johnson, N. L. and Kotz, S. (1970) Distributions in Statistics: Continuous Univariate Distribu-
tions 2. Wiley, New York.

Klar, N. and Donner, A. (2001) Current and future challenges in the design and analysis
of cluster randomization trials. Statistics in Medicine, 20, 3729-3740.

Lipsitz, S. R., Dear, K. B. G., Laird, N. M. and Molenberghs, G. (1998) Tests for homogeneity
of the risk difference when data are sparse. Biometrics, 54, 148—160.

Lui, K.-J. (1998) Confidence intervals for differences in correlated binary proportions.
Statistics in Medicine, 17, 2017-2021.

Lui, K.-J. (1999) Interval estimation of simple difference under independent negative
binomial sampling. Biometrical Journal, 41, 83-92.

Lui, K.-J. (2000) Confidence intervals of the simple difference between the proportions of
a primary infection and a secondary infection, given the primary infection. Biometrical
Journal, 42, 59-69.

Lui, K.-J. (2001a) Interval estimation of simple difference in dichotomous data with
repeated measurements. Biometrical Journal, 43, 845—-861.

Lui, K.-J. (2001b) A note on interval estimation of the simple difference in data with
correlated matched pairs. Biometrical Journal, 43, 235-247.

Lui, K.-J. (2002) Notes on estimation of the general odds ratio and the general risk difference
for paired-sample data. Biometrical Journal, 44, 957-968.

Lui, K.-J. (2003) Notes on interval estimation of a common rate difference under stratified
Poisson sampling. Department of Mathematics and Statistics, San Diego State University.

Lui, K.-J. and Kelly, C. (2000) A revisit on tests for homogeneity of the risk difference.
Biometrics, 56, 309-315.

Lui, K.-J. and Lin, C. D. (2003) Four confidence intervals of rate difference under Poisson
distribution. Journal of Probability and Statistical Science. To appear.

Lui, K.-J., Cumberland, W. G., and Kuo, L. (1996) An interval estimate for the intraclass
correlation in beta-binomial sampling. Biometrics, 52,412—425.

Lui, K.-J., Mayer, J. A. and Eckhardt, L. (2000) Confidence intervals for the risk ratio
under cluster sampling based on the beta-binomial model. Statistics in Medicine, 19,
2933-2942.

May, W. L. and Johnson, W.D. (1997) Confidence intervals for differences in correlated
binary proportions. Statistics in Medicine, 16, 2127-2136.

Mayer, J., Slymen, D. J., Eckhardt, L., et al. (1997) Reducing ultraviolet radiation exposure
in children. Preventive Medicine, 26, 516—522.

Mee, R. W. (1984) Confidence bounds for the difference between two probabilities. Biomet-
rics, 40, 1175-1176.

Miettinen, O. S.(1985) Theoretical Epidemiology: Principles of Occurrence Research in Medicine.
Wiley, New York.

Mikulski, P. W. and Smith, P. J.(1976) A variance bound for unbiased estimation in inverse
sampling. Biometrika, 63, 216-217.

Newcombe, R. G. (1998) Interval estimation for the difference between independent pro-
portions: comparison of eleven methods. Statistics in Medicine, 17, 873—-890.

Newman, S. C. (2001) Biostatistical Methods in Epidemiology. Wiley, New York.

Persantine-Aspirin Reinfarction Study Research Group (1980) Persantine and aspirin in
coronary heart disease. Circulation, 62, 449-461.



References 45

Rosner, B. (1990) Fundamentals of Biostatistics. PWS-Kent, Boston.

Rosner, B. (2000) Fundamentals of Biostatistics, 5th edition. Duxbury, Pacific Grove, CA.

Santner, T.J. and Snell, M. K. (1980) Small-sample confidence intervals for p; — p>» and
p1/p2 in 2x2 contingency tables. Journal of the American Statistical Association, 73,
386-394.

Santner, T.J. and Yamagani, S. (1993) Invariant small sample confidence intervals for
the difference of two success probabilities. Communications in Statistics — Simulation and
Computation, 22, 33-59.

Sato, T. (1989) On the variance estimator for the Mantel—Haenszel risk difference. Biomet-
rics, 45, 1323-1324.

Selvin, S. (1996). Statistical Analysis of Epidemiologic Data. Oxford University Press, New
York.

Sharief, M., Viteri, C., Ben-Menachem, E., Weber, M., Reife, R., Pledger, G. and Karim, R.
(1996) Double-blind, placebo-controlled study of topiramate in patients with refractory
partial epilepsy. Epilepsy Research, 25,217-224.

Wallenstein, S. (1997) A non-iterative accurate asymptotic confidence interval for the
difference between two proportions. Statistics in Medicine, 16, 1329-1336.






3
Relative Difference

To measure the excess effect due to a risk factor on the probability of having
a given disease or to quantify the efficacy of a treatment to reduce the risk of
developing an undesirable outcome, Sheps (1958, 1959) proposes use of the
relative difference (Fleiss, 1981). To clarify the practical meaning of this index,
we use the following two examples given by Sheps (1958, 1959). In the first
example, Sheps considers a study of the association between smoking and the
rate of mortality from lung cancer. Sheps maintains that the excess risk of death
associated with smoking can only affect those individuals who would not have
died from lung cancer if they had not smoked. Thus, it is reasonable to postulate
that 71 > np and 71 = 7wy + §(1 — ), where 1 and 7y denote the lung cancer
mortality rates in the smoking and non-smoking populations, respectively, and
the parameter § denotes the proportion of subjects who die from lung cancer
among those who would otherwise have escaped death from lung cancer if they
had not smoked. Thus, the relative difference § = (71 — 7g)/(1 — 7p) represents
the additional risk of dying from lung cancer attributed to smoking. In the second
example, Sheps (1958, 1959) considers a vaccine trial for poliomyelitis. Let 7,
and 7y denote the proportions of subjects who are free of poliomyelitis in the
vaccinated and unvaccinated groups. Because the vaccine is expected to protect
a fraction 8 of those who would have developed poliomyelitis if they had not
been vaccinated, we may assume that 71 > 7y and 71 = 79 + §(1 — 7). Thus,
the relative difference & represents the protection effect due to vaccinating those
subjects who would otherwise have had poliomyelitis. In this example, note that
the relative difference § is actually equal to 1 — ¢, where ¢ = (1 — 71)/(1 — 7p)
represents the relative risk of poliomyelitis between the vaccinated and the
unvaccinated groups. The relative difference in this context is also called the
relative risk reduction (Laupacis et al., 1988; Hutton, 2000). Note also that
the range for both § and ¢ considered here is [0, 1]. When there is no association
between the exposure and the outcome, § = 0. When the probability = is
extremely small (= 0), the relative difference § approximately equals the risk
difference A discussed in Chapter 2.
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We generally use the relative difference in cohort studies or randomized clinical
trials. We first discuss estimation of the relative difference when sampling subjects
independently from two comparison populations. We then discuss estimation of
the relative difference when using stratified analysis to control confounders or
when analyzing data collected from a multicenter study design. We further discuss
estimation of the relative difference under independent cluster sampling. This is
useful for cluster randomization trials. We also discuss estimation of the relative
difference for paired-sample data in which a matched-pair design is employed
to increase the efficiency of estimation in clinical trials. Finally, to ensure that
we can collect an adequate number of cases in the sample when the underlying
disease is rare, we consider estimating the relative difference under independent
inverse sampling.

3.1 INDEPENDENT BINOMIAL SAMPLING

Suppose that we independently take a random sample of n; subjects from the
population with exposure (i = 1) and from the population with non-exposure
(i = 0) to a risk factor, respectively. Suppose further that the risk factor under
investigation tends to increase the probability ; of possessing the underlying
disease of interest so that 7, > my. Suppose we obtain X; cases. The random
variable X; then follows the binomial distribution (1.1) with parameters n;
and ;.

First, note that the maximum likelihood estimator of 7; under independent
binomial sampling is simply 7; = X;/n;. Because the MLE is invariant with respect
to functional transformation (Casella and Berger, 1990), the MLE of the relative
difference § for 71 > 7 is simply (Sheps, 1959)

§ = (71 — #0)/(1 — #0). (3.1)

Furthermore, using the delta meEhod (Bishop et al., 1975), we obtain that the
estimated asymptotic variance of § is equal to (Exercise 3.1)

Var(®) = ¢*{#1/Im (1 — #1)] + #o/[no (1 — 7)1}, (3.2)

where ¢ = (1 — #1)/(1 — 7). On the basis of (3.1) and (3.2), an asymptotic
100(1 — @) percent confidence interval for the relative difference 8 is given by

[max{8 — Zy/2\/ Var(8), 0}, min{8 + Z,/»+/ Var(s), 1}] (3.3)

where Z, is the upper 100«ath percentile of the standard normal distribution.
When both the sample size n; and the underlying disease rate 7; are small, the
sampling distribution of § may be skewed and hence the interval estimator (3.3)
is unlikely to perform well. To improve the performance of (3.3), Walter (1975)
suggests using a logarithmic transformation log(1 — x). Using the delta method
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again, we can easily show that an estimated asymptotic variance of log(¢3) is given
by (Exercise 3.2)

Var(log(¢)) = #1/[m (1 — #1)] + #o/[no (1 — #o)]. (3.4)

This leads to an asymptotic 100(1 — «) percent confidence interval for § given by

[1 — min{@ exp(Zy 2y Var(log())), 1}, 1 — ¢ exp(—Zy 24/ Var(log(@)))]. (3.5)

Using a principle analogous to that of Fieller's theorem (Casella and Berger,
1990), we define Z = (1 — 1) — ¢ (1 — 19). We can easily see that the expec-
tation E(Z) = 0. When both n; are large, we may claim that the probabil-
ity P((Z/«/Var(Z))? < 72 12) =1 —a. This leads us to consider the following
quadratic equation in ¢ (Exercise 3.3):

Ap* — 2By +C <0, (3.6)

where A = (1 — 71p)? — Zi/zﬁo(l — 7o) /o, B= (1 —#1)(1 — #p),and C = (1 —
)2 — Zi/zﬁl(l —m)/m. If A > 0 and B> — AC > 0, then an asymptotic 100
(1 — &) percent confidence interval for § will be given by

[1 — min{(B + v'B2 — AC)/A, 1}, 1 — max{(B — VB2 — AC)/A,0}].  (3.7)

By definition, since § > 0, if the resulting estimate §(3.1)is negative, we would
set the point estimate of § equal to 0. When either of thg\fr,- equals O or 1
in (3.3) and (3.5), using the estimates Var() (3.2) and Var(log(8)) (3.4) is
certainly inappropriate, as is use of (3.7). In these cases, we recommend the ad hoc
adjustment procedure for sparse data of using (X; + 0.5)/(n; 4+ 1) to estimate ;.
Note that when deriving asymptotic variances (3.2) and (3.4), we do not account
for the range of § or ¢. Therefore, if our goal is to produce an interval estimator of
8, we will recommend using § in (3.3) rather than 0 if § < 0. Similarly, we will
recommend using ¢ in (3.5) rather than 1 if ¢ > 1. After obtaining the resulting
interval estimate, however, we will adjust these limits to ensure that they fall in
therange [0, 1] for 8. Similar principles to these are used throughout this chapter.

Example 3.1 To illustrate the use of interval estimators (3.3), (3.5), and (3.7),
consider the data obtained from the Framingham epidemiologic study of heart
disease (Dawber etal., 1957; Sheps, 1959). During a 4-year period, there were
20 new cases of arteriosclerotic heart disease (ASHD) among 176 patients in the
two highest weight categories, and 32 new cases among 717 patients in the two
lowest weight categories. We assume that obesity is a risk factor and acts on
persons who are otherwise in the ‘no ASHD’ category. Given these data, the point
estimate & (3.1) of the relative difference is 0.072, with an estimated standard
error of 0.026. This indicates that there is an additional 7.2% risk of developing
ASHD among patients who would not have developed ASHD if their weights had
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been in the lower weight category. Applying (3.3), (3.5), and (3.7) gives 95%
confidence intervals for § of [0.021, 0.123], [0.020, 0.122], and [0.021, 0.123],
respectively. Since we have such a large number of subjects in this example, all
the interval estimators (3.3), (3.5), and (3.7) are appropriate for use.

Example 3.2 Consider the hypothetical data (Fleiss, 1981, p. 101) from a clin-
ical trial comparing two treatments. Assume that the improvement rate 71 in
treatment group 1 is higher than the improvement rate 7 in treatment group
0. Suppose there are 56 out of 70 subjects showing improvement (77 = 0.80) in
the treatment group. By contrast, there are only 48 out of 80 subjects showing
improvement (77 = 0.60) in the control group. Given these data, the point esti-
mate § is 0.50, with an estimated standard error of 0.138. Applying (3.3), (3.5),
and (3.7) gives 95% confidence intervals for § of [0.230, 0.770], [0.142, 0.709],
and [0.178, 0.744]. We can see that the interval estimate (3.3) is shifted to the
right compared to the interval estimate (3.5). In this case, where the number of
subjects is not large, we should apply (3.3) with caution.

3.2 A SERIES OF INDEPENDENT BINOMIAL
SAMPLING PROCEDURES

Suppose that we employ pre-stratified sampling in a study with S strata. For each
stratums(s =1, 2, ..., S), weindependently sample n;; subjects from the exposed
(i = 1) and the non-exposed (i = 0) populations, respectively. Let 7;; denote the
probability that a randomly selected subject from the ith population in the sth
stratum is a case. Assume that exposure to the risk factor under investigation tends
toincrease therisk ofthe disease ofinterest — thatis, we assume that 715 > 7. The
relative difference in the sth stratum is then equal to §; = (7115 — 7)) /(1 — 70s) =
1 — ¢, wherepg, = (1 — m15) /(1 — 7qs). Let Xjs denote the number of cases among
the n;; subjects in the ith group of the sth stratum. Under the above assumptions,
the random variables X;; independently follow the binomial distribution with
parameters n;; and ;. Therefore, the joint probability mass function of the
random vector X' = (X/, X{,), where X} = (Xj1, Xi2, ..., Xjg) fori =1, 0, is

S 1
n; y .
Kanm) =]]]] ( > (1i5) " (1 — 713) ™%, (3.8)
. Xis
s=1 i=0
wherex;; = 0,1, 2,..., 5,0 = (1, n12, ..., Nig, Not, - .., Nog),andw’ = (717,
12, « o5 1S, TTOLs - - - 5 TTOS)-

3.2.1 Asymptotic interval estimators

Under distribution (3.8), the MLE of the relative difference §, in the sth stratum is
ds = 1 — ¢ for 715 > 705, where ¢s = (1 — 715) /(1 — 7tos), and 7 = Xis/njs for
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i=1,0,ands=1,..., S. Inthissection, we assume that§; =8, = ... = §g. Let
8. denote this common value. We can easily see that this is equivalent to saying
thaty = ¢ = ..., = ¢ps = ¢, where p; = 1 — §gand p. = 1 — §..

First, consider the situation in which there is a reasonably large sample
size in each stratum. If the parameters 7;; were known, we might estimate 3
with an optimally weighted average of the stratum-specific estimates ¢, (Exercise
2.6): 1 — (3 Wb/ > W, where W, = 1/Var(¢,), and Var(¢,) = ¢Z[m1s/
(ms(1 = 715)) + 705/ (M0 (1 — 7os))]. Note that because}bC is a constant, we can
easily see that 1 — QO Wsps)/ D Wy =1 — O Wigs)/ D Wi, where Wi =
1/Var(log(¢s)), and Var(lOg(¢s)) = T[ls/(nls(l _”ls)) + ”OS/(HOS(I —JT()S)).ThllS,
we consider the following weighted least-squares estimator when the parameters

;s are unknown:
Swis = 1 — (Z W;w?s) /Z W (3.9)
N N

where Wi = 1/Var(log(¢s)), and Var(log(¢s)) = 715/ (ms(1 — 715)) + 7os/ (Mos
(1 — 7os)). Note that whenever Swis < 0, we set dwrs = 0. Note also that since
b, is a ratio of two proportions, its sampling distribution may be skewed. When
developing an interval estimator of 8., we may use the logarithmic transfor-
mation log(1 — x) to improve the normal approximation of Swis (3.9). Because
the variance Var((}_, W log(qgs))/(zs W¥)) equals 1/, W¥, an asymptotic
100(1 — &) percent confidence interval for §. is given by

> W log(y) ,
max 4 1 — exp u — + /2 ,O0¢,
W e
2
> W log(y)
Zo)2

1 —exp

- . (3.10)

N
W A
O3

Note that when 7 is close to O or 1, the probability of obtaining 7;; = O or
1 may not be negligible. Thus, we may have the difficulty in calculating Wf
when using (3.9) and (3.10). Following Rothman and Boice (1979) and Tarone
(1981), we may consider the following Mantel—Haenszel type estimator (Mantel
and Haenszel, 1959) of the relative difference,

v = 1 — d, (3.11)

where gy = (X (15 — X19)105/1.5) /(Y (nos — Xo)n1g/n.s) and ng = nyg + nos.
Furthermore, using the delta method, we can easily show that the estimated
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asymptotic variance of é&MH (Exercise 3.6) is given by

N -2 2
Var(éym) = (Z w> |:Z <?> msit1s(1 — /1)

N N .S

2
A~ n s R R
+ B Z <n_1) nos7os(1 — ﬂ()s):| : (3.12)
s .S

To produce an interval estimator of §;, we may again use the logarithmic
transformation of qAﬁMH. Because the estimated asymptotic variance Var(log(dgMH))
can be approximated by Var(¢ym) /qAbf,IH we obtain an asymptotic 100(1 — «)
percent confidence interval for 8. given by

[max{1 — Py exp(Ze2y/ Var(dum)/$2m), 0},
1 — uisr exp(—Za/2y/ Var( @) /S ]- (3.13)

When calculating (3.9)—(3.13), if any observed cell frequency in stratum s is
0, then we will recommend using the adjustment procedure for sparse data by
adding 0.50 to each cell in that particular stratum. On the basis of Monte Carlo
simulation, Lui (2002) finds that the coverage probability of (3.10) can be much
smaller than the desired confidence level, especially for a small stratum size. When
the underlying common §, is small (say, 0.20), using (3.13) is preferable to the
other estimators considered by Lui (2002). On the other hand, when n;, is small
(say, 5) and the number of strata S is large (say, 20), the coverage probability
of (3.13) tends to be smaller than the desired confidence level, and using the

interval estimator with limits Sy & Zy, 24/ @(@MH) —subject to their falling in
the interval [0, 1] —is probably best.

3.2.2 Test for the homogeneity of relative difference

Before using the summary estimators discussed in the previous subsection, it is
important to examine whether the underlying assumption that §; =8, = ... =
8s = 8. holds in the data. Thus, we discuss testing the homogeneity of the relative
difference in this section. Note that the relative difference 8, is constant across
strata if and only if ¢ is constant across strata. Note further that ¢; is a ratio of
two proportions. Thus, all the procedures considered by Lui and Kelly (2000) for
testing the homogeneity of the relative risk can be applied to test the homogeneity
of the relative difference, with some slight modifications.

Following Fleiss (1981), we can apply the WLS test procedure with the loga-
rithmic transformation of &,

2
1m=2%m%w(2%m@0/zm. (3.14)
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Under the null hypothesis Hy : 81 = 8, = ... = §5(= 4.), the test statistic (3.14)
asymptotically has the x? distribution with S — 1 degrees of freedom as all n;
are large. Thus, we will reject Hy at level « if Ty > ngfl,ow where stfl’a is the
upper 100«th percentile of the chi-squared distribution with S — 1 degrees of
freedom.

When the number of strata S is large, we may consider the following test
statistic (Lipsitz et al., 1998):

Zwis = [Twis — (S — D]/v2(S - 1). (3.15)
Note thatif Hy : 81 = 8, = ... = 85 were not valid, we would expect a large value

of Twis. This suggests that we reject Hy at level « when Zyrs > Zq.

When approximating a x> random variable by a normal distribution, Fisher
(1928) suggests using the logarithmic transformation. When all n;; and S are
large, this leads us to consider the test statistic

1 Twis 1 1
ZLWLS_[2log<8—1>+2(8—1)]/\/2(8—1)' (5-16)

We will reject Hg at level « if Zyywrs > Zo.-

Using Monte Carlo simulations,Lui and Kelly (2000) find that test procedures
(3.14) and (3.16) tend to be conservative and test procedure (3.15) is generally
preferable to (3.14) and (3.16). They also find that another test procedure may be
slightly better than test procedure (3.15) with respect to controlling Type I error;
the procedure is somewhat tedious, and we refer readers to Lui and Kelly (2000)
for details.

Example 3.3 Consider the all-cause mortality data for the aspirin (i = 1) and
placebo (i = 0) groups of post-myocardial infarction patients (Table 2.1). Because
we expect that taking aspirin may protect a fraction § of those who would
have died if they had not taken aspirin, we assume that m; > mos, where
ms and mo denote the survival rates in the aspirin and the placebo groups,
respectively. Also, as noted by Canner (1987), the baseline imbalance of medical
conditions between the aspirin and placebo groups in the sixth trial may cause the
unexpected finding that the survival rate in the aspirin is lower than that in the
placebo group. Thus, we exclude this trial from consideration. On the basis of the
data of the first five trials, we first test the homogeneity of the relative difference
8s(=1— (1 —m1y)/(1 — mos)). Applying test statistics (3.14)—(3.16), we obtain p-
valueso0f0.95,0.88, and 0.98, respectively. Thus, the assumption that the relative
difference is constant over the first five trials should be reasonable. In fact, the MLEs
S(s=1,2,...,5) are 0.26, 0.17, 0.30, 0.18, and 0.18, respectively. Applying
(3.9) and (3.11), we obtain Swis = 0.210 and Sy = 0.213. Furthermore, using
(3.10) and (3.13), we obtain 95% confidence intervals of [0.087, 0.320] and
[0.089, 0.321], respectively. Because the lower limits of these resulting interval
estimates are both slightly larger than 0, we conclude that there is significant
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evidence at the 5% level that taking aspirin provides a protection effect for the
all-cause mortality in post-myocardial infarction patients.

3.3 INDEPENDENT CLUSTER SAMPLING

Suppose that in cluster randomization trials we randomly assign n; clusters of
m;(j =1, 2, ..., n;) subjects to receive the experimental (i = 1) and the standard
(or placebo) treatments (i = 0), respectively. Define the random variable Xj = 1
if the response on the kth subject (k =1, 2, ..., my) in cluster j of treatment
i is positive, and Xjx = O otherwise. Then, the total number Xy = >, Xj of
responses in cluster j from population i follows a binomial distribution with
parameters m;; and p;;, where p;; denotes the response probability P(Xjx = 1). To
account for the intraclass correlation between subject responses within clusters,
we assume further that p; independently follows the beta distribution beta(«;, 8;)
with mean n; = «;/T; and variance 7;(1 — 7;)/(T; + 1), where «; > 0, 8; > O,
and T; = «o; + B; (Johnson and Kotz, 1970). Under these model assumptions, the
probability of a positive response for a randomly selected subject from group
i is then E(Yj) = m; and the intraclass correlation between Xj and Xj for
k # Kk is p; = 1/(T; + 1) (Exercise 1.7). Without loss of generality, we assume
that the experimental treatment tends to increase the probability of a positive
response as compared with the standard treatment. In other words, we assume
that 71 > mo.

Define 71; = Z]. Xij./my,, where m;, = Zj my;. Note that 7; is, in fact, the sample
proportion of subjects with positive responsein treatmenti(i = 1, 0). Note also that
7; is an unbiased consistent estimator of 7r; with variance Var(7;) equal to 7;(1 —
m)f (my, p;)/m;., where m; = (m;;, my, ..., my,) and f(my, p;) is the variance
inflation factor due to the intraclass correlation p; and equals Z]. my[1 + (my; —
1)pi]/m;. (Exercise 1.8). To estimate p; we may use the traditional intraclass
correlation estimator g; (2.19) (Elston, 1977; Lui et al., 1996).

To estimate the relative difference §, we may substitute 7; for 7r; and obtain the
estimatord = (1 — 79) / (1 — 7p). Using the delta method we obtain an estimated
asymptotic variance of § given by (Exercise 3.7) Var(é) A2 (A1 f(my, pr) /ma.
(1 — 7)) + #of (mo, po)/[mo.(1 — 7)1}, where ¢ = (1 — #1)/(1 — 7). Thus,
we obtain an asymptotic 100(1 — &) percent confidence interval for § given by

[max{8 — Z,,2¢/ Var(8), 0}, min{8 + Z,/>+/ Var(8), 1}]. (3.17)

When both the sample size n; and the probability of positive response m; are
small, the sampling distribution of § may be skewed and hence interval estimator
(3.17) may not perform well. Following a similar idea to that for deriving interval
estimator (3.5), we may consider the logarithmic transformation log(1 — x).
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Thus, we obtain an asymptotic 100(1 — «) percent confidence interval for §
given by

[1 — min{¢ exp(Zy/2y/ Var(og(@))), 1}, 1 — ¢ exp(—Zy 24/ Var(og(é)))1,

(3.18)
where Var(log(¢)) = 1f(my, p1)/[m1.(1 — 1)] + 7of (myo, po)/[mo.(1 — 70)].
Furthermore, when both n; are large, we have the probability P({[(1 —
1) — (1 — ﬁo)]/\/Var((l —71) — (1 — )} < Zi/z) = 1 — «. Thisleads us
to consider the following quadratic equation in ¢:

ATg? —2BT¢p + CT <0, (3.19)

where AT = (1 — 7p)? — Zi/zﬁo(l — R0)f (Mg, po)/mo. BT = (1 — 71)(1 — ),
andCT = (1 — 77)% — 72,7 (1 = 7)) (my, p1)/mi. . IfAT > 0and BT — ATCT >
0, then an approximate 100(1 — «) percent confidence interval for § would be
given by

[1 — min{(B" + v B2 — ATC)/AT, 1}, 1 — max{(B" — v B2 — ATCt)/AT, 0}].
(3.20)
When applying interval estimators (3.17)—(3.20), whegg/eAr T = 0orl, we
recommend use of (X;.. + 0.5)/(m;, 4+ 1) to estimate 7; in Var(§) and Var(log(s)).
Note also that when m;; = 1 for all i and j, then interval estimators (3.17), (3.18),
and (3.20) reduce to (3.3), (3.5), and (3.7), respectively.

Example 3.4 Consider the data (Table 1.1) taken from a study of the effect
of education on behavior change with regard to employing solar protection
(Mayer etal., 1997). Suppose that the educational intervention increases the
proportion of children who apply solar protection (Girgis et al., 1994) and hence
w1 = 7o + 8(1 — mp), where 71 and g denote the proportion of children who
employ adequate solar protection in the intervention and the control groups,
respectively. Because we randomly assign classes to one of these two comparison
groups, we may reasonably assume that the intraclass correlations for the
intervention and placebo groups are equal (i.e., p; = pg = p.). We use p. =
(m1.01 + mo.0o)/(m1, + mg.) to estimate this common intraclass correlation p.
and obtain p, = 0.30. Thepoint estimate$is0.317. When we apply (3.17),(3.18),
and (3.20), we obtain 95% confidence intervals for § of [0.024, 0.610], [0.000,
0.555], and [0.000, 0.582], respectively. Applying (3.17) tends to produce an
interval estimate that is shifted to the right compared to (3.18) and (3.20). This
is consistent with the finding noted in Example 3.2. Because the lower limits of
interval estimators (3.18) and (3.20) do not exclude O, we conclude that there
is no significant evidence at the 5% level that the educational program affects
children’s behavior in terms of having an adequate level of solar protection.
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3.4 PAIRED-SAMPLE DATA

To increase the efficiency of comparing two treatments in randomized controlled
trials, we may match subjects with respect to characteristics strongly associated
with both the treatments under comparison and the outcomes of interest to
form matched pairs. Within each pair, we randomly assign one subject to
receive the experimental treatment, and the other subject to receive the standard
treatment. We then compare the response rates between these two treatments.
Let ;i (fori = 1, 0 and j = 1, 0) denote the corresponding cell probability in the
following table:

Standard
treatment
response
) Yes No
Experimental Yes p- p- -
treatment 1 10 1 ,
No 701 00 0.
response
T .0

where ;, = w1 + w0, w; = my; + mej, and O < 7; < 1. Note that the probabilities
of response for the experimental and standard treatments are simply the marginal
probabilities 7. and 7 1, respectively.

We assume that 71, > 7.1. Asnoted by Fleiss (1981), this assumption is tenable
ifthe experimental treatment is a combination of the standard treatment with some
beneficial compound or is at a higher dosage level than the standard treatment.
The relative difference § is then the proportion of patients who fail to respond
to the standard treatment, but who are expected to respond to the experimental
treatment. In other words, § = (7, — 7.1)/(1 — 7.,1). Thus § = 1 — ¢, where
p=0-m)/A—-m1).

Let Njj denote the number of pairs from a random sample of n matched pairs
that fall in cell (i, j) with probability ;. The random vector (N11, N1o, No1, Noo)’
then follows the multinomial distribution (2.25) with parameters n and the
probability vector (11, 710, o1, 7oo)'. The sample proportions 7;; = Nj/n, for
i,j =0, 1, are unbiased consistent estimators of ;. Furthermore, we can easily
show that estimators 71, = (N11 + N1g)/n and 7.1 = (N11 + Np1)/n are also
unbiased consistent estimators of parameters 71, and 7 1, respectively. The MLE
offorft;. > #1188 = (A1, — #.1)/(1 — #.1).

By using the multivariate central limit theorem, as n — 0o, we may claim that
(@1, 7.1) — (1., 7.1)") has an asymptotic normal distribution with mean
vector (0,0) and covariance matrix X, where ¥ is a 2 x 2 matrix with
diagonal terms equal to 71.(1 — 7)) and 71(1 — 1), respectively, and with
both off-diagonal terms equal to w1709 — m10701 (Exercise 3.8). Using the
delta method (Anderson, 1958; Appendix), we may claim that \/ﬁ(qg — @),
where <;3: (1 —#1.)/(1 — 7.1), has an asymptotic normal distribution with
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mean O and variance nVar(éb) =1 -—m)A —a {1 —m1)m. — (T11700 —
m10701)] + [(1 = m1)71 — (7o — miomo1) 1}/ (1 — 7.1)* (Exercise 3.9). We
can estimate this variance Var(¢) by simply substituting the corresponding
unbiased consistent estimate 7; for 7;; to obtain Var(¢A>) = (N1o + No1)(Nq1o +
Noo)(No1 4+ Noo)/(N1o + Noo)*. Therefore, an asymptotic 100(1 — «) percent
confidence interval for §(= 1 — ¢) is

[1 — min{@ + Zy/2y/Var(¢), 1}, 1 — max{¢ — Zy 2/ Var(d), 0}]. (3.21)

Except for the trivial adjustment to ensure that the resulting confidence limits
fall in the range [0, 1] of 8, the interval estimator (3.21) is actually identical to
that given in Fleiss (1981, p. 118). Since the sampling distribution of 1 — q3 may
be skewed when n is small, we consider using the logarithmic transformation to
improve the normal approximation of (13

Using of the delta method, as n — oo, we can show that \/ﬁ(log(dg) — log(¢))
has an asymptotic normal distribution with mean O and variance 7. /(1 — 71.) +
w1/ —m1) — 2(mmeo — w10701)/((1 — 71.)(1 — 7.1)) (Exercise 3.10). Sub-
stituting the corresponding unbiased consistent estimate 7;; for 7;;, we obtain
an estimated variance n\a(log(é))) = (N71 4+ N19)/(No1 + Noo) + (N11 + Nov)/
(N10 + Noo) — 2(N11Noo — N1oNo1)/((No1 + Noo) (N1o + Noo)). As noted ear-
lier, since the range of log(¢) is — o0 < log(¢) < 0, an asymptotic 100(1 — «)
percent confidence interval for § is then

[1 — exp(min{log($) + Zo/2y/ Var(log(@)), 0}), 1 — ¢ exp(—Zu2y/ Var(log()))].

(3.22)

On the basis of Monte Carlo simulation, Lui (199 8a) notes that when n is small,

the estimated coverage probability when using interval estimator (3.21) tends

to be less than the desired confidence level. Lui (1998a) also finds that applying

(3.22) not only improves the coverage probability of (3.21) but also gives an

interval estimator that is shorter on average than (3.21) in a variety of situations.
When n is large, however, (3.21) and (3.22) are essentially equivalent.

Example 3.5 Toillustrate the use of (3.21) and (3.22), consider first a controlled
comparative trial with a small risk difference A(= 7. — .1). Suppose that we
obtain the data: n;; = 1,n19 = 7,n01 = 6, and ngg = 6. The estimated risk
difference A = 1. — .1 = #10 — 71 is 0.05. The 95% confidence limits for § are
[0.0,0.60]and[0.0, 0.48], corresponding to use of (3.21) and (3.22), respectively.
As noted elsewhere (Lui, 1998a), the interval estimator (3.21) in this case is less
precise than (3.22) with respect to the average length of the confidence interval.
By contrast, consider a controlled trial with a large risk difference A. Suppose
that we obtain the data: ny; = 1, njg = 10, ng; = 1, and ngg = 8. The estimate A
isthen 0.45. Applying (3.21) and (3.22), we obtain 95% confidence limits for § of
[0.25,0.76]and [0.17, 0.70], respectively. Although the average lengths of these
two resulting confidence intervals are essentially equal, Lui (1998a) notes that
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the coverage probability of the former tends to be less than the desired confidence
level in this case, where the sample size n is small and A is large.

3.5 INDEPENDENT INVERSE SAMPLING

When the underlying disease is rare or when the data arrive sequentially, we may
consider use of inverse sampling (Haldane, 1945) to ensure that we can collect
an appropriate number of cases in our sample. Suppose that we independently
continue sampling subjects until we obtain a predetermined number x; of cases
from the population with exposure (i = 1) and from the population with non-
exposure (i = 0) to a risk factor, respectively. Let Y; denote the number of
non-cases collected before obtaining x; cases in group i(i = 1, 0). Then Y; follows
the negative binomial distribution (1.13) with parameters x; and ;. We assume
that 77 > 7.

Under independent negative binomial sampling, we can easily show that the
MLE of 7; is #; = x;/N;, where N; = x; + Y;, with asymptotic variance nl-z(l —
m))/x; (Exercise 1.11). This implies that the MLE of § for 77 > 7o is S =
(11 — 7o)/ (1 — 7p). Applying the delta method again, we obtain an asymptotic
100(1 — «) percent confidence interval for § given by

[max{8 — Z,,2¢/ Var(8), 0}, min{8 + Z,/»+/ Var(8), 1}], (3.23)

where Var(d) = ¢2(#7/[x1(1 — #D)] + #3/[xo(1 — 7))} and ¢ = (1 — #11)/
(1 = ). )

Because the sampling distribution of § may be skewed when «x; is not large,
we can apply an idea similar to that used to derive (3.4) using a logarithmic
transformation. Our asymptotic 100(1 — «) percent confidence interval for §
is now

[1 — min{¢ exp(Zy/2\/ Var(log(@))), 1}, 1 — ¢ exp(—Zy,24/ Var(log(é)))],

e . (3.24)
where Var(log(¢)) = {/[x1(1 — #1)] + 73 /[xo(1 — 7o)].

Recall that, for x; > 1, the unbiased estimator of 77; under the negative binomial

distribution (1.13) is fr(u) (x; — 1)/(N; — 1). Therefore, as both x; are large, we

have  P([(L - #(") — ¢ (1 — 21/ Var((1 — %) — p (1 — #N) < 22,
= 1 — «. Because we can estimate the variance Var(l — ﬁl.(u)) by the unblased
estimator 7™ (1 — #")/(N; — 2) (1.18), these lead to the following quadratic
equation in ¢:

A¥p? —2B*¢p + C* < 0, (3.25)

where A* = (1-#§")2 =22, 7" A1 —=#§")/(No — 2), Bf = 1—#{")(1 — 75",
and Cf = (1-#{")2 =72 , 7Y (1= #{")/(Ny — 2).11A* > Oand B¥? — A*Ct > 0,
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then an asymptotic 100(1 — «) percent confidence interval for § would be given by

[1 — min{(B* + v B¥2 — A¥Ct)/A*, 1}, 1 — max{(B* — v B#2 — AiC) /A%, 0}].
(3.26)
Note that (3.23), (3.24), and (3.26) are derived on the basis of large-sample
theory. When x; is small, these interval estimators may not be adequate for use. In
the following section, we discuss the derivation of the exact 100(1 — «) percent
confidence interval on the basis of the conditional distribution, given the marginal
Y, + Yy = y. fixed. This exact conditional confidence interval can be applied even
when the number of cases x; is as small as 1.
As shown elsewhere (Lui, 1995), the conditional distribution of Y7, given a
fixed total number of non-cases y. = y; + Yo, is then (Exercise 3.11)

<yl+7€1—1)<y.—yl+xo—1)¢y1
n Yy -l

i<y+x1—1)<y,—y+xo—l>¢y
y y.—y '

y=0

P(Y1 = y1ly., x1, X0, ¢) = (3.27)

where¢p = (1 —m1)/(1 — 7o), y1 =0,1,...,y..

On the basis of the conditional distribution (3.27), note that the condi-
tional MLE 8.pqq of 8 is 1 —qgcond, where qgcond is the conditional MLE of
¢ satisfying the equation y; = E(Y1|y., x1, X9, ¢) (Exercise 3.13). Further-
more, we obtain the estimated asymptotic conditional variance @(émna) =
q@fond /Var(Y1ly., x1, xo, <13cond) based on the inverse of Fisher’s information matrix
(Appendix). A discussion of the sufficient and necessary conditions for the unique
existence of the conditional MLE of ¢ can be found in Exercise 3.14. These
considerations lead us to obtain an asymptotic 100(1 — «) percent conditional
confidence interval for § given by

[1 - min{d;cond + Za/Z v @(écond)v 1}’ 1- max{é\)cond - Za/2 v @(écondL 0}]

(3.28)
Note that Z”Zl:o P(Y = y|y., x1, xo, ¢) is a decreasing function of ¢. Thus, we can
obtain an exact 100(1 — «) percent confidence interval [¢y, ¢ ] for ¢ by solving
the following two equations for ¢, and ¢, (Casella and Berger, 1990):

Y.
Z P(Y = yly., x1. %0, 1) = /2

Y=

U1
D P(Y = yly.. x1. %0, du) = /2. (3.29)
y=0

If y; is O or the solution ¢; in (3.29) is less than O, then we will set the lower limit
¢ to 0. Similarly, if y; = y. or the solution ¢, is greater than 1, we will set the
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upper limit ¢, to 1. The 100(1 — &) percent confidence interval for § is then
[1—¢u, 1 -l (3.30)

When 7 is small (i.e., the underlying disease is rare in the unexposed group),
the relative difference § = 71 — g. Thus, in this situation, all interval estimators
considered here for the relative difference can also be used to produce confi-
dence intervals for the risk difference A = 71 — 79. When there are multiple
centers in a study, we may wish to employ pre-stratified inverse sampling. All
the discussions on both point and interval estimation of the common relative
difference for a series of independent negative binomial sampling based on the
conditional approach, as well as test procedures for testing the homogeneity
of the relative difference across strata, appear elsewhere (Lui, 1997, 1998D,
2000). Other discussions on estimation of the rate ratio and the relative differ-
ence for paired-sample data under inverse sampling can also be found elsewhere
(Lui, 2001).

Example 3.6 Suppose that we are studying the association between maternal
age (<20 years; >20 years) and birthweight (<2500 grams; >2500 grams). From
each of the two maternal age categories, suppose further that we independently
employ inverse sampling to sample subjects from medical records in a hospital.
Assume that we obtain 80(= Y7) and 190(= Y,) women whose babies weigh in
excess of 2500 grams before we obtain exactly the predetermined numbers x; =
20 and xg = 10 of women whose babies weigh 2500 grams or less, respectively.
Given these data, the MLE § is 0.158. Applying (3.23), (3.24), and (3.26), we
obtain asymptotic 95% confidence intervals for § of [0.071, 0.245], [0.067,
0.240], and [0.067, 0.239], respectively. Furthermore, on the basis of the
conditional distribution (3.27), we obtain the conditional MLE Seond = 0.161,
which isslightly different from the unconditional MLE § (= 0.158). The asymptotic
95% conditional confidence interval using (3.28) is [0.074, 0.248], while the
exact 95% confidence interval using (3.30) is [0.076, 0.251]. Because the lower
limits are all above 0, we may conclude that there is a significant association at
the 5% level between maternal age and low birthweight.

EXERCISES

3.1. Using the delta method, show that an estimated asymptotic variance of the
relative difference estimate & (3.1) is given by Var(d) = ¢*{a/[m (1 — 1) +
70/[no(1 — 7p)]} under independent binomial sampling.

3.2. On the basis of the finding in Exercise 3.1 and using the delta method,
show that an estimated asymptotic variance of log(¢) is given by Var(log(¢)) =

a1 /[ (1 — 7)) + 7o/ (1 — 79)].
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3.3. Under independent binomial sampling, (a) show that the expectation E((1 —
71) — ¢ (1 — 19)) = 0, where 7; = X;/n;. (b) Show that the variance Var((1 —
71) — (1 — 7)) is given by w1 (1 — 1) /ny + ¢?mo(1 — mp)/ng. (c) Show that
the inequality {[(1 —#1) — ¢(1 — A70)]/y/Var((1 — #1) — ¢ (1 — 7p)}? < 72,
holds if and only if equation (3.6) is true.

3.4. Consider the data on the 4-year incidence of arteriosclerotic heart disease
(ASHD) among male patients in the Framingham epidemiologic study of heart
disease (Dawber etal., 1957). We observed 52 new cases of ASHD among
898 patients aged 45—62 years, and 13 new cases among 1078 patients aged
30—-44 years. Suppose that we are interested in using the relative difference to
measure the effect of age on the risk of developing ASHD between these two
age categories.

(a) What is the point estimate § (3.1)?

(b) What are the asymptotic 95% confidence intervals for § using interval
estimators (3.3), (3.5), and (3.7)?

3.5. When the ratios m;s/mgs are constant across all strata s, where s =
1,2,...,8, can we claim that the ratios (1 — my5)/(1 — 7(s) are also constant
across all strata?

3.6. In Section 3.2, show that the asymptotic variance of ¢A>MH is given by

2
Var(¢ym) = |:Z (?) nysit1s(1 — /1)

s .S

2 " 2
N Nis A o (1 — 7os)nosNys
0 (1) i =] /(5 T
s .S .S

N

3.7. Using the delta method, show that an estimated asymptotic variance of the
estimator s }mder independent cluster sampling discussed in Section 3.3 is given by
Var(8) = (¢)* {71/ (my, p1)/[m1.(1 = 71)] + 7of (Mo, po)/[mo.(1 — 7o)}, where
¢ =1~-71)/ —70).

3.8. Show that Var(w;)=m.(1 —m.)/n and Cov(7y,7.1) = (m11700 —
m107o1)/1, where the 7;; are defined in Section 3.4.

3.9. Using the delta method, show that \/ﬁ(é — ¢), defined in Section 3.4,
where ¢ = (1 — #1.)/(1 — #.1), has the asymptotic normal distribution with
mean O and variance nVar(<;3) =1-m)A -7 A —m1)m. — (r11700 —
momo)] 4+ [(1 — m)m — (mimoo — momon) 1}/ (1 — )™

3.10. Show that \/ﬁ(log(qg) — log(¢)) has the asymptotic normal distribu-
tion with mean O and variance 71 /(1 — 7)) +7m,/(1 — 7)) — 2(w1 17100 —
momo1)/ (1 — m) (1 —m.1)).
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3.11. Suppose that Y; independently follows the negative binomial distribution
(1.13) with parameters x; and ;. Show that the conditional distribution of Y7,
given that the total number of non-cases y, = y; + yo is fixed, is given in (3.27).

3.12. When the relative difference § equals O, show that the conditional
mean E(Yil|y.) = x1y./x., where x, = x; + xo, and the conditional variance
Var(Y1ly.) = xyxoy.(x. + y,)/[x‘2 (x. + 1)], where the expectation is taken with
respect to the conditional probability mass function (3.27) (Barton, 1967; Kudo
and Tarumi, 1978).

3.13. On the basis of (3.27), show that the conditional MLE §¢onq 0of 8 is 1 — qgcond,
where qAbwnd will be the solution ¢ satisfying the equation y, = E(Y1|y., x1, X0, ¢)
if it exists in the range O < ¢ < 1. Furthermore, the conditional asymptotic
variance of this estimator, given by the Cramér—Rao lower bound (Casella and
Berger, 1990), is simply ¢ /Var(Y1 |y., X1, X0, ¢).

3.14. Show that E(Y1|y., x1, xo, ¢) is a strictly increasing function of ¢ over the
range [0, 1]. Furthermore, note that lim,_,o E(Y1|y., x1, xo, ¢) = 0. Thus, show
thatifO < y; < E(Y1ly., x1, x0, ¢ = 1) = x1y./x., then the conditional MLE Seond
will exist and be unique.

3.15. Consider the data consisting of 192 females with breast cancer in Table 2.3
(Newman, 2001, p. 126). The data are stratified by various stages of breast cancer.
As noted elsewhere (Newman, 2001, p. 98), we may assume that the death rate
in the patients with a low level of estrogen receptor is higher than that in patients
with a high level of estrogen receptor. Suppose that the relative difference is
constant across various stages of breast cancer (i.e., §; = §; = ... = §g = ).

(a) What are the point estimates of the common relative difference é. using (3.9)
and (3.11)?

(b) What are the 95% confidence intervals for §. using (3.10) and (3.13)?

(c) If we test the assumption that §; = §, = ... = 85, what are the p-values using
(3.14)-(3.16)?

3.16. Suppose that we employ a matched-pair design to compare the response
rate of an experimental treatment (i = 1) with that of a placebo group (i = 0). We
assume that the response rate 7, in the experimental treatment group is higher
than the response rate 7 in the placebo group. Suppose further that we obtain the
following hypothetical data: ny; = 10, n1g = 20, ng; = 5, and ngg = 15, where
the n;; are defined in Section 3.4.

(a) What is the MLE $ of the relative difference §?

(b) What are the 95% confidence intervals for § using interval estimators (3.21)
and (3.22)?

3.17. Suppose that in Example 3.6 we independently employ inverse sampling
to sample subjects from each of the two maternal age groups. Suppose further
that we obtain 40(= Y;) and 90(= Y;) women whose babies weigh in excess of
2500 grams before we obtain exactly the predetermined numbers x; = 10 and
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xo = 10 of women whose babies have low birthweight (2500 grams or less),
respectively.

(a) What are the unconditional and conditional MLEs § and Sona?

(b) What are the asymptotic 95% confidence intervals for § using (3.23), (3.24),
and (3.26)?

(c) What are the asymptotic and exact 95% conditional confidence intervals for §
using (3.28) and (3.30)?
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4
Relative Risk

To quantify the strength of the association between a given disease and a suspected
risk factor in etiological studies, the relative risk (RR) between the exposed and the
non-exposed groups is certainly one of the most important indices (Fleiss, 1981).
In cohort studies, in which we follow into the future two groups of disease-free
subjects, distinguished by the presence or absence of a suspected antecedent risk
factor, the RR, calculated as the ratio of the probabilities of developing the disease
of interest between the exposed and non-exposed groups, is called the incidence
RR. When employing a cohort design to study the effect of a risk factor on the
incidence rate of a rare chronic disease, some of the subjects may drop out during
the lengthy follow-up period. To account for variations in length of follow-up
time between groups, we may often consider the incidence rate expressed as the
number of cases over the number of person-years at risk rather than the proportion
of cases among the number of subjects in the study. Thus, we may also calculate
the incidence RR as the ratio of the former between the exposed and non-exposed
groups. By contrast, in prevalence studies, in which we simultaneously classify
subjects according to the status of the disease and the exposure, the RR, calculated
as the ratio of the proportions of cases between the exposed and the unexposed,
is called the prevalence RR. When the incidence rate and the duration of the
underlying disease are stable over a period of time, and the duration of the disease
is constant between two comparison populations, the prevalence RR and the
incidence RR are equivalent (Mausner and Bahn, 1974). Note that if the effect
due to arisk factor is beneficial (e.g., in the vaccine trials of poliomyelitis described
in Chapter 3), then the RR of being a case between the exposed (i.e., vaccinated)
group and the non-exposed (i.e., unvaccinated) group will be less than 1. In this
case, we frequently use 1 — RR, which is called the relative difference (Chapter 3)
or relative risk reduction (Laupacis et al., 1988), to measure the efficacy of a
vaccine. Note that, by definition, RR > 0. When there is no association between
the risk factor and the disease, RR = 1.

In this chapter, we first discuss estimation of the RR under independent bino-
mial sampling for the case of no confounders. We then extend discussion to the
situation in which stratified analysis is applied to control confounders or the data
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are collected by use of a multicenter study design. We further discuss estimation of
the RR under independent cluster sampling. Thisis useful for the situation in which
subjects are naturally grouped into clusters in epidemiological investigations (Lui
etal., 2000) or treatments are compared in cluster randomization trials (Donner
etal., 1981). We also discuss estimation of the RR in paired-sample data, which
may arise when the matched-pairs design is used to increase the efficiency or
the validity of a study (Fleiss, 1981). We further discuss estimation of the RR
under inverse sampling. Finally, we discuss estimation of the RR under Poisson
sampling when a cohort design is employed to study a rare chronic disease and
the follow-up time may vary between different comparison groups (Colditz et al.,
1990).

4.1 INDEPENDENT BINOMIAL SAMPLING

Suppose that we wish to assess the effect of a suspected risk factor on the
development of a disease. Let 7r; denote the probability of having the disease of
interest for two populations, distinguished by exposure (i = 1) or non-exposure
(i=0) to a risk factor. Suppose further that we take an independent random
sample of size n; from each of these two populations and obtain X; cases.
The RR between the exposed and the non-exposed groups is defined as 6 =
71 /7. First, under independent binomial sampling (1.1), we can show that the
maximum likelihood estimator of =; is 7; = X;/n; and hence the MLE of 9 is
6 = #, /7. Furthermore, by the delta method (Bishop et al., 1975; see Appendix),
the asymptotic variance of 8 is Var(9) = 62[(1 — m1)/ () + (1 — 7mg) /(o) |
(Exercise 4.1). This leads to an asymptotic 100(1 — «) percent confidence
interval for the RR given by

[max{f — Z,/2+/ Var(d), 0}, 6 + Zy2+/ Var6)], (4.1)

where Var(d) = 02[(1 — #1)/(m#1) + (1 — 7o) /(no#to)], and Z, is the upper
100«ath percentile of the standard normal distribution. Note that the sampling
distribution of 8 (= 4, /7o), aratio of two proportions, may be skewed, especially
when both the sample size n; and the underlying probability 7; are small. To
improve the normal approximation of (4.1), Katz et al. (1978) propose using the
logarithmic transformation. This produces the following asymptotic 100(1 — «)
percent confidence interval for the RR (Exercise 4.2):

[0 exp(—Ze)2/ Var(log(9))), 6 exp(Zy 21/ Var (log(6)))], (4.2)

where Var(log(6)) = (1 — 71)/(m71) + (1 — 7o)/ (no7t0)-

Following a principle analogous to that used in Fieller's theorem (Casella and
Berger, 1990), we consider Z = ; — 07 to avoid inference based on a ratio of two
sample proportions. We can easily see that E(Z) = 0. By the central limit theorem,

we have the probability P([(71 — 870)/+/Var(f1 — 070)]% < Zﬁ/z) =1—o« as
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both n; are large. This leads us to consider the following quadratic equation in 6
(Exercise 4.3):
A#? —2BO+C <O, (4.3)

If A> 0 and B> — AC > 0, then an asymptotic 100(1 — «) percent confidence
interval for the RR would be given by

[max{(B — v/B2 — AC)/A, 0}, (B + v/B2 — AC)/A. (4.4)

To reduce the skewness of the sampling distribution of (77 —07g)/
VVar(m, — 07), Bailey (1987) suggests using ﬁ11/3 — (0719)'/? instead of 71 —
07 as for deriving (4.4). Using the delta method again, we may consider the
following quadratic equation in /3 (Exercise 4.4):

where A = J%g — ZZ/Zﬁo(l — ﬁ'o)/floB = ﬁlﬁo,andC = 7%12 — Zé/zﬁl(l — frl)/nl.

A0 — 2B 4 C <0, (4.5)

where A = 73" — 72, (1 — 70)/(9nofty*). B= (A)'/*, and C = 7] — 72,
(1 —#1)/(9m#,%).1f A > 0and B2 — AC > 0, then an asymptotic 100(1 — )
percent confidence interval for the RR would be

[max{((B — VB> — AC)/A)3, 0}, (B+ VB2 — AC)/A)®] (4.6)

Note that in application of (4.1), (4.2), (4.4), and (4.6), substituting 7; for 7; in
Var(7;) is obviously inappropriate when either of the 7; is O or 1. To alleviate this
concern, we substitute (X; + 0.5)/(n; 4+ 1) for 7; whenever this occurs.

Example 4.1 Consider the all-cause mortality data of the randomized clinical trial
comparing aspirin with placebo in post-myocardial infarction patients (Elwood
etal., 1974). There are (X; =) 49 cases out of n; = 615 patients in the aspirin
group, while there are (X, =) 67 cases out of (ny =) 624 patients in the placebo
group. The MLE of the RR between the groups of aspirin and placebo is 0.742
(= (49/615)/(67/624)). Thus, the corresponding estimate of relative difference
(discussed in Chapter 3), that is commonly used to measure the efficacy of a
treatment, is 0.258 (=1 — 0.742). Applying (4.1), (4.2), (4.4), and (4.6), we
obtain 95% confidence intervals for the RR of [0.481, 1.003], [0.522, 1.054],
[0.512, 1.053], and [0.520, 1.052]. We can see that interval estimator (4.1) is
shifted to the left compared to the others, while interval estimator (4.4), using the
idea of Fieller's theorem, appears to have the greatest length. However, because
all these interval estimates cover 1, there is no significant evidence at the 5% level
against the RR of all-cause mortality between taking aspirin and placebo being
equalto 1.

Example 4.2 Dyspepsia is very common in the general population and hence
an empirical therapy such as taking cisapride without prior diagnostic pro-
cedures is often recommended for patients. Consider the data obtained from
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a placebo-controlled clinical trial studying the effect of cisapride on dyspep-
sia (Chung, 1993; Hartung and Knapp, 2001). We have 4 failures among 14
patients receiving cisapride, versus 12 failures among 15 patients receiving the
placebo. The MLE of the RR of failure between cisapride and placebo is 0.357. The
estimated relative difference is 0.643. Applying (4.1), (4.2), (4.4), and (4.6), we
obtain 95% confidence intervals for the RR of [0.048, 0.666], [0.150, 0.849],
[0.061,0.702], and [0.132, 0.779], respectively. As in the previous example, we
can see that the interval estimate (4.1) is again shifted to the left compared to the
others. Since the number of failures in the cisapride treatment is small, we may
want to apply (4.1) with caution in this case.

4.2 A SERIES OF INDEPENDENT BINOMIAL
SAMPLING PROCEDURES

Suppose that there are S strata formed by either centers in a multicenter trial or
studies in a meta-analysis. For each stratum s(s = 1, 2, ..., S), we independently
sample n;; subjects from the exposed (i = 1) and the non-exposed (i = 0) popula-
tions, respectively. Suppose we obtain Xj; cases among n;; subjects. Let ;s denote
the probability that a randomly selected subject from the ith population in the sth
stratum is a case. The RR in the sth stratum is defined as 6; = 71/7s. Under the
above assumptions, the random variables X;, independently follow the binomial
distribution (1.1) with parameters n;; and ;5. Therefore, the joint probability mass
function of the random vector X' = (X}, X{)), where X] = (Xi1, Xip, ..., Xig), is

S ) ;
Jx(xIm, 70, 8) = TI (Zl) (057109 (1 = 70"~ ("““)
s=1 1s

X0s
X (0s)"™ (1 = 705)"™ ", (4.7)

P A A
where x5 =0,1,2,...,m, n = (n1,n2,...,Ms,NMo1,...,Nog), and wx) =
’
(JT01,...,7T03),aIld0 =(91,...,Qg).

4.2.1 Asymptotic interval estimators

The MLE of the RR in the sth stratum is simply 0, = 71, /Ttos, Where ;s = Xis/Nis
fori=1,0and s=1,...,S. In the discussion of this section, we assume that
61 = 0, = ... = 6s. We denote this common value of the RR by ..

First, consider the situation in which we take a reasonably large
sample from each stratum. If the parameters m;; were known, we
might _apply precision- -weighting of the stratum—spec1ﬁc RR estimates,
> W 6,/ > Wy, to estimate 6., where Wy = 1/Var(ds) and Var(d;) = 02[(1 —
m1s)/ (Msm1s) + (1 — mos) /(nomos)]. Note that since 6. is a constant, we
have ) Wb,/ Y We=3, W;"és/ > Wi, where Wi = 1/Var(log(ds)) and
Var(log(0y)) = (1 — m15)/(msm1s) + (1 — 7o) /(Nos7os). I parameters mjs are
unknown, we can substitute 77;; for ;s and obtain the estimated weight Y/AV;k =1/
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Var(log(6,)), where Var(log(dy)) = (1 — #15)/(m15715) + (1 — F05)/ (nogto). This
leads to the weighted least-squares estimator (Gart, 1962),

s =Y Widy/ > W;. (4.8)

As noted in Section 4.1, the sampling distribution 6, may be skewed. To improve
the normal approximation of fyrs (4.8), we again consider the logarithmic
transformation: ) W} log(és)/ > (Wi It is easy to show that the variance
Var(} ", W; log(6;) /> Wi =1/, W Substituting ;s for m;;, we obtain an
asymptotic 100(1 — «) percent confidence interval for 6. given by

> W log(dy) 3" W log(6)

_ Za/Z , exp Za/2

N _ N _ +
XS:WS IXS: T XS:W: /XS: W
4.9

Applying estimators (4.8) and (4.9) requires us to take a reasonably large sample
from each stratum. Furthermore, when the underlying disease rate 7;, is low, the
probability of obtaining 77;; = O may not be negligible and so estimators (4.8) and
(4.9) are not applicable. To circumvent this limitation, Tarone (1981) proposes
the Mantel—-Haenszel type estimator (Mantel and Haenszel, 1959) to estimate the
underlying common RR (Rothman and Boice, 1979),

O = (Z xls”()s/”.s) / (Z xomls/n.s) . ong=mg+ng. (410
N N

Using the delta method, we can easily show that the asymptotic variance of Oun
can be approximated by (Exercise 4.6)

-2 2
— A Xosn n ~ ~
Var(Oyi) = (Z %) [Z (ni) nisAtis(1 = i)

N N -8

2
A~ n R N
+ 91\%11{ Z (n—ls> nostos(1 — rms)i| . (4.11)
s .S

If the underlying probabilities ;s were so small that 1 — 7; = 1, @(éMH) (4.11)
would reduce to the estimated variance given by Tarone (1981). Considering
use of the logarithmic transformation, we can easily show that the estimated
asymptotic variance Var(log(éMH)) is given by \a(éMH) / éﬁH Thus, an asymptotic
100(1 — &) percent confidence interval for 6. is given by

[Gnir €XP(—Zj21/ Var () /031) Outrt €xp(Zojoy/ VarOvn) /03], (4.12)

exp
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4.2.2 Test for the homogeneity of risk ratio

Before employing the estimators described in Section 4.2.1, it is important to
examine whether the underlying assumption that9; = 6, = ... = 6s(= 6.) holds
in the data. In this subsection, we briefly discuss testing the homogeneity of
the RR.

First, we consider using the WLS test procedure based on log(és) (Fleiss, 1981):

2
Twis = Y _ Wi log* (6) — (Z w; Iog(és)> / oW (4.13)

Under the null hypothesis Hy : 61 =0, = ... = 05(= 6.), test statistic (4.13)
asymptotically has the x? distribution with S — 1 degrees of freedom as all the
n;s are large. Thus, we will reject Hy at level « if Twis > xf_l.a, where xf_l’a is
the upper 100ath percentile of the chi-squared distribution with S — 1 degrees
of freedom.

Following Lipsitz et al. (1998), we consider the following statistic when the
number of strata S is large:

Zywis = [Twis — (S — 1)]/v/2(S = D). (4.14)

Note that if Hy were not valid, we would expect a large value of Ty s. This suggests
that we reject Hy at level @« when Zywrs > Z,.

When approximating a x? random variable by a normal distribution, Fisher
(1928) suggests use of the logarithmic transformation. When all n;; and S are
large, we consider the test statistic

e Towis 1 [ 1

We will reject Hy) at level « if Zyywis > Zy.

Lui and Kelly (2000) compare the three simple test procedures above with
three others that involve quite tedious and intensive calculations in a variety of
situations. They note that when the stratum size is small or moderate and the
number of strata is large, test procedure (4.13) is generally too conservative and
hence loses power. Test procedure (4.15) does not improve the performance of
(4.13). Except for a few cases, test procedure (4.14) is generally preferable to
(4.13). When the number of strata S is large (at least 10), readers may wish to use
the test procedure with the weight depending only on the ny;, as described by Lui
and Kelly (2000). We do not present this test procedure here due to its complexity.

Example 4.3 Consider comparing the incidence rates of non-melanoma skin
cancer for women in Dallas-Fort Worth and Minneapolis-St. Paul (Scotto et al.,
1974; Gart, 1979; Tarone, 1981). Table 4.1 summarizes these data for differ-
ent age categories (S = 8). Applying test statistics (4.13)—(4.15) to test the
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Table 4.1 The number of non-melanoma skin
cancer patients/the population size for women in
Dallas-Fort Worth and Minneapolis-St. Paul.

Age Dallas-Fort Minneapolis-St.
Category Worth Paul
15-24 4/181 343 1/172 675
25-34 38/146 207 16/123 065
35-44 119/121374 30/96 216
45-54 221/111353 71/92051
55-64 259/83 004 102/72 159
65-74 310/55932 130/54 722
75-84 226/29 007 133/32195
>85 65/7538 40/8328

Sources: Scotto et al. (1974).

homogeneity of the RR across age categories, we obtain p-values of 0.33, 0.39,
and 0.30, respectively. These results suggest that there is no evidence against
the homogeneity of RR. The MLEs 6; of the RR of non-melanoma skin cancer
for different age categories are 3.81, 2.00, 3.14, 2.57, 2.21, 2.33, 1.89 and
1.80; these estimates are generally not much different from one another. When
using Owis (4.8) and Oy (4.10), we obtain summary estimates of RR of 2.25 and
2.24, respectively. Thus, the risk of developing non-melanoma skin cancer for
women in Dallas-Fort Worth is approximately 2.25 times the incidence rate in
Minneapolis-St. Paul. Using (4.9) and (4.12), we obtain 95% confidence intervals
of [2.007, 2.465] and [2.024, 2.483], respectively. Because the lower limits are
greater than 1, we conclude that there is significant evidence at the 5% level
that the risk of developing the non-melanoma skin cancer in Dallas-Fort Worth is
higher than that in Minneapolis-St. Paul.

4.3 INDEPENDENT CLUSTER SAMPLING

Suppose that there are two populations distinguished by exposure (i = 1) and
non-exposure (i = 0) to a risk factor. Suppose further that from population i we
take a random sample of n; clusters, each with m; subjects (=1, 2, ..., m).
We define the random variable Xj; = 1 if the kth subject (k=1,2,..., my) in
cluster j of group i is a case, and Xj; = O otherwise. Then the total number
Xii. = D" Xijk of cases in cluster j from population i follows a binomial distribution
with parameters m;; and p;;, where p; denotes the probability of having the disease
of interest. Note that the responses X within clusters may be correlated. To
account for this intraclass correlation, we assume that p; independently follows
the beta distribution beta(w;, 8;) with mean 7; (= «;/(a; + B;)) and variance
(1 — 7)) /(T; + 1), where o; > 0, 8; > 0, and T; = «; + B; (Johnson and Kotz,
1970; Lui, 1991). Thus, the probability that a randomly selected subject from
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groupiisacaseisE(Xj) = m;. Furthermore, theintraclass correlation between Xjj
and Xj, within clusters can be shown toequal p; = 1/(T; + 1) (see Exercise 1.7).

Define 77; = Z]. > Xijke/mi,, where m;, = Zj my;. Note that 77; is an unbiased
estimator of 7; with variance Var(s;) equal to 7;(1 — 7;)f (m;, p;)/m;. (Exercise
1.8), wherem] = (my1, mja, ..., my,), and f(m;, p;) is the variance inflation factor
due to the intraclass correlation p; and equals Zj my[1 + (my; — 1)pi]/m;.. The
properties of the variance inflation factor are discussed in Chapter 1. To estimate
pi we may apply the traditional intraclass correlation estimator p; (2.19) given in
Chapter 2 (Fleiss, 1986; Lui et al., 1996; Elston, 1977).

To derive an interval estimator of 6 (= 71 /7o), we first note that the asymptotic
variance of the estimator § = 1 /7o is Var(9) = 0%[(1 — m)f(my, p1)/(my.m1) +
(1 — 7o)f (myg, po)/ (Mg, 7p)]. Thus, we obtain an asymptotic 100(1 — «) percent
confidence interval for the RR given by

[max{f — Zu2y/ Var(@), 0}, 0 + Zyj2y/ Var(@)], (4.16)

where  Var(d) = 02[(1 — #7)f (my, p1)/(my.71) + (1 — 70)f (mo, po)/(mo.7o)]-
When using the logarithmic transformation on 6, we obtain an asymptotic
100(1 — «) percent confidence interval for the RR given by

[0 exp(—Zo2y/ Var(log(9))), 6 exp(Zy,2y/ Var(log(d)))], (4.17)

where Var(log(§)) = (1 — #1)f(my, p1)/(m1.71) + (1 = 7)f (Mo, o)/ (mo.7o).
Following a similar principle to that used in Fieller's theorem (Casella and

Berger, 1990), we consider the probability P([(, — 670)/+/Var(m, — 670)]? <
72 ;2) =1 —a when all my are large. This leads us to consider the following
quadratic equation in 6:
ATe? — 2BT9 + CT < 0, (4.18)
where At =72 — 721,70 (1 = 710)f (mo, po)/mo. Bt = #1709, and Cf =7} —
72,71 (1 — #1)f(my, p1)/my. I AT > 0 and B — ATCT > 0, then an asymptotic
100(1 — @) percent confidence interval for the RR will be given by

[max{(B" — v B2 — ATCT)/AT,0}, (B + /B2 — AfCh)/AT]. (4.19)

To reduce the possible skewness of the sampling distribution of (7; —

070)/+/ Var(it; — 07,), Bailey (1987) proposes considering 7%11/3 — (670)'/3. This
leads us to consider the following quadratic equation in 81/3:

A1) —=2B'©)'> +C <0, (4.20)
where AT = A5 — 22, (1 = ) (mo, fo)/(Imo. 7). BT = (R170)'/?,  and

Ct =477 =72 ,(1 — A)f(my, p1)/(9m . 74,%). I AT > 0 and B2 — ATCT > 0,
then an approximate 100(1 — «) percent confidence interval for the RR will be

[max{((B" — v B2 — AtCt)/ AN, 0}, (BY + VB2 — ATCT)/AN].  (4.21)
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Note that in application of (4.16), (4.17), (4.19), and (4.21), when either of the
7;is O or 1, we recommend using the ad hoc adjustment procedure for sparse data
involving adding 0.50 to each cell and using (X;,. + 0.5)/(m;. + 1) to estimate ;.
Note also that if we replaced f(my;, p;) by 1 due to either p; = 0 or my; = 1 for all i
and j, then interval estimators (4.16), (4.17), (4.19), and (4.21) would reduce to
(4.1), (4.2), (4.4), and (4.6), respectively.

Lui et al. (2000) evaluate and compare the performance of interval estimators
(4.16), (4.17), (4.19), and (4.21). They note that the coverage probability of
(4.16) tends to be less than the desired confidence level when the underlying
common intraclass correlation p. (= p1 = pg) is large, while those of the other
three interval estimators generally agree reasonably well in a variety of situations.
However, because interval estimator (4.17) is often shorter on average than those
of (4.19) and (4.21) in a variety of situations, the former is recommended for
general use.

Example 4.4 To illustrate the application of the proposed interval estimators
(4.16),(4.17),(4.19),and (4.21), consider the data (Table 1.1) taken from a study
of an educational intervention with emphasis on behavior change (Mayer et al.,
1997). There were 132 children, in 58 classes of size 1 —6; for each classitis known
how many children had an adequate level of solar protection. From the data, the
proportions of children in the intervention (i = 1) and control (i = 0) groups who
donothave an adequate level of solar protection are 7; = 27/64 and 7y = 42/68,
respectively. The point estimate of the RR is thus = #; /7, = 0.683. Assuming
01 = po = P, We obtain a point estimate for the common intraclass correlation
of p.(= (my.p1 + mg.po.)/m.., where m,. = my. + mg.) = 0.30. Applying interval
estimators (4.16), (4.17), (4.19), and (4.21), we obtain 95% confidence intervals
for the RR 0f[0.390,0.976],[0.445,1.049],[0.418,1.026],and [0.438, 1.037],
respectively. Since the number of classes in this example is not large, Lui et al.
(2000) note that using (4.16) can often give too short an interval. Because the
other three 95% confidence intervals include 1, there is no significant evidence
at the 5% level that the educational intervention affects whether children employ
an adequate level of solar protection.

4.4 PAIRED-SAMPLE DATA

Suppose that we want to measure the strength of the association between a risk
factor and a disease of interest. Denote the possibly distinct levels of a combination
of matching variables by z1, z5, ..., zx. Let E denote the exposure status: E = 1
if a randomly selected subject is exposed to the risk factor, and E = O otherwise.
Similarly, let D denote the disease status: D = 1 if a randomly selected subject
is a case, and D = O otherwise. Let px denote the conditional probability P(Z =
zx|E = 1) > O of a subject randomly selected from the exposure group having
matching covariate level zx, where ), py = 1. We assume that the probability
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P(D = 1|E, z;) of a randomly selected subject being a case, given the exposure
status E and matching covariate level z, is given by exp(— (8o + B1E + B2z1)),
where 81 and B8, denote the effects due to the exposure and matching covariate
7, and the parameter space is {(80, B1, B2)|Bo + B1E + B2z > Ofor E = 0, 1, and
Z=121,2,...,zk}. Consider a commonly used matched design, in which we take
a random sample of n subjects from the exposure population. For each of these
n sampled subjects with matching covariate level z* € {z1, z5, ..., zg} we then
find a subject with the same matching covariate level z* from the non-exposed
population. Note that within each pair, the RR is simply equal to exp(— ;). For
clarity, we use the following 2 x 2 table to summarize the data structure:

Non-exposed population

Case Non-case
Exposed Case 711 10 1.
population Non-case o1 oo 7o,
T .0

where O < m;; < 1(i=0, 1, andj = 0, 1) denotes the corresponding cell prob-
ability. Under the above model assumptions, m; = ), P(D =i|E = 1, z)P(D =
JIE = 0, zx)px. We define m;, = ;1 + my0, ; = m1; + mo;. We can show that the
RR (= exp(—p1)) isequal to 8 = 71 /7.1 (Exercise 4.8).

Let N; denote the number of pairs out of these n pairs that fall in
cell (i,j) with probability 7;, where ), Z]. N;j = n. Then the random vector
(N11, N1o, No1, Noo)' follows the multinomial distribution (2.2 5) with parameters
nand (711, 710, o1, 7o) - The MLE of 7rj; is 7;; = Nj;/n. Similarly, the MLEs of 771,
and i1 are 71, = (N11 + N1g)/nand 7.7 = (N11 + No1)/n, respectively.

Using the multivariate central limit theorem, as n goes to oo, we can show that
J/n((#1., 7.1) — (1., 7.1)') has the asymptotic normal distribution with mean
vector (0, 0) and covariance matrix ¥, where X is a 2 x 2 matrix with diag-
onal terms equal to 1. (1 — m1.) and 7 1(1 — 7.1), respectively, and with both
off-diagonal terms equal to 711790 — m10701. Let f(X7, Xo) denote the function
log(X,/Xp). Using the delta method (see Appendix) and the function f; (X3, Xo),
we obtain that ﬁ[log(é) — log(0)], where - /7.1, has the asymptotic
normal distribution with mean O and variance nVar(log(é)) =0 —m)/m. +
(1 —mq)/mq — 2@r11m00 — T10701)/(m1.77.1) (Exercise 4.9). Substituting the
corresponding unbiased consistent estimate 7; for 7; we obtain the esti-
mated asymptotic variance @(log(é)) = (No1 4+ Noo)/[n(N11 + N1g)] + (N10 +
Noo)/[n(N11 + No1)] — 2(N11Noo — N1oNo1)/[n(N11 + N1o) (N11 + No1)].
Therefore, an asymptotic 100(1 — «) percent confidence interval for the RR
is given by

[0 exp(—Zay2y/ Var(log9))), 6 exp(Zajay/ Var(log(d)))]. (4.22)
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Note that testing the null hypothesis Hy : 71, = 71 is equivalent to testing the
null hypothesis Hy : & = 1. When testing equality in dichotomous data with
matched pairs, Lui (2001a) notes that applying the statistic log(6) for the purpose
of hypothesis testing can slightly improve the power of McNemar’s test without
essentially damaging the extent of agreement between the actual Type I error and
the nominal « level.

Example 4.5 Consider the data given in Rosner, (1990, pp. 342—343) compar-
ing two treatments for a rare form of cancer. We matched patients on age, sex,
and clinical condition to form pairs. Within each pair, we randomly assign one
patient to receive chemotherapy and the other to receive surgery. The patients are
followed for 5 years, with survival as the outcome variable. We obtain n;; = 510
(the number of pairs where both patients die), n1g = 5 (the number of pairs where
the patient receiving chemotherapy dies and the patient receiving surgery sur-
vives), np; = 16 (the number of pairs where the patient receiving chemotherapy
survives and the patient receiving surgery dies), and ngg = 90 (the number of
pairs where both patients survive). Given these data, the MLE § of the RR is simply
0.979. Applying interval estimator (4.22), we obtain a 95% confidence interval
for the RR of [0.962, 0.996]. Since the upper limit of this confidence interval is
less than 1, there is significant evidence at the 5% level that the death rate for
chemotherapy is lower than that for surgery.

4.5 INDEPENDENT INVERSE SAMPLING

Recall that the MLE 6 of the RR (= 71 /7o) under independent binomial sampling
is 711 /7o. Because there is a positive probability that the MLE 7 is O, the MLE 0
has an infinitely large bias with no finite variance under independent binomial
sampling. Furthermore, when the disease of interest is rare in the unexposed, the
probability that 7, equals O can be non-negligible. Although we can always apply
the ad hoc procedure for sparse data of adding a small positive constant to alleviate
this concern, such an adjustment cannot eliminate the bias. On the other hand,
we can easily apply inverse sampling to avoid this theoretical limitation inherent
in binomial sampling (Lui, 1996).

4.5.1 Uniformly minimum variance unbiased estimator
of relative risk

Assume that we employ independent inverse sampling (Haldane, 194 5a, 1945b)
from the exposed (i = 1) and the non-exposed populations (i = 0), in which
we continue sampling subjects until we obtain a predetermined number x; of
cases. Let Y7 denote the number of non-cases accumulated in the exposed sample
before obtaining exactly the first x; cases from the exposed population. Similarly,
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let Yo denote the number of non-cases accumulated in the unexposed sample
before obtaining exactly the first x( cases from the unexposed population. Then
the random variables Y;(for i = 1, 0) independently follow the negative binomial
distribution (Haldane, 1945a, 1945b) with mean x;(1 — 7;)/7; and variance
xi(1 — m;)/7f (Casella and Berger, 1990). The joint probability mass function
(Y1, Yy) is then given by

Y1+DC1—1
Y,

Y0+9C0—1

) Ome) (1 — )" ( Y,

) (1 —me)",  (4.23)
where Y;=0,1,2,... and i = 1, 0. Note that the MLE of 6(= m;/7p) under
(4.23) is simply 71 /7o, where 7; = x;/(x; + Y;). Following Feller (1968, pp. 241,
493) and Best (1974), we can show that the MLE 71 /7 is a biased estimator of 6
with the bias E(771 /79 — 6) given by

x1—1 x T k - X1
Y (-l —— L) +x L) log(my) —m | mgt. (4.24)
=1 xl—k 1—7‘[1 1—7‘[1

In fact, for x; > 2, the uniformly minimum variance unbiased estimator (UMVUE)
of 0 is simply given by

7" /70, (4.25)

where fr{u) =(x; —1)/(x1 +Y; — 1) with variance Var(ﬁl(u)/ﬁo) given in
Exercise 4.10. The UMVUE of this variance (Exercise 4.11) for x; > 2 is

Var(@ ™ /70) = Var(#")WVar(r; 1) + Var(r )y 2 + Var(rg w2, (4.26)
where

Var(#") = #{" (1 — #{")/(x1 + Y1 — 2),

Var(#;h) = Yo (Yo + x0)/[x2(x0 + D],

752 = (xo + Yo + 1) (xo + Yo)/[x0(x0 4+ D],
72 = (v — D1 — 2)/[(e1 + Y1 — D(xy + Yy — 2)].

Lui (1996) demonstrates that applying the UMVUE (4.25) may significantly
reduce the mean-squared error of applying the MLE 71 /779 when the number of
index cases x; in both groups is small.

Example 4.6  Consider the example given by Bennett (1981, p. 71) concerning
the study of the association between a certain disease and two plants. We have the
data x; = x¢g = 30, y; = 120, and yy = 225. On the basis of these data, the MLE
and the UMVUE of 6 are 1.700 and 1.654, respectively; the MLE is slightly larger
than the UMVUE. The UMVUE Var(#{" /) (4.26) of the variance is 0.152.
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4.5.2 Interval estimators of relative risk

Note that because the sampling distribution of the UMVUE frl(“) /7o (4.25) could
be skewed if either x; were small, we do not recommend use of the UMVUE and its
estimated standard error to form the confidence limits. When «x; is large, note also
that the random variable Y;/x; + 1 is asymptotically normally distributed with
mean 1/7; and variance (1 — 7;)/(x;7). Using the delta method (Bishop et al.,
1975; Agresti, 1990), the random variable log(Y;/x; 4+ 1) is also asymptotically
normally distributed with mean — log(sr;) and variance (1 — ;) /x;. Therefore, an
asymptotic 100(1 — «) percent confidence interval for 0 is given by

Yo/x0 + 1 7 G
[% exp(—Zo/2v/ (1 — 1) /x1 + (1 — #0) /x0).
Yo/xo + 1 S T
Vore 1 PGy (= A0 m + (1= am)/xo)] . (@27

Note that when both 7; are small, because 2(x; 4+ Y;)7; approximately follows
a x 2 distribution with 2x; degrees of freedom (Exercise 1.18), the ratio {[2(x; +
Y]/ 2x1}/{[2(x0 + Yo)mo]/2x0} approximately follows an F distribution with
2x; and 2xg degrees of freedom. Thus, an approximate 100(1 — «) percent
confidence interval for 6 (Bennett, 1981) is given by (Exercise 4.12):

[xl(x() + Yo) x1(xp + Yo)
xo(xr + Y1) PO e + Y

where Fy, j,, o is the upper 100xth percentile of the F distribution with f; and
f> degrees of freedom. Given reasonably large numbers x; (> 20), Lui (1995a)
applies Monte Carlo simulation and notes that interval estimator (4.28) can be
conservative and hence lose efficiency when the ; are not small. On the other
hand, (4.27) is derived on the basis of large-sample theory. Therefore, when
neither x; is large, if the underlying probabilities z; were both small, then (4.28)
based on the F distribution may be considered.

Note that the relative difference § discussed in Chapter 3 isequalto 1 — ¢, where
¢ = (1 —m1)/(1 — my), which is a ratio of two proportions. Therefore, we can
easily derive the exact confidence interval of the RR on the basis of the conditional
distribution of the negative binomial distribution as for the relative difference
presented in Section 3.5 (Lui, 1995b). Similarly, the discussions on estimation of
the common relative difference under a series of independent negative binomial
sampling procedures, as well as procedures for testing the homogeneity of the
relative difference across strata, can also be modified to accommodate the situation
where the RR is our primary parameter of interest under pre-stratified sampling
(Lui, 1997, 1998, 2000). A discussion on both point and interval estimation of
RR and RD for paired-sample data under inverse sampling is given by Lui (2001b).

F2x1,2x(),a/2:| ’ (4.28)

Example 4.7 Consider the numerical data given in Example 4.6. We have x; =
xo = 30, y; = 120, and yy = 225. Suppose that we are interested in obtaining
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an interval estimate for the RR (= 6 = 71 /7). The estimators (4.27) and (4.28)
give 95% confidence intervals for the RR of [1.069, 2.704] and [1.020, 2.834],
respectively. We can see that the latter is longer than the former. Note that since
the MLE estimates 7; = 0.20 and 7y = 0.12, both of which are not small, as
noted before (Lui, 1995a), interval estimator (4.28) may be conservative.

4.6 INDEPENDENT POISSON SAMPLING

When studying the effect of a risk factor on the incidence rate of a chronic
disease in a cohort design, we often apply the Poisson distribution to model
the incidence data (Breslow, 1984). A few notes on the motivation behind
assuming the Poisson model can be found in Section 2.6. In this section, we
focus discussion on estimation of the incidence RR, 6* = A1/Ay, where A; and
Ao are the incidence rates in the exposed and non-exposed groups, respectively.
Suppose that we obtain X; cases among n} person-years at risk in group i(i =
1,0). We assume that X; and X, independently follow Poisson distributions
with parameters njA; and nfio, respectively. On the basis of the likelihood
(2.40), we can show that the MLE of 6* is simply * = il/io, where A; = Xi/n}.
When the disease of interest is rare, the sampling distribution of o* may be
skewed. Thus, we may wish to apply the logarithmic transformation to improve
the normal approximation of 6*. Using the delta method (Exercise 4.15), we
can show that the estimated asymptotic variance Var(log(8*)) = 1 /X1 +1/X;.
Therefore, an asymptotic 100(1 — «) percent confidence interval for 6* is simply
given by

[0* exp(—Z/2y/ Var(10g(8%))), 07 exp(Zay2y/ Var(log(6+)))]. (4.29)

To avoid our inference depending on the possibly skewed distribution of o*
(i.e., the ratio of two random variables), we may also use the principle of Fieller’s
theorem by considering Z = A, — 6*4o. We can easily see that the expectation
E(Z2) = 0. Furthermore, the variance Var(Z2) is 11 /n7 + 0210/ n;y. We are thus
led to consider the following quadratic equation:

ABH*)> — 2BO* + € < 0, (4.30)

Yvhere A =52 — Zi/z):()s/"?}, B = A1ho, and € = A} — Zi/z):l/n’{. If2A > 0 and
X1 > 0, then we can show that 82 — 2¢ > 0 (Exercise 4.16). In this case, the

two distinct roots of (4.30) for which equality holds exist. Thus, an asymptotic
100(1 — @) percent confidence interval for 6* is given by

[max{% —VBI_AC o} B + /B2 —me]

o o (4.31)
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Note that when redefining the parameters in the model, we can easily see
that the likelihood (2.40) depends on 6* and a nuisance parameter. To eliminate
this nuisance parameter, we may consider the conditional distribution P(X; =
x1]x., 6%) of X7, given x, = X; 4+ X fixed. As shown in Exercise 4.17, this
conditional distribution follows the binomial distribution

P(X; =i fx. 0%) = ( b ) ARt (4.32)

where Y = nj0*/(nj6* +ng), and x; =0, 1, ..., x.. On the basis of (4.32), one
can easily show that the conditional MLE of 6* is the same as the uncon-
ditional MLE 6* = i, /):0 with the asymptotic conditional variance equal to
(Exercise 4.17) . A A .

Var(6*|x) = (0%)*/(x. 9 (1 — ), (4.33)

where ¥ = n’{é* / (n’{é* + nfy). Since the sampling distribution 6* may, as noted
previously, be skewed, we consider using the logarithmic transformation. We
obtain an asymptotic 100(1 — «) percent confidence interval for 6* given by

[0* exp(—Zay2y/ Var(log(6%)|x.))), 8* exp(Zuy2y/ Var(log(@*)|x))],  (4.34)

where @(log(é*)lx_) = 1/(&&(1 — I/A/)). When the number of person-years n
(or equivalently, the expected number of cases in group i) is not large, interval
estimators (4.29), (4.31), and (4.34), all derived from large-sample theory, may
not perform well. In this case, we may wish to find the exact confidence interval
for 6*. On the basis of the exact confidence interval (1.6) for the parameter v of the
binomial distribution and the monotonic transformation T(x) = ngx/(n] (1 — x)),
we may obtain an exact 100(1 — «) percent confidence interval for 6* given by
(Exercise 4.17)

[ngx /(] (vo + 1) Fao+1),201,0/2)s o1 + D) Faq +1),2x0.0/2/ (1 %0)]. (4.35)

Example 4.8 Consider the data regarding the study of the effect of hormone use
on the risk of breast cancer in menopausal women aged 39 and 44 years. We
haveX; = 12,n] = 10199, xp = 5,andn§ = 4722 (Table 2.4). From these data,
the MLE#* = 1.111. Applying (4.29), (4.31), (4.34), and (4.35), we obtain 95%
confidence intervals for 6* of [0.391, 3.154], [0.394, 9.198], [0.391, 3.154],
and [0.364, 4.026]. We can see that in this case using (4.31), based on Fieller’s
theorem, can cause loss of efficiency as compared with the other three interval
estimates. Furthermore, it is not surprising to observe that (4.35), using the exact
method that assures that the coverage probability is equal to or greater than the
desired confidence level, is wider than (4.29) or (4.34). Because all the lower
limits of these interval estimates are less than 1, there is no significant evidence
at the 5% level that hormone use can increase the risk of breast cancer in women
aged between 39 and 44 years.
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4.7 STRATIFIED POISSON SAMPLING

When assessing the incidence RR between the exposed (i = 1) and non-exposed
(i = 0) groups, we may need to apply stratified analysis to adjust for the effects
of confounding variables. For example, consider the data in Table 2.4, in which
age is a confounder when we study association between hormone use and the
risk of breast cancer. Suppose that from each stratum s(s=1,2,...,5) we
obtain Xj; cases among nj, person-years at risk in group i. We assume that the
random variables X;;(= 0, 1, 2, ...) independently follow Poisson distributions
with parameters njA;;, where Als is the underlying disease rate for stratum s in
group i. Note that the assumption of independence between the X;; may still
be reasonable even when the same person may contribute observation time to
several contiguous age categories (Breslow and Day, 1987). The incidence RR
in stratum s, denoted by 67, is simply equal to A;5/A¢s. Under stratified Poisson
sampling (2.44), we can easily show that the MLE of 6; is és* = A1 /):OS, where
is = Xis/n%. In the following discussion, we assume that 0% = 03 = ... = 63 and
denote this common RR by 6. We focus our discussion on estimation of 6.

First, consider the most commonly used WLS interval estimator (Greenland
and Robins, 1985; Rosner, 2000; Newman, 2001). An approximate 100(1 — «)
percent confidence interval for 6 is given by

ZWS log(6;) _ Zup exp X:VAVS log(6;) N T/
NN OETNN) i

R (4.36)
where W, = (1/Xq5+ 1/Xo,) ™! . Note that W is actually the inverse of the
estimated asymptotic variance Var(log(@*)) (Exercise 4.15).

Based on stratified Poisson sampling, the likelihood (2.44) depends on 6; and
on § — 1 other nuisance parameters. We may easily eliminate these nuisance
parameters by considering the conditional distribution P(X1, = x14]x.s: 6) of

Xy, given x s = X5 + Xy, fixed. As shown in Exercise 4.17, this conditional
distribution follows the binomial distribution

exp

* X, X1 X.g—X1s
P(Xls = xls|x.s;ec) = (xls ) ws\h(l - ws)x'A s (437)
S
where v, = nj 07 /(n} 6F +nj) and x1,=0,1, ..., x, Thus, the conditional
likelihood of 6, given the fixed vectorx, = (x.1,x.2, ..., x.g), is
[ [PXis = 1l 00), (4.38)
N

which depends on 6 only. On the basis of (4.38), we can obtain the conditional
MLE 67 by solving for 6 for the following equation (Exercise 4.18; Rothman and
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Boice, 1979):
1, =y B(Xylxs, 07) (4.39)
N

where x1. = )", Xi,, and E(X15|x.s: 07) denotes the conditional expectation of X,
given X ; = x_, and is equal to x ;1. Lui (2003) notes that a sufficient and neces-
sary condition for the existence of a unique finite conditional MLE éc* (> 0) is that
both x;, and xg, (= > XOS) are positive. Using the logarithmic transformation,
the asymptotic conditional variance of ég‘ is given by (Exercise 4.18)

Var(log(8))|x) = 1 / 3 (1 — ). (4.40)

Thus, an asymptotic 100(1 — «) percent confidence interval for 6 is

[0 eXp(—Zay21/ Var(log(97)[x.))), 6 exp(Za24/ Var(log(@)[x)))]  (4.41)

where Var(log(67)|x,) = 1/ (Zs X s (1 — &S)) and i, = nt 0%/ (% ,0F + ).
Note that the application of (4.41) requires the use of iterative numerical
procedure to obtain the conditional MLE 6. A commonly used point estimator of

67 which does not involve an iterative procedure is the Mantel -Haenszel estimator
(Rothman and Boice, 1979),

D
2 Xlsn()s/n.s
A s

br o= (4.42)
e Z X()Sn#is/niks
s

where ¥, = nj, + nj),. Furthermore, using the delta method, we can show that
the estimated asymptotic conditional variance of log(6;j;;) using the logarithmic
transformation is (Breslow, 1984)

2
Z n?sngsx's/(nfﬁs)
s

5.
|:(0AMH)O'5 (Z nzﬁ)sn?sxﬁ/(n?{s(él\jmn){s + HES))>:|

Thus, an asymptotic 100(1 — o) percent confidence interval for 6 based on
(4.42) and (4.43) is given by

63 €XD(—Zj24/ Var (10g(03) X)), Origg €Xp(Za/2y/ Var(log (B 1X.)))].

(4.44)
Applying the score test (Cox and Oakes, 1984;Lawless, 1982; see also
the Appendix) to the conditional likelihood, we have the probability P((x1, —

Var(log(0)Ix.) =

(4.43)
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> xs)? — Zi/z Y xs¥s(1 — ¥) < 0) = 1 — «, as both nj; are large. Thus, we
obtain an asymptotic 100(1 — «) percent confidence interval for 6} given by

[0, 611, (4.45)

where 6" and 6 are the smaller and the larger roots of

2
(xl. -3 vw) —Za) (Z xs¥s(1 = ws)) =0. (4.46)

We can again use trial and error to find the two roots of equation (4.46).

The interval estimators (4.36), (4.41), (4,44), and (4.45) are derived under
the assumption that the underlying incidence RR is constant across strata. Thus,
before using any of these estimators, it is advisable to examine whether this
assumption is satisfied by the data. We may apply the asymptotic likelihood ratio
test (Rothman and Boice, 1979) andreject the hypothesisHy : ) =05 = ... = 6§
at level « if

2 {Z[x“ log(0;) — x.slog(ni 07 + nj)]

N

— Z[xls log(6) — x.slog(nt 6 + n5 )]} > XS 1. (4.47)

Recently, Lui (2003) has evaluated and compared eight interval estimators
of 67 in a variety of situations. These include (4.36), (4.41), (4.44), (4.45), and
four other interval estimators. Lui notes that the coverage probability of the WLS
estimator (4.36) tends to be less than the desired 95% confidence level, especially
when we have alarge number of strata with a small expected total number of cases
per stratum and the underlying 6 is far away from 1 (i.e., 67 < 1/8 or6} > 8). Lui
further notes that (4.41), (4.44), and (4.45) can actually perform reasonably well
in a variety of situations, although (4.44), using the Mantel —Haenszel statistic, is
likely less efficient than (4.41) and (4.46). Readers may wish to read this paper
for other findings and discussions.

Example 4.9 To illustrate the use of (4.36), (4.41), (4.44), and (4.45), consider
the data in Table 2.4 studying the association between estrogen replacement
therapy and the risk of breast cancer in menopausal women (Colditz et al., 1990).
Applying (4.47) to test the homogeneity of 6 across strata, we obtain a p-value of
0.315. Thus, there is no significant evidence against the assumption that the RR
of breast cancer between current users and those who have never used estrogen
replacement therapy is constant across different age categories. Furthermore,
given these data, we obtain a conditional MLE and a Mantel—-Haenszel estimate
of éc* = 1.401 and OAI\’ZH = 1.398, respectively. Using interval estimators (4.36),
(4.41), (4.44), and (4.45), we obtain 95% confidence intervals for 67 of [1.175,
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1.692],[1.167,1.683],[1.164,1.679],and[1.167, 1.682], respectively. Because
the lower limits are all above 1, there is significant evidence at the 5% level that
hormone use in menopausal women tends to increase the risk of breast cancer.

EXERCISES

4.1. Under independent binomial sampling, show that the asymptotic variance
oftheMLEO = 71 /Ao is Var(6) = (1/m0)*[(1 — 71)/(mm1) + (1 — 70) / (no70) ],
where ; = X;/n; fori =1, 0.

4.2. On the basis of ’Ehe result in Exercise 4.1, show that the asymptotic variance
oflog(0) is Var(log(#)) = (1 — m1)/(mm1) + (1 — 7o)/ (no7o).

4.3. Show that the inequality [(71 — 6#0)/+/Var(m — 670)]? < Zi/z in
Section 4.1 can be rewritten as A9> — 2Bf + C < 0, where A = 715 — 77, 70(1 —
#0)/no, B = 717, and C = #{ — Zé/zﬁ'l(l —m)/n1.

4.4. (a) In Section4.1, what is the asymptotic asymptotic variance of
7%11/3 — (079)'/3? (Hint: use the delta method.) (b) Show that [(7?11/3 —
O7)3) /Var(ﬁl1 B _0r)YH)? < 72 /2 is equivalent to the following quadratic
equation in Y3 : A©)*3 —2B©®)'/> +C <0, where A= fré/g — Zi/z(l -
#0)/Onorty), B = (170)%, and C = #{" — 72, (1 — #1)/Om 7, ).

4.5. Consider the data taken from the German-Austrian Multicenter Study
(Breddin et al., 1979) comparing deaths from post-myocardial infarction between
the placebo and aspirin groups. We have 32 deaths out of 309 patients in the
placebo group (i = 0), and 27 deaths out of 317 patients in the aspirin group
(i = 1). What is the MLE of the RR (= 71 /7o)? What are the corresponding 95%
confidence intervals for the RR using (4.1), (4.2), (4.4), and (4.6)?

4.6. Using the delta method, show that in Section 4.2, an asymptotic variance
Var(Oym) of Oy is given by [ Y (nos/n.s)* mismis(1 — m15) + 62 Y (n15/1.5)*nosos
(1-— n()s)]/(ZS((H()SHIS)/H.S)T[()S)Z- If 7 is small (= 0), then this asymptotic
variance reduces to [Zs(n()s/n.s)znlsﬂls + 952 Zs(nls/n.s)zn()sn()s]/(Zg((n()snls)/
n.s)n()s)z-

4.7. Consider the all-cause mortality data (Table 2.1) from the first five (s =
1,2, ..., 5) randomized trials comparing aspirin with placebo in post-myocardial
infarction patients (Canner, 1987). (a) What are the p-values for testing the homo-
geneity of the mortality RR between aspirin and placebo using (4.13)—(4.15)?
(b) What are the MLEs 6, of the mortality RR for these trials? (c) What are the
summary estimates fyrs (4.8) and Oy (4.10)? (d) What are the 95% confidence
intervals for 6, using (4.9) and (4.12)? Recall that on the basis of using the data
from a single randomized trial (Elwood et al., 1974) considered in Example 4.1,
we do not find significant evidence of the protection effect due to the aspirin. By
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contrast, when combining data from the five trials, we do find a minor reduction
in all-cause mortality due to aspirin.

4.8. Show that the marginal RR 6 = w1, /7,1 = exp(—p8;) under the exponential
model assumptions as described in Section 4.4.

4.9. Show that in Section 4.4, the asymptotic variance Var(log(d)) is given
by (1 —m1)/(nm1) + (1 — )/ () — 2(mimmoo — mromor)/ (nmy.m.1), where
0 =71./7.1.

4.10. Show that in Section4.5, the variance Var(frl(u) /7o) = Var(z\")
Var(ft(jl) + HJZVar(ft{u)) + nlear(ﬁ(jl), where 7%1(“) =@ -1/ +Y—1)
and 7y = xo/(xo + Yo). Thus, the variance Var(ﬁ{“) /7o) can be expressed in
closed form. (Hint: Best (1974) shows that Var(# ") = (x; — 1)(1 — nl)[zz;l
(—m1 /(1 = m)¥/(x1 — k) — (—71/(1 — m1))" log(7r1)] — 7. Furthermore, we
can show that Var(#, ) = (1 — 70) /(xo2).)

4.11. For x; > 2 in Section 4.5, show that the variance estimator (4.26) is an
unbiased estimator of Var(ﬁl(u) /7).

4.12. When 7; is small, as noted in Exercise 1.18, 2(x; + Y;); approximately
follows a x? distribution with 2x; degrees of freedom. Thus, the ratio {[2(x; +
Y)m11/2x1}/{[2(xo + Yo)7ol/2x0} follows an F distribution with 2x; and 2xq
degrees of freedom. Show how to apply this result to derive an approximate
100(1 — @) percent confidence interval for the RR as given in (4.28).

4.13. Consider the data on the opinions of a random sample of 1600 voters
on the President’s performance in two surveys (Agresti, 1990, p. 350). There
are (n;; =)794 people indicating approval in both surveys, (n;o =)150 people
indicating approval in the first survey but indicating disapproval in the second
survey, (ng; =)86 people indicating disapproval in the first survey but indicating
approval in the second survey, and (ngg =)570 people indicating disapproval in
both surveys. When we compare the approval rate 71, of the first survey with the
approval rate 7 ; of the second survey, what is the MLE of the ratio 71 /7 ;? What
is the 95% confidence interval for 71 /7.1? (c) What conclusion can you draw
from these data?

4.14. Suppose that we want to compare the cancer prevalence rates between a
mining town (i = 1) and a control town (i = 0). Suppose further that we employ
inverse sampling to collect subjects from population i until we obtain x; = 10
cases, and we obtain y; = 490 and y, = 4990. What are the MLE and the UMVUE
of the prevalence RR? What are the 95% confidence intervals for RR using (4.27)
and (4.28)?

4.15. Suppose that X; independently follows the Poisson distribution with param-
eter nf;(i = 1, 0). Show that the estimated asymptotic variance Var(log(6*)) is
given by 1/X; + 1/X,, where 6* = A;/Ap and A; = X;/n}.
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4.16. Define? = A —72,0h0/n5,B = diho,and € = i3 — 72,4, /n}. Show that
if A > 0 and A; > O, then the inequality B2 — ¢ > 0 will hold.

4.17. Suppose that X;(i = 1, 0) independently follows the Poisson distribution
with mean nf};. (a) Show that X; + X follows the Poisson distribution with
mean nji; +njro. (b) Show that the conditional probability mass function
f(X7 = x11X7 + X = x.) follows the binomial distribution with parameter x. and
A1 /(A1 + niio) (= nj0* /(176" + ny)), where 6* = 11 /A¢. (c) Show that the
conditional MLE of 6* on the basis of (4.32) is the same as the unconditional
MLE 0* =i /):0 with the estimated asymptotic conditional variance given by
Var(6*|x.) = (6*)2/(x.9 (1 — 1)), where §/ = n;0*/(n6* + njy).

4.18. On the basis of the likelihood (4.3 8), show that the conditional MLE éj can
be obtained by solving for 67 the equation x;. = ) E(Xis|x., 6F), where x;, =
Zs X1s and E(Xys]x., 67) = x5, where ¥, = nj 05/ (n} 65 + ni,). Also show
that the asymptotic conditional variance Var(log(éj) Ix) =1/ xs¥s(1 — ¥s).

4.19. Consider the data concerning estrogen replacement therapy and breast
cancer just for women aged between 39 and 54 years in Table 2.4 (Colditz et al.,
1990; Rosner, 2000).

(a) What is the p-value using the asymptotic likelihood ratio test statistic to test
the homogeneity of the incidence RR across the three strata?

(b) What is the conditional MLE é‘j‘ and Mantel-Haenszel estimate GAJ\’ZH of the
underlying common RR?

(c) What are the 95% confidence intervals for the underlying common incidence
RR using (4.36), (4.41), (4.44), and (4.45)?
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5
Odds Ratio

The odds ratio (OR) is one of the most frequently used indices to measure the
extent of association between a risk factor and an outcome in epidemiology.
When the underlying outcome is rare, it is well known that OR can provide
a good approximation to the risk ratio (RR) discussed in Chapter 4. While the
RR cannot be estimated in case—control studies without using Bayes’ theorem
and other external information, the OR can actually be estimated from a cross-
sectional study, a cohort study, or a case—control study. Due to this invariance
property, we often use the OR to locate possible etiologic causes in a case—control
study design for chronic diseases, such as cancers or cardiovascular diseases,
which are generally difficult to study without following up a relatively large
number of subjects for a long period of time. Furthermore, because the OR can be
expressed in terms of model parameters under the log-linear or logistic regression
model (Bishop etal., 1975; Agresti, 1990; Hosmer and Lemeshow, 1989), we
can easily study this important parameter while controlling the effects of other
confounders.

To help readers appreciate the invariance (Cornfield, 1951) of the OR with
respect to various study designs, for clarity we may use the following table to
summarize the data structure:

Status of
disease
Yes No
Status of Yes 1 10 .
exposure No 01 00 0.
.1 .0

where 7;; denotes the corresponding cell probability for i and j = 1, 0. We define
mi, = w1 + wio and w; = m; + mo;. For convenience, we let D and D denote the
events of being a case and a control, respectively. Similarly, we let E and E
denote the events of being exposed and not exposed to the risk factor under
investigation. In a cohort study, we take independent random samples of subjects
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from the exposed and non-exposed populations, respectively. The proportions
of cases calculated from the two samples are unbiased estimators of the con-
ditional probabilities P(D|E)(= 71 /m1.) and P(D|E)(= 7o /m0.) of the disease
for the exposed and non-exposed populations. Thus, the OR (= [P(D|E)/(1 —
P(D|E))]/[P(D|E)/(1 — P(D|E))] = m11700/(m10m01)) of being a case between the
exposed and the non-exposed populations can be estimated. On the other hand,
in a case—control study, we take independent random samples of subjects from
the diseased and non-diseased populations, respectively. The proportions of
exposure calculated from the two samples are unbiased estimators of the condi-
tional probabilities P(E|D) (= 711 /7.1) and P(E|D) (= m10/7.0), respectively. Thus,
the OR(= [P(EID)/(1 — P(EID)]/[P(EID)/(1 — P(EID))] = m11700/ (T10701)) of
having the exposure between the cases and the controls can also be estimated.
Finally, in a cross-sectional study, we take a random sample of subjects from the
general population and simultaneously determine the status of the risk factor
and the disease for each sampled subject. The sample proportions falling into the
corresponding cells can then be used to directly estimate the cell probabilities r;;,
and thus the OR(= 71170/ (r10701)) between the disease and the risk factor can
be estimated as well. The OR therefore not only remains invariant with respect
to the cohort study, the case—control study, and the cross-sectional study, but
also is estimable by using any of these three designs. Note that the value of the
OR does not change when we multiply a row or a column by a positive constant
(Exercise 5.1). Therefore, in case—control studies, in which we may sample most
cases, but only sample a small fraction of the disease-free population, this differen-
tial sampling fraction does not cause a bias in estimation of OR. If the underlying
disease were rare, as noted previously, the OR would approximately equal the
RR(= P(D|E)/P(D|E)) (Exercise 5.2). By definition, the OR is positive. A value
greater than 1 (less than 1, equal to 1) simply indicates a positive association (a
negative association, no association) between the risk factor under investigation
and the disease of interest.

In this chapter, we first discuss estimation of the OR under independent binomial
sampling for the situation of no confounders. We then extend this discussion to
accommodate the situation in which we can apply stratified analysis to control
confounders or we encounter data collected by means of a multicenter study
design. We discuss estimation of the OR under independent cluster sampling, in
which the sampled units are classes or households rather than individual patients.
We also discuss estimation of the OR for one-to-one matched sampling, commonly
used in the case—control study design to increase the efficiency or the validity of
inference. We further include a brief discussion on using the logistic regression
to control the confounders for the cases of both non-matching and matching
designs. Finally, we discuss estimation of the OR for case—control studies under
independent inverse sampling and for case—control studies with matched pairs
under negative multinomial sampling.
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5.1 INDEPENDENT BINOMIAL SAMPLING

Suppose that we independently sample n; subjectsfromthe case (j = 1) population
and ng subjects from the control (j = 0) population, respectively. Suppose further
that we obtain X; among n; sampled subjects exposed to the risk factor. Then X;
follows the binomial distribution (1.1) with parameters n; and 71 = m1;/7 .

5.1.1 Asymptotic interval estimators

Under independAent binomial sampling, we can easily see that the MLE of
the ORissimply O = (X1/n1)((no — Xo)/no)/[(Xo/n0)((m — X1)/m)] = Xy (ng —
X0)/[(n1 — X1)Xp]. Using the delta method (Bishop etal., 1975; see also the
Appendix), we obtain an estimated asymptotic variance @(log(@)) =1/X; +
1/Xo+1/(m — X1) + 1/(ng — Xo) (Exercise 5.3). Note that there is a positive
probability that the variance @(log(@)) is not defined due to either X; =0
or X; = n;. To alleviate this concern, we may apply the commonly used adjust-
ment procedure for sparse data of adding 0.50 to each cell. In fact, substituting
(Xj 4+ 0.50) and nj — X; + 0.5 for X; and n; — Xj, respectively, will generally
improve the performance of the interval estimator based on the statistic log(@)
(Gart and Zweifel, 1967; Fleiss, 1981; Gart and Thomas, 1972; Fleiss, 1979; Lui
and Lin, 2003). Thus, an asymptotic 100(1 — «) percent confidence interval for
the OR (Woolf, 1955; Gart and Thomas, 1972) is given by

[Oads €XD(—Za/24/ Var (10g(Oay))), Oudy €xp(Zaj24/ Var(log(Oua))],  (5.1)

where .
Oagj = (X1 +0.5)(np — Xo + 0.5)/[(m — X1 + 0.5)(Xp + 0.5)],

Var(log(Oug)) = 1/(X1 +0.5) + 1/(Xo + 0.5) + 1/(m — X1 + 0.5)
+ 1/(?’10 — X() + 05)

Note that applying (5.1) to determine whether there is an association between
a risk factor and a disease does not always lead to the same conclusion as that
using the x? test for equality between two comparison groups. Thus, Cornfield
(1956) proposes an interval estimator by inverting the acceptance region of a
family of x? tests for testing the null hypothesis Hy : © = Oy, where Oy is any
given specified value.

Given O = Oy, we have X1 (Oo)(ny — Xo(Op))/[(n1 — X1(O00))X0(On)] = O,
where X;(Oy) denotes the expected frequency of subjects with exposure in group
j(G =1, 0) when O = Q. Therefore, given a value Oy # 1 and a marginal total
x.(= X7 + Xy) of subjects with exposure, we can obtain the expected frequency
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X1(Op) by solving the following quadratic equation in X; (Exercise 5.4):
(O — DX7 = [Op(m +x) + (ng — x)]X1 + Ogmx, = 0. (5.2)

Once we obtain X;(0y), we can then uniquely determine the expected fre-
quency for the other cells. Note that X; (Og) must satisfy the constraint given by
max{0, x. — np} < X7(Op) < min{n;, x.} so that none of the expected frequencies
in any cell is negative. We thus conclude (Fleiss, 1981; Exercise 5.5) that

X1(Op)

_ Qo +x) + (9 = x.) = V[Oo(m + x.) + (119 — x.)I> = 4(Oo — HOomx.
200 - 1) '

(5.3)
When Qg = 1, the expected frequency X;(0Og) derived from (5.2) simplifies to
nix./n,, where n, = n; + ng. Stevens (1951) and Cornfield (1956) show that
when the underlying OR is Oy, the conditional distribution of the observed
frequency X;, given x. fixed, is approximately normally distributed with mean
X1(0Op) and asymptotic variance (Exercise 5.6)

Var(Xi|x., Og) = [1/X1(Op) + 1/(x. — X1(Op)) + 1/(n1 — X1(Op))
+1/(ng — x. 4+ X1 (Oo)] . (5.4)

When Oy = 1, the variance (5.4) reduces to nyngx.(n, — x,)/n?. Thus, we obtain
an asymptotic 100(1 — «) percent confidence interval for the OR given by

[O1, Oul, (5.5)

where the confidence limits O) and O, are determined by solving the following
two equations for O. The lower limit O, is the smaller root of O satisfying

X1 = X1(0) — e1)* Var(Xy|x,, O) " = 72 , = 0, (5.6)

where the constant ¢; is set to 0.50 when one wishes to apply a continuity correc-
tion, or to O otherwise. Similarly, the upper limit O, is the larger root of O satisfying

(X1 — X1(0) +¢)* Var(X; x., O)~" = 7, =0, (5.7)

where the constant ¢; is set to 0.50 for the continuity correction, or to O otherwise.
Although the above discussion is relevant to case—control studies, all the results
presented here apply equally to cohort studies. A discussion on the iterative numer-
ical procedure for solving (5.6) and (5.7) can be found elsewhere (Fleiss, 1979).
Gart and Thomas (1972) as well as Brown (1981) note that interval estimator
(5.1) can be much too narrow in the conditional sample space when both n;
are small. Fleiss (1979) notes a close agreement of confidence limits between
Cornfield’s interval with the continuity correction and the exact method (that
will be discussed in the next section). Thus, all these papers suggest using interval
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estimator (5.5) with the continuity correction. On the other hand, Gart and
Thomas (1982) find that Cornfield’s method without the continuity correction
is the preferred approximate method in the unconditional space. However, none
of these papers accounts for efficiency by comparing the average length of the
resulting confidence intervals using different methods. Agresti (1999) notes that
(5.1) can actually perform well even for small samples unless the underlying
OR is large. Lui and Lin (2003) further note that using Cornfield’s confidence
interval (5.5) with the continuity correction can actually lose substantial efficiency
compared to that without the continuity correction. When the sample size per
group is not large (<30) and the probability of exposure in the control group
is small (say, 0.10) or large (say, 0.90), Lui and Lin (2003) recommend using
Cornfield confidence interval without the continuity correction. When the sample
size is large (say, 100 per group) or when the probability of exposure in the control
is moderate (say, 0.50), they note that (5.1) is probably preferable to (5.5).

There is another popular interval estimator of the OR, Miettinen’s (1976)
test-based confidence interval, that is simple to use. As demonstrated elsewhere
(Brown, 1981), however, this interval estimator does not perform well if the
underlying OR is far from 1. Thus, we confine ourselves to a brief outline of the
construction of Miettinen's test-based interval estimator in Exercise 5.8.

Example 5.1 Consider the case—control study of smoking and oral cancer (Gra-
ham etal., 1977; Gart and Thomas, 1982). As reported elsewhere (Gart and
Thomas, 1982, p. 461), there were (X; =)399 cases who had ever smoked
among (n; =) 419 cases with oral cancer. By contrast, there were (Xy =) 414
subjects who had ever smoked among (ny =)516 controls without oral cancer. On
the basis of the data, the MLE O of the OR is 4.92. Applying (5.1) and (5.5) with the
continuity correction, we obtain 95% confidence intervals of © of [2.985, 8.093]
and [2.916, 8.362], respectively. Note that the former is completely contained
in the latter here. On the other hand, if we applied (5.5) without the continuity
correction, we would obtain [2.998, 8.056], which is similar to the result of using
(5.1). Because all these lower limits are above 1, we may conclude at the 5% level
that smoking may increase the risk of oral cancer.

5.1.2 Exact confidence interval

Note that both interval estimators (5.1) and (5.5) are derived on the basis of
large-sample theory. When either of the n; is small, these two interval estimators
are theoretically not valid. Thus, we may consider deriving a 100(1 — «) percent
confidence interval on the basis of the exact conditional distribution of X, given
a fixed marginal total x. (Gart, 1970; Gart and Thomas, 1972; Exercise 5.9):

o =i 5.0 (1) (L Jou (M) () o

(5.8)
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where the range of x; is max{x. — ng, 0} < x; < min{n;, x.}, and the summation
for x is over this range. Note that the conditional probability mass function
(5.8) is only a function of the parameter O. On the basis of (5.8), we can
obtain the conditional MLE O.,nq by finding the root O of the following equation
(Exercise 5.10):

x1 = E(Xq|x,, 0), (5.9)

where E(X; |x., O) denotes the conditional expectation of X7, given x. fixed. Fur-
thermore, we can show that the cumulative probability distribution | _  P(X; =
x| X, = x., O) is a decreasing function of O (Exercise 5.11). Thus, we obtain an
exact 100(1 — «) percent confidence interval for O given by (Casella and Berger,
1990)

[0}, O], (5.10)

where the confidence limits O and O} are determined by solving the following
two equations:

D> Py =X, =x.0)) =0a/2, D Py =x|X =x,0}) =a/2.

X=X x<x1

Applying (5.10) always ensures that the coverage probability is equal to or greater
than the desired 100(1 — o) percent confidence level and hence (5.10) is valid
even when both n; are small.

Example 5.2 Toillustrate the use of estimators (5.9) and (5.10), we consider data
on the response of diffuse lymphoma patients to combination chemotherapy by
gender (Bishop et al., 1975, p. 148; Skarin et al., 1973). Only one of the thirteen
male patients responded, while one out of four females responded. The conditional
MLE of the OR is O¢ong = 0.278. Because the number of patients in this study is so
small, we may wish to apply interval estimator (5.10) rather than the asymptotic
interval estimators (5.1) and (5.5). Using (5.10), we obtain a 95% confidence
interval for the OR of [0.003, 26.115]. The width of the confidence interval
suggests that the data considered here cannot provide us with a precise estimate
of the OR between the response to combination chemotherapy and gender.

5.2 A SERIES OF INDEPENDENT BINOMIAL
SAMPLING PROCEDURES

Assume that there are S strata formed by centers in a multicenter study. From
each stratum s (s = 1, 2, ..., S), we independently sample nj; subjects from the
case (j = 1) and the control (j = 0) populations, respectively. Assume further
that we obtain Xj, out of nj; sampled subjects exposed to the risk factor. Then
Xjs follows the binomial distribution (1.1) with parameters nj; and ;. Let
7T()|js =1- jTl\jS fOI'j = 1, 0. The OR in stratum s is OS = 7'[1|1S7T0‘0S/(7T0|1S7T1|0S).
The joint probability mass function for the random vector X' = (X/, X{)), where
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X; = (les X]Zs ey )(]S)v is

S
he(xin, ) = l_[l_[< )m,) (1= )
s=1 j=0 i
S

= l_[ <le) <n08) (O9) = (o s) ™ (7r1105)™ (7w0j0) ™", (5.11)
1s X0s

s=1

where n' = (nu, niz,...,NN1s, o1, Np2, .. ., rl()S) and ' = (nl\lh T2 -+
1S, 1101, 11025 - - - » T1j0s). Based on likelihood (5.1), we can easily show that
the MLE of O is simply @S = X15(ngs — Xos)/[(n1s — X15)Xos]. In the following
two subsections, we shall assume that O is constant across all strata, and we
denote this common OR by O.. Given X' = (x.1, X2, ..., x.g) fixed, we can see
that from (5.11), the likelihood function of O. depends on only on the statistic

Xi. (= Zs Xls)-

5.2.1 Asymptotic interval estimators

To estimate O. we may first consider using the ‘precision weighting’

/\

of stratum-specific estimates Oy : ) WO s/ >« Ws, where W, = 1/Var((’))
and  Var(O,) = 03{1/["1sﬂ1\1s(1 — mins)] + 1/[nosmi0s(1 — m110)]}  when
parameters mj;; are known. Note that because O, is a
constant, Y WS@S/ S We=3", W;*(A’)S/ > W, where W} = l/Var(log(@s))
and  Var(log(Oy)) = 1/[nysm11s(1 — my19)] + 1/[”()37Tl|08(1 — m1j0s)].  When
pararneters TTy)js are unknown, we can substitute 711|]S = X,s/n,s for m‘,s in
Var(log((’) )) and obtain the consistent pomt estimator ), W O s/ D s W*,
where W;k = 1/Var(log((’)s)), and Var(log((’)s)) =1/Xys+ 1/Xos+ 1/(n15 —
X15) + 1/(ngs — Xos). For interval estimation of O, we may apply the logarithmic
transformation to improve the normal approximation of (A9S This will lead us
to obtain the weighted least-squares (WLS) estimator, ) . W log(@s) /> W,
if parameters my; are known. We can easily show that the asymptotic
variance Var (Zs Wi log(@s) /> Wj) =1/, W{. Thus, when substituting
frws for unknown parameters 7y js, we obtain an asymptotic 100(1 — «) percent
confidence interval for O, (Woolf, 1955) given by

Z W* log(Oy) Z W log(Oy)
/
exp — , €Xp +

2 S 2 S
N
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Note that when applying (5.12), we may also consider adding 0.50 to each cell,
as we did for (5.1). Note also that the application of both the point estimator
> s W;‘Os/ > W;" and interval estimator (5.12) requires an adequately large
sample taken from each stratum. To alleviate this concern, Mantel and Haenszel
(1959) propose the following summary OR estimator:

Z Xls(”Os - XOS)/n.S

Ovi = (5.13)

N
Z XOs(nls - Xls)/n.s
s

where n ; = nis + ngs. Asnoted by Hauck (1989) and Agresti (1990), the estima-
tor @MH has good asymptotic properties for both asymptotic cases: (a) the number
of strata is fixed, but the sample size within each stratum becomes large; and
(b) the stratum sizes are fixed, but the number of strata becomes large. Robins
etal. (1986) provide an estimated asymptotic variance of log(@MH):

Var(log(Oum))
Z(xls + nos — Xos) (Xis(nos — Xos)) /2

2
2 <Z Xls(n()s - X()s)/”.s)

Z[(Xls + nos — XOS)(XOS(nls - Xls)) + (XOS + nis — Xls)(Xls(n0s - XOS))]/nzs

2 (Z Xls(n()s - XOS)/".S) (Z X()s(nls - Xls)/n.s)

Z(Xos + n1s — X15) (Xos(ms — Xi15)) /1
4 (5.14)

2
2 (Z XOs(nls - Xls)/n.s)

Thus, we obtain an asymptotic 100(1 — «) percent confidence interval for O,
given by

[Owits exp(—Za 21/ Var(log(Owm))),  Owin exp(Zyy2y/ Var(log(Oym)))]. (5.15)

Gart (1970) extends Cornfield’s (1956) confidence interval to accommodate
a series of independent 2 x 2 tables. Given O = O., we have X;,(O,)(ngs —
Xos(O)) /(s — X15(0)) X05(Oc)] = O, where X;(O.) denotes the expected
frequency of subjects with exposure from group j (j = 1, 0) in stratum s (s =
1,...,S). Therefore, given O, # 1 and the marginal totals x ¢ (= X7, + Xq,) of

+
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subjects with exposure fixed, we obtain the expected frequency

Xls(oc)

_ Oc(nls + x.s) + (n()s - x.s) - \/[Oc(nls + x.s) + (n()s - x.s)]z - 4(Oc - l)ocnlsx.s
- 2(0,—1) ’

(5.16)

Note that when O, = 1, X;,(O,) simplifies to nysx.s/n.s, where ng = nyg + ngs.

Note also that the conditional distribution of the observed frequency X5, given

xs fixed, is approximately normally distributed with mean X;,(O,.) and asymp-
totic variance

Var(X1S|x.S7 Oc) = [I/Xls(oc) + 1/(x.s - Xls(Oc)) + 1/(”13 - Xls(oc))

+ 1/(n0s — X5+ Xls(Oc))]_1~ (517)

Thus, the statistic X;, =)  Xj;, asymptotically follows the normal dis-

tribution with mean X; (O =) X15(O.) and variance Var(Xj. |x., O,) =

> Var(Xislxs, O), wherex'. = (x.1, x.2, . . ., X.5). Wethus obtain an asymptotic
100(1 — &) percent confidence interval for the underlying common OR of

[O1, Ou, (5.18)

where the confidence limits O; and O, are determined by solving the following
two equations. The lower limit O is the smaller root of O satisfying

(X1. = X1.(0) — e1)* Var(X1.x,, O)"' = 72, =0, (5.19)

where the constant ¢; is set to 0.50 when using continuity correction, or to O
otherwise. The upper limit O, is the larger root of O satisfying

(X1, — X1.(0) + &2)* Var(X,Ix,, O)~ = 7, = 0, (5.20)

where the constant ¢, is set to 0.50 for the continuity correction, or to O
otherwise.

5.2.2 Exact confidence interval
Under the product of independent binomial sampling (5.11), we can easily see
that the joint conditional probability mass function X'; = (X31, X12, ..., Xi3),

given x, fixed, is simply

fa(enn, xa, - xasix, Oo) = [ [P = gl O, (5.21)
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where P(Xy, = x1lx., O) = (zls)(x s )O;f“/Zx (”;s)(v nos x) o
Als s s A T

and the summation is over the range max{x_; — ngs, 0} < x < min{ny, x5}. Note
that X is a conditional sufficient statistic for O, based on (5.21). Thus, we may
focus our attention on the probability mass function of X7,

fo (Llx, O = Y fx,(xin,xa, .. xaslx, O, (5.22)
x1€R(x1,)
where R(x1.) = {(x11, 12, ..., X19)|[x11 + X172 + - - - + x15 = x1,, and max{x g —

nps, 0} < x15 < min{nyg, x5}}. On the basis of distribution (5.22), we may obtain
the conditional MLE O,ynq by finding the root O of the equation

x1. = E(X1.|x., O), (5.23)

where E(X1.|x,, O) = Y E(Xi5lx.s, O) and E(Xy4|x 5, O) is the conditional expec-
tation of X, given x g fixed. Furthermore, following similar arguments to those
for deriving (5.10), we obtain an exact 100(1 — «) percent confidence interval
for the underlying common OR of

[07. 031, (5.24)

where the confidence limits O and O} are determined by solving the following
two equations:

Yo lxL 0N =w/2, Y fo (KX, OF) = a/2.

X=>x1. x<xi.

5.2.3 Test for homogeneity of the odds ratio

The estimators discussed in Sections 5.2.1 and 5.2.2 assume that the underlying
OR is constant across all strata. To examine this assumption, Hy : O; = O; =
... = Og, wemay apply the WLS test statistic (Fleiss, 1981) based on the variation

of log(Oy):
2
(T zm))

W*(log(0y))* — 3
Zsj *(log(Oy)) S

Under H,, test statistic (5.25) asymptotically follows the x? distribution with
S — 1 degrees of freedom. When Hj, is not true, we expect large values of the test
statistic. Thus, we will reject Hy at level « if the test statistic exceeds xg_; . where
X§-1.¢ is the upper 100 ath percentile of the x? distribution with § — 1 degrees
of freedom.

(5.25)
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Following Breslow and Day (1980), we may also consider use of the following
statistic for testing the homogeneity of the OR:

Y (X = X1(0))* Var(Xylx.s, ), (5.26)

whgre O can be either the conditional MLE @Cond calculated from equation (5.23)
or Opg (5.13). We will reject Hy if test statistic (5.26) exceeds ng—l,a' For the
situation where the stratum size is small, tests of the homogeneity of the OR for
sparse data are discussed elsewhere (Ejigou and McHugh, 1984; Liang and Self,
1985). We refer readers to these papers for details.

Example 5.3 Consider the data in Table 5.1, from Hosmer and Lemeshow
(1989). Mothers are cross-classified by their smoker status during pregnancy
(1 = Yes, O = No), the birthweight of their baby (= 1 for < 2500 g; = O for >
2500 g), and their race. Suppose that we are interested in estimating the OR of
low birthweight between smoking and non-smoking mothers, while controlling
the confounder of race. Applying (5.25) and (5.26) to test the homogeneity of the
OR, we obtain p-values of 0.22 and 0.21. Thus, it may be reasonable to assume
that the OR is constant across race. Using ), VAVj(A?S/ >, W* and Oun gives
3.603 aAnd 3.086, respectively. If we added 0.50 to each cell before calculaAting
>, W*Oy/ 3, W*, we would obtain an estimate of 3.342, which is closer to Oy
Furthermore, applying (5.12), (5.15), and (5.18), we obtain 95% confidence
intervals for O, of [1.372, 6.323], [1.491, 6.390], and [1.491, 6.244], respec-
tively. Because these lower limits are above 1, we conclude at the 5% level that
smoking during pregnancy tends to increase the risk of bearing a baby with low
birthweight.

5.3 INDEPENDENT CLUSTER SAMPLING

Suppose that we assign n; clusters of my;(j = 1, 2, ..., n) subjects to receive the
experimental (i = 1) treatment and ng clusters of mg;(j =1, 2, ..., ng) subjects
to receive the standard or placebo (i = 0) treatment, respectively. We define the

Table 5.1 Contingency table for low baby birthweight by smoking stratus of mother
during pregnancy stratified by race of mother.

Race White Black Other
Yes No Yes No Yes No
Smoke 1 0 1 0 1 0
Low birthweight Yes 1 19 4 6 5 5 20
No O 33 40 4 11 7 35

Source: Hosmer and Lemeshow (1989).
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random variable Xjx = 1 if the response of the kth subject (k =1, 2, ..., m;) in
cluster j for treatment i is positive, and Xjx = O otherwise. Then the random
variable X;;, = ), X, denoting the total number of positive responses in cluster
j for treatment i, follows a binomial distribution with parameters m; and py;,
where pj; denotes the probability of positive response. Note that the responses Xij
within clusters are likely correlated. To account for this intraclass correlation, we
assume that the p; independently follow the beta distribution beta(c;, ;) with
mean 7;(= «;/(«; + B;)) and variance m;(1 — ;) /(T; + 1), where ; > 0, 8; > O,
and T; = «; + B; (Johnson and Kotz, 1970; Lui, 1991). Thus, the probability that
a subject randomly selected subject for treatment i is positive equals E(Xjx) = 7,
and the intraclass correlation between Xj and Xy for k # k' within clusters is
oi = 1/(T; + 1) (Exercise 1.7). The OR of being positive between the experimental
and the control treatments is simply equal to 771 (1 — ) /[0 (1 — 71)].

Define 7; = Z]. > Xijke/my,, where m;, = Zj my;. Note that 7; is an unbiased
estimator of 7z; with variance Var(z;) equal to 7;(1 — 7;)f (my, p;)/m;. (Exercise
1.7), where m; = (m;;, my2, . .., my,,) and f(m;, p;) is the variance inflation factor
due to the 1ntraclass correlatlon pi and equals ) my[1 + (my; — 1) pi]/m..
estimate p; we may apply the traditional intraclass correlatlon estimator (2. 19)
in Chapter 2 (Fleiss, 1986; Lui et al., 1996; Elston, 1977).

_ First, note that a consistent estimator of the OR is simply given by
O =7m1(1 — 7)) /[70(1 — 71)]. Using the delta method together with the adjust-
ment procedure of addlng 0.50 for sparse data, we obtain the estimated asymp-
totic  variance Var(log((’)ad])) = f(my, p1)[1/(X7. +0.5) + 1/(m1 - Xi. +
0.5)] + f(mg, po)[1/(Xo.. + 0.5) + 1/(mo, — Xo.. + 0.5)], where O.q = (X1 +
0.5)(mo, — Xo.. +0.5)/[(m1, — X1 + 0.5)(Xo.. + 0.5)] and X;., = >, >} Xi for
i =1, 0. Thus, we obtain an asymptotic 100(1 — «) percent conﬁdence interval
for OR given by

[Ouds €XD(—Zr 21/ Var(10g(Oaay))), Ougj €xp(Zaj24/ Var(log(Oag))].  (5.27)

Note that interval estimator (5.1) is a special case of (5.27) when m;; = 1 for all
i(i=1,0)andj(j =1, 2,...,n).Thus, asfor (5.1), this estimator, though simple
to use, is not likely to perform well when the m;, are small.

Following Cornfield (1956), we can generalize interval estimator (5.5) to
accommodate the case of cluster sampling. Given O = Oy and X = x_ (where
X_ =x1.+xo.) we can calculate the expected frequency X; (Oy) from the
equation Xq. (Og)(mg, — x.. + X1..(O0)) /[(x.. — X1..(Op))(m1. — X;1.(Op)] = Op.
This is equivalent to saying that, given Oy # 1, we can obtain the expected
frequency X;..(Oy) by solving the following quadratic equation for X; :

(Op — DX; —[Oo(my, +x._) + (mg, — x )|X1. +Opmix. =0. (5.28)

Note that, given Op and x_, the solution X; (Op) must also satisfy the con-
straint max{0, x_ — mg.} < Xy < min{my_, x_}. Therefore, the solution X; (Og)
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is given by

X1..(Oo)

~ Oo(my, +x.) + (mo, = x.) = VIO (my, +x.) + (mo, = x)]> = 4(Og — 1)Opmy x..
h 2(00—1) '
(5.29)
When Oy = 1, the expected frequency X; (Ogp) is my x. /(my, + mg,). Further-
more, when O is the underlying value, we can show that the observed frequency
X;., given x_, approximately follows a normal distribution with mean X; (Og)
and asymptotic variance

Var(Xy_|x., O, p1, po) = {[1/X1.(Op) + 1/(m1, — X1..(Op)](1/f(my, p1))
+[1/(x.. —X1.(0p) + 1/(my, — x_,
+ X1.(Oo) (1 /f (mo, po))} . (5.30)

Thus, an asymptotic 100(1 — «) percent confidence interval for OR is given by
[O1, Oul, (5.31)

where O, and O, are determined by the following two equations. The lower limit
O, is the smaller root O of the equation

(X1 = X1.(0) — e1)* Var(Xy_|x_, O, pr, po) " = Za)y =0, (5.32)

where the constant ¢; is set to 0.50 when using continuity correction, or to O
otherwise. The upper limit O, is the larger root O of the equation

(X1 = X1.(0) +¢2)* Var(Xy_|x_, O, pu, po) " —Za )y = 0. (5.33)

where the constant ¢, is set to 0.50 for continuity correction, or to O otherwise.
Note that when my; = 1 for all i and j, (5.31) reduces to (5.5).

Example 5.4 Consider the data (Table 1.1) from a study of an educational
intervention with emphasis on behavior change (Mayer et al., 1997). There were
132 children divided into 58 classes, and for each class it is known how many
children had an inadequate level of solar protection. Given these data, we obtain
the point estimate O =0.452 of having an inadequate level of solar protection
when comparing the educational intervention group (i = 1) with the control
group (i = 0).In Example 2.5 we estimated the common intraclass correlation for
the two comparison groups to be g, = 0.30. Applying interval estimators (5.27),
(5.31) with continuity correction, and (5.31) without continuity correction, we
obtain 95% confidence intervals of [0.193, 1.084], [0.179, 1.138], and [0.190,
1.072], respectively. Because all the interval estimators cover 1, there is no
significant evidence at the 5% level that the intervention program increases
the proportion of children who employ an adequate level of solar protection.



102 Odds ratio

Furthermore, we observe that the interval estimate using Cornfield’s interval
(5.31) with continuity correction is wider than the other two estimates.

Note that, following Gart (1970), we can easily extend interval estimator (5.31)
to accommodate the situation in which there is a series of 2 x 2 tables as discussed
in Section 5.2 under cluster sampling. Note also that other relevant discussions
on the use of the Mantel—Haenszel estimator of the OR under cluster sampling
appear elsewhere (Donald and Donner, 1990).

5.4 ONE-TO-ONE MATCHED SAMPLING

To increase the efficiency or validity of our inference in cohort or case—control
studies, we often employ matching design. Suppose that from the exposed pop-
ulation we take a random sample of n subjects, to each of whom we match a
subject from the non-exposed population with respect to some matching variables.
Following Ejigou and McHugh (1977), we assume that the combination of all
matching variables consists of L distinct levels V1, V5, ..., V5. Let D denote the
random variable of disease status: D = 1 for a case, and D = O otherwise. Simi-
larly, let E denote the random variable of exposure status: E = 1 denotes being
exposed, and E = O otherwise. We assume that the distribution of the match-
ing covariate level V; in the exposed population is given by p; = P(Vj|E = 1),
where p; > 0 and ), py = 1. We assume further that, given the exposure sta-
tus E and the matching level V), the conditional probability of being a case is
P(D = 1|E, V}) = e®*PE /(1 4 e¥TPE), where the parameter 8 represents the effect
of exposure on the disease. For simplicity, we assume that the conditional proba-
bilities P(D|E = 1, V;) and P(D|E = 0, V}), given V; fixed, are independent. Note
that we assume the logistic regression to model these conditional probabilities
here, which we will discuss in more detail in the next section.

Let (D = d|E = ¢) denote the event that a subject has disease status d (1 for a
case, or O for a non-case), given that a subject is exposed (¢ = 1) or non-exposed
(e = 0).Furthermore, let r;; denote the probabilities P((D = i|[E = 1) & (D = j|E =
0)), whereiandj =0, 1. Then, we have r;; = ) ,P(D=1iE=1, V))P(D=j|E =
0, V)p;. Furthermore, note that, conditional upon each matched pair, the OR
between the disease and the exposure is

PO=1E=1,V)PDO=0E=0,V) 4
POD=0E=1,V)PD=1E=0,V)
which is a constant. In fact, we can actually show that OR equals O = 71y/7m0;

(Exercise 5.14). For clarity, we use the following 2 x 2 table to summarize the
data structure:

Non-exposed
D=1 D=0
11 10 .
01 TT00 To.

I
o

Exposed

whw)

Tl .0
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where 7 denotes the cell probability foriand j = 0, 1. Readers should not confuse
with the cell probabilities 7; defined here with those defined in the introduction
to this chapter, which have a completely different meaning. Let Nj; denote the
corresponding number of matched pairs among n matched pairs falling in the
cell (i, j) with the cell probability 7;. Then (Ni1, N1g, No1. Noo)' follows the
multinomial distribution (2.25) with parameters n and (11, 719, 701, 7o) - .

Note that the MLE of 7j; is 7;; = Nj;/n and hence the MLE of the OR is O =
A10/701, With asymptotic variance (10/mo1)2[1/(nm10) + 1/(nmo1)] (Exercise
5.15). Because O is a ratio of the two sample proportions, we do not recommend
deriving the confidence interval for O directly based on O unless n is large.
To improve the normal approximation of O, we may apply the logarithmic
transformation. We obtain an asymptotic 100(1 — «) percent confidence interval
for O given by

[(R10/701) eXP(—Za/2y/[1/(nf10) + 1/(nf01)),
(Fr10/%01) exp(Za/2y/[1/(nft10) + 1/ (o). (5.34)

DefineZ = 19 — Ong1. We can easily see that this hasexpectation E(Z) = 0 and
variance Var(Z) = [m1o(1 — m10) + O*mo1(1 — mo1) + 20m19701]/n. Therefore,
an asymptotic 100(1 — «) percent confidence interval for O is (Exercise 5.16)

[(BF — /Bt — A*CH) /A%,
(B¥ + v/ Bf — A¥CH) /AT, (5.35)

where Ai = 7,'\[31 — 5/27:[01(1 — 7%()1)/1’1, Bi = 7%107%01 + Zi/zﬁ'loﬁ'ol/n, and Ci =

Al — Zé/zﬁl()(l — f10)/n.

Note that the conditional distribution of Ny, given a fixed total number of pairs
with discordant outcomes (or disease status) Nig + Ng1 = ny, is the binomial
distribution with parameters ng and /(710 + 701)(= O/(1 + O)) (Exercise
5.17). Therefore, we can apply interval estimators (1.3), (1.5), and (1.6) to
obtain a 100(1 — «) percent confidence interval for O/(1 4+ O) first and then
use the monotonic transformation X/(1 — X) to produce a 100(1 — «) percent
confidence interval for O. For example, when the number of pairs with discordant
disease status n, is small, we can use (1.6) to obtain an exact 100(1 — «) percent
confidence interval for O given by

[L/(1—L),U/1 -1, (5.36)

where L = N19/(N10 + (No1 + 1) Favg,+1),2M0.0/2) @and U = ((N10 + 1D Favy+1)
ZN(H’(X/Z)/(NOI + (Nqo + 1)F2(N10+1),2N01,a/2)- Note that when N;o = 0, we define
the lower limit of (5.36) to be 0. Similarly, when Np; = 0, we define the upper
limit of (5.36) to be co.

Example 5.5 Consider comparing two treatments for breast cancer: simple mas-
tectomy and radical mastectomy. As reported elsewhere (Rosner, 1990, p. 384),
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20 matched pairs of women, who were in the same decade of age and had the
same clinical condition, were formed. For each pair, one patient was assigned to
simple mastectomy and the other to radical mastectomy. Their 5-year survival
was then monitored. There were (n1; =)10 pairs in which both women lived at
least 5 years after receiving either form of surgery; (n;o =)8 pairs in which the
woman receiving simple mastectomy lived at least 5 years but the woman receiv-
ing radical mastectomy died; (np; =)1 pair in which the woman receiving simple
mastectomy died but the woman receiving radical mastectomy survived at least
5 years; and (nop =) 1 pair in which both women died within 5 years. Using these
data, the MLE O of the OR of 5-year survival between women receiving simple
mastectomy and radical mastectomy is 8. Because the number of discordant pairs
in this example is so small (1,9 + ng; = 9), we use interval estimator (5.36) and
obtain a 95% confidence interval for O of [1.073, 354.981]. Since the lower limit
excludes 1, we conclude that there is a significant evidence at the 5% level that
patients receiving simple mastectomy tend to have a higher 5-year survival than
patients receiving radical mastectomy. However, the confidence interval obtained
is so wide that the data cannot be considered to provide us with a precise estimate
of OR between 5-year survival and the treatments.

5.5 LOGISTIC MODELING

When the parameter of interest is the OR, logistic regression is probably the most
common multivariate approach to modeling the binary response in epidemiology.
This is because we can easily employ logistic regression to control confounders
and effect modifiers simultaneously, and each parameter in the model has an
easily understood practical interpretation. Let D denote the response random
variable: 1 for a case, and O otherwise. Let Z = (Z1, Z>, ..., Zx)' be a vector of
K explanatory random variables, including the variable of primary interest, the
confounding variables, such as gender, race, and socioeconomic class, and the
interaction terms between these variables. Based on the logistic regression model,
the conditional probability of being a case, given Z = z, is given by

P(D = 1|z) = exp(Bo + B'2)/(1 + exp(Bo + B'2)), (5.37)

where By denotes the intercept term, and B8 = (81, B2, ..., Bx)’ denotes the
coefficients corresponding to the vector Z. On the basis of (5.37), the OR of being
a case for a subject with Z = z, versus a subject with Z = z, is then equal to

OR = P(D = 1|2,)P(D = O|z)/[P(D = 0|2.)P(D = 1|z)] = exp(B'(za — 2))-
(5.38).
In particular, let Z; denote the dichotomous exposure variable, with value 1 for
being exposed, and O otherwise. For simplicity, consider first the situation where
there is no interaction between Z; and all the other covariates. The OR of being a
case between exposure (i.e., Z; = 1) and non-exposure (i.e., Z; = 0), given all the
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other variables fixed, becomes
OR = exp(B7). (5.39)

In other words, the coefficient 8, denotes the log-odds ratio of being a case between
exposure and non-exposure after adjusting all the other covariates. From (5.39),
we can easily see that OR = 1 if and only if 81 = 0. Similarly, if the covariate Z,
were on a continuous scale, as when representing the dosage level of a treatment,
then the OR of being a case for Z; = z;, versus Z; = z1p, adjusting all the other
covariates, would equal

OR = exp(B1(z1a — z1p))- (5.40)

The coefficient 87 in (5.40) represents the log-odds ratio of being a case per unit
increase in Z;. If there were an interaction between Z; and other covariates,
the OR of being a case for Z; = z;, versus Z; = z;, would depend on the levels
of covariates interacting with Z; as well. To illustrate this point, suppose that Z
contains only a single covariate, say Z,, that interacts with Z; . Let Z; represent this
interaction term Z;Z,. Then, the OR of being a case for Z; = z;, versus Z; = z1p,
holding all the other covariates fixed, is then equal to

OR = exp(B1(z1a — z1b) + Brz2(21a — 210)), (5.41)

which depends on the level of Z, (unless 8y = 0). Note that when z;, = 1 and
z1p = O for dichotomous exposure, the OR in (5.41) simplifies to

OR = exp(B1 + Biz2). (5.42)

We can see that the above the OR in (5.42) is an increasing function of z, when
Br > 0 and a decreasing function of Z, when 8; < O.

5.5.1 Estimation under multinomial or independent
binomial sampling

Suppose that we follow a group of n disease-free subjects for a period of time and
obtain the data (D;, z;),i =1, 2, ..., n, where D; = 1 if the ith subject is a case,
and D; = 0 otherwise, and z; = (zjp, zi1, . . ., zig)" denotes the vector of covariate
values on the ith subject. Based on the logistic regression model (5.37), the
likelihood is

1—[ ( exp(Bo + B'z;) )Di ( 1 >I_Di (5.43)
1 +exp(Bo + B'z) 1+ exp(Bo + B'z:) ’ '

i

The MLEs ,30, ,31, 32, eee, ,éK and their estimated asymptotic covariance matrix
can be obtained by solving a system of equations and using the inverse of
the (K+ 1) x (K + 1) observed information matrix I,(8y, 8) (Exercise 5.18).
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In practice, however, we can apply PROC LOGISTIC of SAS (1990) to obtain
these estimates easily. For example, in the situation where the response variable
7, is dichotomous and does not interact with other covariates, an asymptotic
100(1 — «) percent confidence interval for the OR (5.39) based on Wald’s statistic
is given by

[exp(B1 — Zujay/ Var(B1)), exp(B1 + Zu24/ Var(f1))], (5.44)

where \75‘(,31) is the (2,2)th element of IO(B(), /§)_1 and is available from the
output of PROC LOGISTIC. Similarly, if Z; is on a continuous scale, an asymptotic
100(1 — @) percent for the OR (5.40) is given by

[eXD(B1 21 — 216) — Zaoy Gra — 210)2Var (A1),

exp(B1(z1a — 21p) + Za/Z\/(Zla — 211)2Var(h1))]. (5.45)

When there is an interaction between Z; and other covariates, we need to account
for the levels of other covariates when calculating the confidence interval of OR.
For example, suppose that we are interested in obtaining a conﬁdence interval for
OR = exp(By + prz2) (5.42). Because the asymptotic variance Var(,Bl + ,Bkzz) =
Var(B1) + Var(Bu)z3 + 22,Cov(By. Bi). where Var(f;), Var(fy). and COV(ﬂl, ,31<)
are the (2,2)th, (k+ 1, k+ 1)th, and (2, k + 1)th elements of I(,(,BO, ﬂ) L a
asymptotic 100(1 — «) percent for the OR (5.42) is given by

lexp(B1 + iz — Zaj2y/ Var(Bi + iz2)),
exp(B1 + Prza + Za/2y/ Var(By + Arz))]- (5.46)

Recall that one of the advantages of using the OR to measure the extent
of association between disease and exposure is that the OR is estimable from
a retrospective case—control study. The above likelihood (5.43), assuming the
logistic regression model, is for a cohort or a cross-sectional study. However,
Farewell (1979) and Prentice and Pyke (1979) show that the vector 8 would
be estimable if the sampling scheme used to collect cases and controls were
independent of Z. For clarity, we briefly outline the arguments in exercises and
present the main result in the following.

Suppose that we independently sample n; subjects from the case (j=1)
population and ng from the control (j = 0) population, respectively. We define
the indicator random variable 7 as 1 for a sampled subject, and as O otherwise.
Then the likelihood is given by

no
HP(z1 Di=1.Z=1)]]P@D=0.7; = 1. (5.47)
i=1 i=1
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Under the logistic regression model (5.37), we can show that if the sampling
scheme used to sample the cases and controls is independent of the random
vector Z;, then the likelihood (5.47) will actually be equivalent to (Hosmer and
Lemeshow, 1989; Exercise 5.19)

n exp(ﬂé"f‘ﬂ/zi) Di( 1 )11)1‘ n ‘ .
1_[ <1 + eXp(,B(f + ﬁ/zi)> 1 + eXp(ﬁé + ﬂ/zi) EI((Z], Dl)v (548)

i=1

where n = ni + ng, 5 = Bo + log(r1/7), 7j = P(Z; = 1|D; = j), which is the
sampling fraction for the case (j=1) or the control (j = 0) population,
and K(Z;, D;) = P(Z;)/P(D;|Z; = 1). When we assume that P(Z;) contains no
information on the coefficients in 8, the MLEs of B and B on the basis of the
likelihood (5.48) are algebraically equivalent to the MLEs based on the first part of
this likelihood (Anderson, 1972; Farewell, 1979; Hosmer and Lemeshow, 1989).
In other words, we can obtain the MLEs of 8 using the data obtained from a
case—control study by proceeding exactly the same way as for data obtained from
a cohort study. Nevertheless, inferences on the intercept parameter 8, are not
feasible unless we can estimate the sampling fractions ;.

Example 5.6 Consider the data (Table 5.1) given in Hosmer and Lemeshow
(1989, p. 72). We cross-classified mothers by smoker status during preg-
nancy (1 = Yes, 0 = No), low birthweight (1 for less than 2500g; =0 for
more than 2500¢g), and race (of the mother). Since there are three levels
(white, black, and other) for the race variable, we create two design vari-
ables R1 and R2: R1 = 0,R2 = 0, for white; R1 = 1, R2 = 0O for Black; and
R1 =0,R2 =1 for Other. First, we test if there is an interaction between
the variables Smoke and Race by using the asymptotic likelihood ratio test:
—2log(L; — L,), where L; is the maximum likelihood under model 1, P(D =
11Z) = 1/(1 + exp(—(Bo + B1Smoke + B,R1 + B3R2)), and L, is the maximum
likelihood under model II, P(D = 1|Z) = 1/(1 + exp(—(By + B1Smoke + B>R1 +
B3R2 + B4R1Smoke + BsR2Smoke)). We employ PROCLOGISTIC in SAS (1990)
and obtain —2log(L; — Ly) = 3.157. This gives a p-value of 0.21 based on the
x? distribution with two degrees of freedom. Therefore, it is reasonable to make
inferences based on model I. We obtain an MLE $; = 1.116 and an estimated
standard error §l\)(,§1) = 0.369. Thus, the MLE of the OR is 3.05(= exp(1.116))
with a 95% confidence interval (5.44) given by [1.481, 6.292]. These results
are essentially similar to those obtained previously when we did not assume any
model for analyzing the data (see Example 5.3).

5.5.2 Estimation in the case of paired-sample data

In Section 5.4, we focus discussion on the situation where matching covariates
are the only confounders. In many situations, we may have other confounders
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or even effect modifiers in addition to those matching covariates. Thus, we
generalize the discussion of Section 5.4 to the case where there are confounders
besides matching variables. Define the vector Z = (Z;, Z;,)’, where Zy and Zy
are respectively vectors of matching variables and the remaining variables in Z.
Suppose that we form n matched pairs. Among these, suppose further that we
obtain ny pairs with discordant disease status, in which Z,; = (Z};. Z},,,)" and
Zoi = (Zig;. Zoyy)' =1, 2, ..., ng) denote the vector of explanatory variables for
the case and the non-case, respectively. Conditional upon each matched pair i
with discordant disease status, the probability of the observed data is given by

exp(Brzir)
exp(Biziri) + exp(Brzori)

Li(Br) = (5.49)
where Bg denotes the subvector of 8 corresponding to Zg. Note that this conditional
probability (5.49) does not depend on the nuisance parameters 8y and By. On
the basis of (5.49), the conditional likelihood based on n; matched pairs with
discordant disease status is

g

exp(Bziri)
L(Br) = : 5.50
(ﬂR) 111 exp(ﬂf/{lel’) + eXp(ﬂI,{ZORi) ( )

Note that we can rewrite L(Bg) (5.50) as

_ 1—[ exp(By (Ziri — Zori)) (5.51)

1 + exp(Bf (Z1ri — Zori))

which is identical to the unconditional likelihood based on the logistic regression
model with no intercept term for the data {(D;, z)|D; =1 for alli,i=1,...,ny
and z{ = zg; — 2or;}. Thus, we can apply PROCLOGISTICin SAS (1990) to obtain
the MLE of Br and the estimated covariance matrix as before. The confidence
interval for the OR can also be similarly derived as in Section 5.5.1. When using
logistic regression model to analyze paired-sample data for a case—control study,
we may apply Bayes’ theorem to show that the conditional likelihood (5.51) is
still applicable (Exercise 5.21).

5.6 INDEPENDENT INVERSE SAMPLING

Consider a case—control study in which we employ independent inverse sam-
pling (Haldane, 1945a, 1945b; Singh and Aggarwal, 1991) to collect cases
and controls. Suppose that we continue independently sampling subjects from
the case (j =1) and the control (j = 0) populations until we obtain a pre-
determined number x; of subjects with exposure, respectively. Let 7y); denote
the probability of exposure in population j and Y; denote the corresponding
number of subjects without exposure before obtaining the first x; subjects with
exposure. The OR of exposure between the cases and the controls is then
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O =m1(1 —my0)/[110(1 — 71)1)]. Given these assumptions, the number Y; of
subjects without exposure collected before accumulating the first x; subjects with
exposure then follows the negative binomial distribution (1.13) with parameters
xj and mry); its mean is x;(1 — my;) /7y and its variance x;(1 — 711”)/7112“..

Define ?j = Y;/x;. When the number of subjects with exposure x; is large,
the random variable 7,- asymptotically has the normal distribution with mean
(1 — my);)/m); and variance (1 — n1|,-)/(x,-n12|].). Therefore, using the delta method
(Bishop etal., 1975; Agresti, 1990), we can show that the random variable
log(?,-) asymptotically has the normal distribution with mean log((1 — 1)) /71))
and variance 1/(x;(1 — my);)) (Exercise 5.22). These results suggest that an
asymptotic 100(1 — «) percent confidence interval for O is given by

[(Vo/Y1) exp(—Zay2,[1/Ger (1 = 77) + 1/ Gro(1 = o)),

(Vo/ V1) exp(Zya 1/ Ger (1 = #1)) + 1/(xo(1 = ), (5.52)

where 77, can be either the MLE 71);(= x;/(x; + Y))) or the UMVUE ﬁf‘G)(:
(5 = 1)/ + Yj = 1).

Define Z = Yy — OY;. If the numbers of subjects x; with exposure in both
samples were large, the random variable Z would approximately follow a normal
distribution with mean 0 and variance Var(Z) = Var(Y,) + ©*Var(Y;), where
Var(Yj) = (1 — m1)/(xf;). This suggests that the probability P(Z /Var(Z) <
Zi ) = 1 — «, as the predetermined number of subjects with exposure x; in

both samples is large. Note that the inequality 7 /Var(Z) < Zﬁ /2 s equivalent to
(Exercise 5.23)

AO? —2BO+C <0, (5.53)

where A=Y, — 22,1 — 7,/ G2 B=Y1 Y2, and C = ¥y — 22,,(1 —
110)/[x0(710)*], and where 7}, can be either the MLE or the UMVUE of ;.
Therefore, if A > 0 and B> — AC > 0, then an asymptotic 100(1 — «) percent
confidence interval for O is given by

[(B-vB*—AC)/A, (B+VB2—AC)/Al (5.54)

When both the probabilities of exposure m;); are close to O, note that the
oddsratio O = w1 (1 — m1)0)/(110(1 — 7w1)1)) = 711 /710, Similar in form to the
RR. Therefore, we may also apply the interval estimator originally developed
for the RR under inverse sampling (Bennett, 1981; Lui, 1995). As shown in
Exercise 1.20, the random variable 2(x; + Y;)71; approximately has a x?
distribution with 2x; degrees of freedom when 7y ; is small. Therefore, the random
variable {[2(x1 + Y1)m11]/(2x1)}/{[2(x0 + Yo)m110]/(2%0)} has an approximate
F distribution with degrees of freedom given by 2x; and 2xg, respectively. These
results suggest that when both ;| are small, an approximate 100(1 — o) percent
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confidence interval for OR (= 1)1 /m1)0) should be

14+, 1+7Y,
|:1 T, Fax 2x0,1-0/25 TYIan,zx[,.a/z} , (5.55)

where Fj, j, o is the upper 100ath percentile of the central F distribution with
degrees of freedom equal to f1 and f5, respectively. Note that the validity of (5.55)
depends on the assumption that both the probabilities my); are small, while the
validity of (5.52) and (5.54) depends on the assumption that both the x; are large.

Lui (1996a) compares the performance of the three interval estimators (5.52),
(5.54), and (5.55) and notes that (5.52) is generally preferable to the other two.
This is because (5.54) is conservative if the number of subjects with exposure
in both comparison groups is small (x; < 20), while (5.55) may have coverage
probability substantially less than the nominal level of 95% if the underlying 1),
is moderate or large and O is much different from 1.

Example 5.7 In a case—control study, suppose that we decide to continue
independently sampling subjects until we obtain exactly x; = 20 subjects with
exposure from the case (j = 1) and the control (j = 0) populations, respectively.
Suppose further that we obtain y; = 80 and yo = 180. Applying (5.52), (5.54),
and (5.55) with substitution of the UMVUE (x; — 1)/(x; +y; — 1) for 77, we
obtain 95% confidence intervals for O of [1.150, 4.401], [1.036, 5.073], and
[1.067, 3.750]. Since neither x; in this example is large, the interval estimate
obtained from (5.54) is longer than the other two. Furthermore, because neither
the MLE x;/(x; + y;) nor the UMVUE (x; — 1)/(x; + y; — 1) is small, inference
based on (5.55) can be misleading, even though the interval obtained from it is
the shortest.

5.7 NEGATIVE MULTINOMIAL SAMPLING FOR
PAIRED-SAMPLE DATA

When the underlying risk factor is strongly associated with the disease of interest
(e.g., oral contraceptives and thrombosis) and the sample size n is not large, there
is a non-negligible probability under matched-pair sampling that there will be
no matched pairs with case unexposed and control exposed and that the MLE O
is infinite (discussed in Section 5.4). In fact, the MLE O under the multinomial
distribution (2.25) has infinitely large bias and no exact finite variance. To reduce
the bias of this estimator, Jewell (1984) develops an estimator and compares its
small-sample performance with that of several other estimators. None of these
estimators is, however, unbiased under one-to-one matched sampling.

When the underlying disease is rare, the cases are likely to arrive sequentially.
Therefore, in this situation it is quite natural to employ inverse sampling (George
and Elston, 1993; Haldane, 1945a, 1945b), in which we continue to sample
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cases to form matched pairs until we obtain a predetermined (positive) number of
index pairs with certain attributes. Furthermore, when regarding the pair with
case unexposed and control exposed as the index pair under inverse sampling,
one can avoid the above theoretical concern of obtaining infinite MLE O.

Suppose that we continue sampling cases to form matched pairs until we obtain
the predetermined number ny; (> 1) of pairs in which the case is not exposed, and
the control is exposed. For clarity, we use the following table to summarize the
resulting data:

Control
Exposed Non-exposed
Case Exposed Ni1 Nio
Non-exposed no1 Noo

where ng; is a positive integer and is determined in advance, and random
variables N;1, N1g, and Nyg denote the number of matched pairs falling in the
corresponding categories before obtaining exactly ngp; matched pairs as defined
above. The joint distribution of N11, N1g, and Nyg is then given by

(n11 + nyp + no1 + npo — 1)!

ni1!niol(ngr — 1)!ngo!

INu N0, Ngo (M1, 10, Noo) =

no1 . Mmi1 Mo _. Moo
X o T 0 Tog s (5.56)
where O <7y <1,) ;> ,my =1, i and i =0, 1, and where ni1, njo, and
noo = 0, 1, 2, .. .. This is a negative multinomial distribution with parameters

No1, 11, 10, and moo (Ratnaparkhi, 1985). Under (5.56), the MLE of the OR is
simply 0= Nyo/no1, which is of the same form as that for traditional one-to-one
matched sampling discussed in Section 5.4. Note also that we can easily show
that the marginal distribution of N1q follows the negative binomial distribution
with parameters ng; and P = 71 /(10 + 7o1) = 1/(1 + O) (Exercise 5.25):

1
%mﬂ 1—P)",  np=0.1.2..... (5.57)

The expectation of Njg is simply E(Nyg) = np1(1 — P)/P =np O, and the
variance Var(N1o) = ng; (1 — P)/P? = np1 O(O + 1). Thus, on the basis of distri-
bution (5.57), the estimator N1g/np; has expectation E(Nyo/ng;) = O and vari-
ance Var(Nio/ng1) = O(O + 1)/ng;. Furthermore, because distribution (5.56)
belongs to the exponential family (Lehmann, 1983, p. 46), the random vector
(N11, N1o, Noo) is a complete sufficient statistic. Following the Rao—Blackwell and
Lehmann—Scheffé theorems (Graybill, 1976), we can conclude that N,y /no; is,
in fact, the UMVUE of the OR.

Note that the probability for the cumulative distribution P(Nyo < niglnoei, P),
where Nj( follows the negative binomial distribution (5.57) with parameters
ng1 and P, equals the probability P(X > ng|n, P), where X follows the binomial
distribution with parameters n = nyg + ng; and P (Exercise 1.14). Therefore,

Iy (M10) =
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for a given observed value n;g, an exact 100(1 — «) percent confidence inter-
val for P (Exercise 1.15) is given by [L(n19, no1, «/2), U(nyo, no1, «/2)], where
Lo, not, a/2) = no1/[no1 + (110 + D) F2m941).2n01,0/2 U010, N1, €/ 2) = npq
Fongi,2m0,0/2/ 101 Fang, 2n19,0/2 + M10]. Note that if n1o were 0, we would define
the upper limit 4(0, ng;, «/2) = 1 by convention. Furthermore, because O =
(1 — P)/P and the transformation f(x) = (1 — x)/x is a strictly decreasing func-
tion, an exact 100(1 — «) percent confidence interval for OR is then given by

[(1 — U(n10, no1, a/2)) /U0, No1, ¢/ 2),
(1 — L(n10, no1, @/2))/L(mo, no1, o/ 2)]. (5.58)

Applying interval estimator (5.58) can ensure that the coverage probability is
alwayslarger than or equal to the desired confidence level. Note that other relevant
discussions, such as an exact test procedure for testing if the underlying OR equals
any specified value, an asymptotic test similar to McNemar’s test (Exercise 5.27),
as well as sample size calculation under (5.56), appear elsewhere (Lui, 1996D).

Example 5.8 Consider the data (Schlesselman, 1982, p. 209) for a case—control
study of oral conjugated estrogens and endometrial cancer, in which cases
and controls are matched on age, race, hospital, and date of admission. For
illustration purposes only, we assume that these data are collected by means of
inverse sampling, and that there are ng; = 7 index pairs in which the case is
unexposed but the control is exposed; the numbers of matched pairs falling in
the other categories are n;; = 12, n1g = 43, and ngg = 121. Given these data,
the UMVUE of the underlying OR between use of oral conjugated estrogens and
qndpmetrial cancer is O = 6.14(= nyg/np1) with estimated variance 6.27(=
OO + 1)/ng1). The exact 95% confidence interval for the OR is [3.04, 16.18].
Because the resulting confidence interval excludes 1, we may conclude that
there is a significant association at the 5% level between taking oral conjugated
estrogens and developing endometrial cancer.

EXERCISES

5.1. Show that the odds ratio OR is invariant when we multiply a row and/or a
column by a positive constant.

5.2. Let E and D denote the random variables for the status of exposure and
disease, respectively. Define E = 1 for exposure, and E = O otherwise. Similarly,
define D = 1 for a case, and D = O otherwise. Show that when the underlying
disease is rare, OR (= 711700/ (710701)) approximately equals relative risk (RR =
(m11/m1.)/ (wo1/70.)), where y = P(E =i, D = j),iand j = 1, 0.

5.3. Show that under 1ndependent b1nom1al samphng in Section 5.1, the esti-
mated asymptotic variance of log((’)) is Var(log((’))) =1/X1+1/Xo+1/(m —
X1) + 1/(ng — Xo), where O = X; (o — Xo)/[(m — X1)Xol.
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5.4. When n is large, we may expect that X;(ng — Xo)/[Xo(n; — X7)] = O.
Therefore, given O = Oy and x.,, show that we can calculate the expected
frequency of X; from the quadratic equation given by (5.2).

5.5. Show that, in Section 5.1.1:

(@) [Oo(m +x.) + (ng — x)]* — 4(Op — 1)Ognyx, > 0;

(b) when Oy > 1, X5(Op) > min{x_, n;} and when Oy < 1, X5(Op) < max{0, x.
—ng}, where

X>(0vp)

~ Op(my +x) + (g — x) + V[Oo(m +x.) + (ng — x)]* — 4(Op — 1)Opm x|
B 2(0p — 1) ’

(c) max{0, x., — np} < X1(Op) < min{x_, n;}, where X; (0Oy) is given in (5.3).

5.6. In Section 5.1.1, show that the asymptotic variance of X; can
be approximated by Var(Xj|X;+Xo=x,0=0p) =[1/X1(Op) + 1/(x, —
X1(0p)) 4+ 1/(nm1 — X1(Op)) + 1/(ng — x, + X1(Op))] !, as given in (5.4).

5.7. Show that under multinomial sampling with parameters n and
(11, 710, 701, mop) in cross-sectional studies, the estimated asymptotic variance
Var(log(0)) is given by 1/Ni1 + 1/Nip + 1/No1 + 1/Ngo, where Nj; denotes
the observed number of subjects falling into the cell with probability m;;, and
O = N11Noo/(N1oNo1).

5.8. When the wunderlying OR equals 1, we may claim that
(log(0))?/Var(log(0)) = x2, where x?2 is the chi-squared test value without
the use of continuity correction (Miettinen, 1976). Therefore, Var(log(@)) =
(log(@))2 /x?2. On the basis of this result, show that an approximate 100(1 — «)
percent confidence interval for OR is given by [O0—Z2/X) | O(+Z2/0],

5.9. In Section 5.1.2, show that the conditional probability mass function
of Xj =ux1, given X; +Xo=x,, is given by P(X; =x1|X; +Xo=«x.,0) =
(nl) ( o ) o/ <n1> < o ) O*, where X; follows the binomial
X1 X, — X1 A\ X, — X
distribution with parameters nj and 1, and O = 711 (1 — 71)0) /[(1 — 71)1)7T10]-
Therefore, when O = 1 under the assumption of no association between the
disease and the risk factor, this probability mass function simplifies to the hyper-
geometric distribution. Note that ) " (m ") = <n1 o)),
Y\ x X, — X X,

5.10. In Section 5.1.2, show that the conditional MLE of O on the basis of
(5.8), when the observed value X; = xq, is the solution O of the equation
x1 = EXq|x,, 0).

5.11. Show that the cumulative probability distribution P(X; < xq|x., O) =
szm P(X; = x| X1 + Xo = x., O), where P(X; = x|X; + Xp = x_, O) is given by
(5.8), is a decreasing function of O.
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5.12. Consider the hypothetical data given by Fleiss (1979). There are 20 out of
50 cases with exposure, while there are only 10 out of 50 controls with exposure.
What is the conditional MLE O.nq of the OR? What is the exact 95% confidence
interval (5.10) for the OR?

5.13. Consider the all-cause mortality data in Table 2.1.

(a) What are the p-values when we apply statistics (5.25) and (5.26) to test the
homogeneity of the OR for the first five trials (S=1, 2, ..., 5)?

(b) What are the summary point estimates of O using ) W;f@s/ > W: and
@MH for these five trials?

(c) What are the 95% confidence intervals for the OR using (5.12), (5.15), and
(5.18) for the first five trials?

(d) What is the p-value for the test of the homogeneity of the OR across all six trials?

5.14. In Section 5.4, show that under the logistic model assumptions the ratio of
the cell probabilities 1 /o1 = e?, which is equal to the OR,
_P(O=1E=1,V)P(D=0[E =0, V)
T PMOD=0E=1,V)PMD=1E=0,V)’

5.15. In Section 5.4, show that the asymptotic variance of 71¢/7o; is given by
(m10/m01)2[1/(n10) + 1/ (n7o1)].

5.16. In Section 5.4, show that when the number of matched pairs n is
large, an asymptotic 100(1 — «) percent confidence interval for the OR is
given by [(B¥ — vB¥ — AiC*)/A* (B + V/Bf — AiCH) /AT, Where AY =72 —
Za/zﬂ()l(l — Ro1)/n, B¥ = Ryo7to1 + Z2 2/2710701/n, and Ct=n}, — 72 ;a7t0(1 —
710)/n.

5.17. In Section 5.4, show that the conditional probability mass function of
nio, given nig + ng; = ny, is the binomial distribution with parameters n; and
710/ (710 + 7o) (= O/(1 + O)).

5.18. Under the likelihood (5.43), show that: (a) the MLEs ,30, ,31, ,32, el BK
can be obtained by solving the equations ), zy(D; — P(D; = 1|2;)) = O for k=
0,1,2,...,K (we define zip = 1 for all i); (b) the observed information matrix
I, (,30, ﬁ) isthe (K + 1) x (K + 1) matrix with the diagonal element (k + 1, k + 1)
equal to Zl zlkP(D = 1|z,)(1 P(D; = 1|z;)) and off-diagonal element (k, I) equal
to) zikzllP(D =1lz;)(1 — P(D,- = llzi)),wherels(Di = 1|z;) denotesP(D; = 1|z;)
(5.37) in which parameters S, and # are replaced by their corresponding MLEs,
respectively. By large-sample theory, the estimated covariance matrix of (ﬁo, ﬁ "y
can be given by the inverse of the above observed information matrix.

5.19. Assume that P(D = 1|Z = z) = exp(By + B'2)/(1 + exp(Bp + B’z)) and
that the sampling scheme used to collect the cases and controls is
independent of the random vector Z. Show that the likelihood (5.47) is
proportional to (5.48). (Hint: First, show that the conditional probability
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P(ZID,7=1) of Z, given D and Z=1, is equal to P(D|Z,Z= 1)P(Z|Z =
1)/P(D|Z = 1). Secondly, show that the conditional probability P(D = 1|Z,7Z =
1) is equal to P(Z=1|Z,D=1)P(D =1|2)/[P(Z=1|Z,D=1)P(D=1|Z) +
P(Z =1|Z, D = 0)P(D = 0|Z)]. Note that, by assumption, P(Z = 1|Z,D = j) =
P(Z = 1|D =j) = ;. Then show that P(D = 1|Z, 7= 1) = exp(B; + B'z)/(1 +
exp(B; + B'z)), where B = Bo + log(t1/70). Note that, by assumption, P(Z|Z =
1) = P(Z), which is the joint probability distribution of Z.)

5.20. Consider the all-cause mortality data in Table 2.1 from the six trials.
Assume a logistic regression model.

(a) What is the p-value when we apply the likelihood ratio test to detect if there is
an interaction between aspirin and centers for the first five trials?

(b) Assuming that there is no interaction between taking aspirin and centers,
what is the point estimate OR(= exp(,él)) and the 95% confidence interval for the
OR between aspirin (Z; = 1) and placebo (Z; = 0) for the five trials?

(c) What is the p-value when we apply the likelihood ratio test to detect if there is
an interaction between aspirin and centers for the data from all six trials?

5.21. Under the assumption of a logistic regression model (5.37), show that the
likelihood (5.51)is also appropriate for paired-sample data in a case—control study.

5.22. Show that the asymptotic variance of the random variable log(?,-) is given
by 1/(xj(1 — 7)) under the negative binomial distribution with parameters x;
and 7y (1.13).

5.23. In Section 5.6, show that the inequality Z [Var(Z) < 7, is equivalent

t0AO? = 2B0 +C < 0,where A = Y; — 72,,(1 — #})/[x1 G}, B = V1 Vs,
2 A Ak

and C =V — 22,,(1 — #1,0) /[xo G i) 2.

5.24. Suppose that we employ independent inverse sampling to collect the cases
and the controls in a case—control study. Suppose further that we have collected
Y1 = 270 subjects with non-exposure before obtaining the predetermined x; =
30 subjects with exposure from the case population, while we have collected
Yo = 550 controls with non-exposure before obtaining the predetermined 50
subjects with exposure from the control population. What are the 95% confidence
intervals for the OR using (5.52), (5.54), and (5.55)?

5.25. In Section 5.7, show that the marginal distribution of Ny, follows the
negative binomial distribution (5.57) with parameters ny; and P = mo1 /(w10 +
7mo1) = 1/(1 + OR) where OR = w1y /7;.

5.26. Consider the data taken from a case—control study of tonsillectomy and
Hodgkin's disease (Vianna et al., 1971). As given elsewhere (Mausner and Bahn,
1974, p. 317), we have 67 cases with prior tonsillectomy out of 109 cases, while
we have only 43 subjects with prior tonsillectomy out of 109 controls. What is
the MLE O? What are the 95% confidence intervals for the OR when we use (5.1)
and (5.5)?
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5.27. Show that under distribution (5.57), if Hy : O = 1, then the statistic
(N1o — no1)?/(2ng;) asymptotically follows a x? distribution with one degree
of freedom. By contrast, McNemar'’s test without continuity correction under
one-to-one matched sampling is (N19 — No1)?/(N1o + No1). When Hy is true, we
expect N1g to be approximately equal to ng;, and hence the values of these two
test statistics are expected to be similar.

5.28. Consider a case—control study of the association between the diabetic
ketoacidosis (DKA) in patients before and after the onset of pump therapy
(Mecklenburg et al., 1984). As given elsewhere, we have 128 patients with no
DKA before and after pump therapy, 7 patients with DKA before pump therapy
but with no DKA after pump therapy, 19 patients with no DKA before pump
therapy but with DKA after pump therapy, and 7 patients with DKA before and
after pump therapy. What is the MLE of the OR of possessing DKA for patients
after pump therapy versus before pump therapy? What are the 95% confidence
intervals for the OR using various estimators?

REFERENCES

Anderson, J. A. (1972) Separate sample logistic discrimination. Biometrika, 59, 19—35.

Agresti, A. (1990) Categorical Data Analysis. Wiley, New York.

Agresti, A. (1999) On logit confidence intervals for the odds ratio with small samples.
Biometrics, 55, 597-602.

Bennett, B. M. (1981) On the use of the negative binomial in epidemiology. Biometrical
Journal, 23, 69-72.

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975) Discrete Multivariate Analysis:
Theory and Practice. MIT Press, Cambridge, MA.

Breslow, N. E. and Day, N. E. (1980) Statistical Methods in Cancer Research, Volume 1. The
Analysis of Case—Control Studies. International Agency for Research on Cancer, Lyon.
Brown, C. C. (1981) The validity of approximation methods for interval estimation of the

odds ratio. American Journal of Epidemiology, 113, 474—480.

Casella, G. and Berger, R. L. (1990) Statistical Inference. Duxbury Press, Belmont, CA.

Cornfield, J. (1951) A method of estimating comparative rates from clinical data: Applica-
tions to cancer of the lung, breast and cervix. Journal of the National Cancer Institute, 11,
1269-1275.

Cornfield, J. (1956) A statistical problem arising from retrospective studies. In J. Neyman
(ed.), Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability,
Vol. 4. University of California Press, Berkeley, pp. 136—148.

Donald, A. and Donner, A. (1990) A simulation study of the analysis of sets of 2 x 2
contingency tables under cluster sampling: estimation of a common odds ratio. Journal
of the American Statistical Association, 85, 537—543.

Ejigou, A. and McHugh, R. (1977) Estimation of relative risk from matched pairs in
epidemiologic research. Biometrics, 33, 552—556.

Ejigou, A. and McHugh, R. (1984) Testing the homogeneity of the relative risk under
multiple matching. Biometrika, 71, 408—-411.

Elston, R. C. (1977) Response to query: estimating ‘inheritability’ of a dichotomous trait.
Biometrics, 33, 232-233.

Farewell, V. T. (1979) Some results on the estimation of logistic models based on retrospec-
tive data. Biometrika, 66, 27—-32.



References 117

Fleiss, J. L. (1979) Confidence intervals for the odds ratio in case—control studies: The state
of the art. Journal of Chronic Diseases, 32, 69—-77.

Fleiss, J. L. (1981) Statistical Methods for Rates and Proportions. Wiley, New York.

Fleiss, J. L. (1986) The Design and Analysis of Clinical Experiments. Wiley, New York.

Gart, J.J. (1970) Point and interval estimation of the common odds ratio in the combination
of 2x 2 tables with fixed marginals. Biometrika, 57,471-475.

Gart, J.J. and Thomas, D. G. (1972) Numerical results on approximate confidence limits
for the odds ratio. Journal of Royal Statistical Society B, 34, 441-447.

Gart, J.J. and Thomas, D. G. (1982) The performance of three approximate confidence
limit methods for the odds ratio. American Journal of Epidemiology, 115, 453-470.

Gart, J.J. and Zweifel, J. R. (1967) On the bias of the logit and its variance with application
to quantal bioassay. Biometrika, 54, 181-187.

George, V. T. and Elston, R. C. (1993) Confidence limits based on the first occurrence of an
event. Statistics in Medicine, 12, 685-690.

Graham, S., Dayal, H., Rohrer, T., et al. (1977) Dentition, diet, tobacco, and alcohol in the
epidemiology of oral cancer. Journal of the National Cancer Institute, 59, 1611-1616.

Graybill, F. A. (1976) Theory and Application of the Linear Model. Duxbury Press, North
Scituate, MA.

Haldane, J. B. S. (194 5a) A labour-saving method of sampling. Nature, 155, 49—50.

Haldane, J. B. S. (194 5b) On a method of estimating frequencies. Biometrika, 33,222-225.

Hauck, W. W. (1989) Odds ratio inference from stratified samples. Communication in
Statistics, A18, 767-800.

Hosmer, D. W. and Lemeshow, S. (1989) Applied Logistic Regression. Wiley, New York.

Jewell, N. P. (1984) Small-sample bias of point estimators of the odds ratio from matched
sets. Biometrics, 40, 421-435.

Johnson, N. L. and Kotz, S. (1970) Distributions in Statistics: Continuous Univariate Distribu-
tions 2. Wiley, New York.

Lehmann, E. L. (1983) Theory of Point Estimation. Wiley, New York.

Liang, K. -Y. and Self, S. G. (1985) Tests for homogeneity of odds ratio when the data are
sparse. Biometrika, 72, 353—-358.

Lui, K. -J. (1991) Sample size for repeated measurements in dichotomous data. Statistics in
Medicine, 10, 463-472.

Lui, K. -]. (1995) Confidence intervals for the risk ratio in cohort studies under inverse
sampling. Biometrical Journal, 37, 965-971.

Lui, K. -J. (1996a) Notes on confidence limits for the odds ratio in case—control studies
under inverse sampling. Biometrical Journal, 38, 221-229.

Lui, K. -J. (1996b) Notes in case—control studies with matched pairs under inverse sam-
pling. Biometrical Journal, 38, 681-693.

Lui, K. -J. and Lin, C. D. (2003) A revisit on comparing the asymptotic interval estimators
of odds ratio in a single 2 x 2 table. Biometrical Journal, 45, 226-237.

Lui, K. -J., Cumberland, W. G. and Kuo, L. (1996) An interval estimate for the intraclass
correlation in beta-binomial sampling. Biometrics, 52, 412-425.

Mantel, N. and Haenszel, W. (1959) Statistical aspects of the analysis of data from retro-
spective studies of disease. Journal of the National Cancer Institute, 22, 719—748.

Mausner, J. and Bahn, A. K. (1974) Epidemiology, An Introductory Text. W. B. Saunders,
Philadelphia.

Mayer, J., Slymen, D. J., Eckhardt, L., et al. (1997) Reducing ultraviolet radiation exposure
in children. Preventive Medicine, 26, 516—522.

Mecklenburg, R. S., Benson, E. A., Benson, ]J. W., et al. (1984) Acute complications associ-
ated with insulin pump therapy: Report of experience with 161 patients. Journal of the
American Medical Association, 252, 3265-3269.

Miettinen, 0. S. (1976) Estimability and estimation in case-referent studies. American
Journal of Epidemiology, 103, 226—-235.



118 Odds ratio

Prentice, R. L. and Pyke, R. (1979) Logistic disease incidence models and case—control
studies. Biometrika, 66, 403-411.

Ratnaparkhi, M. V. (1985) Negative multinomial distribution. In S. Kotz and N. L. Johnson
(eds), Encyclopedia of Statistical Sciences, Vol. 5 John Wiley & Sons, Inc., New York,
pp. 662—-665.

Robins, J., Breslow, N. and Greenland, S. (1986) Estimators of the Mantel—Haenszel vari-
ance consistent in both sparse data and large-strata limiting models. Biometrics, 42,
311-323.

Rosner, B. (1990) Fundamentals of Biostatistics, 3rd edition. PWS-Kent, Boston.

SAS Institute, Inc. (1990) SAS/STAT User’s Guide, Volume 2, Version 6, 4th edition. SAS
Institute, Inc., Cary, NC.

Schlesselman, J. J. (with contributions by Stolley, P. D.) (1982) Case—Control Studies: Design,
Conduct, Analysis. Oxford University Press, New York.

Singh, P. and Aggarwal, A. R. (1991) Inverse sampling in case control studies. Environ-
metrics, 2, 293-299.

Skarin, A. T., Pinkus, G. S., Myerowitz, R. L., et al. (1973) Combination chemotherapy of
advanced lymphocytic lymphoma: importance of histologic classification in evaluating
response. Cancer, 34, 1023-1029.

Stevens, W. L. (1951) Mean and variance of an entry in a contingency table. Biometrika,
38,468-470.

Vianna, N.J., Greenwald, P. and Davies,J. N.P. (1971) Tonsillectomy and Hodgkin's
disease: the lymphoid tissue barrier. Lancet, 1, 431-432.

Woolf, B. (1955) On estimating the relation between blood group and disease. Annals of
Human Genetics, 19, 251-253.



6
Generalized Odds Ratio

To measure the strength of association between a dichotomous risk factor and a
dichotomous response, the odds ratio (OR) discussed in Chapter 5 is probably the
most frequently used epidemiological index. However, we commonly encounter
the situation in which the outcomes are on an ordinal scale with more than two
categories. For example, consider the study of tonsil size in carriers of Streptococcus
pyogenes (Clayton, 1974). Because tonsil size is measured on an ordinal scale
(tonsils present but not enlarged; tonsils enlarged; and tonsils greatly enlarged),
the OR cannot directly be used without arbitrarily grouping multiple levels of
response into two categories. Furthermore, the collapsing of data may cause a
loss of efficiency. The generalized odds ratio (GOR) (Agresti, 1980) is useful for
summarizing the difference between two stochastically ordered distributions of an
ordinal categorical variable without the need to assume any specific parametric
models (Hosmer and Lemeshow, 1989). Readers may find some discussions on
other generalized summary measures as well (Edwardes and Baltzan, 2000; Lui,
2002b).

In this chapter, we first discuss estimation of the GOR under independent
multinomial sampling for randomized trials. We then extend this discussion to
accommodate situations where we take repeated measurements per subject or we
employ cluster sampling to collect data. We also discuss estimation of the GOR for
an ordinal exposure variable in case—control studies with matched pairs. Finally,
to alleviate the bias of our GOR estimator under multinomial sampling, we discuss
estimation of the GOR under a mixed negative multinomial and multinomial
sampling procedure.

6.1 INDEPENDENT MULTINOMIAL SAMPLING

Suppose that we wish to quantify the extent of association between the distri-
butions of ordinal responses over ] categories for two comparison groups. Define
m} = (71)i, 72505 T3is - - - » 777)), Where 7 (satisfying O < 7y < 1 and ) 7y = 1)
denotes the probability of the outcome for a randomly selected subject from group
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i(i = 1, 2) falling into category j(j = 1, 2, ..., ]J). Without loss of generality, we
assume that the response in category j is more severe than the response in
category j when j < j'. The GOR is defined as G = I1./T1q (Agresti, 1980), where
Me=Y) 1) mpmgp and Mg = 3, 3171 m,1752. Note that 1, denotes
the probability that the response of a randomly selected subject from group 2 is
severer than the response of a randomly selected subject from group 1. Similarly,
14 denotes the probability that the response for a randomly selected subject from
group 1 is severer than the response for a randomly selected subject from group 2.
When | = 2, the GOR reduces to the OR for asingle 2 x 2 table: w1122/ (721771 12).
By definition, the range of the GOR is O < G < co. When the underlying distri-
butions of ordinal responses are identical between two comparison groups (i.e.,
7 = 1), G = 1. Note that the index (G — 1)/(G + 1) is actually the y proposed
by Goodman and Kruskal (1954) to measure the association between two ordinal
variables. The GOR considered here is, in fact, Agresti’s o (Agresti, 1980).

Assume that from group i(i = 1, 2), we take a random sample of size n;.
Assume further that these two samples are independent. Let X denote the
number of subjects out of n; subjects falling into category j. Then, the random
vector (Xi1, Xi2, ..., Xj) follows the multinomial distribution with parameters
n; and ]l'i/ = (7‘[1“, T020is TT3)is « + «» 7'[”1'). The MLE of TTj|i is simply ﬁ”i = Xi]-/ni. As
n; is large, by the central limit theorem (Casella and Berger, 1990), we claim
that ./ni(%; — m;), where ] = (15, 25, 33 - - - » 7731), asymptotically follows the
multivariate normal distribution with mean vector O and covariance matrix
with the diagonal terms equal to mj;(1 — 7)), and off-diagonal terms equal
to —mjmy; for j #j. To estimate G, we may use the MLE G= fIC/fId, where
f.=Y'"1 Zi:r—&-l Frnftga and g = Y _, 3171 #,1 /.. Furthermore, using
the delta method (see the Appendix), we can show that the asymptotic variance
of Gis (Exercise 6.1; Agresti, 1980)

2 2

] ] r—1 ] [s—1 )i
z[ > m—QZnsz] o Z[Zm—g > m] -
s=1 1

s=r+1 s=1 Lr=1 r=s+

ny H(zl np H(zl

(6.1)
Note that by convention we define Z]I:]H 7y = 0 and Z?:l i =0fori=1,2
in (6.1). Note also that the variance Var(@), which is a function of unknown
parameters, cannot be used in practice. We can substitute #;; for 7;;, G for G,
and I14 for T4 to estimate Var(@), and we denote the resulting estimator by
\7&(@). Thus, as both n; are large, we obtain an asymptotic 100(1 — «) percent
confidence interval for the GOR given by

[max{G — Zy/2y/ Var(G), 0}, G + Zu21/ Var(G)], (6.2)

where Z, is the upper 100 th percentile of the standard normal distribution. When
neither n; is large, the sampling distribution G can be skewed and hence (6.%)
may not perform well. To improve the normal approximation of the statistic G,
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we may consider use of the logarithmic transformation (Agresti, 1980; Katz et al.,
1978). This leads to a 100(1 — «) percent asymptotic confidence interval for the
GOR given by (Exercise 6.2).

[G exp(—Za2\/ Var($)/G), Gexp(Zuy2\/ Var(G)/9)]. (6.3)

Similarly, to avoid having to base inference on the possibly skewed sampling
distribution of GOR when the n; are not large, we may also consider a method
analogous to the idea of using Fieller’s theorem (Casella and Berger, 1990). Define
7 = T, — GI4. We can easily see that the expectation of E(Z) = 0 (Exercise 6.3).
Furthermore, if both n; were large, we would have the probability P((f1, —
GIg)%/Var(I1, — GIy) < Zi/z) = 1 — «. This leads to the following quadratic
equation in G (Exercise 6.4):

AG* — 2BG + C=0, (6.4)
where
J /1 2 J ] 2
A:l_[(zi —Zi/z Z(Zﬁ's2> ﬁ,—|1/ﬂ1+Z(Z ﬁrl) TA[;‘IZ/“Z )
r=1 \s=1 s=1 \r=s+1

] r—1
B = M.I4 — Zﬁ/z |:Z (Znsu) ( Z 7Ts2> 7 /m
s=r+1
J J
+Z < Z ﬁrll)

—1
TTr|1 nle/”Z ,
s=1 \r=s+1 =1

J J 2 ] /s—1 2
cofe-z, z(z n.) ﬁ”/nﬁz(zﬁrl) .
S s=1 r=1

r=1 \s=r+1

Therefore, if A > 0 and B> — AC > 0, then an asymptotic 100(1 — «) percent
confidence interval for GOR would be

[max{(B — vB2 — AC)/A, 0}, (B + /B2 — AC)/A. (6.5)

Note that following similar arguments to those in Section 5.2, it is straightforward
to extend the above results on estimation of the GOR to accommodate a series of
independent 2 x | tables (Agresti, 1980).

Example 6.1 Consider the data (Holmes and Williams, 1954) on the tonsil size
for carriers and non-carriers of S. pyogenes analyzed by both Clayton (1974)
and Agresti (1980). In the group of 1326 non-carriers, there were 497 subjects
with tonsils present but not enlarged, 560 subjects with tonsils enlarged, and 269
subjects with tonsils greatly enlarged. In the group of 72 carriers, there were 19
subjects with tonsils present but not enlarged, 29 subjects with tonsils enlarged,
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and 24 subjects with tonsils greatly enlarged. The MLE G of the GOR is 1.689.
This suggests that there are 1.69 times as many carrier—non-carrier pairs in the
sample for which the carrier has the larger tonsils as there are pairs for which the
non-carrier has the larger tonsils. Applying interval estimators (6.2), (6.3), and
(6.5), we obtain 95% confidence intervals for the GOR of [1.006, 2.372],[1.127,
2.531], and [1.121, 2.613], respectively. We can see that the lower limits are
all above 1, and we may conclude that there is a significant association at the
5% level between tonsil size and S. pyogenes. Furthermore, we can see that the
interval estimate based on (6.2) tends to be shifted to the left compared to the
other two estimates.

6.2 DATA WITH REPEATED MEASUREMENTS (OR UNDER
CLUSTER SAMPLING)

In many biomedical or epidemiological studies, we may have more than one
measurement per subject. For example, consider the lung transplant study (Song
etal., 1997) in which the investigators were interested in assessing whether one
method of surgery resulted in better healing after transplant than the other.
Healing was measured by the degree of inflammation (recorded as: no, some,
much, and very much inflammation) on two sites of surgery for each rabbit.
The data are summarized in Table 6.1. We wish to compare the distributions
of inflammation grade for the two methods of surgery. Because measurements
taken from the same rabbit are likely correlated, interval estimators of the GOR
for independent multinomial sampling discussed in Section 6.1 for mutually
independent responses are inadequate for use in the situations discussed here.
We discuss how to extend the discussion on interval estimation of GOR to
accommodate the data with repeated measurements per subject in this section.
Consider a trial in which we randomly assign n; and n, subjects to receive
treatments 1 and 2, respectively. Suppose that on subject k(k=1, 2, ..., n;)
in treatment i(i = 1, 2), we take my repeated measurements. Suppose further
that the measurements are on an ordinal scale with J ordered categories.
Define Xjuy =1 if the Ith I=1,2,..., my) measurement on the kth sub-
ject in treatment i(i =1, 2) falls into category j, and Xju = 0 otherwise.
We assume that the probability P(Xju = 1) = pj; and P(Xjm = 0) = 1 — pjxi,
where YL, pj; = 1. Let Xyp. = ¥, Xju. Given ply = (1 Pakii- D3kl - - - Djii)-

Table 6.1 Inflammation grade (O = no; 1 = some; 2 = much; and 3 = serious) from
repeated measurements on rabbits receiving two types of surgery.

Surgery

A (0,0),(0,0),(0,0),(1,1),(1,1),(1,1),(2,1),(2,1),(2,2),(2,2),(3,2),(3,2)

B (1,1),(1,1),(1,1),(1, 1), (1, 2),(1, 2),(1, 2),(1, 2), (2, 2), (2, 2), (2, 2), (2, 2),
(2,2).(3,2)

Source: Jung and Kang (2001).
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the random vector Xj = (Xjir., Xi2k., Xi3k., - - - » Xy.) follows the multinomial
distribution with parameters mj and pj. To account for the intraclass corre-
lation between repeated measurements within subjects, we further assume that

P}, = (P1kji> P2kii> P3kiis - - - » Pki) independently identically follow the multivariate
version of the beta distribution, known as:
I'(Ty) o
m [ [, (6.6)
. U7
j

where T; = 211:1 aj, o >0fori=1,2,andj=1,2,...,] (Johnson and Kotz,
1970; Lui, 1991). A discussion of some of the good statistical properties of
the Dirichlet-multinomial distribution appears elsewhere (Lui, 2000). Under the
above model assumptions, we can easily show that the expectation E(Xj) =
E(E(Xjui|Pjxi)) = mjji, where j; = o5/ T;. We can further show that the intraclass
correlation p; between repeated measurements Xy and Xjr for I # I' is simply
1/(T;i+ 1) (Exercise 1.7). Define m{ = (mwy)i, 72)i, 733, - - ., 7771), the vector of
the mean response distribution over the ] ordered categories for treatment i,
where i = 1, 2. As defined previously, the GOR is simply G = I1./I14, where
Me = Y20 Yy T msp and Ty = 37, S0 e,

First, note that 7;; = Xj../m;,, where X;;,, = >, Xjx. and my, = ), my, is an
unbiased estimator of mj;. When m;, goes to oo, ./m; (7; — m;), where ] =
(7141, 7240 A3, --» 7730), asymptotically follows the multivariate normal distribution
with mean vector 0 and covariance matrix with diagonal terms equal to 7;;;(1 —
;) f (my, p;), and off-diagonal terms equal to —;j;7ryif (my, p;), where f(m;, p;) =
Y emi[1 + (my — 1)p;]/my, is the variance inflation factor due to the intraclass
correlation p;, and m} = (m;1, mj, ..., my,). As noted in previous chapters, the
component f(m;, p;) is always at least 1. When p; = 0 or my, = 1 for k, f(m;, p;)
reduces to 1. A consistent estimator of G under cluster sampling is @ = ﬁc / f[d,
where 1, = Y/} Zi‘:r-}—l fnftgy and Mg = Y/, 3171 #,1 7. Furthermore,
using the delta method, we can show that an estimated asymptotic variance of
gis

2

] ] =1
Z[ Z ﬁs|2 —gzﬂs|2i| Tl
oy A~ =1 Ls=r+1 s=1
Var(G) = f(my, p) =" — +
ml,l'ld
J Ts=1 A b
Z[Z A —G ), 7Trl:| g2
~ ys=1Lr=1 r=s+1
Jmy, p3) A2+ . (6.7)
mz,l'[d

where ,51' = (BMSI — WMSI)/[BMSI + (ml* — 1)WMSJ, WMSI = Zk[mik — Zi
(Xj?]\»./mik)]/ Y k(my—1), BMS; = [Zk Z;(Xi?k,/mik) - (Z, Xi?,,/mi.)] /(nj — 1),

andmf = (mi — Y, mg) /[(n; — 1)m;.]. Whenmy, = 1foralliand k, the estimated
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variance \7&(@) in (6.7) simplifies to that for a single measurement per subject. A
discussion of interval estimation of the intraclass correlation under the Dirichlet-
multinomial distribution appears elsewhere (Lui et al., 1999). Based on (6.7),
we obtain an asymptotic 100(1 — «) percent confidence interval for the GOR
given by

[max{G — Zy2y/ Var(Q), 0}, G + Za24/ Var(G)]. (6.8)

As noted before, if both n; are not large, the sampling distribution of G may
be skewed and hence interval estimator (6.8) may not perform well. To improve
the normal approximation of the statistic G, we may again consider using the
logarithmic transformation. Using the delta method, we obtain an 100(1 — @)
percent asymptotic confidence interval for GOR given by

[G eXp(—Za/21/ Var(G)/G), G exp(Za,2\/ Var(G)/G)]. (6.9)

Similarly, we may look to Fieller's theorem as for deriving interval estimator
(6.5). Define Z = f1. — GI14. Because E(Xj) = E(Pji) = mj;i, we can easily see
that E(Z) = 0. Furthermore, if both n; are large, we have the probability P((fIC -
Qf[d)z/Var(l:IC — Qf[d) < Zé/z) = 1 — «. This leads to the following quadratic
equation in G:

AT(G)? - 2BY(G) + T <0, (6.10)

where
J

r—1 2
At = l'[d i/z f(mLﬁl)Z(Zﬁsz) Tp1 /M,
s=1

r=1

] ] 2
+f(m2,,52)2 ( Z ﬁru) Tg2/Ma. |,

s=1 \r=s+1

] r—1 ]
BY = 11114 — 2/2 |:f(m1,,51)z (Zﬁu) (Z fTsz> o1/,

r=1 \s=1 s=r+1

J J s—1
+fmy, 53) > ( > ﬁru) (Z ﬁru) ﬁs|2/mz.:| :
-1

s=1 \r=s+1
) A1 /m,
s=r+1

] s—1
+ f(m, 62) Z (Z ﬁ;u) Tg2/M2,
s=1 \r=1

J
Ch =117 =22, [fom, p) Y [ Y
r=1
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Therefore, if AT > 0 and B2 — ATCT > 0, then an asymptotic 100(1 — «) percent
confidence interval for the GOR would be

[max{(B" — v/B2 — ATCT)/AT, 0}, (B + /B2 — ATCT)/AT]. (6.11)

Note that when my, = 1 for all i and k, interval estimators (6.8), (6.9), (6.11)
reduce to (6.2), (6.3), and (6.5), respectively. Using Monte Carlo simulation, Lui
(2002a) compares and evaluates the performance of interval estimators (6.8),
(6.9), and (6.11). Lui notes that when the number of subjects ny per group is not
large, using (6.8) tends to produce an interval estimate with coverage probability
less than the desired confidence level, while using either (6.9) or (6.11) can
produce an interval estimate with coverage probability approximately equal to or
larger than the desired confidence level even when ng is not large. Furthermore,
Lui finds that using (6.11) can cause loss of efficiency as compared with using
(6.9), especially when ng is not large and py is large. When ny, is large (at least
100), all three interval estimators (6.8), (6.9), and (6.11) are all essentially
equivalent with respect to coverage probability and average length. Lui also
evaluates the performance of (6.8), (6.9), and (6.11) under some alternatives to
the Dirichlet distribution, and finds good robustness for all three estimators in a
variety of situations.

Example 6.2 Consider comparing the distribution of inflammation grade after
transplant on 12 rabbits receiving surgery A with that on 14 rabbits receiving
surgery B (Jung and Kang, 2001). For each animal, we take a pair (my = 2) of
measurements on the inflammation grade, divided into four (J = 4) categories:
0 = no; 1 = some; 2 = much; and 3 = serious (Table 6.1). Given these data, we
obtain the estimates G = 2.027 and pp = 0.45(= (m1.p1 + my.02)/(my. + my))).
Applying interval estimators (6.8), (6.9), and (6.11), we obtain 95% confidence
intervals for GOR of [0.00, 4.33], [0.65, 6.33], and [0.43, 82.19]. We can see
that interval estimate (6.8) using Wald’s statistic is shifted to the left compared
to the other two interval estimates. We can also see that using (6.11) can leads
to substantial loss of efficiency as compared with using (6.9) in the particular
situation considered in this example. Note that the estimate G=2.027 suggests
the probability for ‘the inflammation grade of a randomly selected animal from
surgery A less than the inflammation grade of a randomly selected animal from
surgery B’ is approximately twice of the probability for “‘the inflammation grade of
arandomly selected animal receiving surgery B less than the inflammation grade
of a randomly selected animal from surgery A”’. However, because the numbers
of subjects in both comparison groups are small, all the above interval estimates
are wide and cover 1. Thus, there is no significant evidence at the 5% level
against the null hypothesis that the distributions of inflammation grade between
interventions A and B are equal.
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6.3 PAIRED-SAMPLE DATA

In epidemiologic studies or clinical trials it is common to employ a matching design
to increase efficiency. For example, consider the paired-sample data (Breslow,
1982) from a study of the number of beverages drunk at ‘burning hot’ temperature
and esophageal cancer. Because the number of beverages ranges from O to 3,
the statistics commonly used for dichotomous exposure in paired-sample data
are not directly applicable here. To account for multiple levels of exposure in
studies with matched pairs, we may apply the conditional logistic regression
model as proposed elsewhere (Breslow, 1982). In this section, we concentrate our
attention on estimates of the GOR that may be used without the need to assume a
parametric model.

Consider a data set consisting of n matched pairs of subjects with ordinal
responses in | categories. Within each pair, suppose that exactly one subject
is taken from one of the two comparison groups. Let m,(r,s=1,2,...,])
denote the probability of obtaining a pair where the subject from group 1
has response in category r and the subject from group 2 has response in
category s. Define &’ = (w11, ..., w1y, 721, .. . W25, - .o, 1L, T2, - -, Tgp). Let Ny (1
ands =1, 2, ..., ])denotetheobserved frequency of pairsfalling in cell (r, s). Then
the random vector N’ = (NH, le, ey NU’ N21, ey Nz], ey N]l, N]z, ey N]])
follows the multinomial distribution with parameters n (=", > Ny) and =.
Without loss of generality, we assume that exposure level 1 represents non-
exposure. We further assume that the higher the level of exposure, the more
severe is the extent of exposure. Define 7, = Z{;% I 41 Trs, the probability
of a randomly selected matched pair in which the subject from group 2 has
a higher level of exposure than the subject from group 1. Similarly, define
Tq = Z]:z Zg;% 7., the probability of a randomly selected matched pair in
which the subject from group 1 has a higher level than the subject from group 2.
Thus, we may define the GOR for paired-sample data as & = 7. /m4. Note that the
GOR defined here for paired-sample data is actually Agresti's o’ (Agresti, 1980).
Note also that when | = 2, the GOR reduces to the common definition of OR for
dichotomous exposure in paired-sample data, 71, /75;.

Under the multinomial distribution, the MLE of 77, is 77,5 = N,5/n. Thus, the MLE
of the GOR is & = #./#4, where 7, = er;} Zﬁ,;rH 7, and g = er:z Z:} Ry
Note that the MLE & depends on the random vector N only through the two
random subtotals: N, = Y/_1 S/ +1 Nrsand Ng = >, 371 Ny Thus, when
studying the sampling distribution of &, we can consider the joint marginal
probability mass function of N. and Ny:

n!

TN Ng (Mey na) = (1 — e —n) ", (6.12)

n!ng!(n — ne — ng)!

which is simply a trinomial distribution. Applying the delta method (Agresti,
1990), we obtain that the estimated asymptotic variance of & is given by Var(®) =
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(7 + 7a)/ (nﬁj) (Exercise 6.5). Therefore, an asymptotic 100(1 — «) percent
confidence interval for the GOR using Wald's test statistic is

[max{® — Z,/2y/ Var(®), 0}, & + Z,/»/ Var(®)]. (6.13)

Note that @5(: 7./7q) is a ratio of two sample proportions, hence the sampling
distribution of & is probably skewed when n is not large. To improve the normal
approximation of the statistic &, we may use the logarithmic transformation (Katz
etal., 1978). This leads to an asymptotic 100(1 — «) percent confidence interval
for & given by

[ exp(—Ze/2\/ Var(log($))), & exp(Zy,2y/ Var(log(®)))], (6.14)

where Var(log(®)) = (. + #q)/(nfRa).

On the basis of the trinomial distribution (6.12), we can easily show that the
conditional probability mass function of N, = n,, given N, + Ng = n; follows the
binomial distribution (Exercise 5.14):

_ _ nt! 6 Ne 1 t— M
f(Nc—nclnt)—nC!(m_nC)! <®+1) <a5+1) : (6.15)

Define Q = &/(& + 1). From (6.15), if n isAlarge, the probability PO —
0)?2/[01 —Q)/ng] < Z§/2|nt) =1 —a, where Q= N./n;. Therefore, we may

obtain an asymptotic 100(1 — «) percent confidence interval [Q;, Q] for Q,
where Q; and Q, are the two distinct roots of A¥Q? — 2B*Q + C* = 0, where
AV =1 +72,/m). BE=0+172,/(2n), and Ct={Q? (see (1.5)). Note that
f(Q) = Q/(1 — Q) = &, which is a monotonically increasing function of Q. These
lead to an asymptotic 100(1 — «) percent confidence interval for the GOR given by

0 0
R LT (6.16)
1-0 1-0u

On the other hand, when n; is not large, we may employ the exact 100(1 — «)
percent confidence limits (Clopper and Pearson, 1934; see (1.6)) for Q and
then apply the monotonic transformation f(Q) again. Thus, we obtain an exact
100(1 — @) percent confidence interval for &,

[ N (N¢ + 1)F2(NC+1),2Nd,a/2:|
(Na + DFong1),2N00/2 Ng '

where Fj, f, o is the upper 100ath percentile of the central F distribution with
fi and f> degrees of freedom. Note that when N, = 0, the upper percentile
Fri—N.+1),2N.,a/2 I (6.17) is not defined. In this case, we define the lower limit
of (6.17) to be 0. Similarly, when Ngq = 0, we define the upper limit of (6.17) to
be co. Note that applying interval estimator (6.17) can always ensure that the
coverage probability is greater than or equal to the desired confidence level 1 — «.

(6.17)
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Example 6.3 Consider Breslow’s (1982) data consisting of 80 matched pairs
taken from a case—control study of esophageal cancer. The response is the number
of beverages (ranging from O to 3) reported drunk at ‘burning hot’ temperatures.
Suppose that we want to estimate the GOR of the number of beverages drunk at
‘burning hot’ temperature and the risk of having esophageal cancer. Here, the
random number N, (r,s =1, 2, ..., 4) denotes the observed frequency of pairs
in which the numbers of beverages reported drunk at ‘burning hot’ temperature
arer — 1 and s — 1 for case and control, respectively. Given the data (Table 6.2),
we obtain the number of matched pairs in which the case has a higher level
of exposure than the control, n. = 35, and the number of pairs in which the
control has a higher level of exposure than the case, ng = 11. The MLE of the GOR
is® = 3.18(= 35/11). Applying interval estimators (6.13), (6.14), (6.16), and
(6.17), we obtain 95% confidence intervals for GOR of [1.026, 5.337], [1.616,
6.265],[1.636, 6.188], and [1.580, 6.945], respectively because the lower limits
of these intervals are all greater than 1, there is evidence at the 5% level of an
association between the number of beverages drunk at ‘burning hot’ temperature
and esophageal cancer. Note that using (6.13) based on Wald's test statistic seems
to produce an interval estimate that is shifted to the left compared to all the other
interval estimates. Note also that since using (6.17) can always ensure that the
coverage probability is equal to or greater than the desired confidence level, it is
not surprising to see that the interval derived from (6.17) is longer than the other
intervals considered here.

Recall that exposure level 1 represents non-exposure. If we collapsed all the
categories with exposure levels 2 or greater in one category, then we would obtain
a 2x2 table with cell probabilities 7}, = 711, 7}, = Y/, i, w3, = Y, w1,
and 7y, = YL, 3, 7,5 Note that 7}, represents the probability of a randomly
selected pair with both case and control unexposed; 7§, represents the probability
of a randomly selected pair with case exposed and control unexposed; 7},
represents the probability of a randomly selected pair with control exposed and

Table 6.2 Observed frequency of
matched pairs cross-classified by the
number of beverages drunk at ‘burning
hot’ temperatures between esophageal
cancer patients and their matched

controls.

Case
Control 0 1 2 3
0 31 12 14 6
1 5 1 1 1
2 5 0 2 1
3 0 0 1 0

Source: Breslow (1982).
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case unexposed; and 3, represents the probability of a randomly selected pair with
both case and control exposed. The OR of the probability of exposure (ever versus
never) for cases versus controls is then equal to 7%, /7%, (= Y/, w15/ 3, nrl),
which is different from the GOR defined here. Under the multinomial distribution,
the MLE of the OR is 0= Z 5 Mg/ Zr 5 T, Which completely ignores the
information on Y/} S 41 Mrs and > 3"~ n,. Thus, using the statistic
related to O is expected to be less efficient than using the statistic related to ®.
To illustrate the point here, consider the matched-pair case—control study of
esophageal cancer (Example 6.3). The MLE of the OR (= n{,/73},) is O =3.2.
Applying interval estimators similar to (6.13), (6.14), (6.16), and (6.17) to
estimate OR, we obtain [0.928, 5.472], [1.573, 6.509], [1.596, 6.418], and
[1.535, 7.298], respectively. A comparison of these interval estimates with those
obtained previously for the GOR reveals that every interval estimate in the former
is longer than the corresponding one in the latter. The ratio of the GOR interval
length to the corresponding OR interval length ranges from 0.93 to 0.95. In other
words, using the test statistic related to B is likely to be more efficient than using
the test statistic related to O in detecting the association between the number of
beverages drunk at ‘burning hot’ temperature and esophageal cancer. In fact, Lui
(2002b) provides algebraic arguments to explain why this is generally true with
respect to the coefficient of variation.

6.4 MIXED NEGATIVE MULTINOMIAL AND
MULTINOMIAL SAMPLING

Recall that under the multinomial distribution in the previous section on paired-
sample data, the MLE of 7,5 is 77,; = N,s/n. Thus, the MLE of the GOR is B =7, /Ttd,
where s, = Y21 S 1 sand g = S, 3171 fys. Because there s a positive
probability that the estimator 774 equals O, the MLE ® has neither finite expectation
nor finite variance. Although we can always apply the ad hoc procedure of adding
0.50 to each cell whenever this occurs, it is difficult to claim any optimal statistical
property for this procedure. However, we can avoid the need for this by employing
inverse sampling (Haldane, 1945a, 1945b), in which we continue to collect
subjects until we obtain a predetermined number nq of subjects falling into the set
of cells (r,s),r=2,...,],s=1,...,r— 1. The joint probability mass function
for the random vector N = n is then

] r—1 .
) = ——— ]—[]_[(m> (nd+n°+n" ! "“H]‘[n;};v, (6.18)

Hl—lnyVZSi (nd_]_)yl—ll_[n' u=1 v=u

r=2s= u=1v=u
where ng = ZLZ Z:;} Nys, Ne = Z Zs v Mrss Mo = Z{':l n,, and n,, = 0,
1,2,...,for(u,v) e{(r,s)|r=1,2,...,],s=r,...,J}. Thisis a mixed negative

multinomial and multinomial distribution. Note that ng is fixed, while n. and ng
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are random in (6.18). Define n = n. + ny 4+ ng. Note also that the likelihood of
(6.18) is actually proportional to the likelihood of the corresponding multinomial
distribution with the same realization of random vector n. Therefore, the MLE of
7Tys, given N = n, is simply 7, = n,5/n, which is of the same form as that under
the multinomial sampling. This also suggests that the MLE of the GOR under
(6.18) is G = N./ng. Note that the MLE & depends on the sample vector n only
through the marginal random subtotal n.. Thus, we may study the sampling
distribution of & on the basis of the marginal probability mass function of N, = n,
(Exercise 5.25):

fNC(nc)z(”“Jr”C_l)!( Tt ) ( e ) (6.19)

(ng — D!In! \mq+ 7. T4 + 7T

which is, in fact, the negative binomial distribution with parameters ny and
Q = g4/ (g + 7). Under (6.19), we can easily show that the random variable
N, has expectation E(N.) = ng® and variance ng®(® + 1), where & = m./mq.
This implies that the estimator @(: N./nq) is an unbiased estimator of & with
variance &(® + 1)/nq4. In fact, following the same arguments as in Section 5.7,
we can claim that & is the UMVUE of &.

Note that the probability for the cumulative distribution P(N. <
nelng, @), where N. follows the negative binomial distribution (6.19) with
parameters ng and Q, equals the probability P(X > ng|n;, Q), where X
follows the binomial distribution with parameters n;=n.+nq and O
(Exercise 1.14). Therefore, for a given observed value n., an exact
100(1 — @) percent confidence interval for O (Exercise 1.15) is given
by [L(Ne, ng, «/2),U(Ne, ng, @/2)], where L(N;, ng,«/2) =ngq/[ng+ (Ne +
DF>N41),2n4,0/2> UNe, g, 00/ 2) = nqF2y, o8, 072/ [MdF 204, 28.,a/2 + Ne]. Note that
if N, were 0, we would define the upper limit ¢/(0, ng, «/2) = 1 by convention.
Furthermore, because O = (1 — P)/P and the transformation f(x) = (1 — x)/x
is a strictly decreasing function, an exact 100(1 — «) percent confidence interval
for & is given by

[(1 — U(Ne, ng, e¢/2)) JUN, ng, e/2), (1 — L(Ne, ng, «/2))/L(Ne, ng, a/2)].

(6.20)
Applying interval estimator (6.20) can ensure that the coverage probability is
always larger than or equal to the desired confidence level. Note that an exact
test procedure for testing equality of the underlying OR to any specified value,
an asymptotic test similar to McNemar'’s test, as well as calculation of sample
size under (6.19) can be found elsewhere Lui (1996). A discussion on interval
estimation of the generalized risk difference in paired-sample ordinal data is also
given elsewhere (Lui, 2002b).

EXERCISE

6.1. Using the delta method, show that in Section 6.1, the asymptotic Var(@) of
Gis (6.1).
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6.2. Show that when we use the logarithmic transformation, an asymptotic
100(1 — &) percent confidence interval for G is given by (6.3).

6.3. Show that in Section 6.1 the expectation E(Z) equals 0, where Z = I1, —
20 ol S ¥ e
Gfa, fle = 3020 2Ly Ay and Ta = 3, Y07 A

6.4. From the result that P((fl. — GIlg)?/Var(fl. — GITa) < 72,,) =1 —a,
derive the quadratic equation given in (6.4).

6.5. Consider the following data (Hedlund, 1978) on the political ideology of
Democrats and Republicans (Agresti, 1990, p. 273). The numbers of Democrats
falling into the categories liberal, moderate, and conservative were 143, 156, and
100. The corresponding numbers of Republicans were 15, 72, and 127. What is
the MLE G? What are the 95% confidence intervals for the GOR using (6.2), (6.3),
and (6.5)?

6.6. Consider the data (Smith, 1976) on education and attitudes toward abortion
taken from the 1972 General Social Survey (Agresti, 1990, p. 197). We combine
the data for subjects who have not completed high school and those who have
completed high school into one category and compare the distribution of attitudes
toward abortion for this combined category with that for subjects educated beyond
high school level. In the former category, 360 generally disapprove of abortion,
227 take a middle position, and 663 generally approve; in the latter category, the
corresponding numbers are 16, 21, and 138, respectively. What is the MLE G?
What are the 95% confidence intervals for the GOR using (6.2), (6.3), and (6.5)?
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7
Attributable Risk

The attributable risk (AR) of a disease due to a risk factor represents the proportion
of cases that are preventable in a population if this particular risk factor is
completely eliminated (Levin, 1953). It is well known that a risk factor that has a
strong association with the underlying disease of interest need not be a top priority
for control if its prevalence is rare in the general population. Because it can reflect
the strength of the association between a risk factor and a disease, as well as the
prevalence of the risk factor, the AR is one of the most widely used epidemiologic
indices for public health administrators to rank the importance of risk factors for
intervention. Note that the AR has also been referred to as the attributable fraction
(Greenland and Robins, 1988), the population attributable risk percent (Cole and
MacMahon, 1971), the etiologic fraction (Miettinen, 1974); many other terms
have also been used (Gefeller, 1990, 1992a).

To enable readers to more easily appreciate the practical interpretation and
usefulness of the AR, we consider the case of no confounders. Let D and D denote
the events of being a case and being a non-case, respectively. Similarly, let E and
E denote the events of being exposed and not exposed to a risk factor of interest.
Further, let P(D), P(D), P(E), and P(E) denote the probabilities of these events. If
we completely eliminated this risk factor from the population, then the risk P(D|E)
of possessing the disease of interest for a subject with exposure would reduce
to P(D|E), the risk for a subject with non-exposure. Thus, when the risk factor
is eliminated from a population of size N, we can expect to reduce the number
NP(E)[P(D|E) — P(D|E)] out of the total number NP(D) of cases. The AR is simply
equal to the ratio of these two parameters: NP(E)[P(D|E) — P(D|E)]/[NP(D)].
We can re-express the AR as [P(D) — P(D|E)]/P(D) (Exercise 7.1) or P(E)(RR —
1)/[P(E)(RR — 1) + 1] (Exercise 7.2), where RR = P(D|E)/P(D|E) is the risk
ratio between the exposed and non-exposed populations (see Chapter 4). Note
that the AR lies in the range —oco < AR < 1 (Greenland and Drescher, 1993).
When AR < O (or equivalently, RR < 1), it is typical to consider the preventable
fraction (PR), defined as P(E)(RR* — 1)/[P(E)(RR* — 1)+1], where RR* = 1/RR
(Last, 1983, p. 82). Note that the PR is obtained by switching the labels between
the exposure and the non-exposure groups in the definition of the AR and is equal
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to [P(D) — P(D|E)]/P(D). Thus, all interval estimators for the AR can be easily
modified to estimate the PR.

In this chapter, we begin by discussing estimation of the AR for both cross-
sectional and case—control studies with no confounders. We then consider the
situations where one can apply stratified analysis to control the effects of con-
founders for both these study designs. We further discuss estimation of the AR in
case—control studies with matched pairs. We also include a discussion on estima-
tion of the AR for case—control studies when the underlying exposure risk factor
is polychotomous rather than dichotomous. When considering a multivariate
model-based approach to control confounders, we discuss the use of the logistic
regression model for case—control studies. Finally, we provide a brief discussion
on estimation of the AR for case—control studies under inverse sampling.

7.1 STUDY DESIGNS WITH NO CONFOUNDERS

Note that the AR depends on the exposure prevalence of the underlying risk factor.
We can estimate the exposure prevalence in a cross-sectional (or unstratified
cohort) study or in a case—control study for a rare disease. We first consider the
simplest case in which there are no confounders.

7.1.1 Cross-sectional sampling
Consider a cross-sectional study in which we take a random sample of n subjects
and classify each subject by the presence or absence of a disease and a suspected

risk factor. For clarity, we use the following table to summarize the data structure:

Status of disease

Yes No
Exposure to Yes 11 10 .
risk Factor No o1 00 TT0.
T .0 1

where O < m; < 1denotes the cell probability, 7;, = 71 + w0, and 7 ; = m1; + 7
for i and j =1, 0. Let Nj; (where ), Zj Njj = n) denote the random frequency
falling into cell (i, j) with probability m;;. Define N;, = Nj1 + Njp and N; = Ny; +
Nyj;. The random vector N' = (N11, N1o, No1, Noo) then follows the multinomial
distribution (2.25) with parameters n and x’ = (711, 710, 701, Too). Note that
the maximum likelihood estimator (MLE) of mj; is simply the sample proportion
7t;; = Njj/n, and hence the MLEs for 7;, and = ; are 7;, = N;,/n and 7; = N,;/n,
respectively.

In terms of parameters mj;, we have P(D) = 7, and P(D|E) = mo1/7.. Thus,
we express the AR as 1 — ¢, where ¢ = g, /(79.7.1) (Exercise 7.1). Note that
the MLE of ¢ is dAJ = 7191/ (fro.7.1). Because ¢ > 0O, we can reasonably restrict the
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estimate ¢3 tothe samerangeby applying the adjustment procedure of adding 0.5 to
all cellswhenever any of the observed cell frequencies nj; equals 0. Thus, the statistic
10g(q§) is always defined. By the delta method (Anderson, 1958; see Appendix),
\/ﬁ(log(gfﬁ) — log(¢)) has an asymptotic normal distribution with mean O and
variance (1 — mwgy) /w01 — (o, + 7.1 — 2701)/(7w0.77.1) (Exercise 7.4). This leads
to an asymptotic 100(1 — «) percent confidence interval for the AR (Fleiss, 1979,
1981) given by

[1 — ¢ exp(Zy/2y/ Var(log($))), 1 — ¢ exp(—Zy)2y/ Var(log(é)))], (7.1)

where Zy is the upper 100« th percentile of the standard normal distribution, and
Var(log(¢)) = (1 — 7w1)/(nitg1) — (R0, + .1 — 2701)/ (N7 7T.1). .

Using the delta method again, we can show that the asymptotic variance of ¢
is Var(q?)) = ¢2Var(log(¢3)). Thus, an asymptotic 100(1 — «) percent confidence
interval for the AR directly based on ¢ is

[1— ¢ — Zojoy/ Var(@), 1 — max{ — Zy 2/ Var(é), 0}], (7.2)

where @(é) = ézﬁ(log(é)). In fact, (7.2) is essentially equivalent to the
interval estimator using Wald’s test statistic proposed by Walter (1976). Lui
(2001a) derives another asymptotic interval estimator from a quadratic equation
using an idea analogous to that of Fieller's theorem. The details can be found in
Exercise 7.5.

Note that the MLE of the AR is simply AR = =1- ¢ Leung and Kupper | (1981)
propose u us1ng the logit transformation loglt(AR/ a- AR)) = log (7. (RR — 1)),
where RR = 71170./ (o171.). Thus, we obtain an asymptotic 100(1 — &) percent
confidence interval for the AR given by

[LT\/(LT; + 1), LT,/ (LT, + 1)], (7.3)

where
LT = expflog(71.(RR — 1)) — Za/z\/Var(IOg(ﬁl.(RR - D)},

LT, = expflog(i1.(RR — 1)) + Zuyoy/ Var(log(r. (RR — 1))},

and

A~ P
71770, } {ﬂnﬂoo(l — fo1) + 107t }

Var[log(nl (RR —1)] = { P

11700 — T107o01

The logarithmic function log(x) is defined only for x > 0. When the underlying
RR is close to 1, the probability of interval estimator (7.3) being inapplicable
due to RR < 1 can be substantial. Leung and Kupper (1981) suggest using (7.2)
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whenever (7.3) is inapplicable. However, use of this ad hoc strategy does not
produce an accurate interval estimator when AR = 1 (Lui, 2001a).

Lui (2001a) compares the performance of interval estimators (7.1)—(7.3) with
respect to the coverage probability and the average length. Lui finds that when
the probability of exposure 71, is moderate or large (0.20 or more), the coverage
probability of (7.1) will generally agree well with the desired confidence level as
long as the sample size is adequate or large (at least 100). However, using this
estimator generally leads to loss of efficiency with respect to the average length of
the confidence interval. When the underlying RR is close to 1, using (7.3) may
produce inaccurate interval estimates; the coverage probability can be much less
than the desired confidence level. On the other hand, when RR is large (at least
4) and the probability of exposure 71, is not small (0.05 or greater), interval
estimator (7.3) is preferable to (7.1) or (7.2). When the RR is large (at least 4) and
71, is very small (say, 0.005), interval estimator (7.2) is recommended.

Example 7.1 Consider the data (Fleiss, 1981, p. 10) consisting of 2784 subjects
classified by the presence or absence of a respiratory disease and a locomotor
disease. We have nj; = 17, nyg = 207, ng; = 184, and ngg = 2376. Suppose
that we are interested in estimation of the AR of the locomotor disease due
to the respiratory disease. Applying interval estimators (7.1)—(7.3), we obtain
asymptotic 95% confidence intervals for the AR of [—0.037, 0.044], [—0.036,
0.045], and [0.000, 0.974], respectively. The intervals obtained from (7.1) and
(7.2) are similar to each other, while that from (7.3) is shifted to the right. Because
RR = 1.06, which is close to 1, (7.3) is an unsuitable estimator in this instance.

Example 7.2 In a sample of 1329 subjects from the Framingham study of heart
disease (Leung and Kupper, 1981), 72 subjects developed coronary heart disease
(CHD) after 6 years out of 756 subjects with initial serum cholesterol (mg%)
of 220 or greater, while only 20 subjects developed CHD after 6 years out of
573 subjects with initial serum cholesterol less than 220. Given these data,
we obtain estimates RR = 2.73, 71, = 0.569, 717 = 0.054, and AR = 0.496.
Applying interval estimators (7.1)—(7.3), we obtain 95% confidence intervals for
AR of [0.263, 0.655], [0.305, 0.687], and [0.314, 0.679], respectively. We can
see that the interval obtained from (7.1) is slightly less efficient than the other
two, while the interval from (7.3) is the shortest.

7.1.2 Case-control studies

Note that the AR can be expressed as P(E|D)(RR — 1)/RR, where P(E|D)
denotes the exposure prevalence in the case population, and RR = P(D|E)/P(D|E)
(Exercise 7.6). When the underlying disease is rare, the RR can be approximated
by the odds ratio (OR) (Exercise 5.2). Note that both OR and P(E|D) are estimable
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from a case—control study, as is AR via the equation AR = P(E|D)(OR — 1)/OR.
In the following discussion, we shall assume that the underlying disease is so rare
that the difference between AR and P(E|D)(OR — 1)/0R is negligible.

Consider a case—control study in which we take an independent random sample
of nj subjects from the case (j = 1) and control groups (j = 0), respectively. We
then retrospectively classify each subject by whether he/she is exposed (i = 1) or
unexposed (i = 0) to the risk factor of interest. For clarity, we use the following
table to summarize the data structure:

Status of disease

Case Control
Exposure to Yes T 110
risk factor No o1 0|0
1 1

where O < mj; < 1 denotes the conditional probability that a subject has exposure
i (1 denoting exposed, and O unexposed), given the subject is from group j (1
for the case group, and O for the control). Let X; denote the number of subjects
who are exposed in group j. Then X; follows the binomial distribution with
parameters n; and 7). The sample proportion 71; = X;/n; is the MLE of 71; for
j = 1, 0. The conditional probabilities P(E|D) and P(E|D) are simply 1 and 7Ty o,
respectively. We can show thatP(E|D)(OR — 1)/OR = (m1); — m1)0)/(1 — 1p0) =
1- ¢*, where¢* = (1 — my1)/(1 — my)0) (Exercise 7.7). Note that the estimator
AR in this case is of the same form as the relative difference (3.1) discussed in
Chapter 3. Therefore, using ideas for deriving interval estimators of the relative
difference, we can derive interval estimators of AR.

First, note that because the MLE of the AR is AR =1 — ¢3*, where ¢A>* =
A = 711)/(A — 7100), we may apply the delta method to obtain an estimator of
the asymptotic variance Var(AR) (Exercise 7.8), namely,

Var(AR) = (¢*)(#11/[m (1 — #1)] + #10/[0(1 — #10)]}- (7.4)

Thus, an asymptotic 100(1 — «) percent confidence interval for the AR is

[AR — Zy/2\/ Var(AR), min{AR + Z,/»+/ Var(AR), 1}]. (7.5)

Note that the maximum value of AR is 1, and therefore we define the upper limit
in (7.5) as the minimum of AR + Zus2v/ Var(AR) and 1 to ensure that this limit
is valid. As noted for (3.3), interval estimator (7.5) is not likely to perform well
unless both n; are large. To improve the normal approximation of AR, we may use
the logarithmic transformation on ¢*. This leads to an asymptotic 100(1 — «)
percent confidence interval for the AR given by

[1 — " exp(Zy/2y/ Var(log(¢*))), 1 — ¢* exp(—Zy24/ Var(log(¢*)))],  (7.6)
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where@(log(dg*)) =mn/[m@A — 7)) + A10/[no(1 — 71)0)]. Note that, touse
(7.5)and (7.6), whenever ;; = O for someiandj, we may add 0.50 to each cell fre-
quency so that the cell probability estimate O < 7;; < 1 always holds for alliand .

Example 7.3 Consider the data taken from a case—control study (Cole et al.,
1971; Miettinen, 1976; Schlesselman, 1982) that identifies all newly diagnosed
cases of bladder cancer over an 18-month period ending June 30, 1968 among
residents of the Boston and Brockton Standard Metropolitan Statistical Areas
in eastern Massachusetts. Exposure is defined as whether a subject has smoked
at least 100 cigarettes during his/her lifetime. For the purpose of illustration,
we consider subjects between the ages of 75 and 79 years only. Given the data
X1 =39, m —X; =14, Xy =32, and ngp — Xp = 20, we obtain AR = 0.313.
This suggests that 31.3% of bladder cancers for individuals aged between 75
to 79 can be prevented if we reduce the number of cigarettes smoked during
the lifetime to below 100. Applying interval estimators (7.5) and (7.6), we
obtain[—0.075, 0.702]and [—0.209, 0.610], respectively. Because both interval
estimates cover O, there is no significant evidence at the 5% level that the AR due
to smoking in this particular age category exceeds O.

7.2 STUDY DESIGNS WITH CONFOUNDERS

When there are confounders, estimation of the AR can be biased if we do not
account for the confounding effects. In this section, we focus discussion on
estimation of the AR by employing post-stratified analysis to control confounders
for cross-sectional and case—control studies. Benichou (1991) and Coughlin et al.
(1994) both provide excellent reviews on various aspects of AR estimation in
case—control studies. The approach presented in this section is model-free. The
use of logistic regression to control confounders for estimation of the AR in
case—control studies (Deubner etal.,, 1980; Bruzzi etal., 1985; Benichou and
Gail, 1990; Drescher and Schill, 1991; Greenland and Drescher, 1993) will be
discussed in a separate section.

7.2.1 Cross-sectional sampling

Suppose that we take a random sample of n subjects and determine the status of
each subject by the presence or the absence of a disease and a suspected risk factor.
Suppose further that the combination of all confounders forms S levels, denoted
by Cs,s =1, 2,...,S. We post-stratify the n sampled subjects according to the
level of Cg to control the effects resulting from these confounders. For clarity, we
use the following table to summarize the data structure at the confounder level
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C(s=1,2,...,98):

Level of confounders

Cs
Status of disease
D D
Yes No
Exposure to E Yes T11s T10s s
risk Factor E No To1s TT00s TTo.s
T.1s TT.0s

where 0 < w3, < 1,i=1,0,j=1,0,ands=1,2,..., S, and Zizizsmjs =
1. Let Nj; denote the random frequency with the corresponding cell probability
7ijs, Ni.s = Nits + Nios, N.js = Nujs + Nojs, 2 2 Nijs = N.s, and Y N, s = n. The
random vector N" = (N111, N1o1, No11, Noo1» N112, N102, No12, Nooz2, - - -, Ni1s,
Nios, No1s, Noos) then follows the multinomial distribution with parameters
n and w' = (7111, T101, 011, 001> T1125 1025 0125 TTO025 - - - » T11Ss 1085 TO1Ss
Toos). Let 7 = Nys/n, which is simply the sample proportion estimate of
mijs. By the central limit theorem, the random vector /n(z — =) asymp-
totically has the normal distribution with mean vector 0 and covariance
matrix D(r) — wx’, where & = (7111, 101, To11, Too1, T1125 102, F012, T0025
.o, 1S, 7108, TTo1ss Toos) » 0= (0,0, ...,0) is a 1 x 4S vector with all terms
equal to 0, and D(x) is a 4S x 4S diagonal matrix with diagonal terms given
by mys. Define 7y = miis + mios and 7 j; = m1js + mojs. Similarly, when a sub-
script on the estimated sample proportion 7j;s (or the random frequency Nj;)
is replaced by a dot, we mean summation of 7 (or Nj) over that sub-
script; for example, 7, = ) 7 = Z/’ YAy and Ty =) Ay =D ;> Tijss
for i and j=1,0. When the underlying risk factor is eliminated, the AR,
denoting the proportional reduction of disease, is defined as >, P(C)[P(D|Cs) —
P(DIE, Cy)]/P(D) =1 — ZSP(CS)P(D@, Cs)/P(D), where P(C;) denotesthe preva-
lence of the confounder level C;, P(D|E, C;) denotes the conditional probabil-
ity of the disease given a subject from the non-exposed group at the level
Cs, and P(D) denotes the overall rate of the disease in the general popula-
tion (Gefeller, 1992a; Whittemore, 1982, 1983;Basu and Landis, 1995). In
this notation, the AR can be expressed as 1 — ) (wo157..¢/(0.57.1.)). Due
to the functional invariance property (Casella and Berger, 1990; see the
Appendix) of the MLE, the corresponding MLE of the AR is simply AR =
1 - (Fors7..s/ (Fo.s7.1.)). R

Define ¢peon =1 — AR = Zs(”()lsn..s/(no.sn.l.))- The MLE of ¢cont iS ¢eont =
Y (Fo1s7..s/(o.s7.1.)). Using the delta method (Anderson, 1958), we can easily
see that ﬁ(cﬁconf — ¢conf) has the asymptotic normal distribution with mean O
and variance
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nVar (dgconf) =

2
7o.s

Q
Lo H

{ARzn,l, n ZARZ 7005 (1057015 — 1157T00s)

2 2 2
|:7T00S7T11s + 105715 n jTOOszl_ST[Ols:|

2 3
HO.S o.s

.
i

2
TT10s7T01s — TT11s700s
— |:AR7T.1. + E

5 TT0.s
The estimated variance \75‘((]300111-) can then be obtained by simply substituting AR
for AR and the corresponding 7 for ;. Note that because the estimated asymp-
totic variance Var(AR)(= Var(1l — ¢cont)) is equal to Var(¢eonr), an asymptotic
100(1 — @) percent confidence interval for the AR is

[AR — Zy/2\/ Var(AR), min{AR + Z, 4/ Var(AR), 1}]. (7.7)

To improve the normal approximation of AR, following Leung and Kupper
(1981), we consider the logit transformation log(//&-f\{ /(1 — AT{)). We thus obtain
an asymptotic 100(1 — «) percent confidence interval for the AR given by
(Whittemore, 1982)

{ 1-AR (Za/zw/Var(AR)> }1
1+ exp s

AR AR(1 — AR)

AR

= (7.8)

{ 1-AR (—Za/zy/Var(AR)> }_1
1+ exp| ————=— .

AR AR(1 — AR)

Note that the logit transformation log(ﬁ{/ (1- ﬁ{)) is defined only for AR > 0.
When the underlying RRs(= P(D|E, Cs) /P(D|E, Cy)) in all strata is less than or
equal to 1, the probability that AR is negative or zero may be substantial. In
this case, interval estimator (7.8) is no longer applicable. However, applying the
logarithmic transformation directly to ébconf escapes this limitation. This is because
dcont > 0, sothat we can reasonably restrict the estimate q@mnf to be positive. Thus,
we may consider use of Iog(éconf) here. This leads to an asymptotic 100(1 — «)
percent confidence interval for the AR given by

[1- ‘lgconf eXp(th/Z\/ ﬁ(qgconf)/(lgfonf)’ 1- ‘lgconf eXp(_Za/Z\/ @(Q;conf)/‘z’czonf)l

(7.9)
Finally\, if the total number og\subjects n is large, we have P((AR — AR)?/
Var(AR)) = 1 — «, where Var(AR) is a function of AR. This leads us to consider
the following quadratic equation in AR:

A(AR)?> — 2B(AR) + € < 0, (7.10)
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where

A=1-72,71.(1 - #.1)/0A3),

Z 700s (1057015 — T1157T00s)
770 s

105015 — A115M00s ~
— 7. E (nm . ),
770 N

2 2
¢ = AR’ _ 22 |:Z <7Toos7T115 + 7T10s7T01s n 0057, S7T01s>
= /2

93:@+z5/2[

2 3
770 s To.s

TT10s701s — T11s7T00s ~2
- E = (nm3).
TT0.s

If both 2 > 0 and B2 — A€ > 0, then an asymptotic 100(1 — «) percent confi-
dence interval for the AR would be

[( W)/mmm{(%+M)/m,1}]. (7.11)

Example 7.4 Consider the prospective observational study (Table 7.1) of preg-
nancy and child development in Germany reported by Wermuth (1976). A total
of (n =)6751 subjects are cross-classified by the number of cigarettes smoked
per day (< 5, > 5), the length of gestation (LG) in days (< 260, > 260), and the
age of mother (AM) in years (< 30, > 30). Suppose that we want to estimate
the AR for ‘smoking 5 or more cigarettes per day’ versus ‘smoking less than 5
cigarettes per day’ on the perinatal death, while controlling the two confounders:
LG and AM. We define the level of C; by (LG < 260 days, AM < 30 years), C, by

Table 7.1 Contingency table for perinatal mortality by the
number of cigarettes smoked per day during the prenatal
period stratified by the length of gestation in days and the age
category of mother.

Perinatal survival

Age Gestation Smoking No Yes
<30 <260 5+ 9 40
<5 50 315

>260 5+ 6 459

<5 24 4012

30+ <260 54 4 11
<5 41 147

>260 54 1 124

<5 14 1494

Source: Wermuth (1976).
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(LG > 260 days, AM < 30years), C; by (LG < 260days, AM > 30 years), and
C4(LG > 260 days, AM > 30years). From the data, we obtain MLEs of RRy(=
P(D|E, C5)/P(DIE, Cy)) for s=1,2,3,4 of 1.341, 2.170, 1.223, and 0.862,
respectively. We further obtain the MLE for the AR to be 0.041. Applying (7.7),
(7.8),(7.9),and (7.11) gives 95% confidence intervals for AR of [—0.016, 0.098],
[0.010, 0.153], [—0.017,0.096], and [—0.016, 0.098]. Except for the interval
obtained from (7.8), these estimates are similar to one another. Because the lower
limits of the intervals obtained from (7.7), (7.9), and (7.11) are all less than 0,
these results suggest that there is no significant evidence at the 5% level that the
proportional reduction of perinatal deaths would be greater than O if the mothers
reduced the number of cigarettes smoked per day to 5 or less. Note that the
estimated RR; for the three levels C;, C3, and C4 are not much different from 1.
Thus, the estimated AR of perinatal mortality due to the reduction of the number
of cigarettes smoked per day to below 5 is small (A-f{ = 0.041). Lui (2001b) notes
that (7.8) may in this case not perform well.

When there are no confounders, Lui (2001b) notes that the interval esti-
mator using the logarithmic transformation as suggested by Fleiss (1979) may
improve the performance of the interval estimator using Wald's test statistic
(Walter, 1976). By contrast, the latter outperforms the former when there
are confounders requiring adjustment in estimation of the AR. Note also that
both interval estimators (7.7) and (7.11) can consistently perform well with
respect to coverage probability. If we had no prior knowledge about the pos-
sible range of the underlying RR in a study, we would recommend these two
interval estimators for general use. However, if we know that the underlying
RR; are likely to be large (at least 4) for all k, then we will recommend use
of interval estimator (7.8). This is because using (7.8) when RR > 4 can gen-
erally gain efficiency. Finally, note that when the underlying RR; is constant
over strata (i.e., RRy = RRy), as shown in Exercise 7.10, the AR reduces to
P(ElD)(/R\RO — 1)/RRy. Thus, we can estimate AR by (N11./N.1.)(RRg — 1)/RRy,
where RRg = (3", N115No.s/N..s) / (35 No1sN1.s/N..5) (Gefeller, 1992b; Tarone,
1981; see also (4.10)). Gefeller (1992b) notes that this point estimator performs
quite well under the homogeneity risk model, but is subject to remarkable bias
irrespective of the sample size under the heterogeneity risk model.

7.2.2 Case-control studies

Suppose that we take an independent random sample of n; subjects from the
case (j = 1) and the control (j = 0) populations, respectively. For each sampled
subject, we retrospectively determine the exposure i (1 for being exposed, and O
for being non-exposed). Suppose further that the combination of all confounders
forms S levels, denoted by C;, s =1, 2, ..., S. To control the effect due to these
confounders, we post-stratify the n; sampled subjects according to the level of C;.
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For clarity, we use the following table to summarize the data structure:

Level of confounder

Cs
Status of disease
D D
Yes No
Exposure to E Yes 11 1510
risk factor E No TT0s|1 TT0s]0
T 5|1 T 510

where m;y; denotes the conditional probability that a subject has exposure i
and confounder level C, given this subject is from group j. Let Niy; denote
the corresponding random frequency with cell probability 0 < m;y; < 1. Define
Nijj = > ¢ Nigj» N.gj = Nigj + Nogj, and Y ;> Nig; = n;. The random vector
N] = (Nu‘j, N01|]', N12|]', N02|]', ey le‘j, NOSU) follows the multinomial distribu-
tion with parameters n; and 7[j/ = (7T11|]', TTO1js 701215 TTO2ljs - « - » TT1S)j» 77.'03”). Let
Tisli = Nigjj/nj. By the central limit theorem, the random vector ,/m;(1t; — ;)
asymptotically follows the normal distribution with mean vector 0 and covariance
matrix D](H]) 7[ where ]I = (nll\]» 7T()1|], 7'[12‘], 7'[()2”, ey ﬁ1S|j7 ﬁogu), 0=
(0,0,...,0) is a 1 x 28 Vector with all terms equal to O, and D;(xrj) is a
28 x 2S diagonal matrix with diagonal entries given by ;. As noted in the
previous section, when a subscript of the estimated sample proportion 7 is
replaced by a dot, we mean summation of 7;y; over that subscript. For example,
iy = Y_, 7is)j- Note that the AR in the presence of confounders C; can be expressed
as Y P(Cs|D)(1 — P(D|E, C,)/P(D|C,)) (Exercise 7.10). When the underlying
disease is rare, the AR can then be approximated by (Exercise 7.12)

ARy =1 — Y " P(C|D)P(E|C,. D)/P(E|C;. D). (7.12)

which is a function of parameters estimable from a case—control study. In the
following discussion we shall assume that the disease is so rare that the difference
between AR,px and AR is negligible. Because P(E|C,, D) = P(E, Cy|D)/P(C,|D)
and P(E|Cs, D) = P(E, C;|D)/P(C,|D), we can write ARgpx = 1 — ¢} where

ol = 25 0517510/ Tosj0, @ weighted average of the ratio Tos)1, /Tosj0 With
welght given by mgo. Thus, the MLE of ARy is ARapX =1- qﬁconf, where

;fonf = ) Tos/17.sj0/ Tosj0- By the delta method, we can show that the estimated

asymptotic variance (Whittemore, 1982) of é&:onf is given by (Exercise 7.13)

") a0 N
TR 1 Tos1 70 s 1 N7y A
oy s117C 50 171500 . O
Var(éeon) = — E ~ = — (@507t
mo 5 TT0si0 Tos1 MoT.s070s|0

(7.13)
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Therefore, an asymptotic 100(1 — «) percent confidence interval for AR is
given by

[1 — % o — Zaja/ Var(@r,, ), min{1 — ¢ ¢ + Zaj2y/ Var@r, ), 1} (7.14)

In order to improve the normal approximation of qgjonf, we may consider using
the logarithmic transformation. It is easy to see that the estimated asymptotic
variance Var(log(¢conf)) equals Var(ci)wnf) / (¢>Conf)2. Thus, an asymptotic 100(1 —
«) percent confidence interval for the AR using the logarithmic transformation is

given by

[1 - é:(mf eXp(ZOt/2 V @(éjonf)/éjonf)’ 1- égonf eXp(_Z‘)f/z \% @(éjonf)/éjonf)]'

(7.15)
Again, following Leung and Kupper (1981), we may consider use of the logit
transformatlon log(AR/ a- AR)) Because the estimated asymptotic variance
Var(log(AR/(1 — AR))) = Var(q‘)com)/(AR(l)Lom)2 an asymptotic 100(1 — «) per-
cent confidence interval for the AR using the logit transformation is given by

[(1 + (@%0/AR) exp(Za21/ Var(e,, )/ (ARG .0} Y,

{1+ (@%,1/AR) exp(—Za2y/ Var(d?, . ) /(ARGE N} . (7.16)

The interval estimators (7.14), (7.15), and (7.16), derived on the basis of a
weighted average of stratum-specific estimates of AR;, were first developed
by Whittemore (1982, 1983). They are valid even when the underlying OR varies
between strata. However, their use does require sufficient subjects from each
stratum. When the data are sparse, readers may refer to the approach proposed
by Kuritz and Landis (1988a). When the underlying disease is rare and OR is
constant, because AR can be approximated by P(E|D)(OR — 1)/OR, we may
use the Mantel-Haenszel summary odds-ratio estimator (5.13) to estimate the
common OR and Ny,; /n; to estimate P(E|D) (Kleinbaum et al., 1982). Using the
deltamethod, Greenland (198 7) derives an asymptotic variance for this estimator.

Example 7.5 Consider the lung cancer mortality study of white US uranium
miners which included data on their cigarette smoking and radiation exposure
status (Whittemore, 1982). The 776 miners in the study were matched to
the 194 lung cancer decedents on year of birth. Suppose we are interested in
estimation of the AR due to cumulative radon-daughter exposure, measured
in working-level months (WLM); the cumulative smoking variable, measured
in pack-years, is a confounder. Following Whittemore (1982), we dichotomize
the radiation exposure status by using 120 WLM as the cutoff point; we also
dichotomize cumulative smoking, with 20 pack-years as the cutoff point. For
simplicity, we consider only the data for white miners between 55 and 59 years of
age (see Table 7.2). From the data, we obtain the MLE AR, (= AR) = 0.639, and
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Table 7.2 Cumulative radiation exposure in WLM units
for US uranium miners and mortality rates for lung cancer
among US white males aged 55-59.

Cumulative smoking
(pack-years)

<20 >20
WLM WLM WLM WLM
>120 <120 >120 <120
Cases 5 2 34 5
Controls 41 35 64 44

Source: Whittemore (1982).

@(({)ﬁonf) = 0.016 96. Applying interval estimators (7.14), (7.15), and (7.16),
we obtain 95% confidence intervals for AR of [0.384, 0.894], [0.269, 0.822],
and [0.370, 0.842]. Since all the resulting lower limits are above O, the AR of
lung cancer due to cumulative radiation exposure is significantly greater than O
at the 5% level.

7.3 CASE-CONTROL STUDIES WITH MATCHED PAIRS

When studying a rare disease in the presence of strong nuisance confounders,
we may often employ a case—control study design with matched pairs to increase
efficiency. Suppose that a random sample of n cases is taken, and each is matched
with a control with respect to certain nuisance confounders to form n matched
pairs. Then each pair is classified according to the exposure status of the case and
control as shown in the following table:

Control
Exposed Unexposed
Case Exposed 11 10 1.
Unexposed o1 oo 0.
T 7.0 1

where O < ;; < 1 denotes the corresponding cell probability, m;, = 71 + o,
and 7 ; = my; + mp; for i and j =1, 0. Recall that AR = P(E|D)(RR — 1)/RR
(Exercise 7.6). When the underlying disease is rare, we can approximate the RR
by OR(= m10/701) and thus approximate the AR by 71 (719 — 701)/710. In the
following discussion we will assume that the underlying disease is so rare that AR
and my, (7m0 — 7o1) /710 are indistinguishable.

Let Nj; denote the random frequency of pairs falling into the cell with probability
mj. The random vector N' = (N11, N1o, No1, Noo) then follows the multino-
mial distribution (2.25) with parameters n and n’ = (711, 710, 701, 7oo). Note
that the sample proportion 7; = Njj/n is the MLE of m;, as are 7; = N;/n
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and 7"\[‘]' = N_]'/I’l, where N = IVj1 +Nj() and N_]' = N,I.L+ NO]', for TT;, and .,
respectively. Therefore, the MLE of AR is simply AR = 71 (710 — #01)/710-
Define the random vector &’ = (711, 710, o1, Too). By the central limit theo-
rem, we know that /n(% — ) asymptotically follows the normal distribution
with mean vector 0 and covariance matrix D(x) — wx’, where 0’ isa 1 x 4
vector of zeros, and D(x) is a 4 x 4 diagonal matrix with diagonal elements
equal to 11, T10, W01, and mog. Using the delta method, the asymptotlc vari-
ance of AR is glven by (Exercise 7.15) Var(AR) = {(m10 — mo1)% 711 + (7110
To1m11)2 /0 + 711 o1 — [m1. (10 — wo1) ]2 }/(”7710) which we can estimate by
substituting the MLEs 7;; for 77;;. We denote this estimated variance by Var(AR)
We thus obtain an asymptotic 100(1 — «) percent confidence interval (Kuritz
and Landis, 1987) for AR given by

[AR — Zy/2\/ Var(AR), min{AR + Z,/,+/ Var(AR), 1}]. (7.17)

In an effort to improve the normal approximation of AR, we may consider use
of the logarithmic transformation (Katz etal., 1978). Using the delta method,
we obtain the estimated asymptotic variance Var(log(AR)) = (AR) 2Var(AR)
Hence, an asymptotic 100(1 — &) percent confidence interval for the AR is

[AR exp(—Ze/2y/ Var(log(AR))), min{AR exp(Zy/2y/ Var(log(AR))), 1}]. (7.18)

Following Leung and Kupper (1981), we consider the logit transformation
log(AR/ (1-— AR)) Because the estimated asymptotic variance Var(log(AR/ 1 -
AR))) equals (AR(l — AR)) 2Var(AR) an asymptotic 100(1 — &) percent confi-
dence interval for the AR using the logit transformation is

[{1 4 (1 — AR)/AR) exp(Zy,2\/ Var(AR)/(AR(1 — AR)))} !,
{1+ ((1 — AR)/AR) exp(—Zu/2y/ Var(AR)/(AR(1 — AR)))}"']. (7.19)

Note that the logarithmic function log(x) is defined only for x > 0. When AR <0,
neither (7.18) nor (7.19) is applicable. Consider ¢ =1 — AR = (w1070, +
m1.701) /710, which is always positive. Thus, we may consider use of the log-
arithmic transformation log(1 — AR) rather than log(AR) as used for deriving
(7.18). Note that Var(l — AR) Var(AR) Using the delta method, we obtain
the estimated asymptotic variance Var(log(¢>T)) equal to Var(AR) / (¢>T)2 where
d)T =1 — AR. Therefore, we obtain an asymptotic 100(1 — «) percent confidence
interval for the AR given by

[1 — @7 exp(Zy/ay/ Var(log(¢h))), 1 — ¢T exp(—Zy,2\/ Var(log($H)))],  (7.20)

Recall that the asymptotic variance Var(//ﬁ{) is equal to {(m10 — 7o1)%m11 +
(i) + mo1m11)% /M0 + T w01}/ (nd)) — AR? /n. Furthermore, if n is large, the
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probability P((AR — AR)?/Var(AR) < 72 12) =1 —a. These expressions lead to

the following quadratic equation in AR: ATAR? — 2BTAR + C < 0, where AT =
— -2 N R N N A A

1+ Zz/z/n Bl = AR, andCl = AR™ — Zﬁ/z{(ﬂlo — 7T()1)27'[11 =+ (7t120 + 7'[017'[11)2/

10 + 711_7101}/(117?120) (Exercise 7.16). An asymptotic 100(1 — «) percent con-

fidence interval for AR is then

[(BT — V/(B")2 — ATCT)/AT, min{(B" + /(B)2 — ATCT)/AT, 1}]. (7.21)

Note that because the coefficient AT is positive, this equation is convex. Further-
more, with the commonly used adjustment procedure for sparse data of adding
0.5 to each cell frequency whenever any of the Nj is O, we can show that the
inequality (B")2 — ATC' > 0 holds for all samples. The two distinct roots of the
confidence limits in (7.21) thus always exist.

Lui (2001c) finds that, except for a few situations where the exposure prevalence
in the case group is large (;r1. = 0.80), interval estimator (7.17) using Wald's
statistic does perform reasonably well. While interval estimator (7.20) can improve
the coverage probability over (7.17), using the former is likely to lead to a loss of
efficiency as compared with the latter. By contrast, interval estimator (7.21) may
generally not only improve the coverage probability of (7.17) but also increase
the efficiency. Thus, interval estimator (7.21) is recommended for general use.
When we know that both the underlying RR and ;. are not small (RR > 4 and
1. > 0.50), say from some prior studies, however, we may wish to use interval
estimator (7.19) as well, especially when nis not large. A discussion on estimation
of the AR when there is more than one matched control per case can be found
elsewhere (Kuritz and Landis, 1988b).

Example 7.6  Consider the data consisting of 183 pairs taken from a case—control
study of oral conjugated estrogens and endometrial cancer (Antunes et al.,
1979; Schlesselman, 1982; Kuritz and Landis, 1987). We match each case with
a control on race, age (within five years), date of admission (within 6 months),
and hospital of admission. We then classify these 183 matched pairs according
to their exposure status (ever versus never) with regard to use of the estrogens.
From the data, we have ny; = 12, njg = 43, np1 = 7, and ngg = 121. Suppose
that we are interested in estimation of the AR of endometrial cancer due to the use
of the estrogens. We obtain an estimate AR = 0.252. Using interval estimators
(7.17)—(7.21), we obtain asymptotic 95% confidence intervals for AR of [0.172,
0.331], [0.183, 0.345], [0.181, 0.339], [0.168, 0.327], and [0.167, 0.325],
respectively. The confidence intervals obtained from (7.18) and (7.19) are shifted
slightly to the right as compared with the other three intervals, which are all
similar to one another. In fact, applying Monte Carlo simulation to compare
the performance of these estimators in the particular configuration given by the
example, Lui (2001c¢) finds them all suitable for use; in each case the coverage
probability is approximately equal to the desired confidence level. However, Lui
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notes that interval estimator (7.21) may be slightly more efficient than the other
estimators in terms of average length.

7.4 MULTIPLE LEVELS OF EXPOSURE
IN CASE-CONTROL STUDIES

There are situations in which the risk factor is polychotomous rather than
dichotomous (Walter, 1976). For example, in a study of smoking and myocardial
infarction (Shapiro et al., 1979; Denman and Schlesselman, 1983), the risk factor
of cigarettes smoked per day is categorized into several categories. Multiple levels
of exposure can also be formed by a combination of several exposure variables.
In this section, we discuss estimation of the AR due to each level of exposure.
As noted elsewhere (Coughlin et al., 1994), such estimates may have important
policy implications for screening groups at highest risk of disease.

Suppose that we take an independent random sample of nj subjects from the case
(j = 1) and the control (j = 0) populations, respectively. We then retrospectively
classify the subject according to the level of exposure Ey, wherek =0, 1, 2, ..., K.
We define an exposure of Ey as the baseline level. Let Ny; denote the number
of subjects falling into the cell with probability my;(k=0,1,2,...,K) out of
nj(= Y i Nij) subjects. Thus, N; = (Nojj, Nujj, . . ., Ng)p)’ follows the multinomial
distribution with parameters n; and m; = (7o), 71y, . . ., 7x;))’. Therefore, the
MLE of my; is #x; = Nyj/n;. For k > 1, the attributable risk ARy, denoting the
proportional reduction of disease when we reduce the exposure level from
Ex to Eg, is simply given by [P(D|Ey) — P(D|Ey)]|P(Ex)/P(D), where P(D|Ey)
(for k=0,1,2,...,K) denotes the conditional probability of disease, given an
exposure level equal to E, and P(E;) and P(D) denote the exposure and the
disease prevalence in the general population, respectively. We can show that ARy
is actually equal to (Exercise 7.18)

K
ARy = P(Ex) (RRy — 1)/ |:1 + ZP(Elc)(RRk - 1)i| ; (7.22)

k=1

where RRy, = P(D|Ey)/P(D|Ey) is the RR between Ej; and Ej. Note that, by
definition, RRg = 1 and ARy = 0. When the underlying disease is rare, we can
approximate the P(Ey) by the conditional probability P(E|D) of exposure level E
in the control population and RRy by OR; = P(Ex|D)P(Ey|D)/[P(Eo|D)P(Ex|D)].
Thus, the AR can be approximated by

P(Ex|D)(ORy — 1)/ [1 + ZP(Ek|1_))(0Rk — 1)] . (7.23)
k

In terms of the my;, we can express this approximation as (Exercise 7.19)

(7T 17010 — 0|1 7Tk0) /TToj0- (7.24)
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In the following discussion, we shall assume that the disease is so rare that the
difference between AR and its approximation in (7.23) or (7.24) is negligible.
From (7.24), the MLE of ARy is then

ARy = (Ty1Toj0 — Toj17K0)/Tojo- (7.25)

Using the delta method, the estimated asymptotic variance of fﬁ{k is

A

= ~ ~ TTk|O 2 ~ ~ A A ﬁk\o
Var(ARy) = [ myn(1 — 1) + | =— ) 7mopn (1 — 7op1) + 21 o =—— n
TT0|0 0|0

A 7:[2
+ | (Gop)? ';'0+ 0 /no. (7.26)
o0 ”0|0

For K =1, Aﬁl (7.25) and variance (7. 26) reduce to the MLE AR = (Tp —
7110)/7ojo and the variance Var(AR) (7.4) for the case of dichotomous levels of
exposure discussed in Section 7.1.2 (Exercise 7.20). Note that the asymptotic
variance (7.26) is slightly different from that obtained by Denman and Schles-
selman (1983) by a term which decreases to O as either n; or ng goes to co.
Thus, when the n; are reasonably large, the difference between (7.26) and the
variance formula developed by Denman and Schlesselman (1983) is negligible.
From (7.26), we obtain an asymptotic 100(1 — «) percent confidence interval for
ARy given by

[AR}, — Zo/21/ Var(ARy), min{ARy + Zy/21/ Var(ARy), 1}]. (7.27)

Similarly, to improve the normal approximation of /ﬁ{k, we consider use of
the logarithmic transformation log(1 — AR) As noted before, Var( 1-— ARk) =
Var(ARk) . Using the delta method, we obtain that the estimated asymptotic
variance Var(log(l — ARk)) = Var(ARk) /(1= ARk)2 Therefore, an asymptotic
100(1 — @) percent confidence interval for ARy is given by

[1— (1 ARy) exp(Z2y/ Var(log(1 — ARy)),

1 (1~ ARy exp(~Z2y/ Var(log(1 — ARo). (7.28)

Following the same idea as for deriving (7.21), we may rewrite the asymptotic
variance of Var(AR) as

2 2
Tk Tk Tk
T + <i> o1 — AR% /l’l1 + (Hou)z % + % /l’lo. (7.29)
0l0 oo Tojo
Asymptotically in n, the probability P((Aﬁk - ARk)Z/Var(ﬁ{k) < Zﬁ /2) =1-—oa.

These considerations lead to the following quadratic equation in ARy:

AkAR,% — 2BARy +Cr <0,
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—_— Az ~ ~ ~
where A, =1+ Zi/z/nl, By = ARy, and Cy = ARk — Zi/z[ﬂ’ku + (JT](‘()/JT()K))Z
fonl/m = 72 5[ (Fop)? (Fxo /%0 + Ao/ Fg0)]/Mo (Exercise 7.21). An asymp-
totic 100(1 — «) percent confidence interval for ARy is then given by

[(By — / B2 — A/ Ar min{(By + /B2 — AC)/ Ar 1}]. (7.30)

Note that we can easily show that ARy = P(Ex|D)(RRy — 1)/RRy (see
Exercise 7.6). Thus, the AR due to the K mutually exclusive levels (k=
1,2,...,K) of exposure is simply equal to £} | ARy = 1 — =¥  P(Ex|D)/RRy =
1 —P(D|Ey)/P(D) (Exercise 7.22). In fact, this is the AR for the case of
dichotomous exposure and hence all the results presented in Section 7.1.2.
can be applied. Similarly, when there are confounders that form S
distinct levels C;,Cs,...,Cs, the AR due to all K exposure levels is
then equal to T3, K [P(D|Ek, C5) — P(DIEy, C)]P(Ex|Cs)P(Cy)/P(D) = 1 —
E§:12,£<:0P(Ek, Cs|D)/RRy;s, where RRys = P(D|Ex, C)/P(D|Ey, Cs) (Lui, 2003;
Exercise 7.23). Note that if RRy; does not depend on the level C; of confounders
(i.e. RRy;s = RRy), the above formula can be simplified to 1 — EE:()P(EHD)/RR;
However, we should not interpret this as allowing us to ignore the confounders
in estimation of the AR. When estimating the RR}, we still need to control
the confounders  to avoid blas The above formulae also indicate that once we
have estimates RRM\ (or RRk when RRy, is constant across the levels of C),
we can estimate the AR from the distribution of exposure among the cases
only. When the underlying disease is rare, the RRy can be approximated by
ORyjs = P(ExID, Cs)P(Eo|D, Cy)/[(P(Eo|D, Cs)P(Ex|D, Cy)]. Furthermore, because
P(Ey|D, Cy) = P(Ey, C|D)/P(Cs|D) and P(Ey|D, Cy) = P(Ey, C|D)/P(Cs|D), we can
apply the corresponding empirical estimators to estimate these parameters from
a case—control study. When the number K x S of cells cross-classified by the
exposure variables and confounders is large relative to the number of subjects,
however, this approach may not be appropriate (Lui, 2003). This is because in
this case the number of subjects falling into each cell is likely to be small and the
MLE of AR can suffer a serious underestimation bias (Lui, 2003; Whittemore,
1982). This leads us to consider use of a multivariate model-based approach for
estimation of the AR in the next section.

Example 7.7 Consider the data consisting of women aged 35—39 in a study of the
relation between oral contraceptive use and myocardial infarction (MI) (Shapiro,
etal.,, 1979; Denman and Schlesselman, 1983). Information on the number of
cigarettes smoked per day is collected as part of the study. The observed frequencies
from the case and control groups (in parentheses) falling in the categories ‘none’,

‘1-24’, and ‘254" are: 3 (161), 12 (130), and 22 (65), respectively. From these
data, the MLES AR1 and ARZ are 0.259 and 0.562, respectively. This suggests that
an estimated 26% of the cases of MI are attributable to smoking 1—24 cigarettes
per day, and 56% are attributable to smoking 25 or more cigarettes per day,
all other factors being equal between the case and the control groups. Applying
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interval estimators (7.27), (7.28), and (7.30), we obtain the asymptotic 95%
confidence intervals for ARy to be [0.079, 0.439], [0.055, 0.419], and [0.061,
0.408]. Similarly, we obtain the asymptotic 95% confidence intervals for AR, to
be [0.388, 0.736], [0.348, 0.706], and [0.335, 0.683] for using (7.27), (7.28),
and (7.30). When comparing these interval estimators, we may note that interval
estimator (7.28) seems to produce a slightly longer confidence interval for ARy
than the other two estimators.

7.5 LOGISTIC MODELING IN CASE-CONTROL STUDIES

When the confounding effects can be controlled through stratification and the
number of subjects is large relative to the number of combined levels determined
by all variables under consideration, we may apply the model-free approach as
discussed in Section 7.2 or recent results of (Lui, 2003) to estimate the AR. On
the other hand, if the number of subjects is not large, the estimator of the AR
based on a function of the GT{HS, which themselves are subject to large variation,
may be questionable. The multivariate model-based approach is an appealing and
logical approach to solving this practical difficulty. Based on the fact that the AR
can be written as 1 — Zf;l Zf:o P(Ey, Cs|D)/RRys, Bruzzi et al. (1985) suggest
that one can estimate the AR by simply using the empirical joint distribution of
exposure and confounder variables from the sample of cases and the resulting
estimate ﬁl\%k‘s based on the assumed logistic regression model. Benichou and Gail
(1990) further derive the asymptotic variance of the estimator proposed by Bruzzi
etal. (1985). Greenland and Drescher (1993) discuss the MLE of the AR under
logistic regression models. Drescher and Schill (1991) propose a simple innovative
approach by observing that the intercept parameters in the logistic regression
are actually a function of the AR. Thus, we can easily apply standard statistical
software to obtain both point and interval estimates of AR. Because Drescher and
Schill’s approach is easily understood and simple to use, here we concentrate the
following discussion on using this approach.

7.5.1 Logistic model containing only the exposure variables
of interest

We begin by considering the situation where the vector z consists of only the
exposure variables of interest (i.e., there are no confounders). Let zy represent the
baseline level for z. Let D denote the random variable of disease status (1 for a
case, and O otherwise). The AR can then be defined as

1 —P(D = 1|z9)/P(D = 1), (7.31)

where P(D = 1) and P(D = 1|zy) denote the disease rate in the general popu-
lation and the reference population with z = z,, respectively. Suppose we take
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an independent random sample of size n; from the case (j = 1) and the con-
trol (j = 0) populations, respectively. Following Drescher and Schill (1991), we
consider the logistic regression model P(D = 1|z) = exp(By + B'(z — 20))/(1 +
exp(Bo + B'(z — zy))). We can easily see that the intercept B is simply equal
to log(P(D = 1|z¢)/P(D = 0|zgp)). Furthermore, as shown elsewhere (Anderson,
1972; Farewell, 1979; Prentice and Pyke, 1979; Exercise 5.19), when deriving
the MLE of B from retrospective data, we can focus attention on the likelihood

ﬁ ( exp(B5 + B'(z; — 20)) )Di < 1 >1 D (7.32)
, 1 +exp(B; + B'(z; — 20)) 1 +exp(B; + B'(zi — 20)) ' '

i=1

where B; = Bo + log(t1/70), 7; being the sampling fraction of population j. Note
thatt; /19 = (n,/ny)[P(D = 0)/P(D = 1)]. When the underlying disease is so rare
that P(D = 0]zp) = P(D = 0) = 1, Drescher and Schill (1991) note that

By =1log(P(D = 1]20)/P(D = 1)) + log(m1/ng) = ¢* +log(ni/no),  (7.33)

where ¢* =log(l — AR). Assuming that nj/n — p; > 0 as n — oo, where
n = n; + ng, Prentice and Pyke (1979) show that ﬁ[((ﬁ*, /§’)/ — (¢*, B/)']asymp-
totically follows the normal distribution with an estimated covariance matrix
given by

a A A A1
[L,(ﬂé,ﬂ)/n]l—[(p”g” g] (7.34)

where :éo and /? are the MLEs of g and 8, O(BO B) is the observed information
matrix, and p; = n;/n. We can easily obtain these estimates by usmg PROC
LOGISTIC in SAS (1990) Thus, the estimated asymptotic variance Var(¢ ) is

glven by (Io(/g()’ ﬂ) l)11 - (1/711 + 1/nO) where (Io(/g()’ ﬂ) l)11 is the (1 l)th
element of the inverse of the observed information matrix. Based on these results,

the MLE of the AR is
AR =1 — exp(B} — log(n1/ng)). (7.35)

Furthermore, the corresponding asymptotic 100(1 — «) percent confidence inter-
val for the AR is given by

[1 — exp(Bi — log(n1/ng) + Zuj2y/ Var(¢*)),
1 — exp(Bg — log(n1/ng) — Zey2y/ Var(¢*))]. (7.36)

Example 7.8 To illustrate the approach of Drescher and Schill (1991) and allow
readers to easily compare the results between the model-free approach discussed
previously and the logistic regression discussed in this section, we consider the
simplest case, where the vector z contains only a single variable of dichotomous
exposure. Consider the data on the association between smoking (z =1 for
smoking, and z = O for non-smoking) and bladder cancer (D = 1 for a case, and
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D = 0 for a non-case) from the case—control study discussed in Example 7.3
(Cole etal., 1971). Recall that X; = 39,n;—X; = 14, Xg = 32, and ng— Xy =
20. When applying PROC LOGISTIC in SAS (1990) to the likelihood (7.32),
we obtain Bo = —0.3567, with estimated standard error SD(,BO) = 0.3485.
This leads to AR = 0.313 from (7.35), the same as obtained in Example 7.3.
Applying (7.36), we obtain an asymptotic 95% confidence interval for the AR
of [-0.209, 0.610], again identical to the interval obtained from (7.6) using the
log(1 — x) transformation. In fact, as noted by Drescher and Schill (1991), we can
show that when the logistic regression model contains only a single dichotomous
exposure variable, the MLE (7.3 5) of the AR isidentical to (7711 — n1|0)/(1 — 7T1\0)
Furthermore, we can show that the estimated asymptotic variance Var(qb ) is
equivalent to 7711 /[m1 (1 — 11)] + 110/[M0(1 — 71)0)] (Exercise 7.25).

7.5.2 Logistic regression model containing both exposure and
confounding variables

When estimating the AR, we may encounter situations in which there are
confounders. For simplicity, we will restrict the following discussion to the
situation in which the confounders can be controlled by stratified analysis. A
discussion extending this to accommodate a more general situation can be found
elsewhere (Greenland and Drescher, 1993).

Suppose that the combinations of all confounders form S levels, denoted by
Cs,s=1,2,...,8. Suppose further that from each stratum s(s = 1, 2, ..., S) we
take an independent random sample of ng subjects from the case (j = 1) and
the control (j = 0) populations, respectively. Let n;, = ng; + nyg denote the total
number of sampled subjectsin stratum s. The AR can be defined as (Exercise 7.10)

> P(CID = DAR,, (7.37)

where ARy =1 —P(D = 1|z, C;)/P(D = 1|C,) and z, is the desired baseline
level. For each stratum, we assume that the OR of the disease rate for a person
with exposure covariate z to a person with z, is homogeneous and is given by
exp(B’(z — zp)). Following Drescher and Schill (1991), we consider the logistic
regression model P(D = 1|z, Cy) = exp(Bos + B'(z — 20)) /(1 + exp(Bos + B’ (z —
2p))). The intercept By is simply equal to log(P(D = 1|z, C;)/P(D = 0|zg, Cy)).
Furthermore, when deriving the MLE of B, we can focus attention on the
likelihood

li[ I ( exp(B3, + B (s — ) )D ( 1 )H)fs
1+ exp(Bg, + B'(zis — 20)) 1+ exp(Bg, + B'(zis — 20)) '

s=1 i=1
(7.38)
where D is 1 if the ith subject in stratum s is a case and O otherwise,
B = Bos +log(ts1/750), Ty being the sampling fraction of population j in stratum
Cs, and z; is the value of z on the ith subject from stratum s. Since t51 /750 =
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(ng1/ns0)[P(D = 0|Cy)/P(D = 1|Cy)], under the assumption that the diseaseisrare
for each stratum, we have

Bos = 10g(P(D = 1|zo, C)/P(D = 1[Cy)) + log(ns1/ns0) = ¢; + log(na /ns),

(7.39)
where ¢} =log(1 — ARy). Define B = (8(;. Bsz, - -+ Bisr - - -+ Big) and ¢* =
(@7, @5, ... dF, ..., ¢ Assumethatng/n — pg > 0,wheren =) (s + ny),

(j = 1, 0).Following Prentice and Pyke (1979), we may claim that ﬁ[(é;*, ﬁ/)/ —
(9", ﬁ/)/],wAheredb* = (B3, — log(n11/m10), B3, — log(nz1/n20), - .., By, — log(ng
/N50), - .., Bls — log(ng1 /nso))’, asymptotically follows the normal distribution
with estimated covariance matrix given by

0B, Byl [(r, g] , (7.40)

where ,@5 and ﬁ are the MLEs of B; and ﬁ,Io(ﬁ(ﬁ,ﬁ) is the observed
information matrix, and T is given by the diagonal matrix diag (1/p11 +
1/p10,1/021 +1/p20, .. 1/,031 + 1/ps0), with pg = ns,/n Thus, the estimated
asymptotic covariance matrix Cov(¢ )is given by (Io(ﬂo, ﬂ) D11 — diag(1/n;; +

1/ny0, 1/n21 4+ 1/n29, ..., 1/ng1 + 1/ngp), where (Io(ﬂo, /3) 1y, is the upper left
S x S matrix of the inverse of the observed information matrix. Based on these
results, the MLE of ARy is

AR; = 1 — exp(B; — log (g1 /n0)). (7.41)

The asymptotic 100(1 — «) percent confidence interval for AR is then given by
[1 — exp(Bj, — log(n1 /n0) + Zay2y/ Var($?)),

1 — exp(B, — log(ng1 /Ns0) — Zayjay/ Var(@))]. (7.42)

To estimate the AR due to reducing from z to z,, we may use

AR =) py ARy, (7.43)
N

Wherepsu_ngu/nl DeﬁneAR —(ARl,ARz, .. AR\) f) @1‘1 ﬁzu,...,ﬁgu)
and A’ = (a- AR1)p1|1, 1 - ARz)pzu, .. (1 — ARS)pS|1) Drescher and Schill
(1991) note that AR is asymptotically 1ndependent of p. Thus, using the delta
method, we obtain the estimated asymptotic variance (Drescher and Schill, 1991)

Var(AR) = AR Cov(p)AR + A'Cov(¢*)A, (7.44)

where éaf(f)) and 6(;7(43*) are the estimated covariance matrices of p and qAS*
respectively. To improve the normal approximation of AR, we may use the
logarithmic transformation of 1 — AR. This leads to an asymptotic 100(1 — «)
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percent confidence interval for AR given by

_ \/ Var(AR)
1-— exp lOg(l — AR) + Za/zi,\
1-AR

g y/ Var(AR)
1 —exp|log(l —AR) —Zypp——— . (7.45)
1 - AR

Example 7.9 To allow readers to compare the results using different approaches
to estimating the AR, we first consider the same data (Table 7.2) as discussed
in Example 7.5. Suppose that we want to estimate AR due to radon-daughter
exposure measured in working level months (WLM) when reducing ‘WLM >
120’ to ‘WLM < 120’ based on the logistic regression model P(D = 1]|z1, C5) =
exp(Bos + B121)/(1 + exp(Bos + P1z1)), where z; = 1 for WLM > 120, and z; =
0 otherwise; S = 2 for the two strata formed by the cumulative smoking levels
(pack-years) less than 20 and 20 or more. Using (7.41) and (7.42), we obtain
stratum-specific estimates AR (and 95% confidence intervals) of 0.606 ([0.203,
0.805]) and 0.635 ([0.256, 0.821]), respectively. Thus, using (7.43), we obtain
a summary estimate AR of 0.631, which is similar to the estimate fﬁ{apx =0.639
obtained in Example 7.5. Using (7.45), we obtain a 95% confidence interval for
the AR of [0.248, 0.819], again similar to that obtained using (7.15).

Example 7.10 To illustrate the use of the logistic regression model when there
are multiple variables of exposure, we consider the retrospective data (Table 7.4)
relating myocardial infarction to recent oral contraceptive use and cigarette
smoking with strata formed by different age categories (Shapiro et al., 1979).
Suppose that we are interested in estimating the AR due to the joint effects
of recent oral contraceptive use and number of cigarettes smoked per day
while controlling the confounding effect due to age. We assume the logistic

Table 7.3 Cumulative radiation exposure in WLM units
for US uranium miners and mortality rates for lung cancer
among US white males aged 50—54.

Cumulative smoking
(pack-years)

<20 >20
WLM WLM WLM WLM
>120 <120 >120 <120
Cases 10 4 12 2
Controls 26 29 30 27

Source: Whittemore (1982).
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Table 7.4 Frequency distribution of women with myocardial infarction
versus recent oral contraceptive use, cigarette smoking level (number of
cigarettes smoked per day) and age.

Age Smoking Oral contraceptive Cases Controls

25-34 0 No 1 281
Yes 0 38

1-24 No 5 221

Yes 2 35

>25 No 8 112

Yes 11 22

35-44 0 No 13 318
Yes 1 12

1-24 No 32 249

Yes 1 15

>25 No 53 125

Yes 8 8

45-49 0 No 20 155
Yes 3 2

1-24 No 42 96

Yes 0 1

>25 No 31 50

Yes 3 2

Source: Shapiro et al. (1979).

regression model P(D = 1|z1, 23, z3, C5) = exp(Bos + B121 + Baza + B3z3)/ (1 +
exp(Bos + B1z1 + B2z2 + B3z3)), where z; = 0 and z; = O for patients with zero
cigarettes smoked per day, z; = 1 and z, = O for patients with 1—24 cigarettes
smoked per day, and z; = O and z, = 1 for patients with 25 or more cigarettes
smoked per day; z3 is 1 for patients with recent oral contraceptive use, and O
otherwise; and the number S of strata equals 3, for the three age categories 25—34,
35-44, and 45+. Using (7.41) and (7.42), we obtain stratum-specific estimates
AR; (and 95% confidence interval) of 0.758 ([0.650, 0.833]), 0.708 ([0.598,
0.788]), and 0.645 ([0.525, 0.734]), respectively. Using (7.43) and (7.45), we
obtain a summary estimate AR0f0.687, with asymptotic 95% confidence interval
[0.577,0.769].

7.6 CASE-CONTROL STUDIES UNDER
INVERSE SAMPLING

Suppose that we employ independent inverse sampling, in which we continue
sampling subjects until we obtain the predetermined number x;(> 0) of sub-
jects with exposure from the case (j = 1) and the control (j = 0) populations,
respectively. Let Y; denote the number of subjects with non-exposure collected
before obtaining exactly the desired x; from group j. Then the random variable
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Y; follows the negative binomial distribution (1.13) with parameters x; and myj;,
where 71); denotes the conditional probability of being exposed, given the subject
is a case (j = 1) or a control (j = 0). Recall that the AR can be approximated
by P(E|D)(OR — 1)/OR = 1 — ¢*, where ¢* = (1 — 71;1)/(1 — m10) when the
disease is rare. Define N; = x; + Y;. The MLE of 71; is 71); = x;/N; under (1.13),
with estimated asymptotic variance 7%12”(1 — 11)))/%; (Exercise 1.11). Thus, the
MLE of the AR is AR = 1 —(13*, where ¢A>* =(1- ﬁm)/(l — ). It is easy
to show that an estimated asymptotic variance @(AR) is ((f)*)z{ﬁf‘ 1/ (1 —
)] + ﬁlzlo/[xo(l — 7110)1}- Thus, an asymptotic 100(1 — &) percent confidence
interval for AR is given by

[AR — Zy/2¢/ Var(AR), min{AR + Z,,2,/ Var(AR), 1}]. (7.46)

Since the sampling distribution of AR is likely skewed when x; is not large and
m1)j is small, we may consider use of a logarithmic transformation to improve the
normal approximation. We obtain an asymptotic 100(1 — «) percent confidence
interval for the AR given by

[1 — ¢* exp(Zy2y/ Var(log(AR))), 1 — ¢* exp(—Zy/2y/ Var(log(¢*)], (7.47)

where Var(log(AR)) = 72 /[x1(1 — A10)] + 7/ [x0(1 — #110)].

Recall that for x; > 1, the unbiased estimator of m;; under (1.13) is ﬁﬂ? =
(xj — 1)/(N; — 1). Therefore, if both x; are large, we have P({[(1 — 7%1(1‘11)) —¢*(1 —
ﬁﬂ%)]/\/Var«l — A — ¢* (1 — AN < 72 ,) = 1 — . Because we can esti-

mate the variance Var(1 — ﬁlﬂG)) by the unbiased estimator frﬁ})(l - y%l(‘l;)) J(N; —
2) (1.18), we arrive at the following quadratic equation in ¢*:

A¥p*2 — 2B  + Ct < 0, (7.48)

where Af=(1 — #{{))2 =72 ,7{0(1 — #{1)/(No — 2), B¥=(1 — #{{) (1 — #{})).
and CF = (1 — A{))? — 22,711 (1 — #{})/ (N1 — 2).1[A* > Oand B¥ — A¥CF >
0, then an asymptotic 100(1 — «) percent confidence interval for the AR is
given by

[1— (Bf + vB#2 — A¥CH)/AF, 1 — max{(B¥ — VB2 — A¥C¥)/A*, 0}]. (7.49)

Note that (7.46) (7.47), and (7.49) are derived on the basis of large-sample
theory. When x; is small, these interval estimators may not be valid. However,
we can derive a 100(1 — «) percent confidence interval on the basis of the exact
conditional distribution, given that the marginal Y; + Yy = y. is fixed. This exact
conditional confidence interval is can be used even when the number of subjects
x; with exposure is as small as 1.
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Asshown elsewhere (Lui, 1995), the conditional distribution of Y7, given a fixed
total number of subjects with exposure y, = Y; + Yo, is then (Exercise 3.11)

H1+X1—1)(y.—y1+xo—1> .
( n Y. — 1 @)

Y.
y+x1—1\(y —y+xo—1 oy
Z( y )( Yy >(¢>>,

y=0

(7.50)
wherey; =0, 1, ..., y.. On the basis of conditional distribution (7.50), note that
the conditional MLE ;‘E{wnd ofthe ARis 1 — ¢7 .. where ¢*0 4 is the conditional
MLE of ¢* and is obtained by solving the equation y; = E(Y1|y., x1, xo, ¢*) for
¢* (Exercise 3.13). Furthermore, we may obtain the estimated asymptotic con-
ditional variance Var(¢>cond) = (¢>C0nd) /Var(Y1ly., x1, xo, ¢>Cond) from the inverse
Fisher information matrix. The sufficient and necessary conditions for the unique
existence of the conditional MLE of ¢ are given in Exercise 3.14. An asymptotic
100(1 — @) percent conditional confidence interval for the AR is

[1 - d;:ond - Z"‘/2 v @(écond) 1- max{¢cond 06/2 \% @(éjond)’ 0}] (751)

Note that Zu o P(Y =yly., x1, x0, ¢*) is a decreasing function of ¢*. Thus, we
can obtain an exact 100(1 — a) percent confidence interval [¢, ¢;i] by solving
the following two equations (Casella and Berger, 1990) for ¢ and ¢:

P(Y1 =wmly., x1, %0, ¢*) =

Y.

D P =yly., x1, %0, ) = /2,

Y=

U1

Y P(Y =yly., x1, %0, ¢7) = /2. (7.52)
y=0

If y; were 0, then we would define the lower limit ¢ to be 0. Similarly, if y, were
O (or equivalently, y; = y.), we would define the upper limit ¢ = co. An exact
100(1 — «) percent confidence interval for the AR is then given by

[1—o51-9¢] (7.53)

Example 7.11 For arare disease in a case—control study, suppose that we wish to
obtain an approximate 95% confidence interval for the AR. Suppose further that
we employ inverse sampling and collect (y; =)5 and (yo =)25 subjects before we
obtain 50 subjects (= x1 = x¢) with exposure from the case and the control groups,
respectively. From these data, application of an iterative numerical procedure to
solve T, sP(Y = yly. = 30, x1 = xo = 50, ¢) = 0.025 and X,_,P(Y = yly. =
30, x1 = x9 = 50, ¢%) = 0.025 leads to ¢ = 0.086 and ¢ = 0.657. Therefore,
an approximate 95% confidence interval for AR is [0.343, 0.914].
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EXERCISES

7.1. Show that we can rewrite the AR as [P(D) — P(D|E)]/P(D), where P(D|E)
and P(D) represent the prevalence of disease in the non-exposed and the general
populations, respectively.

7.2. Show that we can express the AR as P(E)(RR — 1)/[P(E)(RR — 1) + 1],
where RR = P(D|E)/P(D|E) denotes the risk ratio between the exposed and non-
exposed populations. Thus, the AR depends on both the prevalence P(E) and RR.
A risk factor with a large RR does not necessarily lead to a large value of AR if the
prevalence of this risk factor P(E) is small.

7.3. Suppose that the prevalence of smoking and the prevalence of drinking in
a population are 0.02 and 0.30, respectively. Suppose further that the RR of
possessing coronary artery disease for smoking is 10, while the RR of possessing
coronary artery disease for drinking is only 2. What are the corresponding ARs
for smoking and drinking? From the public health point of view, which risk
factor, if eliminated, would achieve a higher proportional reduction in coronary
artery disease?

7.4. In the notation of Section 7.1.1, when n is large, show that ﬁ(log(q@) —
log(¢)), where q§ = 71091/ (o.7.1), has the asymptotic normal distribution with
mean O and variance (1 — 7g1) /701 — (w0, + 7.1 — 2701)/(7wo.77.1). (Hint: When
n is large, «/n[(7to1, 7o, #.1)" — (o1, 7o., .1)'] has asymptotic normal distribu-
tion with mean vector (0, 0, 0)" and covariance matrix ¥ with diagonal terms
equal to 7o (1 — mp1), mo.(1 — 7p.), and 71(1 — 1), and with off-diagonal
terms given by the covariances Cov(mo1, 7p.) = o1 (1 — 7g.), Cov(7p1, T.1) =
7'[()1(1 — T[.l), and COV(J/'\[()‘, ﬁ'l) = —(JTIIJTOO — 7'[1()77.’01). We then use the delta
method and the function f(X1, X5, X3) = log(X; /(X2X3)).)

7.5. Consider the situation discussed in Section 7.1.1. We define Z = 7o —
foro. .1, where f = n/(n — 1). (a) Show that the expectation E(Z) converges to
0 as n increases to co. Thus, when n is large, we have the probability P((77g1 —
foro. 1) /Var(fg, —f . 7.1)) =1 —a, where the asymptotic variance Var(#o;
—f¢io.71) = Var(fo1) + f2¢*Var(7o.7.1) — 2f¢pCov(Fo1, 7o.7.1). (b) Based on
this result, derive the following quadratic equation in ¢ : A¢> — 2B¢ + € < 0,
where A=[?[(70.7.1)* — Zi/zﬁo.ﬁa(ﬁu + 700 + 4(7To1 — Ro.7.1))/nl, B=f[70.
Aol — Z§/2ﬁ01(ﬁ.1(1 —R0.) + Ro.(1 —#1))/n], and € =7#Z — Zﬁ/zﬁm(l -
fo1)/n. If both 2A > 0 and B2 — AC > 0, then an asymptotic 100(1 — «) per-
cent confidence interval for AR will be [1 — (B + /982 — A<€) /A, 1 — max{(B —

VB2 — AC) /A, 0}].

7.6. When there are no confounders, show that the attributable risk AR can be
expressed as P(E|D)(RR — 1)/RR, where P(E|D) denotes the exposure prevalence
in the case population and RR = P(D|E) /P(D|E).

7.7. For a case—control study with no confounders, show that P(E|D)(OR —
1)/0R = (711 — m110)/(1 — 71)0), where the mj; are defined in Section 7.1.2.
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7.8. Show that the estimated asymptotic variance}_jor/if{ is \7&(@) = ((i;*)2
{m1n/[m (A — )] + A10/[n0(1 — 7110)]}, where AR, ¢*, and 7 are defined in
Section 7.1.2.

7.9. Consider the data consisting of subjects aged 75-79 taken from the
case—control study (Cole et al., 1971; Schlesselman, 1982, p. 49) described in
Example 7.3. Exposure is defined according to whether the number of cigarettes
smoked during a patient’s lifetime is at least 100. As shown elsewhere, we have
X1 =46,m — X3 =7,Xg =42, and nyp — Xg = 15. What is the MLE AR? What
are the 95% confidence intervals for AR using interval estimators (7.5) and (7.6)?

7.10. Show that the AR in the presence of confounders Ci(s=1,2,...,5)
can be expressed as )  P(CsD)AR;, where ARy =1 — P(D|E, C)/P(D|C,) =
[P(DIE, C5) — P(DIE, Cy)]P(E|C;)]/P(D|Cs) = P(E|D, C5)(RRs — 1)/RR; = P(E|Cy)
(RRg — 1)/[P(E|Cs)(RRs — 1) + 1], and where RR; = P(DI|E, C,)/P(DI|E, C;), the
risk ratio at the confounder level C;.

7.11. Show that when the underlying risk ratio RR; is constant and equal to
RRy for s=1, 2,...,8, the AR in the presence of confounders can be simpli-
fied to P(E|D)(RRy — 1)/RR, where P(E|D) is the exposure prevalence in the
case population.

7.12. Show that AR (= )" P(C,|D)AR;) in the presence of confounders Cy(s =
1,2,...,85) can be expressed as 1 — Y P(Cs|D)P(E|Cy, D)/P(E|Cs). When the
underlying disease is rare, this can be further approximated by 1 — )" P(C|D)
P(E|C,, D)/P(E|Cs, D).

7.13. Show that the estimated asymptotic variance (Whittemore, 1982) of quonf
is given by

— 1 ARTE 1 n1 71400 -
Var(¢conf) = ”_1 {Z < - |2 : ( + X ) - (¢conf)2 ’
s

Tosi0 Tos;1 NOT.s)0TT0s]0

where qgjonf is as defined in Section 7.2.2.

7.14. Consider the data (Table 7.3) consisting of white miners aged 50-54
(Whittemore, 1982, p. 234). Suppose that, as in Example 7.5, we are interested in
estimation of the AR due to radon-daughter exposure measured in working level
months (WLM) by reducing ‘WLM > 120’ to ‘WLM < 120’, while controlling the
confounder of cumulative smoking (pack-years) categorized as less than 20 or at
least 20. What is the MLE AR? What are the 95% confidence intervals for the AR
using interval estimators (7.14), (7.15), and (7.16)?

7.15. Show that the asymptotic variance of zﬁ(: 71.(F10 — o1)/710) defined
in Section 7.3 is given by Var(AR) = {(m19 — 1)1 + (71120 + mo1m11)? /0 +
nimor — [m1.(mo — o) 2}/ (nfy).

7.16. Show that from the probability P((AR — AR)Z/Var(Kl\%) < Zi/z) =1-
a, as discussed in Section 7.3, where Var(AR) = {(719 — w01)?711 + (0 +
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mo1m11)? /10 + i w1}/ (i) — AR?/n, we can derive asymptotic confidence
limits based on the following quadratic equation in AR: ATAR? — 2BTAR 4 CT <
0. where AT =1+22,,/n, Bl = AR, and Cf = AR” — 22, {(r10 — #01)>At11 +
(A1) + R 1) /R0 + AL A1}/ (nA ).

7.17. Considerthe data consisting of 80 matched pairsin a study of the association
between the number of beverages drunk ‘burning hot’ and esophageal cancer
(Breslow, 1982, p. 665). For the purpose of illustration only, suppose we define
exposure as ‘at least one beverage drunk ‘“‘burning hot” * and non-exposure as
‘no beverages drunk ‘‘burning hot” ’. In the notation of Section 7.3, we have
ni1 = 7,n19 = 32, ng1 = 10, and ngg = 31. What is the MLE AR? What are the
95% confidence intervals for the AR using interval estimators (7.17)—(7.21)?

7.18. Show that [P(D|Ey) — P(D|Eo)]P(Ex) /P(D) = P(Ex)(RRx — 1)/
[1+ > P(Ex)(RRi — 1)], where RRy = P(D|Ey)/P(D|E).

7.19. Show that the approximation of ARy (7.23) can be expressed as (sy1 w00 —
o TTko)/Tojo (see (7.24)), where the my; are as defined in Section 7.4.

7.20. For K =1, show that @1(7 25) reduces to the MLE AR = (T —
7110)/ 700 for the case of dichotomous exposure and that variance (7.2 6) simplifies
to variance Var(AR) (7.4).

7.21. Using formula (7.29), derive the quadratic equation: AAR2 — 2BAR; +
C < 0,where A =1+ 72 /2/n1,B ARk, and

2
-2 Tk ~
C= ARk /2 |:JTk1 + <—> JT01:| /Yl]
TT0|0
« )
N ko . ko
725 | (Ropn)? ;l Agl /n().
oo oo

7.22. Show that when there are multiple levels Ex(k = 0, 1, ..., K) of exposure,
the AR due to all exposure levels k > 1, as discussed in Section 7.4, can be
expressed as 1 — Y, P(Ei|D)/RRy, where RRy = P(D|Ey)/P(D|Ey).

7.23. Show that

K
Z > [P(D|Ex, Cs) — P(D|Eg, Co)[P(Ex|Cs)P(Cy) /P(D)
s=1 k=1
S K
=1-) " P(Ex CID)/RRy,

s=1 k=0

where RRy = P(D|Ex, Cy)/P(Do|Eo, C;) (Hint: First, show that [P(D|E;, Cy) —
P(DI|Ey, Cy)IP(Ex|Cy)]/P(DICs) = P(Eg|D, Cs) RRyys — 1) /RRys.)
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7.24. Consider the myocardial infarction (MI) data for women aged 40—-44
(Shapiro, et al., 1979). The observed frequencies from the case and control groups
(in parentheses) falling in the categories ‘none’, ‘1-24’, and ‘254" are: 11 (169),
21 (134), and 39 (68), respectively. What are the MLEs AR1 and ARZ due to the
‘1-24' and ‘254’ levels? What are the corresponding 95% confidence intervals
for ARk (k = 1, 2) when we apply interval estimators (7.27), (7.28), and (7.30)?

7.25. Show that for the logistic regression model containing only a single
dichotomous exposure variable (z = 1 for being exposed and z = O for being
non-exposed), the MLE (7.35) is glven by (”lll — 7110)/(1 — 71)0). Furthermore,
the estimated asymptotic variance Var(¢ ) is given by 711/[m (1 —ai1)] +
10/[No(1 — 7110)].

7.26. Consider the data in Table 7.5 taken from a case—control study on
esophageal cancer (Tuyns etal., 1977; Breslow and Day, 1980). There were
200 males diagnosed with esophageal cancer in one of the regional hospi-
tals in France between January 1972 and April 1974. The controls were a
sample of 778 adult males drawn from electoral lists in each commune, of
whom 775 provided sufficient data for analysis. Suppose that we are interested
in estimating the AR due to the joint effects of alcohol and tobacco, while
controlling the confounder of age. We assume the logistic regression model
P(Y = 1|z, Cy) = exp(Bos + B'z)/(1 + exp(Bos + B'z)) wheres =1, 2, ..., 6, for
the six age categories, and the covariate vector z’' = (z1, 25, 23, ..., 25) con-
sisting of six index variables. We define z; =z, =23 = 0 for the baseline
alcohol level of 0—39 g/day; z1 = 1, z; = z3 = 0 for an alcohol level of 40-79;
zp = 1,21 = z3 = 0 for an alcohol level of 80-119; andz3 =1,z =2z, =0 for
an alcohol level of over 120. Similarly, we use the other three index variables
z4, 25, and zg to define the four distinct levels of tobacco. For example, we define
z4 = z5 = z¢ = O for the tobacco baseline level of 0-9 g/day;z4 = 1,25 =2 =0
for a tobacco level of 10—19, etc.

(a) Based on the above logistic regression model, what are the stratum-specific
estimates AR (7.41) and the 95% confidence intervals using (7.42) for s =
1,2,...,6?

(b) What is the summary estimate AR (7.43) over all strata?

(c) Using (7.45), what is the 95% confidence interval for AR?

Table 7.5 Grouped data from the Ille-et-Vilaine study of esophageal

cancer.
Alcohol Tobacco
Age (g/day) (g/day) Cases Controls
25-34 0-39 0-9 0 40
10-19 0 10
20-29 0 6
30+ 0 5

40-79 0-9 0 27
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Table 7.5 (continued)
Alcohol Tobacco
Age (g/day) (g/day) Cases Controls
10-19 0 7
20-29 0 4
30+ 0 7
80-119 0-9 0 2
10-19 0 1
20-29 0 0
30+ 0 2
120+ 0-9 0 1
10-19 1 0
20-29 0 1
30+ 0 2
35-44 0-39 0-9 0 60
10-19 1 13
20-29 0 7
30+ 0 8
40-79 0-9 0 35
10-19 3 20
20-29 1 13
30+ 0 8
80-119 0-9 0 11
10-19 0 6
20-29 0 2
30+ 0 1
120+ 0-9 2 1
10-19 0 3
20-29 2 2
30+ 0 0
45-54 0-39 0-9 1 45
10-19 0 18
20-29 0 10
30+ 0 4
40-79 0-9 6 32
10-19 4 17
20-29 5 10
30+ 5 2
80-119 0-9 3 13
10-19 6 8
20-29 1 4
30+ 2 2
120+ 0-9 4 0
10-19 3 1
20-29 2 1
30+ 4 0
55-64 0-39 0-9 2 47
10-19 3 19
20-29 3 9

(continued overleaf)
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Table 7.5 (continued)

Alcohol
Age (g/day)

Tobacco
(g/day)

Cases

Controls

40-79

80-119

120+

65-74 0-39

40-79

80-119

120+

75+ 0-39

40-79

80-119

120+

30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+
0-9
10-19
20-29
30+

COHNOOFRFHFFHFOFNHONKF HFHHWHNPBROINOUIWNIONKBRUI UINSOUTHER WO WO

2
31
15
13

—

—
COOC OO OO OCOWNWINORNNOOHFHFOFXNOHRNININUTOW HEHEEHEUTO WO W

Source: Breslow and Day (1980).
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8
Number Needed to Treat

The ‘number needed to treat’ (NNT), defined as the average number of patients
who need to be treated in order to prevent one patient in the placebo group
suffering an adverse event, was first proposed by Laupacis et al. (1988) to measure
the discrepancy in adverse event rates between the treatment and placebo groups
in randomized controlled clinical trials. To clarify the meaning of this measure,
consider the numerical example given in the Veterans Administration Cooperative
Study on hypertension (Veterans Administration Cooperative Study Group on
Antihypertensive Agents, 1972). As given elsewhere (Laupacis et al., 1988), the
proportions of patients with no target-organ damage experiencing adverse event
rates in the treatment and the control groups are 4.0% and 9.8%, respectively.
If 100 patients were treated with antihypertensive agents, then we would expect
to save six patients (= 100(0.098 — 0.04)) with adverse events. Thus, the NNT,
calculated as the number of patients treated divided by the expected number of
patients saved from an adverse event, is equal to 17(= 100/6). This means that
we need to treat 17 patients on average in order to prevent one patient with an
adverse event. Similarly, in epidemiologic studies, consider the example of all-
cause mortality rates between smokers and non-smokers given by Sheps (1958).
The all-cause mortality rates were 1325 and 1884 per 100 000 person-years for
non-smokers and heavy smokers, respectively. From these data, we obtain an
NNT of 179(= 100 000/[100 000(0.01884 — 0.01325)].In other words, if 179
heavy smokers were persuaded to quit smoking every year, we would expect to
save the life of one heavy smoker. Because clinicians find it easy to understand
and interpret the NNT, this measure has recently become popular in reporting
clinical findings in randomized controlled trials and in evidence-based medicine
(Cook and Sackett, 1995; Trameér et al., 1995; Sackett et al., 1996, 2000; McQuay
and Moore, 1997; Chatellier et al., 1996; Elferink and Van Zwieten-Boot, 1997).
Note that the average number of subjects needed to treat in order to prevent
a subject with adverse events is, by definition, always positive. To avoid the
unrealistic case where we may obtain a negative NNT, as for defining the relative
difference discussed in Chapter 3, we may wish to employ the NNT only when
we have some prior knowledge to rank the order of the expected response rates
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between the two groups under comparison (Lui, 2003). As noted elsewhere
(Fleiss, 1981), this assumption is generally tenable if the control group is given
an inert placebo, or if the control group is given an active drug and the treatment
is that drug plus another active compound or that drug at a greater dosage level.
Although Altman (1998) attempts to give an interpretation of a negative NNT,
we do not allow negative values here so as to avoid obtaining the absurd results
and escape criticisms of the use of NNT noted elsewhere (Altman, 1998; Hutton,
2000; Lesaffre and Pledger, 1999; Lui, 2003).

In this chapter, we begin by discussing the estimation of the NNT in the simplest
situation — independent binomial sampling. We then extend this to cover the
situation in which we employ pre-stratified sampling in multicenter studies. As
noted in the previous chapters, these results are useful for meta-analysis. Also, we
discuss how to incorporate the intraclass correlation between responses within
clusters into estimation of the NNT in cluster randomization trials (Cornfield,
1978; Donner etal., 1981; Klar and Donner, 2001; Lui et al.,, 2000). Finally,
because the matched-pair design is often used to increase efficiency in randomized
clinical trials or in epidemiological studies, we consider estimation of NNT for
paired-sample data as well.

8.1 INDEPENDENT BINOMIAL SAMPLING

Suppose that we are comparing the response rates between the treatment and
control groups in a randomized controlled trial. Assume that a higher response
rate is a better outcome. Without loss of generality, we assume that the response
rate m; for the treatment is larger than the rate o for the control. Note that
this is equivalent to assuming that the non-response (or the adverse event)
rate w;j(= 1 — 7o) for the control is higher than the rate 7 (=1 — m1) for the
treatment. By definition, 71 — my = 7§ — 7{. Suppose that we randomly assign
np patients to the treatment group and ng patients to the control group. In the
treatment group, the expected number of subjects who responded, but who would
not have done so if they had been assigned to the control group, is equal to
ni (7r1 — o). Thus, we define the NNT as

T =n1/[m (w1 — )] = 1/(m1 — mo), (8.1)

which is simply the reciprocal of the risk difference (RD) discussed in Chapter 2.
The range of NNT is, by definition, T > 1. In the extreme case where 7; = 1 and
o = 0, we have NNT = 1. When the response rates between the two comparison
groups are equal (i.e., 7, = mp), NNT = oo. Thus, it is not convenient to base the
NNT on testing whether the response rates are equal between two comparison
groups. Note that we canrewrite (8.1)ast = 1/[(RR — 1)my], where RR = 71 /7
istherisk ratio discussed in Chapter 4. Thus, given RR fixed, the lower the baseline
response rate (i.e., 7t is small), the larger is the NNT. Thus, it will be more effective
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to treat a patient with a high response-rate profile than one with a low response-
rate profile. Note further that the NNT is very sensitive to rounding error when
the underlying RD is extremely small — a small change in the scale of the RD may
result in a large difference in the scale of NNT. For example, suppose that the true
value of RD is 0.005, but that it is rounded to two decimal places and recorded as
0.01 for convenience. The NNT corresponding to the former is 200, and to the
latter is 100. Thus, when the resulting estimate of NNT is large, we should treat
this index with caution.

Let X; denote the number of patients who respond among n; patients assigned
to the treatment (i = 1) and to the placebo (i = 0). Then X; follows the binomial
distribution (1.1) with parameters n; and ;. Using the functional invariance
property (Casella and Berger, 1990; see the Appendix), the maximum likelihood
estimator (MLE) of T for 77 > 7 is simply

T =1/(71 — 7o), (8.2)

where 7; = X;/n;. Notethatbecauset > 1, wedefine 7 (8.2)tobe coif7; — 79<0.
Note also that because 7 can be co with positive probability, the point estimator
7 is biased and has no finite expectation. To obtain an interval estimator of 7, we
may employ the monotonic transformation t = 1/A, where A = 7; — 7, over
the range (0, 1), and interval estimators discussed in Chapter 2 for the RD. For
brevity, we will present only a couple of simple interval estimators for the NNT
here. Bender (2001) discusses using (2.7) to derive a confidence interval for the
NNT. We refer readers to Chapter 2 for details.

First, applying the simplest, naive interval estimator (2.3) using Wald’s statis-
tic, we obtain an asymptotic 100(1 — «)% confidence interval for t given by
(Exercise 8.2)

1
|:min{A + Zajay/T1(1 = 71)/my + Ao(1 — 70)/no, 1)

i 1 } (8.3)
max{A — Zy2v/71(1 — 71)/m1 + 7o (1 — 7o) /o), 0}

where A = 71 — 7 and Z, is the upper 100ath percentile of the standard normal
distribution. If max{A — Za/z\/ﬁl(l —1)/ny + 7o(1 — 7)) /ng), 0} were 0, we
would define the upper limit (8.3) to be co. In this case, (8.3) becomes a one-sided
half-open confidence interval. Thus, when there is no statistically significant
difference in the response rates m; and 7, at (two-sided) level «, we can only
obtain the lower limit of a 100(1 — «) percent confidence interval unless we
reduce the desired confidence level, use other more efficient statistics, or increase
the sample size. The non-existence of the upper limit suggests that the data are not
sufficiently large to provide an accurate estimate of the upper limit for the NNT.
As noted by McQuay and Moore (1997), this point is also relevant to clinicians
and should be taken into account in their clinical decisions.
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Recall that the probability P([(A — A)/y/Var(A)]? < Zﬁ/z) =1—a« as n is
large. Define 7= 71 + my. Then we have 7; = (7+ A)/2 and g = (7— A)/2.
Thus, we can express the variance Var(&) <= Zil:() wi(1 — ;) /n; ) in terms of
parameters 7 and A. This leads to the following asymptotic 100(1 — «) percent
confidence interval for the NNT:

[1/Au(T1), 1/ A(TD)], (8.4)

where A|(77) = max{(B — /B> — AC)/A, 0}, Au(T7) =min{(B + /B> — AC)/A,
1L A=1+[1/m + 1/no)Z; 5 /4, B =71 — 7o + (1 = T)[1/m — 1/nolZ, , /4,
C= (71 —#0)> =12 =T)[1/ny + 1/ngl22 5 /4, and Ty = 71 + 7. When either
of the 77;is O or 1, we recommend use of the ad hoc adjustment procedure of adding
0.5 for sparse data, substituting 7;*(1 — 7;*) /n; for 7;(1 — 7;) /n;in (8.3) and using
7" instead of 77; in (8.4), where 7 = (X; + 0.5)/(n; + 1).

Example 8.1 Consider the study of the efficacy and safety of taking topira-
mate 400 mg/day as adjunct therapy to the traditional anti-epileptic drugs for
partial onset seizures with or without secondary generalization (Sharief et al.,
1996; Lesaffre and Pledger, 1999). The parameters 7; and my here denote the
proportions of patients who show at least 50% reduction in seizures for the
topiramate and placebo groups, respectively. Patients enrolled have previously
had seizure rates of at least one per week during an 8-week baseline period. There
are 23 patients randomly assigned to topiramate treatment and 24 patients to the
placebo for a 3 week titration period followed by an 8-week stabilization period.
We find eight patients in the topiramate treatment group and two patients in
the placebo group who show at least 50% reduction. Given these data, the point
estimate of the NNT is 4(= 3.78 = 1/(71 — 71p)). Applying interval estimators
(8.3) and (8.4), we obtain the 95% confidence intervals of [2, 25] and [2, 34],
respectively. Since the number of patients is a positive integer, confidence limits
are rounded to the nearest integer. Note that the upper limit of the 95% confidence
interval obtained from (8.3) is much lower than that from (8.4). This is because
the number of patients in the placebo group who showed at least 50% reduction in
seizures is small (2); it may thus be inappropriate to use (8.3) here. This example
also implies that when the expected number of subjects in either of the two
comparison groups is small, using (8.3) tends to shift to the left compared to (8.4),
and hence likely overestimates the efficacy of the treatment under investigation.

Example 8.2 Consider the placebo-controlled multicenter randomized trial of
interferon B-1b in treatment of secondary progressive multiple sclerosis (European
Study Group on Interferon 8-1b in Secondary Progressive MS, 1998). Outpatients
in the secondary progressive phase of MS having scores of 3.0-6.5 on the
Expanded Disability Status Scale are randomly allocated to receive either 8 million
IU interferon B-1 subcutaneously every other day or placebo, for up to 3 years. As
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given elsewhere (Sackett et al., 2000, p. 130), among the 358 patients assigned to
placebo 49.8% exhibit confirmed progression of disability, while among the 360
patients assigned to interferon S-1b the proportion is 38.9%. From these data,
the point estimate of the NNT is 9. Both (8.3) and (8.4) give a 95% confidence
interval for the NNT of [6, 28]. Because the expected numbers of subjects with
progression of disability in the two comparison groups are reasonably large,
interval estimators (8.3) and (8.4) are expected to produce similar results.

8.2 A SERIES OF INDEPENDENT BINOMIAL SAMPLING
PROCEDURES

Consider a multicenter study with S centers. From center s(s=1,2,...,95),
suppose that we sample n;; subjects from the treatment (i = 1) and the placebo
groups (i = 0), respectively. Suppose further that we obtain Xj; subjects with
response. Let m;; denote the response probability for a randomly selected subject
from treatment i in the sth stratum. Define Ay = w13 — 7o, and 7y, = 71 + 7os.
Therefore, w15 = (Ag + T5)/2 and mos = (73 — Ag)/2. The joint probability mass
function of the random vector X' = (X/, X{,), where X; = (Xj1, Xi2, ..., Xjg), is
then given by (2.8).

The MLEs of Ay and 7; are simply A, = 15 — #os and ’T = 715 + 7os, TESPEC-
tively, where ;s = Xjs/n;s. Furthermore, we can easily show that the variance
Var(AS) is (1 — 1) /Ny + mos(1 — 70s) /Nos. Note that the NNT g in stratum
s is, by definition, equal to 1/A;. In this section, we assume that t, is constant
across all strata, and we denote this common value of 7, by ..

First, consider the situation in which we take a reasonably large sample
size from each center s. To estimate 7., if the variance Var(A,) were known,
we would employ the reciprocal of the weighted least-squares (WLS) estima-
tor of Ag:1/] Z WA s/ 2 W], where Wy = 1/Var(Ay) (Lesaffre and Pledger,
1999) If Var(A ;) were unknown, we would substitute the unbiased estima-
tor Var(Ay) = f15(1 — #15)/ (15 — 1) + Fos(1 — 7os) /(s — 1) for Var(Ay), and
obtain the following WLS estimator of z.:

fwis = 1/ (Z WA/ZW> (8.5)

where W, = 1 /@(AS). On the basis of simulations, Lesaffre and Pledger (1999)
note that using (8.5) is preferable to using the estimator Wit /Y W,
where W is proportional to the reciprocal of the estimated asymptotic variance
@(fs). In fact, we can show that under the assumptionthat 7y =1, = ... = g,
the WLS estimator ) W2, /s W, may be even preferable to D Wit /Y Wi
(Exercise 8.5). Furthermore, note that the variance Var((}_ WAy) Qo W) =
1/, W;. This leads to an asymptotic 100(1 — )% confidence interval for 7.
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given by

(8.6)
When the data are sparse, we may consider using estimator (2.11) (Greenland
and Robins, 1985) and obtain the Mantel—-Haenszel type estimator of t; given by

tun = 1/Awm, (8.7)

where
Z(Xlsn()s - X()snls)/n.s

s
Z nlsn()s/n.s
N

Ay =

Furthermore, when using the estimated asymptotic variance @(AMH) (2.12)
(Sato, 1989), we obtain an asymptotic 100(1 — «) percent confidence interval
for . given by

[1/ min{Ayy + Zos2/ Var(Aym), 1}, 1/ max{Ayy — Zas20/ Var(Aym), O}].

(8.8)
Note that, by definition, 7, = 1/Ag. Thus, 7, is constant over s if and only if A
is constant. Therefore, to examine the assumption that t; is constant, we may
employ test procedures described in Section 2.2.2, for testing the homogeneity of
the RD (Lipsitz et al., 1998; Lui and Kelly, 2000).

Example 8.3 Marson et al. (1996) provide a systematic review of the efficacy and
tolerability of new anti-epileptic drugs. Here, we concentrate our attention on
comparing the proportion of patients who show 50% or greater reduction (50%
responders) in the frequency of seizures between taking gabapentin 1200 mg per
day and the placebo. In Table 8.1, we summarize the data obtained from (S =)4
parallel studies (Anhut et al., 1994; Sivenius et al., 1991; UK Gabapentin Study
Group, 1990; US Gabapentin Study Group No. 5, 1993). Given these data, we
obtain point estimates 7, of 6, 6, 8, and 13, respectively. Apart from the last
estimate for the US Study Gabapentin Group, the estimates are similar to one
another. Applying test procedures (2.14)—(2.16) to test the homogeneity of the
NNT, we obtain p-valuesof0.654,0.713,and 0.635. These suggest that thereisno
significant evidence at the 5% level against the assumption that the NNT for taking
gabapentin is constant over these four studies. Using estimators (8.5)—(8.8), we
obtain estimates Awrs and Ay, together with their 95% confidence intervals (in
parentheses), of 9 ([6, 20]) and 8 ([5, 17]), respectively; these resulting estimates
are similar to each other.
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Table 8.1 Observed number of 50% responders/the total number of patients between
the group of taking gabapentin 1200 mg per day and the group of taking placebo in four
parallel studies.

Anhut et al. Sivenius et al. UK Study Group US Study Group

Gabapentin 14/52 3/9 13/61 16/101
Placebo 10/109 3/18 6/66 8/98

Source: Marson et al. (1996).

Example 8.4 Consider the all-cause mortality data from the multicenter trials
comparing aspirin (i = 0) with placebo (i = 1) in post-myocardial infarction
patients (Table 2.1). As noted in Example 2.3, because of the baseline imbalance
of medical conditions between the aspirin and placebo groups in the sixth trial
(s = 6) (Canner, 1987), we exclude this trial’s data from consideration here. For
the first five trials, we obtain NNT estimates 7, of 36, 39, 40, 54, and 43. Applying
test procedures using (2.14)—(2.16) for testing the homogeneity of the NNT, we
obtain p-values of 0.998, 0.915, and 1.00. Therefore, the hypothesis that the
NNT for the all-cause mortality rate between placebo and aspirin is constant over
these five trials seems reasonable. Applying estimators (8.5)—(8.8), we obtain
Twis = 40 with 95% confidence interval [25, 101], and Tyg = 40 with 95%
confidence interval [25, 105]. Because the numbers of subjects in these trials are
reasonably large, we obtain similar findings using (8.5) and (8.7), suggesting that
for every 40 post-myocardial infarction patients, we would expect to save one life
if they all took aspirin.

8.3 INDEPENDENT CLUSTER SAMPLING

In randomized intervention trials, we may randomly assign clusters of subjects to
treatments rather than individuals for administrative convenience or to reduce
the effect of treatment contamination (Donner et al., 1981; Klar and Donner,
2001; Lui et al., 2000). For example, in the randomized trial studying the effect of
vitamin A supplementation on childhood mortality, the unit of randomization is
the household (Herrera et al., 1992). Because subject responses within clusters are
likely correlated, the confidence interval for the NNT without taking the intraclass
correlation between responses within clusters into account can be misleading.
Suppose that we randomly assign n; classes, of which each has m;; subjects,
to the treatment (i = 1) and the placebo (i = 0) groups, respectively. We define
the random variable Xjx = 1 if the kth (k=1,2,..., m;) subject in the jth
(=1,...,m) cluster from treatment i is positive, and Xj3 = O otherwise. We
let the probability P(Xjx = 1) = p;j and P(Xjx = 0) = 1 — py;, where O < p; < 1.
Because subject responses within clusters are likely correlated, we assume that
the p; independently identically follow the beta distribution beta(a;, 8;) with
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mean 7; = «;/T; and variance 7;(1 — ;) /(T; + 1), where T; = «; + 8; (Johnson
and Kotz, 1970). Note that the beta-binomial model has been frequently applied
to model dependent binary data (Lui, 1991, 2001a; Lui et al., 1996, 2000) and
encompasses a wide variety of shapes (Johnson and Kotz, 1970). On the basis of
the model assumptions, the intraclass correlation between Xj; and Xy for k # K
is p; = 1/(T; + 1) (Exercise 1.7). Note that the probability of a randomly selected
subject being positive from treatment i is equal to E(Xjx) = 7;. We assume that
1 > 1o and define the NNT as t = 1/A, where A = 71 — 7.

Define 77; = Zi > Xijke/mi,, where m;, = Zi my; is the total number of subjects
assigned to treatment i. We can easily show that 7; is an unbiased estimator of 7;
with variance Var(#;) = 7;(1 — m;)f (my, p;)/m;,, where m; = (my;, mi, . . ., Mip,)
and f(m;, p;) = Z]. my[1 + (my; — 1)p;]/my, is the variance inflation factor due to
the intraclass correlation p; (Exercise 1.8).

First, note that

~

A =7, — 7, (8.9)
is an unbiased estimator of A under the beta-binomial distribution with variance
Var(A) = 71 (1 — m)f(my, p1)/mi. + 70 (1 — 70)f (mo, po)/mo.. (8.10)

We can simply substitute 7; for 7; and the traditional intraclass correlation
estimator p; (2.19) for p; in (8.10) to obtain the estimated variance Var(A) (Fleiss,
1986; Elston, 1977; Lui etal., 1996). Therefore, an asymptotic 100(1 — a)%
confidence interval for 7 is given by

[1/min{A + Z,2¢/ Var(A), 1}, 1/ max{A — Z,/»\/ Var(A), 0}], (8.11)

where Var(A) = 71 (1 — #1)f (my, p1)/my. + #0(1 — 7o) (mo, po) /mo. Note that
since the sampling distribution of 7 may be skewed, interval estimator (8.11) may
not perform well, especially when the expected number of responses in either of the
two comparison groups is moderate or small. Thus, may we consider generalizing
interval estimator (8.4) to cover cluster sampling.

First, recall that the probability P([(A - A)/,/Var(A)]2 < Zi/z) =1—«w as
both m;, is large. This leads to the following quadratic equation in A:

ATA? —2BTA 4 (<0, (8.12)
where
AT =1+ [f(my, pr)/my. +fmg, po)/mo )7, /4,
BT = A+ (1 — DIf(my, p1)/my. — f@mo, po)/mo.1%2;,/4.
¢t = A? — T2 = Dlf (my, pr1)/my. + f (o, po)/mo.172;5/4.

with 7= #1 + #,. Because AT > 0, (8.12) is always convex. If B2 — ATCT > 0,
then an asymptotic 100(1 — «) percent confidence interval for A would be
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given by [Al(ﬁ'l), Au(’i’l)], where A(T7) = max{(B" — v/Bf2 — ATCT)/AT, 0} and
Au(Th) = min{(B + ~/BTZ — ATCT) /AT, 1} are the two distinct roots of (8.12)
subject to A lying in the range (0, 1). Thus, we obtain an asymptotic 100(1 — «)
percent confidence interval for t given by

[1/Au(Th), 1/A((TD)]. (8.13)

Note that if either 77; is O or 1, we recommend using 7;*(1 — 7;*)f (my;, ;) /m;, to
estimate Var(;) in (8.10), or substituting 7* = 7§ 4+ 7 for 7in (8.12), where
7 = Xi. +0.5)/(m +1).

Example 8.5 Consider the data in Table 1.1 from the study of the effect of an
education intervention on behavior change (Mayer et al., 1997). We randomly
assign 29 classes, of size ranging from 1 to 6, to the intervention group and 29
to the control group and wish to study the effect of the education intervention
program on the possession of an adequate level of solar protection. Based on the
data (Table 1.1), the point estimate 7 (8.9) of the NNT is 5. This suggests that
when we apply the education intervention program to the children in the control
group we can expect that for every five children, one additional child will employ
an adequate level of solar protection. Using either (8.11) or (8.13) gives a 95%
confidence interval of [3, 00). In other words, the data considered here are not
precise enough to produce an accurate estimate of the upper limit of the NNT.

8.4 PAIRED-SAMPLE DATA

Suppose that to increase the efficiency of a randomized trial, we match patients
with respect to some strong nuisance confounders to form n matched pairs.
Suppose further that for each matched pair we randomly assign one patient to the
new treatment and the other to the standard treatment. For clarity, we use the
following table to summarize the data structure:

Standard treatment
Response status
Yes No
New Response Yes Tl T10 .
treatment status No o1 oo 0.
T .0

where m;; denotes the corresponding cell probability, =;, = 7 + 70, and 7; =
mj + moj for i and j = 0, 1. Without loss of generality, we assume that 7y, > 73
and define the NNT as t = 1/A, where A =y, — w1 (= 719 — 701), Let ¥ =
10 + o1 represent the probability of discordance between responses within a
given pair. Thus, we have 719 = (¥ + A)/2 and rp; = (¥ — A)/2.
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Let Nj denote the observed frequency of matched pairs falling in cell (i, j) with
probability ;. Then, the random vector N = (N11, N1o, No1. Noo) follows the
multinomial distribution (2.25) with parameters n and =’ = (711, 710, 701, T00)-
Therefore, the MLE 7;; of 7j; is Njj/n for i and ] = 0, 1. We thus have that the
MLE of 7 is 1/A when A = 7T1o — #o1 > 0. If A<0, we would define 7 to be cc.
We can easily show that Var(A) = [m10 + o1 — (10 — 01)?]/n (Exercise 2.7).
Following ideas similar to those for deriving interval estimator (2.26), we obtain
an asymptotic 100(1 — «) percent confidence interval for T given by

[1/min{7t10 — o1 + Za/2y/ Var(A), 1}, 1/ max{ft1o — #o1 — Zas2/ Var(A), 0}],

e (8.14)
where Var(A) = [#10 + #o1 — (10 — #o1)2]/n.
When either ny or ng; is small, interval estimator (8.14) may not perform well.
To improve the performance of (8.14) when n is not large, we may consider
interval estimator (2.32) subject to the condition m; > my. This leads to an
asymptotic 100(1 — «) percent confidence interval for ¢ given by (Lui, 1998; May
and Johnson, 1997)

[1/ min{(B* + v/ B2 — A¥Ct)/A*, 1}, 1/ max{(B* — v B2 — A*C¥) /A%, 0}],
(8.15)
where min{(B¥ + v/ B¥ — A¥C¥)/A*, 1} and max{(B* — v/ B2 — A¥C¥)/A%, 0} are

the two distinct real roots of the quadratic equation
A*A? — 2BFA 4 CF<0, (8.16)

where A* = (1 + 72 2/M), Bf=A,Ct=A2— Zi/z‘i/n and € = 710 + 70 aroot
lying below the 1nterval (0, 1) will be deemed to be 0, while a root lying above the
interval will be replaced by 1.

Following Edwardes (1995), we may consider use of the tanh™! (x) transfor-
mation to improve the normal approximation of A. This leads to an asymptotic
100(1 — @) percent confidence interval for T given by

[1/ tanh(tanh™" (A) + Zy/2y/ Var(A)/(1 — A?)),

1/ max{tanh(tanh ™' (A) — Z,/»y/Var(A)/(1 — A%)),0}].  (8.17)

Whenever nig = 0, npp = 0, or n — njg — ng1 = 0, we adjust for sparse data by
adding 0.50 to each cell when using the above interval estimators. As also noted
in Chapter 2, when 7; is large (at least 0.50) and 7 is small (at most 0.025) or
when 77 is small (at most 0.025) and 7 is large (at least 0.50), (8.17) is likely
preferable to (8.15), especially when n is not large. On the other hand, the latter
is preferable to the former in the other situations. When collecting matched pairs
under cluster sampling, we can easily apply results published elsewhere (Lui,
2001b) to derive interval estimators for the NNT.
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Although the NNT may be useful for summarizing findings in clinical trials, as
noted previously, we may not want to employ this measure unless we can rank
from prior knowledge the order of response rates between the two treatments
under comparison. When testing whether there is a difference in the response
rates of two treatments, note that the NNT is oo under the null hypothesis of
no difference. Thus, statistics directly based on the NNT are awkward to use in
detecting whether there is a difference between treatments. Thus, if detecting a
difference in the response rates is one of our main goals, we may wish to use test
statistics related to other indices such as the risk difference (Chapter 2), relative
difference (Chapter 3), risk ratio (Chapter 4), odds ratio (Chapter 5), or generalized
odd ratio (Chapter 6).

Example 8.6 Consider the numerical example given by Rosner (1990, pp.
342-343), in which two treatments for a rare form of cancer are compared.
Within each pair, we randomly assign patients to receive either chemotherapy or
surgery, and determine the vital status, survival or death, at the end of a 5-year
follow-up. There are (n =)621 pairs of patients matched with respect to age, sex,
and clinical condition. We obtain n;y = 16 (pairs where the patient receiving
chemotherapy survives but the patient receiving surgery dies), and ng; = 5 (pairs
where the patient receiving surgery survives but the patient receiving chemother-
apy dies). Given these data, we estimate the NNT to be t(=1/ A) = 57. This
means that if we gave chemotherapy instead of surgery to patients, we would
expect to save one life for every 57 patients. Applying (8.14), (8.15), and (8.17),
we obtain 95% confidence intervals for NNT of [31, 302], [31, 308], and [31,
302]. All these confidence intervals are wide, although they are similar to one
another.

EXERCISES

8.1. (a) Show that NNT = 1/[(RR — 1)mg], where RR = 71 /7y is the risk ratio
between the two treatments.

(b) Show that NNT = 1/[(OR — 1)7g] + OR/[(OR — 1)(1 — 7y)], where OR =
m1(1 — mg)/[mo(1 — 71)] is the odds ratio of the response probability between the
two treatments.

8.2. Show thatifboth the numbers of subjects n; are large, interval estimator (8.3)
is an asymptotic 100(1 — «) percent confidence interval for v = 1/(w; — 7p),
where 77 > 7.

8.3. Inthe study the efficacy and safety of topiramate 400 mg/day (Example 8.1),
suppose that we obtain 7 (out of 23) patients in the topiramate treatment and 14
(out of 24) patients in the placebo indicating ‘poor patient rating of medication’
(Sharief et al., 1996). What is the point estimate of the NNT based on these data?
What are the 95% confidence intervals for the NNT using (8.3) and (8.4)?
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Table 8.2 Observed numbers of 50% responders/the
total number of patients in the group taking tiagabine
and the group taking placebo in three parallel studies.

TIA-106 TIA-107 TIA-109

Tiagabine 17/88 11/77 53/210
Placebo 4/91 5/77 8/108

Source: Marson et al. (1996).

8.4. Suppose that we obtain a 95% confidence interval of (—5%, 25%) for
A = m; — 7. Discuss what would be wrong if we claimed that the corresponding
95% confidence interval for the NNT is simply (—20, 4) (Altman, 1998).

8.5. Using the delta method, show that in Section 8.2, the asymptotic variance
Var(z;) of the NNT is given by thar(As). Thus, under the assumption that
T1 = 1) = ... = 1y, the asymptotic variance Var(7;) is proportional to Var(A;).

8.6. Consider the data (Table 8.2) on the number of 50% responders (as defined
in Example 8.3) for tiagabine (Marson et al., 1996) and placebo groups. (a) What
are the point estimates of the NNT for each stratum? (b) What are the summary
estimates using (8.5) and (8.7)? What are the 95% confidence intervals for the
NNT when we apply (8.6) and (8.8)?

8.7. Consider a randomized controlled clinical trial with 100 matched pairs.
Suppose that we expect the response rate for the new treatment to be higher than
that for the standard treatment. Suppose that we obtain (n;o =)20 matched pairs
in which the patient receiving the new treatment shows positive but the patient
receiving the standard treatment shows negative, and (ngp; =)5 matched pairs in
which the patient receiving the new treatment shows negative but the patient
receiving the standard treatment shows positive. What is the point estimate of the
NNT? What are the 95% confidence intervals for the NNT using (8.14), (8.15),
and (8.17)?
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Appendix

Maximum Likelihood
Estimator and Large-Sample
Theory

In this appendix, we present the definition of the maximum likelihood estimator
(MLE) and its asymptotic statistical properties. We describe Wald's test, the score
test, and the asymptotic likelihood ratio test and discuss how to apply them to
find an asymptotic 100(1 — «) percent confidence region. We also present a brief
description of the delta method. This method is most useful for interval estimation.

A.1 THE MAXIMUM LIKELIHOOD ESTIMATOR, WALD’S
TEST, THE SCORE TEST, AND THE ASYMPTOTIC
LIKELIHOOD RATIO TEST

Suppose that we obtain n random observations, x1, x3, X3, ..., and x,,, that are
assumed to be independently and identically distributed from a population with
a probability density function (pdf) (or a probability mass function (pmf)) f(x|n),
where p = (u1, a2, ..., ug) is an § x 1 vector of parameters from a known
parameter space ©. By definition, the likelihood is then given by

Liulx) = [ [/l (A1)
i=1

where X' = (x1, X2, X3, ..., x,). The MLE of u is defined as the value jt(€ ©) that
maximizes (A.1) over ®. That is,

L(ft]x) = max L(p|x).
ne®

Note that when the observations x; are discrete random variables, the MLE ji
actually maximizes the probability of obtaining the particular sample x that
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we have obtained. Because the function log(x) is a monotonically increasing
function for x > 0, the value ji that maximizes the log-likelihood log(L(x|x))
will also maximize the likelihood L(p|x). Furthermore, because it is usually more
convenient to work with the former than the latter, we commonly find the MLE
based on the log-likelihood. In practice, we can generally obtain the MLE by
finding the roots of the following equations:

dlog(L(plx))
o -

Note that if i is the MLE of u, then f(it) will be the MLE of f(u) for a
given function f(x) (Casella and Berger, 1990). This property is called the
functional invariance. Under mild conditions (Casella and Berger, 1990), if ft is
the MLE, then as long as n is large, one may assume that ji — p approximately
follows the multivariate normal distribution with mean 0 = (0, O, ..., 0)’, and
estimated covariance matrix I"'(fi), where I(x) denotes the S x S Fisher’s
information matrix with (i, j)th element —E(d? log(L(jt|x))/d wiou;). This leads
to Wald's statistic (ft — o) I(ft)(ft — po) for testing the hypothesis Hy : u =
fo. When (i — po) T() (e — o) > X3, We reject Hy : o = po at level-a; x7,
is the upper 100«th percentile of the central chi-squared distribution with f
degrees of freedom. Furthermore, since the observed information matrix I,(jt),
defined as the S x S matrix with (i, j)th element 9> log(L(p|x))/0 0 il p=i
is a consistent estimator of I(x), we may often substitute I,(jt) for I(ft) in
the above test statistic and obtain (ft — o) Io(f) (. — po). We reject Hy : o =
o at level o when (it — o) Io(f) (it — po) > ng,a- On the other hand, by
inverting the acceptance region for Wald's statistic at level-« (Casella and Berger,
1990), we can obtain an asymptotic 100(1 — «) percent confidence region
{ml (i — L@ (o — p) < x5, or {ml( — mw)I(R) (e — p) < x3,}for w. When
S = 1, we call this confidence region, which reduces to an asymptotic 100(1 — «)
percent confidence interval, the interval estimator for 1, using Wald'’s statistic.

Define U(p) = (U1 (), Uz(p), . .., Us(n))’, where Ui(p) = 0 log(L(p|x))/0 ;.
As noted elsewhere (Lawless, 1982; Cox and Hinkley, 1974; Casella and Berger,
1990), the score vector U(u) asymptotically follows the multivariate normal
distribution with mean O and covariance matrix I(s). Thus, we may apply the
score statistic U(pg) I(io) ' U(o) to test the hypothesis Hy : p = po if nis large.
When U(po) I(o) " U(po) > xéa, we reject Hy : it = i at level «. By inverting
the acceptance region of the score test, we obtain an asymptotic 100(1 — «)
percent confidence region for u given by {u|U(p)'I(n) " 'U(p) < Xéa}. Note that
when using the score test procedure, we do not need to obtain the MLE jt, which
often involves an iterative numerical procedure. If we are interested in testing
Hy : p1 = pio (where p = (p}, py)’) in the presence of an (S — r) x 1 subvector
of nuisance parameters u,, where w1 is a specified value for the r x 1 subvector
J1 of interest, we may apply the partial score statistic as follows.

0, i=1,2,...,8. (A.2)
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We partition U(n), I(w) and I(x) ! in an analogous way as for u = (1, t2)":

_ [ U1(w) _ (T T2
b= (Uz(ﬂ))’ fw) = (Izl(ﬂ) Izz(ﬂ))’

L (B By
Tw) ‘(Izlw 152(u>>’ (A.3)

where If;(r) = (1 (r) — Lo (@) (p) "'y (p) ™ (Graybill, 1976). For a
given pq = 1o, let fto(m1p) be the restricted MLE of m, obtained by
maximizing the likelihood L(g1 = pi0, p2lx) = [T, f(xilp1 = 10, #2). We
denote it = (i}, i5(r10))". Then, the statistic U; (f£)'I5; (L)U; (ft) asymptotic
follows the x? distribution with r degrees of freedom when g1 = p1o. Thus, if
Ui ()'T5, (1) Uy () > Xfa, we would reject the null hypothesis Hy : 1 = p19
at level «. Again, by inverting the acceptance region of this partial score test,
we obtain an asymptotic 100(1 — «) percent confidence region for u; given by
UL R (UL () < x2,)-

A third method for testing Hy : 0 = g is to consider the asymptotic likelihood
ratio test. We will reject Hy at level « if —2 log(L(po|x) /(L(jt|x))) > st,a- Further-
more, when the parameters of interest form a subvector g1 (rather than u), we
may reject Hy : w1 = pqo at level o if —2log(L(jt|x)/L{jt|x)) > xfa. Similarly,
we can obtain an asymptotic 100(1 — «) percent confidence region for g or u,
by simply inverting the acceptance region of the test.

A.2 THE DELTA METHOD AND ITS APPLICATIONS

Suppose that i’ = (i1, fi2, ..., fig) asymptotically follows the multivariate nor-
mal distribution with mean u' = (w1, @, ..., us), and covariance matrix X /n.
Suppose further that g(x) has a continuous non-zero differential dg(x)/dx; at
x = p. Define 9g/9x|x—, as the vector (3g(x)/dx1, 9g(x)/dx2, ..., dg(x)/dxs)’
evaluated at x = . Then, «/n(g(ji) — g(p)) asymptotically follows the multivari-
ate normal distribution with mean 0 and variance (9g/9%)" |x=p X (09/0%)|x=p.
This result is referred to as the delta method (Agresti, 1990).

To illustrate the use of the delta method, consider the random vector
(Y1,Y>,...,Yg), for example, following the multinomial distribution with
parameters n and © = (w1, 72, ..., s). By the central limit theorem, if n is
large, the random vector (71, 72, ..., Ts) asymptotically has the multivariate
normal distribution with mean n = (71, 73, ..., ws)’ and covariance matrix
[diag(x) — mx']/n, where 7; = Y;/n, and diag(x) is a diagonal matrix with
diagonal elements equal to m;. Thus, using the delta method, we may claim
that «/n(g(ft) — g(u)) asymptotically follows the multivariate normal distribution
with mean 0 and variance Y, 7:(89/0x:)% |x=r — (O_; 71(39/9%1) Ix=r)*.
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Answers to Selected Exercises

CHAPTER 1

1.10 (a)# = 0.618; (b) [0.471, 0.764], [0.467, 0.748], and [0.487, 0.783].
1.18 [0.001, 0.009], [0.002, 0.012], and [0.002, 0.012].

1.19 [9, 62].

1.22 (a) 0.20; (b) [0.076, 0.324]; (c) [0.109, 0.368]; (d) [0.096, 0.368].
CHAPTER 2

2.17
2.18

[-0.000,0.175].[-0.003,0.171],[-0.005,0.172], and[-0.007,0.178].
(a) A = 0.264; (b) [0.107, 0.420], [0.107, 0.415], [0.106, 0.415], and
[0.110,0.414].
2.19 (a) 0.155 and 0.166; (b) [0.009, 0.301] and [0.017, 0.315]; (c) 0.644,
0.712,and 0.626.
.20 [-0.0336, 0.1479], [—0.0346, 0.1505], [—0.0341, 0.1443], and
[-0.0339,0.1472].
(a) A =0.150 and A™ = 0.145; (b) [0.046, 0.254], [0.042, 0.248],
[0.052,0.259].
2.24 (a) 0.00012; (b) [-0.00102,0.00126]; (c) [—0.00114, 0.00116].
2.26 [—0.00021, 0.00071],[—0.00022, 0.00072], [—0.00022, 0.00072].

2.21

CHAPTER 3

4 (a)0.0464; (b) [0.030,0.063].

3 5 (a) 0.146 and 0.227; (b) [0.000, 0.317] and [0.013, 0.394]; (c) 0.363,
0.495, and 0.304.

3.16 (a)0.429;(b)[0.217,0.640] and [0.172, 0.605].
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186 Answers to Selected Exercises

3.17 (@) § = 0.111; eong = 0.115; (b) [0.000, 0.247], [0.000, 0.237], and
[0.000, 0.232]; (c) [0.000, 0.252] and [0.000, 0.258].

CHAPTER 4
4.7 (a)0.95,0.88,and 0.98; (b) 0.74, 0.83, 0.70, 0.82, and 0.82; (c) 0.79; (d)

[0.680,0.913]and [0.679,0.911].

(a) 1.073;(b)[1.038, 1.109].

(a) 10 and 9.018; (b) [4.182, 23.190] and [4.058, 24.645].

(a) p-value is 0.999; (b) éc* and é;u{ both equal 1.161; (c) [0.885, 1.524],

[0.885,1.523],[0.885,1.523], and [0.886, 1.522].

13
14
19

CHAPTER 5

5.12 2.64;[1.005, 7.316].

5.13 (a) 0.96; (b) 0.766 and 0.767; (c) [0.648, 0.902], [0.647, 0.901], and
[0.648, 0.901]; (d) approximately 0.08.

5.20 (a) 0.96; (b) B1 = —0.2692; OR = exp(B1) = 0.764; [0.648, 0.901];
(c) 0.08.

CHAPTER 7

7.26 (a) 0.884 [0.738, 0.948], 0.845 [0.735, 0.909], 0.840 [0.740, 0.901],
0.831[0.736, 0.892], 0.739 [0.614, 0.823], and 0.699 [0.516, 0.812]);
(b) 0.80; (c) [0.700, 0.867].



adjustment procedures
homogeneity of risk difference
21,22
independent binomial sampling
17,18
adverse event rates see number needed
to treat
age, maternal study example 60
all-cause mortality rates 167
anti-epileptic drug study examples 170,
172-3
aspirin study example 22-3,53-4, 67,
173
asymptotic confidence interval
attributable risk 135,137, 140-1,
144,146-7,149-150, 152,

154-5,157-9

generalized odds ratio 120-1,
124-5,127

number needed to treat 169-170,
171-2,174-6

oddsratio 91-2,95-7,100-1,
103,106,109-10, 114

prevalence 2-3,6,8-9

relative difference 48-9, 51-2, 54-5,
57-9

relativerisk 66-9, 72,74, 77-9,
81-2

risk difference 16-8, 20-1, 25-6,
29-30,31-2,34-5,37-8

asymptotic interval estimators

oddsratio 91-3,95-7

relative difference 50-2

relative risk 68-9
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Index

asymptotic likelihood ratio test 28, 32,
82,85,107,181-3
attributable fraction see attributable risk
attributable risk (AR) 133-64
case—control studies 136-8, 142-5
inverse sampling 156-8
logistic modeling 151-6
matched pairs 145-8
multiple levels of exposure
148-51
cross-sectional sampling 134-6,
138-42
exercises 159-64
inverse sampling 156-8
logistic modeling 151-6
matched pairs 145-8
multiple levels of exposure 148-51
study designs
with confounders 138-45
no confounders 134-8

behavior change study example 27, 55,
101,175
beverage temperatures study example
128
binomial sampling 1, 2-4
see also independent binomial sampling
birthweight
maternal age study example 60
race study example 99, 107
smoking during pregnancy study
example 99,107
bladder cancer study example 138,
152-3
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breast cancer
estrogen replacement therapy study
example 35-6,82-3
mastectomy study example 103-4

cancer
beverage temperatures study example
128
bladder cancer study example 138,
152-3

breast cancer
estrogen replacement therapy study
example 35-6,82-3
mastectomy study example
103-4
endometrial cancer study example
112,147-8
esophageal cancer study example
128
lung cancer
smoking study example 47
uranium miners study example
144-5,155
non-melanoma skin cancer study
example 70-1
oral conjugated estrogens study
example 112,147-8
treatments study examples
number needed to treat 177
paired-sample data 30-1, 75
Cancer and Leukemia Group B RT
example 23-4
case—control studies
attributable risk 156-8
logistic modeling 151-6
matched pairs 145-8
multiple levels of exposure
148-51
study designs 136-8, 142-5
beverage temperatures study example
128
endometrial cancer 112,147-8
esophageal cancer study example
128
independent inverse sampling 110
inverse sampling 156-8
oddsratio 89,90
oral cancer and smoking 93
oral conjugated estrogens 112,
147-8
smoking and oral cancer 93
central limit theorem 2,16

chemotherapy
Cancer and Leukemia Group B RT
example 23-4
number needed to treat study example
177
paired-sample data study example
30-1,75
response study example 94
child development study example
141-2
cisapride study example 67-8
cluster sampling
generalized odds ratio 122-5
prevalence 1,4-7
see also independent cluster sampling
cohort studies
incidencerate 13
incidence RD 16, 34, 38
incidenceRR 65,78
oddsratio 89,92,102,106-7
relative difference 48
combination chemotherapy response
study example 94
conditional distribution MLE 59, 81,
98,108,158
confidence intervals
binomial sampling 3-4
cross sectional sampling 135
cluster sampling 6, 140-1
exact 3,9,13,59-60,63,77,79,
93-4,97-8,103,112,127-8,
130,158
independent binomial sampling
16-21,48-9,51-2,66-7, 69,
91-8,137-8,169-70,172
independent cluster sampling 25-6,
54-5,72,100-1, 124-5,
174-5
independent inverse (or negative
binomial) sampling 31-2,
58-60,77,109-10,157-8
independent multinomial sampling
120-1, 144-5,149-50
independent Poisson sampling
34-5,78-79
inverse sampling 9
mixed negative multinomial and
multinomial sampling 130
negative multinomial sampling 112
paired-sample (or one-to-one
matching) data 28-30, 57, 74,
103,112,127,130,146-7,176



stratified Poisson sampling 37-8,
80-2
confounders
attributable risk
logistic regression model 153-6
matched pairs case—control studies
145-8
study designs 138-45
continuity correction 16-—17
cross-sectional sampling
attributable risk  134-6, 138—-42
oddsratio 89

delta method
attributable risk 144
definition 183
prevalence 6
relative difference 48, 57
relative risk 69
diffuse lymphoma study example 94
doubly-iterative procedure
independent binomial sampling
18
independent negative binomial
sampling 32
dyspepsia study example 67-8

educational intervention program study
example 27,55,101,175
endometrial cancer study example 112,
147-8
epilepsy
gabapentin study example 172-3
topiramate study example 170
esophageal cancer study example 128
estimation, logistic modeling 105-8
estrogens
endometrial cancer study example
112
replacement therapy study example
35-6,82-3
etiologic fraction see attributable risk
exact confidence interval
attributable risk 158
generalized odds ratio 127-8, 130
oddsratio 93-4,97-8,103,112
prevalence 3,9,13
relative difference  59-60, 63
relativerisk 77,79
exercises
attributable risk  159-64

Index 189

generalized odds ratio 130-1
number needed to treat 177-8
oddsratio 112-16
prevalence 10-13
relative difference 60-3
relative risk  83-5
risk difference  39-42
exposure levels, attributable risk
148-51
exposure variables, logistic modeling
151-6

Fieller's theorem 49, 66, 72,78

follow-ups, lengthy 34

Framingham heart disease study example
49-50, 136

gabapentin study example 172-3
gender, diffuse lymphoma study example
94
generalized odds ratio (GOR) 119-31
cluster sampling 122-5
exercises 130-1
independent multinomial sampling
119-22
mixed negative multinomial and
multinomial sampling 129-30
paired-sample data 126-9
repeated measurements data
122-5
see also odds ratio
goiter study example 24
GOR see generalized odds ratio

heart
aspirin study example 22-3, 53-4,
67,173
Framingham heart disease study
example 49-50,136
myocardial infarction study example
150-1
oral contraceptives study example
150-1
post-myocardial infarction study
example 22-3,53-4,67,173
homogeneity tests
oddsratio 98-9
relative difference 52-4
risk difference 21-4
risk ratio 70-1
hypertension study example 4



190 Index

incidence
rate 2,13
RD 34,37
RR 65,78, 80,85
independent binomial sampling
estimation 105-7
logistic modeling 105-7
number needed to treat 168-73
oddsratio 91-9,105-7
relative difference 48-54
relativerisk 66-71
risk difference 16-24
series procedures
number needed to treat 171-3
oddsratio 94-9
relative difference 50-4
relativerisk 68-71
risk difference 19-24
see also binomial sampling
independent cluster sampling
number needed to treat 173-5
oddsratio 99-102
relative difference 54-5
relativerisk  71-3
risk difference 24-7
see also cluster sampling
independent inverse sampling
attributable risk case—control studies
156-8
oddsratio 108-10
relative difference 58-60
relativerisk  75-8
independent multinomial sampling
119-22
independent negative binomial sampling
attributable risk 157
oddsratio 109
prevalence 8
relative difference 58
relativerisk 76
risk difference 31-4
independent Poisson sampling
relativerisk  78-9
risk difference 34-6
inflammation grade study example
122,125
interferon B-1b study example 170-1
interval estimators
binomial sampling 3
cluster sampling 6
heart disease study example 49-50
independent cluster sampling 73
inverse sampling 9

oddsratio 91-3,95-7
relative difference 50-2
relativerisk  77-8
risk difference 17,18,19-21
stratified Poisson sampling 82
summary interval estimators 19-21
intraclass correlation
cluster sampling 4-6
independent cluster sampling 24-5,
54-5,71-2,99-101, 123,
173-4
invariance, odds ratio 89
inverse sampling
attributable risk case—control studies
156-8
oddsratio 108-10
prevalence 8-10
relative difference 58-60
relativerisk  75-8
risk difference 31-4
iodine deficiency study example 24

large-sample theory 181-3
leukemia, Cancer and Leukemia Group B
RT example 23-4
locomotor disease study example 136
logistic modeling
attributable risk 151-6
oddsratio 104-8
lung cancer
smoking study example 47
uranium miners study example
144-5,155
lung transplant study example 122,
125

Mantel-Haenszel type estimator
attributable risk 144
independent binomial sampling 20,
69

number needed to treat 172

oddsratio 96

relative difference 51

relative risk 69

risk difference 20-1

stratified Poisson sampling 36-8,
80-2

mastectomy study example 103-4

matched pairs
attributable risk 145-8
see also paired-sample data

maternal age study example 60



maximum likelihood estimator (MLE)
conditional 59, 81, 98,108, 158
cross-sectional (or multinomial
sampling) 134, 139
definition 181-3
independent binomial sampling 19,
48,50, 66,68,91,95,137, 169,

171

independent inverse sampling 58-9,
76,157

independent multinomial sampling
120, 149

independent negative binomial
sampling 31-3
independent Poisson sampling 34,
42,78
inverse sampling 8
logistic modeling 105, 108, 152-4
mixed negative multinomial and
multinomial sampling
129-130
negative multinomial sampling 111
paired-sample data 28-9, 74, 103,
126,145,176
restricted 20, 29, 32, 40, 183
stratified Poisson sampling 36, 80-3
summary interval estimators 19-20
MI see myocardial infarction
mixed negative multinomial and
multinomial sampling, generalized
oddsratio 129-30
MLE see maximum likelihood estimator
modeling, logistic 104-8, 151-6
Monte Carlo simulation 35,53,57,77
mortality risk difference see risk difference
multicentre studies, independent
binomial sampling 94-9,171-3
multinomial sampling
generalized odds ratio 129-30
oddsratio 105-7,113
multiple levels of exposure 148-51
multiple sclerosis study example 170-1
multivariate central limit theorem 56,
74
multivariate model-based approach
151-6
myocardial infarction (MI) study example
150-1,155-6

negative multinomial sampling
generalized odds ratio 129-30
oddsratio 110-12

Index 191

paired-sample data 110-12
negative number needed to treat
167-8
NNT see number needed to treat
non-melanoma skin cancer study
example 70-1
number needed to treat (NNT) 167-78
exercises 177-8
independent binomial sampling
168-73
series procedures 171-3
independent cluster sampling
173-5
paired-sample data 175-7
Nurses’ Health Study 35-6, 82-3

odds ratio (OR) 89-116
asymptotic interval estimators
91-3,95-7
exact confidence interval 93-4,
97-8
exercises 112-16
independent binomial sampling
91-9
series procedures 94-9
independent cluster sampling
99-102
independent inverse sampling
108-10
logistic modeling 104-8
negative multinomial sampling for
paired-sample data 110-12
one-to-one matched sampling
102-4
paired-sample data 107-8,110-12
test for homogeneity 98-9
see also generalized odds ratio
one-to-one matched sampling 102—4
see also paired-sample data
OR see odds ratio
oral cancer case—control study example
93
oral conjugated estrogens study example
112,147-8
oral contraceptives study example
150-1,155-6
ordinal scale 119

paired-sample data
estimation 107-8
generalized odds ratio 126-9



192 Index

paired-sample data (continued)
logistic modeling 107-8
negative multinomial sampling
110-12
number needed to treat 175-7
oddsratio 107-8,110-12
relative difference 56-8
relativerisk  73-5
risk difference 27-31
see also matched pairs or one-to-one
matched sampling
Poisson sampling
independent 34-6, 78-9
stratified 36-9, 80-3
poliomyelitis vaccination study example
47,65
polychotomus risk factors 148-51
population attributable risk percent see
attributable risk
population proportion see prevalence
post-myocardial infarction study example
22-3,53-4,67,173
post-stratified analysis 138-45
pregnancy study examples 99, 107,
141-2
prevalence 1-13
binomial sampling 1, 2-4
cluster sampling 1,4-7
exercises 10-13
inverse sampling 1, 8-10

race study example 99, 107
radon-daughter exposure study example
144-5,155
randomized trials 119-22,173-5
rare disease case—control studies 145
RD see risk difference
relative difference 47-63
asymptotic interval estimators 50-2
exercises 60-3
independent binomial sampling
48-54
series procedures 50—4
independent cluster sampling 54-5
independent inverse sampling
58-60
paired-sample data 56-8
test for homogeneity 52-4
relative risk (RR) 65-85
asymptotic interval estimators 68-9
exercises 83-5
homogeneity of risk ratio test 70-1

independent binomial sampling
66-71
series 68-71
independent cluster sampling 71-3
independent inverse sampling 75-8
independent Poisson sampling
78-9
interval estimators 77-8
paired-sample data 73-5
stratified Poisson sampling 80-3
uniformly minimum variance
unbiased estimators 75-6
repeated measurements data 122-5
respiratory disease study example 136
risk difference (RD) 15-—42
exercises 39-42
homogeneity test 21-4
independent binomial sampling
16-24
series procedures 19-24
independent cluster sampling 24-7
independent negative binomial
sampling 31-4
independent Poisson sampling
34-6
interval estimators 19-21
paired-sample data 27-31
stratified Poisson sampling 36-9
RR see relative risk

score test, definition 181-3
Slutsky’s theorem 2,16
smoking
bladder cancer study example 138,
152-3
excess risk study example 47
lung cancer study examples 47,
144-5,155
myocardial infarction study example
150-1,155-6
oral cancer case—control study
example 93
oral contraceptives study example
150-1,155-6
pregnancy
birthweight and race study example
99,107
child development study example
141-2
uranium miners study example
144-5,155
solar protection study example 27, 55,
101,175



stratified analysis, attributable risk
138-45
stratified Poisson sampling
relative risk  80-3
risk difference 36-9
Streptococcus pyogens study example
121-2
study designs
attributable risk
with confounders 138-45
no confounders 134-8
summary interval estimators
19-21

test for homogeneity

oddsratio 98-9

relative difference 52—4

risk difference 21-4

risk ratio 70-1
tonsil size study example 121-2
topiramate study example 170

Index 193

uniformly minimum variance unbiased
estimator (UMVUE)
binomial sampling 2
independent negative binomial
sampling 32
inverse sampling 8
relativerisk  75-6
uranium miners study example 144-5,
155

voting approval rates study example 27

Wald’s (test) statistic 2,7-8,13, 16,
33-4,106,125,127-8,135, 142,
147,169,181-3

weighted least squares (WLS)

oddsratio 95

relative difference 51, 52-3
risk difference 18, 21

risk ratio 70
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