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Preface

In the early 1990’s, one of the authors attended a forensic conference in Arizona, USA and

became familiar with DNA profiling. In the meeting, there were heated debates among

forensic scientists, statisticians and legal professionals on the pros and cons of the then new

forensic DNA technology. These debates began to settle down after the US National

Research Council released its second report on the evaluation of forensic DNA evidence

in 1996. Currently, the technique is widely employed and accepted in the courtroom due to

its high discriminating power and reliability. It is a very powerful tool, not only in the

investigation of serious criminal offences including rapes and homicides, but also in

voluminous offences such as thefts and burglaries.

Statistics and probability play an important role in the interpretation of forensic DNA.

Unlike other areas of forensic science, probability is often needed in assessing the weight of

DNA evidence; probabilities in the magnitude of one in millions or one in billions are

commonly heard in court cases. A major aim of this book is to introduce the fundamental

statistical and probability theory and methods for the evaluation of DNA evidence. The book

covers three main applications of DNA profiling, namely identity testing, determination of

parentage and kinship, and interpretation of mixed DNA stains. Moreover, we place

emphasis on the computational aspects of statistical DNA forensics. Computer programs

are available at http://www.hku.hk/statistics/EasyDNA/ for possible use.

Readers can use the software to check the numerical findings of the examples given in the

book. This can help readers understand and appreciate the theory and methods behind

statistical forensic DNA analysis.

We are most grateful to the following people for their continuous support and assistance:

Dart Man Wong and Pui Tsui for introducing the fundamental concepts and sharing their

knowledge and experience in DNA forensics; Sze Chung Leung and his forensic laboratory

colleagues for encouragement and support; Yuk Ka Chung, Hong Lee and Yan Tsun Choy

for computing assistance; John Buckleton for introducing the mixed stain problem; and

specifically to Ada Lai for excellent secretarial support and typing the manuscript. We thank

the staff at John Wiley for their editorial assistance.

Last but not least, we wish to express our gratitude to our families, Yuet Siu, Ka Chung,

Ka Wing, and Tian Shuang, Jia Wen, for their patience and immense support.

W.K. Fung and Y.Q. Hu

Hong Kong
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Introduction

1.1 Statistics, forensic science and the law
Statistics has been playing an important role in forensic science and law. This is very natural,
since statistics is the science in dealing with variability and uncertainty, which commonly
arise in these two disciplines. In forensic science, data are collected from the crime scene or
elsewhere, and statistics is often used to analyze these data. Scientists explain the statistical
findings and provide their interpretations to various concerned parties including the client,
jury, lawyer and judge. Recently, several books were published on the use of statistics in
forensic science and in the courtroom (Aitken and Taroni 2004; Gastwirth 2000; Good 2001;
Lucy 2005).

According to (Lucy 2005, p3), a brief inspection of the Journal of Forensic Sciences for
the years between 1999 and 2002 indicates that about half of the articles have some kind of
statistical content. It is noticed that the sort of statistical methods used can vary from the ele-
mentary tools such as percentages, means and standard deviations to the more sophisticated
techniques including tests of statistical hypotheses, regression and calibration, and classifica-
tion. An update in glancing through the articles in the Journal of Forensic Sciences for the
years of 2005 and 2006 indicates that the phenomenon persists, i.e. about half of the articles
have some kind of statistical content. Besides those statistical methods mentioned by Lucy
(2005), we also find other more complex methods, such as cluster analysis, logistic regression
and Fisher’s exact test. Moreover, we also notice that about a quarter of the articles are on
DNA profiling. Nearly all these DNA articles involve some kind of statistical analyses, ranging
from elementary statistical methods to more complicated techniques such as the least-square
deconvolution.

1.2 The use of statistics in forensic DNA
DNA profiling has become one of the most commonly used techniques for human identifi-
cation since its introduction by Jeffreys et al. (1985). It is one of the most important tools in
forensic science. Nowadays, many forensic laboratories including the Hong Kong Government
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Laboratory have the largest teams of scientists working in DNA forensics. DNA can be found
in blood, hair/hair root, bone, semen and body fluid such as saliva and sweat. No two persons,
except for identical twins, have the same DNA sequence. The current DNA profiling technol-
ogy uses only a number of genetic markers, and so a unique identification may not be assured.
Nevertheless, the technique is widely employed and accepted in courtrooms due to its highly
discriminating power and reliability. The US National Research Council (NRC) released two
reports on the use of the technique in 1992 and 1996. In NRC II (National Research Council
1996), many discussions were provided on the statistical issues of forensic DNA, and several
recommendations related to the proper use of statistics were given. Since NRC II, a few books
on the use of statistics in DNA forensics have been published (Balding 2005; Buckleton et al.
2005; Evett and Weir 1998).

DNA profiling is not only commonly used in forensic investigation, but also leads to a lot
of research in this area. Nowadays, this kind of research constitutes the highest percentage
of articles in respectable forensic science journals. In 2007, a daughter journal of Forensic
Science International (FSI), Forensic Science International: Genetics (FSI Genetics), has been
newly launched. According to the announcement in the founding issue of FSI Genetics, 46% of
submissions to FSI Genetics fall in the area of forensic genetics, indicating that this discipline
can readily support its own journal.

The following quote is taken from the founding volume of FSI Genetics (2007):

Although forensic genetics is a discipline a century old (the discovery of the
ABO group by Karl Landsteiner can be considered the birth of this field), the
introduction of DNA profiling to forensic analysis following the development of
this technique by Alec Jeffreys and co-workers, 20 years ago, has had a tremen-
dous impact on forensic genetics. The amount of work in this field has increased
enormously since 1985, with an increasing number of papers published in this
area. This increase shows no signs of slowing down with many new technolo-
gies and applications being reported. Major advances in molecular biology and
computer technology—allowing DNA samples to be obtained from ever smaller
quantities of biological material—are continuously being reported along with new
and exciting applications of DNA technology to the analysis of non-human mate-
rial (crime scene analysis, tracking the illegal trade in endangered species and
bioterrorism), or the building and appropriate management of DNA databases is
expanding outside of the traditional areas of criminal investigation.

Forensic genetics is now a reasonably mature field, and generates sufficient high
quality content to support a dedicated journal.

The scope of the new journal would include most of the forensic genetics topics
such as (among others):

• Biostatistical methods in forensic genetics.

◦ Evaluation of DNA evidence in forensic problems (such as paternity or
immigration cases, criminal casework, identification), classical and new
statistical approaches.

In fact, a high proportion of the papers in forensic genetics has used some sort of statistics.
In many situations, simple statistics such as the percentage, mean and standard deviation are
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sufficient, while in some others, more advanced statistical analyses are needed. The following
two articles selected from FSI 2006 indicate the sorts of advanced techniques used.

Shepard and Herrera (2006) studied allelic frequencies of 15 STR loci from 150 unrelated
persons from an Iranian population. Common statistical measures such as the gene diversity
index, power of discrimination, power of exclusion and tests for Hardy–Weinberg equilib-
rium, etc. were constructed. The more advanced statistical techniques–phylogenetic analysis
with neighbor-joining trees and multi-dimensional scaling analysis–were performed using
Fst measures generated from 13 worldwide, geographically targeted populations. Bonferroni
adjustment for multiple comparisons and statistical bootstrap analysis were also conducted.
Based on the statistical findings, the authors discussed the appropriate choice of databases on
which to base forensic calculations for populations located in geographic intersections.

Hammer et al. (2006) considered a set of 61 Y-SNPs for a sample of 2517 individuals
from 38 populations to infer the geographic origins of Y chromosomes in the United States
and to test for paternal admixture. Sophisticated statistical techniques, including hierarchical
genetic structuring based on an analysis of molecular variance and multi-dimensional scaling
for clustering, were chosen. From the statistical findings, it was inferred that both inter-ethnic
admixture and population subdivision might contribute to fine scale Y-STR heterogeneity
within US ethnic groups.

Why has statistics attracted more attention in DNA forensics than in other areas of forensic
science? Fung et al. (2006) have summarized the following, among other possible reasons:

First, DNA profiling is generally scientifically unambiguous and very powerful.
Since the DNA evidence is repeatable, statistical evaluation would then be possible
and in most situations objective.

Second, when there is a match to the DNA evidence, people would like to know
how likely there is a random match.

Third, extremely small probabilities are commonly encountered in DNA profiling,
and people are curious about their derivations and interpretations (note: these
probabilities are sometimes interpreted incorrectly, e.g. prosecutor’s fallacy).

Fourth, many forensic scientists are not that familiar with statistics, particularly
on different approaches of the subject.

Fifth, some problems such as kinship determinations and DNA mixtures need
complex statistical analysis.

It is the fifth point about kinship determinations and assessment of DNA mixtures that
requires complex statistical analysis; a major aim of this book is to provide details on the
statistical treatment of such problems. In doing so, the other points will also be touched upon.

1.3 Genetic basis of DNA profiling and typing technology
1.3.1 Genetic basis

NRC I and NRC II (National Research Council 1992, 1996) give comprehensive accounts of
the general principles of DNA profiling. The following paragraphs on the genetic basis of
DNA typing come from Chapter 2 of NRC II.
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In higher organisms, the genetic material is organized into microscopic structures called
chromosomes. A fertilized human egg has 46 chromosomes (23 pairs). A chromosome is a
very thin thread of DNA, surrounded by other materials, mainly protein. The DNA thread is
actually double – two strands coiled around each other like a twisted rope ladder with stiff
wooden steps. The basic chemical unit of DNA is the nucleotide, consisting of a base. There
are four kinds of bases, designated A, G, T and C. The total DNA in a genome amounts to
about 3 billion nucleotide pairs. A gene is a segment of DNA, ranging from a few thousand
to more than a hundred thousand nucleotide pairs. The position on the chromosome at which
a particular gene resides is its locus.

Alternative forms of a gene are called alleles. If the same allele is present in both chro-
mosomes of a pair, then the person is homozygous; if the two alleles are different, then the
person is heterozygous. A person’s genetic makeup is the genotype. Genotype can refer to a
single gene locus with two alleles, A and a, in which case the three possible genotypes are AA
Aa, and aa; or it can be extended to several loci or even to the entire set of genes. In forensic
analysis, the genotype for the group of analyzed loci is called the DNA profile.

1.3.2 Typing technology

Currently, short tandem repeat (STR) loci are most commonly used for DNA profiling. Usually,
about 10 or more unlinked autosomal (the 22 pairs of chromosomes, but not the sex chromo-
somes) loci are used in practice. After some laboratory procedures, including DNA extraction
and the polymerase chain reaction (PCR) process, the STR profiles can then be obtained. For
more details on the STR typing technology, interested readers can refer to (Buckleton et al.
2005, Chapter 1) and (Balding 2005, Chapter 4).

Figure 1.1 shows the STR profile of a DNA sample from a crime scene obtained by
ABI machines and software. Only the three autosomal loci of the yellow panel are shown
for illustration. The upper panel corresponds to the allelic ladders of the standard markers.
From the figure, we notice that the genotypes at the three loci are respectively 7/11 at locus

Figure 1.1 An STR profile of a DNA sample from a crime scene, obtained by ABI machines
and software.
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D5S818 (of chromosome 5), 12/13 at D13S317 (of chromosome 13) and 11/12 at D7S820
(of chromosome 7). The values 7 and 11 at D5S818 may be called allele sizes, which represent
the numbers of repeat DNA units in the two alleles. The STR locus has the property that its
allele size is discrete and so is easy to interpret and has little ambiguity. The commonly used
STR loci usually have slightly below 10 to over 20 alleles, giving a large number of possible
genotypes at each locus. In the Hong Kong Chinese population database (Wong et al. 2001), it
just happens that there are eight different alleles for each of the loci mentioned above, resulting
in 8 × 9/2 = 36 possible genotypes at each locus.

To show the discriminating power of DNA profiling, we assess the frequency of
the DNA profile in Figure 1.1 in the Hong Kong Chinese population. According to Wong
et al. (2001), the allele frequencies are p7 = 0.035 and p11 = 0.252 at D5S818; p12 = 0.099
and p13 = 0.023 at D13S317; and p11 = 0.376 and p12 = 0.230 at D7S820. The frequency
of the DNA profile at all three loci may be evaluated as (2 × 0.035 × 0.252) × (2 × 0.099 ×
0.023) × (2 × 0.376 × 0.230) = 1.39 × 10−5 under Hardy–Weinberg and linkage equilib-
ria (discussion on their validity is given in Chapter 3). In other words, about 1 in 72 000
[= 1/(1.39 × 10−5)] persons in the local Chinese population has such a DNA profile. This
shows the highly discriminating power of the technique if a suspect is arrested and his/her
genotype is found to match with the crime stain profile.

1.4 About the book
This book aims to introduce the basic statistical theory and methods for the evaluation of
DNA evidence. Readers are assumed to have little background knowledge in statistics and
probability. Thus, we start by considering simple cases first and then proceed to analyze
more complex problems. We illustrate with many examples, so that readers can not only
grasp the basic concepts, but also understand the more advanced analyses. The book covers
three main applications of DNA profiling, namely identity testing, determination of parent-
age and kinship, and interpretation of mixed DNA stains. Moreover, we place emphasis on
the computational aspects of statistical DNA forensics. Computer programs are available at
http://www.hku.hk/statistics/EasyDNA/ for possible use. Readers can use the
software to check the numerical findings of the examples given in the book. This can help
readers to understand and appreciate the theory and methods behind statistical forensic DNA
analysis.

The remainder of the book is organized as follows. Chapter 2 provides the basic probabil-
ity and statistics that are commonly used in later chapters. Chapter 3 discusses fundamental
concepts and introduces some statistical measures in population genetics. The statistical evalu-
ation of single source samples or identity testing, including the theory of subpopulation models
and the problems involving relatives, is studied thoroughly. The common parentage identifi-
cations are discussed in Chapter 4, while the complex kinship determinations are considered
in Chapter 5. The associated computer software can provide a convenient means to analyze
those particular paternity and kinship problems. Although the methods and software are illus-
trated with STR profiles, they can also be applied to analyze single-nucleotide polymorphism
(SNP) profiles. Chapters 6 and 7 are on the statistical interpretation of DNA mixture. The
associated formulas are often complicated and so the more technical derivations are put in
the last section of each chapter. Thus, the reader can focus on the application of the calculat-
ing formulas in practical problem without being distracted by the technical derivations. The
last chapter (Chapter 8) discusses some other issues in statistical DNA forensics, such as the
Y-STR marker, peak information and database search, etc.
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Probability and statistics

2.1 Probability
Probability is used in situations in which the outcomes occur randomly. It has lots of appli-
cations in various disciplines. It plays an important role in evaluating the weight of evidence.
Many discussions on the use of probability as well as statistics in the forensic field and the
legal profession can be found; see, for example, Aitken and Taroni (2004), Finkelstein and
Levin (2001), Gastwirth (2000) and Lucy (2005). In the Second National Research Council
Report (NRC II 1996) on the evaluation of forensic DNA evidence, there were a lot of discus-
sions on the probability assessment of forensic DNA; a number of suggestions on the proper
use of probability and statistics were provided.

In many situations, we are interested in getting the probability that a particular event occurs.
Suppose we have a fair die and consider a single throw of the die. Let E be the event that
the outcome is a 2 facing up. Since the die is a fair die with six faces, numbered 1, 2, . . . , 6,
the probability that the event E occurs is 1/6. Notionally, we write P(E) = 1/6. This fair die
example is used below to introduce the three laws of probability.

Let E be any particular event of interest. The first law of probability states that

0 ≤ P(E) ≤ 1. (2.1)

If event E is certain to occur, then P(E) = 1. On the other hand, an impossible event E has
zero probability to occur, i.e. P(E) = 0.

Consider the event that the die shows the number 2 or below. What is the probability of
observing such an event? Most people can provide the correct answer 2/6 = 1/3, since there
are two possibilities out of a total of six possible outcomes. This result can also be obtained
from the second law of probability, which is provided as follows.

Suppose A and B are two mutually exclusive events; then

P(A or B) = P(A) + P(B). (2.2)

This is sometimes called the additive rule. The statement ‘A or B’ is conventionally written
as ‘A ∪ B’. With reference to the above example, A can be taken as the event that the number
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shown is a 1 with probability P(A) = 1/6, and B be the event that the number shown is a
2 with probability P(B) also being 1/6. The occurrence of A will preclude the occurrence
of B and so the events are called mutually exclusive. Then, according to the second law, the
probability that the die will show the number 2 or below is

P(A ∪ B) = P(A) + P(B) = 1/6 + 1/6 = 1/3.

A general form of the second law of probability can be extended to the situation with k > 2
mutually exclusive events E1, E2, . . . , Ek:

P(E1 ∪ E2 · · · ∪ Ek) = P(E1) + P(E2) + · · · + P(Ek). (2.3)

It is also common to consider the probability of the occurrence of two (or more) events,
say A and B, together. Suppose we throw a fair die twice; what is the probability that the first
throw is a 6 and the second is also 6? Before answering this question, we let A denote that
a 6 is shown in the first throw, and B denote that a 6 is shown in the second throw. In fact,
there are 36 possible outcomes of the two throws of the die, namely (1, 1), (1, 2), . . . , (6, 6),
and they are equally probable. The joint event A and B is (6, 6), which is one of these 36
possibilities, and P(A and B) = 1/36. If we just consider only event A of the first throw, it is
obvious that P(A) = 1/6. Similarly, for only the second throw, P(B) = 1/6. We arrive at the
following result:

P(A and B) = P(A) × P(B), (2.4)

in which A and B are independent events. This is the third law of probability, sometimes
also called the product or multiplicative rule. From here onwards, for brevity, we also write
P(A and B) as P(A, B), P(AB) or P(A ∩ B). The third law can be easily extended to more
than two independent events. Suppose E1, E2, . . . , Ek are k independent events,

P(E1, E2, . . . , Ek) = P(E1)P(E2) · · · P(Ek). (2.5)

Let us go back to the second law, Equation (2.2) again. The law considers the probability
P(A or B) in which the two events A and B are mutually exclusive to each other. In many
situations, however, this does not hold true. For example, in a single throw of a fair die, A is
the event that the value shown is 3 or below, and B is the event that the value shown is an even
number. The occurrence of event A does not preclude the occurrence of event B and vice versa,
and so the two events are not mutually exclusive. It is easy to check that P(A or B) = 5/6,
and P(A) + P(B) = 3/6 + 3/6 = 1, and they are not equal to each other.

The following general second law of probability can be used for the above situation. For
any events A and B,

P(A or B) = P(A) + P(B) − P(A and B),

or, conventionally,

P(A ∪ B) = P(A) + P(B) − P(AB). (2.6)

With reference to the earlier example, the joint event AB (i.e. A and B) is just the event
that the value shown is a 2. Thus, P(AB) = 1/6. The right-hand side of Equation (2.6) is
3/6 + 3/6 − 1/6 = 5/6, which is equal to P(A or B) = 5/6 that we obtained earlier.

Equation (2.6) can be extended to situations with three events:

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(AB) − P(AC) − P(BC) + P(ABC),



2.2 DEPENDENT EVENTS AND CONDITIONAL PROBABILITY 9

or generally with n events E1, . . . , En:

P

(
n⋃

i=1

Ei

)
=

n∑
i=1

P(Ei) −
∑
i<j

P(EiEj) +
∑

i<j<k

P(EiEjEk) − · · ·

+ (−1)n+1P

(
n⋂

i=1

Ei

)
, (2.7)

where the notation
∑k

i=1 ai stands for the summation of the terms ai over the index i from 1 to k,
P
(⋃n

i=1 Ei

)
means P(E1 ∪ E2 ∪ · · · ∪ En), and P

(⋂n
i=1 Ei

)
means P(E1 ∩ E2 ∩ · · · ∩ En)

or just P(E1E2 · · · En). Equation (2.7) is also called the principle of inclusion and exclusion.

2.2 Dependent events and conditional probability
The third law of probability requires events A and B to be independent. But not all events are
independent. Consider one throw of a die with events A and B given earlier, where A is the
throwing of a number 3 or below and B is the throwing of an even number. Then, P(A) = 1/2,
P(B) = 1/2, and P(A, B) = P(the number shown is a 2) = 1/6 which is, however, not equal
to P(A) × P(B). The third law does not hold true here, i.e. P(A, B) �= P(A) × P(B), because
events A and B are not independent.

The assessment for the probability of the above joint event can also be approached in the
following way. Suppose we imagine that event B has already happened, i.e. an even number
has been shown and this occurs with a probability P(B) = 1/2. Given this situation (event B),
what is the probability that the number thrown is 3 or below (event A)? Event B has three
outcomes {2, 4, 6} and only one of them {2} is 3 or below. So, given an even number has
been thrown (event B), the probability that it is 3 or below (event A) is 1/3. In terms of
mathematical notation, we write this as P(A|B) = 1/3 – the probability that event A occurs
given or on condition that event B has occurred is 1/3. In the above example, we notice that
P(A, B) = 1/6 = P(A|B)P(B) = 1/3 × 1/2.

Generally, we can write

P(A, B) = P(A|B)P(B). (2.8)

This is sometimes known as the third law of probability for dependent events. If A and
B are independent events, then the conditional probability P(A|B) becomes P(A), i.e. the
probability that A occurs does not depend on whether event B has occurred or not.

It is clear that the order of events A and B in Equation (2.8) is irrelevant, and so it is also
true to have

P(A, B) = P(B|A)P(A). (2.9)

The extended version of the third law Equation (2.8) or (2.9) applies to any two events A

and B, and is not restricted to the specific example given above. It can be applied to a gen-
eral situation and is commonly employed in evidence evaluation. Furthermore, the above
Equations (2.8) and (2.9) can be generalized to deal with problems having more than two
events.

Suppose that there are three events A, B, C of interest. Can we get an equation for evalu-
ating the probability of the joint event A, B and C, P(A, B, C), like Equation (2.8), in terms
of the conditional probabilities? To achieve our purpose, let us first denote E = (B, C). Then,
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from Equation (2.9), we obtain

P(A, E) = P(E|A)P(A).

Putting back E as (B, C), the equation becomes

P(A, B, C) = P(B, C|A)P(A). (2.10)

Now, applying Equation (2.9) to P(B, C|A) gives

P(B, C|A) = P(C|A, B)P(B|A). (2.11)

Substituting Equation (2.11) into Equation (2.10), we get

P(A, B, C) = P(C|A, B)P(B|A)P(A). (2.12)

Suppose we are interested in four events A, B, C and D. Using a similar derivation to the
above, we can obtain

P(A, B, C, D) = P(B, C, D|A)P(A), (2.13)

P(B, C, D|A) = P(C, D|A, B)P(B|A), (2.14)

P(B, C, D|A) = P(D|A, B, C)P(B, C|A), (2.15)

P(C, D|A, B) = P(D|A, B, C)P(C|A, B), (2.16)

P(A, B, C, D) = P(D|A, B, C)P(C|A, B)P(B|A)P(A). (2.17)

There are many applications of these formulas in the later part of this book.

2.3 Law of total probability
Consider one throw of a fair die. Let B1 and B2 be the events for the throwing of an odd
number and an even number, respectively. These two events are mutually exclusive because
the occurrence of one event precludes the occurrence of the other, and they are exhaustive
because they exhaust all possibilities, since the throwing can only be an odd or an even number.
They are called mutually exclusive and exhaustive events, and have the property that

P(B1 or B2) = P(B1) + P(B2) = 1.

Consider the event A that the number thrown is 3 or below. The probability P(A) is
obviously 1/2. The events ‘A and B1’ and ‘A and B2’ are mutually exclusive, since they
cannot both occur. The outcomes for ‘A and B1’ are {1, 3}, and the outcome for ‘A and B2’
is {2}. So, the event ‘A and B1’ or ‘A and B2’ is {1, 2, 3}, which are just the outcomes for
event A. Thus,

P(A) = P(‘A and B1’ or ‘A and B2’)

= P(A and B1) + P(A and B2)

= P(A|B1)P(B1) + P(A|B2)P(B2).

The last equality results from the third law of probability for dependent events [see Equa-
tion (2.8)].

An extension of the argument to any number of mutually exclusive and exhaustive events
is given as follows: If B1, B2, . . . , and Bk are k mutually exclusive and exhaustive events,
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then, for any event A,

P(A) = P(A|B1)P(B1) + · · · + P(A|Bk)P(Bk)

=
k∑

i=1

P(A|Bi)P(Bi), (2.18)

=
k∑

i=1

P(A, Bi). (2.19)

This is called the law of total probability or the rule of elimination.

2.4 Bayes’ Theorem
Bayes’ Theorem is an important result for the evaluation of probability. It was introduced by
Thomas Bayes in the 18th century, and could be regarded as a useful means to assess the
weight of evidence.

Consider the third law of probability for dependent events in Equation (2.8):

P(A, B) = P(A|B)P(B).

The law can also be expressed as in Equation (2.9):

P(A, B) = P(B|A)P(A).

Thus,

P(B|A)P(A) = P(A|B)P(B). (2.20)

If P(A) �= 0, we write

P(B|A) = P(A|B)P(B)

P(A)
. (2.21)

This is called Bayes’ Theorem, and it relates the conditional probabilities to unconditional
probabilities.

Consider two mutually exclusive and exhaustive events B and B̄, where B̄ is a comple-
mentary event of B, i.e. not B. Using the law of total probability for P(A), Equation (2.21)
can be rewritten as

P(B|A) = P(A|B)P(B)

P(A|B)P(B) + P(A|B̄)P(B̄)
. (2.22)

Generally, let B1, B2, . . . , Bk denote k mutually exclusive and exhaustive events. Then, for
any event A with P(A) �= 0, the general form of Bayes’ Theorem is given as

P(Bi|A) = P(A|Bi)(Bi)∑k
j=1 P(A|Bj)P(Bj)

, i = 1, . . . , k. (2.23)

Bayes’ Theorem is a fundamental theorem in probability. It has lots of applications in
forensic science, law and other disciplines. The application of the theorem to parentage testing,
say, can be referred to in Section 4.1.3.
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2.5 Binomial probability distribution
Probability distribution is commonly employed in the study of probability. One popular prob-
ability distribution is the binomial distribution. Suppose a fair die is thrown three times; what
is the probability that two 4s are observed? To answer this question, we may first consider the
possible outcome in each throw, which is 1, 2, . . . , or 6. However, we are interested in whether
4 occurs or not. In that connection, we can consider the outcome as being a 4, or not a 4, and
they are denoted as 4 and 4̄ respectively. For each of the throws, P(4) = 1/6 and P(4̄) = 5/6.

In calculating the probability that two 4s are shown in three throws of a die, one simple
way is to use the tree diagram provided in Figure 2.1.

There are three ways of getting two 4s, namely 444̄, 44̄4 and 4̄44, and each corresponds to a
probability (1/6)2(5/6), resulting in the overall probability of 3(1/6)2(5/6). The probabilities
for observing various numbers of 4s in Figure 2.1 are summarized in Table 2.1.

This problem can also be tackled without using the tree diagram to enumerate all possible
outcomes. Let X be the number of occurrences of a 4 in three throws of a die. Then, in
this case, X takes a particular value from the set of {0, 1, 2, 3}. Denote this particular value
by x.

In a single throw of the die, the probability of throwing a 4 is 1/6; the probability of not
throwing a 4 is 5/6. The probability of getting x 4s in three throws of the die is

P(X = x) =
(

3

x

)(
1

6

)x(5

6

)3−x

, x = 0, 1, 2, 3.

Figure 2.1 Tree diagram for three throws of a die.



2.6 MULTINOMIAL DISTRIBUTION 13

Table 2.1 Probabilities for observing the number of 4s for three throws of a die.

Number of 4s 0 1 2 3

Probability

(
5

6

)3

3

(
1

6

)(
5

6

)2

3

(
1

6

)2(5

6

) (
1

6

)3

The term

(
3

x

)
is the binomial coefficient which evaluates the number of ways in which x 4s

can be selected from three throws of a die. It is denoted as:(
3

x

)
= 3!

x!(3 − x)!
,

where x! = x(x − 1)(x − 2) · · · 1, known as x-factorial, with 0! = 1. When x = 2, we have

P(X = 2) =
(

3

2

)(
1

6

)2(5

6

)1

= 3!

2!1!

(
1

6

)2(5

6

)

= 3

(
1

6

)2(5

6

)
,

which is the same as that observed in Table 2.1. The probabilities for other x values can be
obtained similarly and they coincide with those listed in Table 2.1.

The above derivation is a special case of the binomial probability, which is given as:

P(X = x) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n, (2.24)

where

n = number of trials; it is three in the case above;

x = the number of occurrences of the event or value which is of particular
interest in our problem;

p = the probability of observing that particular event or value in a single trial;(
n

x

)
= n!

x!(n − x)!
.

Conventionally, we write X ∼ Bin(n, p). It is obvious that the application of the binomial
distribution is not restricted to the throw of a die.

2.6 Multinomial distribution
Suppose a die is thrown n times; what is the probability that 1 appears x1 times, 2 appears x2

times, . . ., and 6 appears x6 times, where x1 + x2 + · · · + x6 = n? Using a similar argument
as in deriving the binomial distribution, the resulting probability can be obtained based on the
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multinomial distribution given below:

P(X1 = x1, X2 = x2, . . . , Xk = xk) = n!

x1!x2! · · · xk!
p

x1
1 p

x2
2 · · · pxk

k ;

0 ≤ pi ≤ 1; p1 + p2 + · · · + pk = 1; x1 + x2 + · · · + xk = n, (2.25)

where pi is the probability that the value i is observed in a single trial. Notice that for
the multinomial distribution, there are no restrictions on pi’s, except 0 ≤ pi ≤ 1 and p1 +
p2 + · · · + pk = 1, and so pi’s need not be equal to one another. For a fair die situation, we
have k = 6, p1 = p2 = · · · = p6 = 1/6. The binomial distribution is just a particular case of
the multinomial distribution with k = 2.

To illustrate the use of the multinomial probability formula, we take n = 5 and like to eval-
uate the probability of having (x1, x2, . . . , x6) being (1, 2, 1, 0, 0, 1). From Equation (2.25),
this probability is equal to

5!

1!2!1!0!0!1!

(
1

6

)1(1

6

)2(1

6

)1(1

6

)0(1

6

)0(1

6

)1

= 60

65
= 5

648
.

2.7 Poisson distribution
The Poisson distribution is another popular discrete distribution. Suppose we are interested
in modeling the number of car accidents in a highway on a particular day, and the Poisson
distribution is commonly used for such a purpose. In assessing the probability using the
Poisson distribution, a parameter λ representing the mean or average number of occurrences
has to be specified. The probability of x occurrences is evaluated as

P(X = x) = e−λλx

x!
, x = 0, 1, 2, . . . . (2.26)

To illustrate the use of the Poisson distribution, we take, for example, the daily average
number of car accidents in a highway as λ = 1.4. The probability that, on a particular day,
there are three accidents is

P(X = 3) = e−1.41.43

3!
= 0.113.

Note that, unlike the binomial distribution, the number of cars (n) riding on the highway on
that particular day is not needed for the Poisson distribution.

2.8 Normal distribution
The probability distributions–binomial, multinomial and Poisson–that we discussed earlier
are discrete distributions. The random variables of interest–X and Xi in Equations (2.24)–
(2.26)–take discrete values of 0, 1, 2, . . . . There is another kind of probability distribution,
called the continuous distribution, in which the random variable of interest X is continuous.
Many measurements, such as the height of a person and the length of the femur of a female
adult (Lucy 2005), are continuous in nature.

A continuous distribution is often characterized by its probability density function and/or
its parameter values. One of the most commonly used continuous distributions is the normal
distribution. The distribution is characterized by the parameters mean µ and variance σ2. The
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(a)

(b)

Figure 2.2 Normal density curves; (a) X ∼ N(70, 62) and (b) X ∼ N(80, 102).

square root of variance is called the standard deviation σ. The mean and the standard deviation
measure the central location and the spread of the random variable, respectively.

Let X be the random variable, which is normally distributed with mean µ and variance
σ2; we write X ∼ N(µ, σ2).1 Suppose we are interested in the weights of Chinese male
adults in Hong Kong; the weight X is regarded as normally distributed with mean µ = 70kg
and variance σ2 = 62 kg2, i.e. N(70, 62). The probability density function of this particular
distribution is shown as curve (a) in Figure 2.2. The central location of the curve is at µ = 70.
Notice that a normal distribution is always symmetric about its mean µ. If we also consider
the weights of Caucasian male adults in Hong Kong and assume that it is normally distributed
with mean µ = 80 and variance σ2 = 102, i.e. N(80, 102), then the density function is shown
as curve (b) in Figure 2.2. Comparing the two curves, we notice that the Caucasian not only
has a higher mean µ, but also a larger dispersion σ2 in the weights. It is observed from the
figure that the normal distribution is characterized by its mean and variance parameter values.

Unlike in the discrete case, a continuous random variable X has the property that P(X = x)

is always equal to 0 for any value of x. Instead, we often evaluate the probability for X lying
inside an interval such as P(a < X < b). Unlike in the discrete probability case, there is no
simple analytical formula for obtaining the probability for the normal distribution. Instead, in
evaluating such a probability, we often consider the transformation Z = (X − µ)/σ. It can be
shown that

when X ∼ N(µ, σ2), then Z = X − µ

σ
∼ N(0, 1),

which is a normal distribution with mean 0 and variance 1. The particular N(0, 1) distribution
is called the standard normal distribution. We consider the evaluation of P(64 < X < 78.1)

when X ∼ N(70, 62). In principle, according to probability theory, we need to evaluate the
area at values 64 and 78.1 under the probability density curve (note that the total area under
any density curve is 1). Graphically, this area is shown on the left-hand side of Figure 2.3.

1The probability density function (pdf) for a normal distribution, X ∼ N(µ, σ2), is

f(x) =
(√

2πσ
)−1

exp[−(x − µ)2/(2σ2)], −∞ < x < ∞.
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64 70 78.1 −1 0 1.35

Z =
(X − µ)

σ

Figure 2.3 Evaluate the probability for a normal distribution. Left-hand figure: P(64 < X <

78.1), where X ∼ N(70, 62); right-hand figure: P(−1 < Z < 1.35), where Z = (X − µ)/σ

with µ = 70, σ = 6, and Z ∼ N(0, 1). The two probabilities are the same.

In practice, we consider the transformation Z = (X − µ)/σ for probability evaluation in the
following way:

P(64 < X < 78.1)

= P

(
64 − 70

6
<

X − 70

6
<

78.1 − 70

6

)
= P(−1 < Z < 1.35).

Thus, the probability P(64 < X < 78.1), where X ∼ N(70, 62), can be equivalently evalu-
ated as P(−1 < Z < 1.35), where Z ∼ N(0, 1). Graphically, this equivalence is shown in
Figure 2.3. To evaluate the latter probability, we can write

P(−1 < Z < 1.35)

= P(−1 < Z < 0) + P(0 ≤ Z < 1.35)

= 0.3413 + 0.4115

= 0.7528.

Both probabilities 0.3413 and 0.4115 are obtained from the standard normal probability table
given in Appendix A. The first probability P(−1 < Z < 0) is obtained based on the fact that
the standard normal distribution is symmetric about its mean 0.

2.9 Likelihood ratio
Consider a blood donation center in which every donor is required to have a screening blood
test for a particular kind of disease. Suppose a person has had the test and the result is positive.
In this situation, two propositions or explanations may be considered:

H0: the person is a carrier of the disease;
H1: the person is not a carrier of the disease.

These propositions are rival or mutually exclusive to each other. They are called the null and
alternative hypotheses in statistics.

The statistical hypotheses testing framework fits very well in the legal setting, in which
two propositions are also considered. The propositions often come from the prosecution as
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well as the defense sides. Suppose that there was a murder case, and a blood stain from the
perpetrator was found at the crime scene; a suspect was later arrested and, serologically, his
blood type was found to match with that found at the crime scene. Two competing propositions
or explanations are considered:

Hp: the blood stain came from the suspect;
Hd : the blood stain did not come from the suspect.

In assessing the weight of the evidence which, in this case, is the blood type of the crime
stain and that of the suspect, the likelihood ratio (LR) is often used:

LR = P(evidence|Hp)

P(evidence|Hd)
. (2.27)

The ratio evaluates the relative size for the probability of observing the evidence if Hp is true
to the probability if Hd is true (or, equivalently, if Hp is not true). As can be seen here, the
likelihood ratio approach assesses the evidence by considering explanations from both the
prosecution and defense sides. This is consistent with the situation in common court cases.
This likelihood ratio approach is the main tool that we adopt in this book for assessing the
weight of DNA evidence. In fact, the likelihood ratio is the major tool used in assessing
the weight of evidence numerically, not only in DNA forensics (Balding 2005; Buckleton et
al. 2005; Evett and Weir 1998; National Research Council 1996), but also in other kinds of
scientific evidence, such as fibers and glass fragments, etc. (Aitken and Taroni 2004; Lucy
2005).

2.10 Statistical inference
2.10.1 Test of hypothesis

Hypothesis testing is commonly used for statistical inference. In previous discussions, we
assumed that the die is a fair die and then made the probability calculations accordingly. But
is the die really a fair die? How can we test the assumption that it is a fair die?

In answering this question, we can conduct an experiment by throwing the die repeatedly
for n times and count the number of times that value 1, 2, . . . , or 6 appears. Table 2.2 presents
the summarized findings of one such experiment with n = 120. The null and alternative
hypotheses of interest are

H0: the die is a fair die;
H1: the die is not a fair die.

If the die is a fair one, i.e. under the null hypothesis H0, then the probability of get-
ting the value i in a single throw is pi = 1/6, i = 1, 2, . . . , 6. Under H0, we expect to have
Ei = n × pi = 120 × 1/6 = 20 times that value i will appear. If there are large discrepancies

Table 2.2 The observed frequencies of observing value i, i = 1, . . . , 6, in throwing a die
120 times.

Value i 1 2 3 4 5 6
Observed frequency Oi 25 18 19 23 14 21
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0 5 11.07 15

α  = 0.05

Figure 2.4 A chi-square distribution with v = 5 degrees of freedom. The value 11.07 corre-
sponds to the upper 5% point of the distribution.

between the observed and expected frequencies Oi and Ei, we may doubt whether H0 holds
or not. The chi-square goodness-of-fit test is a commonly used test statistic to measure the
overall discrepancy. The test statistic is denoted as T , where

T =
k∑

i=1

(Oi − Ei)
2

Ei

. (2.28)

When H0 is true, with a large n, this statistic has a (approximately) chi-square χ2 distribution
with k − 1 degrees of freedom (df), where k is equal to 6 for the above example. A usual rule
of thumb is to have each Ei, i = 1, . . . , k being greater than 5, in giving a good approximation
of the chi-square distribution for the test statistic. The chi-square distribution is a continuous
distribution, commonly used for goodness-of-fit tests. As we can see from Equation (2.28),
if there are large discrepancies between Oi and Ei, then the test statistic T would be large
and it casts doubt on whether the null hypothesis is true. Statistical hypothesis testing theory
suggests that the null hypothesis H0 be rejected if T is greater than a certain critical value
obtained from the chi-square table given in Appendix B.

It can be shown that when H0 is true, the statistic T is distributed as a chi-square distribution
with the degrees of freedom given by

df = number of cells – 1 – number of independent parameters fitted, (2.29)

which determines the location and shape of the distribution. For the above example, there are
no independent parameters fitted and so df = 6 − 1 = 5. The probability density function of
the chi-square distribution with five degrees of freedom2 is plotted in Figure 2.4. As can be
observed from the figure, the value of the statistic T is normally smaller than 11.07 (with 95%
chance, or 5% chance that T > 11.07; see Appendix B) when the null hypothesis H0 is true.

2The probability density function for a χ2 distribution with v degrees of freedom is

f(t) = [2v/2�(v/2)]−1t(v−2)/2e−t/2, t > 0,

where �(u) is the gamma function with properties �(u) = (u − 1)�(u − 1), �(1) = 1 and �(1/2) = √
π.
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For the example given in Table 2.2, the test statistic is evaluated as

T =
k∑

i=1

(Oi − Ei)
2

Ei

= (25 − 20)2

20
+ (18 − 20)2

20
+ · · · + (21 − 20)2

20
= (25 + 4 + 1 + 9 + 36 + 1)/20

= 3.8,

which is smaller than the 5% critical value 11.07 obtained from the table in Appendix B.
Thus, we conclude that the null hypothesis is not rejected (or is accepted) at the 5% level of
significance.

The goodness-of-fit test is easy to understand and construct. Sometimes, it may not be
the most powerful method. The Fisher (1935) exact test can be more powerful, but is more
difficult to construct. More details of Fisher’s exact test will be discussed in Chapter 3.

2.10.2 Estimation and testing

Estimation is another important procedure for statistical inference. Suppose we are interested
in estimating the mean height of the Chinese male adults in Hong Kong. A random sample
of n male adults is taken and their heights are recorded as X1, X2, . . . , Xn. The sample mean
X̄ =∑n

i=1 Xi/n is commonly used to estimate the population mean µ. This quantity is called
a point estimator. The point estimator itself, however, does not tell you how accurate the
estimator is.

Suppose that Xi follows a normal distribution with mean µ and variance σ2, i.e. Xi ∼
N(µ, σ2), i = 1, . . . , n, and the Xi’s are statistically independent of one another. It can be
proved that the random quantity X̄ is also normally distributed, having mean µ and variance
σ2

X̄
, i.e.

X̄ ∼ N
(
µ, σ2

X̄

)
, (2.30)

where σ2
X̄

= σ2/n is the (sampling) variance of X̄. We call N(µ, σ2
X̄
) the sampling distribution

of X̄. The standard deviation of X̄ is σX̄ = σ/
√

n, which is also called the standard error of
X̄. According to the normal distribution theory given in Section 2.8, we know that

Z = X̄ − µ

σX̄

∼ N(0, 1).

From the normal probability table in Appendix A, we have

P(−1.96 < Z < 1.96) = 0.95.

Plug in Z = (X̄ − µ)/σX̄, and, after rearranging the terms, then we obtain

P(X̄ − 1.96σX̄ < µ < X̄ + 1.96σX̄) = 0.95.

We call

(X̄ − 1.96σX̄, X̄ + 1.96σX̄) (2.31)
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the 95% confidence interval for the mean µ of the population. The coefficient 1.96 is sometimes
replaced by 2 for simplicity for an approximate 95% confidence interval:

(X̄ − 2σX̄, X̄ + 2σX̄) or (X̄ − 2SE, X̄ + 2SE), (2.32)

where SE stands for the standard error of the estimator X̄. Notice that when σ2 is unknown,
the parameter σ in the standard error σX̄ = σ/

√
n can be replaced by the sample estimate

σ̂ = [∑n
i=1(Xi − X̄)2

/
(n − 1)

]1/2
. The 95% interval is the most commonly used interval,

though the 90 and 99% intervals, etc. are also employed.
Let us consider the estimation of a parameter for a discrete distribution. Suppose that we

are interested in estimating the probability of observing a head, p, in a toss of an unfair/loaded
coin. In doing so, an experiment is constructed as follows. The coin is tossed n times and the
number of heads X is counted. Then, X ∼ Bin(n, p). The sample proportion p̂ = X/n can
be used to estimate p.

Since the quantity X is random, so the estimator p̂ = X/n is random too. It can be shown
that when n is large, the sampling distribution of p̂ is approximately normally distributed, i.e.

p̂ ∼ N(µp̂, σ2
p̂) approximately, (2.33)

where µp̂ = p and σ2
p̂

= p(1 − p)/n. The standard error of p̂ is SE = σp̂ = √
p(1 − p)/n.

Using a similar derivation for the normal case, the (approximate) 95% confidence interval for
the parameter p is

(p̂ − 2σp̂, p̂ + 2σp̂) or (p̂ − 2SE, p̂ + 2SE), (2.34)

in which the value p in σp̂ or SE is replaced by its estimator p̂.
Although the above procedure is used for estimation of unknown parameters, it may also

be employed for hypothesis testing. For example, suppose we want to test whether a coin
is a fair one, i.e. H0 : p = 0.5. If the hypothesized value p = 0.5 lies outside the interval in
Equation (2.34), then we reject the null hypothesis H0 at the 5% level of significance.

2.11 Problems
1. Suppose A, B, C are three events with P(A) = 0.2, P(B) = 0.3 and P(C) = 0.4, respec-

tively. Furthermore, P(AB) = P(AC) = 0.1, P(BC) = 0. Find

(a) P(A ∪ B) (b) P(B|A) and P(A|C) (c) P(A ∪ B ∪ C).

2. A box contains eight red balls together with four yellow balls. Now two balls are sequentially
drawn at random without replacement. Find

(a) the probability that the two balls are of different colors;

(b) the probability that the second ball drawn is red;

(c) the conditional probability that the first ball drawn is red given that the second one is
red.

3. Find the probability that four of six persons will recur after operation if we can assume
independence and the probability is 0.1 that any one of them will recur after operation.

4. At a diallelic locus, the three genotype frequencies of AA, Aa and aa are, respectively,
0.09, 0.42 and 0.49. Find the probability that among seven randomly chosen persons, one
will be of AA, two will be of Aa, and four will be of aa.



2.11 PROBLEMS 21

5. Let X ∼ N(4, 102). Find

(a) P(X > 6);

(b) P(−2 < X < 8);

(c) the value of x such that P(X > x) = 0.025.

6. Test at the 0.05 level of significance whether a coin is balanced if we flip it 300 times and
find a head 145 times.

7. A random sample of nine observations is drawn from a normal population: 9.75, 6.13,
15.26, 2.12, 29.83, 6.64, 9.14, 18.67, 8.60. Construct a 95% confidence interval for the
population mean µ. Construct the 99% confidence interval, too.
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Population genetics

In Chapter 2, various probability models, including binomial, multinomial and normal mod-
els, were introduced. Based on these models, we are able to make statistical and probability
calculations for the problems that we are interested in. A model can be employed for practical
use if it can capture the main features of the real problems. A good statistical or proba-
bility model may sometimes simplify the numerical calculations a lot for some problems
and make the calculations feasible for others. Although it is difficult to prove that a model
is correct philosophically or scientifically (Box 1980), we may use the statistical hypoth-
esis testing theory to test whether a model is acceptable and consistent with the observed
data.

In this chapter, we are going to introduce some population genetic models that are com-
monly used in DNA profiling. Based on the models, we can show that DNA profiling is highly
discriminating. For a test battery of 12 STR loci, the probability of identify, i.e. the probability
that two unrelated persons have the same genotype, can be less than one in a trillion, resulting
in an extremely high power of discrimination (see Section 3.3.2). However, like other kinds
of models, genetic models are obtained under various assumptions and restrictions. In the
following, we are going to examine the validity of the assumptions and the applicability of
these models to DNA profiling.

3.1 Hardy–Weinberg equilibrium
One of the main tasks in the statistical assessment of forensic DNA is to evaluate the match
probability of a DNA profile. This evaluation may be taken in the situation in which the
population is in Hardy–Weinberg equilibrium (HWE). In genetics, if the population is in
HWE, the two alleles of a genotype at a particular locus are statistically independent of each
other, thus greatly simplifying the calculations.

To demonstrate the Hardy–Weinberg law, we consider random mating between members
in an infinite population. For simplicity, an autosomal locus with only two alleles A1 and A2 is
taken. The three possible genotypes are denoted as A1A1, A1A2 and A2A2. Let the genotype

Statistical DNA Forensics: Theory, Methods and Computation Wing Kam Fung and Yue-Qing Hu
© 2008 John Wiley & Sons, Ltd
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Table 3.1 Outcomes for random mating in a parental generation with an infinite
population size.

Parental generation Offspring generation

Father Mother Probability A1A1 A1A2 A2A2

A1A1 A1A1 P2
11 1 0 0

A1A2 P11P12 1/2 1/2 0
A2A2 P11P22 0 1 0

A1A2 A1A1 P12P11 1/2 1/2 0
A1A2 P2

12 1/4 1/2 1/4
A2A2 P12P22 0 1/2 1/2

A2A2 A1A1 P22P11 0 1 0
A1A2 P22P12 0 1/2 1/2
A2A2 P2

22 0 0 1

proportions be P11, P12 and P22, respectively. Then, the frequencies for alleles A1 and A2

would, respectively, be

p1 = P11 + P12/2; p2 = P22 + P12/2. (3.1)

Table 3.1 shows the outcomes of random mating in an infinite population. Let P∗
11, P∗

12
and P∗

22, respectively, be the proportions of genotypes A1A1, A1A2 and A2A2 among the
offspring of the second generation. From Table 3.1, we can obtain these proportions based on
the genotype proportions of the parental generation. For example,

P∗
11 = (1)P11 × P11 + (1/2)P11 × P12 + (1/2)P12 × P11 + (1/4)P12 × P12

= (P11 + P12/2)2.

According to Equation (3.1), this proportion can also be expressed as

P∗
11 = p2

1.

For the proportion of genotype A1A2 of the offspring, we have

P∗
12 = (1/2)P11 × P12 + (1)P11 × P22 + (1/2)P12 × P11 + (1/2)P12 × P12

+ (1/2)P12 × P22 + (1)P22 × P11 + (1/2)P22 × P12

= 2(P11 + P12/2)(P22 + P12/2)

= 2p1p2.

Similarly, we can obtain the proportion of A2A2 among the offspring, which is equal to
P∗

22 = p2
1. In summary, we have

P∗
11 = p2

1, P∗
12 = 2p1p2 and P∗

22 = p2
2. (3.2)

The offspring genotype proportions can be completely determined by the parental allele
proportions.

Based on Equation (3.1), we can also express the proportions of alleles A1 and A2 in the
second generation as
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p∗
1 = P∗

11 + P∗
12/2

= p2
1 + 2p1p2/2

= p1(p1 + p2)

= p1,

and p∗
2 = 1 − p∗

1 = 1 − p1 = p2. In other words, the following equations hold for the rela-
tionship amongst the genotype and allele proportions of the offspring in the second generation:

P∗
11 = p∗2

1 , P∗
12 = 2p∗

1p
∗
2 and P∗

22 = p∗2
2 . (3.3)

This demonstrates the Hardy–Weinberg law; the genotype proportions can be completely
determined by the allele proportions using the product rule. As we can see that the second
generation is in Hardy–Weinberg equilibrium when there is random mating for the parental
generation which has an infinite population size, there is no requirement that the parental
population is in Hardy–Weinberg equilibrium.

The Hardy–Weinberg law plays an important role in genetic studies, including DNA
profiling. Besides the random mating and infinite population size assumptions, the mathe-
matical model for the establishment of the Hardy–Weinberg law also relies on other assump-
tions, including no selection, no migration and no mutation. Readers interested in the
Hardy–Weinberg law and the violation of the assumptions for the law can refer to Nei (1987),
Hartl and Clark (1989) and Evett and Weir (1998), among many others.

3.2 Test for Hardy–Weinberg equilibrium
Let the alleles of a particular locus be denoted as A1, A2, . . . , Ak, and the associated allele
frequencies be p1, p2, . . . , pk, respectively. Also let AiAj , i, j = 1, . . . , k be a genotype.
When the population is in Hardy–Weinberg equilibrium, the genotype probability can be
evaluated as

pij ≡ P(AiAj) =
{

p2
i , i = j,

2pipj, i �= j,
(3.4)

i.e. the genotype probability can be expressed as a simple product of the allele probabilities.
The result in Equation (3.4) is often called the product rule in DNA forensics. This rule
basically regards the alleles being statistically independent of each other. The term ‘2’ in
Equation (3.4) accounts for the two possibilities of having the genotype combination, i.e. one
allele being Ai and the other being Aj , or vice versa.

Since Hardy–Weinberg equilibrium is commonly employed in DNA profiling, it is impor-
tant to check how valid it is for a particular population. Some common methods for testing
for Hardy–Weinberg equilibrium are introduced in the following sections.

3.2.1 Observed and expected heterozygosities

Consider the STR locus TPOX for the Hong Kong Chinese population (Wong et al. 2001). A
sample of n = 275 individuals was taken and their DNA profiles were obtained. There are a
total of k = 5 alleles at this locus. Table 3.2 summarizes the genotyping results and provides
the number of individuals nij , i ≤ j, i, j = 1, . . . , k, having genotype AiAj at that locus. The
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Table 3.2 The count nij for genotype AiAj at locus TPOX for a population database
of n = 275 Hong Kong Chinese. The values in brackets are corresponding proportions,
i.e. p̂ij = nij/n.

Aj

Ai 8 9 10 11 12

8 85 (0.309) 30 (0.109) 6 (0.022) 87 (0.316) 7 (0.025)
9 4 (0.015) 1 (0.004) 16 (0.058) 0 (0)
10 0 (0) 5 (0.018) 0 (0)
11 30 (0.109) 4 (0.015)
12 0 (0)

genotype proportions p̂ij = nij/n are shown in brackets. When the alleles are of interest,
Table 3.3 lists the allele count ni of allele Ai, where

ni = 2nii +
i−1∑
j=1

nji +
k∑

j=i+1

nij, (3.5)

and the total number of alleles is
∑k

i=1 ni = 2n = 550. By the counting method, the frequency
for allele Ai can be estimated by p̂i = ni/(2n), and these frequencies are listed in the last row
of Table 3.3.

The following hypotheses for the TPOX locus are considered:

H0 : population is in Hardy–Weinberg equilibrium;

H1 : population is not in Hardy–Weinberg equilibrium.
(3.6)

To examine whether H0 holds for TPOX, one simple way is to compare whether the observed
heterozygosity is consistent with the expected heterozygosity obtained under Hardy–Weinberg
equilibrium, where heterozygosity refers to the proportion of heterozygous genotypes. The
observed heterozygosity is obtained as

OH = 1 −
k∑

i=1

p̂ii,

which, in this case, is evaluated as

OH = 1 − 0.309 − 0.015 − 0 − 0.109 − 0

= 0.567.

Table 3.3 The count ni for allele Ai at locus TPOX for a population database of n = 275
Hong Kong Chinese.

Allele Ai 8 9 10 11 12

Count ni 300 55 12 172 11
Allele frequency p̂i 0.545 0.100 0.022 0.313 0.020
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When H0 is true, based on Equation (3.4), the frequency for the homozygous genotype
AiAi can be evaluated by p̂2

i . Thus, the expected heterozygosity can be obtained as

EH = 1 −
k∑

i=1

p̂2
i .

For locus TPOX, this quantity is equal to

EH = 1 − 0.5452 − 0.1002 − 0.0222 − 0.3132 − 0.0202

= 0.594.

This expected heterozygosity is only an estimate under H0. The standard error of this estimate
is equal to (Nei and Roychoudhury 1974)

SE =
[
EH(1 − EH)

n

]1/2

=
[

0.594(1 − 0.594)

275

]1/2

= 0.030.

The observed heterozygosity OH = 0.567 which is within 2 standard errors of the expected
heterozygosity EH = 0.594. Thus, according to the theory of statistical inference (Section
2.10), with the 5% level of significance, we do not have strong statistical evidence to reject
the null hypothesis that the population is in Hardy–Weinberg equilibrium at locus TPOX.

3.2.2 Chi-square test

The chi-square test is commonly used for testing for statistical independence of row and
column factors of a contingency table (Conover 1980). This test can be found in many statistical
texts such as Miller and Miller (2004). However, the table as shown in Table 3.2 is a special
kind of contingency table; the row and column factors correspond to the two alleles Ai and
Aj of a genotype where genotypes AiAj and AjAi are indistinguishable. Thus, the standard
chi-square test for independence in a contingency table cannot be applied here.

To construct an appropriate chi-square test for independence, we let nij denote the observed
counts for genotype AiAj , i ≤ j, i, j = 1, . . . , k at a particular locus in a population database
of n individuals. The allele count ni of allele Ai is defined in the same way as in Section 3.2.1
[see also Equation (3.5)]. When the null hypothesis H0 of Hardy–Weinberg equilibrium in
Equation (3.6) holds, according to Equation (3.4), the probability for genotype AiAj can be
obtained as pij = p2

i if i = j, and pij = 2pipj otherwise. The probability of allele Ai is esti-
mated using p̂i = ni/(2n). Thus, when H0 is true, we can estimate the expected count for
genotype AiAj in a sample of n individuals as

Eij =
{

n p̂2
i , i = j,

2np̂ip̂j, i �= j.
(3.7)

The chi-square test for the null hypothesis of Hardy–Weinberg equilibrium is constructed as
(Geisser and Johnson 1992, 1995; Weir 1993)

T =
k∑

i=1

k∑
j=i

(nij − Eij)
2

Eij

. (3.8)

This test is shown to be χ2 distributed when n is large. Since there are k − 1 independent
parameters, p1, p2, . . . , pk−1, (as pk = 1 − p1 − · · · − pk−1) fitted, so the number of degrees
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Table 3.4 The observed and expected counts (in brackets) for genotype AiAj at locus TPOX
for a database of 275 Hong Kong Chinese.

Aj

Ai 8 9 10 11 12

8 85 (81.8) 30 (30.0) 6 (6.54) 87 (93.8) 7 (6.00)
9 4 (2.75) 1 (1.20) 16 (17.2) 0 (1.10)
10 0 (0.13) 5 (3.75) 0 (0.24)
11 30 (26.9) 4 (3.44)
12 0 (0.11)

of freedom of the chi-square distribution as given in Equation (2.29) is obtained as df =
k(k + 1)/2 − 1 − (k − 1) = k(k − 1)/2. Notice that the rule of thumb to use this chi-square
test is that the expected counts Eij’s have to be greater than 5. If this is not the case, then one
suggestion is to merge adjacent alleles with small expected counts until the rule is satisfied.

Table 3.4 lists the observed and expected genotype counts at locus TPOX. As we can see
that some of the expected counts are below 5, we can merge some adjacent alleles having small
expected counts. We can start by merging alleles 11 and 12 to form a new allele 11∗. Some
expected counts are still below 5. So we have a new allele 9∗ by merging alleles 9 and 10.
Table 3.5 presents the observed counts having the newly defined genotypes. The frequencies
of the new set of alleles are p̂8 = 0.545, p̂9∗ = (36 + 5 × 2 + 21)/550 = 0.122 = p̂9 + p̂10

and p̂11∗ = 0.333 = p̂11 + p̂12. Based on Equation (3.7), the expected counts can be obtained
and they are shown in brackets in Table 3.5.

The chi-square statistic can then be evaluated as

T = (85 − 81.8)2

81.8
+ (36 − 36.5)2

36.5
+ (94 − 99.8)2

99.8

+ (5 − 4.08)2

4.08
+ (21 − 22.3)2

22.3
+ (34 − 30.4)2

30.4
= 1.17.

The 5% critical value for a χ2 distribution with 3(3 − 1)/2 = 3 degrees of freedom is 7.81
(Appendix B), which is larger than the test statistic T = 1.17. Thus, we do not have strong
evidence to reject the null hypothesis of Hardy–Weinberg equilibrium at TPOX. Notice that
there is an expected count (4.08) smaller than 5. However, the rule of 5 is often too conservative

Table 3.5 The observed and expected counts (in brackets) for genotype AiAj at locus
TPOX for a database of 275 Hong Kong Chinese. The new alleles 9∗ and 11∗ are obtained by
merging original alleles 9 and 10, and 11 and 12, respectively.

Aj

Ai 8 9∗ 11∗

8 85 (81.8) 36 (36.5) 94 (99.8)
9∗ 5 (4.08) 21 (22.3)
11∗ 34 (30.4)
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(Fienberg 1979) and the chi-square test can still be used even when some of the expected
counts are smaller than 5–say, about 3 or so. Nevertheless, if there is a substantial deviation
from the rule of 5, then the approximation of the χ2 distribution can be rather poor in some
situations.

3.2.3 Fisher’s exact test

Consider a diallelic locus with two alleles a and b. Let na and nb denote the allele counts,
and naa, nab, nbb denote the genotype counts in a sample of n individuals. The popula-
tion allele proportions are denoted as pa and pb. Under the hypothesis of Hardy–Weinberg
equilibrium, the probability of obtaining the genotype counts conditional on the allele
counts is

P(naa, nab, nbb|na, nb) = n!na!nb!2nab

(2n)!naa!nab!nbb!
. (3.9)

Fisher’s (1935) exact test evaluates the summation of the probabilities for all outcomes that are
as probable as or less probable than the observed outcome (Evett and Weir 1998). Consider
a simple example with n = 30, naa = 15, nab = 8 and nbb = 7 (see Table 3.6). The allele
counts are na = 38 and nb = 22. Given these allele counts, the probability for observing
those genotype counts, according to Equation (3.9), is

P(naa = 15, nab = 8, nbb = 7|na = 38, nb = 22)

= 30!38!22!28

60!15!8!7!
= 0.0181.

The probabilities of observing all possible genotype outcomes given the allele counts are
listed in Table 3.7. Only five of these probabilities are less than or equal to the observed
probability 0.0181. The sum of these figures, 0.0219 (= 0 + 0 + 0.0001 + 0.0020 + 0.0181 +
0.0017), is the probability (p-) value of the Fisher’s exact test under the null hypothesis of
Hardy–Weinberg equilibrium. Since the p-value is less than 5%, we reject the hypothesis that
Hardy–Weinberg equilibrium holds for this diallelic locus.

The Fisher’s exact test can also be applied to loci with more than two alleles. In such
situations, the evaluation of all the probabilities in order to obtain the p-value of the Fisher’s
exact test is cumbersome, especially when the sample size is large. Guo and Thompson
(1992) described two methods to approximate the p-value [see also Zaykin et al. (1995)]. The
bootstrap resampling methods (Efron and Tibshirani 1993) can also be employed to obtain
the p-value.

Table 3.6 Genotype counts for a diallelic locus.

Allele

Allele a b

a 15 8
b 7
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Table 3.7 Calculations for probabilities for Fisher’s
exact test for the data set given in Table 3.6.

naa nab nbb Probability

19 0 11 0.0000
18 2 10 0.0000
17 4 9 0.0001
16 6 8 0.0020
15 8 7 0.0181
14 10 6 0.0843
13 12 5 0.2145
12 14 4 0.3064
11 16 3 0.2451
10 18 2 0.1057

9 20 1 0.0223
8 22 0 0.0017

1.0000

3.2.4 Computer software

Although the ideas in Sections 3.2.1–3.2.3 for testing for Hardy–Weinberg equilibrium are
rather simple, the statistics there may not be found in standard statistical packages. We have
developed a computer software called EasyDNA PopuData that can give the allele frequencies
and some common statistics, including those mentioned earlier for a population database. The
software can be found at http://www.hku.hk/statistics/EasyDNA/. What we
need to do is to click the Calculate button after loading the population data. All those statistics,
except the Fisher’s exact test result, could come up very quickly. Fisher’s exact test, however,
requires the resampling procedure to approximate the p-value, and so a longer time is taken.
The statistical results can then be saved by clicking the Save button. Figure 3.1 gives the
captured screen for running the program in the analysis of the Hong Kong Chinese population
database of 12 loci (Wong et al. 2001).

Table 3.8 gives the summarized statistics including the observed heterozygosity (OH),
estimate of the expected heterozygosity (EH) and its standard error (SE), the chi-square test
(T) and the p-value of the Fisher’s exact test (pFE) for each of the 12 loci of the Hong Kong
Chinese population data. None, except the one at FGA, of the OH/EH pairs differs by more
than two standard errors. If we look at the chi-square test and the Fisher’s exact test, none of
the results at all 12 loci is found to be statistically significant when the 5% level of significance
is taken. In summary, based on these findings, we do not have strong statistical evidence to
reject the assumption of Hardy–Weinberg equilibrium for the Hong Kong Chinese population
data. This is in line with the conclusion of the NRC II Report (National Research Council
1996, p109) that in the large databases of the major races, the populations are quite close to
Hardy–Weinberg equilibrium.
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Figure 3.1 Captured screen for running the EasyDNA PopuData software for the Hong
Kong Chinese population database.

3.3 Other statistics for analysis of a population database
3.3.1 Linkage equilibrium

Hardy–Weinberg equilibrium allows us to use the product rule and multiply allele frequencies
to assess the probability of a genotype within a locus. The two alleles of a genotype within a
locus are statistically independent when the Hardy–Weinberg law is satisfied. As we know, in
practice, many (STR) loci are used for DNA profiling. If all the loci are in linkage equilibrium,
then the alleles and genotypes amongst different loci are statistically independent from one
another. In that regard, the probability of a DNA profile (at all loci) can then be obtained by
multiplying the probabilities of genotypes across all loci.

Chi-square tests (Geisser and Johnson 1995; Weir 1993) have been constructed for testing
for linkage equilibrium. Fung (1997) also proposed tests for linkage equilibrium, and for
jointly Hardy–Weinberg and linkage equilibria, for a pair of loci. These tests come from
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Table 3.8 Summary statistics for the Hong Kong Chinese population database:
observed heterozygosity (OH), estimate of expected heterozygosity (EH) and its standard
error (SE), chi-square test (T) and p-value of Fisher’s exact test (pFE) for Hardy-Weinberg
equilibrium, and power of discrimination (PD), from Wong et al. (2001). (Reproduced by
permission of Springer-Verlag.)

Locus OH EH SE T pFE PD

D3S1358 0.711 0.723 0.027 1.89 0.853 0.873
vWA 0.780 0.802 0.024 5.25 0.999 0.932
FGA 0.802 0.866 0.020 18.22 0.572 0.968
THO1 0.727 0.689 0.028 2.75 0.377 0.854
TPOX 0.567 0.594 0.030 1.17 0.832 0.768
CSF1PO 0.739 0.735 0.027 1.68 0.968 0.885
D5S818 0.768 0.794 0.024 2.19 0.993 0.926
D13S317 0.803 0.778 0.025 10.49 0.505 0.917
D7S820 0.777 0.759 0.026 2.92 0.860 0.908
D8S1179 0.859 0.854 0.021 23.51 0.224 0.961
D21S11 0.851 0.828 0.023 16.99 0.912 0.949
D18S51 0.848 0.866 0.021 11.69 0.205 0.968

similar ideas and are generalized from the chi-square test for Hardy–Weinberg equilibrium.
The method of Fung (1997) is introduced as follows.

Consider a database of n individuals with genotypes collected at a few loci. We are inter-
ested in testing independence at any two loci, each of which is diallelic. At locus k, k = 1, 2,
there are three possible genotypes, namely G

(k)
11 , G

(k)
12 and G

(k)
22 . Thus, the n observations in

the database can be categorized, for any two loci, into a contingency table of two factors, each
having the three kinds of possible genotypes. The contingency table is illustrated in Table 3.9.
A chi-square test for independence between the two loci can be constructed.

Let nij,�m be the count of people having genotype G
(1)
ij at locus 1 and genotype G

(2)
�m at

locus 2, i ≤ j, � ≤ m. Let pij,�m denote the associated probability for that particular set of

Table 3.9 Illustration of genotype counts n’s and probabilities p’s (in brackets) for a
pair of diallelic loci.

Locus 2’s genotype

Locus 1’s
genotype G

(2)
11 G

(2)
12 G

(2)
22 Sum

G
(1)
11 n11,11 (p11,11) n11,12 (p11,12) n11,22 (p11,22) n

(1)
11 (p

(1)
11 )

G
(1)
12 n12,11 (p12,11) n12,12 (p12,12) n12,22 (p12,22) n

(1)
12 (p

(1)
12 )

G
(1)
22 n22,11 (p22,11) n22,12 (p22,12) n22,22 (p22,22) n

(1)
22 (p

(1)
22 )

Sum n
(2)
11 (p

(2)
11 ) n

(2)
12 (p

(2)
12 ) n

(2)
22 (p

(2)
22 ) n (1)
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genotypes (G
(1)
ij , G

(2)
�m). Referring to Table 3.9, we define the sums of nij,�m and pij,�m over the

rows and over the columns.
The hypothesis of linkage equilibrium that the genotypes at the two loci are independent

can be formulated mathematically as

H0 : pij,�m = p
(1)
ij p

(2)
�m for all i ≤ j, � ≤ m.

The probabilities are estimated as p̂
(1)
ij = n

(1)
ij /n and p̂

(2)
�m = n

(2)
�m/n, which can be obtained from

the marginals n
(1)
ij and n

(2)
�m in the contingency table as given in Table 3.9. Under the null hypoth-

esis H0, the expected count for nij,�m is estimated as np̂
(1)
ij p̂

(2)
�m. Thus, given the marginals, the

usual chi-square test for independence can be employed for testing linkage equilibrium:

TL =
∑
i≤j

∑
�≤m

(
nij,�m − np̂

(1)
ij p̂

(2)
�m

)2

np̂
(1)
ij p̂

(2)
�m

,

which is χ2 distributed when n is large. The degrees of freedom of the χ2 distribution would
be (L1 − 1)(L2 − 1), as in ordinary contingency table testing, where Li = ki(ki + 1)/2 is the
number of possible genotypes for locus i having ki alleles, i = 1, 2. Notice that the test TL

can be applied for loci with more than two alleles, although the illustration of notations in
Table 3.9 only applies to diallelic loci.

As in testing for Hardy–Weinberg equilibrium, Fisher’s exact test can also be employed
for testing for linkage equilibrium. Zaykin et al. (1995) have developed the software for such a
purpose. The permutation resampling procedure is used to approximate the p-value for testing
for linkage equilibrium.

Table 3.10 presents such p-values for paired loci for the Hong Kong Chinese population
data (Wong et al. 2001). Five pairs of loci, namely 1 and 3 (D3S1358 and FGA), 1 and 12
(D3S1358 and D18S51), 2 and 3 (vWA and FGA), 3 and 6 (FGA and CSF1PO), and 3 and 12
(FGA and D18S51), indicate some degrees of linkage disequilibrium. However, the associated
p-values 2.8, 4.9, 2.4, 1.3 and 2.2%, respectively, are not too small. Other combinations of
any two loci seem to be in linkage equilibrium. Statistically, when the 5% significance rule
is adopted, it is not unusual to have five significant results for a total of 78 tests, even in a
situation of total independence. Furthermore, none of the results was found to be significant
if the 1% level was taken.

The main cause of linkage disequilibrium is incomplete mixing of different ancestral
populations (National Research Council 1996). The findings in Table 3.10 do not indicate
strong deviations from linkage equilibrium. This is in line with NRC II’s conclusion (National
Research Council 1996, p109) that major race populations are close to linkage equilibrium.

The chi-square and Fisher’s exact tests can, in theory, be extended to situations with more
than two loci. However, since most STR population databases are of sizes of only a few hundred
individuals, the resulting contingency tables are sparse, with many small or zero counts, which
would give rise to a low power for the statistical tests. Hence, testing for linkage equilibrium
for three or more loci is normally not recommended (Fung 2003a).

3.3.2 Power of discrimination

DNA profiling is commonly used for human identification and it is important to have loci
which give high discriminating power. The power of discrimination (Jones 1972; Sensabaugh
1982) is one such measure that can be used for showing the discriminating power of a locus.
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Table 3.10 P-values of the exact tests for linkage equilibrium for pairs of 12 loci
(1: D3S1358, 2: vWA, 3: FGA, 4: THO1, 5: TPOX, 6: CSF1PO, 7: D5S818, 8: D13S317,
9: D7S820, 10: D8S1179, 11: D21S11, 12: D18S51), from Wong et al. (2001).
(Reproduced by permission of Springer-Verlag.)

Loci pair P-value Loci pair P-value Loci pair P-value

1/2 0.280 3/5 0.557 5/12 0.497
1/3 0.028∗ 3/6 0.013∗ 6/7 0.994
1/4 0.442 3/7 0.168 6/8 0.663
1/5 0.774 3/8 0.248 6/9 0.954
1/6 0.396 3/9 0.526 6/10 0.464
1/7 0.376 3/10 0.104 6/11 0.979
1/8 0.798 3/11 0.428 6/12 0.218
1/9 0.690 3/12 0.022∗ 7/8 0.861

1/10 0.108 4/5 0.284 7/9 0.753
1/11 0.708 4/6 0.512 7/10 0.663
1/12 0.049∗ 4/7 0.162 7/11 0.570
2/3 0.024∗ 4/8 0.551 7/12 0.063
2/4 0.867 4/9 0.696 8/9 0.948
2/5 0.807 4/10 0.672 8/10 0.675
2/6 0.556 4/11 0.297 8/11 0.793
2/7 0.706 4/12 0.463 8/12 0.220
2/8 0.401 5/6 0.758 9/10 0.783
2/9 0.961 5/7 0.338 9/11 0.998

2/10 0.696 5/8 0.169 9/12 0.641
2/11 0.579 5/9 0.476 10/11 0.629
2/12 0.079 5/10 0.203 10/12 0.449

3/4 0.584 5/11 0.685 11/12 0.280
∗ Significant value

Suppose a blood stain is typed with DNA profile X at a particular locus having possible
alleles A1, A2, . . . , Ak. A random person is typed with profile Y at that locus. The person will
not be discriminated as the possible source of the blood stain if Y and X are the same. The
profile X can take any possible genotype AiAj , i ≤ j, i, j = 1, . . . , k, and the probability of
identity, i.e. P(X = Y), is

PI =
∑
i≤j

P(X = AiAj, Y = AiAj)

=
∑
i≤j

P(X = AiAj)P(Y = AiAj)

for X and Y coming from two unrelated individuals. Assuming Hardy–Weinberg equilibrium,
the probability of identity is

PI =
k∑

i=1

p2
i × p2

i +
∑
i<j

(2pipj)(2pipj).
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Using TPOX in Table 3.3 as an example, this probability is evaluated as

PI = 0.5454 + · · · + 0.024 + (2 × 0.545 × 0.1)2 + · · · + (2 × 0.313 × 0.02)2

= 0.232.

The power of discrimination is obtained as

PD = 1 − PI

= 1 − 0.232

= 0.768.

This figure suggests that TPOX has 76.8% power of discriminating a random individual as
being not the source of the stain.

The powers of discrimination for other loci of the Hong Kong Chinese population database
can be obtained similarly, and they are shown in the last column of Table 3.8. The power of
discrimination ranges from 0.768 to 0.968. The combined probability of identity for the
battery of 12 loci is

∏12
�=1 PI� = 4.1 × 10−14, giving the overall power of discrimination of

1 − 4.1 × 10−14, which is extremely discriminating.

3.4 DNA profiling
Suppose that a crime scene DNA sample was recovered; two suspects were later arrested. The
DNA profiles of the crime stain, suspect 1, suspect 2 and the victim were typed. Figure 3.2
shows the DNA profiles of a CTT triplex at three STR loci–CSF1PO, THO1 and TPOX–
obtained using ABI proprietary machines and software. As can be seen from the figure, the
stain did not come from the victim; nor did it belong to suspect 2, who would then be released.

Suspect 1, however, has genotypes 9/9, 8/9 and 9/12 at loci THO1, TPOX and CSF1PO,
respectively, which match with the crime scene profile. This suspect is not excluded from the
pool of possible perpetrators. Either this suspect or someone else left the crime stain. This
is called the single source or identity testing problem. We want to assess the probability of
finding the profile in the ‘someone else’ case (National Research Council 1996).

That ‘someone else’ person is assumed to be a random person, unrelated to the suspects,
in the population of possible suspects. So, we would like to evaluate the probability that a
person other than the suspect, randomly selected from the population, will have the profile.
This probability is often called the random-match probability or match probability, which
sometimes may also be interpreted as the frequency of the profile in the population.

Suppose the DNA profiles of the crime stain and the suspect are denoted as C = AiAj and
S = AiAj . Under the Hardy–Weinberg law, the match probability given that a random person
other than the suspect is the perpetrator is evaluated as

P(C = AiAj|S = AiAj) =
{

p2
i , i = j,

2pipj, i �= j.
(3.10)

Another popular way to deal with this problem is by means of the likelihood ratio approach.
We first consider the prosecution and defense propositions,

Hp : the suspect left the crime stain;
Hd : a random person other than the suspect left the crime stain.

(3.11)
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Figure 3.2 DNA profiles of the crime stain, suspects 1 and 2 and the victim at three STR
loci–THO1, TPOX and CSF1PO–obtained using ABI proprietary machines and software.

The likelihood ratio formula as given in Equation (2.27) is

LR = P(evidence | Hp)

P(evidence | Hd)
, (3.12)

where the evidence in this case is C = AiAj and S = AiAj . The likelihood ratio is thus
evaluated as

LR = P(C = AiAj, S = AiAj|Hp)

P(C = AiAj, S = AiAj|Hd)

= P(C = AiAj|S = AiAj, Hp)

P(C = AiAj|S = AiAj, Hd)

P(S = AiAj|Hp)

P(S = AiAj|Hd)
,
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which is obtained based on the conditional probability formula in Equation (2.11). The two
probabilities corresponding to the latter ratio are the same, since the probability that the suspect
has genotype AiAj is independent of whether he is (i.e. Hp) or he is not (i.e. Hd) the source
of the crime stain. Thus, we have

LR = P(C = AiAj|S = AiAj, Hp)

P(C = AiAj|S = AiAj, Hd)
.

The numerator is equal to 1 unless an error has occurred in the DNA typing. When Hardy–
Weinberg equilibrium holds, the denominator is p2

i if i = j, or 2pipj otherwise. So

LR =
{

1/p2
i , i = j,

1/(2pipj), i �= j.
(3.13)

The likelihood ratio is just the reciprocal of the match probability.
The allele frequencies p’s are needed to evaluate the likelihood ratio. There are different

ways of estimating the p’s. In the examples that we consider in this book, the observed allele
proportions in the population database are taken to estimate the p’s for simplicity. Of course,
other estimates such as the Bayesian or some conservative estimates can also be used [see
Buckleton et al. (2005), among others].

We are going to evaluate the match probability and likelihood ratio for the CTT triplex
case example as shown in Figure 3.2. The genotypes of the crime stain are 9/9 at THO1, 8/9 at
TPOX and 9/12 at CSF1PO. The allele frequencies for the triplex of the Hong Kong Chinese
(Law et al. 2001; Wong et al. 2001) are shown in Table 3.11. The match probabilities or the
genotype frequencies are then estimated as 0.4402 = 0.1936 at THO1, 2 × 0.545 × 0.100 =
0.109 at TPOX, and 2 × 0.037 × 0.362 = 0.0268 at CSF1PO. The overall match probability
is 0.1936 × 0.109 × 0.0268 = 5.655 × 10−4. That is, the probability that the genotype of a
random person other than the suspect will match the DNA sample in the crime scene at the
CTT triplex is 5.655 × 10−4, or 1 in 1768.

The likelihood ratio for the pair of propositions (3.11) can be evaluated based on Equation
(3.13), which is obtained as 1/(5.655 × 10−4) = 1768. We can have the following interpre-
tation for this figure: the CTT triplex profile is 1768 times as likely to be observed were the
crime stain to have come from the suspect than were it to have come from a random unrelated
person in the population.

It is to be noticed that various assumptions, including Hardy–Weinberg and linkage equilib-
rium, have been employed in the above calculations. Having these assumptions seems a rather
widely acceptable simplification (Aitken and Taroni 2004; Evett and Weir 1998; National
Research Council 1996). Nevertheless, these assumptions are unlikely to be exactly correct.
In the next section, we are using the subpopulation models to account for possible departure
from Hardy–Weinberg equilibrium.

3.5 Subpopulation models
In the previous section, the population was assumed to be in Hardy–Weinberg equilibrium.
However, the Hardy–Weinberg law is hardly exactly correct, since the conditions for equi-
librium are seldom met. Nevertheless, the match probabilities are easily calculated under the
Hardy–Weinberg law and these values provide good ideas about the order of magnitude of the
probabilities. When the population under consideration comprises various subpopulations,
the population is no longer homogeneous and the Hardy–Weinberg law would then be vio-
lated. This situation happens quite often. For example, the Chinese population in Hong Kong
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Table 3.11 Allele frequencies for the CTT triplex at loci THO1, TPOX and CSF1PO
for Hong Kong Chinese, from Wong et al. (2001). (Reproduced by permission of
Springer-Verlag.)

Locus Allele Frequency

THO1 6 0.100
7 0.316
8 0.053
9 0.440

9.3 0.029
10 0.060
11 0.002

TPOX 8 0.545
9 0.100

10 0.022
11 0.313
12 0.020

CSF1PO 7 0.009
8 0.002
9 0.037

10 0.239
11 0.261
12 0.362
13 0.082
14 0.006
15 0.002

comprises various Chinese subpopulations from southern China, northern China, different
minority ethnic groups in China, and overseas (total tens of millions of overseas Chinese),
etc. Notable differences in frequencies for some alleles across subpopulations could be found.
Different subpopulation models have been proposed to correct for Hardy-Weinberg disequilib-
rium and to take into account the variation in subpopulation allele frequencies. The following
model, which is rather commonly accepted in the forensic field, is considered.

Suppose that the population under consideration has reached the state of evolutionary
equilibrium; then, allele proportions are found to follow the Dirichlet distribution (Wright
1951). This distribution is written in the form

P({pi}) = �(γ)∏
i �(γi)

∏
i

p
γi−1
i ,

where
γi = (1 − θ)pi/θ, γ =

∑
i

γi = (1 − θ)/θ,

�i ai stands for the product of the terms ai over the indices i’s, �(x) is a gamma function
with the property that �(x + 1) = x�(x), pi is the proportion of allele Ai averaged over
subpopulations, and θ, which is taken to be positive here, can be regarded as a measure of
the variation in subpopulation allele proportions. The Dirichlet distribution is a continuous
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probability distribution commonly used to model proportions or frequencies [see Johnson and
Kotz (1972)]. A specific Dirichlet distribution is the Beta distribution, which is more well
known to scientists. The symbol Fst , which has a similar meaning to θ, was originally used
by Wright (1951), while θ is more commonly employed in forensic science. The coefficient
Fst or θ may be called the inbreeding coefficient, which can also measure the relatedness
between people in the subpopulations as well as the degree of population subdivision (Balding
2005; Balding and Nichols 1994; Buckleton et al. 2005; Evett and Weir 1998; National
Research Council 1996).

Given the proportions p’s, in a set of random sample of m alleles, allele Ai occurring mi

times is taken to follow a multinomial distribution (Section 2.6), i.e.

P

(∏
i

A
mi

i

∣∣{pi}
)

= (
∑

i mi)!∏
i(mi)!

∏
i

p
mi

i .

The marginal probability is then evaluated as

P

(∏
i

A
mi

i

)
=
∫

p’is
P

(∏
i

A
mi

i

∣∣{pi}
)

P({pi})
∏

i

dpi.

After integration and simplification, this probability can be expressed in the following form,
i.e. the probability that a set of m alleles has mi copies of Ai is (Evett and Weir 1998)

P

(∏
i

A
mi

i

)
= �(γ)

�(γ + m)

∏
i

�(γi + mi)

�(γi)
. (3.14)

For a single allele Ai, the equation gives

P(Ai) = �(γ)

�(γ + 1)

�(γi + 1)

�(γi)
= γi

γ
= pi.

For a homozygous pair AiAi,

P(AiAi) = �(γ)

�(γ + 2)

�(γi + 2)

�(γi)

= γi(γi + 1)

γ(γ + 1)

= pi[(1 − θ)pi + θ]

= p2
i + pi(1 − pi)θ.

When the allele pair is AiAj , i �= j, we have

P(AiAj) = �(γ)

�(γ + 2)

�(γi + 1)

�(γi)

�(γj + 1)

�(γj)

= γiγj

γ(γ + 1)

= pipj(1 − θ).

It is noticed that the probability for the genotype AiAj is twice the above probability due to
the two allele orders AiAj and AjAi.
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As noticed from these formulas, the probabilities for homozygotes are inflated while those
for heterozygotes are deflated. For conservativeness, the Hardy–Weinberg relation for het-
erozygotes is used by NRC II (National Research Council 1996). Thus, NRC II recommends
in its Recommendation 4.1 the following formulas for evaluating the genotype frequency for
systems in which exact genotypes can be determined (e.g. STR loci):

P(AiAj) =
{

p2
i + pi(1 − pi)θ, i = j,

2pipj, i �= j.
(3.15)

Besides this genotype frequency assessment, there is another approach which evaluates the
conditional probability of the genotype of the suspect given that of the perpetrator (National
Research Council 1996, p114). Various formulas have been proposed under different assump-
tions and methods of derivation but they agree very well with one another for common values
of θ (Balding and Nichols 1994, 1995; Crow and Denniston 1993; Morton 1992; National
Research Council 1996; Roeder 1994; Weir 1994). The following match probability formulas
were given by Balding and Nichols (1994, 1995):

Pij =




[2θ + (1 − θ)pi][3θ + (1 − θ)pi]

(1 + θ)(1 + 2θ)
, i = j,

2[θ + (1 − θ)pi][θ + (1 − θ)pj]

(1 + θ)(1 + 2θ)
, i �= j.

(3.16)

These formulas appeared as Equation (4.10) in NRC II. They are essentially conditional prob-
abilities and were obtained by Balding and Nichols on the basis of genetic and statistical
justification [see also Lindley (1990)], which were further explained by Balding and Nichols
(1995). The derivations of these two formulas are provided below (Evett and Weir 1998).

From Equation (3.14), we can derive the following conditional probability formula:

P(Ai | y Ai alleles among n alleles) = yθ + (1 − θ)pi

1 + (n − 1)θ
. (3.17)

The equation was also obtained by Balding and Nichols (1994) based on alternate derivations.
This formula is handy and easy to use. It will be employed in the later part of this book
in the evaluation of match probabilities in subdivided or structured populations. To illus-
trate its use, we consider whether a random person other than the suspect (S) is the source
of the crime stain (C) and the evaluation of the match probability P(S = AiAj|C = AiAj)

is, for i = j,

Pii = P(AiAi|AiAi)

= P(Ai|AiAi)P(Ai|AiAiAi)

=
[

2θ + (1 − θ)pi

1 + (2 − 1)θ

] [
3θ + (1 − θ)pi

1 + (3 − 1)θ

]

= [2θ + (1 − θ)pi][3θ + (1 − θ)pi]

(1 + θ)(1 + 2θ)
,
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and for i �= j,

Pij = 2P(AiAj|AiAj)

= 2P(Ai|AiAj)P(Aj|AiAiAj)

= 2

[
θ + (1 − θ)pi

1 + (2 − 1)θ

] [
θ + (1 − θ)pj

1 + (3 − 1)θ

]

= 2[θ + (1 − θ)pi][θ + (1 − θ)pj]

(1 + θ)(1 + 2θ)
.

The value 2 appears because of the two possible allele orders AiAj and AjAi. The formulas
given in Equation (3.16) are thus derived.

NRC II suggests that, in general, Equation (3.15) should be used for the calculation of
the profile frequency or match probability for each locus (NRC II Recommendation 4.1).
When the allele frequencies for the subpopulation are not available, it is suggested that the
calculation should use the population-structure Equation (3.16) (NRC II Equation 4.10, Rec-
ommendation 4.2). For either approach, the multiplication of the resulting results across loci
is suggested. NRC II (National Research Council 1996, p122) proposes to adopt the degree
of subdivision θ = 0.01–a conservative value for the US population; the value 0.03 may be
more appropriate for some small isolated populations. Empirical studies from various authors
(e.g. Budowle and Chakraborty 2001; Budowle et al. 2001; Law et al. 2001; Roeder 1994;
Weir 1994) find that the values of θ are (much) smaller than 0.01 for major ethnic populations,
including African Americans, US Caucasians, Hispanics, Asians and Europeans.

NRC II Recommendation 4.1 is adopted by some forensic laboratories, especially those
in the US. Buckleton et al. (2005, p87) comment that this recommendation is a logical way of
correcting for Hardy–Weinberg disequilibrium, but makes no attempt to correct for linkage
equilibrium; hence, this approach may have a very mild tendency to underestimate multilo-
cus genotype probabilities (see also Curran et al. 2003). Some researchers, including Ayres
(2000), Balding and Nichols (1997), Buckleton and Triggs (2005), Curran et al. (1999) and
Evett and Weir (1998), suggested the calculation of conditional match probabilities based
on Equation (3.16). As we have seen earlier, both Equations (3.15) and (3.16) are obtained
based on the Dirichlet distribution under the assumption that the population has reached the
state of evolutionary equilibrium. The match probability evaluated based on Equation (3.16)
is often more conservative, i.e. larger than that evaluated according to Equation (3.15). In the
following, we use an example to illustrate the difference between the two approaches.

Table 3.12 gives the match probabilities for the crime scene CTT triplex profile as shown in
Figure 3.2, evaluated under Equations (3.15) and (3.16) using θ = 0.01 and 0.03. We notice
that the match probability based on Equation (3.16) increases with θ. This is also true for
Equation (3.15) with homozygous genotypes. When θ = 0.01, the overall match probability
based on Equation (3.16) is 39% higher than that based on Equation (3.15) which is slightly
(1%) higher than the probability 5.655 × 10−4 obtained under the Hardy–Weinberg law. When
θ = 0.03, the difference is more pronounced; the probability obtained by Equation (3.16) is
more than double that obtained by Equation (3.15). When we have a full profile of 10 loci
or more, the match probabilities are frequently smaller than 10−10, no matter which equation
we are using. The match probabilities based on Equation (3.16) could be one or two orders
of magnitude higher but are still extremely small. These small probabilities are often very
unfavorable to the defendants, irrespective of which equation is adopted.
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Table 3.12 Match probabilities for the crime scene CTT triplex profile as shown in
Figure 3.2 evaluated under Equations (3.15) and (3.16) using θ = 0.01 and 0.03.

Equation (3.15) Equation (3.16)

Locus Genotype θ = 0.01 0.03 0.01 0.03

THO1 9/9 0.1961 0.2010 0.2059 0.2304
TPOX 8/9 0.109 0.109 0.1163 0.1300
CSF1PO 9/12 0.0268 0.0268 0.0333 0.0460
Overall 5.73 × 10−4 5.87 × 10−4 7.97 × 10−4 1.38 × 10−3

3.6 Relatives
Suppose that the DNA sample of the crime stain is C = AiAj . A suspect is arrested and found
to have the same genotype, S = AiAj . It is possible that a close relative of the suspect is the
source of the crime stain (Balding and Donnelly 1994; Evett 1992; Lempert 1991; National
Research Council 1996). The following proposition may be posed by the defendant:

Hd : a relative of the suspect is the source of the crime stain.

In this situation, we may have to evaluate the match probability P(C = AiAj|S = AiAj) under
such particular Hd .

For two persons X and Y , define the relatedness coefficients (k0, 2k1, k2) as

k0 = P (neither allele of X is identical by descent to alleles of Y );

2k1 = P (one or the other of the alleles of X is ibd to one of the alleles of Y ,
but the second allele is not); and

k2 = P (both alleles of X are ibd to those of Y ).

(3.18)

Note that two alleles are said to be identical by descent (ibd) if the two alleles come from the
same ancestor.

Values of the relatedness coefficients for some common relationships are listed in Table 3.13.
Using the law of total probability, the match probability can be written as

P(AiAj|AiAj) =
2∑

t=0

P(AiAj|AiAj, t ibd alleles)P(t ibd alleles), (3.19)

which is evaluated as

P(AiAj|AiAj) = 2pipj(k0) + [pi(1/2) + pj(1/2)](2k1) + 1(k2), (3.20)

under the Hardy–Weinberg law.
Suppose we denote the kinship coefficient F between two individuals X and Y as

F = P (two alleles, one randomly taken from each of the two individuals, are ibd). (3.21)

It is noticed that k1 + k2 = 2F . For noninbred unilineal relatives (relatives who have at most
one ibd allele; siblings are not unilineal), k2 = 0, and so giving k1 = 2F and k0 = 1 − 2k1 =
1 − 4F . Thus, the match probability for unilineal relatives can then be expressed as

2pipj(1 − 4F) + (pi + pj)2F = 2pipj + 2(pi + pj − 4pipj)F. (3.22)
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Table 3.13 Relatedness coefficients (k0, 2k1, k2) for some common relationships
between two persons.

Relationship k0 2k1 k2

Parent–child 0 1 0
Full siblings 1/4 1/2 1/4
Half siblings 1/2 1/2 0
Grandparent–grandchild 1/2 1/2 0
Uncle–nephew 1/2 1/2 0
First cousins 3/4 1/4 0
Second cousins 15/16 1/16 0

Siblings are bilineal rather than unilineal and so require different formulas. The match prob-
ability for heterozygous genotypes can be obtained based on Equation (3.20). For
homozygous genotypes, we can do something similar to Equation (3.19). Table 3.14 lists the
match probabilities under the proposition Hd that a relative of the suspect is the source of the
crime sample. Some common kinship coefficients for relatives are: F = 1/4 for parent–child;
1/8 for half siblings, grandparent–grandchild and uncle–nephew; 1/16 for first cousins.

For subpopulation models having the degree of subdivision θ, Equation (3.19) can still be
employed. The probability can be evaluated using Equation (3.17) as

P(AiAj|AiAj) = P(AiAj|AiAj, no ibd alleles)k0

+ P(AiAj|AiAj, one ibd allele)(2k1)

+ P(AiAj|AiAj, two ibd allele)k2

= 2P(Ai|AiAj)P(Aj|AiAiAj)k0

+ [
(1/2)P(Ai|AiAj) + (1/2)P(Aj|AiAj)

]
(2k1)

+ 1 × k2

= 2

[
θ + (1 − θ)pi

1 + (2 − 1)θ

] [
θ + (1 − θ)pj

1 + (3 − 1)θ

]
k0

Table 3.14 Match probability for the genotypes of the crime stain and suspect under
the proposition Hd that a relative of the suspect is the source of the crime stain.

Relationship Genotype Match probability

Full siblings AiAi (1 + 2pi + p2
i )/4

AiAj (1 + pi + pj + 2pipj)/4
Unilineala AiAi p2

i + 4pi(1 − pi)F

AiAj 2pipj + 2(pi + pj − 4pipj)F

aFor parent–child, F = 1/4; for half siblings, grandparent–grandchild and uncle–nephew, F = 1/8; for
first cousins, F = 1/16
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Table 3.15 Match probability for crime stain genotypes in a subdivided population
under the proposition Hd that a relative of the suspect is the source of the stain.

Relationship Match probability

Homozygotes AiAi

Parent–child
2θ + (1 − θ)pi

1 + θ

Full siblings
1

4
+ 1

4

[
2θ + (1 − θ)pi

1 + θ

] [
2 + 3θ + (1 − θ)pi

1 + 2θ

]

Half siblingsa
1

2

[
2θ + (1 − θ)pi

1 + θ

] [
1 + 3θ + (1 − θ)pi

1 + 2θ

]

First cousins
1

4

[
2θ + (1 − θ)pi

1 + θ

] [
1 + 3{3θ + (1 − θ)pi}

1 + 2θ

]
Heterozygotes AiAj

Parent–child
2θ + (1 − θ)(pi + pj)

2(1 + θ)

Full siblings
1

4
+ 2θ + (1 − θ)(pi + pj)

4(1 + θ)
+ [θ + (1 − θ)pi][θ + (1 − θ)pj]

2(1 + θ)(1 + 2θ)

Half siblingsa
2θ + (1 − θ)(pi + pj)

4(1 + θ)
+ [θ + (1 − θ)pi][θ + (1 − θ)pj]

(1 + θ)(1 + 2θ)

First cousins
2θ + (1 − θ)(pi + pj)

8(1 + θ)
+ 3[θ + (1 − θ)pi][θ + (1 − θ)pj]

2(1 + θ)(1 + 2θ)

aGrandparent–grandchild and uncle–nephew have the same match probability

+
[
θ + (1 − θ)pi

1 + (2 − 1)θ
+ θ + (1 − θ)pj

1 + (2 − 1)θ

]
k1 + k2

= 2k0[θ + (1 − θ)pi][θ + (1 − θ)pj]

(1 + θ)(1 + 2θ)

+ k1[2θ + (1 − θ)(pi + pj)]

1 + θ
+ k2. (3.23)

The match probability for a homozygous genotype is obtained similarly as

P(AiAi|AiAi) =
[

2θ + (1 − θ)pi

1 + θ

] [ {3θ + (1 − θ)pi}k0

1 + 2θ
+ 2k1

]
+ k2. (3.24)

Based on Equations (3.23) and (3.24) and taking appropriate relatedness coefficients
(k0, 2k1, k2), we can obtain the crime stain genotype probabilities for a subdivided popu-
lation for some common relationships under the proposition that a relative of the suspect is
the source of the stain. These probabilities are listed in Table 3.15 [see also Weir (2003) and
Buckleton et al. (2005)].
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Table 3.16 Match probabilities for the CTT triplex genotypes of the crime stain and
suspect 1 as shown in Figure 3.2 evaluated under the defense propositions Hd1: a
random man is the source of the stain, and Hd2: a half sib of the suspect is the source of the
stain.

Hd1 Hd2

Locus Genotype θ = 0 0.03 0 0.03

THO1 9/9 0.1936 0.2304 0.3168 0.3515
TPOX 8/9 0.1090 0.1300 0.2158 0.2314
CSF1PO 9/12 0.0268 0.0460 0.1131 0.1315
Overall 5.66 × 10−4 1.38 × 10−3 7.73 × 10−3 0.0107

As an illustration, we consider the CTT triplex genotypes of the crime stain and the suspect
as shown in Figure 3.2. The following two defense propositions are studied:

Hd1 : a man unrelated to the suspect is the source of the stain, and

Hd2 : a half sib of the suspect is the source of the stain,

with θ = 0 and 0.03. The results are shown in Table 3.16. The overall match probability under
Hd2 is about 10 times the probability under Hd1, indicating that the defense proposition can
have a substantial effect on the size of the match probability. The closer the relationship (e.g.
father–child; full siblings), the larger the increase for the match probability. The degree of
population subdivision also affects the match probability but with a much smaller magnitude.

3.7 Problems
1. Suppose a sample of 30 individuals is randomly selected from a population and they

are typed at a locus with two alleles A and a. Eighteen of them are of genotype AA,
eight are Aa and four are aa.

(a) Find the frequency estimates for alleles A and a.

(b) Find the observed heterozygosity and estimate of expected heterozygosity.

(c) Employ the chi-square test to test whether the population is in Hardy–Weinberg
equilibrium at the locus. Use the 5% level of significance.

(d) Obtain the standard error for the estimate of expected heterozygosity. Based on this
and the results you obtain in (b), test for Hardy–Weinberg at the locus.

2. The following genotype counts are obtained for a tri-allelic locus:

n11 = 14, n12 = 18, n13 = 22, n22 = 12, n23 = 20, n33 = 14.

Find the power of discrimination of the locus assuming Hardy–Weinberg equilibrium.

3. In a criminal offence, a blood stain was found at the crime scene; a suspect was later
arrested. Suppose the DNA profiles of the crime stain and the suspect are C = 8/8 and
S = 8/8 at locus THO1, and are C = 8/9 and S = 8/9 at locus TPOX.
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Let

Hp : the suspect left the crime stain;
Hd : a random man left the crime stain.

(a) Find the likelihood ratios for the above hypotheses under (i) Hardy–Weinberg equi-
librium, and (ii) a subdivided population with the degree of subdivision θ; the
conditional probability framework is used here.

(b) Evaluate the likelihood ratios for (i) and for (ii) with θ = 0 and θ = 0.03 based on
the allele frequencies given in Table 3.11.

4. Obtain Equation (3.17) using Equation (3.14).

5. Observe that the genotypes of the victim (V) and the suspect (S) are, respectively, 6/6 and
6/7 at locus THO1, and 8/9 and 9/10 at locus TPOX. Find the joint genotype probability
P(V, S) if they come from a subdivided population with the degree of subdivision θ.

6. Show that the relatedness coefficients (k0, 2k1, k2) between two full siblings are
(1/4, 1/2, 1/4).

7. Show that the kinship coefficient F between parent and child is 1/4.

8. Find the relationship between the kinship coefficient F and the relatedness coefficients
(k0, 2k1, k2).

9. Prove that the match probability P(AiAi|AiAi) in Equation (3.24) for DNA samples of
the crime stain C = AiAi and the suspect S = AiAi, under the defense proposition Hd :
a relative of the suspect is the source of the stain, is

P(AiAi|AiAi) =
[

2θ + (1 − θ)pi

1 + θ

] [ {3θ + (1 − θ)pi}k0

1 + 2θ
+ 2k1

]
+ k2,

where (k0, 2k1, k2) are the relatedness coefficients between the suspect and his relative.
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Parentage testing

DNA profiling has proven to be a powerful technique for human identification. Besides its usual
application in criminal offences for identifying the contributor of a crime stain, the technique
is also frequently used in parentage and kinship determinations. Common parentage problems
include standard trio cases and motherless cases, etc. (Clayton et al. 2002; Evett and Weir
1998; Lee et al. 2000; Thomson et al. 1999); others include complex kinship determinations
having more than three or four typed persons. The former problems are investigated in this
chapter, while the latter ones are studied in the next chapter.

4.1 Standard trio
4.1.1 Paternity index

The standard trio problem is commonly encountered in paternity testing. The DNA profiles
of the mother, child and alleged father are obtained. The mother, alleged father and biological
father of the child are taken as unrelated to one another. The mother and biological father
belong to the same ethnic population. This population is taken to be in Hardy–Weinberg equi-
librium (HWE) in this chapter unless otherwise stated. Moreover, we also assume no mutation
unless we state otherwise. The two competing hypotheses for the standard trio problem are
given as:

Hp : the alleged father is the biological father of the child;
Hd : the true father is a random unrelated man.

(4.1)

Let M, C and AF be the genotypes of the mother, her child and the alleged father, respec-
tively. So, the DNA evidence constitutes the sets of genotypes M, C and AF . The likelihood
ratio (LR) that we mentioned in Equation (2.2) is the most commonly used measure in pater-
nity testing. In fact, the paternity index used in the field is actually a likelihood ratio, which
can be evaluated as

PI = LR = P(evidence|Hp)

P(evidence|Hd)

Statistical DNA Forensics: Theory, Methods and Computation Wing Kam Fung and Yue-Qing Hu
© 2008 John Wiley & Sons, Ltd
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= P(C, M, AF |Hp)

P(C, M, AF |Hd)

= P(C|M,AF,Hp)

P(C|M,AF,Hd)

P(M, AF |Hp)

P(M, AF |Hd)
. (4.2)

The last equality is due to the conditional probability result given in Equation (2.15). The
two probabilities P(M, AF |Hp) and P(M, AF |Hd) are the same, since the probability of the
genotypes of the mother and the alleged father does not depend on whether the alleged father
is the true father or not (Hp or Hd). Thus,

PI = P(C|M,AF,Hp)

P(C|M,AF,Hd)
. (4.3)

Given Hd that the alleged father is not the true father of the child, P(C|M,AF,Hd) can also
be written as P(C|M,Hd), thus giving

PI = P(C|M,AF,Hp)

P(C|M,Hd)
. (4.4)

Consider an example that the genotypes of the child, mother and alleged father at a par-
ticular locus are obtained as C = AiAj , M = AiAk and AF = AjAl. In this situation, the
numerator of PI is (1/2)(1/2), since there is a 1/2 chance that the mother transmits the allele
Ai to the child, and similarly a 1/2 chance that the alleged father who is the biological father
under Hp transmits Aj to the child. For the denominator, under Hd , there is still a 1/2 chance
that the mother transmits the allele Ai. However, under Hd , the alleged father is not the bio-
logical father of the child and hence the probability that the child has an Aj for the other allele
is pj . Thus, the denominator is just (1/2)pj , and so PI = (1/4)

/
(pj/2) = 1

/
(2pj).

There are other genotype combinations for the mother, child and alleged father. The PI’s
can be obtained in similar ways, and they are listed in the fourth column of Table 4.1. Notice
that in this book, the subscripts i, j, k, . . . of alleles Ai, Aj, Ak, etc. are taken as different
among themselves unless otherwise stated.

4.1.2 An example

Here, we consider an example for the standard trio problem. For illustration, only genotypes
for three loci are considered. Table 4.2 gives the genotypes of the mother, child and alleged
father at loci D3S1358, vWA and FGA. The allele frequencies at these loci for the Hong Kong
Chinese population (Wong et al. 2001) are listed in Table 4.3. Based on the formulas given in
the fourth column of Table 4.1, the paternity indices are obtained as

D3S1358 : PI = 1/(2p17) = 1/(2 × 0.239) = 2.09,

vWA : PI = 1/p18 = 1/0.16 = 6.25,

FGA : PI = 1/[2(p20 + p21)] = 1/[2(0.044 + 0.131)] = 2.86.

If there is linkage equilibrium among loci, then the paternity index for the whole profile is
the product of the indices for individual loci, which is 2.09 × 6.25 × 2.86 = 37.36. Thus, the
profile is 37.36 times as likely to be observed were the alleged father to be the biological
father of the child than were an unrelated random man to be the biological father.
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Table 4.1 Paternity index (PI) for a standard trio case. The LR0 is evaluated under Hp:
the alleged father is the biological father of the child versus Hd : a relative of the alleged father
is the true father of the child. F is the kinship coefficient of the alleged father and his
relative who is the true father under Hd .

C M AF PI LR0

AiAi AiAi AiAi 1/pi 1/[2F + (1 − 2F)pi]

AiAj 1/(2pi) 1/[2F + 2(1 − 2F)pi]

AiAj AiAi 1/pi 1/[2F + (1 − 2F)pi]

AiAj 1/(2pi) 1/[2F + 2(1 − 2F)pi]

AiAk 1/(2pi) 1/[2F + 2(1 − 2F)pi]

AiAj AiAi AiAj 1/(2pj) 1/[2F + 2(1 − 2F)pj]

AjAj 1/pj 1/[2F + (1 − 2F)pj]

AjAk 1/(2pj) 1/[2F + 2(1 − 2F)pj]

AiAj AiAi 1/(pi + pj) 1/[2F + (1 − 2F)(pi + pj)]

AiAj 1/(pi + pj) 1/[2F + (1 − 2F)(pi + pj)]

AiAk 1/[2(pi + pj)] 1/[2F + 2(1 − 2F)(pi + pj)]

AiAk AiAj 1/(2pj) 1/[2F + 2(1 − 2F)pj]

AjAj 1/pj 1/[2F + (1 − 2F)pj]

AjAk 1/(2pj) 1/[2F + 2(1 − 2F)pj]

AjAl 1/(2pj) 1/[2F + 2(1 − 2F)pj]

Subscripts i, j, k, . . . are all different

Table 4.2 Genotype data of the mother, child
and alleged father at loci D3S1358, vWA and FGA.

Locus C M AF

D3S1358 15/17 15/16 17/18
vWA 18/18 18/19 18/18
FGA 20/21 20/21 19/20

4.1.3 Posterior odds and probability of paternity

Another way of evaluating the strength of genetic evidence is by means of the posterior odds.
Based on Equation (2.20) in Chapter 2, by Bayes’ Theorem, we have

P(Hp|evidence)

P(Hd |evidence)
= P(evidence|Hp)

P(evidence|Hd)

P(Hp)

P(Hd)
,
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Table 4.3 Allele frequencies for D3S1358, vWA and FGA for
Hong Kong Chinese, from Wong et al. (2001). (Reproduced by
permission of Springer-Verlag.)

Locus Allele Relative frequency

D3S1358 13 0.002
14 0.033
15 0.331
16 0.326
17 0.239
18 0.056
19 0.011
20 0.002

vWA 13 0.004
14 0.254
15 0.035
16 0.156
17 0.266
18 0.160
19 0.106
20 0.020

FGA 17 0.002
18 0.025
19 0.065
20 0.044
21 0.131

21.2 0.004
22 0.178

22.2 0.004
23 0.189

23.2 0.004
24 0.166

24.2 0.007
25 0.110

25.2 0.007
26 0.048

26.2 0.005
27 0.011
28 0.002

where P(Hp) and P(Hd) are called prior probabilities, P(Hp|evidence) and P(Hd |
evidence) are called posterior probabilities, and P(Hp)/P(Hd) and P(Hp|evidence)/
P(Hd |evidence) are the prior odds and posterior odds, respectively. So

posterior odds = LR × prior odds. (4.5)
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The posterior odds are directly proportional to the prior odds. In practice, it is often
nontrivial or even controversial to choose suitable prior odds. Sometimes, some people may
take a convenient choice of the value 1. This choice, however, may be subject to criticism, since
it assumes a priori probability of a half that the alleged father is the true father of the child, i.e.
P(Hp) = 1/2 = P(Hd). In fact, the prior probability may depend on a number of factors, such
as the number of sexual partners that the mother has. Moreover, the form of the alternative
hypothesis Hd also affects the choice of the prior probability

[
note : P(Hp) = 1 − P(Hd)

]
.

For example, we may expect a different P(Hp) or prior odds if the alternative explanation Hd

is changed from a random unrelated man to the brother of the alleged father being the true
father of the child. The evaluation of the likelihood ratio for such scenario can be found in the
later section of this chapter.

Instead of just taking a single prior probability of 1/2 for P(Hp), some people like to
report the posterior odds having different prior probability values for P(Hp), e.g. 0.1 and 0.9,
etc. Moreover, some researchers may like to provide the posterior probability as well. This
probability can be derived from Equation (4.5) as

P(Hp|evidence) = posterior odds
/
(1 + posterior odds), (4.6)

since P(Hp|evidence) + P(Hd |evidence) = 1. The quantity P(Hp|evidence) is sometimes
called the probability of paternity. Equations (4.5) and (4.6) show that the larger the likelihood
ratio, the larger the possibility of Hp occurring, given the evidence.

Consider the example given in Section 4.1.2; the overall likelihood ratio is 37.36. We
take the prior probability P(Hp) as being 0.1, 0.5 and 0.9. The associated posterior odds
and probabilities of paternity are shown in Table 4.4. As can be seen from the table, for this
particular example, the posterior odds can be very different for different prior probabilities.
This phenomenon is also found for the posterior probability.

It is to be noticed that the above evaluation is based on Bayes’ Theorem, in which the
specification of the prior probability is needed. Some researchers and paternity laboratories,
however, prefer to use the likelihood ratio approach and report the paternity index only, since
there is subjectiveness in the assignment of the prior probability. Nevertheless, the choice of
the prior probability has to be made carefully. In this book, we are mainly using the likelihood
ratio approach, which evaluates the weight of genetic evidence in a scientific manner. The
assignment of the prior probability is left to individuals, researchers or jurors, and may have
to be determined on a case-by-case basis.

Table 4.4 The posterior odds and probability of paternity P(Hp|evidence)
for various values of the prior probability P(Hp) for the standard trio example
given in Section 4.1.2.

Prior probability Probability of paternity
P(Hp) Prior odds Posterior odds P(Hp|evidence)

0.1 0.111 4.15 0.806
0.5 1 37.36 0.974
0.9 9 336.24 0.997
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4.2 Paternity computer software
4.2.1 Steps in running the software

The authors have written computer software to deal with various paternity problems. The soft-
ware EasyDNA Trio deals with standard trio problems under Hardy–Weinberg equilibrium.
The computer program is run in a window mode. It consists of the following steps:

Steps in running the EasyDNA Trio software

1 Click the Load frequency file button after loading the EasyDNA program, then select
the appropriate file

2 Choose the allele pairs at the locus for C, M and Z

3a Choose the appropriate paternal relation between C and Z under Hp (which is, in this
standard trio case, Child–parent)

3b Choose the appropriate paternal relation between C and Z under Hd (which is, in this
standard trio case, Unrelated)

4 Click the Calculate button

5 Repeat steps 2 and 4 for each of the remaining loci; step 3 (3a–3b) is blocked, since it
is no longer needed for the remaining loci.

The software can be found at http://www.hku.hk/statistics/EasyDNA/.
Notice that Z in the software stands for the alleged father in the standard trio problem.

Also, after the first run, step 3 is prohibited, since the relation between C and Z under Hp

and that under Hd are already fixed and so no more input is needed. The likelihood ratio for
each locus is obtained in step 4. After finishing calculations for all the loci, the findings can
be saved to an output file by clicking the Save button.

Let us see how the software deals with the paternity example given in the earlier section.
In step 1, we select the appropriate allele frequencies file with filename AlleleFreqAll, which
is essentially in the same form as Table 4.3. Then, in step 2, we choose the allele pairs 15/16,
15/17 and 17/18 for the genotypes of M, C and Z at locus D3S1358. After running step 3,
we click the Calculate button in step 4; the likelihood ratio 2.09 is obtained and shown in the
screen. Then, do the same for the other loci, and the likelihood ratios are obtained as 6.25
at vWA and 2.86 at FGA, giving an overall likelihood ratio of 37.36, which is the same as
that obtained earlier by formulas. The above procedure can be summarized in the captured
screen shown in Figure 4.1. As can be seen from the figure, the procedure is simple and easy
to follow.

The output findings can then be saved to a file by clicking the Save button. The output file
is screen captured and presented in Figure 4.2. The file can be used for checking to avoid any
possible manual inputting errors, as well as for reporting purpose.

4.2.2 The software to deal with an incest case

When the alleged father and the mother are closely related, the paternity issue becomes an
incest case, which is a criminal offence. In many places, the relationships that are prohibi-
ted by law correspond to kinship coefficients greater than 1/16 (Evett and Weir 1998). These
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Figure 4.1 Captured screen for running the EasyDNA Trio software for a standard trio
problem with genotype data given in Table 4.2.

Figure 4.2 Captured screen for the output file of a standard trio problem with genotype data
given in Table 4.2.
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relationships include the alleged father being the father, the brother or the half-brother, etc. of
the mother. In this situation, the prosecution and defense propositions are formulated as

Hp : the alleged father, a close relative (say the half-brother) of the mother,
is the true father of the child;

Hd : the true father is a random unrelated man.

(4.7)

Following the same derivation as in Equation (4.2), we obtain the paternity index PI as
given in Equation (4.3). In fact, Equation (4.3) holds no matter whether the alleged father is
related to the mother or not. Thus, the paternity index corresponding to the hypothesis set
(4.1) is the same as that corresponding to the hypothesis set (4.7), i.e. the same PI listed in the
fourth column of Table 4.1 can still be employed. In other words, we can use the same software
EasyDNA Trio and take the same procedure steps to obtain the paternity indices for the above
hypotheses of incest cases. Take, for example, the genotype set as listed in Table 4.2, in which
AF corresponds to the genotype of the half-brother of the mother, the paternity indices for the
hypotheses set (4.7) are 2.09, 6.25 and 2.86 at the three loci, respectively, giving an overall
PI of 37.36. These indices are the same as those obtained earlier for the hypotheses set (4.1).

It is to be noticed that the software EasyDNA Trio assumes, under Hd , the true father of
the child being unrelated to both the mother and the alleged father. Thus, it cannot deal with
the situation if the defense proposition is

Hd : another relative of the mother is the true father of the child.

Interested readers can refer to Evett and Weir (1998) in dealing with such alternative defense
explanations.

4.3 A relative of the alleged father is the true father
In the previous section, the alternative proposition in (4.1) was taken as

Hd : the biological father is a random unrelated man,

where the biological father was unrelated to the alleged father. If the alleged father argues that
he is not the father of the child but his relative, say his brother, is, the resultant hypotheses
become

Hp : the alleged father is the true father of the child;
H0

d : a relative of the alleged father is the true father of the child. (4.8)

The Hp remains the same, but we have a new defense explanation H0
d . We still assume that the

mother and the alleged father are unrelated. Suppose we consider the same set of genotypes
as before: C = AiAj , M = AiAk and AF = AjAl. How should we evaluate the likelihood
ratio in such a situation?

We start from the basic principle of the likelihood ratio formula

LR0 = P(evidence|Hp)

P(evidence|H0
d )

= P(C, M, AF |Hp)

P(C, M, AF |H0
d )

.
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The numerator is

P(C = AiAj, M = AiAk, AF = AjAl|Hp)

= P(C = AiAj|M = AiAk, AF = AjAl, Hp)P(M = AiAk, AF = AjAl|Hp)

= [(1/2) × (1/2)
] (

2pipk × 2pjpl

)
= pipjpkpl.

The first equality is due to the conditional probability formula in Equation (2.15).
For the denominator, we write the child’s genotype C = AiAj as CM = Ai and CP = Aj ,

where CM and CP stand for the maternal and paternal alleles of the child, respectively. Thus,

P(C = AiAj, M = AiAk, AF = AjAl|H0
d )

= P(M = AiAk, CM = Ai, CP = Aj, AF = AjAl|H0
d )

= P(M = AiAk, CM = Ai|H0
d )P(CP = Aj, AF = AjAl|H0

d ). (4.9)

The first probability is equal to (2pipk) × (1/2), and the second one can be evaluated using
the law of total probability in Equation (2.19):

P(CP = Aj, AF = AjAl|H0
d )

=
2∑

t=0

P
(
CP = Aj, AF = AjAl|H0

d , child and alleged father have t ibd alleles
)

× P
(
child and alleged father have t ibd alleles |H0

d

)
= (pj × 2pjpl)k0 + [(1/2) × 2pjpl

]
(2k1), (4.10)

where the k’s are the relatedness coefficients [see Equation (3.18) in Section 3.6 for details]
of the child and alleged father. Notice that k2 = 0 in this case, since the alleged father and the
mother are unrelated and so the probability that the alleged father and the child share two ibd
alleles is zero. Substituting Equation (4.10) into Equation (4.9), we obtain

P(C = AiAj, M = AiAk, AF = AjAl|H0
d )

= (2pipk)(1/2)
(
pj × 2pjpl × k0 + pjpl × 2k1

)
= pipjpkpl(2k1 + 2k0pj).

Thus, the likelihood ratio for the competing hypotheses Hp versus H0
d in (4.8) becomes

LR0 = pipjpkpl

pipjpkpl(2k1 + 2k0pj)

= 1
/
(2k1 + 2k0pj)

= 1
/[

2k1 + 2(1 − 2k1)pj

]
. (4.11)

The latter equality is due to the fact that k0 + 2k1 + k2 = 1, in which k2 = 0 in this particular
case.

Suppose we denote the kinship coefficient [see Equation (3.21) in Section 3.6 for details]
between the alleged father and his relative who is the true father by F . The coefficient is just
the probability that two alleles, one taken at random from each of the alleged father and true
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father, are ibd. Since each of the two alleles of the true father is equally likely to be transmitted
to the child, F and k1 are equivalent. So, the likelihood ratio for C = AiAj , M = AiAk and
AF = AjAl [Equation (4.11)], can also be expressed as

LR0 = 1
/[

2F + 2(1 − 2F)pj

]
.

The likelihood ratios for other combinations of genotypes for C, M and AF under hypotheses
set (4.8) can be similarly derived. They are all shown in the last column of Table 4.1 [see also
Fung and Hu (2005)].

Now, we consider the example that we gave earlier (see Table 4.2 for genotypes). The
hypotheses of interest are taken as

Hp : the alleged father is the true father of the child;
H0

d : a brother of the alleged father is the true father of the child.

The kinship coefficient for brothers is F = 1/4 = 0.25. Based on the formulas of the last
column of Table 4.1 and the allele frequencies given in Table 4.3, we obtain the following
likelihood ratios for individual loci:

D3S1358 : LR = 1
/[

2F + 2(1 − 2F)p17
]

= 1
/[

2 × 0.25 + 2(1 − 2 × 0.25) × 0.239
] = 1.35,

vWA : LR = 1
/[

2F + (1 − 2F)p18
]

= 1
/[

2 × 0.25 + (1 − 2 × 0.25) × 0.16
] = 1.72,

FGA : LR = 1
/[

2F + 2(1 − 2F)(p20 + p21)
]

= 1
/[

2 × 0.25 + 2(1 − 2 × 0.25) × (0.044 + 0.131)
] = 1.48.

The overall likelihood ratio is

1.35 × 1.72 × 1.48 = 3.44.

Is it possible to obtain the likelihood ratio using the computer software? Yes, the procedure
is actually very simple. In Section 4.2, we used the EasyDNA Trio program to evaluate
the likelihood ratio for the standard trio problem. Only a few steps are needed in running
the program. In fact, the program is not restricted to standard trio problems, but can also be
applied to other situations, such as the one that is of interest here, i.e. the defense hypothesis
that a brother, or, in general, a relative, of the alleged father is the true father of the child. In
doing so, what we need to do is to follow the same procedure steps listed in Section 4.2 except
for a change in the following one:

Step 3b Choose the appropriate paternal relation between C and Z under Hd (which is,
in this case, Nephew–uncle).

The software is designed in such a way that a relation between C and the alleged father Z

needs to be specified under both Hp and Hd . Under Hd that the brother of the alleged father
is the father of the child is equivalent to saying that C and Z are Nephew–uncle.

The running of the computer program for this particular problem can be summarized in
the captured screen which is shown in Figure 4.3. The procedure is almost the same as that
shown in Figure 4.1 except for the box under Hd . The likelihood ratios for individual loci are
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Figure 4.3 Captured screen for paternity testing for a trio problem where Hd : a brother of
the alleged father Z is the true father of the child C.

1.35, 1.72 and 1.48, with the overall likelihood ratio being 3.44, which are the same as those
obtained using the formulas given in Table 4.1.

4.4 Alleged father unavailable but his relative is
On some occasions, the alleged father may not be available for genotyping, for example dead,
but typing is possible for his relative R. This problem has been considered by Morris et al.
(1988) and Evett and Weir (1998). In this situation, the following set of hypotheses is of
interest:

Hp : a relative of R is the true father of the child;
Hd : the true father is a random unrelated man.

(4.12)

The mother and R are taken to be unrelated.
This problem has been studied by Morris et al. (1988). They called the likelihood ratio for

this particular problem the ‘avuncular index’ (AI) as an alternative to paternity index. This
terminology is also adopted for this particular scenario in this book for convenience.

So far in this chapter, three sets of hypotheses besides the incest case have been considered
for paternity analysis. They are given in Equations (4.1), (4.8) and (4.12). For simplicity, we
write the associated pairs of null and alternative hypotheses as Hp1 and Hd1; Hp2 and Hd2;
and Hp3 and Hd3, respectively. The corresponding likelihood ratios are evaluated as

PI = P(evidence|Hp1)

P(evidence|Hd1)
, LR0 = P(evidence|Hp2)

P(evidence|Hd2)
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and

AI = P(evidence|Hp3)

P(evidence|Hd3)
.

If we compare the pairs of hypotheses in (4.1), (4.8) and (4.12), we observe that Hp1 ≡ Hp2,
Hd1 ≡ Hd3 and Hd2 ≡ Hp3. Hence,

PI

LR0
= P(evidence|Hd2)

P(evidence|Hd1)
= P(evidence|Hp3)

P(evidence|Hd3)
= AI.

Thus, we can obtain the likelihood ratio AI for hypotheses in (4.12) as PI/LR0–a ratio of the
quantities corresponding to the last two columns of Table 4.1, in which the genotypes of the
relative R are listed as those shown in the AF column.

Morris et al. (1988) have noticed the relationship

AI = (1 − 2F) + 2F × PI,

where F is the kinship coefficient between the alleged father and the typed relative R. This
relationship can also be verified by comparing the formulas ofAI andPI that we have obtained.
Notice that now the relative R instead of the alleged father is typed, and so the value PI could
be zero if R does not carry the paternal allele of the child C. In this case, the avuncular index
AI would be (1 − 2F), which is non-zero.

Besides using the above formula to calculate the avuncular index, our software provides
an alternative way of evaluation. Suppose R is a brother of the alleged father. We take
the same procedure steps as those listed in Section 4.2, except for the following modifica-
tion:

Step 3a Choose the appropriate paternal relation between C and Z under Hp (which is,
in this case, Nephew–uncle).

Notice that Z in the software stands for the relative R in this case. The likelihood ratios are
evaluated as 1.55, 3.62 and 1.93, respectively, for the three loci, with an overall likelihood
ratio of 10.83.

4.5 Motherless case
4.5.1 Paternity index

In some paternity problems, the mother is unavailable for genotyping. Nevertheless, the fol-
lowing hypotheses are still of interest:

Hp: the alleged father is the true father of the child;
Hd : the true father is a random unrelated man.

The mother and the alleged father are taken as unrelated.
The paternity index for such a motherless case is evaluated as

PI = P(evidence|Hp)

P(evidence|Hd)

= P(C, AF |Hp)

P(C, AF |Hd)
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Table 4.5 Paternity index (PI) for a motherless case. The LR0 is evaluated under
Hp: the alleged father is the true father of the child versus Hd : a relative of the alleged father
is the true father of the child. F is the kinship coefficient of the alleged father and his relative.

C AF PI LR0

AiAi AiAi 1/pi 1/[2F + (1 − 2F)pi]

AiAi AiAj 1/(2pi) 1/[2F + 2(1 − 2F)pi]

AiAj AiAi 1/(2pi) 1/[2F + 2(1 − 2F)pi]

AiAj AiAj (pi + pj)/(4pipj) 1/[2F + 4(1 − 2F)pipj/(pi + pj)]

AiAj AiAk 1/(4pi) 1/[2F + 4(1 − 2F)pi]

= P(C|AF, Hp)

P(C|AF, Hd)

P(AF |Hp)

P(AF |Hd)

= P(C|AF, Hp)

P(C|AF, Hd)

= P(C|AF, Hp)

P(C|Hd)
.

The penultimate equality is due to the fact that the probability of the alleged father’s genotype
does not depend on whether the alleged father is the true father of the child or not. Suppose
the genotypes of the child and the alleged father are C = AiAj and AF = AiAk, respectively.
The paternity index is

PI = P(C = AiAj|AF = AiAk, Hp)

P(C = AiAj|Hd)
.

The numerator of PI takes the form of (1/2)pj , since the alleged father who is the true father
under Hp has a 1/2 chance of transmitting allele Ai to the child and the chance that the child
has an Aj for the other allele is pj . The denominator, however, is just 2pipj . Thus, the index
becomes

PI = (1/2)pj

2pipj

= 1

4pi

.

This quantity is shown at the last row of Table 4.5. The paternity indices for the other genotype
combinations of C and AF can be obtained in similar ways. They are also shown in Table 4.5.

4.5.2 Computer software and example

Let us use the same data set listed in Table 4.2 for illustration. The mother of the child
is, however, not available for typing. In other words, the genotypes of the child and the
alleged father are provided; they are D3S1358: C = 15/17, AF = 17/18; vWA: C = 18/18,
AF = 18/18; and FGA: C = 20/21, AF = 19/20. Based on the formulas given in Table 4.5,
the paternity indices are evaluated as

D3S1358 : PI = 1
/
(4 × p17) = 1

/
(4 × 0.239) = 1.05,

vWA : PI = 1
/
p18 = 1

/
0.160 = 6.25,
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FGA : PI = 1
/
(4 × p20) = 1

/
(4 × 0.044) = 5.68.

The overall PI is 1.05 × 6.25 × 5.68 = 37.28, which is (slightly) less than the overall PI

37.36 for the standard trio case and this is generally true. The genotype of the mother in the
standard trio case provides more genetic evidence for evaluation when the null hypothesis Hp

holds true.
The computer software EasyDNA Motherless developed by the authors deals with the

motherless case under Hardy–Weinberg equilibrium. The steps in running the program are
essentially the same as those listed in Section 4.2 for EasyDNA Trio of the trio case, except
that we do not need to input the mother’s genotypes, which are unavailable.
Steps in running the EasyDNA Motherless software

1 Click the Load frequency file button after loading the EasyDNA program, then select
the appropriate file

2 Choose the allele pairs at the locus for C and Z

3a Choose the appropriate paternal relation between C and Z under Hp (which is, in this
case, Child–parent)

3b Choose the appropriate paternal relation between C and Z under Hd (which is, in this
case, Unrelated)

4 Click the Calculate button

5 Repeat steps 2 and 4 for each of the remaining loci; step 3 (3a–3b) is blocked, since it
is no longer needed for the remaining loci.

The procedure steps are straightforward and readers can easily get familiar with the process
after trying it a few times.

The motherless case example is analyzed by the software. Figure 4.4 summarizes the find-
ings of the analysis. As can be seen from the figure, the interface of the EasyDNA Motherless
is more concise than the EasyDNA Trio software. The overall PI obtained by the software is
37.28.

4.6 Motherless case: relatives involved
4.6.1 A relative of the alleged father is the true father

As in the trio situation, the alleged father in the motherless case might have argued with the
following defense explanation:

H0
d : a relative of the alleged father is the true father of the child, (4.13)

while the prosecution proposition Hp remains as that the alleged father is the true father of
the child.

The likelihood ratio, for C = AiAj and AF = AiAk, is evaluated as

LR0 = P(C = AiAj, AF = AiAk|Hp)

P(C = AiAj, AF = AiAk|H0
d )

.
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Figure 4.4 Captured screen for running the EasyDNA Motherless software for a motherless
case with genotype data of the child C and alleged father AF given in Table 4.2.

The numerator

P(C = AiAj, AF = AiAk|Hp)

= P(C = AiAj|AF = AiAk, Hp)P(AF = AiAk|Hp)

= (pj × 1/2
)(

2pipk

)
= pipjpk.

The denominator, with the genotype of the child partitioned maternally and paternally, becomes

P(C = AiAj, AF = AiAk|H0
d )

= P(CM=Ai, CP=Aj, AF=AiAk|H0
d )+P(CM=Aj, CP = Ai, AF = AiAk|H0

d )

= P(CM = Ai)P(CP = Aj, AF = AiAk|H0
d )

+ P(CM = Aj)P(CP = Ai, AF = AiAk|H0
d )

= piP(CP = Aj, AF = AiAk|H0
d ) + pjP(CP = Ai, AF = AiAk|H0

d )

= pi × k0pj × 2pipk + pj[k0pi × 2pipk + (2k1)pipk]

= pipjpk(4k0pi + 2k1),

where kj’s are the relatedness coefficients between the child and alleged father under H0
d .

The penultimate equality is obtained in a similar way to that in Equation (4.10). Thus, the
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likelihood ratio is obtained as

LR0 = pipjpk

pipjpk(4k0pi + 2k1)

= 1
/
(2k1 + 4k0pi).

Suppose we denote the kinship coefficient between the alleged father and his relative
who is the true father under H0

d by F . As in the trio situation, the coefficients F and k1 are
equivalent, no matter whether the mother is available or not. Since k0 + 2k1 = 1, the above
likelihood ratio for C = AiAj and AF = AiAk can also be expressed as

LR0 = 1
/

[2F + 4(1 − 2F)pi].

The likelihood ratios for the other genotype combinations of the child and alleged father
can be derived similarly, and they are all presented in the last column of Table 4.5.

4.6.2 Alleged father unavailable but his relative is

When the alleged father is not available, his relative R is tested instead. The hypotheses of
interest are

Hp : a relative of R is the true father of the child;
Hd : the true father is a random unrelated man.

(4.14)

Using a similar argument as that for the trio case, we are able to derive the relationship for
the avuncular index for the motherless case as

AI = PI

LR0
, (4.15)

where PI and LR0 refer to Table 4.5, in which the genotypes of the relative R are listed as
those shown in the AF column.

It can also be easily verified that the finding of Morris et al. (1988) also holds for the
motherless case, i.e.

AI = (1 − 2F) + 2F × PI, (4.16)

where F is the kinship coefficient between the alleged father and the typed relative R. For
other combinations of genotypes of C and R (i.e. column AF ) not listed in Table 4.5, their
PI values are zeros, thus giving the avuncular index AI = (1 − 2F), which is non-zero.

4.6.3 Computer software and example

The software EasyDNA Motherless can easily deal with the special paternity problems
involving relatives, in which the mother is not available. The steps in running the program are
the same as those listed in Section 4.5 except for an appropriate choice of paternal relation
between C and Z in step 3a or 3b. The choice of this relationship is the same as that in the
trio case and can be referred to in Sections 4.3 and 4.4.

We analyze the illustrative example that has been given earlier for the motherless case with
genotypes, namely D3S1358: C = 15/17, AF = 17/18; vWA: C = 18/18, AF =
18/18; and FGA: C = 20/21, AF = 19/20. The likelihood ratios for the prosecution hypoth-
esis Hp that the alleged father is the true father of the child versus the defense explanation
(4.13) H0

d that the brother of the alleged father is the true father of the child are 1.02, 1.72 and
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Figure 4.5 Captured screen for paternity testing for a motherless case where Hp: a brother
of Z is the true father of the child C versus Hd : the true father is a random unrelated man.

1.70 for loci D3S1358, vWA and FGA, respectively, with an overall likelihood ratio of 2.98.
These figures can easily be checked manually by calculator using the LR0 formulas listed in
Table 4.5 or by running the EasyDNA Motherless software.

If the pair of hypotheses (4.14) is of interest and suppose a relative R, the brother of the
alleged father, instead of the alleged father himself, is typed, then we run the EasyDNA
Motherless following the same steps as listed in Section 4.5, except with the modification of

Step 3a Choose the appropriate paternal relation between C and Z under Hp (which is,
in this case, Nephew–uncle).

Notice that Z in the software stands for the relative R in this case. The child C and the
relative R who is the brother of the alleged father are nephew and uncle under Hp. Based
on the EasyDNA Motherless software, the avuncular indices (likelihood ratios) are 1.02,
3.62 and 3.34 at D3S1358, vWA and FGA, respectively, giving an overall avuncular index or
likelihood ratio of 12.33. The running of the software is shown in the captured screen given
in Figure 4.5. The indices can also be obtained from formulas given in Equations (4.15) and
(4.16).

4.7 Determination of both parents
In May 1993, a newborn baby girl was stolen from a local hospital in Hong Kong. An aban-
doned infant of unknown identity was found on a street two days later. The parents of the
missing baby girl thought that the abandoned baby was their missing child. DNA profiling
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Table 4.6 Likelihood ratio (LR) for determination of both parents.

C AM AF LR

AiAi AiAi AiAi 1/p2
i

AiAj 1/(2p2
i )

AiAj AiAi 1/(2p2
i )

AiAj 1/(4p2
i )

AiAk 1/(4p2
i )

AiAj AiAi AiAj 1/(4pipj)

AjAj 1/(2pipj)

AjAk 1/(4pipj)

AiAj AiAi 1/(4pipj)

AiAj 1/(4pipj)

AiAk 1/(8pipj)

AiAk AiAj 1/(8pipj)

AjAj 1/(4pipj)

AjAk 1/(8pipj)

AjAl 1/(8pipj)

tests based on restriction fragment length polymorphism (RFLP) were performed. Details of
the test results can be found in Fung et al. (1996).

The null and alternative propositions for such problems can be formulated as follows:

Hp : the alleged parents are true parents of the child;
Hd : a random unrelated couple are true parents of the child.

(4.17)

LetAF andAM denote the genotypes of the alleged father and alleged mother, respectively.
The likelihood ratio can be determined as

LR = P(evidence|Hp)

P(evidence|Hd)

= P(C, AF, AM|Hp)

P(C, AF, AM|Hd)

= P(C|AF, AM, Hp)

P(C|AF, AM, Hd)
× P(AF, AM|Hp)

P(AF, AM|Hd)

= P(C|AF, AM, Hp)

P(C|AF, AM, Hd)

= P(C|AF, AM, Hp)

P(C)
.

Suppose that C = AiAj , AM = AiAk and AF = AjAl. The likelihood ratio is

LR = (1/2)(1/2)

2pipj

= 1

8pipj

.
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Table 4.7 Genotype data of the alleged couple (alleged mother and alleged father) and child.

Locus C AM AF

D3S1358 17/17 17/18 17/17
vWA 14/18 14/18 14/17
FGA 23/25 23/24 25/25

The likelihood ratios for other genotype combinations can be obtained similarly. These
ratios are all shown in Table 4.6. More details on the derivation can be referred to in
Fung et al. (1996).

Table 4.7 gives an example with genotypes at three loci from the alleged couple and child
for parentage determination of both parents. Based on the formulas listed in Table 4.6, the
likelihood ratios at the loci are

D3S1358 : LR = 1
/
(2p2

17) = 1
/
(2 × 0.2392) = 8.75,

vWA : LR = 1
/
(8p14p18) = 1

/
(8 × 0.254 × 0.160) = 3.08,

FGA : LR = 1
/
(4p23p25) = 1

/
(4 × 0.189 × 0.110) = 12.03.

The overall likelihood ratio is 8.75 × 3.08 × 12.03 = 324.21.
We have developed the software EasyDNA BothParents primarily for the purpose of

determination of both parents. The steps in running the EasyDNA BothParents software are

Figure 4.6 Captured screen for running the EasyDNA BothParents software for determina-
tion of both parents with genotype data given in Table 4.7.
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essentially the same as those in running the EasyDNA Trio, except that the former software
does not need steps 3a and 3b and is thus simpler. The program is run to analyze the example
given in Table 4.7. The findings are shown in the captured screen in Figure 4.6.

In theory, there are variations of hypotheses given in Equation (4.17). These variations,
however, are not that common in practice and so are not included in this book.

4.8 Probability of excluding a random man from paternity
Besides the paternity index (i.e. the likelihood ratio) and the probability of paternity (i.e. the
posterior probability), the probability of excluding a random man from paternity is another
quantity that may be used by some scientists and paternity laboratories. Given the genotypes
of a child C and the mother M, the exclusion probability (EP) for a particular mother–child
genotype combination is the proportion of random men that can be excluded from being the
father of this child, based on genotypes C and M (Fung et al. 2002). Unlike the paternity index,
the exclusion probability can be calculated even before the collection of the genotype of the
alleged father, and it gives the proportion of random men in the population to be excluded
from paternity of the child.

Suppose that the mother and the child have genotypes M = AiAj and C = AiAk at a
particular locus l, respectively. A man without allele Ak (i.e. both of his alleles are not Ak)
will be excluded as the true father of the child. Thus, the probability that a random individual
in the male population is excluded from paternity in this case is (1 − pk)

2. This exclusion
probability at locus l is

EPl = (1 − pk)
2,

and so the inclusion probability or the ‘random man not excluded’ probability would be
IPl = 1 − EPl. The EPl’s for various combinations of genotypes of the mother and child can
be derived similarly and are given in Table 4.8.

When we consider a total of K loci, the overall exclusion probability is evaluated as

overall EP = 1 −
K∏

l=1

(1 − EPl). (4.18)

Table 4.8 Probability (EPl) that a random man is excluded from
paternity of the child, given genotypes of the mother M and
child C at a particular locus l.

M C EPl

AiAi AiAi (1 − pi)
2

AiAi AiAj (1 − pj)
2

AiAj AiAi (1 − pi)
2

AiAj AiAj (1 − pi − pj)
2

AiAj AiAk (1 − pk)
2
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Consider the standard trio example we provided earlier in Table 4.2. Using the exclusion
probability formulas, we obtain the probabilities at

locus 1, D3S1358 : EP1 = (1 − p17)
2 = (1 − 0.239)2 = 0.5791,

locus 2, vWA : EP2 = (1 − p18)
2 = (1 − 0.160)2 = 0.7056,

locus 3, FGA : EP3 = (1 − p20 − p21)
2 = (1 − 0.044 − 0.131)2 = 0.6806,

and, for all three loci,

overall EP = 1 − (1 − 0.5791)(1 − 0.7056)(1 − 0.6806) = 0.9604.

This quantity can be interpreted as: given the genotypes of the mother and child at
three loci (i.e. D3S1358: M = 15/16, C = 15/17; vWA: M = 18/19, C = 18/18; and FGA:
M = 20/21, C = 20/21), there is a 0.9604 probability that a random unrelated man of the
male population is excluded from paternity, i.e. his genotype is not consistent with the geno-
type of the child. In other words, there is about a 4% chance that a random unrelated man
(who is in fact not the father of the child) in the male population will not be excluded from
paternity using the DNA test at three loci of the mother and child. Now the genotype of
the alleged father matches with the genotype of the child and so the alleged father is not
excluded from paternity. It is then the duty of the jury and the judge to decide whether
or not the alleged father is the father of the child. (Note: in practice, about 10 or more
loci will usually be used, often resulting in an overall exclusion probability greater than
0.999.)

As can be observed from the above derivation, the exclusion probability evaluates

P(a random man is excluded from paternity | M, C).

This is rather different from the likelihood ratio (= paternity index) and the Bayesian posterior
probability/odds approaches. One crucial difference is that the exclusion probability approach
does not explicitly take the DNA profile of the alleged father into account in the probability
calculation; the genotype of the alleged father AF is not needed in Table 4.8 at all. What it
requires is only whether or not that DNA profile is consistent with the genotype of the child.
For example, in the illustrative example, the exclusion probability remains the same no matter
whether AF = 17/18, 17/17 or 17/20 at D3S1358. As long as the genotype of the alleged
father is consistent with that of the child, the exclusion probability, which depends on the
genotypes of the mother and child, remains unchanged. This is, however, not true for the other
two approaches.

The exclusion probability measure has been advocated by Li and Chakravarti (1988).
However, some researchers such as Kaye (1989) pointed out the drawback that we have
illustrated; the explicit genotype of the alleged father is irrelevant for the exclusion proba-
bility calculation provided that there is a match in the genotypes of the alleged father and
child. Nevertheless, the exclusion probability provides a useful measure on the strength of
the genotypes for a particular mother–child pair in excluding a random man from pater-
nity of the child. Further discussion of the exclusion probability approach can be found in
Balding (2005).

The idea of exclusion probability can also be used in the motherless case. The EPl’s at
any particular locus l are referred to Table 4.9. The overall exclusion probability is evaluated
in the same way as Equation (4.18).
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Table 4.9 Probability (EPl) that a
random man is excluded from paternity of
the child, given the child’s genotype C

at a particular locus l.

C EPl

AiAi (1 − pi)
2

AiAj (1 − pi − pj)
2

4.9 Power of exclusion
4.9.1 A random man case

The effectiveness of a genetic marker as a tool for resolving paternity disputes can be char-
acterized by its ability to exclude false fathers. One general measure that is commonly used
for this purpose is the power or probability of exclusion (PE). The notation EP used in
the last section refers to the probability of exclusion corresponding to a particular paternity
case, whereas the notation PE used here corresponds to all possible paternity combinations
and is not restricted to any particular case. The power of exclusion was first discussed by
Wiener et al. (1930) on two allele systems. Ohno et al. (1982) and Garber and Morris (1983)
developed general formulas for systems with any numbers of codominant alleles.

Consider a locus with n alleles A1, A2, . . . , An having corresponding allele frequencies
p1, p2, . . . , pn. Given the genotypes of a child and the mother, C and M, respectively, we
assess the probability of exclusion for a particular mother–child genotype combination, i.e.
the individual probability or power of exclusion (IPE), which is the proportion of random
men that can be excluded from being the father of the child, based on C and M.

Suppose that the genotypes of the mother and child are M = AiAj and C = AiAk, respec-
tively. Any man without the Ak allele will be excluded as the father of the child, and so the
individual power of exclusion is

IPE = P(a random man is excluded from paternity |M = AiAj, C = AiAk) = (1 − pk)
2.

The probability of that particular genotype combination for the mother and child is

P(M = AiAj, C = AiAk) = 2pipj(pk/2) = pipjpk.

The other genotype combinations for the mother and child are listed in Table 4.8, and the
associated probabilities can be derived similarly (Evett and Weir 1998; Ohno et al. 1982).
The power of exclusion PE is then obtained by summing the IPE’s for all mother–child
combinations, weighted by the corresponding genotype probabilities

PEWM =
∑
M,C

P(a random man is excluded from paternity |M,C) × P(M, C)

=
n∑

i=1

pi(1 − pi + p2
i )(1 − pi)

2 +
n−1∑
i=1

n∑
j=i+1

pipj(pi + pj)(1 − pi − pj)
2.
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The subscript ‘WM’ stands for ‘with mother’ case, in contrast to the ‘no mother’ case to be
discussed below. An equivalent but simpler expression is taken as

PEWM =
n∑

i=1

pi(1 − pi)
2 −

n−1∑
i=1

n∑
j=i+1

p2
i p

2
j (4 − 3pi − 3pj). (4.19)

Sometimes, the genotype of the mother may not be available. The formula for the power of
exclusion in the no-mother case is

PENM =
n∑

i=1

p2
i (1 − pi)

2 +
n−1∑
i=1

n∑
j=i+1

2pipj(1 − pi − pj)
2. (4.20)

Since it is easier to exclude a man from being the child’s father if the mother’s genotype is
available, we have PEWM ≥ PENM ; the analytical proof is referred to in Fung et al. (2002).
The power of exclusion in the no-mother case was also discussed in Garber and Morris (1983),
Lee et al. (1980) and Jamieson and Taylor (1997).

When the power of exclusion Pi is calculated at locus i, 1 ≤ i ≤ K, then the overall power
of exclusion at all these K loci based on at least one or more loci exclusions is

PE = 1 −
K∏

i=1

(1 − Pi). (4.21)

4.9.2 A relative case

When documentary proof is lacking or deemed inadequate, genetic testing is often required
to verify parent–child claims in relation to immigration applications around the world (Fung
et al. 2003b). Gorlin and Polesky (2000) reported a case in which the US embassy rejected an
immigration application that involved a claim for the reunion of a boy with his parents. On the
basis that the alleged father was suspected of being the boy’s brother, the case was rejected,
though no exclusions of paternity were found in the genetic tests. The boy and alleged father
shared both alleles at three of the five RFLP loci tested, however.

In parentage testing for immigration purposes, one of the aims is to help deny those
applications in which the claimed parent–child relationships are not substantiated. The above
overall power of exclusion PE in Equation (4.21) is a way to express the ability of a panel
of DNA markers for such a purpose. The ability is reasonably high when the number of
typing loci is appropriately large whether the mother is available or not (Chakraborty et
al. 1999). However, the powers of exclusion computed from Equations (4.19) and (4.20)
can only reveal the power of a system to exclude a random man as the biological father.
Unlike illegitimacy cases, the false father in immigration or inheritance disputes would be
less likely to be an unrelated man, but rather a relative of the true father, e.g. his brother
(see, for example, the above US immigration application). It is harder to exclude this man
from paternity than an unrelated man, since the relative has a high chance of sharing genes
with the true father. Knowing the power of a battery of tests to exclude a relative of the
true father from paternity can help a parentage testing laboratory to interpret results more
properly so as not to make undue claims to establishing the paternity of a particular child
(Fung et al. 2002; Melvin et al. 1998).

To assess the power of a test from another perspective, the scope of computation can
be limited to relatives of the true father. The calculation of power of exclusion under such
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consideration can be done by using the relatedness coefficients (k0, 2k1, k2). Fung et al. (2002)
provided the following formulation of the power of excluding relatives of the true father from
paternity based on autosomal markers. The power of excluding relatives of the true father for
X-linked markers is referred to in Hu and Fung (2005c).

Suppose R is a relative of the true father (TF) and this relationship can be expressed
in terms of their relatedness coefficients (k0, 2k1, k2). On the assumption that the mother
(M) of the child (C) is unrelated to both TF and R, the child and TF will share exactly
one ibd allele and the relationship between C and R can be described by the following
probabilities:

P(both alleles of C and R are ibd) = 0,

P(exactly one allele of C and one allele of R are ibd) = k1 + k2,

P(none of the alleles of C and R is ibd) = k0 + k1.

If C and R share no ibd allele, R can be treated as a random man unrelated to C concerning
the alleles in question. According to the law of total probability, since R can be excluded only
when he shares no ibd allele with C, the probability of excluding a relative R as the father can
be computed by

PERWM = P(R and C share no ibd allele)

× P(R can be excluded|R and C share no ibd allele)

= (k0 + k1)PEWM. (4.22)

The following simple relationship between the PERWM and the common PEWM is found to
be held: when we are concerned with the probability of the exclusion of a relative of the true
father instead of a random man, the power of exclusion is reduced by a proportion equal to

PEWM − PERWM

PEWM

= 1 − k0 − k1

= k1 + k2

= 1

2
(mean number of ibd alleles of R and TF).

It is obvious from this result that the closer the relationship between R and TF , the smaller
the power of exclusion. This is consistent with the foregoing that it will be harder to exclude
R from paternity, as R has a higher chance to inherit and share the same genotypes with TF .
For the no-mother case, the corresponding PER can also be expressed as

PERNM = (k0 + k1)PENM. (4.23)

The above simple relationship between the PER and the common PE holds for situations
as long as the mother can be assumed to be unrelated to both R and TF . It must be stressed
that a change in the calculations would result if the mother bears a biological relationship
with the relative R and true father TF . Thus, Equations (4.22) and (4.23) cannot be employed
to answer the question ‘what proportion of full sibling pairs disguising as parent/child can be
discriminated by a test battery?’ (Fung et al. 2004), since the sibling and the mother of the
child are biologically related. This question is to be answered below.
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In the following, we study the no-mother case first. We consider generally the probability
that one relative of the child, whether or not he is related to the mother, is excluded from
paternity. Let φ0 denote the probability that the relative and the child share no ibd alleles
(note, in the above discussion, the k-coefficients between the relative and the true father are
used). For a child with homozygous C = AiAi, the relative is excluded from paternity if and
only if R = AmAn (m, n �= i). For a child with heterozygous C = AiAj (i < j), the relative is
excluded from paternity if and only ifR = AmAn (m, n �= i, j). As the relative is excluded from
paternity of the child, it can be concluded that the relative shares no ibd alleles with the child at
that particular locus; so the joint genotype probability P(C = AiAi, R = AmAn) = φ0P(C =
AiAi)P(R = AmAn) form, n �= i andP(C = AiAj, R = AmAn) = φ0P(C = AiAj) × P(R =
AmAn) for m, n �= i, j. Hence, the probability of excluding a relative of the child from
paternity is obtained by summing over all possible exclusion configurations of R and
C; that is

PERNM = φ0

[ ∑
i;m,n �=i

P(C = AiAi)P(R = AmAn)

+
∑

i<j;m,n �=i,j

P(C = AiAj)P(R = AmAn)

]

= φ0PENM. (4.24)

The term inside the square bracket is just Equation (4.20). Thus, the second equality follows
immediately.

Note that in Equation (4.24), the involved relative of the child can be paternal or maternal,
but the involved relative in Equation (4.23) is confined to the paternal relative of the child,
and so cannot be the elder brother of the child. It is shown that φ0 = k0 + k1 when the relative
is paternal (Fung et al. 2004), so Equation (4.24) covers Equation (4.23).

4.9.3 An elder brother case: mother available

When the mother of a child is not available for typing, Fung et al. (2004) have shown that full
brothers impersonating a father/child situation is very difficult to discredit with DNA profiling
alone. When the mother is available, the relationship in Equation (4.22), however, does not
hold for relatives who are biologically related to the mother (e.g. an elder brother of the child).
In the following, we are going to derive the power of exclusion for an elder brother case when
the mother is available (Hu and Fung 2005b).

Let M, C and EB denote the genotypes of the mother, child and elder brother, respectively.
The power of excluding the elder brother of the child from paternity, termed as PEEB, is given
by

PEEBWM =
∑

M, C, EB

P(M, C, EB), (4.25)

where P(M, C, EB) corresponds to the joint genotype probability for a particular paternity
exclusion configuration of the mother–child–elder brother trio, and the summation sums over
all possible configurations. Table 4.10 presents a summary of all the paternity exclusion config-
urations together with the associated probabilities. Summing over all possible configurations
with the associated probabilities given in the last column of Table 4.10 yields the power of
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Table 4.10 Paternity exclusion configurations and their joint genotype probabilities
for the mother–child–elder brother trios having genotypes M, C and EB.

M C EB Joint probability

AiAi AiAj AiAi p3
i pj/2

AiAk p2
i pjpk/2

AiAj AiAi AjAj p2
i p

3
j/4

AjAk p2
i pjpk/4

AjAj AiAi p2
i p

2
j/4

AiAk pip
2
jpk/4

AiAk AiAi p2
i pjpk/4

AiAl pipjpkpl/4

AiAj p2
i pjpk/4 + pip

2
jpk/4

AjAj pip
2
jpk/4

AjAl pipjpkpl/4

AjAk AiAi p2
i pjpk/4

AiAl pipjpkpl/4

AiAj p2
i pjpk/4 + pip

2
jpk/4

AjAj pip
2
jpk/4

AjAl pipjpkpl/4

exclusion in the with-mother case (Hu and Fung 2005b):
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∑
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∑
i

p3
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4

∑
i

p4
i . (4.26)

When the population is subdivided with a degree of subdivision θ, Hu and Fung (2005b)
provided an analogous formula for the power of exclusion in the with-mother case [see also
Hu et al. (2004)].

The different measures of the power of exclusion are illustrated using the Hong Kong
Chinese population data at 12 STR loci (Wong et al. 2001). The powers of excluding a
random man, and a paternal uncle and an elder brother of the child from paternity, for the
with-mother and no-mother cases, are listed in Table 4.11. The powers of excluding a random
man as the true father range from 33 to 73% across loci when the genotype of the mother is
available. Nevertheless, when the paternal uncle of a child claims to be the true father in the
absence of the mother for testing, as in an immigration application for reunion, the powers of
exclusion across loci become much smaller, ranging from 9 to 29%. The overall power at all
loci is only 93.7%, implying the insufficiency of this system in resolving paternity disputes for
such cases. In other words, the panel of 12 STR loci system cannot exclude 6.3% of the alleged
fathers in nephew/niece–uncle cases for paternity determinations when the mother of the child



4.9 POWER OF EXCLUSION 73

Table 4.11 Powers of excluding a random man (PE), and a paternal uncle (PER1) and
an elder brother (PER2) of the child from paternity based on Hong Kong Chinese
population data, for the with-mother and no-mother cases, from Hu and Fung (2005b).
(Reproduced by permission of Elsevier.)

Locus With-mother No-mother

PE PER1 PER2 PE PER1 PER2

D3S1358 0.4745 0.2372 0.2314 0.3037 0.1519 0.0759
vWA 0.6099 0.3049 0.2944 0.4325 0.2162 0.1081
FGA 0.7317 0.3658 0.3531 0.5748 0.2874 0.1437
THO1 0.4496 0.2248 0.2177 0.2798 0.1399 0.0699
TPOX 0.3303 0.1651 0.1616 0.1862 0.0931 0.0466
CSF1PO 0.4992 0.2496 0.2425 0.3244 0.1622 0.0811
D5S818 0.5919 0.2960 0.2861 0.4139 0.2069 0.1035
D13S317 0.5694 0.2847 0.2751 0.3905 0.1953 0.0976
D7S820 0.5481 0.2740 0.2646 0.3680 0.1840 0.0920
D8S1179 0.7023 0.3512 0.3387 0.5368 0.2684 0.1342
D21S11 0.6622 0.3311 0.3191 0.4913 0.2456 0.1228
D18S51 0.7315 0.3658 0.3530 0.5748 0.2874 0.1437

Overalla 0.99998 0.98357 0.98068 0.99849 0.93659 0.72528
Overallb 0.99957 0.90213 0.88943 0.98487 0.73738 0.34857
Overallc 0.99622 0.71846 0.69326 0.92950 0.45378 0.11400
aOverall power of exclusion on the basis of at least one or more loci exclusions
bOverall power of exclusion on the basis of at least two or more loci exclusions
cOverall power of exclusion on the basis of at least three or more loci exclusions

is not available, although it performs well in the child–random man case (PE = 0.99849). It
is also noted that when the mother is not available, the power of excluding an elder brother of
the child from paternity using the said STR battery is only about 73%, indicating that about
27% of pairs of two full siblings impersonating father and child would not be discounted
correctly. As the traditional PE may overstate the exclusion power in some situations, it is
recommended to also compute the PER for a better assessment of the effectiveness of the test
battery.

Considering the high mutation rates (Brinkmann et al. 2001; Chakraborty and Stivers
1996; Gunn et al. 1997) of STR loci, the American Association of Blood Banks recommends
declaring non-paternity based on exclusions at two or more loci tested. To address this, we
let Pi be the power of exclusion based upon the ith locus, i = 1, . . . , K. The overall power of
exclusion for a panel of tests on the basis of at least two or more loci exclusions is

PE′ = 1 −
K∏

i=1

(1 − Pi) −
K∑

i=1

Pi

K∏
j=1
j �=i

(1 − Pj)

= PE −
K∏

i=1

(1 − Pi)

K∑
i=1

Pi

1 − Pi

, (4.27)
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and, on the basis of three or more loci exclusions, is

PE′′ = PE′ −
∑
i<j

PiPj

K∏
k=1

k �=i,k �=j

(1 − Pk)

= PE′ −
K∏

i=1

(1 − Pi)
∑
i<j

PiPj

(1 − Pi)(1 − Pj)
, (4.28)

where the form of PE is provided in Equation (4.21).
Taking the possibility of mutation in STR loci into consideration and on the basis of at

least two or more loci exclusions, the powers of excluding relatives from paternity are: in
the with-mother case, 90% for a paternal uncle and 89% for an elder brother of the child;
in the no-mother case, 74% for a paternal uncle and 35% for an elder brother of the child.
All these values are 90% or below. On the basis of at least three or more loci exclusions,
the powers of excluding the said relatives from paternity are all below 72% and can be as
low as 11%. These results illustrate well the difficulty of excluding relatives of the child
from paternity when the possibility of mutation in STR is taken into consideration. This may
have serious consequences for parentage testing laboratories and immigration authorities in
verifying parent/child claims. New sets of tests with much higher PER’s are needed to serve
the purpose of determining parentage and kinship (Fung et al. 2004; Wenk et al. 2003).

4.10 Other issues
4.10.1 Reverse parentage

Consider the following murder case about reverse parentage. A blood stain is found and the
evidence is believed to be that of a murdered (missing) child of two known parents. The
hypotheses of interest are

Hp : the blood stain came from the missing child of two known parents;
Hd : the blood stain did not come from the missing child.

The genotypes of the blood stain (BS) and the couple (AM and AF ) are listed in Table 4.12.
It is obvious that this problem is equivalent to the situation of determination of both parents as
given in Section 4.7. The likelihood ratios can be obtained based on the formulas of Table 4.6
in which the genotype C is replaced by BS. The ratios are evaluated as

D3S1358 : LR = 1/(8p15p17) = 1/(8 × 0.331 × 0.239) = 1.58,

vWA : LR = 1/(4p2
16) = 1/(4 × 0.1562) = 10.27,

FGA : LR = 1/(2p24p25) = 1/(2 × 0.166 × 0.110) = 27.38.

The overall likelihood ratio is 1.58 × 10.27 × 27.38 = 444.28. The software EasyDNA
BothParents can also be used to evaluate the likelihood ratios in this situation.

In situations in which only one parent is available, the formulas and software given in
Section 4.5 for the motherless case would then be relevant. Other complex missing person
problems are referred to in Section 5.8.
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Table 4.12 A reverse parentage case with genotype data of the blood stain
(BS) which is hypothesized to be that of a missing child of two known parents
(AM and AF ).

Locus BS AM AF

D3S1358 15/17 15/16 14/17
vWA 16/16 16/17 16/19
FGA 24/25 24/24 25/25

4.10.2 Mutation

The high mutation rates of STR loci (Brinkmann et al. 2001; Chakraborty and Stivers 1996)
cannot be neglected. It may happen in parentage testing that the genotype of the alleged father
matches with the child at all except one or two loci. This situation might be explained by
mutation. Brinkmann et al. (1998) investigated the estimation of mutation rates for various
STR loci used in forensic and paternity testing. Thomson et al. (1999) concluded that a
single paternal mutation event might occur about 1% of the time. Ayres (2000) reported the
paternity index in the with-mother case and in the no-mother case, incorporating the mutation
rate, in a subdivided population. Ayres (2002) reported the paternal exclusion in the presence
of substructure, which extends the results listed in Dawid et al. (2001) to the subdivided
population, where the stepwise stationary mutation model was employed.

According to the recommendations of the American Association of Blood Banks, non-
paternity may be declared when there are mismatches at two or more loci tested. The average
mutation paternity index (AMPI) is then used for the mismatch locus found between the
alleged father and the child. This index can be derived in the following way.

Consider a standard trio case in which the genotypes of the child, mother and alleged
father are typed. The hypotheses of interest are

Hp : the alleged father is true father of the child;
Hd : the true father of the child is a random unrelated man.

(4.29)

Suppose that there is a mismatch in one particular locus of the test battery, and let the
genotypes of the child and mother be C and M at this locus, respectively. As a general index,
the AMPI considers only the information that the genotype of the alleged father does not
match, but not this person’s particular genotype. The likelihood ratio at the mismatch locus
is evaluated as

LR = P(C, M, the child’s and alleged father’s genotypes not match | Hp)

P(C, M, the child’s and alleged father’s genotypes not match | Hd)

= P(the child’s and alleged father’s genotypes not match | Hp, C, M)

P(the child’s and alleged father’s genotypes not match | Hd, C, M)

P(C, M | Hp)

P(C, M | Hd)

= P(the child’s and alleged father’s genotypes not match | Hp, C, M)

P(the child’s and alleged father’s genotypes not match | Hd, C, M)
.

As for the numerator, the genotype of the alleged father (who is the true father of the child
under Hp) does not match the genotype of the child due to mutation, and so this probability
is equal to the (average) mutation rate µ. The denominator, under Hd that the man is not the
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Table 4.13 Genotype data of the mother, child and alleged father at 12 loci,
in which a mismatch is found at locus D18S51.

Locus Child Mother Alleged father LR

D3S1358 16/17 17/18 15/16 1.54
vWA 14/18 14/19 14/18 3.13
FGA 20/24 20/22 22/24 3.01
THO1 6/7 6/8 7/9 1.58
TPOX 8/11 8/9 11/11 3.2
CSF1PO 12/12 12/12 10/12 1.38
D5S818 11/12 12/13 10/11 1.96
D13S317 10/10 10/10 9/10 3.23
D7S820 8/8 8/10 8/11 4.15
D8S1179 14/16 16/18 11/14 3.29
D21S11 30/32.2 30/31 29/32.2 2.62
D18S51∗ 13/14 14/14 12/17 0.00414∗

∗A mismatch of the genotypes of the alleged father and child; the LR is evaluated using the average
mutation paternity index (AMPI)

true father, is just the power or probability of excluding a random man from paternity PE.
Thus, the likelihood at this locus (Fimmer et al. 1992) is evaluated as

LR = µ

PE
, (4.30)

which is termed the average mutation paternity index (AMPI). There are other mutation
models suggested in the literature (Dawid et al. 2002; Rolf et al. 2001; Valdes et al. 1993)
which may also be employed for evaluating the likelihood ratio.

Consider a standard trio case example (Table 4.13) for the Hong Kong Chinese population.
The genotype of the alleged father matches with that of the child at all 12 except the last locus.
Using the software, we can obtain individual likelihood ratios and they are shown in the last
column of Table 4.13. The last ratio 0.00414 at D18S31 is evaluated using Equation (4.30)
with µ = 0.00303 and PE = 0.732. The paternity index based on the match loci is called the
residual paternity index, which is equal to 1.54 × 3.13 × · · · × 2.62 = 22926. The overall
paternity index is evaluated as 22926 × 0.00414 = 94.9, which is reduced substantially.

4.11 Problems
1. Obtain the paternity index (PI) for a standard trio where C = A1A2, M = A1A2 and

AF = A2A3, and the population is in Hardy–Weinberg equilibrium. Moreover, use the
computer software EasyDNA Trio to evaluate the PI for this case with A1 = 15, A2 =
16 and A3 = 17 at locus D3S1358 and the corresponding allele frequencies specified
in Table 4.3.

2. In a paternity testing where C = A1A2, M = A1A3 and AF = A2A3, we are interested
in the hypotheses:
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Hp: the alleged father (AF) is the true father of the child (C);
Hd : a full sibling of AF is the true father of C.

Find the likelihood ratio.

3. Suppose in a paternity testing C = A1A2, M = A1A2 and a full sibling R of the alleged
father is typed with genotype R = A2A3. Find the likelihood ratio about the following
two competing hypotheses:

Hp: the alleged father, a relative R, is the true father of the child;
Hd : the true father is a random unrelated man.

4. Derive the following relationship between the paternity index (PI) and the avuncular
index (AI) for paternity testing in trio cases:

AI = (1 − 2F) + 2F × PI,

where F is the kinship coefficient between the alleged father and the typed relative R

(see details in Section 4.4).

5. In a paternity testing in which the mother is not available, we are interested in

Hp: the alleged father is the true father of the child;
Hd : the true father is a random unrelated man.

Evaluate the paternity indices for (i) AF = A1A2 and C = A1A3, (ii) AF = A1A2,
C = A1A1; (iii) AF = A1A1, C = A1A1.

6. In a paternity testing without the mother’s information, the genotypes of the child and the
alleged father are A1A2 and A2A3, respectively. Find the paternity index for following
two competing hypotheses:

Hp: the alleged father (AF) is the true father of the child (C);
Hd : a full sibling of AF is the true father of C.

7. Consider a paternity testing in the no-mother case, where the child is typed as A1A2 and
a full sibling R of the alleged father is typed as A1A2. Find the paternity index about
the following two competing propositions:

Hp: the alleged father, a relative of R, is the true father of the child;
Hd : a random unrelated man is the true father of the child.

8. In the motherless case, verify the relationship between the paternity index (PI) and
avuncular index (AI):

AI = (1 − 2F) + 2F × PI,

where F is the kinship coefficient between the alleged father and the typed relative R

(see details in Section 4.6.2).
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9. Suppose the genotypes of the alleged father, the alleged mother and the child are A1A2,
A3A3 and A2A3, respectively. Find the likelihood ratio about the following two com-
peting propositions:

Hp: the alleged parents are true parents of the child;
Hd : a random unrelated couple are true parents of the child.

10. Consider a paternity testing in the no-mother case where the genotypes of the child C

and the alleged father AF are: C = 16/17, AF = 17/17 at locus D3S1358; C = 17/18,
AF = 17/18 at locus vWA; C = 24/25, AF = 25/26 at locus FGA. The following
hypotheses are of interest:

Hp: the alleged father is the true father of the child;
Hd1 : a random unrelated man is the true father of the child;
Hd2 : a half sibling of the alleged father is the true father of the child.

Obtain the likelihood ratios for Hp versus Hd1 and Hp versus Hd2 using (i) the formulas
given in Table 4.5, and (ii) the software EasyDNA Motherless, by having the allele
frequencies specified in Table 4.3. Check whether the corresponding results in (i) and
(ii) are the same.
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Testing for kinship

In Chapter 4, we discussed a number of paternity problems such as paternity testing for the
with-mother and without-mother cases, incest cases and determinations of both parents, etc.
We have also considered situations in which relatives of the alleged father are involved, for
example the defense proposition that a relative of the alleged father is the true father of the
child, and when the alleged father is not available but his relative is. All of the above analyses
are concerned about the determination of the ‘father and child’ relationship. In this particular
chapter, we are going to investigate more general relationships between two persons (Fung
et al. 2003a; Li and Sacks 1954) and those among three persons (Fung et al. 2005, 2006).
Besides, unlike in Chapter 4, in which Hardy–Weinberg equilibrium (HWE) is assumed, the
relationships of the persons involved here are determined under the situation that they belong
to a subdivided or structured population. More complex paternity and kinship problems (Fung
2003b) with Hardy–Weinberg equilibrium are also investigated.

5.1 Kinship testing of any two persons: HWE
In addition to the parent–child determination in traditional parentage testing (Fung et al. 2002;
Lee et al. 2000, 1999; Thomson et al. 1999), other kinds of relationships between individuals
also need to be tested in practice. For example, Thomson et al. (2001) analyzed sibling
relationships using STR loci; Gaytmenn et al. (2002) studied the sensitivity and specificity
of sibship calculations. The use and abuse of the full sibling and half sibling indices in
immigration cases were discussed by Gorlin and Polesky (2000).

We would like to determine a specific relationship between two typed persons. The fol-
lowing propositions are of interest:

Hp: the two persons are biologically related;
Hd: the two persons are biologically unrelated.

(5.1)

The relationship between the two persons can be of various sorts, for example parent–offspring,
uncle–nephew, half siblings, etc. In this particular section, Hardy–Weinberg equilibrium is
assumed. Let the genotypes of the two persons be denoted by Y and Z, respectively. For

Statistical DNA Forensics: Theory, Methods and Computation Wing Kam Fung and Yue-Qing Hu
© 2008 John Wiley & Sons, Ltd
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Table 5.1 The joint genotype probabilities P(Y, Z) for all Y and Z

combinations when the population is in Hardy–Weinberg equilibrium.

Y Z P(Y, Z)

AiAi AiAi k0p
4
i + 2k1p

3
i + k2p

2
i

AiAi AiAj 2k0p
3
i pj + 2k1p

2
i pj

AiAi AjAj k0p
2
i p

2
j

AiAi AjAk 2k0p
2
i pjpk

AiAj AiAj 4k0p
2
i p

2
j + 2k1p

2
i pj + 2k1pip

2
j + 2k2pipj

AiAj AiAk 4k0p
2
i pjpk + 2k1pipjpk

AiAj AkAl 4k0pipjpkpl

simplicity, we use the following notation to describe the relationship between the two persons
in the hypotheses. The pair of hypotheses in (5.1) is then formulated as

Hp : (Y, Z) ∼ (k0, 2k1, k2);
Hd : (Y, Z) ∼ (1, 0, 0),

(5.2)

where (k0, 2k1, k2) are the relatedness coefficients [see Equation (3.18)] of the two persons
with common values such as (0, 1, 0) for parent–offspring, (0.5, 0.5, 0) for half siblings and
(1, 0, 0) for unrelated persons, etc. The joint genotype probabilities P(Y, Z) for all possible
genotype combinations of Y and Z are listed in Table 5.1 when the population is in Hardy–
Weinberg equilibrium. The results in Table 5.1 can be derived using a general formula given
in Equation (7.21).

The likelihood ratio about the hypothesis pair in (5.1) is

LR = P(evidence|Hp)

P(evidence|Hd)

= P(Y, Z|Hp)

P(Y, Z|Hd)

= P(Z|Y, Hp)

P(Z|Y, Hd)

P(Y |Hp)

P(Y |Hd)

= P(Z|Y, Hp)

P(Z|Y, Hd)
. (5.3)

Suppose that the two persons have genotypes Y = AiAj and Z = AiAk at a particular locus.
The numerator of the likelihood ratio in Equation (5.3), based on the law of total probability
in Equation (2.19), can be evaluated as

P(Z = AiAk|Y = AiAj, Hp)

=
2∑

t=0

P(Z = AiAk|Y = AiAj, Hp, the two persons have t ibd alleles)

× P(the two persons have t ibd alleles |Y = AiAj, Hp)

= (2pipk)k0 + (pk × 1/2)2k1 + 0 × k2.
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The second term (pk × 1/2) is explained as follows: given Y = AiAj and the two persons
have one ibd allele, the probability of the ibd allele being Ai is 1/2 and the probability of the
remaining allele being Ak is pk. Hence,

P(Z = AiAk|Y = AiAj, Hp) = 2pipkk0 + pkk1.

The denominator of the likelihood ratio is simply

P(Z = AiAk|Y = AiAj, Hd) = 2pipk,

since, under Hd that the two persons are unrelated, the probability that the genotype Z = AiAk

is independent of the genotype Y = AiAj . Thus, the likelihood ratio corresponding to the set
of hypotheses (5.1) or (5.2) on kinship determination is

LR = (2pipkk0 + pkk1)
/
(2pipk)

= k0 + k1
/
(2pi).

The likelihood ratios for other combinations of genotypes Y and Z can be derived in similar
ways. These ratios are all listed in Table 5.2, which can also be derived based on Table 5.1
[see also Li and Sacks (1954)].

The likelihood ratios in Table 5.2 correspond to the hypothesis pair (5.1) in which the
relatedness coefficients (k0, 2k1, k2) are used to describe the relationship between the two
persons under Hp. When the coefficients take values (0, 1, 0) for father–child, the likelihood
ratios given in Table 5.2 reduce to the paternity indices (PI’s), as reported in Table 4.5 for
paternity testing in a motherless case.

Sometimes, the defense proposition Hd is that the two persons are not unrelated: consider
the pedigree diagram in Figure 5.1 in which persons 5 and 6 are couple, and it is also known
that person 5 is the biological mother of person 8. Suppose that there is a query if in fact
person 4 instead of person 6 is the biological father of person 8. Suppose persons 4, 5 and 6
are unavailable, and only persons 7 and 8 (see diagram) are available for typing; in this case,
we have the following propositions which describe whether persons 7 and 8 are related as half
siblings or first cousins, i.e.

Hp: (Y, Z) ∼ (0.5, 0.5, 0);
H∗

d : (Y, Z) ∼ (0.75, 0.25, 0).
(5.4)

Table 5.2 The likelihood ratios about two competing hypotheses Hp : (Y, Z) ∼
(k0, 2k1, k2) versus Hd : (Y, Z) ∼ (1, 0, 0).

Y Z Likelihood ratio

AiAi AiAi k0 + 2k1/pi + k2/p
2
i

AiAi AiAj k0 + k1/pi

AiAi AjAj k0

AiAi AjAk k0

AiAj AiAj k0 + k1(pi + pj)/(2pipj) + k2/(2pipj)

AiAj AiAk k0 + k1/(2pi)

AiAj AkAl k0
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1 2

3 4 5 6 

 8 7

? ? 

Figure 5.1 A pedigree diagram with only persons 7 and 8 available for typing. Interested in
testing whether persons 7 and 8 are related as half siblings or first cousins.

The associated likelihood ratios can be obtained in the following way.
We consider the hypotheses with relationship half siblings versus unrelated:

Hp: (Y, Z) ∼ (0.5, 0.5, 0);
Hd: (Y, Z) ∼ (0, 0, 1),

(5.5)

and relationship first cousins versus unrelated:

H∗
d : (Y, Z) ∼ (0.75, 0.25, 0);

Hd: (Y, Z) ∼ (0, 0, 1).
(5.6)

Suppose that the associated likelihood ratios are, respectively, LR1 and LR2, which can be
evaluated from Table 5.2. It is obvious that the likelihood ratio for hypotheses set (5.4) can be
obtained as

LR = LR1/LR2. (5.7)

We consider the genotypes of the two persons (Table 5.3) and are interested in testing
whether they are half siblings or first cousins; the pair of hypotheses is as given in (5.4). We
first evaluate the likelihood ratios for the hypothesis pair (5.5):

D3S1358 : LR1 = k0 + k1(p15 + p17)/(2p15p17) + 0

= 0.5 + 0.25 × (0.331 + 0.239)/(2 × 0.331 × 0.239) = 1.401,

vWA : LR1 = k0 + k1/(2p15) = 0.5 + 0.25/(2 × 0.035) = 4.071,

FGA : LR1 = k0 + k1/p22 = 0.5 + 0.25/0.178 = 1.904.

Table 5.3 Genotype data of two persons Y and
Z at loci D3S1358, wWA and FGA.

Locus Y Z

D3S1358 15/17 15/17
vWA 14/15 15/19
FGA 22/22 22/23
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Then, we assess the likelihood ratios for the hypothesis pair (5.6) in a similar way. They are

D3S1358 : LR2 = 0.75 + 0.125 × (0.331 + 0.239)/(2 × 0.331 × 0.239) = 1.2,

vWA : LR2 = 0.75 + 0.125/(2 × 0.035) = 2.536,

FGA : LR2 = 0.75 + 0.125/0.178 = 1.452.

Thus, the likelihood ratios for the pair of hypotheses (5.4) at the three loci, based on
Equation (5.7), are, respectively, 1.401/1.2 = 1.17, 4.071/2.536 = 1.61, and 1.904/

1.452 = 1.31. The overall likelihood ratio is then 1.17 × 1.61 × 1.31 = 2.47, which seems
to provide a larger support to the hypothesis that the two persons are half siblings related.

5.2 Computer software
A computer software has been developed to deal with various two-person kinship problems.
The software is named EasyDNA 2Persons which consists of the following steps:

Steps in running the EasyDNA 2Persons software
1 Click the Load frequency file button after loading the EasyDNA program, then select

the appropriate file

2 Choose the allele pairs at the locus for Y and Z

3a Choose the appropriate relation between Y and Z under Hp (which is, for the above
example, Half siblings)

3b Choose the appropriate relation between Y and Z under Hd (which is, for the above
example, First cousins)

4 Click the Calculate button

5 Repeat steps 2 and 4 for each of the remaining loci; step 3 (3a–3b) is blocked, since it
is no longer needed for the remaining loci.

The procedure steps are straightforward and readers can easily get familiar with the running
of the software. It is noted that the theory provided in Section 5.1 and the associated computer
software can be used to determine the relationship between any two persons. For illustration,
we analyze the example given in Table 5.3 using the EasyDNA 2Persons software. Figure 5.2
presents the captured screen in the running of the software. The likelihood ratios for individual
loci are obtained as 1.17, 1.61 and 1.31, with an overall likelihood ratio of 2.47. These values
are the same as those obtained above by formulas.

5.3 Kinship testing of two persons: subdivided populations
5.3.1 Joint genotype probability

The issue of population subdivision for paternity and kinship determination has been
addressed. Balding and Nichols (1995) considered paternity testing for the case in which
the mother, alleged father and ‘alternative father’ all belong to the same subpopulation. Ayres
(2000) proposed tests for kinships in subdivided/structured populations. Clayton et al. (2002)
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Figure 5.2 Captured screen for running the EasyDNA 2Persons software for determination
of kinship for two persons Y and Z whose genotypes are provided in Table 5.3.

discussed that it might make more sense to take account of population subdivision in paternity
testing and they referred to the results of Ayres (2000).

In this section, we are using the conditional probability formula for a subdivided population
as given in Equation (3.17), where θ there measures the degree of subdivision. We shall
derive expressions of the joint genotype probabilities for kinship of any two persons in a
subdivided population and likelihood ratios for testing kinship of the two individuals (Fung
et al. 2003a).

In order to test whether two given persons have the specific relationship claimed, we first
need to find the joint genotype probability P(Y, Z), where Y and Z are respectively genotypes
of the two persons who belong to the same subdivided population. Denote respectively the
paternal and maternal alleles ofY andZ asYP ,ZP ,YM andZM , then the relatedness coefficients
(k0, 2k1, k2) can be expressed as

k2 = P(YP ≡ ZP, YM ≡ ZM) + P(YP ≡ ZM, YM ≡ ZP),

2k1 = P(YP ≡ ZP) + P(YP ≡ ZM) + P(YM ≡ ZP) + P(YM ≡ ZM),

and
k0 = P(no ibd alleles) = 1 − 2k1 − k2,

where the symbol ‘≡’ denotes the ibd relationship of alleles (Evett and Weir 1998).
It is obvious that the relatedness coefficients will play an important role in the evaluation

of joint genotype probability P(Y, Z). For two related individuals described with relatedness
coefficients (k0, 2k1, k2), there are seven possible combinations of the alleles of Y and Z

(irrespective of order). In the following, we consider the simple case in which Y = Z = AiAi
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and demonstrate the principle for the evaluation of their joint genotype probability P(Y, Z).
In this case, we have YP = YM = ZP = ZM = Ai, so

P(Y = AiAi, Z = AiAi)

= P(YP = YM = ZP = ZM = Ai)

=
2∑

t=0

P(YP = YM = ZP = ZM = Ai, t ibd alleles)

= P(YP = YM = ZP = ZM = Ai, no ibd alleles)

+ P(YP = YM = ZP = ZM = Ai, YP ≡ ZP)

+ P(YP = YM = ZP = ZM = Ai, YP ≡ ZM)

+ P(YP = YM = ZP = ZM = Ai, YM ≡ ZP)

+ P(YP = YM = ZP = ZM = Ai, YM ≡ ZM)

+ P(YP = YM = ZP = ZM = Ai, YP ≡ ZP, YM ≡ ZM)

+ P(YP = YM = ZP = ZM = Ai, YP ≡ ZM, YM ≡ ZP)

= P(no ibd alleles)P(Ai, Ai, Ai, Ai)

+ [P(YP ≡ ZP) + P(YP ≡ ZM) + P(YM ≡ ZP) + P(YM ≡ ZM)]P(Ai, Ai, Ai)

+ [P(YP ≡ ZP, YM ≡ ZM) + P(YP ≡ ZM, YM ≡ ZP)]P(Ai, Ai).

This gives immediately the corresponding result reported in the first genotype combination in
Table 5.4. The joint genotype probabilities for the other six possible genotype combinations
can be derived similarly and we omit the details.

Note that the results in Table 5.4 are general results that can be applied in various ways
for the evaluation of joint genotype probabilities. For example, in the penultimate row, under
Hardy–Weinberg equilibrium, the probabilities P(Ai, Ai, Aj, Ak) and P(Ai, Aj, Ak) are eval-
uated as pipipjpk and pipjpk, respectively. Thus, the joint genotype probability P(Y =
AiAj, Z = AiAk) is obtained as 4k0p

2
i pjpk + 2k1pipjpk under Hardy–Weinberg equilibrium.

In a subdivided population in which Hardy–Weinberg equilibrium does not hold, the
evaluation of probabilities is implemented by employing the recursive formula in
Equation (3.17). For example, in row 4 of Table 5.4,

P(Ai, Ai, Aj, Ak) = P(Ai)P(Ai|Ai)P(Aj|Ai, Ai)P(Ak|Ai, Ai, Aj)

=
[

(1 − θ)pi

1 + (0 − 1)θ

] [
θ + (1 − θ)pi

1 + (1 − 1)θ

] [
(1 − θ)pj

1 + (2 − 1)θ

] [
(1 − θ)pk

1 + (3 − 1)θ

]

= (1 − θ)2pipjpk[θ + (1 − θ)pi]

(1 + θ)(1 + 2θ)

and the genotype probability P(Y, Z) can be obtained accordingly.
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Table 5.4 The joint genotype probabilities P(Y, Z) for all Y and Z combinations where
Y and Z come from the same subdivided population, from Fung et al. (2003a).
(Reproduced by permission of Elsevier.)

Y Z P(Y, Z)

AiAi AiAi k0P(Ai, Ai, Ai, Ai) + 2k1P(Ai, Ai, Ai) + k2P(Ai, Ai)

AiAi AiAj 2k0P(Ai, Ai, Ai, Aj) + 2k1P(Ai, Ai, Aj)

AiAi AjAj k0P(Ai, Ai, Aj, Aj)

AiAi AjAk 2k0P(Ai, Ai, Aj, Ak)

AiAj AiAj 4k0P(Ai, Ai, Aj, Aj) + 2k1P(Ai, Ai, Aj) + 2k1P(Ai, Aj, Aj)

+2k2P(Ai, Aj)

AiAj AiAk 4k0P(Ai, Ai, Aj, Ak) + 2k1P(Ai, Aj, Ak)

AiAj AkAl 4k0P(Ai, Aj, Ak, Al)

One nice feature of the probabilities presented in Table 5.4 is that they can be applied for
testing for kinship of any two persons in a subdivided population. Consider the same set of
hypotheses as given in (5.2):

Hp : (Y, Z) ∼ (k0, 2k1, k2);
Hd : (Y, Z) ∼ (1, 0, 0).

The genotype probabilities P(Y, Z|Hp) and P(Y, Z|Hd) are straightforward from Table 5.4
and their ratios, i.e. the likelihood ratios for all seven genotype combinations of Y and Z, are
listed in Table 5.5. For example in the second row, where Y = AiAi and Z = AiAj , we have
from Table 5.4 that

LR = 2k0P(Ai, Ai, Ai, Aj) + 2k1P(Ai, Ai, Aj)

2P(Ai, Ai, Ai, Aj)

= k0 + k1

P(Ai|Ai, Ai, Aj)

= k0 + k1(1 + 2θ)

2θ + (1 − θ)pi

.

The likelihood ratios for the other six cases can be obtained similarly.
For the usual paternity testing in the no-mother case, the two competing hypotheses are

Hp: (C, AF) ∼ (0, 1, 0);
Hd: (C, AF) ∼ (1, 0, 0).

The paternity indices (PI’s) can be obtained from Table 5.5, with specific values of k0 = 0
and 2k1 = 1. These indices are reported in Table 5.6. They can be used when the alleged father
and the child belong to a subdivided population with the degree of subdivision θ. When the
population is in Hardy–Weinberg equilibrium, i.e. θ = 0, the PI’s in Table 5.6 reduce to those
reported in Table 4.5.
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Table 5.5 The likelihood ratios about two competing hypotheses Hp : (Y, Z) ∼
(k0, 2k1, k2) versus Hd : (Y, Z) ∼ (1, 0, 0) in a subdivided population,
from Fung et al. (2003a). (Reproduced by permission of Elsevier.)

Y Z Likelihood ratio

AiAi AiAi k0 + 2k1(1 + 2θ)

3θ + (1 − θ)pi

+ k2(1 + θ)(1 + 2θ)

[2θ + (1 − θ)pi][3θ + (1 − θ)pi]

AiAi AiAj k0 + k1(1 + 2θ)

2θ + (1 − θ)pi

AiAi AjAj k0

AiAi AjAk k0

AiAj AiAj k0 + k1(1 + 2θ)[2θ + (1 − θ)(pi + pj)] + k2(1 + θ)(1 + 2θ)

2[θ + (1 − θ)pi][θ + (1 − θ)pj]

AiAj AiAk k0 + k1(1 + 2θ)

2[θ + (1 − θ)pi]

AiAj AkAl k0

5.3.2 Relatives involved

In fact, Table 5.5 also provides the likelihood ratio for any two propositions Hp and Hd , which
is simply the ratio of the likelihood ratio about Hp versus unrelated and the likelihood ratio
about Hd versus unrelated. Particularly, we consider the paternity testing in the no-mother

Table 5.6 Paternity index (PI) for the competing hypotheses Hp: AF is true father of the
child versus Hd : the father is a random unrelated mean, i.e. Hp : (C, AF) ∼ (0, 1, 0) versus
Hd : (C, AF ) ∼ (1, 0, 0), in a subdivided population.

C AF PI

AiAi AiAi

1 + 2θ

3θ + (1 − θ)pi

AiAi AiAj

1 + 2θ

2[2θ + (1 − θ)pi]

AiAj AiAi

1 + 2θ

2[2θ + (1 − θ)pi]

AiAj AiAj

(1 + 2θ)[2θ + (1 − θ)(pi + pj)]

4[θ + (1 − θ)pi][θ + (1 − θ)pj]

AiAj AiAk

1 + 2θ

4[θ + (1 − θ)pi]
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Table 5.7 The likelihood ratios about two competing hypotheses Hp : AF is the true
father of the child versus Hd : AF is a paternal relative of the child, i.e. Hp : (C, AF) ∼
(0, 1, 0) versus Hd : (C, AF) ∼ (k0, 2k1, 0), in a subdivided population, from Fung et al.
(2003a). (Reproduced by permission of Elsevier.)

C AF Likelihood ratio

AiAi AiAi

1 + 2θ

k0[3θ + (1 − θ)pi] + 2k1(1 + 2θ)

AiAi AiAj

1 + 2θ

2k0[2θ + (1 − θ)pi] + 2k1(1 + 2θ)

AiAj AiAi

1 + 2θ

2k0[2θ + (1 − θ)pi] + 2k1(1 + 2θ)

AiAj AiAj

(1 + 2θ)[2θ + (1 − θ)(pi + pj)]

4k0[θ + (1 − θ)pi][θ + (1 − θ)pj] + 2k1(1 + 2θ)[2θ + (1 − θ)(pi + pj)]

AiAj AiAk

1 + 2θ

4k0[θ + (1 − θ)pi] + 2k1(1 + 2θ)

case, where the two competing hypotheses are described by

Hp: (C, AF) ∼ (0, 1, 0);
Hd: (C, AF) ∼ (k0, 2k1, 0).

Under Hp, AF is the true father of the child, while under the alternative proposition Hd , the
defendant argued that AF is only a paternal relative (such as uncle, say) of the child. The
likelihood ratios for all possible genotype combinations of C and AF are listed in Table 5.7,
which are derived directly from Table 5.5.

When the alleged father is not available but his relative Z is, we can type the relative
instead. The hypotheses of interest are

Hp: a relative of Z is the true father of the child Y;
Hd: the true father is a random unrelated man.

That is,

Hp: (Y, Z) ∼ (k0, 2k1, 0);
Hd: (Y, Z) ∼ (1, 0, 0).

If the likelihood ratio for the hypotheses is denoted by LR, then the following simple rela-
tionship can be obtained:

LR = k0 + (1 − k0)PI = (1 − 2k1) + 2k1PI, (5.8)

which can be verified throughout all of the seven cases listed in Table 5.5. The PI’s are listed
in Table 5.6.

Using the notation δ0 introduced in Evett and Weir (1998), Equation (5.8) can be expressed
equivalently as

LR = δ0 + (1 − δ0)PI. (5.9)
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In fact, δ0 is defined as the probability that no alleles in the two individuals Y and Z are ibd,
which is obviously k0. Ayres (2000) reported Equation (5.9) when δ0 takes the specific values
of half siblings and first cousin relationships.

A measure of relatedness θAT (Evett and Weir 1998) for individuals AF and the true father
TF of the child is defined as the probability that two alleles, one taken at random from each
of AF and TF , are ibd, which is just the kinship coefficient F between AF and TF defined
in Equation (3.21). Since each of the two alleles of TF is equally likely of being transmitted
to the child, θAT and k1 are equivalent. So, Equation (5.8) can also be expressed as

LR = (1 − 2θAT ) + 2θAT PI. (5.10)

Equation (5.10) was reported in the special case that θ is taken as zero (Evett and Weir 1998),
which is applicable in the population when the Hardy–Weinberg law holds.

5.4 Examples with software
The computer software EasyDNA 2Persons discussed earlier in Section 5.2 can also be used
for kinship testing of any two persons in a subdivided population. The steps in running the
software are exactly the same as those listed in Section 5.2 except for the addition of a step 1a
after step 1:

1a Click the theta button and input the appropriate θ.

The program gives the likelihood ratios under Hardy–Weinberg equilibrium (θ = 0) and under
a subdivided population having the chosen θ value. Two real case examples reported in Fung
et al. (2003a) are considered.

The first case of disputed paternity testing was provided by the Hong Kong Govern-
ment Laboratory, where 12 STR loci (D3S1358, vWA, FGA, D5S818, D13S317, D7S820,
D8S1179, D21S11, D18S51, THO1, TPOX, CSF1PO) were typed for a child and an alleged
father [see Table 5.8 for information on the genotypes and, for the allele frequencies, one
can refer to Wong et al. (2001)]. The following four hypotheses are proposed to describe the
relationship between the alleged father and the child:

Hp: the alleged father is the true father of the child;
Hd1: the alleged father is unrelated to the child;
Hd2: the alleged father is the uncle of the child;
Hd3: the alleged father and the child are full siblings.

The example is analyzed using the EasyDNA 2Persons software. The overall likelihood
ratios about Hp versus Hdi, i = 1, 2, 3 for various values of θ are also obtained and they are
shown in Table 5.9. In testing Hp versus Hd1, the PI when θ = 0 is equal to 428, which is
not too large. The PI decreases when the population structure is taken into account. When
θ = 0.03, the PI drops by about 70% to 136 and the genetic evidence may not be strong
enough for paternity.

If we are testing Hp against other relationships such as uncle and nephew (Hd2), the genetic
evidence would become much weaker. The PI is only 9.7 when θ = 0, and is even smaller
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Table 5.8 The genotypes of the alleged father and the child of the two disputed
paternity testing cases in Hong Kong and Spain, from Fung et al. (2003a). (Reproduced
by permission of Elsevier.)

Hong Kong Spain
Locus

Alleged father Child Alleged father Child

D3S1358 15/16 16/17 16/18 16/18
vWA 14/18 14/18 16/18 18/18
FGA 22/24 20/24 22/24 21/22
THO1 7/9 6/7 9/9.3 7/9.3
TPOX 11/11 8/11 8/9 9/11
CSF1PO 10/12 12/12 9/12 9/11
D5S818 10/11 11/12 11/11 11/13
D13S317 9/10 10/10 12/13 8/12
D7S820 8/11 8/8 11/11 11/11
D8S1179 11/14 14/16 10/13 10/13
D21S11 29/32.2 30/32.2 30/30 30/31
D18S51 13/14 13/14 14/14 14/18
D16S539 — — 9/11 9/12

when the population subdivision is taken into account. Similar findings are observed when
we are testing Hp versus Hd3.

The second case of disputed paternity testing comes from a Spanish population. The same
set of 12 STR loci with an additional locus D16S539 were typed for a child and an alleged
father [also see Table 5.8 for the genotypes and, for the allele frequencies, one can refer to
Gusmão et al. (2000)]. The same sets of hypotheses are chosen.

In testing Hp versus Hd1 , unlike the case in Hong Kong, the overall PI when θ = 0 is
equal to 135 689 (see Table 5.9) which is very large, giving very strong evidence for paternity.
When we increase the value of θ from 0.01, 0.02 to 0.03, the PI becomes 30, 12 and 5.9%
of the PI when θ = 0. The value drops substantially with the increase in θ. If we investigate
the individual PI value (not shown) at each locus, we notice that for all loci, except CSF1PO,

Table 5.9 Likelihood ratios with different θ values for the two disputed paternity
testing cases in Hong Kong and Spain.

Hypothesesa θ = 0 0.01 0.02 0.03

(Hong Kong)
Hp versus Hd1 428 280 192 136
Hp versus Hd2 9.7 8.6 7.6 6.8
Hp versus Hd3 12.2 11.9 11.6 11.4

(Spain)
Hp versus Hd1 135 689 41 148 16 766 7 989
Hp versus Hd2 45.5 37.5 31.2 26.2
Hp versus Hd3 12.4 12.4 12.4 12.4
aHp: father and son; Hd1: unrelated persons; Hd2: uncle and nephew; Hd3: full siblings
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the PI drops by a few percent to about 30% when θ is increased from 0 to 0.03. The PI value
at CSF1PO, however, has a large drop from 20.8 to 11.7, 8.2 and 6.4 for θ = 0.01, 0.02 and
0.03, respectively. If we look at the genotypes of the alleged father and the child, we find
that they share one common allele (9) at CSF1PO, which is a very rare allele in the Spanish
population (with frequency 0.012). The value of θ has a crucial effect on PI for the case with
a rare allele.

Table 5.9 also shows the PI’s for the other two sets of hypotheses. From both paternity
cases in Hong Kong and Spain, we notice that the paternity indices for testing Hp (father and
son) versus Hd3 (full siblings) have values of about 10. This phenomenon is not unusual, and
it may have implications for some paternity cases such as those found in immigration (Fung
et al. 2002, see also Section 4.9.2).

In the majority of paternity cases, PI values are so high that even if there is strong popula-
tion structure, the final consequences will generally be of little importance. But, in deficiency
paternity testing and many immigration cases, the effect of population subdivision may be of
importance and mistakes could be made if this effect is not properly taken into account in the
calculations.

5.5 Three persons situation: HWE
The testing for a biological relationship between two persons in a population with Hardy–
Weinberg equilibrium was studied in detail by Li and Sacks (1954). Ayres (2000) and Fung
et al. (2003a) have successfully generalized Li and Sack’s results to a subdivided population.
In the following, we consider an extension of the results to a three persons situation.

Let X, Z denote the maternal and paternal relatives of Y , respectively, and suppose that X

and Z are unrelated. The relatedness coefficients between X and Y , and between Y and Z are
denoted as (kXY

0 , 2kXY
1 , 0) and (kYZ

0 , 2kYZ
1 , 0), respectively. The population is assumed to be

in Hardy–Weinberg equilibrium. In order to determine the biological relationship among the
three individuals X, Y , and Z, we list in Table 5.10 all the possible joint genotype probabilities
P(X, Y, Z).

To see the derivation of the joint genotype probabilities given in Table 5.10, we consider
Y = AiAi, X = AiAj and Z = AkAl, j �= i, k �= i, l �= i. It is concluded from the genotypes
of X, Y and Z that X and Y may share ibd allele Ai, and Y and Z share no ibd alleles. The
joint genotype probability can then be evaluated as

P(X = AiAj, Y = AiAi, Z = Akl)

= P(X = AiAj, Y = AiAi)P(Z = Akl) × kYZ
0

=
2∑

t=0

P(X = AiAj, Y = AiAi|X and Y share t ibd alleles)

× P(X and Y share t ibd alleles) × P(Z = Akl) × kYZ
0

= [P(X = AiAj)P(Y = AiAi)k
XY
0 + P(Ai, Ai, Aj) × 2kXY

1 ] × P(Z = AkAl) × kYZ
0

= kXY
0 kYZ

0 p2
i P(X = AiAj)P(Z = AkAl) + 2kXY

1 kYZ
0 p2

i pjP(Z = AkAl)

= kXY
0 kYZ

0 p2
i P(X)P(Z) + 2kXY

1 kYZ
0 p2

i pjP(Z), (5.11)

where P(X) and P(Z) are abbreviated forms of P(X = AiAj) and P(Z = AkAl), respectively.
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Table 5.10 The joint genotype probabilities P(X, Y, Z), for all possible combinations
of X, Y and Z (regardless of order X and Z), where X and Z are the maternal and paternal
relatives of Y , respectively; X and Z are unrelated; (kXY

0 , 2kXY
1 , 0) are the relatedness

coefficients of X and Y ; and (kYZ
0 , 2kYZ

1 , 0) are the relatedness coefficients of Y and Z, from
Fung et al. (2006). (Reproduced by permission of Elsevier.)

Y X Z P(X, Y, Z)

AiAi AiAj AiAk kXY
0 kYZ

0 p2
i P(X)P(Z) + 2kXY

0 kYZ
1 p2

i pkP(X)

+ 2kXY
1 kYZ

0 p2
i pjP(Z) + 4kXY

1 kYZ
1 p2

i pjpk

AiAj AkAl kXY
0 kYZ

0 p2
i P(X)P(Z) + 2kXY

1 kYZ
0 p2

i pjP(Z)

(k, l �= i)

AjAk AlAm kXY
0 kYZ

0 p2
i P(X)P(Z)

(j, k �= i) (l, m �= i)

AiAj AiAj AiAj 8kXY
0 kYZ

0 p3
i p

3
j + 4kXY

0 kYZ
1 (pi + pj)p

2
i p

2
j

(j �= i) (j �= i) (j �= i) + 4kXY
1 kYZ

0 (pi + pj)p
2
i p

2
j + 8kXY

1 kYZ
1 p2

i p
2
j

AiAk 4kXY
0 kYZ

0 p2
i p

2
jP(Z) + 4kXY

0 kYZ
1 p2

i p
2
jpk

(k �= j) + 2kXY
1 kYZ

0 (pi + pj)pipjP(Z) + 4kXY
1 kYZ

1 p2
i pjpk

AkAl 4kXY
0 kYZ

0 p2
i p

2
jP(Z)

(k, l �= i, j) + 2kXY
1 kYZ

0 (pi + pj)pipjP(Z)

AiAk AiAl 2kXY
0 kYZ

0 pipjP(X)P(Z) + 2kXY
0 kYZ

1 pipjplP(X)

(k �= j) (l �= j) + 2kXY
1 kYZ

0 pipjpkP(Z)

AjAl 2kXY
0 kYZ

0 pipjP(X)P(Z) + 2kXY
0 kYZ

1 pipjplP(X)

(l �= i) + 2kXY
1 kYZ

0 pipjpkP(Z) + 4kXY
1 kYZ

1 pipjpkpl

AlAm 2kXY
0 kYZ

0 pipjP(X)P(Z) + 2kXY
1 kYZ

0 pipjpkP(Z)

(l, m �= i, j)

AkAl AmAn 2kXY
0 kYZ

0 pipjP(X)P(Z)

(k, l �= i, j) (m, n �= i, j)

The above derivation considers the situation that j �= i. When j = i, i.e. X = AiAi and Y =
AiAi, it looks as though X and Y may share two ibd Ai alleles. This is, however, impossible,
since X and Y are only maternally related and so they cannot share two ibd alleles, i.e. kXY

2 = 0.
Hence, the same formula in Equation (5.11) results when j = i. Thus, we have obtained the
joint genotype probability Equation (5.11) for Y = AiAi, X = AiAj and Z = AkAl, k, l �= i,
which is shown in the second row of Table 5.10.
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The other joint genotype probabilities in Table 5.10 can be shown in a similar way [see
also Fung et al. (2006)]. The details are omitted for brevity. The expressions in Table 5.10 can
be used to examine the biological relationship among any three persons X, Y , and Z where X

and Z are unrelated. For example, we can use one maternal relative and one paternal relative
to identify a missing person. We can also examine the biological relationship between Y and
Z when the biological relationship between X and Y are known without error such as in the
paternity testing case.

For two competing hypotheses Hp and Hd , the likelihood ratio is

LR = P(evidence|Hp)

P(evidence|Hd)
= P(X, Y, Z|Hp)

P(X, Y, Z|Hd)
. (5.12)

It is a ratio of two like genotype probabilities, one evaluated under Hp and the other under Hd .
These probabilities can be obtained from Table 5.10, with values of (kXY

0 , 2kXY
1 , kYZ

0 , 2kYZ
1 )

determined under Hp and Hd . To illustrate this, we consider a paternity testing problem with
genotypes of three persons provided in Table 5.11. Person Y is always regarded as the child
in the following consideration:

(i) X is the mother of Y and Z is the alleged father with propositions

Hp : Z is the true father of the child Y;
Hd : the true father is a random unrelated man.

(5.13)

In this case, the relatedness coefficients for X and Y are kXY
0 = 0 and 2kXY

1 = 1, and
for Y and Z are kYZ

0 = 0 and 2kXY
1 = 1. Plugging them into the appropriate formulas in

Table 5.10 can provide the likelihood ratio we want. In fact, this is just a standard trio
problem. The overall likelihood ratio for genotypes in Table 5.11 is obtained as 37.36.
The details are omitted for brevity.

(ii) The mother is unavailable but her brother is. Then X is the uncle of the child Y and
Z is the alleged father. The propositions are the same as those listed in (5.13). The
relatedness coefficients are

kXY
0 = 2kXY

1 = 0.5, kYZ
0 = 0 and 2kYZ

1 = 1, under Hp;
kXY

0 = 2kXY
1 = 0.5, kYZ

0 = 1 and 2kYZ
1 = 0, under Hd.

Table 5.11 Genotype data of three persons Y ,
X and Z at loci D3S1358, wWA and FGA.

Locus Y X Z

D3S1358 15/17 15/16 17/18
vWA 18/18 18/19 18/18
FGA 20/21 20/21 19/20
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Suppose we write the likelihood ratio in Equation (5.12) as LR = Num/Den. Based
on the formulas in Table 5.10 and the genotypes in Table 5.11, we have

D3S1358 : Num = 2kXY
0 kYZ

0 pipjP(X)P(Z) + 2kXY
0 kYZ

1 pipjplP(X)

+ 2kXY
1 kYZ

0 pipjpkP(Z) + 4kXY
1 kYZ

1 pipjpkpl

= 2 × 0.5 × 0 + 2 × 0.5 × 0.5 × p15p17p18 × 2p15p16

+ 0.5 × 0 + 0.5 × p15p17p16p18

= 2 × 0.5 × 0.5 × 0.331 × 0.239 × 0.056 × 2 × 0.331

× 0.326 + 0.5 × 0.331 × 0.239 × 0.326 × 0.056

= 1.20 × 10−3,

Den = 2 × 0.5 × 1 × 0.331 × 0.239 × 2 × 0.331 × 0.326

× 2 × 0.239 × 0.056 + 0.5 × 0 + 0.5 × 1 × 0.331

× 0.239 × 0.326 × 2 × 0.239 × 0.056 + 2 × 0.5 × 0

= 8.02 × 10−4,

LR = 1.20 × 10−3/(8.02 × 10−4) = 1.50,

and the likelihood ratios for vWA and FGA can be obtained similarly. They are

vWA : LR = 6.25, and FGA : LR = 3.19,

giving an overall likelihood ratio LR = 29.9.

(iii) Both the mother and alleged father are unavailable, but the brother of the mother
and the father of the alleged father are. Then X is the maternal uncle of the child
Y , and Z is the paternal grandfather of the child under Hp. Thus, the propositions
become

Hp : Z is the paternal grandfather of the child Y;
Hd : the true father is a random unrelated man.

(5.14)

The relatedness coefficients are

kXY
0 = 2kXY

1 = 0.5, kYZ
0 = 2kYZ

1 = 0.5, under Hp;
kXY

0 = 2kXY
1 = 0.5, kYZ

0 = 1 and 2kYZ
1 = 0, under Hd.

Based on the formulas in Table 5.10 and the genotypes in Table 5.11, we have

D3S1358 : Num = 2kXY
0 kYZ

0 pipjP(X)P(Z) + 2kXY
0 kYZ

1 pipjplP(X)

+ 2kXY
1 kYZ

0 pipjpkP(Z) + 4kXY
1 kYZ

1 pipjpkpl

= 2 × 0.5 × 0.5 × 0.331 × 0.239 × 2 × 0.331

× 0.326 × 2 × 0.239 × 0.056 + 0.5 × 0.5

× 0.331 × 0.239 × 0.056 × 2 × 0.331 × 0.326

+ 0.5 × 0.5 × 0.331 × 0.239 × 0.326
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× 2 × 0.239 × 0.056 + 0.5 × 0.5 × 0.331

× 0.239 × 0.326 × 0.056

= 1.001 × 10−3,

Den = 8.02 × 10−4, as obtained previously in (ii),

LR = 1.001 × 10−3/(8.02 × 10−4) = 1.25,

and the likelihood ratios at vWA and FGA can be obtained similarly. They are

vWA : LR = 3.62, and FGA : LR = 2.09,

giving an overall likelihood ratio LR = 9.46.

As we can see from previous discussions, the overall likelihood ratio is the highest in case
(i) of the standard trio problem, becomes smaller in case (ii) in which the mother of the child is
not available for typing but her brother is, and drops again in case (iii), in which, additionally,
the alleged father is unavailable but his father is. In other words, the likelihood ratio becomes
smaller and smaller when the biological relationship between the child and his/her maternal
and paternal relatives who provide genotyping information becomes looser and looser. This
phenomenon is generally true in kinship testing.

5.6 Computer software and example
Although we have extended Li and Sacks’ (1954) joint genotype probability for two persons to
the case of three persons X, Y and Z, where X and Z are biologically unrelated, the formulas
given in Table 5.10 are, however, rather lengthy. We have developed a computer software
named EasyDNA 3Persons to deal with the associated kinship problems.

Steps in running the EasyDNA 3Persons software

1 Click the Load frequency file button after loading the EasyDNA program, then select
the appropriate file

2 Choose the allele pairs at the locus for Y, X and Z

3a Choose the appropriate maternal relation between Y and X under Hp [which is, for the
example in case (iii) above, Nephew–uncle]

3b Choose the appropriate paternal relation between Y and Z under Hp [which is, for the
example in case (iii) above, Child–grandparent]

3c Choose the appropriate maternal relation between Y and X under Hd [which is, for the
example in case (iii) above, Nephew–uncle]

3d Choose the appropriate paternal relation between Y and Z under Hd [which is, for the
example in case (iii) above, unrelated]

4 Click the Calculate button

5 Repeat steps 2 and 4 for each of the remaining loci; step 3 (3a–3d) is blocked, since it
is no longer needed for the remaining loci.
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Figure 5.3 Captured screen for running the EasyDNA 3Persons software for analyzing the
example given in case (iii) of Section 5.5.

The procedure steps are straightforward and easy to follow.
We use the software to deal with the example in case (iii) above. Figure 5.3 gives the screen

capture in the running of the program. Although we have shown earlier that the numerical
calculations are rather tedious, we can see from the figure that our EasyDNA 3Persons can
handle the problem easily. The likelihood ratios are obtained as 1.25, 3.62 and 2.09 for
individual loci, giving an overall ratio of 9.46.

5.7 Three persons situation: subdivided populations
5.7.1 Standard trio

Consider the trio problem in which the DNA profiles of the child, mother and alleged father are
typed. Suppose that the mother, alleged father and biological father of the child are assumed
to be unrelated to one another. The usual hypotheses are given as

Hp : the alleged father is the true father of the child;
Hd : the true father is a random unrelated man.

(5.15)

Let M, C and AF be the genotypes of the mother, her child and the alleged father, respectively.
The paternity index can be expressed as (Section 4.1.1)
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PI = P(C|M,AF,Hp)

P(C|M,AF,Hd)
. (5.16)

Consider a particular locus that C = AiAj , M = AiAk and AF = AjAl. In this situation,
the numerator of the paternity index is (1/2) × (1/2). However, the denominator is not (1/2)pj

because the population is not in Hardy–Weinberg equilibrium. It is in fact equal to

P(C = AiAj|M = AiAk, AF = AjAl, Hd) = (1/2)P(Aj|Ai, Ak, Aj, Al, Hd),

since the mother has 1/2 chance of passing Ai to the child. The conditional probability of
observing the other allele Aj for the child is obtained according to Equation (3.17). The
denominator then becomes

(1/2)[θ + (1 − θ)pj]/[1 + (4 − 1)θ].

Thus, the paternity index is

PI = (1/4)

(1/2)[θ + (1 − θ)pj]/(1 + 3θ)

= (1 + 3θ)

2[θ + (1 − θ)pj]
.

The paternity indices for other combinations of genotypes of C, M and AF can be derived
similarly, and they are all shown in Table 5.12 [see also Evett and Weir (1998)].

5.7.2 A relative of the alleged father is the true father

In the situation in which the alleged father gives an alternative explanation that his relative is
the true father of the child, the defense proposition becomes

Hd : a relative of the alleged father is the true father of the child.

The prosecution proposition Hp remains unchanged, as in (5.15). Suppose that the genotypes
of the child, mother and alleged father are obtained as C = AiAj , M = AiAk and AF = AjAl,
respectively. The numerator of the likelihood ratio in Equation (5.16) is (1/2) × (1/2) = 1/4.
For the denominator, it is concluded from the genotypes of the child and the mother that
CM = Ai and CP = Aj . So

P(C = AiAj|M = AiAk, AF = AjAl, Hd)

= P(CM = Ai, CP = Aj|M = AiAk, AF = AjAl, Hd)

= (1/2)P(CP = Aj|M = AiAk, AF = AjAl, Hd).

Let (k0, 2k1, k2) be the relatedness coefficients between C and AF . Consider the proba-
bility that CP = Aj is not ibd with the Aj allele of AF is k0 and the probability that CP = Aj

is ibd with the Aj allele of AF is k1, so

P(CP = Aj|M = AiAk, AF = AjAl, Hd)

= k0P(Aj|Ai, Aj, Ak, Al) + k1

= k0
θ + (1 − θ)pj

1 + 3θ
+ k1.
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Table 5.12 Paternity index (PI) for a standard trio case in a subdivided population.

C M AF PI

AiAi AiAi AiAi

1 + 3θ

4θ + (1 − θ)pi

AiAj

1 + 3θ

2[3θ + (1 − θ)pi]

AiAj AiAi

1 + 3θ

3θ + (1 − θ)pi

AiAj

1 + 3θ

2[2θ + (1 − θ)pi]

AiAk

1 + 3θ

2[2θ + (1 − θ)pi]

AiAj AiAi AiAj

1 + 3θ

2[θ + (1 − θ)pj]

AjAj

1 + 3θ

2θ + (1 − θ)pj

AjAk

1 + 3θ

2[θ + (1 − θ)pj]

AiAj AiAi

1 + 3θ

4θ + (1 − θ)(pi + pj)

AiAj

1 + 3θ

4θ + (1 − θ)(pi + pj)

AiAk

1 + 3θ

2[3θ + (1 − θ)(pi + pj)]

AiAk AiAj

1 + 3θ

2[θ + (1 − θ)pj]

AjAj

1 + 3θ

2θ + (1 − θ)pj

AjAk

1 + 3θ

2[θ + (1 − θ)pj]

AjAl

1 + 3θ

2[θ + (1 − θ)pj]

If follows that the likelihood ratio is

LR = 1/4

(1/2)
[
k1 + k0

θ+(1−θ)pj

1+3θ

]
= 1 + 3θ

2k1(1 + 3θ) + 2k0[θ + (1 − θ)pj]
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= 1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[θ + (1 − θ)pj]
,

where F is the kinship coefficient between the alleged father and his relative who is the true
father of the child under Hd (see Section 4.3). This likelihood ratio is reported in the last row
of Table 5.13.

The likelihood ratios for all other genotype combinations of C, M and AF can be derived
similarly. These ratios are all shown in Table 5.13. In particular, we also show the likelihood
ratios for the defense proposition H∗

d : a brother of the alleged father is the true father of
the child, in which the kinship coefficient between the alleged father and the true father is
F = 1/4. The ratios for this particular H∗

d proposition are presented in the last column of
Table 5.13, and have also been reported by Buckleton et al. (2005).

5.7.3 Alleged father unavailable but his relative is

When the alleged father is not available and his relative R is tested instead, then the hypotheses
of interest are given as

Hp : a relative of R is the true father of the child;
Hd : the true father is a random unrelated man.

Based on a similar argument as presented in Section 4.4, in which Hardy–Weinberg equilib-
rium holds, we can derive the avuncular index for the above hypotheses as

AI = PI

LR
,

where PI and LR are provided in Tables 5.12 and 5.13, respectively, and the genotypes of R

are listed as those shown in the AF columns.
Morris et al. (1988) noticed the following relationship under the standard trio case with

Hardy–Weinberg equilibrium:

AI = (1 − 2F) + 2F × PI.

After some simple derivations, this relationship can be shown to hold true in the current
situation in which the mother, alleged father, R and true father belong to the same subdi-
vided population. In addition to the findings we obtained earlier for the no-mother case, this
relationship is found to hold true for populations with Hardy–Weinberg equilibrium or with
subdivision, and in the with-mother or without-mother case.

5.7.4 Example

We consider the standard trio example given in Table 4.2 in which the mother, alleged father
and true father come from a subdivided population. The value of θ is taken to be 0.01. The
hypotheses of interest are

Hp : the alleged father is the true father of the child;
Hd : the true father is a random unrelated man.

(5.17)

Based on the formulas given in Table 5.12, the paternity indices are obtained as

D3S1358 : PI = 1 + 3θ

2[θ + (1 − θ)p17]
= 1 + 3 × 0.01

2 × [0.01 + (1 − 0.01) × 0.239]
= 2.088,
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Table 5.13 Likelihood ratio for a trio case in a subdivided population with Hp:
the alleged father is the true father of the child versus Hd : a relative of the alleged father is
the true father; F is the kinship coefficient for the alleged father and his relative who is
the true father under Hd , with F = 1/4 being the coefficient for brothers.

C M AF LR LR(F = 1/4)

AiAi AiAi AiAi

1 + 3θ

2F(1 + 3θ) + (1 − 2F)[4θ + (1 − θ)pi]

2(1 + 3θ)

1 + 7θ + (1 − θ)pi

AiAj

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[3θ + (1 − θ)pi]

2(1 + 3θ)

1 + 9θ + 2(1 − θ)pi

AiAj AiAi

1 + 3θ

2F(1 + 3θ) + (1 − 2F)[3θ + (1 − θ)pi]

2(1 + 3θ)

1 + 6θ + (1 − θ)pi

AiAj

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[2θ + (1 − θ)pi]

2(1 + 3θ)

1 + 7θ + 2(1 − θ)pi

AiAk

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[2θ + (1 − θ)pi]

2(1 + 3θ)

1 + 7θ + 2(1 − θ)pi

AiAj AiAi AiAj

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[θ + (1 − θ)pj]

2(1 + 3θ)

1 + 5θ + 2(1 − θ)pj

AjAj

1 + 3θ

2F(1 + 3θ) + (1 − 2F)[2θ + (1 − θ)pj]

2(1 + 3θ)

1 + 5θ + (1 − θ)pj

AjAk

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[θ + (1 − θ)pj]

2(1 + 3θ)

1 + 5θ + 2(1 − θ)pj

AiAj AiAi

1 + 3θ

2F(1 + 3θ) + (1 − 2F)[4θ + (1 − θ)p∗
0]

2(1 + 3θ)

1 + 7θ + (1 − θ)p0

AiAj

1 + 3θ

2F(1 + 3θ) + (1 − 2F)[4θ + (1 − θ)p0]

2(1 + 3θ)

1 + 7θ + (1 − θ)p0

AiAk

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[3θ + (1 − θ)p0]

2(1 + 3θ)

1 + 9θ + 2(1 − θ)p0

AiAk AiAj

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[θ + (1 − θ)pj]

2(1 + 3θ)

1 + 5θ + 2(1 − θ)pj

AjAj

1 + 3θ

2F(1 + 3θ) + (1 − 2F)[2θ + (1 − θ)pj]

2(1 + 3θ)

1 + 5θ + (1 − θ)pj

AjAk

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[θ + (1 − θ)pj]

2(1 + 3θ)

1 + 5θ + 2(1 − θ)pj

AjAl

1 + 3θ

2F(1 + 3θ) + 2(1 − 2F)[θ + (1 − θ)pj]

2(1 + 3θ)

1 + 5θ + 2(1 − θ)pj

∗p0 = pi + pj

FGA : PI = 1 + 3θ

3θ + (1 − θ)p18
= 1 + 3 × 0.01

3 × 0.01 + (1 − 0.01) × 0.160
= 5.467,

vWA : PI = 1 + 3θ

2[3θ + (1 − θ)(p20 + p21)]

= 1 + 3 × 0.01

2 × [3 × 0.01 + (1 − 0.01) × (0.044 + 0.131)]

= 2.534.
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The overall paternity index is 28.93.
Suppose that the defendant provides an alternative explanation that his brother is the true

father of the child. Then, the defense proposition becomes

H∗
d : the brother of the alleged father is the true father of the child. (5.18)

In this situation, the child and the alleged father are nephew–uncle related under Hd , i.e.
(k0, 2k1, k2) = (0.5, 0.5, 0). Using the formulas given in Table 5.13, we obtain the likelihood
ratios

D3S1358 : LR = 1.352,

FGA : LR = 1.691,

vWA : LR = 1.434.

The overall likelihood ratio is 3.278, which is (much) smaller than 28.93–the likelihood ratio
under the alternative explanation Hd given in (5.17). In other words, to the defendant, the
DNA evidence against him is weaker under the alternative explanation H∗

d that his brother is
the true father of the child.

5.7.5 General method and computer software

The joint genotype probabilities for the special three person cases under Hardy–Weinberg
equilibrium can be categorized into 10 different scenarios and they have been summarized in
Table 5.10. However, when there is population subdivision, the situations become much more
complicated. To illustrate the way of obtaining the joint genotype probability, we consider
Y = AiAi, X = AiAj and Z = AkAk, where i, j, k are all distinct. Recall that Y and X are
taken to be maternally related, Y and Z paternally related, while Y and Z are unrelated. It is
clear from the genotypes of X, Y and Z that X and Y may share an ibd allele Ai, and Y and Z

share no ibd alleles. If X, Y and Z come from the same subdivided population, using the law
of total probability, the joint genotype probability can be obtained as

P(X = AiAj, Y = AiAi, Z = AkAk)

=
2∑

t=0

P(X = AiAj, Y = AiAi, Z = AkAk|Y and Z share t ibd alleles)

× P(Y and Z share t ibd alleles)

= P(X = AiAj, Y = AiAi, Ak, Ak)k
YZ
0 .

Again, using the law of total probability, it becomes

[2kXY
0 P(Ai, Aj, Ai, Ai, Ak, Ak) + 2kXY

1 P(Ai, Aj, Ai, Ak, Ak)]k
YZ
0 .

Apply the conditional probability formula in Equation (3.17) recursively toP(Ai, Aj, Ai, Ai, Ak,

Ak) and P(Ai, Aj, Ai, Ak, Ak), and the joint genotype probability can be obtained as

P(X = AiAj, Y = AiAi, Z = AkAk) = 2kXY
0 kYZ

0

× (1 − θ)pi[θ + (1 − θ)pi][2θ + (1 − θ)pi](1 − θ)pj(1 − θ)pk[θ + (1 − θ)pk]

(1 − θ) × 1 × (1 + θ)(1 + 2θ)(1 + 3θ)(1 + 4θ)



102 TESTING FOR KINSHIP

+ 2kXY
1 kYZ

0 × (1 − θ)pi[θ + (1 − θ)pi](1 − θ)pj(1 − θ)pk[θ + (1 − θ)pk]

(1 − θ) × 1 × (1 + θ)(1 + 2θ)(1 + 3θ)
.

The probabilities for other combinations of genotypes of X, Y and Z can be obtained in
similar ways. In fact, there are more than 100 such combinations, and it is not feasible to list
all these probabilities. Instead, we have developed a computer software which incorporates
all these possibilities. The software can be used to test for kinship among three persons
X, Y and Z who belong to the same subdivided population, and X and Z are taken to be
unrelated.

In fact, the software EasyDNA 3Persons mentioned in Section 5.6 can deal with the
problems in subdivided populations. The steps in running the software are exactly the same
as those listed in Section 5.6, except for the addition of the following step:

1a Click the theta button and input the appropriate θ.

We illustrate using the data set given in Table 5.11, in which Y is regarded as the child and
X is the half-brother of the mother of the child. The following hypotheses are of interest:

Hp : the alleged father Z is the true father of Y;
Hd1 : the true father is a random man;
Hd2 : the brother of the alleged father is the true father.

(5.19)

Hp versus Hd1, and Hp versus Hd2 with θ = 0.01 are considered respectively. The likelihood
ratios are summarized in Table 5.14. We notice that, as usual, the likelihood ratio decreases
when θ increases. This is true for all loci except D3S1358. The overall likelihood ratios for
Hp versus Hd1 are much larger than those for Hp versus Hd2. The captured screen for the
competing hypotheses Hp versus Hd2 is displayed in Figure 5.4.

5.8 Complex kinship determinations: method and software
All of the above discussions on paternity and kinship problems consider, at most, three persons.
Analytical formulas are derived and computer programs have been developed. In practice,
we also encounter complicated paternity problems which are difficult to handle analytically
(e.g. a case in which the alleged father cannot be typed but several of his relatives can),
complex and missing person problems in which relatives of the missing persons are typed.

Table 5.14 Likelihood ratios for paternity testing problems with hypotheses given in
(5.19) and genotypes in Table 5.11, where Y is the child, X is the half-brother of the
mother of the child and Z is the alleged father.

Hp versus Hd1 Hp versus Hd2

Locus θ = 0 0.01 0 0.01

D3S1358 1.26 1.27 1.11 1.11
vWA 6.25 5.35 1.72 1.68
FGA 3.66 3.06 1.57 1.51

Overall 28.82 20.79 3.00 2.84
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Figure 5.4 Captured screen with hypotheses Hp versus Hd2 given in (5.19) and genotypes
in Table 5.11, where Y is the child, X is the half-brother of the mother of the child and Z is
the alleged father.

Dawid et al. (2002) and Egeland et al. (1997), respectively, used the probabilistic expert
system and an algorithm resembling Elston–Stewart to handle complex pedigrees. There
have also been discussions on the theory on general kinship determinations, with computer
software developed accordingly (Brenner 1997; Egeland et al. 1997; Fung 2000, 2003b). The
EasyDNA In 1 Minute (Fung 2000, 2003b) is one such software that is easy to use.

The EasyDNA In 1 Minute is a package consisting of four computer modules or pro-
grams developed for handling paternity and kinship determinations, including the statistical
calculations for (a) alleged fathers, (b) alleged fathers where DNA typing is absent, (c) missing
persons, and (d) incest cases. The programs can deal with both civil and criminal paternity
cases. Computer enumeration is used in the calculations for complex paternity and kinship
problems. The programs employ the pedigree tree design, and so are very easy to under-
stand and use. The developed programs have wide applicability, for example the program
EasyPA In 1 Minute can handle the calculations both for the standard trio case and for the
motherless paternity case, with or without DNA typing for the relatives of the mother. The
program can deal with problems with more than one relative typed, and handle non-standard
alternative hypotheses.

In the following sections, we describe the main features of the programs and explain the
background theory and methods. We assume Hardy–Weinberg and linkage equilibrium, which
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is commonly taken in paternity testing and kinship determinations (Brenner 1997; Dawid et
al. 2002; Egeland et al. 1997, 2000; Fung et al. 2002, 1996; Gaytmenn et al. 2002; Lee et al.
1999; Thomson et al. 2001).

5.8.1 EasyPA In 1 Minute software and the method

The EasyPA In 1 Minute software can deal with the paternity testing problems that we have
discussed in earlier sections and Chapter 4 when the population is taken to be in Hardy–
Weinberg equilibrium. In addition, it can deal with problems in which many relatives are
typed, e.g. mother not available but her relatives are. We are going to describe the method that
the software is built upon, based on the motherless case in which relatives of the mother (M)

provide the genetic information. Consider the usual hypotheses Hp: the alleged father (AF) is
the true father (TF) of the child (C), and Hd : the true father is a random unrelated man. Suppose
that the mother of mother (MoM) and the father of mother (FoM) have genotypes 16/17 and
17/19 at D3S1358, respectively (see Table 5.15). We are able to infer from the genotypes of
MoM and FoM that the genotype of M is either 16/17, 16/19, 17/17 or 17/19. Given that
the child’s genotype is 17/18, the mother’s genotype cannot be 16/19. The paternity index
in this case can then be obtained by considering all of the mother’s possible genotypes. As in
D3S1358, we can infer that the genotype of the mother at vWA is either 17/19 or 17/20. So,
the paternity index for vWA can be obtained similarly, noticing that the child’s genotype is
17/19. Furthermore, the paternity index for FGA can also be derived in a similar way.

The EasyPA In 1 Minute software can be run easily, since the pedigree tree diagram is
shown. First, we need to import the allele frequency file (HKChinese.af) and the genotype file
(GenotypePA.txt) to the program. Then, we select the names of the child, alleged father and
relatives of the mother in the genotype file (in the file, they are called Name-C, Name-AF ,
Name-FoM and Name-MoM, and the corresponding names are C, AF , FoM and MoM in
this particular example) using the built-in combo box. The paternity index for each locus and
the overall paternity index are calculated and displayed immediately after the Calculate button
is clicked. In other words, the paternity indices at all loci can be obtained immediately by
clicking a few buttons. The paternity and kinship problem can be solved within one minute,
no matter how many loci one has in the battery of tests. The captured screen in Figure 5.5
shows the details of the results. Another useful feature of the program is that the input names
and the output findings can be saved in a file, which can used for checking and/or reporting
purposes. The findings for the above problem obtained by the program are summarized in the
fourth column of Table 5.16.

In the above situation, genotypes of both parents of M are available, from which we can
derive possible genotypes of M. This makes the calculations easy to handle. However, the
situation becomes more complicated when the genotypes of neither parent, or only one parent,

Table 5.15 Genotype data of the child (C), alleged father (AF) and relatives (FoM,
MoM, S1oM, S2oM) of the mother.

Locus C AF FoM MoM S1oM S2oM

D3S1358 17/18 18/20 16/17 17/19 17/17 17/17
vWA 17/19 19/19 17/17 19/20 17/19 17/19
FGA 20/22 22/23 20/21 22/23 20/22 21/23
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are available. We consider below the situations in which only the siblings of M (S1oM) and/or
the father of M are available for typing. Table 5.16 gives the paternity indices obtained by the
EasyPA In 1 Minute for various relatives combinations (see Table 5.15 for the genotypes).
A method that the EasyPA In 1 Minute or the general EasyDNA In 1 Minute is based upon
is to evaluate from the available genotype information of relatives the possible genotype(s)
of the parent(s) of M by enumeration, which may possibly transmit on to M and then to
C. The law of total probability, Bayes Theorem and conditional probability formulas are
employed for assessing the probabilities of having those possible genotypes. For example,
in the C-FoM-S1oM-AF case at D3S1358, we can use the genotypes of FoM, S1oM and
C (see Table 5.15) to infer the genotype of MoM, which must be 17/y, where y can be any
allele at D3S1358. As a result, the genotype of M can be either one of 16/17, 17/17, 16/y

or 17/y. From this information, and using the conditional probability of observing each of
these possible genotypes, we can compute the paternity index based on all possible values
of y. Figure 5.6 illustrates some of the ideas which can be generalized to deal with other
situations.

Suppose that we have another sibling of M (S2oM) typed, and he/she has the same
genotype 17/17 at D3S1358 as the first sibling (S1oM). In this case, S2oM does not provide
extra genotype information that the possible genotype of M is still 16/17, 17/17, 16/y or
17/y. This may give rise to the assumption that the paternity index will remain unchanged. In
fact this assumption is incorrect, because the conditional probability of observing a possible

Figure 5.5 Captured screen for running the EasyPA In 1 Minute software for paternity
testing in a motherless case with relatives of mother typed. H0 and H1 are used in the
software to represent Hp and Hd .
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Table 5.16 Paternity indices for Hp: TF of C is AF versus (a) Hd : TF of C is a
random man, or (b) Hd : TF of C is a brother of AF .

C-FoM-
C-FoM- C-FoM- C-FoM- S1oM-

Locus C-M-AF C-AF MoM-AF AF S1oM-AF S2oM-AF C-S1oM-AF

(a) Hd : TF of C is a random man

D3S1358 8.93 4.46 8.93 6.75 8.07 8.26 7.48
vWA 9.42 4.71 4.18 7.79 4.24 4.04 3.16
FGA 2.25 1.40 2.25 2.59 2.19 2.25 2.14

Overall 18.9 29.5 83.9 136 74.9 75.0 50.6

(b) Hd : TF of C is a brother of AF

D3S1358 1.80 1.63 1.80 1.74 1.78 1.78 1.76
vWA 1.81 1.65 1.61 1.77 1.62 1.61 1.52
FGA 1.38 1.17 1.38 1.44 1.37 1.38 1.36

Overall 4.50 3.15 4.02 4.46 3.95 3.96 3.65

genotype is no longer the same as before. The conditional probabilities in the two situations
are

P(M|C, FoM, S1oM, AF) and P(M|C, FoM, S1oM, S2oM, AF),

which are clearly not the same. Table 5.16 summarizes the paternity indices for various cases
involving different relative combinations.

Another method that the program employs is by means of the law of total probability. To
illustrate, we let the genotypes of the MoM and S1oM (suppose that no other siblings of the

16  17
FoM 

17  y
MoM 

17 17
S1oM      M 

17  18
C 

Figure 5.6 A diagram to illustrate some of the ideas used in the calculations in the
EasyDNA In 1 Minute software.
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mother are available) be (x, y) and (u, v), where x, y, u and v may take any possible allelic val-
ues. By the law of total probability in Equation (2.19), we obtain P(x, y) =∑u,v P(x, y, u, v).
The genotype probability of MoM can be obtained from the joint genotype probabilities
P(x, y, u, v)’s, of which many are zeros, since MoM and S1oM have at least one common
allele.

5.8.2 EasyPAnt In 1 Minute

When the alleged father (AF) is not available, his relatives may have to be typed. This is by
no means a rare occurrence, and frequently arises in inheritance disputes, where the AF is
deceased. Although there are methods provided in Chapter 4 and earlier sections of Chapter 5,
they can only handle the situation with only one relative of AF typed. A computer program
EasyPAnt In 1 Minute with a more complicated pedigree diagram has been developed for
this purpose. Previous ideas in Section 5.8.1 can be generalized, though the theory here would
be more involved. For example, consider the case in which the AF is not available and siblings
1 and 2 of the AF are typed with genotypes 19/20 and 16/19 at D3S1358, respectively.
Suppose that the M is not available but the FoM and MoM are. In this case, neither the M

nor the AF can be typed, and, instead, two relatives for each of them are typed. A total of
five persons (including the C) are involved. Relatively little attention has been paid so far
in the literature to complex paternity cases of this kind, except Brenner (1997), Egeland et
al. (2000) and Fung (2003b). Based on the software, we find that the paternity index of this
C-FoM-MoM-S1oAF -S2oAF case is 0.404, which is much smaller than the paternity index,
8.93, of the C-FoM-MoM-AF case that the AF is typed (Table 5.16). At this particular locus
D3S1358, the new paternity index is smaller than 1 and so it does not seem to support the null
hypothesis that the AF (who is not typed) is the TF of the C. Such a low value is, however,
not surprising, since the two siblings of the AF do not even have allele 18, which the C has
inherited from his TF .

5.8.3 EasyIN In 1 Minute

Some researchers find it hard to deal with incest cases because the AF and the M are biolog-
ically related, but, in fact, these cases are usually not difficult to handle (see Section 4.2.1).
Consider a criminal paternity incest case with the genotype information given in Table 5.17. A
child (‘child 1 of F and M’, called Name-C1 in the genotype file) and his mother are accused
of having an incestuous relationship, from which the mother has given birth to another child
(C). The hypotheses of interest are

Hp : the TF of C is ‘child 1 of F and M’;
Hd : the TF of C is a random unrelated man.

(Notice that H0 and H1, instead of Hp and Hd , are used in the software.) This is not a difficult
problem and our program finds the overall paternity index at all three loci equal to 13.4 (details
omitted). Suppose that the accused puts up an alternative explanation Hd1: the TF of C is F ,
and there is no incestuous relationship. How should we compute the paternity index?

If the genotype of F is available, the problem can be easily solved. If it is not, the problem
is non-trivial and not many discussions are observed. Consider the case in which the genotype
of F is unavailable, but the genotype of his two siblings and the M are. (They are called
Name-S1oF , Name-S2oF and Name-M in the genotype file, for genotypes; see Table 5.17.)
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Figure 5.7 Captured screen for running the EasyIN In 1 Minute software for an incest case
with a special alternative explanation H1 (i.e. Hd).

Based on the ideas of pedigree analysis, the law of total probability and the Bayes formula,
the EasyIN In 1 Minute can solve this problem by just clicking in the available genotypes
information. By choosing the appropriate option in the combo boxH1 in the software (meaning
Hd here), the paternity index can be obtained immediately. The paternity index in this case
is reduced from 13.4 to 0.735 (see Figure 5.7). The index, which is even smaller than 1 may
suggest that the genetic evidence is more in favor of the accused. Of course, the genetic
evidence at other loci as well as the non-genetic evidence have to be considered in order to
come up with a more definite answer.

5.8.4 EasyMISS In 1 Minute

Suppose that a person (X) went missing and his family members reported his disappearance
to local police. A dead body (Alleged X, abbreviated as AX) was found a few months later.
In order to determine if the dead body is X or not, we type a total of eight family members

Table 5.17 An incest case in which ‘Child 1 of F and M’ and his mother (M) are
accused of having an incestuous relationship with genotype data of C, M, Child 1 and
relatives (MoF , S1oF and S2oF ) of F .

Locus C M Child 1 MoF S1oF S2oF

D3S1358 16/18 17/18 16/18 15/16 15/18 16/18
vWA 17/18 17/17 17/18 15/19 15/19 18/19
FGA 21/22 22/23 21/22 21/23 23/24 21/24
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Figure 5.8 Captured screen for running the EasyMISS In 1 Minute software for a missing
person problem with genotypes of eight family members provided in Table 5.18.

of X, i.e., his three sibs (genotype data labeled as S1, S2, S3), his two children (C1, C2), his
father-in-law (FIL) and two sisters-in-law (SIL1, SIL2). These genotype data at nine loci
obtained from the AmpF�STR Profiler kit are put in a file (Missing.txt) as shown in Table 5.18.
We are interested in the following hypotheses:

Hp : the dead body (Alleged X) is the missing person X;
Hd : the dead body is an unrelated random man.

Although the problem looks complicated, the computer program EasyMISS In 1 Minute
can deal with it easily. We first import the allele frequency file (HKChinese.af) and the genotype
file (Missing.txt). Then we select the names of Alleged X and the eight family members in
the genotype file using the built-in combo boxes. The likelihood ratio at each locus and
the overall likelihood ratio are calculated and displayed almost instantly when we click the
Calculate button (see the captured screen shown in Figure 5.8 for details).

Figure 5.9 shows the captured screen for the output file, in which we can check whether
we have input correctly. Notice that in the EasyDNA In 1 Minute software, there would be
little manual handling error, since only very minimal information is needed for the input.
Moreover, the findings can be obtained quickly, within one minute.
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Figure 5.9 Captured screen for the output file of the missing person example.

5.8.5 Other considerations: probability of paternity and mutation

Another feature found in the EasyDNA In 1 Minute software is that prior probabilities that
the prosecution proposition Hp holds true have been built in. Besides, there is an option to
choose your own prior; see, for example, the lower left boxes in Figures 5.7 and 5.8. The
posterior probabilities or probabilities of paternity are automatically evaluated after obtaining
the likelihood ratio/paternity index for the problem of kinship determination.

In the case of paternity testing, there is a possibility that the genotypes of all except one or
two loci of the AF and C are found to match one another. This phenomenon may be explained
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Table 5.18 Names and genotype data of nine persons for a missing person example,
from Fung et al. (2006). (Reproduced by permission of Elsevier.)

Sample D3S1358 vWA FGA THO1 TPOX CSF1PO D5S818 D13S317 D7S820

AX 15/17 20/16 24/19 6/9.3 11/10 11/12 12/7 8/8 11/7
S1 15/17 14/16 21/19 6/9.3 8/10 11/10 13/13 8/12 11/7
S2 18/17 20/19 21/25.2 11/9 11/10 12/12 12/7 11/12 8/10
S3 18/19 14/19 24/19 6/9 8/9 12/10 12/13 11/8 11/10
C1 15/14 20/17 19/26.2 9.3/9 10/8 11/11 7/11 8/11 7/12
C2 15/16 16/16 24/23 9.3/7 10/8 12/11 12/10 8/9 11/13
FIL 14/16 17/18 23/23 9/9 8/8 9/11 12/11 11/9 12/12
SIL1 16/17 17/16 23/25 9/9 8/11 9/10 11/10 11/9 12/11
SIL2 14/17 18/18 23/26.2 9/7 8/12 9/15 12/10 9/10 12/11

by mutation. The EasyPA In 1 Minute program also allows the possibility of mutation and
the simple average mutation paternity index (Section 4.10.2) is adopted:

AMPI = average mutation rate (AMR)

power of exclusion (PE)

for the mismatch locus. A standard trio case example with one mismatch locus is given in
Section 4.10.

5.9 Problems
1. Let X = A1A2 and Y = A2A2, with p1 = 0.12 and p2 = 0.37. Test whether X and Y

are first cousins versus whether they are unrelated, and obtain its likelihood ratio. The
population is in Hardy–Weinberg equilibrium.

2. In order to test whether Y is the nephew or unrelated to X, we type Y and a son of X.
The DNA profiles of Y and Z (the son of X) are A1A2 and A1A3, respectively. Obtain the
likelihood ratio for the kinship determination. Hardy–Weinberg law is assumed.

3. In a subdivided population with the degree of subdivision θ, test whether X = A1A2 and
Y = A1A2 are parent–child versus whether they are full siblings, and obtain its likelihood
ratio. (Note: this situation may happen in immigration applications.) Evaluate the likelihood
ratio when p1 = 0.18, p2 = 0.43 and θ = 0.03.

4. In a subdivided population with the degree of subdivision θ, find the paternity index
for a standard trio case in which the genotypes of the child, mother and alleged father
are C = A1A2, M = A1A1 and AF = A2A3, respectively, and the two competing hypo-
theses are

Hp : the alleged father is the true father of the child;
Hd : the alleged father and the child are biologically unrelated.

Evaluate the paternity index when p1 = 0.18, p2 = 0.23, p3 = 0.31 and θ = 0.03.

5. In a paternity testincase, the genotypes of the child, mother and alleged father are A1A1,
A1A2 and A1A3, respectively. Find the paternity index about the following two competing
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hypotheses:

Hp : the alleged father is the true father of the child;
Hd : a full sibling of the alleged father is the true father of the child.

The population is subdivided with the degree of subdivision θ. Evaluate the paternity index
when p1 = 0.12, p2 = 0.23, p3 = 0.38 and θ = 0.03.

6. In a paternity testing case, the alleged father is not available and a full sibling R of the
alleged father is typed instead. Suppose the genotypes of the child, mother and R are
A1A1, A1A1 and A1A2, respectively. All involved people come from the same subdivided
population with the degree of subdivision θ. Find the likelihood ratio about the following
two competing hypotheses:

Hp : the alleged father, a brother of R, is the true father of the child;
Hd : a random unrelated man is the true father of the child.

7. Suppose X = A1A1, Y = A1A2 and Z = A2A3. Test whether X is the maternal uncle of
Y and Z is the paternal grandfather of Y versus X, Y and Z are biologically unrelated. The
population is in Hardy–Weinberg equilibrium.

X1

X3

X5

X4

X2
8. Let X1 = A1A2, X2 = A3A3, X3 = A1A4,

X4 = A2A3 and X5 = A1A3. The family
relationship among X1, X2, X3, X4 and X5 is
shown in the figure on the right. Find
P(X1, X2, X3, X4, X5) and P(X1, X2, X3, X5)

if X4 is unavailable. The population to which the
family belongs is in Hardy–Weinberg
equilibrium.

9. In order to determine the relationship between two individuals Y and Z, their genotypes
at three loci are provided as follows: at locus D3S1358, Y = 13/13, Z = 13/14; at locus
vWA, Y = 16/18, Z = 16/18; at locus FGA, Y = 19/19, Z = 20/21. The following three
hypotheses are of interest:

Hp1 : Y and Z are full siblings;
Hp2 : Y and Z are half siblings;
Hd : Y and Z are biologically unrelated.

The allele frequencies are listed in Table 4.3. For θ = 0 and 0.03, test Hp1 versus Hd , and
Hp2 versus Hd .

(a) Use the computer program EasyDNA 2Persons to obtain the likelihood ratios at these
three loci.

(b) Use Table 5.5 to evaluate the likelihood ratios at these three loci.

(c) Check whether the corresponding results in (a) and (b) are the same.
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Interpreting mixtures

It is not uncommon in practice for the stain discovered in the scene to be contributed by more
than one person. This kind of mixture renders complexity for evaluating the weight of the DNA
evidence. The likelihood ratio is a useful tool to measure the weight of the evidence. In this
chapter, we first give an illustrative example and then some common cases to show the steps
in deriving the likelihood ratio, where a detailed description of the method for evaluating the
DNA evidence is described. Three kinds of populations are considered, namely a population in
Hardy–Weinberg equilibrium, a subdivided population, as well as a population with multiple
ethnic groups. The associated formulas under each situation are reported, while the more
technical derivations are deferred to the last section of this chapter. Thus, the reader can focus
on the application of the calculating formulas in practical problems. Meanwhile, computer
software is provided to demonstrate how to process the statistical evaluation of DNA mixtures.

In this and the next chapters, the peak height and peak area information is not incorporated
into the calculation. The issue of taking account of peak information in the evaluation of DNA
evidence is left to Chapter 8. We also assume in Chapters 6 and 7 that the number of unknown
contributors is known and the profiles of mixture and the involved persons are typed without
errors. A likelihood approach was proposed in Egeland et al. (2003) to estimate the number of
contributors and determine whether a stain was a mixture or not. The approach in Mortera et
al. (2003) can readily handle cases in which the number of contributors to the mixture cannot
be regarded as known in advance. When the number of unknown contributors is not known
for sure, we can also try different choices of the number and report their likelihood ratios, or
give an overall likelihood ratio by weighting the individual ones.

6.1 An illustrative example
Simpson case This is the well known case of People v. Simpson (Los Angeles County Case
BA097211), in which a three-band profile A1A2A3 at the RFLP locus D2S44 was obtained
for DNA recovered from the center console of an automobile owned by the defendant (Weir et
al. 1997). The profiles of the defendant, Mr Simpson, and a victim, Mr Goldman, were found

Statistical DNA Forensics: Theory, Methods and Computation Wing Kam Fung and Yue-Qing Hu
© 2008 John Wiley & Sons, Ltd
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to be A1A2 and A1A3, respectively. The population frequencies of alleles A1, A2 and A3 are,
respectively, p1 = 0.0316, p2 = 0.0842 and p3 = 0.0926, and they are rather small, which
is typical for RFLP loci.

Based on some facts of this crime, it is postulated that the mixture was contributed by the
victim and the perpetrator. To judge whether the suspect was the perpetrator, two alternative
propositions (hypotheses or explanations) are proposed, as follows:

Hp : the victim and the suspect were contributors to the mixed stain;
Hd : the victim and one unknown were the contributors .

(6.1)

The likelihood ratio

LR = P(evidence|Hp)

P(evidence|Hd)

defined in Equation (2.27) is now used to evaluate the weight of the DNA evidence. Specif-
ically, the DNA evidence is composed of the mixture M, the victim’s genotype V and the
suspect’s genotype S. For convenience, let K generally denote the collection of all the typed
genotypes involved in a case. So, the evidence can be expressed simply as (M, K). From the
third law of probability, as described in Equation (2.4), the likelihood ratio can be transformed
further as

LR = P(M, K|Hp)

P(M, K|Hd)

= P(M|K, Hp)

P(M|K, Hd)

P(K|Hp)

P(K|Hd)

= P(M|K, Hp)

P(M|K, Hd)
.

The last equality holds because the probability of observing the known genotype K does not
depend on whether Hp or Hd holds or not, and so P(K|Hp) = P(K|Hd). Thus, the evaluation
of the likelihood ratio is induced to the calculation of the conditional probability P(M|K, H)

for some proposition H about the contributors of the mixture M. Hence, the calculation of
P(M|K, H) is the focus in the statistical evaluation of the DNA mixture.

Suppose that the population is under Hardy–Weinberg equilibrium. For the Simpson case
described above, under the prosecution proposition, based on the victim’s genotype V = A1A2

and the suspect’s genotype S = A1A3, all the alleles in the mixture M can be explained by
the genotypes of the victim and the suspect. So, we have P(M|K, Hp) = 1. However, under
the defense proposition Hd , the alleles A1 and A2 in the mixture M are explained by the
victim’s genotype V and the allele A3 remains to be explained by the unknown contributor.
That is to say, the perpetrator involved in this case must carry the allele A3. Of course, the
perpetrator cannot carry alleles which are not elements in the mixture set M, so the genotype
of the perpetrator, G, must be one of the following three types: A1A3, A2A3 and A3A3. It
implies that

P(M|K, Hd) = P(G = A1A3) + P(G = A2A3) + P(G = A3A3)

= 2p1p3 + 2p2p3 + p2
3,

where p1, p2 and p3 are, respectively, the population frequencies of alleles A1, A2 and A3. It
follows immediately that

LR = 1

2p1p3 + 2p2p3 + p2
3

.
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Table 6.1 All 12 possible combinations of the genotypes G1 and G2 comprising A1, A2 and
A3, and the corresponding joint genotype probabilities P(G1, G2).

G1 G2 P(G1, G2) G1 G2 P(G1, G2)

A1A1 A2A3 2p2
1p2p3 A1A3 A2A2 2p1p

2
2p3

A2A2 A1A3 2p1p
2
2p3 A1A3 A1A2 4p2

1p2p3

A3A3 A1A2 2p1p2p
2
3 A1A3 A2A3 4p1p2p

2
3

A1A2 A3A3 2p1p2p
2
3 A2A3 A1A1 2p2

1p2p3

A1A2 A1A3 4p2
1p2p3 A2A3 A1A2 4p1p

2
2p3

A1A2 A2A3 4p1p
2
2p3 A2A3 A1A3 4p1p2p

2
3

If the defense proposition Hd is altered as

H∗
d : two unknowns were contributors of the mixture,

then the calculation of the denominator of the likelihood ratio becomes a little more complicated.
With the constraint that the two contributors must carry and only carry the three alleles A1,
A2, and A3 in the mixture M, all the possible combinations of the genotypes G1 and G2 of
these two unknown contributors are listed in Table 6.1. Also listed in Table 6.1 are the joint
genotype probabilities P(G1, G2). For example, when G1 = A1A1 and G2 = A2A3, we have
P(G1, G2) = P(A1A1)P(A2A3) = 2p2

1p2p3. The summation over all those 12 probabilities
in the last column of Table 6.1 leads to 12p1p2p3(p1 + p2 + p3) and so

LR = 1

12p1p2p3(p1 + p2 + p3)
. (6.2)

In the following section, we are going to derive the likelihood ratios for some commonly
encountered cases.

6.2 Some common cases and a case example
Let A1, A2, . . . be the alleles at an autosomal locus, and the corresponding allele frequencies
are denoted as p1, p2, . . . , respectively. Generally, Ai, Aj, Ak, Al, . . . are used to denote
distinct alleles, unless otherwise stated. In the following, we are going to show the derivation
of the likelihood ratios when the DNA profile of the mixed stain ranges from two alleles to
four alleles under different scenarios of the prosecution and defense propositions. Hardy–
Weinberg equilibrium is taken to be held in this section. A case example is provided in detail
for the calculation of the likelihood ratio at three loci.

6.2.1 One victim, one suspect and one unknown

Suppose that a mixed stain M was recovered, and the victim and a suspect were typed. The
two competing propositions are

Hp : the contributors of M were the victim and the suspect;
Hd : the contributors of M were the victim and one unknown person.

(6.3)

Consider the case in which M = {Ai, Aj, Ak}, V = AiAj and S = AkAk. Under the pros-
ecution proposition Hp, the three alleles Ai, Aj, Ak are explained by the victim’s genotype
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Table 6.2 Likelihood ratio for the case of one victim, one suspect and one unknown
with Hp: the contributors were the victim and the suspect, and Hd : the contributors were
the victim and one unknown person.

Mixture Victim Suspect LR

{Ai, Aj} AiAi AiAj 1/[pj(2pi + pj)]
AjAj 1/[pj(2pi + pj)]

AiAj AiAi 1/(pi + pj)
2

AiAj 1/(pi + pj)
2

{Ai, Aj, Ak} AiAi AjAk 1/(2pjpk)

AiAj AiAk 1/[pk(2pi + 2pj + pk)]
AkAk 1/[pk(2pi + 2pj + pk)]

{Ai, Aj, Ak, Al} AiAj AkAl 1/(2pkpl)

and the suspect’s genotype, so P(M|K, Hp) = 1. Under the defense proposition Hd , alleles Ai

and Aj in the mixture are explained by the victim’s genotype, and so the remaining allele Ak

in the mixture is to be explained by the unknown contributor. Thus, the unknown’s genotype
G is one of AiAk, AjAk and AkAk. Therefore,

P(M|K, Hd) = P(G = AiAk) + P(G = AjAk) + P(G = AkAk)

= 2pipk + 2pjpk + p2
k

= pk(2pi + 2pj + pk).

Finally, we have

LR = 1/[pk(2pi + 2pj + pk)].

Based on a similar approach, we can derive the likelihood ratios for the cases (i) M =
{Ai, Aj}, V = AiAi, S = AiAj; (ii) M = {Ai, Aj}, V = AiAi, S = AjAj; (iii) M = {Ai, Aj},
V = AiAj , S = AiAi; (iv) M = {Ai, Aj}, V = AiAj , S = AiAj; (v) M = {Ai, Aj, Ak}, V =
AiAi, S = AjAk; (vi) M = {Ai, Aj, Ak}, V = AiAj , S = AiAk; (vii) M = {Ai, Aj, Ak}, V =
AiAj , S = AkAk; (viii) M = {Ai, Aj, Ak, Al}, V = AiAj , S = AkAl. All these likelihood
ratios are listed in Table 6.2.

6.2.2 One suspect and two unknowns

In cases in which the mixed stain did not originate from the victim and one suspect was
identified, the two competing propositions could be

Hp : the contributors were the suspect and one unknown;
Hd : the contributors were two unknowns.

Consider the situation in which M = {Ai, Aj, Ak}, S = AiAj . Observe that the pros-
ecution proposition Hp here is equivalent to the defense proposition in Section 6.2.1, so
P(M|K, Hp) = pk(2pi + 2pj + pk). Under Hd , the alleles Ai, Aj, Ak are to be explained
by the two unknowns. From Table 6.1, we have P(M|K, Hd) = 12pipjpk(pi + pj + pk).
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Table 6.3 Likelihood ratio for a one suspect and two unknowns case withHp: the contributors
were the suspect and one unknown, and Hd : the contributors were two unknowns.

Mixture Suspect LR

{Ai, Aj} AiAi (2pi + pj)/[2pi(2p2
i + 3pipj + 2p2

j )]
AiAj (pi + pj)

2/[2pipj(2p2
i + 3pipj + 2p2

j )]
{Ai, Aj, Ak} AiAi 1/[6pi(pi + pj + pk)]

AiAj (2pi + 2pj + pk)/[12pipj(pi + pj + pk)]
{Ai, Aj, Ak, Al} AiAj 1/(12pipj)

Therefore, the likelihood ratio becomes

LR = pk(2pi + 2pj + pk)

12pipjpk(pi + pj + pk)

= 2pi + 2pj + pk

12pipj(pi + pj + pk)
.

Based on a similar derivation, the likelihood ratios can be obtained for other combinations of
the DNA mixture and the suspect’s genotype. All the derived results are shown in Table 6.3.

6.2.3 Two suspects and two unknowns

When two suspects were identified, we may consider the two competing propositions as

Hp : the contributors were the two suspects;
Hd : the contributors were two unknown persons.

Suppose that the mixed stain is M = {Ai, Aj, Ak}, suspect 1 has genotype S1 = AiAj , and
suspect 2 has genotype S2 = AiAk (or S1 = AiAi, S2 = AjAk). Under Hp, there is no unknown
contributor and so P(M|K, Hp) = 1. Under Hd , we have from the previous subsection that
P(M|K, Hd) = 12pipjpk(pi + pj + pk). So, the likelihood ratio is

LR = 1/[12pipjpk(pi + pj + pk)].

The other scenarios relating to this two suspects–two unknowns case were also considered.
All the likelihood ratios are reported in Table 6.4. Note that the genotypes of the two tested
suspects are not listed in Table 6.4. In fact, the results therein are irrelevant to the genotypes
of the two suspects. The only requirement is that the genotypes of these two suspects explain
all the alleles in the mixture.

Table 6.4 Likelihood ratio for a two suspects and two unknowns case with Hp: the
contributors were two suspects, and Hd : the contributors were two unknowns.

Mixture LR

{Ai, Aj} 1/[2pipj(2p2
i + 3pipj + 2p2

j )]
{Ai, Aj, Ak} 1/[12pipjpk(pi + pj + pk)]
{Ai, Aj, Ak, Al} 1/(24pipjpkpl)
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6.2.4 Case example

Hong Kong case Consider one rape case that occurred in Hong Kong (Fung and Hu 2000a),
from which three loci–D3S1358, vWA and FGA–were selected. The DNA profiles for the
crime stain, victim and suspect at these three loci are shown in Figure 6.1. The information
of the alleles found in the mixture, victim and suspect are listed in Table 6.5. The population
frequencies of alleles of these three loci can be referred to in Table 4.3.

It happened that the mixture had four, two and three alleles at loci D3S1358, vWA and
FGA, respectively, thereby giving a range of examples. We offer the following propositions:

Hp : the victim and the suspect were contributors to the mixed stain;
Hd : the victim and one unknown were the contributors.

(6.4)

Let us first consider the locus D3S1358 with mixture M = {14, 15, 17, 18}, victim V =
15/18 and suspect S = 14/17. From Table 6.2, we have the likelihood ratio

LR = 1/(2p14p17) = 1/(2 × 0.033 × 0.239) = 63.40.

Figure 6.1 The DNA profiles for the crime stain, victim and suspect at loci D3S1358, vWA
and FGA in a rape case.
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Table 6.5 Alleles detected in a rape case in Hong Kong, from Hu and Fung (2003b).
(Reproduced by permission of Springer-Verlag.)

Locus Mixture (M) Victim (V ) Suspect (S) Frequency

D3S1358 14 14 0.033
15 15 0.331
17 17 0.239
18 18 0.056

vWA 16 16 0.156
18 18 0.160

FGA 20 20 0.044
24 24 0.166
25 25 0.110

Secondly, we consider locus vWA with M = {16, 18}, V = 18/18, S = 16/16. We have from
Table 6.2 that

LR = 1/[p16(p16 + 2p18)] = 1/[0.156 × (0.156 + 2 × 0.16)] = 13.47.

Thirdly, we consider the locus FGA with M = {20, 24, 25}, V = 20/24, and S = 25/25,
having the likelihood ratio

LR = 1/[p25(2p20 + 2p24 + p25)] = 1/[0.11 × (2 × 0.044 + 2 × 0.166 + 0.11)] = 17.15.

Finally, the overall likelihood ratio can be obtained by multiplication, assuming linkage
equilibrium, which is equal to 63.04 × 13.47 × 17.15 = 15 695.

Note that Tables 6.2–6.4 list the likelihood ratios only for the simple common cases,
having, at most, four alleles found in the mixed stain. It is not possible to enumerate all the
cases here. A general approach is therefore needed to calculate the likelihood ratio in the
interpretation of DNA mixtures (see Section 6.3).

6.2.5 Exclusion probability

As in paternity testing (Section 4.8), besides the likelihood ratio, the exclusion probability is
another measure that is used by some scientists or forensic laboratories in the interpretation
of DNA mixture. Given the alleles found in the mixed stain, the exclusion probability (EP)

is evaluated as the probability that a random man is excluded as a contributor to the mixture.
Suppose that the mixed stain has four alleles A1, A2, A3 and A4 at a particular locus l

with corresponding allele frequencies p1, p2, p3 and p4. Denote p = p1 + p2 + p3 + p4. A
person is excluded as a possible contributor to the mixture if at least one of his/her alleles
does not belong to the DNA profile of the mixed stain. Thus, the exclusion probability at this
locus is evaluated as

EPl = 1 − p2, (6.5)
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and the inclusion probability is IPl = 1 − EPl = p2. When we consider a total of K loci, the
overall exclusion probability is evaluated as

overall EP = 1 −
k∏

l=1

(1 − EPl).

Using the Hong Kong case given in Table 6.5 as an example, the EPl at those three loci
are evaluated as

D3S1358 : EP1 = 1 − (0.033 + 0.331 + 0.239 + 0.056)2 = 0.566,

vWA : EP2 = 1 − (0.156 + 0.160)2 = 0.900,

FGA : EP3 = 1 − (0.044 + 0.166 + 0.110)2 = 0.898,

and the overall exclusion probability is

overall EP = 1 − (1 − 0.566)(1 − 0.9)(1 − 0.898) = 0.9956.

This quantity may be interpreted as follows: given the DNA profile found in the mixture
(i.e. D3S1358: M = {14, 15, 17, 18}; vWA: M = {16, 18}; FGA: M = {20, 24, 25}), there is
a 0.9956 probability that a random person is excluded as a contributor to the mixture. In other
words, there is 0.44% probability that a random person who is, however, not a contributor
is not excluded. Since the suspect in the Hong Kong case example cannot be excluded as a
possible contributor, it is often the duty of the jury and the judge to decide whether or not the
suspect is a contributor to the observed DNA mixture.

In the likelihood ratio approach that we mentioned earlier, we find that the likelihood
ratios in Sections 6.2.1–6.2.3 depend on how the prosecution and defense propositions and
the numbers of contributors are postulated. The exclusion probability approach that we dis-
cussed here, however, does not take into account or assume the number of contributors.
Moreover, the exclusion probability is only based on the alleles in the mixture; the exact
profiles of the potential contributors are not needed in evaluating the probability. In other
words, the exclusion probability remains the same, no matter whether the suspect S = 14/15,
15/18 or 17/17, . . . at locus D3S1358, i.e. provided that both alleles of the suspect belong to
{14, 15, 17, 18}. This is regarded as a limitation of the exclusion probability approach by some
researchers.

The exclusion probability approach also has a potential limitation when the DNA mixture
contains many alleles. For example, if we have a mixture of six allelesM = {14, 15, 16, 17, 18,
19} at D3S1358, the exclusion probability is then evaluated as

1 − (0.033 + 0.331 + 0.326 + 0.239 + 0.056 + 0.011)2 = 0.007984,

which is very small. In other words, a very high majority of random persons who are not
contributors to the mixture will not be excluded at this particular locus. It is also to be noted that
the exclusion probability in Equation (6.5) always decreases when p increases, and approaches
0 when p is close to 1. The overall exclusion probability can be small if the observed number of
alleles at each locus in the DNA mixture is high. This special phenomenon does not normally
happen in the likelihood ratio approach. In this book, we employ the likelihood ratio approach
which is commonly used in the interpretation of DNA mixtures.
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6.3 A general approach
As demonstrated in Section 6.1, the likelihood ratio is a ratio of two conditional probabilities
P(M|K,Hp) and P(M|K,Hd). So, it is sufficient to find a formula to calculate the probability
P(M|K,H), where H is a proposition specifying the contributors to the mixed stain. Let x be
the number of unknown contributors to the mixed stain stated in the proposition H and X be the
genetic profile (distinct alleles) of these x unknown contributors. Also stated in the proposition
H is who the known contributors were. Note that the genotypes of the known contributors are
listed in K. Considering that the mixture is contributed by the known as well as the unknown
contributors, let U be the set of alleles present in the mixture but not present in the known
contributors stated in H , and it implies U ⊂ X ⊂ M. So, we have P(M|K,H) = P(U ⊂ X ⊂
M|K,H). The set-notation symbols, such as ⊂, \, ∪, ∩, ∈ and | · |, carry the meanings in the
standard convention. Note that the set U is allowed to be empty in some situations in which
all the alleles in the mixture are present in the genotypes of the known contributors. All the
notations used in the evaluation of the DNA mixture are summarized in Table 6.6 for easy
reference. Based on the principle of inclusion and exclusion as given in Equation (2.7), we have

P(M|K,H) =
∑

M\U⊂C⊂M

(−1)|M\C|W(C)

= W(M) −
∑
Ai∈U

W(M \ {Ai})

+
∑

Ai,Aj∈U

W(M \ {Ai, Aj}) −
∑

Ai,Aj,Ak∈U

W(M \ {Ai, Aj, Ak})

+ · · · + (−1)|U|W(M \ U), (6.6)

where

W(C) = P(X ⊂ C|K) (6.7)

Table 6.6 Notations for interpreting DNA mixtures, from Fung and Hu (2004).
(Reproduced by permission of Blackwell Publishing.)

M The DNA profile of a mixed stain
H A proposition which specifies the known and unknown

contributors to the mixed stain
K The collection of genotypes of the typed persons
x The number of unknown contributors stated in H

X The genetic profile of the x unknown contributors stated in H

U The set of distinct alleles present in the mixture M but not
in the genotypes of the known contributors stated in H

(k0, 2k1, k2) The relatedness coefficient for two biologically related persons
θ The degree of population subdivision
A1, A2, . . . The alleles at an autosomal chromosome
p1, p2, . . . The allele population frequencies of A1, A2, . . .

cl The number of allele Al present in K, l = 1, 2, . . .

c
∑

l cl, the two times of the number of tested persons
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is the conditional probability that every allele of the x unknown contributors is in set C given the
genotypes K of the typed persons, C is an arbitrary subset of M, W(φ) = 0, |U| represents the
cardinality of set U. It is noted that when x = 0 and U = φ, we have P(M|K,H) = 1, and |U|
cannot exceed 2x, otherwise P(M|K,H) = 0. The details of the derivation of Equation (6.6)
are given in Section 6.9.1. It is seen from Equation (6.6) that the evaluation of the DNA mixture
is now converted to the calculation of W(C) defined in Equation (6.7) for any C ⊂ M. As we
shall see in the later discussion, we are going to use this general formula in Equation (6.6)
and evaluate the particular W(C) in Equation (6.7) for the interpretation of DNA mixtures in
different scenarios.

6.4 Population in Hardy–Weinberg equilibrium
When the people involved in a case come from the same population in Hardy–Weinberg
equilibrium and these people are biologically unrelated, we have

W(C) =
(∑

Al∈C

pl

)2x

, (6.8)

for arbitrary subset C of M. Combining Equations (6.6) and (6.8) thus provides a general
approach to calculate the likelihood ratio. The proof of Equation (6.8) is given in Section 6.9.2.
Note that one equivalent formula was reported in Weir et al. (1997) and Fukshansky and
Bär (1998) when the population under study is in Hardy–Weinberg equilibrium. Now let us
go back to the Simpson case, introduced in Section 6.1, with M = {A1, A2, A3}, to see the
application of Equation (6.8) in real cases. The hypothesis pair in (6.1) is considered. Under
the prosecution proposition Hp, there is no unknown contributor, i.e. x = 0, and all the alleles
in the mixture are present in the genotypes of the stated contributors, the victim and the
suspect, so P(M|K,Hp) = 1. Under the defense proposition Hd , x = 1, and V = A1A2 is
the only known contributor to the mixture M. It follows that U = M \ {A1} ∪ {A2} = {A3}.
From Equations (6.6) and (6.8), we have

P(M|K,Hd) = W(M) − W(M \ {A3})
= W({A1, A2, A3}) − W({A1, A2})
= (p1 + p2 + p3)

2 − (p1 + p2)
2

= 2p1p3 + 2p2p3 + p2
3.

If we instead consider the defense proposition H∗
d that two unknowns were contributors of

the mixture, we have x = 2 and U = {A1, A2, A3}. From Equations (6.6) and (6.8), we have

P(M|K,H∗
d ) = W(M) − W(M \ {A1}) − W(M \ {A2}) − W(M \ {A3})

+ W(M \ {A1, A2}) + W(M \ {A1, A3}) + W(M \ {A2, A3})
= (p1 + p2 + p3)

4 − (p1 + p2)
4 − (p1 + p3)

4 − (p2 + p3)
4

+ p4
1 + p4

2 + p4
3

= 12p1p2p3(p1 + p2 + p3).

Both P(M|K,Hd) and P(M|K,H∗
d ) are the same as those derived in Section 6.1.
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In the following, the Hong Kong case described in Section 6.2.4 is used to illustrate the
application of Equations (6.6) and (6.8) in the derivation of the likelihood ratio. The pair of
hypotheses in (6.4) is considered. For the locus D3S1358 with mixture M = {14, 15, 17, 18}
and typed genotypes K = 14/17, 15/18, under Hp, there is no unknown contributor, i.e.
x = 0; all the alleles in the mixture are present in the known contributors, thus U = φ and
P(M|K,Hp) = 1. Under Hd , there is, however, one unknown contributor, i.e. x = 1. The
alleles 15 and 18 in M are present in the known victim contributor; thus U = {14, 17}. Equiv-
alently, the unknown contributor’s genotype is definitely 14/17. So, from Equations (6.6) and
(6.8), we have

P(M|K,Hd) = W(M) − W(M \ {14}) − W(M \ {17}) + W(M \ {14, 17})
= (p14 + p15 + p17 + p18)

2 − (p15 + p17 + p18)
2

− (p14 + p15 + p18)
2 + (p15 + p18)

2

= 2p14p17.

Secondly, we consider locus vWA. It is seen from Table 6.5 that the mixture M = {16, 18}
and the typed genotypes K = 16/16, 18/18. Under Hp, x = 0 and U = φ, so P(M|K,Hp) =
1. Under Hd , x = 1 and U = {16}, so, from Equations (6.6) and (6.8), we have

P(M|K,Hd) = W(M) − W(M \ {16})
= (p16 + p18)

2 − p2
18

= p2
16 + 2p16p18.

Thirdly, we consider the locus FGA with M = {20, 24, 25} and K = 20/24, 25/25. Under
Hp, x = 0 and U = φ, so P(M|K,Hp) = 1. Under Hd , x = 1 and U = {25}, so, from
Equations (6.6) and (6.8), we have

P(M|K,Hd) = W(M) − W(M \ {25})
= (p20 + p24 + p25)

2 − (p20 + p24)
2

= p25(2p20 + 2p24 + p25).

Note that all three expressions of P(M|K,Hd) derived above are the same as those given
in Section 6.2.4. For practitioners’ convenience, the corresponding formulas of calculating
P(M|K,H) for the commonly encountered situations are listed in Table 6.7, which covers the
results reported in Tables 6.2–6.4. It is observed from Table 6.7 that in some situations, e.g.
x > 2, the implementation of P(M|K,H) is not simple. See also the detailed expressions of
P(M|K,H) reported in Weir et al. (1997).

Comparing the current general approach based on Equations (6.6) and (6.8) with the
specific approach described in Sections 6.1 and 6.2, it is a matter for one to choose the
approach according to one’s experience and knowledge in deriving the likelihood ratio for
simple DNA mixture problems such as the Simpson and the Hong Kong cases. However, the
implementation of P(M|K,H) by a computer program based on Equations (6.6) and (6.8) is
not only easy to work on, but also good to deal with complex DNA mixture problems having
more than two contributors.
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Table 6.7 The calculating formulas of P(M|K,H) for different combinations of M and U

with x unknown contributors.

M U P(M|K,H)

{Ai} φ p2x
i

{Ai} p2x
i

{Ai, Aj} φ (pi + pj)
2x

{Ai} (pi + pj)
2x − p2x

j

{Ai, Aj} (pi + pj)
2x − p2x

i − p2x
j

{Ai, Aj, Ak} φ (pi + pj + pk)
2x

{Ai} (pi + pj + pk)
2x − (pj + pk)

2x

{Ai, Aj} (pi + pj + pk)
2x − (pj + pk)

2x

− (pi + pk)
2x + p2x

k

{Ai, Aj, Ak} (pi + pj + pk)
2x − (pj + pk)

2x − (pi + pk)
2x

− (pi + pj)
2x + p2x

i + p2x
j + p2x

k

{Ai, Aj, Ak, Al} φ (pi + pj + pk + pl)
2x

{Ai} (pi + pj + pk + pl)
2x − (pj + pk + pl)

2x

{Ai, Aj} (pi + pj + pk + pl)
2x − (pj + pk + pl)

2x

− (pi + pk + pl)
2x + (pk + pl)

2x

{Ai, Aj, Ak} (pi + pj + pk + pl)
2x − (pj + pk + pl)

2x

− (pi + pk + pl)
2x − (pi + pj + pl)

2x

+ (pk + pl)
2x + (pj + pl)

2x + (pi + pl)
2x

− p2x
l

{Ai, Aj, Ak, Al} (pi + pj + pk + pl)
2x − (pj + pk + pl)

2x

− (pi + pk + pl)
2x − (pi + pj + pl)

2x

− (pi + pj + pk)
2x + (pk + pl)

2x + (pj + pl)
2x

+ (pj + pk)
2x + (pi + pl)

2x + (pi + pk)
2x

+ (pi + pj)
2x − p2x

i − p2x
j − p2x

k − p2x
l

6.5 Population with multiple ethnic groups
All the people involved are assumed to be of the same ethnic group in the previous section.
One fact that we have to face in the interpretation of DNA mixtures is contributors coming
from different ethnic/racial groups. For example, the mixed stain collected from the crime
scene contains material from the victim and the offender, who may belong to the Caucasian
and African American ethnic groups, respectively. Extensive studies from a wide variety of
databases show that there are indeed substantial differences between allele frequencies among
the major racial and linguistic groups (National Research Council 1996). The ignorance of this
phenomenon may not be allowed and may be misleading in the presentation of evidence in the
court. Harbison and Buckleton (1998), following the sampling formula developed by Balding
and Nichols (1994), discussed the interpretation of DNA mixtures when the two contributors
come from two different races. Fukshansky and Bär (1999) obtained a formula for the calcu-
lation of the likelihood ratio for the situation in which the contributors belonged to different
ethnic origins. Each ethnic group is in Hardy–Weinberg equilibrium. The independence of
alleles between ethnic groups was employed.
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Let us first investigate an example in which the mixture M = {A1, A2, A3, A4}, and
two suspects are identified as S1 = A1A4 and S2 = A2A3, respectively. The two competing
propositions about the source of the DNA mixture are as follows:

Hp : the contributors were the two suspects;
Hd : the contributors were two unknown persons: X1 (ethnic group a) and

X2 (ethnic group b).

Under Hp, all the four alleles in the mixture are present in the genotypes of the two typed
suspects, so P(M|K,Hp) = 1. Under Hd , the two unknown contributors’ genotypes can
take one of the following six genotype combinations: (A1A2, A3A4), (A1A3, A2A4),
(A1A4, A2A3), (A2A3, A1A4), (A2A4, A1A3) and (A3A4, A1A2). Noting the independence
between two ethnic groups a and b, we have

P(X1 = AiAj, X2 = AkAl) = 2paipaj × 2pbkpbl = 4paipajpbkpbl,

where pai and pbi are the population frequencies of allele Ai in ethnic groups a and b,
respectively. So,

P(M|K,Hd) = 4pa1pa2pb3pb4 + 4pa1pa3pb2pb4 + 4pa1pa4pb2pb3

+ 4pa2pa3pb1pb4 + 4pa2pa4pb1pb3 + 4pa3pa4pb1pb2.

The ratio of P(M|K, Hp) and P(M|K,Hd) leads to the likelihood ratio. However, it is not
easy to enumerate all the possible combinations when the situation becomes a little more
complicated. So it is desired to develop a general method to handle the evaluation of DNA
mixtures when the persons involved come from different ethnic groups.

As we did before, let A1, A2, . . . denote the alleles at an autosomal locus, and G =
{a, b, . . .} denote the ethnic group indices. The population frequencies of alleles A1, A2, . . .

in ethnic group g (g = a, b, . . .) are denoted as pg1, pg2, . . ., respectively. The number
of unknown contributors is x =∑g xg, where xg is the number of unknown contributors
belonging to ethnic group g, g = a, b, . . .. Then, the formula for calculating the probability
W(C) defined in Equation (6.7) could be expressed as

W(C) =
∏
g∈G

(∑
Al∈C

pgl

)2xg

. (6.9)

The proof of this formula is given in Section 6.9.3. The derivation of the general formula of
W(C) for problems with contributors from different ethnic groups can also be referred to in
Fukshansky and Bär (1999) and Fung and Hu (2001). For the convenience of practitioners,
the explicit expressions of the likelihood ratios for 14 common cases were presented in Fung
and Hu (2001).

To illustrate the application of Equation (6.9), we consider the Simpson case, as described
in Section 6.1, for the evaluation of the likelihood ratio. The court ordered that the number of
contributors to the mixed sample be at least two, three and four. Here, we only take it equal
to two for illustration. The following two competing propositions are of interest:

Hp : contributors were the victim and the suspect;
Hd : contributors were two unknown persons.

The defendant is an African American and the victim is a Caucasian. The two unknowns
could be from different ethnic groups and we regard them as being African Americans (AA),
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Caucasians (CA) and/or Chinese (CH). The following allele frequencies are taken: AA (ethnic
group a): pa1 = 0.0316, pa2 = 0.0842, pa3 = 0.0926; CA (ethnic group b): pb1 = 0.0859,
pb2 = 0.0827, pb3 = 0.1073; and CH (ethnic group c): pc1 = 0.0169, pc2 = 0.0749, pc3 =
0.1522 (Budowle et al. 1991b; Fung 1996; Tsui and Wong 1996). Taking the single-banded
alleles as true homozygotes, the effect of different ethnic groups to the likelihood ratio is
investigated and the results are shown in Table 6.8. In fact, when the two unknown persons
come from the same ethnic group, for example Caucasian (ethnic group b), then it is easy to
calculate the likelihood ratio by Equation (6.2) or Table 6.4 as follows:

LR = 1

12 × 0.0859 × 0.0827 × 0.1073 × (0.0859 + 0.0827 + 0.1073)
= 396.

When the two unknown contributors come from ethnic group a (African American), we
have, similarly, LR = 1623. See the same result in Weir et al. (1997). But when the two
unknown contributors are one African American and one Caucasian, the calculation becomes
complicated. In this situation, under Hd , M = {A1, A2, A3}, U = {A1, A2, A3}, xa = xb = 1,
so, from Equations (6.6) and (6.9), we have

P(M|K,Hd) = W(M) − W(M \ {A1}) − W(M \ {A2}) − W(M \ {A3})
+ W(M \ {A1, A2}) + W(M \ {A1, A3}) + W(M \ {A2, A3})

= (pa1 + pa2 + pa3)
2(pb1 + pb2 + pb3)

2 − (pa2 + pa3)
2(pb2 + pb3)

2

− (pa1 + pa3)
2(pb1 + pb3)

2 − (pa1 + pa2)
2(pb1 + pb2)

2

+ p2
a3p

2
b3 + p2

a2p
2
b2 + p2

a1p
2
b1

= (0.0316 + 0.0842 + 0.0926)2 × (0.0859 + 0.0827 + 0.1073)2

− (0.0842 + 0.0926)2 × (0.0827 + 0.1073)2

− (0.0316 + 0.0926)2 × (0.0859 + 0.1073)2

− (0.0316 + 0.0842)2 × (0.0859 + 0.0827)2

+ 0.09262 × 0.10732 + 0.08422 × 0.08272 + 0.03162 × 0.08592

= 0.001375.

So, the likelihood ratio is LR = 1/0.001375 = 727. In this situation, we can use the developed
DOS-based computer program to tackle it. Table 6.8 shows the likelihood ratios for all possible
combinations of the two unknowns’ origins. It is observed from Table 6.8 that, compared with
the likelihood ratio 1623 with two African Americans, when the two unknown persons were
one African American and one Caucasian, the likelihood ratio drops to 727 (less than half)
and drops further to 396 (less than a quarter) if the two unknowns were Caucasians. Thus,
the effect of different ethnic groups could be large. It is to be noticed that the ethnic group
of the defendant does not matter to the likelihood ratio when the ethnic groups are in Hardy–
Weinberg equilibrium. Only the ethnic groups of the unknowns matter in the evaluation of
DNA mixtures.

From Table 6.8, in which the Hardy–Weinberg law holds, we observe that the likeli-
hood ratio gives the highest or the lowest value for the situation in which both unknown
contributors come from the same ethnic group, the two unknowns are African Americans
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Table 6.8 Likelihood ratios with two unknowns belonging to ethnic groups
of African American (AA), Caucasian (CA) and Chinese (CH).

AA CA CH LR

2 0 0 1623
0 2 0 396
0 0 2 1773
1 1 0 727
1 0 1 1519
0 1 1 599

and/or Caucasians (i.e. 727 lies between 396 and 1623), or the two unknowns are Cau-
casians and/or Chinese (i.e. 599 lies between 396 and 1773). This will in effect bracket
the range of likelihood ratio values – the two ethnic group value will invariably fall between
the one group values. So the one ethnic group scenarios can be conveyed as bounds, and
this approach is used by some practitioners. However, such constructed bounds are not
always valid. For example, in the case in which the two unknowns are African Americans
and/or Chinese, the likelihood ratio 1519 for the one African American and one Chinese
unknowns situation is smaller than the likelihood ratio 1623 with two African American
unknowns or the likelihood ratio 1773 with two Chinese. So it is necessary to calculate the
exact value of the likelihood ratio when the contributors to the mixture come from different
ethnic groups.

For practitioners’ convenience, Table 6.9 lists the conditional probability formulas
P(M|K,H) with two unknown contributors, respectively, from ethnic groups a and b and
up to three alleles in DNA mixtures (Fung and Hu 2001), and it can meet the practical needs
when the situation is not complicated.

Table 6.9 The calculating formula of P(M|K,H) for different M and U with two unknown
contributors respectively from ethnic groups a and b.

M U P(M|K,H)

{Ai} φ p2
aip

2
bi

{Ai} p2
aip

2
bi

{Ai, Aj} φ (pai + paj)
2(pbi + pbj)

2

{Ai} (pai + paj)
2(pbi + pbj)

2 − p2
ajp

2
bj

{Ai, Aj} (pai + paj)
2(pbi + pbj)

2 − p2
aip

2
bi − p2

ajp
2
bj

{Ai, Aj, Ak} φ (pai + paj + pak)
2(pbi + pbj + pbk)

2

{Ai} (pai + paj + pak)
2(pbi + pbj + pbk)

2

− (paj + pak)
2(pbj + pbk)

2

{Ai, Aj} (pai + paj + pak)
2(pbi + pbj + pbk)

2

− (paj + pak)
2(pbj + pbk)

2 − (pai + pak)
2(pbi + pbk)

2

{Ai, Aj, Ak} (pai + paj + pak)
2(pbi + pbj + pbk)

2

− (paj + pak)
2(pbj + pbk)

2 − (pai + pak)
2(pbi + pbk)

2

− (pai + paj)
2(pbi + pbj)

2 + p2
aip

2
bi + p2

ajp
2
bj + p2

akp
2
bk
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6.6 Subdivided population
6.6.1 Single ethnic group: simple cases

Hardy–Weinberg equilibrium is assumed in the derivation of the formula for evaluating the
DNA evidence in Equations (6.8) and (6.9). Clearly, Hardy–Weinberg equilibrium is seldom
exactly certain or correct. As noted by Balding and Nichols (1994), the uncertainty in DNA
profile analysis may be due to various factors such as population subdivision. Equation (3.17)
was proposed by Balding and Nichols (1994) to evaluate the probability of a set of alleles.

Firstly, let us consider the case with M = {Ai, Aj, Ak}, V = AiAj and S = AkAk, as
reported in Section 6.2.1, to investigate the effect of population subdivision on the evaluation
of the DNA mixture. The same proposition pair in (6.3) is taken. Under Hp that the victim and
the suspect were the contributors of M, the three alleles Ai, Aj, Ak are present in the victim’s
genotype and the suspect’s genotype, so P(M|K,Hp) = 1. Under Hd that the victim and one
unknown were the contributors of M, however, the allele Ak in the mixture is to be explained
by the unknown contributor. So the unknown’s genotype G is one of AiAk, AjAk and AkAk.
Therefore,

P(M|K,Hd)

= P(G = AiAk|V = AiAj, S = AkAk)

+ P(G = AjAk|V = AiAj, S = AkAk)

+ P(G = AkAk|V = AiAj, S = AkAk)

= 2P(Ai, Ak|Ai, Aj, Ak, Ak) + 2P(Aj, Ak|Ai, Aj, Ak, Ak)

+ P(Ak, Ak|Ai, Aj, Ak, Ak)

= 2P(Ai|Ai, Aj, Ak, Ak)P(Ak|Ai, Ai, Aj, Ak, Ak)

+ 2P(Aj|Ai, Aj, Ak, Ak)P(Ak|Aj, Ai, Aj, Ak, Ak)

+ P(Ak|Ai, Aj, Ak, Ak)P(Ak|Ak, Ai, Aj, Ak, Ak)

= 2

[
θ + (1 − θ)pi

1 + 3θ

] [
2θ + (1 − θ)pk

1 + 4θ

]
+ 2

[
θ + (1 − θ)pj

1 + 3θ

] [
2θ + (1 − θ)pk

1 + 4θ

]

+
[

2θ + (1 − θ)pk

1 + 3θ

] [
3θ + (1 − θ)pk

1 + 4θ

]

= [2θ + (1 − θ)pk][7θ + (1 − θ)(2pi + 2pj + pk)]

(1 + 3θ)(1 + 4θ)
.

So we have the likelihood ratio as listed in Table 6.10. The other likelihood ratios listed in
Table 6.10 can be derived in a similar way. Particularly when θ = 0, the likelihood ratios listed
in Table 6.10 are the same as those listed in Table 6.2.

6.6.2 Single ethnic group: general situations

In order to express the general formula for calculating P(M|K,H) when the people involved
come from the same subdivided population, we define for any given real r and non-negative
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Table 6.10 Likelihood ratios for one victim, one suspect and one unknown case about
Hp: the contributors were the victim and the suspect, and Hd : the contributors were the victim
and one unknown person.

Mixture Victim Suspect LR

{Ai, Aj} AiAi AiAj

(1 + 3θ)(1 + 4θ)

[θ + (1 − θ)pj][8θ + (1 − θ)(2pi + pj)]

AjAj

(1 + 3θ)(1 + 4θ)

[2θ + (1 − θ)pj][7θ + (1 − θ)(2pi + pj)]

AiAj AiAi

(1 + 3θ)(1 + 4θ)

[4θ + (1 − θ)(pi + pj)][5θ + (1 − θ)(pi + pj)]

AiAj

(1 + 3θ)(1 + 4θ)

[4θ + (1 − θ)(pi + pj)][5θ + (1 − θ)(pi + pj)]

{Ai, Aj, Ak} AiAi AjAk

(1 + 3θ)(1 + 4θ)

2[θ + (1 − θ)pj][θ + (1 − θ)pk]

AiAj AiAk

(1 + 3θ)(1 + 4θ)

[θ + (1 − θ)pk)][8θ + (1 − θ)(2pi + 2pj + pk)]

AkAk

(1 + 3θ)(1 + 4θ)

[2θ + (1 − θ)pk][7θ + (1 − θ)(2pi + 2pj + pk)]

{Ai, Aj, Ak, Al} AiAj AkAl

(1 + 3θ)(1 + 4θ)

2[θ + (1 − θ)pk][θ + (1 − θ)pl]

integers m and k that

r(m)(k, θ)

=
m−1∏
i=0

[(k + i)θ + (1 − θ)r]

= [kθ + (1 − θ)r][(k + 1)θ + (1 − θ)r] · · · [(k + m − 1)θ + (1 − θ)r], (6.10)

and r(0)(k, θ) = 1. Note that r(m)(k, θ) = rm when θ = 0. For brevity, r(m)(k, θ) is shortened
to r(m)(k) when the parameter θ is specified and fixed. But, in some situations, for example,
in the case of multiple ethnic groups, different θ values are taken for different groups, and so
the parameter θ in r(m)(k, θ) cannot be omitted.

Recall that there are x unknown contributors stated in the proposition H and K is the
collection of all the typed genotypes. Let cl denote the count of allele Al present in K,
l = 1, 2, . . .. Then the formula for calculating W(C) defined in Equation (6.7) for arbitrary
subset C of the mixture M is provided as follows:

W(C) =
(∑

Al∈C pl

)(2x)
(∑

Al∈C cl

)
1(2x)

(∑
l cl

) , (6.11)

where the parameter θ is omitted in the notation for brevity. The proof of Equation (6.11) is
given in Section 6.9.4. The general formulas for calculating P(M|K, H) can also be referred
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to in Curran et al. (1999) and Fung and Hu (2000b). Note that when the population is in
Hardy–Weinberg equilibrium, we have θ = 0 and W(C) = (

∑
Al∈C pl)

2x, which is reported
in Equation (6.8).

For the Simpson case described in Section 6.1 with M = {A1, A2, A3}, V = A1A3 and
S = A1A2, now all the people involved are assumed to be coming from the same subdivided
population with parameter θ. The measure θ of population subdivision is taken as 0, 0.01, and
0.03. The following two competing propositions are considered:

Hp : contributors were the victim and the suspect;
Hd : contributors were the victim and one unknown.

Then, from Table 6.10, we have

LR = (1 + 3θ)(1 + 4θ)

[θ + (1 − θ)p2][8θ + (1 − θ)(2p1 + p2 + 2p3)]
.

On the other hand, we can also derive the same likelihood ratio from Equations (6.6) and
(6.9). The details are provided as follows. Under Hp, P(M|K,Hp) = 1. Under Hd , x = 1 and
U = M \ {A1} ∪ {A3} = {A2}, c1 = 2, c2 = c3 = 1, so

P(M|K,Hd) = W(M) − W(M \ {A2})
= W({A1, A2, A3}) − W({A1, A3})

= (p1 + p2 + p2)
(2)(c1 + c2 + c3)

1(2)(c1 + c2 + c3)
− (p1 + p3)

(2)(c1 + c3)

1(2)(c1 + c2 + c3)

= (p1 + p2 + p2)
(2)(4)

1(2)(4)
− (p1 + p3)

(2)(3)

1(2)(4)

= [4θ + (1 − θ)(p1 + p2 + p3)][5θ + (1 − θ)(p1 + p2 + p3)]

(1 + 3θ)(1 + 4θ)

− [3θ + (1 − θ)(p1 + p3)][4θ + (1 − θ)(p1 + p3)]

(1 + 3θ)(1 + 4θ)

= [θ + (1 − θ)p2][8θ + (1 − θ)(2p1 + p2 + 2p3)]

(1 + 3θ)(1 + 4θ)
.

For example, when θ = 0.03, we have further

LR

= (1 + 3 × 0.03) × (1 + 4 × 0.03)

[0.03 + 0.0842 × (1 − 0.03)] × [8 × 0.03 + (1 − 0.03) × (0.0632 + 0.0842 + 0.1852)]

= 19.43.

Moreover, suppose that the prosecution and defense propositions are altered as

Hp : contributors were the victim, suspect and m unknowns;
Hd : contributors were n unknowns.

Under Hp, the known contributors have all three alleles A1, A2 and A3 in the mixture M.
Under Hd , all contributors are unknown and the alleles A1, A2, and A3 should be explained by
the n unknown contributors and U = {A1, A2, A3}. Taking m = 0 and n = 2 for illustration,
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we have P(M|K,Hp) = 1 and, from Equation (6.6),

P(M|K,Hd) = W({A1, A2, A3}) − W({A2, A3}) − W({A1, A3})
− W({A1, A2}) + W({A1}) + W({A2}) + W({A3}).

Note that the tested genotypes in this case are A1A3 and A1A2, so c1 = 2, c2 = c3 = 1 (see
notations listed in Table 6.6), which are used to calculate W(C) based on Equation (6.11). For
example,

W({A1, A2, A3}) = (p1 + p2 + p3)
(2n)(c1 + c2 + c3)

1(2n)(c1 + c2 + c3)

=
3∏

i=0

(4 + i)θ + (1 − θ)(p1 + p2 + p3)

(4 + i)θ + (1 − θ)
,

W({A2, A3}) = (p2 + p3)
(2n)(c2 + c3)

1(2n)(c1 + c2 + c3)

=
3∏

i=0

(2 + i)θ + (1 − θ)(p2 + p3)

(4 + i)θ + (1 − θ)
,

and the other values of W({A1, A3}), W({A1, A3}), W({A1}), W({A2}) and W({A3}) can be
derived similarly. Based on all these values, we can obtain the likelihood ratio. Table 6.11
shows the effect of considering uncertainty and population subdivision with different θ values
on the likelihood ratios under various combinations of m and n. In each of these combinations,
the likelihood ratio at θ = 0 is larger than that at θ �= 0. Thus, taking θ �= 0 would be more
conservative and to the advantage of the defendant. Taking the extreme example of n = 4 and
m = 0 for demonstration, the likelihood ratios are in the proportions of about 70 : 10 : 1 for
the three different values of θ = 0, 0.01 and 0.03. The strength of the evidence is reduced
dramatically if θ = 0.03 is taken. When the ‘more reasonable’ scenario of n = 2 and m = 0 is

Table 6.11 Likelihood ratios for the Simpson case about two competing propositions
Hp: contributors were the victim, suspect and m unknowns, and Hd : contributors
were n unknowns, from Fung and Hu (2000b). (Reproduced by permission of Blackwell
Publishing.)

m

n θ 0 1 2

2 0.00 1 623 70 3.06
0.01 739 44 2.88
0.03 276 26 2.98

3 0.00 21 606 938 41
0.01 5 853 345 23
0.03 1 150 107 12

4 0.00 396 495 17 220 748
0.01 58 264 3 434 227
0.03 5 682 528 61
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considered, the likelihood ratio drops from 1623 to 739 (half) when θ = 0.01, and further to
276 (one-sixth) when θ = 0.03. The value of θ can have a substantial effect on the likelihood
ratio in this RFLP example with a high discriminating power where the allele frequencies p1,
p2 and p3 are small.

6.6.3 Multiple ethnic groups

When the persons involved come from different ethnic groups, the calculating formula of the
likelihood ratio has to be adjusted accordingly. More parameters are needed to describe the
model in this situation. Let pgl be the allele proportion or frequency for type Al in ethnic group
g, g ∈ G = {a, b, . . .}, l = 1, 2, . . . , with measure θg for the degree of subdivision. In order
to evaluate the conditional probability P(M|K,H) for some proposition H using the formula
in Equation (6.6), let xg be the number of unknown contributors belonging to ethnic group
g stated in H , and cgl be the count of allele Al (l = 1, 2, . . .) present in the typed persons
belonging to the ethnic group g, and cg· =∑l cgl, g ∈ G. The alleles between different ethnic
groups are taken to be independent but, for within group, the alleles are not independent, since
they belong to the same subdivided population [see Equation (3.17)]. Then, the corresponding
formula for calculating W(C) is given as follows:

W(C) =
∏
g∈G

[
1(2xg)(cg·, θg)

]−1
(∑

Al∈C

pgl

)(2xg)(∑
Al∈C

cgl, θg

)
. (6.12)

Note that there could be different degrees of subdivision θg for different ethnic groups, so we
keep parameter θg in Equation (6.12); see also Equation (6.10) for the definition of the expres-
sion r(m)(k, θ). For easy reference, Table 6.12 lists the notations used in Equation (6.12). The
proof of Equation (6.12) is given in Section 6.9.3. For practitioners’ convenience, Table 6.13
lists the likelihood ratios with a typed victim, a suspect and one unknown contributor. The
details of derivation are omitted for simplicity. The detailed expressions for six common mix-
ture cases can be referred to in Fung and Hu (2002b). It is understood from Equation (6.12)
and Table 6.13 that it is not easy to calculate the likelihood ratio when the people involved
come from different subdivided populations.

In order to evaluate the weight of DNA evidence in this complex situation, a DOS-based
computer program has been developed to tackle such problems. In the following, we consider
again the Simpson case reported in Section 6.1 to see the effects of population subdivision
measures in different ethnic groups. The following two competing propositions are considered
(Hu and Fung 2003a):

Table 6.12 A list of notations used in Equation (6.12).

Allele frequency Allele count
Number of Degree of

Group unknowns subdivision A1 A2 · · · An A1 A2 · · · An

a xa θa pa1 pa2 · · · pan ca1 ca2 · · · can

b xb θb pb1 pb2 · · · pbn cb1 cb2 · · · cbn

...
...

...
...

...
...

...
...

...
...

...∑
g∈G xg = x

∑n
j=1 pgj = 1,

∑n
j=1 cgj = cg·, g ∈ G
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Table 6.13 Likelihood ratios for different mixture M, victim V and suspect S with
Hp: the contributors were the victim V and the suspect S, and Hd : the contributors
were the victim V and one unknown person X where the people involved come from different
subdivided ethnic groups.

Ethnicity

X V S Likelihood ratio

M = {Ai, Aj, Ak}, S = AiAi, V = AjAk

a a a
(1 + 3θa)(1 + 4θa)

[2θa + (1 − θa)pai][7θa + (1 − θa)(pai + 2paj + 2pak)]

a a ā
(1 + θa)(1 + 2θa)

(1 − θa)pai[5θa + (1 − θa)(pai + 2paj + 2pak)]

a ā a
(1 + θa)(1 + 2θa)

[2θa + (1 − θa)pai][3θa + (1 − θa)(pai + 2paj + 2pak)]

a ā ā
1

pai[θa + (1 − θa)(pai + 2paj + 2pak)]

M = {Ai, Aj, Ak}, S = AiAj , V = AkAk

a a a
(1 + 3θa)(1 + 4θa)

2[θa + (1 − θa)pai][θa + (1 − θa)paj]

a a ā
(1 + θa)(1 + 2θa)

2(1 − θa)2paipaj

a ā a
(1 + θa)(1 + 2θa)

2[θa + (1 − θa)pai][θa + (1 − θa)paj]

a ā ā
1

2(1 − θa)paipaj

M = {Ai, Aj, Ak, Al}, S = AiAj , V = AkAl

a a a
(1 + 3θa)(1 + 4θa)

2[θa + (1 − θa)pai][θa + (1 − θa)paj]

a a ā
(1 + θa)(1 + 2θa)

2(1 − θa)2paipaj

a ā a
(1 + θa)(1 + 2θa)

2[θa + (1 − θa)pai][θa + (1 − θa)paj]

a ā ā
1

2(1 − θa)paipaj

ā means not ethnic group a

Hp : the contributors were the victim, suspect and m unknowns;
Hd : the contributors were n unknowns .

Note that the defendant and the victim were an African American and a Caucasian, respec-
tively. The unknown persons could be from various ethnic groups and they are taken to be
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Table 6.14 Likelihood ratios for the Simpson case example about Hp: the contributors
were the victim, the suspect and m unknowns, versus Hd : the contributors were n

unknowns. Scenario 1, m = 0; scenario 2, m = 1 unknown of African American;
scenario 3, m = 1 unknown of Caucasian, from Hu and Fung (2003a). (Reproduced by
permission of Springer-Verlag.)

Scenario
Under Hd , the number of

unknowns belong to groupa 1 2 3

n AA CA CH θ = 0 0.03 0 0.03 0 0.03

2 2 0 0 1 623 518 70 36 124 56
0 2 0 396 218 17 15 30 23
0 0 2 1 773 1536 77 108 135 165
1 1 0 727 329 32 23 55 35
1 0 1 1 519 739 66 52 116 79
0 1 1 599 420 26 29 46 45

3 3 0 0 21 606 2561 938 180 1645 275
0 3 0 3 112 799 135 56 237 86
0 0 3 16 007 7432 695 521 1218 798

aAA: African American; CA: Caucasian; CH: Chinese

African Americans (AA), Caucasians (CA) and/or Chinese (CH). The allele frequencies of
A1, A2 and A3 in ethnic groups AA, CA and CH refer to Section 6.5.

For brevity, Table 6.14 shows the results for n = 2 and 3, and m = 0 and 1. A few points
are observed. First, the likelihood ratio is highly affected by the different sets of propositions,
and this is not unusual. Second, ethnicities of the contributors could have a large effect on the
size of the likelihood ratio. For example, in scenario 1 with m = 0 and θ = 0.03, the likelihood
ratio when the unknowns in Hd are Chinese is about seven times that when they are Caucasians.
A similar phenomenon is also found for the other two scenarios with m = 1. Third, the effect
of population subdivision on the value of the likelihood ratio can be substantial. In some cases,
taking θ = 0.03 can reduce the value of the likelihood ratio by a few times. However, in three
cases, the likelihood ratio increases with θ, indicating that taking θ �= 0 is not always more
conservative than the Hardy–Weinberg rule.

It is seen from the results that the effects of different ethnic groups on the weight of
evidence are sometimes great. This example demonstrates the importance of taking ethnicities
of contributors into account, and the flexibility of the developed computer program in dealing
with various situations. Forensic scientists can choose one or some of the likelihood ratios in
Table 6.14 that they find appropriate, or choose to average out different possibilities to obtain
an overall likelihood ratio.

6.7 Computer software and example
The authors have developed Window-based user-friendly software and also some Dos-based
computer programs for the evaluation of DNA mixtures. In the following, we first introduce
the way to run the Window-based program. There are a total of 12 steps needed for the first
locus and only three steps for subsequent loci.
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Steps in running the EasyDNA Mixture software

1 Input the population frequency file

2 Input θ values

3 Input the number of alleles in the mixture

4 Input the alleles in the mixture

5 Input the number of typed persons

6 Input the names of typed persons and their genotypes

7 Choose the known contributors for Hp

8 Input the number of unknown contributors for Hp

9 Choose the relationship of the involved persons for Hp (in the example given below,
All involved persons are unrelated)

10-12 Execute steps 7–9 but for Hd , respectively.

Note that only steps 3, 4 and 6 are needed after processing the first locus.

Note that in step 4, the software will search automatically the frequency corresponding to
the chosen allele. In step 6, it is recommended to call those involved persons with names such
as victim, suspect, etc. for convenience. Potential contributors to the mixture and their names
as well as the genotypes will appear on the screen for selection.

Take the Hong Kong case example introduced in Section 6.2.4 to illustrate the calculation
of the likelihood ratio by the computer program. After inputing all the entries, e.g. allele
names in the mixture, the two alleles of the typed victim and the typed suspect, for the first
locus D3S1358, we can get the input screen (Figure 6.2), where multiple values of parameter
θ are designed. We specify the victim and the suspect being the contributors to the mixed
stain in the prosecution proposition Hp and the victim and one unknown person being the
contributors to the mixed stain in the defense proposition Hd . We can then click the Calculate
button and confirm the input entries to get the likelihood ratio for the first locus. As shown in
Figure 6.2, the likelihood ratios when θ = 0, 0.01 and 0.03 are, respectively, 63.4, 50.9 and
37.6. Afterwards, we can click the Next Locus button to start the processing of the second
locus. Note that only steps 3, 4 and 6 are needed for this and the subsequent loci. After we
complete steps 3, 4 and 6 for the remaining loci, we can get the likelihood ratio results for all
loci and at various values of θ. The overall likelihood ratios will be displayed simultaneously.
See Figure 6.3 for the captured screen of the computational results of the Hong Kong case
example. Finally, we can also click the Save button to save the results in a text file for review
and further investigation. Figure 6.4 shows the captured screen of the output file.

6.8 NRC II Recommendation 4.1
6.8.1 Single ethnic group

In Section 6.6.1, the subpopulation model of Balding and Nichols (1994) was selected to deal
with the evaluation of the DNA mixture when Hardy–Weinberg equilibrium is violated. That
model forms the basis of Recommendation 4.2 or Equations (4.9) and (4.10) of the NRC II
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Figure 6.2 Captured input screen for running the EasyDNA Mixture software for the Hong
Kong case example with data given in Table 6.5.

(National Research Council 1996). In fact, two recommendations (Recommendations 4.1 and
4.2) have been suggested by the NRC II to deal with the departure from Hardy–Weinberg
equilibrium. Recommendation 4.1 is also used by many forensic laboratories. In the follow-
ing, we are going to provide the general formula for the interpretation of mixture under
Recommendation 4.1.

Based on Equation (3.15) associated with the recommendation, we define

pl ∗ pm =
{

p2
l + pl(1 − pl)θ, if l = m,

plpm, otherwise.
(6.13)

Then, the general formula for calculating W(C) defined in Equation (6.7) can be expressed as

W(C) =
( ∑

Al,Am∈C

pl ∗ pm

)2x

. (6.14)

The proof of Equation (6.14) is given in Section 6.9.5. See also Fung and Hu (2000a) for the
details of the derivation of W(C). Note that Equation (6.14) reduces to the Hardy–Weinberg
equilibrium Equation (6.8) when θ = 0. The match probability under Recommendation 4.1
can be evaluated after substituting Equation (6.14) into Equation (6.6).
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Figure 6.3 Captured screen for the results of the Hong Kong case example using the
EasyDNA Mixture software.

6.8.2 Multiple ethnic groups

In practice, in countries with multiple racial or ethnic groups such as the US, UK, New Zealand
or Singapore, it is not uncommon that contributors to a mixed stain belong to different ethnic
origins, as we discussed in Section 6.5. A well known example of this sort is the Simpson
case introduced in Section 6.1. The general formula for evaluating the likelihood ratio when
the contributors to a mixed stain belong to different ethnic groups, based on Recommendation
4.1 of the NRC II (National Research Council 1996), is exploited (Fung and Hu 2002a) as
follows:

W(C) =
∏
g∈G

( ∑
Al,Am∈C

pgl ∗ pgm

)xg

, (6.15)

where the asterisk operation pgl ∗ pgm is defined in Equation (6.13) with the measure of
subdivision θg for the ethnic group g ∈ G. It is obvious that Equation (6.15) is an extension
of Equation (6.14). The proof of Equation (6.15) is given in Section 6.9.5. See Table 6.12 for
the notations used in Equation (6.15).

In the following, we consider the Hong Kong case example introduced in Section 6.2.4 to
see the effect of Recommendation 4.1 on the statistical assessment of mixture. The victim and



138 INTERPRETING MIXTURES

Figure 6.4 Captured screen for the output file of the Hong Kong case example with data
given in Table 6.5, using the EasyDNA Mixture software.

the suspect here were both Chinese and their genotypes are listed in Table 6.5. The prosecution
and defense propositions are set as

Hp : the contributors to the mixture were the victim and suspect;
Hd : the contributors to the mixture were the victim and an unknown.

Since there are many Asians of different ethnic origins living in Hong Kong, the effects
of different ethnic groups of contributors are considered, regarding the perpetrator being a
Chinese, a Filipino or a Thai (they are in the sizes of millions, hundred thousands, and ten
thousands, respectively). Allele frequencies of the corresponding groups (Pu et al. 1999; Wong
et al. 2001) are presented in Table 6.15. It is noted that they are different across different ethnic
groups. We may choose different θ values for different groups, but we take a common θ = 0.03
for illustration.
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Table 6.15 Allele frequencies of different ethnic groups for the Hong Kong case
introduced in Section 6.2.4, from Fung and Hu (2002a). (Reproduced by permission of
John Wiley & Sons, Ltd.)

Locus Allele Chinese Filipino Thai

D3S1358 14 0.033 0.026 0.048
15 0.331 0.267 0.291
17 0.239 0.286 0.281
18 0.056 0.088 0.065

vWA 16 0.156 0.161 0.110
18 0.160 0.225 0.240

FGA 20 0.044 0.048 0.069
24 0.166 0.141 0.120
25 0.110 0.088 0.069

The likelihood ratios calculated by Equation (6.15) are presented in Table 6.16. Taking
different ethnic origins for the unknown contributor has effects on the likelihood ratio. For
example, at locus D3S1358, the likelihood ratio, if the unknown contributor is a Thai, is 41 and
45% less than that if the unknown is a Chinese and a Filipino, respectively. Taking θ = 0.03
makes the likelihood ratios smaller at all loci except D3S1358. The value of θ has no effect
at locus D3S1358 because the victim and suspect are both heterozygous [see the asterisk
operation introduced in Equation (6.13)]. The overall likelihood ratio drops from 14 721 to
13 434 when θ = 0.03 is taken. The overall effect on the likelihood ratio due to different ethnic
origins of the unknown is not large in this example. However, if the genotypes of the victim
and suspect were interchanged, the overall likelihood ratio, if the unknown is a Chinese, is
about double that if the unknown is a Filipino or a Thai (see the last row of Table 6.16). The
ethnicity of the contributor has a larger effect in this situation.

The results in Table 6.16 demonstrate that the ethnicities of contributors have effects on
the likelihood ratio. More importantly, the court would not be satisfied and the defendant
attorney will strongly criticize if the single ethnic origin formula is applied to mixed stains
with contributors from different ethnic origins.

Table 6.16 Likelihood ratios for the Hong Kong case in Section 6.2.4 with the
unknown being a Chinese, a Filipino or a Thai, from Fung and Hu (2002a). (Reproduced
by permission of John Wiley & Sons, Ltd.)

Chinese Filipino Thai

Locus θ = 0 0.03 0 0.03 0 0.03

D3S1358 63.4 63.4 67.2 67.2 37.1 37.1
vWA 13.5 13.0 10.2 9.8 15.4 14.7
FGA 17.2 16.3 24.4 23.0 32.4 30.5

Overall 14 721 13 434 16 724 15 085 18 511 16 633
Overalla 24 413 25 893 12 797 12 435 14 447 13 761
aThe genotypes of the victim (V) and suspect (S) are interchanged.
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Finally, let us consider the Simpson case introduced in Section 6.1 to investigate the
effects of the ethnicities of unknown contributors on the evaluation of DNA mixtures, based
on Recommendation 4.1 of NRC II (National Research Council 1996). The following two
competing propositions are considered:

Hp : the contributors were the victim, suspect and m unknowns;
Hd : the contributors were n unknowns .

The defendant and the victim were, respectively, an African American and a Caucasian.
The unknown persons could be from various ethnic groups and they are taken to be African
Americans (AA), Caucasians (CA) and/or Chinese (CH). See Section 6.5 for the population
frequencies of alleles A1, A2, A3 in ethnic groups AA, CA and CH, respectively.

The single-banded alleles are taken as true homozygous in the investigation of the effects
of θ and different ethnic origins of contributors on the weight of DNA evidence. Table 6.17
lists the results for n = 2 and 3, and m = 0 and 1. A few things are noticed from the table.
First, the likelihood ratio is highly affected by the different sets of propositions, and this is not
unusual. Second, taking θ = 0.03 often reduces the size of the likelihood ratio, in most cases
by a few to about 20%. However, in some cases, the likelihood ratio increases slightly with
θ (see scenario 2), indicating that Recommendation 4.1 is not always more conservative than
the Hardy–Weinberg rule. Third, the ethnicity of the contributor has a large effect on the size
of the likelihood ratio. For example, in scenario 1 with θ = 0.03, the likelihood ratio when
the unknowns in Hd are three Chinese is about five times that when the unknowns are three
Caucasians. The other two scenarios also show a similar phenomenon.

The above example serves the purposes of illustrating the importance of taking the
ethnicity of contributors into account in the evaluation of DNA evidence, and demonstrat-
ing the flexibility of the developed method in dealing with various situations (the theory is a

Table 6.17 Likelihood ratios of the Simpson case introduced in Section6.1 about Hp :
the contributors were the victim, the suspect and m unknowns versus Hd : the contributors
were n unknowns. Scenario 1, m = 0; scenario 2, m = 1 unknown of African American;
scenario 3, m = 1 unknown of Caucasian, from Fung and Hu (2002a). (Reproduced by
permission of John Wiley & Sons, Ltd.)

The numbers Scenario
of unknowns 1 2 3

AA CA CHa θ = 0 0.03 2p 0 0.03 2p 0 0.03 2p

2 0 0 1 623 1 431 158 70 70 70 124 120 95
0 2 0 396 361 50 17 18 22 30 30 30
0 0 2 1 773 1 593 200 77 78 89 135 133 120
1 1 0 727 651 80 32 32 35 55 54 48
1 0 1 1 519 1 355 161 66 67 71 116 113 97
0 1 1 599 542 71 26 27 32 46 45 43

3 0 0 21 606 15 914 54 938 783 24 1645 1331 32
0 3 0 3 112 2 462 15 135 121 7 237 206 9
0 0 3 16 007 12 499 64 695 615 29 1218 1045 39
aAA: African American; CA: Caucasian; CH: Chinese



6.9 PROOFS 141

general one and the developed computer program can handle mixtures of up to 10 contribu-
tors). Forensic scientists can choose one or some of the likelihood ratios in Table6.17 that they
found appropriate for their analysis. Alternatively, Triggs et al. (2000) suggested obtaining an
overall likelihood ratio by averaging over different possibilities. In fact, considering various
numbers of contributors to the DNA mixed stains was at the request order from the court for
the Simpson case.

For the old RFLP technology, a ‘2p’ rule is also used to deal with single-banded alleles
(Budowle et al. 1991a; National Research Council 1996). A general formula in incorporating
this rule in assessing mixture for a single ethnic group was provided by Weir et al. (1997),
and Fung and Hu (2000a) gave proof to the formula. When the contributors to the mixed stain
come from different ethnic groups, the corresponding general formula can be obtained from
Equation (6.15) by just setting the homozygote match probability pl ∗ pl in Equation (6.13)
to 2pl. When it is applied to the Simpson case, the corresponding results are shown in the
columns under ‘2p’ in Table 6.17. It is noticed that the ‘2p’ rule can have a substantial effect on
the evaluation of the likelihood ratio. The likelihood ratio can be reduced a few hundred times
when the rule is taken (see the likelihood ratios in scenario 1). Consider a ‘more reasonable’
case with m = 0, n = 2 (row 1 of scenario 1); the likelihood ratio corresponding to the ‘2p’ rule
is only about one-tenth that when the Hardy–Weinberg rule or NRCII Recommendation4.1 is
taken.

It is seen in the Simpson case example that Equation (6.15) not only applies to Recom-
mendation4.1, but also to the ‘2p’ rule when the pl ∗ pl term in Equation (6.13) is set to 2pl.
Furthermore, if one prefers to use different formulas for pl ∗ pl and pl ∗ pm in Equation (6.13)
such as p2

l + 2plpn for the former one where pn is the null allele frequency, or Equation (6.13)
that having a unit sum of the probabilities over all possible profiles, or other formulas as recom-
mended by the NRCII report (National Research Council 1996), this can be done easily by just
substituting these formulas in Equation (6.15). Thus, Equation (6.15) has a wider application
than just being used for Recommendation4.1 of NRCII.

6.9 Proofs
The proofs in this section are mainly for mathematically oriented readers. They are provided
in this last section, having little distraction to the flow of the main content in the text.

6.9.1 The proof of Equation (6.6)

First of all, we have

X ⊂ M = (U ⊂ X ⊂ M) ∪ (∪Ai∈U(X ⊂ M \ {Ai})
)
.

So,

P(M|K,H) = P(U ⊂ X ⊂ M|K)

= P(X ⊂ M|K) − P(
(∪Ai∈U(X ⊂ M \ {Ai})

) |K). (6.16)

Let Bi = X ⊂ M \ {Ai}, Ai ∈ U, then BiBj = X ⊂ M \ {Ai, Aj}, BiBjBk = X ⊂ M \
{Ai, Aj, Ak}, etc. By the principle of inclusion and exclusion
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P(∪Ai∈UBi|K) =
∑
Ai∈U

P(Bi|K) −
∑

Ai,Aj∈U

P(BiBj|K)

+
∑

Ai,Aj,Ak∈U

P(BiBjBk|K) − · · ·

=
∑
Ai∈U

W(M \ {Ai}) −
∑

Ai,Aj∈U

W(M \ {Ai, Aj})

+
∑

Ai,Aj,Ak∈U

W(M \ {Ai, Aj, Ak})

− · · · + (−1)|U|W(M \ U), (6.17)

where M(C) = P(X ⊂ C|K) is defined for any subset of M satisfying M \ U ⊂ C ⊂ M.
Substituting Equation (6.17) into Equation (6.16), we prove Equation (6.6).

6.9.2 The proof of Equation (6.8)

Considering the independence of genotypes amongst the people involved, we have

W(C) = P(X ⊂ M|K) = P(X ⊂ C).

For the x unrelated unknown contributors, let Ai1Aj1 , . . . , AixAjx
denote the genotypes of the

1st, . . . , x-th unknown contributors, respectively. It is easy to understand that X ⊂ C if and
only if Ai1 , . . . , Aix ∈ C and Aj1 , . . . , Ajx

∈ C. Further, we have

P(X ⊂ C) =
∑

Ai1 ,...,Aix ∈C;Aj1 ,...,Ajx ∈C

pi1pj1 · · · pixpjx
=
(∑

Al∈C

pl

)2x

.

So we prove Equation (6.8).

6.9.3 The proof of Equation (6.9)

Let Xa, Xb, . . . , denote the genetic profiles of the xa, xb, xc, . . . , unknown contributors
belonging to the ethnic groups a, b, c, . . . , respectively. Note that X ⊂ C if and only if
Xg ⊂ C for all g ∈ G and P(Xg ⊂ C) = (∑Al∈C pgl

)2xg . So

W(C) =
∏
g∈G

P(Xg ⊂ C) =
∏
g∈G

(∑
Al∈C

pgl

)2xg

.

6.9.4 The proofs of Equations (6.11) and (6.12)

In order to prove Equation (6.11), we first establish the following two lemmas which were
first reported in Fung and Hu (2000b).

Lemma 6.9.1 For any given real numbers p1, p2 and positive integers m, c1, c2, the following
equation holds:
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(p1 + p2)
(m) (c1 + c2)

= p
(m)
1 (c1) + p

(m)
2 (c2) +

m−1∑
i=1

(
m

i

)
p

(i)
1 (c1)p

(m−i)
2 (c2)

=
∑

i1+i2=m

(
m

i1

)
p

(i1)
1 (c1)p

(i2)
2 (c2),

where

(
m

i

)
= m!/[i!(m − i)!].

Proof. In the following, we prove Lemma 6.9.1 by induction for m. It is obvious that
Lemma 6.9.1 holds for m = 1 from Equation (6.10). Assuming Lemma 6.9.1 holds for some
integer m ≥ 1, then we have, from Equation (6.10),

(p1 + p2)
(m+1) (c1 + c2)

= (p1 + p2)
(m) (c1 + c2) ((c1 + c2 + m)θ + (1 − θ)(p1 + p2))

=
m∑

i=0

(
m

i

)
p

(i)
1 (c1)p

(m−i)
2 (c2) ((c1 + i)θ + (1 − θ)p1 + (c2 + m − i)θ + (1 − θ)p2)

=
m∑

i=0

(
m

i

)
p

(i+1)
1 (c1)p

(m−i)
2 (c2) +

m∑
i=0

(
m

i

)
p

(i)
1 (c1)p

(m−i+1)
2 (c2)

= p
(m+1)
1 (c1) + p

(m+1)
2 (c2)

+
m−1∑
i=0

(
m

i

)
p

(i+1)
1 (c1)p

(m−i)
2 (c2) +

m∑
i=1

(
m

i

)
p

(i)
1 (c1)p

(m+1−i)
2 (c2)

= p
(m+1)
1 (c1) + p

(m+1)
2 (c2) +

m∑
i=1

[(
m

i − 1

)
+
(

m

i

)]
p

(i)
1 (c1)p

(m+1−i)
2 (c2)

= p
(m+1)
1 (c1) + p

(m+1)
2 (c2) +

m∑
i=1

(
m + 1

i

)
p

(i)
1 (c1)p

(m+1−i)
2 (c2).

Thus, Lemma 6.9.1 holds for m + 1. So Lemma 6.9.1 holds for any positive integer m.

As a special case, Lemma 6.9.1 is just the binomial expansion theorem of (p1 + p2)
m

when θ = 0.
For given (p1, p2, p3) and (c1, c2, c3), using Lemma 6.9.1 twice, we have

(p1 + p2 + p3)
(m)(c1 + c2 + c3)

= (p1 + (p2 + p3))
(m)(c1 + (c2 + c3))

=
m∑

i1=0

(
m

i1

)
p

(i1)
1 (c1)(p2 + p3)

(m−i1)(c2 + c3)
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=
m∑

i1=0

m−i1∑
i2=0

(
m

i1

)(
m − i1

i2

)
p

(i1)
1 (c1)p

(i2)
2 (c2)p

(m−i1−i2)
3 (c3)

=
∑

i1+i2+i3=m

m!

i1!i2!i3!
p

(i1)
1 (c1)p

(i2)
2 (c2)p

(i3)
3 (c3).

Simply using induction repeatedly, we can generalize Lemma 6.9.1 to

Lemma 6.9.2 For any given real numbers p1, . . . , pn and non-negative integers m and
c1, . . ., cn we have

(p1 + p2 + · · · + pn)
(m) (c1 + c2 + · · · + cn)

=
∑

i1+i2+···+in=m

m!

i1!i2! · · · in!

n∏
j=1

p
(ij)

j (cj). (6.18)

In order to prove Equation (6.11), we first establish an elaborate probability model to
calculate the probability that x people explain the mixed stain. The probability model is
described as follows. There are k + m(m ≥ 2, k ≥ 2) boxes and each box contains n balls
labeled from 1 to n. Let p1, p2, . . . , pn be n positive numbers satisfying

∑
1≤i≤n pi = 1. Now,

we draw one ball from each box in sequence (not necessarily independent) and get k + m balls
at last. Let G = [l1, l2, . . . , lm] denote the labels of the last m gained balls, which means that
the ball labeled lj is drawn from the (k + j)-th box, 1 ≤ j ≤ m. Let K denote the labels of
the first k balls and P(G|K) denote the conditional probability of event G occurring given K.
The probability P(G|K) is calculated based on Equation (3.17). For instance, if k = m = 4,
K = [1, 2, 3, 4], then

P([1, 2, 2, 3]|K) = [θ + (1 − θ)p1][θ + (1 − θ)p2][2θ + (1 − θ)p2][θ + (1 − θ)p3]/1(4)(4)

= p
(1)
1 (1)p

(2)
2 (1)p

(1)
3 (1)/1(4)(4),

P([1, 3, 3, 6]|K) = [θ + (1 − θ)p1][θ + (1 − θ)p3][2θ + (1 − θ)p3](1 − θ)p6/1(4)(4)

= p
(1)
1 (1)p

(2)
3 (1)p

(1)
6 (0)/1(4)(4),

and so on. It is not difficult to understand that the probability P(G|K) is independent of the
ordering of elements in G and K, e.g.

P([1, 2, 2, 3]|K) = P([1, 3, 2, 2]|K) = · · · = p
(1)
1 (1)p

(2)
2 (1)p

(1)
3 (1)/1(4)(4).

Generally, let ij denote the number of element j in G, j = 1, 2, . . . , n,
∑n

j=1 ij = m, and
for given K, let cj denote the number of element j in K, j = 1, 2, . . . , n, c =∑n

j=1 cj , then

P(G|K) =
n∏

j=1

p
(ij)

j (cj)

/
1(m)(c).

Of course, there are m!/(i1!i2! · · · in!) events which have the same probabilities as P(G|K)

due to multi-permutation. If we consider the summation of all combinations, then we have
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1≤l1≤n,...,1≤lm≤n

P([l1, l2, . . . , lm]|K)

=
∑

i1+i2+···+in=m

m!

i1!i2! · · · in!

n∏
j=1

p
(ij)

j (cj)/1(m)(c),

which can be expressed from Equation (6.18) as

(p1 + p2 + · · · + pn)
(m) (c1 + · · · + cn)/1(m)(k) = 1.

This shows that P(·|K) is a probability. By analogy and from Equation (6.18), for any given
subset C of set {1, 2, . . . , n}, we can have

∑
l1,l2,...,lm∈C

P([l1, l2, . . . , lm]|K) =
(∑

l∈C

pl

)(m)(∑
l∈C

cl

)
/1(m)(c). (6.19)

Letting m = 2x leads immediately to Equation (6.11). Based on Equation (6.11) and employ-
ing the same principle as in the proof of Equation (6.9), we can prove Equation (6.12).

6.9.5 The proofs of Equations (6.14) and (6.15)

In fact, Equation (6.15) is an extension of Equation (6.14), so it is sufficient to prove Equation
(6.15). For ethnic group g, since every person inherits two alleles at one locus from his/her
parents, it is easy to understand that the probability of his/her alleles belonging to C can
be expressed as

∑
Al∈C P(AlAl) +∑l<m,Al,Am∈C P(AlAm), where C is an arbitrary subset of

M. According to Recommendation 4.1 of National Research Council (1996), p2
gl + pgl(1 −

pgl)θ is used to estimate the profile probability of a homozygote AlAl, while the profile
probability of a heterozygote AlAm remains the same as 2pglpgm. Using the asterisk operation
introduced in Equation (6.13), the probability that one’s alleles belong to C can be expressed
further as

∑
Al∈C pgl ∗ pgl + 2

∑
l<m,Al,Am∈C pgl ∗ pgm =∑Al,Am∈C pgl ∗ pgm. Generally, the

probability that the alleles of xg unknown contributors belong to set C is
(∑

Al,Am∈C pgl ∗
pgm

)xg . Since the alleles are independent across ethnic group, we find that the probability of
the alleles of the x unknowns belonging to C is just the product of the probability of the alleles
of the xg unknowns belonging to C over all g ∈ G, i.e.

W(C) = P(X ⊂ C) =
∏
g∈G

( ∑
Al,Am∈C

pgl ∗ pgm

)xg

.

6.10 Problems
1. Suppose that the mixture M = {A1, A2, A3}, and the victim and the suspect are typed as

V = A1A3 and S = A2A2. Calculate the likelihood ratio for the prosecution proposition
Hp: the contributors were the victim and the suspect, versus the defense proposition Hd :
the contributors were the victim and one unknown person. Hardy–Weinberg equilibrium
is assumed.
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2. For a crime DNA mixed sample of type {A1, A2} and a suspect of type A2A2, calculate
the likelihood ratio for the prosecution proposition Hp: the contributors were the sus-
pect and one unknown, versus the defense proposition Hd : the contributors were two
unknown persons. Hardy–Weinberg equilibrium is assumed.

3. Suppose that the DNA profiles for crime sample, victim and suspect are, respectively,
M = {A1, A2, A3}, V = A2A3 and S = A1A3. All involved people come from the same
subdivided population with a population subdivision measure θ. Derive the likelihood
ratio for the prosecution propositionHp: the contributors were the victim and the suspect,
versus the defense proposition Hd : the contributors were the victim and one unknown
person.

4. Some crime sample contains DNA from more than one person, and there is only one
suspect. Suppose that the mixture M = {A1, A2, A3, A4}, and the suspect is tested as
S = A2A4. Calculate the likelihood ratio for the prosecution proposition Hp: the con-
tributors were the suspect and one unknown X1 (ethnic group a), versus the defense
proposition Hd : the contributors were two unknown persons X1 (ethnic group a) and
X2 (ethnic group b). Hardy–Weinberg equilibrium within each group is assumed.

5. Consider the following two suspects case. Suppose that the mixture M = {A1, A2, A3,

A4}, and suspect 1 is tested asS1 = A1A2 and suspect 2 is tested asS2 = A3A4. Calculate
the likelihood ratio for the prosecution proposition Hp: the contributors were the two
suspects, versus the defense proposition Hd : the contributors were two unknown persons
X1 and X2 for the three scenarios given below. All the involved persons may come from
different ethnic groups with different population subdivision measures θ’s.

(a) The two unknowns and suspect S1 come from ethnic group a, and suspect S2 comes
from ethnic group b.

(b) The two unknowns come from ethnic group a, and the two suspects do not come
from ethnic group a.

(c) The first unknown X1 comes from ethnic group a, the second unknown X2 comes
from ethnic group b, and the two tested suspects come from ethnic group c.

6. For a crime DNA mixed sample of type {A1, A2, A3}, known to contain DNA from two
contributors, the victim is tested as V = A1A2 and the suspect is tested as S = A3A3.
Under Recommendation 4.1 of NRCII, calculate the likelihood ratio for the prosecution
proposition Hp: the contributors were the victim and the suspect, versus the defense
proposition Hd : the contributors were the victim and one unknown person.
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Interpreting mixtures
in the presence of relatives

It is not uncommon to have the situation in which the relatives of the suspect or the relatives of
the typed persons are involved in a criminal offence. When there are two or more related people
involved, it is more flexible to use the relatedness coefficients (k0, 2k1, k2) to describe the
relationship between a pair of biologically related persons. When all the people involved come
from the same subdivided population, the recursive formula in Equation (3.17) is employed
to evaluate the weight of DNA mixture. The assessment of DNA mixture with the presence
of relatives is discussed in this chapter. We focus on the derivation of the likelihood ratios,
incorporating the relatedness coefficients into the evaluation, when there are a pair of relatives,
or two pairs of relatives, when the population is in Hardy–Weinberg equilibrium or when it is
not. The corresponding calculating formulas are given and the associated computer program
is exhibited for demonstration. Several examples are reported to show the effect of relatedness
on the evaluation of the likelihood ratios.

7.1 One pair of relatives: HWE
Consider a case of crime in which the stain is collected from the scene and the reference sample
is gathered from the suspect, through a profiling system. The suspect cannot be excluded as a
contributor of the stain if the reference sample matches the crime stain. If that is not the case,
a suggestion may be made that one close relative of the suspect is a probable assailant when
the suspect and crime stain share very rare alleles (Sjerps and Kloosterman 1999). Usually, a
series of propositions will be raised to explain who the contributors were, and the likelihood
ratio is an effective tool to assess the strength of the evidence. In this section, we shall first
introduce a motivating example and then derive a general formula for the evaluation of DNA
mixtures in the presence of a pair of relatives when the population is in Hardy–Weinberg
equilibrium (Hu and Fung 2003b).

Statistical DNA Forensics: Theory, Methods and Computation Wing Kam Fung and Yue-Qing Hu
© 2008 John Wiley & Sons, Ltd
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7.1.1 Motivating example

In some situations, some person is suspected for the offence but his/her genotype is not
available for analysis. A relative of his/hers, for example a full sibling, is, however, available.
Also encountered is that in the defense proposition, one relative of the suspected person is
claimed to be one of the contributors of the mixture.

Recall the case reported in Table 6.2 with mixture M = {A1, A2, A3}, the victim’s profile
V = A1A2 and the suspect’s genotype S = A1A3. The two competing propositions about who
the contributors of the mixture were are listed below:

Hp : the victim and the suspect were contributors;
Hd : the victim and one unknown relative of the suspect were contributors.

Just as before, let K = A1A2, A1A3 denote the known genotypes and it is obvious that
P(M|K, Hp) = 1. So we focus on the calculation of the denominator P(M|K, Hd) of the
likelihood ratio. Under the defense proposition Hd , it is noted that the unknown contributor,
denoted by R, is related to the tested person S, so P(M|K, Hd) = P(R|S = A1A3). Since V

and R are the only contributors of the mixture, it is concluded that R can take one of the
following three genotypes: A1A3, A2A3, and A3A3. Therefore,

P(M|K, Hd) = P(R = A1A3|S = A1A3) + P(R = A2A3|S = A1A3)

+ P(R = A3A3|S = A1A3).

Let (k0, 2k1, k2) be the relatedness coefficients between the suspect S and the relative R. See
Table 3.13 for the relatedness coefficients of commonly encountered relationships. Employing
the results listed in Table 5.1, we have directly

P(R = A1A3, S = A1A3) = 4k0p
2
1p

2
3 + 2k1p1p3(p1 + p3) + 2k2p1p3,

P(R = A2A3, S = A1A3) = 4k0p1p2p
2
3 + 2k1p1p2p3,

P(R = A3A3, S = A1A3) = 2k0p1p
3
3 + 2k1p1p

2
3,

and then

P(R = A1A3|S = A1A3) = 2k0p1p3 + k1(p1 + p3) + k2,

P(R = A2A3|S = A1A3) = 2k0p2p3 + k1p2,

P(R = A3A3|S = A1A3) = k0p
2
3 + k1p3.

So, we have

P(M|K, Hd) = k0p3(2p1 + 2p2 + p3) + k1(p1 + p2 + 2p3) + k2, (7.1)

and the likelihood ratio LR is one divided by this probability. To illustrate, we consider that R

is a full sibling of the suspect S, then k0 = k1 = k2 = 1/4. If p1 = p2 = p3 = 0.1, we have
P(M|K, Hd) = 0.3625 with LR = 1/0.3625 = 2.76.

Let us continue to see how the likelihood ratio is derived when the victim’s genotype is
changed to A1A1 and the suspect’s genotype is changed to A2A3, and the others remain the
same. Under the prosecution proposition Hp, P(M|K, Hp) = 1. Under the defense proposition
Hd , the genotype of the unknown must be G = A2A3. So P(M|K, Hd) = P(G = A2A3|S =
A2A3). Considering the relatedness coefficients between the suspect S and the relative being
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Table 7.1 Likelihood ratios for one victim, one suspect and one unknown case with
Hp: the contributors were the victim and the suspect, and Hd : the contributors were
the victim and one unknown relative of the suspect. The relatedness coefficients between
the suspect and the relative are (k0, 2k1, k2).

Victim Suspect LR

M = {A1, A2}
A1A1 A1A2 1/[k0p2(2p1 + p2) + k1(p1 + 2p2) + k2]

A2A2 1/[k0p2(2p1 + p2) + 2k1(p1 + p2) + k2]

A1A2 A1A1 1/[k0(p1 + p2)
2 + 2k1(p1 + p2) + k2]

A1A2 1/[k0(p1 + p2)
2 + 2k1(p1 + p2) + k2]

M = {A1, A2, A3}
A1A1 A2A3 1/[2k0p2p3 + k1(p2 + p3) + k2]

A1A2 A1A3 1/[k0p3(2p1 + 2p2 + p3) + k1(p1 + p2 + 2p3) + k2]

A3A3 1/[k0p3(2p1 + 2p2 + p3) + 2k1(p1 + p2 + p3) + k2]

M = {A1, A2, A3, A4}
A1A2 A3A4 1/[2k0p3p4 + k1(p3 + p4) + k2]

(k0, 2k1, k2), we have

P(G = A2A3|S = A2A3) = k0P(A2A3) + k1P(A2) + k1P(A3) + k2

= 2k0p2p3 + k1(p2 + p3) + k2.

So, LR = 1/[2k0p2p3 + k1(p2 + p3) + k2]. When the relative stated in the defense propo-
sition is a full sibling of the suspect, i.e. (k0, 2k1, k2) = (1/4, 1/2, 1/4), the associated like-
lihood ratio is LR = 4/(2p2p3 + p2 + p3 + 1). Particularly, if p2 = 0.2 and p3 = 0.3, then
LR = 4/(2 × 0.2 × 0.3 + 0.2 + 0.3 + 1) = 2.47.

Likelihood ratios for some specific combinations of M, V and S can be derived in a similar
way and they are listed in Table 7.1 for easy reference.

7.1.2 A probability formula

Comparing the likelihood ratios in Tables 6.2 and 7.1, it is anticipated that it is more difficult
to obtain the likelihood ratio under the general situation when the involved people are related.
As before, let M denote the DNA profile of the mixture, K denote the collection of the known
genotypes, H denote a proposition specifying the known contributors, unknown contributors,
and the relationship amongst all the involved people, if any, x denote the number of unknown
contributors stated in H , and A1, A2, . . . , denote the alleles at an autosomal chromosome with
corresponding population frequencies p1, p2, . . ., respectively. As we know from Section 6.3,
our focus is on the derivation of P(M|K, H) defined there.
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In order to give a concise representation of the calculating formula, we first define

Q(n, C) =
(∑

Al∈M

pl

)n

−
∑
Ai∈C

( ∑
Al∈M\{Ai}

pl

)n

+
∑

Ai,Aj∈C

( ∑
Al∈M\{Ai,Aj}

pl

)n

− · · · + (−1)|M\C|
( ∑

Al∈M\C
pl

)n

(7.2)

for any set C ⊂ M and non-negative integer n (Hu and Fung 2005a). It is noted that Q(0, φ) =
1 and Q(n, C) = 0 for n < |C|. The calculation of Q(n, C) by a computer program is straight-
forward. From Equation (6.6), the quantity Q(n, C) can be interpreted as the probability of n

alleles taken from the set M that explain all the alleles in the set C. For example, we consider
n = 3, M = {A1, A2, A3}, C = {A1, A2}. From Equation (7.2), we have

Q(n, C) = (p1 + p2 + p3)
3 − (p2 + p3)

3 − (p1 + p3)
3 + p3

3

= p1p2(3p1 + 3p2 + 6p3). (7.3)

On the other hand, according to the interpretation of Q(n, C) given above, it is concluded that
all the combinations of n = 3 alleles (order is relevant) from M = {A1, A2, A3} explaining
C = {A1, A2} are given as follows: (A2, A1, A1), (A1, A2, A1), (A1, A1, A2), (A1, A2, A2),
(A2, A1, A2), (A2, A2, A1), (A1, A2, A3), (A1, A3, A2), (A2, A1, A3), (A2, A3, A1),
(A3, A1, A2), (A3, A2, A1). Summing over all the probabilities of these 12 combinations
leads to

Q(n, C) = 3P(A2, A1, A1) + 3P(A1, A2, A2) + 6P(A1, A2, A3)

= 3p2
1p2 + 3p1p

2
2 + 6p1p2p3

= p1p2(3p1 + 3p2 + 6p3). (7.4)

Comparing the two different approaches described in Equation (7.3) and Equation (7.4), the
one based on Equation (7.2) seems to be simple and reliable.

7.1.3 Tested suspect with an unknown relative

Suppose that a suspect in a crime is typed with S = s1s2 and the defense puts up the following
proposition about the source contributors of the DNA mixture:

H : one relative, R, of the suspect and other x − 1 unknowns were contributors,

where R is not typed. It should be pointed out that, for brevity, the known contributors are not
specified in the proposition H . In practice, which tested persons are contributors of the DNA
mixture is clear. The formula for calculating the P(M|K,H) is given as follows:

P(M|K,H) = k0Q(2x, U)

+ k1[IM(s1)Q(2x − 1, U \ {s1}) + IM(s2)Q(2x − 1, U \ {s2})]
+ k2IM(s1)IM(s2)Q(2x − 2, U \ {s1} ∪ {s2}). (7.5)

The proof of Equation (7.5) is given in Section 7.4.2.
Detailed expressions of P(M|K,H) are given in Table 7.2 where the tested suspect S has

nine different kinds of genotypes. Table 7.2 shows that the computation of P(M|K, H) is
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Table 7.2 Expressions for the conditional probability P(M|K,H) for a tested suspect S

with an unknown relative, who was one of the contributors of the mixture M stated in
proposition H . The relatedness coefficients between S and the unknown relative are
described by (k0, 2k1, k2).

Case Sa P(M|K,H)

1 AiAi k0Q(2x, U) + 2k1Q(2x − 1, U \ {Ai}) + k2Q(2x − 2, U \ {Ai})
2 AiAj k0Q(2x, U) + k1[Q(2x − 1, U \ {Ai}) + Q(2x − 1, U \ {Aj})]

+ k2Q(2x − 2, U \ {Ai, Aj})
3 AiAk k0Q(2x, U) + k1[Q(2x − 1, U) + Q(2x − 1, U \ {Ai})]

+ k2Q(2x − 2, U \ {Ai})
4 AiAm k0Q(2x, U) + k1Q(2x − 1, U \ {Ai})
5 AkAk k0Q(2x, U) + 2k1Q(2x − 1, U) + k2Q(2x − 2, U)

6 AkAl k0Q(2x, U) + 2k1Q(2x − 1, U) + k2Q(2x − 2, U)

7 AkAm k0Q(2x, U) + k1Q(2x − 1, U)

8 AmAm k0Q(2x, U)

9 AmAn k0Q(2x, U)

aAi, Aj ∈ U; Ak, Al ∈ M \ U; Am, An ∈ M (complement of M)

rather simple for given relatedness coefficients (k0, 2k1, k2). In order to find the likelihood
ratio using Equation (7.5) or Table 7.2, it is necessary to have a precise specification of the
allele Ai out of the set U. For alleles in sets M \ U and M, solely the fact of being part of the
set, not the precise specification of alleles, is of importance in the calculation of P(M|K,H).

7.1.4 Unknown suspect with a tested relative

Suppose that the suspect S is unavailable for some reason in a crime case, but a relative
of his/hers is typed instead and has genotype R = r1r2. The proposition about the source
contributors of the DNA mixture is:

H : the suspect S and the other x − 1 unknowns were contributors.

Then, the formula for calculating P(M|K,H) is just the same as Equation (7.5), with the
replacement of s1 by r1 and s2 by r2, respectively:

P(M|K,H) = k0Q(2x, U)

+ k1[IM(r1)Q(2x − 1, U \ {r1}) + IM(r2)Q(2x − 1, U \ {r2})]
+ k2IM(r1)IM(r2)Q(2x − 2, U \ {r1} ∪ {r2}). (7.6)

Thus, the detailed expressions about the nine possible genotypes of R can also be referred to
in Table 7.2, except S in the table is replaced by R.

Fukshansky and Bär (2000) discussed the evaluation of P(M|K,H) in the situation of one
unknown suspect with a tested relative under the Hardy–Weinberg law, where the relationships
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between the suspect and the relative are limited to child–parent, full siblings and half siblings.
Their results are equivalent to Equation (7.5) when the relatedness coefficients are taken as
the specified values of the relationships mentioned.

Turning back to the example introduced in Section 7.1.1 with M = {A1, A2, A3} and
V = A1A2 and S = A1A3, we consider the following proposition about who the contributors
were:

Hd : the victim and one unknown relative of the suspect were contributors.

It is easy to conclude under Hd that x = 1 and U = {A3}. Regarding the two alleles A1 and A3

that the suspect carries, it is obvious that A1 ∈ M \ U and A3 ∈ U. So, employing the results
in case 3 in Table 7.2, we have

P(M|H, Hd) = k0Q(2, {A3}) + k1[Q(1, {A3}) + Q(1, φ)] + k2Q(0, φ).

From Equation (7.2), we have

Q(0, φ) = 1,

Q(1, φ) = (p1 + p2 + p3),

Q(1, {A3}) = (p1 + p2 + p3) − (p1 + p2) = p3,

and
Q(2, {A3}) = (p1 + p2 + p3)

2 − (p1 + p2)
2 = p3(2p1 + 2p2 + p3).

Finally, it is concluded that

P(M|H, Hd) = k0p3(2p1 + 2p2 + p3) + k1(p1 + p2 + 2p3) + k2.

This result coincides with that in Equation (7.1) obtained step-by-step in Section 7.1.1.

7.1.5 Two related persons were unknown contributors

Here, we consider the situation in which the genotypes of two related persons match with the
profile of a mixture. The proposition can be written as

H : two biologically related persons X1 and X2, and x − 2 unknowns were contributors.

In this situation, it is shown in Section 7.4.3 that P(M|K, H) has a simple form, which is given
as

P(M|K, H) = k0Q(2x, U) + 2k1Q(2x − 1, U) + k2Q(2x − 2, U). (7.7)

In this case, we do not need a table such as Table 7.2 for expressions on various possible
combinations of genotypes.

The following is an example to illustrate the application of Equation (7.7). Change the
defense proposition Hd in the example given in Section 7.1.1 to

H∗
d : two related unknown persons R1 and R2 were contributors.

Under H∗
d , x = 2 and M = U = {A1, A2, A3}, so

P(M|K, H∗
d ) = k0Q(4, U) + 2k1Q(3, U) + k2Q(2, U).
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From Equation (7.2), we have

Q(4, U) = (p1 + p2 + p3)
4 − (p2 + p3)

4 − (p1 + p3)
4 − (p1 + p2)

4 + p4
1 + p4

2 + p4
3,

Q(3, U) = (p1 + p2 + p3)
3 − (p2 + p3)

3 − (p1 + p3)
3 − (p1 + p2)

3 + p3
1 + p3

2 + p3
3,

Q(2, U) = (p1 + p2 + p3)
2 − (p2 + p3)

2 − (p1 + p3)
2 − (p1 + p2)

2 + p2
1 + p2

2 + p2
3.

So, for given allele frequencies p1, p2, p3, and relatedness coefficients (k0, 2k1, k2), it is not
difficult to get the result of P(M|K,H∗

d ) and finally the likelihood ratio.

7.1.6 An application

Let us consider the Hong Kong case example introduced in Section 6.2.4. See Table 6.5 for
the details of the mixture, tested persons at three loci and the allele population frequencies.
The following two competing propositions are first considered:

Hp : contributors were the victim and the suspect;
Hd1 : contributors were the victim and one relative of the suspect.

Here, the victim, the suspect and the unknown are assumed to come from the same local
Chinese population. Table 7.3 lists the likelihood ratios for six commonly encountered rela-
tionships between the suspect and his/her relative, including the unrelated case. As we can see
from this table, the effect of relatedness on the likelihood ratio is substantial. For example,
at locus FGA, the maximum likelihood ratio value (17.15) is seven times the minimum one
(2.36). Note that among those six relationships, the full siblings gives the smallest likelihood
ratios at loci D3S1358, vWA and FGA.

If the evidence was collected from somewhere other than the victim’s body (Fung and Hu
2000a), then another set of propositions should be raised:

Hp : contributors were the victim and the suspect;
Hd2 : contributors were one relative of the suspect and one unknown.

The resultant likelihood ratios are listed in Table 7.3, which are larger than the corresponding
one based on the preposition pair Hp and Hd1. However, the effect of relatedness on the
likelihood ratio is not as large as before. The ratio of the maximum and minimum likelihood
ratios is about 5. As in the previous case, the relatedness has the effect of giving a smaller
likelihood ratio (compared with the unrelated situation), with the smallest likelihood ratio
going to the full siblings relationship at loci D3S1358 and vWA, and going to the parent–child
relationship at locus FGA.

Finally, we consider the following two competing propositions about who the source
contributors of the mixed stain were:

Hp : contributors were the victim and the suspect;
Hd3 : contributors were two related persons (relatives).

Equation (7.7) is used to evaluate the likelihood ratios for various relationships and the results
are listed in Table 7.3. Unlike the other two earlier situations, under the current set of propo-
sitions, the likelihood ratio at locus D3S1358 for the full siblings relationship is the highest
(LR = 1140), while that for the unrelated relationship is the lowest (LR = 285). However,
the lowest likelihood ratios at loci vWA and FGA go to the full siblings (LR = 37.75) and
the parent–child (LR = 207.44) relationships, respectively. The effect of relatedness is mixed
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Table 7.3 The effect of relatedness on the likelihood ratios in the Hong Kong case
example (see Table 6.5), in which the prosecution proposition is Hp: contributors were
the victim and the suspect, and the defense proposition takes three different forms, i.e. Hd1:
contributors were the victim and one relative of the suspect; Hd2: contributors were one relative
of the suspect and one unknown; Hd3: contributors were two related persons (relatives), from
Hu and Fung (2003b). (Reproduced by permission of Springer-Verlag.)

Likelihood ratiosDefense
proposition Relationship D3S1358 vWA FGA Overall

Hd1 Parent–child 7.35 3.16 3.13 73
Full siblings 3.11 2.34 2.36 17
Half siblingsa 13.18 5.12 5.29 357
First cousins 21.82 7.42 8.08 1 309
Second cousins 42.94 11.19 13.39 6 436
Unrelated 63.40 13.47 17.15 14 644

Hd2 Parent–child 66.11 36.03 106.13 252 787
Full siblings 56.47 28.62 109.48 176 943
Half siblingsa 107.33 54.82 159.91 940 898
First cousins 155.94 74.17 214.16 2 476 984
Second cousins 236.14 100.87 287.25 6 842 643
Unrelated 285.01 114.63 324.13 10 589 598

Hd3 Parent–childb — 42.26 207.44 —
Full siblings 1140.04 37.75 314.31 13 525 658
Half siblingsa 570.02 61.76 252.98 8 905 310
First cousins 380.01 80.27 284.17 8 667 933
Second cousins 304.01 103.55 313.12 9 856 994
Unrelated 285.01 114.63 324.13 10 589 598

a The same as the grandparent–child and the uncle–niece relationship
b The parent–child relationship is impossible for a mixture of four distinct alleles

under this particular set of propositions. Note that at locus D3S1358, the parent–child rela-
tionship is impossible for a mixture of four distinct alleles.

In the following, we use our developed computer software EasyDNA Mixture to obtain
the likelihood ratios about Hp versus Hd1 for six commonly encountered relationships. Notice
that we list in Section 6.7 the 12 steps in running the software where all persons involved are
unrelated. In order to calculate the likelihood ratio when the defense proposition Hd1 involves
two related persons, we follow those 12 steps as below.

1 Select the appropriate allele frequency file

2 Input θ = 0

3 Input 4, the number of alleles in the mixture for locus D3S1358

4 Input alleles 14, 15, 17 and 18 in this mixture

5 Input 2, the number of typed persons, i.e. the victim and the suspect
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6 Input the genotypes of these two typed persons

7 Choose the victim and the suspect as the known contributors

8 Input 0 as the number of unknown contributors

9 Specify that all persons involved are unrelated

10 Choose the victim as the only known contributor

11 Input 1 as the number of unknown contributors

12 Specify that one unknown person is related to the suspect.

The entries in steps 7–9 constitute the prosecution proposition Hp, and the entries in steps
10-12 constitute the defense proposition Hd : the victim and one relative of the suspect were
the contributors. After running these steps, we have the input screen as shown in Figure 7.1.
By clicking the Calculate button, we can get the likelihood ratios for six kinds of relationships
immediately. Clicking the Next Locus button leads to the process of calculating the likelihood

Figure 7.1 Captured input screen of the computer program for calculating the likelihood
ratios about the Hong Kong case example (see Table 6.5), in which the prosecution proposition
is Hp: contributors were the victim and the suspect, and the defense proposition is Hd1:
contributors were the victim and one relative of the suspect.
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Figure 7.2 Captured result screen of the computer program for calculating the likelihood
ratios about the Hong Kong case example (see Table 6.5), in which the prosecution proposition
is Hp: contributors were the victim and the suspect, and the defense proposition is Hd1:
contributors were the victim and one relative of the suspect.

ratio for locus vWA. We need only to complete steps 3, 4 and 6 and then click the Calculate
button to get the likelihood ratio. Also only these three steps are needed for the remaining loci.
Finally, we can have the result screen as shown in Figure 7.2; the overall likelihood ratios are
obtained.

For proposition pair Hp and Hd2, the steps in running the computer program are the same
as those described in the previous paragraph, except for changes in steps 10–11 for the first
locus. Specifically, in step 10, there are no known contributors; in step 11, we input 2 as
the number of unknown contributors. We have captured the input screen and result screen as
shown in Figures 7.3 and 7.4, respectively. Similar steps can be conducted for proposition
pair Hp and Hd3 as well. All these likelihood ratio results for proposition pairs Hp and Hd1,
Hp and Hd2, and Hp and Hd3 are summarized in Table 7.3.

Equations (7.5) – (7.7) are applicable to cases in which there are only two related persons.
We assume that the other unknown contributors are unrelated to the suspect and the population
satisfies the Hardy–Weinberg law and linkage equilibrium. Besides Hu and Fung (2003b), who
considered the evaluation of DNA evidence in the presence of a pair of relatives, the problem
of how to assign the weight of the DNA evidence when one suspect’s relative is involved in
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Figure 7.3 Captured input screen of the computer program for calculating the likelihood
ratios about the Hong Kong case example (see Table 6.5), in which the prosecution proposition
is Hp: contributors were the victim and the suspect, and the defense proposition is Hd2:
contributors were one unknown and one relative of the suspect.

the pool of possible perpetrators has been discussed by several authors. For example, Evett
(1992) established a formula for the likelihood ratio in a case in which the defense is ‘It was my
brother’; Brookfield (1994) evaluated the effect upon the likelihood ratio of the possibility that
the suspect and the source of the crime-scene DNA are relatives; Donnelly (1995) quantified
the effect of close relatives on the match probability; Belin et al. (1997) described a new
methodology that summarized DNA evidence by addressing the possibility that a relative of
the accused individual was the source of a crime sample; and Sjerps and Kloosterman (1999)
discussed the assessment of DNA profiles for close relatives of an excluded suspect. These
authors limited the effect of relatedness on the evaluation of match probability and likelihood
ratio relating to a single source DNA sample. In the following section, we will discuss the
evaluation of the DNA mixture when there are two pairs of relatives involved in the case.

7.2 Two pairs of relatives: HWE
In Section 7.1, we discussed the evaluation of the DNA mixture when there is a pair of
relatives involved in a case. In some practical situations, we may face a more complicated
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Figure 7.4 Captured result screen of the computer program for calculating the likelihood
ratios about the Hong Kong case example (see Table 6.5), which the prosecution proposition
is Hp: contributors were the victim and the suspect, and the defense proposition is Hd2:
contributors were one unknown and one relative of the suspect.

scenario in which two pairs of relatives are involved, especially when the number of tested
and untested persons is more than three. For example, if the number of unknown contributors
is two, we may encounter the situation in which each unknown contributor is related to a
single typed person. In other words, an unknown contributor X1 is related to a typed person
T1, and independently, the other unknown contributor X2 is related to another typed person
T2. If the number of unknown contributors is three, we may encounter the situation in which
one unknown contributor is related to a typed person and the other two unknown contributors
are related; that is, an unknown contributor X1 is related to a typed person T1, and X2 and
X3 are two related unknown contributors. If the number of unknown contributors is four, we
may have the situation in which two pairs of relatives, i.e. X1 and X2, are related unknown
contributors and so are X3 and X4. These three cases will render calculations of likelihood
ratios more difficult than those given in Section 7.1.

Denote x > 1 as the number of unknown contributors, X1, X2, . . . the unknown contribu-
tors, and T1, T2, . . . the typed persons. In this section, we consider the following three problems
on the evaluation of the DNA mixture involving two pairs of relatives (Hu and Fung 2005a),
under Hardy–Weinberg equilibrium:
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(a) There are x (x ≥ 2) unrelated unknown contributors, among which X1 is related to T1,
and X2 is related to T2, and the other x − 2 unknown contributors are unrelated.

(b) There are x (x ≥ 3) unknown contributors, among which X1 is related to T1, and X2 and
X3 are related, and X1 and the other x − 3 unknown contributors are unrelated.

(c) There are x (x ≥ 4) unknown contributors, among which X1 and X2 are related, X3 and
X4 are related, and the other x − 4 unknown contributors are unrelated.

We will focus on the derivation of W(C) defined in Equation (6.7) for calculating the likelihood
ratio for these three problems.

7.2.1 Two unknowns related respectively to two typed persons

Suppose that at least two persons are typed with genotypes T1 = t11t12 and T2 = t21t22, and
the proposition about who the x (x ≥ 2) unknown unrelated contributors are is

H : two of the x unknowns, X1 and X2, are related to T1 and T2, respectively. (7.8)

Denote (k10, 2k11, k12) as the relatedness coefficients between individuals X1 and T1, and
(k20, 2k21, k22) as the relatedness coefficients between X2 and T2; then, we have (Hu and Fung
2005a)

P(M|K,H) = (k10, 2k11, k12)


 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




 k20

2k21

k22


 , (7.9)

where

σ11 = Q(2x, U),

σ12 = IM(t21)Q(2x − 1, U \ {t21})/2 + IM(t22)Q(2x − 1, U \ {t22})/2,

σ13 = IM(t21)IM(t22)Q(2x − 2, U \ {t21} ∪ {t22}),
σ21 = IM(t11)Q(2x − 1, U \ {t11})/2 + IM(t12)Q(2x − 1, U \ {t12})/2,

σ22 = IM(t11)IM(t21)Q(2x − 2, U \ {t11} ∪ {t21})/4

+ IM(t11)IM(t22)Q(2x − 2, U \ {t11} ∪ {t22})/4

+ IM(t12)IM(t21)Q(2x − 2, U \ {t12} ∪ {t21})/4

+ IM(t12)IM(t22)Q(2x − 2, U \ {t12} ∪ {t22})/4,

σ23 = IM(t11)IM(t21)IM(t22)Q(2x − 3, U \ {t11} ∪ {t21} ∪ {t22})/2

+ IM(t12)IM(t21)IM(t22)Q(2x − 3, U \ {t12} ∪ {t21} ∪ {t22})/2,

σ31 = IM(t11)IM(t12)Q(2x − 2, U \ {t11} ∪ {t12}),
σ32 = IM(t11)IM(t12)IM(t21)Q(2x − 3, U \ {t11} ∪ {t12} ∪ {t21})/2

+ IM(t11)IM(t12)IM(t22)Q(2x − 3, U \ {t11} ∪ {t12} ∪ {t22})/2,

σ33 = IM(t11)IM(t12)IM(t21)IM(t22)Q(2x − 4, U \ {t11} ∪ {t12} ∪ {t21} ∪ {t22}).
The proof of Equation (7.9) is given in Section 7.4.4.
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There are two particular relatedness coefficients to be noted. If (k20, 2k21, k22) = (0, 0, 1),
i.e. X2 = T2, then the typed person T2 becomes a known contributor and the proposition H in
(7.8) becomes ‘one of the x − 1 unknown contributors, X1, is related to T1’; if (k10, 2k11, k12) =
(k20, 2k21, k22) = (0, 0, 1), then both typed persons T1 and T2 become the known contributors
and the proposition H in (7.8) becomes ‘there are x − 2 unknown contributors’. It is thus
concluded that the proposition H in (7.8) can cover a variety of propositions, which will be
shown in the examples given in Section 7.2.4.

7.2.2 One unknown is related to a typed person and two other
unknowns are related

Suppose that there are at least three unknown contributors involved in a proposition, among
them, X1 is related to a typed person T1, and X2 and X3 are related. The relatedness coef-
ficients between X1 and T1, and X2 and X3, are, respectively, (k10, 2k11, k12) and (k20, 2k21,
k22). The proposition about who the contributors are is given as follows:

H : one of the x (≥ 3) unknowns, X1, is related to a typed person T1

and two of the x unknowns, X2 and X3, are related.
(7.10)

In this situation, the corresponding formula for calculating P(M|K, H) is (Hu and Fung 2005a)

P(M|K,H) = (k10, 2k11, k12)


 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




 k20

2k21

k22


 , (7.11)

where

σ11 = Q(2x, U),

σ12 = Q(2x − 1, U),

σ13 = Q(2x − 2, U),

σ21 = IM(t11)Q(2x − 1, U \ {t11})/2 + IM(t12)Q(2x − 1, U \ {t12})/2,

σ22 = IM(t11)Q(2x − 2, U \ {t11})/2 + IM(t12)Q(2x − 2, U \ {t12})/2,

σ23 = IM(t11)Q(2x − 3, U \ {t11})/2 + IM(t12)Q(2x − 3, U \ {t12})/2,

σ31 = IM(t11)IM(t12)Q(2x − 2, U \ {t11} ∪ {t12}),
σ32 = IM(t11)IM(t12)Q(2x − 3, U \ {t11} ∪ {t12}),
σ33 = IM(t11)IM(t12)Q(2x − 4, U \ {t11} ∪ {t12}).

The proof of Equation (7.11) is outlined in Section 7.4.5. Note that if t11, t12 ∈ M \ U, then
σ12 = σ21 = Q(2x − 1, U), σ13 = σ22 = σ31 = Q(2x − 2, U), σ23 = σ32 = Q(2x − 3, U)

and σ33 = Q(2x − 4, U), and the expression P(M|K,H) can be simplified to

P(M|K,H)

= (k10, 2k11, k12)


 Q(2x, U) Q(2x − 1, U) Q(2x − 2, U)

Q(2x − 1, U) Q(2x − 2, U) Q(2x − 3, U)

Q(2x − 2, U) Q(2x − 3, U) Q(2x − 4, U)




 k20

2k21

k22


 .
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7.2.3 Two pairs of related unknowns

In the case of two pairs of relatives involved in the pool of contributors, we consider the
proposition

H : amongst the x (≥ 4) unknowns contributors, X1 and X2 are related,

and X3 and X4 are related.
(7.12)

Denote (k10, 2k11, k12) as the relatedness coefficients of X1 and X2, and (k20, 2k21, k22) as the
coefficients of X3 and X4. Under this proposition, we have (Hu and Fung 2005a)

P(M|K,H)

= (k10, 2k11, k12)


 Q(2x, U) Q(2x − 1, U) Q(2x − 2, U)

Q(2x − 1, U) Q(2x − 2, U) Q(2x − 3, U)

Q(2x − 2, U) Q(2x − 3, U) Q(2x − 4, U)




 k20

2k21

k22


 .

(7.13)

See Section 7.4.6 for the proof of Equation (7.13).
We are interested in some particular cases of relatedness coefficients in Equation (7.13).

If (k20, 2k21, k22) = (1, 0, 0) in Equation (7.13), i.e. there exists only one pair of related
unknowns among the x unknowns, then the conditional probability P(M|K,H) is simply
k10 Q(2x, U) + 2k11Q(2x − 1, U) + k12Q(2x − 2, U), which was reported in Equation (7.7)
(Hu and Fung 2003b). If (k20, 2k21, k22) = (0, 0, 1), i.e. there exists only one pair of related
unknowns among thex − 1 unknowns, then the conditional probabilityP(M|K,H) is k10Q(2x −
2, U) + 2k11Q(2x − 3, U) + k12Q(2x − 4, U). If (k20, 2k21, k22) = (0, 1, 0), e.g. X4 is the
father of X3, then the conditional probability P(M|K,H) is simply k10Q(2x − 1, U) + 2k11

Q(2x − 2, U) + k12Q(2x − 3, U). In this situation, there is one and only one allele of the
father X4 which is ibd to one allele of child X3, so only three alleles among those four alleles
of X3 and X4 are not ibd and hence we regard the number of unknown contributors as x − 1/2.
Thus, replacing x in the first case of this paragraph corresponding to (k20, 2k21, k22) = (1, 0, 0)

by x − 1/2 will lead to the result. It is convenient to calculate the conditional probability given
in Equation (7.13) by the computer program.

It is interesting to note that Equations (7.9) and (7.11) are equal when the two alleles of
T2 satisfy t21, t22 ∈ M \ U, and Equations (7.11) and (7.13) are equal when the two alleles of
T1 satisfy t11, t12 ∈ M \ U. We will see the latter case in the example of the next section.

7.2.4 Examples

The first example is taken from Stockmarr (2000). The DNA profile of the mixture was typed
as {18, 24, 28, 31, 33, 36} at locus D1S80 from a mixed stain recovered from a crime scene,
and the DNA profile of the victim V was typed as {24, 33}. The population frequencies of
these alleles are listed in Table 7.4. Stockmarr (2000) considered two propositions, namely
‘the victim and n − 1 unknowns are contributors’ versus ‘n unknowns are contributors’, with
a range of values of n. In the following analysis, we fix n at 4 and investigate two competing
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Table 7.4 Alleles and allele frequencies at locus D1S80.

Mixture (M) Victim (V ) Frequency

18 0.2487
24 24 0.3622
28 0.0657
31 0.0738
33 33 0.0044
36 0.0077

propositions:

H ′
p : the victim and three unknowns are contributors; among these three unknowns,

one unknown is related to the victim, and the other two are related;
H ′

d : the four unknowns are contributors; among them, two unknowns are related, and
the other two are also related.

Since there can be various sorts of relationships, for simplicity, we consider only the following
two particular propositions:

Hp : the victim V , one untyped relative R of the victim, and two untyped full siblings
are contributors;

Hd : two related unknowns X1 and X2, and two untyped full siblings are contributors.

Equation (7.11) is used to calculate the likelihood ratio, i.e. P(M|K,Hp)/P(M|K,Hd).
Under the prosecution proposition Hp, the number of unknown contributors x is three,
U = {18, 28, 31, 36}, M = {18, 24, 28, 31, 33, 36}, the relatedness coefficients of full sib-
lings are (1/4, 1/2, 1/4), and the two alleles of typed victim V satisfy 24, 33 ∈ M \ U; so,
from Equation (7.11), after simplification, we have

P(M|K,Hp) = (k10, 2k11, k12)


 Q(6, U) Q(5, U) Q(4, U)

Q(5, U) Q(4, U) Q(3, U)

Q(4, U) Q(3, U) Q(2, U)




 1/4

1/2
1/4


 ,

where (k10, 2k11, k12) are the relatedness coefficients of individuals R and V specified in Hp.
Under the defense proposition Hd , x = 4 and U = {18, 24, 28, 31, 33, 36}; using Equation
(7.13), we can find

P(M|K,Hd) = (k20, 2k21, k22)


 Q(8, U) Q(7, U) Q(6, U)

Q(7, U) Q(6, U) Q(5, U)

Q(6, U) Q(5, U) Q(4, U)




 1/4

1/2
1/4


 ,

where (k20, 2k21, k22) are the relatedness coefficients of individuals X1 and X2 specified in
Hd . So, we can obtain the likelihood ratio P(M|K,Hp)/P(M|K,Hd) for different biological
relationships between R and V , and X1 and X2.

The seven most common relationships including unrelated and monozygotic (MZ) twins
are considered, and the corresponding 7 × 7 likelihood ratios are shown in Table 7.5. The
relationship is ordered from the most to the least related, i.e. monozygotic twins, parent–
child, full siblings, . . ., unrelated. The following three points are observed (Hu and Fung
2005a):
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Table 7.5 Likelihood ratios for the propositions ‘the victim V , one untyped relative
R of the victim, and two untyped full siblings are contributors’ versus ‘two related
unknowns X1 and X2, and two untyped full siblings are contributors’ about the criminal
case. Different relationships for R and V , and for X1 and X2 are considered, from
Hu and Fung (2005a). (Reproduced by permission of Springer-Verlag.)

(X1, X2)

MZ Parent Full Half First Second
(R, V) twins –child siblings siblings cousins cousins Unrelated

MZ twins 20.92 4.48 3.94 2.69 2.24 1.99 1.92
Parent–child 100.87 21.61 19.02 12.97 10.81 9.61 9.27
Full siblings 115.88 24.82 21.85 14.90 12.42 11.04 10.65
Half siblings 170.87 36.60 32.21 21.98 18.32 16.28 15.70
First cousins 205.87 44.09 38.81 26.48 22.07 19.62 18.92
Second cousins 232.12 49.72 43.76 29.86 24.88 22.12 21.33
Unrelated 240.86 51.59 45.41 30.98 25.82 22.96 22.14

(a) The looser the relationship between R and V in Hp, the larger the likelihood ratio. Within
each column, the largest likelihood ratio (unrelated case) is about 10 times the lowest
likelihood ratio (MZ twins case) and 2 times the second lowest (parent–child case).

(b) The looser the relationship between X1 and X2 in Hd , the smaller the likelihood ratio.
Within each row, the smallest likelihood ratio (unrelated case) is about one-tenth of the
largest likelihood ratio (MZ twins case) and half of the second largest likelihood ratio
(parent–child case).

(c) Excluding the case of MZ twins, the effect of relationship of R and V , or X1 and X2 on
the likelihood ratio is not large; it only has at most double or half the likelihood ratio
value of unrelated relationships.

The second example is a group rape investigated by Fukshansky and Bär (1998), in which
three persons, namely the victim, the suspect S1 and the suspect S2, were typed at three loci
DQa, FES and F13A1. See Table 7.6 for the details of the DNA profiles for the mixed stain,
victim and two suspects at those three loci. The mixed stain was assumed to be contributed
by the victim and two assailants. The prosecution proposition is taken as

Hp : S1 and S2 are both contributors to the mixed stain.

Fukshansky and Bär (1998) considered three different sets of defense propositions in which
all involved people are assumed to be unrelated. When there is one pair of related people
involved, we can employ the result in Section 7.1 for weighting the DNA evidence. Hu et
al. (2005) considered seven different defense propositions to investigate the effect of various
propositions on the evaluation of DNA evidence. In the following, we consider a particular
defense proposition involving two pairs of related persons:

Hd : R1, one relative of S1, and R2, one relative of S2, are both contributors
to the mixed stain.
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Table 7.6 Mixed DNA stain and single person tests for the victim V and two suspects
S1 and S2 as well as frequencies of alleles found for the three systems, from
Fukshansky and Bär (1998). (Reproduced by permission of Springer-Verlag.)

Locus Mixture (M) Victim (V ) Suspect 1 (S1) Suspect 2 (S2) Frequency

DQa 1.1 1.1 1.1 0.134
1.2 1.2 0.170
1.4 1.4 1.4 1.4 0.324

FES 10 10 0.327
11 11 11 0.396
12 12 0.224
13 13 0.032

F13A1 3 3 0.082
5 5 0.174
6 6 6 0.314
7 7 0.341

15 15 0.026

Under the prosecution proposition Hp, all the alleles in the mixture are explained by the
victim and the two known contributors S1 and S2, so P(M|K,Hp) = 1 for each locus. Using
Equation (7.9), we can find the likelihood ratio 1/P(M|K,Hd) for each of the three loci
separately and then the overall one by multiplication. Table 7.7 shows the overall likelihood
ratios when R1 and S1, and R2 and S2 take 49 possible combinations of commonly encountered
relationships including unrelated and monozygotic twins. For example, when R1 and S1 are
half siblings and R2 and S2 are full siblings, the likelihood ratio is 112, and when R1 and S1

are second cousins and R2 and S2 are first cousins, the likelihood ratio is 1604. It is noted

Table 7.7 Overall likelihood ratios for the propositions ‘S1 and S2 are contributors’
versus ‘R1, one relative of S1, and R2, one relative of S2, are contributors’ about the case
of a group rape, from Hu and Fung (2005a). (Reproduced by permission of
Springer-Verlag.)

(R2, S2)

MZ Parent Full Half First Second
(R1, S1) twins –child siblings siblings cousins cousins Unrelated

MZ twins 1 16 7 46 101 254 410

Parent–child 14 66 50 153 281 550 754

Full siblings 6 44 30 110 213 432 596

Half siblings 35 135 112 297 521 949 1245

First cousins 74 243 209 513 872 1533 1972

Second cousins 187 495 444 980 1604 2710 3425

Unrelated 319 713 650 1350 2154 3562 4464
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that the first row of Table 7.7 corresponds to the likelihood ratios about the two completing
hypotheses:

Hp: the victim and two suspects were contributors;
Hd: the victim, the suspect S1, and one relative of the suspect S2 were the contributors.

The first column of Table 7.7 corresponds to the likelihood ratios about another pair of hypothe-
ses:

Hp: the victim and two suspects were contributors;
Hd: the victim, the suspect S2, and one relative of the suspect S1 were the contributors.

It can be observed from Table 7.7 that the difference among the likelihood ratios of dif-
ferent biological relationships can be very large. For example, the likelihood ratio for both
parent–child relationships is 66, which is only 1.48% of the highest likelihood ratio 4464,
corresponding to both unrelated relationships.

7.2.5 Extension

It is noted that the results in Sections 7.2.1 – 7.2.3 extend those in Section 7.1 to the situation of
two pairs of relatives and thus widens the scope of the application. Although the expressions,
e.g. Equation (7.9), for calculating likelihood ratios look complex, they are in essence just
linear combinations of Q(·, ·). Moreover, the implementation of Q(·, ·) by a computer program
is not difficult.

The idea shown in Sections 7.2.1–7.2.3 can be used to tackle more complex problems
involving more than two pairs of relatives. For example, if there are three pairs of related
unknowns among the x unknown contributors with corresponding relatedness coefficients
(Ki0, Ki1, Ki2) = (ki0, 2ki1, ki2), i = 1, 2, 3, then the conditional probability can be
expressed as

P(M|K, H) =
∑

i,j,k=0,1,2

K1iK2jK3kQ(2x − i − j − k, U),

which is an extension of Equation (7.13).
The Hardy–Weinberg equilibrium is assumed in Sections 7.1 and 7.2. This independence

assumption of alleles may be relaxed in the next section to allow for the possible existence of
population subdivision.

7.3 Related people from the same subdivided population
In this section, we continue to consider the mixture problem when the relative of the suspect
is involved in the pool of possible perpetrators or the suspect is unavailable for typing and
his/her one relative is typed instead. In contrast to Sections 7.1 and 7.2, the Hardy–Weinberg
law is not assumed in this section, and the involved people come from a subdivided population
with the degree of subdivision θ.

7.3.1 Introductory example

We first consider a simple case in which the mixed stain M is {A1, A2, A3, A4}, and the
suspect S is of type A1A3. So, the typed genotype in this example is K = S = A1A3. The two
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competing propositions on the source of the mixed stain are formulated as follows:

Hp: the suspect and one unknown person were contributors;
Hd: a relative of the suspect, R, and one unknown person were contributors.

Under Hp, from the DNA profiles of the mixture and known contributors, the genotype G of
the unknown must be of A2A4. So

P(M|K, Hp) = P(G = A2A4|S = A1A3).

Under Hd , we partition the mixture contributed by R, a relative of the suspect, and an unknown
G into six possible sets of genotypes:

G1 = (R = A1A2, G = A3A4), G2 = (R = A1A3, G = A2A4),

G3 = (R = A1A4, G = A2A3), G4 = (R = A2A3, G = A1A4),

G5 = (R = A2A4, G = A1A3), G6 = (R = A3A4, G = A1A2).

So

P(M|K, Hd) =
6∑

i=1

P(Gi|S = A1A3).

Thus, the likelihood ratio is

LR = P(G = A2A4|S = A1A3)∑6
i=1 P(Gi|S = A1A3)

. (7.14)

After passing the genotype to the set of alleles and taking account of whether the genotype
is heterozygous or homozygous, the numerator of the likelihood ratio in Equation (7.14) can
be evaluated using Equation (3.17) successively, as follows:

P(G = A2A4|S = A1A3) = 2P(A2, A4|A1, A3)

= 2P(A2|A1, A3)P(A4|A1, A2, A3)

= 2

[
(1 − θ)p2

1 + θ

] [
(1 − θ)p4

1 + 2θ

]
.

In the following, we show the details in the evaluation of the first term of the denominator
in Equation (7.14), i.e. P(G1|S = A1A3) = P(R = A1A2, G = A3A4|S = A1A3).

It can be seen from the genotypes of R and S, i.e. R = A1A2 and S = A1A3, that the ibd
alleles between R and S, denoted by IBDA, can take two possible values: IBDA = none and
IBDA = A1. Using the relatedness coefficients (k0, 2k1, k2), we can have

P(R = A1A2, G = A3A4, IBDA = none|S = A1A3)

= 4k0P(A1, A2, A3, A4|S = A1A3),

P(R = A1A2, G = A3A4, IBDA = A1|S = A1A3)

= 2k1P(A2, A3, A4|S = A1A3).

Using the law of total probability introduced in Section 2.3 and applying Equation (3.17)
recursively, we have

P(G1|S = A1A3)
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= 4k0P(A1, A2, A3, A4|A1, A3) + 2k1P(A2, A3, A4|A1, A3)

= 4k0
[θ + (1 − θ)p1][θ + (1 − θ)p3](1 − θ)p2(1 − θ)p4

(1 + θ)(1 + 2θ)(1 + 3θ)(1 + 4θ)

+ 2k1
[θ + (1 − θ)p3](1 − θ)p2(1 − θ)p4

(1 + θ)(1 + 2θ)(1 + 3θ)
.

The derivation of P(Gi|S = A1A2), i = 2, . . . , 6, can be done in a similar way and so we
omit the details.

This example shows the way of evaluating the match probabilities in a simple mixed stain
problem. The expression for the likelihood ratio is rather complicated when the involved
people come from a subdivided population. It is desired to derive a compact general formula
for evaluating the match probabilities.

7.3.2 A simple case with one victim, one suspect and one relative

We consider the situation in which only one victim, one suspect and a relative of the suspect
are involved and the two competing propositions are, respectively,

Hp: the contributors were the victim and the suspect;
Hd: the contributors were the victim and a relative of the suspect,

where all the involved people are coming from the same subdivided population.
Suppose we consider M = {A1, A2, A3}, V = A1A1, and S = A2A3. Under the prosecu-

tion proposition Hp, P(M|K, Hp) = 1. Under the defense proposition Hd , the genotype of
the unknown must be G = A2A3. So, P(M|K, Hd) = P(G = A2A3|V = A1A1, S = A2A3).
Considering the relatedness coefficients (k0, 2k1, k2) between the suspect S and the relative
and using the recursive formula given in Equation (3.17), we have

P(M|K, Hd) = 2k0P(A2, A3|V = A1A1, S = A2A3)

+ k1P(A3|V = A1A1, S = A2A3)

+ k1P(A2|V = A1A1, S = A2A3) + k2

= 2k0

[
θ + (1 − θ)p2

1 + 3θ

] [
θ + (1 − θ)p3

1 + 4θ

]
+ k1

[
θ + (1 − θ)p3

1 + 3θ

]

+ k1

[
θ + (1 − θ)p2

1 + 3θ

]
+ k2

= 2k0
[θ + (1 − θ)p2][θ + (1 − θ)p3]

(1 + 3θ)(1 + 4θ)
+ k1

[
2θ + (1 − θ)(p2 + p3)

1 + 3θ

]
+ k2.

So, the likelihood ratio is just the reciprocal of P(M|K, Hd). The other likelihood ratios can
be derived similarly and they are listed in Table 7.8.

7.3.3 General formulas

The examples shown in Sections 7.3.1 and 7.3.2 reveal a way of obtaining a formula for
the conditional probability P(M|K, H) when there are two biologically related individuals
amongst the involved people who come from the same subdivided population. In order to give
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Table 7.8 Likelihood ratio for one victim, one suspect and one unknown case with Hp:
the contributors were the victim and the suspect, and Hd : the contributors were the victim
and a relative of the suspect. The relatedness coefficients between the suspect and the relative
are (k0, 2k1, k2). All involved people come from the same subdivided population with the
degree of subdivision θ.

Victim Suspect LR

M = {A1, A2}
A1A1 A1A2

{
k0

[θ + (1 − θ)p2][8θ + (1 − θ)(2p1 + p2)]

(1 + 3θ)(1 + 4θ)

+ k1
5θ + (1 − θ)(p1 + 2p2)

1 + 3θ
+ k2

}−1

A2A2

{
k0

[2θ + (1 − θ)p2][7θ + (1 − θ)(2p1 + p2)]

(1 + 3θ)(1 + 4θ)

+ 2k1
4θ + (1 − θ)(p1 + p2)

1 + 3θ
+ k2

}−1

A1A2 A1A1

{
k0

[4θ + (1 − θ)(p1 + p2)][5θ + (1 − θ)(p1 + p2)]

(1 + 3θ)(1 + 4θ)

+ 2k1
4θ + (1 − θ)(p1 + p2)

1 + 3θ
+ k2

}−1

A1A2

{
k0

[4θ + (1 − θ)(p1 + p2)][5θ + (1 − θ)(p1 + p2)]

(1 + 3θ)(1 + 4θ)

+ 2k1
4θ + (1 − θ)(p1 + p2)

1 + 3θ
+ k2

}−1

M = {A1, A2, A3}

A1A1 A2A3

{
k0

2[θ + (1 − θ)p2][θ + (1 − θ)p3]

(1 + 3θ)(1 + 4θ)

+ k1
2θ + (1 − θ)(p2 + p3)

1 + 3θ
+ k2

}−1

A1A2 A1A3

{
k0

[θ + (1 − θ)p3)][8θ + (1 − θ)(2p1 + 2p2 + p3)]

(1 + 3θ)(1 + 4θ)

+ k1
5θ + (1 − θ)(p1 + p2 + 2p3)

1 + 3θ
+ k2

}−1

A3A3

{
k0

[2θ + (1 − θ)p3][7θ + (1 − θ)(2p1 + 2p2 + p3)]

(1 + 3θ)(1 + 4θ)

+ 2k1
4θ + (1 − θ)(p1 + p2 + p3)

1 + 3θ
+ k2

}−1

M = {A1, A2, A3, A4}

A1A2 A3A4

{
k0

2[θ + (1 − θ)p3][θ + (1 − θ)p4]

(1 + 3θ)(1 + 4θ)

+ k1
2θ + (1 − θ)(p3 + p4)

1 + 3θ
+ k2

}−1
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a concise expression of P(M|K,H), we introduce (Fung and Hu 2004)

Q(n, C, θ) =
∑

M\C⊂D⊂M

(−1)|M\D|q(n, D)

= q(n, M) −
∑
Ai∈C

q(n, M \ {Ai}) +
∑

Ai,Aj∈C

q(n, M \ {Ai, Aj})

− · · · + (−1)|C|q(n, M \ C), (7.15)

for any integer-valued n and allele subset C of the mixture M, where

q(n, C) =
(∑

Al∈C

pl

)(n)(∑
Al∈C

cl, θ

)/
1(n)(c, θ), (7.16)

c is the count of total alleles present in K, which is twice the number of tested persons, cl is the
count of allele Al present in K, which gives rise to the sum

∑
l cl = c (see Table 6.6 for more

details of notations), and r(n)(k, θ) is defined in Equation (6.10). Notice that Q(0, φ, θ) = 1,
Q(n, C, θ) = 0 for all n < |C|, and Q(n, C, 0) is just the quantity of Q(n, C) defined in
Equation (7.2).

Note that q(n, C) in Equation (7.15) is just the conditional probability that n alleles belong
to set C given the total alleles in K, and Q(n, C, θ) is the conditional probability that n alleles
coming from set M explain the alleles in set C given the total alleles in K. These two quantities
make the expression of P(M|K,H) more concise.

Now, we consider a criminal case with mixture M, typed genotypes K, and T = t1t2 being
one of the typed persons. The proposition about who the unknown contributors to the mixed
stain were is given as follows:

H: one relative, R, of the typed T and x − 1 other unrelated unknowns were
contributors.

(7.17)

Notice that, in this case, the individual R is an unknown contributor, since, in some situations,
the person concerned may refuse to cooperate or cannot be approached for various reasons
including death, and a relative is tested instead. The formula for calculating P(M|K,H) is
given as follows (Fung and Hu 2004):

P(M|K,H) = k0Q(2x, U, θ)

+ k1[IM(t1)Q(2x − 1, U \ {t1}, θ) + IM(t2)Q(2x − 1, U \ {t2}, θ)]
+ k2IM(t1)IM(t2)Q(2x − 2, U \ {t1} ∪ {t2}, θ). (7.18)

The proof of Equation (7.18) is given in Section 7.4.7. Note that Equation (7.18) is applicable
to the situations in which the suspect is unavailable but one of his/her relatives is tested instead,
or a relative of the tested suspect is a potential contributor to the mixture.

For the case in which two related unknown persons (e.g. two siblings) were the source
contributors to the mixed stain, the proposition of interest becomes

H: two related persons, X1 and X2, and x − 2 other unrelated unknowns were
contributors.

(7.19)
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In this situation, we have

P(M|K,H) = k0Q(2x, U, θ) + 2k1Q(2x − 1, U, θ) + k2Q(2x − 2, U, θ). (7.20)

The proof of Equation (7.20) is given in Section 7.4.7.
It is necessary for a proposition H to specify the known contributors to the mixture M

and then the set U can be determined, although we omit such details for propositions (7.17)
and (7.19) for brevity. Equations (7.18) and (7.20) show that P(M|K,H) are linear combina-
tions of Q(·, ·, ·) and so the implementation of P(M|K,H) via a computer program is easy.
When the involved persons in a crime case belong to the same subdivided population but are
all biologically unrelated, both Equations (7.18) and (7.20) reduce to the same equation as
P(M|K,H) = Q(2x, U) due to k0 = 1 and k1 = k2 = 0, which was reported in Fung and Hu
(2000b).

7.3.4 An example analyzed by the software

The Hong Kong case example as described in Table 6.5 is considered. We study the following
two competing propositions:

Hp: the victim and the suspect were contributors of the mixed stain;
Hd1: the victim and one relative of the suspect were contributors.

The victim was biologically unrelated to the suspect and the relative of the suspect. The purpose
of this example is mainly for illustration, and so we consider six commonly encountered
relationships between the suspect and his relative: parent–child, full siblings, half siblings,
first cousins, second cousins and unrelated. The relatedness coefficients for these relationships
can be referred to in Table 3.13.

For locus vWA, from Table 6.5, we have M = {16, 18} and K = 16/16, 18/18. Under the
prosecution proposition Hp, the alleles in M are explained by the known contributors, the
victim and the suspect, so P(M|K,Hp) = 1. Under the defense proposition, the number of
unknown contributors x is 1, and U = {16} is concluded from the mixture and the genotypes
of known contributors. So, P(M|K,Hd) = k0Q(2, U, θ) + 2k1Q(1, U, θ) + k2Q(0, U, θ).

Table 7.9 shows the corresponding likelihood ratios with θ = 0, 0.01 and 0.03, respectively.
The likelihood ratio for the full siblings case is the lowest for any of the θ values. When θ =
0, the overall likelihood ratio for the unrelated case is more than 800 times higher than that
for the full siblings case. The genetic evidence is strong for the unrelated case, but it is rather
weak if the full siblings proposition is chosen. It is clear that the effect of relatedness on the
likelihood ratio is substantial. When the population structure is taken into account, i.e. θ > 0,
all the likelihood ratios drop. The highest and the lowest drops correspond to the unrelated
and full siblings cases, respectively. The ratios of the highest and the lowest overall likelihood
ratios are about 500 when θ = 0.01 and 250 when θ = 0.03.

Suppose that the evidence was collected from somewhere other than the victim’s body;
then, the defense proposition could be

Hd2: one relative of the suspect and one unrelated unknown were contributors,

while the prosecution proposition Hp remains unchanged. The likelihood ratios are shown in
Table 7.10. They are all larger than those in the previous set of propositions. The likelihood
ratios at D3S1358 and vWA both have the smallest values in the full siblings relationship,
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Table 7.9 The effects of relatedness and population structure on the likelihood ratios
for a DNA mixture in the Hong Kong case example, in which the prosecution and
defense propositions are Hp: the victim and the suspect were contributors of the mixed
stain, and Hd1: the victim and one relative of the suspect were contributors, respectively,
from Fung and Hu (2004). (Reproduced by permission of Blackwell Publishing.)

Likelihood ratios

θ Relationship D3S1358 vWA FGA Overall

0 Parent–child 7.35 3.16 3.13 73
Full siblings 3.11 2.34 2.36 17
Half siblingsa 13.18 5.12 5.29 357
Cousins 21.82 7.42 8.08 1 309
Second cousins 42.94 11.19 13.39 6 436
Unrelated 63.40 13.47 17.15 14 644

0.01 Parent–child 7.12 2.92 2.89 60
Full siblings 3.08 2.26 2.27 16
Half siblingsa 12.49 4.64 4.79 278
First cousins 20.06 6.59 7.13 943
Second cousins 36.77 9.61 11.27 3 983
Unrelated 50.90 11.35 13.97 8 070

0.03 Parent–child 6.73 2.56 2.53 44
Full siblings 3.02 2.11 2.12 13
Half siblingsa 11.42 3.94 4.05 182
First cousins 17.52 5.40 5.78 548
Second cousins 29.22 7.49 8.52 1 865
Unrelated 37.60 8.60 10.11 3 270

a The same as the grandparent–child and the uncle–niece relationship

while the likelihood ratio is the lowest in the parent–child relationship for locus FGA. In
general, the effect of relatedness on the likelihood ratios is smaller than that in Hp versus Hd1.

Finally, while keeping the same Hp, we consider a third kind of defense proposition:

Hd3: two related unknown persons were contributors.

Unlike that of the other two sets of propositions, the likelihood ratio at locus D3S1358 for the
full siblings case is the highest, while that for the unrelated case is the lowest (Table 7.11).
When θ = 0, the smallest likelihood ratios at loci vWA and FGA go to the full siblings and
half siblings cases, respectively. If we compare θ = 0 and θ = 0.01/0.03, the largest likelihood
ratio at FGA shifts from the unrelated to the full siblings relationship. The effect of either
relatedness or θ on the likelihood ratio is mixed under this particular set of propositions.

All the results listed in Tables 7.9, 7.10 and 7.11 were obtained using our developed
software. For proposition pairs Hp and Hd1, and Hp and Hd2, all the steps are the same
as described in Section 7.1.6, except in step 2, where multiple values of θ, i.e. 0, 0.01 and
0.03 are input here. For proposition pair Hp and Hd3, the procedure of running the computer
software is very similar, except in step 12, where the option there are two related persons in
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Table 7.10 The effects of relatedness and population structure on the likelihood ratios
for a DNA mixture in the Hong Kong case example, in which the prosecution and
defense propositions are Hp: the victim and the suspect were contributors of the mixed stain,
and Hd2: one relative of the suspect and one unrelated unknown were contributors, respectively,
from Fung and Hu (2004). (Reproduced by permission of Blackwell Publishing.)

Likelihood ratios

θ Relationship D3S1358 vWA FGA Overall

0 Parent–child 66.11 36.03 106.13 252 787
Full siblings 56.47 28.62 109.48 176 943
Half siblingsa 107.33 54.82 159.91 940 898
Cousins 155.94 74.17 214.16 2 476 984
Second cousins 236.14 100.87 287.25 6 842 643
Unrelated 285.01 114.63 324.13 10 589 598

0.01 Parent–child 69.23 27.12 79.40 149 053
Full siblings 58.99 22.69 84.55 113 144
Half siblingsa 108.63 40.03 115.74 503 255
First cousins 151.85 52.53 150.08 1 197 177
Second cousins 216.42 68.61 193.04 2 866 279
Unrelated 252.16 76.40 213.41 4 111 306

0.03 Parent–child 75.78 17.35 51.30 67 460
Full siblings 64.39 15.55 56.77 56 827
Half siblingsa 113.11 24.40 70.88 195 607
First cousins 150.07 30.61 87.59 402 436
Second cousins 198.81 37.84 106.41 800 602
Unrelated 222.94 41.08 114.62 1 049 659

a The same as the grandparent–child and the uncle–niece relationship

unknowns is chosen. Figure 7.5 shows the captured input screen when all the entries are input
for locus D3S1358. When we complete the steps for subsequent loci vWA and FGA, we have
the individual and overall likelihood ratios for different θ values and various relationships, as
shown in Figure 7.6.

7.4 Proofs
The proofs in this section are mainly for mathematically oriented readers. They are provided
in this last section, having little distraction to the flow of the main content in the text.

7.4.1 Preliminary

First of all, we give the following lemma to calculate the joint genotype probability of X = x1x2

and Y = y1y2, whose seven detailed expressions are given in Table 5.1:
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Table 7.11 The effects of relatedness and population structure on the likelihood ratios
for a DNA mixture in the Hong Kong case example, in which the prosecution and
defense propositions are Hp: the victim and the suspect were contributors of the mixed
stain, and Hd3: two related unknown persons were contributors, respectively, from
Fung and Hu (2004). (Reproduced by permission of Blackwell Publishing.)

Likelihood ratios

θ Relationshipa D3S1358 vWA FGA Overall

0 Full siblings 1140.04 37.75 314.31 13 525 658
Half siblingsb 570.02 61.76 252.98 8 905 310
Cousins 380.01 80.27 284.17 8 667 933
Second cousins 304.01 103.55 313.12 9 856 994
Unrelated 285.01 114.63 324.13 10 589 598

0.01 Full siblings 854.51 30.06 228.22 5 861 232
Half siblingsb 427.26 45.42 180.07 3 494 270
First cousins 284.84 56.97 195.33 3 169 537
Second cousins 227.87 70.40 208.58 3 345 913
Unrelated 213.63 76.40 213.41 3 483 050

0.03 Full siblings 574.47 20.68 140.32 1 667 192
Half siblingsb 287.24 27.92 107.44 861 744
First cousins 191.49 33.25 110.92 706 134
Second cousins 153.19 38.79 113.67 675 531
Unrelated 143.62 41.08 114.62 676 204

aThe parent–child relationship is impossible for a mixture of four distinct alleles at locus
D3S1358, assuming no mutation

b The same as the grandparent–child and the uncle–niece relationship

Lemma 7.4.1 For any two persons X = x1x2 and Y = y1y2,

P(X = x1x2, Y = y1y2)

= k0P(X)P(Y) + k1(2 − δx1x2)[I{y1}∪{y2}(x1)px2 + I{y1}∪{y2}(x2)px1 ]py1py2

+ k2P(Y)δXY

= k0P(X)P(Y) + k1(2 − δy1y2)[I{x1}∪{x2}(y1)py2 + I{x1}∪{x2}(y2)py1 ]px1px2

+ k2P(Y)δXY , (7.21)

where (k0, 2k1, k2) are the relatedness coefficients between X and Y , {x1} ∪ {x2} is the genetic
profile comprising the two alleles that X carries, which is a singleton for homozygous X,
{y1} ∪ {y2} is defined similarly for individual Y , I is the indicator function, δ is the Kronecker
delta function defined by δXY = 1 if individuals X and Y have the same genotype, 0 otherwise.
Note that the second equality in Equation (7.21) follows the symmetry of X and Y .

Proof. Suppose individual X has alleles a and b and Y has alleles c and d at some autoso-
mal locus, where alleles a and c are of paternal and alleles b and d are of maternal (Evett and
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Figure 7.5 Captured input screen for analyzing the Hong Kong case example about two
alternative propositions Hp: the victim and the suspect were the contributors of the mixed
stain versus Hd3: two biologically related unknown contributors were the contributors. All
people involved come from the same subdivided population.

Weir 1998). It is noted that alleles a and b take a unique value for a homozygous X and two val-
ues for a heterozygous X, and also for Y . Then, the relatedness coefficients (k0, 2k1, k2) defined
in Equation (3.18) can be expressed as k0 = P(no ibd allele), 2k1 = P(a ≡ c, b �≡ d) + P(a ≡
d, b �≡ c) + P(b ≡ c, a �≡ d) + P(b ≡ d, a �≡ c), and k2 = P(a ≡ c, b ≡ d) + P(a ≡ d, b ≡
c), where the equivalence sign ≡ is used to indicate an ibd relationship.

Let IBDA denote the ibd alleles between the two individuals X = x1x2 and Y = y1y2;
then, all the possibilities for IBDA are: IBDA = none, IBDA = x1, IBDA = x2 (if x2 �= x1),
and IBDA = x1, x2. It is obvious that

P(X = x1x2, Y = y1y2, IBDA = none) = k0P(X)P(Y). (7.22)

For two identical homozygous X and Y where X = Y = AiAi, we have

P(X = AiAi, Y = AiAi, IBDA = Ai, Ai)

= P(a = Ai, b = Ai; c = Ai, d = Ai, IBDA = Ai, Ai)

= P(a = Ai, b = Ai; c = Ai, d = Ai, a ≡ c, b ≡ d)
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Figure 7.6 Captured result screen for analyzing the Hong Kong case example about two
alternative propositions Hp: the victim and the suspect were the contributors of the mixed
stain versus Hd3: two biologically related unknown contributors were the contributors. All
people involved come from the same subdivided population.

+ P(a = Ai, b = Ai; c = Ai, d = Ai, a ≡ d, b ≡ c)

= [P(a ≡ c, b ≡ d) + P(a ≡ d, b ≡ c)
]
p2

i .

For two identical heterozygous X and Y where X = Y = AiAj , we have

P(X = AiAj, Y = AiAj, IBDA = Ai, Aj)

= P(a = Ai, b = Aj; c = Ai, d = Aj, IBDA = Ai, Aj)

+ P(a = Aj, b = Ai; c = Ai, d = Aj, IBDA = Ai, Aj)

+ P(a = Ai, b = Aj; c = Aj, d = Ai, IBDA = Ai, Aj)

+ P(a = Aj, b = Ai; c = Aj, d = Ai, IBDA = Ai, Aj)

= P(a = Ai, b = Aj; c = Ai, d = Aj, a ≡ c, b ≡ d)

+ P(a = Aj, b = Ai; c = Ai, d = Aj, a ≡ d, b ≡ c)
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+ P(a = Ai, b = Aj; c = Aj, d = Ai, a ≡ d, b ≡ c)

+ P(a = Aj, b = Ai; c = Aj, d = Ai, a ≡ c, b ≡ d)

= 2pipj

[
P(a ≡ c, b ≡ d) + P(a ≡ d, b ≡ c)

]
.

Thus, we obtain

P(X = x1x2, Y = y1y2, IBDA = x1, x2) = k2P(X)δXY . (7.23)

Similarly, we have

P(X = x1x2, Y = y1y2, IBDA = x1) = 2k1I{y1}∪{y2}(x1)px2py1py2 . (7.24)

Based on Equations (7.22)–(7.24), we have

P(X = x1x2, Y = y1y2)

= P(X = x1x2, Y = y1y2, IBDA = none) + P(X = x1x2, Y = y1y2, IBDA = x1)

+ (1 − δx1x2)P(X = x1x2, Y = y1y2, IBDA = x2)

+ P(X = x1x2, Y = y1y2, IBDA = x1, x2)

= k0P(X)P(Y) + k1
[
2I{y1}∪{y2}(x1)px2 + 2(1 − δx1x2)I{y1}∪{y2}(x2)px1

]
py1py2

+ k2P(Y)δXY .

Thus, we complete the proof of Equation (7.21).

Lemma 7.4.2 Let x1x2 and y1y2 be the genotypes of individuals X and Y , then we have for
any set C of alleles

∑
x1,x2∈C

P(X) =
(∑

Al∈C

pl

)2

, (7.25)

∑
x1,x2∈C

I{x1}∪{x2}(y1)px1px2 = IC(y1)py1

∑
Al∈C

pl, (7.26)

∑
x1,x2∈C

δXY = IC(y1)IC(y2). (7.27)

Proof. Note that Equations (7.25) and (7.27) are straightforward. For x1, x2 ∈ C, the
genotype X may be homozygous or heterozygous, viz. X = x1x1 or X = x1x2 (x1 �= x2).
When I{x1}∪{x2}(y1) = 1, we can assume x1 = y1 without loss of generality. So

∑
x1,x2∈C

I{x1}∪{x2}(y1)px1px2 = IC(y1)

(
p2

y1
+

∑
Al �=y1, Al∈C

py1pl

)

= IC(y1)py1

∑
Al∈C

pl

and Equation (7.26) holds.
Based on Equation (7.21), we have further
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Lemma 7.4.3 For any subset C of the mixture M and X = x1x2 and Y = y1y2 that

P(x1, x2 ∈ C|Y = y1y2)

= k0

(∑
Al∈C

pl

)2

+ k1[IC(y1) + IC(y2)]
∑
Al∈C

pl + k2IC(y1)IC(y2), (7.28)

P(y1, y2 ∈ C|X = x1x2)

= k0

(∑
Al∈C

pl

)2

+ k1[IC(x1) + IC(x2)]
∑
Al∈C

pl + k2IC(x1)IC(x2), (7.29)

P(x1, x2, y1, y2 ∈ C) =
(∑

Al∈C

pl

)2 [
k0

(∑
Al∈C

pl

)2

+ 2k1

∑
Al∈C

pl + k2

]
.

(7.30)

Proof. According to Equation (7.21), we first find the summation of joint genotype
probabilitiesP(X, Y)over allx1, x2 ∈ C for any given setC. It is observed from Equation (7.21)
that the summation comes down to finding the summation corresponding to the coefficients
of k0, k1 and k2 therein over all x1, x2 ∈ C, designated as a0, a1, a2, respectively. From
Equations (7.25) – (7.27), we have

a0 = P(Y)
∑

x1,x2∈C

P(X) = P(Y)

(∑
Al∈C

pl

)2

,

a1 =
∑

x1,x2∈C

(2 − δx1x2)[I{y1}∪{y2}(x1)px2 + I{y1}∪{y2}(x2)px1 ]py1py2

=
∑

x1,x2∈C

(2 − δy1y2)[I{x1}∪{x2}(y1)py2 + I{x1}∪{x2}(y2)py1 ]px1px2

= (2 − δy1y2)py1py2 [IC(y1) + Iy(s2)]
∑
Al∈C

pl

= P(Y)[IC(y1) + IC(y2)]
∑
Al∈C

pl,

a2 = P(Y)
∑

x1,x2∈C

δXY = P(Y)IC(y1)IC(y2).

So, we have ∑
x1,x2∈C

P(X, Y)

= k0P(Y)

(∑
Al∈C

pl

)2

+ k1P(Y)[IC(y1) + IC(y2)]
∑
Al∈C

pl + k2P(Y)IC(y1)IC(y2),

and

P(x1, x2, y1, y2 ∈ C)
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=
∑

x1,x2∈C

∑
y1,y2∈C

P(X, Y)

= k0

(∑
Al∈C

pl

)2 ∑
y1,y2∈C

P(Y) + k1

∑
Al∈C

pl

∑
y1,y2∈C

P(Y)[IC(y1) + IC(y2)]

+ k2

∑
y1,y2∈C

P(Y)IC(y1)IC(y2)

= k0

(∑
Al∈C

pl

)2(∑
Al∈C

pl

)2

+ 2k1

∑
Al∈C

pl

(∑
Al∈C

pl

)2

+ k2

(∑
Al∈C

pl

)2

.

Thus, Equation (7.30) holds.
Furthermore,

P(x1, x2 ∈ C|Y) =
∑

x1,x2∈C

P(X, Y)/P(Y)

= k0

(∑
Al∈C

pl

)2

+ k1[IC(y1) + IC(y2)]
∑
Al∈C

pl + k2IC(y1)IC(y2).

This is just Equation (7.29). Equation (7.30) follows from the interchanging of X and Y in
Equation (7.29).

In the following, we provide two more lemmas which are used in the subsequent proofs.

Lemma 7.4.4 For any allele set U ⊂ M, and any pairwise distinct alleles a, b, c and d ∈ U,

Q(n, U \ {a}) =
∑

M\U⊂C⊂M

IC(a)(−1)|M\C|
(∑

Al∈C

pl

)n

, (7.31)

Q(n, U \ {a, b}) =
∑

M\U⊂C⊂M

IC(a)IC(b)(−1)|M\C|
(∑

Al∈C

pl

)n

, (7.32)

Q(n, U \ {a, b, c}) =
∑

M\U⊂C⊂M

IC(a)IC(b)IC(c)(−1)|M\C|
(∑

Al∈C

pl

)n

, (7.33)

Q(n, U \ {a, b, c, d}) =
∑

M\U⊂C⊂M

IC(a)IC(b)IC(c)IC(d)(−1)|M\C|
(∑

Al∈C

pl

)n

.

(7.34)

Proof. It is sufficient to note that for M \ U ⊂ C ⊂ M, a ∈ U,

IC(a) = 1 ⇔ a ∈ C ⇔ (M \ U) ∪ {a} ⊂ C ⊂ M ⇔ M \ (U \ {a}) ⊂ C ⊂ M,

so ∑
M\U⊂C⊂M

IC(a)(−1)|M\C|
(∑

Al∈C

pl

)n

=
∑

M\(U\{a})⊂C⊂M

(−1)|M\C|
(∑

Al∈C

pl

)n

= Q(n, U \ {a}),
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from Equation (7.2).
Similarly,

IC(a)IC(b) = 1 ⇔ a, b ∈ C ⇔ (M \ U) ∪ {a, b} ⊂ C ⊂ M

⇔ M \ (U \ {a, b}) ⊂ C ⊂ M.

So, Equation (7.32) holds from Equation (7.2).

IC(a)IC(b)IC(c) = 1 ⇔ a, b, c ∈ C ⇔ (M \ U) ∪ {a, b, c} ⊂ C ⊂ M

⇔ M \ (U \ {a, b, c}) ⊂ C ⊂ M.

So, Equation (7.33) holds from Equation (7.2).

IC(a)IC(b)IC(c)IC(d) = 1 ⇔ a, b, c, d ∈ C ⇔ (M \ U) ∪ {a, b, c, d} ⊂ C ⊂ M

⇔ M \ (U \ {a, b, c, d}) ⊂ C ⊂ M.

So, Equation (7.34) holds from Equation (7.2).

Lemma 7.4.5 For any U ⊂ M, and any alleles a, b, c and d, we have∑
M\U⊂C⊂M

IC(a)(−1)|M\C|
(∑

Al∈C

pl

)n

= IM(a)Q(n, U \ {a}), (7.35)∑
M\U⊂C⊂M

IC(a)IC(b)(−1)|M\C|
(∑

Al∈C

pl

)n

= IM(a)IM(b)Q(n, U \ {a} ∪ {b}), (7.36)∑
M\U⊂C⊂M

IC(a)IC(b)IC(c)(−1)|M\C|
(∑

Al∈C

pl

)n

= IM(a)IM(b)IM(c)Q(n, U \ {a} ∪ {b} ∪ {c}), (7.37)∑
M\U⊂C⊂M

IC(a)IC(b)IC(c)IC(d)(−1)|M\C|
(∑

Al∈C

pl

)n

= IM(a)IM(b)IM(c)IM(d)Q(n, U \ {a} ∪ {b} ∪ {c} ∪ {d}). (7.38)

Proof. If allele a is not in the mixture M, then both sides of Equation (7.35) are zero; if
a ∈ M \ U, then Equation (7.35) is just Equation (7.2); if a ∈ U, then Equation (7.35) is just
Equation (7.31). Thus, Equation (7.35) holds.

If alleles a and b are identical, then Equation (7.36) is just Equation (7.35). Next, we
consider a �= b. If a or b is not in M, then both sides of Equation (7.36) are zero; if a, b ∈ U,
then Equation (7.36) is just Equation (7.32); if a ∈ U and b ∈ M \ U, then Equation (7.36)
is just Equation (7.35); if a, b ∈ M \ U, then Equation (7.36) is just Equation (7.2). Thus, we
have Equation (7.36) by the symmetry of a and b.

If two of alleles a, b and c are identical, then Equation (7.37) is just Equation (7.36). So,
we consider that a, b and c are all distinct. If one of a, b and c is not in M, then both sides of
Equation (7.37) are zero; if a, b, c ∈ U, then Equation (7.37) is just Equation (7.33); if a, b ∈
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U and c ∈ M \ U, then Equation (7.37) is just Equation (7.36); if a ∈ U and b, c ∈ M \ U,
then Equation (7.37) is just Equation (7.35); if a, b, c ∈ M \ U, then Equation (7.37) is just
Equation (7.2). By the symmetry of a, b and c, Equation (7.37) is hence proved.

If two of alleles a, b, c and d are identical, then Equation (7.38) is just Equation (7.37).
So, we assume a, b, c and d are all distinct. If one of a, b, c and d is not in M, then both sides
of Equation (7.38) are zero; if a, b, c, d ∈ U, then Equation (7.38) is just Equation (7.34);
if a, b, c ∈ U and d ∈ M \ U, then Equation (7.38) is just Equation (7.37); if a, b ∈ U and
c, d ∈ M \ U, then Equation (7.38) is just Equation (7.36); if a ∈ U and b, c, d ∈ M \ U,
then Equation (7.38) is just Equation (7.35); if a, b, c, d ∈ M \ U, then Equation (7.38) is
just Equation (7.2). Thus, we prove Equation (7.38) by the symmetry of a, b, c and d.

7.4.2 The proof of Equation (7.5)

Under proposition H , the suspect S = s1s2 is a tested man and R = r1r2 is an unknown
contributor. So, we can write K as (S, K0) and X = {r1} ∪ {r2} ∪ X0, where K0 is the collec-
tion of genotypes of the typed person(s) except S, X0 is the genetic profile of the unknown
contributor(s) except R. We have from Equation (7.29) for any M \ U ⊂ C ⊂ M,

P(X ⊂ C|K)

= P({r1} ∪ {r2} ∪ X0 ⊂ C|S, K0)

= P(r1, r2 ∈ C|S)P(X0 ⊂ C)

=
(∑

Al∈C

pl

)2(x−1)
{

k0

(∑
Al∈C

pl

)2

+ k1[IC(s1) + IC(s2)]
∑
Al∈C

pl + k2IC(y1)IC(y2)

}
.

(7.39)

Substituting Equation (7.39) into Equation (6.6) and using the notation Q(·, ·) defined in
Equation (7.2), we have Equation (7.5), for a given proposition H , after simplification using
the fact that IC(s1) is always 0 for any s1 /∈ M, IC(s1) is always 1 for any s1 ∈ M \ U, and
IC(s1) may take value 0 or 1 if s1 ∈ U.

7.4.3 The proof of Equation (7.7)

Under proposition H , there are two biologically related X1 = x11x12 and X2 = x21x22 amongst
x unknown contributors. So we can write X, the genetic profile of the x unknowns, as
{x11} ∪ {x12} ∪ {x21} ∪ {x22} ∪ X0, where X0 is the genetic profile of the other x − 2 unknown
contributors. From Equation (7.30), we have for any M \ U ⊂ C ⊂ M that

P(X ⊂ C|K) = P(X0 ⊂ C)P(x11, x12, x21, x22 ∈ C)

=
(∑

Al∈C

pl

)2x−2
[
k0

(∑
Al∈C

pl

)2

+ 2k1

∑
Al∈C

pl + k2

]
. (7.40)

Substituting Equation (7.40) into Equation (6.6) and using the notation Q(·, ·) defined in
Equation (7.2), we immediately have Equation (7.7), for a given proposition H .
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7.4.4 The proof of Equation (7.9)

Under the proposition specified in Equation (7.8), the only related individuals are X1 and T1,
and X2 and T2. Let x11x12 and x21x22 be the genotypes of the two unknown contributors; X1

and X2, respectively, and X0 be the genetic profiles of the other x − 2 unknown contributor;
then, we have X = {x11} ∪ {x12} ∪ {x21} ∪ {x22} ∪ X0 and further, from Equation (6.7),

W(C) = P(x11, x12, x21, x22 ∈ C, X0 ⊂ C|K)

= P(x11, x12 ∈ C|T1)P(x21, x22 ∈ C|T2)P(X0 ⊂ C). (7.41)

Using Equation (7.29) for the first two items on the right-hand side of Equation (7.41), P(X0 ⊂
C) = (

∑
Al∈C pl)

2(x−2), and the results of Lemma 7.4.5, we can have Equation (7.9) from
Equation (6.6) after some matrix manipulation.

7.4.5 The proof of Equation (7.11)

Under the proposition specified in Equation (7.10), the only related individuals are X1 and
T1, and X2 and X3. Let x11x12, x21x22, and x31x32 be the genotypes of the two unknown
contributors X1, X2 and X3, respectively, and X0 be the genetic profiles of the other x − 3
unknown contributors; then, we have X = {x11} ∪ {x12} ∪ {x21} ∪ {x22} ∪ {x31} ∪ {x32} ∪X0

and further, from Equation (6.7),

W(C) = P(x11, x12 ∈ C|T1)P(x21, x22, x31, x32 ∈ C)P(X0 ⊂ C). (7.42)

Substituting Equations (7.30), (7.29) and P(X0 ⊂ C) = (
∑

Al∈C pl)
2(x−3) into the expression

of W(C) in Equation (7.42) and then using Lemma 7.4.5, we can have Equation (7.11) from
Equation (6.6) after some matrix manipulation.

7.4.6 The proof of Equation (7.13)

Under the proposition specified in Equation (7.12), the only related individuals are X1 and X2,
and X3 and X4. Let x11x12, x21x22, x31x32, and x41x42 be the genotypes of the two unknown
contributors X1, X2, X3, and X4, respectively, and X0 be the genetic profiles of the other x −
4 unknown contributors; then, we have X = {x11} ∪ {x12} ∪ {x21} ∪ {x22} ∪ {x31} ∪ {x32} ∪
{x41} ∪ {x42} ∪ X0 and further, from Equation (6.7),

W(C) = P(x11, x12, x21, x22 ∈ C)P(x31, x32, x41, x42 ∈ C)P(X0 ⊂ C). (7.43)

Substituting Equation (7.30) and P(X0 ⊂ C) = (
∑

Al∈D pl)
2(x−4) into Equation (7.43) and

then using Lemma 7.4.5, we have Equation (7.13) from Equation (6.6) after some matrix
manipulation.

7.4.7 The proofs of Equations (7.18) and (7.20)

Suppose that the relatedness coefficients between two individuals X = x1x2 and Y = y1y2 are
(k0, 2k1, k2). Let Z denote the persons who are biologically unrelated to X and Y , and X, Y ,
Z come from the same subdivided population with the degree of subdivision θ. Then
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P(X = x1x2, Y = y1y2, Z)

= k0(2 − δx1x2)(2 − δy1y2)P(x1, x2, y1, y2, Z)

+ k1(2 − δx1x2)
[
I{y1}∪{y2}(x1)P(x2, y1, y2, Z) + I{y1}∪{y2}(x2)P(x1, y1, y2, Z)

]
+ k2(2 − δy1y2)P(y1, y2, Z)δXY . (7.44)

It is noted that each probability of a mixture of alleles and genotypes, e.g. P(x1, x2, y1, y2, Z),
on the right-hand side of Equation (7.44) can be found using Equation (3.17) successively,
since there is no more ibd relationship among alleles x1, x2, y1, y2, and those in Z.

Since Z is biologically unrelated to X and Y , there is no ibd allele between Z and (X, Y). It
is necessary to make clear which allele(s) of X and Y is (are) ibd. Let IBDA be the ibd alleles
of X = x1x2 and Y = y1y2. The possible values of IBDA are: IBDA = none, IBDA = x1,
IBDA = x2 (if x1 �= x2), and IBDA = x1, x2. It is straightforward that

P(X, Y, Z, IBDA = none) = k0(2 − δx1x2)(2 − δy1y2)P(x1, x2, y1, y2, Z). (7.45)

If IBDA = x1, x2, X and Y would need to share two alleles, i.e. X = Y . It can then be
concluded that

P(X, Y, Z, IBDA = x1, x2) = k2δXYP(Y, Z)

= k2(2 − δy1y2)P(y1, y2, Z)δXY . (7.46)

If IBDA = x1, X and Y would need to share the allele x1. Taking account of the two pos-
sibilities that allele x1 may be paternal or maternal for each of X and Y , it results in four
combinations with the total probability being 2k1 about which alleles, paternal or maternal,
for each of X and Y are ibd. So

P(X, Y, Z, IBDA = x1) = 2k1I{y1}∪{y2}(x1)P(x2, y1, y2, Z). (7.47)

Based on Equations (7.45)–(7.47) and using the law of total probability, it follows that

P(X, Y, Z)

= P(X, Y, Z, IBDA = none) + P(X, Y, Z, IBDA = x1)

+ (1 − δx1x2)P(X, Y, Z, IBDA = x2) + P(X, Y, Z, IBDA = x1, x2)

= k0(2 − δx1x2)(2 − δy1y2)P(x1, x2, y1, y2, Z)

+ 2k1I{y1}∪{y2}(x1)P(x2, y1, y2, Z) + 2(1 − δx1x2)k1I{y1}∪{y2}(x2)P(x1, y1, y2, Z)

+ k2(2 − δy1y2)P(y1, y2, Z)δXY .

Thus, we have Equation (7.44) after simplification. Note that Equation (7.44) is an extension
of Equation (7.21).

Lemma 7.4.6 Suppose the relatedness coefficients between individuals X = x1x2 and Y =
y1y2 are (k0, 2k1, k2), and Z denotes persons who are biologically unrelated to X and Y ; then∑

x1,x2∈C

P(X, Y, Z) = k0

∑
x1,x2∈C

P(x1, x2, Y, Z)

+ k1[IC(y1) + IC(y2)]
∑
x1∈C

P(x1, Y, Z) + k2IC(y1)IC(y2)P(Y, Z), (7.48)

where C is a set of alleles.
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Proof. By simple algebraic manipulation, we can have∑
x1,x2∈C

(2 − δx1x2)(2 − δy1y2)P(x1, x2, y1, y2, Z) =
∑

x1,x2∈C

P(x1, x2, Y, Z) (7.49)

and ∑
x1,x2∈C

(2 − δy1y2)P(y1, y2, Z)δXY = IC(y1)IC(y2)P(Y, Z). (7.50)

In order to find the summation of the coefficient of k1 in Equation (7.44) over x1, x2 ∈ C,
which is denoted by a1 hereafter, we should distinguish whether Y = y1y2 is homozygous or
heterozygous.

When y2 = y1,

a1 =
∑

x1,x2∈C

(2 − δx1x2)
[
I{y1}∪{y2}(x1)P(x2, y1, y1, Z) + I{y1}∪{y2}(x2)P(x1, y1, y1, Z)

]

= IC(y1)
∑

x1=x2=y1

2P(y1, y1, y1, Z) + IC(y1)
∑

x2=y1;x1 �=y1,x1∈C

2P(x1, y1, y1, Z)

= 2IC(y1)
∑
x1∈C

P(x1, y1, y1, Z).

When y2 �= y1, a1 = 0, if y1 /∈ C and y2 /∈ C;

a1 =
∑

x1=x2=y1

2P(y1, y1, y2, Z) +
∑

x2=y1;x1 �=y1,x1∈C

2P(x1, y1, y2, Z)

= 2
∑
x1∈C

P(x1, y1, y2, Z),

if y1 ∈ C and y2 /∈ C; similarly,

a1 = 2
∑
x1∈C

P(x1, y1, y2, Z),

if y1 /∈ C and y2 ∈ C; and

a1 =
∑

x1=x2=y1

2P(y1, y1, y2, Z) +
∑

x1=x2=y2

2P(y2, y1, y2, Z)

+
∑

x1=y1;x2=y2

[2P(y1, y1, y2, Z) + 2P(y2, y1, y2, Z)]

+
∑

x2=y1;x1∈C,x1 �=y1,y2

2P(x1, y1, y2, Z) +
∑

x2=y2;x1∈C,x1 �=y1,y2

2P(x1, y1, y2, Z)

= 4
∑
x1∈C

P(x1, y1, y2, Z),

if y1 ∈ C and y2 ∈ C.
Thus, a1 can be unified as

T =
∑

x1,x2∈C

(2 − δx1x2)
[
I{y1}∪{y2}(x1)P(x2, y1, y2, Z) + I{y1}∪{y2}(x2)P(x1, y1, y2, Z)

]
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= (2 − δy1y2)[IC(y1) + IC(y2)]
∑
x1∈C

P(x1, y1, y2, Z)

= [IC(y1) + IC(y2)]
∑
x1∈C

P(x1, Y, Z). (7.51)

Finally, Equations (7.49) – (7.51) lead to Equation (7.48).

Lemma 7.4.7 For any alleles a ∈ U, b ∈ U, a �= b, U ⊂ M,

Q(n, U \ {a}, θ) =
∑

M\U⊂C⊂M

IC(a)(−1)|M\C|q(n, C), (7.52)

Q(n, U \ {a, b}, θ) =
∑

M\U⊂C⊂M

IC(a)IC(b)(−1)|M\C|q(n, C). (7.53)

Proof. It is sufficient to note that for M \ U ⊂ C ⊂ M, a ∈ U,

IC(a) = 1 ⇔ a ∈ C ⇔ (M \ U) ∪ {a} ⊂ C ⊂ M ⇔ M \ (U \ {a}) ⊂ C ⊂ M,

so ∑
M\U⊂C⊂M

IC(a)(−1)|M\C|q(n, C) =
∑

M\(U\{a})⊂C⊂M

(−1)|M\C|q(n, C).

Thus, Equation (7.52) follows immediately from Equation (7.15). The derivation of Equation
(7.53) is similar and then omitted.

Proof of Equation (7.18). For the proposition H in Equation (7.17), the genotypes of
the tested persons, K, can be expressed as (T, K0), where K0 constitutes the genotypes of the
tested persons except T . Write X = {r1} ∪ {r2} ∪ X0, where X0 is the genetic profile of those
x − 1 unknown contributors whose genotypes are denoted by G0. Substituting (G0, K0) for
Z in Equation (7.48), we have that∑

r1,r2∈C,X0⊂C

P(R, T, G0, K0)

= k0

∑
r1,r2∈C,X0⊂C

P(r1, r2, G0|T, K0)P(T, K0)

+ k1[IC(t1) + IC(t2)]
∑

r1∈C,X0⊂C

P(r1, G0|T, K0)P(T, K0)

+ k2IC(t1)IC(t2)
∑
X0⊂C

P(G0|T, K0)P(T, K0),

and then

W(C) =
∑

r1,r2∈C,X0⊂C

P(R, G0|T, K0)

= k0q(2x, C) + k1[IC(t1) + IC(t2)]q(2x − 1, C)

+ k2IC(t1)IC(t2)q(2x − 2, C)

from Equation (6.19). Substituting the above equation into Equation (6.6) gives

P(M|K, H) = k0Q(2x, U) + k1(T11 + T12) + k2T2, (7.54)
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where

T11 =
∑

M\U⊂C⊂M

IC(t1)(−1)|M\C|q(2x − 1, C),

T12 =
∑

M\U⊂C⊂M

IC(t2)(−1)|M\C|q(2x − 1, C),

T2 =
∑

M\U⊂C⊂M

IC(t1)IC(t2)(−1)|M\C|q(2x − 2, C).

In the following, the expressions for T11, T12 and T2 can be simplified further. Note that
t1 /∈ M ⇒ IC(t1) = 0 for all M \ U ⊂ C ⊂ M, so T11 = 0; t1 ∈ M \ U ⇒ IC(t1) = 1 for all
M \ U ⊂ C ⊂ M, so T11 = Q(2x − 1, U) from Equation (7.15); t1 ∈ U ⇒ T11 = Q(2x −
1, U \ {t1}) from Equation (7.52). Thus

T11 = IM(t1)Q(2x − 1, U \ {t1}). (7.55)

Similarly, we can have

T12 = IM(t2)Q(2x − 1, U \ {t2}). (7.56)

Meanwhile, if t1 /∈ M or t2 /∈ M, then IC(t1)IC(t2) = 0 and T2 = 0; if t1 ∈ M \ U and t2 ∈
M \ U, then T2 = Q(2x − 2, U); if t1 ∈ U and t2 ∈ M \ U, then IC(t1)IC(t2) = IC(t1) and
T2 = Q(2x − 2, U \ {t1}) from Equation (7.52); if t1 ∈ M \ U and t2 ∈ U, then IC(t1)IC(t2) =
IC(t2) and T2 = Q(2x − 2, U \ {t2}) from Equation (7.52); if t1 ∈ U, t2 ∈ U, and t1 �= t2,
then IC(t1)IC(t2) = 1 ⇔ M \ (U \ {t1, t2}) ⊂ C ⊂ M, so T2 = Q(2x − 2, U \ {t1, t2}) from
Equation (7.53); if t1 ∈ U, t2 ∈ U, and t1 = t2, then IC(t1)IC(t2) = 1 ⇔ M \ (U \ {t1}) ⊂
C ⊂ M, so T2 = Q(2x − 2, U \ {t1}) from Equation (7.52). Finally, we have

T2 = IM(t1)IM(t2)Q(2x − 2, U \ {t1} ∪ {t2}). (7.57)

Substituting Equations (7.55), (7.56) and (7.57) into Equation (7.54) yields Equation (7.18).

Proof of Equation (7.20). For the proposition H listed in Equation (7.19), we can express
the genetic profile of the x unknown contributors as X = {x11} ∪ {x12} ∪ {x21} ∪ {x22} ∪ X0,
where x11x12 and x21x22 are the genotypes of the two related persons X1 and X2, respectively,
and X0 is the genetic profile of the x − 2 unknown contributors, whose genotypes are denoted
by G0. Substituting X1, X2, (G0, K) for X, Y, Z, respectively, in Equation (7.48) and from
Equation (6.19), we have ∑

x11,x12,x21,x22∈C,X0⊂C

P(X1, X2, G0, K)

= k0

∑
x11,x12,x21,x22∈C,X0⊂C

P(x11, x12, x21, x22, G0, K)

+ 2k1

∑
x11,x21,x22∈C,X0⊂C

P(x11, x21, x22, G0, K)

+ k2

∑
x21,x22∈D,X0⊂C

P(x21, x22, G0, K)

= P(K)[k0q(2x, C) + 2k1q(2x − 1, C) + k2q(2x − 2, C)].
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So

W(C) =
∑

x11,x12,x21,x22∈C,X0⊂C

P(X1, X2, G0|K)

= k0q(2x, C) + 2k1q(2x − 1, C) + k2q(2x − 2, C).

Substituting the above equation into Equation (6.6) and from Equation (7.15), Equation (7.20)
follows immediately.

7.5 Problems
1. Suppose that the DNA profiles for the crime DNA mixed sample, victim and suspect are,

respectively, M = {A1, A2, A3, A4}, V = A1A3, and S = A2A4. Derive the likelihood ratio
for the prosecution proposition Hp: the contributors were the victim and the suspect, versus
the defense proposition Hd : the contributors were the victim and one relative of the suspect.
The relatedness coefficients between the relative and the suspect are (k0, 2k1, k2) and the
population is in Hardy–Weinberg equilibrium.

2. For a crime DNA mixed sample of type {A1, A2, A3, A4}, a suspect of type A2A4 and the
victim of type A1A3, derive the likelihood ratio for the prosecution proposition Hp: the
contributors were the victim and the suspect, versus the defense proposition Hd : the contrib-
utors were two related unknown persons. The relatedness coefficients between these two
related unknowns are (k0, 2k1, k2) and the population is in Hardy–Weinberg equilibrium.

3. For a crime DNA mixed sample of type {A1, A2, A3, A4}, known to contain DNA from
two contributors, the victim is of type A2A3 and the suspect is of type A1A4. Derive the
likelihood ratio for the prosecution proposition Hp: the contributors were the victim and
the suspect, versus the defense proposition Hd : the contributors were the victim and one
relative of the suspect. The relatedness coefficients between the relative and the suspect are
(k0, 2k1, k2) and all the involved people come from the same subdivided population with
degree of subdivision θ.

4. Consider the situation in which the crime sample was contributed by two persons. Suppose
M = {A1, A2, A3, A4}, V = A1A3, S = A2A4. Derive the likelihood ratio for the prose-
cution proposition Hp: the contributors were the victim and the suspect, versus the defense
proposition Hd : the contributors were two related unknown persons. The relatedness coef-
ficients between these two related unknowns are (k0, 2k1, k2) and all the involved people
come from the same subdivided population with degree of subdivision θ.

5. Using Equation (7.18), check the results of the likelihood ratio listed in the Table 7.8 in the
case of M = {A1, A2, A3}, V = A1A2 and S = A1A3.
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Other issues

8.1 Lineage markers
Besides autosomal markers, which are most commonly used nowadays for forensic
investigation, Y chromosome STR (Gill et al. 2001) and mitochondrial DNA (mtDNA)
(Carracedo et al. 2000) analyses are also employed in some circumstances. These two kinds
of markers are particularly useful for lineage and genealogy studies.

Y chromosomes are transmitted from fathers alone to sons only. So each male has only
one Y chromosome, and a female does not possess any. Barring mutation, a Y-STR profile
is identical for all paternally related males. The Y chromosome is relatively short and it
is approximately 60 Mb in length. About 95% of the length of the Y chromosome cannot
recombine. The Y-STR markers which reside on this nonrecombining region are therefore
genetically linked.

Y-STR haplotypes may be shared by many individuals such as brothers and other paternally
related males, and so they do not allow individualization to the extent that autosomal markers
do. However, Y-STR profiling is found to be applicable in many situations, such as violent
crime and sexual offenses, in which the majority of the offenders are males. The usefulness
of Y-STRs has been recognized in cases in which the autosomal markers fail to provide clear
information. For example, in some sexual offences having DNA mixtures with the major
components coming from the females, the autosomal STR profiles of the males cannot be
shown clearly and, under these circumstances, the genetic information of the Y-STRs would
be particularly relevant and useful.

Since Y-STR markers are linked, the usual product rule based on the multiplication of
allele frequencies across markers cannot be applied. The Y-STR haplotype frequency is con-
sidered instead, which is commonly determined by the counting method. Suppose that there
is a population database of size n with the database count x for a particular haplotype. The
haplotype frequency can be estimated by the sample proportion, when x > 0,

p̂ = x/n, (8.1)

Statistical DNA Forensics: Theory, Methods and Computation Wing Kam Fung and Yue-Qing Hu
© 2008 John Wiley & Sons, Ltd
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and the approximate 95% confidence interval (Holland and Parsons 1999) may also be used

p̂ ± 1.96

√
p̂(1 − p̂)

n
. (8.2)

Nowadays, many databases are often of the size of a few hundreds, and so some possible
haplotypes may not be observed. In that situation, the 95% confidence limit for the frequency
(Holland and Parsons 1999), when x = 0,

1 − 0.051/n, (8.3)

can then be employed. It is to be noticed that the approximation in Equation (8.2) may not be
good if x is too small.

An alternative method given below was suggested by Balding and Nichols (1994):

p̂ = x + 2

n + 2
, (8.4)

where both the crime scene and the defendant haplotypes are included in the population
database for estimation.

A comparison has been made between Equation (8.4) and each of Equations (8.2) and
(8.3) (Tully et al. 2001). The former equation is often found to be more conservative, i.e.
giving a smaller estimate for the frequency, but the difference between the estimates based on
different equations is not really that substantial.

It is of interest to consider the probability of a random match of the crime scene Y-STR
haplotype Ai with that of the defendant’s under a subdivided population having a degree
of subdivision θ. This conditional match probability, according to Equation (3.17), can be
obtained as

P(Ai | Ai) = θ + (1 − θ)pi, (8.5)

where pi is the frequency for haplotype Ai, which can be estimated using some of the methods
given earlier. Note that the conditional match probability is always great than θ, the measure
of degree of subdivision in the population. The effect of θ on the conditional probability can be
large if pi is very small. The values of θ have been found to be less than 0.01 among European
populations (Roewer et al. 2000).

Y chromosomes are inherited paternally alone, and that limits their diversity, which can
only be accumulated by mutational processes. In addition, due to the fact that half of the human
population is male and the Y chromosome only constitutes half of the sex chromosome pair,
the effective population size of the Y chromosome is only a quater of that of the autosomes.
As in autosomal STR loci, mutations have been observed in Y-STRs. The average mutation
rate for Y-STRs is found to be about 0.2–0.3% (Heyer et al. 1997; Kayser et al. 2000). The
effects of mutations have to be taken into account (Gill et al. 2001; Gusmão et al. 2006) for
paternity testing, identity and kinship analyses involving male relatives. Rolf et al. (2001)
suggested a method incorporating the mutation rates across multiple Y-STR loci to analyse
data with apparent exclusions caused by mutation.

Unlike nuclear DNA, mtDNA resides outside the nucleus of the cell, which is a circular
molecule of about 16.5 Kb in length. Sequence analysis of mtDNA is being used widely to
characterize forensic specimens, particularly when there are insufficient nuclear DNA samples
for typing (Carracedo et al. 2000). MtDNA profiles can be obtained from bones, teeth, hairs
and other samples that are severely decomposed. Some more well known applications of
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mtDNA analysis include the identification of the Russian Tsar, Nicholas II (Gill et al. 1994),
and of the unknown soldier remains in the Vietnam War (Lidor 2002) [see also Holland and
Parsons (1999) for applications to forensic casework].

MtDNA is almost entirely maternally inherited, i.e. only the mtDNA of the mother will
be transmitted to the offspring. It is very rare, if at all, to have mtDNA recombination (Wiuf
2001). The mutation rate for a mtDNA genome is higher than that for the nuclear genome.
Excluding mutations, an mtDNA sequence is identical for all maternally linked relatives.
MtDNA samples have been widely used to infer aspects of human female population histories
(Jobling et al. 2004).

Two portions within the noncoding control region in the mtDNA, called hypervariable
regions I and II (HVI and HVII), are found to have the highest degree of variation among
individuals. Currently, mtDNA is the only DNA type for which sequencing is used as the
method of profiling. A mtDNA type usually refers to the entire sequence of one or both
of the hypervariable regions and is treated as a single locus. A specific feature of mtDNA
typing is its heteroplasmy characteristic: the existence of more than one mtDNA type within
an individual. Several ways of heteroplasmy may be observed (Carracedo et al. 2000): (1)
individuals may have more than one mtDNA type in a single tissue; (2) individuals may exhibit
one mtDNA type in one tissue and a different type in another issue; and/or (3) individuals may
be heteroplasmic in one tissue sample and homoplasmic in another tissue sample. Balding
(2005) considered some methods to deal with heteroplasmy [see also Tully et al. (2001) and
Buckleton et al. (2005)].

As in Y chromosome profiling, mtDNA profiling essentially types the haplotype, too. Thus,
the estimates for the frequency of mtDNA haplotype can be constructed based on the same
formulas as in Equations (8.1)–(8.4) used for the Y chromosome. Moreover, Equation (8.5)
can be employed for evaluating the conditional match probability of mtDNA profiles in a
subdivided population.

8.2 Haplotypic genetic markers for mixture
Chapters 6 and 7 focus on the evaluation of DNA mixtures at an autosomal locus. In practice,
DNA profiles at multiple loci are investigated. Many of the commonly used STR loci are
located at different chromosomes, and so they may be regarded as in linkage equilibrium. If two
loci are located at the same chromosome, then the distances between the markers are usually
far enough such that alleles at different markers can be regarded as statistically independent.
So, the overall likelihood ratio can be obtained by multiplication of likelihood ratios for
individual loci. Besides the autosomal markers, more and more countries have begun to build
their databases of haplotypes in the sex-chromosome, for example the database of European
Y chromosomal STR haplotypes (Roewer et al. 2001) and databases of Y chromosomal
STR haplotypes for US populations (Kayser et al. 2002). These databases are more often
used now in forensic science. Y chromosomal genetic markers represent a useful tool to
resolve cases of criminal sexual offence, since female contamination of a given trace can
usually be excluded in such instances. The features of Y chromosomal genetic markers as
introduced in the previous section, principally haploidy and the absence of recombination,
provide a number of advantages but also limitations, both being problem-dependent. The
major difference between the autosomal marker and haplotypic genetic marker is that the
autosomal data across loci are essentially statistically independent, while the haplotypic data
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Table 8.1 Profiles of the mixture, the victim and two suspects at three linked loci.

Locus Mixture Victim Suspect 1 Suspect 2

a A1 A1 A1 A1

b B1, B2 B1 B2 B2

c C1, C2, C3 C1 C2 C3

are highly linked and therefore dependent. The limited number of Y chromosomal genetic
markers makes the tool less discriminating than a battery of autosomal markers.

Regarding haplotypic genetic markers, the likelihood ratio introduced in Equation (2.27)
is again used to measure the weight of DNA evidence. Fukshansky and Bär (2005) established
a statistical framework based on the testing of statistical hypothesis and provided a recursive
formula to calculate the likelihood ratio in the evaluation of DNA mixtures of haplotypic data.
In the following, we give an illustrative example to look at this issue and the general approach
is referred to in Fukshansky and Bär (2005). Wolf et al. (2005) also derived a general formula
for forensic interpretation of Y chromosomal DNA mixtures.

Let A1, A2, . . . denote the alleles at locus a, B1, B2, . . . denote the alleles at locus b, and
C1, C2, . . . denote the alleles at locus c. Then, the haplotype at these three loci is of AiBjCk

and its frequency is denoted simply as pijk, which is usually known. Suppose that the profile of
a mixed stain is a triple of (A1, B1B2, C1C2C3), which means that there are one, two and three
alleles detected at loci a, b and c, respectively. It is concluded that the number of contributors,
known or unknown, is at least three. For simplicity, we regard that there are three contributors
to the mixed stain in the subsequent analysis. Now, the victim and two suspects are typed and
their haplotypes are respectively A1B1C1, A1B2C2, and A1B2C3 (see Table 8.1 for details).
The prosecution proposition about the donors of the mixed stain is

Hp: contributors were the victim and two suspects.

Several different defense propositions can be raised in this situation, such as:

Hd1:contributors were the victim, suspect 1 and one unknown;
Hd2:contributors were the victim and two unknowns;
Hd3:contributors were three unknowns.

Recall the notations introduced in Chapter 6, and it is easy to understand that P(M|K,
Hp) = 1. Under Hd1, we consider which alleles in the profile of the mixed stain the unknown
can carry at these three loci separately. From the profiles of the mixture at these three loci
a, b and c, it is concluded that the allele of the unknown at locus a must be A1, the allele
of the unknown is either B1 or B2 at locus b, and must be C3 at locus c. It implies that
P(M|K,Hd1) = P(A1B1C3) + P(A1B2C3) = p113 + p123.

Under Hd2, the situation becomes more complex than the above. It is necessary to make
clear which alleles the two unknowns X1 and X2 can carry at these three loci. At locus a,
the alleles of X1 and X2 must be A1, since the profile of the mixed stain at this locus has
only one allele, A1. At locus b, the two alleles of X1 and X2 must explain B2, so there
are a total of three possibilities: (B1, B2), (B2, B1), and (B2, B2). At locus c, the alleles of
X1 and X2 must explain C2 and C3 and therefore there are two combinations: (C2, C3) and
(C3, C2). Considering these three loci jointly, the haplotypes of the two unknowns could be



8.3 BAYESIAN NETWORK 191

(A1B1C2, A1B2C3), (A1B1C3, A1B2C2), . . ., or (A1B2C3, A1B2C2), and so we have

P(M|K,Hd2) = P(A1B1C2)P(A1B2C3) + P(A1B1C3)P(A1B2C2)

+ P(A1B2C2)P(A1B1C3) + P(A1B2C3)P(A1B1C2)

+ P(A1B2C2)P(A1B2C3) + P(A1B2C3)P(A1B2C2)

= 2p112p123 + 2p113p122 + 2p122p123.

Under Hd3, there are a total of three unknown contributors. We can also enumerate all the
possible combinations of the three unknowns at each locus and then consider them jointly.
For locus a, it is unique that the allele of unknowns X1, X2 and X3 must be A1. For locus
b, the three alleles of the three unknowns must explain both B1 and B2, so the possible
combinations of these three alleles among the unknowns are given as follows: (B1, B1, B2),
(B1, B2, B1), (B2, B1, B1), (B1, B2, B2), (B2, B1, B2), (B2, B2, B1). For locus c, the alle-
les of X1, X2 and X3 must be a permutation of C1C2C3 and therefore there are 3! = 6
kinds of combinations: (C1, C2, C3), (C1, C3, C2), (C2, C1, C3), (C2, C3, C1), (C3, C1, C2),
(C3, C2, C1). So, finally, there are 1 × 6 × 6 = 36 kinds of combinations of the haplotypes of
X1,X2 andX3, andP(M|K,Hd) is a summation of probabilities over all these 36 combinations:

P(M|K,Hd) = P(A1B1C1)P(A1B1C2)P(A1B2C3) + · · ·
which, after simplification, can be expressed as

P(M|K,Hd) = 6p111p112p123 + 6p111p113p122 + 6p111p122p123

+ 6p112p113p121 + 6p112p121p123 + 6p113p121p122.

Note that the general algorithm reported in Fukshansky and Bär (2005) and Wolf et al.
(2005) employs a recursive relationship over the unknown contributors and is computationally
efficient when the number of such contributors is small.

8.3 Bayesian network
Bayesian network, also called Bayes net, is one diagrammatic approach that uses graphical
probabilistic methods to assist forensic scientists and jurists to understand the dependencies
which may exist between different aspects of evidence and to deal with the formal analysis of
decision making. Bayesian network has been found to provide an aid in the representation of
the relationship between characteristics of interest in situations of uncertainty, unpredictability
or imprecision (Aitken and Taroni 2004). Some examples of the applications of the Bayesian
network in forensic science are referred to in Dawid et al. (2002), Evett et al. (2002), Garbolino
and Taroni (2002), Aitken et al. (2003) and Mortera et al. (2003).

The two fundamental elements in constructing a Bayesian network are nodes and arrows,
which are combined to form what is known as a directed acyclic graph. A node represents
an uncertainty state variable and an arrow is used to link two nodes when these two nodes
represent either causal or evidential relationships. A node is called a source or parent node if it
has no entering arrows, and is called a child node if it receives arrows from other nodes. There
are three basic types of connections amongst nodes in a Bayesian network: serial, diverging
and converging connections.

It there is an arrow from node A to B, from node B to C, but no arrow from A to C, then
there is a serial connection linking three nodes A, B and C (Figure 8.1(i)). This relationship
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A A B A 
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C B C C 

(i) (ii) (iii) 

Figure 8.1 Three basic types of connections in Bayesian networks: (i) serial, (ii) diverging
and (iii) converging.

can be expressed in the context of probability as P(A|B, C) = P(A|B), which means that if
the value of B is known, then A and C are independent. For example, let A, B and C denote
the genotypes of the grandfather, father and child, respectively; then, A and C are independent
if B is known and there is a serial connection linking A, B and C.

A diverging connection (Figure 8.1(ii)) linking three nodes A, B and C can be interpreted,
in the context of probability, as P(B|A, C) = P(B|A) and P(C|A, B) = P(C|A), which means
that B and C are independent if A is known. A diverging connection is used to present the
spurious correlation amongst several variables.

Figure 8.1(iii) gives an example of a converging connection linking nodes A, B and C.
Suppose that A, B and C denote the genotypes of the mother, father and child, respectively;
then, A and B are independent if C is unknown and are dependent if C is known.

So a Bayesian network provides a compact representation of uncertain relationships among
parameters involved. The key feature of a Bayesian network is the fact that it provides a
method for decomposing a joint probability distribution of many variables into a set of local
distributions, each having a few variables. This facilitates the investigation of relationships
amongst the variables in the context of a particular case. The intellectually difficult task of
organizing and arraying complex sets of evidence to exhibit dependencies and independencies
can also be made visual and intuitive.

The population allele frequencies that we commonly use are often estimated from a
database of a few hundred individuals. These frequency estimates contain sampling variation
and uncertainty, which may need to be taken into account. By using a Bayesian model in
which the frequencies of alleles were treated as random variables, Balding and Donnelly
(1995) investigated the effect of frequency parameter uncertainty on the simplest identifica-
tion cases [see also Balding (1995) and Foreman et al. (1997)]. They found that the strength of
the evidence may become weaker if the database size is too small, and so it may be conservative
and favorable to the defendant.

Corradi et al. (2003) investigated the effect of frequency parameter uncertainty on
the identification problems in which two pedigrees corresponding to the prosecution and
defense propositions are required for comparison. A Dirichlet prior distribution was assigned
for the population parameters. A graphical model (Lauritzen 1996) was used to describe
clearly the relatedness of individuals involved in which population parameters are treated as
unobserved vertices. One general formula for calculating the weight of evidence was reported
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therein. The formula was applied to three illustrative examples selected from the literature.
One example was taken from Brenner (1997) in which the profiles of the mother, the child and
the alleged father were obtained for a paternity testing case. Corradi et al. (2003) found numer-
ically that the weight of evidence was monotonically increasing as the sample size increased
and their method provided a more conservative evaluation of the weight of evidence.

A common feature found in the reanalysis of case studies from the literature is that a
greater difference is observed between the approach taking account of population parameters
uncertainty and not, if rare alleles in the population are found in the alleged persons and in
the alleged person’s relatives (Corradi et al. 2003). In criminal cases, this could be a positive
feature, since the court might prefer to avoid the mistake of identifying an innocent person
rather than the mistake of not identifying the culprit.

In the evaluation of the conditional probability P(M|K,H) or equivalently P(M, K|H)

that we discussed in the previous two chapters, the allele frequencies are treated as constant.
But they are in fact estimated from a sample D of size n taken from a population with the
degree of subdivision θ. So the uncertainty is naturally raised in the process of estimating
allele frequencies, as the sample size n is usually not very large. By intuition, the uncertainty
of the estimated allele frequencies will decrease when the sample size n increases. In order
to take account of that uncertainty, let xθ = (xθ1, xθ2, . . . , ) (

∑
l xθl = 1) denote the allele

frequency vector at an autosomal locus, which is distributed as the Dirichlet (see Section 3.5)
prior distribution with parameter α = (α1, α2, . . . , ), i.e. the corresponding probability density
function is

Dir(xθ|α) = �(α.)∏
l �(αl)

∏
l

x
αl−1
θl , xθl ≥ 0, l = 1, 2, . . . ,

∑
l

xθl = 1

where α. =∑l αl. Figure 8.2 shows a network representing that the mixture M is contributed
by the unknown persons X and some known persons in K, where the uncertainty of allele
frequencies are taken into account. In this situation, the evaluation of P(M, K|H) can be
evaluated as

P(M, K, D|H) =
∫
Xθ

P(M, K, D|xθ, H)Dir(xθ|α) dxθ,

where the integration region χθ is the sample space of parameter xθ , to take account of the
sampling uncertainty. The likelihood ratio based on two such probabilities is expected to be
conservative and so is more favorable to the defendant.

X D K 

M 

θ

Figure 8.2 Mixture interpretation network.
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Bayesian networks have also been applied to solve parentage and mixture problems (Dawid
et al. 2002; Mortera et al. 2003). Generally, the networks are often complex and difficult to
comprehend by forensic scientists. Little work is found in applying Bayesian networks in
subdivided populations in the literature.

8.4 Peak information
Suppose that we observe a DNA mixture of {A1, A2, A3, A4} which is presumably contributed
by two unknown persons. There are a total of six possible combinations of the genotypes G1

and G2 of the two unknowns. The first two columns in Table 8.2 show three combinations
of G1 and G2 and the other three combinations follow immediately from the interchange of
G1 and G2. These six combinations are assumed to be equally likely to occur in the analysis
of DNA mixtures in Chapters 6 and 7. However, in some situations, the peak height and area
may provide additional information on the choice of these possible combinations.

The current technology makes it relatively simple to collect not only qualitative, but also
quantitative, information such as the peak height and peak area. For simplicity, the term ‘peak
information’ is used to refer to the quantitative peak data. Sometimes, it is possible to separate
the major and minor components of a simple mixture (originally from two heterozygous indi-
viduals) by visual examination, particularly if the different contributors are in the proportion
of less than 1:5 (Gill et al. 1998). For example, for the four-allele mixture {A1, A2, A3, A4}
consisting of two contributors as depicted in Figure 8.3, it may be relatively easy to decompose
such mixture by an expert with visual judgement. Clearly, A1 and A2 are major components
and A3 and A4 are minor components. Specifically, this mixture may be contributed by one

Table 8.2 All possible combinations of genotypes G1

and G2 of two individuals comprising the mixture
{A1, A2, A3, A4}, and the corresponding gene matrix G.

G1 G2 G

A1A2 A3A4




1 0
1 0
0 1
0 1




A1A3 A2A4




1 0
0 1
1 0
0 1




A1A4 A2A3




1 0
0 1
0 1
1 0



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Figure 8.3 A mixture of two individuals comprising alleles A1, A2 and A3, A4.

contributor with genotype A1A2 and the other one with A3A4. The other possible combi-
nations (A1A3, A2A4) and (A1A4, A2A3) seem more unlikely and may be excluded in the
consideration. As the proportion approaches 1:1, or if the mixture comprises contributors from
three or more individuals, or when there is a contamination, then the interpretation becomes
increasingly problematical.

In the PCR amplification of a mixture, the amount of each PCR product scales roughly
in proportion to the relative weighting of each component DNA template. Evett et al. (1998)
established a framework to assess mixtures taking account of peak areas and to estimate the
ratio of the component genotypes of a mixture using the quantitative information available. A
computer model was constructed by Gill et al. (1998) which estimates the proportion of the
components of a simple mixture of two individuals, and then proceeds to rank the genotype
combinations that give the highest likelihoods. This model may be used to guide the reporting
officer to interpret simple mixtures, especially by highlighting those combinations for which
the data are highly unlikely.

Perlin and Szabady (2001) presented a linear mixture analysis using STR data from all the
loci simultaneously for greater robustness. Its mathematical linearity permits easy computer
calculation. The principle used in Perlin and Szabady (2001) can be summarized as follows. For
any locus i, let bi be the observed vector consisting of the peak information of alleles present in
the mixture, w = (wj) and Gi = (gijk), where wj is the weighting in the mixture of individual
j’s proportion, and gijk is the number of kth allele in the mixture that individual j carries,
that is the contribution of the genotype of individual j to the mixture. For example, when
M = {A1, A2, A3} at locus i, then (gijk) = [2, 0, 0] if individual j is homozygous A1A1, and
(gijk) = [1, 0, 1] if individual j is heterozygous A1A3. See also the last column of Table 8.2 for
the four-allele mixture. Once the vector bi and matrix Gi are assigned for all loci, we construct a
high-dimensional peak information vector b and gene matrix G by stacking vertically all bi and
Gi one by one. Note that different combinations of genotypes comprising mixtures lead to dif-
ferent gene matrices G. The final step is to find the gene matrix G such that ||Gw − b|| = min,
where || · || is the Euclidian distance defined as the sum of the squares of all components of a
vector.

Recently, Wang et al. (2006) proposed a least-square deconvolution (LSD) in resolving
STR mixtures. LSD operates on the peak-data information of each locus separately, inde-
pendently of all other loci for interpreting two-contributors STR mixture samples using the
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peak information. This is equivalent to solve ||Giw − bi|| = min. So the solution for w can be
found through the least-square method, where the pseudoinverse of the Gi matrix is used. For
each of the other possible gene matrices for this locus, the residual error can be calculated for
its least-square solution. All the possible genotype combinations can be sorted according to
the fitted error residual, from the smallest to the largest. The genotype combination supported
by the given peak information is the one having the smallest error residual. This procedure
can be conducted similarly at other loci. Finally, a set of interpretation guidelines is used to
analyze the LSD mathematical results for all loci as a whole and attempt to form a composite
genotype resolution profile for each of the two contributors.

The above methods based on peak information are mathematically feasible and able to
provide some useful solutions for interpreting simple DNA mixtures originating from two
contributors. However, when there are three or more contributors and/or contaminations in the
mixed samples, etc., the problems would be much more complicated due to the high variability,
uncertainty and ambiguity in DNA mixtures. A widely acceptable general approach is yet to
be sought.

8.5 Mass disaster
Besides the major applications that we have discussed in early chapters, DNA profiling is also
found to be a useful tool for the identification of victim and human remains in mass disasters.
However, as summarized in Buckleton et al. (2005), there are still some difficulties in body
identification by genetic means in a mass disaster situation. First, a cataclysmic physical event
causes severe fragmentation of the bodies and so to reunify fragmentary remains is a key part
of the identification process. Second, it is difficult to obtain DNA in satisfactory concentrations
and of sufficient quality. Third, a number of individuals from the same family are thought to be
the victims, so they are biologically related and, in turn, the genetic information via surviving
relatives may be insufficient. Lastly, the sheer scale of the exercise may present difficulties.

The following are some examples of mass disaster: 1996 Spitzebergen crash (Ballantyne
1997), which involved 141 victims; Cebu Pacific Flight 387 on February 2, 1998 (Goodwin
et al. 1999); Crash of Swissair Flight 111 on September 2, 1998 (Leclair et al. 2000); the
terrorist attacks on the World Trade Center on September 11, 2001 (Brenner and Weir 2003);
China Airlines crash on May 25, 2002 (Dornheim 2002); Indian Ocean tsunami on December
26, 2004 (Tsokos et al. 2006).

Brenner and Weir (2003) and Vastag (2002) identified the following three steps in the
identification process. The first step – ‘Collapsing’ – refers to the association of like profiles
to condense the amount of data; the second step – ‘Screening’ – refers to the comparison of
every victim profile in the collapsed list with every missing person profile, and the final step –
‘Testing’ – is the confirming calculation of likelihood ratios and was undertaken as described
in the equations and tables listed in Chapter 5.

The closed set matching was described in detail by Buckleton et al. (2005) for a comparison
of the bodies and a list of missing persons. The term ‘closed set’ matching means to match
a finite number of bodies or body parts to a finite set of missing people. This approach was
demonstrated in Egeland et al. (2000) on the nine bodies found in the grave in Ekaterinburg and
thought to include most of the Russian royal family. The issue when the pedigree information
is not available for some missing persons was also discussed in Buckleton et al. (2005). The
closed set matching is briefly described in the following.
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Suppose there are n persons associated with a mass disaster. The genotypes of the bodies
are denoted by G1, . . . , Gn. In addition, for each person, a sample known to be from them
(say a toothbrush, hair, a database sample, or some pedigree information) is available. Let
P1, . . . , Pn denote the known sample or pedigree information. Assume, without loss of gener-
ality, that the first m bodies can be assigned without error to missing people after direct match
comparisons between bodies, body parts and complete profiles of missing people. For the
remaining n − m unassigned bodies, there are (n − m)! possible assignments: S1, . . . , S(n−m)!.
Given Gm+1, . . . , Gn and Pm+1, . . . , Pn, we can find the posterior probability using the Bayes’
Theorem:

P(Si|Gm+1, . . . , Gn, Pm+1, . . . , Pn)

= P(Gm+1, . . . , Gn|Pm+1, . . . , Pn, Si)P(Si)

(n−m)!∑
j=1

P(Gm+1, . . . , Gn|Pm+1, . . . , Pn, Sj)P(Sj)

for each possible assignment Si, 1 ≤ i ≤ (n − m)!. The prior probabilities P(Si) can be
assigned from a physical examination of the bodies, location or other information (Buckleton
et al. 2005). Egeland et al. (2000) provided advice on how to assign prior probabilities in an
elegant manner. After the posterior probability on each member of the possible set of assign-
ments is assessed, we can evaluate the posterior probability for each assignment of a certain
body to a certain missing person. This posterior probability can be obtained by summing the
terms P(Si|Gm+1, . . . , Gn, Pm+1, . . . , Pn) for those assignment Si that contain this pairing
(Buckleton et al. 2005).

8.6 Database search
In previous discussions, we regard the suspect as being identified based on non-DNA evi-
dence, such as witness report. When the suspect is selected by a database search comparing
two profiles, the evaluation of the weight of DNA evidence requires a different formulation.
Nowadays, many countries and places such as the US, UK, Hong Kong and many European
countries have built up their (offender) DNA databases. Some of those databases contain sam-
ples of DNA profiles from a few million people. The samples in the database may be collected
during the investigation of unsolved criminal cases, from convicted felons and other kinds
of criminals, etc. The DNA database search has become an important tool in identifying the
suspects for different sorts of offences.

Suppose that a crime was committed and a blood stain, presumably left by the perpe-
trator, was recovered at the crime scene. The profile of the blood is A and the population
frequency of profile A is denoted by p = pA. There is no other evidence to suspect the per-
petrator. A database search is thus conducted and it turns out that only Mr Smith matches the
profile A.

If we ignore the manner of Mr Smith being suspected and consider the following two
competing propositions

Hp1: Smith is the contributor of the blood;
Hd1: one unknown person is the contributor of the blood,
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then the likelihood ratio in the probable cause case, defined by Balding and Donnelly (1996)
as the setting in which the suspect has been identified on other grounds and subsequently
subjected to DNA profiling, is simply as LR0 = 1/p (Balding and Donnelly 1995; Dawid
and Mortera 1996). If we consider the fact that Smith is identified through a database search,
the likelihood ratio of the case against the suspect Smith is then LR1 = (1 − δ)/[p(1 − π)],
where δ is the prior probability that Smith left the crime stain and π is the prior probability that
someone in the database left the crime stain. It has been argued that the evidential strength is
slightly larger in a database search case than in a probable cause case (Balding and Donnelly
1995), while Stockmarr (1999) reached a different conclusion.

Stockmarr (1999) argued that the propositions set of Hp1 and Hd1 are data-independent,
which means that the proposition is proposed after the database search. Alternatively, he
proposed the following general pair of propositions:

Hp2: the true perpetrator is amongst the suspects identified from the database;
Hd2: the profile of the true perpetrator is stochastically independent of the profiles in the

database.

Then, the corresponding likelihood ratio is LR = δ/(πp). In the case of all people in the
population being equally likely to be the criminal, i.e. δ = 1/N and π = n/N, where n and N

are the sizes of the database and the population, respectively, the likelihood ratio is induced to
LR2 = 1/(np), which differs from the likelihood ratio LR0 in a probable cause case by a factor
of n. The figure LR2 supports Recommendation 5.1 in NRC II (National Research Council
1996), which suggests dividing the likelihood ratio LR0 by the number n of people in the
database. The above likelihood ratio findings imply that LR0 > LR1 > LR2. The figure LR2

indicates that the larger the database, the weaker the DNA evidence. It is also noted that
different pairs of propositions about the donor of the crime stain lead to completely different
likelihood ratios.

In the following, we consider the posterior odds, the product of the likelihood ratio and
the prior odds, instead of the likelihood ratio itself. The prior odds of Hp1 versus Hd1 are
δ/(1 − δ), so the posterior odds are

1 − δ

p(1 − π)

δ

1 − δ
= δ

p(1 − π)
.

Similarly, the prior odds of Hp2 versus Hd2 are π/(1 − π), so the posterior odds are

δ

pπ

π

1 − π
= δ

p(1 − π)
.

The posterior odds derived above are the same (Meester and Sjerps 2003).
It is concluded that when a scientific expert has to assess the weight of DNA evidence, the

manner in which both the suspect was selected and the propositions were set is crucial in the
calculation of the likelihood ratio. Although different pairs of propositions lead to different
likelihood ratios, the posterior odds remain the same. The reason is that the proposition pairs
are conditionally equivalent; that is, they are logically equivalent given the evidence (Dawid
2001). The likelihood ratio is referred to as a measure of the strength of the evidence and the
posterior odds are referred to as an indication of the strength of the case (Meester and Sjerps
2003).
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It is commented that the database controversy is a false controversy and there is no dilemma
at all (Meester and Sjerps 2003). In the database search, the posterior odds are more meaningful
than a likelihood ratio (Dawid 2001). Thus, when a forensic expert interprets a match in a
database search, a good approach might be to provide the juror with a table exhibiting the
relationship between the prior odds and the posterior odds (see such a table in Table 4.4 for
a parentage testing case). The juror can then see to what posterior odds his or her prior odds
lead (Meester and Sjerps 2003).





Solutions to problems

Solutions to Chapter 2
1. (a) P(A ∪ B) = P(A) + P(B) − P(AB)

= 0.2 + 0.3 − 0.1

= 0.4.

(b) P(B|A) = P(AB)

P(A)
= 0.1

0.2
= 0.5.

P(A|C) = P(AC)

P(C)
= 0.1

0.4
= 0.25.

(c) From P(BC) = 0, we have P(ABC) = 0. So

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(AB) − P(AC) − P(BC)

+ P(ABC)

= 0.2 + 0.3 + 0.4 − 0.1 − 0.1

= 0.7.

2. Let R1 = ‘the first ball drawn is red’,
R̄1 = ‘the first ball drawn is yellow’,
R2 = ‘the second ball drawn is red’,
R̄2 = ‘the second ball drawn is yellow’,

(a) P(R1R̄2 or R̄1R2) = P(R1R̄2) + P(R̄1R2)

= 8

12
× 4

11
+ 4

12
× 8

11
= 16

33
.

Statistical DNA Forensics: Theory, Methods and Computation Wing Kam Fung and Yue-Qing Hu
© 2008 John Wiley & Sons, Ltd



202 SOLUTIONS TO PROBLEMS

1st ball 2nd ball 

R1

1
R

R2

2
R

R2

2
R

8/12

7/11

4/11

8/11

3/11

4/12

(b) P(R2) = 8

12
× 7

11
+ 4

12
× 8

11
= 2

3
.

(c) P(R1|R2) = P(R1R2)

P(R2)

=
(

2

3
× 7

11

)/(
2

3

)
= 7

11
.

3. Using the binomial probability,

P(X = 4) =
(

6

4

)
× 0.14 × (1 − 0.1)2

= 6!

4!2!
× 0.0001 × 0.81

= 15 × 0.000081 = 0.001215.

4. Let X1, X2 and X3 be the numbers of people having genotypes AA, Aa and aa, respec-
tively. By the multinomial distribution,

P(X1 = 1, X2 = 2, X3 = 4) = 7!

1!2!4!
× 0.091 × 0.422 × 0.494

= 7 × 6 × 5

2 × 1
× 0.09 × 0.1764 × 0.05764801

= 0.096.

5. X ∼ N(4, 102) �⇒ Z = X − 4

10
∼ N(0, 1).

(a) P(X > 6) = P

(
X − 4

10
>

6 − 4

10

)
= P(Z > 0.2)

= 0.5 − 0.0793, from the normal table in Appendix A

= 0.4207.
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(b) P(−2 < X < 8) = P

(−2 − 4

10
<

X − 4

10
<

8 − 4

10

)
= P(−0.6 < Z < 0.4)

= P(−0.6 < Z < 0) + P(0 ≤ Z < 0.4)

= P(0 < Z < 0.6) + P(0 ≤ Z < 0.4)

= 0.2257 + 0.1554, from the normal table in Appendix A

= 0.3811.

(c) P(X > x) = P

(
X − 4

10
>

x − 4

10

)
= P

(
Z >

x − 4

10

)
We want this probability equal to 0.025. From the normal table in Appendix A,
we know that P(Z > 1.96) = 0.025. So, we have

x − 4

10
= 1.96,

x = 10 × 1.96 + 4 = 23.6.

6. The hypotheses of interest are

H0 : the coin is balanced;
H1 : the coin is not balanced.

Under H0, the expected numbers of heads and tails in 300 flips are both 150. So, the
goodness-of-fit test statistic is

T = (145 − 150)2

150
+ (155 − 150)2

150

= 50

150
= 1

3
.

The critical value of χ2(1) at the 5% level of significance is 3.84. Since 1/3 < 3.84, we
accept H0 and conclude that the coin is balanced.

7. x̄ = 1

9

9∑
i=1

xi = 11.793,

σ̂ =
√√√√ 1

9 − 1

9∑
i=1

(xi − x̄)2 = 8.354.

σ̂x̄ = σ̂/
√

9 = 2.785.
The 95% confidence interval for the mean µ of the population is
(x̄ − 1.96σ̂x̄, x̄ + 1.96σ̂x̄) = (6.34, 17.25).
The 99% confidence interval for the mean µ of the population is
(x̄ − 2.575σ̂x̄, x̄ + 2.575σ̂x̄) = (4.62, 18.96).

Solutions to Chapter 3
1. (a) The frequencies of alleles A and a:

p̂A = 2 × 18 + 8

2 × 30
= 44

60
= 11

15
,
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p̂a = 2 × 4 + 8

2 × 30
= 16

60
= 4

15
.

(b) From Section 3.2.1, the observed heterozygosity is

OH = 1 −
∑

i

p̂ii

= 1 − 18

30
− 4

30

= 8

30
= 4

15
= 0.267.

The estimate of expected heterozygosity is

EH = 1 −
∑

i

p̂2
i

= 1 −
(

11

15

)2

−
(

4

15

)2

= 1 − 121

225
− 16

225

= 225 − 121 − 16

225

= 88

225
= 0.391.

(c) The hypotheses of interest are:

H0 : population is in Hardy-Weinberg equilibrium at the locus;
H1 : population is not in Hardy-Weinberg equilibrium at the locus.

Under H0 of Hardy–Weinberg equilibrium, the expected counts for genotypes AA, Aa

and aa are, respectively,

EAA = np̂2
A = 30 ×

(
11

15

)2

= 16.13,

EAa = 2np̂Ap̂a = 2 × 30 × 11

15
× 4

15
= 11.73,

Eaa = np̂2
a = 30 ×

(
4

15

)2

= 2.14.

So the chi-square test statistic is

T =
∑ (Observed − Expected)2

Expected

= (18 − 16.13)2

16.13
+ (8 − 11.73)2

11.73
+ (4 − 2.14)2

2.14
= 3.02,
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which is smaller than the critical value 3.84 of the χ2 distribution with 2(2 − 1)/2 =
1 degree of freedom. The 5% critical value is obtained from the χ2 table given in
Appendix B. We accept H0 that Hardy–Weinberg equilibrium holds. Notice that the
usual rule-of-five is not satisfied in this example, but we expect the χ2 distribution
approximation is still acceptable [see Fienberg (1979)].

(d) The standard error for the estimate of expected heterozygosity is

SE =
[

EH(1 − EH)

n

]1/2

=
[

0.391 × 0.609

30

]1/2

= 0.0891.

We have
EH − OH

SE
= 0.391 − 0.267

0.0891
= 1.39,

which is less than 1.96 or 2. So we accept the null hypothesis H0 of Hardy–Weinberg
equilibrium.

2. There are totally n = n11 + n12 + n13 + n22 + n23 + n33 = 100. The frequencies for
alleles A1, A2 and A3 are, respectively,

p1 = 2n11 + n12 + n13

2n
= 2 × 14 + 18 + 22

200
= 68

200
= 0.34,

p2 = 2n22 + n12 + n23

2n
= 2 × 12 + 18 + 20

200
= 62

200
= 0.31,

p3 = 2n33 + n13 + n23

2n
= 2 × 14 + 22 + 20

200
= 70

200
= 0.35.

The probability of identity, as seen in Section 3.3.2, is

PI =
∑

p4
i + 4

∑
i<j

p2
i p

2
j

= (0.34)4 + (0.31)4 + (0.35)4 + 4 × (0.34)2 × (0.31)2 + 4 × (0.34)2 × (0.35)2

+ 4 × (0.31)2 × (0.35)2

= 0.1858.

So, the power of discrimination is

PD = 1 − PI = 1 − 0.1858 = 0.8142.

3. (a) Based on Equations (3.10) and (3.16), the likelihood ratios are

Locus HWE Subdivided population

THO1
1

p2
8

(1 + θ)(1 + 2θ)

[2θ + (1 − θ)p8][3θ + (1 − θ)p8]

TPOX
1

2p8p9

(1 + θ)(1 + 2θ)

2[θ + (1 − θ)p8][θ + (1 − θ)p9]
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(b) Plugging in p8 = 0.053 at THO1, p8 = 0.545 and p9 = 0.1 at TPOX, θ = 0 and
θ = 0.03 into formulas of the table in (a), we obtain the following likelihood ratios:

Subdivided population

Locus HWE θ = 0 θ = 0.03

THO1 356 356 69.3
TPOX 9.17 9.17 7.69

Overall 3265 3265 533

4. Without loss of generality, we consider Equation (3.17) with i = 1. Based on the third
law of probability for dependent events, we obtain

P(A1|y A1 alleles among n alleles) = P(A
y+1
1 A

m2
2 A

m3
3 · · ·)

P(A
y
1A

m2
2 A

m3
3 · · ·) ,

which, according to Equation (3.14), can be expressed as
�(γ)

�(γ+n+1)

�(γ1+y+1)

�(γ1)

∏
i≥2

�(γi+mi)

�(γi)

�(γ)

�(γ+n)

�(γ1+y)

�(γ1)

∏
i≥2

�(γi+mi)

�(γi)

= �(γ + n)

�(γ + n + 1)

�(γ1 + y + 1)

�(γ1 + y)

= γ1 + y

γ + n

=
(1−θ)pi

θ
+ y

1−θ
θ

+ n

= yθ + (1 − θ)pi

1 + (n − 1)θ
.

Hence, Equation (3.17) is obtained.

5. According to Equation (3.17), at locus THO1,

P(V = 6/6, S = 6/7) = 2P(6, 6, 6, 7)

= 2P(6)P(6|6)P(6|6, 6)P(7|6, 6, 6)

= 2p6

[
θ + (1 − θ)p6

1 + (1 − 1)θ

][
2θ + (1 − θ)p6

1 + (2 − 1)θ

][
(1 − θ)p7

1 + (3 − 1)θ

]

= 2p6[θ + (1 − θ)p6][2θ + (1 − θ)p6](1 − θ)p7

(1 + θ)(1 + 2θ)

= 2(1 − θ)p6p7[θ + (1 − θ)p6][2θ + (1 − θ)p6]

(1 + θ)(1 + 2θ)
.

At locus TPOX,

P(V = 8/9, S = 9/10) = 4P(8, 9, 9, 10)

= 4P(8)P(9|8)P(9|8, 9)P(10|8, 9, 9)
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= 4p8

[
(1 − θ)p9

1 + (1 − 1)θ

][
θ + (1 − θ)p9

1 + (2 − 1)θ

][
(1 − θ)p10

1 + (3 − 1)θ

]

= 4(1 − θ)2p8p9p10[θ + (1 − θ)p9]

(1 + θ)(1 + 2θ)
.

6. Without loss of generality, assume that the genotypes of the father and the mother are
A1A2 and A3A4, respectively. So there are a total of four kinds of genotypes for each
offspring: A1A3, A1A4, A2A3 and A2A4, with an equal chance of 1/4. For each pair
of full siblings, all possible combinations of their genotypes are listed as follows:

Number of Number of
Case Genotype pair ibd alleles Case Genotype pair ibd alleles

1 (A1A3, A1A3) 2 9 (A2A3, A1A3) 1

2 (A1A3, A1A4) 1 10 (A2A3, A1A4) 0

3 (A1A3, A2A3) 1 11 (A2A3, A2A3) 2

4 (A1A3, A2A4) 0 12 (A2A3, A2A4) 1

5 (A1A4, A1A3) 1 13 (A2A4, A1A3) 0

6 (A1A4, A1A4) 2 14 (A2A4, A1A4) 1

7 (A1A4, A2A3) 0 15 (A2A4, A2A3) 1

8 (A1A4, A2A4) 1 16 (A2A4, A2A4) 2

Given parents’ genotypes A1A2 and A3A4, the probability that each pair of genotypes
as listed above occurs is 1/16. So

k0 = P(no ibd alleles between the two full siblings)

= P(cases 4, 7, 10, 13)

= 1

16
+ 1

16
+ 1

16
+ 1

16

= 1

4
,

k2 = P(cases 1, 6, 11, 16)

= 1

4
,

2k1 = P(cases 2, 3, 5, 8, 9, 12, 14, 15)

= 1

2
.

7. Without loss of generality, we assume that the parent’s genotype is A1A2 and the child’s
genotype is A1A3, where the allele A1 in the parent and the allele A1 in the child are ibd.
Randomly choosing two alleles, one from the parent, the other one from the child, we
have the following outcomes with an equal chance of 1/4: (A1, A1), (A1, A2), (A2, A1)

and (A2, A3). Only in case 1 are the two randomly chosen alleles ibd. So F = 1/4.
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8. Let X = ab and Y = cd be two individuals’ genotypes. Symbol ‘≡’ is used to represent
the ibd relationship between two alleles. From the definition in Equation (3.21) for the
kinship coefficient, we have

F = 1

4
[P(a ≡ c) + P(a ≡ d) + P(b ≡ c) + P(b ≡ d)].

From the definition in Equation (3.18) for the relatedness coefficients, we have

k2 = P(a ≡ c, b ≡ d) + P(a ≡ d, b ≡ c)

2k1 = P(a ≡ c, b 	≡ d) + P(a ≡ d, b 	≡ c) + P(b ≡ c, a 	≡ d) + P(b ≡ d, a 	≡ c).

So

2k1 + 2k2 = P(a ≡ c, b 	≡ d) + P(a ≡ c, b ≡ d) + P(a ≡ d, b 	≡ c)

+ P(a ≡ d, b ≡ c) + P(b ≡ c, a 	≡ d) + P(b ≡ c, a ≡ d)

+ P(b ≡ d, a 	≡ c) + P(b ≡ d, a ≡ c)

= P(a ≡ c) + P(a ≡ d) + P(b ≡ c) + P(b ≡ d)

= 4F.

Thus, we have
2F = k1 + k2.

Particularly, if k2 = 0, then 2F = k1.

9. Using a similar argument as in the derivation of Equations (3.19) and (3.23) and
employing the recursive formula given in Equation (3.17), we obtain

P(AiAi|AiAi)

=
2∑

t=0

P(AiAi|AiAi, t ibd alleles)P(t ibd alleles)

= P(Ai|AiAi)P(Ai|AiAiAi)k0

+ [
(1/2)P(Ai|AiAi) + (1/2)P(Ai|AiAi)

]
(2k1) + 1 × k2

=
[

2θ + (1 − θ)pi

1 + θ

] [
3θ + (1 − θ)pi

1 + 2θ

]
k0 +

[
2θ + (1 − θ)pi

1 + θ

]
(2k1) + k2.

The required result is obtained after grouping of terms.

Solutions to Chapter 4
1. The paternity index, from Equation (4.4), is

PI = P(C|M, AF, Hp)

P(C|M, Hd)

= P(C = A1A2|M = A1A2, AF = A2A3, Hp)

P(C = A1A2|M = A1A2, Hd)

= (1/2)(1/2)

(1/2)p2 + (1/2)p1
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= 1

2(p1 + p2)
.

This result can also be obtained from Table 4.1. When p1 = 0.331 and p2 = 0.326,

PI = 1

2 × (0.331 + 0.326)
= 0.76.

The software EasyDNA Trio gives the same results; details are omitted.

2. Let CP/CM be the paternal/maternal allele of C. The likelihood ratio is

LR = P(C|M, AF, Hp)

P(C|M, AF, Hd)

= P(C = A1A2|M = A1A3, AF = A2A3, Hp)

P(C = A1A2|M = A1A3, AF = A2A3, Hd)

= (1/2)(1/2)

P(CM = A1|M = A1A3)P(CP = A2|AF = A2A3, Hd)

= (1/4)

(1/2) × (k0p2 + k1)

= 1

2 × (p2/2 + 1/4)

= 2

2p2 + 1
,

where (k0, 2k1, k2) are the relatedness coefficients between child C and the alleged
father AF (who is the uncle of C) under Hd , i.e. k0 = 1/2, 2k1 = 1/2 and k2 = 0. This
LR can also be obtained from the penultimate row of Table 4.1 with i = 1, j = 2, k = 2,
and the kinship coefficient F = 1/4 for full siblings.

3. Let CP/CM be the paternal/maternal allele of C. The likelihood ratio is

LR = P(C|M, R, Hp)

P(C|M, R, Hd)

= P(C = A1A2|M = A1A2, R = A2A3, Hp)

P(C = A1A2|M = A1A2, R = A2A3, Hd)

= P(CP = A1, CM = A2 or CP = A2, CM = A1|M = A1A2, R = A2A3, Hp)

P(CP = A1, CM = A2 or CP = A2, CM = A1|M = A1A2, R = A2A3, Hd)

= (1/2)P(CP = A1|R = A2A3, Hp) + (1/2)P(CP = A2|R = A2A3, Hp)

(1/2)p1 + (1/2)p2

= (1/2)k0p1 + (1/2)k0p2 + k1

(1/2)p1 + (1/2)p2

= k0 + k1

p1 + p2
,
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where (k0, 2k1, k2) are the relatedness coefficients of the child and the relative R under
Hp. Substituting k0 = 1/2 and k1 = 1/4 into the above equation, we have

LR = 1

2
+ 1

4(p1 + p2)
.

4. In this situation, we have the genotypes of the child (C), the mother (M), and a relative
(R) of the alleged father (AF), and three propositions about who the true father of the
child is:

Hp1 : R is the true father of the child;
Hp2 : AF , a relative of R, is the true father of the child;
Hd : a random unrelated man is the true father of the child.

So

AI = P(C|M, R, Hp2)

P(C|M, R, Hd)

PI = P(C|M, R, Hp1)

P(C|M, R, Hd)
.

Under Hp2, imagine that the true father’s (i.e. AF under Hp2) genotype is the same as
R’s. When the TF (true father) and R share two ibd alleles, the relative R plays the
same role as TF in the calculation of P(C|M, R, Hp2). When TF and R share only one
ibd allele, R plays the role as TF and the role as a random man with equal probability
1/2 in the calculation of P(C|M, R, Hp2). When TF and R share no ibd allele, R plays
the same role as a random man in the calculation of P(C|M, R, Hp2). Considering the
definition of the relatedness coefficients between two persons, we have

P(C|M, R, Hp2) =
(

k2 + 2k1

2

)
P(C|M, R, Hp1) +

(
2k1

2
+ k0

)
P(C|M, R, Hd)

= (k2 + k1)P(C|M, R, Hp1) + (k1 + k0)P(C|M, R, Hd).

So, dividing by P(C|M, R, Hd) on both sides, we obtain

AI = (k1 + k0) + (k2 + k1)PI

= (1 − 2F) + 2F × PI.

Note k2 + k1 = 2F is given in the solution to problem 8 of Chapter 3, where F is the
kinship coefficient between the alleged father and the typed relative R.

5. For case (i),

PI = P(C|AF, Hp)

P(C|Hd)

= P(C = A1A3|AF = A1A2, Hp)

P(C = A1A3|Hd)

= (1/2) × p3

2p1p3

= 1

4p1
.
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For case (ii),

PI = P(C = A1A1|AF = A1A2, Hp)

P(C = A1A1|Hd)
= (1/2) × p1

p2
1

= 1

2p1
.

For case (iii),

PI = P(C = A1A1|AF = A1A1, Hp)

P(C = A1A1|Hd)
= 1 × p1

p2
1

= 1

p1
.

These results can also be obtained from Table 4.5.

6. Let CP/CM be the paternal/maternal allele of C,

PI = P(C = A1A2|AF = A2A3, Hp)

P(C = A1A2|AF = A2A3, Hd)

= P(CP = A2, CM = A1|AF = A2A3, Hp)

P(CP = A1, CM = A2 or CP = A2, CM = A1|AF = A2A3, Hd)

= (1/2) × p1

p2 × k0p1 + p1(k0p2 + k1)

= 1

4k0p2 + 2k1
,

where (k0, 2k1, k2) are the relatedness coefficients between the child and the alleged
father under Hd , i.e. k0 = 1/2, k1 = 1/4, k2 = 0. So

PI = 1

2p2 + 1/2
= 2

1 + 4p2
.

7. Let CP/CM be the paternal/maternal allele of the child C,

PI = P(C = A1A2|R = A1A2, Hp)

P(C = A1A2|R = A1A2, Hd)

= P(CP = A1, CM = A2 or CP = A2, CM = A1|R = A1A2, Hp)

P(CP = A1A2)

= p2 × (k0p1 + k1) + p1(k0p2 + k1)

2p1p2

= 2k0p1p2 + k1(p1 + p2)

2p1p2

= k0 + k1
p1 + p2

2p1p2
,

where (k0, 2k1, k2) are the relatedness coefficients between the child and the typed
relative R under Hp, i.e. k0 = 1/2, k1 = 1/4, k2 = 0. So

PI = 1

2
+ p1 + p2

8p1p2
.
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8. Let C and R denote the genotypes of the child and a relative of the alleged father. The
corresponding hypotheses are:

Hp1 : R is the true father of the child;
Hp2 : AF , a relative of R, is the true father of the child;
Hd : a random unrelated man is the true father of the child .

The PI and AI can be expressed as

AI = P(C|R, Hp2)

P(C|R, Hd)
,

PI = P(C|R, Hp1)

P(C|R, Hd)
.

Under Hp2, the relatedness coefficients between R and AF are (k0, 2k1, k2). Imagine
that the true father’s genotype is the same as R’s. When the TF (true father) and R

share two ibd alleles, the relative R plays the same role as TF in the calculation of
P(C|R, Hp2). When TF and R share only one ibd allele, R plays the role as TF and
the role as a random man with equal probability 1/2 in the calculation of P(C|R, Hp2).
When TF and R share no ibd allele, R plays the same role as a random man in the
calculation of P(C|R, Hp2). So, by the law of total probability, we have

P(C|R, Hp2) =
(

k2 + 2k1

2

)
P(C|R, Hp1) +

(
2k1

2
+ k0

)
P(C|R, Hd)

= (k1 + k2)P(C|R, Hp1) + (k0 + k1)P(C|R, Hd)

and dividing both sides by P(C|R, Hd) gives

AI = (k0 + k1) + (k1 + k2)PI

= (1 − 2F) + 2F × PI,

where F = (k1 + k2)/2 (see the solution to problem 8 of Chapter 3) is the kinship
coefficient between the alleged father and the typed relative R.

9.

LR = P(C|AF, AM, Hp)

P(C)

= P(C = A2A3|AF = A1A2, AM = A3A3, Hp)

P(C = A2A3)

= 1/2 × 1

2p2p3

= 1

4p2p3
.

10. Using the software EasyDNA Motherless, the likelihood ratios, respectively, at loci
D3S1358, vWA and FGA for Hp versus Hd1 are 2.0921, 2.5023 and 2.2727, and for Hp

versus Hd2 are 1.3532, 1.429 and 1.3889.
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Solutions to Chapter 5
1. The hypotheses are

Hp : X and Y are first cousins;
Hd : X and Y are unrelated .

The likelihood ratio is

LR = P(X = A1A2, Y = A2A2|Hp)

P(X = A1A2, Y = A2A2|Hd)

= k0P(X)P(Y) + 2k1p1p
2
2

P(X)P(Y)

= k0 + 2k1p1p
2
2

(2p1p2)(p
2
2)

= k0 + k1

p2

= 0.5 + 0.25

0.37
= 1.18,

where (k0, 2k1, k2) = (0.5, 0.5, 0) are the relatedness coefficients for first cousins. Note
that the above LR can also be obtained from Table 5.2.

2. The two competing hypotheses about whether X and Y are in an uncle–nephew rela-
tionship can be expressed in the following forms:

Hp : Y and Z are first cousins;
Hd : Y and Z are unrelated .

The likelihood ratio is

LR = P(Y = A1A2, Z = A1A3|Hp)

P(Y = A1A2, Z = A1A3|Hd)

= (k0)P(Y)P(Z) + (2k1)P(A1, A2, A3)

P(X)P(Z)

= k0 + 2k1p1p2p3

(2p1p2)(2p1p3)

= k0 + k1

2p1

= 1

2
+ 1

8p1
,

where (k0, 2k1, k2) = (0.5, 0.5, 0) are the relatedness coefficients between the first
cousins. Also, one can refer to Table 5.2 for derivation of the above LR.

3. The corresponding two competing hypotheses are

Hp : X and Y are parent-child;
Hd : X and Y are full siblings .
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So

LR = P(X = A1A2, Y = A1A2|Hp)

P(X = A1A2, Y = A1A2|Hd)

= P(A1, A2, A2) + P(A1, A1, A2)

P(A1, A1, A2, A2) + 1
2P(A1, A2, A2) + 1

2P(A1, A1, A2) + 1
2P(A1, A2)

= P(A2|A1, A2) + P(A1|A1, A2)

P(A1, A2|A1, A2) + 1
2P(A2|A1, A2) + 1

2P(A1|A1, A2) + 1
2

=
θ+(1−θ)p2

1+(2−1)θ
+ θ+(1−θ)p1

1+(2−1)θ

θ+(1−θ)p1

1+(2−1)θ

θ+(1−θ)p2

1+(3−1)θ
+ 1

2
θ+(1−θ)p2

1+(2−1)θ
+ 1

2
θ+(1−θ)p1

1+(2−1)θ
+ 1

2

= 2(1 + 2θ)[2θ + (1 − θ)(p1 + p2)]

2[θ + (1 − θ)p1][θ + (1 − θ)p2] + (1 + 2θ)[1 + 3θ + (1 − θ)(p1 + p2)]
.

When p1 = 0.18, p2 = 0.43 and θ = 0.03, we have

LR = 2 × 1.06 × (0.06 + 0.97 × 0.61)

2 × (0.03 + 0.97 × 0.18) × (0.03 + 0.97 × 0.43) + 1.06 × (1.09 + 0.97 × 0.61)

= 0.7029.

4. The paternity index can be expressed as

PI = P(C = A1A2|M = A1A1, AF = A2A3, Hp)

P(C = A1A2|M = A1A1, AF = A2A3, Hd)
.

Let CP/CM be the paternal/maternal allele of the child. It is concluded from M = A1A1

that CP = A2 and CM = A1 under either hypothesis Hp or Hd . So

PI = P(CM = A1, CP = A2|M = A1A1, AF = A2A3, Hp)

P(CM = A1, CP = A2|M = A1A1, AF = A2A3, Hd)

= (1) × ( 1
2 )

(1) × P(A2|A1, A1, A2, A3)

= 1 + 3θ

2[θ + (1 − θ)p2]
.

This index can also be obtained from Table 5.12. When p2 = 0.23 and θ = 0.03, we
have further

PI = 1 + 3 × 0.03

2 × [0.03 + (1 − 0.03) × 0.23]
= 1.09

0.5062
= 2.15.

5. The paternity index can be expressed as

PI = P(C = A1A1|M = A1A2, AF = A1A3, Hp)

P(C = A1A1|M = A1A2, AF = A1A3, Hd)
.

Let CP/CM be the paternal/maternal allele of the child C. Then CP = CM = A1 and
the numerator of the paternity index is

NUM = P(CM = A1, CP = A1|M = A1A2, AF = A1A3, Hp)
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= 1

2
× 1

2

= 1

4
.

The denominator of the paternity index is

DEN = P(CM = A1, CP = A1|M = A1A2, AF = A1A3|Hd)

= 1

2
× P(CP = A1|M = A1A2, AF = A1A3, Hd)

= 1

2

[
1

2
× P(A1|A1, A1, A2, A3) + 1

4

]

= 1

8

{
2[2θ + (1 − θ)p1]

1 + (4 − 1)θ
+ 1

}

= 1 + 7θ + 2(1 − θ)p1

8(1 + 3θ)
.

Therefore

PI = 2(1 + 3θ)

1 + 7θ + 2(1 − θ)p1
.

This index can also be obtained from Table 5.13. When p1 = 0.12 and θ = 0.03,

PI = 2 × (1 + 3 × 0.03)

1 + 7 × 0.03 + 2 × (1 − 0.03) × 0.12

= 2.18

1.2928
= 1.69.

6. Let C, M and R, respectively, denote the genotypes of the child, the mother and the
relative who is a full sibling of the alleged father. Then, the likelihood ratio

LR = P(C|M, R, Hp)

P(C|M, R, Hd)

= P(C = A1A1|M = A1A1, R = A1A2, Hp)

P(C = A1A1|M = A1A1, R = A1A2, Hd)

= P(CM = A1, CP = A1|M = A1A1, R = A1A2, Hp)

P(CM = A1, CP = A1|M = A1A1, R = A1A2, Hd)

= ( 1
2 )P(A1|A1, A1, A1, A2) + 1

4

P(A1|A1, A1, A1, A2)

= 1

2
+ 1 + (4 − 1)θ

4[3θ + (1 − θ)p1]

= 1

2
+ 1 + 3θ

4[3θ + (1 − θ)p1]
,

where CP/CM are the paternal/maternal alleles of the child C.
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7. Let (k0, 2k1, k2) be the relatedness coefficients between two individuals; then, for uncle–
nephew and grandfather–child relationships, (k0, 2k1, k2) = (0.5, 0.5, 0). Denote YP/

YM as the paternal/maternal allele of Y and the two competing hypotheses can be
expressed as

Hp : (X, Y) ∼ (0.5, 0.5, 0) and (Y, Z) ∼ (0.5, 0.5, 0);
Hd : (X, Y) ∼ (1, 0, 0) and (Y, Z) ∼ (1, 0, 0).

The likelihood ratio is

LR = P(X = A1A1, Y = A1A2, Z = A2A3|Hp)

P(X = A1A1, Y = A1A2, Z = A2A3|Hd)
.

The numerator of the LR can be further expressed as

NUM = P(X = A1A1, YP = A1, YM = A2, Z = A2A3|Hp)

+ P(X = A1A1, YP = A2, YM = A1, Z = A2A3|Hp)

= P(X = A1A1, YM = A1|Hp)P(YP = A2, Z = A2A3|Hp)

+ P(X = A1A1, YM = A2|Hp)P(YP = A1, Z = A2A3|Hp)

=
[(1

2

)
(p1)(p

2
1) +

(
2 × 1

4

)
p2

1

]
×
[(1

2

)
(p2)(2p2p3) +

(
2 × 1

4

)
p2p3

]

+
[(1

2

)
(p2)(p

2
1)

]
×
[(1

2

)
(p1)(2p2p3)

]

= 1

2
p2

1(p1 + 1) × 1

2
p2p3(2p2 + 1) + 1

2
p2

1 × 1

2
p2p3 × 2p1p2

= 1

4
p2

1p2p3[(1 + p1)(1 + 2p2) + 2p1p2]

= 1

4
p2

1p2p3(1 + p1 + 2p2 + 4p1p2).

So, the likelihood ratio is

LR =
1
4p2

1p2p3(1 + p1 + 2p2 + 4p1p2)

(p2
1) × (2p1p2) × (2p2p3)

= 1 + p1 + 2p2 + 4p1p2

16p1p2
.

8. From the figure, we have

P(X1, X2, X3, X4, X5)

= P(X1)P(X2|X1)P(X3|X1, X2)P(X4|X1, X2, X3)P(X5|X1, X2, X3, X4)

= P(X1)P(X2)P(X3|X1)P(X4|X2)P(X5|X3, X4)

= P(X1 = A1A2)P(X2 = A3A3)P(X3 = A1A4|X1 = A1A2)

× P(X4 = A2A3|X2 = A3A3)P(X5 = A1A3|X3 = A1A4, X4 = A2A3)

= (2p1p2)(p
2
3)
(1

2
p4

)
(p2)

(1

2
× 1

2

)
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= 1

4
p1p

2
2p

2
3.

If X4 is not available, then we find that X4 must carry allele A3 because X4’s parent X2 is
homozygous A3A3. So, we can express the genotype of X4 as A3Ax, where x = 1, 2, . . ..
Therefore

P(X1, X2, X3, X5)

=
∑
X4

P(X1, X2, X3, X4, X5)

=
∑
X4

P(X1)P(X2)P(X3|X1)P(X4|X2)P(X5|X3, X4)

= P(X1)P(X2)P(X3|X1)
∑
X4

P(X4|X2)P(X5|X3, X4)

= (2p1p2)(p
2
3)

(
1

2
p4

)∑
x

P(X4 = A3Ax|X2 = A3A3)

× P(X5 = A1A3|X3 = A1A4, X4 = A2Ax)

= p1p2p
2
3p4

[
P(X4 = A3A3|X2 = A3A3)P(X5 = A1A3|X3 = A1A4, X4 = A3A3)

+
∑
x 	=3

P(X4 = A3Ax|X2 = A3A3)P(X5 = A1A3|X3 = A1A4, X4 = A3Ax)
]

= p1p2p
2
3p4

[
(p3)

(1

2
× 1
)

+
∑
x 	=3

(px)
(1

2
× 1

2

)]

= 1

4
p1p2p

2
3p4

(
2p3 +

∑
x 	=3

px

)

= 1

4
p1p2p

2
3p4(1 + p3).

Another solution: let X5P and X5M be, respectively, the paternal and maternal alleles of
X5; then

P(X1, X2, X3, X5)

= P(X1 = A1A2, X3 = A1A4, X5M = A1, X5P = A3, X2 = A3A3)

= P(X1 = A1A2, X3 = A1A4, X5M = A1)P(X2 = A3A3, X5P = A3)

= P(X1 = A1A2)P(X3 = A1A4|X1 = A1A2)P(X5M = A1|X3 = A1A4)

× P(X2 = A3A3)P(X5P = A3|X2 = A3A3)

= (2p1p2)
(1

2
p4

)(1

2

)
(p2

3)
(1

2
p3 + 2 × 1

4

)

= 1

4
p1p2p

2
3p4(1 + p3).
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9. Using the computer program EasyDNA 2Persons, we obtain the following likelihood
ratios:

D3S1358 vWA FGA

Hp1 versus Hd

θ = 0 125.25 6.84 0.25
θ = 0.03 4.53 5.76 0.25

Hp2 versus Hd

θ = 0 125.50 2.08 0.5
θ = 0.03 4.78 1.95 0.5

Solutions to Chapter 6
1. Under Hp, all the alleles in M are explained by V and S, so

P(M|K, Hp) = 1.

Under Hd , the allele A2 must be present in the genotype G of the unknown contributor.
So

P(M|K, Hd) = P(G = A1A2) + P(G = A2A2) + P(G = A2A3)

= p2(2p1 + p2 + 2p3).

Therefore, LR = 1/[p2(2p1 + p2 + 2p3)].

2. Under Hp, the unknown contributor G must carry allele A1, so

P(M|K, Hp) = P(G = A1A1) + P(G = A1A2)

= p2
1 + 2p1p2.

Under Hd , the genotypes G1 and G2 of the two unknown contributors have seven
kinds of combinations: (A1A1, A1A2), (A1A1, A2A2), (A1A2, A1A1), (A1A2, A1A2),
(A1A2, A2A2), (A2A2, A1A1) and (A2A2, A1A2). So

P(M|K, Hd) = P(G1 = A1A1, G2 = A1A2) + P(G1 = A1A1, G2 = A2A2)

+ P(G1 = A1A2, G2 = A1A1) + P(G1 = A1A2, G2 = A1A2)

+ P(G1 = A1A2, G2 = A2A2) + P(G1 = A2A2, G2 = A1A1)

+ P(G1 = A2A2, G2 = A1A2)

= 2p1p2(2p2
1 + 3p1p2 + 2p2

2).

Finally, LR = (p1 + 2p2)/[2p2(2p2
1 + 3p1p2 + 2p2

2)].

3. Under Hp, all three alleles in M are present in V or S, so

P(M|K, Hp) = 1.

Under Hd , the unknown contributor must carry allele A1. So the genotype of the
unknown can take A1A1, A1A2 or A1A3. So

P(M|K, Hd) = P(G = A1A1|V = A1A2, S = A2A3)
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+ P(G = A1A2|V = A1A2, S = A2A3)

+ P(G = A1A3|V = A1A2, S = A2A3)

= [θ + (1 − θ)p1][2θ + (1 − θ)p1]

(1 + 3θ)(1 + 4θ)

+2
[θ + (1 − θ)p1][2θ + (1 − θ)p2]

(1 + 3θ)(1 + 4θ)

+2
[θ + (1 − θ)p1][θ + (1 − θ)p3]

(1 + 3θ)(1 + 4θ)

= [θ + (1 − θ)p1][8θ + (1 − θ)(p1 + 2p2 + 2p3)]

(1 + 3θ)(1 + 4θ)
.

The likelihood ratio is just the reciprocal of P(M|K, Hd).

4. Under Hp, the genotype of X1 must be A1A3, so

P(M|K, Hp) = P(X1 = A1A3) = 2pa1pa3.

Under Hd , the genotypes of two unknown contributors X1 and X2 have six kinds of
combinations, so

P(M|K, Hd) = P(X1 = A1A2, X2 = A3A4) + P(X1 = A1A3, X2 = A2A4)

+ P(X1 = A1A4, X2 = A2A3) + P(X1 = A2A3, X2 = A1A4)

+ P(X1 = A2A4, X2 = A1A3) + P(X1 = A3A4, X2 = A1A2)

= 4pa1pa2pb3pb4 + 4pa1pa3pb2pb4 + 4pa1pa4pb2pb3

+ 4pa2pa3pb1pb4 + 4pa2pa4pb1pb3 + 4pa3pa4pb1pb2.

The likelihood ratio follows immediately from the ratio of P(M|K, Hp) to
P(M|K, Hd).

5. Under Hp, the four alleles in the mixture are explained by two contributors S1 and S2,
so P(M|K, Hp) = 1. Under Hd , the genotypes of X1 and X2 must be one of the follow-
ing six combinations: (A1A2, A3A4), (A1A3, A2A4), (A1A4, A2A3), (A2A3, A1A4),
(A2A4, A1A3), (A3A4, A1A2).
(a) If the two unknowns and the suspect S1 come from ethnic group a, and the suspect

S2 comes from ethnic group b, then

P(M|K, Hd) = P(X1 = A1A2, X2 = A3A4|S1 = A1A2)

+ P(X1 = A1A3, X2 = A2A4|S1 = A1A2)

+ P(X1 = A1A4, X2 = A2A3|S1 = A1A2)

+ P(X1 = A2A3, X2 = A1A4|S1 = A1A2)

+ P(X1 = A2A4, X2 = A1A3|S1 = A1A2)

+ P(X1 = A3A4, X2 = A1A2|S1 = A1A2)

= (6 × 2 × 2)P(A1, A2, A3, A4|S1 = A1A2)

= 24P(A1|A1A2)P(A2|A2
1A2)P(A3|A2

1A
2
2)P(A4|A2

1A
2
2A3)
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= 24
(1 − θa)

2pa3pa4[θa + (1 − θa)pa1][θa + (1 − θa)pa2]

(1 + θa)(1 + 2θa)(1 + 3θa)(1 + 4θa)
,

and LR = 1/P(M|K, Hd).

(b) If the two unknowns come from ethnic group a, and the two suspects do not come
from ethnic group a, then we have simply

P(M|K, Hd)

= P(X1 = A1A2, X2 = A3A4) + P(X1 = A1A3, X2 = A2A4)

+ P(X1 = A1A4, X2 = A2A3) + P(X1 = A2A3, X2 = A1A4)

+ P(X1 = A2A4, X2 = A1A3) + P(X1 = A3A4, X2 = A1A2)

= (6 × 2 × 2)P(A1, A2, A3, A4)

= 24P(A1)P(A2|A1)P(A3|A1, A2)P(A4|A1, A2, A3)

= 24
(1 − θa)

3pa1pa2pa3pa4

(1 + θa)(1 + 2θa)
.

So the likelihood ratio is just 1/P(M|K, Hd).

(c) If the first unknown X1 comes from ethnic group a, the second unknown X2 comes
from ethnic group b, and the two tested suspects come from ethnic group c, then
we have

P(M|K, Hd)

= P(X1 = A1A2)P(X2 = A3A4) + P(X1 = A1A3)P(X2 = A2A4)

+ P(X1 = A1A4)P(X2 = A2A3) + P(X1 = A2A3)P(X2 = A1A4)

+ P(X1 = A2A4)P(X2 = A1A3) + P(X1 = A3A4)P(X2 = A1A2)

= 4(1 − θa)(1 − θb)pa1pa2pb3pb4 + 4(1 − θa)(1 − θb)pa1pa3pb2pb4

+ 4(1 − θa)(1 − θb)pa1pa4pb2pb3 + 4(1 − θa)(1 − θb)pa2pa3pb1pb4

+ 4(1 − θa)(1 − θb)pa2pa4pb1pb3 + 4(1 − θa)(1 − θb)pa3pa4pb1pb2.

Again, the likelihood ratio is the reciprocal of P(M|K, Hd).

6. Under Hp, the two contributors V and S explain the three alleles in M, so

P(M|K, Hp) = 1.

Under Hd , the unknown contributor must carry allele A3, so

P(M|K, Hd) = P(G = A1A3) + P(G = A2A3) + P(G = A3A3)

= 2p1 ∗ p3 + 2p2 ∗ p3 + p3 ∗ p3

= 2p1p3 + 2p2p3 + p2
3 + θp3(1 − p3).

The likelihood ratio is just 1/P(M|K, Hd).
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Solutions to Chapter 7
1. Under Hp, P(M|K, Hp) = 1. Under Hd , the relative’s genotype G must be A2A4. So

we have

P(M|K, Hd) = P(G = A2A4|S = A2A4)

= k0P(A2A4) + k1p2 + k1p4 + k2

= 2k0p2p4 + k1(p2 + p4) + k2,

and LR = 1/[2k0p2p4 + k1(p2 + p4) + k2].

2. Under Hp, P(M|K, Hp) = 1. Under Hd , let G1 and G2 denote, respectively, the
genotypes of the two related unknowns; then, we have

P(M|K, Hd) = P(G1 = A1A2, G2 = A3A4) + P(G1 = A1A3, G2 = A2A4)

+ P(G1 = A1A4, G2 = A2A3) + P(G1 = A2A3, G2 = A1A4)

+ P(G1 = A2A4, G2 = A1A3) + P(G1 = A3A4, G2 = A1A2)

= 24k0p1p2p3p4.

Note that in this situation, the two related unknown contributors to the mixed stain cannot
share ibd allele and so P(G1 = AiAj, G2 = AkAl) = 4k0pipjpkpl for any permutation
ijkl of 1234. So LR = 1/(24k0p1p2p3p4).

3. Under Hp, P(M|K, Hp) = 1. Under Hd , it is concluded that the relative’s genotype is
of A1A4, so

P(M|K, Hd) = 2k0P(A1, A4|V = A2A3, S = A1A4)

+ k1P(A4|V = A2A3, S = A1A4)

+ k1P(A1|V = A2A3, S = A1A4) + k2

= 2k0
[θ + (1 − θ)p1][θ + (1 − θ)p4]

(1 + 3θ)(1 + 4θ)

+ k1
θ + (1 − θ)p4

1 + 3θ
+ k1

θ + (1 − θ)p1

1 + 3θ
+ k2

= 2k0
[θ + (1 − θ)p1][θ + (1 − θ)p4]

(1 + 3θ)(1 + 4θ)

+ k1
2θ + (1 − θ)(p1 + p4)

1 + 3θ
+ k2.

Finally, the likelihood ratio is just the reciprocal of P(M|K, Hd).

4. Under Hp, P(M|M, Hp) = 1. Under Hd , let G1 and G2 denote, respectively, the
genotypes of the two related unknowns; then, we have

P(M|K, Hd) = P(G1 = A1A2, G2 = A3A4|V = A1A3, S = A2A4)

+ P(G1 = A1A3, G2 = A2A4|V = A1A3, S = A2A4)

+ P(G1 = A1A4, G2 = A2A3|V = A1A3, S = A2A4)
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+ P(G1 = A2A3, G2 = A1A4|V = A1A3, S = A2A4)

+ P(G1 = A2A4, G2 = A1A3|V = A1A3, S = A2A4)

+ P(G1 = A3A4, G2 = A1A2|V = A1A3, S = A2A4)

= 24k0
[θ + (1 − θ)pi][θ + (1 − θ)pj][θ + (1 − θ)pk][θ + (1 − θ)pl]

(1 + 3θ)(1 + 4θ)(1 + 5θ)(1 + 6θ)
.

Note that in this situation, the two related unknown contributors to the mixed stain
cannot share ibd allele and so

P(G1 = AiAj, G2 = AkAl|V = A1A3, S = A2A4)

= 4k0P(Ai, Aj, Ak, Al|A1A2A3A4)

= 4k0

[
θ + (1 − θ)pi

1 + 3θ

] [
θ + (1 − θ)pj

1 + 4θ

] [
θ + (1 − θ)pk

1 + 5θ

] [
θ + (1 − θ)pl

1 + 6θ

]
for any permutation ijkl of 1234. The likelihood ratio is just 1/P(M|K, Hd).

5. M = {A1, A2, A3}, P(M|K, Hp) = 1. Under Hd , x = 1, U = {A3}, the tested
person T = A1A3, i.e. t1 = A1 ∈ M \ U, t2 = A3 ∈ U, K = A1A2 and A1A3; so, from
Equation (7.18), we have

P(M|K, Hd) = k0Q(2, U, θ) + k1Q(1, U, θ) + k1Q(1, φ, θ) + k2Q(0, φ, θ).

From Equations (7.15) and (7.16), c1 = 2, c2 = 1, c3 = 1, c = c1 + c2 + c3 = 4, we
have

Q(2, U, θ) = q(2, {A1, A2, A3}, θ) − q(2, {A1, A2}, θ)

= (p1 + p2 + p3)
(2)(c1 + c2 + c3)

1(2)(c)
− (p1 + p2)

(2)(c1 + c2)

1(2)(c)

= [4θ + (1 − θ)(p1 + p2 + p3)][5θ + (1 − θ)(p1 + p2 + p3)]

(1 + 3θ)(1 + 4θ)

− [3θ + (1 − θ)(p1 + p2)][4θ + (1 − θ)(p1 + p2)]

(1 + 3θ)(1 + 4θ)

= [θ + (1 − θ)p3)][8θ + (1 − θ)(2p1 + 2p2 + p3)]

(1 + 3θ)(1 + 4θ)
,

Q(1, U, θ) = q(1, {A1, A2, A3}, θ) − q(1, {A1, A2}, θ)

= (p1 + p2 + p3)
(1)(4)

1(1)(4)
− (p1 + p2)

(1)(3)

1(1)(4)

= 4θ + (1 − θ)(p1 + p2 + p3)

1 + 3θ
− 3θ + (1 − θ)(p1 + p2)

1 + 3θ

= θ + (1 − θ)p3

1 + 3θ
,

Q(1, φ, θ) = q(1, {A1, A2, A3}, θ)

= 4θ + (1 − θ)(p1 + p2 + p3)

1 + 3θ
,
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Q(0, φ, θ) = 1.

So, we have

P(M|K, Hd) = k0
[θ + (1 − θ)p3][8θ + (1 − θ)(2p1 + 2p2 + p3)]

(1 + 3θ)(1 + 4θ)

+ k1
5θ + (1 − θ)(p1 + p2 + 2p3)

1 + 3θ
+ k2.

Thus, the likelihood ratio, i.e. 1/P(M|K, Hd) is the same as that in Table 7.8 when
M = {A1, A2, A3}, V = A1A2 and S = A1A3.





Appendix A: The standard normal
distribution

Areas under the standard normal curve
−2 −1 0 2

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
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z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990



Appendix B: Upper 1% and 5%
points of χχχ2 distributions

The value in the table corresponds to
an upper tail probability α, for a χ2

distribution with v degrees of freedom.
The figure on the right is a χ2

distribution with v = 5. 0 5 11.07 15

α=0.05

α αDegrees of Degrees of
freedom v 5% 1% freedom v 5% 1%

1 3.84 6.63 17 27.59 33.41
2 5.99 9.21 18 28.87 34.81
3 7.81 11.34 19 30.14 36.19
4 9.49 13.28 20 31.41 37.57
5 11.07 15.09 21 32.67 38.93
6 12.59 16.81 22 33.92 40.29
7 14.07 18.48 23 35.17 41.64
8 15.51 20.09 24 36.42 42.98
9 16.92 21.67 25 37.65 44.31

10 18.31 23.21 26 38.89 45.64
11 19.68 24.72 27 40.11 46.96
12 21.03 26.22 28 41.34 48.28
13 22.36 27.69 29 42.56 49.59
14 23.68 29.14 30 43.77 50.89
15 25.00 30.58 40 55.76 63.69
16 26.30 32.00 50 67.50 76.15
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Bosch E, Cagliá A, Carracedo A, Corach D, Dekairelle AF, Dobosz T, Dupuy BM, Füredi S, Gehrig
C, Gusmaõ L, Henke J, Henke L, Hidding M, Hohoff C, Hoste B, Jobling MA, Kärgel HJ, de Knijff
P, Lessig R, Liebeherr E, Lorente M, Martı́nez-Jarreta B, Nievas P, Nowak M, Parson W, Pascali VL,
Penacino G, Ploski R, Rolf B, Sala A, Schmidt U, Schmitt C, Schneider PM, Szibor R, Teifel-Greding
J and Kayser M 2001 Online reference database of European Y-chromosomal short tandem repeat
(STR) haplotypes. Forensic Sci Int 118, 106–113.

Rolf B, Keil W, Brinkmann B, Roewer L and Fimmers R 2001 Paternity testing using Y-STR haplotypes:
assigning a probability for paternity in cases of mutations. Int J Legal Med 115, 12–15.

Sensabaugh GF 1982 Biochemical markers of individuality. In Forensic Science Handbook (ed. Safer-
stein R), pp. 338–415. Prentice-Hall, New York.

Shepard EM and Herrera RJ 2006 Iranian STR variation at the fringes of biogeographical demarcation.
Forensic Sci Int 158, 140–148.

Sjerps M and Kloosterman AD 1999 On the consequences of DNA profile mismatches for close relatives
of an excluded suspect. Int J Legal Med 112, 176–180.

Stockmarr A 1999 Likelihood ratios for evaluating DNA evidence when the suspect is found through a
database search. Biometrics 55, 671–677.

Stockmarr A 2000 The choice of hypotheses in the evaluation of DNA profile evidence In Statistical
Science in the Courtroom (ed. Gastwirth JL), pp. 143–160. Springer, New York.

Thomson JA, Ayres KL, Pilotti V, Barrett MN, Walker JIH and Debenham PG 2001 Analysis of disputed
single-parent/child and sibling relationships using 16 STR loci. Int J Legal Med 115, 128–134.

Thomson JA, Pilotti V, Stevens P, Ayres KL and Debenham PG 1999 Validation of short tandem repeat
analysis for the investigation of cases of disputed paternity. Forensic Sci Int 100, 1–16.

Triggs CM, Harbison SA and Buckleton J 2000 The calculation of DNA match probabilities in mixed
race populations. Sci Justice 40, 33–38.

Tsokos M, Lessig R, Grundmann C, Benthaus S and Peschel O 2006 Experiences in tsunami victim
identification. Int J Legal Med 120, 185–187.

Tsui P and Wong DM 1996 Allele frequencies of four VNTR loci in the Chinese population in Hong
Kong. Forensic Sci Int 79, 175–185.

Tully G, Bär W, Brinkmann B, Carracedo A, Gill P, Morling N, Parson W and Schneider P 2001 Con-
siderations by the European DNA profiling, (EDNAP) group on the working practices, nomenclature
and interpretation of mitochondrial DNA profiles. Forensic Sci Int 12, 83–91.

Valdes AM, Slatkin M and Freimer NB 1993 Allele frequencies at microsatellite loci: the stepwise
mutation model revisited. Genetics 133, 737–749.

Vastag B 2002 Out of tragedy, identification innovation. J Am Med Asso 288, 1221–1223.
Wang T, Xue N and Birdwell JD 2006 Least-square deconvolution: a framework for interpreting short

tandem repeat mixtures. J Forensic Sci 51, 1284–1297.
Weir BS 1993 Independence tests for VNTR alleles defined as quantile bins. Am J Hum Genet 53,

1107–1113.
Weir BS 1994 The effects of inbreeding on forensic calculations. Annu Rev Genet 28, 597–621.
Weir BS 2003 Forensics. In Handbook of Statistical Genetics, 2nd edn (ed. Balding DJ, Bishop M and

Cannings C), vol. 2, pp. 830–852. John Wiley & Sons.
Weir BS, Triggs CM, Starling L, Stowell LI, Walsh KAJ and Buckleton J 1997 Interpreting DNA

mixtures. J Forensic Sci 42, 213–222.
Wenk RE, Chiafari FA, Gorlin J and Polesky HF 2003 Better tools are needed for parentage and kinship

studies. Transfusion 43, 979–981.



236 BIBLIOGRAPHY

Wiener ML, Lederer M and Polayes SH 1930 Studies in isohemagglutination IV: On the chances of
proving non-paternity; with special reference to blood groups. J Immunology 19, 259–282.

Wiuf C 2001 Recombination in human mitochondrial DNA? Genetics 159, 749–756.
Wolf A, Caliebe A, Junge O and Krawczak M 2005 Forensic interpretation of Y-chromosomal DNA

mixtures. Forensic Sci Int 152, 209–213.
Wong DM, Law MY, Fung WK, Chan KL, Li C, Lun TS, Lai KM, Cheung KY and Chiu CT 2001

Population data for 12 STR loci in Hong Kong Chinese. Int J Legal Med 114, 281–284.
Wright S 1951 The genetical structure of populations. Ann Eugen 15, 323–354.
Zaykin D, Shivotovsky L and Weir BS 1995 Exact test for association between alleles at arbitrary

numbers of loci. Genetica 96, 169–178.



Index

additive rule, 7
allele, 4
allele frequency, 5, 37
allele size, 5
autosomal locus, 4
average mutation paternity index, 76, 111
avuncular index, 57, 58, 62, 63, 77, 99

Bayes’ Theorem, 11, 49, 51
Bayesian network, 191
binomial distribution, 12–14
blood stain, 17

chi-square test, 27, 30
chromosome, 4
commonly determined, 187
computer program, 30, 52

dos-based, 126, 132, 134
EasyDNA 2Persons, 83, 84, 89, 112
EasyDNA 3Persons, 95, 96, 102
EasyDNA BothParents, 65, 66
EasyDNA In 1 Minute, 103, 105, 109
EasyDNA Mixture, 135, 154
EasyDNA Motherless, 60, 62, 63
EasyDNA PopuData, 30
EasyDNA Trio, 52, 54, 56, 60, 66
EasyIN In 1 Minute, 107, 108
EasyMISS In 1 Minute, 108, 109
EasyPA In 1 Minute, 103–105
EasyPAnt In 1 Minute, 107
home page, 30, 52
input screen, 135, 155, 156, 172

Statistical DNA Forensics: Theory, Methods and Computation Wing Kam Fung and Yue-Qing Hu
© 2008 John Wiley & Sons, Ltd

output screen, 52, 54, 108, 109, 135
result screen, 156
user-friendly, 134
window-based, 134

confidence interval, 20, 21, 203
counting method, 187
crime sample, 43, 118, 157

database search, 197, 198
defense proposition, 35
degree of subdivision, 39, 41, 43, 132,

193
degrees of freedom, 18
Dirichlet distribution, 38, 193
distribution, 12

binomial, 12–14, 23, 143
chi-square, 18, 19, 27–33
Dirichlet, 38, 192, 193
multinomial, 13, 14, 23, 39
normal, 14–16, 19, 23
Poisson, 14

DNA forensics, 2
DNA profiling, 1–5, 23, 25, 31, 33, 35–37

ethnic group, 3, 113, 124–129, 132–135,
137–142, 145

events, 7
dependent, 9
independent, 8
mutually exclusive, 7

evidence, 2, 17
exact test, 1



238 INDEX

exclusion, 3
exclusion probability, 66, 67

F , 42
Fisher’s exact test, 29, 30, 33
forensic DNA, 1–5
forensic genetics, 2–3
forensic science, 1–3
frequency, 5

gene, 3
genetics, 2–4
genotype, 4
goodness-of-fit test, 18, 19
graphical model, 192

haplotype, 187, 189
haplotype frequency, 187
Hardy-Weinberg equilibrium, 3, 23, 25

law, 1, 7, 8
test, 1, 23, 25, 27, 28, 33

heterozygosity, 25–27, 30
heterozygous, 4
home page, 30, 52
homozygous, 4
Hong Kong case, 118, 123, 135, 137,

139, 153, 154, 156, 170–172,
Hong Kong Chinese population database,

5, 30, 35
hypothesis, 17

identical by descent (ibd), 42
identity testing, 5, 35
incest, 55, 103, 107, 108
index, 3

avuncular, 57
paternity, 2

(k0, 2k1, k2), 42–44
kinship coefficient, 42, 43
kinship determination, 3, 47, 81, 83, 102

law of total probability, 10
least-square deconvolution, 1, 195
likelihood ratio, 16, 47, 80
lineage markers, 187
linear mixture analysis, 195
linkage, 31

linkage equilibrium, 31, 33
locus, 4

mass disaster, 196
plane crash, 196
terrorist attack, 196
tsunami, 196

match probability, 23, 35, 37, 40, 41
migration, 25
missing persons, 102, 103, 196
missing suspect, 151
mitochondrial DNA (mtDNA), 187
mixtures, 3

computer program, 52, 147
ethnic group, 3, 113
haplotype, 189
Hardy-Weinberg equilibrium, 3, 113,

147
likelihood ratio, 16, 113, 147, 189
peak information, 113, 194
relative, 17, 147, 193
subdivided population, 45, 113, 147,

194
multilocus, 41
multinomial distribution, 13, 14
mutation, 25, 75, 188

exclusion probability, 66
parentage testing, 69, 74, 111

mutually exclusive events, 8

National Research Council Report, 2–4
normal distribution, 14–16, 19
NRC II, 2
nucleotide, 4
number of contributors, 125

odds, 49
posterior, 49
prior, 50

p-value, 29, 30, 33,
paternity testing, 47

alleged father, 47
avuncular index, 57, 58, 62, 63, 77
computer program, 52, 56, 102,

107, 109
exclusion, 3, 66–71, 111
incest, 52, 54, 57



INDEX 239

missing person, 93, 102, 108, 109
motherless, 47, 58, 60, 63, 81, 103, 104
paternity index, 47
probability of paternity, 51, 66
relatives, 42, 60, 62, 69–71, 74, 79, 87,

91, 92, 95, 102–105, 107
subdivided population, 44, 83–86, 89,

91, 96, 97, 99, 101, 102
with mother, 69, 99

plane crash, 196
polymerase chain reaction (PCR), 4
population structure, 89, 170, 171
population subdivision, 45
posterior, 49

odds, 49–51, 198, 199
probability, 49–51, 66, 67, 110

power of discrimination, 23, 33–35
power of exclusion, 3

mutation, 25, 47, 73, 74
random man, 45, 48, 50, 54–58, 60, 62,

63, 69
relative, 17, 48, 50, 54–58, 60, 62, 63,

69
subdivided population, 44

principle of inclusion and exclusion, 9,
121, 141

prior, 50
odds, 49
probability, 49

probability, 3, 7
conditional, 9,
density function, 14
distribution, 12
exclusion, 3
laws, 7–9
match, 3
paternity, 2
posterior, 49
prior, 50

probability density function, 14
probability of identity, 23, 33–35
product rule, 8, 25
prosecution proposition, 35

random man not excluded, 66
Recommendation 4.1, 40, 135, 141

Recommendation 4.2, 41, 135
relatedness coefficient, 42, 55, 61, 70, 80,

81, 84, 91, 92, 120, 147, 148, 152,
159, 166, 173

relative
parent-child, 69

relatives, 42, 43
first cousin, 43, 44
full sibling, 43, 44
grandparent-grandchild, 43
half sibling, 43, 44
joint genotype probability, 46
mixtures, 147
parent-child, 43, 44
paternity testing, 47, 56
relatedness coefficient, 55, 61, 70
relatedness coefficients, 42
uncle-nephew, 43

reverse parentage, 74
RFLP, 64, 69, 113, 114, 132, 141

short tandem repeat, 4–5
Simpson case, 113, 114, 122, 125, 130,

132, 134, 137, 140, 141
single source, 5, 35
software, 52, 83, 113, 134, 154,

170
standard error, 20
standard normal distribution, 15, 16
statistics, 1–3, 7
STR, 3–5
structured population, 40, 79, 83
subdivided population, 43, 44
subpopulation model, 37, 43, 135
suspect, 5, 114

test, 1, 16–19
Fisher’s exact, 1
goodness-of-fit test, 18, 19
Hardy-Weinberg, 5

the third law of probability, 9–11, 114
θ, 37–41

Y chromosome, 187, 189
Y-STR, 187



STATISTICS IN PRACTICE

Human and Biological Sciences

Berger – Selection Bias and Covariate Imbalances in Randomized Clinical Trials
Brown and Prescott – Applied Mixed Models in Medicine, Second Edition
Chevret (Ed) – Statistical Methods for Dose-Finding Experiments
Ellenberg, Fleming and DeMets – Data Monitoring Committees in Clinical Trials: A
Practical Perspective
Hauschke, Steinijans & Pigeot – Bioequivalence Studies in Drug Development: Methods
and Applications
Lawson, Browne and Vidal Rodeiro – Disease Mapping with WinBUGS and MLwiN
Lui – Statistical Estimation of Epidemiological Risk
Marubini and Valsecchi – Analysing Survival Data from Clinical Trials and Observation
Studies
Molenberghs and Kenward – Missing Data in Clinical Studies
O’Hagan, Buck, Daneshkhah, Eiser, Garthwaite, Jenkinson, Oakley & Rakow – Uncertain
Judgements: Eliciting Expert’s Probabilities
Parmigiani – Modeling in Medical Decision Making: A Bayesian Approach
Pintilie – Competing Risks: A Practical Perspective
Senn – Cross-over Trials in Clinical Research, Second Edition
Senn – Statistical Issues in Drug Development, Second Edition
Spiegelhalter, Abrams and Myles – Bayesian Approaches to Clinical Trials and Health-Care
Evaluation
Whitehead – Design and Analysis of Sequential Clinical Trials, Revised Second Edition
Whitehead – Meta-Analysis of Controlled Clinical Trials
Willan and Briggs – Statistical Analysis of Cost Effectiveness Data
Winkel and Zhang – Statistical Development of Quality in Medicine

Earth and Environmental Sciences

Buck, Cavanagh and Litton – Bayesian Approach to Interpreting Archaeological Data
Glasbey and Horgan – Image Analysis in the Biological Sciences
Helsel – Nondetects and Data Analysis: Statistics for Censored Environmental Data
Illian, Penttinen, Stoyan, H and Stoyan D–Statistical Analysis and Modelling
of Spatial Point Patterns
McBride – Using Statistical Methods for Water Quality Management
Webster and Oliver – Geostatistics for Environmental Scientists, Second Edition
Wymer (Ed) – Statistical Framework for Recreational Water Quality Criteria and Monitoring

Industry, Commerce and Finance

Aitken – Statistics and the Evaluation of Evidence for Forensic Scientists, Second Edition
Balding – Weight-of-evidence for Forensic DNA Profiles
Brandimarte – Numerical Methods in Finance and Economics: A MATLAB-Based
Introduction, Second Edition



Brandimarte and Zotteri – Introduction to Distribution Logistics
Chan – Simulation Techniques in Financial Risk Management
Coleman, Greenfield, Stewardson and Montgomery (Eds) – Statistical Practice
in Business and Industry
Frisen (Ed) – Financial Surveillance
Fung and Hu – Statistical DNA Forensics
Lehtonen and Pahkinen – Practical Methods for Design and Analysis of Complex Surveys,
Second Edition
Ohser and Mücklich – Statistical Analysis of Microstructures in Materials Science
Taroni, Aitken, Garbolino and Biedermann – Bayesian Networks and Probabilistic Inference
in Forensic Science


	Statistical DNA Forensics
	Contents
	Preface
	List of figures
	List of tables
	1 Introduction
	1.1 Statistics, forensic science and the law
	1.2 The use of statistics in forensic DNA
	1.3 Genetic basis of DNA pro.ling and typing technology
	1.3.1 Genetic basis
	1.3.2 Typing technology

	1.4 About the book

	2 Probability and statistics
	2.1 Probability
	2.2 Dependent events and conditional probability
	2.3 Law of total probability
	2.4 Bayes’ Theorem
	2.5 Binomial probability distribution
	2.6 Multinomial distribution
	2.7 Poisson distribution
	2.8 Normal distribution
	2.9 Likelihood ratio
	2.10 Statistical inference
	2.10.1 Test of hypothesis
	2.10.2 Estimation and testing

	2.11 Problems

	3 Population genetics
	3.1 Hardy–Weinberg equilibrium
	3.2 Test for Hardy–Weinberg equilibrium
	3.2.1 Observed and expected heterozygosities
	3.2.2 Chi-square test
	3.2.3 Fisher’s exact test
	3.2.4 Computer software

	3.3 Other statistics for analysis of a population database
	3.3.1 Linkage equilibrium
	3.3.2 Power of discrimination

	3.4 DNA pro.ling
	3.5 Subpopulation models
	3.6 Relatives
	3.7 Problems

	4 Parentage testing
	4.1 Standard trio
	4.1.1 Paternity index
	4.1.2 An example
	4.1.3 Posterior odds and probability of paternity

	4.2 Paternity computer software
	4.2.1 Steps in running the software
	4.2.2 The software to deal with an incest case

	4.3 A relative of the alleged father is the true father
	4.4 Alleged father unavailable but his relative is
	4.5 Motherless case
	4.5.1 Paternity index
	4.5.2 Computer software and example

	4.6 Motherless case: relatives involved
	4.6.1 A relative of the alleged father is the true father
	4.6.2 Alleged father unavailable but his relative is
	4.6.3 Computer software and example

	4.7 Determination of both parents
	4.8 Probability of excluding a random man from paternity
	4.9 Power of exclusion
	4.9.1 A random man case
	4.9.2 A relative case
	4.9.3 An elder brother case: mother available

	4.10 Other issues
	4.10.1 Reverse parentage
	4.10.2 Mutation

	4.11 Problems

	5 Testing for kinship
	5.1 Kinship testing of any two persons: HWE
	5.2 Computer software
	5.3 Kinship testing of two persons: subdivided populations
	5.3.1 Joint genotype probability
	5.3.2 Relatives involved

	5.4 Examples with software
	5.5 Three persons situation: HWE
	5.6 Computer software and example
	5.7 Three persons situation: subdivided populations
	5.7.1 Standard trio
	5.7.2 A relative of the alleged father is the true father
	5.7.3 Alleged father unavailable but his relative is
	5.7.4 Example
	5.7.5 General method and computer software

	5.8 Complex kinship determinations: method and software
	5.8.1 EasyPA In 1 Minute software and the method
	5.8.2 EasyPAnt In 1 Minute
	5.8.3 EasyIN In 1 Minute
	5.8.4 EasyMISS In 1 Minute
	5.8.5 Other considerations: probability of paternity and mutation

	5.9 Problems

	6 Interpreting mixtures
	6.1 An illustrative example
	6.2 Some common cases and a case example
	6.2.1 One victim, one suspect and one unknown
	6.2.2 One suspect and two unknowns
	6.2.3 Two suspects and two unknowns
	6.2.4 Case example
	6.2.5 Exclusion probability

	6.3 A general approach
	6.4 Population in Hardy–Weinberg equilibrium
	6.5 Population with multiple ethnic groups
	6.6 Subdivided population
	6.6.1 Single ethnic group: simple cases
	6.6.2 Single ethnic group: general situations
	6.6.3 Multiple ethnic groups

	6.7 Computer software and example
	6.8 NRC II Recommendation 4.1
	6.8.1 Single ethnic group
	6.8.2 Multiple ethnic groups

	6.9 Proofs
	6.9.1 The proof of Equation (6.6)
	6.9.2 The proof of Equation (6.8)
	6.9.3 The proof of Equation (6.9)
	6.9.4 The proofs of Equations (6.11) and (6.12)
	6.9.5 The proofs of Equations (6.14) and (6.15)

	6.10 Problems

	7 Interpreting mixtures in the presence of relatives
	7.1 One pair of relatives: HWE
	7.1.1 Motivating example
	7.1.2 A probability formula
	7.1.3 Tested suspect with an unknown relative
	7.1.4 Unknown suspect with a tested relative
	7.1.5 Two related persons were unknown contributors
	7.1.6 An application

	7.2 Two pairs of relatives: HWE
	7.2.1 Two unknowns related respectively to two typed persons
	7.2.2 One unknown is related to a typed person and two other unknowns are related
	7.2.3 Two pairs of related unknowns
	7.2.4 Examples
	7.2.5 Extension

	7.3 Related people from the same subdivided population
	7.3.1 Introductory example
	7.3.2 A simple case with one victim, one suspect and one relative
	7.3.3 General formulas
	7.3.4 An example analyzed by the software

	7.4 Proofs
	7.4.1 Preliminary
	7.4.2 The proof of Equation (7.5)
	7.4.3 The proof of Equation (7.7)
	7.4.4 The proof of Equation (7.9)
	7.4.5 The proof of Equation (7.11)
	7.4.6 The proof of Equation (7.13)
	7.4.7 The proofs of Equations (7.18) and (7.20)

	7.5 Problems

	8 Other issues
	8.1 Lineage markers
	8.2 Haplotypic genetic markers for mixture
	8.3 Bayesian network
	8.4 Peak information
	8.5 Mass disaster
	8.6 Database search

	Solutions to problems
	Appendix A: The standard normal distribution
	Appendix B: Upper 1% and 5%

points of χ2 distributions
	Bibliography
	Index


