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Preface

It stands to reason that important decisions, such as those involving
the treatment of a patient or a group of patients, would be based on
solid evidence, especially when one considers what the alternative is.
Hence, evidence-based medicine has become a major theme of medical
research and medical decision-making. A hierarchy of evidence has
evolved to guide users of medical research, and randomized trials
tend to gravitate towards the top of this hierarchy. In fact, it is not
uncommon to hear the phrase ‘randomized evidence’ used to denote
the strongest of all possible types of evidence.

It is far less common to find discussions of the ways in which vari-
ation among randomized trials themselves might make some better
than others within the hierarchy of evidence. At the heart of the un-
spoken assumption that all randomized trials are created equal is the
belief that all randomized trials are fair comparisons. That is, the va-
lidity of the comparison is guaranteed by virtue of the fact that the
word ‘randomized’ appears in the title. The only question, then, is
how well these internally valid randomized results generalize to the
target population. That is, to what extent is there external validity?
The selection bias most commonly associated with randomized trials
is the one that might limit the external validity, because the results of
randomized trials would tend to apply to only those patients willing to
be randomized. This is a legitimate concern, but it is not the concern,
or the type of selection bias, considered in this book.

Before one can even ask if the results of a randomized trial gen-
eralize, one needs to ask if these results are internally valid. Upon
careful scrutiny it is fairly easy to deduce that internal validity, or a
fair comparison, is in fact not guaranteed by even proper randomiza-
tion (which, by the way, is also not guaranteed merely by virtue of the
claim that the trial was randomized). The central theme of the book is
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the idea that even in a properly randomized trial confounding can be
induced to create a covariate imbalance that leads to a type of selection
bias that can compromise internal validity. That is, estimates of treat-
ment effects can be biased, confidence intervals can be too narrow,
and p-values can be artificially too low as a result of this selection bias.
Moreover, nothing in these summary statistics themselves will allow
a reader to discern that such selection bias has occurred, so one needs
to look elsewhere to confirm the face validity of the findings.

Thisbookdealswiththeaspectsofselectionbiasthatonewouldneed
to consider when designing a randomized trial or analyzing the data
from a randomized trial or reviewing the results of a randomized trial.
Part I (Chapters 1–4) serves as a statement of the problem. Specifically,
Chapter 1 presents the various types of study designs and clarifies
why randomized trials are at the top of the hierarchy of evidence.
Chapter 2 presents the mechanisms by which upcoming treatment
allocations can be predicted even in randomized trials, and how this
foreknowledge of future allocations can be exploited to create the type
of selection bias we consider. Chapter 3 presents the evidence that
this type of selection bias has actually occurred, and is not simply a
hypothetical concern. Chapter 4 presents the impact this selection
bias can have on the results of randomized trials. It is suggested that
Chapter 2 be read by all readers, because it sets the stage for the
methods proposed in subsequent chapters for managing selection bias.
Those readers who are studying selection bias as part of their training
in clinical trial design and analysis might wish to also read Chapters
1, 3, and 4, but these chapters are optional on a first reading for those
readers who have actual trials (and deadlines!) in mind when reading
this book, and wish to apply the results as quickly as possible. These
readers should skip ahead to Part II right after reading Chapter 2.

Part II tells the reader the steps that can be taken to manage selection
bias in randomized trials. Chapter 5 deals with prevention by various
means, but mostly by selecting a randomization technique that defies
prediction of future allocations even when the past allocations are
known. Of course, one could eliminate all prediction, but at the cost
of enabling chronological bias, and so the trade-off between these two
must be considered. A reader who is writing a protocol should read
Chapter 5 right after Chapter 2. Chapter 6 deals with detecting se-
lection bias by various methods, but mostly by the Berger–Exner test.
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Readers who review randomized trials, such as regulatory agencies,
journal editors, and funding agencies, might wish to read Chapter 6
right after Chapter 2. Chapter 7 deals with methods recently proposed
for correcting for selection bias if it is found in a randomized trial.
This would be important reading for any reader who has found even
the appearance of selection bias in a randomized trial. Finally, Chap-
ter 8 offers recommendations, and draws from previous chapters. A
module on selection bias within the framework of a training program
in clinical trial design and analysis might use just Chapters 2 and
8, with the other chapters serving as reference material. Chapter 8 is
also an important chapter for researchers in trial design methodology,
because it presents some open problems the solutions to which might
help to improve future trial methodology.

This is not a mathematically challenging text. The reader will not
encounter endless equations and derivations, and so there really is no
mathematical prerequisite. In fact, this book is intended for a broad
readership representing the full spectrum of disciplines contributing
to the design, conduct, analysis, reporting, and review of random-
ized clinical trials. Perhaps the best prerequisites would be intellectual
curiosity and perhaps actual studies to work on.

I wish to thank Stephen Senn for discussing these ideas with me,
and for suggesting that I put these ideas into book form. In addition, it
is his own writings on baseline imbalances in randomized trials that
began my thinking about these ideas. I also thank the researchers
who joined me in studying selection bias in randomized trials, includ-
ing Derek Exner, Jeffrey Bears, Costas Christophi, Anastasia Ivanova,
Maria Deloria-Knoll, and Sherri Weinstein. I thank Ken Schulz for be-
ing part of a successful workshop on this subject at the 2002 Society of
Clinical Trials Meeting in Arlington, VA, along with Costas Christophi,
Maria Deloria-Knoll, and myself. I also thank Doug Altman, Don Corle,
Simon Day, Steven Hirschfeld, Damian McEntegart, Thomas Permutt,
and Drummond Rennie for useful discussions of selection bias. I thank
my former superiors Stephen Wilson, George Chi, Satya Dubey, Chuck
Anello, Bob O’Neill, Tony Lachenbruch, and Susan Ellenberg, at the
Food and Drug Administration, and more recently Phil Prorok and
Peter Greenwald at the National Cancer Institute, for encouraging
me to continue my research. I thank Jeffrey Mann for informing me
of the randomization irregularities in the NINDS Stroke Trial, and
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Giuseppe Biondi-Zoccai for referring me to the information regarding
the randomized trial of laparoscopic versus open appendectomy (Sec-
tion 3.3.28). Finally, thanks also go to Rob Calver, Kathryn Sharples,
and Jane Shepherd of John Wiley & Sons for helping the process to go
smoothly.

Vance W. Berger
North Potomac, MD

October 2004



JWBK019-01 JWBK019-Berger March 9, 2005 12:46 Char Count= 0

Part I

Is There a Problem
with Reliability in

Medical Studies?

1



JWBK019-01 JWBK019-Berger March 9, 2005 12:46 Char Count= 0

2



JWBK019-01 JWBK019-Berger March 9, 2005 12:46 Char Count= 0

1

An Evolution of
Comparative Methodology

Our starting point is the desire to evaluate a new medical intervention
to determine if it might be useful in clinical practice. We mean this
to be quite inclusive, so the medical intervention might be a drug, a
vaccine, a diet, a screening test, acupuncture, cognitive therapy, or
anything else that might be used to promote health and/or treat or
prevent a disease. Over the years, many different methods have been
employed in the name of evaluating a new medical intervention (or
evaluating a new use for an existing medical intervention). These
methods include the design, conduct, and analysis of studies. In this
chapter we critically evaluate some of the designs that have been used
to evaluate medical interventions, filling in many of the details behind
the outline provided by Smith (2003). We pay special attention to
the existence and nature of the control group, and the method for
determining who gets which treatments.

1.1 SINGLE-SUBJECT STUDIES

One might imagine a time when the standard evaluation of a medical
intervention consisted in applying it to a single subject, and noting
if this subject appeared to improve or deteriorate. Today we are well
aware of the limitations of such single-subject studies, but it still may
be useful to clarify what precisely these limitations are, to better un-
derstand the need for other methods. Consider a situation in which
the natural history of a disease is known with absolute certainty, and

Selection Bias and Covariate Imbalances in Randomized Clinical Trials V. W. Berger
C© 2005 John Wiley & Sons, Ltd.
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there is literally no variation across patients. In such a case, if one
patient were demonstrated to deviate from this known path following
treatment with a given agent, then the response would have to be at-
tributed to the agent, and the study would be convincing. For example,
if some new potion could be applied to a corpse and bring the corpse
back to life, then one corpse would be sufficient to provide strong and
convincing evidence.

It is common to refer to randomization as the basis for inference;
see, for example, Berger (2000), Berger et al. (2002), and Berger and
Bears (2003). In most cases it is true that randomization serves as
the basis for inference. However, in the case just described, there is
an alternative basis for inference. This is because we know the po-
tential outcomes both with and without the potion. The former was
observed and the latter follows from the certainty of the natural his-
tory in the absence of the potion. This makes the prediction causal,
as opposed to probabilistic (Runde, 1996). With knowledge of both
potential outcomes, we are in a position to perform causal inference,
and compute a legitimate and valid p-value. The probability of observ-
ing so extreme a result under the null hypothesis that the potion does
not work is exactly zero, so this is the p-value. Likewise, if at some
point in the future we find ourselves in a position to conduct trials on
clones, so that the assumption of exchangeability or identical poten-
tial outcomes (Greenland and Robins, 1986) becomes tenable, then
randomization would be unnecessary as we would still be able to per-
form causal inference, and compute a legitimate and valid p-value of
zero if any between-group difference is found.

1.2 CASE SERIES AND COHORT STUDIES

The conditions described above are not likely to be met in actual clinical
practice. How well, then, does a single-subject study perform when
the natural history is not known with certainty? The answer is not
very well, because the experiences of a single subject represent the
outcome of a single Bernoulli trial with unknown success probability.
There is little hope, based on this single Bernoulli trial, of estimating
the success probability, let alone of establishing its difference from
the success probability in the absence of treatment. Intuitively, it is
clear that a larger sample size will offer some benefits, because the
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sampling variability is reduced with increases in the sample size. As
such, a case series or cohort of consecutive patients with the same or
a similar diagnosis all treated the same way might be preferred to a
single-subject study. These designs are often used for Phase II studies,
to ascertain preliminary indications of efficacy.

While the case-series approach is certainly preferable (at least from
a scientific perspective, but from an ethical perspective this point
could be debated) to a single subject study, it also retains some of the
same drawbacks of the single-subject study. In particular, the case-
series design does not address the fact that the evaluation of a medical
intervention is necessarily comparative. An individual may not care,
for example, if a vaccine is ‘good’ or ‘bad’ in a vacuum, but this indi-
vidual may have come to understand that these descriptors refer to
the vaccine being better or worse, respectively, than the absence of the
vaccine. Such an evaluation can be made only with a comparative
study.

1.3 HISTORICAL CONTROLS

One of the simplest comparative designs is the historical control de-
sign, in which the experiences of a current case series are compared
to the historical experiences of a prior cohort. This design allows for
an assessment of ‘better’ or ‘worse’, which is certainly a strength.
However, the comparison is confounded with both time trends and
selection processes. That is, unintentionally or otherwise, especially
good responders may be selected for the current case series. Clearly,
this would bias the results in favor of the intervention used for the cur-
rent case series. Conversely, especially bad responders may be selected
for the current case series; this would bias the results in favor of the
intervention used for the historical controls. Even if the current cohort
is quite similar to the historical cohort prior to either being treated,
they still may differ once treated for reasons having nothing to do with
the treatments being compared. For example, ancillary care may be
better now than it was in the past; this would bias the results in favor
of the intervention used for the current case series. Conversely, man-
aged care may deny the current cohort some health benefits that were
available to the historical cohort; this would bias the results in favor of
the intervention used for the historical controls. As we see, time itself
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is an important covariate that should be balanced across groups. This
can be accomplished with parallel control groups, or groups that are
treated at the same time.

1.4 PARALLEL CONTROL GROUPS

Many studies fall in the category of parallel control. For example,
one could assess the effects of smoking by comparing those who do
smoke today to those who do not. Each group might be followed up
for some period of time, and any occurrences of cancer or heart dis-
ease would be noted, and compared across groups. This design would
balance the effects of time across groups, and would therefore elimi-
nate this source of bias. However, there are other sources of bias that
remain, most notably self-selection bias. Consider that those subjects
who choose to smoke may differ in important ways from those who do
not. For example, they may engage in riskier behavior, or may drink
more alcohol, or may eat fewer fruits and vegetables. This means that
even if a clear difference between the experiences of the smokers and
the experiences of the non-smokers is found, this difference may not
be attributable to smoking itself. To attribute the differences in out-
comes to the agents studied requires that the comparison groups be
as comparable as possible in every way other than the difference in
their treatments.

1.5 MATCHED STUDIES

The next improvement in study design is matching, including case–
control studies (Breslow and Day, 1980). In our development, this can
include both prospective and retrospective designs. As an example of
the latter, the Los Angeles Retirement Study of Endometrial Cancer
(Mack et al., 1976; Breslow and Day, 1980, Section 5.1) was a case–
control study designed to study the effect of exogenous estrogens on
the risk of endometrial cancer. There were 63 cases of endometrial
cancer identified from 1971 to 1975 in a retirement community near
Los Angeles. Each case was matched to four controls, all of whom
were alive and living in the community at the time the case (of en-
dometrial cancer) was diagnosed, were born within one year of the
case to whom they were matched, had the same marital status, and
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had entered the community at approximately the same time as the
case. In addition, controls were chosen from among women who had
not had a hysterectomy prior to the time the case was diagnosed and
who were therefore still at risk for the disease. One purpose of the
study was to determine whether gall bladder disease was associated
with endometrial cancer.

Here, the search would have been retrospective, to find out which
cases and which controls had experienced gall bladder disease that
would have occurred prior to the present time. It is also possible to
study the effects of gender, height, genetic profiles, exposure to partic-
ular carcinogens, or exposure to particular viruses with a prospective
variation of the same design. One would find cases, defined, for exam-
ple, as those having gall bladder disease, and then match each of these
cases to some number of controls. Now all cases and controls could be
followed prospectively to determine if they develop endometrial can-
cer. The basis for inference in this design is the exchangeability of the
cases and the controls. That is, it is hoped that the cases and controls
are identical to each other in every way other than the ‘caseness’, or
that which makes the cases become cases and that which makes the
controls remain controls (not cases).

It is possible, at least in theory, to match on any number of prog-
nostic variables, so any number of variables can be balanced across
cases in controls within each matched set. If all potential confound-
ing variables are known and measured then, again at least in theory,
randomization may be considered unnecessary (Villar and Carroli,
1996). The problem is that there are often prognostic variables that are
not measured. For example, subjective health perceived by a patient
can predict clinical outcomes and even mortality, even after adjusting
for other observed predictors (Fayers and Sprangers, 2002). In fact,
as Madersbacher et al. (2004) pointed out, ‘The comparison of new
treatment modalities with so-called matched controls and particu-
larly historic controlled series . . . confuse the results by introducing
errors resulting from case selection bias, stage migration, differences
in follow-up, and the evolution of supportive care. These confounding,
recall, and detection biases are particularly problematic for the results
of oncologic trials because the respective surgical or medical therapies
can be associated with considerable treatment-related morbidity.’

It is entirely possible that, in a case–control study, the matching
does not balance the unknown and/or unmeasured covariates, such
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as subjective health perceptions. The same criticism applies to de-
terministic designs mistakenly referred to as ‘randomized’, such as
minimization. For this reason, it is considered ideal to randomize, at
least when doing so is feasible and ethical. Clearly, it is not always
feasible or ethical to randomize. For example, it is not possible to ran-
domize subjects to different genders (surgical interventions to modify
the gender may be possible, but this is not the same as being born to
a given gender). It is certainly conceivable to randomize subjects to
exposure to carcinogens, but this is not ethical. As such, there is still
a place for matched designs that are not randomized. From this point
on, however, we restrict attention to randomized trials.

We note that alternating designs, and other deterministic designs
including those in which allocations are based on the social security
number, are often called ‘randomized’ (Berger and Bears, 2003), yet
these are poor substitutes for true randomization. Nature is not in
the business of randomizing the order in which patients show up to
clinics, so there is no sense in which alternating designs represent
truly randomized designs. As with all non-randomized studies, the
observed data represent the only outcome that could have occurred.
This means that if randomization is the basis for inference, and there
was no true randomization, then the only valid p-value would have to
assume the uninteresting value of 1.00. Only if the non-randomized
study is performed in clones, or in a patient population whose natural
history is known with certainty, would another basis for inference be
available, to allow for the valid calculation of a more interesting p-
value. Of course, assumptions can also serve as the basis for inference,
as when a population is assumed to follow the normal distribution
and sampling is assumed to be random.

While these two ‘assumptions’ are more often better described as
violations of known facts to the contrary, a less objectionable assu-
mption was discussed recently by Gallin et al. (2003) with regard to
a study to evaluate the efficacy of itraconazole. Specifically, the treat-
ments (itraconazole and placebo) were alternated over time periods
within each patient, and this continued until the occurrence of an
event or the end of the study. With the assumption that the probabil-
ities of events in the two groups did not depend on time or exposure
to prior treatments, it is possible to compute valid p-values, even in
the absence of randomization. Now the study by Gallin et al. (2003)
actually did use randomization, but it appears that the assumption of
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time homogeneity, and not randomization itself, served as the basis
for inference and the calculation of p-values.

1.6 RANDOMIZATION

Randomization is often said to balance all covariates, at least in dis-
tribution, across the treatment groups. For example, Beller, Gebski,
and Keech (2002) state that ‘Allocation of participants to specific
treatment groups in a random fashion ensures that each group is,
on average, as alike as possible to the other group(s). The process of
randomization aims to ensure similar levels of all risk factors in each
group; not only known, but also unknown, characteristics are ren-
dered comparable, resulting in similar numbers or levels of outcomes
in each group, except for either the play of chance or a real effect of
the intervention(s).’ While it is certainly true that randomization is
used for the purpose of ensuring comparability between or among
comparison groups, we will see in Chapter 2 that it is categorically not
true that this goal is achieved. However, it is worth reviewing the logic
behind this statement to see where it can break down.

One basic tenet of most forms of randomization is that there is no
opportunity for the subject to select a treatment, and no opportunity
for the investigator to assign a treatment based on subject charac-
teristics. Exceptions exist, at least to some extent; for example, the
consumer principle of randomization would allow subjects to select
not the treatment per se but rather the probability with which they are
to receive each treatment (Bird, 2001). In most cases, however, there
is no consumer choice, and allocation probabilities are determined in
advance. Often, but not always, these probabilities are the same for all
treatment groups, to achieve balance in sample sizes across the treat-
ment groups. For simplicity, unless otherwise noted, we will consider
only two-arm randomized trials with equal allocation probabilities to
the two groups (1:1 randomization). Our development will apply more
broadly, however, allowing for more treatment groups and unequal
randomization.

The idea of randomization is to overlay a sequence of units (sub-
jects, or patients) onto a sequence of treatment conditions. If neither
sequence can influence the other, then there should be no bias in the
assignment of the treatments, and the comparison groups should be
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comparable. We note that the bias from self-selection designs can be
viewed as the influence of the former sequence on the latter sequence.
Specifically, the identity of the units (or, in this case, patients) in the
first sequence, and their ability to select treatments, not only influences
but also determines the sequence of treatment assignments (Berger
and Christophi, 2003). This is why it is not valid to compare the group
of patients who were treated with (by virtue of having selected) one
treatment to the group of patients who were treated with (by virtue of
having selected) another treatment. In fact, sometimes there are con-
traindications that allow some patients to use one treatment but not
another. In fact, eligibility for a chemotherapy protocol was recently
found to be a good prognostic factor for invasive bladder cancer after
radical cystectomy (Madersbacher et al., 2004).

With randomization (understood to exclude the consumer variety),
there should be no such influence of the subjects on the treatment
assignments. The veracity of this statement depends on the nature of
the randomization procedure. Consider, for example, randomization
by tossing coins. If the coin tossing takes place only after the subject
to be randomized has been identified, then it would be possible to
take into consideration the preferences of this subject by rejecting the
outcome of the coin toss until the preferred outcome is observed.

Schulz (1995a) defines randomization as follows: ‘First, an unpre-
dictable allocation sequence must be generated based on a random
procedure. Second, strict implementation of that schedule must be
secured through an assignment mechanism (allocation concealment
process) that prevents foreknowledge of the treatment assignment’.
He goes on to call it a ‘mistake’ that many medical researchers regard
only the sequence generation process as the randomization itself. We
disagree, and find good reason to follow instead Berger and Bears
(2003) in defining randomization strictly on how the allocation se-
quence is generated, randomly or not. That is, a trial is randomized if,
and only if, the accession numbers from any one treatment group con-
stitute a random sample from the set of all accession numbers used. In
taking this as the definition of randomization, we are not denying the
importance of allocation concealment, but, for reasons that will be-
come clear in the remainder of this book and especially in Chapter 2,
there are good reasons to regard the two processes, randomization
and allocation concealment, as markedly distinct entities, to allow for
consideration of one without the other.
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1.7 ADVANCE RANDOMIZATION

The type of subversion considered in the previous paragraph would
represent a breakdown in the integrity of the randomization itself
(later we will discuss other subversions of the allocation process that
have nothing to do with any breakdown in the randomization itself),
and can occur in any trial for which randomization takes place only
after the (human) subjects were already selected. In practice, not only
are the allocation proportions determined prior to the initiation of
patient recruitment, but in fact the allocation sequence itself is also
determined in advance, prior to the initiation of patient recruitment.
This design feature ensures that the sequence of subjects to be random-
ized cannot influence the sequence of treatment assignments (Berger
and Christophi, 2003). In this sense, randomization has served its
purpose. We can say that randomization has contributed to the bal-
ancing of both measured and unmeasured covariates. Certainly, it has
done a better job of this than any deterministic design could (Moses,
1995). Is it possible, however, for the direction of the influence to be re-
versed? That is, can the sequence of treatment assignments influence
the sequence of subjects to be randomized?

At first, this notion seems preposterous. How can a treatment as-
signment alter the baseline characteristics (pre-randomization) of a
patient? However, we need to take a broader view of this potential in-
fluence than simply the influence of a given treatment assignment on
the corresponding patient. In fact, it is clear that once the patient is
selected to be randomized, there can be no influence of the treatment
allocation on that patient (at least not on any patient characteristics
prior to randomization). However, if it is known that the next allocation
will be to a given treatment group, then this advance knowledge may
lead to selective patient recruitment. This concern can be addressed,
of course, by determining each allocation only after the patient to be
enrolled is identified, as was suggested by Clarke (2002). But either the
allocation to be made or the patient to be enrolled has to be selected
first; whichever it is may influence the other.

The biases possible with randomization only after patient accrual
are at least as serious as the biases possible with advance randomiza-
tion, so the best approach seems to be to randomize first, and then
recruit the patients, but to try to do so in such a way that the influence
of the treatment assignments on the patients enrolled is minimized,
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or preferably eliminated. Berger and Christophi (2003) enumerated
some conditions under which this reverse influence can be completely
eliminated. For example, if the trial is performed in clones, all of whom
are identical in every way to each other, then there can be no prefer-
ential patient selection to any treatment group. If all eligible patients
must be enrolled, and can neither refuse consent (possibly after be-
ing discouraged by an investigator who was aware of the upcoming
treatment assignment) or denied enrollment, then there would be no
way for the treatment assignments to influence the patient selection
(although it could, of course, influence the patient evaluation after
enrollment).

In practice, however, both investigators and patients enjoy enroll-
ment discretion, and studies are not done in clones. Still, if the patients
to be randomized can be all assembled at once, prior to randomization,
and then randomized all at once, then there is no opportunity to act
on any advance knowledge. However, most trials are sequential, in the
sense of using staggered patient entry, and patients are randomized
as they are enrolled, often due to the need for immediate treatment
of the disease that qualified them for the trial in the first place. This
leaves one other hope for eliminating the influence of the treatment
assignments on the patient selection. If there is absolutely no advance
knowledge of upcoming allocations, then there is no opportunity to
preferentially select better responders into one treatment group or the
other. This is the idea behind allocation concealment (Schulz, 1995a,
1995b, 1996), which is essentially the masking (or concealing) of
each allocation just until it is executed. That is, if the allocation itself
reveals the nature of the treatment assigned, this would not constitute
a violation of allocation concealment, because it occurs only after the
patient to be allocated has already been selected.

1.8 ALLOCATION CONCEALMENT

Discussions of the imperfections of masking are quite relevant to the
evaluation of the success of allocation concealment. For example, in
a discussion of the distinction between a claim of masking and true
masking, Oxtoby et al. (1989) pointed out that ‘the presumption that
a plan to which one has aspired has come to fruition by virtue of
aspiration alone is not science, and is particularly inapposite for a
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profession which should have a reputation for making clear distinc-
tions between fantasy and reality’. Masking may be defined as ei-
ther the process (researchers not revealing treatment codes until the
database is locked) or the result (complete ignorance of all trial par-
ticipants as to which patients received which treatments until the
database is locked). Analogously, then, allocation concealment may
be defined as either the process (researchers not revealing treatment
codes until the patient is randomized) or the result (complete igno-
rance of all trial participants as to which patients received which treat-
ments until the patient is randomized). It is often said that masking is
possible only some of the time, while allocation concealment is always
possible. The reason for this sentiment is clear enough. It is hard to
imagine how to mask a trial comparing a surgery to a medical treat-
ment, for example. Yet allocation concealment would still be possible
even in this case, because the unmasking of each patient would occur
only after the allocation, and after the selection of the patient.

Of course, there are cases in which sham surgery is ethical, and
might cause the study to be as well masked as trials comparing a
medicine to a placebo (Jones et al., 2003). Yet even in cases in which
sham surgery is deemed unethical, there is still something troubling
about stating that masking is possible only some of the time, while
allocation concealment is always possible. Specifically, Berger and
Christophi (2003) noted that the process of masking is always pos-
sible, and pointed out that

this confusion of the two definitions is a double-standard. If masking is
possible only some of the time, then clearly reference is being made to the
result, and not the process. To be fair, then, one would have to ask if the
result of allocation concealment is always possible. Sealed envelopes have
been held to lights, phantom patients have been enrolled, and locked files
have been raided to determine upcoming treatment allocations in successful
subversions of allocation concealment (Schulz, 1995a) . . . so only the process
of allocation concealment, but not its result, can be ensured.

In future chapters, we will have more to say about the specific mech-
anisms by which allocation concealment can be subverted. For now,
we highlight the two key points, which are as follows. First, even in
trials labeled as ‘randomized’, randomization can be conducted with
or without error, or not at all. Second, even in trials that are prop-
erly randomized, without error or subversion, a lack of the result of
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allocation concealment can occur even when the trial claims alloca-
tion concealment (the process). Hence, baseline covariate imbalances
across treatment groups can by systematic even in such trials. We
call such systematic baseline covariate imbalances across treatment
groups selection bias, although the term ‘selection bias’ has come to
have many different meanings in different contexts (Mark, 1997).

Our interest in selection bias is confined to the type of selection bias
that interferes with internal validity, or a fair and unbiased compari-
son of the treatment groups. The mechanism for this type of selection
bias is most easily understood in the context of non-randomized de-
signs, and especially self-selection designs. It is commonly believed
that randomization by itself will eliminate this type of selection bias,
but in fact, as we have seen and will explore further in later chap-
ters, it does not. Moreover, such selection bias can occur even when
the randomization was performed successfully, and not subverted. Of
course, the randomization itself may be subverted too. For example,
as we have seen, randomization may occur only after patient selec-
tion, and this can degenerate into what essentially becomes a de facto
non-randomized trial.

1.9 RESIDUAL SELECTION BIAS

We refer to the selection bias that interferes with internal validity in
randomized trials with patient selection preceding randomization as
first-order residual selection bias, to distinguish it from its related form
that occurs in non-randomized studies. It may be tempting to believe
that simply performing the randomization in advance would elimi-
nate all such selection bias, but this is not true either, as future alloca-
tions may be predictable. We refer to the selection bias that interferes
with internal validity in advance randomized trials as second-order
residual selection bias. It may be tempting to believe that allocation
concealment would eliminate all such selection bias. Indeed, the ob-
jective of allocation concealment would eliminate all such selection
bias, but again, the claim of allocation concealment refers to the pro-
cess, and this is not sufficient to ensure that allocation concealment
has achieved its objective. We refer to the selection bias that inter-
feres with internal validity in advance randomized trials with imper-
fect or unsuccessful (subverted) allocation concealment as third-order
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residual selection bias. This will be the type of selection bias with which
we are most concerned, as it is the only one that does not have a simple
countermeasure that is generally known and utilized.

In Chapter 2 we will discuss, in greater detail, the mechanisms by
which selection bias may occur even in properly randomized trials, at
least as we define the term ‘properly randomized’. In Chapter 3 we will
provide some evidence that this type of selection bias actually occurs,
and is not merely a hypothetical concern. In Chapter 4 we will discuss
the impact one can expect selection bias to have on the results of trials.
In Chapter 5 we will discuss measures (beyond randomization) that
can be taken to prevent selection bias. In Chapter 6 we will discuss
methods by which selection bias can be detected, or hopefully ruled
out, from any given randomized trial. In Chapter 7 we will discuss
methods that can be used to adjust for selection bias, in case it is found
but useful between-group comparisons need to be salvaged anyway.
In Chapter 8 we will summarize the overall recommendations for
managing selection bias in randomized trials.
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2

Susceptibility
of Randomized Trials

to Subversion and
Selection Bias

It is widely believed that baseline imbalances in randomized clinical
trials must necessarily be random. In fact, there is a vast literature
(see, for example, Senn, 1994) which indicates that because baseline
imbalances in randomized clinical trials must necessarily be random,
hypothesis testing for baseline imbalance is illogical in randomized
trials. The argument is that any hypothesis test would be testing for
balance in the population of all possible randomizations which could
have occurred. By virtue of the random allocation of subjects to treat-
ment groups, this is necessarily true. Thus, any time this null hypoth-
esis is rejected we know that we have a Type I error. This argument
would of course be compelling if all observed baseline imbalances in
the context of randomized trials were necessarily random. But is this
actually the case? That is, are there mechanisms by which patients
with specific covariates may be selected for inclusion into a particular
treatment group even among randomized trials? Schulz (1995a) and
Torgerson and Roberts (1999) argue that in fact systematic base-
line imbalances (selection bias) can occur in randomized trials. If
this is true, then this selection bias would force imbalance in those
covariates, measured or unmeasured, that are used for the patient
selection.

Selection Bias and Covariate Imbalances in Randomized Clinical Trials V. W. Berger
C© 2005 John Wiley & Sons, Ltd.
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Clearly, the imbalance would not be random, because it would oc-
cur again if the trial were repeated under the same conditions. We
will find that selection bias is possible not only in randomized trials,
but in fact also in masked randomized trials conducted with alloca-
tion concealment. This being the case, the view that one ought not
to test formally for baseline imbalance in randomized trials confuses
the sufficiency of randomization to eliminate systematic imbalances
with necessity. That is, randomization may be necessary to ensure
that any observed baseline imbalances are random, but it certainly
is not sufficient, as selection bias can occur even in randomized tri-
als. While not generally cast specifically as a test of this type of se-
lection bias in randomized trials, tests of baseline imbalances do,
in fact, constitute tests for selection bias, although they are crude
ones.

2.1 CAN RANDOMIZED TRIALS BE SUBVERTED?

The term ‘selection bias’ has been used to describe many different
biases (Mark, 1997). To focus ideas, we confine our attention to the
types of selection bias that interfere with internal validity (a fair com-
parison); that is, we do not consider external validity. Groups of pa-
tients to be compared may differ in important ways even before any
intervention is applied (Prorok et al., 1981). These baseline imbal-
ances cannot be attributed to the interventions, but they can inter-
fere with and overwhelm the comparison of the interventions (Green
and Byar, 1984). If treatments are independent of patient character-
istics, then any baseline imbalances (even if statistically significant)
are due to chance variation only. This is one reason often cited for
using randomization. On the other hand, a systematic explanation
for the imbalances, known or unknown, would constitute selection
bias, even if the imbalances are not statistically significant, or even
readily observed (Berger and Exner, 1999). Berger and Christophi
(2003) present a sequence of mechanisms by which selection bias may
occur, starting with observational studies, and such countermea-
sures as randomization, allocation concealment, and masking (see
Table 2.1). While we focus only on randomized trials here, the consid-
eration of the mechanism for selection bias in observational studies
can still be instructive.
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Table 2.1 Selection Bias with Randomization and Allocation
Concealment reproduced from Journal of Modern Applied Statistical
Methods, 2003, Vol. 2, No. 1, p. 85

{(A C C A); (C C A A)} {(A C A C); (C A A C)}
S P{active} Range* P{active} Randomized P{active} Randomized

S1 [0.50,1.00] 0.50 Active 0.50 Active
S2 [0.00,0.33] 0.33 Control 0.33 Control
S3 [1.00,1.00] 0.50 – 0.50 –
S4 [0.00,0.50] 0.50 Control 0.50 Active
S5 [0.50,1.00] 1.00 Active 0.00 –
S6 [0.00,0.50] 0.50 Control 0.00 Control
S7 [0.00,0.50] 0.67 – 0.50 Control
S8 [0.67,1.00] 0.67 Control 0.67 Active
S9 [0.67,1.00] 1.00 Active 0.50 –
S10 [0.00,0.50] 1.00 – 0.50 Active
S11 [0.33.0.67] 1.00 – 0.00 –
S12 [0.00,1.00] 1.00 Active 0.00 Control

*The range of P{active} values for which the patient gets randomized. P{active}
computed according to the formula of Berger and Exner [3] using the randomized
block procedure with a fixed block size of four. Not only does treatment assignment for
randomized patients depend upon the allocation sequence, but in fact Patients #S5,
#S7, #S9, and #S10 may or may not be randomized depending on the allocation
sequence, and Patient #S3 cannot get the control.

In observational studies, investigators may (and, in clinical prac-
tice, do) assign treatments based on patient characteristics (Green
and Byar, 1984; Rubin, 1977). Among over-the-counter treatments,
patients may (and generally do) select their own treatment. With con-
sumer randomization (Bird, 2001), patients select not their treatment
per se but rather their randomization probability, at least from among
a given set of choices. We see that allocation discretion, or the ability to
select a treatment, may be available to the patient, to the investigator,
or to both the patient and the investigator. For example, if an antibiotic
is available only with a prescription, and a physician is reluctant to
prescribe it based on the belief that the symptoms reflect a viral in-
fection, but the patient insists, then a negotiation would likely ensue,
and both parties would exercise some degree of allocation discretion.

Clearly, those patients selecting one treatment (or probability of
receiving a given treatment) may differ systematically from those
selecting another (Green and Byar, 1984). One countermeasure to
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prevent patient characteristics from influencing the allocation se-
quence, through either overt treatment assignment based on patient
characteristics or self-selection, is dictated allocation, which essen-
tially is the lack of freedom of choice. That is, a treatment is assigned,
randomly or otherwise, independent of any patient characteristics (in-
cluding specific treatment preferences). This dictated allocation is not
inherent in randomized trials, but in practice it is one of the corner-
stones of randomization as implemented. If allocation is alternated,
for example, then either all patients with even accession numbers or
all patients with odd accession numbers receive the active or exper-
imental treatment (E). The others receive the control (C). This non-
randomized allocation procedure (which is often incorrectly referred
to as randomized; see Berger and Bears, 2003) is one form of dictated
allocation, and so it would prevent the type of selection bias considered
above. But would it prevent all selection bias?

In fact, this step does not even eliminate all self-selection bias, be-
cause many randomized trials are conducted in various medical cen-
ters (clinics). When this is the case, it is typical to stratify the allocation
by center, meaning that each center has its own independent alloca-
tion sequence. Sometimes, there is more than one center in a given
metropolitan area. When this is the case, and the trial is unmasked,
it is possible for a patient to receive the control treatment (or, more
generally, any treatment other than the one he or she prefers), drop
out of the trial, and then enter the trial again at a different center,
in hopes of receiving the preferred treatment. In fact, this has been
known to occur (Brauer, 2004).

Another threat to the sanctity of randomization arises because of
mistakes that may occur. See, for example, the COMET Study Group
(2001). A third potential problem involves limited quantities of drug
at the centers that enroll patients. McEntegart (2003) points out that
when supplies of one treatment, but not all treatments, are out of
stock there are three options that can be used. First, the randomiza-
tion can be halted. That is, recruitment can be stopped until there
are adequate supplies of all treatments. Second, recruitment can pro-
ceed until a patient is randomized to the treatment which needs to
be ordered, at which point it stops. Third, randomization can con-
tinue, and when a patient is randomized to a treatment that needs to
be ordered, a switch is made to the next accession number that cor-
responds to a treatment that is in stock (which is called ‘forcing’).
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Depending on how this situation is handled, there could be the
potential for unmasking and selection bias. While the selection bias
arising due to either limited stock of some treatments or patients en-
rolling at more than one center in hopes of obtaining their preferred
treatment is a fairly serious problem, we focus instead on selection bias
in randomized trials caused by investigator (not sponsor or patient)
actions.

Typically, accrual in prospective medical studies is sequential,
meaning that the patients do not enter the study at the same time.
There is also generally enrollment discretion (Chalmers, 1990), which
allows an investigator to deny enrollment to certain patients at his or
her discretion. Penston (2003, page 68) listed the exclusion criteria of
five major trials, and emphasized how imprecise they were. These ex-
clusion criteria included ‘serious organic or psychiatric disease’ for the
ASSET and LATE Trials, ‘some other life-threatening disease’ for the
ISIS-2 Trial, ‘not specified by the protocol but by the responsible physi-
cian’ for the ISIS-3 Trial, and ‘any other disorder that the investigator
judged would place the patient at increased risk’ for the ASSENT-2
Trial. Clearly, then, discretion exists, as it is not the case that every
potential allocation decision is to be made according to some objective
and explicit criterion in the protocol.

The combination of sequential accrual and enrollment discretion
lays the foundation for selection bias, but of a different type from that
considered previously. If there is advance knowledge of the upcoming
treatment, then it would be possible for an investigator to deny enroll-
ment to patients lacking the characteristics that would make them
‘suitable’ to receive this known upcoming treatment (Schulz, 1995a;
Schulz and Grimes, 2002a). The sequential accrual contributes to the
likelihood of advance knowledge of the allocation sequence, as we will
see. Because two of the conditions (sequential accrual and enrollment
discretion) that enable this type of selection bias cannot be modified
in most trials, it is the third condition, the predictable allocation se-
quence (Schulz and Grimes, 2002b), that needs to be kept in check
to prevent this form of selection bias. Does randomization accomplish
this objective, either by itself or in conjunction with masking and/or
allocation concealment?

Recall that randomization is not one specific method by which al-
location takes place. Rather, it refers to a collection of many different
methods. For our purposes, an allocation procedure is randomized if



JWBK019-02 JWBK019-Berger March 30, 2005 8:54 Char Count= 0

22 Susceptibility to subversion and selection bias

each accession number has the same probability of being matched to
any given treatment. Three points are worth mentioning. First, this
definition is overly restrictive, in that designs in which the allocation
proportions vary over the course of the trial may still be randomized,
but we will not consider these designs here. Second, what is com-
mon is the probability of a given treatment allocation as the accession
numbers vary. There is no requirement that for any given accession
number each treatment be equally likely. Third, the common proba-
bilities are unconditional. Once we condition on what has occurred so
far in the trial, there is no requirement that any of these probabilities
be common.

One form of randomization is urn randomization (Wei and Lachin,
1988), which is conducted by tossing a (possibly biased) coin each time
a patient is to be allocated. Heads indicates that the experimental treat-
ment is to be received, and tails indicates that the control treatment is
to be received, or vice versa. With urn randomization, there is no ac-
tual allocation discretion, yet having screened and evaluated a given
patient, the investigator might exercise de facto allocation discretion
to reject the toss and repeat until the preferred allocation is observed.
Clearly, this would constitute both a subversion of the randomization
and selection bias. So the answer to the question that defines this
section is an emphatic yes. Randomization by itself can be subverted.

2.2 IF RANDOMIZED TRIALS ARE
SUBVERTED, DO THEY CEASE
TO BE RANDOMIZED TRIALS?

In the previous section we saw that selection bias may occur even in a
randomized trial if the randomization is based on urns. But the mecha-
nism for subverting the randomization actually constitutes a negation
of this randomization process itself. That is, the randomization is what
is broken, in that it is no longer the case that each accession number
has the same probability of being matched to a given treatment. As
such, one may prefer not to call this a randomized trial. More gen-
erally, it may seem that if any subversion occurs in any randomized
trial, based on urns or not, then the trial was not truly randomized.
This statement implies that randomization confers absolute protec-
tion against any subversion, so that any covariate imbalances must
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be random. But now consider another mechanism for selection bias
in a randomized trial with dictated allocation.

With minimization, or dynamic randomization (Pocock and Simon,
1975), the allocation is determined by minimizing an imbalance func-
tion, and randomization may be used to break the ties. So there is both
dictated allocation and randomization. Yet because most allocations
will be deterministic, it would be possible to determine the allocation
to be made once a patient has been identified. A patient enrollment
decision may then be based on a combination of the treatment to be
assigned and values of observed covariates that were not used to define
the imbalance function. Clearly, selection bias is possible here, too, yet
this would remain a randomized trial.

We do not concern ourselves further with minimization, but note
that even with more common methods of randomization, such as ran-
domized blocks, selection bias is possible without the randomization
itself being the root of the problem. The distinction is not mere se-
mantics. To develop this distinction, we follow Berger and Christophi
(2003) and consider randomization to be conventional if the allocation
sequence is generated in advance of screening any patients, and un-
conventional otherwise. Clearly, conventional randomization prevents
many types of selection bias. But again, selection bias may result from
enrollment discretion and advance knowledge of the allocation se-
quence; the latter may be facilitated by conventional randomization,
as the allocation sequence may be posted publicly before patients are
screened (Schulz and Grimes, 2002a). In such a case, the randomiza-
tionitselfhasnot failed,becauseitcorrectly(intheabsenceofanyother
subversions) assigns accession numbers (hence enrolled patients)
to treatment groups based on the prospective allocation sequence
according to the definition in Chapter 1.

That is,priorto identifyingthepatienttoassumetheroleofpatient1,
and the patient to assume the role of patient 2, and so on, patient 1
has a given probability of receiving the experimental treatment. This
probability is known, and is determined by the randomization pro-
cedure. Patient 2, and every other patient, has the same probability
of receiving the experimental treatment. But these probabilities are
unconditional, and apply only up to the point when the patients who
will assume the accession numbers become identified. If there is no
systematic association between accession numbers and patient char-
acteristics, then by randomization the accession numbers in any one
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treatment group would constitute a random sample of all the accession
numbers that were used, and so any function of the accession num-
bers will be truly equally distributed across the treatment groups. For
example, the mean accession number within treatment groups will
differ across treatment groups only by chance alone. This sounds very
much like the argument proposed at the beginning of this chapter,
regarding any baseline characteristic being truly equally distributed
across the treatment groups. Indeed, were patients matched or linked
to accession numbers prior to the accession numbers being randomly
allocatedtothetreatmentgroups, thenthiswouldbeavalidargument.
But this extension breaks down upon scrutiny in sequential trials.

The problem, as illustrated in Table 2.1 of Berger and Christophi
(2003), is in the matching of eligible patients to accession numbers,
which can be accomplished through strategic selection or rejection
of patients based on a combination of the upcoming treatment to be
assigned and specific patient characteristics. One could imagine, for
example, randomly picking two of the first four accession numbers
to be called group A, and the other two being called group B. But
if one then forces women to occupy the randomly chosen accession
numbers corresponding to group A, and forces men to occupy the
randomly chosen accession numbers corresponding to group B, then
the gender compositions will certainly differ across groups, and this
difference will certainly not be random. While the accession numbers
of group A would truly be a random sample of all used accession
numbers, the genders of group A would not be a random sample of
the genders. Herein lies the basis for baseline testing in randomized
trials. While randomized trials, if properly randomized, guarantee that
the accession numbers in any one treatment arm constitute a random
sample of all the used accession numbers, this does not imply that the
distribution of any given patient characteristic within one treatment
group is a random sample of that same patient characteristic over all
patients randomized. Moreover, it is this latter hypothesis, concerning
the proper randomization of a given patient characteristic, and not
the former one concerning accession numbers, that forms the null
hypothesis for a baseline test of imbalance.

A countermeasure to eliminate the advance knowledge of upcom-
ing allocations that leads to this type of selection bias is that each
allocation be determined only after the patient to be enrolled is identi-
fied (Clarke, 2002), as occurs with minimization (Pocock and Simon,
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1975). The fundamental problem, however, is that either the alloca-
tion to be made or the patient to be enrolled has to be selected first;
whichever it is may influence the other, and the biases possible with
unconventional randomization are at least as serious as the biases
possible with conventional randomization. The bottom line is that se-
lection bias may occur even in properly randomized trials. We will
discuss this type of selection bias further, in relation to masking and
allocation concealment, in the next sections.

2.3 WHAT IS MASKING?

The mechanism we provided for selection bias in a properly random-
ized trial is a little removed from actual practice, as it is a clear violation
of masking. If such a fictitious example were needed to make the point,
then there would not be much to talk about. However, further insight
into masking and allocation concealment (to be discussed in the next
section) reveals that the problem may well persist even when these
measures are used. In a discussion of the distinction between a claim
of masking and true masking, Oxtoby et al. (1989) pointed out that
‘the presumption that a plan to which one has aspired has come to
fruition by virtue of aspiration alone is not science, and is particularly
inapposite for a profession which should have a reputation for making
clear distinctions between fantasy and reality’. This profound remark
highlights the distinction between an action and its effect. Bearing in
mind the fact that the effect of an action may differ from its objective,
it would not be technically correct to state that the dishes are clean
just because they were washed. It would be more correct to state that
an action was taken specifically to ensure that the dishes are clean,
but without checking the success of the action, we would remain in
doubt as to whether or not the objective was attained. Likewise, one
can vaccinate a child against influenza, but this is distinct from stating
that this child will not contract influenza. The same considerations
apply to masking (Fergusson et al., 2004a).

Masking may be defined as either a process (researchers not re-
vealing treatment codes until the database is locked) or as a result
(complete ignorance of all trial participants as to which patients re-
ceived which treatments). The objective of masking is the result of
complete ignorance, but a masking claim can indicate only that the
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process was used. The use of this masking process may help to ensure
the ignorance of some parties with regard to treatment allocations,
but is unlikely to ensure the desired state of complete ignorance of
all parties. As the legal term ‘inevitable discovery’ suggests, knowl-
edge transfers by various mechanisms (Berger and Christophi, 2003).
There are many mechanisms by which a trial planned as masked, and
referred to in subsequent reports as masked, may become unmasked,
either partially or completely (Carroll et al., 1994). This includes in-
tentional unmasking for safety reasons, distinguishing features of the
treatments, and the detection of similarity to or difference from a
treatment known to have been administered during a single-masked
pre-randomization run-in period.

Mitchell (1981) pointed out that ‘a truly double-blind study can-
not be carried out with beta-blockers. Doctors only have to count
a patient’s pulse, measure his blood pressure, and ask him whether
his hands are cold to make a very shrewd guess about his treatment
group.’ More recently, Martin et al. (2003) point out that ‘Depending
on the way in which the sham is delivered, the physical sensation
experienced can differ when receiving sham and active treatment,
effectively unblinding the patient’.

Penston (2003, page 40) adds ‘blinding may simply be impossible:
this is most obviously the case with surgical procedures but also applies
to many other types of treatment including, for instance, orthopaedic
traction, physiotherapy, and psychotherapy. And, even when it is suit-
able, the double-blind technique may fail to conceal the treatment
from patients or investigators. Physiological effects of drugs may in-
form the investigators of the treatment, for example, bradycardia with
beta-blockers or tremor with salbutamol. If a drug has well-recognised
and obvious adverse reactions – for example, the extra-pyramidal
side-effects of phenothiazines or the facial changes associated with
prednisolone – then the occurrence of these problems discloses the
presence of the drug. There are also incidental features of certain drugs
that signal their use – the orange colour of the urine of patients receiv-
ing rifampicin and the black discolouration of the stools in those tak-
ing iron or bismuth compounds being obvious examples. Finally, the
double-blind process is susceptible to fraud: details of the actual treat-
ment received by individual patients may be obtained by tampering
with envelopes or breaking the randomization codes, as well as testing
tablets obtained while assessing compliance during follow-up visits.’
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A cynical view, but one that is hard to refute, is that while an un-
masked trial is what it is understood to be – each allocation is known
once it is made – a masked trial differs from an unmasked trial only
quantitatively. That is, a masked trial can be characterized by the num-
ber of unmasked allocations, and the timing of the unmasking of each
of these allocations, being unknown. Unfortunately, the common us-
age of the term suggests, to the contrary, that there is no unmasking
at all in trials labeled as ‘masked’.

2.4 WHAT IS ALLOCATION CONCEALMENT?

Allocation concealment was described in Chapter 1, but there is still a
benefit to discussing it in greater detail. We do so now. Unconventional
randomization may not be able to eliminate advance knowledge of pa-
tient characteristics, but one might hope to eliminate advance knowl-
edge of the allocation sequence with a combination of conventional
randomization and allocation concealment, which is often taken to
mean precisely this lack of advance knowledge. Technically, alloca-
tion concealment (Schulz, 1995a, 1995b, 1996) is essentially the
masking of each allocation just until it is executed. At first glance,
allocation concealment seems to be quite similar to masking, and the
two may be confused in practice. The key distinction is the timing of the
unmasking. With masking, the unmasking should occur subsequent
to the finalization of the database, after all measurements have been
recorded and checked. Allocation concealment is less restrictive, as it
requires masking only until the patient to be allocated is selected, and
then allocated to the appropriate treatment group (that is, only until
the patient is matched to the accession number); certainly there is
no requirement that the masking extend into the post-randomization
measurement phase. Allocation concealment appears, on the sur-
face, to be the answer to our prayers. Not only would it eliminate the
possibility of the type of selection bias we described by eliminating
advance knowledge of upcoming allocations, but it also appears to
be a step that one can take in practice. That is, masking is often said
to be possible only some of the time, while allocation concealment
is always possible (Schulz, 1995a, 1995b, 1996). We will examine
this statement carefully in the next section, and conclude that it is
false.
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2.5 A DOUBLE STANDARD

Consider more carefully the statement that masking is possible only
some of the time, while allocation concealment is always possible. For
example, Schulz (1995a) states that: ‘Allocation concealment should
not be confused with blinding. Allocation concealment seeks to pre-
vent selection bias, protects the assignment sequence before and until
allocation, and can always be successfully implemented. In contrast,
blinding seeks to prevent ascertainment bias, protects the sequence
after allocation, and cannot always be implemented’. The classical
example of a trial that cannot be masked is a surgical trial, although
care is required in this regard. McCulloch et al. (2002) distinguished
three types of surgical trial, with Type I comparing medical treat-
ments in surgical patients. These are not the trials that are generally
claimed to be impossible to mask. Type 2 trials compare surgical tech-
niques, and Type 3 trials compare a surgical technique to a medical or
other non-surgical technique. These are the trials at the heart of the
claim that masking is possible only some of the time. But is this claim
legitimate?

If masking is possible only some of the time, then clearly reference is
being made to the result of masking, and not the process of masking.
After all, it is always possible to mask the trial if by this we mean only
that the researchers do not intentionally reveal the allocations to the
investigators or the patients. That is, the process of masking is always
possible. And it is true that the process of allocation concealment is also
always possible. But for a fair comparison, one would have to ask if the
result of allocation concealment is always possible. Sealed envelopes
have been held to lights, phantom patients have been enrolled, and
locked files have been raided to determine upcoming treatment allo-
cations in successful subversions of allocation concealment (Schulz,
1995a). Also, it may be clear what a given patient would receive, if en-
rolled, if cluster randomization (Jordhoy et al., 2002) or minimization
(Pocock and Simon, 1975) is used. Drug bottle numbers can also lead
to prediction (Kuznetsova, 2002). It is not possible to enumerate, and
rule out, all the mechanisms by which allocations can be observed.
We are not prepared to take the success of allocation concealment on
faith in an actual trial, so only the process of allocation concealment,
but not its result, can be ensured.
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We see that the process of masking is always possible, the process
of allocation concealment is always possible, the results of masking
are not always possible, and the results of allocation concealment are
not always possible. It would seem, then, to be a double standard to
take the more rigid definition of masking and the less rigid definition
of allocation concealment and conclude that allocation concealment
is always possible while masking is not. Yet we will intentionally step
right into this trap, and proceed as if masking cannot be completely
reliable in practice, but allocation concealment is. We do so for the
purpose of this chapter to demonstrate that even in this unrealistically
optimistic case, subversion is still possible.

2.6 WHAT IF ALLOCATION CONCEALMENT
COULD BE ENSURED?

We saw, in the previous section, that the process of masking is always
possible, the process of allocation concealment is always possible, the
results of masking are not always possible, and the results of allocation
concealment are not always possible. Yet from this point on we assume,
quite unrealistically, that no allocations can be observed prior to being
executed. Does this mean that they cannot be predicted, perfectly or
imperfectly? Consider that allocation proportions may be changed
during the conduct of the study. Sometimes this occurs inadvertently
(see Lippman et al., 2001), but more often the change will be planned.
For example, in a randomized depression study of nurse telehealth care
(Hunkeler et al., 2000), the initial 40:60 randomization to two groups
later became 40:20 to those same two groups, with the remaining
40% allocated to a new third group. Knowing that more late patients
than early patients would be allocated to the third group constitutes
advance knowledge of the allocations which, though imperfect, allows
for deferred enrollment (Schulz, 1996) of those subjects most ‘suitable’
for the third group until after the new proportions took effect.

In the majority of randomized trials, the allocation proportions
remain fixed throughout the duration of the trial. Would this, in con-
junction with allocation concealment, eliminate selection bias? Ran-
domization is unrestricted (Schulz and Grimes, 2002b) if a patient’s
likelihood of receiving either treatment is independent of all previous
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allocations, otherwise it is restricted (ter Riet and Kessels, 1995). For
example, the random allocation rule (Schulz and Grimes, 2002b) re-
quires that both treatment groups be assigned equally often. This is
one form of restricted randomization, as the final allocation would
be determined by the prior ones. Even with allocation concealment
and fixed allocation proportions, patterns created by restrictions on
the randomization allow prediction of the allocation sequence. Berger
and Exner (1999) quantified this extent of advance knowledge with
the conditional probability, P{E}, of a given patient being allocated
to the experimental group given the previous allocations. With 1:1
allocation, P{E} = 0.5 for the first patient; with alternation, P{E} is
always either 0 or 1. Note that P{E} reflects the restrictions on the
allocation sequences, and becomes a patient characteristic only after
that patient is randomized.

With enrollment discretion, P{E}may be used, in conjunction with
the estimated potential outcomes of each patient to each treatment,
say Y = {Y(E),Y(C)} for the active and control treatments, respec-
tively, as a basis for enrollment decisions. Any baseline characteristic,
including gender, age, race, and pre-existing medical conditions, may
be considered in deriving the value of Y for a given patient. Based
on Y, the investigator might select a range of P{E} values for which
the patient would be enrolled. If the P{E} value at the time this pa-
tient is screened happens to fall outside of this patient’s P{E} range,
then the patient will be denied enrollment, and another patient will
be screened. Only when a patient is found with a P{E} range to match
the actual P{E} value will the patient be enrolled. Selection bias oc-
curs if the P{E} range is restricted based on Y. It would be possible, for
example, to enroll patients only if P{E} and Y are both large (suppose
that larger Y values indicate better responses) or both small, but not
if they are discordant (Schulz, 1995a). This possibility is depicted in
Table 2.2 of Berger and Christophi (2003), using randomized blocks
of size 4 to calculate P{E} (Berger and Exner, 1999). Figure 2.1 also
demonstrates how this mechanism for selection bias works, in the
case of blocks of size 2. Panel A shows the flow of patients where there
is neither selection bias nor any random imbalance. This is the ideal
situation in which there is perfect balance, both in each P{E} group
and in each treatment group. Panel B shows a random imbalance,
in which by chance more females end up in the P{E} = 0.0 group
and more males end up in the P{E} = 1.0 group. This imbalance is
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retained in the ultimate treatment groups, so the active group has
more males than the control group does. Panel C shows a complete
lack of any allocation concealment, so that the upcoming allocations
need not be predicted – they can be directly observed no matter what
the value of P{E}. In this rather extreme case, the entire control group
is male and the entire active group is female. Finally, Panel D shows
the case in which allocation concealment is imperfect, so that upcom-
ing allocations cannot be observed, but can be predicted based on the
P{E} values. Here the imbalance is severe, 75% females in the active
group and 25% females in the control group, but not as severe as it
was in the case of no allocation concealment at all. This flow diagram
is useful for studying the cause of baseline imbalances (random or
selection bias).

Atthispointthereadermaywonderifsuchascenariois likely. Infact,
the reader would be commended for applying the same scrutiny to this
material that this very material asks the reader to apply to the results
of randomized trials. But note that at this point, all we set out to do was
to establish the theoretical possibility that subversion is possible even
in properly randomized trials. There has been no effort, to this point, to
comment on the likelihood of this occurring in actual trials. Chapter 3
will present a case that it is, in fact, fairly likely that some randomized
trials are subverted through the mechanism presented in this chapter.
At that point, the reader may still question if such subversion would
have any impact of the conclusions of trials. Chapter 4 will address the
impact of selection bias of the results of randomized trials. A critical
reader may still ask why we should discuss all of this if nothing can be
done about it. The remaining chapters of the book will fill this void,
and provide specific measures that can be used to prevent the problem,
detect it when it is there, and correct for it when it is found.
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3

Evidence of Selection Bias
in Randomized Trials

Those looking for a smoking gun may find themselves disappointed
with this chapter, and more generally, disappointed with the lack of
solid evidence that selection bias exists in randomized trials. Consider,
however, where the burden of proof lies. Generally, it is impossible to
prove a negative, or the lack of existence of something. It is common,
then, to initialize a belief (in the absence of any evidence one way or
the other) to the negative, or null hypothesis, and then to be prepared
to revise this belief in light of evidence that can disprove it. This is
why new treatments need to have their efficacy demonstrated, rather
than presumed based on a lack of evidence of ineffectiveness. That
the burden of proof be placed on those who would claim the existence
of any entity is generally appropriate, and specifically is appropriate
when the proof of existence is easier than the proof of absence. But does
this argument extend naturally to debate regarding the existence of
selection bias in randomized trials? In fact it does not, for reasons to
be articulated in this chapter. While the evidence in favor of selection
bias in randomized trials may be scant, it will be argued that this evi-
dence is quite strong when compared to either 1) what it could be given
the forces conspiring against its detection or 2) the evidence of a lack
of selection bias in randomized trials. It will be argued also that this
scant evidence of the existence of selection bias is even stronger when
compared to how much evidence would be required to adequately
demonstrate that selection bias did not contribute to apparently posi-
tive findings in randomized trials, when considering where the burden
of proof lies.

Selection Bias and Covariate Imbalances in Randomized Clinical Trials V. W. Berger
C© 2005 John Wiley & Sons, Ltd.
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3.1 THE BURDEN OF PROOF REGARDING
THE EXISTENCE OF SELECTION BIAS
IN RANDOMIZED TRIALS

Even claims by impartial parties with nothing to gain by having others
believe this claim can legitimately be challenged. It is even more legit-
imate, then, to challenge claims of interested parties. As Feigenbaum
and Levy (1996) point out,

The pursuit of fortune leads to glaring instances where a researcher may be
particularly predisposed to a preferred research outcome. Consider the case of
clinical trials of an experimental drug produced by the same pharmaceutical
company funding the researcher.

A claim can be further distinguished not only by whether or not the
claimant has an interest in having others believe it but also by whether
or not the claimant had substantial choice in important aspects of the
design, conduct, analysis, and interpretation of the experiment. In a
context having nothing to do with selection bias or clinical research,
McKay et al. (1999) pointed out that when such choice is available,

It is valid to raise the question of whether this lack of tightness in the design of
the experiment is at the heart of the result. In precise terms, we ask two ques-
tions. Was there enough freedom available in the conduct of the experiment
that a small significance level could have been obtained merely by exploiting
it? Is there any evidence for that exploitation?

While McKay et al. (1999) considered quite different claims, we con-
sider claims of treatment effects in randomized trials, and ask roughly
the same questions. That is, we ask if claims of treatment effects in ran-
domized trials can be taken at face value given the current evidence
both for and against selection bias. As stated earlier, it is generally im-
possible to prove a negative, so it is common to initialize a belief to the
negative, and hence new treatments need to have their efficacy demon-
strated. Likewise, somebody trying to provide a convincing argument
regarding the existence of selection bias would have the burden of
proof to establish this existence. In a perfect world, the information
required to detect selection bias and to quantify its effect in any given
trial would be available to all researchers with an interest in testing
these hypotheses. However, the reality is that the information required
to detect selection bias and to quantify its effect is rarely available from
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publications (Berger and Weinstein, 2004). Specifically, such key in-
formation is generally unavailable to any party other than the sponsor
of the trial who ‘owns’ the raw data. Only this sponsor, then, is in a
position to definitively test for the presence or absence of selection bias.

Nance (1998) points out that ‘an adverse inference against a party
properly arises only if the missing evidence could be presented at rea-
sonable cost by that party’. The Berger–Exner test of selection bias is
not costly to conduct, given the availability of the complete data with
which to perform it (one caveat being the different choices one could
use for P{E} when the trial is planned as masked or when block sizes
are varied). What, then, is to be made of the fact that the Berger–
Exner test of selection bias is not presented in a given trial? In general,
a sponsor may be inclined to divulge the results of analyses only if these
results support the hypothesis of true superiority. In particular, then,
a sponsor may wish to present the results of the Berger–Exner test only
if it supports the claim of no selection bias. This last sentence would
suggest that the Berger–Exner test is always performed, but presented
selectively. In fact, this is probably not the case. In a climate in which
the results of analyses are accepted at face value without even having
to worry about alternative explanations, including selection bias, it
is more likely that failure to present the Berger–Exner test represents
failure to conduct it. After all, the perspective of a sponsor might be
that no good can come out of looking for selection bias.

If selection bias is found, then this would throw into question any
claims of true superiority of the treatment under study. On the other
hand, even not finding selection bias after looking for it, and reporting
this negative finding, could have an adverse impact on future clini-
cal findings. Such a negative finding would not throw into question
claims of true superiority of the treatment presently under study, but
it would set a precedent to be followed. That is, if a sponsor were to
repeatedly test for selection bias and report that none was found, and
then suddenly find selection bias in a given trial and not report any-
thing at all about selection bias for that trial, then this would raise
suspicions too. Hence, there is little incentive for a sponsor to agree to
subject trial data to rigorous tests of selection bias.

Still, a sponsor who claims a lack of selection bias for a given trial
has the data with which to prove the assertion and remove all doubt.
Anybody else who expresses uncertainty will necessarily remain in
uncertainty until the sponsor decides to reveal the results of these
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tests of selection bias. As such, we feel that the ability of the sponsor
to test for selection bias, coupled with the inability of any other party
to do so, shifts the burden of proof towards the sponsor, who must
prove that there is no selection bias in a given trial. Yet this is not the
only issue to consider in determining where the burden of proof lies.
Nance (1998) also states that ‘The now conventional understanding
of the burden of proof is that the level or weight of the burden of per-
suasion is determined by the expected utilities associated with correct
and incorrect alternative decisions’. It is unclear if a Type I error is
always more or always less serious than a Type II error. That is, finding
superiority when apparent superiority is an artifact created by selec-
tion bias may, in any given circumstance, be deemed more serious or
less serious than dismissing true superiority because of a false belief
that selection bias was at play.

Because of this uncertainty, it is unclear who would hold the burden
of proof in an argument between a sponsor claiming true superiority
and a critic claiming nothing but selection bias. Yet these are not
the only positions to argue. Apparent superiority of one treatment
over another may be attributable to true superiority, selection bias,
something else (including other biases), or a combination of the three.
It would be appropriate to scrutinize a claim that one, and only one, of
these causes is at play, regardless of which cause constitutes the claim.
However, uncertainty regarding the cause or causes is the default
position, and so this ‘lack of a claim’ probably constitutes a reasonable
default position. The burden of proof falls, then, on whoever would
claim that there is certainty, regardless of what that certainty may be.

Such a claim (of certainty) is implicit in a conclusion that one treat-
ment is superior to another, because such a claim implicitly rules out
causes other than that the true superiority claimed is the unique cause
of the apparent superiority. Again, we acknowledge that a claim of an
alternate certainty might require the same burden of proof as the claim
of true superiority of a treatment. However, the claim that ‘the true
superiority claim has not been met’ is a weaker claim that can be made
with less than a rigid proof of an alternate certainty. It is likely that
there would be broad agreement regarding how to interpret clear and
convincing evidence of either selection bias or the absence thereof.
What remains is the interpretation of the case in which the evidence
is not compelling in either direction. The purpose of this chapter is
to fulfill the burden of proving not that selection bias is the exclusive
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cause of apparent treatment effects, but rather that the claims of true
superiority being the exclusive cause of apparent treatment effects are
premature. As Bailenson and Rips (1996) point out, ‘Once one side
has fulfilled its burden by presenting convincing evidence, the burden
will transfer to the other side of the debate, forcing that side to pro-
duce its own evidence or face the prospect of losing the controversy’.
So consider, then, an argument between a sponsor claiming true
superiority and a critic claiming that true superiority has not been
proven, possibly because of the selection bias that the sponsor, in a
unique position to do so, did not rule out. In light of the general ev-
idence to be presented in this chapter, it seems rather clear that the
burden of proof will transfer to sponsors to offer stronger arguments
in support of claims of true superiority.

3.2 INDIRECT POPULATION-LEVEL EVIDENCE
THAT SELECTION BIAS EXISTS IN
RANDOMIZED TRIALS

Feigenbaum and Levy (1996) noted that, ‘Given the asymmetrically
high sanctions imposed upon researchers caught in the act of scientific
fraud, it is clear that the dominant, low-cost strategy for achieving
one’s preferred research outcome is to engage in biased methods that
fall short of egregious data falsification.’ Schulz (1995b) noted that
‘practitioners involved in conducting a trial that does not have proper
procedures for sequence generation and allocation concealment may
find the challenge of deciphering the allocation scheme irresistible’.
If both statements are true, then it is not hard to imagine that one
who would attempt to predict future allocations would also attempt
to exploit this knowledge of future allocations. What patterns would
one then expect to see across trials? For one thing, trials without
adequate allocation concealment would be expected to produce larger
estimates of treatment effects than those with adequate allocation
concealment, because those with adequate allocation concealment
would not allow for selection bias. Also, there would be more baseline
imbalances in unmasked trials (which are susceptible to selection bias)
than in masked trials (which are less so). In fact, these patterns have
been found repeatedly, by numerous authors.
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For example, Chalmers et al. (1983) found, among 145 trials clas-
sified as masked (57), possibly unmasked (45), and non-random (43),
that the rate of significant baseline imbalances (at the 0.05 level) was
nearly twice as high for unmasked trials as for masked trials. That
is, these baseline imbalances occurred in 14% of the masked trials,
27% of the unmasked trials, and 58% of the non-random trials. Like-
wise, Schulz et al. (1995) reviewed meta-analyses from the Cochrane
Collaboration Pregnancy and Childbirth Database, and compared tri-
als with adequate allocation concealment to trials with inadequate or
unclear allocation concealment. The results were that the magnitudes
of estimated treatment effects were exaggerated by 30% for unclearly
concealed trials and by 41% for clearly inadequately concealed trials,
relative to those with adequate allocation concealment. This was after
adjusting for other measures of quality.

Moher et al. (1998) reviewed 127 trials from 11 meta-analyses
of interventions for circulatory and digestive disease, mental health,
and pregnancy and childbirth. The results were that the magnitudes of
estimated treatment effects were exaggerated by 37% for inadequately
concealed trials, relative to those with adequate allocation conceal-
ment. Kunz and Oxman (1998) found that a lack of randomization
and a lack of allocation concealment could increase or decrease the
magnitude of the estimated treatment effect, and could even reverse
its direction, but on average, the effect was one of increasing the mag-
nitude of the estimated treatment effect.

3.3 DIRECT TRIAL-LEVEL EVIDENCE THAT
SELECTION BIAS EXISTS IN
RANDOMIZED TRIALS

Specific randomized clinical trials with evidence of selection bias have
been described (or at least mentioned) but not identified by Schulz
(1995a) and Ivanova et al. (2005). Berger and Weinstein (2004)
synthesized, but did not attempt to authenticate or refute, published
claims that 14 specific randomized clinical trials may have been
tainted by selection bias. We now review the key information of these
trials in greater detail, and also describe additional examples that
have been found since that paper was published. Greenhouse (2003)
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contends that it ‘is obvious that if there are serious imbalances in
observable baseline variables, it can only be because clinicians were
manipulating patient assignment to a treatment. This by definition
should give rise to a selection bias’. We therefore also discuss trials in
which severe baseline imbalances were noted, but only if the imbal-
ances were noted to trend in the same direction. We also note that in
her Table 3 Reynolds (2004) mentioned a trial in which four pairs of
patients had their randomization assignments switched, but insuffi-
cient details were provided for this trial to be included in the examples
below.

3.3.1 Heparin for myocardial infarction

Carleton et al. (1960) discussed a randomized trial in which 125 pa-
tients with myocardial infarction were randomized, 60 to heparain
and 65 to a control group. The randomization was conducted with
sealed envelopes, and Carleton et al. (1960) pointed out that the en-
velopes containing the treatment codes were not numbered consecu-
tively, and there may have been ‘prejudice in the selection of therapy
by alteration of the sequence of the envelopes. It has been alleged that
during the last few weeks or months of this study a few of the envelopes
were transilluminated for this purpose’. This is the first publication of
which we are aware that mentioned the possibility of the type of selec-
tion bias described earlier by Blackwell and Hodges (1957) occurring
in an actual randomized trial.

3.3.2 University Group Diabetes Program

The University Group Diabetes Program was designed as a treatment
trial, and included tolbutamide and placebo groups. Schor (1971)
noted striking baseline imbalances across these treatment groups,
and also consistency in the direction of these imbalances. That is, the
tolbutamide group had a disproportionate number of patients with
cardiovascular risk factors, including elevated cholesterol levels, elec-
trocardiogram abnormalities, obesity, advanced age (over 55 years),
a glucose tolerance test value over 750, a history of digitalis, a history
of angina, and arterial calcification. Schor (1971) added that
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After proper randomization one does not expect to find absolutely similar
percentages in both groups [referring to tolbutamide and placebo] for ev-
ery characteristic. However, one does expect to find certain characteristics
which bias the study against tolbutamide to be balanced by other charac-
teristics which bias in favor of tolbutamide. This simply did not happen in
this study . . . It would appear to any reasonable statistician that for some
reason or other the randomization procedure broke down in these three
clinics.

Rothman (1977) also noted the need to stratify the analysis of all-
cause mortality by age group for this trial. Miettinen and Cook (1981)
acknowledged the possibility of selection bias by stating ‘by chance or
otherwise, the tolbutamide series might be of higher risk in terms of
its distribution by familiar coronary heart disease risk indicators than
the group given placebo’ (emphasis added).

That the patients with higher risk tended to be randomized to
the active (tolbutamide) group makes this more detailed description
consistent with the less detailed description of a trial that was not
identified but was mentioned by Ivanova et al. (2005). Notice that
the suspicion of selection bias was rooted not in a single observed
baseline imbalance but rather in the consistency in the directions
of the multitude of observed baseline imbalances across the treat-
ment groups. That is, the active group consistently had higher-risk
patients.

3.3.3 Talc and mustine for pleural effusions

Numerous baseline imbalances were also found in a randomized com-
parison of talc to mustine for control of pleural effusions (Fentiman
et al. 1983). Specifically, Table 3.1 of Altman (1985) demonstrates
severe baseline imbalances in age (means of 50.3 years for mus-
tine vs. 55.3 years for talc), stage 1 or 2 (52% for mustine vs.
74% for talc), mean interval between breast cancer diagnosis and
effusion diagnosis (33.1 months for mustine vs. 60.4 months for
talc), and proportion post-menopausal (43% for mustine vs. 74% for
talc). These imbalances were quite large in magnitude, yet did not
reach statistical significance at the customary level (0.05) because
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Table 3.1 Some baseline characteristics of patients in controlled trial of
Fentiman et al. (1983) reproduced from The Statistician, Vol. 34, No. 1,
Statistics in Health (1985), 125–136

Treatment

Mustine (n = 23) Talc (n = 23)

Mean age (SE) 50.3 (1.5) 55.3 (2.2)

stage 1 or 2
3 or 4

52%
48%

74%
26%

Mean interval in months (SE)
between breast cancer
diagnosis and effusion
diagnosis 33.1 (6.2) 60.4 (13.1)

Postmenopausal 43% 74%

of the small sample size (23 patients randomized to each treatment
group).

3.3.4 Tonsillectomy for recurrent throat infection
in children

The imbalances did reach significance in a randomized trial of ton-
sillectomy for recurrent throat infection in children (Paradise et al.,
1984), with p = 0.0309 and p = 0.0076, respectively, by the two-
sided Smirnov test (Berger et al. 1998), for history of episodes of throat
infection and parents’ socioeconomic status. This was an unmasked
trial, and blocks of fixed size 4 were used, so the trial was certainly
susceptible to selection bias.

3.3.5 Oxytocin and amniotomy for induction of labor

Oxytocin was compared to amniotomy for induction of labor in 223
women who were allocated based on even or uneven dates of birth
(Bakos and Backstrom, 1987). Clearly this trial does not qualify as
truly randomized (Berger and Bears, 2003). Nevertheless, it is labeled
as a randomized trial, and a casual reading would not reveal that in
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fact it was not a randomized trial, so we include it in this chapter. A
reanalysis

hypothesized that clinicians knowing in advance the method of induc-
tion of labor to be used for each woman would be influenced in their
decision to use induction at all (enroll the woman in the trial). It was
demonstrated that obstetricians were very reluctant to induce labor with
amniotomy in a woman born on an uneven date when she had an unfavor-
able cervix (low Bishop score). Thus, randomization by date of birth was an
unsatisfactory method in this case, because it produced selection bias at trial
entry. (Villar and Carroli, 1996)

More specifically,

women with a Bishop score of three or less were four times more likely to
be entered into the trial if they were born on an even date (allocated to the
oxytocin group) than if they were born on an uneven date (allocated to the
amniotomy group). Of 35 such women, only seven (20%) were allocated to
amniotomy and 28 to oxytocin infusion, a difference that is statistically sig-
nificant at p < 0.0005(χ2 = 11.43). If women with an unfavorable cervix
had been scheduled for induction with the same frequency, irrespective of
whether they were born on even or on uneven dates, the likelihood that they
would be divided among the amniotomy and oxytocin groups as found . . . is
less than one in 4,000 . . . The null hypothesis that the Bishop score before
induction did not influence the decision to assign women to either the am-
niotomy or the oxytocin group was thus rejected at p < 0.00025. (Keirse,
1988)

3.3.6 Western Washington Intracoronary
Streptokinase Trial

In the Western Washington Intracoronary Streptokinase Trial, com-
paring intracoronary streptokinase to standard medical attention for
the treatment of acute myocardial infarction, 250 patients were ran-
domized, 134 to streptokinase and 116 to control, but one patient was
mistakenly assigned to streptokinase (Hallstrom and Davis, 1988).
Given the planned 1:1 allocation ratio, the probability of observing
a difference of at least 18 in the group sizes is 0.004 (Hallstrom and
Davis, 1988). The probability of observing even the corrected differ-
ence of 16 or larger is still very low (0.009). The statisticians involved
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in the study were ‘particularly concerned in verifying that the ran-
domization process had been carried out as planned’, as these values
suggest the possibility of basing treatment assignments on patient
characteristics, a form of selection bias (Hallstrom and Davis, 1988).

3.3.7 RSV immune globulin in infants and young
children with respiratory syncytial virus

Groothuis et al. (1993) did not fully describe the method by which
treatments were assigned in the study of RSV immune globulin in in-
fants and young children with respiratory syncytial virus. However,
it is clear that randomization was unmasked, and was developed and
performed separately by each center (Ellenberg et al., 1994). Any re-
strictions on the randomization would then allow for prediction of
future assignments. The possibility that this information was used to
selectively enroll healthier or sicker patients across groups was raised
(Ellenberg et al., 1994), as ‘the person maintaining the list [at each cen-
ter] would have been aware of the upcoming treatment assignments’.
The methods they used for randomization ‘did not protect against such
influences, conscious or unconscious’ (Ellenberg et al., 1994).

3.3.8 A trial to assess episiotomy

A trial to assess episiotomy was to have randomized patients to ei-
ther liberal or restrictive use of episiotomy, but this trial was ‘affected
by physician noncompliance with the randomly assigned therapy’
(Schulz, 1995b). That is, it appeared that some physicians assigned
episiotomy to certain patients even when it was not the treatment
indicated by the randomization. While assigning a treatment deter-
ministically does not require advance knowledge of upcoming alloca-
tions, and hence is not exactly the type of selection bias we discuss, it
is still a form of treatment allocation based on patient characteristics,
and introduces selection bias. Moreover, Schulz (1995b) noted that
‘The physicians who viewed episiotomy more favorably decided more
frequently not to randomly assign certain participants, who had been
enrolled, to a study arm’, and asked if they had knowledge of the next
treatment to be allocated.
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3.3.9 Canadian National Breast Cancer
Screening Study

Cohen et al. (1996) described how randomization was conducted in
the Canadian National Breast Screening Study:

Women were interviewed, filled out an entry questionnaire and consent form,
and had a physical examination of the breasts. Only after this initial review
was a woman randomized to the mammography or alternative arms of the
trial. Randomization was carried out as follows: Women meeting eligibil-
ity criteria were entered onto a list preprinted with identification number,
trial arm designation, and space for the participant’s name . . . Because of the
nonblinded nature of this process, it was possible for NBSS staff to preferen-
tially assign some women to the mammography arm by putting their names
opposite a mammography designation rather than in the next blank space.

Bailar and MacMahon (1997) noted that, as stated by Cohen et al.
(1996), women were randomized only after the clinical examination,
but that this was not the case in one center (center 03). The signifi-
cance of this is apparent only when one considers the lack of allocation
concealment.

That is, ‘after each subject had been examined by a nurse (or a
physician, in Quebec), but before randomization took place, the coor-
dinator knew the group to which the next subject would be allocated.
In principle, subversion of the sequence of events prescribed by the
investigators could thus have taken place’ (Boyd, 1997). Bailar and
MacMahon (1997) also noted that with the exception of center 03,

the nurses (and probably also the coordinators) were aware of the findings
of the clinical examination when the allocation was made. Herein lies the
basis of the charge that examiners who thought that a woman should or
should not have a mammogram, because of findings at clinical examination
or personal information obtained during the examination (e.g., risk factors
for breast cancer), may have compromised the randomization.

Boyd (1997) tabulated (in his Table 3.2) some baseline imbalances
across the groups, including prior health claims for breast cancer
in women aged 40–59 (8 vs. 1, p = 0.05), alterations of names in
allocation books in women aged 40–49 (95 vs. 65, p = 0.01), and
advanced breast cancer detected at baseline by physical examination
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Table 3.2 Frequency of selected events in the Canadian National Breast
Screening Study, by study arm reproduced by permission of Canadian
Medical Association

Study arm; no. of subjects

Event Age Mammography Usual care p value

Prior health claim for
breast cancer10

40–59 8 1 0.05†

Alteration of name in
allocation book*

40–49 95 65 0.01

Advanced breast cancer
detected at baseline
by physical
examination7−9

40–49 17 5 0.003

Death from breast
cancer in 7-year
follow-up period8

40–49 38 28 0.27†

∗ Data from the review by Bailar and MacMahon (see pages 193 to 199).
† Calculated by the χ2 test.

in women aged 40–49 (17 vs. 5, p = 0.003). Boyd (1997) also pointed
out that

great deviousness would not have been required to achieve a particular
allocation . . . Suppose a subject wished to be allocated to the mammography
arm? . . . If the next allocation was to the control arm instead, the subject’s
name could have been entered onto the line with the next mammography al-
location, leaving a gap in the allocation book, or she could have been advised
to wait until the line for the desired arm was the next to be filled. In either
case, it is unlikely that much time would have elapsed before a mammogra-
phy allocation came up or a gap on the list was filled. Fifteen NBSS centers
randomly assigned 90 000 women over five years or less: They must have
been busy places.

3.3.10 Surgical trial

Inasurgical trialconductedat23centers,somecentersusedthesealed
envelope system and others used the centralized telephone system
(Kennedy and Grant, 1997). The median age of patients randomized
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to the experimental treatment was considerably lower than those in
the conventional treatment group (59 vs. 63 years, p < 0.01) when
envelopes were used. For three clinicians there were even larger age
imbalances across treatment groups (57 vs. 72 years, p < 0.01; 33
vs.69years, p < 0.001;47vs.72years, p = 0.03).These imbalances
were not observed when using the telephone system (Kennedy and
Grant, 1997), so the implication is that these imbalances resulted from
the use of the sealed envelope system itself. The mechanism would then
be through the ability to observe upcoming allocations to be made, or
selection bias.

3.3.11 Lifestyle Heart Trial

The Lifestyle Heart Trial was conducted to assess the progression of
coronary atherosclerosis achieved through drastic lifestyle changes
without lipid-lowering drugs (Ornish et al., 1998). Of 193 patients,
93 remained eligible after a quantitative coronary angiography. Of
these, 53 were randomized (randomization details are unclear, but the
study appears to have been unmasked) into the experimental group,
and 40 to the control group. However, only 28 patients randomized
to the experimental group and 20 patients randomized to the control
group agreed to participate in the study. Not all patients who agreed to
participate reported their data, and therefore the analyses presented
were based on only 20 patients in the experimental group and on
only 15 patients in the control group. When comparing these two
groups, there was a baseline imbalance in gender – all three women
were in the control group, p = 0.07, which is a fairly low p-value
considering the small sample sizes of the groups being compared (see
Section 3.3.3).

3.3.12 Coronary Artery Surgery Study

The Coronary Artery Surgery Study (CASS) compared coronary by-
pass surgery to medical therapy. Assignments were made via tele-
phone communication from the coordinating center. Of the 2099
randomizable patients, 780 agreed to participate. The randomized
and randomizable groups (that is, those patients who could have been
randomized but were not) differed in the degree of baseline coronary
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artery disease (CASS Investigators, 1984). Berger and Exner (1999)
pointed out that within the medical therapy group there was more
extensive baseline coronary artery disease among randomized than
randomizable patients, whereas within the surgery group there
was less extensive coronary artery disease among randomized than
randomizable patients. Furthermore, Berger and Exner (1999) com-
mented on the implications this pattern has for selection bias. One
could describe this pattern as healthier patients apparently being se-
lected for the surgery group and turned away for the medical group,
whereas sicker patients seemed to be selected for the medical group
and turned away for the surgery group.

3.3.13 Etanercept for children with juvenile
rheumatoid arthritis

In a study of etanercept for children with juvenile rheumatoid arthri-
tis (Lovell et al., 2000), patients in the etanercept group were younger
(mean 8.9 years vs. 12.2 years, p = 0.0026), less likely to be
Caucasian (56% vs. 88%, p = 0.022), and of lower weight (mean
34 kg vs. 43 kg, p = 0.027) than patients in the placebo group. Lovell
et al. (2000) make no attempt to explain these baseline differences
beyond stating that ‘The unequal randomization did not affect the
study results’, but the Food and Drug Administration statistical re-
view (Berger, 1999), which was the source for these baseline p-values,
reveals several other issues as well.

For one thing, there was a three-month open-label run-in on
etanercept. Because it is easier to discern similarity to, or difference
from, that which has already been experienced than it is to unmask an
assignment when neither treatment has been previously experienced
(Leber and Davis, 1998), this run-in increases the likelihood of un-
masking treatment allocations. Also, the randomization used blocks of
size 2, the worst situation for selection bias (Proschan, 1994). Worse
still, corresponding blocks in the two strata within a center (stratifica-
tion was based on study center and the number of active joints being
no greater than 2 or greater than 2) were mirror images of each other.
For example, in site 514, the first patient in the ‘few active joints’ stra-
tum was to receive placebo. This implies that the first patient in the
‘more than two active joints’ stratum within site 514 necessarily was
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to receive etanercept. In essence, unmasking one allocation leads to
perfect advance knowledge of three other allocations.

Beyond the baseline imbalances, four patients were also randomized
from the wrong stratum. In three of these cases, it was foreseeable that
the treatment received would likely be affected. That is, in one case,
the patient had more than two active joints, and the next allocation
in this stratum was to etanercept with certainty. Yet the patient was
allocated from the ‘few active joints’ stratum, with certainty of receiv-
ing placebo. The next mistaken allocation was of a patient with few
active joints, and etanercept would have been received with certainty.
Instead, this patient was randomized from the ‘many active joints’
stratum, which had a fifty–fifty chance for either treatment (because
this was the first allocation in the block, and the mirror image had
not yet been revealed). As it turned out, etanercept was allocated any-
way. The final mistake (there were actually four, but we detail only the
three for which it was foreseeable that the treatment received would
likely be affected) affected a patient with few active joints, and placebo
would have been received with certainty. Instead, this patient was ran-
domized from the ‘many active joints’ stratum, which had a fifty–fifty
chance for either treatment (because this was the first allocation in the
block, and the mirror image had not yet been revealed). As it turned
out, etanercept was allocated. In two cases, then, the treatment re-
ceived was actually reversed by these mistakes. Neither this, nor the
fact that some patients were randomized out of order, was mentioned
in the publication (Lovell et al., 2000).

3.3.14 Edinburgh Randomized Trial of
Breast-Cancer Screening

The Edinburgh Randomized Trial of Breast-Cancer Screening, begun
in 1978, used cluster randomization, and had a baseline imbalance
in socioeconomic status. Alexander et al. (1999) connected the im-
balance to the use of cluster randomization, stating that, ‘As a result
of the cluster randomisation, there was bias between the two groups,
women in the control group having higher all-cause mortality rates
and lower socioeconomic status (SES) than those randomly assigned
to intervention’. That cluster randomization can, by its very nature,
interfere with allocation concealment was pointed out by Jordhoy
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et al. (2002); see Section 3.3.24. In the bottom row of their Table 3.3,
under the column for the Edinburgh Trial, Humphrey et al. (2002)
wrote ‘Allocation concealment not described; significantly lower SES
and higher all-cause mortality in control group suggest inadequate
randomization’.

3.3.15 Captopril Prevention Project

In the Captopril Prevention Project, 10 985 patients were followed
for a mean of 6.1 years after having been randomized to captopril
or conventional antihypertensive therapy, and sealed envelopes were
to be used (Psaty et al., 2000). Peto (1999) stated that the baseline
differences between the two treatment groups in

height, weight, systolic, and diastolic blood pressure (with respective p-values
of 10−4, 10−3, 10−8, and 10−18) show that the process of randomisation by
sealed numbered envelopes was frequently violated. Presumably, at some
centres those responsible for entering patients sometimes unsealed the en-
velopes before the next patient was formally entered, and then let knowledge
of what the next treatment would be influence their decision as to whether
that patient should be entered and assigned that foreknown treatment.

3.3.16 Göteborg (Swedish) Mammography Trial

Gotzsche and Olsen (2000b) pointed out that ‘In the trial from
Göteborg, the imbalance in age was small but the authors note that
28% of 1655 women surveyed in the study group reported having
undergone a mammogram before the trial, compared with 51% of
1641 controls. This suggests that the groups were not comparable at
baseline ( p = 8 × 10−42)’.

3.3.17 HIP Mammography Trial

Regarding the HIP (Health Insurance Plan) Mammography Trial, be-
gun in New York in the 1960s, Kolata (2002) stated that

researchers began by randomly assigning women to have mammograms or
not. But they also decided that they did not want to include women who
already had breast cancer. So after the women were assigned, they dropped
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ö
C

ou
n

ty
T

ri
al

Va
ri

ab
le

H
IP

(1
9

)
(1

3
)

(1
3

,2
0

)
(1

8
)

(1
4

,2
3

)
(1

7
)

(1
5

)
(1

6
)

Ex
te

rn
al

va
lid

it
y

Po
or

m
am

m
og

-
ra

ph
y

te
ch

n
iq

u
e;

on
ly

a
th

ir
d

of
ca

n
ce

r
ca

se
s

fo
u

n
d

by
m

am
m

og
ra

-
ph

y
al

on
e

M
an

y
w

om
en

w
it

h
sc

re
en

in
g

ab
n

or
m

al
it

ie
s

(e
sp

ec
ia

lly
on

C
B

E)
w

er
e

“d
ee

m
ed

n
ot

to
re

qu
ir

e
a

di
ag

n
os

ti
c

pr
oc

ed
u

re
,”

po
te

n
ti

al
ly

re
du

ci
n

g
th

e
se

n
si

tiv
it

y
of

sc
re

en
in

g

–
1

9
%

of
co

n
tr

ol
s

an
d

1
3

%
of

st
u

dy
w

om
en

h
ad

m
am

-
m

og
ra

ph
y

in
th

e
2

ye
ar

s
be

fo
re

th
e

st
u

dy

2
5

%
of

al
l

w
om

en
en

te
ri

n
g

th
e

st
u

dy
h

ad
h

ad
m

am
-

m
og

ra
-

ph
y

–
In

th
e

ag
e

gr
ou

p
of

4
0

–4
9

y,
3

w
om

en
di

ed
af

te
r

be
in

g
in

vi
te

d
to

sc
re

en
in

g
an

d
1

di
ed

be
fo

re
in

vi
ta

ti
on

bu
ta

ft
er

ra
n

-
do

m
iz

at
io

n
G

ra
de U
SP

ST
F

in
te

rn
al

va
lid

it
y

Fa
ir

Fa
ir

or
be

tt
er

Fa
ir

or
be

tt
er

Po
or

Fa
ir

Fa
ir

Fa
ir

Fa
ir

*
It

al
ic

ty
pe

in
di

ca
te

s
as

pe
ct

s
of

th
e

de
si

gn
or

co
n

du
ct

of
th

e
tr

ia
ls

th
at

in
flu

en
ce

d
th

e
qu

al
it

y
ra

ti
n

g.
B

SE
=

br
ea

st
se

lf-
ex

am
in

at
io

n
;

C
B

E
=

cl
in

ic
al

br
ea

st
ex

am
in

at
io

n
;C

N
B

SS
=

C
an

ad
ia

n
N

at
io

n
al

B
re

as
tS

cr
ee

n
in

g
St

u
dy

;H
IP

=
H

ea
lt

h
In

su
ra

n
ce

P
la

n
of

G
re

at
er

N
ew

Yo
rk

;N
R

=
n

ot
re

po
rt

ed
;U

SP
ST

F
=

U.
S.

P
re

ve
n

tiv
e

Se
rv

ic
es

Ta
sk

Fo
rc

e.
†M

os
tr

ec
en

tr
es

u
lt

s
fo

r
ag

e
4

0
to

4
9

ye
ar

s,
if

di
ffe

re
n

t.
‡

A
ll

st
u

di
es

w
er

e
an

al
yz

ed
by

u
si

n
g

in
te

n
ti

on
-t

o-
tr

ea
tm

et
h

od
s.

62



JWBK019-03 JWBK019-Berger March 30, 2005 8:54 Char Count= 0

Direct trial-level evidence 63

women who, they later realized from looking at medical records, had had
cancer. About 1100 ended up being dropped – some 800 from the mam-
mography group and about 300 from the control group. Critics of the study
wonder why so many more women in the screening group turned out to have
had a diagnosis of breast cancer before the study began. In theory, they say,
the numbers should have been roughly equal.

Humphrey et al. (2002) added that the ‘Use of lists and pairs made
subversion possible. More menopausal women and women with pre-
vious breast lumps in a sample of controls; more education in the
screened group.’

3.3.18 Hypertension Detection and
Follow-Up Program

The Hypertension Detection and Follow-Up Program (HDFP) used
sealed envelopes for the randomization which, as noted by Psaty
et al. (2000), is subject to manipulation. In fact, the randomization
‘was tampered with at one clinic and as a result, 446 participants from
that clinic were excluded from HDFP analyses’.

3.3.19 Randomized trial to prevent vertical
transmission of HIV-1

Another trial with block randomization, sealed envelopes (which, as
we have seen in Section 3.3.18, is subject to manipulation), and a
(nearly significant) baseline imbalance is the trial described by Hughes
and Richardson (2000). Specifically, women were randomized to ei-
ther formula-feed (212) or breast-feed (213) their infants. After 24 ex-
clusions (16 in the breast-feeding arm and only eight in the formula
arm), there were 401 infants available for analysis. The exclusions
were for stillbirths, second-born twins, and mothers lost before deliv-
ery, and the one-sided p-value comparing the rates of these exclusions
across arms is p = 0.0716.

3.3.20 Effectiveness trial of a diagnostic test

Swingler and Zwarenstein (2000) described problems with the ran-
domization and allocation concealment of an effectiveness trial of a
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Table 3.4 Problems with the sequencing and allocation of potentially
eligible patients, and the fate of envelopes of excluded patients reprinted
from Journal of Clinical Epidemiology, 53 (2000) 704, with permission
from Elsevier

Registration of potentially eligible patients
before randomization

Potentially eligible patients 581
Deletions or alterations in register 0
Enrolled out of chronological sequence 9 (1.5% of 581)

Change to radiograph allocation 2
Change to non-radiograph allocation 4
No change in allocation 3

Exclusions before randomization 59 (10.2% of 581)
Allocation envelopes improperly handled

(excluded patients) 16 (27.1% of 59)
Opened 7
Lost 9

diagnostic test. Their Table 3.4 shows that nine enrollments were out
of chronological sequence, and that six of these nine resulted in a
change in the allocation. Nine allocation envelopes were also lost, and
seven were opened, for a total of 16 that were mishandled. Of these
16, four had radiograph allocations, and 12 had non-radiograph al-
locations ( p = 0.05). The authors noted that the

preponderance of non-radiograph allocations among the 16 excluded cases
with open or lost envelopes is unlikely to have happened by chance ( p =
0.05). This imbalance in allocation suggests that some subjects may have
been excluded from the study because of non-radiograph allocations. The
high proportion of such patients with opened envelopes and non-radiograph
allocations who received a radiograph, compared with patients with lost
envelopes, supports this hypothesis.

3.3.21 South African trial of high-dose
chemotherapy for metastatic breast cancer

Weiss et al. (2001) audited a randomized South African trial of high-
dose chemotherapy (HDC) for metastatic breast cancer (Bezwoda et al.,
1995), and described a lack of allocation concealment, and linked
this to questioning the integrity of the randomization process. Specif-
ically, Weiss et al. (2001) stated that the lead investigator had a log-
book listing the allocation sequence, but replacing the identity of the
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treatments with the generic ‘A’ and ‘B’, and went on to point out that,
‘Of the first 24 patients entered, only six were designated to have re-
ceived HDC. Then, of the last 27 patients, only six were designated
to have received the CNV (cyclophosphamide, mitoxantrone, and vin-
cristine) regimen. It is unlikely that this sequence of treatment assign-
ments could have occurred if the study were truly randomized.’

3.3.22 Randomized study of a culturally sensitive
AIDS education program

In a randomized study of a culturally sensitive AIDS education pro-
gram (Stevenson and Davis, 1994), Marcus (2001) hypothesized that
‘subjects with lower baseline knowledge scores . . . may have been
channelled into the treatment group’, because the treatment group
had significantly lower baseline AIDS knowledge scores (39.89 vs.
36.72 on a 52 question test, p = 0.005).

3.3.23 Runaway Youth Study

Song et al. (2001) described the Runaway Youth Study (aimed at pre-
venting HIV transmission among runaway youths in New York City),
anditsbaselineimbalances.Therandomizationwasperformedinclus-
ters, with two shelters (with 167 youths) allocated to the intervention
group (staff training and a series of interactive group sessions), and
two shelters (with 144 youths) allocated to the control treatment (no
specialized intervention). Song et al. (2001) stated:

Not surprisingly given that randomization occurred at the level of the shelter
rather than by participant, the intervention and control groups were not
comparable at recruitment. As shown in Table 1, several differences emerged
on sociodemographic and substance-use characteristics; in all, significant
differences were seen on nine of 45 baseline characteristics. For example,
youths in the control shelter were on average roughly one year older, had a
higher school dropout rate, and had more extensive alcohol and drug use.

As Table 3.5 of Song et al. (2001) shows, some of these imbalances
had strikingly low p-values. This includes age (16.2 years in the control
group vs. 15.1 years in the intervention group, p < 0.001), reason
for leaving home ( p = 0.004), school dropout (48.3% in the con-
trol group vs. 32.3% in the intervention group, p = 0.004), lifetime
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Table 3.5 Selected baseline characteristics between the intervention and
the control groups reprinted from Handling Baseline Differences and
Missing Items in a longitudinal Study of HIV Risk Among Runaway Youths,
Song et al., Health Services & Outcomes Research Methodology 2:317–329,
2001, with kind permission of Springer Science and Business Media

Sample Control Intervention
size (n = 144) (n = 167) p-value

Male 311 47.9% 53.3% 0.34
Age (SD) 311 16.2(1.51) 15.1(1.74) <0.001
Ethnicity 306

African American 54.6% 62.4% 0.28
Hispanic 27.7% 25.5%
White/Others 17.7% 12.1%

Reason left home 309
Other people had problems 19.4% 12.7% 0.004
Someone forced out 21.5% 13.9%
Neglect/abused 13.9% 16.4%
Getting into trouble 16.7% 8.5%
Trouble with parents 13.2% 24.9%
Other reasons 15.3% 23.6%

Number of times runaway 275 2.56(1.85) 2.54(1.95) 0.93
from home (SD)
Number of times forced out 207 1.22(1.78) 0.89(1.47) 0.14

(SD)
School dropout 307 48.3% 32.3% 0.004
Suicide

Suicide attempt 296 26.1% 29.6% 0.50
Family suicide 300 34.8% 45.7% 0.06

Conduct disorder (SD) 310 1.10(0.73) 1.02(0.79) 0.37
Lifetime sexual behavior

Abstinent 308 16.7% 18.3% 0.71
Lifetime drug and alcohol

Alcohol use 307 78.5% 63.8% 0.005
Drug use 305 52.1% 36.7% 0.007

Sexual Behavior for the past
3 months
# of partners (SD) 308 1.96(3.34) 1.95(2.96) 0.97
# of unprotected sexual 308 10.34(20.61) 7.77(16.55) 0.23
acts (SD)

Drug and alcohol for the past
3 months
Alcohol 301 62.4% 39.4% <0.001
Marijuana 303 31.5% 17.5% 0.005
Hard drug 307 11.1% 6.1% 0.12
Number of drugs (SD) 307 0.43(0.68) 0.26(0.57) 0.02
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alcohol use (78.5% in the control group vs. 63.8% in the intervention
group, p = 0.005), lifetime drug use (52.1% in the control group
vs. 36.7% in the intervention group, p = 0.007), recent alcohol use
(62.4% in the control group vs. 39.4% in the intervention group,
p < 0.001), and recent marijuana use (31.5% in the control group
vs. 17.5% in the intervention group, p = 0.005).

3.3.24 Cluster randomized trial of palliative care

Jordhoy et al. (2002) discussed a cluster randomized trial of palliative
care conducted at the Palliative Medicine Unit of Trondheim Univer-
sity Hospital in Norway, and noted that allocation concealment may
be impossible when cluster randomization is used, a point that was
hinted at by Song et al. (2001); see Section 3.3.23. The trial presently
considered used three pairs of clusters, and randomly assigned one
cluster per pair to the intervention, with the other cluster receiving
the control; see Table 3.6 of Jordhoy et al. (2002).

In their Table 3.7, Jordhoy et al. (2002) display baseline imbalances,
including 45% of the intervention group (106/235) vs. 28% of the
control group (56/199) living in a villa ( p = 0.001), 23% of the inter-
vention group (54/235) vs. 40% of the control group (80/199) living
in an apartment ( p < 0.001), and 11% of the intervention group
(26/235) vs. 23% of the control group (45/199) receiving home care
nursing ( p = 0.002). Additional baseline imbalances (medical, as op-
posed to sociodemographic) are displayed in Table 3.8 of Jordhoy et al.
(2002), including 73/235 intervention patients (31%) vs. 89/199
control patients (45%) with specific types of cancer ( p = 0.005).
Jordhoy et al. (2002) noted that:

The individual patient results suggested that diagnosis was not randomly dis-
tributed across the two groups, and the cluster-adjusted analysis confirmed
that there was an imbalance even when allowing for the clustering due to
healthcare districts and trial design. Thus, the statistical results supported
our suspicion of biased selection . . . we believe it unlikely that the imbalance
on diagnoses could be related to a real difference in cancer incidence among
the clusters . . . Since patients’ allocation was predictable by their address, it
seemed reasonable that such factors affected the two arms differently. Hence,
based on the statistics, the magnitude and direction of the imbalance, and
our knowledge of the local health care system, selection bias was the most
obvious explanation.
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3.3.25 Randomized trial of methadone with or
without heroin

Van den Brink et al. (2003) described a pair of randomized trials,
one for 375 inhaling subjects and the other for 174 injecting sub-
jects. Our concern is with the inhaling trial, and its three arms
(A = control, B = 12 months of methadone plus heroin, C = six
months of methadone followed by six months of methadone plus
heroin). This was an open label study, so any restrictions of the ran-
domization would compromise allocation concealment. Neither the
precise methods of randomization nor the baseline p-values were pro-
vided by Van den Brink et al. (2003), but their Table 3.9 does list
baseline characteristics, by treatment group, but also with these base-
line characteristics grouped into categories. We consider the first four
groups of baseline characteristics, so physical health is included, but
mental health is not. There are then 20 baseline characteristics con-
sidered, and three of them had tied values. We discard these three,
and consider the other 17, noting that each treatment group would
then have, under the null hypothesis, a one in three chance of being
the middle value among the three. That is, when the values of a given
baseline characteristic are sorted, and then the values replaced by
the treatment group to which they correspond, the patterns are ABC,
ACB, BAC, BCA, CAB, and CBA.

Of the six possible patterns, each of which should be equally likely,
each treatment group is in the middle for exactly two of them. As it
turns out, however, A is in the middle for 10 of the 17 comparisons,
C is in the middle for five, and B is in the middle for only two. Putting
aside the fact that the baseline characteristics need not actually be
independent, and that the hypothesis that B tends to be extreme and
not in the middle was generated by the data, we proceed with the
binomial model. The resulting p-value, P{B in the middle in 0, 1,
or 2 comparisons}, is artificially low, but this is offset by how much
of the information is being ignored, as each comparison could have
provided its own p-value, except that the authors did not present these.
One could compute p-values for the binary baseline characteristics,
except that even here only proportions, and not counts, are provided,
so this would be only approximate. Certainly, one could not compute
p-values for the continuous measures, such as age.
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Table 3.9 Baseline characteristics of 549 heroin addicts who participated
in study, according to prescribed treatment reproduced from BMJ, 2003,
327, 310–2, with permission from the BMJ Publishing Group

Inhaling Injecting

A∗ B† C‡ A∗ B†

(n = 139) (n = 117) (n = 119) (n = 98) (n = 76)

Age (years) 39.6 40.0 39.1 38.0 39.2
Male (%) 79.1 78.6 81.5 81.6 82.9
Ethnic Dutch (%) 82.7 80.2 80.5 94.9 96.1
Employed (%) 6.5 5.2 12.1 8.2 8.1
Stable housing (%) 90.6 89.7 86.4 84.7 77.6
Regular drug use

(years):
Heroin 16.7 16.9 16.4 15.4 16.6
Methadone 12.4 12.9 11.9 11.7 12.6
Cocaine 8.0 9.3 7.8 10.1 9.6
Amphetamines 1.5 1.4 1.8 3.0 3.1
Drug use in past

month (days):
Herion 25.9 25.9 25.5 25.9 25.2
Methadone 28.7 28.9 29.1 29.1 29.1
Cocaine 15.2 15.2 13.4 18.0 15.5
Amphetamines 0.1 0.1 0.7 1.2 0.9
Previous drug free

treatment (%)
59.4 54.7 58.8 67.0 65.8

Ever overdosed (%) 30.9 28.2 29.4 49.0 47.4
Additional need

for addiction
treatment (%)§

66.9 65.8 72.9 63.3 57.9

Physical health:
Mean MAP-HSS 11.6 10.6 11.8 11.1 12.1
HIV positive (%) 9.9 3.9 5.6 13.3 13.3
Somatic

medication (%)
28.8 21.4 24.4 22.5 19.7

Additional need
for somatic
treatment (%)§

29.2 24.8 36.4 39.8 35.5

Mental health:
Mean SCL-90 70.7 68.4 79.4 72.7 76.3
Ever attempted

suicide (%)
17.3 25.6 26.9 40.2 35.5

Psychiatric
medication (%)

33.1 32.5 38.7 35.7 34.7

(Continued)
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Table 3.9 (Continued)

Inhaling Injecting

A∗ B† C‡ A∗ B†

(n = 139)(n = 117)(n = 119)(n = 98)(n = 76)

Any current DSM-IV
diagnosis (%)

27.7 28.2 36.1 34.0 31.6

Additional need for
psychiatric treatment
(%)§

26.6 26.5 31.9 32.7 39.6

Social functioning:
Illegal activities in past

month (days)
11.2 11.4 8.4 11.5 12.9

Contact with non-users
in past month (days)

16.3 15.8 14.1 13.7 12.1

Median No of charges for
theft

10.0 6.0 8.0 10.0 15.0

Median time
incarcerated (months)

12.0 12.0 10.0 19.0 13.0

The overall baseline p-value is computed as P{B in the middle
0 times out of 17} + P{B in the middle 1 time out of 17} + P{B
in the middle 2 times out of 17}, which is

(2
3

)17 + 17 × 1
3 × (2

3

)16 + 136 × (1
3

)2 × (2
3

)15 = 0.044,

significant at the usual 0.05 level, despite the fact that so little in-
formation from each baseline comparison was used. In conjunction
with the unmasked design and the lack of information regarding the
specifics of the randomization procedure, it seems that selection bias
is a distinct possibility.

3.3.26 Randomized NINDS trial of tissue
plasminogen activator for acute
ischemic stroke

The National Institute of Neurological Disorders and Stroke (NINDS)
conducted a randomized trial of tissue plasminogen activator for acute
ischemic stroke (NINDS rt-PA Stroke Study Group, 1995). Mann
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(2004) pointed out that in this trial there was a significant imbalance
in baseline stroke severity across the treatment groups in one stra-
tum, and that this imbalance favored the active group, possibly to
the point of invalidating the findings reported. The FDA (Food and
Drug Administration) review (Walton, 1996) reveals that 13 patients
were randomized out of order, meaning to an accession number other
than the next one available. Of these 13 patients, all received placebo,
whereas only two of them should have (the other 11 should have
received Activase). In addition, 18 patients were randomized from
the wrong stratum, and this changed the assignments of 11 of them.
Of these 11, ten should have received Activase but instead received
placebo, and only one should have received placebo and instead re-
ceived Activase. The FDA review (Walton, 1996) states that ‘It remains
notable however, that of the 22 patients who had treatment changed
due to the randomization difficulties that occurred at the treatment
sites, 21 of these involved a patient who should have received Activase
being changed to receive placebo. Only one of the 22 was changed
from placebo to Activase.’ Among the patients switched, the propor-
tion of patients switched to placebo from Activase was over 95%.

3.3.27 Norwegian Timolol Trial

Mitchell (1981) critiqued the Norwegian Timolol Trial, and observed
that ‘Two general points need to be made: firstly, with nearly 2000
randomised patients one would have expected any differences between
the groups in common attributes to have been very small; secondly,
in such a large trial random variations would have been expected to
occur on both sides of equality, so that in some respects the timolol
group should have possessed more adverse factors, while for other
attributes the placebo group should have been worse off on entry. Nei-
ther of these expectations matches the reality: the placebo group was
significantly older, had more previous hypertension, more previous di-
uretic treatment, more heart failure and cardiomegaly, and, above all,
more arrhythmias during the index event (ventricular tachycardia or
fibrillation, for example, occurred in 14% of the placebo entrants, but
in only 10% of the timolol entrants). In a trial of this size this is a very
large difference, as are the differences in ‘treated hypertension’ (22% v
18%) and previous diuretic use (23% v 18%). These sizable differences
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are significant at the p = 0.05 − 0.01 level, so if the groups differed
systematically in ways which could influence prognosis one only re-
quires a further one in 10 spin of the wheel of chance to achieve their
total mortality figures. While we may have baulked at accepting a
one in 1000 possibility that the 54 differential deaths were due to
chance, we can more readily conceive of a one in 10 possibility that
a type I error has occurred by the operation between two imbalanced
groups.’

Some comment is in order here. The p-value for comparing mor-
tality rates (98 in the timolol group and 152 in the placebo group)
was 0.001, or one in a thousand. Since some baseline p-values were
as low as 0.01 (one in a hundred), Mitchell (1981) divided the one
by the other to obtain the one in ten chance mentioned. That is, if
there are 1000 lottery tickets, ten winners, and one grand winner,
then one can see that P{winning ticket} = 10/1000 = 0.01 and
P{grand winner}= 1/1000 = 0.001, but the conditional probability
of holding the grand winning ticket given that your ticket is a winner
is P{grand winner | winning ticket} = 1/10 = 0.1. So a conditional
probability argument appears to have been behind this “one in ten”
statement. And yet the situation is even worse than this, because there
was more than one baseline imbalance. Consider an analogy with a
deck of cards.

Suppose that the ace of spades represents the grand winner, but
that every ace is a winner, and every spade is also a winner. Given
that you hold an ace, your chances of holding the ace of spades is
one in four; and given that you hold a spade, your chances of holding
the ace of spades is one in 13. If you hold both, then your chances of
holding the ace of spades is 100%, but by selecting only the “predictor”
that makes the strongest case, the ace in this case, one would under-
estimate this and take the chance to be instead one in four. Clearly,
then, consideration needs to be extended to all baseline imbalances in
the Norwegian Timolol Trial. But there is a more direct way to assess
the robustness of the 0.0001 p-value.

Berger (2001) introduced the concept of the depth of statistical sig-
nificance for this purpose. This depth of statistical significance hinges
around the number of patients that would need to switch groups so
as to render the p-value no longer statistically significant at what-
ever alpha level is deemed appropriate. It was shown, in Section 5.1
of Berger (2001), that the depth of statistical significance for a data
set with 108 patients in one group, 111 patients in the other group,
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and a Smirnov test yielding a one-sided p-value of 0.0002 (1/5000)
was five. That is, if as few as six patients are strategically selected from
each group to switch to the other group, then this one-sided p-value
of 0.0002 would become 0.0310 (which exceeds the customary one-
sided alpha level of 0.025). Now the basic Norwegian Timolol Trial
data set consisted of a 2 × 2 contingency table, with 152 deaths out
of 939 patients in the placebo group, compared to 98 deaths out of
945 patients in the timolol group.

By Fisher’s exact test, the one-sided p-value for this data set is
0.0001. If we switch 12 patients from each group to the other group
so as to maximally help the placebo group, then we would have 140
deaths in the placebo group and 110 deaths in the timolol group. The
p-value is now 0.0214, still significant at the customary one-sided
alpha level of 0.025. However, if we switch 13 patients from each
group to the other group, then the data set would be 139 deaths in the
placebo group and 111 deaths in the timolol group, for a one-sided
p-value of 0.0295, which is no longer significant at the customary
one-sided alpha level of 0.025. So at this alpha level, the depth of
statistical significance is 12.

To put this in perspective, consider that the 24 patients needed to
be switched to undo the statistical significance represents only 1.27%
of the total 1884 patients. As we will see in Table 4.3.5, as many as
half (50%) of the patients can be randomized to the wrong group if
selection bias occurs and the block size is two. As low as the initial
p-value was, it can easily be explained exclusively by selection bias.

3.3.28 Laparoscopic versus open appendectomy

Hansen et al. (1996) reported a randomized trial of laparoscopic
versus open appendectomy, and specifically that the rate of compli-
cations was significantly lower in the laparoscopic group (2179, 2%)
than in the open group (8172, 11%). We will return to this data set
to find the depth of statistical significance, but first we mention that
Guyatt et al. (2002) reported that one of the authors of this 1996 re-
port revealed some aspects of this study that could have led to selection
bias. Specifically, the problem occurred when patients were random-
ized at night, because at night, ‘the attending surgeon’s presence was
required for the laparoscopic procedure but not the open one; and
the limited operating room availability made the longer laparoscopic
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procedure an annoyance. Reluctant to call in a consultant, and par-
ticularly reluctant with specific senior colleagues, the residents some-
times adopted a practical solution. When an eligible patient appeared,
the residents checked the attending staff and the lineup for the operat-
ing room and, depending on the personality of the attending surgeon
and the length of the lineup, held the translucent envelopes contain-
ing orders up to the light. As soon as they found one that dictated an
open procedure, they opened that envelope. The first eligible patient
in the morning would then be allocated to a laparoscopic appendec-
tomy group according to the passed-over envelope. If patients who
presented at night were sicker than those who presented during the
day, the residents’ behavior would bias the results against the open
procedure.’

It isclearthatthiscouldleadtothetypeofselectionbiaswehavebeen
discussing, so to assess the robustness of the finding one could compute
the depth of statistical significance as we did in Section 3.3.27. But
without the full data, the only data set that can be so manipulated
is binary data, and the only binary data with a claim of significance
is wound infections. There were eight wound infections among the
72 patients in the open group, and only two among the 79 patients
in the laparascopic group. The two-sided p-value by Fisher’s exact
test is 0.0482, yet the one-sided p-value is 0.0352, so the depth of
statistical significance is zero. There is no significance at the 0.025
level one-sided.

3.3.29 The Losartan Intervention for Endpoint
Reduction in Hypertension (LIFE) Study

Losartan was compared to atenolol in the Losartan Intervention for
Endpoint Reduction in Hypertension (LIFE) Study (Lindholm et al.,
2002). Bloom (2002) challenged the validity of the conclusion (which
was that losartan was the more effective of the two) on the basis of
‘more Framingham risk scores, more smokers, more atrial fibrilla-
tion, worse baseline diabetes control (requiring increased medication),
and more isolated systolic hypertension . . . in patients in the atenolol
group than in the losartan group’. While baseline imbalances do not
by themselves suggest selection bias, it appears that the point being
made by Bloom (2002) was not simply that there are baseline im-
balances but rather that these baseline imbalances all went in the
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same direction. As will be discussed in Section 6.1, this could suggest
selection bias.

The basic data set for the primary composite endpoint (cardiovascu-
lar morbidity and mortality) was 103 events among the 586 patients
in the losartan group and 139 events among the 609 patients in
the atenolol group (Lindholm et al., 2002). The one-sided p-value by
Fisher’s exact test was 0.0144. Switching one patient from each group
to the other group yields a p-value of 0.0205, which is still significant.
But switching two patients from each group to the other group yields a
p-value of 0.0288, which no longer is significance at the 0.025 level.
So the depth of statistical significance is one. Now two patients out of
the total of 1195 represents only 0.167% that need to change groups
to undo the observed statistical significance, and certainly it is possible
that many more than two patients got switched by selection bias.

3.3.30 The Heart Outcomes Prevention Evaluation
(HOPE) Study

The Heart Outcomes Prevention Evaluation (HOPE) Study (Sleight
et al., 2001) was criticized by Taylor (2002) for similarity in the
direction of the baseline imbalances (similar to the criticism in
Section 3.3.29). Specifically, Taylor (2002) noted that ‘the placebo
group contained more individuals with each of the major risk factors:
existing peripheral vascular disease ([PVD] 119), previous myocardial
infarction (72), stable angina (74), unstable angina (nine), previous
cerebrovascular disease (13), left-ventricular hypertrophy (27), raised
total cholesteraol (53), and microalbuminuria (52). There were also
more men, more smokers, and a longer duration of disease in patients
with diabetes.’

The primary endpoint was a composite of myocardial infarction,
stroke, and cardiovascular death, and there were 651 events among
4645 patients in the ramipril group compared to 826 events among
4652 patients in the placebo group (HOPE Investigators, 2000). The
p-value was less than 0.0001 by either the log-rank test used by the
HOPE Investigators (2000) or by the one-sided Fisher’s exact test.
Switching 51 patients from each group to the other group yields a p-
value of 0.0221 by Fisher’s exact test (the timing of the events would
be needed to compute the log-rank test), and switching 52 patients
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from each group to the other group would yield a p-value of 0.0253,
so the depth of statistical significance (at least when using Fisher’s
exact test at the level of 0.025 one-sided) is 51. Now 102 patients out
of the total of 9291 represents only 1.1% that need to be switched to
undo the significance.

3.4 IN SEARCH OF BETTER EVIDENCE

As pointed out by Berger and Weinstein (2004), the overwhelming
majority of trials avoid any discussion of selection bias altogether. We
are aware of only six trials that reported using the Berger–Exner test
(discussed in Chapter 6) and/or one of its variants. Specifically Kroenke
et al. (2001) stated explicitly that they ‘tested for bias in treatment
group assignment (using the method described by Berger and Exner)
and detected no selection bias’. Van Dijk et al. (2002) ‘compared 21
baseline characteristics from off-pump patients who had a high like-
lihood of being randomized to off-pump with the baseline charac-
teristics from on-pump patients with a low likelihood. No significant
differences were observed in all the comparisons on the 21 baseline
characteristics. Both analyses indicate that there was no selection bias
(i.e., the randomization sequence was well concealed).’ The ENRICHD
Investigators (2003) stated that ‘To test for the potential for selec-
tion bias that results from research staff being able to predict the next
treatment assignment based on unmasking of previous assignments,
we used methods developed by Berger and Exner to test for selection
bias by examining the association between the predicted probabili-
ties of assignment to the intervention arm (assuming knowledge of
sequence of prior allocations) and selected baseline characteristics
and event-free survival within each treatment group. All tests were
nonsignificant, providing some assurance that any treatment group
imbalance on baseline factors and observed treatment effects are not
due to selection bias.’

Gerdesmeyer et al. (2003) stated that ‘The method of Berger and
Exner provided strong support against selection bias; comparing
baseline CMS [Constant and Murley Scale] values with conditional
probabilities that the next treatment is high energy or low energy
given knowledge of the sequence of prior allocations within the ran-
domization block, we obtained Pearson correlation coefficients of
0.03 and −0.01, respectively.’ The POTS Team (2004) stated that
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‘Concealment methods followed standard recommendations; no
between-treatment group differences at baseline or evidence of statis-
tically identifiable selection biases were apparent. We tested whether
there was any selection bias in treatment assignment by examining
the probability of each condition within each randomized block (i.e.,
0.25 for the first condition in the block and 1.0 for the fourth con-
dition within the block) and tested whether these probabilities inter-
acted with time, treatment condition, and site to predict outcome. No
evidence for selection bias was found (F(3, 281) = 0.06, p = 0.98).’

Asarnow et al. (2005) stated that ‘Screening/enrollment staff were
masked to randomization status and sequence and were different from
assessment staff. There was also a time delay between screening and
randomization (median 21 days). These design features prevented
protocol subversion due to selection bias in enrollment that might
occur with blocked randomization; we also applied the Berger-Exner
test to confirm this expectation.’ More elaboration on the results of
the testing, and on the delay, might have been helpful, but it certainly
appears from the description that the results showed a lack of selection
bias. The block size appears to have been two (‘To improve balance
across conditions in terms of clinician mix and patient sequence, we
stratified participants by site and clinician and blocked participants
recruitedfromthesamecliniciansinpairsaccordingtothetimeoftheir
enrollment’). This being the case, the delay mentioned above might
have been used to ensure that both patients in a block were identified
before either one was allocated. This step would certainly be expected
to minimize or even eliminate selection bias (Berger and Christophi,
2003). Each of these six trials can therefore be classified definitively
as being free of selection bias. There is no need to guess. The rest of
the trials, that were not subjected to any meaningful test of selection
bias, are generally simply assumed to be free of selection bias, but this
would be rather generous. It is probably more reasonable to call these
other trials inconclusive regarding the presence of selection bias.

It may be argued that 30 is not a large number of trials, relative to all
the trials that have been conducted, so selection bias does not appear
to be a major problem. But we have at least reasonable information
regarding selection bias for only the 30 trials described in Section
3.3 and the six additional trials discussed in this section, or 36 trials
altogether. So the 30 should be compared not to the total number of
trials conducted, but rather to the number of trials with any indication,
one way or the other, regarding selection bias. The denominator for
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the 30 should be 30 + 6, or 36. Using this appallingly small number as
a denominator, 30 no longer seems so small a numerator, as 30/36 =
83%. Is it true that 83% of all trials are tainted by selection bias? At first
glance, this seems highly unlikely, because if this were the case, then
one could infer that many of the treatments currently available (even
if not 86% of them) are actually useless, or possibly even harmful.
Surely such a state of affairs would be readily detected, and if we are
not aware that this is the situation, then this cannot be the situation?

One would hope for such transparency, but the reality is that
it is unusual for any single physician to have sufficient experience
with any given treatment to verify the claims supporting its use. As
Penston (2003, page 71) states, ‘It is, perhaps, one of the strangest
aspects of mega-trials that the supposed benefits of a drug are not ob-
servable in routine clinical practice. Given that thousands of patients
were required to show any difference, no single clinician would be able
to treat a sufficient number of patients in order to detect the difference
reported in the studies. Thus, as far as the clinician’s experience is con-
cerned, it makes no difference whether or not the result of a mega-trial
is valid.’ Conspiring with the limited number of patients comprising
a clinician’s experience with a given treatment is the fact that few,
if any, clinicians will treat comparable patients with an alternative
treatment to form the basis of a comparison.

Penston (2003, pages 98–99) adds ‘Unfortunately, unlike most sci-
entific disciplines in which fraud may be readily detected by attempts
at replication, the special circumstances surrounding mega-trials pre-
clude this crucial check on the validity of research. The complexity
and opaque nature of large-scale trials, the small treatment differ-
ences amenable to manipulation, the enormous potential profits for
a successful new drug in common chronic diseases and the whole
enterprise under the influence of those with vested interests in the
outcome are fertile ground for fraud. But, most crucial of all is the
strong likelihood that the fraud will remain undetected. Observations
made in routine clinical practice will never be sufficient to disprove the
results of a mega-trial, while replication is weakened to such an extent
that it no longer has the power to discriminate between authentic and
flawed research.’ One has to wonder, then, how anybody would know
if 83% of the treatments were useless.

Again, this is not the claim being made here, even if the claim
were that 83% of the trials are tainted by selection bias. First, even
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useful and efficacious treatments can be the subject of tainted trials,
in which case a true benefit is magnified (as opposed to the illusion
of a benefit being manufactured). Second, there is not a one-to-one
correspondence between trials and treatments – many treatments
are studied with multiple trials. Nevertheless, it would still be a cause
for concern if 83% of the trials were flawed in this way alone (to say
nothing of the other ways in which trials could be flawed). So is this
possible? In fact, this is possible, but this chapter does not provide
credible evidence to suggest that this is the case.

As Berger and Weinstein (2004) point out, ‘the serendipitous meth-
ods by which we encountered trials that we could evaluate for selec-
tion bias are not amenable to offering any credible indicator of the
true extent to which selection bias occurs in randomized trials, so our
examples may represent only the tip of the iceberg’. What this chapter
does suggest, however, is that the problem may occur on a regular
basis and, to the extent that it results in distortions of trial findings, is
deserving of more attention, so that we can better quantify its impact
on trial findings, and better minimize this impact. If medical journals
required authors of randomized clinical trial reports to disclose suffi-
cient details to allow for an assessment of selection bias, which could
be used in determining one aspect of trial quality and rigor, then we
would have a much better idea of just how prevalent the problem
is. This could be done without violating the HIPAA restrictions (see
Geller et al., 2004, for a discussion of these restrictions), because the
most basic test for selection bias requires only the patient accession
numbers, the restrictions used on the randomization, the treatment
allocations, and the response (see Section 6.5).

Note that we have not yet said anything about what impact selection
bias has on trial findings. This issue is taken up in Chapter 4, which
will complete Part I of the book, which might be taken as a statement
of the problem. The remainder of the book will attempt to provide
solutions to the problem, in terms of prevention (Chapter 5), detection
(Chapter 6), and correction (Chapter 7).
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4

Impact of Selection Bias
in Randomized Trials

We saw in Chapter 3 that the type of selection bias we described in
Chapter 2 appears to have occurred in numerous randomized trials.
We did not, however, discuss the impact this selection bias might have
in terms of biased parameter estimates, artificially low p-values, in-
flated Type I error rates, or artificially narrow confidence intervals.
All of these problems derive from the induced covariate imbalance,
which in turn derives from the prediction of future allocations. Dupin-
Spriet et al. (2004) quantified the predictability of future allocations in
trials using block randomization, whereas Berger (2005a) quantified
the resulting covariate imbalance and Berger et al. (2003a) quanti-
fied the inflation in the Type I error rate associated with selection bias.
These issues, specifically prediction of future allocations and the re-
sulting covariate imbalance that occurs when investigators use this
knowledge, in conjunction with rough estimates of the potential re-
sponses of prospective patients, to make enrollment decisions, will be
the focus of this chapter.

4.1 QUANTIFYING THE PREDICTION OF
FUTURE ALLOCATIONS: BALANCED
BLOCKS

Dupin-Spriet et al. (2004) quantified the predictability of future allo-
cations in trials using block randomization, with block sizes ranging

Selection Bias and Covariate Imbalances in Randomized Clinical Trials V. W. Berger
C© 2005 John Wiley & Sons, Ltd.
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Table 4.1 Predictability in trials with balanced randomization
reproduced from the Drug Information Journal, Vol. 38, p. 129, 2004

Number of arms Block length Block composition (*) Predictability

2 2 1, 1 0.500
2 4 2, 2 0.333
2 6 3, 3 0.250
2 8 4, 4 0.200
2 10 5, 5 0.167
2 12 6, 6 0.143
2 14 7, 7 0.125
2 16 8, 8 0.111
2 18 9, 9 0.100
3 3 1, 1, 1 0.333
3 6 2, 2, 2 0.200
3 9 3, 3, 3 0.143
3 12 4, 4, 4 0.111
3 15 5, 5, 5 0.091
3 18 6, 6, 6 0.077
4 4 1, 1, 1, 1 0.250
4 8 2, 2, 2, 2 0.143
4 12 3, 3, 3, 3 0.100
4 16 4, 4, 4, 4 0.077
4 20 5, 5, 5, 5 0.063

(∗) Block composition = number of treatment allocations by treatment arm.

from 2 to 20. Also, both balanced blocks (1:1 allocation) and un-
balanced blocks (2:1 allocation) were considered, as was the case in
which there are three or four arms, and 1:1:1, 2:2:1, and 1:1:1:1 allo-
cation. The results appear in their Tables 4.1 and 4.2, reproduced here.
Berger et al. (2003a) distinguished predictable allocations, which are
those whose conditional distribution differs from the unconditional
distribution specified by the allocation proportions, from deterministic
allocations, which are those for which the conditional distribution is
degenerate, having a positive probability of only one outcome. That is,
a predictable allocation is one for which one can gain an advantage by
considering the previous allocations and the restrictions on the ran-
domization, whereas a deterministic allocation can be deduced with
certainty given the previous allocations and the restrictions on the
randomization.
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Table 4.2 Predictability in trials with unbalanced randomization
reproduced from the Drug Information Journal, Vol. 38, p. 129, 2004

Number of arms Block length Block composition (*) Predictability

2 3 2, 1 0.444
2 6 4, 2 0.289
2 9 6, 3 0.214
2 12 8, 4 0.170
2 15 10, 5 0.141
2 18 12, 6 0.121
3 5 2, 2, 1 0.240
3 10 4, 4, 2 0.136
3 15 6, 6, 3 0.095
3 20 8, 8, 4 0.073

(∗) Block composition = number of treatment allocations by treatment arm.

For example, if there is 1:1 allocation within blocks of size 4, then in
the sequence ABAB only the fourth allocation is deterministic, because
it is known with certainty that it must be B, given that each block has
only two allocations to A and that two allocations to A have already
been made in this block. However, the second allocation is predictable,
because after observing the first allocation to A, there remain two
allocations to B and only one to A. The conditional probability of
B, then, is 2

3 , which differs from the unconditional probability of 1/2,
as determined by the specified allocation proportions (1:1). The first
and third allocations are both unpredictable, because given the prior
allocations and the block size of 4, the conditional probabilities are
still 1/2 to each of A and B, matching the unconditional probabilities.

The distinction between predictable allocations and deterministic
allocations is essential in understanding the results of Dupin-Spriet
et al. (2004). When tabulating the prediction of future allocations, one
could tabulate the frequency of predictable allocations, the frequency
of deterministic allocations, or the frequency of correct guesses. This
last measure would essentially assign ‘partial credit’ to predictable
allocations in proportion to just how predictable they are. So, for ex-
ample, consider again the case of 1:1 allocation within blocks of size 4.
There are six sequences,{AABB, ABAB, ABBA, BAAB, BABA, BBAA},
each with probability 1

6 . In each of them, the fourth allocation is de-
terministic. In the first and last sequences, the third allocation is also
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deterministic. Overall, then, (6 + 2)/24 = 1
3 of the allocations are de-

terministic with this allocation scheme. This is the entry tabulated
for 1:1 allocation with blocks of size 4 by Dupin-Spriet et al. (2004).
But certainly there are more predictable allocations than this. In all
sequences, the second allocation is predictable, with conditional prob-
ability 2

3 and 1
3 instead of 1/2 and 1/2. So the frequency of predictable

allocations is (6 + 6 + 2)/24 = 7/12, rather than 4/12.
The implications of these predictable allocations cannot be ignored,

for they increase the success rate in predicting future allocations. With
complete ignorance, one would guess right 50% of the time. If one
ignored the past allocations except for when the allocation was deter-
ministic, then one would be right 1

3 × 1
1 + 2

3 × 1
2 = 2

3 of the time. But
if one were instead to use the convergent or optimal guessing strategy,
guessing that the next allocation will be to the less well-represented
group (Matts and Lachin, 1988; Rosenberger and Lachin, 2002, Sec-
tion 6.5.2), then one would be right 4/12 × 1/1 + 3/12 × 2/3 +
5/12 × 1/2 = 17/24 of the time, instead of 16/24 of the time. This
quantity, the proportion of predictions that are expected to be correct,
may be the most relevant of the three for the purposes of quantifying
selection bias. However, the importance of this quantity does not min-
imize the importance of the other quantities, so we present all three
quantities, albeit for a less extensive set of block sizes and compositions
than presented by Dupin-Spriet et al. (2004).

Some of the calculations are a bit involved, so for the sake of clarity
and completeness we tabulate what may be considered worksheets
that show the calculations behind the primary table of this section,
starting with the simplest case of blocks of size 2, in Table 4.3A. The
columns indicate the possible sequences, the number of determinis-
tic allocations (with the deterministic allocations identified in paren-
theses), the number of predictable allocations (with the predictable

Table 4.3A Prediction in blocks of size 2 and 1:1 allocation

Block Deterministic Predictable Convergent

AB 1 (no. 2) 1 (no. 2) 0.5 + 1 = 1.5
BA 1 (no. 2) 1 (no. 2) 0.5 + 1 = 1.5
Total 2/4 = 50% 2/4 = 50% 3/4 = 75%
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Table 4.3B Prediction in blocks of size 4 and 2:2 allocation

Block Deterministic Predictable Convergent

AABB 2 (nos. 3, 4) 3 (nos. 2, 3, 4) 0.5 + 0 + 1 + 1 = 2.5
ABAB 1 (no. 4) 2 (nos. 2, 4) 0.5 + 1 + 0.5 + 1 = 3
ABBA 1 (no. 4) 2 (nos. 2, 4) 0.5 + 1 + 0.5 + 1 = 3
BAAB 1 (no. 4) 2 (nos. 2, 4) 0.5 + 1 + 0.5 + 1 = 3
BABA 1 (no. 4) 2 (nos. 2, 4) 0.5 + 1 + 0.5 + 1 = 3
BBAA 2 (nos. 3, 4) 3 (nos. 2, 3, 4) 0.5 + 0 + 1 + 1 = 2.5
Total 8/24 = 33% 14/24 = 58% 17/24 = 71%

allocations identified in parentheses), and the expected number of
correct guesses when the convergent strategy is used, tossing a coin
when the allocation is not predictable. We see that half of the alloca-
tions are predictable and deterministic when the block size is 2, and
that three of every four guesses will be correct. We now consider bal-
anced allocation with blocks of size 4 (2:2 allocation), in Table 4.3B,
and note that the proportion of correct guesses always exceeds the pro-
portion of deterministic allocations, but within a block it can be either
more than or less than the proportion of predictable allocations. For an
AABB block, for example, 75% of the allocations (3/4) are predictable
but one of these (the second) would lead to the wrong prediction, so
only 62.5% of the allocations would be guessed correctly.

Perhaps the most striking feature when comparing Tables 4.3A
and 4.3B is the variation in the magnitude of protection from selec-
tion bias when increasing the block size from 2 to 4. When considering
only deterministic allocations, as Dupin-Spriet et al. (2004) did, there
appears to be a large benefit in this increase in block size, as the propor-
tion of deterministic allocations decreases from 50% to 33%. Yet the
proportion of predictable allocations actually increases, and the pro-
portion of correct guesses decreases only slightly, from 75% to 71%. In
Table 4.3C we consider balanced blocks of size 6. There are 20 ways
to select three allocations out of six, and hence 20 possible blocks of
this composition, but by symmetry it suffices to present only the 10
that begin with A as the first allocation of the block.

Integrating Tables 4.3A, 4.3B, and 4.3C allows us to construct
Table 4.4. The column labeled ‘Deterministic’ records the proportion
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Table 4.3C Prediction in blocks of size 6 and 3:3 allocation

Block Deterministic Predictable Convergent

AAABBB 3 (nos. 4, 5, 6) 5 (nos. 2–6) 0.5 + 0 + 0 + 1 + 1 + 1 = 3.5
AABABB 2 (nos. 5, 6) 5 (nos. 2–6) 0.5 + 0 + 1 + 0 + 1 + 1 = 3.5
AABBAB 1 (no. 6) 4 (nos. 2–4, 6) 0.5 + 0 + 1 + 1 + 0.5 + 1 = 4
AABBBA 1 (no. 6) 4 (nos. 2–4, 6) 0.5 + 0 + 1 + 1 + 0.5 + 1 = 4
ABAABB 2 (nos. 5, 6) 4 (nos. 2, 4–6) 0.5 + 1 + 0.5 + 0 + 1 + 1 = 4
ABABAB 1 (no. 6) 3 (nos. 2, 4, 6) 0.5 + 1 + 0.5 + 1 + 0.5 +

1 = 4.5
ABABBA 1 (no. 6) 3 (nos. 2, 4, 6) 0.5 + 1 + 0.5 + 1 + 0.5 +

1 = 4.5
ABBAAB 1 (no. 6) 3 (nos. 2, 4, 6) 0.5 + 1 + 0.5 + 1 + 0.5 +

1 = 4.5
ABBABA 1 (no. 6) 3 (nos. 2, 4, 6) 0.5 + 1 + 0.5 + 1 + 0.5 +

1 = 4.5
ABBBAA 2 (nos. 5, 6) 4 (nos. 2, 4–6) 0.5 + 1 + 0.5 + 0 + 1 + 1 = 4
Total 15/60 = 25% 38/60 = 63% 41/60 = 68%

of deterministic allocations, and matches the corresponding entries
in the tables presented by Dupin-Spriet et al. (2004).

4.2 QUANTIFYING PREDICTION OF FUTURE
ALLOCATIONS: UNBALANCED BLOCKS

The situation is a little more complicated when the blocks are unbal-
anced, because in this case there is an apparent contradiction between
the convergent guessing strategy and the definition of predictable allo-
cations. Recall that an allocation is predictable if its conditional prob-
ability distribution, given the prior allocations and the restrictions on

Table 4.4 Prediction of future allocations with balanced
(1:1) blocks

Size Ratio Deterministic Predictable Correct guesses

2 1:1 50% 50% 75%
4 2:2 33% 58% 71%
6 3:3 25% 63% 68%
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the randomization, differs from the unconditional probability distri-
bution. In the case of two treatment arms and 1:1 allocations, this
simply means that the conditional probabilities are not 1:1. In this
case, the convergent strategy would agree with the definition of a pre-
dictable allocation, because it would involve predicting the treatment
arm that now has a higher conditional probability, by virtue of being
so far less well represented among the previous allocations. But now
consider a case in which the block size is 6 and the allocation propor-
tions are 4:2, so that the unconditional probability distribution is 2

3 to
one treatment group, say A, and 1

3 to the other treatment group, say B.
Now consider the block AABABA. The unconditional and condi-

tional probabilities of A for the six allocations are ( 4
6 , 4

6 ), ( 4
6 , 3

5 ), ( 4
6 , 2

4 ),
( 4

6 , 2
3 ), ( 4

6 , 1/2), ( 4
6 , 1

1 ), so clearly the sixth allocation is predictable and
the first and fourth allocations are not predictable. But what about the
second, third, and fifth allocations? All are strictly predictable by the
definition, whereas the third and fifth would not trigger a guess accord-
ing to the convergent strategy, because the conditional probability is
the same for either treatment group. Why, then, are these allocations
predictable? The conditional probability of B for this block is never
more than 0.5, so if one is going to try to assign a certain type of pa-
tient to treatment group B, then one would do so when this conditional
probability is at its maximum, 0.5.

That is, one who would attempt to bias the patient selection would do
so for the third and fifth allocations by betting that they will be to treat-
ment group B (and selecting patients accordingly) on the basis that
the conditional probability of B exceeds the unconditional probability
of B. In fact, one might deviate from the convergent strategy and guess
B even for the second allocation, despite the fact that its conditional
probability is 0.4, which is obviously less than 0.5, because at least
it is more than 0.33, the unconditional probability. We will call this
guessing strategy the directional strategy, as it is based on the sign (or
the direction) of the difference between the conditional and uncondi-
tional probabilities. This will differ from the convergent strategy only
when the unconditional allocation proportions are different for the
treatment groups, or for unbalanced blocks, which we now consider.

First, consider a block of size 3, with 1:2 allocation to A and B
(that is, each block has two patients allocated to B and one to A).
Then there are three types of block, specifically ABB, BAB, and BBA.
We consider these in Table 4.5A. Notice that the second and third
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Table 4.5A Prediction in blocks of size 3 and 1:2 allocation

Block Deterministic Predictable Convergent Directional

ABB 2 (nos. 2, 3) 2 (nos. 2, 3) 0 + 1 + 1 = 2 0.33 + 1 + 1 = 2.33
BAB 1 (no. 3) 2 (nos. 2, 3) 1 + 0.5 + 1 = 2.5 0.67 + 1 + 1 = 2.67
BBA 1 (no. 3) 2 (nos. 2, 3) 1 + 0.5 + 1 = 2.5 0.67 + 0 + 1 = 1.67
Total 4/9 = 44% 6/9 = 67% 7/9 = 78% 6.67/9 = 74%

allocations are predictable for each block type. This is because when-
ever the block size is prime, as it is in this case, every allocation after
the first is predictable. To understand why, consider that the denom-
inator of the unconditional probabilities is the block size, which is
prime, whereas the denominator of the conditional probabilities is the
number of allocations remaining in the block. No denominator other
than the first can then be a factor of the block size, and so the condi-
tional probability cannot equal the unconditional probability. That is,
no integer, when divided by 1 or by 2, can equal 1

3 or 2
3 . Likewise, no

integer, when divided by 4, 3, 2, or 1, can equal 2
5 or 3

5 , and so with
blocks of size 5 and 2:3 allocation to A and B (that is, each block has
two patients allocated to A and three to B), every allocation after the
first is predictable, as in Table 4.5B.

As expected, the convergent guessing strategy results in more cor-
rect guesses than the directional strategy, but not by a terribly large
margin. Moreover, after the first allocation is observed, either strategy
can be used. If A is observed first, then either strategy would result
in 13/16 correct guesses from this point on, whereas if B is observed
first, then either would result in 17/24 correct guesses. The only ad-
vantage of the convergent strategy, then, is in the prediction of the first
allocation. Returning now to the issue of the prime block size, we point
out that all allocations after the first are predictable if the allocation
proportions are in their lowest terms, even if the block size is not prime.
For example, if the block size is 6, and the allocation is 5:1, then every
allocation after the first is predictable, because neither 1

6 nor 5
6 can be

reduced (1 and 6 are relatively prime, as are 5 and 6). On the other
hand, 2

6 and 4
6 can be reduced, to 1

3 and 2
3 , respectively, so a block of size

6 with 4:2 allocation could have unpredictable allocations after the
third allocation, if the allocation among these first three allocations
were 2:1.
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Table 4.6 Prediction of future allocations with two arms

Size Ratio Deterministic Predictable Convergent Directional

2 1:1 50% 50% 75% 75%
3 1:2 44% 67% 78% 74%
4 2:2 33% 58% 71% 71%
5 2:3 30% 80% 72% 70.4%
6 3:3 25% 63% 68% 68%

We can use the results of Tables 4.5A and 4.5B to add additional en-
tries to Table 4.4. We do so in Table 4.6, and notice that there are many
more predictable allocations when the block is unbalanced than when
it is balanced. Despite this, the proportion of correct guesses is not dra-
matically different whether the blocks are balanced or unbalanced.
This is probably good news, because it means that not too much is lost
when the blocks are unbalanced. However, the proportion of correct
guesses is not overly sensitive to the block size either, and this is prob-
ably bad news, because it means that increasing the block size will not
by itself do too much to minimize the problem of selection bias.

4.3 QUANTIFYING COVARIATE IMBALANCE
RESULTING FROM SELECTION BIAS

In Sections 4.1 and 4.2 we studied the prediction of future allocations
when randomized blocks are used with equal or unequal allocation.
This prediction of future allocations is a problem only to the extent that
it leads to a separation in the covariate distributions across the treat-
ment groups. In this section we quantify the covariate imbalance that
would result from this prediction of future allocations, depending on
the extent to which an investigator exploits this prediction. Note that
‘even small imbalances in important prognostic factors could over-
whelm treatment differences, either producing apparent treatment
effects when none in fact are present or masking true treatment dif-
ferences when they do exist’ (Green and Byar, 1984).

Like Berger (2005a), we define G be the value of the conditional
probability required to bias patient selection. To clarify this definition
further, consider a binary covariate X, with values 1 for strong patients
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(likely to respond to either treatment) and 0 for weak patients (unlikely
to respond to either treatment). If P{E}>G, then a strong patient is en-
rolled; if P{E} < 1 − G , then a weak patient is enrolled; and if 1 − G <

P{E} < G , then the first eligible patient who consents is enrolled. A
consequence of this definition is that it does not apply only when there
is selection bias, because the case of no attempt to bias the enrollment,
even in the presence of prediction of future allocations, is represented
by G = 1.00. Also, if G is less than 1.00, but close enough to 1.00
that it exceeds every conditional probability less than 1.00 (there are
only so many values that these conditional probabilities can assume),
then the investigator attempts to bias the enrollment only when he
or she is certain of the next allocation. In a very real sense, then, G
determines the propensity of a given investigator to engage in sub-
version of the randomization, and can be calibrated to correspond to
what Feigenbaum and Levy (1996) called ‘saints’ (G = 1.00), ‘jerks’
(G just under 1.00, say G = 0.99), and ‘careful crooks’ (G = 0.50).

The actual covariate imbalance induced by prediction of future al-
locations depends on both the extent to which these future allocations
are predictable and the value of G. Phrased differently, the extent to
which the future allocations are predictable represents the potential
for selection bias, and places a limit on how unbalanced covariates
can be by this mechanism. Then G represents the extent to which the
potential is realized. Suppose that in the population from which pa-
tients are sampled X = 1 in 100P% of the patients, and X = 0 in the
other 100(1 − P )%. In the absence of selection bias, either because
G = 1 or because there is no prediction of future allocations, we would
expect this distribution of X overall to hold roughly within each treat-
ment group. The effect of any selection bias that may occur would be
to increase the proportion of X = 1 patients in one arm, say the active
arm, and to decrease the proportion of X = 1 patients in the other arm,
say the control arm. We define the imbalance of covariate X to be the
difference, across groups, in the proportion of X = 1 patients. Now if
G < 1, then the patient selection, be it X = 0, X = 1, or the first qual-
ified patient, will depend on the value of the conditional probability
of allocation to the active (experimental) treatment group. Of course,
this conditional probability, which we call P{E}, is itself unbalanced
across the treatment groups, as more often than not the higher values
will be assigned to the active treatment group and the lower values
will be assigned to the control group.
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Berger (2005a) provides intricate calculations of the covariate im-
balance as a function of the block size and G; which we reproduce
here. When the block size is 2, P{E} can assume only the values 0
(the second allocation in an EC block), 0.5 (the first allocation in a
block), and 1 (the second allocation in a CE block). This means that
the only critical threshold for G is 1.00. Suppose that these are N Blocks
(2N patients Total), if G = 1.00, then there is no selection bias and
there is no covariate imbalance. That is, the (expected) imbalance is
0, because the number X = 1 patients is each treatment group has
a binomial distribution with parameters N and P. If, however, G < 1,
then regardless of how much less than 1.00 it is, the second allocation
in each block will be used to select X = 1 patients (P{E} = 1 for a CE
block) or X = 0 patients (P{E} = 0 for an EC block).

Suppose that there are k CE blocks, and N − k EC blocks. Then
the active group will have k patients from CE blocks (all of which
will have an X value of 1) and N − k patients from EC blocks. The
number of X = 1 patients in the E group is then k + B(N − k, p),
where B(N − k, p) is a binomial random variable with parameters N
− k and p. In contrast, the C group will have N − k patients from EC
blocks (all X = 0), and k patients from CE blocks, so the number of
X = 1 patients in the C group is B(k,p). The expected imbalance given
the value of k is then:

P{X = 1|E , k} –P{X = 1|C , k} = E [(k + B(N − k, p))/N]

–E [B(k, p)/N]

= (k + Np − kp − kp)/N

= [k + p(N − 2k)]/N.

This expected imbalance ranges from p when k = 0 to 1 − p when
k = N, but perhaps what is most relevant is that when k assumes its
expected value of N/2 this expected imbalance is 1/2, or 50%. That
is, there would be, on average, 50% more X = 1 patients in the E
group than in the C group, perhaps 70% vs. 20% or 80% vs. 30%.
This expected imbalance of 50% is specific to the situation of blocks
of size two and G < 1. If the block size is larger than two, then the
computations are more involved. With blocks of size four and 2:2
allocation, for example, the possible values of P{E} are 0.00, 0.33,
0.50, 0.67, and 1.00. This means that the relevant thresholds are
0.67 and 1.00.
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Table 4.7 Joint distribution of the block position (BP), ranging from one
to the size of the block, and the probability P{E} of allocation to the
experimental group E, overall (all 24 patients) and by group (12 patients in
each of the E and C groups), six blocks of size four (one of each type: EECC,
ECEC, ECCE, CEEC, CECE, CCEE) reproduced by permission of Wiley-VCH

Configurations Total E Group C Group
BP P{E} P{C} (number) (24) (12) (12)

1 2/4 2/4 all six (6) 6 3 3
2 1/3 2/3 EECC, ECEC, ECCE (3) 3 1 2
2 2/3 1/3 CCEE, CECE, CEEC (3) 3 2 1
3 0/2 2/2 EECC (1) 1 0 1
3 1/2 1/2 ECEC, ECCE, CECE, CEEC (4) 4 2 2
3 2/2 0/2 CCEE (1) 1 1 0
4 0/1 1/1 EECC, ECEC, CEEC (3) 3 0 3
4 1/1 0/1 CCEE, CECE, ECCE (3) 3 3 0

Table 1 of Berger (2005), reproduced as Table 4.7 here, presents the
joint distribution of the block position within each block and P{E},
both overall and within each treatment group, when the block size is
fourandthereis2:2allocationwithineachblock.Inthiscase, theblock
position (BP) ranges from one to four, and P{E} depends on both BP
and the sequence within the block, which can be any of the six types,
{CCEE, CECE, CEEC, ECCE, ECEC, EECC}. Also presented is P{C}, which
is 1 − P{E} for a two-arm trial, as is assumed in Table 4.7. One can
readily see that as expected, the E group will have a disproportionate
number of patients randomized when P{E} is large, and the C group
will have a disproportionate number of patients randomized when
P{E} is small and P{C} is large.

Table 2 of Berger (2005), reproduced as Table 4.8 here, presents the
marginal distribution of P{E}within each treatment group, when the
block size is four. In addition, different values of G are considered,
to study the consequences of different biasing strategies. The P{E}
imbalance across treatment groups is retained from Table 4.7, but
stands out more now, as we have ‘integrated out’ the BP. When G = 1,
there is no attempt to bias the selection, and so for any value of P{E}
patients will be selected as they come, meaning that the probability
of a ‘good responder’ or a strong patient (X = 1) is the population
probability P. When G is between 2/3 and 0.99, however, there is
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Table 4.8 Marginal distribution of the probability P{E} of allocation to
the experimental group E by group, six blocks of size four (one of each type:
EECC, ECEC, ECCE, CEEC, CECE, CCEE). G is the P{E} value above which
‘good responders’ will be selected with probability one, and with probability
zero for P{E}<1-G

P{E} P{C} E Group C Group G = 1.00 0.67 < G < 0.99 0.5 < G < 0.66

0.00 1.00 0/12 4/12 P 0 0
0.33 0.67 1/12 2/12 P P 0
0.50 0.50 5/12 5/12 P P P
0.67 0.33 2/12 1/12 P P 1
1.00 0.00 4/12 0/12 P 1 1

selection bias, because when P{E} = 0 a weak patient (X = 0) will
be selected with certainty. When G is between 1/2 and 2/3, even the
allocations for which P{E} = 1/3 or 2/3 will be biased in this way, to
create an advantage for the E group. For no value of G will there be a
bias when P{E} = 0.5.

With blocks of size six and 3:3 allocation, the possible values of
P{E} are 0.00, 0.25, 0.33, 0.40, 0.50, 0.60, 0.67, 0.75, and 1.00.
This means that the relevant thresholds are 0.60, 0.67 and 0.75, and
1.00. Table 3 of Berger (2005), reproduced here as Table 4.9, is of
the same structure as Table 4.7, except that it treats the case of 3:3
allocation within each block of size six. For this same case, Table 4 of
Berger (2005), reproduced here as Table 4.10, is of the same structure
as Table 4.8.

Table 5 of Berger (2005), reproduced here as Table 4.11, summa-
rizes the results from the cases considered (balanced blocks of size
two, four, and six). As mentioned, the covariate imbalance induced by
selection bias for balanced blocks of size two is 50% for any value of
G below 1. With balanced blocks of size four, however, the covariate
imbalance induced by selection bias depends on G . Specifically, the
covariate imbalance is 0% for G = 1.0, 33% for 0.67 < G < 1.00,
and 42% for 0.5 < G < 0.67. Likewise, with balanced blocks of size
six, the covariate imbalance induced by selection bias depends on
G . Specifically, the covariate imbalance is 0% for G = 1.0, 29% for
0.75 < G < 1.00, 33% for 0.67 < G < 0.75, 38% for 0.60 < G <

0.67, and 41% for 0.50 < G < 0.60. For values of G close to 0.50,
the increase in block size does not result in very much reduction in the
covariate imbalance. This is a concern, because while the block size is
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Table 4.9 Joint distribution of the block position (BP), ranging from one
to the size of the block, and the probability P{E} of allocation to the
experimental group E, overall (all 480 patients) and by group (240 patients
in each of the E and C groups), 80 blocks of size six (four of each of the 20
configurations: EEECCC, EECECC, . . . ) reproduced by permission of
Wiley-VCH

BP P{E} P{C} Total (480) E Group (240) C Group (240)

1 3/6 3/6 80 40 40
2 2/5 3/5 40 16 24
2 3/5 2/5 40 24 16
3 1/4 3/4 20 5 15
3 2/4 2/4 40 20 20
3 3/4 1/4 20 15 5
4 0/3 3/3 10 0 10
4 1/3 2/3 30 10 20
4 2/3 1/3 30 20 10
4 3/3 0/3 10 10 0
5 0/2 2/2 20 0 20
5 1/2 1/2 40 20 20
5 2/2 0/2 20 20 0
6 0/1 1/1 40 0 40
6 1/1 0/1 40 40 0

Table 4.10 Marginal distribution of the probability P{E} of allocation to the
experimental group E by group, 80 blocks of size six (20 of each type). G is the
P{E} value above which “good responders” will be selected with probability one,
and with probability zero for P{E}< 1-G. For 1-G < P{E}< G, this probability P
matches the population ratio reproduced by permission of Wiley-VCH

P{E} P{C} E Group C Group G = 1.00 G = 0.99 G = 0.70 G = 0.65 G = 0.50

0.00 1.00 0/240 70/240 P 0 0 0 0
0.25 0.75 5/240 15/240 P P 0 0 0
0.33 0.67 10/240 20/240 P P P 0 0
0.40 0.60 16/240 24/240 P P P P 0
0.50 0.50 80/240 80/240 P P P P P
0.60 0.40 24/240 16/240 P P P P 1
0.67 0.33 20/240 10/240 P P P 1 1
0.75 0.25 15/240 5/240 P P 1 1 1
1.00 0.00 70/240 0/240 P 1 1 1 1
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Table 4.11 Expected covariate imbalance as a function of the block size
and G. G is the P{E} value above which “good responders” (covariate = 1)
will be selected with probability one, and with probability zero for P{E} <
1-G. For 1-G < P{E} < G, this probability P of selecting “good responders”
(covariate = 1) matches the population ratio reproduced by permission of
Wiley-VCH

0.50<G 0.60<G 0.67<G 0.75<G
Block Size <0.60 <0.66 <0.75 <0.99 G=1.00

2 50% 50% 50% 50% 0%
4 42% 42% 33% 33% 0%
6 41% 38% 33% 29% 0%

at the discretion of the sponsors of the trial, the value of G obviously
is not (other than through the choices the sponsors make concerning
which investigators conduct the trial; see Section 5.2).

4.4 QUANTIFYING THE BIAS RESULTING FROM
COVARIATE IMBALANCE

The covariate imbalance discussed in Section 4.3 is not itself a problem
except to the extent that it leads to biased parameter estimation, in-
flated Type I error rates, overly narrow confidence intervals, or overly
optimistic posterior probabilities. The extent to which these problems
occur depends on more than just the extent to which the covariate is
unbalanced; one needs to know also how predictive the covariate is
for the response. At one extreme, suppose that the selection covariate
(that is used as the basis of defining ‘strong’ and ‘weak’ patients) turns
out to be unrelated to all other covariates and also to the outcome
itself. In this case, the only covariate that is unbalanced happens to
be a bad covariate, in the sense of not predicting outcomes at all. If
this covariate is unbalanced across treatment groups because future
allocations were predictable, then selection bias has occurred, but this
selection bias that has occurred did not lead to biased parameter esti-
mation, inflated Type I error rates, overly narrow confidence intervals,
or overly optimistic posterior probabilities.

At the other extreme, if the covariate is a perfect predictor of ultimate
response, then its imbalance directly leads to the problems discussed
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Table 4.12 Probability of a significant result, one investigator reproduced
from Stastica Sinica 4, 1994, p 222

α = .05 α = .01
γ = η/σ 2k = 50 2k = 100 2k = ∞ 2k = 50 2k = 100 2k = ∞
.10 .063 .063 .065 .013 .014 .014
.20 .079 .080 .083 .018 .019 .020
.30 .098 .100 .107 .024 .025 .028
.40 .121 .124 .134 .033 .034 .039
.50 .147 .152 .166 .044 .046 .053

above. For example, the Type I error rate could be made arbitrarily close
to 1.00 by increasing the sample size and ensuring that the difference
in response rates across treatment groups becomes statistically signif-
icant. Proschan (1994) studied the Type I error inflation associated
with using one large block, as a function of sample size and how strong
(or weak) a patient can be selected for inclusion in a preferred treat-
ment group (in other words, how well the selection covariate predicts
the outcome variable). The results appear in Table 4.12 of Proschan
(1994), reproduced here.

For covariates that are neither useless not perfect predictors, the
results are somewhere in between these two extremes. One set of sce-
narios was studied by Berger et al. (2003a). Specifically, the blocks
were all balanced, and ranged from size 4 (2:2 allocation) to 8 (4:4
allocation), G was 0.50 or 0.99, and the strength of the covariate
varied as follows. The (continuous, normally distributed) responses of
weak, average, and strong patients was taken to be N(−D, 1), N(0, 1),
and N(D, 1), so D corresponds to η of Proschan (1994), measures the
strength of the covariate, and ranges from 0.0 to 2.0 (twice the vari-
ance) by 0.5. The procedures studied were randomized blocks of fixed
size, varied block sizes, and the maximal procedure (Section 5.3.4).
As expected, when D = 0.0 the Type I error rate was the nominal
rate, 0.05, regardless of other parameter values. But when D > 0.0,
the inflation in the Type I error rate was rapid. For example, even if
G = 0.99 (the situation likely to result in the least selection bias sub-
ject to G < 1.00), the fixed block size procedure had Type I error rates
of 0.05, 0.21. 0.50, 0.77, and 0.93 for D = 0.0, 0.5, 1.0, 1.5, and
2.0, respectively. This inflation of the Type I error rate was reduced as
the block size increased.
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Compared to the randomized block procedure with fixed block sizes,
the maximal procedure was more resistant to inflation of the Type I
error rate in every case studied. Sometimes, the difference was quite
pronounced. For example, if G = 0.99, the largest imbalance allowed
is 4 (corresponding to blocks of size 8), and D = 1.5, then a nominal
0.05 test would have an actual Type I error rate of 0.19 for the maximal
procedure and 0.43, more than twice as much, for the randomized
blocks procedure. Perhaps surprisingly, varying the block size did not
always result in a better procedure than using fixed block sizes, but
the line of demarcation between the situations more favorable to each
is clearly drawn. Specifically, when G = 0.05 the fixed block size were
better for any block size and for any value of D, whereas for G = 0.99
the varied block sizes were better for any block size and for any value
of D. As Berger et al. (2003a) explained, this is because the convergent
strategy tends to work better, not worse, when the block sizes are
varied, than when they are held fixed. See also Rosenberger and Lachin
(2002) for additional explanation of this phenomenon.

Ivanova et al. (2005) also studied the magnitude of alpha inflation
caused by selection bias. Specifically, in their Table III, based on a
simulation study, they found that the true Type I error rate could be
0.54, 0.29, 0.62, or 0.34, depending on how inclined the investigator
is to bias patient selection, the common response rate in each treat-
ment group, and the amount by which better responders respond
better than poor responders. The cases studied include a common re-
sponse rate of 50% or 70% and a cutoff for G of 0.50 or 0.99. In each
case, there was a 20% better response rate for good responders than
for medium responders and a 20% better response rate for medium
responders than for poor responders. That is, the common response
rates (independent of treatment group) were 30% for poor responders
and 70% for good responders (when medium responders had a 50%
response rate) or 50% for poor responders and 90% for good respon-
ders (when medium responders had a 70% response rate). For a 50%
response rate for medium responders, the true alpha level of a nominal
0.05-level test was 29% when G = 0.99 and 54% when G = 0.50.
For a 70% response rate for medium responders, the true alpha level
of a nominal 0.05-level test was 34% when G = 0.99 and 62% when
G = 0.50. These simulations were based on 5000 runs, and each
pseudo-sample had a sample size of 192. Clearly, a larger sample size
would exacerbate, and not solve, this problem.
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5

Preventing Selection Bias
in Randomized Trials

We saw in Chapter 2 that the type of selection bias we consider requires
certain key conditions to exist. Each of these conditions represents a
potential opportunity to intervene and prevent selection bias from
occurring. Specifically, as we have seen, selection bias occurs when
investigators are able to predict upcoming treatment assignments,
and then use this knowledge, in conjunction with rough estimates
of the potential responses of prospective patients, to make enrollment
decisions. Expected responders, for example, may be enrolled or denied
enrollment as the active treatment is or is not deemed likely to be
allocated next (Blackwell and Hodges, 1957). Selection bias induces
confounding to the extent that there is a resulting separation of the
distribution of the potential responses across the treatment groups.
Therefore, selection bias cannot occur if either there is no advance
knowledge of upcoming allocations or the investigator is unwilling or
unable to use this advance knowledge to make enrollment decisions.
Likewise, selection bias does not create confounding, even if it occurs,
if it does not result in a separation of the distribution of the potential
responses across the treatment groups.

Our goal, then, is to simultaneously minimize advance knowledge
of upcoming treatment assignments, minimize the use of whatever
advance knowledge we could not prevent to make enrollment deci-
sions, and minimize the impact on baseline balance across treatment
groups of any such biased enrollment decisions. Working backwards,
we address the last issue first.

Selection Bias and Covariate Imbalances in Randomized Clinical Trials V. W. Berger
C© 2005 John Wiley & Sons, Ltd.
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5.1 MINIMIZING THE IMPACT
OF SELECTION BIAS

The potential impact of selection bias depends on the heterogeneity,
with respect to potential responses, of the study population. At one
extreme, consider a study performed on clones who were not only
born identical to each other, but in fact had identical experiences after
birth as well. In such a case, all treatment groups would be identi-
cal even if attempts to bias the allocation were based on complete
knowledge of the upcoming treatments. There simply is no opportu-
nity to exploit differences in patient characteristics to create different
treatment group profiles if there are no differences in the patient char-
acteristics. In other words, we need not worry about selection bias in
such a case, even though it may well occur, because it would have no
impact on the trial. The only reason to even consider selection bias in
such a situation would be to assess its potential for occurring, which
would be of interest only for future studies not performed in clones.

At the other extreme, each patient would be either a non-responder
who would respond to no treatment under study or a responder who
wouldrespondtoanytreatmentunderstudy(Bergeretal.,2003b),and
so any appearance of a treatment effect would be an illusion created
by the fact that more responders were funneled to one group than to
another. This illusion is facilitated by selection bias, of course, and the
point is that selection bias in this situation would be likely to have a
profound effect on the reliability of the results. We see that the more
homogeneous the study group, at least within strata, the smaller the
potential impact of selection bias can be.

5.2 BIASED SELECTION OF INVESTIGATORS

We now address preventing selection bias directly, rather than trying
to minimize its impact. One step to take involves, of all things, selection
bias applied to the selection of investigators. Specifically, it seems rea-
sonable to check the track record of selection bias for each investigator
who is considered for conducting a clinical research study. It would
not be sufficient, of course, to equate all investigators on the basis of
being unaware of any accusations of selection bias. Rather, one would
need to be more proactive, and evaluate the extent to which their
previous trials appeared suspicious for selection bias. To be clear, it is
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the propensity to engage in biased patient selection, rather than the
impact of any such selection bias, that needs to be considered when
selecting investigators. One would then bias the selection of investi-
gators towards the inclusion of those investigators who do not appear
to bias the selection of their studies in the ways discussed previously.
Presently, this method for selecting investigators does not appear to
be in use, nor could it be without the availability of pertinent data
with which to make such decisions. This suggestion, then, actually
represents a multitude of suggestions, including that such data be
made available by trial sponsors and that such data, once made avail-
able (or conditional on their being made available), be used by other
sponsors.

5.3 MINIMIZING THE PREDICTION OF
FUTURE ALLOCATIONS

Having made the study population as homogeneous as possible (at
least within strata), and having strategically selected investigators,
we are now in a position to limit the potential for prediction of fu-
ture treatment allocations. True masking and allocation concealment
would, by their very definitions, accomplish the goal of a complete
elimination of any such prediction. Moreover, true masking would be
sufficient to ensure true allocation concealment.

However, as we saw in Chapter 2, claims of masking indicate only
that steps were taken in an effort to ensure masking, and claims of al-
location concealment indicate only that steps were taken in an effort
to ensure allocation concealment. In neither case can one be certain
that these steps were successful. Even in ‘masked’ trials, meaning tri-
als planned as masked or for which masking is claimed, true masking
is rarely attained (Day, 1998; Berger and Exner, 1999). This is why
Senn (1995) warned ‘that investigators should delude neither them-
selves, nor those who read their results, into believing [ . . . ] simply
because some aspects of their trial were double-blind that therefore
all the virtues of such trials apply to all their conclusions’. For our
purposes, the distinction between a masked study and an unmasked
study is that in the former case only some of the prior allocations will
be known at the time of the next allocation.

One threat to masking in trials planned as masked is the intentional
unmasking of the treatment assignment for a patient who requires
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emergency rescue medication for a serious adverse event. Sometimes
the nature of the rescue medication will depend on the study medica-
tion, and so for ethical reasons the masking needs to be broken (for this
patient). Because of this, it has become customary to break the blind
for any patient requiring rescue medication even if the nature of the
rescue medication does not, in fact, depend on the study medication
(Ayala and MacKillop, 2001). This represents an unnecessary threat
to masking, and should probably be avoided to the extent possible.
Another threat to masking in trials planned as masked is forcing the
randomization to be deterministic, possibly because a given center is
out of stock for all treatments but one (McEntegart, 2003). Minimizing
such unnecessary unmasking for either reason (intentionally break-
ing the masking or running out of stock) would help to keep masked
trials as well masked as possible.

Also, 99 out of 159 trials published in the British Medical Journal
between January 1997 and June 2001 (62%) were planned as un-
masked (Kjaergard and Als-Nielsen, 2002). So while it is certainly
helpful to mask to the extent possible, there is also a need to minimize
the extent to which knowledge of past allocations (the lack of mask-
ing) leads to fruitful prediction of future allocations. That is, we need
to minimize the patterns present in the allocation sequence. One could
use unrestricted randomization (Schulz and Grimes, 2002b) to elim-
inate all patterns and all prediction. One concern with unrestricted
randomization is the possibility that at some point in time the treat-
ment group sizes will differ enough that the time and treatment effects
are confounded. Hallstrom and Davis (1988) point out that

It is preferable to maintain these equal groups over time. If the enrollment
period is long enough that changes in potential confounding variables such
as new ancillary treatments or new referral criteria can occur, maintaining
the equal groups during the course of the study reduces a potential source of
bias. In trials in which the patients enter sequentially, a modification of strict
random assignment is used to ensure that the groups will have approximately
equal size and will be balanced over time.

Indeed, there have been trials which had patient characteristics
change during the recruitment process (Gansky and Koch, 2001).
Preventing this from causing chronological bias (Matts and McHugh,
1983), or confounding of the time and treatment effects, requires
restrictions on the randomization.
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5.3.1 The trade-off between selection bias and
chronological bias

To prevent treatment effects from being confounded with time effects,
some sort of restriction on the randomization would be required. For
example, one may specify that the final group sizes are the same (equal
allocation), or that the group sizes never differ by more than a given
amount. In practice, most trials use some sort of restricted random-
ization to force this type of balance. If enrollment is sequential over
time, then an unintended consequence of these restrictions is that they
create precisely the patterns that, along with unmasking, can lead to
prediction of future allocations, which in turn can lead to selection
bias. In fact, the more restrictive the allocation procedure, the greater
is the potential for selection bias. This is because each restriction rep-
resents the potential to predict a future allocation from a previous one,
or a set of previous allocations. This is easiest to see with the random-
ized block design with a given block size, because the set of restrictions
on the randomization can, for this design, be summarized with a sin-
gle number, the common block size. Specifically, the randomized block
procedure is characterized by its forced returns to perfect balance at
various points during the trial.

Specifically, there must be an equal number of patients allocated to
each treatment group within each block. Technically, this is not true,
as sometimes allocation is not 1:1, but even here whatever proportions
are prescribed must be adhered to within each block. But when there
is 1:1 allocation, the equality of numbers allocated within each block
translates to equality overall at the completion of each block. This is
demonstrated nicely, for the case of a block size of four, in Table 2 of
Beller, Gebski, and Keech (2002), reproduced as 5.1.

What is shown is the generation of the allocation sequence by means
of randomized blocks of size four. There are six types of block of size
four, so one could associate each of these with a number from one to
six, as shown in the second column, and then randomly select num-
bers from one to six. While there are more efficient ways of doing this,
what is shown in the first column is selection by randomly generating
a number from 0 to 9, and then ignoring the numbers other than
1, 2, 3, 4, 5, and 6. In the table, the 8 is ignored, because it does
not correspond to any specific type of block of size four. Such replace-
ment randomization was also discussed by Berger et al. (2003a) in the
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Table 5.1 The permuted block method of randomisation for a block size of
four, with A and B being treatment groups (A = intervention and B =
control, for example) Beller, E. M., Gebski, V. and Keech, A. C.
‘Randomization in clinical trials’. MJA 2002; 177:566–8. Copyright 2002.
The Medical Journal of Australia reproduced with permission

Random number sequence Permuted blocks Randomisation list

1 1. AABB
4 2. ABAB
8 3. ABBA
6 4. BBAA
5 5. BABA

(etc) 6. BAAB

1




A
A
B
B

4




B
B
A
A

6




B
A
A
B

5




B
A
B
A

A random number sequence is generated from a statistical textbook or computer.
Each possible permuted block is assigned a number (1 to 6 in the above example).
Using each number in the random number sequence in turn selects the next block,
determining the next four participant allocations. Numbers in the random number
sequence greater than the number of permuted block combinations (7, 8, 9 and 0 in
the above example) are not used to select blocks.

context of generating the maximal procedure, which will be discussed
in Section 5.3.4.

Whenusingrandomizedblockswith1:1allocationtotwotreatment
groups, the imbalance in the size of the treatment groups will never
exceed half the block size (Frane, 1998), which is often twice the
number of treatment arms (Pocock and Lagakos, 1982). That is, in
the common case of a two-arm trial, it would be common to use blocks
of size 4 (as in the table above), so that within each block two patients
are allocated to each treatment group. Likewise, with three treatment
arms there would often be blocks of size 6.
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But basing the block size on the number of treatment arms conceals
the true rationale for the strategic selection of a block size. The larger
the block size, the less restrictive the randomization, and therefore the
less predictable are the future allocations given knowledge of the past
ones. However, there is also the downside of a greater possibility of
gross imbalance at some point during the trial between the numbers
of patients allocated to each treatment group. In fact, the imbalance
can be as large as half the block size. We see, then, that smaller block
sizes result in greater balance over the course of the trial, but at the
expense of more prediction. One solution to the problem of optimal
selection of block sizes is to vary the block sizes. We will study this in
Section 5.3.3, but first we need to define some notation.

5.3.2 Notation

We use the same notation as Berger et al. (2003a). Specifically, we
consider a trial with two treatment groups, say A and B. Let D be
the allocation sequence (of length 2N, the number of patients allo-
cated), with Xi (D ) = 1 or 0 as D assigns the i th patient to treatment
arm A or B (this is a change from the notation of Section 4.3, when
X was used to denote a covariate). We note that the randomization
procedure, be it randomized blocks, varying blocks, or some other
procedure, is a probability distribution used to select D . After k pa-
tients have been enrolled, D has allocated Sk,A(D ) = ∑k

i=1 Xi (D ) and
Sk,B(D ) = k − Sk,A(D ) patients to treatment arms A and B, respec-
tively. The numerical imbalance is then Ik(D ) = Sk,A(D ) − Sk,B(D ).
The ‘position’ or ‘location’ {k, Ik(D )} of the randomization, be it for
theentiretrialor for justthestratum,isarandomwalkontheCartesian
plane, starting at (0,0), moving right if Xi (D ) = 1 or up if Xi (D ) = 0,
and ending at {2N, I2N (D )}. This random walk is observed as it un-
folds for an unmasked trial, but is concealed for a masked trial.

An allocation procedure, say P , consists of a set �(P ) of n(P ) se-
quences, and a probability distribution, often discrete uniform, on
�(P ). Clearly, the extent of chronological bias depends on both D
and P , but it also depends on time trends that occur during the
study. Nevertheless, we consider only the contribution of D and P
to chronological bias. These may be measured by the largest im-
balance over the course of the trial, I (D ) = max1≤k≤2N |Ik(D )| and
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I (P ) = maxD ∈ �(P )I (D ). Condition T specifies terminal balance,
I2N (D ) = 0, or equal allocation to the two treatment groups. The
extent of chronological bias to be allowed is measured by the max-
imum tolerated imbalance (MTI), which must be chosen to balance
the need to minimize the prediction of future allocations based on past
ones against the need to minimize imbalance and the corresponding
chronological bias (Senn, 2000; Atkinson, 2001). Condition B spec-
ifies adherence to the MTI of b throughout the trial, |Ik(D )| ≤ b for
k = 0, 1, 2, . . . , 2N.

Allocation procedure P will often be made explicit in the study pro-
tocol, and we consider it, but not the realized allocation sequence
D , to be known to the investigator even before the recruitment of
patients begins. If P is uniform, then by definition each D ∈ �(P )
has probability 1/n(P ). In this case, patient i is allocated to treat-
ment A with probability Pi,P {A} = ∑

D ∈ �(P )Xi (D )/n(P ). Given
the path{1, I1(D )}, {2, I2(D )}, . . . , {i − 1, Ii−1(D )}of random walk
D , or prior allocations, this probability becomes Pi,P {A|Ii−1(D )} =
n P (i, Ii )/n P (i − 1, Ii−1), where n P (k, Ik) is the number of paths from
(k, Ik) to (2N, 0). This posterior probability has been derived for the
randomized blocks procedure to detect selection bias (Berger and
Exner, 1999). Intuitively, the i th allocation of P is deterministic if
it is determined by �(P ) and the previous allocations; that is, if Xi (D )
is constant for all D ∈ �(P ) that match the observed initial segment
(of length i − 1) of D . More formally, the i th allocation of P is de-
terministic if Pi,P {A|Ii−1(D )} is 0 or 1. At the other extreme, the i th
allocation is unpredictable if and only if the prior and posterior dis-
tributions coincide, that is, if Pi,P {A|Ii−1(D )} = Pi,P {A}. Otherwise,
the allocation is predictable. Note that this does not imply that the
allocation is deterministic; it means only that one can predict it with
better chances than would be possible based on only knowledge of the
allocation procedure P . If P is symmetric, then Pi,P {A|0} = 0.5.

Conditions T and B have implications for the prediction of al-
locations. In particular, Condition B implies that Pi,P {A|b} = 0
and Pi,P {A| − b} = 1. Condition B applied with b = 1 forces each
even-numbered allocation to be deterministic; with b = 2 (block
size 4), every fourth allocation (and sometimes the one just before it) is
deterministic. Also, Condition T implies that Pi,P {A|2N − i } = 0 and
Pi,P {A|i − 2N} = 1, so any allocation for which |Ik(D )| = 2N − k,
including the 2Nth allocation, is deterministic. With unre-
stricted randomization, no allocations are deterministic, or even
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predictable. Condition F specifies 1:1 balance, or I2kb (D ) = 0, for
k = 1, 2, . . . , N/b. This condition is essentially the mechanism by
which the randomized block design achieves its terminal balance,
Condition T, and its ongoing balance, Condition B. Yet while Condition
F may imply both Condition T and Condition B, it is not implied by
their combination, and so it may be a stronger condition than is
needed. For the randomized block procedure, the allocation number i
can be represented as i = 2k(i )b + h(i ) for some block number k(i ) ∈
{0, 1, 2, . . . , (N/b) − 1} and block position h(i ) ∈ {1, 2, . . . , 2b}.
With this representation, we find that one consequence of Condition F
is that certain allocations are predictable, and others are determinis-
tic. Specifically, any allocation made when there is not perfect balance
is predictable (because the treatment so far less well represented
is more likely to be allocated next), and Pi,P {A|2b − h(i )} = 0 and
Pi,P {A|h(i ) − 2b} = 1 (Follmann and Proschan, 1994).

As in Section 5.3.1, smaller block sizes result in greater balance
over the course of the trial, but at the expense of more prediction. In
Section 5.3.1 we mentioned varying the block sizes as one possible
solution to the problem of optimal selection of block sizes. Having
defined notation, we are now in a position to pursue this option.

5.3.3 Varying the block sizes

The variable block procedure still uses blocks, and still forces returns
to perfect balance at the end of each block, but in theory these block
sizes would not be known, even if the randomization procedure itself
is known, because it would specify only the mechanism for selecting
the block sizes, but not the block sizes themselves. We now see a mis-
understanding similar to the one surrounding the precise meaning of
masking and allocation concealment. Specifically, there seems to be a
common perception that if the block sizes are varied, and not overtly
revealed, then they remain unknown, and therefore no prediction is
possible. However, as Rosenberger and Lachin (2002, Section 6.5.2)
point out, the variable block procedure may allow more prediction
than the randomized block procedure with fixed block size. Berger
et al. (2003a) confirmed this surprising result with a simulation study,
and explained the phenomenon with appeal to a set of conditions, or
restrictions, on a randomization procedure.
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Condition V specifies that Ik(D ) = 0, forced returns to perfect bal-
ance, at least a fixed number of times during the trial. Each sequence
in �(VBP), the set of admissible allocation sequences for the variable
block procedure, satisfies Condition V. Now the randomized block pro-
cedure forces such returns to perfect balance N/b times, once for
each block. If the variable block procedure forced this same number
of returns to perfect balance, then it would allow some of the larger
blocks to have more than 2b patients. This would entail a violation of
Condition B, which specifies that no block size may exceed 2b. But if
Conditions B and V are imposed together, then there could be no such
larger blocks to offset the smaller ones. To satisfy both conditions, the
variable block procedure would have to force more returns to perfect
balance than the randomized block procedure would. As mentioned
earlier, it may seem that these forced returns to perfect balance are
not a concern for the variable block procedure, because one would
not know the size of the present block anyway. But consider that if
|Ik(D )| = b, then Conditions V and B together would reveal both the
size of the current block and the block position of k.

Suppose, for example, that there are two treatment groups and that
b = 3, so that the largest block size would be 6. But if we vary the
block sizes, then not every block would be of size 6. Any given block
size would be 2, 4, or 6. We can specify the probability of each, or we can
specify that each block size occurs a given number of times and then
randomly permute the order in which these block sizes appear, but
these decisions are not relevant to the present discussion. If, at some
point during the trial, it is observed that the imbalance is |Ik(D )| = 3,
then the size of the present block could not be 2 or 4. By the process of
elimination, this present block would have to be of size 6. In fact, we
know more than this; we also know that we have just completed the
third allocation in this block, that there are three allocations left in this
block, and that the next three allocations must restore the balance, so
they are deterministic.

This mechanism by which future allocations can be predicted even
with varying block sizes applied only when the largest block size is
encountered and it is the extreme type that maximally separates the
treatment assignments, so that either the first half are to A and the
last half are to B or vice versa. One would not expect there to be too
many of these block types, and in fact one could even eliminate them
from consideration. This might be a good step to take, but it would not
eliminate the prediction of future allocations, because there is another
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mechanism by which future allocations can be predicted even when
the block sizes are varied.

Even for predictable but not deterministic allocations, when the in-
vestigator has a good idea of what is coming next but is not sure of it,
he or she can employ the convergent strategy, guessing that the next
allocation will be to the less well-represented group (Rosenberger and
Lachin, 2002, Section 6.5.2). Inflation of the Type I error rate will
depend on how often this guessing strategy is correct. Of course, the
convergent strategy can be used whether blocking is used at all, and if
it is, whether the block sizes are fixed or varied. But among the blocking
procedures with a given MTI, using a fixed block size uses the largest
blocks, the fewest blocks, and the fewest restrictions. This means that
fixed block sizes minimize both the forced returns to perfect balance
and the likelihood of the investigator guessing correctly. Varying the
block size forces the convergent strategy to be correct more often than
it otherwise would have been, and this is true regardless of whether or
not the investigator who is guessing knows that the block sizes have
been varied. This is how the variable block procedure can lead to sub-
stantial prediction of future allocations, selection bias, and inflation
of the Type I error rate.

5.3.4 The maximal procedure

Allocation procedures have been identified (Blackwell and Hodges,
1957; Stigler, 1969) that minimize selection bias against certain
guessing strategies, but these procedures generally do not satisfy
Condition B or control chronological bias. Conversely, the random-
ized blocks procedure, which does control chronological bias, allows
for substantial prediction, even if the block sizes are varied. This would
be troubling if the randomized block procedure were the only option for
controlling chronological bias, but fortunately it is not. One promising
alternative is the maximal procedure, which takes as input the extent
of chronological bias allowed by the randomized block procedure, as
measured by its MTI. A smaller MTI forces better balance, but requires
more restrictions, and this leads to more prediction.

If the randomized block procedure is proposed, with a given block
size, then the MTI is half this common block size. If, however, the
block sizes vary, then the MTI is half the largest block size. Either way,
there are other procedures that match this MTI, but may be more or
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less predictable than the randomized block procedure or the varied
block procedure. Subject to the MTI constraint, the goal is to find
the least restrictive allocation procedure, so as to make the procedure
more resistant to selection bias than the randomized block procedure
or the varied block procedure is. That is, we wish to constrain the
optimization, so that predictability is minimized subject to Conditions
T (terminal balance) and B (adherence to the MTI).

Reducing prediction involves increasing the cardinality of �, the
set of admissible allocation sequences (Berger et al., 2003a). Given
Conditions T and B, forced returns to perfect balance (Conditions V
or F) do not help control chronological bias; they do, however, in-
crease prediction. The cost (in terms of increased prediction) of the
additional restrictions does not buy us anything in terms of reduced
chronological bias. The maximal procedure is constructed by plac-
ing a uniform distribution on the maximal set of allocation sequences
that satisfy Conditions T and B, denoted �(MP). That is, the set of ad-
missible allocation sequences consists of those sequences that satisfy
Conditions T and B, without regard to Conditions V or F. Dropping
these latter restrictions is getting something for nothing. Figure 5.1 of
(Berger et al., 2003a) shows the different sequences that are possible
when the forced returns to perfect balance associated with random-
ized blocks are dropped. Table 5.2 of (Berger et al., 2003a) shows the
derivation of the number of admissible sequences for the maximal

Figure 5.1 Maximal procedure AABABABBBABA (left) with b = 2, and
an allocation by three randomized blocks of size 4 AABBAABBABAB (right).
The diagonal corresponds to perfect balance. Dashed lines are the boundaries
for the treatment imbalance allowed by each allocation procedure. Minimiz-
ing predictability while retaining balance through the use of less restrictive
randomization procedures, Berger, V. W. Ivanova, A. and Knoll, M. D. 2003,
copyright John Wiley & Sons, Ltd. Reproduced with permission.
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Table 5.2 (a) Number of sequences satisfying MTI = 2 by patients
randomized (k) and imbalance. Minimizing predictability while retaining
balance through the use of less restrictive randomization procedures,
Berger, V. W. Ivanova, A. and Knoll, M. D. 2003, copyright John Wiley &
Sons, Ltd. Reproduced with permission

2 0 1 (AA)0 3 0 9 0 27 0 81 0 243

121110987654321k � 0

1 1(A) 0 3 0 9 0 27 0 81 0 243 0
0 0 2 0 6 0 18 0 54 0 162 0 486

−1 1(B) 0 3 0 9 0 27 0 81 0 243 0
−2 0 1 (BB) 0 3 0 9 0 27 0 81 0 243

(b) Number of sequences satisfying MTI = 3 by patients randomized (k) and
imbalance

3 0 0 1 0 4 0 14 0 48 0 164 0
2 0 1(AA) 0 4 0 14 0 48 0 164 0 560
1 1(A) 0 3 0 10 0 34 0 116 0 396 0
0 0 2 0 6 0 20 0 68 0 232 0 792

−1 1(B) 0 3 0 10 0 34 0 116 0 396 0
−2 0 1(BB) 0 4 0 14 0 48 0 164 0 560
−3 0 0 1 0 4 0 14 0 48 0 164 0

121110987654321k � 0

For illustration only, the path of the sequence ABAABABBBBAA (chosen arbitrarily)
is bolded.

procedure. Table 5.3 of (Berger et al., 2003a) shows the number of
admissible sequences for the maximal procedure and the randomized
block procedure.

The maximal procedure bears some resemblance to the big stick
rule (Soares and Wu, 1983) and the biased coin design with imbalance
intolerance (Chen, 1999), except that the transition probabilities are
different. See Rosenberger and Lachin (2002, Section 3.6).

Predictability, and therefore selection bias, can be reduced with a
corresponding reduction in the number of restrictions on the ran-
domization. When using the randomized block procedure, this would
translate into increasing the block sizes. Unfortunately, this may lead
to a greater tolerance for imbalance, and therefore to chronologi-
cal bias. The reduction in predictability achieved by the maximal
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procedure relative to the randomized block procedure does not re-
quire a corresponding increase in imbalance (although the reduction
in predictability achieved by the maximal procedure with a larger MTI
relative to the maximal procedure with a smaller MTI does require a
corresponding increase in imbalance). In fact, the maximal proce-
dure offers the maximal reference set subject to the MTI constraint,
Condition B.

Let n(MPb,N ) and n(RBPb,N ) = [(2b)!/(b!)2]N/b be the number of
admissible sequences in �(MP) and �(RBP), respectively. Because all
D ∈ �(RBP) satisfy T and B, �(RBPb,N ) ⊂ �(MPb,N ) and n(RBPb,N) ≤
n(MPb,N) for all pairs (b,N). If b = 1, then each even-numbered allo-
cation needs to be to the treatment group other than the one to which
the preceding allocation was directed. In this case, the maximal pro-
cedure reduces to the randomized block procedure with N blocks of
size 2 each, n(MP1,N ) = 2N . Likewise, if b ≥ N, then we have a situa-
tion similar to when the shot clock is turned off in basketball because
there is less time remaining in the quarter than there is on the shot
clock. Here, the restriction imposed by Condition B is redundant given
Condition T, because if b ≥ N, then the imbalance could never ex-
ceed b anyway. In this case, Condition T is the only restriction, and so
the maximal procedure reduces to the randomized block procedure,
n(MPN,N ) = (2N)!/(N!)2, with one large block of size 2N.

For any N, only the two maximally separated sequences, for which
|IN (D )| = N (specifically, treatment A for the first N patients and
then treatment B for the last N, denoted AN BN , and treatment A
for the first N patients and then treatment B for the last N, denoted
BN AN ) are inadmissible for the maximal procedure when b = N − 1,
so n(MPN−1,N ) = [(2N)!/(N!)2] − 2. Table 1 of Berger et al. (2003a)
illustrates the use of Pascal triangles for a systematic derivation of
n(MPb,N ) for N ≤ 6 and b = 2, 3, as well as boundaries and the paths
of any of the admissible sequences. Berger et al. (2003a) showed that
the maximal procedure has fewer deterministic allocations than the
randomized block procedure, especially for larger sample sizes. Berger
et al. (2003a) also showed, by way of a simulation, that the maximal
procedure allows for less inflation of the Type I error rate than the
randomized block procedure, with fixed or varying block sizes. This
comparison did not take into account two additional ways in which
the maximal procedure can lead to less prediction of future alloca-
tions than the corresponding randomized block procedure. Table 5.4
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Table 5.4 Actual type I error rates of the RBP, variable block (VB) and
maximal procedure (MP), 2N = 24 hypothetical patients, with varying
mean response (�), 10 000 runs. Minimizing predictability while retaining
balance through the use of less restrictive randomization procedures,
Berger, V. W. Ivanova, A. and Knoll, M. D. 2003, copyright John Wiley &
Sons, Ltd. Reproduced with permission

G = 0.5 G = 0.99

RBP VB MP RBP VB MP

b = 2
� = 0.0 0.05 0.05 0.05 0.05 0.05 0.05
� = 0.5 0.27 0.29 0.22 0.21 0.11 0.13
� = 1.0 0.65 0.70 0.53 0.50 0.19 0.25
� = 1.5 0.91 0.94 0.80 0.77 0.31 0.41
� = 2.0 0.99 0.99 0.93 0.93 0.43 0.57

b = 3
� = 0.0 0.05 0.05 0.05 0.05 0.05 0.05
� = 0.5 0.23 0.26 0.17 0.15 0.08 0.09
� = 1.0 0.55 0.63 0.40 0.34 0.13 0.15
� = 1.5 0.83 0.89 0.64 0.57 0.19 0.24
� = 2.0 0.95 0.98 0.80 0.77 0.26 0.33

b = 4
� = 0.0 0.05 0.05 0.05 0.05 0.05 0.05
� = 0.5 0.21 0.24 0.16 0.12 0.07 0.08
� = 1.0 0.49 0.61 0.35 0.26 0.10 0.13
� = 1.5 0.76 0.88 0.56 0.43 0.14 0.19
� = 2.0 0.90 0.97 0.72 0.60 0.18 0.26

(Berger et al., 2003a) shows the Type I error rate inflation from the
maximal procedure, the randomized blocks procedure with fixed block
size, and the randomized blocks procedure with varying block size.

First, while prediction is still possible with the maximal procedure,
the deterministic allocations for the maximal procedure tend to occur
at allocations other than the ones for which investigators are accus-
tomed to guessing (those that are deterministic for the randomized
block procedure). Trying to bias patient selection by predicting up-
coming allocations involves both effort and risk, and so if enough early
attempts to engage in selection bias are thwarted, then a researcher
who was otherwise inclined to try to predict allocations might sense a
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futility in the endeavor, and stop trying, resulting in the complete elimi-
nation of selection bias. Second, with the randomized block procedure,
one could lose track of the position of the trial, and then pick it up again
later, knowing that the imbalance must be zero at certain points dur-
ing the trial. For the maximal procedure, however, one would need to
know just about all of the prior allocations, and certainly not just one
or two, to know the current location {i − 1, Ii−1(D )} of the random
walk, and therefore be able to predict where the path is going. This
means that if there is only partial unmasking in a masked trial, then
the advantage of the maximal procedure is even larger.

The maximal procedure was recently used in a randomized trial
in advanced non-small cell lung cancer (Socinski et al., submitted).
The rationale for using the maximal procedure, instead of random-
ized blocks, was the inability of the randomized blocks procedure to
adequately control both chronological bias and selection bias.

5.3.5 Extensions

For many combinations of sample sizes N and maximum tolerated
imbalance level b, n(MP) > 2n(RBP). When this is the case, the set
of admissible allocation sequences for the maximal procedure, even
stripped away of the admissible allocation sequences for the random-
ized block procedure, will still be larger than the set of admissible
allocation sequences for the randomized block procedure that were
stripped away. As such, one could prevent a predictable repeating
block sequence from occurring by chance and use as the reference set
�(MP)−�(RBP), and still have a large enough permutation sample
space to reduce conservatism and increase the power of design-based
permutation tests (Berger et al., 2003a). This might be a promising
approach in larger trials. The maximal procedure can also accommo-
date uneven allocation, say 3:4, by adapting Conditions T and B to
reflect the ideal ratio. Specifically, Condition T would now specify that
the final sample sizes in the groups are in exactly the ratio specified,
and Condition B would limit deviations from this ratio.

Prediction would be more difficult if Condition T were dropped and
deviations from the ideal (for example, 1:1) ratio were tolerated. Note
that Condition T is not redundant given Condition B, but nevertheless
in the presence of Condition B we find that Condition T offers limited
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additional benefit. The maximal procedure could easily handle this
modification by using as the set of admissible allocation sequences
those that satisfy Condition B, without regard to Condition T. Another
use of the maximal procedure is to facilitate the use of larger blocks
(and, hence, less prediction) with the randomized block procedure. To
see how this would work, note that generally there are no restrictions
within any block other than balance at the end, a within-block version
of Condition T. Using Condition T as the only restriction has been called
the random allocation rule (Schulz and Grimes, 2002b). Of course,
if the block size is too large, then Condition B would be violated. But
we could use excessively large blocks and within them replace the
random allocation rule with the maximal procedure (Condition B,
with or without Condition T), to ensure adherence to the desired MTI.

Instead of imposing hard boundaries that cannot be crossed, as
the maximal procedure does, one could penalize paths proportion-
ally to the imbalance they allow. Specifically, as proposed by Berger
et al. (2003a), one would enumerate all allocation sequences D (pos-
sibly satisfying Condition T) and for each one record I (D ), the largest
attained imbalance. Now the probability of selecting any given se-
quence D is P{D } = zmax(I (D )−b,0)/Z , where z is chosen from the
unit interval [0,1] to indicate a level of tolerance for imbalance,
Z = ∑

D∈� zmax(I (D )−b,0), and 00 is defined to be 1. Notice that z = 0
yields the maximal procedure with MTI = b, z = 1 yields unrestricted
uniform randomization, and for intermediate values of z we encourage
but do not force balance throughout the trial by penalizing sequences
proportionally to the maximum imbalance they allow. If z ≥ 0, then
there are no deterministic allocations.

As discussed earlier in this chapter, there may be emergencies that
either actually require knowledge of the intervention that was received
or appear to require knowledge of the intervention that was received.
Either way, this could lead to intentional unmasking of the alloca-
tion for the patient in question. If the randomized block procedure is
used, and the block in which the unmasked patient was randomized
is not yet complete, then Berger and Exner (1999) suggested that pa-
tients stop being recruited into this block, thereby leaving this block
incomplete. This is probably an important step to take in reducing
selection bias, but it could compromise adherence to the MTI and lead
to chronological bias. This presents less of a problem for the maximal
procedure, however.
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6

Detecting Selection Bias
in Randomized Trials

We have seen that even in properly randomized trials with alloca-
tion concealment, baseline imbalances in important covariates may
occur. Moreover, these imbalances may be systematic, and may not
reflect chance alone, as they would persist in future trials conducted
at the same institutions by the same investigators, provided that the
same subversions took place. These imbalances can lead to mislead-
ing conclusions, regardless of their origin (Vamvakas, 2000), and so
it may not be immediately obvious that there is any benefit in classi-
fying baseline imbalances as random or systematic. Indeed, Rothman
(1977) stated that ‘What matters in a particular trial is whether con-
founding in this trial is present and, if so, to what extent. It is of no
interest to learn whether the confounding which exists might be com-
patible with chance as to its etiology.’ While we might have agreed with
this position prior to the development of specialized methods to deal
with selection bias in randomized trials, we will now have to disagree
with it. The methods to correct for confounding (baseline imbalances
in important covariates) attributable to selection bias differ from the
methods to correct for confounding attributable to random variation.
Briefly, the confounding caused by an unbalanced measured covari-
ate is corrected by simple adjustment for this covariate. Clearly, there
is no way to adjust for a covariate, even if it is both prognostic and
observable, if it is not recorded.

If other remedial methods exist to correct for unbalanced latent
covariates, then it is worth knowing when there are unbalanced
latent covariates. We cannot offer any methods to detect randomly

Selection Bias and Covariate Imbalances in Randomized Clinical Trials V. W. Berger
C© 2005 John Wiley & Sons, Ltd.

123



JWBK019-06 JWBK019-Berger March 30, 2005 9:59 Char Count= 0

124 Detecting Selection Bias

unbalanced latent covariates, but there are methods to detect un-
balanced latent covariates that are the result of third-order residual
selection bias. These methods include an assessment of the cause,
random or systematic, of imbalance among the measured covariates.
After all, it seems reasonable to suppose that evidence of systematic im-
balances in measured covariates is more suggestive of systematically
unbalanced latent covariates than random imbalances in measured
covariates are.

Because of this, it is important to detect third-order residual selec-
tion bias when it is present. In other words, ‘Since . . . the trialist not
only treats but allocates we must have some way of satisfying ourselves
that it is the treatment and not the allocation which brings about the
effect. On this interpretation randomization is a necessary but not
sufficient guarantee for probabilistic calculations’ (Senn, 1991). In
developing methods to detect third-order residual selection bias when
it is present, we will consider the precise mechanism of third-order
residual selection bias, and the role played by the selection covariate,
the primary covariate, and the probability of allocation to the experi-
mental treatment P{E}, which for reasons to be explained we also call
the reverse propensity score (RPS). Recall that P{E}, or the RPS, is the
probability, conditional on all previous allocations and the allocation
procedure (restrictions on the randomization), that a given patient
will receive a given treatment. We first note that in the absence of
third-order residual selection bias, certain patterns in the data would
not be expected. We exploit this fact to develop formal tests, based
on these unexpected patterns, that can be used to detect third-order
residual selection bias.

6.1 BASELINE IMBALANCES IN OBSERVED
COVARIATES

One pattern that would not be expected in the absence of third-order
residual selection bias is a disproportionate number of substantial
baseline imbalances. It has become popular to denounce baseline test-
ing within the context of randomized trials as illogical, based on the
supposition that randomization by itself guarantees that any imbal-
ance must necessarily be random. If this were true, then the baseline
test would be of a null hypothesis that were known to be true, so any
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rejection of this null hypothesis would represent a Type I error (Senn,
1994). In fact, Rothman (1977) states that ‘For clinical trials with
proper randomization, any confounding that exists will be the result
of chance. In such an instance, statistical significance tests amount to
a futile exercise in verifying the adequacy of the randomization pro-
cess.’ But in fact, as we have seen, the premise is not true. If a covariate
is unbalanced beyond what can be explained by chance, then this sug-
gests some other mechanism for the imbalance, even if some theory
suggests that this should not be the case, or at least should not be the
case very often.

Recognizing the possibility of flawed randomization, Burgess,
Gebski, and Keech (2003) offer a somewhat more enlightened po-
sition on baseline testing compared to those who would abolish it
altogether, as they state that ‘Use of statistical tests to compare the
balance and/or values of baseline characteristics between the study
groups and the presentation of p-values are not uncommon. How-
ever, many authors assert that this is inappropriate. If randomization
has been performed correctly, chance is the only explanation for any
observed difference between groups at the outset of the study, in which
case statistical tests become superfluous. Consequently, only if it is sus-
pected that the randomization process has failed or was flawed, can
performing significance tests on the baseline data be readily justified.’
While confining the use of baseline tests to situations in which flawed
randomization is suspected is preferable to never using it, does this
approach go far enough? It seems to miss the fact that the basis for
the suspicion of flawed randomization can be the very tests of baseline
balance that would not be performed, under this approach, without
prior suspicion.

The parallel with the logic of efficacy testing is obvious. A significant
treatment effect is generally claimed if the primary efficacy analysis
has a sufficiently low p-value, because if chance is ruled out in a prob-
abilistic sense, then the attribution of the observed results must be to
the treatment effect (Senn, 1997, Section 7.2.1). For some reason,
parallel logic is not applied very often to baseline testing, in which
low p-values could again be taken as evidence of flawed randomiza-
tion. While the literature condemns the practice of formal testing for
baseline balance, fortunately this practice remains fairly common in
practice, although it is unlikely that the baseline tests are conducted
for the right reason. That is, it is likely that many practitioners who
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conduct baseline tests do so not out of the enlightenment of recogniz-
ing selection bias as a potential explanation, but rather to ascertain if
an unlucky realization of the randomization sequence was obtained.
It is immaterial whether or not practitioners recognize the distinction
between the accession numbers in one group being a random sam-
ple of all used accession numbers and the patients themselves in one
group forming a random sample of all randomized patients.

The former statement would be known to be true in a properly
randomized trial, whereas the latter would not. But even if the mis-
understanding described by Senn (1997, Section 7.2.1) is behind the
continued use of baseline testing, nevertheless these calculations re-
main useful, even if they are useful for a reason that is lost on those
who are performing these very calculations. When statistically sig-
nificant baseline imbalances are found, it is common to compare the
number found to the number that would be expected by chance alone.
This comparison may be useful. Indeed, one low baseline p-value out
of a large number of covariates tested would not, by itself, rule out
chance as a cause. Still, this comparison has its limitations, because
clearly there are patterns of baseline imbalances, even if only a few of
them among a large set of covariates, that would tend to raise suspi-
cion. For one thing, if there are 20 covariates and only one baseline
p-value is significant at the 0.05 level, then this may not be a cause
for concern, unless that single baseline p-value happens to be 0.0001
and not 0.049.

We see that the extent of imbalance in each covariate, and not simply
the number of unbalanced covariates at an arbitrary level such as
0.05, is quite relevant. In fact, without third-order residual selection
bias, the baseline covariate p-values should appear to be uniformly
distributed on the unit interval (Altman, 1985), meaning that the
proportion of baseline p-values falling under any given value, 0.05
or otherwise, should be roughly that value. If for some value k, with
0< k <1, substantially more than 100k% of the baseline p-values are
less than k, then this suggests selection bias.

That the null distribution of a p-value deviates from uniform on
the unit interval only because of discreteness (Berger, 2001) is true
regardless of whether that p-value is one-sided or two-sided. Generally,
baseline p-values are two-sided, but one-sided baseline p-values may
be more appropriate, because it is worth knowing if all or most of the
imbalances go in the same direction. That is, if a covariate is predictive
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of a response variable, then some values of this covariate are more
advantageous (in terms of bringing about good responses) than others.
If the advantage conferred by the numerous unbalanced covariates
all favour the same treatment group, then this is more suggestive of
third-order selection bias than a pattern of imbalances with roughly
equal numbers favoring each treatment group. See Sections 3.3.2,
3.3.27 and 3.3.29.

In fact, if the same group is consistently favored by the imbalances,
then this suggests selection bias regardless of the concordance or dis-
cordance between the specific group that is favored and the vested
interests the investigators appear to hold or not to hold. For example,
if the investigators appear to have an incentive to demonstrate the effi-
cacy of the active treatment, and each covariate imbalance favors the
active treatment, then this might raise suspicion. But even if each co-
variate imbalance favored the control treatment, this should still raise
suspicions, for at least two reasons. First, not all vested interests are
malicious. Even investigators with financial motives may act against
these motives if they perceive that these contrary actions are in the best
interests of their patients. There might then be an incentive to provide
the sickest patients with the novel therapy, based on the presumed
belief that these are the patients who need it most. For example, there
was suspicion of selection bias in the Canadian National Breast Cancer
Screening Study (Tarone, 1995; Boyd, 1997), even though the study
was designed to evaluate mammography and it was the mammog-
raphy arm that had the larger proportion of advanced breast cancer
detected at baseline by physical exam.

There is also a second reason to consider third-order selection bias
even if the imbalances work against the active treatment, but this ap-
plies to continuous covariates only. Imagine a trial of a drug to treat
a chronic condition, in which all patients are essentially of the same
severity but this severity varies over time within each patient, as part of
the natural history of the disease. In such a case, one might expect that
regression to the mean (Morton and Torgerson, 2003) would, even in
the absence of any treatment effect, cause those patients who appear
to have the most severe disease at baseline to improve the most. That is,
they have the most room for improvement. In such a case, if the anal-
ysis plan called for adjustment for baseline severity by analyzing not
the post-treatment severity but rather the change from baseline, then
there would be a distinct advantage to whichever treatment group had
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the most patients with severe baseline disease. That is, the apparent
advantage for the control group, with the healthier patients at base-
line, can ultimately turn into an advantage for the active treatment
group by virtue of the fact that the adjustment achieved by analyzing
the change from baseline overcompensates for the baseline imbalance
in the covariate disease severity. This concern does not apply to nom-
inal or binary covariates, because adjustment for these stratification
variables consists in comparing the treatment groups within each level
of these covariates. With this type of model-independent adjustment,
no overadjustment is possible.

In light of the aforementioned concerns, one test for third-order se-
lection bias is based on how uniformly (on the unit interval) the one-
sided p-values as an entire group appear to be. As Altman (1985)
points out, ‘A more powerful approach is to consider the actual
p-values observed for all baseline comparisons’. It would be nice if
the converse were true, so that having the set of baseline p-values ap-
pear to be uniformly distributed on the unit interval suggested a lack
of selection bias. We will now explore this converse. It is not common
to specify a primary covariate, but imagine if it were (nearly) univer-
sally accepted that a certain covariate were the most prognostic of all
covariates for the outcomes of interest. For example, Gleason (1977)
stated that among prostate cancer patients, ‘stronger and more regu-
lar correlation was found between mortality rates and this averaging
pattern score . . . than with any other histological scale’. The pattern
score might then be taken to be the primary covariate.

If, in a randomized study of prostate cancer patients, only a few of
themanybaselinecovariatesareunbalancedacrosstreatmentgroups,
then this may not be sufficient to ensure valid treatment comparisons
if the pattern score (now called the Gleason score) is one of the unbal-
anced covariates. Moreover, if hundreds of such trials are examined,
each with roughly 20 covariates, and in each one the Gleason score
is unbalanced, then this would suggest that more than chance is at
play, even if it is the only unbalanced covariate. With this in mind,
it would seem that an examination into the potential for third-order
residual selection bias would not be complete without special atten-
tion afforded to particularly predictive covariates, such as the Gleason
score. More generally, suppose that the covariates could be ranked by
predictive ability for the primary response variable. Certainly, it is also
possible to rank the covariates by the degree of imbalance (either abso-
lute magnitude or the p-value). These two rankings, one by predictive
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ability and one by imbalance (one-sided), should be checked for corre-
lation with each other. If they are correlated, then this would suggest
that there is more than chance at play, and perhaps there is third-order
selection bias. It is also possible to investigate the cause of a single base-
line imbalance, random or selection bias, by using the flow diagram
in figure 2.6.1.

6.2 TESTING FOR SELECTION BIAS WITHOUT
BASELINE ANALYSES

We see that finding no more than 5% of the covariates to be unbalanced
at the 5% level does not ensure a lack of selection bias because those
covariates that are unbalanced at the 5% level may have p-values
that are much lower than 0.05, and/or may be the most prognostic
covariates. There is also a third reason to refrain from excessive ex-
citement when finding that no more than 5% of the covariates are
unbalanced at the 5% level, specifically the potential failure to mea-
sure some prognostic and unbalanced covariates (Green and Byar,
1984; Moses, 1995). It may seem that there is no way to study poten-
tial imbalances in latent covariates, but in some cases there is such a
method. Indeed, we offer no methods for identifying unbalanced latent
covariates. However, the presence of unbalanced measured covariates
may indicate also the presence of unbalanced latent covariates if the
imbalances in the measured covariates appear to be the result of third-
order selection bias, and not the result of chance alone. Of course, we
have not yet discussed how to distinguish random observed baseline
imbalances from systematic observed baseline imbalances. We take
up this issue now.

6.3 THE SELECTION COVARIATE

The ultimate covariate is the set of potential responses a given patient
would have to each treatment under study (Greenland and Robins,
1986; Frangakis and Rubin, 2002). In general, this ultimate covari-
ate is not observed, but it can be estimated or predicted. We define the
selection covariate as the estimated ultimate covariate, at the time a
decision is made to enroll a screened patient or deny enrollment to
this patient. The selection covariate may be measured, or it may be
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based in part on observable but unmeasured patient characteristics,
in which case it is unmeasured. We formulate the mechanism of third-
order residual selection bias to have a causal pathway that includes
this selection covariate, which is used to form the RPS intervals that
are used to make enrollment decisions. For example, the decision may
be to enroll the subject if both the selection covariate and the RPS are
large or both are small, but not otherwise, or if the RPS falls within the
RPS interval of a candidate subject. Third-order residual selection bias
represents an effort to create an imbalance in this selection covariate.
The effort is successful to the extent that the RPS predicts the actual
treatment assignments and to the extent that discretion can be exer-
cised in selecting subjects with specific values of the selection covariate
to match the RPS value. This means that strong evidence of third-order
residual selection bias serves also as strong evidence of the existence
of an unbalanced selection covariate. If this is the case, yet none of
the measured covariates are unbalanced, then the selection covariate
has not been identified, and must necessarily be latent. By ‘latent’ we
mean observed but not recorded, as opposed to not observed at all.

The concern that latent covariates may be unbalanced even when
there are no unbalanced measured covariates is not so far-fetched,
considering that latent covariates, such as subjective health perceived
by a patient, can predict clinical outcomes and even mortality, even
after adjusting for other observed predictors (Fayers and Sprangers,
2002). Hence, proper detection of third-order selection bias requires
a method that is not based exclusively on the extent of baseline im-
balances in the observed covariates. We now discuss such methods.
Some specific methods to detect third-order selection bias utilize the
RPS and the screening log.

6.4 THE ROLE OF THE REVERSE PROPENSITY
SCORE IN THIRD-ORDER RESIDUAL
SELECTION BIAS

Recall that the mechanism for third-order selection bias is to first note
that the RPS serves as the predicted treatment assignment, and hence
would be expected to differ across treatment groups. That is, similar to
a situation described by Heckman et al. (1996), both the support and
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thedistributionoftheRPSdifferacrossthetreatmentgroups.Knowing
this, an investigator intent on inducing confounding would try to
correlate the selection covariate with the RPS by selecting patients
with large values of the selection covariate when the RPS value is large,
and by selecting patients with small values of the selection covariate
when the RPS value is small. How large and how small depend on
the circumstances. To the extent that the RPS predicts the actual
treatment assignment and to the extent that patients can be selected
so as to ensure the high correlation of the selection covariate with
the RPS, the selection covariate will be unbalanced across treatment
groups, again with both different supports and distributions across
the treatment groups.

Strong associations between the RPS and any covariate would sug-
gest not only third-order selection bias but also that the associated
covariate was, or contributed to, the selection covariate. If the selec-
tion bias is ‘unobservable’ (using the terminology of Berger and Exner,
1999), then the selection covariate is latent, and is not strongly asso-
ciated with any of the observed covariates (which themselves may be
balanced or unbalanced). Note that our method for deciding if a given
imbalance in a given covariate is random or selection bias is to evalu-
ate the correlation of that covariate with the RPS. This may constitute
progress, but it still does not tell us how to detect unobservable selec-
tion bias. Recall that when the selection covariate is latent, its identity
is known to the investigator but not to any reviewer of the study, as
it is observed but not recorded. In this case, a reviewer would need to
think like the investigator, and ask how to best induce confounding
with such a latent selection covariate.

From the perspective of the investigator trying to induce confound-
ing, the best patient selection strategy would be to ensure that the
selection covariate would be maximally correlated with the RPS. For
example, if the selection covariate takes three values, say low, medium,
and high, and if randomized blocks are used with a fixed block size of
2, then the RPS will also take on three values, specifically 0.0, 0.5, and
1.0. The patient selection would then be to select low, medium, or high
as the RPS value is 0.0, 0.5, or 1.0. Of course, if the selection covariate
has more or fewer categories than the RPS, then such a one-to-one
correspondence cannot be established. One might wish to take the
conservative approach of defending against the worst-case scenario
in which a one-to-one correspondence can be established between
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the RPS levels and the covariate levels. In this case, we do not need to
know the selection covariate, because it is functionally equivalent to
the RPS itself. This means that the RPS can itself be used as a covariate
to separate the effects of selection bias and the intervention.

The RPS is an unusual covariate. Senn (1997, Section 7.1) de-
scribed three types of covariates, specifically demographic character-
istics, outcome measures taken at baseline, and what are essentially
time-varying correlates other than the primary outcome. The RPS
does not fall into any of these categories, as it is not an inherent char-
acteristic of the patient, and in fact becomes associated with the patient
only when randomization of this patient occurs. Once the patient is
randomized, the RPS value (for that patient) will not change, so the
RPS is not time-varying, nor is it an outcome measure. Yet to the
extent that there is third-order residual selection bias, the RPS is in-
formative about the patient characteristics, as it conveys information
about the circumstances (likelihood of allocation to either treatment
group) under which it was deemed appropriate to randomize this pa-
tient. That is, knowing that the patient was selected to be randomized
at this particular RPS value tells us, in the presence of third-order
residual selection bias, something about how well the investigator
thought the patient would respond. In the presence of unobservable
third-order residual selection bias, the RPS may well be an indepen-
dent predictor of outcomes, even above and beyond the prediction
possible with other covariates (with which it is not associated). The
question remains, though, how can we best use the RPS to determine
if third-order selection bias is present?

6.5 USING THE REVERSE PROPENSITY SCORE
TO TEST FOR SELECTION BIAS: THE
BERGER–EXNER TEST AND GRAPH

Associations of the RPS and response variables are to be expected if
the treatments differ in their effectiveness. This is because, with or
without third-order residual selection bias, the RPS is associated with
the actual treatment assignment by virtue of the restrictions on the
randomization (there is no such association if unrestricted random-
ization is used), and the actual treatment effects may be expected to
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be associated with the response variables. However, Berger and Exner
(1999) recognized that within a treatment group, the RPS should not
be associated with any response variable. Consider that if the RPS
is associated with a response variable within a treatment group, say
the active treatment group, then this suggests that the mechanism of
action of the active treatment has, on its causal pathway, the likeli-
hood with which it was to be assigned. That is, consider two identical
clones, each to be treated for the same disease. One is given the active
treatment. The other has his treatment determined by the toss of a
coin.

Now suppose that by chance alone, the coin turned up heads, and
so this clone also was treated with the same active treatment. Having
removed all sources of variation other than the process by which the
treatment decision is reached (that is, the RPS), any difference in
the outcomes of the two clones would have to be attributable to the
RPS itself. There are at least two possible mechanisms by which the
RPS could exert such an influence. One is third-order selection bias,
although this is not possible in the hypothetical case now considered,
because identical patients were selected for each ‘group’. The other
mechanism is observation bias caused by the knowledge that one
clone was to receive the active treatment, and so might be scored
differently (at least on subjective assessments) than the other clone,
whose treatment identity was not known.

Contrary to conventional wisdom, a lack of masking can have an
effect even on objective endpoints. For example, a lack of masking can
lead to increased attention and/or ancillary care for one group, and
this in turn can lead to truly healthier patients in that favored group,
with the health disparity reflected even in objective endpoints. Nev-
ertheless, in the case of an actual trial using a heterogeneous study
population (not the clones that we considered in the hypothetical ex-
ample), we still consider third-order residual selection bias to be the
more plausible attribution if an objective endpoint is associated with
the RPS within a treatment group (and within any stratum that was
used in the randomization). This is true especially in an unmasked
or a single-masked study, because in these cases any observation bias
would be expected to be based not on the RPS, but rather on the
actual treatment assignment, that would be known. In this case, ob-
servation bias would be completely confounded with the differential
effects of the treatments, so neither would be identifiable. Yet neither
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the observation bias nor the effects of the treatments would affect out-
comes differentially across RPS values within a treatment group. Even
in a double-masked study, third-order residual selection bias requires
unmasking, so again observation bias should be confounded more
with the treatment effects than with the RPS effect.

The study of the association of the RPS and objective response vari-
ables within each treatment group (and within any stratum that was
usedintherandomization) isthebasis fortheBerger–Exnertest(Berger
and Exner, 1999). Logistic regression, the analysis of covariance, the
Cochran–Mantel–Haenszel test, Cox regression, or another test may
be used as appropriate, depending on the nature of the objective re-
sponse variable and how many RPS levels there are. In fact, the RPS
can even be treated as an ordinal, rather than a continuous, covariate.
Berger et al. (2004) provided methodology for this type of adjustment.
The goal here is to determine if there is third-order residual selection
bias (later we will discuss another objective that is based on essentially
the same model), so in any of these models the RPS would need to be
fitted after the actual treatment variable. The combination of positive
findings from the Berger–Exner test and the lack of imbalances among
the recorded covariates would provide strong evidence that there is
an unbalanced latent covariate, or unobservable third-order selection
bias.

The Berger–Exner graph is a nice visual display that can reveal se-
lection bias if it is there, or rule it out if it is not. Like the Berger–Exner
test, the Berger–Exner graph requires data at the patient level. For
either the Berger–Exner test or the associated Berger–Exner graph, it
is important not to mis-specify the block size, because doing so can
lead to spurious findings. To demonstrate, consider a randomized trial
entitled ‘A Double-Blind Clinical Trial in Carcinoma of the Lung of
Immunotherapy as an Adjuvant to Surgery Stage I (Non-Small Cell)’
(Mountain and Gail, 1981). There were several centers, but we con-
sider only the data from the Seattle Center. Within each center, includ-
ing Seattle, there were eight strata, defined by age less than 60 years
or at least 60 years; squamous or non-squamous; and pneumonec-
tomy or subtotal resection (so 2 × 2 × 2 = 8). BCG (Tice Strain) and
Isoniazide (INH) were compared to placebo. We consider only the non-
squamous patients with subtotal resection, so this includes two strata
(stratum 4 based on age less than 60 years, with 18 patients, and
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Table 6.1 Stratum 4, Lung Carcinoma Study (Mountain and Gail, 1981)

PATIENT TREAT CENSORED SURVIVAL REMAIN REMAIN 2 R P S 4

01 2 1 1863 4 2 0.50000
02 1 0 4186 3 1 0.33333
03 2 0 4157 2 1 0.50000
04 1 0 4099 1 0 0.00000
05 1 0 3776 4 2 0.50000
06 2 0 3969 3 2 0.66667
07 1 1 3823 2 1 0.50000
08 2 1 2541 1 1 1.00000
09 2 1 743 4 2 0.50000
10 1 1 530 3 1 0.33333
11 1 1 379 2 1 0.50000
12 2 1 698 1 1 1.00000
13 1 1 207 4 2 0.50000
14 2 1 1620 3 2 0.66667
15 2 0 3316 2 1 0.50000
16 1 0 3190 1 0 0.00000
17 1 0 3100 4 2 0.50000
18 2 1 1968 3 2 0.66667

stratum 8, based on age at least 60 years, with 29 patients). The data
for stratum 4 are as follows (note that BCG is coded as Treatment 1,
and placebo is coded as Treatment 2):

The documentation for this trial available to this author did not in-
cludeablocksize,but it isquitecommonfortwo-armtrials touseblocks
of size four (see Section 5.3.1), and so this was used in the calculation
of the RPS in Table 6.1. The Berger–Exner graph displayed in figure 6.1

We notice several important features of this graph. First, whichever
treatment was more likely to be assigned actually was assigned. Sec-
ond, when considering intermediate RPS values ( 1

3 , 1/2, and 2
3 ), the

survival times do not appear to be influenced by either the RPS value
or by the treatment group to which the patient was assigned. However,
when Treatment 1 was certain to be assigned (RPS = 0), the survival
times are all greater than 3000, and when Treatment 2 was certain
to be assigned (RPS = 1), the survival times are all less than 3000.
This causes the survival times among Treatment Group 1 to be longer
when RPS = 0 than when RPS = 1

3 or 1/2. Likewise, the survival times
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STRATUM=4 

Plot of SURVIVAL*R_P_S_4.  Symbol is value of TREAT.
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Figure 6.1 Berger–Exner graph for stratum 4 and block size 4, lung carci-
noma study.

among Treatment Group 2 patients tend to be shorter when RPS = 1
than when RPS = 2

3 or 1/2. This pattern is suggestive of selection bias,
although the sample size is sufficiently small to preclude a definitive
conclusion. The same trend emerges in stratum 8, in Table 6.2.

The Berger–Exner graph for Stratum 8 is as follows.
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Table 6.2 Stratum 8, Lung Carcinoma Study (Mountain and Gail, 1981)

PATIENT TREAT CENSORED SURVIVAL REMAIN REMAIN 2 R P S 4

01 2 1 641 4 2 0.50000
02 1 1 616 3 1 0.33333
03 1 1 1577 2 1 0.50000
04 2 1 504 1 1 1.00000
05 2 1 1600 4 2 0.50000
06 1 0 3013 3 1 0.33333
07 1 1 2089 2 1 0.50000
08 2 1 2492 1 1 1.00000
09 1 0 2727 4 2 0.50000
10 2 0 3240 3 2 0.66667
11 1 1 194 2 1 0.50000
12 2 1 457 1 1 1.00000
13 1 0 3780 4 2 0.50000
14 2 0 3900 3 2 0.66667
15 2 1 1583 2 1 0.50000
16 1 1 3041 1 0 0.00000
17 1 1 262 4 2 0.50000
18 2 1 480 3 2 0.66667
19 2 0 3307 2 1 0.50000
20 1 1 3332 1 0 0.00000
21 2 0 3452 4 2 0.50000
22 1 0 3312 3 1 0.33333
23 1 0 3209 2 1 0.50000
24 2 1 39 1 1 1.00000
25 1 0 3289 4 2 0.50000
26 2 1 443 3 2 0.66667
27 1 1 1675 2 1 0.50000
28 2 1 31 1 1 1.00000
29 2 1 1041 4 2 0.50000

The same pattern emerges, with long survival times for RPS = 0
values, short survival times for RPS = 1 values, and intermediate sur-
vival times for intermediate RPS values. A stronger pattern emerges
when the two strata are combined.

The trend in this graph, with the association between RPS values
and survival times within treatment groups, is suggestive of selection
bias. Indeed, this might have made a good example for Chapter 3,
except that these calculations were all based on a block size of four.
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STRATUM=8 

Plot of SURVIVAL*R_P_S_4.  Symbol is value of TREAT.
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Figure 6.2 Berger–Exner graph for stratum 8 and block size 4, lung carci-
noma study.

Again, this author was unable to ascertain what the block size actually
was, and a block size of four appeared to be reasonable, except that
another pattern is clear in the data, namely that the data are also
consistent with a block size of two. This does not, of course, mean that
the block size could not have been four, but it is possible to compute
the probability of this event if one is willing to assume that the block
size could have been only two or four, and the two are equally likely. If
the block size is indeed two, then the probability of consistency with a
block size of two is 1. If, on the other hand, the block size is four, then
the probability of consistency with a block size of two is much less.
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Plot of SURVIVAL*R_P_S_4.  Symbol is value of TREAT.
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Figure 6.3 Berger–Exner graph for stratum 4 and 8 combined, and block
size 4, lung carcinoma study.

There are nine pairs of patients in stratum 4, and 14 pairs of patients
in stratum 8 (the 29th patient is part of an incomplete block regardless
of the block size, and so does not enter into these calculations). To be
consistent with a block size of two, each of these 23 pairs need to be
balanced, as in one patient per pair allocated to each treatment group.



JWBK019-06 JWBK019-Berger March 30, 2005 9:59 Char Count= 0

140 Detecting Selection Bias

STRATUM=4

Plot of SURVIVAL*R_P_S.  Symbol is value of TREAT.
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Figure 6.4 Berger–Exner graph for stratum 4 and block size 2, lung carci-
noma study.

If the block size is four, then there are six block types (1122, 1212,
1221, 2112, 2121, and 2211). The first and last of these would vio-
late the balance we found, so only four of the six block types are repre-
sented, with a probability of (2/3)23. By Bayes conditional probability
formula, then, the probability that the block size is two given data
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STRATUM=8 

Plot of SURVIVAL*R_P_S.  Symbol is value of TREAT.
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Figure 6.5 Berger–Exner graph for stratum 8 and block size 2, lung carci-
noma study.

consistent with a block size of two is 1/[(2/3)23 + 1] = 0.999911.
The probability that the block size is four is negligible, so we evaluate
this trial based on the presumption that the block size was two, not
four. Now the Berger–Exner graph tells a much different story. First
we see that there is no selection bias in stratum 4.

Next we see that there was no selection bias in Stratum 8.
Finally, we see that there was no selection bias when the two strata

are combined.
So the mis-specification of the block size is what caused the appear-

ance of selection bias.
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Plot of SURVIVAL*R_P_S.  Symbol is value of TREAT.
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Figure 6.6 Berger–Exner graph for stratum 4 and 8 combined, and block
size 2, lung carcinoma study.

6.6 USING THE SCREENING LOG TO TEST FOR
SELECTION BIAS

If the screening log is available, as it would be in a comprehensive
cohort follow-up study (Olschewski et al., 1992), then it can also be
used to provide evidence for or against unobservable selection bias.
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For example, the screening log might be used to detect deferred enroll-
ment (as is alluded to in Sections 3.3.9 and 3.3.20), in which screened
patients who are not randomized might later be recalled and random-
ized. Deferred enrollment is hard to justify under any circumstances,
but when a given patient is denied enrollment when the RPS has one
value, and then randomized later when the RPS takes on a different
value, is especially troubling. This ‘strategic’ deferred enrollment may
well signify third-order residual selection bias. A variation on this
theme is stratum-distorted enrollment, in which a patient whose co-
variate values place him or her in one stratum is randomized instead
from a different stratum, corresponding to different covariate values.
For example, randomization stratified by gender can be accomplished
by preparing separate allocation sequences for each gender. At any
point during the trial, then, each stratum will have its own RPS value,
and these stratum-specific RPS values may well differ across the strata.
Stratum-distorted enrollment is strategic if it results in a patient being
randomized from an RPS value other than the one that was current
(at the time this patient was enrolled) in the proper stratum for this pa-
tient. Recall from Chapter 3 that there was strategic stratum-distorted
enrollment in the etanercept trial for juvenile rheumatoid arthritis
(Section 3.3.13). See also Section 3.3.26.

The screening log can also be used in other ways to try to detect
patterns that are suggestive of third-order residual selection bias. For
example, with covariate information recorded for not only the ran-
domized patients but also the randomizable (screened but not enrolled)
patients, one can cross-classify the RPS and the decision to random-
ize or not. Then one can consider the mean value of each covariate
for each combination of the RPS and the randomization status. To
see how such a data display might be useful, recall the CASS Study
(discussed in Section 3.3.12), and consider the hypothetical data in
Table 6.3, with a single binary covariate within each cell, and blocking
with fixed block size 2. The only possible RPS values in this case are
0.0, 0.5, and 1.0. In Table 6.3, 80 patients were screened, of whom
40 were randomized. Of the 80 screened patients, 20 were screened
when the RPS value was 0.0 (this would be the second block position
after the first patient in the block was randomized to the active treat-
ment), 40 were screened when the RPS value was 0.5 (this would be
the first block position), and 20 were screened when the RPS value
was 1.0 (this would be the second block position after the first patient
in the block was randomized to the control treatment). Overall, 40 of
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Table 6.3 Associations among a binary covariate, the RPS, and the
randomization status. The reverse propersity score to detect selection bias
and correct for baseline imbalances, Berger, V. W., 2005, copyright John
Wiley & Sons, Ltd. Reproduced with permission.

RPS

0.0 0.5 1.0 Total

Randomized 0/10 10/20 10/10 20/40
Not randomized 10/10 10/20 0/10 20/40
Total 10/20 20/40 10/20 40/80

the 80 patients were randomized, and 40 of the 80 patients had the
preferred covariate value. Notice that neither the randomization sta-
tus nor the RPS is predictive of (associated with) the covariate when
all screened patients are considered. In other words, the randomized
group is comparable to the randomizable group, at least with respect
to the one covariate considered, as each has 20/40 patients with the
preferred covariate value. Furthermore, the groups defined by RPS
values are also comparable to each other, as again each is composed
of half ‘healthier’ patients and half ‘sicker’ patients. This might be
taken as evidence of no selection bias; indeed, the similarity (in terms
of the covariate distributions) of the randomized and randomizable
groups is often mentioned, presumably to make the case that there
was no selection bias. And yet the fact that all patients, with good and
bad covariate values, can get randomized should not be reassuring.

Table 6.3 shows a clear picture of selection bias, as seen by consid-
ering the ability of the combination of the covariate and the RPS (or
the interaction term) to predict the randomization status. That is, pa-
tients with better covariate values get randomized when RPS = 1, and
patients with worse covariate values get randomized when RPS = 0.
Specifically, of the 20 screened when the RPS value was 0.0, 10 had
the preferred covariate value, and all 10 were denied enrollment. The
10 with the less preferred covariate value were all randomized. Of the
40 patients screened when the RPS value was 0.5, 20 had the pre-
ferred covariate value, of whom 10 were randomized; the other 10
were denied enrollment. Likewise, of the 20 with the less preferred
covariate value, 10 were randomized and the other 10 were denied
enrollment. Of the 20 screened when the RPS value was 1.0, 10 had
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Table 6.4 Associations among a binary covariate, the
RPS, and the treatment group

RPS

0.0 0.5 1.0 Total

Control 0/10 5/10 0/0 5/20
Active 0/0 5/10 10/10 15/20
Total 0/10 10/20 10/10 20/40

the preferred covariate value, and all 10 were randomized. The 10
with the less preferred covariate value were all denied enrollment.
What stands out here is that the pattern of denials when RPS = 0.5 is
non-selective, as it is not based on the covariate values. Presumably,
then, these exclusions are legitimate after all (not all patient exclu-
sions represent a bias). In contrast, the patterns of exclusions when
RPS = 0.0 or RPS = 1.0 make it clear, or at least highly likely, that
these exclusions are strategic, and represent selection bias.

The result of the third-order selection bias illustrated in Table 6.3 on
the 40 randomized patients is the confounding illustrated in Table 6.4
(and figure 2.6.1). Specifically, 20 healthier patients were enrolled,
and 15 of these healthier patients ended up in the active treatment
group. Of the 20 sicker patients enrolled, 15 ended up in the control
group. So the active group gets three times as many ‘good responders’
as the control group, 15/20 vs. 5/20. As this example illustrates, given
the screening log, one can test for third-order residual selection bias
by trying to predict the randomization status with the combination of
the covariate and the RPS. This approach, or variations on this theme,
was used by Berger and Exner (1999), at the bottom of p. 321 and
by Swingler and Zwarenstein (2000), specifically in their Section 2.4
(p. 703).

6.7 THE IVANOVA-BARRIER-BERGER (IBB)
DETECTION METHOD

Developed only for use when the randomized block procedure is used,
the IBB detection method (Ivanova, Barrier, and Berger, 2005) is based
on the presumption that the investigator is aware of both the block
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sizes and the allocations already made. In this regard, it is similar to
the Berger–Exner method discussed in Section 6.5. These two tests
differ after this, however. Specifically, the IBB method specifies the
existence of strong patients (with response rate p(i) + D), medium
patients (with response rate p(i)), and weak patients (with response
rate p(i) − D). Here p(i) can be taken as the overall response rate to
treatment i (assuming that the population has the same number of
strong and weak patients), and 0 ≤ D ≤ min{p(i), 1−p(i)}.

The IBB method also specifies a cut-off G such that strong patients
are selected for randomization if P{E}> G, weak patients are chosen if
P{E}< 1−G, and medium patients are selected otherwise (see Section
4.3). The IBB test is a likelihood ratio test of the null hypothesis that
D = 0, against the two-sided alternative hypothesis that D is not zero.
Clearly, if D is zero, then there is no opportunity for selection bias,
because even if an investigator tries to distinguish patients as strong or
weak, this will be a fruitless effort. All patients, after all, would have the
same response rate. Table 6.5 of Ivanova, Barrier, and Berger (2005)
provides the power and Type I error rates of the IBB test of selection

Table 6.5 Power and type I error rates for test of the presence of
observable selection bias (H0: δ = 0) using logistic regression model and
linear model

Cut-off = 0.50 Cut-off = 0.99

Linear Logistic Linear Logistic
p1 p2 δ model model model model

0.50 0.50 0.00 0.05 0.05 0.06 0.06
0.50 0.50 0.20 0.95 0.59 0.05 0.59
0.50 0.70 0.00 0.05 0.05 0.65 0.05
0.50 0.70 0.10 0.42 0.18 0.68 0.20
0.50 0.70 0.20 0.96 0.59 0.70 0.60
0.60 0.40 0.00 0.05 0.05 0.63 0.05
0.60 0.40 0.30 >0.99 0.98 0.67 0.96
0.70 0.50 0.00 0.05 0.05 0.65 0.05
0.70 0.50 0.10 0.44 0.20 0.66 0.20
0.70 0.50 0.20 0.98 0.70 0.68 0.66
0.70 0.70 0.00 0.05 0.05 0.06 0.05
0.70 0.70 0.20 0.9 0.70 0.04 0.67

The data are generated according to model (2). The sample size of 192 is used in each
trial.
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Table 6.6 Power and type I error rates for test of the presence of
observable selection bias (H0: δ = 0) using linear model (2) and logistic
regression model (4)

Cut-off = 0.50 Cut-off = 0.99

Linear Logistic Linear Logistic
p1 p2 δ model model model model

0.50 0.50 0.20 0.41 0.37 0.17 0.18
0.50 0.70 0.20 0.43 0.38 0.17 0.19
0.60 0.40 0.30 0.78 0.70 0.39 0.40
0.70 0.50 0.20 0.43 0.38 0.19 0.20

The data are generated according to model of enrolment with limited availability. The
sample size of 192 is used in each trial.

bias. Table 6.6 of Ivanova, Barrier, and Berger (2005) provides the
power and Type I error rates of the IBB test of selection bias in the
more realistic situation in which there is a limited number of strong
and weak patients, so that they can be found only half the time.

6.8 INTERPRETING NEGATIVE TESTS
OF SELECTION BIAS

It has been suggested (Hollenbeak et al., 2002) that a test for selection
bias that fails to reach statistical significance provides evidence that
selection bias is not a problem. While we agree with the importance
of determining when there is significant evidence of a lack of selection
bias, we do not agree that a formal hypothesis test can prove the null
hypothesis. That is, a p-value can tell us only if there is or there is not
evidence of selection bias. However, the p-value should not be the only
assessment of selection bias. Graphing the response variable against
the RPS for the different treatment groups (Section 6.5) reveals the
evidence of both selection bias and no selection bias. If increasing the
level of RPS has a differential effect on the response across treatment
groups, then this interaction between treatment and the RPS indicates
that when the RPS is large, patients are selected for their potential out-
come to the experimental treatment group only. We can further graph
the number of patients assigned at each level of RPS and distinguish
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between different levels of a covariate, such as gender, and within
each one see how many are randomized to the intervention group
and how many are randomized to the control group. This analysis
would tell us whether observing the RPS and having evidence that
the next allocation is to the intervention group would influence the
choice of the gender of the patient to be randomized. Hence, based
on RPS we could detect selection bias towards a certain gender as-
signed to a specific treatment. If, for example, at each level of RPS, the
percentage of males assigned to a specific treatment is the same as
the percentage of females receiving the same treatment, then we have
evidence of a lack of selection bias.

6.9 WHEN SHOULD ONE TEST FOR
SELECTION BIAS?

Is it important to test for selection bias when on the surface there is
no evidence to suggest its presence (for example, no substantially un-
balanced measured covariates)? As discussed in Section 6.1, Burgess,
Gebski, and Keech (2003) suggest that the answer might be no. And
yet a negative response to this question might constitute a ‘catch-22’,
as one could argue just as fervently that when there is no evidence
that a new drug has efficacy, there is no reason to go through the
rigmarole of formally testing the drug for safety and efficacy. And yet,
without formally testing the new drug for safety and efficacy, there
is no way that there would ever be evidence that the new drug has
efficacy. Absence of evidence should never be confused with evidence
of absence (Senn, 1997, Section 15.2.1; Barraclough, 2003). There
is clearly a benefit in knowing if a given trial had selection bias,
because there are methods to correct for this, as we will discuss in
Chapter 7. This being the case, to argue that selection bias should
not be tested for would require a reason not to do so, and this reason
would need to be at least commensurate with the reason to test for
selection bias. Perhaps a better question, then, would be ‘Under what
circumstances would it be reasonable not to test for selection bias?’.
Let us consider the reasons not to test for selection bias. Note that the
debate to test or not to test for selection bias can be cast as a trade-off
between progress (the unfettered acceptance of the results of a trial)
and caution (the deferment of judgment until all the facts are in).
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When viewed in the light of progress against caution, it is not sur-
prising that the efforts to detect selection bias in practice have been so
lacking, at least up to this point in time, for ‘Precaution is equated with
economic and social stagnancy, and is viewed as an unnecessary in-
terference with the scientific advances essential to progress. Progress,
as defined by the industrial community, trumps precaution’ (Rosner
and Markowitz, 2002). Indeed, there is precedent for the existence of
a readily available solution to a pressing problem to be insufficient for
its use in practice:

To the modern observer, insisting that doctors wash their hands between
patients seems not just obvious, but also benign. But without the ‘evidence’
that was to come much later, this request seemed to many baseless, and the
opposition came from men of science who wanted hard proof of cause and
effect. (Kurland, 2002)

Readily available solutions to the problem of silicosis were also resisted
(Rosner and Markowitz, 2002), as are readily available solutions (ex-
act analyses that require no distributional assumptions) to the prob-
lem of the lack of random sampling from populations with any known
distribution in randomized trials (Berger, 2000; Berger et al., 2002).
Recall that testing for selection bias might involve analyses of baseline
imbalances, with one-sided p-values and rankings of covariates based
on how prognostic they were or, preferably, how prognostic they were
expected to be.

Recall also that if there is third-order selection bias, then there needs
to be a selection covariate, and the trial-specific measure of prognostic
ability of each covariate would not be available at the time that the
selection covariate would need to be chosen. This is why the expected
predicted ability might be preferable, for this purpose, to the observed
predicted ability. Of course, it is possible also to modify the choice of
selection covariate during the course of the trial, to make use of ac-
cruing data regarding prognostic ability of various covariates. Besides
analyses of baseline variables, testing for selection bias might also
involve analyses of the RPS, including the Berger–Exner test (associ-
ating the RPS with response variables within treatment groups and
strata) and associating the RPS with covariates within strata. Finally,
testing for selection bias might involve scrutiny of the screening log.
The baseline variables are available routinely, so very little additional
cost or effort would be required to use these as a test for selection bias.
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In fact, many trials present baseline p-values, so the first step would
simply be to recast these tests as valid tests (although crude ones) of
selection bias, rather than as the inappropriate tests for the success of
the randomization that they are generally understood to be.

The RPS is not generally presented, or even computed, in actual
trials, but certainly the information with which to compute the RPS
is readily available. Again, there is very little additional cost or effort
required to analyze the RPS for a more refined test of third-order se-
lection bias. The screening log is less ubiquitous, so we might consider
separately the cases in which it is and is not available. If the screen-
ing log is available, then the analysis of randomization status, RPS
value, and covariate values can be automated, as can the search for
stratum-distorted enrollment. As for the examination of the screen-
ing log for deferred enrollment, it is certainly possible to automate the
comparison of the values of all covariates for duplicate records, but
examination of personal identifiers, and possibly a manual search for
erasure marks or white-out, would be required for a definitive assess-
ment that the patient screened more than once was in fact the same
patient. See Bailar and MacMahon (1997).

What we have, then, is a hierarchy, with baseline comparisons at
the top of the totem pole, more intricate analyses of baseline covariates
just below them, followed by analyses of the RPS, followed by auto-
mated screening log analyses, and finally scrutiny of the screening
log for deferred enrollment at the base. The set of at least apparently
reasonable actions would then seem to include the six strategies listed
in Table 6.7.

Table 6.7 Apparently reasonable actions regarding testing for selection
bias

1. Do not test for selection bias at all.
2. Test for selection bias, but do so using only baseline comparisons across

treatment groups.
3. Test for selection bias, but do so using only analyses of baseline variables.
4. Test for selection bias using analyses of both baseline variables and the

RPS.
5. Test for selection bias using analyses of baseline variables, the RPS, and

the screening log, but only those analyses that can be automated.
6. Test for selection bias in the most comprehensive way possible, using all

analyses of baseline variables, the RPS, and the screening log.
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One can also ‘Consider intermediate, adaptable policy options.
Adaptable policy options include a process for obtaining more infor-
mation, thus reducing uncertainty, and building in decision points
to reconsider initial policies’ (Stoto, 2002). We first consider the six
prospectively defined (non-adaptive) strategies in Table 6.7. Strategy
1 has several clear benefits. For one, it is often the norm and the prece-
dent. Using strategy 1 would require no change to the current ‘if it
ain’t broke, don’t fix it’ practice. In addition, strategy 1 requires the
least amount of work. Finally, strategy 1 will minimize the potential
for embarrassing revelations, and will minimize the amount of expla-
nation that will be required. Clearly, strategy 1 is the strategy of choice
for any investigator who would choose to engage in selection bias.

Discussing methodological flaws in general, and not necessarily
selection bias, Penston (2003, page 119) noted that ‘Government,
regulatory authorities and health service planners, university profes-
sors and researchers, as well as the pharmaceutical industry, have
every reason to encourage the current allegiance to the large-scale
randomized trial. Whether to provide a foundation for reforms, to
preserve reputations and protect personal financial gain, or to secure
future profits, maintenance of the status quo with respect to mega-
trials is mandatory. Too much has been invested in this methodology
for questions about its validity to be given even so much as a fleet-
ing acknowledgement. The ease with which such questions may be
dismissed, however, speaks volumes for the poverty of much of what
passes for medical research.’

It is clear that strategy 1 fits in nicely with any push for retaining the
status quo, instead of digging a little deeper and risking finding some-
thing unwelcome. Strategy 1 can also be ‘justified’ logically, although
the logic that justifies it is flawed. As Greenland (1998) points out,
the fallacy of affirming the consequent ‘embodies an all-too-common
approach to ‘scientific’ inference: A researcher will note that a hy-
pothesis H (often his or her favorite) implies a prediction B, observe
that B is indeed what has been observed, and conclude that H must be
correct.’ The argument that appears to justify strategy 1 is as follow:

Premise 1 No selection bias implies that there is no evidence of se-
lection bias.

Premise 2 To date, there has been no evidence of selection bias.
Conclusion There is no selection bias.
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Of course, this ‘logical’ argument actually constitutes a fallacy, be-
cause the phrase ‘there is no evidence that . . . ’ actually ‘encompasses
two totally different situations. The first context (and overwhelmingly
the commonest) is that there is no evidence because no one has looked.
The second is that someone has done the relevant study and found
a negative result’ (Barraclough, 2003). The only way to distinguish
between the two possibilities is to find as severe a test as possible.
Understanding that ‘theories are provisionally accepted so long as
they have not been falsified’ (Runde, 1996), one is then not even en-
titled to provisionally believe that there is no selection bias unless one
looks for it, and uses a severe test in the process. In other words, there is
a problem of non-identifiability, because different values of unknown
parameters would give rise to the same data distributions (Greenland
and Robins, 1986). In this case, one would expect to see the same
apparent superiority of the active treatment group under either of
two scenarios, either true superiority of the active treatment group or
selection bias.

Recognizing this, strategy 1 might not be viewed so favorably, es-
pecially from the perspective of society or public health. If there were
no need to evaluate medical interventions as reliably as possible, then
there likely would be no randomized trials or evidence-based medicine.
We take, then, as a premise the societal need to evaluate medical in-
terventions as reliably as possible. Given this need for reliable results
of medical studies, it is clear that strategy 1 is dominated by strat-
egy 2. This is because third-order residual selection bias can inflate
both the magnitudes of apparent treatment effects and the likelihood
with which apparently significant yet misleading information is found.
Note that this tendency transcends the divide among the frequentist,
Bayesian, and likelihood philosophies. Third-order residual selection
bias can systematically make the sampling distribution of the between-
group p-values stochastically smaller (Proschan, 1994), and this is
true for all response endpoints.

Third-order residual selection bias can also systematically make the
sampling distribution of the posterior probability more favorable to the
preferred treatment, and it can also make the likelihood ratio in favor
of the preferred treatment stochastically larger. That is, third-order
residual selection bias infects not only certain data summaries, but
also the very data that serve as the source of all data summaries. As
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such, all data summaries that do not specifically build in robustness to
third-order residual selection bias retain the distortions that occurred
upstream, in the data themselves. If treatment decisions are based on
trial results and meta-analyses which are distorted, then these treat-
ment decisions will be less than ideal. This can lead to unnecessary
morbidity and mortality (Bailar, 1976; Berger et al., 2002).

The societal need to ensure that trial results are as reliable as possible
indicates the need to manage third-order selection bias effectively.
Strategy 1 makes no serious attempt to accomplish this, but seeks
instead to deny the existence of third-order residual selection bias as
its own justification. The circularity in this logic is apparent:

1. Do not test for selection bias because it is not a problem.
2. Selection bias is not a problem because we are not aware of it.
3. We remain ignorant of selection bias by not looking for it, and also

by denying others access to the data that would allow them to test
for it.

If we agree that strategy 2 is preferable to strategy 1, then we are
arguing contrary to the established principle that baseline testing
should not be performed in randomized trials. Yet, while the argu-
ments against baseline testing in the randomized trial context (Senn,
1994) are logical and compelling, they do not appear to account for
the possibility of third-order residual selection bias. Given the ease with
which strategy 2 can be implemented, it does seem to be preferable to
strategy 1. Now strategy 3 (including comparing the expected predic-
tive ability of each covariate to its subsequent imbalance, as outlined
at the end of Section 6.1) is also easy to implement, and is better able
to detect third-order residual selection bias than strategy 2 is. Hence,
strategy 3 appears to be better than either of its predecessors.

Strategy 3 is an effective method for detecting observable third-
order residual selection bias, but it is totally ineffective for detecting
unobservable third-order residual selection bias (that is, when the
selection covariate is latent and is not substantially associated with
any of the measured covariates). Again, bearing in mind the soci-
etal need to ensure the validity of trial results, at least as well as
possible, a method that simultaneously protects against observable
and unobservable third-order residual selection bias would be prefer-
able to a method that protects against just one of these. Strategy 4
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is the simplest strategy that simultaneously protects against observ-
able and unobservable third-order residual selection bias. Moreover,
strategy 4 can be automated, and does not require the collection of
any data not already routinely collected. The cost involved in imple-
menting strategy 4 is a one-time expenditure of a modest amount of
programming effort. Once the programs are written to automate the
use of strategy 4, the only incremental cost involved in using it for a
new trial is the cost in running the program that has already been
developed.

Strategy 5 cannot be implemented in the absence of the screening
log, so strategy 4 is the best one with the data routinely collected in a
randomized trial. However, if the screening log is available, then there
appears to be little reason not to use it, at least to implement strategy
5. Strategy 6 is more time-consuming, so there could be legitimate
objection to its routine use. Among the prospective strategies, then,
it would seem that strategy 4 is ideal in the absence of the screening
log, and strategy 5 is ideal in the presence of the screening log. In
either case, then, baseline covariates and the RPS should be analyzed
thoroughly. We suggest listing in the protocol the baseline variables
to be tested for imbalance, specifying one as the ‘primary’ covariate
(among those not used for stratification), and formally testing each
baseline variable for imbalance. Associations of covariates and the
RPS should be presented, along with the ability of the RPS to predict
response within each treatment group (the Berger–Exner test).

We now return to adaptive strategies (such as the decision to record
the screening log). Again, with no screening log, strategy 4 is as far as
one can go, but with a screening log, one can move beyond strategy
5 to strategy 6. This step may or may not be warranted, but it is
certainly reasonable to consider the results of the other analyses before
committing to performing the manual search of the screening log
for deferred enrollment. So the recommended strategy in testing for
selection bias is to use strategy 4 when there is no screening log, and
to use strategy 5, or possibly strategy 6 (depending on the results of
the other analyses), if there is a screening log. One may still question if
there is enough information up front to make the decision to record the
screening log. In a perfect world, the answer would be an unequivocal
yes. However, recording the screening log does introduce additional
costs that may or may not be justified. Consequently, we do not take a
position on this issue.
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6.10 WHO SHOULD TEST FOR SELECTION BIAS?

Even if it is agreed that randomized trials should be routinely tested
for third-order selection bias, one may still ask whether the burden
for doing so falls on the sponsor. A partial answer to this question is
afforded by the recognition that the sponsor has the most to gain from
positive results (in terms of efficacy) of the trial. Another partial answer
is afforded by the recognition that the sponsor owns the data, and is
therefore in the best position to conduct the analyses that would clarify
if there was, in fact, third-order selection bias. Of course, the sponsor is
also the party with the most to lose in case what appear to be positive
findings are overturned by the demonstration of third-order selection
bias. In another context, Rosner and Markowitz (2002) pointed out
that ‘in the face of data that could prove damaging to the future of the
industry, corporations actually sought to deny access to information
that public authorities needed to adopt prudent policies’. Indeed,

often, the source of facts and information are the very industries or interests
who oppose action. We have seen this with tobacco, lead paint, petroleum,
pharmaceutical, and asbestos industries, whose control of information, doc-
toring of studies, support for biased research, and suppression of information
have made it impossible for the public and independent analysts to share in
unbiased information. (Kurland, 2002)

It is one thing for the sponsor of a trial to agree in principle that
tests of selection bias should be performed, but to prefer not to be
the one to perform these tests. It is quite another thing not only to
refuse to perform these tests but also to withhold the data necessary
to perform them, so that nobody else can perform them either. In the
absence of complete data sharing, the sponsor is not only the party
in the best position to test for selection bias, but it is also the party in
the unique position to test for selection bias. Once the data cease to be
proprietary, there appears to be little justification for not only refusing
to perform essential analyses but also withholding the data that would
allow others to perform these analyses. Indeed,

Medical research, even if it is conducted by the pharmaceutical industry,
is not solely a commercial enterprise designed to maximize personal gain
or company profits. The responsible conduct of medical research involves
a social duty and a moral responsibility that transcends quarterly business
plans or the changing of chief executive officers. (Psaty and Rennie, 2003)
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7

Adjusting for Selection
Bias in Randomized Trials

Through the first six chapters, we have discussed how selection bias
occurs in randomized trials, evidence that it actually does occur, the
effect it has, how to prevent it, and how to detect it when it is there.
We did not, however, address what to do about it once it is found. The
simplest approach would probably be to simply discard the study in
which selection bias is found (or suspected), and start over again. If
this approach were satisfactory in the real world, then there would be
no need for this seventh chapter. But in the real world, randomized
trials consume a great deal of resources, including money, time, and
effort. Those who design, execute, analyze, report, regulate, and pub-
lish randomized trials would tend to resist having to start over from
the beginning once this effort has been mounted.

Consider, for example, the Canadian National Breast Cancer Screen-
ing Study (CNBSS) was a randomized trial that has been severely crit-
icized and equally vigorously defended. One of the primary bases for
the criticism is the baseline imbalances that were observed, and the
lack of allocation concealment. Putting the two together, we see that
there is suspicion of selection bias. See Section 3.3.9 for more details
regarding these allegations. The importance of this trial for this chap-
ter is the fact that its conclusions have not been dismissed. There is still
an effort to salvage information on screening for breast cancer from
this study, despite what some would say may be severe biases. How,
then, to correct for severe baseline imbalances in a randomized trial?

If ignoring the study is one extreme, then the other extreme would
be to simply proceed with the usual analyses, and ignore not the

Selection Bias and Covariate Imbalances in Randomized Clinical Trials V. W. Berger
C© 2005 John Wiley & Sons, Ltd.
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study but rather the baseline imbalances. This seems to be the ap-
proach suggested by Sleight, Pogue, and Yusuf (2002) in their re-
sponse to criticism (Taylor, 2002) of the baseline imbalances in the
Heart Outcomes Prevention Evaluation (HOPE) Study (Sleight et al.,
2001). Specifically, Sleight, Pogue, and Yusuf (2002) pointed out that
“None of these selected imbalances was significant [at what signif-
icance level was not specified]. Randomisation balances known or
measured risk factors as well as unmeasured or unknown factors.”
As we have seen, randomization does not, in fact, ensure any such
thing, and it may be for this reason that baseline imbalances that
trend in the same direction cause some researchers to challenge the
validity of the findings. See Sections 3.3.2, 3.3.29, and 3.3.30, for
example.

Several methods have been proposed for comparing treatment
groups in randomized trials with baseline imbalances, and these meth-
ods have tended to assume, at least implicitly, that the baseline imbal-
ances were random. That is, no effort was made to determine if the
imbalances could have been the result of selection bias, or to adjust
for it accordingly. See, for example, Wei and Zhang (2001). Rothman
(1977) suggests that ‘What matters in a particular trial is whether
confounding in this trial is present and, if so, to what extent. It is
of no interest to learn whether the confounding which exists might
be compatible with chance as to its etiology.’ If this is true, then any
method appropriate for dealing with random baseline imbalances will
also be appropriate for dealing with selection bias. But the problem
with these adjustment methods, at least when applied to trials that
may have selection bias instead of (or in addition to) random covariate
imbalances, is that they are limited by the covariates that are actually
measured (Moses, 1995).

Recall that selection bias may result in an unbalanced unmeasured
covariate, but no observable baseline imbalances (Berger and Exner,
1999). As Mitchell (1981) noted in the context of the Norwegian
Timolol Trial (which had numerous baseline imbalances; see Section
3.3.27), “The authors suggest that by ‘adjusting for the largest differ-
ences and other factors considered prognostically important’ they can
overcome the inequality of the two groups, but I do not believe that this
can be done. The techniques used can only adjust for overt variables,
and if, as a group, the placebo patients also have related but hidden
adverse factors such as platelet hyperreactivity then no amount of
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adjustment for the overt differences can overcome this hidden initial
imbalance.”

The goal of this chapter, then, is to provide rigorous methodology for
comparing treatment groups in the presence of selection bias in ran-
domized trials. In Section 7.1 we first review some methods that have
been proposed in the literature for dealing with baseline imbalances
when it was suspected that the nature of these imbalances was not
random. In Section 7.2 we discuss a complete lack of allocation con-
cealment. In Section 7.3 we discuss imperfact allocation concealment
as when upcoming allocations can be predicted based on past ones, but
cannot be directly observed. This latter case is much more amenable to
treatment than is the former case. In particular, we discuss appropri-
ate approaches based on the reverse propersity score or RPS in Section
7.3.1, and a likelihood-based approach in Section 7.3.2.

7.1 METHODS PROPOSED FOR ADDRESSING
NON-RANDOM BASELINE IMBALANCES

As discussed in Section 3.3.27, Mitchell (1981) tried to quantify the
p-value for mortality by conditioning on the most extreme baseline
p-value. In particular, the method was to divide the efficacy p-value
(0.001) by the most extreme baseline p-value (0.01) to obtain 0.1.
As pointed out in Section 3.3.27, this method fails to account for the
multiplicity of baseline imbalances, and hence is rather crude. Tarone
(1995) suggested eliminating from the analyses of the Canadian Na-
tional Breast Screening Study (CNBSS) all advanced cases detected
by physical examination at the initial screening visit. Gotzsche and
Olsen (2000) suggested a similar approach, specifically identifying
those mammography subjects who had been randomized properly,
presumably so that the subjects who were not randomized properly
would be discarded.

Along the same lines, Peto (1999) stated that “it would be useful
to try to recover a properly randomized comparison from the CAPPP
study. Perhaps it could still, at this late stage, be determined which
centers sometimes broke the rules in this way, yielding inappropriate
foreknowledge of the next treatment . . . If this can be done reliably,
then a report on outcome by allocated treatment should be published



JWBK019-07 JWBK019-Berger March 30, 2005 16:7 Char Count= 0

160 Adjusting for selection bias

that includes only those centers where randomization can be trusted
not to have been distorted by foreknowledge of the next treatment al-
location. Alternatively, maybe some other way can be found (e.g., by
exclusion of certain time periods, or of certain time periods at certain
centers) to publish results only from patients who are known to have
been properly randomized.” The general approach may be described
as eliminating from the analysis any subjects with a certain character-
istic that happens to be unbalanced at baseline across the treatment
groups. But this elimination approach has problems.

In addition to constituting a deviation from the intent-to-treat
(ITT) approach (Fergusson et al., 2002) and the loss of informa-
tion, this approach also ignores the fact that an imbalance with
respect to the presence of a certain characteristic would generally
imply an imbalance also with respect to the absence of that char-
acteristic. So it may not be clear if it is those subjects possessing
or lacking the characteristic that should be eliminated. And what
would one do with a covariate that were not binary, but rather con-
tinuous or ordered categorical? One could also compare the treat-
ment groups separately for those with and without the characteristic
in question, or stratify by the unbalanced covariate. This would be
the logical extension of the elimination approach, and it applies also
when the covariate is categorical. However, we are then back to the
inherent limitation that some key covariates will generally not be
measured.

When a comprehensive cohort follow-up study (Olschewski et al.,
1992) is used, there would be data available on all screened patients,
even those who were not randomized. This would allow for an “intent-
to-randomize” approach to analysis. Specifically, one could try to de-
termine, using whatever patterns of selection bias that might have
beenfound,whichpatientswouldhavebeenrandomized,andtowhich
groups, had a different allocation sequence been observed. This can
be used to construct an appropriate permutation test, as described by
Berger and Exner (1999), in their Point #7 (page 325). One could also
directly include excluded patients as if they had been randomized to
the group to which they would have been randomized. See Section
2.4 of Swingler and Zwarenstein (2000) for the description of an ex-
ample of this approach. More often, however, data are available only
for those patients who are actually randomized, so we consider only
this situation in the remainder of the chapter.
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7.2 SELECTION BIAS ARISING FROM A
COMPLETE LACK OF ALLOCATION
CONCEALMENT

Since there was no allocation concealment in the CNBSS, and every
future allocation was observable and known with certainty, the selec-
tion bias that would have been possible in this trial would have been
different from the selection bias that is possible when there is at least
an attempt at allocation concealment. That is, the quantity P{E} dis-
cussed in Chapter 2, which is essentially the probability of receiving
the active treatment given the prior allocations and the restrictions
on the randomization, is identical to the actual assignment to E (is
1 when E is assigned, and 0 when E is not assigned) when there is
no allocation concealment. When there is allocation concealment, so
that not every future allocation is known with certainty, P{E} may
still be exploited, but at least it is not identical to the treatment allo-
cated. This difference allows for a separation of effects of E and effects
of P{E}. Such separation of effects is not possible when there is no
allocation concealment, as E and P{E} are completely confounded. In
this case, it may be impossible to salvage useful comparative informa-
tion, and each treatment group in the study is more like a one-arm
(uncontrolled) study into itself. In this case, the results should proba-
bly be summarized with descriptive statistics, but not with inferential
statistics such as p-values.

7.3 SELECTION BIAS ARISING FROM
IMPERFECT ALLOCATION CONCEALMENT

If there is allocation concealment, as the term is usually defined (that
is, the process), then it is not the case that every future allocation can
be observed. While allocation concealment can be subverted in more
direct ways (such as by holding sealed envelopes up to a light), we
consider only indirect subversion of the type we defined in Chapter 2,
specifically predicting (rather than observing) future allocations based
on the known restrictions on the randomization and the known prior
allocations. For simplicity, then, we will consider unmasked trials,
although we note that this material is relevant to masked trials as
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well, at least to the extent that their masking is not perfect. When
future allocations can be predicted but not observed, it will turn out
that only some of these predictions are known ahead of time to be
correct.

For example, if prediction is based upon the randomized block de-
sign with a fixed block size of 4, then the last allocation in each block
will be deterministic, as will the second last allocation in each block of
the type AABB or BBAA. In each block, the second allocation will be
predictable, but will not be deterministic. This means that P{E} will
not be 0.5, and so prediction is possible, but it will not be 0 or 1, so
this prediction may be wrong. We can exploit this fact, that the actual
treatment assignment may not follow the predicted treatment assign-
ment, to study the effects of each of these. One method for separating
the effects of the predicted treatment assignment (i.e., selection bias)
from the effects of the actual treatment effect is to include both in the
model used to evaluate efficacy. For example, if the efficacy endpoint
is survival, then one would build a prediction model for survival time
by including as predictors both the actual treatment assignment and
P{E}, the predicted treatment assignment. This value P{E} of the pre-
dicted assignment has been called the reverse propensity score (Berger,
2005b) in a paper that further develops the correction method based
on this score (RPS). In the present chapter we will consider both this
RPS approach and a competing model-based method developed by
Ivanova et al. (2005).

7.3.1 The RPS Approach to Adjusting for
Selection Bias

Recall the Berger–Exner graphs presented in Section 6.5, and how
they were used to detect selection bias by comparing response vari-
ables across RPS levels within each treatment group. These same
Berger–Exner graphs are the key to using the RPS to adjust for selection
bias. To see this, consider a rather extreme Berger–Exner graph, based
on the fictitious data in Table 7.1 (also Table 2 of Berger, 2005), which
is reproduced in this section.

Suppose that the covariate is a perfect predictor of response, so that
each patient with covariate value 1 responds, and no patients with
covariate value 0 respond. Then the baseline imbalance would create
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Table 7.1 Associations among a binary covariate, the RPS, and the
treatment group. The reverse propersity score to detect selection bias and
correct for baseline imbalances, Berger V. W., 2005, copyright John Wiley &
Sons, Ltd. reproduced with permission.

RPS = 0.0 RPS = 0.5 RPS = 1.0 Total

Control 0/10 5/10 0/0 5/20
Active 0/0 5/10 10/10 15/20
Total 0/10 10/20 10/10 20/40

the illusion of a treatment effect, because the response rate would be
15/20 (75%) in the active group and only 5/20 (25%) in the control
group. The Berger–Exner graph would be as follows:

Y = 1 0000011111 1111111111
Y = 0 0000000000 0000011111

RPS = 0.0 RPS = 0.5 RPS = 1.0

Figure 7.2.1.1 The Berger–Exner Graph for the Fictitious Data in
Table 7.1.

The comparison of treatment groups when using the RPS to adjust
for selection bias occurs only within levels of the RPS. One drawback
to this approach is the loss of information, as no comparisons exist
at the extreme RPS values of 0 and 1. When the block size is two,
as it is for the fictitious data in Table 7.1, this means that the only
comparison occurs for the patients randomized when the RPS value
was 0.5. Of course, with larger block sizes, there would be more RPS
values that allow for treatment comparisons, and so correspondingly
fewer patients would be lost in the analysis. Anyway, returning to
the fictitious data in Table 7.1, we see that when the RPS value is 0.5,
each treatment group has five responders and five non-responders, for
a 50% response rate. The RPS has clarified that the apparent treatment
effect was due to nothing more than selection bias, and that when the
selection bias is removed, there is no treatment effect whatsoever. We
could have created a data set in which the direction of the effect would
be reversed, as well. Consider, for example, Table 7.2.

The overall response rates are now 60% (12/20) in the active group
and 40% (8/20) in the control group, but when using the RPS as a
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Table 7.2 Associations among a response variable, the RPS, and the
treatment group

RPS = 0.0 RPS = 0.5 RPS = 1.0 Total

Control 0/10 8/10 0/0 8/20 (40%)
Active 0/0 2/10 10/10 12/20 (60%)
Total 0/10 10/20 10/10 20/40 (50%)

predictor, either with the Berger–Exner graph or with the table struc-
ture in Table 7.2, it is clear that the control is more efficacious, as it
has an 80% (8/10) response rate among unselected patients (when
the RPS value is 0.5), as compared to only 20% (2/10) for the ac-
tive group. The RPS can be used as a predictor with any type of
response variable. If the response variable is close to normally dis-
tributed, then one can use the analysis of covariance (ANCOVA) model.
With a time-to-event endpoint, one can use Cox proportional haz-
ards regression. Mantel-Haenszel methods can be used for categorical
data. The RPS can be used in place of other covariates or along with
them.

If it turns out that the direction of the effect varies across RPS
values – that is, each treatment group appears to be substantially
better for some RPS values – then this would be a rather curious
situation, and would not fit into the classical paradigm of what one
would expect from selection bias. In such a case, the comparison at the
“neutral” RPS value is probably the most important one. In two-arm
trials with 1:1 allocation, the neutral RPS value is 0.5, or the uncon-
ditional probability of allocation to the active treatment group. With
three groups and 1:1:1 allocation, the neutral value is 0.33. Clearly,
this value changes with unequal allocation. For example, it would be
0.67 with 2:1 allocation in favor of the active treatment group. The
reason for favoring the comparison at this RPS value is that it is, in
some sense, the most pure, and free from selection bias. Even with
selection bias, the investigators have no incentive to recruit extreme
patients (either especially likely to respond or especially unlikely to
respond) at the neutral value of the RPS, and so this RPS value might
offer the most external validity.
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7.3.2 The Ivanova–Barrier–Berger (IBB) Method for
Correcting Selection Bias

Consider a two-arm unmasked trial with experimental (E) and control
(C) treatments using the randomized block design with fixed, known
block size, and consider also a binary outcome. Then at each stage
of the patient recruitment process the investigator knows P{E}, the
probability that the experimental treatment will be assigned to the next
enrolled patient. Following Ivanova et al. (2005), let the treatment in-
dicator variable Xi , i = 1,2, . . . ,n, equal 1 if the i th patient is assigned
to treatment E, or 0 if the patient is assigned to C. Each patient has one
potential outcome if E is received and another if C is received. Suppose
that candidate patients can be classified at baseline as strong (suc-
cess probability p1 + δ or p2 + δ, respectively, for E and C); medium
(success probability p1 or p2); or weak (success probability p1 − δ

or p2 − δ), where the parameter δ must satisfy 0 ≤ δ ≤ min( p1, p2,
1 − p1, 1 − p2). This additive model is probably simpler than a more
realistic one in which the covariate parameter δ is added not to the
success probability itself but rather to the log-odds log( p/(1 − p)), to
obtain a new log-odds which can then be inverted to induce a new
success probability.

We proceed with the simplistic additive model (on the original scale),
and, following Berger et al. (2003a), assume that the investigator will
enroll a strong patient if P{E} exceeds a fixed cutoff G or a weak pa-
tient if P{C}= 1−P{E} exceeds the same cutoff. Otherwise, a medium
patient is enrolled. Note that this is a different model from the one dis-
cussed so far, in which unselected patients were to be enrolled when
P{E} = 0.5. That is, up until this point we have considered the sit-
uation in which strong, weak, or medium patients could be enrolled
when P{E} = 0.5. Now we consider instead the different situation in
which only medium patients are to be enrolled when P{E}= 0.5. We
assume that there are enough strong, medium, and weak patients in
the population, so that a patient of each kind is always available if
needed. We define the patient response type as Si = 1.0 for a strong
i th patient, Si = 0.5 for a medium i th patient, and Si = 0.0 for a weak
i th patient. Also, the binomial outcome Yi takes the value 1 or 0 for
success or failure. Ivanova et al. (2005) derive the likelihood function
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by noting that

E (Yi |Xi , Si ) = Xi p1 + (1 − Xi ) p2 + Si δ − (1 − Si ) δ

= Xi p1 + (1 − Xi ) p2 + δ (2Si − 1)

= ( p2 − δ) + ( p1 − p2) Xi + 2δSi .

This means that the likelihood function is L = ∏n
i=1 myi

i (1 − mi )1−yi ,
where n is the total number of patients in the trial (in previ-
ous chapters we used 2n for this quantity), and mi = E (Yi |Xi , Si )
as defined above. This likelihood can be maximized, subject to
the necessary constraints 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, and 0 ≤ |δ| <

min ( p1, p2, 1 − p1, 1 − p2), to allow for the estimation of param-
eters and the testing of hypotheses. The ‘strength’ or ‘weakness’ or
‘mediocrity’ of any given patient is a baseline covariate that is not
recorded (and may or may not be observed in any given trial, but we
assume that it is). Generally, when one thinks of a baseline covariate,
one thinks of the patient bringing that to the merging of patient and
accession number. But in this case, since a patient with a given level
of strength will be sought based on the cutoff G (which is known to
the investigator but is not generally revealed to any other party) and
P{E}, which depends on the accession number but not the patient,
the situation is reversed. That is, it is the accession number that de-
termines the ‘covariate’ and, indirectly, the identity of the patient (the
first qualified patient screened having this attribute). Hence, Si is quite
a peculiar covariate.

We return now to the problem of maximizing the likelihood, subject
to the necessary constraints. Because the cutoff value G is not known
to the analyst, it must be estimated. One way to do so is as follows.
For most reasonable block sizes, there are very few cutoff values that
need to be considered, because any two cutoff values that both fall
between the same pair of consecutive attainable values of P{E} are
equated by this model. That is, if the block size is 2, then P{E} can
assume only the values 0.0, 0.5, and 1.0. This means that the only
relevant values for the cutoff are less than 1.0 and 1.0 (in which case
there is no selection bias) and less than 1.0 (in which case there is). If
the block size is 4, then P{E} can assume only the values 0.00, 0.33,
0.50, 0.67 and 1.00 (see Section 4.3). Again, the cutoff matters only
to the extent that it indicates which of these intervals, [0.5, 0.67), or
[0.67, 1.00) it falls in (or it can be equal to 1.00 if there is no selection
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bias). There are only three possibilities. Given the block size, and the
number of choices for the cutoff it induces, we maximize the likelihood
separately for each admissible value of the cutoff, and then select that
value that leads to the maximum of all of these maximums.

An alternative to the Berger–Exner test of selection bias (Berger and
Exner, 1999; also discussed in Section 6.5 of this book) can be based on
testing the hypotheses H0: δ = 0 versus HA: δ 	= 0. In this chapter we
are more concerned with testing for a difference in treatment effects
given the presence of selection bias. This test can be based on testing
the hypotheses H0: p1 − p2 = 0 versus HA: p1 − p2 	= 0, where now
δ is considered a nuisance parameter. As Ivanova et al. (2005) point
out, if δ = 0, then there is no cutoff point to estimate and the model
loses one parameter. These authors approximated the reference dis-
tribution using a chi-square distribution with one degree of freedom
for use in a simulation study with randomized blocks with fixed block
size 6.

The simulations are based on 5000 runs, and each used a sample
size of 192, with a nominal significance level of α = 0.05. The cutoffs
were 0.5 and 0.99, and were estimated correctly in about 75% of
runs. The more important question, for our purposes, is whether the
model can be used to adjust the treatment comparison for selection
bias. Table 7.3 of Ivanova et al. (2005) reveals that the true Type I
error rate can be grossly increased by selection bias. For example, if
the null hypothesis is true ( p1 − p2 = 0, both 0.50), but δ = 0.20 and
the cutoff is 0.50, then a nominal 0.05-level test will have an actual
level of 0.54, which is more than 10 times as large as it should be.

The true test of this new method for correcting for selection bias is
in the true Type I error rate of this procedure in this situation, and in
similar situations. For this particular situation, the true Type I error
rate is 0.04, which is close to the nominal 0.05. Changing the cutoff to
0.99 but keeping p1 − p2 = 0 and δ = 0.20, the true Type I error rate
is 0.29 if selection bias is ignored, and 0.05 (exactly right) if selection
bias is addressed with this new method. Furthermore, if the control
treatment is superior to the active treatment, then this true effect may
be offset by selection bias so that no effect is found. For example, if
δ = 0.20 and the cutoff is 0.50, and the response rates are 0.50 and
0.70 in the active and control groups, respectively, then the power to
detect this true difference is only 0.11 if selection bias is ignored, but
0.78 if selection bias is addressed with this new method.
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Table 7.3 Power and type I error rates for the test of H0: p1 = p2 using
linear model (2) and logistic regression model (4). Adjusting for observable
selection bias in block randomized trials, Ivanova, A., Barrier, R. C. and
Berger, V. W. 2005, copyright John Wiley & Sons, Ltd. Reproduced with
permission

Cut-off = 0.50 Cut-off = 0.99

Linear Logistic Linear Logistics
p1 p2 δ model model Unadjusted model model Unadjusted

0.50 0.50 0.00 0.06 0.05 0.05 0.06 0.05 0.05
0.50 0.50 0.20 0.04 0.05 0.54 0.05 0.04 0.29
0.50 0.70 0.00 0.65 0.64 0.80 0.65 0.63 0.80
0.50 0.70 0.10 0.73 0.64 0.43 0.68 0.67 0.56
0.50 0.70 0.20 0.78 0.66 0.11 0.70 0.67 0.29
0.60 0.40 0.00 0.63 0.67 0.79 0.63 0.66 0.79
0.60 0.40 0.30 0.81 0.67 >0.99 0.67 0.64 >0.99
0.70 0.50 0.00 0.65 0.69 0.81 0.65 0.67 0.81
0.70 0.50 0.10 0.68 0.69 0.98 0.66 0.67 0.95
0.70 0.50 0.20 0.76 0.66 >0.99 0.68 0.65 0.99
0.70 0.70 0.00 0.06 0.04 0.05 0.06 0.04 0.05
0.70 0.70 0.20 0.04 0.04 0.62 0.04 0.05 0.34

The data are generated according to model (2).

In their Table 7.4, Ivanova et al. (2005) also considered the more
realistic scenario in which the investigator may attempt to enroll a
strong patient or a weak patient but he or she is able to do so only
50% of the time, because strong and weak patients are not always
available. Only medium patients are always available. The results here
as equally impressive as with the previously considered case in which
an investigator can recruit any type of patient all the time. That is, the
power is still large when there is a true effect to detect, and the true
Type I error rate is still close to the nominal Type I error rate. What has
changed is that now the true Type I error rate of the usual procedure
(ignoring selection bias) does not inflate the true Type I error rate by as
much as it did in the previous case. For example, if the null hypothesis
is true ( p1 − p2 = 0, both 0.50), but δ = 0.20 and the cutoff is 0.50,
then a nominal 0.05-level test will have an actual level of 0.17. If the
cutoff is 0.99, then a nominal 0.05-level test will have an actual level
of 0.11.

It seems reasonable to always test for selection bias, and then to use
one of the adjustment techniques discussed in this chapter (either the
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Table 7.4 Power and type I error rates for the test of H0: p1 = p2 using
linear model (2) and logistic regression model (4). Adjusting for observable
selection bias in block randomized trials, Ivanova, A., Barrier, R. C. and
Berger, V. W. 2005, copyright John Wiley & Sons, Ltd. Reproduced with
permission

Cut-off = 0.50 Cut-off = 0.99

Linear Logistic Linear Logistics
p1 p2 δ model model Unadjusted model model Unadjusted

0.50 0.50 0.20 0.05 0.05 0.17 0.06 0.05 0.11
0.50 0.70 0.02 0.73 0.67 0.43 0.68 0.65 0.56
0.60 0.40 0.30 0.69 0.63 0.99 0.69 0.63 0.97
0.70 0.50 0.20 0.69 0.67 0.98 0.66 0.65 0.94

The data are generated according to model of enrolment with limited availability. The
sample size of 192 is used in each trial.

reverse propensity score or the likelihood-based method, or both) if the
likelihood of selection bias appears to be substantial. The evaluation
of the likelihood-based method was restricted to unmasked trials, in
which all prior treatment assignments are known. In masked trials
some prior allocations would likely remain unknown, but some may
be known, as well, and so these issues do not disappear. There may still
be value in adjusting for selection bias even in masked trials, although
the benefit of doing so may be less than the benefit of doing so in
unmasked trials.



JWBK019-07 JWBK019-Berger March 30, 2005 16:7 Char Count= 0

170



JWBK019-08 JWBK019-Berger March 30, 2005 10:4 Char Count= 0

8

Managing Selection Bias
in Randomized Trials

The first seven chapters of this book provided information on how
selection bias occurs in randomized trials and how to prevent, detect,
and correct for it. The purpose of this chapter is to put all this material
together to provide a set of items that can be used to collectively man-
age selection bias in randomized trials. Not every issue has a clear-cut
solution, however, and so there are also open questions, which will
hopefully lead to further research, and, ultimately, recommendations
that are not controversial.

8.1 ACTION POINTS DURING THE DESIGN
PHASE OF THE TRIAL

During the design phase of the trial, many decisions need to be reached.
These include the patient population, the allocation procedure, the
decision to mask or not, the decision to conceal the future allocations
or not, and the choice of variables to be captured on the case report
forms. Each of these issues has implications for the susceptibility of
the trial to selection bias, as we have seen in the previous chapters. If
either masking or allocation concealment can be achieved perfectly,
then there can be no selection bias. The problem is that, in general,
neither one can be achieved without sacrificing something else (for
example, using unrestricted randomization could allow for successful
allocation concealment, but would also enable chronological bias).

Selection Bias and Covariate Imbalances in Randomized Clinical Trials V. W. Berger
C© 2005 John Wiley & Sons, Ltd.
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The solution appears to be to still go through the processes of mask-
ing and allocation concealment (that is, no treatment identities are
intentionally revealed until after the trial is complete and the database
is locked), and to comment on how successful these steps are likely to
be. The patient population is a trickier issue, because it is dictated by
concerns having nothing to do with selection bias. Still, if selection bias
is to be considered, then what are the implications? On the one hand,
selection bias requires that the investigator be able to turn patients
away when their set of covariates makes them a bad match for the up-
coming treatment. In a large simple trial (Peto et al., 1995), one salient
feature of which is the minimal set of entry criteria, it may be harder to
deny enrollment to qualified patients than it would be otherwise (with
more entry criteria), so one can see how a broad patient population
might minimize selection bias. But, on the other hand, selection bias
also requires that some patients appear (at baseline) to be better po-
tential responders than others, because if a study were performed in a
homogeneous group, or even in clones, then there would be no oppor-
tunity to differentially recruit patients for the treatment groups. This
means that perhaps a narrowly defined patient population might be
best for controlling selection bias. More homogeneous patient groups
would also allow for greater separation between treatment groups, so
that hopefully an ideal treatment could be identified for each particu-
lar patient profile, even if different profiles require different treatments
(Penston, 2003, page 130).

We will consider the issue of the ‘right’ patient population, broad or
narrow, to be an open question, and one that might have different valid
solutions in different contexts. Likewise, we consider the choice of the
maximal tolerated imbalance to be at the discretion of the research
team, and again, there might be different valid solutions in different
contexts. However, one point deserves to be made in the case in which
multiple trials are considered for a given treatment. In such a case,
one would not want to select the same maximum tolerated imbalance,
or the same patient population, for both (or all) of the trials. Varying
these parameters will vary also the susceptibilities of the trials to the
various biases (for example, selection bias and chronological bias), but
keeping them the same will not.

Rosenbaum (2001) points out that

an effective research design would replicate the treatment without replicating
whatever hidden biases were originally present . . . The mere reappearance of
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an association does not convince us that the association is causal – whatever
produced the association before has produced it again. It is the tenacity of the
association – its ability to resist determined, planned, deliberate challenges –
that ultimately convinces us . . . A replication is trivial if it reproduces the
original study exactly, increasing the sample size, decreasing sampling vari-
ability, but shedding no light on hidden biases . . . Absent efforts to prevent
replication of hidden bias, there is little hope that mere repetition eliminates
bias. Biases occur for reasons.

It would seem to be best, then, to vary as much as possible across trials,
in accord with the principle of variative (or Baconian) induction, the
fundamental feature of which “is that observations are performed un-
der different conditions which bring to light factors which potentially
challenge the reliability of a generalization” (Penston, 2003, page 26).

Regarding the choice of baseline covariates to collect, there are
again pros and cons to collecting more, rather than less. On the one
hand, if every conceivable baseline covariate is collected, and there is
selection bias, then the selection covariate (used to discriminate strong
patients, suitable for one treatment group, from weak patients, suitable
for the other treatment group) would be observed. This means that any
selection bias would have to be observable selection bias, and simple
adjustment for the unbalanced covariate(s) might suffice as a solution.
On the other hand, the greater the number of covariates collected, the
better the investigator is able to distinguish strong patients from weak
patients, so this might also enable selection bias. We consider this to
be another open question.

Of course, not all covariates are created equal. Some are much
more prognostic than others. The more prognostic a covariate hap-
pens to be, the more important it is that it be balanced across treatment
groups. For this reason, it is a good idea to do more than simply list
the covariates to be considered. It would be helpful to also summa-
rize any previous studies that might inform the consideration of how
prognostic each covariate is. It might also be a good idea to rank the
covariates based on how prognostic they are expected to be, based
on these previous studies. Such a ranking might help build a model
during the analysis stage, and might also come into play if it turns out
that some covariates are well balanced and others are not. That is,
the ranking would clarify which covariates to be especially concerned
about.

Another issue to consider during the design stage is the alloca-
tion procedure. In Chapter 5 we discussed various randomization
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Table 8.1 Items to consider in the design stage of a randomized trial

Always plan to mask the trial in terms of the process of masking.
Discuss openly the extent to which the outcome of masking can be

achieved.
Always plan to conceal the future allocations.
Discuss openly the extent to which the outcome of allocation concealment

can be achieved.
Carefully consider the patient population.
Carefully consider the set of covariates to measure.
Describe how prognostic each covariate is expected to be, and rank the

covariates.
Carefully consider the maximum tolerated imbalance.
Carefully consider if terminal balance is needed.
Decide on the maximal, randomized blocks, or some other randomization

procedure.

techniques, and these can be considered for any randomized trial.
There are reasons why the maximal procedure might be preferred to
the randomized block procedure, but even if the maximal procedure
is selected (within strata), this still does not completely specify the
randomization technique. What should the maximum imbalance be?
Should terminal balance be forced? If the maximum tolerated imbal-
ance is not too large, then there is probably little benefit in forcing
terminal balance in the size of the treatment groups, but how small
the allowed imbalance would have to be is subjective. Table 8.1 dis-
plays the recommendations and controversies that arise during the
design stage.

8.2 ACTION POINTS DURING THE CONDUCT
OF THE TRIAL

Another set of issues arises as the trial is being executed. For exam-
ple, what (if anything) should be done in case the masking must be
broken for a given patient with a severe adverse event? What infor-
mation (if any) should be recorded for a patient who is screened but
not enrolled? If a run-in phase was used prior to randomization, then
this question comes in two parts: what information should be col-
lected on those patients denied entry into the run-in phase, and what
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information should be collected on those patients excluded during
(or after) the run-in and prior to randomization? Should the patients
who were randomized be asked (after the study is complete and the
database is locked) what treatment they thought they received? Should
the investigators be asked this question?

Another issue arises when the masking is intentionally broken for
a given patient due to an adverse event that appears to require knowl-
edge of the treatment condition for proper management. In fact, of-
ten the masking can be retained even in this case without adversely
affecting the quality of care for the patient in question (Ayala and
MacKillop, 2001), but nevertheless it is not uncommon to break the
masking anyway. As Berger and Exner (1999) pointed out, there is
a danger in breaking the masking for a given patient if the block to
which this patient was randomized is still accruing. That is, consider
a masked trial with blocks of size 2. Suppose that the first patient in
a block has an injection site reaction, and the investigators need to
know the treatment assigned, before the second patient in this block
has been identified. In such a case, allocation concealment is compro-
mised for the second patient in this block, so Berger and Exner (1999)
proposed closing this block to enrollment and proceeding to the next
block. But what if the randomized blocks procedure is not used?

Suppose, for example, that the maximal procedure is used instead.
Then there are no blocks, so the proposed step would not apply. But,
as Berger et al. (2003a) pointed out, it would be nearly impossible to
predict future allocations generated by the maximal procedure based
on knowing only one or several of the previous allocations. In such a
case, then, itmaybeacceptabletosimplyproceedwithnomodification.
On the other hand, if the situation merits concern and the need for a
remedial action, then it would be possible to consider all allocations
up until this time to be a single (possibly very large, depending on
the accession number of the patient in question) block, and then to
start over with a new maximal procedure. That is, the imbalance
would be reset to zero after this patient, thereby making it difficult to
predict future allocations, and impossible to do so based on previous
allocations.

Regarding information to be recorded for a patient who is screened
but not enrolled, Berger and Exner (1999) described methods for cor-
recting selection bias by making use of response data on such patients,
and methods for detecting selection bias based on covariate data on
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such patients. There are reasons, then, to conduct a comprehensive
cohort follow-up study (Olschewski et al., 1992) and obtain complete
data on even the patients who were not randomized. It is unclear
how this would apply to the case in which some patients are not ran-
domized because they were denied entry into the run-in phase, and
others are not randomized because they were excluded during (or af-
ter) the run-in and prior to randomization. It is known, however, that
selecting patients based on their experiences during a run-in leads to
a different type of selection bias (Berger et al., 2003b), so this practice
should not be used. Of course, the benefit of collecting information
on screened patients who are not subsequently enrolled needs to be
balanced against the resources it would require.

Another issue is whether or not the patients who were randomized
should be asked (after the study is complete and the database is locked)
what treatment they thought they received, and if the investigators
should be asked this question. One issue is the use to which such data
would be put. Another issue is the reliability of the data (Fergusson
et al., 2004b). If there is selection bias, then presumably the patients
would not be a party to it, so it is hard to imagine patients having a
reason to conceal the truth regarding their views on which treatment
they believe they received. However, selection bias cannot occur with-
out at least some investigators causing it, and so if there is selection
bias, and we ask those investigators who caused it which treatments
they think each patient received, then we are essentially asking them
to confess. An investigator who thinks this through might be inclined
to avoid self-incrimination, and might provide misleading answers to
these questions. Such answers might suggest that there was no selec-
tion bias, but again, the reliability of the source of these answers needs
to be considered.

One step that might convince investigators to provide honest an-
swers to this question would be the use of the randomized response
technique (see Singh and Mathur, 2004, for a recent discussion of this
technique), which can be modified to fit this situation as follows. For
each patient, the investigator tosses a penny and a nickel. If the penny
turns up heads, then the investigator answers the question based
on the outcome of the nickel (for heads, record that you thought
that the active treatment was received; for tails, record that you
thought that the control was received). If, however, the penny turns
up tails, then you have to answer the question honestly, and report
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what you thought the patient received. The key here is that the result
of the toss of the penny is not recorded, so nobody but the investi-
gator knows which question was being answered. Because the same
investigator would be answering many questions (one for each pa-
tient he or she randomized), and in the case of selection bias would be
concerned with the pattern that might emerge (as opposed to being
concerned with any one response), there is reason to believe that this
technique would not work as well in this situation as it would in the
more usual case in which each respondent answers just one question.
Still, it might be expected to work better than directly asking an in-
vestigator to record the treatment assignment he or she thought was
made to each patient.

The question remains of how to use data on which treatment a pa-
tient or investigator thought was received. Because this type of data
may be unreliable (as mentioned above), it is quite useful at one end
of its spectrum and much less useful at the other end. Specifically, if
it is found that many more than the expected number of allocations
one could guess by chance alone (50% in a study with two arms and
1:1 allocation, for example) were correctly known, then this suggests
that the study was not masked very well. If only the expected number
of correct guesses are reported, then on the surface this suggests that
the masking was intact, but it may also conceal a reluctance to re-
port the truth. Another distinction between the responses of patients
and investigators is that the patients would presumably not know the
restrictions on the randomization, and would not know any prior allo-
cations. Their answers would then be expected to be based exclusively
on their own experiences.

Conversely, an investigator can form an opinion about a treatment
received before it is even administered, based on prior allocations and
knowledgeoftherestrictionsontherandomization.Thatis, theinvesti-
gator will probably follow the restrictions of the randomization, at least
in his or her thinking, if not in his or her reporting. One could study
the responses of an investigator (especially if randomized response is
not used) to see if these responses follow the pattern mandated by the
restrictions on the randomization, and to see, for example, if there
are more correct guesses at the end of blocks than at the beginning
of blocks. This would suggest the mechanism for guessing. Table 8.2
displays the recommendations and controversies that arise during the
conduct of the trial.



JWBK019-08 JWBK019-Berger March 30, 2005 10:4 Char Count= 0

178 Managing selection bias

Table 8.2 Items to consider during the conduct of a randomized trial

Consider if any remedial action is needed in the case of intentional
unmasking of a patient.

Consider recording covariate and response data on even patients not
randomized or enrolled.

Do not use experiences during a run-in to select patients for subsequent
randomization.

Consider asking patients which treatment they thought they received.
Consider asking investigators which treatment they thought they received.
Consider using randomized response to increase the chances of obtaining

honest answers.

8.3 ACTION POINTS DURING THE ANALYSIS
OF TRIAL DATA

A final set of issues arises during the analysis of the trial. For example,
would the analysis be modified if a covariate not prospectively specified
in the model is grossly unbalanced? If so, then how? Would it matter
if an observed covariate imbalance appears to be random, as opposed
to the result of selection bias? How would one even be able to tell the
difference? These are a few of the important issues to address during
the analysis stage, and are probably the issues most closely related to
selection bias. We saw in Chapter 7 that there are new techniques
available for correcting a treatment comparison for selection bias, so
in fact selection bias would trigger a different analytic strategy than a
random covariate imbalance would. That is, it is worth knowing if an
observed covariate imbalance is random or the result of selection bias.

How, then, can one distinguish a random covariate imbalance from
selection bias? One way is by using the Berger–Exner test to study the
relationship between the predicted treatment assignment P{E} and
the outcome within each treatment group. Related analyses can be
used to study the relationship between P{E} and the key covariates.
This analysis is facilitated by the ranking of the covariates mentioned
earlier in this chapter. In the absence of selection bias, P{E} should be
related to the outcome measures (to the extent that there is a true treat-
ment effect, this relationship between P{E}and the outcome measures
will reflect this true treatment effect), but P{E} should not be related
to any outcome measure within a treatment group. If it is, then we
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certainly have evidence of selection bias. Likewise, if P{E} is related to
any covariate, then this is evidence that there is selection bias, and,
further, that this covariate is either related to the selection covariate
or is the selection covariate itself. It is also possible to detect selection
bias by comparing covariate values of those patients randomized and
those patients not randomized by P{E} and perhaps by the treatment
group that was assigned or that would have been assigned had the
patient been randomized (Berger and Exner, 1999). Both are impor-
tant because they reveal different mechanisms for selection bias. In
particular, if one can predict the randomization decision with the com-
bination of P{E}and a key covariate, then this would suggest both that
there was selection bias and that P{E} was used to predict upcoming
allocations. On the other hand, if the actual allocation itself, but not
P{E}, can be used along with a covariate to predict the randomization
decision, then this would suggest instead that the mechanism that
enabled selection bias involved direct observation of the upcoming
allocations, perhaps by tampering with sealed envelopes. It is helpful
to use the flow diagram in figure 2.6.1 to distinguish a random im-
balance from selection bias caused by direct observation of upcoming
allocations from selection bias caused by prediction of future alloca-
tions based on P{E}. Table 8.3 displays various situations, and the
importance of conducting the Berger–Exner test in each.

Table 8.3 The importance of conducting the Berger–Exner test

Varying block
Fixed block size sizes Blocks not used

Unmasked,
imbalances found

Essential Essential Essential

Unmasked, no
imbalances found

Essential Essential Highly desirable

Single-masked,
imbalances found

Essential Highly desirable Highly desirable

Single-masked, no
imbalances found

Essential Highly desirable Desirable

Double-masked,
imbalances found

Highly desirable Desirable Desirable

Double-masked, no
imbalances found

Desirable Desirable Optional
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If selection bias is rigorously sought, and not found, then this sug-
gests that it is safe to proceed with the usual analyses. If, however,
selection bias is found, then it is probably prudent to supplement the
usual analyses with additional analyses that are designed to address
selection bias, and still provide valid treatment comparisons. In Chap-
ter 7 we mentioned using P{E} itself as a covariate, albeit a somewhat
unusual one, for this purpose. It is useful to graph outcomes by P{E}
(RPS) values separately for each treatment group, but overlaid on
the same graph, as was done in Chapters 6 and 7 (the Berger–Exner
graph). This provides a visual display that can detect selection bias and
correct for it, as well as help to provide an estimate of G, the cutoff used
for determining when to bias the patient selection. If, for example, the
graph of outcome by P{E} is flat within each treatment group, then
this suggests that there was no selection bias, and G = 1.00. If the
graph is flat in the middle but rises to the right of some point (say 0.75)
and drops to the left of the complementary point (1 − 0.75 = 0.25),
then this suggests that G = 0.75. Looking for a symmetric change-
point, or an increase in the mean response for RPS values of both
0.5 − k and 0.5 + k for some value of k, with flat patters on each
of the three regions [0.0, 0.5 − k), [0.5 − k, 0.5 + k], and (0.5 + k,
1.0], is an alternative to the likelihood approach discussed in Section
7.3.2. Specifically, G would be estimated as 0.5 + k. For example, if the
graph is flat on [0.0, 0.34), jumps to a higher flat pattern on [0.34,
0.66], and jumps again to another flat pattern on (0.66, 1.00], then
this would suggest that there were biased allocations when P{E} was
1/3 or under, or 2/3 or over. We would then estimate G to be 2/3. But
if there are flat regions consisting of {0.0}, (0.0, 1.00), and {1.00},
then we would infer instead that G = 0.99, and that the only biased
allocations occurred when P{E}= 0.0 or 1.0. Unfortunately, the esti-
mation of G by this technique is subjective, but this can still be a useful
piece of information in summarizing any selection bias found.

We also discussed an adjustment technique based on the likelihood
(Ivanova et al., 2005). These methods do not require data on patients
who were not randomized, but if such data are available, then other
analyses can be conducted as well. For example, one could conduct an
intent-to-randomize analysis, in which all patients screened, whether
randomized or not, are included and assigned to the treatment group
they would have been assigned to had they been randomized and had
all previously screened patients also been randomized (Berger and
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Exner, 1999). Of course, some screened patients are denied enrollment
for legitimate reasons having nothing to do with selection bias, so if
there is some way to distinguish the two causes for denial (legitimate
and selection bias), and determine the range of P{E} values for which
each patient would have been enrolled, then this can be incorporated
into an appropriate permutation test that adjusts for any selection bias
found without assuming that all screened patients would have been
enrolled had there not been any selection bias.

If one does adjust for P{E}, the reverse propensity score (RPS), then
this might have implications for which other covariates should be
included in the model. It may turn out that the best covariates (in
terms of prognostic ability for the primary efficacy endpoint) are the
ones most associated with P{E}, so inclusion of P{E} in the model
might obviate the need for including some other covariates. Clearly,
more research is needed in determining how best to handle selection
bias at the analysis stage, but what is clear is that these efforts should
focus on detection and correction. Berger and Christophi (2003) listed
items to be reported in randomized trials in their Table 8.4.

Many of these points are relevant to the analysis stage of a trial, and
are included in Table 8.5.

If all of these measures are taken, or at least addressed, then the
result will be a climate much more hostile to selection bias, because
selection bias would be much more easily detected. It may be overly
optimistic to hope that these steps would bring an end to selection bias
as we know it, but it is reasonable to suppose that they might be the
beginning of the end. That is, greater respect for selection bias, and
other biases as well, may lead to further research into the management
of these problems, and such further research may result in a complete
elimination of the problem. Until that day comes, about all we can
do is keep an open mind regarding these biases. This open mind can
easily be misconstrued to mean a trusting mind towards those who
would dismiss these biases, or who express indignation at having their
data subjected to analyses aimed at detecting these biases. In fact the
open mind refers to allowing for the possibility, and not being quick to
dismiss the problem based on the argument that this has never been
a problem in the past. This argument uses a form of circular logic
(Rips, 2002), in that the lack of a problem means that no problem
manifested itself. This would cause the lack of scrutiny that would in
turn allow the problem to go on undetected. The methods discussed
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Table 8.4 What to report in randomized clinical trials to control
selection bias

Concern Report

Different Allocation
Discretion

Planned allocation proportions

Number of screened and randomized patients by
the group to which they were or would have
been randomized had they been randomized

Deferred Enrollment List patients who were screened twice or more, or
that there were none

Allocation
Concealment

Specific means of concealing the future
allocations

Predicted Allocations Specific restrictions on the randomization
(including block sizes)

Specific methods of concealing the past
allocations (masking)

Evidence of unmasking (including differential
rates of observable adverse events, any
emergencies requiring intentional unmasking,
and rates of correct treatment group guesses at
de-briefing)

Baseline Imbalances Compare baseline covariates across treatment
groups

Selection Bias Graph key covariates against P{active}, as in
Berger and Exner (1999)

Graph response against P{active} within each
treatment group, per Berger and Exner (1999).

List stratification errors (if any), or that there
were none

in this book will allow researchers to take the more scientific ‘trust but
verify’ approach.

8.4 ACTION POINTS BY PARTY

To this point we have discussed actions to be taken by those who design,
conduct, and analyze randomized trials. Yet there are other parties
who can (and should) also play a role in managing selection bias in
randomized trials. Before we discuss what these actions are, we first
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Table 8.5 Items to consider during the analysis stage of a randomized trial

Conduct and report the Berger–Exner test of selection bias if appropriate
(Table 8.3).

Report the specific restrictions on the randomization.
Graph the key endpoints against P{E} by treatment group.
Report the associations between each key covariate and P{E}.
If covariate information is available for non-randomized patients, then

analyze it.
If the trial was planned as masked, then comment on the success of

masking.
Comment on the success of allocation concealment.
If selection bias is found, then present between-group analyses within

levels of P{E}.
Consider using the likelihood approach to adjusting for selection bias.
Consider the intent-to-randomize approach (if response data are available

for all screened patients).
If selection bias is found, then present an estimate of G and the most likely

selection covariate.

need to characterize the present system for dealing with selection bias,
so that we have a basis for comparison. In a word, the current system
can be characterized as trust. Patients trust that their physicians make
appropriate decisions regarding their medical care. These physicians
in turn trust both the regulatory authorities and the journals to keep
unsafe medicines off the market and deliver unbiased information,
respectively. The regulatory authorities and the journals, in turn, trust
the sponsors and authors to give a clear idea of what is going on
with the treatments they have evaluated in hopes of approval and/or
publication. And these sponsors trust the investigators to conduct the
studies in a manner that does not introduce bias.

If investigators do introduce bias, perhaps selection bias, and no-
body on the path from the investigator to the patient stops to ask the
right questions, then it is clear that the patient may suffer from subop-
timal health care. Rather than asking where the blame lies, it is best
to ask how this situation can be avoided. In other situations, trust in
those on the front line to do the right thing has been shown to be a
poor substitute for systems that ensure compliance. For example, in
many jurisdictions it is no longer optional to wear a seat belt while
operating a motor vehicle – rather, this is the law. In others, it is no
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longer legal to speak on a cell phone while operating a motor vehicle.
Trusting drivers to make the right decision was not producing the de-
sired result, and so stronger measures were required – and taken. One
could also trust physicians to just be careful and not make mistakes,
yet it was recognized (Wachter and Shojania, 2004) that part of the
problem causing medical errors was poor procedures themselves (as
opposed to adherence to these procedures), and so efforts are geared
towards procedures that will prevent even the possibility of these er-
rors. Likewise, one could trust sponsors to be forthcoming with all
relevant information concerning the treatments they study, yet it was
found that the suppression of negative findings could sometimes lead
to distorted conclusions. Hence, rather than urging sponsors to follow
their conscience, some medical journals are now stating as a condi-
tion of publication of a trial that it was pre-registered in a public trial
registry (DeAngelis et al., 2004).

These situations discussed above illustrate that the “trust, don’t ask,
and don’t tell” approach takes one only so far in bringing about the
desired result. And yet this is exactly what is currently being done
to manage selection bias. It would seem that any change would be a
change for the better. But perhaps the best changes would be those
that bring about more attention to the problem. Specifically, then, we
would call on investigators to resist the temptation to predict future
allocations, and for sponsors to design trials that would resist such
attempts. We call on journals to require authors to make publicly
available the full data sets on which publications are based. We call on
regulatory authorities to delve deeper into quality checks of individual
trials, and specifically to check for selection bias among the myriad

Table 8.6 Actions To Be Taken by Various Involved Parties

Investigators Do not try to predict future allocations.
Sponsors Design trials that are less susceptible to selection bias.
Journals Require full data to be made available for publications.
Regulatory

Authorities
Add checks of selection bias to set of routine checks.

Meta-analysts Consider selection bias when weighting studies.
Consumers Demand discussions of biases before accepting results.
Methodologists Develop better methods to manage selection bias.
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other biases routinely checked. We call on meta-analysts and policy-
makers to weight studies by their quality, and to include assessments
of selection bias in these evaluations of quality of individual trials.
We call on consumers of medical research (including health main-
tenance organizations) to be skeptical, and to demand information
regarding biases that may have affected the quality of the studies. We
call on funding agencies to do the same, but before-the-fact. Finally,
we call on methodologists to develop better methods to prevent, detect,
and adjust for selection bias in randomized trials. See Table 8.6 for a
summary of these various action points.
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