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Preface

It is now more than 20 years since the first edition of this book and 10 years from the second.

The need for evidence-based estimates of the required size of a study is now universally 

recognized. Since the second edition the methodology for sample-size calculation has been

widely extended, which is the main reason for a third edition. A second reason is the vastly

improved computing power available. For the first edition, the tabulations were extensive 

to obviate separate calculations. A computer program to extend the range of the tables was

available for the second edition.

This edition comes with sample size software , which we hope will give the user even

greater flexibility and easy access to a wide range of designs, and allow design parameters to be

tailored more readily to specific problems. Further, as some early phase designs are adaptive

in nature and require knowledge of earlier patients’ response to determine the relevant options

for the next patient, a (secure) database is provided for these.

Designing modern clinical research studies requires the involvement of multidisciplinary

teams, with the process of sample size determination not being something that can be done 

by the statistician alone. So while software is available that can compute sample sizes (even

from the internet), we feel that it is necessary that such software be complemented with 

a book that clearly explains and illustrates the methodology, along with tables. Feedback 

from users of earlier editions suggests that this can facilitate planning discussions within the

research team.

Thus a major consideration has been to present the details, which are often complex, 

as clearly as possible and to illustrate these with appropriate examples. One objective of this

approach is to encourage the wider use of sample size issues at the design stage in areas such 

as laboratory studies, which have been relatively neglected compared to epidemiological 

studies and clinical trials.

David Machin

Michael J. Campbell

Say Beng Tan

Sze Huey Tan

Singapore; Leicester and Sheffield, UK
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1

Basic design considerations

SUMMARY
This chapter reviews the reasons why sample-size considerations are important when planning a clinical

study of any type. The basic elements underlying this process including the null and alternative study

hypotheses, effect size, statistical significance level and power are described. We introduce the notation

to distinguish the population parameters we are trying to estimate from the study, from their anticipated

value at the design stage, and finally their estimated value once the study has been completed. In the

context of clinical trials, we emphasise the need for randomised allocation of subjects to treatment.

1.1 Why sample size calculations?

To motivate the statistical issues relevant to sample-size calculations, we will assume that we

are planning a two-group clinical trial in which subjects are allocated at random to one of two

alternative treatments for a particular medical condition and that a single binary endpoint

(success or failure) has been specified in advance. However, it should be emphasised that the

basic principles described, the formulae, sample-size tables and associated software included

in this book are equally relevant to a wide range of design types covering all areas of medical

research: ranging from the epidemiological, to clinical and laboratory-based studies.

Whatever the field of enquiry a well-designed study will have considered the questions posed

carefully and, what is the particular focus for us, formally estimated the required sample size

and will have recorded the supporting justification for the choice. Awareness of the import-

ance of these has led to the major medical and related journals demanding that a detailed

justification of the study size be included in any submitted article as it is a key component for

peer reviewers to consider when assessing the scientific credibility of the work undertaken.

For example, the General Statistical Checklist of the British Medical Journal, asks: ‘Was a 

pre-study calculation of study size reported?’

In any event, at a more mundane level, investigators, grant-awarding bodies and medical

product development companies will all wish to know how much a study is likely to ‘cost’ both

in terms of time and resource consumed as well as monetary terms. The projected study size

will be a key component in this ‘cost’. They would also like to be reassured that the allocated

resource will be well spent by assessing the likelihood that the study will give unequivocal

results. In addition, the regulatory authorities, including the Food and Drug Administration

(FDA 1988) in the USA and the Committee for Proprietary Medicinal Products (CPMP 1995)

in the European Union, require information on planned study size. These are encapsulated in

1
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2 Chapter 1

the guidelines of the International Conference on Harmonisation of Technical Requirements

for Registration of Pharmaceuticals for Human Use (1998) ICH Topic E9.

If too few subjects are involved, the study is potentially a misuse of time because realistic

medical differences are unlikely to be distinguished from chance variation. Too large a study

can be a waste of important resources. Further, it may be argued that ethical considerations

also enter into sample size calculations. Thus a small clinical trial with no chance of detect-

ing a clinically useful difference between treatments is unfair to all the patients put to the

(possible) risk and discomfort of the trial processes. A trial that is too large may be unfair if

one treatment could have been ‘proven’ to be more effective with fewer patients as, a larger

than necessary number of them has received the (now known) inferior treatment.

Providing a sample size for a study is not simply a matter of giving a single number from a

set of tables. It is, and should be, a several-stage process. At the preliminary stages, what is required

are ‘ball-park’ figures that enable the investigators to judge whether or not to start the detailed

planning of the study. If a decision is made to proceed, then the later stages are to refine the

supporting evidence for the early calculations until they make a persuasive case for the final

patient numbers chosen which is then included (and justified) in the final study protocol.

Once the final sample size is determined, the protocol prepared and approved by the 

relevant bodies, it is incumbent on the research team to expedite the recruitment processes 

as much as possible, ensure the study is conducted to the highest of standards possible and

eventually reported comprehensively.

Cautionary note

This book contains formulae for sample-size determination for many different situations. If

these formulae are evaluated with the necessary input values provided they will give sample sizes

to a mathematical accuracy of a single subject. However, the user should be aware that when

planning a study of whatever type, one is planning in the presence of considerable uncertainty

with respect to the eventual outcome. This suggests that, in the majority of applications, the

number obtained should be rounded upwards to the nearest five, 10 or even more to establish 

the required sample size. We round upwards as that would give rise to narrower confidence 

intervals, and hence more ‘convincing’ evidence.

In some cases statistical research may improve the numerical accuracy of the formulae which

depend on approximations (particularly in situations with small sample sizes resulting), but

these improvements are likely to have less effect on the subsequent subject numbers obtained

than changes in the planning values substituted into the formulae. As a consequence, we have

specifically avoided using these refinements if they are computationally intensive. In contrast,

and as appropriate, we do provide alternative methods which can easily be evaluated to give

the design team a quick check on the accuracy of their computations and some reassurance on

the output from and the tables we provide.

1.2 Design and analysis

Notation
In very brief terms the (statistical) objective of any study is to estimate from a sample the 

value of a population parameter. For example, if we were interested in the mean birth 

SSS
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Basic design considerations 3

weight of babies born in a certain locality, then we may record the weight of a selected 

sample of n babies and their mean weight G is taken as our estimate of the population mean

birth weight denoted ωPop. The Greek ω distinguished the population value from its estimate

Roman G. When planning a study, we are clearly ignorant of ωPop and neither do we have 

the data G. As we shall see later, when planning a study the investigators will usually need 

to provide some value for what ωPop may turn out to be. We term this anticipated value 

ωPlan. This value then forms (part of) the basis for subsequent sample size calculations.

However, because adding ‘Plan’ as a subscript to the, often several, parameters concerned 

in the formulae for sample sizes included in this book, makes them even more cumbersome 

it is usually omitted, so ωPlan becomes simply ω. However to help with maintaining the dis-

tinction between ‘Plan’ and ‘Population’ values of parameters we have added the subscript

‘Pop’ to the latter. Unfortunately, although making subsequent chapters easier, this rather

complicates the sections immediately below.

The randomised controlled trial
Consider, as an example, a proposed randomised trial of a placebo (control) against acupunc-

ture in the relief of pain in a particular diagnosis. The patients are randomised to receive

either placebo or acupuncture (how placebo acupuncture can be administered is clearly an

important consideration). In addition, we assume that pain relief is assessed at a fixed time

after randomisation and is defined in such a way as to be unambiguously evaluable for each

patient as either ‘success’ or ‘failure’. We assume the aim of the trial is to estimate the true 

difference δPop between the true success rate πPopA of Acupuncture and the true success rate

πPopC of Control. Thus the key (population) parameter of interest is δPop which is a composite

of the two (population) parameters πPopA and πPopC.

At the completion of the trial the Acupuncture group of patients yield a treatment success

rate pA which is an estimate of πPopA and the Control group give success rate pC which is an

estimate of πPopC. Thus, the observed difference, d = pA − pC, provides an estimate of the true

difference δPop = πPopA − πPopC.

In contrast, at the design stage of the trial one can only postulate what the size of difference

(strictly the minimum size of interest) might be and we denote this by δPlan.

The number of patients necessary to recruit to a particular study depends on:

• The anticipated clinical difference between the alternative treatments;

• The level of statistical significance, α;

• The chance of detecting the anticipated clinical difference, 1 − β.

The null and alternative hypotheses, and effect size
Null hypothesis
In our example, the null hypothesis, termed HNull, implies that acupuncture and placebo 

are equally effective or that πPopA = πPopC. Even when that null hypothesis is true, observed

differences, d = pA − pC other than zero, will occur. The probability of obtaining the observed

difference d or a more extreme one given that πPopA = πPopC can be calculated. If, under this

null hypothesis, the resulting probability or p-value was very small, then we would reject the

null hypothesis. We then conclude the two treatments do indeed differ in efficacy.

9781405146500_4_001.qxd  9/8/08  10:20  Page 3



4 Chapter 1

Alternative hypothesis
Usually in statistical significance testing, by rejecting the null hypothesis, we do not

specifically accept any alternative hypothesis and it is usual to report the range of plausible

population values with a confidence interval (CI). However, sample-size calculations are usu-

ally posed in a hypothesis test framework, and this requires us to specify an alternative

hypothesis, termed HAlt, that is, πPopA − πPopC = δPop with δPop ≠ 0. The value δPop is known as

the true effect size.

Establishing the effect size
Of the parameters that have to be pre-specified before the sample size can be determined, the

true effect size is the most critical and, in order to estimate sample size, one must first identify

the magnitude of the difference one wishes to detect by means of δPlan.

Sometimes there is prior knowledge that enables an investigator to anticipate what treat-

ment benefit is likely to be observed, and the role of the trial is to confirm that expectation. 

At other times it may be possible to say that, for example, only the prospect of doubling of

their median survival would be worthwhile for patients with this type of rapidly fatal disease

because the new treatment is so toxic.

One additional problem is that investigators are often optimistic about the effect of new

treatments; it can take considerable effort to initiate a trial and so, in many cases, the trial would

only be launched if the investigator is enthusiastic about the new treatment and is sufficiently

convinced about its potential efficacy. Experience suggests that as trials progress there is often

a growing realism that, even at best, the initial expectations were optimistic and there is ample

historical evidence to suggest that trials which set out to detect large treatment differences nearly

always result in ‘no significant difference was detected’. In such cases there may have been 

a true and worthwhile treatment benefit that has been missed, since the level of detectable 

differences set by the design was unrealistically high, and hence the sample size too small.

In practice a form of iteration is often used. The clinician team might offer a variety of

opinions as to what clinically useful difference will transpirearanging perhaps from the

unduly pessimistic small effect to the optimistic (and unlikely in many situations) large effect.

Sample sizes may then be calculated under this range of scenarios with corresponding patient

numbers ranging perhaps from extremely large to the relatively small. The importance of 

the clinical question, and/or the impossibility of recruiting large patient numbers may rule

out a very large trial but to conduct a small trial may leave important clinical effects not 

firmly established. As a consequence, the team may next define a revised aim maybe using a

summary derived from the original opinions, and the calculations are repeated. Perhaps the

sample size now becomes attainable and forms the basis for the definitive protocol.

There are a number of ways of eliciting useful effect sizes: a Bayesian perspective has 

been advocated by Spiegelhalter, Freedman and Parmar (1994), an economic approach by

Drummond and O’Brien (1993) and one based on patients’ perceptions rather than clinicians’

perceptions of benefit by Naylor and Llewellyn-Thomas (1994).

Test size, significance level or Type I error
The critical value we take for the p-value is arbitrary, and we denote it by α. If p-value ≤ α one

rejects the null hypothesis, conversely if p-value > α one does not reject the null hypothesis.
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Basic design considerations 5

Even when the null hypothesis is in fact true there is a risk of rejecting it and to reject the 

null hypothesis when it is true is to make a Type I error. The probability of rejecting the null

hypothesis when it is true is α. The quantity α can be referred to either as the test size,

significance level, probability of a Type I error or the false-positive error. Conventionally 

α = 0.05 is often used.

Type II error and power
The clinical trial could yield an observed difference d that would lead to a p-value > α even

though the null hypothesis is really not true, that is, πPopA truly differs from πPopC. In such 

a situation, we then fail to reject the null hypothesis when it is in fact false. This is called a 

Type II or false-negative error and the probability of this is denoted by β.

The probability of a Type II error is based on the assumption that the null hypothesis is 

not true, that is, δPop = πPopA − πPopC ≠ 0. There are clearly many possible values of δPop in 

this instance since many values other than zero satisfy this condition, and each would give a

different value for β.

The power is defined as one minus the probability of a Type II error, 1 − β. That is, ‘power’

is the probability of obtaining a ‘significant’ p-value if the null hypothesis is really false.

Conventionally a minimum power of 80% is required in a clinical trial.

One and two-sided significance tests
It is usual for most clinical trials that there is considerable uncertainty about the relative 

merits of the alternative treatments so that even when the new treatment or intervention

under test is thought for scientific reasons to be an improvement over the current standard,

the possibility that this is not the case is allowed for. For example, in the clinical trial con-

ducted by Chow, Tai, Tan et al. (2002) it was thought at the planning stage that high dose

tamoxifen would improve survival over placebo in patients with inoperable hepatocellular

carcinoma. This turned out not to be the case and, if anything, tamoxifen was detrimental to

the ultimate survival. This is not an isolated example.

Since it is plausible to assume in the acupuncture trial referred to earlier that the placebo 

is in some sense ‘inactive’ and that any ‘active’ treatment will have to perform better than the

‘inactive’ treatment if it is to be adopted into clinical practice, then the alternative hypothesis

may be that the acupuncture has an improved success rate, that is, πPopA > πPopC. This leads to

a one-sided or one-tailed statistical significance test.

On the other hand, if we cannot make this type of assumption about the new treatment 

at the design stage, then the alternative hypothesis is that πPopA and πPopC differ, that is, 

πPopA ≠ πPopC.

In general, for a given sample size, a one-sided test is more powerful than the correspond-

ing two-sided test. However, a decision to use a one-sided test should never be made after

looking at the data and observing the direction of the departure. Such decisions should be

made at the design stage and one should use a one-sided test only if it is certain that departures

in the particular direction not anticipated will always be ascribed to chance, and therefore

regarded as non-significant, however large they are. It will almost always be preferable to carry

out two-sided hypothesis tests but, if a one-sided test is to be used, this should be indicated

and justified for the problem in hand.

9781405146500_4_001.qxd  9/8/08  10:20  Page 5



6 Chapter 1

Confidence intervals
Medical statisticians often point out that there is an over-emphasis on tests of significance 

in the reporting of results and they argue that, wherever possible, confidence intervals (CI)

should be quoted (see Chapter 2). The reason for this is that a p-value alone gives the reader,

who wishes to make use of the published results of a particular trial, little practical informa-

tion. In contrast, quoting an estimate of the effect with the corresponding (usually 95%)

confidence interval, enables him or her to better judge the relative efficacy of the alternative

treatments. For the purposes of this book, the associated software and in the planning

stages of the trial, discussion is easier in terms of statistical significance but nevertheless it

should be emphasised that key confidence intervals should always be quoted in the final

report of any study of whatever design.

Randomisation
As Machin and Campbell (2005) and many others point out, of fundamental importance to

the design of any clinical trial (and to all types of other studies when feasible) is the random

allocation of subjects to the options under study. Such allocation safeguards in particular

against bias in the estimate of group differences and is the necessary basis for the subsequent

statistical tests.

1.3 Practicalities

Power and significance tests
In a clinical trial, two or more forms of therapy or intervention may be compared. 

However, patients themselves vary both in their baseline characteristics at diagnosis and 

in their response to subsequent therapy. Hence in a clinical trial, an apparent difference 

in treatments may be observed due to chance alone, that is, we may observe a difference 

but it may be explained by the intrinsic characteristics of the patients themselves rather 

than ‘caused’ by the different treatments given. As a consequence, it is customary to use a

‘significance test’ to assess the weight of evidence and to estimate the probability that the

observed data could in fact have arisen purely by chance. The results of the significance test,

calculated on the assumption that the null hypothesis is true, will be expressed as a ‘p-value’.

For example, at the end of the trial if the difference between treatments is tested, then a 

p < 0.05 would indicate that so extreme an observed difference could be expected to have

arisen by chance alone less than 5% of the time, and so it is quite likely that a treatment differ-

ence really is present.

However, if only a few patients were entered into the trial then, even if there really were 

a true treatment difference, the results are less convincing than if a much larger number 

of patients had been assessed. Thus, the weight of evidence in favour of concluding that 

there is a treatment effect will be much less in a small trial than in a large one. In statistical

terms, we would say that the ‘sample size’ is too small, and that the ‘power of the test’ is 

very low.

The ‘power’ of a significance test is a measure of how likely a test is to produce a statistically

significant result, given a true difference between the treatments of a certain magnitude.

SSS
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Sample size and interpretation of significance
Suppose the results of an observed treatment difference in a clinical trial are declared ‘not 

statistically significant’. Such a statement only indicates that there was insufficient weight 

of evidence to be able to declare: ‘that the observed difference is unlikely to have arisen by

chance’. It does not imply that there is ‘no clinically important difference between the treat-

ments’ as, for example, if the sample size was too small the trial might be very unlikely to

obtain a significant p-value even when a clinically relevant difference is truly present. Hence 

it is of crucial importance to consider sample size and power when interpreting statements

about ‘non-significant’ results. In particular, if the power of the test was very low, all one can

conclude from a non-significant result is that the question of treatment differences remains

unresolved.

Estimation of sample size and power
In estimating the number of patients required for a trial (sample size), it is usual to identify a

single major outcome which is regarded as the primary endpoint for comparing treatment

differences. In many clinical trials this will be a measure such as response rate, time to wound

healing, degree of palliation, or a quality of life index.

It is customary to start by specifying the size of the difference required to be detected, and

then to estimate the number of patients necessary to enable the trial to detect this difference 

if it truly exists. Thus, for example, it might be anticipated that acupuncture could improve

the response rate from 20 to 30%, and that since this is a plausible and medically import-

ant improvement, it is desired to be reasonably certain of detecting such a difference if it 

really exists. ‘Detecting a difference’ is usually taken to mean ‘obtain a statistically significant 

difference with p-value < 0.05’; and similarly the phrase ‘to be reasonably certain’ is usually

interpreted to mean something like ‘have a chance of at least 90% of obtaining such a p-value’

if there really is an improvement from 20 to 30%. This latter statement corresponds, in 

statistical terms, to saying that the power of the trial should be 0.9 or 90%.

More than one primary outcome
We have based the above discussion on the assumption that there is a single identifiable 

end point or outcome, upon which treatment comparisons are based. However, often there 

is more than one endpoint of interest within the same trial, such as wound healing time, 

pain levels and methicillin-resistant Staphylococcus aureus (MRSA) infection rates. If one of

these endpoints is regarded as more important than the others, it can be named as the primary

endpoint and sample-size estimates calculated accordingly. A problem arises when there 

are several outcome measures which are all regarded as equally important. A commonly

adopted approach is to repeat the sample-size estimates for each outcome measure in turn,

and then select the largest number as the sample size required to answer all the questions 

of interest.

Here, it is essential to note the relationship between significance tests and power as it is well

recognised that p-values become distorted if many endpoints (from the same patients) are

each tested for significance. Often a smaller p-value will be considered necessary for statistical

significance to compensate for this. In such cases, the sample-size calculations will use the

reduced test size and hence increase the corresponding study size.
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8 Chapter 1

Internal pilot studies
In order to calculate the sample size for a trial one must first have available some background

information. For example, for a trial using a survival endpoint one must provide the anti-

cipated survival of the control group. Also, one must have some idea as to what is a realistic

difference to seek. Sometimes such information is available as rather firm prior knowledge

from the work of others, at other times, a pilot study may be conducted to obtain the relevant

information.

Traditionally, a pilot study is a distinct preliminary investigation, conducted before

embarking on the main trial but several authors, including Browne (1995), have advocated

the use of an internal pilot study. The idea here is to plan the clinical trial on the basis of the

best (current) available information, but to regard the first patients entered as the internal

pilot. When data from these patients have been collected, the sample size can be re-estimated

with the revised knowledge that the data from these first patients have provided. Two vital

features accompany this approach: firstly, the final sample size should only ever be adjusted

upwards, never down; and secondly, one should only use the internal pilot information in

order to improve the design features which are independent of the treatment variable. This

second point is crucial. It means that, for example, if treatments are to be compared using a 

t-test, then a basic ingredient of the sample-size calculation will be the standard deviation

(σPlan) whose value may be amended following the pilot phase and then potentially used 

to revise upwards the ultimate sample size. No note of the observed difference (the effect)

between treatments is made so that δPlan remains unchanged in the revised calculations.

The advantage of an internal pilot is that it can be relatively largeaperhaps half of the 

anticipated patients. It provides an insurance against misjudgement regarding the baseline

planning assumptions. It is, nevertheless, important that the intention to conduct an internal

pilot study is recorded at the outset and that full details are given in the study protocol.

More than two groups
The majority of clinical trials involve a simple comparison between two interventions or

treatments. When there are more than two treatments the situation is much more com-

plicated. This is because there is no longer one clear alternative hypothesis. Thus, for 

example, with three groups, although the null hypothesis is that the population means are 

all equal, there are several potential alternative hypotheses. These include one which post-

ulates that two of the group means are equal but which differ from the third, or one that 

the means are ordered in some way. Alternatively the investigators may simply wish to 

compare all three groups, leading to three pairwise comparisons which may not all be equally

important.

One problem arising at the time of analysis is that such situations may lead to multiple

significance tests, resulting in misleading p-values. Various solutions have been proposed,

each resulting in different analysis strategies and therefore different design and sample 

size considerations. One approach that is commonly advocated is to conduct an analysis of 

variance (ANOVA) or a similar global statistical test, with pairwise or other comparisons of

means only being made if the global test is significant. Another approach is to use conven-

tional significance tests but with an adjusted significance level obtained from the Bonferroni

correctionaessentially reducing the conventional test size (say, 0.05) by dividing by the 
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number of comparisons to be made. However, the simplest strategy is to adopt the approach

which regards, for example, a three-treatment groups comparison as little different from 

carrying out a series of three independent trials, and to use conventional significance tests

without adjustment as argued by Saville (1990). As a consequence, and assuming equal 

numbers of subjects per treatment arm, the sample size is first estimated for the three distinct 

trial comparisons. Then for each treatment group simply take the maximum of these as 

the sample size required.

Studies with g (> 2) groups may compare different doses of the same therapy or some 

other type of ordered treatment groups. Thus, although the null hypothesis would still be 

that all population means are equal, the alternative will now be HOrdered which is either 

μPop1 < μPop1 < . . . < μPopg or μPop1 > μPop1 > . . . > μPopg. In the simplest case, the doses may

be equally spaced either on the original or possibly a logarithmic scale, and these may allow

HOrdered to be expressed as μPop = αPop + βPop(dose). The study is then designed to estimate

the regression coefficient, βPop, and the sample size is calculated on the basis of an anticipated

value, βPlan.

A rather different situation arises with factorial designs. Suppose that a 2 × 2 factorial 

trial is planned to compare two factors, A and B each of two levels, then there will be four

groups to be compared with m subjects per group. The design may be particularly useful in

circumstances where (say) factor A addresses a major therapeutic question, while factor B

poses a more secondary one. For example, A might be the addition of a further drug to an

established combination chemotherapy for a cancer while B may the choice of anti-emetic

delivered with the drugs. For efficient use of such a design the two main effects, that is the 

different options within A and those within B, are compared using two means with 2m

subjects in each group. However, this assumes an absence of interaction between the 

factors which means that the effect of A remains the same irrespective of which of the options

within B the patient receives and vice-versa. If this is not the case, we might then wish to 

estimate the size of this interaction effect and so have a sufficiently large sample size for 

this purpose.

In planning a 2 × 2 factorial trial, the first step would be to assume no interaction was 

present and consider the sample size for factor A. The second step would be to consider the

sample size for factor B which may have a different effect size, test size and power, from the

factor A comparison. Clearly, if the resulting sample sizes are similar then there is no difficulty

in choosing, perhaps the larger, as the required sample size. If the sample sizes are very dis-

parate then a discussion would ensue as to the most important comparison and perhaps a 

reasonable compromise reached. This compromise figure could then be used to check what

magnitude of interaction (if present) could be detected with such numbers and may have 

to be increased if there is a strong possibility of an interaction being present.

Rules of thumb
Although we provide in later chapters methods of determining sample sizes in a variety of

contexts, it is often very useful (especially at initial planning meetings) to have a ‘feel’ of the

order of magnitude of the sample size that may ultimately be required. Thus some ‘rules of

thumb’ are given in the appropriate chapters for this purpose while Van Belle (2002) provides

a more comprehensive review.
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10 Chapter 1

1.4 Use of tables and software

It is hoped that the tables and the associated software will prove useful in a number 

of ways.

Number of subjects
Before conducting a clinical trial to test the value of acupuncture a researcher believes that 

the placebo group will yield a response rate of 30%. How many subjects are required to

demonstrate an anticipated response rate for acupuncture of 70% at a given significance 

level and power?

Power of a study
A common situation is one where the number of patients is governed by forces such as time,

money, human resources and disease incidence rather than by purely scientific criteria. The

researcher may then wish to know what probability he or she has of detecting a certain differ-

ence in treatment efficacy with a trial of the intended size.

Size of effect
In this case, the sample size is constrained, and the researcher is interested in exploring the

size of effects which could be established for a reasonable power, say, 80%.

1.5 The protocol

As we have indicated the justification of sample size in any study is important. This not only

gives an indication of the resources required but also forces the research team to think about

issues of design carefully. We give below examples of how the resulting calculations were

justified.

Example 1.1bsurgical resection for patients with gastric cancer

Cuschieri, Weeden, Fielding et al. (1999) compared two forms of surgical resection for

patients with gastric cancer. The primary outcome (event of interest) was time to death. The

authors state:

‘Sample size calculations were based on a pre-study survey of 26 gastric surgeons, which

indicated that the baseline 5-year survival rate of D1 surgery was expected to be 20%,

and an improvement in survival to 34% (14% change) with D2 resection would be a

realistic expectation. Thus 400 patients (200 in each arm) were to be randomised,

providing 90% power to detect such a difference with p-value < 0.05’.

Example 1.2bsteroid or cyclopsporine for oral lichen planus

The protocol of March 1998 of the subsequently published trial conducted by Poon, Goh,

Kim et al. (2006) to compare steroid with cyclosporine for the topical treatment of oral lichen

planus stated:

SSS
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‘It is anticipated that in patients taking topical steroids, the response rate at 1 month 

will be approximately 60%. It is anticipated that this may be raised to as much as 80% 

in those receiving cyclosporine. With two-sided test size 5%, power 80%, then the

corresponding number of patients required is approximately 200 (Machin, Campbell,

Fayers and Pinol 1997, Table 3.1).’

Example 1.3bsequential hormonal therapy in advanced and metastatic breast cancer

Iaffaioli, Formato, Tortoriello et al. (2005) conducted two Phase II trials of sequential 

hormonal therapy with first-line anastrozole and with second-line exemestane, in advanced

and metastatic breast cancer. This example is discussed further in Chapter 17.

The authors provide their justification for sample size as follows (we just show the justifica-

tion for the anastrozole study, a similar justification was provided for the exemestane study):

‘The sample size calculation for both single-stage studies was performed as proposed 

by A’Hern (2001), this method being an exact version of the algorithm first presented

by Fleming (1982). The anastrizole evaluation required 93 subjects to decide whether

the proportion of patients with a clinical benefit (P) was ≤ 50% or ≥ 65%. If the number

of patients with clinical benefit was ≥ 55, the hypothesis that P ≤ 50% was rejected with

a target error rate of 0.050 and an actual error rate of 0.048. If the number of patients

with clinical benefit was ≤ 54, the hypothesis that P ≥ 65% was rejected with a target

error rate of 0.100 and an actual error rate of 0.099.’

1.6 Books on sample-size calculations

Chow SC, Shao J and Wang H (2008). Sample Size Calculations in Clinical Research, 2nd edn.

Marcel Dekker, New York.

Cohen J (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence

Earlbaum, New Jersey.

Lemeshow S, Hosmar DW, Klar J and Lwanga SK (1990). Adequacy of Sample Size in Health

Studies. John Wiley & Sons, Chichester.

Lipsey MW (1990). Design Sensitivity: Statistical Power for Experimental Research. Sage

Publications, London.

Machin D and Campbell MJ (2005). Design of Studies for Medical Research, John Wiley &

Sons, Chichester.

Schuster JJ (1993). Practical Handbook of Sample Size Guidelines for Clinical Trials. CRC Press, FL.

1.7 Software for sample-size calculations

Since sample-size determination is such a critical part of the design process we recommend

that all calculations are carefully checked before the final decisions are made. This is particu-

larly important for large and/or resource intensive studies. In-house checking by colleagues is

also important.
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Biostat (2001). Power & Precision: Release 2.1. Englewood, NJ.

Lenth RV (2006). Java Applets for Power and Sample Size. URL: http://www.stat.uiowa.edu/

~rlenth/Power.

National Council for Social Studies (2005). Power Analysis and Sample Size Software (PASS):

Version 2005. NCSS Statistical Software, Kaysville, UT.

SAS Institute (2004). Getting Started with the SAS Power and Sample Size Application: Version

9.1. SAS Institute, Cary, NC.

StataCorp (2007). Stata Statistical Software: Release 10. College Station, TX.

Statistical Solutions (2006). nQuery Adviser: Version 6.0. Saugus, MA.
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Distributions and confidence intervals

SUMMARY
Five theoretical statistical distributions, the Normal, Binomial, Poisson, Beta and Exponential are described.

In particular, the properties of the Normal distribution are stressed and the circumstances (essentially

large study size) in which the Binomial and Poisson distributions have an approximately Normal shape

are described. Methods for calculating confidence intervals for a population mean are indicated together

with (suitably modified) how they can be used for a proportion or rates in larger studies. For the Binomial

situation, formulae are also provided where the sample size is not large.

2.1 Normal Distribution

The Normal distribution plays a central role in statistical theory and frequency distributions

resembling the Normal distribution form are often observed in practice. Of particular import-

ance is the standardised Normal distribution, which is the Normal distribution that has a

mean equal to 0 and a standard deviation equal to 1. The probability density function of such

a Normally distributed random variable z is given by

(2.1)

where π represents the irrational number 3.14159. . . . The curve described by Equation 2.1 is

shown in Figure 2.1.

For sample size purposes, we shall need to calculate the area under some part of this

Normal curve. To do this, use is made of the symmetrical nature of the distribution about the

mean of 0, and the fact that the total area under a probability density function is unity.

Any area, like that in Figure 2.1, which has area γ (here γ ≥ 0.5) has a corresponding value

of zγ along the horizontal axis that can be calculated. This may be described in mathematical

terms by the following integral

(2.2)

For areas with γ < 0.5 we can use the symmetry of the distribution to calculate the 

corresponding area. For example if γ = 0.5, then one can see from Figure 2.1 that zγ = z0.5 = 0.

It is also useful to be able to find the value of γ for a given value of zγ and this is tabulated in
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Table 2.1. For example if zγ = 1.9600 then Table 2.1 gives γ = 0.97500. In this case, the unshaded

area of Figure 2.1 is then 0.975 and the shaded area is 1 − 0.975 = 0.025.

For purposes of sample size estimation, it is the area in the tail, 1 − γ, that is often needed

and so we most often need the value of z for a specified area. In relation to test size, we denote

the area by α and Table 2.2 gives the value of z for differing values of α. Thus for one-sided

α = 0.025 we have z = 1.9600. As a consequence of the symmetry of Figure 2.1, if z = −1.9600

then α = 0.025 is also in the lower tail of the distribution. Hence the tabular value of z = 1.9600

also corresponds to two-sided α = 0.05. Similarly Table 2.2 gives the value of z corresponding

to the appropriate area under the curve for one-tailed power (see below) 1 − β.

The ‘Fundamental Equation’
When the outcome variable of a study is continuous and Normally distributed, the mean, h,

and standard deviation, s, calculated from the data obtained on m subjects provide estimates

of the population mean μPop and standard deviation σPop respectively. The corresponding 

standard error of the mean is then estimated by .

In a parallel group trial to compare two treatments, with m patients in each group, the true

relative efficacy of the two treatments is δPop = μPop1 − μPop2, and this is estimated by d = h1 − h2,

with standard error . It is usual to assume that the standard deviations are 

the same in both groups, so σ1Pop = σ2Pop = σ (say). In which case a pooled estimate obtained 

from the data of both groups is , so that .

The null hypothesis of no difference between groups is expressed as HNull : μ1Pop = μ2Pop or

as δ = μ1Pop − μ2Pop = 0. This corresponds to the left-hand Normal distribution of Figure 2.2

centred on 0. Provided the groups are sufficiently large then a test of the null hypothesis, 

H0 : δ = 0, of equal means calculates and, for example, if this is sufficiently 

large it indicates evidence against the null hypothesis.
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Figure 2.1 The probability density function of a standardised Normal distribution.
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16 Chapter 2

Now if this significance test, utilising the data we have collected, is to be just significant 

at some level α, then the corresponding value of z is z1−α and that of d is dα say. That is if the

observed value d equals or exceeds the critical value dα, then the result is declared significant

at significance level α.

At the planning stage of the study, when we have no data, we would express this conceptual

result by

or

(2.3)

The alternative hypothesis, HAlt : δ ≠ 0, we assume δ > 0 for convenience here, corresponds

to the right-hand Normal distribution of Figure 2.2. If this were the case then we would

expect d to be close to δ, so that d − δ will be close to zero. To just reject the hypothesis that 

μ1 − μ2 = δ, we require our observed data to provide

(2.4)

At the planning stage of the study, when we have no data, we would express this conceptual

result by

(2.5)

Equating Equations 2.3 and 2.5 for dα, and rearranging, we obtain the sample size for each

group in the trial as
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Figure 2.2 Distribution of d under the null (δ = 0) and alternative hypotheses (δ > 0).
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(2.6)

where Δ = δ/σ is the (standardised) effect size. As a consequence, the tabulation of the numerator

of Equation 2.6, but omitting the multiplier 2, is of particular value for many calculations of

sample sizes. This is why it is termed the ‘Fundamental Equation’.

The use of Equation 2.6 for the case of a two-tailed test, rather than the one-tailed test dis-

cussed above, involves a slight approximation since d is also statistically significant if it is less

than −dα. However, with d positive the associated probability is negligible. Thus, for the case

of a two-sided test, we simply replace z1−α in Equation 2.6 by z1−α/2.

We denote the two-tailed test version of the term in the numerator of Equation 2.6 as 

θ(α, β), which is tabulated in Table 2.3, where

θ(α, β) = (z1−α/2 + z1−β)2. (2.7)

In applications discussed in this book, two-sided α and one-sided β, correspond to the 

most frequent situation. One-sided α and/or two-sided β are used less often (however, see

Chapter 9).

In order to design a study comparing two groups the design team supplies:

• The anticipated effect size, Δ, which is the size of the anticipated standardised difference

between the two groups.

• The significance level, α, of the statistical test to be used in analysis.

• The probability of a Type II error, β, equivalently expressed as the power 1 − β.

Notation
Throughout this book, we denote a two-sided (or two-tailed) value for z corresponding to a

two-sided significance level, α, by z1−α /2 and for a one-sided significance level by z1−α . The

same notation is used in respect to the Type II error β.

Use of tables
Table 2.1
Example 2.1

In retrospectively calculating the power of a completed trial comparing two treatments, 

an investigator has obtained z1−β = 1.05, and would like to know the corresponding power, 

1 − β.

In the terminology of Table 2.1, the investigator needs to find γ for zγ = 1.05. Direct reading

from the table with zγ = 1.05 gives the corresponding γ = 0.85314. Thus, the power of the test

would be approximately 1 − β = 0.85 or 85%.

Table 2.2
Example 2.2

At the planning stage of a randomised trial an investigator is considering using a one-sided 

or one-tailed test size α of 0.05 and a power 0.8. What are the values of z1−α and z1−β that are

needed for the calculations?
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For a one-tailed test one requires a probability of α in one tail of the corresponding 

standardized Normal distribution. The investigator thus requires to find zγ = z1−α or z0.95. 

A value of γ = 0.95 could be found by searching in the body of Table 2.1. Such a search gives 

z as between 1.64 and 1.65. However, direct entry into the first column of Table 2.2 with 

α = 0.05 gives the corresponding z = 1.6449. To find z1−β for 1 − β = 0.80, enter the table

directly to obtain z0.80 = 0.8416.

At a later stage in the planning they are led to believe that a two-sided test would be more

appropriate; how does this affect the calculations?

For a two-tailed test with α = 0.05 direct entry into the second column of Table 2.2 gives

the corresponding z0.975 = 1.9600.

Table 2.3
Example 2.3

What value of θ(α, β) would the investigator for the two-tailed situation described in 

Example 2.2, require?

For two-sided test α = 0.05 and one-sided β = 0.2, direct entry into Table 2.3 gives 

θ(α, β) = θ(0.05, 0.2) = 7.849.

2.2 The Binomial distribution

In many studies the outcome is a particular response and the results are expressed as the 

proportion that achieve this response. As a consequence, the Binomial distribution plays an

important role in the design and analysis of these trials.

For a specified probability of response π, the Binomial distribution quantifies  the probabil-

ity of observing exactly r (ranging from 0 to n) responses in n patients or

(2.8)

Here, n! = n × (n − 1) × (n − 2) × . . . × 2 × 1 and 0! = 1.

For a fixed sample size n the shape of the Binomial distribution depends only on π. 

Suppose n = 5 patients are to be treated, and it is known that on average 0.25 will respond 

to this particular treatment. The number of responses actually observed can only take integer

values between 0 (no responses) and 5 (all respond). The Binomial distribution for this case is

illustrated in Figure 2.3. The distribution is not symmetric, it has a maximum at one response

and the height of the blocks corresponds to the probability of obtaining the particular number

of responses from the five patients yet to be treated. It should be noted that the mean or

expected value for r, the number of successes yet to be observed if we treated n patients, is nπ.

The potential variation about this expectation is expressed by the corresponding standard

deviation, .

Figure 2.3 illustrates the shape of the Binomial distribution for various n and π = 0.25.

When n is small (here 5 and 10), the distribution is skewed to the right. The distribution

becomes more symmetrical as the sample size increases (here 20 and 50). We also note that

the width of the bars decreases as n increases since the total probability of unity is divided

amongst more and more possibilities.

  SD r n( ) ( )= −π π1

  
b r n

n

r n r
r n r( ; , )

!

!( )!
( ) .π π π=

−
− −1
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If π were set equal to 0.5, then all the distributions corresponding to those of Figure 2.3

would be symmetrical whatever the size of n. On the other hand, if π = 0.75 then the dis-

tributions would be skewed to the left.

The cumulative Binomial distribution is the sum of the probabilities of Equation 2.8 from 

r = 0 to a specific value of r = R, that is

(2.9)

The values given to r, R, π and n in Expressions 2.8 and 2.9 will depend on the context. 

This expression corresponds to the unshaded area of Figure 2.1 and Equation 2.2 for the 

standardised Normal distribution.

2.3 The Poisson distribution

The Poisson distribution is used to describe discrete quantitative data such as counts that

occur independently and randomly in time at some average rate. For example the number of

deaths in a town from a particular disease per day, or the number of admissions to a particular

hospital typically follow a Poisson distribution.

If the events happen with a rate of λ events per this unit, the probability of r events happen-

ing in this unit is

(2.10)
  
Prob( events)r

r

r

=
−exp( )

!

λ λ

  
B R n

n

r n r
r n r

r

r R

( ; , )
!

!( )!
( )π π π=

−
− −

=

=

1
0

∑∑ .
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Figure 2.3 Binomial distribution for π = 0.25 and various values of n. The horizontal scale in each

diagram shows the value of r the number of successes (from Campbell, Machin and Walters 2007).
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where exp(−λ) is a convenient way of writing the exponential constant e raised to the power 

−λ. The constant e being the base of natural logarithms which is 2.718281. . . .

The mean of the Poisson distribution for the number of events per unit time is simply the

rate, λ. The variance of the Poisson distribution is also equal to λ, and so SD = .

Figure 2.4 shows the Poisson distribution for four different means λ = 1, 4, 10 and 15. For 

λ = 1 the distribution is very right skewed, for λ = 4 the skewness is much less and as the mean

increases to λ = 10 or 15 it is more symmetrical, and looks more like the Binomial distribution

in Figure 2.3 and ultimately the Normal distribution.

2.4 The Beta distribution

Another distribution that we will utilise when discussing dose-finding studies and Phase II trials

in Chapters 15 and 16 is the Beta distribution. This distribution is similar to the Binomial dis-

tribution of Equation 2.8 but allows non-integer powers of the terms π and (1 − π). It takes

the form

(2.11)

where v and w are usually > 1 for our purpose, and . This integral

can be solved numerically for given v and w and its value ensures that the sum (strictly the integral)

of all the terms of Equation 2.11 is unity. In contrast to Equation 2.8 the Beta distribution is

that of the continuous variable π rather than of the integer r of the Binomial distribution.

In general when planning a study the Beta distribution may be used to encapsulate, our prior

knowledge about π, the parameter we are trying to estimate with the trial. This prior knowledge

may include relevant information from other sources such as the scientific literature or merely

Beta v w u u duv w( , ) ( )= −− −∫ 1 1
0

1
1

  
beta v w
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Figure 2.4 Poisson distribution for various values of λ. The horizontal scale in each diagram shows the

value of r (from Campbell, Machin and Walters 2007).
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reflect the investigators’ belief in the ultimate activity of the therapy under test. Once the study

is completed, this prior information may be combined with the data generated using Bayesian

methods to obtain a posterior distribution from which inferences are then made.

In particular, once trial recruitment is complete, and r responses from the n subjects

entered are observed, the prior information is then combined with the study data to obtain 

a posterior distribution for π. This is formed from the product of Equations 2.11 and 2.8, 

that is, π v−1(1 − π)1−w × π r(1 − π)n−r = π r+v−1(1 − π)n−r+1−w. The Beta distribution is chosen as

it combines easily with the Binomial distribution in this way. The posterior distribution

(combining both our prior knowledge and the data) represents our overall belief at the close

of the trial about the distribution of the population parameter, π. The combination of the

prior and posterior distribution forms the basis of Bayesian methods.

Once we have obtained the posterior distribution, we can compute the probability that π falls

within any pre-specified region of interest. For example, the investigator might wish to know

the probability that the true response proportion exceeds a pre-specified target value. This

contrasts with the confidence interval approach of the next section, which does not answer this

question. Rather it provides an estimate of the true response proportion, along with the associated

95% confidence interval (termed Frequentist as opposed to Bayesian). When the main goal

of, for example, a Phase II trial is not to obtain a precise estimate of the response rate of the

new drug but rather to accept or reject the drug for further testing in a Phase III trial, then a

Bayesian approach may seem best. However, the majority of studies are not designed using 

a Bayesian framework.

2.5 The Exponential distribution

In survival time studies such as those describing the survival experience of a group of patient

with a cancer, if the death rate is constant then the pattern of their deaths follows an

Exponential distribution. More generally the death rate is replaced by the hazard rate as the

event of concern may not be death but (say) the healing time of an ulcer.

If the hazard rate is θ per unit time, then the proportion of subjects alive at time t is

S(t) = e−θt. (2.12)

This is often written S(t) = exp(−θt) and is termed the survival function of the exponential

distribution. The constant hazard rate is a unique property of the Exponential distribution.

Sample sizes for survival time studies are given in Chapter 8.

The shape of the exponential survival distribution of Equation 2.12 is shown in Figure 2.5

for a particular value of the hazard rate θ = 0.25 per month. It is clear from this graph that only

about 0.2 (20%) of the population remain alive at 6 months, less than 10% at 12 months, and

there are very few survivors beyond 18 months. This is not very surprising since the hazard

rate tells us that one-quarter of those alive at a given time will die in the following month.

For a value of the hazard rate θ < 0.25 the Exponential survival function will lie above that

of Figure 2.5 since the death rate is lower; for θ > 0.25 it will fall below since, in this case, the

death rate is higher.

A constant value of the hazard rate implies that the probability of death remains constant 

as successive days go by. This idea extends to saying that the probability of death in any time
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interval depends only on the width of the interval. Thus the wider the time interval the greater

the probability of death in that interval, but where the interval begins (and ends) has no

influence on the death rate.

2.6 Confidence intervals

In any clinical study, the data collected are then used to estimate a summary statistic or statistics

pertinent to the question under investigation. As such statistics are essentially obtained from

samples there is some uncertainty as to how well they estimate the corresponding or underlying

population value(s). This uncertainty is expressed by means of the standard error of the estimate

and the associated confidence intervals (CI). We give below the expressions for standard errors

and confidence intervals for three key summary statistics, the mean, proportion and rate corres-

ponding to data obtained from the Normal, Binomial, Poisson and Exponential distributions.

Normal
Confidence interval for a mean
Large samples

The sample mean, proportion or rate is the best estimate we have of the true population

mean, proportion or rate. We know that the distribution of these parameter estimates from

many samples of the same size will roughly be Normal. As a consequence, we can construct a

confidence intervalaa range of values in which we are confident the true population value of

the parameter will lie. Such an interval for the population mean μPop is defined by

h − [z1−α/2 × SE(h)] to h + [z1−α/2 × SE(h)], (2.13)

where h is the mean from a sample of m subjects, and . To calculate the con-

fidence interval an estimate, s, of the standard deviation σPop has to be obtained from the data.

Values of z1−α/2 are found from Table 2.2, so that for a 95% CI, α = 0.05 and we have z0.975 = 1.9600.

SE m( )h = σPop/
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Figure 2.5 The Exponential survival function with a constant hazard θ = 0.25.
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Example 2.4abirth weights of pre-term infants

Simpson (2004) reported the mean birth weight of 98 infants who were born prematurely 

as h = 1.31 kg with SE(h) = = 0.04 kg. From these the 95% CI for the population 

mean is

1.31 − (1.96 × 0.04) to 1.31 + (1.96 × 0.04)

or 1.23 to 1.39 kg.

Hence, loosely speaking, we are 95% confident that the true population mean birth weight

for pre-term infants lies between 1.23 and 1.39 kg. Our best estimate is provided by the sample

mean of 1.31 kg.

Strictly speaking, it is incorrect to say that there is a probability of 0.95 that the population

mean birth weight lies between 1.23 and 1.39 kg as the population mean is a fixed number and

not a random variable and therefore has no probability attached to it. Nevertheless most

statisticians often describe confidence intervals in that way. The value of 0.95 is really the

probability that the limits calculated from a random sample will include the population value.

For 95% of the calculated confidence intervals it will be true to say that the population mean,

μPop, lies within this interval.

Small samples

Equation 2.13 for the 100(1 − α)% CI for a mean strictly only applies when the sample size is

relatively largeaa guide is if m, the number of subjects contributing to the mean, exceeds 25.

When sample sizes are smaller, the following expression should be used instead,

h − [tdf,1−α/2 × SE(h)] to h + [tdf,1−α/2 × SE(h)]. (2.14)

Here tdf,1−α/2 replaces the z1−α/2 of Equation 2.13.

Degrees of freedom (df)

Besides depending on α, tdf,1−α /2 of Equation 2.14 also depends on the number of degrees of

freedom, df, utilised to estimate the standard deviation, σ, in the final analysis of the study.

For a single mean, there are df = m − 1 degrees of freedom. Values of tdf,1−α/2 are found from

Table 2.4. For example, for a sample mean based on m = 10 observations df = 10 − 1 = 9. 

The corresponding 95% CI, has α = 0.05 and so tdf,1−α/2 = t9,0.975 = 2.262 whereas the corres-

ponding z0.975 (see the last row of Table 2.4 and note that a t-distribution with df = ∞ is 

equivalent to a Normal distribution) is 1.960. Thus the small sample leads, for given α, to a

wider confidence interval.

Example 2.5abirth weights of pre-term infants

Suppose the study of Simpson (2004) referred to in Example 2.4 had reported the mean birth

weight of infants born prematurely as h = 1.31 kg with SD = 0.42 but on only m = 16 rather

than the 98 actually weighed. In this situation the SE(h) = = 0.105 kg and df = 16 − 1

= 15. For a the 95% CI, Table 2.4 gives tdf,1−α/2 = t15,0.975 = 2.131 so that Equation 2.14 leads to

1.31 − (2.131 × 0.105) to 1.31 + (2.131 × 0.105)

or 1.09 to 1.53 kg.

 0 42 16. /

 0 42 98. /

9781405146500_4_002.qxd  9/8/08  10:20  Page 23



24 Chapter 2

Binomial
Confidence interval for a proportion
If r is the number of patients who respond out of m recruited to a trial, then the response 

proportion p = r/m is the estimate of the true response rate πPop. The standard error of p is  

and the corresponding approximate 100(1 − α)% CI for πPop is calculated 

using the ‘traditional’ method by analogy with Equation 2.13 as

p − [z1−α /2 × SE(p)] to p + [z1−α /2 × SE(p)]. (2.15)

Values of z1−α/2 are found from Table 2.2, so that for a 95% CI, α = 0.05 and we have z0.975 = 1.9600.

The reason we can do this is provided by the distributions shown in Figure 2.3 where, as 

m gets larger, the shape of the Binomial distribution comes closer and closer to that of the

Normal distribution until they are almost indistinguishable. However, this ‘traditional’

approximation of Equation 2.15 should not be used if the proportion responding is either

very low or very high, or the numbers of patients involved small. In these cases we advocate

the use of the ‘recommended’ method described by Newcombe and Altman (2000) (see also

Julious 2005) and which is computed as follows:

First calculate the three quantities

; and .

The corresponding CI is then given by

(A − B)/C to (A + B)/C. (2.16)

This method can be used even when no responses occur, that is when r = 0, and hence 

p = 0. In which case the CI is

(2.17)

Furthermore if all patients respond, r = n so that p = 1, and the CI then becomes

(2.18)

A program for calculating the ‘recommended’ CIs is provided by Altman, Machin, Bryant

and Gardner (2000). This warns against the use of the ‘traditional’ method when the data 

suggest it is inappropriate.

Example 2.6adexverapamil and epirubicin for breast cancer

Lehnert, Mross, Schueller et al. (1998) used the Gehan (1961) (see Chapter 16) design for a

Phase II trial of the combination dexverapamil and epirubicin in patients with breast cancer

and observed a total of four responses from 23 patients, giving an estimated response rate of 

p = 0.174.

Using the ‘traditional’ method of Equation 2.13 gives a 95% CI for πPop of 0.019 to 0.329,

whereas using the ‘recommended’ method of Equation 2.16 gives 0.070 to 0.371. These are

quite different and only the latter is correct and should be quoted.
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As it is usual to quote response rates in percentages, the corresponding trial report would

quote for these data: ‘. . . the response rate observed was 17% (95% CI 7 to 37%).’

Poisson
Confidence interval for a rate
If r events are observed in a very large number of m subjects, then the rate is R = r/m as with

the Binomial proportion. However, for the Poisson distribution r is small relative to m, so  

the standard error of R, , is approximately equal to . In this case, the  

approximate 100(1 − α)% CI for the population value of λPop is calculated using the ‘traditional’

method, by

R − [z1−α/2 × SE(R)] to λ + [z1−α/2 × SE(R)]. (2.19)

Values of z1−α/2 are found from Table 2.2, so that for a 95% CI, α = 0.05 and we have z0.975 = 1.9600.

The reason we can do this is provided by the distributions shown in Figure 2.4 where, as m

gets larger, the shape of the Poisson distribution comes closer and closer to that of the Normal

distribution until they are almost indistinguishable. However this ‘traditional’ approxima-

tion of Equation 2.19 should not be used if the rate is very low, or the numbers of patients

involved small.

Example 2.7astandard error of a rateacadaveric heart donors

The study of Wight, Jakubovic, Walters et al. (2004) gave the number of organ donations 

calculated over a 2-year period (731 days) as R = 1.82 per day. This is a rate with standard error

SE(R) = = 0.05.

Therefore the 95% confidence interval for λPop is 1.82 − 1.96 × 0.05 to 1.82 + 1.96 × 0.05 or

1.72 to 1.92 organ donations per day. This confidence interval is quite narrow suggesting that

the true value of (strictly range for) λPop is well established.

Exponential
Confidence interval for a hazard rate
It can be shown that if the number of events (deaths) is large, then an approximate 95% CI can

be obtained for θ in the standard way, from

θ − [1.96 × SE(θ)] to θ + [1.96 × SE(θ)]. (2.20)

The expression for SE(θ) depends on whether or not censored observations are present. 

If they are not, that is, the critical event is observed in all n subjects, then an estimate of the

SE(θ) is given by SE(λ) = . In the presence of censoring a corresponding estimate of 

the SE is SE(λ) = where D is the number of events observed.

An alternative method of calculating a 95% CI is to use the expression

log θ − [1.96 × SE(log θ)] to log θ + [1.96 × SE (log θ)], (2.21)

since log θ often follows more closely a Normal distribution than does θ itself. In this case

SE(log λ) = .  1/ D

  λ/ ( )D − 1
  λ/ n

 1 82 731. /
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Example 2.8adeath rateapatients with colorectal cancer

Machin, Cheung and Parmar (2006) applying Equation 2.20 to an example of 24 patients 

with Dukes’ C colorectal cancer in which D = 12 deaths are observed and θ = 0.0278. These

give SE(θ) = = 0.008395. A 95% CI for θ is therefore 0.0278 − 1.96 × 0.008395 to

0.0278 + 1.96 × 0.008395 or 0.0113 to 0.0442 per month. On an annual basis this is 14–53%,

which is extremely wide, as one might expect from such a small study. Also as the number of

deaths here is quite small, the calculations of the SE are very approximate.

Alternatively, substituting θ = 0.0278 in Equation 2.21 gives log θ = −3.5827, SE(θ) =
= 0.2887 and the 95% CI for log θ as −3.5827 − 1.96 × 0.2887 to −3.5827 + 1.96 × 0.2887 or 

−4.1485 to −3.0169. If we exponentiate both limits of this interval we obtain exp(−4.1485) =
0.0158 to exp(−3.0169) = 0.0490 for the 95% CI for θ. These are very similar to those obtained

previously but the CI is no longer symmetric about θ = 0.0278. It is preferable, however, to

always to use this latter approach as Equation 2.20 can lead, for example, to negative values of

the lower confidence limit.

Confidence intervals for some other situations are discussed in Chapter 10.
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Table 2.1 The Normal distribution function—probability that a Normally distributed variable is less than z.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586

0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535

0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409

0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173

0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240

0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490

0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524

0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327

0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891

1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214

1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298

1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147

1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774

1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408

1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449

1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327

1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062

1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169

2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574

2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899

2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158

2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520

2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643

2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736

2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807

2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900

3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929

3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950

3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965

3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983

3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989

3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992

3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995

3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
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Table 2.2 Percentage points of the Normal distribution for α and 1 − β.

αα 1 −− ββ

1-sided 2-sided 1-sided z

0.0005 0.001 0.9995 3.2905

0.0025 0.005 0.9975 2.8070

0.005 0.01 0.995 2.5758

0.01 0.02 0.99 2.3263

0.0125 0.025 0.9875 2.2414

0.025 0.05 0.975 1.9600

0.05 0.1 0.95 1.6449

0.1 0.2 0.9 1.2816

0.15 0.3 0.85 1.0364

0.2 0.4 0.8 0.8416

0.25 0.5 0.75 0.6745

0.3 0.6 0.7 0.5244

0.35 0.7 0.65 0.3853

0.4 0.8 0.6 0.2533

Table 2.3 Values of θ (α, β) = (z1−α/2 + z1−β)2.

Two-sided One-sided ββ

αα 0.05 0.10 0.15 0.20 0.50

0.001 24.358 20.904 18.723 17.075 10.828

0.005 19.819 16.717 14.772 13.313 7.879

0.01 17.814 14.879 13.048 11.679 6.635

0.02 15.770 13.017 11.308 10.036 5.412

0.05 12.995 10.507 8.978 7.849 3.841

0.1 10.822 8.564 7.189 6.183 2.706

0.2 8.564 6.569 5.373 4.508 1.642

0.4 6.183 4.508 3.527 2.833 0.708
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Table 2.4 The t-distribution.

αα

df 0.10 0.05 0.01

1 6.314 12.706 63.657

2 2.920 4.303 9.925

3 2.353 3.182 5.841

4 2.132 2.776 4.604

5 2.015 2.571 4.032

6 1.943 2.447 3.707

7 1.895 2.365 3.499

8 1.860 2.306 3.355

9 1.833 2.262 3.250

10 1.812 2.228 3.169

11 1.796 2.201 3.106

12 1.782 2.179 3.055

13 1.771 2.160 3.012

14 1.761 2.145 2.977

15 1.753 2.131 2.947

16 1.746 2.120 2.921

17 1.740 2.110 2.898

18 1.734 2.101 2.878

19 1.729 2.093 2.861

20 1.725 2.086 2.845

21 1.721 2.080 2.831

22 1.717 2.074 2.819

23 1.714 2.069 2.807

24 1.711 2.064 2.797

25 1.708 2.060 2.787

26 1.706 2.056 2.779

27 1.703 2.052 2.771

28 1.701 2.048 2.763

29 1.699 2.045 2.756

30 1.697 2.042 2.750

∞ 1.645 1.960 2.576
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Comparing two independent groups 
for binary data

SUMMARY
This chapter considers sample-size calculations for comparisons between two groups where the out-

come of concern is binary. The anticipated effect size between groups is expressed either as a difference

between two proportions or by the odds ratio. The situation in which one of the proportions can be

assumed known is described. Attention is drawn to difficulties that may arise if one of the proportions 

is anticipated to be close to zero or unity.

3.1 Introduction

A binary variable is one that only takes one of two values. For example, the outcome for

patients receiving a treatment in a clinical trial may be regarded as a ‘success’ or ‘failure’.

Typical examples are alive/dead or disease-free/disease-recurrence.

Sometimes ordered categorical or continuous data may be dichotomised into binary form

for ease of analysis. For example in a trial of diets in obese people, the outcome may be the

body mass index (BMI) measured in kg/m2. Nevertheless the design, and hence analysis, may

be more concerned with the proportion of people no longer obese, where ‘obesity’ is defined

as (say) a BMI greater than 30 kg/m2 which is relevant to the population of concern.

However, it is not always a good idea to dichotomise an ordinal or continuous variable 

(see Chapters 4 and 5) since information is lost in this process and consequently a larger study

may be required to answer the key question.

3.2 Comparing two proportions

The data necessary to estimate a proportion are often coded as 0 and 1 and so are essentially

binary in form. If two groups are to be compared then the results can be summarised in a 

2 × 2 table as shown in Figure 3.1 in which N = m + n patients are assigned at random to one

of the treatments, m to Treatment 1 and n to Treatment 2. At the design stage, we may have

the option either to randomise equally to the two alternative treatments, in which case the

allocation ratio ϕ = 1 and n = m in Figure 3.1, or to randomise with unequal allocation, in

which case ϕ ≠ 1 and n = ϕm. Any analysis of the data compares the observed proportion of

successes in the two treatment groups.

3
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The standard tests for comparing two proportions are either the χ2 test or Fisher’s exact

test. The latter is well approximated by the χ2 test with Yates’s continuity correction included

which is termed χ2
C. The choice of the appropriate test influences the sample size required to

detect a difference in proportions. Clearly one should use the same test for the planning as for

the analysis. At the analysis stage, χ2
C is seldom used now as with modern statistical packages

the Fisher’s exact test can be readily computed. Here its close approximation to Fisher’s test is

useful for sample-size calculation purposes.

At the planning stage of a study we have to specify the anticipated effect size or anticipated

difference in proportions δPlan = π2 − π1. Here π1 and π2 are the anticipated proportion of

successes under Treatment 1 and 2 respectively of Figure 3.1.

In some situations it may be difficult to propose a value for the effect size, δPlan, for which a

trial is to be designed to detect. However, since the probability of success under Treatment 1 

is π1 the odds associated with it are π1/(1 − π1). Similarly, the odds associated with success

under Treatment 2 are π2/(1 − π2). From these the ratio of these odds, termed the odds ratio,

is OR = π2(1 − π1) / [π1(1 − π2)]. The OR can take any positive value and the corresponding

value for the null hypothesis HNull : π1 − π2 = 0 is ORNull = 1. In this situation, if we are then

given a plausible value of (say) π1, then the value of π2 is obtained from

(3.1)

Thus, rather than pre-specifying π1 and π2, an investigator may pre-specify an anticipated

ORPlan and (say) π1 and use Equation 3.1 to obtain the anticipated π2, after which the anti-

cipated value for δPlan can be obtained.

Such a situation may arise if a previous study had used logistic regression for analysis 

(see Campbell, Machin and Walters 2007) and had quoted an OR that might then be regarded

as a possible effect size for the study under design.

χχ2 test
Sample size

The required sample size m for Group 1, for a specified π1, π2, ϕ, two-sided test size α, power 

1 − β and if the χ2 test is to be used, is given by

  
π

π
π π2

1

1 11
=

− +( )
.

OR

OR
Plan

Plan

Figure 3.1 Notation for a clinical study comparing the proportion of treatment successes in two

(independent) groups.

Observed Anticipated

Treatment ‘Success’ ‘Failure’ proportion proportion

or group Code = 1 Code = 0 Total of successes of successes

1 a c m a/m π1

2 b d n = ϕm b/n π2

Total r s N
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(3.2)

where Y = (π1 + ϕπ2) / (1 + ϕ). Values for z1−α /2 and z1−β can be obtained from Table 2.2.

The required sample size for Group 2 is n = ϕm. Thus the total number of subjects required

to compare the two groups is N = m + n = m(1 + ϕ).

If the effect size is expressed as an odds ratio then the sample size can be determined from

(3.3)

In which case the total number of subjects required to compare the two groups is NOdds–Ratio =
mOdds–Ratio + nOdds–Ratio = mOdds–Ratio(1 + ϕ). This can be evaluated by using Table 2.3 which

gives θ(α, β) = (z1−α/2 + z1−β)2 for different values of α and β.

Equation 3.3, which is generalised in Chapter 4 to the situation when the outcome data are

ordered categorical rather than binary but ϕ = 1, is quite different in form to Equation 3.2.

However, for all practical purposes, it gives very similar sample sizes, with divergent results

only occurring for relatively large differences of the ORPlan from unity. However, we would

recommend the routine use of Equation 3.2.

Fisher’s exact and χχ2
C tests

Sample size

When using either the exact or the Yates’s χ2
C test, the required sample size is obtained, after

first determining m with Equations 3.2 or 3.3, from

mYates = Cm, (3.4)

where

(3.5)

and which is always > 1. This then gives the (larger) total number of patients required as 

NYates = mYates(1 + ϕ).

Practical note

It is important to note that when either or both of the anticipated proportions are close to 0 

or 1 then the design should anticipate that the Fisher’s exact test will be used to compare the

two groups. A rule-of-thumb is to be cautious if either one of the planning proportions results

in the product π(1 − π) < 0.15.

Choice of allocation ratio
Although the majority of clinical trials allocate equal numbers of subjects to the two compet-

ing treatments, in many other situations there may be different numbers available for each

group. If the choice of the relative sample sizes is within the control of the investigator it can

be shown, if the study is to be large, that choosing the allocation ratio as

C
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(3.6)

maximises the possible power for the between groups comparison.

This is because the two proportions to be estimated from the study have variances propor-

tional to π1(1 − π1) and π2(1 − π2) respectively. These are maximal when the success rate is 0.5

and so one would choose more subjects from the treatment whose anticipated success rate 

is nearer 0.5 as that treatment would have the higher variance. For example, in a situation in

which the anticipated success rates were π1 = 0.3 and π2 = 0.5, then a design using an allocation

ratio ϕ = [(0.5 × 0.5) / (0.3 × 0.7)]1/2 = 1.09 would provide the most powerful test.

However, the increased power obtained by unequal allocation is often rather small, particu-

larly for ϕ between 0.5 and 2. In most practical situations π1 and π2 are not going to differ by

so much as to make unequal allocation worthwhile. For a clinical trial any advantage is at the

expense of greater complexity at the randomisation stage.

For observational studies, such as case-control studies however, there may be a limited

number of cases available, and so collecting more controls is a suitable method of increasing

the power of the study.

3.3 One proportion known

In some situations one may know, with a fair degree of certainty, the proportion of successes

in one of the groups. For example, a large number of very similar clinical trials may have been

conducted with a particular drug, showing that the success rate is about 20%. Thus, in a clinical

trial to test a new product under identical conditions, it may not seem necessary to treat any

patients with the standard drug. In this situation, we assume the success rate π1 (= πKnown) is

known. The object of the study is to estimate π2, which is then compared with πKnown. Such

designs are termed ‘historical control studies’ and care should be taken in their use.

χχ2 test
Sample size

The required number of subjects (now for a single group so N = m), for significance level α
and power 1 − β for comparing the anticipated π2 with the established success rate πKnown is

(3.7)

Values for z1−α/2 and z1−β can be obtained from Table 2.2.

Unlike Equation 3.2, Equation 3.7 is not symmetrical in πKnown and π2 unless z1−α/2 = z1−β
which is unlikely in practice. However, when πKnown and π2 are not too different and ϕ = 1, we

can ignore the lack of symmetry and halve the values given by Equation 3.2, which is tabulated

in Table 3.1, to obtain m for this situation.

Further, since we now only have the one group in which we have to conduct the study, this

implies that the total number of subjects is N = m/2 or 25% of that required for a trial in which

both proportions are to be estimated.

  
N
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3.4 Practicalities

In Equation 3.3 we give the necessary sample size to detect a given ORPlan. However, in many

studies, characteristics of the patients entering the study that are known to influence outcome

are usually recorded. In the context of a clinical trial they may represent, for example, the

stage of the disease with prognosis worsening with increasing stage. As a consequence, we 

may intend to run a logistic regression analysis to estimate the OR between the two groups 

but adjusting for such prognostic variables. Thus we are interested in the stability of the

regression coefficient estimates of the ensuing logistic model.

At the design stage, the rule-of-thumb is to plan to observe at least 10(r + 1) events where r

is the number of regression parameters to be estimated (excluding the constant term) in the

logistic model. This formula is rather arbitrary, since there are no effect sizes or power con-

siderations but can be useful if a preliminary study is needed.

The formula is based on the number of parameters in the model, not the number of variables.

Thus if a single categorical variable with k categories was fitted, then r = k − 1 parameters would

be included in the model. Thus if one had to estimate five parameters then one would need at

least 60 events. If one assumed that the event rate was about 50% then this would translate into

about 60/0.5 = 120 subjects. In logistic regression the formula implies that events and non-events

are treated symmetrically. Thus if the event rate is 90% (rather than 50%) then the non-event rate

is 10% and thus one should try and get 60 non-events and so require 60/0.1 = 600 subjects.

So, whatever the outcome of the sample size calculations arising from Equation 3.3, it

should be cross-checked against the above rule.

3.5 Bibliography

Equation 3.2 appears in Fleiss, Levin and Paik (2003). Julious and Campbell (1996) discuss

the approximation of Equation 3.3 while Demidenko (2007, Equation 14) gives an alternative

expression but this gives similar sample sizes. Casagrande, Pike and Smith (1978) derived the

approximate formulae for Equations 3.4 and 3.5 while Equation 3.7 was given by Fleiss, Tytun

and Ury (1980). Campbell (1982) discusses sample-size calculations with unequal allocation

to groups. Campbell, Julious and Altman (1995) and Sahai and Khurshid (1996) provide a

comprehensive review of alternative sample-size formulae for testing differences in proportions.

Hosmer and Lemeshow (2000) and Peduzzi, Concato, Kemper et al. (1996) give guidance on

sample sizes when logistic regression is to be used to take account of baseline variables when

making comparisons between groups.

3.6 Examples and use of the tables

Table 3.1 and Equation 3.2
Example 3.1bdifference in proportionsbtreatment of severe burns

In a randomised trial by Ang, Lee, Gan et al. (2001), the standard wound covering (non-

exposed) treatment was compared with moist exposed burns ointment (MEBO) in patients
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with severe burns. One object of the trial was to reduce the methicillin-resistant Staphylococcus

aureus (MRSA) infection rate at 2 weeks-post admission in such patients from 25 to 5%.

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416.

With planning values set at π1 = 0.25, π2 = 0.05, δPlan = π2 − π1 = −0.20 and for a two-sided test

size of 5% and power 80%, Equation 3.2 with ϕ = 1, gives Y = [0.25 + (1 × 0.05)] / (1 + 1) = 0.15

and = 48.84 

or 50 per treatment group, that is N = 100 patients in total since ϕ = 1. Since δPlan < 0, to use

Table 3.1 the labels for π2 and π1 are interchanged. Both Table 3.1 and give m = 49.

Table 3.1, Equations 3.2, 3.4 and 3.5
Example 3.2bcomparing two proportionsbFisher’s exact test using Yates’s correction

Had it been anticipated that the results of the trial planned in Example 3.1 would be analysed

using Fisher’s exact test, what influence does this have on the number of patients to be

recruited?

As previously π1 = 0.25, π2 = 0.05 and δPlan = π2 − π1 = −0.20 and so m = 49. 

Further with allocation ratio ϕ = 1, Equation 3.5 gives the multiplying factor as 

. Hence from Equation 3.4, mExact = Cm =

1.195 × 49 = 58.6 or 60 subjects, that is N = 120 patients in total. Direct use of gives 

mYates = nYates = 59 per treatment group.

As we have noted earlier, if either or both of the anticipated proportions are close to 0 

or 1 then the design should anticipate that the Fisher’s exact test will be used to compare 

the two groups. In this example, π1 = 0.05 and is therefore close to 0 and so, in contrast to the

calculations of Example 3.1, a more appropriate trial size is N = 120 rather than 100 for this

proposed trial.

Table 3.2 and Equation 3.3
Example 3.3bcomparing two groupsbodds ratio

Suppose in the randomised trial by Ang, Lee, Gan et al. (2001), the design team had phrased

their objectives as reducing the odds of MRSA by use of MEBO. In this case with the same

MRSA infection rate at 2-weeks-post admission in such patients of 25% (odds 25% to 75% 

or 1 : 3) and they may have anticipated this would be reduced to as little as 1 : 5 by the use 

of MEBO.

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a 

power of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416. Alternatively from Table 2.3, 

θ(0.05, 0.2) = 7.849.
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Here the planning ORPlan = (1/5)/(1/3) = 0.6, then with π1 = 0.25 Equation 3.1 gives 

π2 = 0.1667. Direct use of Equation 3.2 with these values in with a two-sided test size 

of 5%, power 80% and ϕ = 1 gives m = 372. This suggests a trial of N = 2m = 744 or close to 

750 patients.

Alternatively using Y = (0.25 + 0.1667)/2 = 0.2084 and ORPlan = 0.6 in Equation 3.3 gives 

or 365. Thus NOdds–Ratio = 2 × 365 = 730 which is 

14 fewer patients than the 744 derived from Equation 3.2 and indicates that Equation 3.3

underestimates slightly when the effect size is quite large.

To make use of Table 3.2, the inverse of the odds ratio needs to be used and in this case

1/0.6 = 1.67. The nearest tabular entry, with test size of 5% and power 80%, is 1 − Y = 0.8 and

OR = 1.7 giving m = 407 patients or a total of approximately N = 800.

Whichever method used for the calculations, this sample size is markedly larger than that of

Example 3.1, where the corresponding effect size was ORPlan = (0.05/0.95)/(0.25/0.75) = 0.1579.

This corresponds to a more extreme effect size than ORPlan = 0.6 used previously as it further

from the null hypothesis value of ORNull = 1. Consequentially, since the effect size is much

larger, the sample size of N = 100 in Example 3.1 is much smaller.

This example underlines the need for the planning team to consider the anticipated effect

size carefully as it has a profound effect on the ultimate study size.

Table 3.1 and Equation 3.7
Example 3.4bone proportion knownbsample size

The rate of wound infection over 1 year in an operating theatre was 10%. This figure has been

confirmed from several other operating theatres with the same scrub-up preparation. If an

investigator wishes to test the efficacy of a new scrub-up preparation, how many operations

does he need to examine in order to be 90% confident that the new procedure only produces 

a 5% infection rate?

Using Table 2.2 with a 5% one-sided test size, α = 0.05 gives z0.95 = 1.6449 and for a power

of 90% a one-sided 1 − β = 0.90 gives z0.90 = 1.2816.

Here π1 = 0.05, πKnown = 0.10, power 1 − β = 0.90 and if we set one-sided α = 0.05 and 

Equation 3.7 yields = 238.9 or 239 operations. 

Alternatively the corresponding entry of Table 3.1 gives 474 operations but since πKnown (= π2)

is assumed known, we halve this to 474/2 = 237 operations which is very close to 239. In 

practice, a final recruitment target for such a clinical study would be rounded to, say, N = 250

operations.

Since in this case, both π1 = 0.05, π2 = 0.10 are small, a more cautious approach would be to

use the tabular values for Fisher’s exact test in which gives 513 (rather than 474) leading

to N = 513/2 or approximately 260 operations in this case.
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Table 3.1 Sample size for the comparison of two proportions. Each cell gives the number of subjects

for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

First proportion, ππ1

ππ2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 435 – – – – – – – – –

0.15 141 686 – – – – – – – –

0.2 76 199 906 – – – – – – –

0.25 49 100 250 1094 – – – – – –

0.3 36 62 121 294 1251 – – – – –

0.35 27 43 73 138 329 1377 – – – –

0.4 22 32 49 82 152 356 1471 – – –

0.45 18 25 36 54 89 163 376 1534 – –

0.5 15 20 27 39 58 93 170 388 1565 –

0.55 12 16 22 29 41 61 96 173 392 1565

0.6 11 14 17 23 31 42 62 97 173 388

0.65 9 11 14 18 24 31 43 62 96 170

0.7 8 10 12 15 19 24 31 42 61 93

0.75 7 8 10 12 15 19 24 31 41 58

0.8 6 7 8 10 12 15 18 23 29 39

0.85 5 6 7 8 10 12 14 17 22 27

0.9 4 5 6 7 8 10 11 14 16 20

0.95 4 4 5 6 7 8 9 11 12 15

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

First proportion, ππ1

ππ2 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.55 1565 – – – – – – – –

0.6 388 1534 – – – – – – –

0.65 170 376 1471 – – – – – –

0.7 93 163 356 1377 – – – – –

0.75 58 89 152 329 1251 – – – –

0.8 39 54 82 138 294 1094 – – –

0.85 27 36 49 73 121 250 906 – –

0.9 20 25 32 43 62 100 199 686 –

0.95 15 18 22 27 36 49 76 141 435
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Table 3.1 (continued ): Sample size for the comparison of two proportions. Each cell gives the number

of subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

First proportion, ππ1

ππ2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 582 – – – – – – – – –

0.15 188 918 – – – – – – – –

0.2 101 266 1212 – – – – – – –

0.25 65 133 335 1464 – – – – – –

0.3 47 82 161 392 1674 – – – – –

0.35 36 57 97 185 440 1842 – – – –

0.4 28 42 65 109 203 477 1969 – – –

0.45 23 33 47 72 118 217 503 2053 – –

0.5 19 26 36 52 77 124 227 519 2095 –

0.55 16 21 28 39 54 81 128 231 524 2095

0.6 14 17 23 30 40 56 82 130 231 519

0.65 12 15 19 24 31 41 57 82 128 227

0.7 10 12 15 19 24 31 41 56 81 124

0.75 8 10 13 16 19 24 31 40 54 77

0.8 7 9 11 13 16 19 24 30 39 52

0.85 6 7 9 11 13 15 19 23 28 36

0.9 5 6 7 9 10 12 15 17 21 26

0.95 4 5 6 7 8 10 12 14 16 19

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

First proportion, ππ1

ππ2 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.55 2095 – – – – – – – –

0.6 519 2053 – – – – – – –

0.65 227 503 1969 – – – – – –

0.7 124 217 477 1842 – – – – –

0.75 77 118 203 440 1674 – – – –

0.8 52 72 109 185 392 1464 – – –

0.85 36 47 65 97 161 335 1212 – –

0.9 26 33 42 57 82 133 266 918 –

0.95 19 23 28 36 47 65 101 188 582
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Table 3.2 Sample size for the comparison of two proportions using the odds ratio (OR). Each cell 

gives the number of subjects for each group, m. Hence, the total sample size for the study is N = 2m.

The corresponding values for an OR < 1 are determined by entering the table with 1/OR and (1 − π1)

replacing π1.

Odds

Two-sided αα == 0.05, 1 −− ββ == 0.8

ratio
ππ1

(OR) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.2 9133 4870 3473 2795 2409 2171 2024 1936 1895 1893

1.3 4242 2274 1630 1318 1141 1034 968 930 914 917

1.4 2486 1340 965 784 682 621 583 563 555 559

1.5 1653 896 648 530 463 423 399 386 382 386

1.6 1190 648 472 387 340 311 295 287 285 289

1.7 904 495 362 299 263 242 230 225 224 227

1.8 715 394 289 240 212 196 187 183 183 186

1.9 582 322 238 198 176 163 156 153 153 157

2 486 270 201 168 149 139 133 131 132 135

3 154 91 70 61 56 54 53 53 54 56

4 83 51 41 36 34 33 33 34 35 36

5 54 35 29 26 25 25 25 25 26 28

10 19 14 13 12 12 12 13 13 14 15

Odds 

Two-sided αα == 0.05, 1 −− ββ == 0.8

ratio 
ππ1

(OR) 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

1.2 1893 1930 2008 2137 2335 2637 3117 3944 5633 10 760

1.3 917 938 979 1046 1147 1300 1541 1956 2803 5369

1.4 559 574 601 644 709 805 958 1219 1750 3361

1.5 386 398 418 449 495 565 673 858 1235 2376

1.6 289 298 314 338 374 427 510 652 940 1811

1.7 227 235 249 268 297 340 407 521 752 1452

1.8 186 193 204 221 245 281 337 432 624 1207

1.9 157 163 173 187 208 239 287 368 533 1030

2 135 141 149 162 181 207 249 320 464 898

3 56 59 64 70 78 91 110 142 206 401

4 36 39 42 46 52 60 73 95 138 268

5 28 30 32 35 40 46 56 73 107 207

10 15 16 17 19 21 25 30 39 57 111
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Table 3.2 (continued ): Sample size for the comparison of two proportions using the odds ratio (OR).

Each cell gives the number of subjects for each group, m. Hence, the total sample size for the study is 

N = 2m. The corresponding values for an OR < 1 are determined by entering the table with 1/OR and 

(1 − π1) replacing π1.

Odds

Two-sided αα == 0.05, 1 −− ββ == 0.9

ratio 
ππ1

(OR) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.2 12 226 6519 4649 3741 3224 2907 2709 2592 2537 2535

1.3 5678 3044 2182 1764 1528 1384 1295 1245 1223 1227

1.4 3327 1793 1292 1050 913 831 781 753 743 748

1.5 2212 1199 868 709 619 566 534 517 512 517

1.6 1592 867 631 518 454 417 395 384 381 386

1.7 1210 663 485 399 352 324 308 300 299 304

1.8 957 527 387 321 284 262 250 245 244 249

1.9 779 432 319 265 235 218 209 205 205 210

2 650 362 268 224 200 186 179 176 176 180

3 207 121 94 81 75 71 70 70 72 75

4 110 68 55 49 46 44 44 45 46 49

5 73 47 38 35 33 33 33 34 35 37

10 26 19 17 16 16 17 17 18 18 20

Odds

Two-sided αα == 0.05, 1 −− ββ == 0.9

ratio 
ππ1

(OR) 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

1.2 2535 2583 2688 2860 3126 3531 4172 5280 7541 14 404

1.3 1227 1255 1311 1400 1535 1740 2063 2619 3752 7187

1.4 748 768 805 862 949 1078 1282 1631 2343 4500

1.5 517 532 560 601 663 756 900 1149 1653 3181

1.6 386 399 420 453 500 572 683 872 1258 2424

1.7 304 315 333 359 398 455 545 697 1007 1943

1.8 249 258 273 296 328 376 451 578 836 1615

1.9 210 218 231 251 279 320 384 492 713 1379

2 180 188 200 217 242 278 333 429 621 1202

3 75 79 85 93 105 121 146 189 276 536

4 49 52 56 61 69 80 98 126 184 359

5 37 39 43 47 53 62 75 98 142 277

10 20 21 23 25 29 33 40 52 76 148
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Comparing two independent groups 
for ordered categorical data

SUMMARY
This chapter extends the sample-size calculations for comparisons between two groups where the 

outcome of concern is binary to when the outcome is an ordered categorical variable. The anticipated

effect size between groups is expressed by the odds ratio.

4.1 Introduction

Some endpoint variables in clinical studies simply assign categories to people, such as that they

are of a particular blood group: O, A or AB. In some circumstances when there are more than two

categories of classification it may be possible to order them in some logical way. For example,

after treatment a patient may be either: (i) improved; (ii) the same; or (ii) worse. A woman may

have either; (i) never conceived; (ii) conceived but spontaneously aborted; (iii) conceived but had

an induced abortion; or (iv) given birth to a live infant. Outcomes such as these give what are

known as ordered categorical or ordinal data. In some studies it may be appropriate to assign ranks

to an outcome. For example, patients with rheumatoid arthritis may be asked to order their pre-

ference between four aids designed to assist their dressing. Here, although numerical values may

be assigned to each dressing aid for convenience, one cannot treat them as being quantitative.

They are in fact codes with 1 for best, 2 for second best, 3 for third and 4 for least preferable.

4.2 Ordered categorical data

Mann–Whitney U-test
A study may be undertaken where the outcome measure of interest is an ordered scale, such 

as a measure of opinion, say, which used a Likert scale with the ordered categories: Strongly

disagree, disagree, agree and strongly agree. For an ordered variable it makes sense to describe

one subject as being in a higher (or lower) category than another. The statistical test used 

to compare groups in this instance is the Mann–Whitney U-test with allowance for ties as

described by, for example, Swinscow and Campbell (2002).

With only two categories in the scale we have the binary case described in Chapter 3. As

always, we need to specify an anticipated effect size and it turns out to be easier to use an OR in

this context. The experimenter may postulate that on the new therapy a patient is, say, twice as

likely to have a higher score than on the standard treatment and so the anticipated OR = 2.

4
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Two independent groups for ordered categorical data 43

Alternatively, an experimenter may know the proportions expected for one group and speculate

that, for a particular category, a clinically important difference would be for about 10% more

patients to be in that category, or above, in the other group. From this an anticipated OR can

be derived and hence all the anticipated proportions in the other group.

Example

In a randomised controlled trial of paracetamol for the treatment of feverish children, Kinmonth,

Fulton and Campbell (1992) categorised playfulness on a scale from normal (1) to very listless (4).

A total of 43 children were recruited and the results together with the proportions falling in each

playfulness category and the corresponding cumulative proportions are given in Figure 4.1.

In this example, every child is categorised at the end of the trial and the numbers falling 

into the respective categories in each treatment noted. The individual proportions are then

calculated by dividing these by the corresponding numbers in each treatment group.

To ease presentation below, we have relabelled the Control and Paracetamol groups of

Figure 4.1 as A and B respectively.

Sample size

The first requirement is to specify the proportion of subjects anticipated, in each category of

the scale, for one of the groups (say A). Suppose we have κ ordered categories, for example in

Figure 4.1 κ = 4, and the anticipated proportions in group A are πA1, πA2, . . . πAκ respectively

with πA1 + πA2 + . . . + πAκ = 1. Further, let QA1, QA2, . . . , QAκ be the corresponding cumulative

proportions, so that QA1 = πA1, QA2 = πA1 + πA2, and so on until QAκ = πA1 + πA2+ . . . + πAκ = 1.

A similar notation applies for group B.

The OR is the chance of a subject being in a given category or higher in one group compared

to the same categories in the other group. For category i, which takes values from 2 to κ, it is

given by

(4.1)
  
OR

Q Q

Q Qi
i i

i i

( )

( )
=

−
−

A B

B A

1

1

Figure 4.1 Playfulness in feverish children treated with (Paracetamol) and without (Control)

paracetamol (data from Kinmonth, Fulton and Campbell 1992).

Number Proportion Cumulative 

of children of children proportion

Playfullness Category Control Paracet. Control Paracet. Control Paracet.

(A) (B) (B) (B) (B) (B)

i pCon,i pPar,i QCon,i QPar,i OR

Normal 1 3 6 0.14 0.27 0.14 0.27 2.27

Slightly listless 2 5 9 0.24 0.41 0.38 0.68 3.47

Moderately listless 3 5 5 0.24 0.23 0.62 0.91 6.20

Very listless 4 8 2 0.38 0.09 1.00 1.00 –

Total 21 22 1.00 1.00

9781405146500_4_004.qxd  9/8/08  10:20  Page 43



44 Chapter 4

The assumption of proportional odds specifies that the ORi will be the same for all cat-

egories, from i = 2 to i = κ, and is equal to OR. In this case, if Yi is the average proportion of

subjects anticipated in category i, that is, Yi = (πAi + πBi )/2, then the required sample size is

(4.2)

This can be evaluated with the help of Table 2.3 which gives θ(α, β) = (z1−α/2 + z1−β)2 for 

different values of α and β.

The assumption of constant OR implies that it is justified to use the Mann–Whitney U-test

in this situation. It also means that one can use the anticipated OR from any pair of adjacent

categories for planning purposes.

If the number of categories is large, it is clearly difficult to postulate the proportion of 

subjects who would fall into a given category.

Approximate formulae

Equation 4.2 is quite complex to evaluate but there are a number of ways that it can be 

simplified:

(i) Yi approximately equal

In particular, if the mean proportions Yi in each category are (approximately) equal, then

(4.3)

in the denominator of Equation 4.2 depends only on the number of categories, κ, con-

cerned. In which case, Γ = 1 − 1/κ2. For example, if κ = 3, and with all Yi approximating 1/3, 

Γ = 1 − (1/3)2 = 8/9.

(ii) κκ >> 5

If the number of categories exceeds five, then Γ is approximately unity so that

(4.4)

(iii) κκ == 2

For the special case of a binary variable, κ = 2 and Equation 4.4 becomes

Γ = 3 Y(1 − Y). (4.5)

Further in this situation, the worst-case scenario is when Y = 0.5 in which case Γ = 3/4.

Comment

From a practical perspective, if a simple dichotomy of the anticipated data had first been used

to determine an interim value for the sample size, mBinary, using Equation 3.3 of Chapter 3

then we know that the eventual sample size chosen could be reduced by a factor of up to Γ = 3/4

or 0.75, if more categories are introduced.
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Quick formula

For the situation of κ > 5 Equation 4.4 becomes, with a two-sided test size of α = 0.05 and power

1 − β = 0.8,

m = 47/(log OR)2. (4.6)

This gives a speedy guide to the magnitude of the sample size that may be required.

4.3 Bibliography

Whitehead (1993) and Campbell, Julious and Altman (1995) describe sample-size calculations

for ordered categorical data. They point out that there is little increase in power to be gained

by increasing the number of categories beyond five. Julious and Campbell (1996) discuss

some practical issues when determining sample size in this context.

4.4 Examples

Equation 4.2
Example 4.1bcomparing two groupsbodds ratio

Suppose a confirmatory trial is planned in which we wished to replicate the results of the 

randomised controlled trial of paracetamol for the treatment of feverish children conducted

by Kinmonth, Fulton and Campbell (1992) and summarised in Figure 4.1. We will assume

the distribution of children in the control group was anticipated to be about the same as

found previously.

The OR in category i = 1 is calculated as OR1 = [0.27/(1 − 0.27)] / [0.14/(1 − 0.14)] = 2.272.

Similarly, using the corresponding cumulative proportions calculations for categories i = 2 and

i = 3 give OR2 = 3.467 and OR3 = 6.197. The average ORPlan = (2.272 + 3.467 + 6.197)/3 = 3.98

or approximately 4.

If an ORPlan = 4 in favour of paracetamol were anticipated, then from the definition of 

the OR we can calculate the anticipated cumulative proportions in the paracetamol group by

rearranging the equivalent of Equation 4.1. This gives

and so the proportion expected in the first category of the paracetamol group is QParacet,1 =
4 × 0.14 / [1 − 0.14 + (4 × 0.14)] = 0.3944. The cumulative proportion expected in the second

category of the paracetamol group is QParacet,2 = 4 × 0.38 / [1 − 0.38 + (4 × 0.38)] = 0.7103; and

similarly QParacet,3 = 0.8671 and QParacet,4 = 1. The actual proportions anticipated are therefore,

0.3944, (0.7103 − 0.3944) = 0.3159, (0.8671 − 0.7103) = 0.1569 and (1 − 0.8671) = 0.1329. The

proportions averaged across treatment groups are then given by (0.14 + 0.3944)/2 = 0.2672,

(0.24 + 0.3159)/2 = 0.2780, 0.1984 and 0.2564 respectively. From these, Equation 4.4 gives 

(1 − ∑ Y3
i ) = 1 − 0.0908 = 0.9092.
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Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a 

power of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416. Alternatively from Table 2.3, 

θ(0.05, 0.2) = 7.849.

For 80% power, 5% significance level and ORPlan = 4, Equation 4.2 gives 

= 26.95 or approximately 27. The planned total study size is therefore N = 2 × 27 = 54 or

approximately 60 patients.

Equations 4.2, 4.3 and 4.4
Example 4.2bcomparing two groupsbodds ratiobquick formula

How are the sample sizes of Example 4.1 affected by the use of the quick formula?

Given that the proportions 0.2672, 0.2780, 0.1984 and 0.2564 in each of the κ = 4 categories,

are approximately equal at 0.25, we can use Equation 4.3, to obtain Γ = 1 − (1/4)2 = 15/16 = 0.9375.

Then using this in Equation 4.2 the sample size can be obtained.

Equivalently, since the specified two-sided significance level is 5% and the power 80%,

Equation 4.6 can be used to obtain mInterim = [47/(log 4)2] = 24.46 from which m4 = 24.46 / 0.9375

= 26.1 ≈ 27 patients. This is the same sample size as that given in Example 4.1.

Alternatively, if we had pooled subjects in categories 1–2 and those of categories 3–4, of

Figure 4.1, rather than keeping them distinct, we would be designing a study with πControl = 0.38

and ORPlan = 4. Use of Equation 3.3 with would then result in m = 33 patients per group.

Thus, use of all four categories, rather than simply pooling into two, yields a saving of 33 − 27 = 6

patients per group. This might result in a substantial reduction in time and resources allocated

to the study.

4.5 References

Campbell MJ, Julious SA and Altman DG (1995). Sample sizes for binary, ordered categorical,

and continuous outcomes in two group comparisons. British Medical Journal, 311, 1145–

1148.
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Comparing two independent groups 
for continuous data

SUMMARY
This chapter considers sample-size calculations for comparisons between two groups where the outcome

of concern is continuous. The situations when the data can be assumed to have a Normal distribution

form and when they do not are described.

5.1 Introduction

A continuous variable is one that, in principle, can take any value within a range of values. 

For example, in a trial comparing anti-hypertensive drugs one might record the level of 

blood pressure once a course of treatment has been completed and use this measure to com-

pare different treatments. Continuous variables may be distributed Normally, meaning they 

have a characteristic bell-shaped curve which is completely determined by the mean and 

standard deviation. In such cases, groups are compared using the respective means and 

the corresponding t-test. In some situations, although the data may not be Normally dis-

tributed, they can be rendered Normal by a suitable transformation of the data. For example,

by replacing the variable x by its logarithm, y = log x, and regarding y as having a Normal 

distribution. If this is not possible then comparisons may be made using the Mann–Whitney 

U-test. Alternatively the data may be grouped into categories and sample size determined 

by the methods of Chapter 4.

5.2 Comparing two means

If continuous outcome variables are plausibly sampled from a Normal distribution, then the

best summary statistic of the data is the mean, and the usual test to compare the (independent)

groups is the two-sample t-test. If the observations are not Normally distributed, then a suitable

test for a shift of location is the Mann–Whitney U-test.

Standardized effect size
In order to produce a set of sample-size tables for general use we need an index of treatment

difference which is dimensionless, that is, one that is free of the original measurement units.

Given two samples, we might postulate that they have different means, but the same standard

5
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48 Chapter 5

deviation, σ. Thus, the alternative hypothesis might be that the two means are Δ standard

deviations apart. Denoting the two alternative population means by μ1 and μ2 (> μ1) we have,

the anticipated (standardised) effect size as

(5.1)

In many practical situations, one is more likely to have a feel for Δ than individual values 

of μ1, μ2 and σ. Cohen (1988) suggests a realistic range of Δ is from 0.1 to 1.0. A ‘small’ effect,

that is a stringent criterion, might be Δ = 0.2, a moderate one Δ = 0.5 and a ‘large’ effect, that is

a liberal criterion, Δ = 0.8.

In other situations the investigator may know the likely range of the measurements, even

though he or she does have a planning value for the standard deviation. On the assumption

that the data will follow a Normal distribution one can find a ballpark figure for σ by dividing

the likely range, that is, the largest likely observation minus the smallest likely observation, of

the data by 4. This is because most (approximately 95%) of a Normal distribution is included

within 2σ below the mean and 2σ above the mean.

Two-sample t-test
Sample sizebequal variances in each group

Suppose we wished to detect an effect size Δ. Then, for two-sided test size α and power 1 − β,

the number of subjects in the first group is given by:

(5.2)

The number in the second group is given by n = ϕm, where ϕ is the allocation ratio, and the

total number of patients to be recruited is N = m + n. This can be evaluated with the help of

Table 2.3 which gives θ(α, β) = (z1−α/2 + z1−β)2 for different values of α and β.

It should be noted that when ϕ = 1, Equation 5.2 is simply the ‘Fundamental Equation’ 2.6

with an additional term which compensates for the fact that the usual test to compare two

means is the Student’s t-test since the variances are estimated from the data. If two-sided 

α = 0.05, z0.975 = 1.96 and this last term is (1.96)2/4 ≈ 1, so that this extra term increases the

total sample size by 2. This difference will only be of importance in small studies.

Quick formula

In many situations, it is useful to be able to obtain a quick idea of what sample size may 

be appropriate in a given situation and Lehr (1992) suggests two simple formulae. To detect 

an anticipated standardised difference Δ, with two-sided significance of 5% and a power 

of 80%, we have

mLehr = 16/Δ2. (5.3)

For 90% power and two-sided significance of 5% this becomes

mLehr = 21/Δ2. (5.4)
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Two independent groups for continuous data 49

These approximations also provide a quick check that the sample size tables, of itself,

have been used appropriately. They should not be used for the final calculation although in

many circumstances the sample sizes obtained will be very similar.

Sample sizebunequal variances

If it can be postulated that the variances in the two groups differ such that σ 2
2 = τσ2

1, then one

would use an unequal variance t-test such as that based on Satterthwaite’s approximation

described in Armitage, Berrry and Matthews (2002, p. 110) to compare groups. In this case

the number of subjects required in the first group is

(5.5)

Here differs from Equation 5.1 as it uses the anticipated standard 

deviation of Group 1 and not the value anticipated to be the same in both groups.

Allocation of subjects to treatment

Although Equations 5.2, and 3.2 of Chapter 3, give a general method for allowing for a 

difference in sample size between groups, maximum power is achieved by having equal 

numbers of subjects in the two groups. If group sizes are different, then the SE(d) that we

used in Chapter 2 when deriving the Fundamental Equation 2.6, changes from to 

for groups of size m and n = ϕm. For a given total sample size 

N = m + n this standard error is minimised when m = n, that is when ϕ = 1.

This standard error can also be written as and since, in general, the required 

sample size is directly proportional to the variance (the square of the standard error) this 

leads to a simple expression to modify the formula for a sample size for equal sized groups 

to give that for when the allocation ratio ϕ ≠ 1. Thus if we define mUnequal as the sample size 

in the first group and nUnequal (= ϕmUnequal) the sample size in the second group, then

(5.6)

Here mEqual is the sample size calculated assuming equal-sized groups. This gives a total sample

size NUnequal = mUnequal + nUnequal = mUnequal (1 + ϕ), which will be larger than that for equal

allocation.

Mann–Whitney U-test
Sample size

If the outcome variable is continuous but has a distribution which is not Normal, and a 

suitable transformation cannot be found, a Mann–Whitney U-test may be used to compare

the two groups. If F1(x) and F2(x) are the probabilities of an outcome being less than a 
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50 Chapter 5

particular value (x) under treatments 1 and 2 respectively, then a non-parametric test has, as

null hypothesis H0, F1(x) = F2(x). The alternative hypothesis H1 is F1(x) ≤ F2(x) with strict

inequality for at least one value of x. A simple alternative hypothesis is one which assumes 

that F1(x) = F2(x − δ) for some δ > 0. Here δ represents a shift in location between the 

two alternative treatments or groups. It can be shown that an approximate formula for the

sample size to give a two-sided significance level α and power 1 − β is given by

(5.7)

where f depends on the particular form of the distribution of F1(x) and F2(x).

To calculate f it is necessary to derive the cumulative distribution of the difference of two

independent random variables under the null hypothesis assumption that F1(x) = F2(x). The

quantity f is the first derivative of the derived distribution evaluated at x = 0. If we assume 

the underlying distributions are Normal then = 0.2821/σ. Here the π here 

represents the irrational number 3.14159. . . . Equation 5.7 then becomes

(5.8)

which is a little larger than the Fundamental Equation 2.6. This implies that if a non-parametric

analysis is conducted on data that have essentially a Normal distribution form, then to com-

pensate for this 2.09/2 = 1.045 or about 5% more patients are needed in the study.

If the formula for distribution of the data cannot be reliably obtained, then an alternative

approach is to divide the outcome into (a maximum of five) categories, and use the methods

for ordinal data described in Chapter 4.

5.3 One mean known

One-sample t-test
In this situation, we require the number of subjects, N, necessary to show that a given mean μ2

differs from a target value μ1 = μKnown. Given a significance level α and a power (1 − β) against

the specified alternative μ2 then the number of subjects in the group is

(5.9)

where Δ = (μ2 − μKnown)/σ. Equation 5.9 can be evaluated with the help of Table 2.3 which

gives θ = (z1−α/2 + z1−β)2 for different values of α and β.

Quick formula

A simple formula for the calculation of the number of observations required, for a two-sided

significance level of 5% and power of 80%, is

(5.10)
  
N .= +

8
2

2Δ

  
N

z z z( )
,/ /=

+
+− − −1 2 1

2

2
1 2
2

2
α β α

Δ

  
m

z z. ( )/=
+− −2 09 1 2 1

2

2

α β

Δ

  f = ( )1 2/ σ π

m
z z

f

( )
,/=

+− −1 2 1
2

2 26
α β

δ

9781405146500_4_005.qxd  9/8/08  10:21  Page 50



Two independent groups for continuous data 51

5.4 Bibliography

Schouten (1999) derived Equations 5.2 and 5.5 which extended equations given by Guenther

(1981), who also gave Equations 5.9 and 5.10. Lehr (1992) gave the quick formula of Equa-

tions 5.3 and 5.4. Julious (2004) gives a comprehensive review of sample-size problems with

Normal data.

5.5 Examples and use of the tables

Table 5.1 and Equations 5.2 and 5.5
Example 5.1bcomparing two meansbequal variances

An investigator compares the change in blood pressure due to placebo with that due to a drug.

If the investigator is looking for a difference between groups of 5 mmHg, then, with a between-

subject standard deviation (SD) of 10 mmHg, how many patients should the investigator recruit?

How is the calculation affected if the anticipated effect is 10 mmHg?

How is sample size affected if randomisation was conducted such that for every two patients

who received placebo three patients would receive the drug?

In this case, a two-sided test is likely to be the most appropriate, because the investigator

may not know if the drug effect is going to be less than or greater than the placebo effect.

For a 5% two-sided test size, α = 0.05 and the value from Table 2.2 is z0.975 = 1.96 

while for a power of 90% a one-sided 1 − β = 0.90, z0.90 = 1.2816. Also Table 2.3 gives

θ(0.05, 0.1) = 10.507.

Here, δ = μ2 − μ1 = 5 mmHg, σ = 10 mmHg, therefore Δ = 5/10 = 0.5. Assuming α = 0.05

(two-sided) and 1 − β = 0.9, Table 5.1 gives m = 86 patients per group and therefore N = 2m

= 172. Alternatively using Equation 5.2 directly we have m = = 85.02 

or 86 also.

If, on the other hand, Δ = 10/10 = 1.0 he would have required only 22 patients per group or

N = 44.

In the case when the randomisation ratio is no longer unity, ϕ = 3/2 = 1.5 and with 

Δ = 5/10 = 0.5 gives m = 71 and n = 1.5 × 71 = 106.5 or approximately 107. Thus a total

of N = 71 + 107 = 178 patients would be required. However, the total patient number should

be divisible by five and so this suggests a trial of 180 patients. This is 4.6% more than if a 1 : 1

randomisation had been used.

Table 5.1 and Equation 5.2
Example 5.2bcomparing two meansbequal variances

In a clinical trial of the use of a drug in twin pregnancies, an obstetrician wishes to show a 

clinically important prolongation of pregnancy by use of the drug when compared to placebo.

In the absence of any data on the standard deviation of pregnancy duration she argues that
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52 Chapter 5

normal pregnancies range from 33 to 40 weeks, and so a rough guess for the standard deviation

is SD = (40 − 33)/4 = 1.75 weeks. How many twin pregnancies must she observe if she decides

that 1 week is a clinically important increase in the length of a pregnancy?

Note that she intends to use the t-test to compare means despite the fact that pregnancy

duration is far from Normally distributed. However with reasonable sample sizes and equal

numbers in the two groups, the t-test is sufficiently robust to give sensible answers.

For a 5% two-sided test size, α = 0.05 and the value from Table 2.2 is z0.975 = 1.96 

while for a power of 80% a one-sided 1 − β = 0.80, z0.80 = 0.8416. Also Table 2.3 gives

θ(0.05, 0.2) = 7.849.

Here, δ = μ2 − μ1 = 1 week, σ = 1.75 weeks and Δ = 1/1.75 = 0.57 ≈ 0.6. Assuming a two-sided

test with α = 0.05 and power, 1 − β = 0.80, Table 5.1 gives, for Δ = 0.55, m = 53 and for Δ = 0.60,

m = 45. Thus approximately m = (53 + 45)/2 ≈ 49 mothers expecting twins would correspond

to Δ = 0.57. With equal numbers of mothers per group, the obstetrician would need to

observe N = 2 × 49 ≈ 100 twin pregnancies for comparison between the drug and a placebo.

gives m = 50 and hence N = 100 also.

Equations 5.3 and 5.4
Example 5.3bcomparing two meansbquick formula

Given an anticipated standardized effect size of Δ = 0.5, what is the sample size per group

using Lehr’s quick method for two-sided significance of 5% and power 80%?

Lehr’s formula (Equation 5.3) gives mLehr = 16/0.52 = 64 and agrees very closely with direct

use of Table 5.1 or which confirm m = 64. The approximate formula performs rather 

well in this example. A total of N = 128 or approximately 130 patients are required.

Table 5.2 and Equation 5.5
Example 5.4bcomparing two meansbunequal variances

Suppose the investigator of Example 5.1 believed that although the effect of treatment would

be to increase the change in blood pressure over that achieved by the use of placebo, it would

also be likely to increase the between subject variability to an extent as to double the variance.

Rather than find a transformation to stabilise the variance, the investigator wishes to analyse

the outcome in its original units, and so use a t-test with unequal variances.

For a 5% two-sided test size, α = 0.05 and the value from Table 2.2 is z0.975 = 1.96. 

Further with a power of 90% a one-sided 1 − β = 0.90, z0.90 = 1.2816. Table 2.3 gives

θ(0.05, 0.1) = 10.507.

In this case, σ 2
2 = 2σ 2

1 so we use Equation 5.5 with τ = 2, ϕ = 1.5, δ = 5 and σ1 = 10 to 

obtain = 98.84 or 100. From which 

nVariancesUnequal = 1.5 × 100 = 150, giving a total of NVariancesUnequal = 250 patients while 

gives 248. The large increase in sample size is mainly due to the increase in the overall variance

of the outcome, rather than the unequal variance assumption per se.
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Two independent groups for continuous data 53

Alternatively if, with a Group 1 variance σ2
1 = 102 = 100 and a Group 2 variance of σ2

2 = 2σ2
1

= 200, we had averaged these to obtain σ2 = (σ2
1 + σ2

2)/2 = (100 + 200)/2 = 150, then the average

SD = = 12.25 mmHg. Using this in with Δ = (15 − 10)/12.25 = 0.408, ϕ = 1.5 but

with τ = 1 gives m = 107 for Group 1 and n = 1.5 × 107 = 161 for Group 2, a total of N = 267.

This is more than the 248 patients estimated earlier. Thus, rather than assume an average 

SD in such cases, if we can specify separate SDs then we can achieve an overall sample size

reduction.

Had the design proposed a 1 : 1 randomisation between placebo and the drug, then 

Table 5.2, which corresponds to ϕ = 1, with τ = 2, δ = 5, σ1 = 10, hence Δ = 0.5, two-sided test

size 5% and power of 80%, gives m = 96 ≈ 100 giving a total sample size of 200. This is less

than the 250 when ϕ = 1.5.

Table 5.3, Equations 5.9, 5.11 and 5.10
Example 5.5bone mean

A psychologist wishes to test the IQ of a certain population and his null hypothesis is that 

the mean IQ is 100. However, he has no preconceived notion of whether the group is likely 

to be above or below this value. He wishes to be able to detect a fairly small difference, say, 

0.2 standard deviations from 100, so that if he gets a non-significant result from his analysis,

he can be sure the mean IQ from this population lies very close to 100. How many subjects

should he recruit?

The test to use is the one-sample t-test. If the psychologist specifies α = 0.05 for a two-sided

test, and a power 1 − β = 0.8, then, with Δ = 0.2 from Table 5.3 or , he will require N = 199

or approximately 200 subjects in his sample. The quick formula of Equation 5.10 would 

suggest N = 8/0.22 + 2 = 202 which is very close to this number.
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54 Chapter 5

Table 5.1 Sample sizes for the two sample t-test with two-sided α = 0.05.

Each cell gives the number of subjects for each group, m. Hence, the total

sample size for the study is N = 2m.

Standardised effect size
Power

ΔΔ 0.8 0.9

0.05 6281 8407

0.1 1571 2103

0.15 699 935

0.2 394 527

0.25 253 338

0.3 176 235

0.35 130 173

0.4 100 133

0.45 79 105

0.5 64 86

0.55 53 71

0.6 45 60

0.65 39 51

0.7 33 44

0.75 29 39

0.8 26 34

0.85 23 31

0.9 21 27

0.95 19 25

1.0 17 22

1.1 14 19

1.2 12 16

1.3 11 14

1.4 9 12

1.5 8 11
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Table 5.2 Sample sizes for the two sample t-test with unequal variances. Each cell gives the number of

subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

Variance ratio, ττ

ΔΔ 1.5 2 2.5 3 4 5

0.05 7850 9420 10 990 12 560 15 700 18 839

0.1 1964 2356 2749 3141 3926 4711

0.15 874 1048 1223 1397 1746 2095

0.2 492 590 688 787 983 1179

0.25 315 378 441 504 630 755

0.3 220 263 307 351 438 525

0.35 162 194 226 258 322 386

0.4 124 149 173 198 247 296

0.45 98 118 137 157 196 234

0.5 80 96 112 127 159 190

0.55 66 79 92 105 132 158

0.6 56 67 78 89 111 133

0.65 48 57 67 76 95 113

0.7 42 50 58 66 82 98

0.75 36 43 50 58 72 86

0.8 32 38 45 51 63 75

0.85 29 34 40 45 56 67

0.9 26 31 36 40 50 60

0.95 23 28 32 36 45 54

1.0 21 25 29 33 41 49

1.1 18 21 24 28 34 41

1.2 15 18 21 24 29 35

1.3 13 15 18 20 25 30

1.4 12 14 16 18 22 26

1.5 10 12 14 16 19 23

Two independent groups for continuous data 55
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56 Chapter 5

Table 5.2 (continued ): Sample sizes for the two sample t-test with unequal variances. Each cell gives

the number of subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

Variance ratio, ττ

ΔΔ 1.5 2 2.5 3 4 5

0.05 10 509 12 610 14 712 16 814 21 017 25 220

0.1 2628 3154 3679 4205 5256 6306

0.15 1169 1403 1636 1870 2337 2804

0.2 658 790 921 1052 1315 1578

0.25 422 506 590 674 842 1011

0.3 293 352 410 469 586 702

0.35 216 259 302 345 431 517

0.4 166 199 231 264 330 396

0.45 131 157 183 209 261 313

0.5 107 128 149 170 212 254

0.55 88 106 123 141 175 210

0.6 74 89 104 118 148 177

0.65 64 76 89 101 126 151

0.7 55 66 77 87 109 131

0.75 48 58 67 76 95 114

0.8 43 51 59 67 84 100

0.85 38 45 53 60 75 89

0.9 34 40 47 54 67 80

0.95 31 36 42 48 60 72

1.0 28 33 38 44 54 65

1.1 23 28 32 36 45 54

1.2 20 23 27 31 38 46

1.3 17 20 23 27 33 39

1.4 15 18 20 23 29 34

1.5 13 16 18 20 25 30
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Table 5.3 Sample sizes for the one sample t-test with two-sided α = 0.05.

Standardised effect size
Power

ΔΔ 0.8 0.9

0.05 3142 4205

0.1 787 1053

0.15 351 469

0.2 199 265

0.25 128 171

0.3 90 119

0.35 66 88

0.4 51 68

0.45 41 54

0.5 34 44

0.55 28 37

0.6 24 32

0.65 21 27

0.7 18 24

0.75 16 21

0.8 15 19

0.85 13 17

0.9 12 15

0.95 11 14

1.0 10 13

1.1 9 11

1.2 8 10

1.3 7 9

1.4 6 8

1.5 6 7
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Cluster designs, repeated measures data
and more than two groups

SUMMARY
We discuss sample size estimation for cluster-randomised trials and studies designed with repeated 

measures (of the same endpoint) over time included. Chapters 3, 4 and 5 discussed sample-size 

estimation for the comparison of two groups for outcomes which were using different types of data.

Here we describe how to extend these calculations for three or more group comparisons. Situations

include those when there is no structure to the respective groups, when a dose–response relation might

be expected and when a four-group study can be considered as a 2 × 2 factorial design. In some 

situations, it may be relevant to plan for unequal numbers of subjects in each group.

6.1 Cluster designs

In some circumstances the alternative interventions are allocated to groups of subjects, 

rather than to individuals. For example, one might be concerned to reduce the prevalence 

of some risk factor in patients attending their general practitioner (GP). The trial may be 

to evaluate the effectiveness of introducing an educational package for the GPs themselves

which is intended to assist them in the way they help their patients to reduce their risk. Such 

a trial would randomly allocate some GPs (not the patients) to receive the package and 

others not. This implies that all the patients of a particular GP who receives the educational

package will experience the consequences of that intervention. In contrast, all the patients 

of a particular GP who does not receive the educational package will not experience the 

consequences of the educational package in how they are advised concerning their risk.

Similarly, in trials of two vaccines, for example, it might be more appropriate to randomise

households, or even entire villages to the same vaccine rather than the two vaccines on a 

person-by-person basis.

Comparing two means
We will assume that the objective of the trial design is to compare two interventions and 

that several clusters have been identified. Each cluster is then assigned one of the alternative

interventions at random. The endpoint is then determined in each individual from within 

the cluster. The analysis of the design will compare the two interventions taking into account 

both between and within cluster variation in each intervention. Subjects within the same 

cluster cannot be regarded as independent of each other and so the sample-size calculations

6
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Cluster designs, repeated measures data and more than two groups 59

must take this into account. Thus, if we denote the between-cluster variance by σ 2
Between and

the within-cluster variance by σ 2
Within the intra-class correlation is given by:

(6.1)

The details of the appropriate analysis of clustered designs are given in Campbell, Donner

and Klar (2007).

Sample size

We assume a continuous outcome measure and that there is a fixed number k of patients for

each of c clusters which are to receive one of the two interventions. Thus mCluster = ck.

The sample size required first utilises the sample size, mIndividual, from the subject-by-subject

randomisation design of Chapter 5’s Equation 5.2. This assumes independent observations

within each intervention group. To accommodate the clustering effect mIndividual has to be

inflated by the design effect (DE) where

DE = 1 + (k − 1)ρIntra, (6.2)

and

mCluster = DE × mIndividual . (6.3)

This then leads to nCluster = ϕmCluster, where ϕ is the allocation ratio, and the total number

of subjects to be recruited is NCluster = mCluster + nCluster .

If the number of patients per intervention group, mCluster, is fixed and the number of subjects

k of each cluster is also fixed, then the number of clusters required for one of the interventions is

(6.4)

Thus the total number of clusters for the trial is C = c(1 + ϕ).

On the other hand, if the number of clusters c is fixed, the number of subjects required per

cluster is given by:

(6.5)

In order to design a cluster randomised trial one needs to provide a value of ρIntra. This 

may be obtained from cluster trials that have been done previously. However, there is a

difficulty as intra-class correlation coefficients are not usually well estimated since the pre-

cision of the estimate of σ 2
Between, which is necessary for this calculation, is dependent on the

number of clusters concerned and this number may be small. For this reason it is advisable

that, before deciding on the eventual trial size, a sensitivity analysis with a range of values 

of the correlation is carried out. Typical values for ρIntra for clinical outcomes in primary 

care are about 0.05. Process outcomes (such as does the doctor always give analgesics for

headache) will have higher values. Values in a public health context are typically very small,

such as 0.001.
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60 Chapter 6

6.2 Repeated measures design

Analysis of covariance
Suppose in a two-group comparison trial we make v observations on each patient before 

randomisation to treatment and w observations afterwards. If the effect of the treatment is 

to change over the period of observation post-randomisation, then an efficient analysis is 

to compute the mean of the observations before randomisation and the mean of those after 

randomisation. The pre-randomisation mean from each patient are then used as a covariate in

an analysis of covariance of the post-randomisation means. In this case, what is often assumed

is that observations made at time t on a particular individual have a correlation ρ with 

observations made at time t ′. This correlation is assumed the same for all values of t and t ′,
provided t ≠ t′. This type of correlation structure is termed ‘compound symmetry’. Correlations

of between 0.6 and 0.75 are commonly found.

Sample size

If two treatments are to be compared, and the observations come from a Normal distribution

then, with the anticipated standardised effect size between them specified as Δ, the sample size

in each treatment group for a two-sided test α and power 1 − β is

(6.6)

Equation 6.6 is the same as Equation 5.2 if ϕ = 1 except for the multiplying factor, R, where:

(6.7)

For the case of no pre-randomisation or baseline observations, v = 0 and Equation 6.7

becomes:

(6.8)

This is very similar in form to Equation 6.3 for the DE for clustered data except that k is

replaced by w to distinguish the two situations and there is a divisor w. In the present situation

the divisor arises because we are using the mean of the w observations as the unit of analysis 

of each patient.

6.3 More than two groups

Although there are many examples of studies conducted on three or more groups, they do

pose difficulties at the design stage in relation to study size as more than one hypothesis is

often under test. The approach to design will depend on the type of groups involved and the

precise comparisons intended.
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Several comparisons with placebo
In certain clinical trial situations there may be several potentially active treatments under

consideration each of which it would be desirable to test against a placebo. The treatments

considered may be entirely different formulations and one is merely trying to determine

which, if any, are active relative to placebo rather than to make a comparison between them.

In such cases a common minimum effect size to be demonstrated may be set by the clinical

team for all the comparisons. Any treatment that demonstrates this minimum level would

then be considered as ‘efficacious’ and perhaps then evaluated further in subsequent trials.

The conventional parallel group design would be to randomise these treatments and placebo

(g options) equally, perhaps in blocks of size, b = g or 2g. However, it is statistically more

efficient to have a larger number of patients receiving placebo than each of the other interventions.

This is because every one of the g − 1 comparisons is made against placebo so that the placebo

effect needs to be well established. The placebo group should have patients for every

one patient of the other treatment options. For example, if g = 5, then = = 2, thus

the recommended randomisation is 2 : 1 : 1 : 1 : 1 which can be conducted in blocks of size 

b = 6 or 12. However, if g = 6 for example, then = 2.45 which is not an integer but with

convenient rounding this leads to a randomisation ratio of 2.5 : 1 : 1 : 1 : 1 : 1 or equivalently

5 : 2 : 2 : 2 : 2 : 2. The options can then be randomised in blocks of size, b = 15 or 30.

Trial size

If the variable being measured is continuous and can be assumed to have a Normal dis-

tribution then the number of subjects m, for the placebo treatment group can be calculated by

suitably modifying Equation 5.2 to give

, g ≥ 2. (6.9)

This leads to a total trial size of N = m + (g − 1) × n = [1 + ] m patients, where 

n = m/ is the sample size of each of the g − 1 non-placebo groups.

If the endpoint is binary, and two proportions π1 and π2 are being compared, then the 

corresponding expression is

, g ≥ 2. (6.10)

6.4 Bibliography

Randomisation by group has been discussed by Donner and Klar (2000). Campbell (2000)

gives Equation 6.6 while Feng and Grizzle (1992) point out that estimates of the intra-class

correlation coefficients have high variance. The relative efficiency of unequal versus equal

cluster sizes is discussed by van Breukelen, Candel and Berger (2007).

Frison and Pocock (1992) describe how sample sizes for repeated measures designs com-

paring two means can be obtained. They also discuss the important topic of the relative merits

of the use of analysis of covariance compared to change-from-baseline methods of analysis.
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In the situation when comparing several options against placebo (or a standard control),

Fleiss (1986, pp. 95–96) has shown that it is statistically more efficient to have a larger number

of patients receiving placebo than each of the other interventions.

6.5 Examples and use of the tables

Equations 6.2, 6.3, 6.5 and Table 5.1
Example 6.1bcomparing two meansbclustered randomisation

Data from the Family Heart Study Group (1994) have shown that the intra-practice correla-

tion for serum cholesterol is about 0.02. Suppose an investigator has designed an educational

package for general practitioners, to try and improve the patients’ lifestyle so as to reduce

cholesterol levels. He believes that a reduction of about 0.2 mmol/L is achievable. The 

investigator intends to randomise 50 practices to either receive an educational package 

or not.

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416.

Lindholm, Ekbom, Dash et al. (1995) gives the between-subject standard deviation of serum

cholesterol as about 0.65 mmol/L. Thus, we wish to detect an effect size of Δ = 0.2/0.65 ≈ 0.3.

Use of Table 5.1, Equation 5.2 with ϕ = 1, or would suggest that under random allocation

on a subject-by-subject basis, for a two-sided significance level 5% and a power 80% about

mIndividual = 176 patients per group are required, which implies N ≈ 350.

However, the corresponding design effect (DE) depends on the number of patients per cluster

available k and ρIntra = 0.02. With C = 50 practices available equal practice allocation gives c = 25

for each intervention group and so, from Equation 6.5, k = [176(1 − 0.02)]/[25 − (176 × 0.02)]

= 8.02. Thus we would require k = 8 patients per practice to allow for clustering, rather than

the 175/25 = 7 patients under the independence assumption. Hence DE = 1 + (8 − 1) × 0.02

= 1.14, so that from Equation 6.3, mCluster = 176 × 1.14 ≈ 201 and the final number of subjects

required NCluster = 2 × 201 or approximately 400.

If the intra-class correlation assumed were 0.015 or 0.025, then the number of practices

suggested is 7.75 and 8.33 respectively, both suggesting k = 8.

Equation 6.5 and Table 3.1
Example 6.2bcomparing two proportionsbclustered randomisation

An investigator wishes to educate general practitioners into methods of persuading patients

to give up smoking. The prevalence of middle-aged smokers is about 20% and the campaign

would like to reduce it to 15%. A parallel group randomised trial is planned, and the investigator

can recruit about 40 practices. How many patients per practice should be recruited, if the

intra-class correlation for smoking in general practice is about 0.01, and we require 80%

power and 5% two-sided significance?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416.

SSS
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From Table 3.1, Equation 3.2 or with π1 = 0.15 and π2 = 0.20 we find mIndividual = 906

patients. From Equation 6.5 with ρIntra = 0.01, mIndividual = 906, c = 20 we have k = 82 patients

per practice. The clustering, therefore, increases the number of patients recruited per group

from 906 to 20 × 82 = 1640 patients. If the intra-class correlation were 0.005 or 0.015, the

respective sample sizes would be 1166 and 2785 showing how sensitive the calculation can 

be to the anticipated intra-class correlation coefficient.

Note that in this example, the sample size is more sensitive to the value of the intra-class

correlation than the sample size in Example 6.1. This is because the number of patients per

practice (cluster) is much higher at 82 against 8 in that case.

Table 6.1, Equations 6.6, 6.7 and Table 5.1
Example 6.3brepeated measuresbpost-randomization repeated measures only

Suppose we wished to design a study of a blood-pressure-reducing agent against a placebo

control in which we had no pre-randomisation measure. How many subjects per group are

required for 1, 2 or 3 post-randomisation assessments assuming an anticipated standardised

effect size of 0.4, correlation 0.7 and test size 5% and power 80%?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416.

Here v = 0, w = 1, 2 and 3, ρ = 0.7, Δ = 0.4 and two-sided α = 0.05, 1 − β = 0.80. From Table 5.1,

Equation 5.2, Equation 6.6 with R = 1, or , without repeated measures, we would require

m = 100 patients. Table 6.1 with v = 0 and ρ = 0.7, gives the correction factors for w = 1, 2 and

3 as R = 1.000, 0.850 and 0.800 respectively. Thus, we require mRepeated = Rm = 1.00 × 100 = 100,

85 and 80 patients for w = 1, 2 and 3 repeated measures. In this example, by increasing the

number of post-randomisation measures from 1 to 3 the necessary sample size has been

reduced by (100 − 80)/100 = 0.2 or 20%. Thus, if the number of patients is limited, one can

maintain the power of a study by increasing the number of repeat observations per individual.

Use of directly gives the same sample sizes.

Table 6.1 and Equation 6.7
Example 6.4brepeated measuresbpre- and post-treatment measures

Suppose, in the situation of Example 6.3, we also wished to have v = 3 pre-treatment measures.

How will this affect the sample size?

In this case, Table 6.1 gives the correction factor R as 0.387, 0.237 and 0.187, so mRepeated = 39,

24 and 19 patients for w = 1, 2 and 3 repeated measures post-treatment. Thus the repeated

pre-treatment observations also reduce the sample size. However, the final design of the 

study chosen will need to balance the cost of recruiting additional patients against the cost of 

recalling current patients on whom repeat measures are then taken.

Equation 6.9
Example 6.5bcomparisons with placebobcontinuous databprophylaxis following 

myocardial infarction

Wallentin, Wilcox, Weaver et al. (2003) include in a randomised trial placebo and four doses

of a thrombin inhibitor ximelagatran to test for its possible use for secondary prophylaxis

SSS

SSS

SSS
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after myocardial infarction. Patients were randomly allocated to Placebo or 24, 36, 48 and 

60 mg twice daily of ximelagatran for 6 months on a 2 : 1 : 1 : 1 : 1 basis.

Suppose we intend to run a trial with a similar design, but with a continuous outcome such

as a liver enzyme concentration. Assuming liver enzyme concentration has an approximately

Normal distribution at each dose, how large should the trial be?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a 

power of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416. Also from Table 2.3, 

θ(0.05, 0.20) = 7.849.

For this trial g = 5, and suppose the minimal standardised effect size of clinical interest has

been set at ΔPlan = 0.5, then with two-sided test size α = 0.05 and power, 1 − β = 0.8, or 

Equation 6.9 give = 95.7 or 96. This implies that 

each of the other g − 1 treatments will be given to n = mPlacebo/ = 96/2 = 48 patients.

Thus a total trial size of N = 96 + (5 − 1) × 48 = 288 or approximately 300 patients would

seem appropriate. The trial could then be conducted either in r = 50 replicate randomised

blocks of size b = 6 patients or with r = 25 and b = 12.

Equation 6.10
Example 6.6bcomparisons with placebobbinary databprophylaxis following 

myocardial infarction

Wallentin, Wilcox, Weaver et al. (2003) expected a myocardial infarction rate of about 20%

with placebo in their trial and expected the biggest reduction with active treatment to give an

infarction rate of about 14%.

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416.

Using , or Equation 6.10 directly, with g = 5, πPlacebo = π1 = 0.14 and π2 = 0.20 gives, with 

two-sided test size α = 0.05 and power, 1 − β = 0.8, m = 1843. This implies that each of the

other g − 1 treatments will be given to n = mPlacebo/ = 1843/2 or 922 patients. Thus a

total trial size of N = 1843 + (5 − 1) × 922 = 5531or approximately 2800 patients would seem

appropriate. The trial could then be conducted in r = 461 replicate randomised blocks of 

size b = 12 patients to give 5532 patients.

The important feature here is that each dose is considered in isolation whereas Walletin

Wilcox, Weaver et al. (2003) consider a more sensitive dose-response design and estimated

they needed 1800 subjects in all
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Table 6.1 Multiplying factor for repeated measures designs. v is the number of pre-intervention

observations, w the number of post-intervention observations and ρ is the anticipated correlation

between successive (equally spaced in time) observations.

ρρ

v w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 0.550 0.600 0.650 0.700 0.750 0.800 0.850 0.900 0.950

3 0.400 0.467 0.533 0.600 0.667 0.733 0.800 0.867 0.933

4 0.325 0.400 0.475 0.550 0.625 0.700 0.775 0.850 0.925

5 0.280 0.360 0.440 0.520 0.600 0.680 0.760 0.840 0.920

1 1 0.990 0.960 0.910 0.840 0.750 0.640 0.510 0.360 0.190

2 0.540 0.560 0.560 0.540 0.500 0.440 0.360 0.260 0.140

3 0.390 0.427 0.443 0.440 0.417 0.373 0.310 0.227 0.123

4 0.315 0.360 0.385 0.390 0.375 0.340 0.285 0.210 0.115

5 0.270 0.320 0.350 0.360 0.350 0.320 0.270 0.200 0.110

2 1 0.982 0.933 0.862 0.771 0.667 0.550 0.424 0.289 0.147

2 0.532 0.533 0.512 0.471 0.417 0.350 0.274 0.189 0.097

3 0.382 0.400 0.395 0.371 0.333 0.283 0.224 0.156 0.081

4 0.307 0.333 0.337 0.321 0.292 0.250 0.199 0.139 0.072

5 0.262 0.293 0.302 0.291 0.267 0.230 0.184 0.129 0.067

3 1 0.975 0.914 0.831 0.733 0.625 0.509 0.388 0.262 0.132

2 0.525 0.514 0.481 0.433 0.375 0.309 0.238 0.162 0.082

3 0.375 0.381 0.365 0.333 0.292 0.242 0.188 0.128 0.065

4 0.300 0.314 0.306 0.283 0.250 0.209 0.163 0.112 0.057

5 0.255 0.274 0.271 0.253 0.225 0.189 0.148 0.102 0.052

4 1 0.969 0.900 0.811 0.709 0.600 0.486 0.368 0.247 0.124

2 0.519 0.500 0.461 0.409 0.350 0.286 0.218 0.147 0.074

3 0.369 0.367 0.344 0.309 0.267 0.219 0.168 0.114 0.058

4 0.294 0.300 0.286 0.259 0.225 0.186 0.143 0.097 0.049

5 0.249 0.260 0.251 0.229 0.200 0.166 0.128 0.087 0.044

5 1 0.964 0.889 0.795 0.692 0.583 0.471 0.355 0.238 0.120

2 0.514 0.489 0.445 0.392 0.333 0.271 0.205 0.138 0.070

3 0.364 0.356 0.329 0.292 0.250 0.204 0.155 0.105 0.053

4 0.289 0.289 0.270 0.242 0.208 0.171 0.130 0.088 0.045

5 0.244 0.249 0.235 0.212 0.183 0.151 0.115 0.078 0.040

9781405146500_4_006.qxd  9/8/08  10:21  Page 66



67

Comparing paired groups for 
binary, ordered categorical and 
continuous outcomes

SUMMARY
The purpose of this chapter is to describe methods for calculating sample sizes for studies which yield

paired data for the situations where outcomes are binary, ordered categorical or continuous. Common

designs are comparisons using matched pairs in either case-control or before and after studies, and 

two-period two-treatment cross-over trials.

7.1 Introduction

Chapters 3, 4 and 5 describe sample-size calculations for the comparison of two groups for

binary, ordered categorical and continuous outcomes respectively. Those calculations assume

that the data for one group are independent of that of the other; that is, whatever the results 

in one group they would not influence the results obtained from the other and vice-versa.

However, a common situation is when the data are linked in some way and so the assumption

of independence no longer holds. Linked data arise in a number of ways, for example each

treatment in a cross-over trial is evaluated in every patient so the two endpoint observations,

one following each treatment, from each subject form a pair. Similarly in a case-control study

design, each case with the disease in question may be matched, for example for age and gender,

with a disease-free control. In other situations, patients may be assessed before and after an

intervention.

The basic endpoint unit for analysis is now the difference between these pairs of observa-

tions. Here we describe sample-size calculations for the comparison of paired data when these

differences have a binary, ordered categorical or continuous form.

7.2 Designs

Cross-over trial
Suppose a cross-over trial is planned in which patients are to be asked whether they obtain

relief of symptoms on each of two medications, termed A and B. For expository purposes, we

summarise the results of such a trial in the format of Figure 7.1 and indicate ‘Yes’ as implying

a response or success and ‘No’ a lack of response or failure.

7
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68 Chapter 7

In Figure 7.1, r is the number of patients whose response was ‘No’ with both treatments

and u is the number whose response is ‘Yes’ with both treatments. In contrast, s patients failed

to respond to treatment A but responded to treatment B. Finally, t patients responded to

treatment A but failed on treatment B. The anticipated proportions of patients who will

respond on A is πA and on B is πB.

Matched case-control study
Figure 7.2 illustrates the paired situation for a matched case-control study in which each

index case of interest is matched to a control. In this case the matching variables chosen 

are potential confounders which, unless accounted for in some way, may obscure the true 

difference between cases and controls. Once the matching is made, the relevant exposure 

history to the risk of concern is ascertained so that each case-control pair can then be assigned

to one of the four categories of Figure 7.2.

Before-and-after Design
A ‘before-and-after’ design is a variation of the matched pairs design. In such a design, the

pair (of observations) is completed by a second measurement on the same subject. Thus

observations are made on each subject, once before (at baseline) and once afteraperhaps post

Figure 7.1 Notation for a 2 × 2 cross-over trial comparing treatments A and B with a binary endpoint.

Response to treatment B

Response to Anticipated

treatment A No Yes Total proportions

No r s r + s πA

Yes t u t + u 1 − πA

Total r + t s + t NPairs

Anticipated πB 1 − πB

proportions

Figure 7.2 Notation for a 1 to 1 matched case-control study with a binary endpoint.

Controls

Cases Exposed Not exposed Total

Exposed r s r + s

Not exposed t u t + u

Total r + t s + t NPairs
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an intervention. However, this design is not suitable for evaluation of alternative therapies.

To illustrate this, suppose a trial is planned to compare the current standard therapy (S)

against a test therapy (T). Patients in Period I of the design are first recruited to S, then when 

a new therapy comes along all subsequent patients are switched to T during Period II of 

the design. In contrast with a crossover trial, only the sequence ST is tested and not also TS.

Thus, although the differences between the before-and-after observations may measure 

the effect of the intervention, any observed changes (or their apparent absence) may also be

attributed to changes that are temporal in nature. Such changes may be outside the control of

the investigator, so that the true benefit of the intervention cannot be estimated.

7.3 Binary data

McNemar’s test
The data arising from the designs of either Figures 7.1 or 7.2 are often summarised using the

odds ratio, calculated as ψ = s/t, while the corresponding test of significance is the McNemar’s

test.

For illustration we focus on a cross-over trial, where ψ is a measure of how much more likely

it is that a patient will respond ‘Yes’ with Treatment B and ‘No’ on Treatment A as opposed to

‘Yes’ on A and ‘No’ on B. We note that the (r + u) patients who respond to both A and B in 

the same way (that is, they either fail on both treatments or respond to both treatments) do

not enter this calculation. This odds ratio and the corresponding McNemar’s test are often

termed ‘conditional’ as they are calculated using only the discordant data, that is, they are

‘conditional’ on the discordance.

Effect size

In order to calculate the required sample size NPairs, which implies treating each individual

twice and therefore making 2 × NPairs observations, we need to specify the anticipated values

of s and t. Equivalently, we can specify their anticipated total (s + t), often expressed by 

means of , together with the anticipated value of ψ = s/t.

An investigator may have difficulty in anticipating the values of s and t, but may be able 

to specify πA and πB, the marginal probabilities of response to treatments A and B. In this

case, we estimate the anticipated values with and , 

and from these obtain the anticipated values for πDiscordant = πA(1 − πB) + πB(1 − πA) and 

.

These calculations assume that the response to treatment A is independent of the response

to treatment B in each subject although this may not be the case. However, we have to make

assumptions of some kind for sample size calculation purposes and this may be considered 

as reasonable.
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Sample size

For a two-period two-treatment cross-over trial or a 1 : 1 matched case-control study for 

two-sided test size α and power 1 − β, the number of pairs required is

(7.1)

An alternative approach is first to consider the number of discordant pairs required as it is

this that is used in estimating ψ and conducting the statistical test. This sets πDiscordant = 1 in

Equation 7.1 to give the number of discordant pairs required as

(7.2)

The attraction of this method is that the investigator only has to provide an anticipated value

of the effect size ψ of interest.

When designing a study therefore one could use Equation 7.2 to estimate the discordant

sample size and then recruit subject-by-subject until NDiscordant discordant paired observations

are observed at which point recruitment stops.

Unfortunately this strategy implies that the total number to be recruited is not known 

in advance. So even though we can base enrolment into a study on the discordant sample size

there still has to be some estimate of the total sample size for planning and budgetary purposes.

Thus to calculate the total sample size we divide the discordant sample size by the anticipated

proportion of pairs that will be discordant to obtain a sample size, that is,

(7.3)

Thus a combination of Equations 7.2 and 7.3 provides an alternative means of deriving 

a sample size. This method is termed a conditional approach in that we first calculate a dis-

cordant sample size and then dependent on this the total sample size is calculated.

A case-control study may be designed in such a way that the number of controls matched 

to a given case is greater than one. This may arise when the number of cases available is 

not numerous, but controls are relatively easy to find. This device can be useful way to main-

tain sufficient power in a study when cases are scarceaat the expense of requiring more 

controls.

In this situation a matched unit comprises of a single case together with the corresponding

C controls, thus the matched unit consists of (1 + C) individuals. To determine the number 

of units required, the study size is first calculated from Equations 7.1, or 7.2 with 7.3, 

which assumes one control for each case, to obtain NEqual. The number of units required in a 

1 : C -matching is then given by

(7.4)
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Thus the number of cases required is NCases = NUnits and the number of controls required 

is NControls = CNCases. Finally the total number of subjects recruited to the study will be 

NTotal = NCases + NControls.

This method can retain the same power as a design with 1 : 1 matching, but the number of

cases now required is then reduced at the expense of an increased number of controls. However

as a consequence, the total number of subjects recruited to the study is correspondingly larger.

In practice, there is little benefit in having more than C = 4 cases for each control as the

additional gain in power diminishes with each extra control so that the benefit of further

imbalance adds little to the statistical efficiency of the design.

7.4 Ordered categorical data

Wilcoxon signed rank test
Paired ordered categorical data arise in a number of clinical situations, such as in trials that

compare a scored symptom or component of quality of life before and after treatment or a

study to compare visual acuity measured before and after surgery. Alternatively, we may have

a continuous variable for which the assumption of a Normal distribution does not hold and

so we then regard it as categorical data but with many categories. In either case, the Wilcoxon

signed rank test would be the most appropriate statistical test for analysis.

The format of data resulting from such studies extends the number of rows (and columns)

of Figure 7.2 from 2 to κ, where κ represents the number of ordered categories. Observations

which then lie along the diagonal of such a (κ × κ) contingency table, correspond to those

whose category has not changed following the intervention, and they do not contribute 

information on the comparison.

Effect size

For pairs in different categories, the largest difference possible is κ − 1 categories apart. To

calculate the sample size, it is necessary to specify the distribution of differences, that is, what

proportion of subjects are likely to differ by one category, by two categories and so on until 

by κ − 1 categories.

For example, with a three-point scale the design team may suspect that the new treatment

will be an improvement over the control so the difference in pairs will tend to be positive.

They then anticipate that, conditional on the overall difference being positive, proportions 

ξ2 and ξ1 of subjects will improve by c2 = +2 and c1 = +1 categories respectively. Similarly they

then anticipate the proportions for c0 = 0, c−1 = −1 and c−2 = −2 as ξ0, ξ−1 and ξ−2. These anti-

cipated values may be based on a pilot study, published data or the collective views of the

design team.

In general, once the 2(κ − 1) + 1 anticipated probabilities ξj have been specified the next

step is to calculate the anticipated proportions in each of the 2(κ − 1) non-zero difference

groups, that is, vi = ξj /(1 − ξ0). From these the planning effect size

(7.5)
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and the corresponding standard deviation

(7.6)

are obtained. The appropriate standardised difference for comparing groups is then

(7.7)

Sample size

The required number of pairs, for two-sided test size α and power 1 − β, if the Wilcoxon

signed rank sum test is to be used is given by

(7.8)

This equation can be evaluated with the help of Table 2.2 together with Table 2.3 the latter

which gives θ(α, β) = (z1−α/2 + z1−β)2 for different values of α and β.

Practical note

In practice, there may be little information to base the anticipated probabilities required 

to quantify the standardised effect size and hence make the sample size calculations of

Equation 7.8. In this instance a recommendation would be to ignore the distribution of the

individual scores in the discordant categories (for three-point scales −2, −1, 1 and 2) and

merely provide the anticipated ratio of the number of positives over the number of negatives.

In effect we have then dichotomised the scores to be either positive or negative (ignoring their

magnitude) and anticipated the odds ratio ψ of positives over negatives.

Once we have ψ we can then use Equation 7.2 to calculate the discordant sample size,

NDiscordant and then use Equation 7.3, with a corresponding πDiscordant, to estimate the total

sample size NPairs. However, by increasing the number of categories (over the binary situation)

the appropriate total sample size will be nearer to the discordant sample. So a sample size

mid-way between NDiscordant and NPairs may be a practical compromise.

7.5 Continuous data

Within and between subject variation
If only one measurement is made per individual it is impossible to separate the within from the

between subjects sources of variation. In such cases the usual variance formula summarises a

composite of both the within and between subject sources so that the total variation comprises

σ 2
Total = σ 2

Between + σ 2
Within. The within-subject variance quantifies the anticipated variation

among repeated measurements on the same individual. It is a compound of true variation 
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in the individual and any measurement error. The between-subject variance quantifies the

anticipated variation between subjects.

Paired t-test
As we have indicated, when the units of observation are paired, or matched, essentially the end-

point observations from the two members of each unit are linked and the difference between

them is used as the endpoint for analysis. However, in the case of a continuous variable, the

tabulations similar to Figures 7. 1 and 7.2 cannot in general be constructed except in the

unusual case when many of the paired observations are tied, that is they have the same numerical

value, and the number of different values actually observed is very limited.

Suppose in a case-control study cases with a particular disease are matched perhaps, by 

age and gender to healthy controls, then the endpoint for analysis for pair i is di = (xi − yi )

where xi is the continuous observation from the case and yi the continuous observation from

the control and there are N pairs. For the situation of C controls for every case in a matched

case-control study, the unit for analysis becomes di = (xi − Ii ) where Ii is the mean of the C

continuous observations from the controls of matched group i.

The analysis of such a design involves calculating the mean difference and the 

corresponding standard deviation of the differences, . These allow a paired 

t-test of the null hypothesis of no difference between cases and control as well as a confidence

interval to be constructed.

Effect size

This is simply the anticipated difference of means between cases and controls or between

before and after intervention means. We denote this by δPlan.

Planning standard deviation of the difference

If we consider one individual for a moment then, for example, their blood pressure will vary

over time even if the underlying average value remains constant. An individual measurement

may depart from this ‘average’ level but were we to take successive readings we would hope

that their mean would estimate the underlying level and that their standard deviation gives 

an estimate of the within-subject standard deviation, σWithin which essentially quantifies the

random variation. We clearly cannot determine σWithin from a single measure in an individual.

In a matched case-control design we assume that σWithin (were we able to estimate it) will be

the same for both the case and the control whose individual measures are independent of each

other even though they are linked as a pair.

In this case, the variance of the paired difference is σ 2
Difference = Var(di ) = Var(xi − yi ) =

σ 2
Within + σ 2

Within = 2σ 2
Within.

In such a case-control study for pair i the value of xi, observed from the case, and yi observed

from the control, may differ in value from each other through three ways:

1 due to random variation alone;

2 because there is a difference between cases and controls in their ‘average’ levels; and

3 for both reasons.

   
s

d

N
i( )

=
−
−

∑ F 2

1

   
F = ∑d Ni /

9781405146500_4_007.qxd  9/8/08  10:21  Page 73



74 Chapter 7

Sample size

For planning purposes, the standardized effect size is

(7.9)

where the planning value for σDifference itself can be provided directly or from values of its

component σWithin. However, in many circumstances, the investigators will provide a direct

planning value for ΔContinuous itself rather than specifying its components.

The formula to calculate the total sample size required to detect an anticipated standardised

difference ΔContinuous at two-sided significance level α and power 1 − β is

(7.10)

This can be evaluated with the help of Table 2.2 and Table 2.3. The latter gives θ(α, β) =
(z1−α/2 + z1−β)2 for different values of α and β.

Note Equation 7.10 is the same algebraic expression as Equation 7.8. The difference being

in the way the effect size, here ΔContinuous, there ΔCategorical, is obtained.

A simple formula for the calculation of the number of paired observations required for a 

two-sided significance level of 5% and power of 80%, is

(7.11)

An equivalent result for two-sided significance of 5% and 90% power is

(7.12)

Analysis of variance
For a 2 × 2 cross-over trial comparing two treatments A and B, patients will be randomised 

in equal numbers, m (= NPairs /2) per sequence, between the two treatment sequences AB 

and BA. Treatment A will be given in the first period (Period I) of the design, then, usually

after a washout period, B will be given in the Period II. Thus for patient i in sequence AB, 

the observation following treatment A belongs to Period I and is denoted x1Ai, while that 

following B belongs to Period II and is denoted x2Bi. Thus the difference d1A2Bi = x1Ai − x2Bi

reflects a difference between A and B. Similarly for the sequence BA for patient j (say) we 

have d1B2Aj = x1Bj − x2Aj while the respective means are: F1A2B = H1A − H2B and F1B2A = H1B − H2A. 

The corresponding estimate of δ, the effect of treatment is,

(7.14)
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The analysis of variance (ANOVA) for a cross-over trial partitions the total variation into

components due to treatment, period (each with 1 degree of freedom) and a within subjects

(residual) term with (NPairs − 2) degrees of freedom.

In some situations, the period effect is assumed negligible, see Senn (2002) for more 

details, in which case the ANOVA omits this calculation and the within subjects degrees of

freedom becomes (NPairs − 1). For design purposes however it is usual to assume there is a

period effect.

Effect size

As for the general paired t-test, for the planned cross-over trial, the anticipated difference of

means between treatments is denoted δPlan.

The planning within subject standard deviation

In the case of a cross-over trial, there are two observations taken from the experimental unit 

(a patient) and these are correlated to a degree determined by the magnitude of the Pearson

correlation coefficient, ρ between the values of the outcome measure obtained on the two

occasions. In this case it can be shown that σ 2
Within = σ 2

Total (1 − ρ).

The correlation could be estimated if, for example, a baseline value was collected and then

correlated with the post-treatment values of one of the treatment groups. Thus if a planning

value of σTotal is available and ρ can be anticipated, then these combined can provide a 

planning value for σWithin.

Standardised effect size

The standard deviation corresponding to δPlan takes two forms depending on whether a period

effect is allowed for or not. If no period effect is planned for then, σPlan = σWithin whereas if

a period effect is anticipated, and is to be taken account of in the analysis, then σPlan = σWithin.

In both cases the standardized effect size is Δ = δPlan /σPlan.

Sample size

Assuming a period effect is anticipated, then ANOVA will be used for analysis, and for 

sample-size calculations purposes the anticipated standardised effect is

ΔANOVA = δPlan /σWithin. (7.15)

This is then used in Equation 7.10 to obtain the corresponding sample size NPairs.

Practice

Since the planning value used for σWithin may depend on a choice of ρ, an exploratory

approach to determining the chosen sample size is to try out various values of ρ to see what

influence this will have on the proposed sample size.

For example, it is unlikely that ρ would be negative since paired studies are designed to

exploit the positive association within pairs. Consequently, if we set ρ = 0 we obtain a con-

servative estimate of the required sample size. In this worst-case scenario, the sample size 

for the cross-over trial would be half that of the corresponding two-group trial. On the other

hand, if one could be sure of a positive correlation, then the sample size would be smaller.

 2
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7.6 Bibliography

Connett, Smith and McHugh (1987) derived Equation 7.1 which they compared with the 

discordant pairs approach of Equations 7.2 and 7.3 derived by Schlesseman (1982). They 

concluded that their approach is ‘preferable overall’ but that Equation 7.3 is an adequate

approximation provided the power is not too large or πDiscordant not close to 0 or 1. Royston

(1993) describes a modification to Equation 7.1 which requires an iterative procedure to 

obtain the corresponding sample size. Julious and Campbell (1998) discuss paired ordinal

data, Julious (2004) discusses paired continuous data, while Julious, Campbell and Altman

(1999) give some practical hints.

7.7 Examples and use of tables

Table 7.1 and Equations 7.1, 7.2 and 7.3
Example 7.1bpaired binary databcase-control study

Using 40 case-control pairs, Morrison, Gilmour and Sullivan (1991) wished to identify the

reasons why some children received more out-of-hours visits by general practitioners (GP)

than others. The cases were children aged under 10 who were identified as high out-of-hours

users and the controls, who were not high out-of-hours users, matched by age and gender. It

was postulated that the marital status of the child’s mother might be a determinant of referral

and their data are summarized in Figure 7.3.

The estimated odds ratio for a single/divorced mother with respect to ‘High out-of-hours

visiting’ as compared to the married/cohabiting mothers is, ψ = 12/1 = 12, which is large, and

πDiscordant is estimated as (12 + 1)/40 = 0.325.

Suppose a similar study is planned but in GP practices from another geographical area.

However, the effect size for a single/divorced mothers compared to married/cohabiting is

anticipated to be close to ψ = 3, much less than experienced previously. In addition, the

research team expects that around 40% of cases will differ from their controls in terms of their

out-of-hours utilisation. Thus the anticipated value of πDiscordant = 0.4.

Figure 7.3 Case-control status by whether a child’s mother was single/divorced or married/cohabiting

(after Morrison, Gilmour and Sullivan 1991).

Controls (Low out-of-hours attendance)

Cases

(High out-of-hours) Single/divorced Married/cohabiting Total

Single/divorced 3 12 15

Married/cohabiting 1 24 25

Total 4 36 40
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Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 90% a one-sided 1 − β = 0.90 gives z0.90 = 1.2816.

From Equation 7.1, assuming a two-sided significance level of 5%, power 90%, 

ψ = 3 and πDiscordant = 0.4, the number of pairs required is 

= 100.9.

Utilising either Table 7.1 with ψ = 3 and πDiscordant = 0.4, or with the same input values,

gives NPairs = 101.

Alternatively from Equation 7.2, assuming a two-sided significance level of 5%, power 90%

and ψ = 3, we anticipate that

= 37.7 or 38 discordant pairs are 

required. With NDiscordant = 38 discordant case-control pairs necessary, the use of Equation 7.3

implies NPairs = 38/0.4 = 95 or approximately 100 pairs would be required.

with the same input values gives NDiscordant = 38 and then with πDiscordant = 0.4 gives

NPairs = 101.

Table 7.1 and Equation 7.1
Example 7.2bpaired binary databcase-control study

Suppose the investigators of Example 7.1 did not have a very clear view of the proportion 

of discordant pairs but believed for the marginal totals that about 10% of controls would be

single/divorced mothers compared to 30% of cases. How many matched-pairs need to be

recruited assuming again two-sided α = 0.05, 1 − β = 0.9?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 90% a one-sided 1 − β = 0.90 gives z0.90 = 1.2816.

Using the notation of Figure 7.1 we have πA = 0.3 and πB = 0.1. Under the assumption of 

independence of response for each subject, we anticipates therefore, that = πA(1 − πB)

= 0.3 × 0.9 = 0.27 and = πB(1 − πA) = 0.1 × 0.7 = 0.07. These give πDiscordant = 0.27 +

0.07 = 0.34 and ψ = 0.27/0.07 = 3.86. Using either Equation 7.1 or with input values

πDiscordant = 0.34 and ψ = 3.86, gives NPairs = 86.

However, a cautious investigator may also consider a reduced ψ of (say) 3.0 and values 

of πDiscordant perhaps ranging from 0.3 to 0.4. These options suggest with Table 7.1 or 

sample sizes of 136 and 80 respectively. Thus a sensible (compromise) sample size may be

NPairs = 100.
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Table 7.1, Equations 7.1 and 7.4
Example 7.3bpaired binary databmultiple controls

Suppose a researcher wished to repeat the results of Morrison, Gilmour and Sullivan (1991)

and believed that he would be able to obtain four controls for every case in the study. How

does this affect the sample size if we presume, as in Example 7.1, that πDiscordant = 0.4 and 

ψ = 3?

In this case, use of Equation 7.1, Table 7.1 or give NEqual = 101 and so with C = 4, use of 

Equation 7.4 gives ≈ 64. This implies that NCases = 64 (1 per unit) 

and hence NControls = C × NCases = 4 × 64 = 256 controls (4 per unit). Thus the 64 units of 

size 5 imply 64 + 256 = 310 mothers in total would be involved.

Table 7.2 and Equation 7.8
Example 7.4bpaired ordered categorical data

Smith (1992) describes a survey in which 765 trainee general practitioners (TGP), ranked

from 1 to 3 (unimportant, neutral, important), the importance of midwives and GPs in 

providing care during normal birth. Suppose a repeat study is planned and the endpoint is the

difference in assessments allocated by each TGP, that is, the rank for midwife minus the rank

given to the GP. For design purposes, the anticipated proportions in the five possible response

categories are as given in Figure 7.4.

Assuming the two-sided test size is 5% and power 80%, how many responses from TGPs

would be required from a new survey?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a 

power of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416. Additionally from Table 2.3,

θ(0.05, 0.2) = 7.849.

The calculations necessary to evaluate Equations 7.5 and 7.6 are summarised in Figure 7.4 from

which planning values of η = 0.625 and = 1.1659 are obtained.  σDiscordant . ( . )= −1 75 0 625 2

  
NUnits

( )
.=

× +
×

=
101 1 4

2 4
63 1

SSS

Figure 7.4 The anticipated proportions of responses from trainee general Practitioners (TGPs) in the

different categories.

Discordant category

GP more important No Midwife more

than midwife difference important than GP

C −2 −1 0 +1 +2 Total

Anticipated proportions 0.05 0.15 0.20 0.45 0.15 1

Discordant proportions

ξ 0.0625 0.1875 – 0.5625 0.1875 1

ξ × c −0.1250 −0.1875 – 0.5625 0.3750 0.625

ξ × c2 0.2500 0.1875 – 0.5625 0.7500 1.75
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The corresponding standardised effect size of Equation 7.7 is ΔCategorical = = 0.5361. 

Finally use of Equation 7.8 gives = 29.2 ≈ 30 pairs. Table 7.2 gives 

for ΔCategorical = 0.5, NPairs = 34.

Alternatively, if we had ignored the ordinal nature of the data and simply taken the 

ratio of the proportion positive over the proportion negative in Figure 7.4 we would 

have . If we then use ψ = 3 in Equation 7.2 we obtain NDiscordant =

= 28.9 or approximately 30. Thus the two methods give 

approximately the same sample size in this instance.

Table 7.2 and equation (7.10)
Example 7.5 Paired continuous databBefore and after study

Cruciani, Dvorkin, Homel et al. (2006) gave 27 patients with known carnitine deficiency 

a 1-week supplementation of L-Carnitine. They measured their baseline (pre) and post 

supplementation cartinine levels. Both measures were taken in all but one patient. On the basis

of the difference between the logarithms of these matched measures the mean log carnitine

value was raised by 0.4651 with a standard deviation of 0.4332.

If a repeat before-and-after study is planned how many patients would need to be

recruited, assuming a two-sided test size of 5% and a power of 80%?

Using Table 2.3 with a 5% two-sided test size, α = 0.05 and for a power of 80% a 

one-sided 1 − β = 0.80 gives θ(0.05, 0.2) = 7.849.

From the above, the design standardised effect size is ΔPlan = 0.4651/0.4332 = 1.07 ≈ 1 which

is a large effect size by the standards set by Cohen (1988). Using equation (7.10) directly, we 

obtain NPairs = = 9.77 or 10 patients.

A more cautious investigator may question the magnitude of the assumptions or perhaps

wish to recruit patients with less evidence of carnitine deficiency. In which case different 

scenarios for a range of values for ΔPlan would be investigated.

Thus, for the above test size and power and ΔPlan equal to 0.4, 0.6 and 0.8, the correspond-

ing sample sizes from Table 7.2 are 51, 24 and 15. These can also be obtained from by 

setting δ = ΔPlan and σ = 1. With the original specification of δ = 0.4651 and σδ = 0.4332, 

gives NPairs = 9.

Table 7.2, Equations (7.10) and (7.12)
Example 7.6bpaired continuous databcross-over trial

Suppose we wished to design a placebo controlled cross-over trial of a possible new treatment

(T) for refractory dyspnoea against a placebo (P). The primary outcome is to be morning 

dyspnoea scores as measure by visual analogue scale and an effect of interest is a reduction in
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this of 6 mm over placebo. We will design the new trial under the assumption of no carry-over

effects. A similar trial had been conducted by Abernethy, Currrow, Frith et al. (2003) which

has a reported standard deviation of the difference of 15.

For a 5% two-sided test size, α = 0.05 and the value from Table 2.2 is z0.975 = 1.96 and for

a power of 90% a one-sided 1 − β = 0.90 gives z0.90 = 1.2816. Additionally from Table 2.3,

θ(0.05, 0.1) = 10.507.

The standardised effect size is therefore 6/15 or 0.40. From Equation 7.10, for a two-sided 

significance level of 5% and 90% power, = 67.6 or 68 pairs. Direct 

use of Table 7.2 or also gives the total sample size required as 68. Alternatively, using 

the simple formula Equation 7.12 gives N = 2 + 10.5/(0.42) = 67.6 or 34 patients on each

sequence.

In a cross-over trial it is preferable to recruit an even number of subjects so that equal 

numbers can be allowed in each sequence, in this case, 34 would be randomised to receive the

sequence PT and the same number TP.
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Table 7.1 Sample sizes for paired binary data. Each cell gives the number of pairs of patients, NPairs,

that should be entered into the study.

Odds Two-sided αα == 0.05; Power 1 −− ββ == 0.8

Ratio
Proportion of discordant pairs, ππD

ψψ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.5 1960 979 652 489 391 325 278 243 216 194

1.6 1472 735 489 367 293 244 209 182 162 146

1.7 1166 582 387 290 232 193 165 144 128 115

1.8 960 479 319 239 190 158 135 118 105 94

1.9 813 406 270 202 161 134 115 100 89 80

2.0 705 351 234 175 139 116 99 86 77 69

2.1 622 310 206 154 123 102 87 76 67 60

2.2 556 277 184 138 110 91 78 68 60 54

2.3 504 251 167 125 99 82 70 61 54 49

2.4 461 230 152 114 91 75 64 56 50 44

2.5 425 212 141 105 84 69 59 51 46 41

3.0 312 155 103 77 61 50 43 37 33 29

4.0 216 107 71 53 42 34 29 25 22 20

5.0 175 86 57 42 33 27 23 20 18 16

Odds Two-sided αα == 0.05; Power 1 −− ββ == 0.9

Ratio
Proportion of discordant pairs, ππD

ψψ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.5 2623 1310 872 653 522 434 372 325 288 259

1.6 1969 983 654 490 391 325 278 243 216 194

1.7 1560 778 517 387 309 257 220 192 170 153

1.8 1284 640 425 318 254 211 180 157 139 125

1.9 1087 542 360 269 215 178 152 133 118 105

2.0 942 469 312 233 185 154 131 114 101 91

2.1 831 414 274 205 163 135 116 101 89 80

2.2 744 370 245 183 146 121 103 90 79 71

2.3 673 335 222 166 132 109 93 81 71 64

2.4 616 306 203 151 120 100 85 74 65 58

2.5 568 282 187 139 111 92 78 68 60 53

3.0 417 206 136 101 80 66 56 49 43 38

4.0 288 142 94 69 55 45 38 33 29 25

5.0 233 114 75 55 43 36 30 26 22 20
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Table 7.2 Sample sizes for paired continuous data with two-sided α = 0.05. Each cell

gives the number of pairs, Npairs, of patients that should be entered into the study.

Standardised effect size Power

ΔΔ 0.8 0.9

0.05 3142 4205

0.1 787 1053

0.15 351 469

0.2 199 265

0.25 128 171

0.3 90 119

0.35 66 88

0.4 51 68

0.45 41 54

0.5 34 44

0.55 28 37

0.6 24 32

0.65 21 27

0.7 18 24

0.75 16 21

0.8 15 19

0.85 13 17

0.9 12 15

0.95 11 14

1.0 10 13

1.1 9 11

1.2 8 10

1.3 7 9

1.4 6 8

1.5 6 7
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Comparing survival curves

SUMMARY
The purpose of this chapter is to describe methods for calculating sample sizes for studies in which 

a survival time is the outcome event of primary concern and censored observations are probable. 

The main summary statistic utilised is the hazard ratio and the Logrank test is used to compare groups. 

We emphasise that it is the number of events observed, rather than the total number of subjects

recruited, that is critical. Also included is the situation of competing risks in which, for example, the 

main event is time-to-death (index death) from a certain disease but other causes of death may inter-

cede before the index death can occur. These prevent the index death time from ever being observed.

Adjustment for these interceding events needs to be made when calculating the number of subjects 

to be recruited.

8.1 Introduction

There are many clinical trials in which patients are recruited and randomised to receive a 

particular treatment, then followed up until some critical event occurs. The length of follow-

up for each patient is then used in comparing the efficacy of the two treatments by use of, 

so called survival techniques, in particular the Logrank test. The basic difference between 

this type of study and those described in Chapter 3 is that, in the latter, success or failure of

treatment is determined at some ‘fixed’ time, say 5 years, after randomisation. Whereas here,

if patients with a particular cancer are recruited to a trial, one might record the individual 

survival experience of each patient rather than merely record how many are dead 5 years 

post-randomisation. The more detailed information will usually lead to a more sensitive

comparison of the treatments.

If the endpoint of interest is a ‘survival’, then this may be the actual duration of time 

from the date of randomisation (to treatment) to the date of death of a cancer patient, or 

the time from hospital admission to some event such as contracting methicillin-resistant

Staphylococcus aureus (MRSA) infection. In these cases, the ‘events’ are death and MRSA

infection respectively. The number of subjects to be recruited to a study is set so that the 

requisite number of ‘events’ may be observed.

It should be emphasised that it is not essential in such studies that all patients are followed

until the critical event occurs; indeed in many cancer trials some patients will survive for

many years after randomisation, so observation of all their deaths would not be possible in 

a reasonable time-frame. It is usual, in such circumstances, to fix a date beyond which no 

8
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further information is to be collected on any patient. Any patient still alive at that date will

nevertheless be used in the treatment comparison. Such an observation is called ‘censored’.

For this reason in such trials, it is the number of events observed rather than the number of

subjects recruited that is important.

For subjects in whom the ‘events’ occur, the actual survival time, t, is observed. The

remainder of the subjects concerned have censored survival times, T+, as for them the ‘event’

has not (yet) occurred up to this point in their observation time. The eventual analysis of these

data, which involves either t or T+ for every subject, will involve Kaplan–Meier estimates 

of the corresponding cumulative survival curves. Comparisons between groups can be made

using the Logrank test and the summary statistic used is the hazard ratio (HR). Survival 

endpoints in the context of early (Phase II) trial designs are discussed in Chapter 16.

8.2 Theory and formulae

The hazard ratio (HR)
Suppose the critical event of interest is death and that two treatments give rise to survival 

distributions with instantaneous death rates, λ1 and λ2. The instantaneous death rate is the

probability of death in a unit of time, and is often called the hazard. The ratio of the risks of

death in the two groups is the hazard ratio (HR), that is,

(8.1)

Possible values of the HR range from 0 to ∞ with those < 1 corresponding to λ1 > λ2 and

vice-versa for those > 1. The test of the null hypothesis of equality of event rates between the

groups with respect to the endpoint event concerned provides the basis for the sample size

calculations. This is expressed as HNull : HR = 1.

In the situation where the survival can be assumed to follow an Exponential distribution,

the relationships between the hazard rate, λ, the proportion alive, π, at a fixed point of time, T,

and the median survival time, M, can be summarised by

(8.2)

Then, if the two treatments give rise to survival proportions π1 and π2 at some chosen time-

point, for example at 1-year after diagnosis, 

(8.3)

In planning a study, therefore, it may be easier to provide anticipated values of π1 and π2,

rather than λ1 and λ2 of Equation 8.1, and then use Equation 8.3 to obtain an anticipated HR.

It is also useful to note that Equation 8.3 can be rearranged to give:

π2 = exp(HR × log π1). (8.4)
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Thus, if the planning values of π1 and HR are provided, an anticipated value of π2 can be

determined.

In other circumstances it may be easier to think of median survival times, in which case, if

M1 and M2 are the anticipated median survival times for the two groups, then

(8.5)

Note that it is M1 (not M2) that is in the numerator. If the median survival time M1 of one of

the groups is given rather than a survival proportion at a fixed time then this implies that, at

that time, π1 = 0.5. Further if M2 is given, then since HR = M1 /M2, use of Equation 8.4, gives

π2 = exp(log 0.5 × HR) = exp(−0.6932 HR).

Equations 8.1, 8.3 and 8.5 are equivalent expressions for the HR at least in the circum-

stances where the hazards can be assumed to be proportional (PH). PH occurs when the

instantaneous death rates within each group are constant over time or if they are not constant

but their ratio remains so.

Events
A primary concern in any survival type study is the presence of censored observations whose

presence implies that the reliability of a study does not depend on the total study size, N, but

rather on the total number of events observed, E. This in turn implies, that a study should

recruit the N subjects and then wait until the required E events are observed before conduct-

ing the analysis and reporting the results. In a study without censored survival times N and E

will be equal but such a situation will not usually occur.

Logrank test
Number of events

If we assume that patients are to be entered into a clinical trial and randomised to receive 

one of two treatments in the ratio 1 : ϕ, then for an anticipated HR the number of events 

to be observed in Group 1 that is required for a two-sided test size α and power 1 − β is

approximately

(8.6)

For Group 2, e2 = ϕe1 events giving a total of E = e1 + e2 for the study as a whole.

The equation can be evaluated by using Table 2.3 which gives θ(α, β) = (z1−α/2 + z1−β)2 for

different values of α and β.

Number of subjects

It should be noted that Equation 8.6 contains the effect size as expressed by the single summary

HRPlan and leads to the total number of events required. However, in order to calculate the

number of subjects needed for this number of events to be observed, it is necessary to specify

the anticipated values for π1 and π2.
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The number of subjects required in order to observe the specified number of events for

Group 1 is

(8.7)

For Group 2, n = ϕm, leading to N = m + n = m(1 + ϕ) subjects in all.

Exponential survival
In certain situations, it is possible to postulate an Exponential distribution for the distribution

of survival times. In which case the survivor function is given, see Equation 2.2, by

S(t) = exp(−λt), t ≥ 0, (8.8)

where λ is the constant hazard rate and therefore does not change with time, t. In this case the

hazard λ and the median survival time M are related by

M = log 2/λ. (8.9)

This is the basis for Equation 8.5 above.

Number of events

If we assume that patients are to be entered into a clinical trial and randomised to receive one

of two treatments in the ratio 1 : ϕ then, with anticipated HRPlan, the number of events to be

observed in Group 1 for a two-sided size α and power 1 − β is approximately

(8.10)

For Group 2, e2 = ϕe1 events giving a total of E = e1 + e2 for the trial as a whole.

Sample size

The number of subjects required in order to observe the specified number of events for 

Group 1 is

(8.11)

For Group 2, n = ϕm, leading to N = m + n = m(1 + ϕ) subjects in all.

Equations 8.10 and 8.11 can be evaluated by using Table 2.3 which gives θ(α, β) =
(z1−α/2 + z1−β)2 for different values of α and β.

Study duration

We have noted earlier that it is the total number of events that determines the power of the

study or equivalently the power of the subsequent Logrank test. For any study with a survival

time endpoint there is clearly a period of accrual during which subjects are recruited to a

study and a further period of follow-up beyond the end of accrual during which time more
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events are observed. To observe a pre-specified number of events we can either: (i) keep the

accrual period as short as possible and extend follow-up; or (ii) have the accrual period as

long as practicable and have a short post-recruitment follow-up; or (iii) achieve a balance

between accrual and follow-up. The approach taken depends on the scarcity of subjects avail-

able for study, the event rate in the control arm and practical considerations, such as the costs

of accrual and follow-up. For example, in rare diseases it may be considered best to minimise

the number of patients required while maximising the follow-up period. Alternatively, in a

more common disease it may be more appropriate to minimise the total study time, which

comprises the sum of the accrual and follow-up periods.

In the case of ϕ = 1, one method of estimating the number of patients corresponding to the

required number of events E is to assume that the number of patients who enter the trial in a

given time period can be regarded as a Poisson random variable with average entry rate per

unit of time R. If we define D as the duration of patient entry, after which patient recruitment

is stopped and follow-up is closed, then this is determined by the solution of the following

equation

(8.12)

The median survival time, M1, of control group C, is used as the unit of time for calculating

both D and R. Since, for the Exponential distribution, M = log 2/λ then knowledge of M1 and

M2 can be used to provide values for λ1 and λ2 for Equation 8.12.

There is no explicit solution to this equation and the value for D has to be found using an

iterative method. Nevertheless, a lower limit for D is provided by

DLower = E/R. (8.13)

Thus D will always be at least as large as DLower. Having calculated D from Equation 8.12 or

8.13 the number of subjects required is

N = RD. (8.14)

Consequently the number per group is m = n = N/2.

Although this section specifically relates to comparisons of survival times both following the

Exponential distribution the estimates can be used as approximations to other PH situations

such as comparisons using the Logrank test. This is because λ1 and λ2 remain constant under

the Exponential distribution, so their ratio has PH.

Loss to follow-up
One aspect of a study, which will affect the number of subjects recruited, is the anticipated

proportion who are subsequently lost to follow-up. Since these subjects are lost, we will never

observe and record the date of the critical event, even though it may have occurred. Such 

subjects have censored observations, in the same way as those for whom the event of interest 

has still not occurred by the time of analysis of the study. Such lost subjects however do not,

and will never, contribute events for the analysis and, therefore, we need to compensate for

their loss.
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If the anticipated loss or withdrawal rate is w or 100w%, then the required number of

patients, N, derived from either Equations 8.7 or 8.11 as appropriate should be increased to

NAdjusted = N/(1 − w). (8.15)

The estimated size of w can often be obtained from reports of studies conducted by others.

If there is no such experience to hand, than a pragmatic value may be to take w = 0.1. We are

assuming that the loss to follow-up is occurring at random and is not related to the current

(perhaps health) status of the subject. If this cannot be assumed then the basis of the Logrank

analysis is brought into question.

8.3 Competing risks

In certain types of study, there may be many alternative causes leading to the event of concern.

For example, suppose a study is conducted in workers at a nuclear installation who are

exposed to the risk of dying from leukaemia, which is the main risk. However, they may 

also die from competing risks (CR) such as accident, cardiovascular disease, diabetes, and so

on. These causes can be regarded as all competing within each individual to be responsible 

for their ultimate death. Thus, in a sense, we can think of these causes all racing to be the 

first and hence to be ‘the’ cause of the death and thereby preventing the ‘other’ causes 

from being responsible. This implies that if the death is caused by a cardiovascular accident

(CVA), then tCVA is observed while, for example, tAccident, tCancer and tDiabetes will never be

observed but have the corresponding censored survival times T+
Accident, T

+
Cancer, and T+

Diabetes, 

censored at tCVA.

In the presence of CRs, the cumulative incidence method (CIM) estimates the cumula-

tive probability for each cause of failure, in the presence of all risks acting on the index 

population.

Suppose in a clinical trial an intrauterine device (IUD) is to be used in a group of women

for fertility regulation for 1 year and there are just two causes of failure, expulsions and

removals for medical reasons. Thus in this period ‘expulsion’ and ‘removal’ are competing to

be the first (failure) event to occur. Further suppose at time t in the trial an expulsion occurs,

then its incidence is estimated as

IExpulsion(t) = hExpulsion(t) × EFS(t-),

where (t-) is the time immediately preceding t. Here EFS(t-) is the Kaplan–Meier estimate of

the event-free (neither expulsion nor removal) survival proportion and hExpulsion(t) is the risk

of an expulsion. The risk of ‘removal’ as the competing failure to ‘expulsion’ is taken into

account in the calculation of EFS(t-). Finally, the CIM at time t is

Here the summation is over all previous failure times observed from the commencement of

the trial. Similar calculations give CIMRemoval(t). Whatever the number of competing events,

the sum of all the CIMs equals (1 − EFS). The necessary calculations can be made using, for

example, Stata (StataCorp, 2007) as described by Coviello and Boggess (2004).

  
CIM t I tExpulsion Expulsion( ) ( ).= ∑
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If we assume an Exponential survival distribution of survival times, then if no CRs are pre-

sent, the cumulative incidence curve is given by

F(t) = 1 − exp(−λEVt), (8.16)

whereas in the presence of a CR, it becomes

(8.17)

Here λEV and λCR are the hazards for the main outcome event and for the CRs respectively.

The corresponding cumulative incidence curve for the CR is

(8.18)

It follows from Equations 8.17 and 8.18 that

(8.19)

and

(8.20)

Sample size

To compare two groups with respect to the main event, the hazard ratio of interest is the ratio

of the hazards for that event in the individual groups, that is HR = λEV,2 / λEV,1 and a planning

value for this is provided at the design stage.

The corresponding number of subjects to recruit when comparing two groups in the ratio 

1 : ϕ, with two-sided test size α and power 1 − β is given, using Equation 8.10, by

(8.21)

where E is the total number of events to be observed and

(8.22)

As previously defined, D is the accrual time while f is the extra follow-up time after ending

accrual.

8.4 Bibliography

Theory, formulae and tables corresponding to Equations 8.10 and 8.12 are given by George

and Desu (1974) while those for the calculation of sample sizes for the Logrank test were first
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adjustment to sample sizes necessary in the presence of competing risks. Ahn and Anderson

(1995) discuss sample size determination for comparing more than two groups while Barthel,

Babiker, Royston and Parmar (2006) additionally examine, and provide software for, the

implications of non-uniform accrual, non-proportional hazards, loss to follow-up and 

dilution due to treatment changes including cross-over between treatment arms. Machin,

Cheung and Parmar (2006) provide more details of both the Exponential distribution and the

Logrank test.

8.5 Examples and use of the tables

Table 8.1 and Equation 8.6
Example 8.1 Logrank testbnumber of events

An adjuvant study of the drug Levamisole is proposed for patients with resectable cancer 

of the colon (Dukes’ C). The primary objective of the study is to compare the efficacy of

Levamisole against placebo control with respect to relapse-free survival. How many relapses

need to be observed in the trial if a decrease in relapse rates at 1 year, from 50 to 40% is anti-

cipated, and a power of 80% is required?

Using Table 2.2 with  a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 while for a

power of 80%, one-sided 1 − β = 0.80 and z0.80 = 0.8416. Direct use of Table 2.3 gives 

θ (0.05, 0.2) = 7.849.

Here we wish to increase the success rate, that is, failure to relapse, from 50 to 60%, 

so π1 = 0.5, π2 = 0.6 and so from Equation 8.3 HR = log 0.6/log 0.5 = 0.7369. With 

1 − β = 0.8, assuming a two-sided test with α = 0.05 and ϕ = 1, then Equation 8.6 gives 

× 7.849 = 171.0 or 172. Thus a total of E = 2 × 172 = 344 

relapses would have to be observed. Alternatively this can be obtained directly from 

or from Table 8.1 with π1 = 0.5, π2 = 0.6 to give e1 = 172.

Table 8.2 and Equation 8.7
Example 8.2bLogrank testbsample size

The Multicenter Study Group (1980) describe a double-blind controlled study of long-term

oral acetylcysteine against placebo in chronic bronchitis. Their results gave the percentage of

exacerbation-free subjects with placebo at 6 months as 25%. They also observed a doubling of

median exacerbation-free times with the active treatment. A repeat trial is planned. How many

subjects should be recruited if the power is to be set at 90% and the two-sided test size at 5%?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.95 = 1.96 while for a power

of 90%, 1 − β = 0.90 and z0.90 = 1.2816. Direct use of Table 2.3 gives θ(0.05, 0.1) = 10.507.

The doubling of the median time implies M2 = 2M1, hence from Equation 8.5 HRPlan =
M1/M2 = 0.5. Further π1 = 0.25 and so Equation 8.4 gives π2 = exp[0.5 × (log 0.25)] = 0.50. 
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In addition, two-sided α = 0.05, power 1 − β = 0.9 and if we assume ϕ = 1, then 

Equation 8.7 gives = 75.7 or 76. Thus a 

total of N = 2 × 76 = 152 or approximately 160 patients should therefore be recruited to the

trial. Alternatively this can be obtained directly from or from Table 8.2 with π1 = 0.25, 

π2 = 0.5 to give N = 2 × 77 = 154.

Table 8.2, Equations 8.7 and 8.15
Example 8.3bdifferences in survivalbwithdrawalsbgastric cancer

In the trial of Cuschieri, Weeden, Fielding et al. (1999), the investigators compared two forms

of surgical resection for patients with gastric cancer and the anticipated 5-year survival rate 

of D1 surgery was 20%, while an improvement in survival to 34% (14% change) with D2

resection was anticipated. If it is assumed that there will be a 10% withdrawal of patients

beyond the control of the investigator, how does this affect the planned trial size?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.95 = 1.6449 while for a power

of 90% 1 − β = 0.90, z0.90 = 1.2816. Direct use of Table 2.3 gives θ(0.05, 0.1) = 10.507.

Here π1 = 0.2, π2 = 0.34 and so from Equation 8.3 the anticipated HRPlan = log 0.34/log 0.2 = 0.67.

The authors set 1 − β = 0.9 and apply a two-sided test size α = 0.05 and a randomisation 

in equal numbers to each group, hence ϕ = 1. Substituting all the corresponding values in 

Equation 8.7 gives = 184.3 ≈ 185 per surgical 

group. This implies a trial including at least 370 patients. Alternatively this can be obtained

directly from with π1 = 0.2, π2 = 0.34 to give N = 370 or from Table 8.2 using π2 = 0.35

rather than 0.34 to give N = 2 × 165 = 330. Note that the change from the planning value of

0.34 to 0.35 has quite a considerable influence on the resulting sample size.

Allowing for a withdrawal rate of 10% or w = 0.1 and using Equation 8.15 we obtain

NAdjusted = 370/0.9 = 412. Thus a total of approximately 420 subjects should be recruited to

the trial.

Table 8.2 and Equation 8.7
Example 8.4bcystic fibrosis

Suppose in a confirmatory trial of that reported by Valerius, Koch and Hoiby (1991), using

the anti-pseudomonas therapy in patients with cystic fibrosis, the investigators had decided

that, since the proposed therapy, T, is new and had an 85% response, they would like to gain

some experience with the therapy itself whereas they are very familiar with the (no treatment)

control option, C with 50% response. In such a situation it may be appropriate to randomise

patients in a ratio of 2 : 3 in favour of the test treatment, that is, ϕ = 3/2 = 1.5. This implies 

2 patients receive C for every 3 receiving T. In such circumstances it is usual to randomise

patients in blocks of size, b = 5 (or size 2b), each block containing 2 (or 4) C and 3 (or 6) 

T patients receiving the respective allocation.
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Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.95 = 1.96 while for a power

of 80%, 1 − β = 0.80, z0.80 = 0.8416. Direct use of Table 2.3 to give θ = 7.849.

With α = 0.05 and 1 − β = 0.8 and substituting these together with ϕ = 1.5 and HR =

= 0.2345 in Equation 8.6 gives × 7.849

= 6.5 ≈ 7 events implying E = 7 + 1.5 × 7 ≈ 18 in total.

Substituting this in Equation 8.7 with πC = 0.50 and πT = 0.85 gives a total of 

= 7 × 3.4483 = 24.1 or 25, thus N = 25 + 1.5 × 25 = 62.5.

Rounding this to the nearest but larger integer divisible by the block size of five gives N = 65.

Then, dividing these in a ratio of 2 : 3, gives 26 to receive C and 39 T.

Alternatively this can be obtained directly from with π1 = 0.5, π2 = 0.85 and ϕ = 1.5 to

give E = 17, m = 26 and n = 38. It is important to note that rounds numbers upwards at

key stages to give integer values for the number of events and for the final group sizes.

Table 8.3, Equations 8.10 and 8.11
Example 8.5bexponential survivalbnumber of eventsbduration of pyrexia

Two drugs, Ampicillin and Metronidazole are to be compared for their differing effects on 

the post-operative recovery of patients having an appendectomy as measured by duration 

of post-operative pyrexia. A previous trial of Chant, Turner and Machin (1983) suggested the

median duration of pyrexia with Metronidazole to be approximately 80 hours. Duration of

post-operative pyrexia is assumed to follow an exponential distribution. How many patients

should be recruited to a trial to demonstrate a clinically worthwhile reduction of 15 hours 

in post-operative pyrexia by use of Ampicillin at two-sided test size α = 0.05 and power 

1 − β = 0.90?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 while for a power

of 90% 1 − β = 0.90, z0.90 = 1.2816. Direct use of Table 2.3 gives θ(0.05, 0.9) = 10.507.

Here M1 = 80, M2 = 80 − 15 = 65 and HRPlan = 80/65 = 1.23, with two-sided α = 0.05, 1 − β = 0.90

and ϕ = 1. Equation 8.10 then gives = 490.4. Thus the total number of  

events to be observed is E = 2e1 = 982.

To obtain the sample size, the corresponding proportions π1 and π2 have to be provided.

The median time of 80 hours for the control group corresponds to π1 = 0.5. Thus, from

Equation 8.4, π2 = exp(1.23 × log 0.5) = 0.426 or 0.43 and use of Equation 8.11 with these 

values gives m = 916.6 ≈ 950 or a total sample size of N = 1900.

Calculations using with M1 = 80, M2 = 65 (implying π1 = 0.5 and π2 = 0.569) and an

entry rate of R = 1 (in this case 1 patient every 80 hours) gives E = 975 events for a total sample

size of N = 2 × 541 = 1082 or approximately 1100 patients with the trial schedule to continue
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for 1080.7/24 = 45 days. Increasing the entry rate to R = 5 decreases the number to recruit to 

N = 294 but the trial can be closed (and analysed) by 294.9/24 = 12 days!

It should be noted that such a trial does not require prolonged follow up of patients as the

event of interest, that is, return to normal temperature, will be observed in almost all patients.

There will also be very few patient losses as the follow-up time is only a few days and the

patients are hospitalised during this period.

Table 8.3, Equations 8.10, 8.13 and 8.15
Example 8.6bexponential survivalbrecruitment periodbsample size

In the study described in Example 8.1, assuming relapse times have an exponential distribu-

tion, how many relapses need to be observed in the trial if it is anticipated that the median

relapse free time is likely to be increased from 1 to 1.3 years. Suppose that a two-sided test size

of 5% and a power of 80% are required, and it is anticipated that the recruitment rate will be

approximately 80 patients per year. For what period should the trial be conducted and how

many patients should be recruited?

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 while for 

a power of 80% a one-sided 1 − β = 0.80, z0.80 = 0.8416. Direct use of Table 2.3 gives 

θ(0.05, 0.2) = 7.849.

Here M1 = 1, M2 = 1.3 and therefore the anticipated HR = 1 / 1.3 = 0.77. Now with the 

two-sided α = 0.05 and 1 − β = 0.8, Equation 8.10 gives = 229.8 ≈ 230. 

Thus a total of E = 2e1 = 460 relapses would need to be observed.

Since Table 8.3 only gives the total number of events for situations when HR > 1, in 

situations where HRPlan < 1 the inverse should be entered in its place. Thus the value to be

entered in Table 8.3 is 1/0.77 = 1.3 giving E = 457 events required.

Thus with entry rate R = 80 patients per M1 of time (in this case per year), the total duration

of the trial from Equation 8.13 is as DLower = 460/80 = 5.75 time units or years.

A lower limit to the total number of subjects required is obtained from Equation 8.14, 

with D = DLower, as NLower = 80 × 5.75 = 460 or approximately 500 patients would need to be

recruited to the trial.

In contrast, calculations using give D = 7.4 (> 5.75) and so from Equation 8.14 a more

realistic estimate of the required total sample size is N = 7.4 × 80 = 592.0 or 600 patients.

Equations 8.16, 8.17 and 8.18
Example 8.7bcompeting risksbmyocardial infarction in breast cancer survivors

Pintille (2002) alludes to a clinical trial in which the main question was to investigate whether

the incidence of myocardial infraction (MI) in survivors of breast cancer was affected by 

tangential radiation treatment which was known to irradiate the heart when given to the left

(Left) breast but not to the right (Right). In the population of women considered, the prob-

ability of CRs is large since only a small minority will live long enough to experience MI.
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It was anticipated that the incidence of MI is 1.5% at 10 years for patients treated on the

right side and double this for those treated on the left. The incidence of CR was considered

equal for both as 68% at 10 years. Assuming a two-sided test size of 5% and power 80% how

many breast cancer patients would be needed for such a study? Accrual was anticipated to 

take 9 years with an additional 10 years of follow up.

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 while for a 

power of 80% a one-sided 1 − β = 0.80, z0.80 = 0.8416. Direct use of Table 2.3 to gives 

θ = 7.849.

For Right the anticipated cumulative incidence for MI is FRight,MI(10) = 0.015 and for the CR

FRight,CR(10) = 0.68. Thus from Equations 8.19 and 8.20, at t = 10 years, λRight,EV = 0.015 ×

= 0.00256 and λRight,CR = 0.11618. The corresponding values for Left 

are FLeft,MI(10) = 0.03 and FLeft,CR = 0.68 giving λLeft,EV = 0.00523 and λLeft,CR = 0.11856.

These give the planning hazard ratio for MI as HRPlan,MI = λRight,MI /λLeft,MI = 0.00256/

0.00523 = 0.49 or approximately 0.5.

Further D = 9 and f = 10 years so that from Equation 8.22 PRight,MI = ×

= 0.01754 and simi-

larly PLeft,MI = 0.03486. Thus the mean event rate, PEvent = (0.01754 + 0.03486)/2 = 0.02620 

and so from one component of Equation 8.21, = 65.3 or a total of 66 

events from both breast groups. Thus N = 66/0.02620 = 2519.1 or approximately 2600 women

would need to be recruited, or 1300 radiated to the Right and 1300 to the Left breast.

Alternatively use of with two-sided α = 0.05, 1 − β = 0.8, and the anticipated values

summarized below give the required number of events E = 62, and N = 2367. So a study of

2500 women might be contemplated.

Time of interest t 10 years

Main event FRight,MI(t) 0.015

FLLeft,MI(t) 0.03

Competing risk FRight,CR(t) 0.68

FLeft,CR(t) 0.68

Accrual time D 9 years

Follow-up f 10 years

The discrepancy arises as uses the calculated HRPlan,MI = 0.49, which is more extreme

than the rounded 0.5, and so the number of events required and consequently the sample size

are reduced.
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Table 8.1 Number of critical events for comparison of survival rates (Logrank test). Each cell gives the

number of events for each group, e1. Hence, the total number of events for the study is E = 2e1.

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

First proportion, ππ1

ππ2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 230 – – – – – – – – –

0.15 78 422 – – – – – – – –

0.2 44 126 584 – – – – – – –

0.25 30 64 163 708 – – – – – –

0.3 22 40 79 189 793 – – – – –

0.35 17 29 48 89 206 839 – – – –

0.4 14 22 33 53 95 214 851 – – –

0.45 12 17 24 35 55 96 213 832 – –

0.5 11 14 19 25 36 55 94 205 787 –

0.55 9 12 15 19 25 35 53 89 191 721

0.6 8 10 12 15 19 25 33 49 82 172

0.65 8 9 10 12 15 18 23 31 44 73

0.7 7 8 9 10 12 14 17 21 27 39

0.75 6 7 8 9 10 11 13 15 18 23

0.8 6 6 7 7 8 9 10 11 13 15

0.85 5 6 6 6 7 7 8 9 9 11

0.9 5 5 5 6 6 6 6 7 7 8

0.95 5 5 5 5 5 5 5 5 6 6

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

First proportion, ππ1

ππ2 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.55 721 – – – – – – – –

0.6 172 638 – – – – – – –

0.65 73 149 544 – – – – – –

0.7 39 62 125 444 – – – – –

0.75 23 32 51 99 343 – – – –

0.8 15 19 26 39 74 246 – – –

0.85 11 12 15 20 29 51 159 – –

0.9 8 9 10 11 14 19 31 87 –

0.95 6 6 6 7 8 9 11 15 33
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Table 8.1 (continued ): Number of critical events for comparison of survival rates (Logrank test). Each cell

gives the number of events for each group, e1. Hence, the total number of events for the study is E = 2e1.

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

First proportion, ππ1

ππ2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 307 – – – – – – – – –

0.15 105 564 – – – – – – – –

0.2 58 168 781 – – – – – – –

0.25 39 86 218 947 – – – – – –

0.3 29 54 106 253 1061 – – – – –

0.35 23 38 64 119 276 1124 – – – –

0.4 19 29 44 70 127 286 1139 – – –

0.45 16 23 32 47 73 129 285 1114 – –

0.5 14 19 25 34 48 73 126 274 1054 –

0.55 12 16 20 26 34 47 70 119 255 964

0.6 11 13 16 20 25 33 45 66 109 230

0.65 10 12 14 16 19 24 31 41 59 97

0.7 9 10 12 13 16 18 22 28 36 52

0.75 8 9 10 11 13 14 17 20 24 31

0.8 8 8 9 10 11 12 13 15 17 20

0.85 7 7 8 8 9 10 10 11 12 14

0.9 7 7 7 7 8 8 8 9 9 10

0.95 6 6 6 6 7 7 7 7 7 8

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

First proportion, ππ1

ππ2 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.55 964 – – – – – – – –

0.6 230 853 – – – – – – –

0.65 97 200 728 – – – – – –

0.7 52 83 167 594 – – – – –

0.75 31 43 68 133 459 – – – –

0.8 20 26 35 53 100 330 – – –

0.85 14 17 20 26 38 68 213 – –

0.9 10 11 13 15 18 25 41 116 –

0.95 8 8 8 9 10 11 14 20 45
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Table 8.2 Number of subjects for comparison of survival rates (Logrank test). Each cell gives the

number of subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

First proportion, ππ1

ππ2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 249 – – – – – – – – –

0.15 87 483 – – – – – – – –

0.2 51 149 708 – – – – – – –

0.25 36 78 204 914 – – – – – –

0.3 27 51 102 253 1094 – – – – –

0.35 22 38 64 123 295 1243 – – – –

0.4 19 30 46 76 141 330 1362 – – –

0.45 16 24 35 52 85 154 355 1447 – –

0.5 16 21 29 39 58 92 164 373 1500 –

0.55 13 18 24 31 42 61 97 170 382 1518

0.6 12 16 20 26 34 46 63 99 173 383

0.65 13 15 17 21 28 35 46 66 98 172

0.7 12 14 16 19 23 28 36 47 64 98

0.75 11 13 15 18 20 24 29 36 45 62

0.8 11 11 14 15 17 21 24 28 35 43

0.85 10 12 13 13 16 17 21 25 26 34

0.9 10 10 11 14 15 15 16 20 22 27

0.95 10 11 12 12 13 14 15 16 20 22

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

First proportion, ππ1

ππ2 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.55 1518 – – – – – – – –

0.6 383 1502 – – – – – – –

0.65 172 373 1451 – – – – – –

0.7 98 166 358 1367 – – – – –

0.75 62 92 157 330 1248 – – – –

0.8 43 59 87 142 296 1094 – – –

0.85 34 41 55 80 129 256 909 – –

0.9 27 33 40 49 70 109 207 696 –

0.95 22 24 27 35 46 60 88 151 440
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Table 8.2 (continued ): Number of subjects for comparison of survival rates (Logrank test). Each cell

gives the number of subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

First proportion, ππ1

ππ2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 332 – – – – – – – – –

0.15 117 645 – – – – – – – –

0.2 67 198 947 – – – – – – –

0.25 46 105 273 1222 – – – – – –

0.3 36 68 137 338 1464 – – – – –

0.35 29 50 86 165 395 1666 – – – –

0.4 25 39 61 101 189 441 1823 – – –

0.45 22 32 46 70 113 207 475 1938 – –

0.5 20 28 38 53 77 122 220 499 2008 –

0.55 18 24 31 42 57 82 128 227 510 2030

0.6 17 21 26 34 44 61 86 133 230 512

0.65 16 20 24 28 35 46 62 87 132 229

0.7 15 17 21 24 31 36 47 63 85 130

0.75 14 16 19 21 26 30 38 48 60 83

0.8 14 15 18 21 24 27 31 38 46 58

0.85 13 14 17 17 21 24 26 30 35 44

0.9 14 14 15 16 19 20 22 26 28 34

0.95 12 13 14 15 18 19 20 22 24 30

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

First proportion, ππ1

ππ2 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

0.55 2030 – – – – – – – –

0.6 512 2008 – – – – – – –

0.65 229 500 1942 – – – – – –

0.7 130 222 478 1828 – – – – –

0.75 83 123 210 444 1670 – – – –

0.8 58 81 117 193 400 1467 – – –

0.85 44 57 73 104 169 341 1218 – –

0.9 34 40 52 67 90 143 274 928 –

0.95 30 32 36 45 58 74 112 201 600
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Table 8.3 Number of critical events for comparison of 

two exponential survival distributions with two-sided α = 0.05.

Each cell gives the total number of events for the comparison 

of two exponential survival distributions.

Power 1 −− ββ

HR 0.8 0.9

1.1 3457 4627

1.2 945 1265

1.3 457 611

1.4 278 372

1.5 191 256

1.6 143 191

1.7 112 150

1.8 91 122

1.9 77 103

2 66 88

2.1 58 77

2.2 51 68

2.3 46 61

2.4 41 55

2.5 38 51

2.6 35 47

2.7 32 43

2.8 30 40

2.9 28 38

3 27 35

3.5 21 27

4 17 22

4.5 14 19

5 13 17
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Equivalence

SUMMARY
In previous chapters we have been concerned with situations that, if the null hypothesis is rejected in a

two-group clinical trial, then superiority is claimed for one of the groups. Here we are concerned with 

situations in which we may wish to claim equivalence (embracing both therapeutic equivalence of 

the alternatives as well as non-inferiority of a test against a standard) of the two treatments and not

superiority. In these situations, if the difference between groups is less than a certain magnitude it may

be inferred that one group is effectively as good as the other. We discuss the concept of bioequivalence

which is of particular relevance at the early development stage of a new therapy.

9.1 Introduction

Implicit in a comparison between two groups is the presumption that if the null hypothesis is

rejected then a difference between the groups being compared is claimed. Thus, if this com-

parison involves two treatments for a particular condition, the conclusion drawn by rejecting

the null hypothesis is that one treatment is superior to the other irrespective of the magnitude

or clinical relevance of the difference observed. For this reason, they are termed ‘Superiority’

trials. However in some situations, a new therapy may bring certain advantages over the 

current standard, possibly in a reduced side-effects profile, easier administration or lower cost

but it may not be anticipated to be better with respect to the primary efficacy variable. Under

such conditions, the new approach may be required to be at least ‘equivalent’, or more usually

‘non-inferior’, to the standard in relation to efficacy if it is to replace it in future clinical use.

This implies that ‘equivalence’ is a pre-specified maximum difference between two groups

which if observed to be less, after the clinical trial is conducted, would render the two groups

equivalent. The implication being that the test could replace the standard for routine clinical

use. It is important to emphasize that failure to find a statistically significant difference after

conducting a superiority trial, does not mean that two treatments are equivalent but rather

that there is insufficient evidence to distinguish between them.

In designing an equivalence trial, the ‘effect size’ of a superiority trial is replaced by the

‘equivalence limit’.

In this chapter, we use the term ‘equivalence’ to include studies which aim to show that 

two compounds are bioequivalent, two treatments are therapeutically equivalent, and that

one treatment is not inferior to the other (non-inferiority).

9
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9.2 Theory and formulae

Confidence intervals
In general, having conducted a study to compare groups with respect to a particular outcome,

the investigator calculates the observed difference between groups, d, and the corresponding

100(1 − α)% confidence interval (CI) for the true difference, δ, between them. This CI covers

the true difference, δ, with a given probability, 1 − α. The difference may result from a com-

parison of means, proportions or hazard rates depending on the context.

The concept of equivalence is illustrated in Figure 9.1 by considering the range of options

possible for the confidence intervals that might result at the end of a trial comparing a Test

with a Standard approach to treatment. The ‘equivalence’ limit, ε, is set above and below δ = 0

which corresponds to the null hypothesis of no true difference between treatments. These

limits therefore define a region within which, if d were to fall, then this would be indicative of

equivalencebthe Test could replace the Standardbbut outside of which would be regarded as

a clinically important divergence from equivalencebthe Test would not replace the Standard.

If we examine the confidence intervals of Figure 9.1, then CI: A, clearly demonstrates an

important difference between groups since even the lower limit of this confidence interval 

is beyond +ε. If a confidence interval crosses a boundary (CI: B and F) then one would be

uncertain as to whether or not the treatments were equivalent, whereas if it were totally

between the limits −ε to +ε (CI: C, D, E) then equivalence would be claimed. The uncertain

outcome of CI: H would correspond to a trial of inadequate sample size, as the confidence

interval is so wide.

It is quite possible to show a statistically significant difference between two treatments yet

also demonstrate therapeutic equivalence (CI: C and E: neither cut the vertical line through

the null hypothesis value of δ = 0 nor the δ = −ε or +ε lines). These are not contradictory

statements but simply a realisation that although there is evidence that one treatment 

works better than another, the size of the benefit is so small that it has little or no practical

advantage.

Equivalent

Equivalent

Not equivalent

Not equivalent

True difference

0ε ε– +

A
B
C
D
E
F
G
H

Yes
Yes
Yes
No
Yes
Yes
Yes
No

Statistical
significance?

Uncertain

Equivalent

Uncertain

Uncertain

Figure 9.1 Schematic diagram to illustrate the concept of equivalence by using a series of possible

comparative trial outcomes of a Test against a Standard therapy as summarised by their reported 

(two-sided) confidence intervals (after Jones, Jarvis, Lewis and Ebbutt 1996).
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Associated hypotheses
When comparing two means, proportions or hazards in the superiority context of earlier chapters,

we specified the null hypothesis by HNull : δ = μ1 − μ2 = 0, δ = π1 − π2 = 0 or δ = λ1 − λ2 = 0 as

appropriate. Thus, in the conventional test of statistical significance, we seek to test if δ = 0,

using the test statistic of the form:

(9.1)

where the observed difference between treatments, d, is the estimate of δ and SE0(d) is the corres-

ponding standard error estimated as if the null hypothesis were true. Essentially we commence

by assuming the two groups are the same and seek to demonstrate they are different.

However in the case of an equivalence trial the null hypothesis HNull has two components of

non-equivalence that is: δ ≤ −ε and δ ≥ ε, whereas the alternative hypothesis of equivalence

HAlt is: −ε < δ < ε (equivalence). Here we commence by assuming the two groups are different

and seek to demonstrate they are the same.

These hypotheses lead to a change in the test statistic of Equation 9.1 to a test statistic of 

the form

(9.2)

where SENE(d) is now calculated under the modified null hypothesis of non-equivalence 

(NE). In this situation, if the test statistic is significant we conclude that the treatments are

equivalent.

9.3 Bioequivalence

Often as a drug or vaccine is developed for clinical use small adjustments are necessary to 

their formulation, for example, a change in formulation from that used in early phase trials 

to one more suitable for routine clinical use. Thus, although these may be minor changes,

they may require appropriate investigation to assess whether the new formulation is indeed

equivalent to the old. This assessment is done by examination of the pharmacokinetics of 

the two formulations with the assumption that if there are equal pharmacokinetic properties

then this implies equal clinical effect in terms of both safety and efficacy.

Cross-over design
Bioequivalence of different formulations of the same drug is usually taken to mean equivalence

with respect to rate and extent of drug absorption. The area under the concentration/time

curve, AUC, serves to measure the extent of absorption whereas, in the case of fast-releasing

formulations, the maximum concentration, Cmax, and the time of its occurrence, tmax, may

characterise the rate of absorption.

For many drug substances, a large between-subject variation is known to exist and so cross-

over designs are recommended for bioequivalence studies. It is usual to employ a balanced

two-period design as described by Machin and Campbell (2005). In such a cross-over trial, if 

a test (T) formulation is to be compared with a reference (R) formulation, then the subjects

  
z

d

SE dEquivalence
NE( )
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will usually be randomised equally between the two sequences TR and RT, that is, m subjects

per sequence.

Food and Drug Administration (FDA) recommendations
In the context of bioequivalence, β, which is the probability of erroneously concluding 

bio-inequivalence, is often called the ‘producer risk’, while α, which is the probability of 

erroneously accepting bioequivalence, is termed the ‘consumer risk’. Because small trials,

which are in routine use in bioequivalence studies, have a low power to detect differences,

large and perhaps clinically important differences would not be statistically significant follow-

ing an appropriate hypothesis test. This difficulty has led regulatory bodies to specify rules 

for the conduct of bioequivalence studies (CPMP 1998; FDA 2000, 2001). For example, the

80/20 rule was introduced. This rule specifies that a test of bioequivalence must have at least 80%

power of detecting a 20% difference between the parameters of interest. It was also suggested

that 90% CIs are used in such circumstances (Figure 9.2).

Comparing (paired) means
Difference
If μTest and μReference are the anticipated mean values of the Test and Reference formulations

respectively, then, bioequivalence may be assessed by the difference between the two means,

μTest − μReference. In this case, lower and upper bounds of bioequivalence are set above and below

zero, which represents the true equality of the means. If the bounds are θL and θU, then θL < 0 < θU.

On this difference scale, commonly used and FDA recommended values are, θL = −0.2μReference

and θU = 0.2μReference. Bioequivalence is generally conceded if the two-sided 100(1 − α)% CI

for the difference μTest − μReference is completely contained within the interval (θL, θU).

Figure 9.2 Comparison of hypotheses tested in two group trials of superiority, bioequivalence,

equivalence and non-inferiority comparing a test (T) with a standard (S), δ = θTest − θStandard.

Hypotheses Error

Type of Type I Type II Confidence

trial Null Alternative α β interval

Superiority δ = 0 δ ≠ 0 2-sided 1-sided 2-sided

Superiority

Usual 5% 10 or 20% 95%

Bioequivalence δ ≤ −ε or δ ≥ ε −ε < δ < ε 1-sided 2-sided 2-sided

Not bioequivalent Bioequivalent

FDA recommended 5% 20% 90%

Equivalence δ ≤ −ε or δ ≥ ε −ε < δ < ε 1-sided 2-sided 2-sided

Not equivalent Equivalent

Usual 2.5% 10 or 20% 95%

Non-inferiority δ ≥ ε δ < ε 1-sided 1-sided 1-sided

Inferiority Non-inferiority

Usual 2.5% 10 or 20% 97.5%
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Ratio
The logarithms of many measures of drug absorption have an approximate Normal distribu-

tion form and so studies may focus on the ratio of the two means, μTest/μReference, rather than

their difference. In this situation, the lower and upper bounds of bioequivalence θL and θU

are expressed as above and below the null hypothesis value of unity so that θL < 1 < θU. On 

the ratio scale, commonly used values are θL = 0.8 and θU = 1.25. These are equidistant from

unity on a logarithmic scale, since log 1.25 = −log 0.8 = 0.22 and log 1 = 0. Bioequivalence is

conceded if the two-sided 100(1 − α)% CI for the ratio μTest /μReference, is included within the

interval (θL = 0.80, θU = 1.25). In practice, by using a logarithmic transformation one can use

the same equations as for the difference of two means; but we then compare log μTest and 

log μReference for this situation.

Paired t-test
Sample size

Since bioequivalence studies are usually small, the sample-size equations use Student’s 

t-distribution rather than the Normal distribution. Further since they are small, rounding

upwards but only to the nearest integer following the sample-size calculations is generally

advised.

Adapting Equation 7.10 for the superiority of one of two paired means in larger sample

sizes, then the number of subjects required, half to receive the sequence TR and half RT, in a

bioequivalence study in which it is assumed μReference = μTest = μ is

(9.3)

Essentially, to obtain Equation 9.3 we are merely replacing the ordinate z of the Normal

distribution in Equation 7.10 by that of the t-distribution and ignoring the final term of that

equation. Further α replaces α/2 and β/2 replaces β.

If we define Ω = ε /μ, then the FDA (1992a) recommendations suggest that Ω ≤ 0.2 or 20%.

In this case Equation 9.3 can be expressed in terms of the coefficient of variation, CV (= σ /μ),

and Ω as

(9.4)

These equations are applicable to calculations of sample size made on both the difference

or ratio scales. However, since the way in which bioequivalence is defined on the two scales

are not mathematically equivalent, there will be differences in the sample size resulting from

these equations depending on the approach.

If the ratio of the means is used

(9.5)

Further, if σ is small,

CV ≈ σ. (9.6)

CV exp( ) .= −σ 2 1

  
N

CV t tdf df( )
.

, , /=
+− −2 2

1 1 2
2

2

α β

Ω

  
N

t tdf df( )
.

, , /=
+− −2 2

1 1 2
2

2

σ
ε

α β

9781405146500_4_009.qxd  9/8/08  10:22  Page 106



Equivalence 107

Degrees of freedom (df)

Besides depending on α, tdf,1−α of Equations 9.3 and 9.4 also depends on the number of

degrees of freedom, df, utilised to estimate the standard deviation, σ, in the final analysis. For

a two-period cross-over design, if analysis is by means of a paired t-test of the N differences,

there are df = 2m − 1 = N − 1 degrees of freedom. This form of analysis assumes the absence

of a period effect. If this cannot be assumed then an analysis of variance approach is required,

in which case the number of degrees of freedom will depend on the model specification as

pointed out by Senn (2002).

Iteration

The values of tdf,1−α and tdf,1−β/2 of Equations 9.3 and 9.4 depend on the sample size N whereas

z1−α and z1−β/2 do not. As a consequence, to obtain the sample size using either expression, 

we require an iterative procedure. This would usually start by assuming infinite degrees of

freedom, that is, using z’s in place of t’s and obtain a starting value for the sample size as N∞.

This is then used to obtain a provisional figure for the degrees of freedom, df = N∞ − 1. The

value of tdf,1−α and tdf,1−β/2 can then be determined by reference to Table 2.4 of the t-distribution.

This, in turn, provides a second estimate of the sample size, N2. The whole process is then

repeated as often as necessary until convergence.

9.4 Non-inferiority

Bioequivalence is a special case of the more general problem of equivalence which can be

applied to other situations. In many cases the corresponding sample sizes are somewhat larger

so that the Normal distribution z rather than the t-distribution can be used for sample-size

estimation purposes. Thus, for example, a paired comparison for the equivalence situation

utilises Equation 9.3 with z1−α and z1−β/2 replacing the t-distribution terms. However in the

case of a trial investigating non-inferiority, β/2 reverts to β as in the superiority situation.

For bioequivalence, one may want the drug to be neither less than the Standard nor more

than a Standard by the specified amount, ε, whereas for ‘non-inferiority’, if the Test turns out

to be more efficacious than the Standard this would be regarded as a bonus. In this context,

and most situations in practice, the concept of non-inferiority replaces that of therapeutic

equivalence. In these circumstances the −ε of Figure 9.1 is replaced by −∞ thereby implying 

that we are only concerned that the Test treatment should not be worse than the Standard. 

As a consequence, the two-sided confidence intervals of Figure 9.1 would be replaced by 

one-sided intervals. In this case the confidence limits are no longer (even in large studies)

symmetric about the estimated difference. If we imagine, that these confidence intervals have

an upper limit corresponding to the right hand arrows in Figure 9.1, while the lower limits

stretch to the left beyond the figure margin then all except CI : A and B would be supportive of 

non-inferiority.

The corresponding 100(1 − α)% CI for δ, in circumstances equivalent to a one-sided test

situation, is

LL to d + z1−αSE(d). (9.7)
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This extends from the lower limit (LL) of the possible difference δ which only depends on

the type of data being considered, not their actual values, to the upper limit (UL) which would

depend on the observations made.

In general, in testing for non-inferiority, we are trying to show that the Test treatment is 

the same or not significantly worse than the Standard treatment. Consequently we will be

considering one-sided tests of the null hypothesis, since we are not trying to prove that the Test

is better than the Standard. It is also necessary to specify a probability (power), 1 − β, that the

upper confidence limit (UL) for δ, calculated once the study is completed, will not exceed this

pre-specified value ε.

Difference of means
When two means are compared, the lower limit for the CI of Equation 9.3 is LL = −∞. Thus if

a comparison of two means were being made, then the LL of all the corresponding confidence

intervals of Figure 9.1 would be negative infinity. This is due to the fact that, in repeated 

sampling, we wish the interval to fail to cover the population mean difference only when this

is greater than the upper limit of the CI. To ensure that the lower limit of the CI is never greater

than the population value we take it to be −∞.

Sample sizebpaired differences

This situation has been described earlier by Equation 9.3 in the context of bioequivalence

studies. However, for studies at the later stage of the drug development process much larger

studies are the norm. Thus the large sample situation merely replaces the components from

the t-distribution with those of z from the Normal distribution.

Sample sizebindependent groups

The sample size required for the Standard treatment, with patients randomised in the ratio 1

to ϕ to the treatments, for a comparison of two means μStandard and μTest from two Normal 

distributions with the same standard deviation, σ, is given by

, μStandard > μTest. (9.8)

Thus, the total number of subjects to be recruited is N = m(1 + ϕ). This is an adaptation of

Equation 9.3.

For the situation in which it is assumed μStandard = μTest Equation 9.8 simplifies to

(9.9)

These are similar in form to Equation 5.2 for comparing two means although that includes

an additional correction factor for small sample size situations. Consequently, the com-

ponent of within that chapter can be used to evaluate Equations 9.8 or 9.9 by setting the

effect size Δ = (μStandard − μTest − ε)/σ and using a one-sided test size α and power 1 − β.
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Two proportions
We assume that the outcome of the trial can be measured by one of two possibilities, for

example, ‘cured’ or ‘not-cured’, and the true probability of success under Standard treatment

is πStandard and under Test is πTest. However, for notational simplicity in the following we term

these π1 and π2 respectively. After testing for equivalence of treatments we would wish to

assume that, for all practical purposes π1 = π2 although we might have evidence that they, in

fact, differ by a small amount. For the comparison of two proportions, the LL of Equation 9.7

is determined by the maximum possible difference between the two treatments; this occurs

when π1 = 0 and π2 = 1 so that LL = π1 − π2 = −1.

Sample sizebindependent groups

The sample size required for Treatment 1 with patients randomised to the treatments in the

ratio 1 : ϕ, for anticipated proportions π1 and π2, maximal difference ε, one-sided test size α
and power 1 − β is

(9.10)

In Equation 9.10 Y1D and Y2D are the maximum likelihood estimates of the true values of π1

and π2 under the hypothesis that they differ by ε. The total number of patients required to test

for equivalence of the two treatments is N = m + n = m(1 + ϕ).

Technical note
In Equation 9.10 Y1D is the solution of ax3 + bx2 + cx + d = 0 where a = (1 + ϕ)/ϕ, b = −[1 +
ϕ + ϕπ1 + π2 + ε(1 + 2ϕ)]/ϕ, c = [ϕε2 + ε(2ϕπ1 + 1 + ϕ) + ϕπ1 + π2]/ϕ and d = −π1ε(1 + ε).

It can be shown that Y1D = 2u cos(w) − (b/3a), Y2D = Y1D − ε, where w = [π + arccos(v/u3)]/3,

and π is the irrational number 3.14159 . . . and not a Binomial proportion. Further, v =
b3/(3a)3 − bc/(6a2) + d/(2a) and u = .

An alternative approach to sample-size calculation is to replace Y1D and Y2D in Equation 9.10

by π1 and π2 respectively and this leads to

(9.11)

For the special case when we can assume the two treatments are likely to be equally effective

(not just equivalent as defined here) then π1 = π2 = π and Equation 9.11 simplifies to

(9.12)

This is similar to Equation 5.2 for comparing two means, with as the 

measure similar to effect size, although that includes an additional correction factor for small

sample-size situations.

Although we use Equation 9.10 for Table 9.1 and , it is clear that Equations 9.11 and

9.12 can be more readily evaluated and so provide a quick check on these calculations.
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Hazard ratio
Sample sizebindependent groups

Although earlier in this chapter we expressed the null hypothesis for a trial with a survival

time endpoint as a difference between two rates HNull : δ = λ1 − λ2 = 0 it is more usual to

describe it in terms of their ratio so that non-inferiority is expressed through the Hazard Ratio

(HR) defined by

(9.13)

In which case a value θε (> 1) is set as the limit of non-inferiority in HR that we wish to rule

out within the hypothesis framework; HNull : θ ≥ θε against HAlt : θ < θε . We then wish to

determine the sample size such that the null hypothesis is rejected at a one-sided test α with

power 1 − β for a specified alternative θ < θε against θ ≥ θε . For patients randomised to the

two groups in the ratio 1 : ϕ the required sample size for the first group is given by

(9.14)

The sample size for the second group is n = ϕm.

Here f(., .) is defined below but depends on the anticipated duration of patient entry to the

trial, D, and the follow-up period beyond recruitment closure, F, while η is the anticipated

loss to follow-up or censoring rate. The median survival time of group 1, M1, is used as the

unit of time in calculating D and F. Since, for the Exponential distribution, the relationships

of Equation 9.15 below hold, M1 and M2 can be used to provide values for λ1 and λ2 for

Equation 9.14.

Note
In the situation where the survival can be assumed to follow an Exponential distribution, the

relationships between the hazard rate, λ, the proportion alive, π, at a fixed point of time, T,

and the median survival time, M, can be summarised by

(9.15)

If there is a constant recruitment rate over D, and the censoring follows an Exponential 

distribution, then f(λ, η) of Equation 9.14 is

(9.16)

To evaluate this, it is necessary for the design team to specify D, F and η, then calculate this

for each group separately by setting λ = λ1 and λ = λ1θ1 respectively.

Equivalence
If the less common situation arises and equivalence rather than non-inferiority is appropriate,

then the sample-size formulae of this section would still apply but α is replaced by α/2 in all the
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respective formulae. Consequently, with all other conditions held the same, the corresponding

sample sizes would therefore all be larger.

9.5 Bibliography

Roebruck and Kühn (1995) recommend the Farrington and Manning (1990) approach of

Equation 9.4 in determining equivalence rather than that of Makuch and Simon (1978) and

Blackwelder (1982) who use Equation 9.11.

ICH E10 (2000) E10 have issued general guidance on non-inferiority studies and CPMP

(2000) discuss issues with moving from superiority to non-inferiority designs and CHMP

(2005, 2006) the choice of the non-inferiority margin. Both FDA (1992b) and CPMP (2004) 

discuss non-inferiority in the context of bacterial infections. Guidance on some of the more

technical issues is given by Julious (2004) who also details many of the appropriate regulatory

guidelines.

Philips (1990) discusses bioequivalence for the measure of equivalence expressed as a 

difference. Julious (2004) and Diletti, Hauschke and Steinijans (1991) extend this to when

bioequivalence is defined in terms of ratio, and provide sample-size tables for both situations.

Sample sizes for bioequivalence studies are also discussed by Metzler (1991). Chow and 

Liu (1992) and Lin (1995) point out that in certain situations a two-sided value for β is 

appropriate. FDA (2000, 2001) and CPMP (1998) have issued guidance on bioequivalence

studies

As we have already noted, for bioequivalence studies the sample size is likely to be relatively

small, and so t-functions are used in Equations 9.10, 9.11 and 9.12. We also note, however, that

Kupper and Hafner (1989) state that the commonly used Normal approximations ‘. . . perform

amazingly well even for very small sample sizes . . .’.

The case of survival or time-to-event data is described by Crisp and Curtis (2007) who give

Equations 9.14 and 9.16. They also discuss the situation when the recruitment is assumed to

follow a truncated exponential distribution rather than occurring at a uniform rate and give

an illustrative example of this situation. This requires a further parameter to be provided 

at the design stage.

Piaggio, Elbourne, Altman et al. (2006) set standards for the reporting of non-inferiority

and equivalence trials while the issue of determining the equivalence limit is discussed in the

CHMP (2006) guidelines.

9.6 Examples and the use of tables

Table 9.1 and Equation 9.4
Example 9.1bbioequivalencebdifference between two means

Wooding (1994) gives an example of data on Cmax obtained from a two-period cross-over

trial of 12 patients. The mean Cmax was 30.89 for one drug and 39.17 for the other and the

pooled within-subject variation had standard deviation 14.7327. Assuming the study is to be

repeated, how large should it be?
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For a 10% one-sided test size, α = 0.1, the value from Table 2.2 is z0.90 = 1.2816 and for a

two-sided power with β = 0.2, z0.90 = 1.2816.

Here, the combined mean is μ = (30.89 + 39.17)/2 = 35.03 and standard deviation σ = 14.7327

so that the CV = σ/μ = 14.7327/35.03 = 0.42 or approximately 40%.

The FDA (1992a) recommendations suggest Ω = 0.2, a two-sided power of 80% and a one-

sided test size of 10%, then first assuming that a large sample size will result so that z can be 

used in place of t, Equation 9.4 suggests initially that = 52.6

or 53 subjects. Since this is relatively large, z and t are almost equal so that more exact calculations

of Table 9.1, suggests that N = 54 subjects would need to be recruited. This is confirmed by

the use of with the corresponding input values.

Table 9.1 and Equation 9.4
Example 9.2bbioequivalencebratio of two means

Wooding (1994) gives the mean of log Cmax for one drug as 3.36 and that for the other 3.54

while the pooled within-subject standard deviation is 0.40. Assuming the study is to be repeated,

how large should it be?

For a 10% one-sided test size, α = 0.1, the value from Table 2.2 is z0.90 = 1.2816 and for a

two-sided power with β = 0.80, z0.90 = 1.2816.

Here, the combined mean is μ = (3.36 + 3.54)/2 = 3.45 and σ = 0.40 so that CV = 0.40/3.45

= 0.115 or 12%. Then with Ω = 0.2, two-sided power set as 80% and the one-sided test size at

10%, and first assuming that a large sample size will result so that z can be used in place of t, 

Equation 9.4 suggests initially that = 4.73 or 5 subjects. 

Since this is very small, z (= 1.2816) and t will be very different. From Table 2.4 of Student’s 

t-distribution df = 5 − 1 = 4 degrees of freedom t4, 0.9 = 2.132. Now using these values in 

Equation 9.4 we obtain = 13.1 or 14. Repeating this process 

with df = 13, gives = 9.03 or 10. This process eventually 

converges and gives NFinal = 6 subjects that would need to be recruited, as does or Table 9.1

which also gives NFinal = 6 subjects, with CV = 10%, the nearest tabular entry.

This is in marked contrast to the sample size of 54 in Example 9.1 where bioequivalence was

being assessed on a difference as opposed to a ratio scale.

Examples 9.4 and 9.5 make it clear that it is very important to utilise the most appro-

priate scale for the definition of bioequivalence. An examination of the data provided by

Wooding (1994) would suggest that the ratio approach is the correct one for these particular

data.
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Table 9.2, Equations 9.8 and 9.9
Example 9.3bequivalence of two means

It is anticipated that patients on a particular drug have a mean diastolic BP of 96 mmHg, 

as against 94 mmHg on an alternative. It is also anticipated that the standard deviation of

diastolic BP was approximately 8 mm. If one wishes to confirm that the difference is likely to

be less than 5 mmHg, that is, one wishes to show equivalence, how many patients are required?

We assume 80% power and a test size of 5%.

For a 5% one-sided test size, α = 0.05, the value from Table 2.2 is z0.95 = 1.6449 and for a

two-sided β = 0.2, z0.90 = 1.2816.

Here μ1 = 94, μ2 = 96, ε = 5 and σ = 8 and Equation 9.8 with ϕ = 1 gives m =

= 121.8 or approximately N = 2 × 125 = 250 in total. or 

Table 9.2 give N = 244 subjects.

If it can be assumed that μ1 = μ2, then from Equation 9.9 we require only m = 43.8 or 44 per

group giving a total of N = 88 in all.

Note that, under the assumption of equal population means, the calculations result in 

very similar values to those obtained from Equation 5.2 or Table 5.1 which are used for the

comparison of two means, although the specifications of the null hypothesis are different.

Table 9.3, Equations 9.9 and 9.11
Example 9.4bequivalence of two proportions

Bennett, Dismukes, Duma et al. (1979) designed a clinical trial to test whether combination

chemotherapy for a shorter period would be at least as good as conventional therapy for

patients with cryptococcal meningitis. They recruited 39 patients to each treatment arm and

wished to conclude that a difference of less than 20% in response rate between the treatments

would indicate equivalence. Assuming a one-sided test size of 10%, a power of 80% and 

an overall response rate of 50%, what would be a realistic sample size if the trial were to be

repeated?

For a 10% one-sided test size, α = 0.1, the value from Table 2.2 is z0.90 = 1.2816 and for a

two-sided β = 0.2, z0.90 = 1.2816 also.

Here the maximum allowable difference ε = 0.2, ϕ = 1, π1 = π2 = 0.5, one-sided α = 0.1 and 

1 − β = 0.8. Direct entry into Table 9.3 or both give m = 81 so the total sample size would

be N = 162.

A rough check on this calculation is provided by utilising Equation 9.12 to give m =

= 82.1 or a total sample size N = 164.
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Equations 9.11 and 9.13
Example 9.5bnon-inferiority of hazards

Consider a clinical trial to compare two treatments for Stage I breast cancer. The treatments

are either total mastectomy or simple removal of the lump, but leaving the remainder of 

the breast intact. We would like to show that, at worst, lump removal is only 10% inferior to

mastectomy. Assuming the 5-year survival rate of Stage I breast cancer after mastectomy (M)

is 60% how large a trial would be needed to show that the 5-year survival rate for lump (L)

removal was not less than 50%?

For a 5% one-sided test size, α = 0.05 and from Table 2.2 z0.95 = 1.6449 while for 

one-sided β = 0.2, z0.80 = 0.8416.

These design characteristics with survival rates at 5-years of πM = 0.6 and πL = 0.5 give 

λM = −log 0.6/5 = 0.1022 and λL = −log 0.5/5 = 0.1386. From which θ0 = 0.1386/0.1022 = 1.36

(equivalently log πL/log πM = log 0.5/log 0.6 = 1.36). The value set for the alternative 

hypothesis is θ1 = 1. The 5-year survival rate of those receiving mastectomy is 0.6 so that,

based on the expression used in Equation 9.12, their median survival time is MM = −log 0.5/

0.1022 = 6.78 or approximately 7 years. If we set D = 1 then this implies the duration of

recruitment to the trial will be 7 years and, and with F = 0.5 this implies 7 × 0.5 = 3.5 more

years of follow-up once trial entry is closed. The design team further estimate the censoring

rate as η = 0.01.

With these values Equation 9.16 gives f(0.1022, 0.01) = 0.1085 for Group M and exactly 

the same for Group L as θ1 = 1. From these, and an allocation ratio ϕ = 1, Equation 9.11 

gives = 1358.6 or approximately 1400. The 

total planned trial size is therefore approximately N = 2800 women. Direct input into 

gives m = 1380 or approximately N = 2800 also.

It should be emphasised that the resulting sample size may be very sensitive to the planning

assumptions made, for example, reducing the HR from 1.36 to θ0 = 1.3 increases the sample

size to N = 3537 or 3600 women.
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Table 9.1 Sample sizes for bioequivalence studies—difference between two means or ratio of 

two means. Each cell gives the total number of patients, N, that should be entered into study.

ΩΩ

One-sided αα Two-sided ββ CV 0.1 0.15 0.2 0.25

0.05 0.1 0.05 8 6 20 –

0.1 24 12 8 6

0.15 52 24 14 10

0.2 90 42 24 16

0.25 138 62 36 24

0.3 198 90 52 34

0.35 268 120 70 46

0.4 350 156 90 58

0.45 442 198 112 72

0.5 544 244 138 90

0.2 0.05 6 6 12 –

0.1 20 10 6 6

0.15 42 20 12 8

0.2 72 34 20 14

0.25 110 50 30 20

0.3 156 72 42 28

0.35 212 96 56 36

0.4 276 124 72 46

0.45 350 156 90 58

0.5 430 192 110 72

0.1 0.1 0.05 6 6 12 –

0.1 20 10 6 6

0.15 42 20 12 8

0.2 72 34 20 14

0.25 110 50 30 20

0.3 156 72 42 28

0.35 212 96 56 36

0.4 276 124 72 46

0.45 350 156 90 58

0.5 430 192 110 72

0.2 0.05 6 10 – –

0.1 16 8 6 4

0.15 32 16 10 6

0.2 54 26 16 10

0.25 84 38 22 16

0.3 120 54 32 22

0.35 164 74 42 28

0.4 212 96 54 36

0.45 268 120 68 44

0.5 330 148 84 54
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Table 9.2 Sample sizes for testing the equivalence of two means. Each cell gives the number of

subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided Type II error, ββ

One-

ββ == 0.1 ββ == 0.2

sided
Maximal difference, εε Maximal difference, εε

αα μμDiff σσ 1 3 5 1 3 5

0.05 2 2 87 87 10 69 69 8

4 347 347 39 275 275 31

6 780 780 87 617 617 69

8 1386 1386 154 1097 1097 122

4 2 10 87 87 8 69 69

4 39 347 347 31 275 275

6 87 780 780 69 617 617

8 154 1386 1386 122 1097 1097

6 2 4 10 87 3 8 69

4 14 39 347 11 31 275

6 32 87 780 25 69 617

8 56 154 1386 44 122 1097

8 2 2 4 10 2 3 8

4 8 14 39 6 11 31

6 16 32 87 13 25 69

8 29 56 154 23 44 122

10 2 2 2 4 1 2 3

4 5 8 14 4 6 11

6 10 16 32 8 13 25

8 18 29 56 14 23 44

15 2 1 1 1 1 1 1

4 2 3 4 2 2 3

6 4 6 8 4 5 7

8 8 10 14 6 8 11

20 2 1 1 1 1 1 1

4 1 2 2 1 1 2

6 3 3 4 2 3 3

8 4 5 7 4 4 5
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Table 9.2 (continued ): Sample sizes for testing the equivalence of two means. Each cell gives the

number of subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided Type II error, ββ

One-

ββ == 0.1 ββ == 0.2

sided
Maximal difference, εε Maximal difference, εε

αα μμDiff σσ 1 3 5 1 3 5

0.1 2 2 69 69 8 53 53 6

4 275 275 31 211 211 24

6 617 617 69 474 474 53

8 1097 1097 122 841 841 94

4 2 8 69 69 6 53 53

4 31 275 275 24 211 211

6 69 617 617 53 474 474

8 122 1097 1097 94 841 841

6 2 3 8 69 3 6 53

4 11 31 275 9 24 211

6 25 69 617 19 53 474

8 44 122 1097 34 94 841

8 2 2 3 8 2 3 6

4 6 11 31 5 9 24

6 13 25 69 10 19 53

8 23 44 122 18 34 94

10 2 1 2 3 1 2 3

4 4 6 11 3 5 9

6 8 13 25 6 10 19

8 14 23 44 11 18 34

15 2 1 1 1 1 1 1

4 2 2 3 2 2 3

6 4 5 7 3 4 5

8 6 8 11 5 6 9

20 2 1 1 1 1 1 1

4 1 1 2 1 1 1

6 2 3 3 2 2 3

8 4 4 5 3 3 4
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Table 9.3 Sample sizes for testing the equivalence of two proportions. Each cell gives the number of

subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided Type II error, ββ

One-

ββ == 0.1 ββ == 0.2

sided
Maximal difference, εε Maximal difference, εε

αα ππ1 ππ2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.05 0.1 0.1 795 208 97 58 631 166 78 46

0.2 1119 – 1180 302 889 – 943 242

0.3 152 348 1410 – 121 278 1127 –

0.4 62 98 175 395 50 78 140 316

0.5 34 47 67 104 28 38 54 84

0.6 21 27 35 47 17 22 28 38

0.7 14 17 21 26 12 14 17 21

0.8 10 11 13 16 8 9 11 13

0.9 7 8 9 10 6 6 7 8

0.2 0.2 1389 350 157 89 1100 277 125 71

0.3 1621 – 1634 410 1284 – 1297 325

0.4 198 447 1787 – 158 355 1419 –

0.5 76 118 208 466 60 94 166 371

0.6 39 53 76 118 32 43 61 94

0.7 23 29 38 51 19 24 31 41

0.8 15 18 22 27 12 15 18 22

0.9 10 11 13 16 8 9 11 13

0.3 0.3 1818 454 202 113 1439 360 160 90

0.4 1960 – 1949 485 1552 – 1543 383

0.5 226 508 2019 – 180 403 1600 –

0.6 82 128 225 502 66 102 179 399

0.7 41 55 79 122 33 44 63 98

0.8 23 29 38 51 19 24 31 41

0.9 14 17 21 26 12 14 17 21

0.4 0.4 2076 518 229 128 1643 410 181 101

0.5 2130 – 2110 523 1687 – 1668 413

0.6 236 528 2097 – 187 419 1662 –

0.7 82 128 225 502 66 102 179 399

0.8 39 53 76 118 32 43 61 94

0.9 21 27 35 47 17 22 28 38

0.5 0.5 2162 539 238 133 1711 426 188 105

0.6 2130 – 2110 523 1687 – 1668 413

0.7 226 508 2019 – 180 403 1600 –

0.8 76 118 208 466 60 94 166 371

0.9 34 47 67 104 28 38 54 84
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Table 9.3 (continued ): Sample sizes for testing the equivalence of two proportions. Each cell gives the

number of subjects for each group, m. Hence, the total sample size for the study is N = 2m.

Two-sided Type II error, ββ

One-

ββ == 0.1 ββ == 0.2

sided
Maximal difference, εε Maximal difference, εε

αα ππ1 ππ2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.1 0.1 0.1 628 164 76 45 483 127 59 35

0.2 882 – 924 236 680 – 716 183

0.3 120 273 1105 – 93 211 856 –

0.4 49 77 137 309 38 60 106 240

0.5 27 37 52 82 21 29 41 64

0.6 17 21 27 37 13 17 21 29

0.7 11 13 16 20 9 11 13 16

0.8 8 9 10 12 6 7 8 10

0.9 5 6 7 7 4 5 5 6

0.2 0.2 1099 277 124 71 843 213 96 54

0.3 1281 – 1290 323 984 – 992 249

0.4 157 352 1408 – 121 271 1085 –

0.5 59 93 164 366 46 72 127 283

0.6 31 42 60 92 24 33 46 72

0.7 18 23 30 40 14 18 23 31

0.8 12 14 17 21 9 11 13 17

0.9 8 9 10 12 6 7 8 10

0.3 0.3 1439 360 160 90 1104 276 123 69

0.4 1550 – 1543 384 1190 – 1184 295

0.5 179 401 1595 – 138 308 1226 –

0.6 65 101 178 396 50 78 137 305

0.7 32 44 62 96 25 34 48 74

0.8 18 23 30 40 14 18 23 31

0.9 11 13 16 20 9 11 13 16

0.4 0.4 1643 410 182 102 1260 314 139 78

0.5 1685 – 1671 415 1293 – 1281 318

0.6 186 417 1658 – 143 321 1273 –

0.7 65 101 178 396 50 78 137 305

0.8 31 42 60 92 24 33 46 72

0.9 17 21 27 37 13 17 21 29

0.5 0.5 1711 427 189 106 1313 327 145 81

0.6 1685 – 1671 415 1293 – 1281 318

0.7 179 401 1595 – 138 308 1226 –

0.8 59 93 164 366 46 72 127 283

0.9 27 37 52 82 21 29 41 64
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Confidence intervals

SUMMARY
This chapter describes how sample sizes may be derived by pre-specifying the width or relative width 

of the confidence interval the investigator wishes to obtain at the end of the study. Formulae are given

when a single estimate is required and also for the comparison of two groups for both binary and 

continuous outcome measures in two independent groups and paired or matched groups.

10.1 Introduction

A sample-size calculation is required for all clinical investigations. However, often a prelimi-

nary or pilot investigation is conducted with the objective of estimating any possible clinical

effect with a view to doing a later definitive study. In such exploratory pilot or learning studies,

what is proposed in this chapter is that the sample size be selected in order to provide a given

level of precision, and not to power in the traditional fashion for a desirable and pre-specified

difference of interest.

For precision-based studies, rather than testing a formal hypothesis, an estimation approach

through the provision of confidence intervals for the true difference δ, is more appropriate.

A similar situation occurs where the sample size is determined primarily by practical con-

siderations and the trial is not powered to detect any pre-specified effect. In such circumstances

the estimation approach may be adopted to give the precision for the fixed sample size in the

study.

Another instance where precision calculations can be useful is where one wishes to power

on a primary endpoint overall, but also to have sufficient precision on some secondary end-

point(s) or within given subgroups which will not be formally statistically assessed.

It is not just in clinical trials where precision based sample size estimation is important. 

For example in an epidemiological survey the objective may be to estimate the prevalence of 

a particular disease in a population, for example, the prevalence of asthma in young children

in a particular locality. An unbiased estimate of the prevalence can be provided by a sample 

if the sample is selected from the population by simple random sampling. In designing such a

survey the epidemiologist is likely to ask: ‘How many subjects do I need to examine in order 

to assess prevalence with a reasonable degree of accuracy?’

The sample size chosen is determined by a number of factors. Firstly, how precise should

the estimate be? If the investigator can allow only a small margin of uncertainty, then he will

10
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need a large sample. This uncertainty can be expressed as the width of the corresponding con-

fidence interval (CI), with a wider confidence interval corresponding to greater uncertainty.

The second factor is the required probability that the estimate is close to the population

parameter we are trying to estimate. Although it is possible that the confidence interval

obtained from a sample does not contain the actual prevalence. This means that, if we con-

ducted a large number of surveys all of the same size, we could claim that 95% of the 95% CIs

then calculated would contain the true prevalence.

Power implications
There is a relationship between conventional significance testing and confidence intervals.

Thus, for example, if zero lies outside the 95% CI for the difference of two means, a signific-

ance test would yield a result significant at 5%. Hence, one might question the disappearance

of z1−β from the sample-size equations below.

The calculations themselves are equivalent to assuming a power 50% or 1 − β = 0.5, that is,

setting z1−β = 0. However, there is no formal power-based calculation as neither a null or

alternative hypothesis has been declared. Thus one cannot declare the null to be rejected if 

a priori it was not set. The studies as stated are exploratory only and so although the range of

plausible values may exclude zero a definitive formally powered study may be required to 

get the necessary level of proof.

Nevertheless conventional equations or tables for power calculations of significance tests

can be used to estimate the equivalent sample size for confidence intervals simply by setting

the power to be 50%.

10.2 Single proportion

Samples from large populations
Suppose we are designing a study for which the underlying population prevalence of the 

disease of interest is πPop. If N subjects are involved, then p = r/N, where r is the number of

individuals observed to have the disease and p is the estimate of πPop. Provided that both Np

and N(1 − p) are not too small (a good guide is that they are both greater than 10) then we 

can use the Normal approximation to the Binomial distribution and obtain from these data 

a 100(1 − α)% CI for πPop as

(10.1)

With some change in notation this is the same expression as Equation 2.15.

At the design stage of the prevalence study, we have not yet observed p, and so we replace it

by its anticipated value πPlan in Equation 10.1. This then represents the target CI for the study

we have in mind. The width of this CI, for a specific choice of α, will depend on πPlan and 

critically on the ultimate sample size, N chosen.

For a pre-specified width from Equation 10.1 the correspond-

ing sample size is given by
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(10.2)

Alternatively, instead of pre-specifying the width ω we might wish to estimate πPop to

within a certain percentage of its anticipated value, say 100ε%, that is from −πε to +πε. This 

is equivalent to specifying that the CI should be no wider than ω = 2πε. To obtain the sample

size we substitute this value for ω in Equation 10.2 to obtain:

(10.3)

Expressions 10.2 and 10.3 will clearly not be useful if the anticipated value of π is either 0 or

1. In either case, Equation 10.5 below would be used in their place. Indeed prudence suggests

that this latter equation should always be used and this forms the basis of Table 10.1.

High or low anticipated response
As we have noted above and in Chapter 2, if the sample size is not large or π close to 0 or 1,

then the ‘traditional’ method, which is a large sample approximation of Equation 10.1, for

calculating a confidence interval should not be used. Further we should note that although

Equation 10.1 is symmetric about the estimate p, strictly this is only the case if p = 0.5, otherwise

the confidence interval is not symmetric. Despite this we can still plan a study on the basis of

the width of the interval, ω, even though the centre of the interval may not be p. In so doing 

we use the ‘recommended’ method of Equation 2.14 described by Altman and Newcombe

(2000, pp. 46–47) and which we reproduce here with some small notational changes, includ-

ing replacing r by NπPlan, as we are now at the planning (rather than the analysis) stage.

First defining A = 2NπPlan + z 2
1−α/2; ; and C = 2(N +

z 2
1−α/2) then the corresponding confidence interval is given by

(A − B)/C to (A + B)/C. (10.4)

From this the width of the confidence interval is which, after some algebra, leads to a 

planning sample size

(10.5)

where . This latter term appears as part of Equation 10.2.

Samples from finite populations
In some cases, the size of the population from which the researcher is sampling is known pre-

cisely and may be of limited size. For example, the researcher may wish to assess the prevalence

of impotence amongst patients on a diabetic register. The researcher could investigate everyone

on the register and get an answer for the ‘truth’. However, instead of investigating everyone

the researcher may take a sample from the register and use this sample (with corresponding

confidence interval) to estimate the truth.
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It is clear that if one sampled 60 out of a total register of 100 subjects one would have a 

more accurate assessment of the prevalence than if one took a sample of 60 from a register of

size 1000. In these circumstances, if p is estimated by the ratio of r cases from a sample of N

diabetic patients from a register population of size NPopulation then Equation 10.1 is modified

somewhat to give an approximate 100(1 − α)% CI for the true prevalence πPop of

(10.6)

Given that N is the sample size given by Equation 10.2 or 10.3 for an (effectively) infinite

population then the sample size required for population that is finite is:

NFinite = FN, (10.7)

where

(10.8)

The purpose of sampling is to reduce the number of observations to be made by the 

investigator. However, if the required sample size is a major proportion of the total popula-

tion, say 80% or more, then it may be sensible to examine the whole population rather than 

a sample of it.

10.3 Proportions in two groups

Independent groups
Difference in proportions
At the design stage of a study, it may be difficult to specify planning values of π1 and π2.

Instead investigators may find it easier to specify the difference that they expect to be able 

to detect.

The 100(1 − α)% CI for a true difference in proportions, δ = π1 − π2, takes form similar to

Equation 10.1 but now concerns p1 − p2 and the corresponding SE(p1 − p2). It is estimated by

(10.9)

where p1 and p2 are the corresponding observed proportions in each of the two groups of size

m and n respectively.

Thus, one may wish to calculate the number of patients required to be able to obtain a

confidence interval of a specified width,
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where π1 and π2 are the anticipated proportions provided by the design team. In which case,

and first specifying n = ϕm, the corresponding sample size is given by

(10.10)

As a consequence, a total of N = m(1 + ϕ) subjects are required for the corresponding study.

However, in the case of ϕ = 1, instead of in 

Equation 10.10 the following approximation can be used . Here 

Y = (π1 + π2)/2 which is the mean proportion anticipated across both the groups. This

approximate standard error (SE) holds for response proportions whose magnitudes do not

differ by more than 0.3, that is | π1 − π2 | < 0.3, and thus covers many practical situations.

Using this approximation to the SE the sample size per group is

(10.11)

This expression also gives a convenient check of the more complex calculations of Equa-

tion 10.12.

In the case of equal numbers of subjects in each group Bristol (1989) suggested a more

accurate approximation to the required study size, is given by

(10.12)

However, Example 10.5 suggests this may not be the case if π1 or π2 are close to 0 or 1.

Recommended method

Newcombe and Altman (2000, p. 49) provide a recommended method of calculating a

confidence interval for the difference between two proportions. It is an extension of the

methodology of Equation 10.4 for calculating the confidence interval for a single proportion.

This leads to the following expression for the width of the 100(1 − α)% CI

(10.13)

Here L1 = (A1 − B1)/C1 and U1 = (A1 + B1)/C1 with similar expressions for L2 and U2. Further 

A1 = 2mπ1 + z2
1−α/2; ; C1 = 2(m + z2

1−α/2) with similar expres-

sions for A2, B2 and C2 and with m replaced by n = ϕm. For given planning values for π1 and

π2, Equation 10.13 can be solved for m using an iterative procedure.

Since Equation 10.13 can be used for all resulting sample sizes, whether small or large, this

procedure is used in rather than Equations 10.10, 10.11 or 10.12 above.

Odds ratio
The difference between two proportions can also be expressed through the odds ratio (OR)

where
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(10.14)

The estimated 100(1 − α)% CI for ORPop is given by

exp[log OR − z1−α/2SE (log OR)] to exp[log OR + z1−α/2SE (log OR)], (10.15)

where

(10.16)

The confidence interval given by Equation 10.15 is not symmetric about the estimate of 

the odds ratio and so for sample size purposes one can more easily specify the requirement 

as a proportion of the odds ratio itself, that is, εOR, rather than by the width of the interval. 

In which case, to estimate an OR to within 100ε% of the true value, the sample size required

for one group is

(10.17)

Thus, the total sample size required is N = m + n = m(1 + ϕ).

An alterative approximation to the SE of log OR is

(10.18)

where . This leads to a sample size given by

(10.19)

Equations 10.17 and 10.19 tend to give similar sample size answers provided | π1 − π2 | < 0.2.

Paired groups
Difference in proportions
Newcombe and Altman (2000, p. 52) provide a recommended method of calculating a con-

fidence interval for the difference between two proportions when the data are matched or paired.

In the paired sample situation the estimates of the two population pair means are correlated

and this leads to the following rather complex expression for the width of the 100(1 − α)% CI

(10.20)

where L1 = (A1 − B1)/C1 and U1 = (A1 − B1)/C1 with similar expressions for L2 and U2. Further 

A1 = 2NPairsπ1 + z 2
1−α/2; ; C1 = 2(NPairs + z 2

1−α/2) and alsoB z z N1 1 2 1 2
2 4 1( )/ /= + −− −α α π πPairs 1 1

+ − − − − + −( ) ( )( ) (π ρ π π2 2
2

2 2 1 1 12L L U U ) ,π1
2

ω π ρ π π( ) ( )( ) (= − − − − +1 1
2

1 1 2 2 22L L U U )− π2
2

   
m

z

( )[log( )]
/=

− −
−2

1 1
1 2
2

2
α

εY Y

  
Y =

+
+

π ϕπ
ϕ

1 2

1

   
SE OR

m
(log )

( )
,

/

=
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4

1

1 2

Y Y

  
m

z
( ) ( ) /

=
−

+
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −

1

1

1

11 1 2 2
1π π ϕπ π α 22
2

21[log( )]
.

− ε

  

SE OR
m n

(log )
( ) ( )

=
−

+
−

⎡

⎣
⎢ 1

1

1

11 1 2 2π π π π⎢⎢
⎤

⎦
⎥
⎥

1 2/

.

  
OR

p p

p p

( )

( )
.=

−
−

2 1

1 2

1

1

9781405146500_4_010.qxd  9/8/08  10:22  Page 127



128 Chapter 10

for A2, B2 and C2. Finally ρ corrects for the fact that p1 and p2 are not independent. For given

planning values for π1, π2 and ρ, Equation 10.20 can be solved for NPairs using an iterative 

procedure.

10.4 Single mean

For a single mean μPop estimated from continuous data assumed to have a Normal distribution,

the estimate of the corresponding 100(1 − α)% CI is

(10.21)

With some change in notation this is the same expression as Equation 2.13.

In the same way as Equation 10.2 is derived, to estimate μPop for a pre-specified confidence

interval width ω, and a planning value for the standard deviation, s, as σPlan, the correspond-

ing sample size is given by

(10.22)

where ΛPlan = ω / σPlan. Note that this has a similar structure to Equations 10.26 and 10.28 

for the difference between two means for independent and paired groups respectively. As a

consequence Table 10.5 is used for the three situations but for the single mean situation the

entries in the table should be divided by two and the total sample size N results.

For a confidence interval no wider than εμ, the corresponding expression is:

(10.23)

It is important to note that, to calculate N from Equations 10.22 or 10.23, an anticipated

value of the population standard deviation is requiredawe denote this σPlan. In the absence of

any data on the standard deviation, a rough estimate of σPlan is provided by the anticipated

range, that is, the largest anticipated minus the smallest anticipated value, divided by 4.

10.5 Difference between two means

Independent groups
If the standard deviation can be assumed to be the same for both groups, then the confidence

interval for the difference between two independent group means is

to (10.24)

where sPool is a combined estimate of σPop obtained from the two samples.
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Denoting n = ϕm, this leads to the total width of the anticipated confidence interval as

(10.25)

Thus, an estimate for the sample size for one of the groups for a confidence interval of width ω
is given by

(10.26)

where ΛPlan = ω / σPlan. The total sample size is therefore N = m + n = m(1 + ϕ).

Note that this has a similar structure to Equations 10.22 and 10.28 for the case of a single

mean and for the difference of two means in paired groups. As a consequence Table 10.5 is

used for the three situations.

Paired or matched groups
When the units of observation are paired or matched, essentially the endpoint observations

from the two members of each unit are linked and the difference between them is used as the

endpoint for analysis. For example, if cases with a particular disease are matched perhaps, by

age and gender to healthy controls, then the endpoint for pair i becomes di = (xi − yi ) where 

xi is the observation from the case and yi that from the control and there are NPairs pairs. The

corresponding large sample confidence interval for a continuous variable is

(10.27)

By analogy with previous situations discussed in this chapter, an appropriate sample size for a

given confidence interval width ω is

(10.28)

where ΛPairs = ω / σPairs. However, in this case an anticipated value of σPairs is required.

Note that this has a similar structure to Equations 10.22 and 10.26 for the case of a single

mean and for the difference of two means in independent groups. As a consequence Table 10.5

is used for the three situations.

10.6 Practicalities

When estimating a single mean based on a sample of size N the corresponding confidence

interval is given by Equation 10.21 provided the sample size is sufficiently large. If it is 

small then the confidence interval should use Student’s t-distribution and will take the form

of Equation 2.14. This implies replacing z1−α/2 by tdf,1−α/2 in Equation 10.21 where df are the

degrees of freedom or N − 1 in this case.
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However as df gets larger and larger tdf,1−α/2 gets closer and closer to z1−α/2. For example

using Table 2.4, t8,0.975 = 2.306, t12,0.975 = 2.179, t16,0.975 = 2.120 while t∞,0.975 = z0.975 = 1.960.

This is indicating that the estimate of the standard deviation, denoted s, is getting more and

more reliable as we have more and more data. Further, in the same way as the value of tdf,1−α/2

decreases with increasing N, so does the standard error (as it depends on 1/ ). Combining

these two aspects results in the width of the confidence interval rapidly declining as (small)

sample sizes increase and then more slowly for larger values. This decline is illustrated in

Figure 10.1 with the standard deviation set as unity.

Thus to have a 95% CI of less than 2 SDs requires more than 6 subjects and for less than 

1 SD about 20 or more subjects. We would be reluctant to recommend any study with less

than 12 observations.

So a ‘rule-of-thumb’ in this context would suggest a minimum of 12 per group (12 pairs 

in a matched design) or for a two-group comparative study a sample size of 24. This does 

not mean a smaller study should never be envisaged but this rather alerts one to the probable

consequences. It also provides a rough guide in other situations such as the comparison 

of two proportions, although in that case it specifies the number of events or non-events

(whichever the less likely) that should be observed rather than the actual sample size.

10.7 Bibliography

Problems related to confidence intervals for proportions and their differences are dis-

cussed by Newcombe and Altman (2000). Day (1988) gives the approximate sample-size

Equation 10.10 and Bristol (1989) Equation 10.12, used for a given width of the confidence
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interval for the difference in two proportions. The sample-size formula (Equation 10.17), for

use when differences are expressed by the odds ratio, is given by Lemeshow, Hosmer and 

Klar (1988).

10.8 Examples and use of the tables

For a 95% CI, α = 0.05 and the value from Table 2.2 is z0.975 = 1.96 and that for a 99% CI,

α = 0.01 and z0.995 = 2.5758.

Table 10.1, Equations 10.2 and 10.5
Example 10.1bsingle binomial proportionblarge population

The prevalence rate of a disease among children in a particular area is believed to be about

30%. How many subjects are required if we wish to determine this prevalence with 95% CI

of width 10%?

It is anticipated that this will be a rather large study, so that Equation 10.2 may be used. This 

gives, with πPlan = 0.30 and ω = 0.1, = 322.7 or approximately 

330 children. However, if we use the more accurate expression of Equation 10.5, which is

applicable whatever the sample size, then from Table 10.1 the number of children to be 

surveyed is N = 323.

If the investigator decides that he would prefer to be 99%, rather than 95%, confident that the

width of the CI will be 10% then evaluates Equation 10.5 to give N = 558 or approximately

560 children to be surveyed.

Table 10.1 and Equation 10.5
Example 10.2bsingle binomial proportion

Suppose all that is known about the prevalence of the disease is that it is anticipated to 

be somewhere between 10 and 40%. How does this effect the sample size calculated in

Example 10.1?

If the prevalence was 10%, then for a 95% CI using the recommended confidence interval

method from Table 10.1 or with ω = 0.1 and πPlan = 0.1 the investigator would require

about N = 139 children. On the other hand, if πPlan = 0.4, N = 369 children. Thus if he decides

to stick with the original estimate of 320 children from the first part of Example 10.1, then 

he will have a more precise estimate if the prevalence turns out to be near 10% than if turns

out to be near 40%.

Equation 10.3
Example 10.3bsingle binomial proportionblarge population

In the same situation as Example 10.1, how many subjects are required if we wish to determine

the prevalence to within about 3%, that is have a confidence interval of width 6%, with 95%

confidence that this is true?
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Here πPlan = 0.3, so ε = 0.03/0.3 = 0.1 which is equivalent to determining the prevalence to

within 10% of its true value. Thus ω = 2πPlanε = 0.06. From Equation 10.3 with πPlan = 0.3 and 

ε = 0.1 we obtain or approximately 900 children.

Alternatively using the recommended method, gives N = 897 which agrees with the

previous approximate calculation.

Equations 10.3 and 10.8
Example 10.4bsingle binomial proportionbfinite population

Suppose that a register contains 1000 male patients with diabetes but no clinical details are

included with respect to whether they are impotent or not. If the estimated prevalence of

impotence amongst these diabetics is assumed to be 20%, how many patients do we require 

in a survey to determine the prevalence of impotence if we are willing to allow a 95% CI of 

4 percentage points either side of the true prevalence?

Here πPlan = 0.2 and 4 percentage points of this prevalence implies that πPlanε = 0.04, so that

ε = 0.04/0.20 = 0.2. From Equation 10.3 we would require about N = 390 subjects for a 95%

CI of the specified width. However, the population is of a finite size, NPopulation = 1000, and

therefore this sample comprises N/NPopulation = 0.39 or approximately 40% of the diabetics on

the register. To adjust for a finite population, the correction factor is

Thus the actual number of subjects required to be sampled is reduced to NFinite = 0.7194 ×
390 = 280.6 or approximately 300. This is a considerable reduction in the anticipated study

size.

Alternatively using with ω = 2πPlanε = 2 × 0.2 × 0.2 = 0.08 gives N = 385 or NFinite = 0.7194

× 385 = 277.0 which agrees closely with the previous calculation.

Table 10.2, Equations 10.10 and 10.11
Example 10.5bdifference between two proportionsbindependent groups

In a study of nausea after anaesthesia described by Day (1988), the anticipated nausea rates

with two types of anaesthetics are 10% and 20%. How many patients are required if a width of

−5% to +5% is set for the estimate of the difference with a 95% CI?

The anticipated values are π1 = 0.1 and π2 = 0.2, and ω = 2 × 0.05 = 0.10. Then use of 

Equation 10.10 with ϕ = 1 gives = 384.2.

Using the less precise method of Equation 10.11 with Y = (0.1 + 0.2)/2 = 0.15 gives 

= 391.8.

However, since the allocation ratio ϕ = 1 in this case, Equation 10.12 gives

= 423.2. 

This is somewhat different from the earlier estimates and also differs from that computed 
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by which always defaults to the recommended method of Equation 10.13. This gives, 

as does Table 10.2, m = 388 or N = 2m ≈ 800 patients.

Table 10.3, Equations 10.17 and 10.19
Example 10.6bodds ratio

In the study of nausea after anaesthesia of Example 10.5 what sample size would be required if

the odds ratio were to be determined to within 20% of its own value.

Here the planning = 2.25 and ε = 0.2. Use of Equation 10.17

with ϕ = 1 gives = 1339.4 or N = 2m ≈ 2700 patients.

Using the less precise method of Equation 10.19 gives = 1210.2 

or N = 2m ≈ 2500 patients. The nearest tabular entries in Table 10.3 are π1 = 0.1, OR = 2 and

π1 = 0.1, OR = 2.5 with corresponding m = 1376 and 1311, the average of which is 1344. This

is quite close to 1339 obtained above.

Table 10.4 and Equation 10.20
Example 10.7bdifference between two proportionsbpaired groups

Bidwell, Sahu, Edwards et al. (2005) describe a study involving surveying patients attending 

a hospital clinic on their awareness and fear of blindness due to smoking, in comparison to

stroke and other smoking-related diseases. 358 patients responded to the survey, with only

9.5% believing that smoking caused blindness, as compared to 70.6% for stroke.

The authors did not report any formal sample-size calculations carried out before the start

of the study. But suppose they had wished to do this and had anticipated that 20% of patients

believed smoking caused blindness while 60% believed smoking caused stroke. Moreover,

they had planned to obtain a confidence interval on the difference in the proportions of width

0.1, with correlation coefficient 0.6.

Since Equation 10.20 must be solved iteratively for N, we use Table 10.4 with π1 = 0.2, 

π2 = 0.6, ω = 0.1 and ρ = 0.6 to obtain N = 252 patients for the study. However, the final study

size is quite sensitive to the presumed value of ρ so that if it takes the values 0.5 and 0.7, the

corresponding sample sizes of 312 and 192 are obtained from .

Table 10.5 and Equation 10.24
Example 10.8bdifference between two meansbindependent groups

In a clinical trial described by Day (1988) which involved comparing the diastolic blood 

pressure (BP) in two groups of patients, it was anticipated that the mean BP might be 100 and

90 mmHg respectively and past experience suggested that the standard deviation is likely to

be 10 mmHg. In the event, however, the observed difference turned out to be 1 mmHg which

is much less than the anticipated 10 mmHg. The corresponding 95% CI was −5 to +7 mmHg.

Nevertheless, if the difference was truly as large as 7 mmHg, this might be medically worthwhile.

As a consequence, a new study is planned, but with the anticipated difference set a 5 mmHg,

rather than at 7 mmHg, which is towards the upper end of the above CI, as this is taken to 
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be the smallest medically relevant difference. What sample size is required for obtaining a

95% CI of width 10 mmHg?

Here δPlan = 5, although this is not needed for the sample-size calculation, σPlan = 10 and 

ω = 10 is required, hence ΛPlan = 10/10 = 1.0. Equation 10.26 with ϕ = 1 is used, to obtain 

or 31 patients per group or a total of N = 62 in all. Direct entry with 

ΛPlan = 1 in Table 10.5 or use of lead to N = 62.

Table 10.5 and Equation 10.22
Example 10.9bsingle meanbenzymealanine aminopeptidase

Jung, Perganda, Schimke et al. (1988) give the mean and standard deviation of the tabular

enzymealanine aminopeptidase (AAP) in 30 healthy male hospital staff members as 1.05 

and 0.32 respectively. A repeat of the study is planned in a random sample of males in the

neighbourhood. How large should the study be to ensure that the width of the corresponding

95% CI is 0.1?

Here the anticipated value of μPlan = 1.05, the anticipated standard deviation is σPlan = 0.32

and ω = 0.1, hence ΛPlan = 0.1/0.32 = 0.3125. For a 95% CI, Equation 10.22 gives N = 4 × 1.962 /

0.31252 = 157.35 or approximately 160 men. Direct entry with ΛPlan = 0.3 in Table 10.5

gives m = 342 and so, as we have a single mean situation, N = m/2 = 171. Use of with 

ΛPlan = 0.3125 gives N = 158.

Table 10.5 and Equation 10.26
Example 10.10bdifference between two meansbpaired groupsbsmall samples

Suppose the study reported by Altman and Gardner (2000) in which systolic blood pressure

levels in 16 middle-aged men before and after a standard exercise were to be repeated. In 

that study the mean ‘After minus Before exercise’ difference was 6.6 mmHg, the standard

deviation of this difference was 6.0 mmHg and the corresponding 95% CI was from 3.4 to 

9.8 mmHg. The new investigators would like to reduce the width of the resulting confidence

interval to about 80% of that of the previous one.

The planning values are therefore ω = 0.8 × (9.8 − 3.4) = 5.12 and σPlan = 6.0, hence 

ΛPlan = 5.12/6.0 = 0.8533. Using these values in Equation 10.28 for a 95% CI gives a sample 

size of = 21.1 or 22 middle-aged men, which agrees with . Table 10.5

with ΛPlan set to 0.85 gives m = 43, hence N = 43/2 = 21.5 or 22 once more.

In view of the modest sample size, the investigator may feel that a confidence interval

should use Student’s t-distribution in the calculations rather than the Normal distribution.

This implies replacing z1−α/2 by tdf,1−α/2 in Equation 10.28 where df are the degrees of freedom

or N − 1 in this case. With N = 22, df = 21 and we have t21,0.975 = 2.079.

To obtain the sample size, we assume the sample size N0 = 22 is that obtained from Equa-

tion 10.28 from which we have shown t21,0.975 = 2.079. This is then used to replace the 1.96 in

the above calculations to give N2 = (4 × 2.0792)/0.85332 = 23.74 or 24. This results in a second

iteration with t23,0.975 = 2.069 and N1 = (4 × 2.0692)/0.85332 = 23.51 or 24. As this gives the

same result as the previous calculation the iteration stops and N = 24 middle-aged men are

recruited to the study.
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Table 10.1 Sample sizes required to observe a given confidence interval width for a given proportion in

a sample from a large population.

Confidence interval (CI)

90% 95%

Width of CI, ωω Width of CI, ωω

ππPlan 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.01 43 11 5 3 61 16 7 4

0.02 85 22 10 6 121 31 14 8

0.03 126 32 14 8 179 45 20 12

0.04 167 42 19 11 237 60 27 15

0.05 206 52 23 13 292 73 33 19

0.06 245 62 28 16 347 87 39 22

0.07 282 71 32 18 401 101 45 26

0.08 319 80 36 20 453 114 51 29

0.09 355 89 40 23 504 126 56 32

0.10 390 98 44 25 554 139 62 35

0.11 424 106 48 27 602 151 67 38

0.12 458 115 51 29 650 163 73 41

0.13 490 123 55 31 696 174 78 44

0.14 522 131 58 33 741 186 83 47

0.15 552 138 62 35 784 196 88 49

0.16 582 146 65 37 827 207 92 52

0.17 611 153 68 39 868 217 97 55

0.18 639 160 71 40 908 227 101 57

0.19 667 167 75 42 946 237 106 60

0.20 693 174 77 44 984 246 110 62

0.25 812 203 91 51 1153 289 129 73

0.30 910 228 102 57 1291 323 144 81

0.35 985 247 110 62 1399 350 156 88

0.40 1039 260 116 65 1476 369 164 93

0.45 1072 268 120 67 1522 381 170 96

0.50 1083 271 121 68 1537 385 171 97
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Table 10.2 Sample sizes required to observe a given confidence interval width for the difference

between two proportions—independent groups. Each cell gives the number of subjects for each group,

m. Hence, the total sample size for the study is N = 2m.

Confidence intervals (CI)

90% 95%

Width of CI, ωω Width of CI, ωω

ππ1 ππ2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.1 0.2 1085 274 123 70 1541 388 175 100

0.3 1300 326 146 82 1846 463 207 117

0.4 1429 358 159 90 2029 507 226 127

0.5 1472 368 164 92 2090 522 232 130

0.6 1428 357 159 89 2028 507 225 126

0.7 1299 325 144 81 1844 461 205 115

0.8 1083 271 121 68 1537 385 171 97

0.9 782 197 89 51 1110 280 126 72

0.2 0.3 1601 400 178 100 2273 568 252 141

0.4 1731 432 191 107 2457 613 272 152

0.5 1774 442 196 110 2518 628 278 156

0.6 1730 432 191 107 2456 613 271 152

0.7 1600 399 177 99 2272 567 251 140

0.8 1385 346 153 86 1966 491 217 122

0.9 1083 271 121 68 1537 385 171 97

0.3 0.4 1946 485 215 120 2763 689 305 170

0.5 1989 496 219 123 2824 704 311 174

0.6 1946 485 215 120 2763 689 304 170

0.7 1816 453 200 112 2579 643 284 159

0.8 1600 399 177 99 2272 567 251 140

0.9 1299 325 144 81 1844 461 205 115

0.4 0.5 2119 528 234 130 3008 750 331 185

0.6 2076 517 229 128 2947 734 325 181

0.7 1946 485 215 120 2763 689 304 170

0.8 1730 432 191 107 2456 613 271 152

0.9 1428 357 159 89 2028 507 225 126

0.5 0.6 2119 528 234 130 3008 750 331 185

0.7 1989 496 219 123 2824 704 311 174

0.8 1774 442 196 110 2518 628 278 156

0.9 1472 368 164 92 2090 522 232 130
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Table 10.3 Sample sizes required to observe a proportionate confidence interval width for the

difference between two groups expressed via the odds ratio (OR). Each cell gives the number of subjects

for each group, m. Hence, the total sample size for the study is N = 2m.

90% CI 95% CI

Proportion of the odds ratio, εε Proportion of the odds ratio, εε

ππ1 OR 0.1 0.15 0.2 0.25 0.1 0.15 0.2 0.25

0.1 1.25 4985 2095 1112 669 7077 2975 1578 950

1.50 4699 1975 1048 631 6672 2804 1488 895

1.75 4497 1890 1003 604 6385 2684 1424 857

2.00 4347 1827 969 583 6172 2594 1376 828

2.50 4141 1741 924 556 5880 2471 1311 789

0.2 1.25 2867 1205 640 385 4071 1711 908 546

1.50 2753 1157 614 370 3908 1643 872 525

1.75 2675 1125 597 359 3798 1596 847 510

2.00 2621 1102 585 352 3721 1564 830 499

2.50 2554 1074 570 343 3625 1524 809 487

0.3 1.25 2234 939 498 300 3172 1333 708 426

1.50 2184 918 487 293 3101 1304 692 416

1.75 2156 907 481 290 3061 1287 683 411

2.00 2142 900 478 288 3041 1278 678 408

2.50 2137 899 477 287 3034 1276 677 407

0.4 1.25 1999 840 446 269 2838 1193 633 381

1.50 1991 837 444 267 2827 1188 631 380

1.75 1997 839 446 268 2835 1192 632 381

2.00 2011 846 449 270 2855 1200 637 383

2.50 2056 864 459 276 2919 1227 651 392

0.5 1.25 1962 825 438 264 2786 1171 622 374

1.50 1991 837 444 267 2827 1188 631 380

1.75 2029 853 453 273 2880 1211 642 387

2.00 2072 871 462 278 2942 1237 656 395

2.50 2170 912 484 291 3080 1295 687 414

0.6 1.25 2090 879 466 281 2968 1248 662 399

1.50 2160 908 482 290 3067 1289 684 412

1.75 2236 940 499 300 3175 1335 708 426

2.00 2316 974 517 311 3288 1382 733 441

2.50 2482 1044 554 333 3524 1482 786 473

0.7 1.25 2443 1027 545 328 3468 1458 774 466

1.50 2571 1081 574 345 3651 1535 814 490

1.75 2703 1137 603 363 3838 1613 856 515

2.00 2838 1193 633 381 4030 1694 899 541

2.50 3112 1308 694 418 4418 1857 985 593

0.8 1.25 3279 1378 731 440 4655 1957 1038 625

1.50 3514 1477 784 472 4989 2097 1113 670

1.75 3752 1577 837 504 5327 2239 1188 715

2.00 3991 1678 890 536 5667 2382 1264 761

2.50 4473 1880 998 600 6351 2669 1416 852
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Table 10.4 Sample sizes required to observe a given confidence interval width for the difference

between two proportions from paired or matched groups. Each cell gives the number of pairs, Npairs,

required for the study.

Width of 90% CI, ωω Width of 95% CI, ωω

ρρ ππ1 ππ2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.2 0.1 0.3 1063 267 120 68 1508 379 170 96

0.4 1175 294 131 74 1668 418 186 105

0.5 1212 303 135 76 1721 430 191 107

0.6 1174 293 130 73 1667 416 185 104

0.2 0.4 1392 347 154 86 1976 493 218 122

0.5 1427 356 158 88 2026 505 224 125

0.6 1391 347 153 86 1975 492 218 122

0.7 1283 320 142 79 1822 454 201 112

0.3 0.5 1593 397 175 98 2261 563 249 139

0.6 1557 388 171 96 2211 551 243 136

0.7 1453 362 160 89 2063 514 227 126

0.8 1283 320 142 79 1822 454 201 112

0.4 0.6 1660 413 183 102 2357 587 259 144

0.7 1557 388 171 96 2211 551 243 136

0.8 1391 347 153 86 1975 492 218 122

0.9 1174 293 130 73 1667 416 185 104

0.5 0.7 1593 397 175 98 2261 563 249 139

0.8 1427 356 158 88 2026 505 224 125

0.9 1212 303 135 76 1721 430 191 107

0.4 0.1 0.3 825 208 94 54 1172 296 133 76

0.4 921 231 103 58 1307 328 146 83

0.5 953 238 106 60 1352 338 150 85

0.6 920 230 102 57 1305 326 145 81

0.2 0.4 1053 263 117 65 1494 373 165 93

0.5 1081 270 119 67 1535 383 169 95

0.6 1052 262 116 65 1493 372 164 92

0.7 966 241 106 59 1371 341 151 84

0.3 0.6 1169 291 128 71 1659 413 182 101

0.7 1089 271 120 66 1546 385 169 94

0.8 966 241 106 59 1371 341 151 84

0.4 0.6 1245 310 136 76 1767 439 194 107

0.7 1169 291 128 71 1659 413 182 101

0.8 1052 262 116 65 1493 372 164 92

0.9 920 230 102 57 1305 326 145 81

0.5 0.7 1196 298 131 73 1698 423 186 104

0.8 1081 270 119 67 1535 383 169 95

0.9 953 238 106 60 1352 338 150 85
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Table 10.4 (continued ): Sample sizes required to observe a given confidence interval width for the

difference between two proportions from paired or matched groups. Each cell gives the number of

pairs, Npairs, required for the study.

Width of 90% CI, ωω Width of 95% CI, ωω

ρρ ππ1 ππ2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.6 0.1 0.3 589 150 69 40 836 213 97 57

0.4 667 168 75 43 946 238 107 61

0.5 693 174 77 44 984 246 110 62

0.6 665 166 74 41 944 236 105 59

0.2 0.4 714 179 80 45 1014 254 113 64

0.5 735 183 81 45 1044 260 115 64

0.6 713 177 78 44 1012 252 111 62

0.7 648 161 71 39 920 229 101 56

0.3 0.5 800 199 88 49 1135 282 124 69

0.6 780 194 85 47 1107 275 121 67

0.7 726 180 79 44 1030 256 112 62

0.8 648 161 71 39 920 229 101 56

0.4 0.6 829 206 90 50 1177 292 128 71

0.7 780 194 85 47 1107 275 121 67

0.8 713 177 78 44 1012 252 111 62

0.9 665 166 74 41 944 236 105 59

0.5 0.7 800 199 88 49 1135 282 124 69

0.8 735 183 81 45 1044 260 115 64

0.9 693 174 77 44 984 246 110 62

0.8 0.1 0.3 353 93 44 27 500 131 62 38

0.4 413 105 48 28 586 149 68 39

0.5 433 109 48 27 615 154 69 39

0.6 410 102 45 25 582 145 64 36

0.2 0.4 377 96 44 25 535 136 62 36

0.5 390 98 44 25 554 139 62 35

0.6 374 93 41 23 530 132 58 32

0.7 331 82 36 20 470 116 51 28

0.3 0.5 403 100 44 24 572 142 62 34

0.6 391 97 42 23 556 137 59 32

0.7 362 89 39 21 514 126 55 30

0.8 331 82 36 20 470 116 51 28

0.4 0.6 413 102 44 24 587 144 62 34

0.7 391 97 42 23 556 137 59 32

0.8 374 93 41 23 530 132 58 32

0.9 410 102 45 25 582 145 64 36

0.5 0.7 403 100 44 24 572 142 62 34

0.8 390 98 44 25 554 139 62 35

0.9 433 109 48 27 615 154 69 39
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Table 10.5 Sample sizes required to observe a given

confidence interval width to estimate a single mean or the

difference between two means for independent or matched

groups. We denote the tabular value m, for the single mean 

N = m/2; for two independent groups N = 2m; whereas for a

paired or matched design NPairs = m/2.

Confidence intervals (CI)

ΛΛ 90% 95%

0.20 542 769

0.25 347 492

0.30 241 342

0.35 177 251

0.40 136 193

0.45 107 152

0.50 87 123

0.55 72 102

0.60 61 86

0.65 52 73

0.70 45 63

0.75 39 55

0.80 34 49

0.85 30 43

0.90 27 38

0.95 24 35

1.0 22 31

1.1 18 26

1.2 16 22

1.3 13 19

1.4 12 16

1.5 10 14

1.6 9 13

1.7 8 11

1.8 7 10

1.9 6 9

2.0 6 8
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Post-marketing surveillance

SUMMARY
Once a drug or medical device has been approved for use in patients by the regulatory authorities, it 

will then usually go into routine clinical use and may be followed by studies involving their post-

marketing surveillance. These will usually cover a wider pool of patient types than those recruited 

to the clinical trial(s) demonstrating their efficacy. There may be concerns about the short and longer 

term consequences of this wider use. This chapter describes sample-size calculations for some single 

or two-group designs, which are often referred to as post-marketing studies.

11.1 Introduction

After a drug or medical device has been accepted for general use it may be prudent to 

survey the corresponding treated patients to identify the type, and quantify the scale, of any

adverse effects. In some circumstances it is possible that only one adverse reaction, such as a

drug-related death, would be necessary for the drug to be considered unacceptable and with-

drawn from a prescription list. In other situations a single adverse occurrence of a particular

event would be put down to chance and two or three occurrences are required to confirm 

suspicion about the drug. In most situations the observed adverse reactions may occur in

patients not receiving the drug in question; for example, in an elderly population deaths 

are likely to occur in any event. Many common adverse reactions such as nausea, drowsiness

and headache are prevalent in the population, and we need to know whether the drug has 

provoked an increase in prevalence of such adverse reactions over this background rate. If 

the background incidence is known, then the sample-size calculations are relatively straight-

forward. If, as is more usual, the incidence is not known, then a control population might 

also be monitored for comparison purposes.

An alternative to a prospective study is to conduct a case-control study in which patients

who have experienced the adverse event of particular interest are matched to individuals who

have not experienced such a reaction. Cases and controls are then checked to see if they have

taken the drug under study.

11
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11.2 Cohort studies

No background incidence
Sample size

Suppose the expected incidence of adverse reactions is λ, the number of occurrences of a 

particular adverse reaction is a and the number of patients required to be monitored is N. If

the incidence of adverse reactions is reasonably low then one might assume that they follow 

a Poisson distribution. With these assumptions and defining β to be the probability that, 

for given incidence λ, we will not find a reactions in a sample of N patients on the particular

drug under study, then N satisfies

(11.1)

For a > 1 there is no simple expression for the solution to Equation 11.1 but the equation can

be solved using numerical methods.

For the special case a = 1, that is, when the particular adverse reaction need occur in only 

one patient, (Equation 11.1) simplifies to

(11.2)

Quick formula

In certain circumstances, it may be that the experience to date with a new drug had not 

yet resulted in the occurrence of a side-effect which is of particular interest. For example, the

event of a post-operative death may be of particular concern if a new type of anaesthesia has

been introduced. If none of N patients showed the event of interest, then the upper 95%

confidence limit of a 0/N (or 0%) rate is approximately 3/N. Thus, in planning a study, for 

an anticipated incidence λ, this suggests a sample size of

N = 3 / λ . (11.3)

Known background incidence
Sample size

If λ0 is the known background incidence of the adverse reaction, and δ the additional incid-

ence caused by use of the particular drug under study, then a one-sided test is appropriate.

The sample size, for given significance level α and power 1 − β is

(11.4)

This is an equivalent expression to Equation 3.7 with πKnown = λ0 and π2 = λ0 + δ when

both λ0 and δ are very small as we would anticipate in this context.
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Unknown background incidence
Sample size

If the background incidence is unknown then a control group is needed for comparison 

purposes. In this situation also, a one-sided test is likely to be the most appropriate. However, 

in order to estimate the number of subjects required in the study we would still need to 

anticipate the background incidence λ0. We note that, in contrast to the randomised clinical

trials described in Chapter 3, it is more usual in post-marketing surveillance studies to 

have more untreated controls, m, than subjects receiving the drug to be monitored, n, as 

they are usually more numerous in number so can improve the statistical efficiency of the

design when numbers taking the drug are perhaps limited. We recognise this by specifying the

sample size in terms of n and setting m = Cn. Thus, if the control group is indeed C times as

large as the treated group then following Equation 3.2, the number of patients in the treated

group, is

(11.5)

where Z = [Cλ0 + (λ0 + δ)] / (1 + C). The total number of subjects recruited is N = m + n

= n(C + 1).

If the control group is the same size as the treated group, then C = 1 and Equation 11.5 can

be approximated by

(11.6)

Moreover, if δ and λ0 are small, this in turn, can be approximated by

(11.7)

Several independent reactions
In practice, several adverse reactions to a particular drug are often monitored simultaneously.

For planning purposes these are often assumed all to have approximately the same incidence

and to act independently of each other. If s reactions are being monitored simultaneously,

then to avoid getting many false positive results the significance level is changed from α to α/s.

Thus the only change required is to replace z1−α by z1−α/s in these equations. However, this

approach can result in very large studies.

11.3 Case-control studies

An alternative to the cohort studies approach to post-marketing surveillance is first to identify

those patients experiencing the adverse event, perhaps over a pre-defined period, then obtain

matched controls who have not experienced the event and finally to ascertain in each group

how many have been exposed to the particular substance (drug) under scrutiny.
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Sample size

The number of cases required, or equivalently the number of units of one case to C matched

controls, is

(11.8)

where Π = and 

The corresponding number of controls is m = Cn. Thus, the total number of subjects

recruited to such a study is N = m + n = n(C + 1).

11.4 Bibliography

Post-marketing surveillance has been discussed by Lewis (1981, 1983) and Tubert-Bitter, Begaud,

Moride and Abenhaim (1994) from the statistical point of view, and also by Skegg and Doll

(1977) and Wilson (1977). The approximation of Equation 11.3 follows from the suggestion of

Hanley and Lippman-Hand (1983) and is described by Eypasch, Lefering, Kum and Troidl

(1995). Sample-size issues are also discussed by Strom (2005) who gives the formulae for a

case-control design. A number of alternative approaches have also been proposed including

those by Dupont (1988) and Edwardes (2001).

11.5 Examples and use of the tables

Table 11.1 and Equation 11.1
Example 11.1bcohort designbno background incidence

In a previous survey, a hypertensive drug produced cardiac arrhythmias in about one in 

10 000 people. A researcher decides that if a new hypertensive drug produces three such

arrhythmias then the drug will have to be withdrawn pending further research. He wishes 

to detect three events with a 99% probability of success.

Table 11.1 with 1 − β = 0.99, incidence λ = 1/10 000 = 0.0001 and a = 3, gives m = 84 060

subjects as does . Thus approximately N = 85 000 subjects are required.

If, on the other hand, the maximum number of subjects was restricted to 30 000 then one

can see by scanning Table 11.1 that he could detect one adverse reaction with a probability of

success of 0.95, since with λ = 0.0001, a = 1 then 1 − β = 0.95; or two reactions with probability

of 0.80, since with λ = 0.0001, a = 2 then 1 − β = 0.80. The corresponding calculations using

confirm the actual sample sizes as 29 958 and 29 944 respectively.

Equation 11.3
Example 11.2bcohort designbquick formula

The incidence of a particular adverse event is thought to be of less than one per 10 000. How

many patients would need to be observed for the researcher to be reasonably confident that

the upper 95% confidence interval is less than one in 10 000?
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Here, λ = 1/10 000 = 0.0001 and use of Equation 11.3 suggests that N = 3/0.0001 = 30 000

patients would need to be observed amongst which not a single adverse reaction is to be 

anticipated.

Table 11.2 and Equation 11.4
Example 11.3bcohort designbknown background incidence

Suppose that a possible side-effect of a drug is an increased incidence of gastric cancer. In an

elderly population, suppose that the annual incidence of gastric cancer is 1%, and the drug

will be deemed unacceptable if this increases to 1.5%. What size of study is required? Further

suppose there was also concern with respect to possible cardiovascular events of much the

same magnitude. How would this affect the sample size?

For a 5% one-sided test size, α = 0.05, Table 2.2 gives z0.95 = 1.6449 and for a power of

90% with one-sided 1 − β = 0.90, z0.90 = 1.2816. For s = 2, α/s = 0.025 and for a one-sided

test z0.975 = 1.96.

If an experimenter is prepared to discount any result that states that the drug actually prevents

gastric cancer, then this is a one-sided test, at say α = 0.05. Furthermore, if he requires a power

1 − β = 0.9 to detect this increase, then with λ0 = 0.01 and δ = 0.005 Equation 11.4 gives 

= 4133.3 so that he would be required to 

study N = 4200 subjects receiving the drug. The calculations using give N = 4134 as does

Table 11.2.

If cardiovascular events were also to be monitored, then the study team may set α/s, where

s = 2, in place of α in the above calculations. Thus, for example, calculation using then

gives N = 4984 which is an increase of 850 subjects so clearly a larger study is suggested.

Table 11.3 and Equation 11.5
Example 11.4bcohort designbunknown background incidence

If the experimenter of Example 11.3 did not know the annual incidence of gastric cancer, but

was prepared to monitor a comparable population of equal size, how many subjects should be

monitored in each group?

For a 5% one-sided test size, α = 0.05, Table 2.2 gives z0.95 = 1.6449 and for a power of

90% with one-sided 1 − β = 0.90, z0.90 = 1.2816.

For one-sided α = 0.05, 1 − β = 0.90, λ0 = 0.01, δ = 0.005 and C = 1, 

= 0.0125 and from Equation 11.5 n = m =

= 8455.5 or 

approximately the 8500, implying a total of N = 17 000 subjects. The calculations using either

Table 11.3 or give n = 8455.SSS
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It should be emphasised that, although he does not know the actual incidence for the con-

trol group, he has to provide its anticipated value in order to estimate the required number 

of patients. Patient numbers are quite sensitive to the anticipated value of the incidence λ0.

Thus, in this example, if λ0 = 0.005 rather than 0.01 then the number of subjects in each

group, for the same test size and power, would be n = m = 5100 or approximately N = 10 000

subjects.

Table 11.3 and Equation 11.5
Example 11.5bcohort designbunknown background incidencebmultiple controls

Suppose that an investigator planning the study described in Example 11.3 has access to a 

cancer registry as a source for controls, and this enables him to monitor many more patient

controls than patients receiving the drug of interest. What effect does this have on the number

of patients to be monitored?

As in Example 11.4, assuming one-sided α = 0.05, 1 − β = 0.90, λ0 = 0.01, δ = 0.005, and

that C = 5 then Table 11.3 or suggest recruiting n = 4968 or 5000 patients to receive the

drug and m = 5 × 5000 = 25 000 controls. This suggests a study of N = 5000 + 25 000 = 30 000

subjects.

Equations 11.4 and 11.5
Example 11.6brandomised trialbunknown background incidence

In a randomised trial conducted by Silverstein, Faich, Goldstein et al. (2000) celecoxib was

compared with non-steroidal anti-inflammatory drugs (NSAIDs) for osteoarthritis and

rheumatoid arthritis. The annualized incidence rates of upper GI ulcer complications alone

and combined with symptomatic ulcers were 0.76% with celecoxib and 1.45% with NSAIDs.

Were this to be repeated, but with a concern that the level reported for celecoxib was perhaps

less than what might be anticipated, what size of study might be contemplated?

Assuming one-sided α = 0.05, and power 1 − β = 0.8, then if we further assume the celecoxib

rate is in fact nearer 0.95%, this suggests we set λ0 = 0.0095 and δ = 0.005. Equation 11.5 and

then give n = 5863 or a post-marketing trial size of approximately 12 000 patients. Were

we to assume that the background incidence for NSAIDs is known, Equation 11.4 and gives

n = 2739 or a post-marketing study of approximately 3000 patients all receiving celecoxib.

Table 11.4 and Equation 11.9
Example 11.7bcase-control design

It is postulated that a relatively new analgesic may be associated with a particular type of

adverse reaction. To investigate if indeed this is so, a case-control study is planned in which it

is important to detect a possible relative risk of 1.2 by use of the new analgesic as compared to

those that have been in current use. It is anticipated that the adverse event has a prevalence of

0.05 amongst users of standard analgesics. How many cases experiencing the adverse reaction

ought the investigators to recruit?

For a 5% one-sided test size, α = 0.05, Table 2.2 gives z0.95 = 1.6449 and for a power of

80% with one-sided 1 − β = 0.80, z0.80 = 0.8416.

SSS

SSS

SSS
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Here λ0 = 0.05 and the relative risk, RRPlan= λ1/λ0 = 1.2, where λ1 = 1.2 × 0.05 = 0.06 is the

anticipated prevalence in the new analgesic users. From this we have δ = λ1 − λ0 = 0.01, and 

assuming C = 1, Ω = (0.05 + 0.01) / (1 + 0.01) = 0.0594, = 0.0547, 

then with one-sided test size α = 0.05 and power 1 − β = 0.8, Equation 11.8 gives n =

= 7235.1. Table 11.4 and with C = 1, give n = 7227 or approximately 7500. This implies 

a total study size of N = 15 000 subjects. On the other hand, if C = 5, then gives 4257 or

approximately n = 4500. This gives a total study size of N = m + n = 5 × 4500 + 4500 = 27 000.
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Table 11.1 Sample sizes required to observe a total of a adverse reactions with a given probability 

1 − β and anticipated incidence λ.

Probability 1 −− ββ

λλ a 0.5 0.8 0.9 0.95 0.99

0.0001 1 6932 16 095 23 026 29 958 46 052

2 16 784 29 944 38 898 47 439 66 384

3 26 741 42 791 53 224 62 958 84 060

4 36 721 55 151 66 808 77 537 100 452

5 46 710 67 210 79 936 91 536 116 047

0.0005 1 1387 3219 4606 5992 9211

2 3357 5989 7780 9488 13 277

3 5349 8559 10 645 12 592 16 812

4 7345 11 031 13 362 15 508 20 091

5 9342 13 442 15 988 18 308 23 210

0.001 1 694 1610 2303 2996 4606

2 1679 2995 3890 4744 6639

3 2675 4280 5323 6296 8406

4 3673 5516 6681 7754 10 046

5 4671 6721 7994 9154 11 605

0.005 1 139 322 461 600 922

2 336 599 778 949 1328

3 535 856 1065 1260 1682

4 735 1104 1337 1551 2010

5 935 1345 1599 1831 2321

0.01 1 70 161 231 300 461

2 168 300 389 475 664

3 268 428 533 630 841

4 368 552 669 776 1005

5 468 673 800 916 1161
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Table 11.2 Sample sizes required for detection of a specific adverse reaction with background

incidence, λ0, known.

One-sided αα == 0.05; Power 1 −− ββ == 0.8

Additional incidence, δδ

λλ0 0.001 0.005 0.01 0.05 0.1 0.15

0.005 32 943 1608 – – –

0.01 63 886 2864 804 – –

0.05 311 214 12 778 3295 161 –

0.1 620 345 25 146 6389 287 81

0.15 929 474 37 512 9481 411 112 54

One-sided αα == 0.05; Power 1 −− ββ == 0.9

Additional incidence, δδ

λλ0 0.001 0.005 0.01 0.05 0.1 0.15

0.005 46 474 2391 – – –

0.01 89 339 4134 1196 – –

0.05 431 933 17 868 4648 240 –

0.1 860 130 35 001 8934 414 120

0.15 1 288 324 52 130 13 218 586 164 80
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Table 11.3 Sample sizes required for detection of a specific adverse reaction with background

incidence unknown. Each cell gives the number of cases, n. Hence, the total sample size for the study 

is N = (C + 1)n.

One-sided αα == 0.05; Power 1 −− ββ == 0.8

Controls per case, C

λλ0 δδ 1 2 3 4 5

0.005 0.001 67 634 50 221 44 410 41 502 39 757

0.01 0.001 128 470 95 858 84 984 79 546 76 282

0.005 6105 4477 3931 3657 3492

0.05 0.005 24 603 18 362 16 281 15 240 14 615

0.01 6426 4774 4223 3947 3781

0.1 0.005 45 500 34 045 30 227 28 317 27 171

0.01 11 620 8675 7693 7202 6907

0.05 540 398 350 325 311

0.15 0.005 63 924 47 873 42 523 39 848 38 242

0.01 16 195 12 111 10 750 10 069 9661

0.05 714 528 467 436 417

0.1 197 145 127 118 113

One-sided αα == 0.05; Power 1 −− ββ == 0.9

Controls per case, C

λλ0 δδ 1 2 3 4 5

0.005 0.001 93 683 69 983 62 073 58 115 55 738

0.01 0.001 177 951 133 195 118 271 110 807 106 328

0.005 8455 6283 5554 5188 4968

0.05 0.005 34 078 25 510 22 652 21 224 20 366

0.01 8901 6651 5899 5524 5298

0.1 0.005 63 024 47 225 41 958 39 325 37 745

0.01 16 094 12 049 10 700 10 026 9621

0.05 748 556 492 460 441

0.15 0.005 88 545 66 371 58 980 55 284 53 066

0.01 22 432 16 805 14 929 13 991 13 428

0.05 988 737 653 611 586

0.1 273 203 179 167 160
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Table 11.4 Number of cases to be observed in a case-control study. Each cell gives the number of

cases, n. Hence, the total sample size for the study is N = (C + 1)n.

One-sided αα == 0.05; Power 1 −− ββ == 0.8

Controls per case, C

λλ0 δδ 1 2 3 4 5

0.005 0.001 68 415 50 804 44 927 41 986 40 220

0.01 0.001 131 273 97 955 86 845 81 289 77 955

0.005 6273 4601 4041 3760 3591

0.05 0.005 27 466 20 504 18 183 17 022 16 325

0.01 7227 5372 4753 4443 4257

0.1 0.005 56 608 42 367 37 619 35 246 33 821

0.01 14 567 10 880 9651 9036 8667

0.05 718 529 466 434 415

0.15 0.005 89 178 66 801 59 342 55 612 53 374

0.01 22 770 17 036 15 125 14 169 13 595

0.05 1066 791 699 653 625

0.1 316 233 205 191 183

One-sided αα == 0.05; Power 1 −− ββ == 0.9

Controls per case, C

λλ0 δδ 1 2 3 4 5

0.005 0.001 94 765 70 793 62 792 58 788 56 385

0.01 0.001 181 833 136 104 120 855 113 229 108 653

0.005 8688 6457 5708 5332 5106

0.05 0.005 38 045 28 482 25 293 23 698 22 741

0.01 10 010 7481 6637 6214 5961

0.1 0.005 78 411 58 760 52 209 48 934 46 968

0.01 20 176 15 108 13 418 12 573 12 066

0.05 993 740 655 612 587

0.15 0.005 123 525 92 600 82 291 77 136 74 044

0.01 31 540 23 632 20 996 19 678 18 887

0.05 1475 1102 977 915 877

0.1 438 326 288 269 258
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The correlation coefficient

SUMMARY
The strength of the linear association between two continuous or ranked variables is estimated by the

correlation coefficient. Recommendations as to what may be considered ‘small’, ‘medium’ and ‘large’

associations are given and the formulae for sample sizes to detect such are included, as well as for the 

situation where lack of association is required to be demonstrated.

12.1 Introduction

An investigator may wish to show that two measurements are associated. Note that this is not

the same as showing that two measurements are in agreement with each other. For example,

in patients with a particular disease, the number of monocytes in the blood may be correlated

with the estrone-to-estradiol conversion rate in that the ratio between the two measurements

remains approximately constant, even though the values themselves may not be similar to

each other. One method of measuring association is to compute Pearson’s product-moment

correlation coefficient r. This measures the degree of linear relationship between two variables

but is inappropriate in the case of non-linear relationships. Thus a correlation of r = 0 indicates

that there is no linear relation between the two variables, while r = +1 or −1 indicates perfect

positive or negative linear correlation respectively. A hypothesis test could also be conducted,

the corresponding null hypothesis being that the true correlation coefficient ρPop = 0. A small

p-value will then indicate evidence against that true correlation coefficient being zero. However

this does not then imply that ρPop is necessarily close to +1 or −1. Given that the number of

monocytes in the blood and the estrone-to-estradiol conversion rates differ between patients,

one can calculate the requisite number of patients to be observed by specifying the magnitude

of the correlation coefficient to be detected. Specifying the correlation coefficient avoids the

problem of defining the ranges (largest to smallest values) of the two variables under con-

sideration; however, the wider their ranges, the more sensitive the study.

12.2 Theory and formulae

Effect size
The correlation coefficient is a dimensionless quantity and so can (itself) act as an effect-size

index. Before the study, we need to specify the anticipated size of the correlation coefficient ρ

12
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that we think might represent the true correlation between the two variables. Clearly the smaller

the true correlation coefficient the larger the study has to be to detect it. To get a feel for the

correlation coefficient between the two variables, we note that ρ2 is the proportion of variance

in either of the variables which may be accounted for by the other, using a linear relationship.

Cohen (1988) suggested values of ρ of 0.1, 0.3 and 0.5 as ‘small’, ‘medium’ and ‘large’ effects.

Usually the direction of the relationship will be specified in advance. For example, systolic

and diastolic blood pressures are certain to be positively associated and so one would use 

a one-sided test. However, if one is looking for an association with no sign specified, then a

two-sided test is warranted.

Sample size

To calculate appropriate sample sizes, we assume that we are investigating the association between

two Normally distributed variables with correlation coefficient ρ. It can be shown that:

(12.1)

is approximately Normally distributed with standard deviation , where N is the

sample size. This leads to the appropriate sample size to detect a correlation ρ for significance

level α and power of 1 − β as:

(12.2)

Note that we have used z1−α rather than z1−α/2 as one-sided comparisons are more usual in this

situation. However, it should be emphasized that to calculate uρ for Equation 12.2 we require

some value for N (the number we are trying to estimate!) to substitute in Equation 12.1. To

circumvent this problem an initial value for uρ, labelled u0
ρ, is calculated where:

(12.3)

Equation 12.3 is the first term on the right-hand side of Equation 12.1. The value obtained

is then used in Equation 12.2 to give an initial value for N labelled N0. This N0 is then used 

in Equation 12.1 to obtain a new value for uρ, say u1
ρ which is now used in Equation 12.2 

to obtain a new value N, and the whole process is repeated again.. To calculate the entries for

Table 12.1 the iteration was repeated until two consecutive values of N within unity of each

other were found.

Lack of association

Cohen (1988) cites an example of a social psychologist planning an experiment in which 

college students would be subjected to two questionnaires, one on personality, yPersonality, and

one on social desirability, ySocial. He wishes to show that yPersonality and ySocial are not associated.

This is a similar situation to that described in Chapter 9, where we are trying to do the impossible

and prove the null hypothesis. We circumvent this problem by attempting to demonstrate

that ρ is small, for example, no greater in absolute value than 0.10.

  

uρ
ρ
ρ

0 1

2

1

1
log .=

+
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

N
z z

u

( )
.=

+
+− −1 1

2

2
3α β

ρ

  [ ( )]1 3/ N −

  
u

Np log
( )

,=
+
−

+
−

1

2

1

1 2 1

ρ
ρ

ρ

9781405146500_4_012.qxd  9/8/08  10:23  Page 154



The correlation coefficient 155

12.3 Bibliography

Cohen (1988) described sample sizes for tests of significance of the correlation coefficient

while problems connected with their use and interpretation in medical studies are discussed

by Campbell, Machin and Walters (2007).

12.4 Use of the table

Table 12.1 and Equation 12.2
Example 12.1bforced expiratory volume and forced vital capacity

In respiratory physiology, suppose the correlation between the forced expiratory volume 

in 1 second (FEV1), and the forced vital capacity (FVC) in healthy subjects is thought to be

about 0.6. Also, suppose that patients with a certain lung disease are available at a clinic and

one wishes to test if there is a significant correlation between the FEV1 and the FVC in these

patients. We do not expect a negative correlation, and so the test is a one-sided one, say at the

5% level, and power 80%. How many subjects are required?

Using Table 2.2 with a 5% one-sided test size, α = 0.05 gives z0.95 = 1.6449 and for a power

of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416.

Here, one-sided α = 0.05, 1 − β = 0.8 and ρ = 0.6. An initial value to start the iteration to find 

N in Equation 12.2 is = 0.6931. Substituting this in Equation 12.2 gives 

= 15.9 ≈ 16. Following this = 0.7131 

with = 15.2 or 16 once more. Thus the iteration process need go no further.

This is the same value as is obtained from Table 12.1 or directly from so we require at

least N = 16 subjects on which both FEV1 and FVC are measured.

Table 12.1 and Equation 12.2
Example 12.2bblood pressure and viscosity

If subjects suffering from mild hypertension are given a certain dose of a drug, the subse-

quent fall in blood pressure is associated with a decrease in blood viscosity, with a correlation

coefficient of about 0.3. Suppose we conduct the same experiment on patients with severe

hypertension and observe their fall in blood pressure and decrease in viscosity following

ingestion of the drug. How many patients do we need to recruit to obtain a significant correla-

tion, given that its magnitude is anticipated to be 0.3?

Using Table 2.2 with a two-sided 5% test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 90% a one-sided 1 − β = 0.90 gives z0.90 = 1.2816.
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In this case, suppose we do not know which way the correlation may go, that is, it may be 

positive or negative, so that we are using a two-sided test with significance level 5%, and

power 90%. Thus, two-sided α = 0.05, 1 − β = 0.90, ρ = 0.3, and from Table 12.1 or directly

from , we would require N = 112 patients to be investigated.

Table 12.1 and Equation 12.2
Example 12.3black of association

A psychologist wishes to plan an experiment in which medical students are asked questions

from which measures of personality and social desirability can be obtained. The investigator

wishes to show that these two variables are not associated. How many students must he

recruit to his study?

Using Table 2.2 with a 20% one-sided test size, α = 0.20 gives z0.80 = 0.8416 and for a

power of 95% a one-sided 1 − β = 0.95 gives z0.95 = 1.6449.

It is first necessary to specify the size of the Type I error α. In such a situation, as described

here, the investigator may be willing to be effectively assume that ρ = 0 when it is small and 

so choose a large Type I error, α = 0.2. However, he will require a relatively small Type II 

error and perhaps choose β = 0.05. In addition he must set a value of ρ below which he 

would regard the association as effectively zero, he chooses ρ = 0.1. Using with one-sided

α = 0.2, 1 − β = 0.95 and ρ = 0.1, gives the number of students to be recruited N = 617 or

approximately 700.

12.5 References

Campbell MJ, Machin D and Walters SJ (2007). Medical Statistics: A Textbook for the Health

Sciences, 4th edn. John Wiley & Sons, Chichester.

Cohen J (1988). Statistical Power Analysis for Behavioral Sciences, 2nd edn. Lawrence Earlbaum,

New Jersey.
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Table 12.1 Sample sizes for detecting a statistically significant correlation coefficient.

αα Power 1 −− ββ
ρρ One-sided Two-sided 0.8 0.9

0.1 0.025 0.05 782 1046

0.05 0.10 617 853

0.10 0.20 450 655

0.2 0.025 0.05 193 258

0.05 0.10 153 211

0.10 0.20 112 162

0.3 0.025 0.05 84 112

0.05 0.10 67 92

0.10 0.20 50 71

0.4 0.025 0.05 46 61

0.05 0.10 37 50

0.10 0.20 28 39

0.5 0.025 0.05 29 37

0.05 0.10 23 31

0.10 0.20 18 24

0.6 0.025 0.05 19 25

0.05 0.10 16 21

0.10 0.20 12 16

0.7 0.025 0.05 13 17

0.05 0.10 11 14

0.10 0.20 9 12

0.8 0.025 0.05 10 12

0.05 0.10 8 10

0.10 0.20 7 8

0.9 0.025 0.05 7 8

0.05 0.10 6 7

0.10 0.20 5 6
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Reference intervals and receiver 
operating curves

SUMMARY
An important part of the process of examining a patient is to check clinical measures taken from the

patient against a ‘normal’ or ‘reference’ range of values. Evidence of the measure lying outside these 

values may be taken as indicative of the need for further investigation. In this chapter we describe sample

sizes for establishing such reference intervals. The value of disease screening tests are often summarised

by their sensitivity and specificity and so sample sizes for comparing a diagnostic test’s sensitivity to that

of a standard as well as for the comparison between two tests are given. We also describe sample-size

calculations for determining receiver operating curves (ROC) which are utilised for distinguishing dis-

eased from non-diseased subjects.

13.1 Introduction

When a physician is in the process of establishing a diagnosis in a patient who presents with

particular symptoms, the patient may be subjected to a series of tests, the results from which

may then suggest an appropriate course of action. For example, a patient complaining of not

feeling well may be tested for the presence of a bacterium in their urine. On the basis of the

reading obtained the patient may then be compared with the normal range of values expected

from healthy individuals, if outside the range, then infection is suspected. It is this infection

that is then presumed to be the cause of ‘not feeling well’.

The objective of a study to establish a normal range or reference interval (RI) is to define

the interval for a particular clinical measurement within which the majority of values, often

95%, of a defined population will lie.

Such an interval is then used as a screen in a clinical context to identify patients presenting

with particular symptoms that are ‘outside’ this intervalathe purpose being to give an indica-

tion of a possible pathology causing their symptoms. However, for truly diagnostic purposes

merely being outside the RI is not sufficient as it is necessary to know the range of values 

of patients with the disease in question rather than the range for the general population at

large. For example, in patients suspected of liver cancer it is routine to take blood samples

from which their α-feta protein (AFP) levels are determined. A high level is indicative of 

liver cancer although further and more detailed examination will be required to confirm the

eventual diagnosis. The judgement as to whether or not a particular patient has a high AFP 

is made by comparison with AFP measured in individuals who are known to be free of the 

disease in question. In most circumstances, the range of values of AFP in patients who do

13
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indeed have liver cancer will overlap with healthy subjects who are free of the disease. In view

of this overlap, and to help distinguish the diseased from the non-diseased, receiver operating

curves (ROC) are constructed to help determine the best cut-point value for diagnosis.

In clinical practice diagnostic tests are never used in healthy persons but only in groups for

which the diagnostic test is indicated. These will include some patients without the disease in

question and others with the disease present at various levels of severity. Consequently the

best approach to evaluate the diagnostic accuracy of a new diagnostic test is to use a sample 

of consecutive patients for whom the test is indicated. A careful description of the eligibility

characteristics of this group needs to be provided.

The patients in this group will undergo the new diagnostic test and also those for the 

reference test by which they will be categorised as non-diseased or diseased. The reference test

is usually the currently accepted best available and feasible diagnostic tool to determine the

presence or absence of the disease in question. Thus, for every patient, there is their test result

and the ultimate clinical decision on their diagnosis.

13.2 Reference intervals

Choosing the subjects
Samples are taken from populations of individuals to provide estimates of the population

parameters of which we are interested; in our situation the cut-off-point(s) of the RI indicat-

ing boundaries of high (and/or low) values. The purpose of summarising the behaviour of 

a particular group is usually to draw some inference about a wider population of which the

group is a sample. Thus although a group of volunteers comprise the sample, and are duly

investigated, the object is to represent the RI of the general population as a whole. The wider

population will include the healthy as well as those who are not. As a consequence, it is clearly

important that the ‘volunteers’ are chosen carefully so that they do indeed reflect the popula-

tion as a whole and not a particular subset of that population. If the ‘volunteers’ are selected 

at random from the population of interest then the calculated RI will be an estimate of the

true RI of the population. If they are not, then it is no longer clear what the interval obtained

represents and at worst it may not even be appropriate for clinical use.

Normal distribution
If the variable that has been measured has a Normal distribution form, then the data x1, x2,

. . . xN from the N subjects can be summarised by the sample mean, H, and sample SD, s. These

provide estimates of the associated population mean μ and SD σ respectively.

In this situation, the 100(1 − α)% RI is estimated by

H − z1−α/2 s to H + z1−α/2 s. (13.1)

Often a 95% reference interval is required in which case α = 0.05 and from Table 2.1, 

z1−α/2 = z0.975 = 1.9600.

If we denote the cut-points of the lower and upper limits of this reference interval as RLower

and RUpper, then its width is

WReference = RUpper − RLower = 2z1−α/2 s. (13.2)
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Study size

A key property of any reference interval is the precision with which the cut-points are 

estimated. Thus of particular relevance to design, are the width of the confidence intervals for

the estimated cut-points RLower and RUpper. If the sample is large (N > 100) then the standard

error (SE) of these cut-points is

SE(RLower) = SE(RUpper) = = 1.7321σ/ . (13.3)

Thus the approximate 100(1 − γ )% CI for the true RLower is

(13.4)

and there is a similar expression for RUpper. The width of these confidence intervals is

(13.5)

One design criteria for determining an appropriate study size to establish a RI is to 

fix a value for the ratio of WCut to WReference. The design therefore sets to some 

pre-specified value. In this case it follows, from dividing Equation 13.5 by Equation 13.2 and

rearranging, that the sample size is estimated by

(13.6)

For the particular case when we choose α and γ to have the same value, Equation 13.6 

simplifies to

N = 3/ρ2. (13.7)

Practical values for ρ suggested by Linnet (1987) range from 0.1 to 0.3.

Non-Normal situation
Logarithmic transformation

If the data do not have a Normal distribution then, in some circumstances, a logarithmic

transformation of the data may have to be made. In which case, the reference interval for 

y = log x will take the form of Equation 13.1 but with y replacing x in the calculation of the

mean and SD. Further the sample size can still be estimated by Equations 13.6 and 13.7.

However, the corresponding reference interval on the x-scale is then obtained from the

antilogarithms of the lower and upper limits of this range. That is the reference range for x is

exp( I − z1−α/2 sy) to exp( I + z1−α/2 sy). (13.8)

Ranked data

If the data cannot be transformed to the Normal distribution form then a reference interval

can still be calculated. In this case, the data x1, x2, . . . xN are first ranked from largest to smallest.

These are labelled x(1), x(2), . . . x( j), . . . x(N). The lower limit of the 100(1 − α)% reference
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range is then x( j), where j = Nα/2 (interpolating between adjacent observations if Nα/2 is 

not an integer). Similarly the upper limit is the observation corresponding to j = N(1 − α/2).

These limits provide what is often known as the empirical normal range.

The ranks of the lower and upper limits of a 100(1 − γ)% CI for any quantile q, are

and (13.9)

These values are then rounded to the nearest integer. These integers provide the rqth and 

sqth observations in this ranking and hence the relevant lower and upper confidence limits. 

To determine those for RLower, one sets q = α/2 in Equation 13.9 and for RUpper, q = 1 − (α/2)

is used.

However, these are the ranks of the observed values corresponding to RLower and RUpper not

the values themselves and so there is no equivalent algebraic form to WCut of Equation 13.5 in

this case. However, an approximate SE is provided by that which is appropriate for quantiles

estimated using ranks but assuming these ranks had arisen from data having a Normal 

distribution form. This gives, in place of Equation 13.3,

(13.10)

where

(13.11)

and is the height of the Normal distribution at z1−γ /2.

Thus an approximation to the 100(1 − γ)% CI for the true RLower of the 100(1 − α)% RI is

(13.12)

This confidence interval has width

(13.13)

Study size

Sample size is determined by first using Equation 13.6 to give NInitial and then inflate this to

obtain

NFinal = η NInitial / . (13.14)

This will lead to a larger study size to establish a reference interval than those given by

Equation 13.6. This is why, if at all possible, transforming the scale of measurement to one

that is approximately Normal in distribution is very desirable.
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13.3 Sensitivity and specificity

As we have indicated, diagnostic test results are often given in the form of a continuous 

variable, such as diastolic blood pressure or haemoglobin level. However, for the purposes of

diagnosis of a particular disease or condition, a cut-off point along this scale is required. Thus,

for every laboratory test or diagnostic procedure with the corresponding cut-point chosen, if

the disease is present the probability that the test will be positive is required. The sensitivity 

of the test, Se, is the proportion of those with the disease who also have a positive test result.

Conversely, if the disease is absent, the probability that the test result will be negative is

required. Thus the specificity of the test, Sp, is the proportion of those without the disease who

also have a negative test result.

In the following discussions on sample sizes, we only mention Se. However, the formulae

will equally extend to Sp as well.

One sample design
Sample size

In this situation, we require the number of subjects, N, necessary to show that a given Se

differs from a target value Se = SeKnown. Given a significance level α and a power (1 − β)

against the specified alternative SePlan then the required number of patients with the disease, 

is approximately

(13.15)

Values for z1−α/2 and z1−β can be obtained from Table 2.2.

This is the same as Equation 3.7 but with SeKnown and SePlan replacing πKnown and π2.

However, to determine the number of subjects for the study, of whom NDisease are anticipated

to ultimately have the disease in question, it is necessary to divide this by the prevalence of 

the disease, πDisease amongst the cohort of subjects to which the test will be applied. Thus

(13.16)

Equation 13.15, and hence this affects Equation 13.16, is a large sample approximation and

Li and Fine (2004) have indicated how the exact method using the binomial probabilities may

be calculated. Their methodology is implemented in .

Two sample design
Independent groups
If two diagnostic tests are to be compared then the total number of diseased individuals

required is given by

(13.17)

Values for z1−α/2 and z1−β can be obtained from Table 2.2.
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This is the same expression as Equation 3.2 but with Se1 and Se2 replacing π1 and π2. Finally

the number of subjects to recruit is given by Equation 13.16. It is important to stress that once

the sample sizes to receive the two tests have been established then the subjects concerned

should be randomly allocated to the two alternative tests.

Paired design
If two diagnostic tests are to be compared but both within the same subjects then this is a

paired design as each subject provides a sample from both. Thus each subject also has two 

distinct diagnoses, one from one testaone from the other. These may or may not agree with

each other. Given a significance level α and a power (1 − β), the number of patients required

who have the disease in question is

(13.18)

where Λ = (1 − Se1)Se2 + (1 − Se2)Se1 and ζ = (1 − Se1)Se2 − (1 − Se2)Se1.

Once again the number of subjects to recruit is then given by using Equation 13.16. It is

important to stress that once the sample size to receive both tests has been established then 

the order in which they are determined from the patient should be randomised half to have

Test 1 before Test 2 and half the reverse. The details of how this may be achieved will vary 

with the clinical situation concerned.

13.4 Receiver operating curves (ROC)

When a diagnostic test produces a continuous measurement, then a diagnostic cut-point is

selected. This is then used ultimately to divide future subjects into those who are suspected 

to have the disease and those who are not. This diagnostic cut-point is determined by first 

calculating the sensitivity and specificity at each potential cut-point along the measurement

scale.

As we have indicated, the sensitivity, Se, of a diagnostic test is the proportion of those 

with the disease who also have a positive diagnostic result. It is also termed the true positive

rate (TPR). On the other hand, the specificity is the proportion of those without the disease

who also have a negative result, that is, they do not have the disease and their test is below 

the cut-point. Those who do not have the disease but have a test value above the cut-point 

are termed false positives. The corresponding false positive rate (FPR) = (1 − specificity) or 

(1 − Sp).

Once a study is completed Se on the (vertical) y-axis is plotted against (1 − Sp) on the 

(horizontal) x-axis for each possible cut-point to produce the ROC.

In order to divide the diseased from the non-diseased, the final (diagnostic) cut-point, C,

chosen is usually made at a point that provides a sensible balance between the sensitivity and the

specificity. For a particular test this requires an assessment of the relative medical consequences,

and costs, of making a false diagnosis of disease (false positive, FP) or of not diagnosing dis-

ease that is present (false negative, FN).
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A perfect diagnostic test would be one with no FP or FN outcomes and would be represented

by a line that started at the origin and went up the y-axis to Se = 1, while keeping a false positive

rate of (1 − Sp) = 0, and then horizontally across the x-axis until it reaches (1 − Sp) = 1. A test that

produces FP results at the same rate as TP results would produce a ROC on the diagonal line y = x.

The sensitivity and specificity in the context of sample size determination for ROC are

analogous to the test size and power of other chapters.

Study size

If the objective is to estimate the area, AUC, under an ROC, then sample size can be deter-

mined using an expression similar to Equation 10.20 and from which the width, ω, of this

confidence interval can be calculated. The study size is then

(13.19)

The right-hand side of this equation is identical in form to Equation 10.20 but because

evaluation of a diagnostic test is determined through the ROC, this requires two subject

groups, the diseased and non-diseased. Further, the method of estimating σ has to take this

into account. In fact σ is a rather complex function of the anticipated ratio of non-diseased

subjects to diseased patients, R, and the required sensitivity and specificity. It is given by,

(13.20)

where A = z1−FPR − z1−TPR which can be evaluated using Table 2.1.

This is used in Equation 13.19 to determine the required mDiseased, after which mNon-diseased

= R × mDiseased is calculated. The final estimated study size is N = mDiseased + mNon-diseased.

13.5 Bibliography

Harris and Boyd (1995) give the large sample estimate of the standard error of cut-points of

Equation 13.3 while the ranks of the lower and upper limits of a 100(1 − γ)% CI for any quantile

are given by Campbell and Gardner (2000). Methods to calculate reference intervals and asso-

ciated sample sizes are also discussed in Altman (1991). Li and Fine (2004) provide sample

size formulae for determining sensitivity and specificity in a variety of situations. Obuchowski

and McClish (1997), who refer to the AUC as the accuracy of the test, derive Equation 13.20.

13.6 Examples and use of tables

Table 13.1 and Equation 13.6
Example 13.1bmyocardial iron deposition

Anderson, Holden, Davis et al. (2001) established normal ranges for T2-star (T2*) values 

in the heart. T2* is a magnetic resonance technique which can quantify myocardial iron 

  

σ
π

exp( )
=

−
+ + +

⎛

⎝
⎜⎜

⎞

⎠
⎟

1
4

2 2 2

2
1

1 5

8 8

A

R

A A

R ⎟⎟ ,

  

m zDiseased ./=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ −4

2

2 1 2
2σ

ω α

9781405146500_4_013.qxd  9/8/08  10:23  Page 164



Reference intervals and ROC 165

deposition, the levels of which indicate the need for ventricular dysfunction treatment. They

quote a 95% normal range for T2* as 36–68 ms obtained from 15 healthy volunteers (9 males,

6 females, aged 26–39 years).

For a 5% two-sided reference interval, α = 0.05, Table 2.2 gives z0.975 = 1.96 while for a

confidence interval with γ = 0.1, z0.90 = 1.6449.

We presume that we are planning to estimate the 95% RI for myocardial T2* and we have the

above study available. From that study, WReference = 68 − 36 = 32 ms and we intend to quote a

90% CI for the cut-point(s) so determined.

Use of Equation 13.6 with ρPlan = 0.1 gives N = 3 × [1.6449/(0.1 × 1.96)]2 ≈ 215. Direct entry

into Table 13.1 or use of with a 95% RI (α = 0.05), a 90% CI (γ = 0.10) for the cut-point

and ρPlan = 0.1 gives N = 212 subjects. Had ρPlan = 0.2 been specified then, N ≈ 53 subjects are

required.

These estimates of study size contrast markedly with the 15 volunteers used by Anderson,

Holden, Davis et al. (2001). In terms of the design criteria we have introduced here their study

corresponds to the use of ρPlan ≈ 0.4, which is outside the range recommended by Linnet

(1987).

Table 13.2 and Equations 13.11 and 13.14
Example 13.2bempirical normal rangebcerebrospinal fluid opening pressure

Whiteley, Al-Shahi, Warlow et al. (2006) conducted a study involving the prospective record-

ing of the cerebrospinal fluid (CSF) opening pressure in 242 adults who had lumbar puncture.

Their objective was to obtain the 95% RI for lumbar CSF opening pressure and relate this to

the body mass index.

In their report, the authors plotted the distribution of CSF opening pressures in the 242

subjects and used a Kolmogorov–Smirnov test to conclude that the data was not normally 

distributed. They then used a non-parametric approach to calculate the 95% reference interval.

No mention was made on how they arrived at a sample size of 242.

For a 5% two-sided reference interval, α = 0.05, Table 2.2 gives z0.975 = 1.96 while for a

confidence interval with γ = 0.1, z0.90 = 1.6449.

Assuming that the authors had computed the sample size using the approach discussed, from

Equation 13.6 with 95% RI and 90% CI (α = 0.05, γ = 0.10) and ρPlan = 0.1, we have NInitial =

= 211.3 or 212. Use of Equations 5.11 then gives 

= 0.1031 and = 2.1139 so that, from Equation 13.14,

NFinal = 2.1139 × 212/ = 258.7 or approximately 260 individuals. Direct entry into Table 13.2

or use of give N = 259 subjects. This is larger than the 242 actually recruited to the study.SSS
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The sample size of 242 utilised by Whiteley, Al-Shahi, Warlow et al. (2006) would corres-

pond to setting α = 0.05, γ = 0.10 and ρPlan ≈ 0.104 in .

Table 13.3 and Equations 13.15 and 13.16
Example 13.3bsensitivitybexcessive daytime somnolence (EDS)

Hosselet, Ayappa, Norman et al. (2001) conducted a study to evaluate the utility of various

measures of sleep-disordered breathing (SDB) to find that which best identifies excessive 

daytime somnolence (EDS). They concluded that a total respiratory disturbance index

(RDITotal − sum of apnoea, hypopnoea, and flow limitation events) of 18 events per hour or

more had the best discriminant ability. This was then tested prospectively in 103 subjects, of

whom 68 had EDS and 35 did not, giving a disease prevalence of ρDisease = 68/103 = 0.66. The

sensitivity of the test was reported to be 86%.

In a confirmatory study of the value of RDITotal as a screen for EDS, how many subjects

need to be recruited?

Using Table 2.2 with a 5% one-sided test size, α = 0.05 gives z0.95 = 1.6449 and for a power

of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416.

The investigators felt that the subject population in the confirmatory study may differ in 

several respects from the earlier study and so anticipated that the sensitivity of the test may 

be somewhat higher at SePlan = 0.95, with the disease prevalence also lower at πDisease = 0.55.

Then assuming a one-sided test of 5% and a power of 80%, with SeKnown = 0.86, Equation 13.15 

gives = 70.2 ≈ 75.

From Equation 13.17, the number of subjects to be tested is N = NDisease / πDisease = 75/0.55

= 136.4 or approximately 140 patients. Using the more accurate exact binomial approach

implemented in , gives N = 133. This approach is also used to generate the values given 

in Table 13.3, where supposing instead that SeKnown = 0.8, SePlan = 0.9 and πDisease = 0.5, the

required sample size would be N = 164.

Tables 13.4 and 13.5, Equations 13.16, 13.17 and 13.18
Example 13.4bcomparative sensitivity of two testsbperiodontal disease

Nomura, Tamaki, Tanaka, et al. (2006) conducted a study to evaluate the utility of various

salivary enzyme tests for screening of periodontitis. Amongst the biochemical markers, salivary

lactate dehydrogenase (LDH), with a cut at 371 IU/L appeared the best, and free haemoglobin

(f-HB) with a cut at 0.5 IU/L the worst, with sensitivities: 0.66 and 0.27 respectively.

If a repeat study is planned, how many subjects per group are needed if only one test can be

given to each individual? The anticipated proportion with periodontal disease is anticipated

to be 1 in 4.

Using Table 2.2 with a 5% two-sided test size, α = 0.05 gives z0.975 = 1.96 and for a power

of 80% a one-sided 1 − β = 0.80 gives z0.80 = 0.8416.
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If the difference anticipated is the same as that observed by Nomura, Tamaki, Tanaka 

et al. (2006), then the planning difference is Se2 − Se1 = 0.66 − 0.27 = 0.39. Thus for a 

two-sided test of 5% and power 80% the total number with the disease to be recruited is

= 48.9 or approximately 50. To identify 50 subjects with the disease from Equation 13.17, 

the number of subjects to be tested is N = NDisease / πDisease = 50/0.25 = 200. Using the more

accurate approach implemented in gives N = 196. Alternatively Table 13.4 could be used,

although since the table does not have the particular input values tabulated, the nearest values

of Se1 = 0.3, Se2 = 0.7 and πDisease = 0.3 would need to be used, to give N = 158.

If on the other hand, it was possible to make both diagnostic tests in each individual, then a

paired design using Equation 13.18 could be used for determining sample size. Thus in this

situation Λ = (1 − Se1)Se2 + (1 − Se2)Se1 = 0.5736, ζ = (1 − Se1)Se2 − (1 − Se2)Se1 = 0.3900 and  

so = 25.6 or 26 diseased 

subjects. Thus the number of subjects to be tested is N = NDisease / πDisease = 26/0.25 = 92 or

approximately 100. In this situation, the choice of a paired design reduces the size of the 

proposed study considerably. Using directly gives N = 80, or Table 13.5 with Se1 = 0.3,

Se2 = 0.7 and πDisease = 0.3 gives N = 64.

Table 13.6 and Equation 13.20
Example 13.5bROC curvesbcartilage abnormalities

Obuchowski and McClish (1997) consider the planning of a study to estimate the accuracy 

of magnetic resonance imaging (MRI) for detecting cartilage abnormalities in patients with

symptomatic knees. Patients in the study were to undergo MRI for arthroscopy, which is con-

sidered the gold standard for determining the presence/absence of abnormalities. Following 

a five-point scoring, it was anticipated that 40% of patients will have a cartilage abnormality,

so R = 60/40 = 1.5. They stipulated an anticipated specificity of 90% and sensitivity of 45%.

The width of the 95% confidence interval was set as 0.1.

The anticipated specificity and sensitivity imply FPR = 0.1 and TPR = 0.45 respectively.

A 10% FPR is equivalent to setting a one-sided, α = 0.1 in Table 2.2 hence z0.9 = 1.2816. A

45% TPR is equivalent to setting a one-sided, α = 0.45 in Table 2.2 hence, z0.55 = 0.1257.

From the values in the panel, A = 1.2816 − 0.1257 = 1.1559. Hence σ =

= 0.3265. From which, for a 95% CI, 

mDiseased = = 163.8 or approximately 164. This differs marginally from

mDiseased = 161 given by Obuchowski and McClish (1997) due to rounding error. 

Finally mNon-diseased = R × mDiseased = 1.5 × 164 = 246 so that the final estimated study size is 

N = mDiseased + mNon-diseased = 407. Using directly gives N = 410. Table 13.6 does not SSS
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have TPR = 0.45 tabulated, but using TPR = 0.40, the total sample size required would be 

N = 2.5 × 176 = 440.
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Table 13.1 Sample sizes in order to obtain a required reference interval—Normal distribution.

Each cell gives the total number of patients, N, that should be entered into study.

Reference 
Confidence interval of the estimated cutoff (%)

interval (%) ρρ 80 90 95

90 0.025 2914 4800 6816

0.05 729 1200 1704

0.075 324 534 758

0.1 183 300 426

0.125 117 192 273

0.15 81 134 190

0.175 60 98 140

0.2 46 75 107

0.3 21 34 48

0.4 12 19 27

95 0.025 2053 3381 4800

0.05 514 846 1200

0.075 229 376 534

0.1 129 212 300

0.125 83 136 192

0.15 58 94 134

0.175 42 69 98

0.2 33 53 75

0.3 15 24 34

0.4 9 14 19

99 0.025 1189 1958 2780

0.05 298 490 695

0.075 133 218 309

0.1 75 123 174

0.125 48 79 112

0.15 34 55 78

0.175 25 40 57

0.2 19 31 44

0.3 9 14 20

0.4 5 8 11
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Table 13.2 Sample sizes in order to obtain a required reference interval—non-Normal distribution.

Each cell gives the total number of patients, N, that should be entered into study.

Reference 
Confidence interval of the estimated cutoff (%)

interval (%) ρρ 80 90 95

90 0.025 2876 5857 10 513

0.05 720 1465 2629

0.075 320 652 1170

0.1 181 367 658

0.125 116 235 422

0.15 80 164 294

0.175 60 120 216

0.2 46 92 166

0.3 21 42 75

0.4 12 24 42

95 0.025 2027 4125 7403

0.05 508 1033 1851

0.075 227 459 824

0.1 128 259 463

0.125 82 166 297

0.15 58 115 207

0.175 42 85 152

0.2 33 65 116

0.3 15 30 53

0.4 9 18 30

99 0.025 1174 2389 4288

0.05 295 598 1072

0.075 132 266 477

0.1 75 151 269

0.125 48 97 173

0.15 34 68 121

0.175 25 49 88

0.2 19 38 68

0.3 9 18 31

0.4 5 10 17
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Table 13.3 Sample sizes required to observe a given sensitivity or specificity in diagnostic accuracy

studies—single sample. Each cell gives the number of subjects for the study, N.

One-sided αα == 0.05; Power 1 −− ββ == 0.8

Disease prevalence, ππDisease

SeKnown SePlan 0.01 0.1 0.3 0.5 0.7

0.1 0.2 7800 780 260 156 112

0.3 2500 250 84 50 36

0.4 1300 130 44 26 19

0.5 800 80 27 16 12

0.6 600 60 20 12 9

0.7 500 50 17 10 8

0.8 300 30 10 6 5

0.9 200 20 7 4 3

0.2 0.3 11 600 1160 387 232 166

0.4 3500 350 117 70 50

0.5 1700 170 57 34 25

0.6 1000 100 34 20 15

0.7 700 70 24 14 10

0.8 400 40 14 8 6

0.9 200 20 7 4 3

0.3 0.4 14 400 1440 480 288 206

0.5 3900 390 130 78 56

0.6 1700 170 57 34 25

0.7 1000 100 34 20 15

0.8 700 70 24 14 10

0.9 500 50 17 10 8

0.4 0.5 15 800 1580 527 316 226

0.6 4200 420 140 84 61

0.7 1900 190 64 38 28

0.8 1100 110 37 22 16

0.9 600 60 20 12 9

0.5 0.6 15 800 1580 527 316 226

0.7 3700 370 124 74 53

0.8 1800 180 60 36 26

0.9 800 80 27 16 12

0.6 0.7 14 300 1430 477 286 205

0.8 3600 360 120 72 52

0.9 1400 140 47 28 20

0.7 0.8 11 900 1190 397 238 170

0.9 2800 280 94 56 40

0.8 0.9 8200 820 274 164 118
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Table 13.3 (continued ): Sample sizes required to observe a given sensitivity or specificity in diagnostic

accuracy studies—single sample. Each cell gives the number of subjects for the study, N.

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

Disease prevalence, ππDisease

SeKnown SePlan 0.01 0.1 0.3 0.5 0.7

0.1 0.2 10 900 1090 364 218 156

0.3 3300 330 110 66 48

0.4 1800 180 60 36 26

0.5 1200 120 40 24 18

0.6 700 70 24 14 10

0.7 600 60 20 12 9

0.8 500 50 17 10 8

0.9 300 30 10 6 5

0.2 0.3 16 000 1600 534 320 229

0.4 4700 470 157 94 68

0.5 2100 210 70 42 31

0.6 1300 130 44 26 19

0.7 900 90 30 18 13

0.8 600 60 20 12 9

0.9 400 40 14 8 6

0.3 0.4 19 300 1930 644 386 276

0.5 5300 530 177 106 76

0.6 2500 250 84 50 36

0.7 1400 140 47 28 20

0.8 900 90 30 18 13

0.9 500 50 17 10 8

0.4 0.5 21 400 2140 714 428 306

0.6 5600 560 187 112 80

0.7 2500 250 84 50 36

0.8 1300 130 44 26 19

0.9 800 80 27 16 12

0.5 0.6 21 300 2130 710 426 305

0.7 5300 530 177 106 76

0.8 2300 230 77 46 33

0.9 1100 110 37 22 16

0.6 0.7 19 700 1970 657 394 282

0.8 4500 450 150 90 65

0.9 1700 170 57 34 25

0.7 0.8 16 400 1640 547 328 235

0.9 3700 370 124 74 53

0.8 0.9 11 200 1120 374 224 160
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Table 13.4 Sample sizes required to observe a given sensitivity or specificity in diagnostic accuracy

studies—two sample unpaired design. Each cell gives the total number of subjects for the study, N.

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

Disease prevalence, ππDisease

Se1 Se2 0.01 0.1 0.3 0.5 0.7

0.1 0.2 39 800 3 980 1328 796 570

0.3 12 400 1240 414 248 178

0.4 6300 630 210 126 90

0.5 3900 390 130 78 56

0.6 2700 270 90 54 40

0.7 1900 190 64 38 28

0.8 1400 140 48 28 20

0.9 1000 100 34 20 16

0.2 0.3 58 700 5870 1958 1174 840

0.4 16 300 1630 544 326 234

0.5 7700 770 258 154 110

0.6 4500 450 150 90 66

0.7 2900 290 98 58 42

0.8 2000 200 68 40 30

0.9 1400 140 48 28 20

0.3 0.4 71 200 7120 2374 1424 1018

0.5 18 600 1860 620 372 266

0.6 8400 840 280 168 122

0.7 4700 470 158 94 68

0.8 2900 290 98 58 42

0.9 1900 190 64 38 28

0.4 0.5 77 500 7750 2584 1550 1108

0.6 19 400 1940 648 388 278

0.7 8400 840 280 168 122

0.8 4500 450 150 90 66

0.9 2700 270 90 54 40

0.5 0.6 77 500 7750 2584 1550 1108

0.7 18 600 1860 620 372 266

0.8 7700 770 258 154 110

0.9 3900 390 130 78 56

0.6 0.7 71 200 7120 2374 1424 1018

0.8 16 300 1630 544 326 234

0.9 6300 630 210 126 90

0.7 0.8 58 700 5870 1958 1174 840

0.9 12 400 1240 414 248 178

0.8 0.9 39 800 3980 1328 796 570
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Table 13.4 (continued ): Sample sizes required to observe a given sensitivity or specificity in diagnostic

accuracy studies—two sample unpaired design. Each cell gives the total number of subjects for the study, N.

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

Disease prevalence, ππDisease

Se1 Se2 0.01 0.1 0.3 0.5 0.7

0.1 0.2 53 200 5320 1774 1064 760

0.3 16 400 1640 548 328 236

0.4 8400 840 280 168 122

0.5 5100 510 170 102 74

0.6 3400 340 114 68 50

0.7 2400 240 80 48 36

0.8 1700 170 58 34 256

0.9 1200 1200 120 40 24 18

0.2 0.3 78 400 7840 2614 1568 1120

0.4 21 700 2170 724 434 310

0.5 10 300 1030 344 206 148

0.6 5900 590 198 118 86

0.7 3800 380 127 76 56

0.8 2500 250 84 50 36

0.9 1700 170 58 34 26

0.3 0.4 95 300 9530 3177 1906 1362

0.5 24 800 2480 828 496 356

0.6 11 200 1120 374 224 160

0.7 6200 620 208 124 90

0.8 3800 380 128 76 56

0.9 2400 240 80 48 36

0.4 0.5 103 700 10 370 3458 2074 1482

0.6 25 900 2590 864 518 370

0.7 11 200 1120 374 224 160

0.8 5900 590 198 118 86

0.9 3400 340 114 68 50

0.5 0.6 103 700 10 370 3458 2074 1482

0.7 24 800 2480 828 496 356

0.8 10 300 1030 344 206 148

0.9 5100 510 170 102 74

0.6 0.7 95 300 9530 3178 1906 1362

0.8 21 700 2170 724 434 310

0.9 8400 840 280 168 122

0.7 0.8 78 400 7840 2614 1568 1120

0.9 16 400 1640 548 328 236

0.8 0.9 53 200 5320 1774 1064 760
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Table 13.5 Sample sizes required to observe a given sensitivity or specificity in diagnostic accuracy

studies—two sample matched paired design. Each cell gives the total number of subjects for the 

study, N.

Two-sided αα == 0.05; Power 1 −− ββ == 0.8

Disease prevalence, ππDisease

Se1 Se2 0.01 0.1 0.3 0.5 0.7

0.1 0.2 15 401 1540 514 308 220

0.3 4701 470 157 94 68

0.4 2401 240 80 48 35

0.5 1501 150 50 30 22

0.6 1101 110 37 22 16

0.7 801 80 27 16 12

0.8 601 60 20 12 9

0.9 501 50 17 10 8

0.2 0.3 23 001 2300 767 460 329

0.4 6401 640 214 128 92

0.5 3001 300 100 60 43

0.6 1801 180 60 36 26

0.7 1201 120 40 24 18

0.8 801 80 27 16 12

0.9 601 60 20 12 9

0.3 0.4 28 001 2800 934 560 400

0.5 7401 740 247 148 106

0.6 3301 330 110 66 48

0.7 1901 190 64 38 28

0.8 1201 120 40 24 18

0.9 801 80 27 16 12

0.4 0.5 30 501 3050 1017 610 436

0.6 7701 770 257 154 110

0.7 3301 330 110 66 48

0.8 1801 180 60 36 26

0.9 1101 110 37 22 16

0.5 0.6 30 501 3050 1017 610 436

0.7 7401 740 247 148 106

0.8 3001 300 100 60 43

0.9 1501 150 50 30 22

0.6 0.7 28 001 2800 934 560 400

0.8 6401 640 214 128 92

0.9 2401 240 80 48 35

0.7 0.8 23 001 2300 767 460 329

0.9 4701 470 157 94 68

0.8 0.9 15 401 1540 514 308 220
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Table 13.5 (continued ): Sample sizes required to observe a given sensitivity or specificity in diagnostic

accuracy studies—two sample matched paired design. Each cell gives the total number of subjects for

the study, N.

Two-sided αα == 0.05; Power 1 −− ββ == 0.9

Disease prevalence, ππDisease

Se1 Se2 0.01 0.1 0.3 0.5 0.7

0.1 0.2 21 101 2110 704 422 302

0.3 6301 630 210 126 90

0.4 3201 320 107 64 46

0.5 1901 190 64 38 28

0.6 1301 130 44 26 19

0.7 1001 100 34 20 15

0.8 701 70 24 14 10

0.9 501 50 17 10 8

0.2 0.3 31 701 3170 1057 634 453

0.4 8701 870 290 174 125

0.5 4101 410 137 82 59

0.6 2401 240 80 48 35

0.7 1501 150 50 30 22

0.8 1001 100 34 20 15

0.9 701 70 24 14 10

0.3 0.4 38 701 3870 1290 774 553

0.5 10 001 1000 334 200 143

0.6 4501 450 150 90 65

0.7 2501 250 84 50 36

0.8 1501 150 50 30 22

0.9 1001 100 34 20 15

0.4 0.5 42 201 4220 1407 844 603

0.6 10 501 1050 350 210 150

0.7 4501 450 150 90 65

0.8 2401 240 80 48 35

0.9 1301 130 44 26 19

0.5 0.6 42 201 4220 1407 844 603

0.7 10 001 1000 334 200 143

0.8 4101 410 137 82 59

0.9 1901 190 64 38 28

0.6 0.7 38 701 3870 1290 774 553

0.8 8701 870 290 174 125

0.9 3201 320 107 64 46

0.7 0.8 31 701 3170 1057 634 453

0.9 6301 630 210 126 90

0.8 0.9 21 101 2110 704 422 302
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Table 13.6 Sample sizes required to observe a given confidence interval width for receiver operating

curves (ROC). Each cell gives the number of subjects for each group, m. Hence, the total sample size for

the study is N = (1 + R)m.

Confidence intervals (CI)

90% 95%

Width of CI, ωω Width of CI, ωω

R FPR TPR 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

1 0.1 0.4 568 142 64 36 806 202 90 51

0.5 490 123 55 31 696 174 78 44

0.6 400 100 45 25 568 142 64 36

0.7 300 75 34 19 426 107 48 27

0.8 195 49 22 13 277 70 31 18

0.9 90 23 10 6 127 32 15 8

0.2 0.4 655 164 73 41 930 233 104 59

0.5 612 153 68 39 869 218 97 55

0.6 549 138 61 35 779 195 87 49

0.7 461 116 52 29 655 164 73 41

0.8 345 87 39 22 490 123 55 31

0.9 195 49 22 13 277 70 31 18

0.3 0.4 683 171 76 43 969 243 108 61

0.5 663 166 74 42 941 236 105 59

0.6 625 157 70 40 887 222 99 56

0.7 562 141 63 36 798 200 89 50

0.8 461 116 52 29 655 164 73 41

0.9 300 75 34 19 426 107 48 27

1.5 0.1 0.4 492 124 56 32 698 176 78 44

0.5 430 108 48 28 610 154 68 40

0.6 354 90 40 24 504 126 56 32

0.7 270 68 30 18 382 96 44 24

0.8 176 44 20 12 250 64 28 16

0.9 82 22 10 6 116 30 14 8

0.2 0.4 554 140 62 36 788 198 88 50

0.5 526 132 60 34 746 188 84 48

0.6 476 120 54 30 676 170 76 44

0.7 406 102 46 26 576 144 64 36

0.8 308 78 36 20 436 110 50 28

0.9 176 44 20 12 250 64 28 16

0.3 0.4 572 144 64 36 812 204 92 52

0.5 560 140 64 36 794 200 90 50

0.6 534 134 60 34 758 190 86 48

0.7 488 122 56 32 692 174 78 44

0.8 406 102 46 26 576 144 64 36

0.9 270 68 30 18 382 96 44 24
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Table 13.6 (continued ): Sample sizes required to observe a given confidence interval width for receiver

operating curves (ROC). Each cell gives the number of subjects for each group, m. Hence, the total

sample size for the study is N = (1 + R)m.

Confidence intervals (CI)

90% 95%

Width of CI, ωω Width of CI, ωω

R FPR TPR 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

2 0.1 0.4 453 114 51 29 642 161 72 41

0.5 399 100 45 25 566 142 63 36

0.6 331 83 37 21 470 118 53 30

0.7 253 64 29 16 359 90 40 23

0.8 167 42 19 11 237 60 27 15

0.9 78 20 9 5 111 28 13 7

0.2 0.4 504 126 56 32 715 179 80 45

0.5 481 121 54 31 683 171 76 43

0.6 440 110 49 28 625 157 70 40

0.7 378 95 42 24 536 134 60 34

0.8 289 73 33 19 409 103 46 26

0.9 167 42 19 11 237 60 27 15

0.3 0.4 515 129 58 33 732 183 82 46

0.5 508 127 57 32 721 181 81 46

0.6 488 122 55 31 693 174 77 44

0.7 449 113 50 29 637 160 71 40

0.8 378 95 42 24 536 134 60 34

0.9 253 64 29 16 359 90 40 23

2.5 0.1 0.4 430 108 48 27 610 153 68 39

0.5 381 96 43 24 540 135 60 34

0.6 318 80 36 20 451 113 51 29

0.7 243 61 27 16 345 87 39 22

0.8 161 41 18 11 229 58 26 15

0.9 76 19 9 5 107 27 12 7

0.2 0.4 474 119 53 30 673 169 75 43

0.5 455 114 51 29 645 162 72 41

0.6 418 105 47 27 594 149 66 38

0.7 361 91 41 23 512 128 57 32

0.8 277 70 31 18 393 99 44 25

0.9 161 41 18 11 229 58 26 15

0.3 0.4 482 121 54 31 684 171 76 43

0.5 477 120 53 30 676 169 76 43

0.6 461 116 52 29 654 164 73 41

0.7 426 107 48 27 605 152 68 38

0.8 361 91 41 23 512 128 57 32

0.9 243 61 27 16 345 87 39 22
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Observer agreement studies

SUMMARY
In this chapter we describe sample-size calculations for observer agreement studies, with respect to the

degree of lack of self-reproducibility of a single observer assessing the same material twice, or agreement

between two observers both independently assessing the same specimens. In these situations, when

binary decisions are to be made, sample sizes are then based on the pre-specified width of the confid-

ence interval of either the estimated probability of lack of reproducibility (disagreement) or alternatively

Cohen’s κ statistic. For a study design comprising a combination of these two options, in which the 

two observers repeat their assessments on a proportion of the specimens but not on the remainder, the

lack of reproducibility and disagreement are both estimated so sample size depends on pre-specified

confidence interval widths of each of these components. When the measures taken by the reviewer(s)

are continuous in nature then agreement is assessed using the intra-class correlation coefficient.

14.1 Introduction

Assessing the results of diagnostic procedures and the effects of therapies often involves some

degree of subjective judgment. Observer agreement studies are conducted to investigate the

reproducibility and level of consensus on such assessments. Typically, two observers make

assessments on each of a series of specimens (assumed as one per subject or patient depending

on the context) and these assessments are compared. For example, to examine the measurement

of volume of intracranial gliomas from computed tomography, the two observers would 

evaluate scans from a series of patients and record their estimates of the tumour volume. 

In some circumstances, the assessments made are of binary form such as a decision on the

presence or absence of metastases when examining liver scintigraphy charts.

An important consideration relevant to study design is the presence of both within-observer

and between-observer variation. The apparent disagreement between observers may be due

to either one of these components or both. It is important to distinguish between them, as any

action taken to reduce disagreement will depend on which type of variation dominates. To do

this, we require repeated observations of the same material by the same observer.

We consider observer agreement studies with binary assessments and designs; where each

of two observers assesses all specimens once, where each observer assesses all specimens twice,

and where each observer assesses a proportion of the specimenss once and the remainder twice.

Also included are sample sizes for situations where Cohen’s κ is used to assess binary decision

agreement and those that have a continuous outcome and express agreement through the

intra-class correlation coefficient.

14
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Observer-agreement studies are designed to estimate the level of observer agreement and

so sample sizes are usually based on the achievement of sufficient precision of the estimate as

expressed by the desired width of the relevant confidence interval (CI). Moreover, there are

often no obvious hypotheses to test. The hypothesis of perfect agreement between observers 

is unrealistic as it can be refuted by a single case of disagreement and the hypothesis of agree-

ment purely by chance is also unrealistic. Rejection of such a hypothesis does not provide 

useful information since the investigator needs to know more than the fact that the observed

level of agreement is unlikely to be due to chance.

Nevertheless we describe a hypothesis testing approach to sample size for a continuous

outcome in which a minimally acceptable inter-observer agreement (or reliability) and an

anticipated level are set.

14.2 Theory and formulae

No replicate observations
Suppose two observers make a diagnostic decision after examining a patient (or perhaps 

a specimen taken from a patient), then how likely is it that the two observers draw the same

diagnostic conclusion? If we assume the question is whether or not a particular disease is 

present or absent, then this review process generates, for each of the specimens reviewed, one

of the four possible binary pairs (0, 0), (1, 0), (0, 1) and (1, 1) as indicated in Figure 14.1.

From Figure 14.1, it is clear that the estimates of the proportion of times the reviewer(s)

agree or disagree are

(14.1)

respectively.

Sample size

If the corresponding anticipated value for the probability of disagreement, πDis, is not too

close to zero, and the sample size is anticipated to be reasonably large, then for a specified

width WDis of the 100(1 − α)% CI, the sample size is

  

p
d d

m
p

d
Agree

Repeat
Disand=

+
=

+00 11 10 dd

m
01

Repeat

Figure 14.1 Possible outcomes for two observers each reviewing the same specimens but only once 

to determine the level of between observer disagreement (or a single observer reviewing the same

material on two occasions to determine their own lack of reproducibility).

First review(er)

Second

review(er) Absent (0) Present (1) Total

Absent (0) d00 d01

Present (1) d10 d11

Total mRepeat
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(14.2)

This equation has the same format as Equation 10.2 which was used for calculating the sample

size to estimate a Binomial proportion for a given width of confidence interval.

As we have warned previously, it may not be reliable if πDis is close to 0 or 1 although the 

latter is very unlikely in this context. Typical values of πDis range from 0.05 to 0.4. In most 

situations high disagreement values would not be anticipated but low values may be quite

common.

Replicate observations
If replicate observations on some specimens by the same observers are added to the design of

the previous section, then observer disagreement can be factored into the two components of

between and within-observer variation.

The statistical method assumes that for each specimen the observer, say A, has an unknown

‘true’ assessment, but owing to difficulties of assessment or other reasons, the observer 

sometimes makes an ‘error’ and records a result opposite to his own ‘true’ assessment. The

probability of this is denoted, ξA. Further suppose the probability that the true assessment of

observer A, for a particular specimen drawn at random, would be to diagnose the condition 

as present (denoted 1) and this is ΘA1. The corresponding probability of diagnosing the 

condition as absent is ΘA0. For a second observer B we have ξB, ΘB1 and ΘB0.

These probabilities are combined into the four possible binary-pair outcomes, to give 

Θ00( = ΘA0 × ΘB0), Θ10, Θ01 and Θ11 from which ΘDis = Θ10 + Θ01 is the probability they truly

disagree. Thus ΘDis represents the true between-observer variation having extracted the 

contribution to the disagreement made by within-observer variation.

The aim of the study is to ascertain the level of agreement between two observers and to 

estimate the degree of reproducibility from each observer. As a consequence, each observer

assesses the same set of N specimens independently. In addition, each observer assesses again

a random sample of mRepeat (< N) of these same specimens. Thus each observer makes 

T = N + mRepeat examinations.

Within-observer variationbreproducibility

For a single observer, the degree of reproducibility is quantified by the probability of making 

a chance error in diagnosis ξ. As indicated above, this is the probability of ascribing a 0 

to a diagnosis when it should be 1, or a 1 to a diagnosis that should be 0. The estimate of this

probability is

(14.3)

This has a 100(1 − α)% CI,

ξ − z1−α/2 × SE(ξ) to ξ + z1−α/2 × SE(ξ) (14.4)

where .
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Number of repeat observations

Sample-size calculations are based on the achievement of sufficient precision of the estimate

of ξ which is governed primarily by the number of duplicate assessments, mRepeat. For a 

given ξ, and desired width wξ, of the 100(1 − α)% CI, the number of repeats necessary is 

given by

(14.5)

Between-observer variationbagreement

Each observer, say A and B, must make mRepeat diagnoses and so we obtain measures of 

reproducibly for each, that is estimates of ξA and ξB respectively. The estimated probability 

of their disagreement is

(14.6)

where θ01 is the probability that on the first assessment observer A says 0 and observer B says 1,

while θ10 is the same with the positions of A and B reversed.

Gold standard
If one of the observers, say B, can be regarded as defining the ‘gold standard’ for comparison

then this is equivalent to specifying ξB = 0, so that Equation 14.6 becomes

(14.7)

Equal error rates
At the design stage we will usually have no reason to expect one observer to have a greater

error rate than the other, so we assume that ξA = ξB = ξ, and Equation 14.6 becomes

(14.8)

We make this equal error rate assumption in the methods described below.

Sample size

As the design of the study has two objectives in mind, the final sample size chosen must be

sufficient to meet both design objectives. In order to achieve this, the number of specimens,

and the final number of repeats, required for the study is established based on the following

considerations. First the number required to obtain a specified precision for ΘDis is established

by setting the confidence interval width as wΘ.

(i) If it is desired to minimize the number of subjects assessed twice by each observer, then for

the width of the 100(1 − α)% CI set at wΘ, the required sample size is

(14.9)N
m E Bm
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where D = (H − G)F(1 − F)(1 − 2ΘDis)
2/2,

E = H(H − G) + F(1 − 2ΘDis)
2[G(1 − F)/2 − H(1 − 2F)], F = 2ξ(1 − ξ), G = (2F − F 2)/4 and

H = ΘDis(1 − ΘDis) + F(1 − F)(1 − 2ΘDis)
2.

(ii) If it is desired to minimize the total number of subjects required to achieve the desired 

precision in ΘDis, when all subjects are assessed twice, then

(14.10)

It is useful to note that since F = 2ξ(1 − ξ) this equation depends only on specified values

for ξ, ΘDis, wΘ and the confidence level required, 1 − α, and so is relatively easy to evaluate.

(iii) If it is desired to minimize the total number of assessments, T = N + mRepeat. The value of

the number of repeat assessments that achieves this minimum is given by

(14.11)

where B, C, D and E are defined as above. NOptimal is then determined from Equation 14.9 by

replacing mRepeat with mOptimal.

Cohen’s kappa, κκ
Inter-observer agreement can also be assessed using Cohen’s κ, which takes the form

(14.12)

where πAgree is the proportion of observer pairs exhibiting perfect agreement and πExp the 

proportion expected to show agreement by chance alone. From Figure 14.1, as we have 

shown before, pAgree = (d00 + d11)/mRepeat. To get the expected agreement we use the row and

column totals to estimate the expected numbers agreeing for each category. For negative

agreement (Absent, Absent) the expected proportion is the product of (d01 + d00)/mRepeat and

(d10 + d00)/mRepeat, giving (d00 + d01)(d00 + d10)/m2
Repeat. Likewise for positive agreement the

expected proportion is (d10 + d11)(d01 + d11)/m2
Repeat. The expected proportion of agreements

for the whole table is the sum of these two terms, that is

(14.13)

Study size

Suppose the same two observers each assess a sample from mκ specimens independently then,

if κ is not too close to zero and the study is reasonably large, for a specified width Wκ of the

100(1 − α)% CI, the sample size is

(14.14)
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Intra-class correlation coefficient
The intra-class correlation (ICC) is the equivalent to Cohen’s κ when the observers are 

asked to record on a continuous rather than on a binary scale. Further, it allows more than

two observers to be compared. It is defined by

(14.15)

where σWithin and σBetween are the within and between observer standard deviations.

Study sizebconfidence interval approach

Suppose that k observers each assess mSpecimens independently then, for a specified width Wρ of

the 100(1 − α)% CI, an approximate sample size is:

(14.16)

The design choice is the combination NObservations = kmSpecimens.

Bonett (2002) points out that when there are only k = 2 raters and the anticipated intra-class

correlation is ρPlan > 0.7, then the sample size required should be increased from mSpecimens to

(mSpecimens + 5ρPlan) or increasing the number of specimens by 4 or 5.

Study sizebhypothesis testing approach

To estimate the study size, a minimally acceptable level of inter-observer reliability, say ρ0, has

to be specified. Further, ρPlan is then set as the value that we anticipate for our study. Once

more, the design choice, is NObservations = kmSpecimens, that is the combination of numbers of

observers available, k, and the associated numbers of specimens to examine, mSpecimens, which

also depends on k. For this purpose the effect size is

(14.17)

The number of specimens, mSpecimens, then required for two-sided significance α and power 

1 − β is given by

(14.18)

This can be evaluated with the help of Table 2.3 which gives θ = (z1−α/2 + z1−β)2 for different

values of α and β.

Cautionary note

Equation 14.18 is less robust to differing values of ρ than 14.16 of the confidence interval

approach. For example, under a null hypothesis of ρ0 = 0.7, with α = β = 0.05 and k = 3, from

Equation 14.18 for ρPlan = 0.725, 0.75 and 0.80, we require 3376, 786 and 167 specimens

respectively. In comparison, the corresponding sample sizes required to estimate ρ with a
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95% confidence interval of Wρ = 0.2 from Equation 14.16 are 60, 52 and 37. This large reduc-

tion is caused by changing the value of ρPlan that, while resulting in large changes of the effect

size C0 of Equation 14.17 and hence the corresponding sample size, does not have such a 

big influence on the sample size obtained from Equation 14.16.

14.3 Bibliography

The early sections of this chapter are based on the work of Baker, Freedman and Parmar

(1991) and Freedman, Parmar and Baker (1993) who include a derivation of the sample-size

formulae referred to. For Cohen’s κ, Donner and Eliasziw (1992) give the SE(κ) from which

Equation 14.14 is then derived. Although not included here, Cantor (1996) describe the 

situation in which πDis is different for each of the two raters. Cicchetti (2001) gives a general

discussion of the problem of estimating a valid sample size in this area. He points out that

clinically useful results can be obtained with relatively modest values of κ, and there is 

diminishing gain from increasing the sample size much above 100. Bonett (2002) proposed

the confidence interval approach to sample size calculation for the intra-class correlation

coefficient, while Walter, Eliasziw and Donner (1998) suggest a hypothesis testing approach

and define the effect size, C0, of Equation 14.17 for this purpose.

14.4 Examples and use of the tables

Table 14.1 or Table 10.1 and Equation 14.2
Example 14.1btwo observersbno replicate observationsbdisagreement

It is anticipated that two observers will have a probability of disagreement of approximately

25% but it is desired to estimate this with a 95% CI of width 10%. How many observations

should be made?

For a 95% two-sided confidence interval, α = 0.05 and from Table 2.2 z0.975 = 1.96.

Here, πDis = 0.25, WDis = 0.1 and α = 0.05. Hence Equation 14.2 gives 

× 1.962 = 288. This agrees very closely with the more exact calculations of Table 14.1 and

which give mTwo = 289 or essentially 300. So for such a study, this implies that the two observers

examine the same 300 specimens independently.

Table 14.2 and Equation 14.5
Example 14.2bsingle observerbrepeat observations

An observer wishes to establish his own probability of error for making a particular diagnosis

from patient specimens. He plans a study involving two assessments per specimen and judges

his own probability of error as 5%. If he plans for a 95% confidence interval of width 0.1, how

many repeat observations should be made?

SSS

  

mTwo
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For a 95% two-sided confidence interval, α = 0.05 and from Table 2.2 z0.975 = 1.960.

Here, ξ = 0.05, wξ = 0.1, and for α = 0.05, Equation 14.5 gives

= 40.78.

This implies that the observer should repeat his assessments on approximately 40 specimens.

Alternatively direct entry into Table 14.2 gives mRepeat = 41 as does .

Tables 14.2, 14.3 and Equations 14.5, 14.9 and 14.11
Example 14.3bobserver error and disagreementburothelial dysplasia

In a study to determine agreement with respect to the presence of urothelial dysplasia, as

determined from of biopsies, Richards, Parmar, Anderson et al. (1991) suggest design values

of individual observer error as 0.15 and of true disagreement as 0.2. Suppose they require the

width of the 95% CI for the observer error to be 0.15 and that for the true disagreement 0.2.

How many specimens should they assess?

For a 95% two-sided confidence interval, α = 0.05 and from Table 2.2 z0.975 = 1.96.

Here, α = 0.05 the observer error ξ = 0.15 and the set width for the confidence interval,

wξ = 0.15. The planning value for disagreement between observers is ΘDis = 0.2 and the 

width of the confidence interval, wΘ = 0.2.

From Equation 14.5, the appropriate number of specimens required with replicate assessments

is = 66.20 or 67 which can 

be obtained directly from or from Table 14.2.

Use of Equation 14.9 with mRepeat = 67, leads to a total number of patients N = 1163.9 or

approximately 1170.

Alternatively, from Table 14.3 or , with ξ = 0.15, ΘDis = 0.2, wΘ = 0.2 and α = 0.05, the

desired precision for ΘDis can be obtained from NEqual = 171 patients each assessed twice.

Using Equation 14.11 gives a value of mOptimal > 172. This implies that assessing each patient

twice minimises the total number of assessments.

Table 14.4 and Equation 14.14
Example 14.4bCohen’s kappa

Suppose we believe that πDis = 0.3, we anticipate κPlan = 0.4 and we wish to determine this

with Wκ = 0.1 for a two-sided 95% CI.

For a 95% two-sided confidence interval, α = 0.05 and from Table 2.2 z0.975 = 1.96.

Then from Equation 14.14 mκ =

= 1515.6. This suggests that about 1600 specimens are needed. Using Table 14.4 or 

gives 1516.
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Table 14.5 and Equation 14.16
Example 14.5bintra-class correlationbconfidence interval approach

Walter, Eliasziw and Donner (1998) describe a study in which therapists are assessing children

with Down’s syndrome using the gross motor functional measure (GMFM). This has been

validated for use in children with cerebral palsy and it was felt necessary to check its validity 

in children with a different disease. Suppose we wished to estimate the intra-class correlation

coefficient, ρ, to within ± 0.1, or a 95% CI width of Wρ = 0.2. If we assume that ρPlan = 0.85

and that we had k = 4 raters.

Equation 14.16 suggests mChildren = = 19.2 or 

20 children are required. This is confirmed by the use of Table 14.5 or . Thus if the same

four therapists rate a sample of 20 children, and if r, the estimate of ρ, is close to 0.85, then 

we would expect the 95% CI to range from 0.75 to 0.95.

Table 14.6, Equations 14.17 and 14.18
Example 14.6bintra-class correlationbhypothesis testing approach

Suppose the investigators were hoping for an inter-rater reliability of at least 0.85 in the above

study of GMFM, and had determined that a reliability of 0.7 or higher would be acceptable.

Hence, the null hypothesis H0 : ρ0 = 0.7 and the alternative H1 : ρ1 = 0.85. For practical reasons

no child could be seen more than k = 4 times and approximately 30 children were available.

Thus the design options were restricted to a choice of k = 2, 3 or 4.

For a 5% two-sided test size, α = 0.05, Table 2.2 gives z0.975 = 1.96 while for a power of

80% a one-sided 1 − β = 0.80, z0.80 = 0.8416 or direct use of Table 2.3 to give θ = 7.849.

For ρ0 = 0.7, ρPlan = 0.85 and k = 2, 3 and 4, Equation 14.17 gives the respective effect sizes 

C0 = = 0.4594, 0.4444 and 0.4366. For two-sided significance of 5% and 80%

power we find from Equation 14.18 when k = 2, mChildren = = 52.9 and 

so NObservations = kmChildren ≈ 106, while for k = 3, mChildren = 36.8 and NObservations ≈ 110 and

when k = 4, mChildren = 31.5 and NObservations = kmSpecimens ≈ 120. The values for mChildren can

also be obtained directly from .

In the design with the minimum number of observations, NObservations = 106, and so 53 

children would each be seen twice. However, the restriction in numbers of children possible

to 30 eliminates the possibility of this design. In which case, the investigators would opt for 

k = 4 observations per child in all 30 children.

Note that Table 14.6 does not tabulate values for ρ1 = 0.85. But supposing ρ1 = 0.9 had

been used instead, then from Table 14.6, we would get mChildren = 23, 17 and 14 for k = 2, 3

and 4 respectively.
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Table 14.1 Sample sizes required to observe a given confidence interval to estimate the proportion of

disagreements between two observers. Each cell gives the number of specimens, mTwo.

Confidence intervals (CI)

90% 95%

Width of CI, WDis Width of CI, WDis

ππDis 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.01 43 11 5 3 61 16 7 4

0.02 85 22 10 6 121 31 14 8

0.03 126 32 14 8 179 45 20 12

0.04 167 42 19 11 237 60 27 15

0.05 206 52 23 13 292 73 33 19

0.06 245 62 28 16 347 87 39 22

0.07 282 71 32 18 401 101 45 26

0.08 319 80 36 20 453 114 51 29

0.09 355 89 40 23 504 126 56 32

0.1 390 98 44 25 554 139 62 35

0.11 424 106 48 27 602 151 67 38

0.12 458 115 51 29 650 163 73 41

0.13 490 123 55 31 696 174 78 44

0.14 522 131 58 33 741 186 83 47

0.15 552 138 62 35 784 196 88 49

0.16 582 146 65 37 827 207 92 52

0.17 611 153 68 39 868 217 97 55

0.18 639 160 71 40 908 227 101 57

0.19 667 167 75 42 946 237 106 60

0.2 693 174 77 44 984 246 110 62

0.25 812 203 91 51 1153 289 129 73

0.3 910 228 102 57 1291 323 144 81

0.35 985 247 110 62 1399 350 156 88

0.4 1039 260 116 65 1476 369 164 93

0.45 1072 268 120 67 1522 381 170 96

0.5 1083 271 121 68 1537 385 171 97
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Table 14.2 Sample sizes required to observe a given confidence interval to estimate the within

observer variation. Each cell gives the number of specimens, mrepeat.

Confidence intervals (CI)

90% 95%

Width of CI, wξξ Width of CI, wξξ

ξξ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.01 22 6 3 2 32 8 4 2

0.02 45 12 5 3 63 16 7 4

0.03 68 17 8 5 96 24 11 6

0.04 91 23 11 6 129 33 15 9

0.05 115 29 13 8 164 41 19 11

0.06 140 35 16 9 199 50 23 13

0.07 166 42 19 11 236 59 27 15

0.08 193 49 22 13 274 69 31 18

0.09 221 56 25 14 314 79 35 20

0.1 250 63 28 16 355 89 40 23

0.11 281 71 32 18 398 100 45 25

0.12 313 79 35 20 444 111 50 28

0.13 346 87 39 22 492 123 55 31

0.14 382 96 43 24 542 136 61 34

0.15 420 105 47 27 596 149 67 38

0.16 461 116 52 29 654 164 73 41

0.17 504 126 56 32 715 179 80 45

0.18 550 138 62 35 781 196 87 49

0.19 600 150 67 38 852 213 95 54

0.2 655 164 73 41 929 233 104 59

0.25 1015 254 113 64 1441 361 161 91

0.3 1648 412 184 103 2340 585 260 147

0.35 2982 746 332 187 4234 1059 471 265

0.4 6754 1689 751 423 9589 2398 1066 600

0.45 27 053 6764 3006 1691 38 411 9603 4268 2401
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Table 14.3 Sample sizes required to observe a given confidence interval to minimise the number of

subjects required to achieve the desired precision in the probability of their disagreement, ΘDis. Each cell

gives the number of specimens, mSpecimens.

Confidence intervals (CI)

90% 95%

Width of CI, WΘΘ Width of CI, WΘΘ

ΘΘDis ξξ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.1 0.05 515 129 58 33 732 183 82 46

0.1 804 201 90 51 1142 286 127 72

0.15 1464 366 163 92 2078 520 231 130

0.2 3032 758 337 190 4305 1077 479 270

0.25 7111 1778 791 445 10 096 2524 1122 631

0.3 19 438 4860 2160 1215 27 599 6900 3067 1725

0.2 0.05 881 221 98 56 1251 313 139 79

0.1 1230 308 137 77 1746 437 194 110

0.15 1918 480 214 120 2723 681 303 171

0.2 3395 849 378 213 4820 1205 536 302

0.25 6959 1740 774 435 9881 2471 1098 618

0.3 17 156 4289 1907 1073 24 358 6090 2707 1523

0.3 0.05 1142 286 127 72 1622 406 181 102

0.1 1534 384 171 96 2178 545 242 137

0.15 2243 561 250 141 3184 796 354 199

0.2 3654 914 406 229 5188 1297 577 325

0.25 6851 1713 762 429 9727 2432 1081 608

0.3 15 526 3882 1726 971 22 044 5511 2450 1378

0.4 0.05 1299 325 145 82 1844 461 205 116

0.1 1716 429 191 108 2437 610 271 153

0.15 2437 610 271 153 3460 865 385 217

0.2 3810 953 424 239 5409 1353 601 339

0.25 6786 1697 754 425 9635 2409 1071 603

0.3 14 548 3637 1617 910 20 655 5164 2295 1291

0.5 0.05 1351 338 151 85 1919 480 214 120

0.1 1777 445 198 112 2523 631 281 158

0.15 2502 626 278 157 3553 889 395 223

0.2 3862 966 430 242 5483 1371 610 343

0.25 6764 1691 752 423 9604 2401 1068 601

0.3 14 222 3556 1581 889 20 192 5048 2244 1262
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Table 14.4 Sample sizes required to observe a given confidence interval width for inter-observer

agreement using Cohen’s Kappa, κ. Each cell gives the number of specimens, mκ .

Confidence intervals (CI)

90% 95%

Width of CI, Wκκ Width of CI, Wκκ

ππDis κκ 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

0.05 0.4 17 810 4453 1979 1114 25 287 6322 2810 1581

0.6 15 173 3794 1686 949 21 542 5386 2394 1347

0.8 8645 2162 961 541 12 275 3069 1364 768

0.1 0.4 9547 2387 1061 597 13 555 3389 1507 848

0.6 7943 1986 883 497 11 277 2820 1253 705

0.8 4514 1129 502 283 6409 1603 713 401

0.15 0.4 6831 1708 759 427 9699 2425 1078 607

0.6 5566 1392 619 348 7903 1976 879 494

0.8 3156 789 351 198 4481 1121 498 281

0.2 0.4 5507 1377 612 345 7819 1955 869 489

0.6 4407 1102 490 276 6257 1565 696 392

0.8 2494 624 278 156 3541 886 394 222

0.25 0.4 4745 1187 528 297 6737 1685 749 422

0.6 3741 936 416 234 5311 1328 591 332

0.8 2113 529 235 133 3000 750 334 188

0.3 0.4 4270 1068 475 267 6063 1516 674 379

0.6 3325 832 370 208 4721 1181 525 296

0.8 1876 469 209 118 2663 666 296 167

0.4 0.4 3775 944 420 236 5360 1340 596 335

0.6 2892 723 322 181 4106 1027 457 257

0.8 1628 407 181 102 2312 578 257 145

0.5 0.4 3637 910 405 228 5163 1291 574 323

0.6 2771 693 308 174 3934 984 438 246

0.8 1559 390 174 98 2213 554 246 139

0.6 0.4 3775 944 420 236 5360 1340 596 335

0.6 2892 723 322 181 4106 1027 457 257

0.8 1628 407 181 102 2312 578 257 145

0.7 0.4 4270 1068 475 267 6063 1516 674 379

0.6 3325 832 370 208 4721 1181 525 296

0.8 1876 469 209 118 2663 666 296 167

0.8 0.4 5507 1377 612 345 7819 1955 869 489

0.6 4407 1102 490 276 6257 1565 696 392

0.8 2494 624 278 156 3541 886 394 222

0.9 0.4 9547 2387 1061 597 13 555 3389 1507 848

0.6 7943 1986 883 497 11277 2820 1253 705

0.8 4514 1129 502 283 6409 1603 713 401
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Table 14.5 Sample sizes required to observe a given intra-class correlation, ρ,  using the confidence

interval approach. Each cell gives the number of specimens, mSpecimens. Hence, the total number of

observations for the study is Nobservations = kmSpecimens, where k is the number of observers.

Confidence 
Width of confidence interval, Wρρ

interval (%) k ρρ 0.05 0.1 0.15 0.2

90 2 0.6 1775 445 199 112

0.65 1445 362 162 92

0.7 1127 283 127 72

0.75 830 209 94 53

0.8 563 142 64 37

0.85 335 85 39 22

3 0.6 1119 281 126 71

0.65 937 235 105 60

0.7 750 189 85 48

0.75 565 142 64 37

0.8 392 99 45 26

0.85 238 61 28 16

4 0.6 907 228 102 58

0.65 771 194 87 50

0.7 626 158 71 41

0.75 478 121 54 31

0.8 335 85 39 22

0.85 206 53 24 14

95 2 0.6 2519 631 281 159

0.65 2051 514 229 130

0.7 1600 401 179 101

0.75 1178 296 132 75

0.8 798 201 90 51

0.85 475 120 54 31

3 0.6 1588 398 178 101

0.65 1329 333 149 84

0.7 1064 267 120 68

0.75 802 202 90 52

0.8 555 140 63 36

0.85 338 86 39 23

4 0.6 1286 323 144 82

0.65 1094 275 123 70

0.7 887 223 100 57

0.75 678 171 77 44

0.8 475 120 54 31

0.85 292 74 34 20

9781405146500_4_014.qxd  9/8/08  10:23  Page 193



194 Chapter 14

Table 14.6 Sample sizes required to observe a given intra-class correlation using the hypothesis testing

approach with two-sided α = 0.05. Each cell gives the number of specimens, mSpecimens. Hence, the total

number of observations for the study is Nobservations = kmSpecimens.

Power 1 −− ββ == 0.8 Power 1 −− ββ == 0.9

Number of observers, k Number of observers, k

ρρ0 ρρ1 2 3 4 2 3 4

0.1 0.2 750 320 199 1004 428 266

0.3 181 83 54 242 110 72

0.4 77 37 26 102 49 34

0.5 40 21 15 54 28 20

0.6 24 13 10 31 17 13

0.7 15 9 7 19 11 9

0.8 9 6 5 12 8 6

0.9 6 4 3 7 5 4

0.2 0.3 690 332 226 923 443 302

0.4 162 83 58 217 110 78

0.5 67 36 26 89 48 35

0.6 34 19 15 45 26 19

0.7 19 12 9 25 15 12

0.8 11 7 6 15 9 8

0.9 6 5 4 8 6 5

0.3 0.4 604 320 233 808 428 311

0.5 138 77 58 184 102 77

0.6 55 32 25 73 42 33

0.7 27 17 13 35 22 17

0.8 14 9 8 18 12 10

0.9 7 5 5 9 7 6

0.4 0.5 499 286 219 667 382 293

0.6 110 66 52 146 87 69

0.7 41 26 21 55 34 28

0.8 19 12 10 25 16 13

0.9 9 6 5 11 8 7

0.5 0.6 381 234 186 509 312 249

0.7 79 51 41 105 67 55

0.8 28 18 15 36 24 20

0.9 11 8 7 14 10 8

0.6 0.7 260 169 139 348 226 186

0.8 49 33 28 65 44 37

0.9 14 10 9 19 13 12

0.7 0.8 148 101 86 198 135 115

0.9 23 17 14 30 22 19

0.8 0.9 58 41 36 77 55 48
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Dose finding studies

SUMMARY
The object of this chapter is to describe clinical trial designs for determining, from a pre-selected range 

of doses of a drug, that which will be used for further testing in studies to determine activity. The dose

finding trials determine, in each subject given the compound, the presence or absence of the dose 

limiting toxicity (DLT). On the basis of the DLT observed, the acceptable dose, the maximum tolerated 

dose (MTD), is determined. One approach to designing dose finding studies, which includes the

‘Cumulative 3 + 3 (C33D)’ and the ‘Best-of–5’ designs, involves no detailed computational methods,

whereas, the ‘Continual reassessment method (CRM)’, entails quite complex assumptions and specialist

computer software for implementation and this is provided within the software. In contrast to 

other chapters, no sample-size calculations are provided as the number of patients to be recruited is

often dependent on the accumulating results from the study, up to a maximum number of patients

which is specified in advance.

15.1 Introduction

For patients with a specific disease, one objective of treatment may be to reduce (ideally 

eradicate) the disease burden. However, it is recognised that any attack on the disease itself for

example by a chemotherapeutic or other agent may bring collateral damage to normal tissue

and vital organs. The usual strategy is to attempt to balance the two by first establishing the

concept of dose limiting toxicity (DLT) which then helps identify the maximum tolerated

dose (MTD) of the drug concerned.

Thus the aim of a dose finding study is to establish the MTD of a particular compound or

treatment modality so that it can then be tested at that dose in a subsequent (Phase II) trial to

assess activity.

In contrast to other situations, for dose finding designs, the number of patients to be

recruited is dependent of the accumulating results from the study, with a maximum number

of patients often stated in advance. In many cases, there is often very little knowledge about

the MTD, and one could only suggest a starting dose based on animal studies. The early 

doses are usually chosen to be conservative.

In using , should the investigator depart from the original design specification of the

design, a warning will be given and the design implementation algorithm will cease. However,

the database will remain operational.

SSS

SSS

15
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15.2 Choosing which doses to test

In advance of the patients being recruited in a dose finding study, the investigators first identify

the range of the doses to consider and all the specific-dose levels, within this range, to test. Thus

the first dose given to any patient, d
START

, will be one of these options as will be the ultimately

identified MTD.

Once the minimum dose to investigate, d
MINIMUM

, is determined, the therapeutic range iden-

tified and the maximum dose, d
MAXIMUM

, for the study fixed, we label the k doses finally chosen

as d1 = d
MINIMUM

, d2, d3, . . . , dk = d
MAXIMUM

. However, we still need to choose k and the specific

values for each of the intermediate doses. Statistical design considerations may suggest that

these should be chosen equally spaced between d
MINIMUM

and d
MAXIMUM

on either a linear or a 

logarithmic scale.

However, practice has often recognised that as the dose increases in equal steps it may

become sequentially more-and-more toxic and hence possibly dangerous for the well-being 

of the patient. This caution has then led many investigators to decrease the step sizes as the

dose increases. One method uses the Fibonacci (c. 1180–1250) series named after the Italian

mathematician who first studied the following mathematical series: a0 = a1 = 1, then from 

a2 onwards an+1 = an + an−1. This gives the series: 1, 1, 2, 3, 5, 8, 13, 21, 34, etc. There is no 

theoretical reason why this or any other mathematical series should be chosen for this 

purposeathey are merely empirical devices. The corresponding Fibonacci ratios of successive

terms are: 1/1 = 1, 2/1 = 2, 3/2 = 1.5, 5/3 = 1.667, 8/5 = 1.600, 13/8 = 1.625, 21/13 = 1.615,

34/21 = 1.619, . . . , and eventually as n gets larger and larger this approaches 1.618 = (1 + )/2.

These ratios are shown in Figure 15.1 and, for relatively small n appropriate to the number of

dose levels in a Phase I study, the ratio oscillates up and down. In mathematical terminology

the series of ratios is not monotonically decreasing and so in fact do not provide successively

decreasing step sizes.

Nevertheless, it is usually regarded as desirable that successive doses are a decreasing multi-

plier of the preceding dose and thus (often without a clear explanation provided) ‘modified’

 5

Figure 15.1 Dose-escalation methods based on the Fibonacci series and that used for a dose finding

study of nolatrexed dihydrochloride conducted by Estlin, Pinkerton, Lewis et al. (2001).

Fibonacci multiplier Nolatrexed dihydrochloride

Dose Full ‘Modified’ Escalation Dose (mg/m2/day)

d1 1.0 1.0 1.0 600

d2 2.0 2.0 1.33 800

d3 1.50 1.67 1.20 960

d4 1.67 1.50 1.17 1120

d5 1.60 1.40 1.07 1200

d6 1.63 1.33 1.20 1440

d7 1.62 1.33 1.11 1600

. . . . . . . . .

d∞ 1.62 1.33
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Fibonacci multipliers like those of Figure 15.1 are substituted in practice. However, it is usually

pragmatic considerations that determine the modifications and no consistent rationale across

studies underlies the changes.

15.3 Step-by-step designs

The basic design consists of giving one or more subjects a specific starting dose then, depending

on the number of DLTs observed amongst them, stepping up to the next higher preset dose

level, or stepping down to the nearest lower level. At this new dose level the process is then

repeated. Standard design options are 1, 3 and 5 patients at each dose.

Storer (precursor design)
This design usually starts at d

MINIMUM
, and gives successive (single) patients increasing doses 

of the compound under investigation, and monitors whether or not they experience DLT

with each dose. The dose given depends on the experience of the immediately preceding

patient; an absence of DLT will increase the dose for the next patient, while the presence of a

DLT will suggest that the immediate prior (and lower) dose will be the MTD. In fact, this is

not usually regarded as establishing the MTD but rather to determine the suggested d
START

for a

second stage comprising one of the full C33D, Best-of-5 or CRM designs described below.

The strategy is essentially to enable the start of the alternative designs to begin at a more 

informative dose than d
MINIMUM

. Clearly if a DLT occurs at d
MINIMUM

, the investigators would have

to reconsider their whole dose level choice strategy as they would in the absence of a DLT at 

all doses up to and including d
MAXIMUM

.

Although we have termed Storer as a ‘precursor’ design, as its objective is to determine 

a starting dose for other designs, it may be used as a ‘stand-alone’ examining a different dose

range (perhaps wider or with intermediate steps) than might have been considered if one 

of the ‘full’ designs had been initiated. Conducted in this way, it may be used to guide the 

ultimate choice of the doses to be investigated in the more detailed study planned for the 

next stage of the investigation.

C33D
A common dose finding study design is termed the ‘three-subjects-per-cohort design’, 

or ‘Cumulative 3 + 3 Design’ (C33D). This design chooses a ‘low’ starting dose perhaps with 

d
START

= d
MINIMUM

(or one suggested by the Storer precursor) and has 3 replicates at each dose.

The choice of the next dose, d
NEXT

, then depends on the number of patients (0, 1, 2 or 3) experi-

encing DLT. Clearly if no patients experience DLT then the subsequent dose to investigate

will be higher than the one just tested. This process continues until either the stopping level of

DLT is attained in the successive groups of 3 patients or d
MAXIMUM

has been tested. In circum-

stances where the first 2 patients both experience DLT at a particular dose, it is not usual to

give the third patient this same dose but to change the dose chosen to a lower one from the

pre-specified dose range.

Although this process will (in general) establish the MTD it is only a pragmatic considera-

tion that dictates that a dose finding study should have tested at least 6 patients at d
MTD

. 
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This usually implies that, once the MTD is first identified, extra patients are then recruited

and tested at this provisional d
MTD

until 6 patients in total have experienced this dose. It is also

based on the premise that an acceptable probability of DLT will be somewhere between 1 in 

6 (17%) and 1 in 3 (33%) of patients.

However, practical issues often constrain the size of dose finding studies and a maximum

size in the region of 24 (8 × 3) is often chosen. This implies that if pre-determined doses are 

to be used, and the final dose chosen will have 3 extra patients tested, then k = 7 dose options

are the maximum that can be chosen for the design as (k × 3) + 3 = 24 patients although the

precise numbers included will be dependent on the DLT experience observed.

The C33D design, with or without the Storer (2001) modification, has no real statistical

basis, and more efficient alternatives have been sought. Efficiency here can be thought of as

achieving the right MTD and with as few patients as possible. However, the design is easy to

implement and requires little (statistical) manipulationaonly keeping a count of the number

of patients experiencing DLT at each dose tested.

The full strategy is described by Storer (2001) and is implemented by following the rules of

Figure 15.2 to determine whether dose-escalation should, or should not, occur.

‘Best-of-5’
This follows the same format as C33D except that 5 replicates is used rather than 3. The 

process is summarised in Figure 15.3.

15.4 Continual reassessment method

This design gives successive groups of patients differing doses of the compound under invest-

igation, and monitors the number who experience DLT with each dose. The dose given to 

the next patient at any one time depends on the experience of all the preceding patients. In

general an unacceptable level of DLT in the preceding group will lower the dose, while an

acceptable level will increase the dose.

There are several variants of the continual reassessment method (CRM). We discuss two of

these: the first involves a Bayesian approach and the second a combined Bayesian/Maximum

Likelihood approach.

Figure 15.2 Establishing the maximum tolerated dose (MTD) in a C33D for a Phase I trial 

(after Storer 2001).

Commencing with dose h:

(A) Evaluate 3 patients at dh:

(A1) If 0 of 3 experience DLT, then escalate to dh+1, and go to (A).

(A2) If 1 of 3 experience DLT, then go to (B).

(A3) If at least 2 of 3 experience DLT, then go to (C).

(B) Evaluate an additional 3 patients at dh:

(B1) If 1 of 6 experience DLT, then escalate to dh+1, and go to (A).

(B2) If at least 2 of 6 experience DLT, then go to (C).

(C) Discontinue dose escalation.
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Figure 15.3 Establishing the maximum tolerated dose (MTD) in a ‘Best-of-5’ design for a Phase I trial

(after Storer 2001).

Commencing with dose, h:

(A) Evaluate 3 patients at dh:

(A1) If 0 of 3 experience DLT, then escalate to dh+1, and go to (A).

(A2) If 1 or 2 of 3 experience DLT, then go to (B).

(A3) If 3 of 3 experience DLT, then go to (D).

(B) Evaluate an additional 1 patient at dh:

(B1) If 1 of 4 experience DLT, then escalate to dh+1, and go to (A).

(B2) If 2 of 4 experience DLT, then go to (C).

(B3) If 3 of 4 experience DLT, then go to (D).

(C) Evaluate an additional 1 patient at dh:

(C1) If 2 of 5 experience DLT, then escalate to dk+1, and go to (A).

(C2) If 3 of 5 experience DLT, then go to (D).

(D) Discontinue dose escalation.

Figure 15.4 Tabulation of the actual dose, corresponding working dose and probability of dose

limiting toxicity (DLT).

Dose level, i 1 2 . . . k

Actual dose, di d1 d2 . . . dk

Working dose, zi z1 z2 . . . zk

Probability of DLT, θi θ1 θ2 . . . θk

The same process of selecting the range and actual doses for the step-by-step designs is 

necessary for the CRM design. In addition, however, it is also necessary to attach to each of

these doses (based on investigator opinion and/or on more objective information if available)

the anticipated probability of patients experiencing DLT at that dose. We label these prior

probabilities θ1, θ2, θ3, . . . , θk. as in Figure 15.4. Once the investigator prior probabilities 

are attached to each dose that has been selected for investigation, they provide an initial 

dose-response plot such as that of Figure 15.5.

It is implicit in the method of selecting these probabilities that, once they are assigned, then

a ‘reasonable’ starting dose, d
START

, would correspond to the dose that gives a value of θ
START

close to some predefined ‘acceptable’ value, termed the target value and denoted, θ0. This

probability is often chosen to be less than 0.3. The chosen d
START

would not usually correspond

to the extremes d
MINIMUM

or d
MAXIMUM

of the dose range cited.

CRM assumes a continuous dose-toxicity model like Figure 15.6 such that as the dose

increases the probability of DLT also increases.

CRM uses a mathematical model for the idealised dose-response curve of the type of 

Figure 15.6 that is increasing with increasing dose. One model for this defines the probability

of DLT, at working dose z, as

, q > 0. (15.1)

where . Thus θ(z, q) is the probability of DLT at ‘working’ dose z and q is a 

parameter to be estimated.
  
tanh z

e e

e e

z z

z z
=

−
+

−

−

  

θ( , )
tanh

exp( )
z q

z

z

q

=
+⎛

⎝
⎜

⎞

⎠
⎟ =

+ −
1

2

1

1 2

⎛⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

q

9781405146500_4_015.qxd  9/8/08  10:23  Page 199



200 Chapter 15

It is important to note that z does not correspond to the actual dose of the drug (chosen at

the design stage), d, but the so-called working dose level (as patient information accumulates)

and, if Equation 15.1 is chosen, the working doses z are determined by

(15.2)
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Figure 15.5 Empirical dose-response curve of dose limiting toxicity (DLT) against dose (data from Flinn,

Goodman, Post et al. 2000).
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Figure 15.6 Hypothetical dose-response curve of the probability of dose limiting toxicity (DLT) against

received dose. MTD, maximum tolerated dose.
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Thus from Equation 15.2, for example, with q = 1, if θ = 0.5, z = 0, θ = 0.025, z = −1.83,

whereas if θ = 0.975, z = 1.83.

An alternative to Equation 15.1 is the logistic function

(15.3)

If Equation 15.3 is chosen, the working doses z are determined by

(15.4)

Thus from, Equation 15.4, for example, again with q = 1, if θ = 0.5, z = −3, θ = 0.025, 

z = −6.664, whereas if θ = 0.975, z = 0.664.

To begin the implementation of the CRM design, the parameter q is set to 1 in the (investigator)

chosen model of either Equations 15.1 or 15.3. A tanh model ‘fitted’ to the ‘subjective prob-

ability’ data that were illustrated in Figure 15.5 is shown in Figure 15.7.

The uncertainty with respect to the value of q is expressed via a prior distribution, g(q).

There are several options for this but all can be chosen to have the same mean for q but 

with increasing variance reflecting the uncertainty about q. These prior distributions are 

summarised in Figure 15.8. Thus if the investigators had a lot of ‘experience’ of similar drugs

in similar patients to that under study then the Exponential distribution might be chosen. 

In the opposite extreme, Gamma 2 might be chosen. In broad terms this would imply more

patients would be needed to determine a suitable value for q.

Once this distribution has been selected, patients have entered the trial and have provided

toxicity data, then the value for q can be updated following each successive patient outcome.

  

z
q

log .=
−

⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

1
3

θ
θ

  
θ( , )

exp( )

exp( )
.z q

qz

qz
=

+
+ +

3

1 3

–1.5

0.8

0.6

0.4

0.2

PT
(d

)

–1.0 –0.5 0.50.0

Tanh model q = 1

Empirical dose-response curve
(Flinn, Goodman, Post et al. 2000)

z

1.0 1.5

Figure 15.7 The first (no patient data—hence q = 1) model for the dose finding trial design of Flinn,

Goodman, Post, et al. (2000).
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This then allows θ(z, q) to be calculated and this can be ‘fitted’ onto the subjective probability

data. Figure 15.9 shows one such example (compare with Figure 15.7) in which if the latest

patient experiences toxicity the ‘curve’ moves ‘Up’ otherwise ‘Down’. A move ‘Up’ implies a

more ‘toxic’ dose and hence we would move down the dose options for the next patient.

Bayes and Maximum Likelihood
The object of CRM is to estimate q and find the value of z, hence of d, which corresponds to

θ(z
MTD

, q) = θ0.

At the start of the trial, the first entered patient would be treated at a level chosen by 

the investigator, dSTART, believed in the light of all current available knowledge to be the dose

closest to the target probability of DLT level, θ0. As indicated above, once given that dose,

whether or not a DLT occurs is noted (we denote this as y1 = 0 or 1). On the basis of this 

(single) observation q (originally set equal to 1) is then estimated.

Type of prior distribution g(q) Mean Variance Prior

Exponential* λ exp(−λq) 1/λ = 1 1/λ2 = 1 exp(−q)

Gamma 1 qr−1 exp(−λq) r/λ = 1 r/λ2 = 5 q0.2−1 exp(−0.2q)

Gamma 2 qr−1 exp(−λq) r/λ = 1 r/λ2 = 10 q0.1−1 exp(−0.1q)

*The Gamma distribution with r = 1 is the Exponential distribution.
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Figure 15.8 Prior distributions for q.
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There are two methods by which this updating is carried out. One involves a maximum

likelihood and the other uses a Bayesian approach. To implement the likelihood method, 

a number of patients (at least 2) have to be recruited as the method intrinsically needs at 

least 1 patient to give y = 0 and one y = 1. The Bayesian approach does not rely on this (early) 

heterogeneity of responses and so will ‘work’ even for the first patient. In , users may

choose either the Bayesian or Likelihood approach. However both approaches start by imple-

menting the Bayesian approach until heterogeneity of responses is achieved. From there the

approaches differ.

Whichever method chosen, after each patient is treated and the presence or absence of DLT

observed, the current (prior) distribution g(q) is updated along with the estimated probabilities

of toxicity at each dose level. The next patient is then treated at the dose level minimising a

measure of the distance between the current estimate of the probability of toxicity and θ0.

After a fixed number, n, of patients have been entered sequentially in this fashion, the dose

level selected as the MTD is the one that would be chosen for a hypothetical patient number 

(n + 1). Alternatively a stopping rule could be set-up whereby the trial would terminate after 

a minimum number of patients have been recruited at the MTD or when the pre-specified

maximum number of patients have been recruited, whichever comes first.

In order to save time during the course of a study, at the time the current patient is being

recruited, calculates the recommended dose for the next cohort. If whatever the outcome

for the current patient (DLT or no DLT), although not yet observed, would still recommend

the same dose then the indicates that fact. This would enable the next cohort of patients

to be recruited immediately without waiting for the current patient outcome. This is termed

the ‘Look-Ahead’ option.

The CRM starts with a dose close to that which is expected to give the target probability of

DLT, although this is not essential, and then escalates or de-escalates following the result

observed at that dose in a single patient (or more generally, in a pre-specified cohort of patients).

Once the results from a second patient (or cohort) is obtained then the recommendation for

the third patient is based on the results of all two to date and so on. This process can result 

in jumping over intermediate doses and hence runs the risk of challenging a patient with 

a (high) dose with no information available on the immediate preceding (lower) dose.

Further, if Patient 1 does not experience a DLT then automatically the next higher dose will 

be recommended. These difficulties can be overcome, by using with the option ‘Start at

lowest dose’ and ‘Always escalate by one’.

15.5 Which design?

Although the CRM method is more efficient than the C33D and Best-of-5 designs it is consider-

ably more difficult to implement, as the (statistical) manipulation required to determine the

next dose to use is technically complex and requires specialist computer statistical software.

The CRM design reduces the number of patients receiving the (very) low dose options.

O’Quigley, Pepe and Fisher (1990) argue this avoids patients receiving doses at which there is

little prospect of them deriving benefit but the design has been criticised by Korn, Midthune,

Chen et al. (1994) for exposing patients to the risk of receiving potentially very toxic doses.

SSS

SSS

SSS

SSS
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However, the use of the Storer (2001) precursor prior to the original design allows both 

these difficulties (too low or too high) to be overcome. Other modifications proposed by

Goodman, Zahurak and Piantadosi (1995), and which can be implemented in , also help

deal with these.

15.6 Bibliography

Despite the fact that the traditional C33D (and implicitly the Best-of-5) method for dose escala-

tion has been criticised by Heyd and Carlin (1999) and others for the tendency to include too

many patients at suboptimal dose levels and give a poor estimate of the MTD, it is still widely

used in practice because of its algorithm-based simplicity.

O’Quigley, Pepe and Fisher (1990) and O’Quigley (2001) proposed the CRM with the goal

to improve the (statistical) performance of dose escalation designs in determining the MTD.

The choice, of the ‘3’ in Equation 15.3, follows from the empirical study conducted by Chevret

(1993) who ‘fine-tuned’ the CRM model by examining a range of possible values that might

be placed in the equation. A modification, to the CRM design itself by Goodman, Zahurak

and Piantadosi (1995) suggests assigning more than 1 patient to each dose level chosen, and

only allowing escalation by one dose level at a time. For de-escalation, the dose recommended

by CRM is chosen.

A number of dose finding designs involving the use of Bayesian decision theoretic procedures

have been proposed by Whitehead and Williamson (1998); Loke, Tan, Cai and Machin (2006); 

and Zhou, Whitehead, Bonvini and Stevens (2006). Various other designs have also been 

suggested, including those by Piantadosi and Liu (1996) which incorporate pharmacokinetic

measurements, and by Thall and Russell (1998), O’Quigley, Hughes and Fenton (2001) as well

as others who look at designs with bivariate outcomes. However none of these designs appear

to have been commonly used to the same extent as the C33D and even the CRM options.

15.7 Examples

Example 15.1bdesignbnolatrexed dihydrochloride in advanced paediatric cancer

Estlin, Pinkerton, Lewis et al. (2001) report on the dose finding study conducted in children

with advanced cancer the design of which was described earlier in Figure 15.1. The three 

doses actually tested are given in Figure 15.10 and were not those specified in the design. 

At the conclusion of this study, a MTD of 640 mg/m2/day of nolatrexed dihydrochloride 

was recommended. However, it is clear from their report that DLT was observed with a dose

of 768 mg/m2/day although only 4 rather than 6 patients required of the C33D design were

accumulated at the MTD of 640 mg/m2/day.

Example 15.2bnon-Hodgkins’ lymphoma

In the study of Flinn, Goodman, Post et al. (2000) a dose escalation strategy was utilised with

decreasing multiples of the previous dose used. Their design was the CRM of O’Quigley, Pepe

and Fisher (1990) as modified by Goodman, Zahurak and Piantadosi (1995). They defined

minimum, d
MINIMUM

= 40, and maximum, d
MAXIMUM

= 100, doses with six 10 mg/m2 steps and

SSS
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investigator prior probabilities, θ, attached to each dose as given in Figure 15.11. As would be

expected, as the dose is increased the anticipated (subjective) probability of DLT increases, 

so that with dose 40 mg/m2, θ is only 0.05 (or anticipated to be seen in 1 in every 20 patients

with this dose) whereas at dose 100 mg/m2 θ is 0.8 (4 in every 5 patients).

The d
START

= 50 mg/m2 chosen corresponds to a prior probability of toxicity θ close to 

0.1 and not the 0.3 we indicated as a common value to be used. A total of 20 patients were

eventually included in total. Their final conclusion was that in patients with advanced non-

Hodgkins’ lymphoma (NHL) the MTD for liposomal daunorubicin was 70–80 mg/m2.

15.8 References

Chevret S (1993). The continual reassessment method for phase I clinical trials: A simulation

study. Statistics in Medicine, 12, 1093–1108.

Estlin EJ, Pinkerton CR, Lewis IJ, Lashford L, McDowell H, Morland B, Kohler J, Newell DR,

Boddy AV, Taylor GA, Price L, Ablett S, Hobson R, Pitsiladis M, Brampton M, Cledeninn N,

Johnston A and Pearson AD (2001). A Phase I study of nolatrexed dihydrochloride in 

children with advanced cancer. A United Kingdom Children’s Cancer Study Group

Investigation. British Journal of Cancer, 84, 11–18.

Figure 15.10 Results of Phase I study of nolatrexed dihydrochloride in childhood cancer (adapted from

Estlin, Pinkerton, Lewis et al., 2001, Table 2).

Dose Dose DLT

Patient (mg/m2/day) escalation (0 = No, 1 = Yes)

1, 2, 3 480 – 0/3

4, 5, 6, 7 640 1.33 0/4

8, 9, 10, 11 768 1.20 3/4

DLT, dose limiting toxicity.

Figure 15.11 DLT observed in patients with advanced non-Hodgkins’ lymphoma treated with

liposomal daunorubicin with constant doses of the combination cyclophosphamide, vincristine and

prednisone (after Flinn, Goodman, Post et al., 2000).

Liposomal daunorubicin Dose escalation Prior probability Number of patients Number of patients 

(mg/m2) multiplier of DLT, θ recruited with DLT

40 – 0.05 – –

50 (start) 1.25 0.10 4 0

60 1.20 0.20 4 1

70 1.17 0.30 3 0

80 1.14 0.50 7 2

90 1.13 0.65 2 2

100 1.11 0.80 – –

DLT, dose limiting toxicity.
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SUMMARY
In this chapter we describe single and two-stage designs for Phase II trials. The single-stage designs

include that of Fleming–A’Hern, which considers a single compound for test, and the randomised design

of Simon–Wittes–Ellenberg when two or more compounds are under consideration. The two-stage

designs described are those of Gehan, the Simon–optimal and the Simon–Minimax. The designs by

Tan–Machin and Mayo–Gajewski are based on Bayesian methods and have two options: single and 

dual threshold. These designs use response criteria as the endpoint of concern, while the Case–Morgan

design considers survival time endpoints, and Bryant–Day the dual endpoints of response and toxicity.

16.1 Introduction

Before embarking on large-scale randomised Phase III clinical trials, investigators will often

first conduct conduct a Phase II trial to investigate the activity of the compound under con-

sideration. The primary goal is to decide if it warrants further investigation.

There are a relatively large number of alternative designs for Phase II trials. These include

single-stage designs, in which a pre-determined number of patients are recruited and two-

stage designs, in which patients are recruited in two stages with the move to Stage 2 being 

conditional on the results observed in Stage 1. A key advantage of a two-stage design is that 

the trial may stop, after relatively few patients have been recruited, should the response rate

appear to be (unacceptably) low. Multi-stage designs have been proposed but the practicalities

of having several decision points have limited their use.

16.2 Theory and formulae

A common feature of many of the designs are the requirements that the investigators set the

largest response proportion as π0, which, if true, would clearly imply that the treatment does

not warrant further investigation. The investigators then judge what is the smallest response

proportion, πNew, that would imply the treatment clearly warrants further investigation. This

implies that the one-sided hypotheses to be tested are: H0 : π ≤ π0 versus HA : π ≥ πNew, where

π is the actual probability of response which is to be estimated.

16
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It is typically also necessary to specify α, the probability of rejecting H0 when it is true,

together with β, the probability of rejecting HA when that is true.

In practice, for a two-stage design, the appropriate number of patients is recruited to Stage

1 and once all their responses are observed, a decision whether or not to proceed to Stage 2 is

taken. If Stage 2 is implemented then once recruitment is complete and all assessments made

the response rate (and corresponding confidence interval, CI) is calculated. A decision with

respect to efficacy is then made. If Stage 2 is not activated, the response rate (and CI) can still

be calculated for the Stage 1 patients despite failure to demonstrate sufficient activity.

Single-stage procedure
Fleming–A’Hern
The Fleming (1982) single-stage design for Phase II trials recruits a pre-determined number

of patients and a decision about activity is obtained from their responses.

If NFleming patients are recruited then the observed number of patient responses r will have a

Binomial distribution with parameter π. For NFleming reasonably large and π not too small, the

sample size required for the single-stage procedure is approximately

(16.1)

where z1−α and z1−β are the standardised Normal deviates of Table 2.1. However, A’Hern

(2001) has used the exact Binomial probabilities to calculate the sample size and, in general,

these are marginally greater than those given by Equation 16.1.

The design would reject the null hypothesis π ≤ π0 if the observed number of responses 

R is ≥ C and would then conclude π ≥ πNew. Fleming determined the critical number of

responses as

(16.2)

but this was modified by A’Hern to

(16.3)

Note

Although the A’Hern calculations should supersede Fleming’s, also provides sample sizes

according to the Fleming approximation. This is because the design has been very widely used

and so this option is intended to facilitate comparisons with these earlier studies.

Two-stage designs
Gehan
In this design only a minimum requirement of efficacy, πNew, is set and patients are recruited

in two stages. If no responses are observed in the Stage 1, then the trial terminates. On the

other hand, if one or more responses are observed then the size of Stage 2 depends on their

actual number.
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If the probability of response to a particular treatment is πNew, then the probability of nG1

successive patients failing to respond is

η = (1 − πNew)nG1. (16.4)

For a specified η, the Stage 1 rejection error, this can be solved to give the number of

patients for this stage as

(16.5)

Assuming rG1 (> 0) responses are observed in these nG1 patients, then nG2 patients are

recruited to the Stage 2 to give a total of NGehan = nG1 + nG2 in all. The value of nG2 is chosen 

to give a specified standard error, SE(p) = γ, for the final estimate of the activity obtained. 

This implies that

(16.6)

If rG2 is the number of responses in Stage 2 then p = (rG1 + rG2)/(nG1 + nG2) is the estimate

of the efficacy of the drug. Rearranging Equation 16.6 we obtain the required number of

patients for Stage 2 as

(16.7)

However, at the end of Stage 1 we only know pG1 = rG1/nG1, the proportion of successes in

Stage 1. Thus, to estimate nG2 from Equation 16.7, we must use pG1 rather than p since the latter

is not available to us. However, nG1 is usually so small that the resulting pG1 will be rather

imprecise. As a consequence, rather than using pG1 to estimate p in Equation 16.7, Gehan (1961)

estimated this by πU, the one-sided upper 75% confidence limit for π, which is the solution of

B(rG1; πU, nG1) = 0.25. (16.8)

Here B(.) is the cumulative Binomial distribution of Equation 2.9 with R = rG1, π = πU and 

m = nG1.

The final estimate for the sample size of Stage 2 is therefore

(16.9)

This number depends rather critically on the number of successes rG1 observed in Stage 1.

Simon–Optimal and Simon–Minimax
As with Fleming–A’Hern, for the Simon (1989) design the investigators set π0 and πNew as we

have described previously. The trial proceeds by recruiting nS1 patients in Stage 1 from which

rS1 responses are observed. A decision is then made to recruit nS2 patients to Stage 2 if rS1 ≥ RS1

otherwise the trial is closed at the end of Stage 1. At the end of the second stage, the drug is 

recommended for further use if a predetermined RSimon = (RS1 + RS2) or more responses are

observed.
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In such a design, even if π > π0 there is a possibility that the trial once conducted will not go

into the Stage 2. The probability that the trial is terminated after Stage 1, that is there are fewer

than RS1 responses observed, is

PEarly = B(RS1 − 1; π, nS1), (16.10)

where B(.) is the cumulative Binomial distribution of Equation 2.9 with R = RS1 − 1, π = π
and m = nS1. The expected sample size is

NExpected = nS1 + (1 − PEarly)nS2. (16.11)

In this context, expected means the average sample size that would turn out to have been

used had a whole series of studies been conducted with the same design parameters in 

situations where the true activity is the same.

Optimal design

By not continuing to Stage 2, the Simon–Optimal design attempts to ensure that as few patients

as possible receive what appears to be an ineffective drug at the end of Stage 1.

A computer search is necessary to determine sample size. Essentially for each potential

(Stage 1 plus Stage 2) sample size NSimon and each value of nS1 in the range (1, NSimon − 1), 

values of RS1 and RS2 are found corresponding to the specified values of π0, πNew, α and β, 

and which minimise the expected sample size of Equation 16.11 when π = π0.

Minimax design

In the Simon–Minimax design, the total size of the trial, that is the sum of patients required

for Stage 1 and Stage 2 together, is chosen to minimise the maximum trial size.

Again a computer search is necessary to determine sample size. The search strategy is 

the same as for the optimal design, except that the values of nS1, nS2, RS1 and RS2 that result 

in the smallest total sample size are determined.

Bayesian two-stage designs
In the Phase II designs discussed so far, the final response rate is estimated by R/N, where R is

the total number of responses observed from the total number of patients recruited N (whether

obtained from a single-stage design or one or both stages of a two-stage design). This response

rate, together with the corresponding 95% CI, provide the basic information for the investigators

to decide if a subsequent Phase III trial is warranted. However, as Phase II trials are usually 

of modest size, the resulting CIs will usually be rather wideaencompassing a wide range of

options for π. This inevitable uncertainty arising from small sample sizes led Tan and Machin

(2002) and others to propose Bayesian designs. In their approach, the focus of the design is to

estimate the (so-called) posterior probability that π > πNew, denoted Prob(π > πNew). If this

probability is high (a threshold level is set by the design) at the end of the trial, the investigators

can be reasonably confident in recommending the compound for Phase III trial.

Single threshold design
In the two-stage single threshold design (STD) the investigator first sets the minimum interest

response rate πNew as for other designs but now specifies πPrior (not π0) the anticipated response
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rate of the drug under test. Further, in place of α and β, λ1 the required threshold probability

following Stage 1 that π > πNew, denoted ProbStage-1(π > πNew), and λ2 the required threshold

ProbEnd(π > πNew) after completion of Stage 2 are specified. Here λ2 is set to be greater than λ1.

Once Stage 1 of the trial is completed, the estimated value of λ1, that is u1, is computed and a

decision is made to proceed to Stage 2 if u1 ≥ λ1. Should the trial continue to Stage 2 then, on

trial completion, u2 is computed and a recommendation to proceed to Phase III if u2 ≥ λ2.

The design determines the sample sizes for the trial based on the following principle.

Suppose also that the (hypothetical) response proportion is just larger than the pre-specified

πNew, say πNew + ε, with ε > 0 being small. We then want the smallest overall sample size, NT-M,

that will enable ProbEnd(π > πNew) to be at least λ2. At the same time, we also want the smallest

possible Stage 1 sample size nT-M1 which is just large enough so that ProbStage-1(π > πNew) is at

least λ1.

Dual threshold design
The dual threshold design (DTD) is identical to the STD except that the Stage 1 sample size is

determined, not on the basis of the probability of exceeding πNew, but on the probability that π
will be less than the ‘no further interest’ proportion, π0. Thus π0 functions as a lower threshold

on the response rate. The rationale behind this aspect of the DTD is that we want our Stage 1

sample size to be large enough so that, if the trial data really does suggest a response rate that is

below π0, we want the posterior probability of π being below π0, to be at least λ1. The design

determines the smallest Stage 1 sample size that satisfies this criterion.

The DTD requires the investigators to set πPrior as the anticipated value of π for the drug

being tested. A convenient choice may be (π0 + πNew)/2 but this is not a requirement. Further

λ1 is set as the required threshold probability following Stage 1, that π < π0, while λ2 is the

required threshold probability that, after completion of Stage 2, π > πNew. [Note that unlike 

the STD, it is no longer a requirement that λ1 < λ2.] Once Stage 1 of the trial is completed, the

estimated value of λ1, that is l1, is computed and should the trial continue to Stage 2 then on 

its completion, u2 is computed. The latter is then used to help make the decision whether or

not a Phase III trial is suggested.

Prior distributions
In the original version of the designs proposed by Tan and Machin (2002), the designs work

on the basis of having a ‘vague’ prior distribution. Mayo and Gajewski (2004) extended the

designs to allow for the inclusion of informative prior distributions. In users have the

option of using such informative prior distributions (which could also be set to be equivalent

to the vague priors used by Tan and Machin). Moreover Tan and Machin imposed some 

practical constraints on their designs, so as to encourage the adoption of the designs into

practice. In particular, they constrained the total study size, NT-M, to be a minimum of 10 

and a maximum of 90, with Stage 1 size, nT-M1, having a minimum size of 5 and a maximum of

NT-M − 5. These constraints are not applied in .

Survival time and survival proportion endpoints
Although many Phase II trials have disease response as a (binary) outcome, survival times or

at least survival proportions at a fixed time are sometimes more relevant.

SSS

SSS
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Case–Morgan
In the Case and Morgan (2003) two-stage Phase II trial designs, ‘survival’ times are utilised 

in place of binary response variables. The ‘survival’ times usually correspond to the interval

between commencement of the Phase II treatment and when the ‘event’ of primary concern

occurs.

In these designs, patients are observed from a fixed point in time to, for example, recurrence

of the disease, death or either of these. However, to implement these designs, it is important to

distinguish between chronological time, that is the date (day, month, year) in which the trial

recruits its first patient, the date of the planned interim analysis (end of Stage 1), the date the

trial closes recruitment (end of Stage 2), and the date all patient follow-up ends from the time

interval between start of therapy and the occurrence of the event for the individual patients.

Trial conduct is concerned with chronological time while trial analysis is concerned with interval

time. We denote the former by D and the latter by t.

Survival data are typically summarised by the Kaplan–Meier (K-M) survival curve, which

takes into account censored observations. Censored survival time observations arise when 

a patient, although entered on the study and followed for a period of time, has not as yet 

experienced the ‘event’ defined as the outcome for the trial. For survival itself ‘death’ will be the

‘event’ of concern whereas if event-free survival was of concern the ‘event’ may be recurrence

of the disease.

Technical details

(Note The description that follows is not a precise summary of the technical details as set out

by Case and Morgan (2003) but attempts to summarise the rationale behind the designs. 

For example, Case and Morgan do not use the K-M estimate of survival in their description,

and their estimate of the standard error differs from that indicated here.)

The K-M estimate of the proportion alive at any follow-up time t, is denoted S(t). Thus, 

for example, when t = 1 year, the K-M estimate at that time-point is denoted S(1). In general,

a convenient time-point, which we denote by TSummary, is chosen by the investigators and 

the corresponding S(TSummary) estimates the proportion of patients experiencing the event by

that time-point.

To implement the design, the investigators set for interval time, TSummary, the largest 

survival proportion as S0(TSummary) which, if true, would clearly imply that the treatment does

not warrant further investigation. The investigators then judge what is the smallest survival

proportion, SNew(TSummary), that would imply the treatment warrants further investigation.

This implies that the one-sided hypotheses to be tested are: H0 : S(TSummary) ≤ S0(TSummary)

versus HNew : S(TSummary) ≥ SNew(TSummary), where S(TSummary) is the actual probability of 

survival which is to be estimated at the close of the trial. In addition, it is necessary to specify

α, and β.

The Case–Morgan design assumes that the survival times follow an exponential distribu-

tion and this implies that

S(t) = exp(−λt). (16.12)

Here λ is termed the instantaneous event rate and is assumed to have the same constant value

for all those entering the trial.
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It then follows from Equation 16.12 that

CL(t) = log[−log S(t)] = log λ + log t. (16.13)

This transformation results in CL(t) having an approximately Normal distribution with 

standard error,

SE[CL(t)] = SE[log λ] = 1/ , (16.14)

where E is the corresponding number of events observed by time t.

The assumption of Exponential survival times implies S0(TSummary) = exp(−λ0TSummary) and

SNew(TSummary) = exp(−λNewTSummary) where λ0 and λNew are essentially the ‘event’ rates under

the two hypotheses (the event rate will be less under HNew). This implies that the two one-sided

hypotheses discussed above can be alternatively expressed as: H0 : λ ≥ λ0 and HNew : λ ≤ λNew.

Stage 1 and interim analysis

To implement a two-stage design, nC-M1 patients are recruited in Stage 1 whose duration

DStage1 (= DInterim) is set to coincide with the interim analysis which implies a recruitment rate

of R = nC-M1 / DStage1 for this period. The duration of Stage 1 and hence the date of the interim

analysis, can potentially be at any time after a period equal to TSummary has elapsed from the

date the first patient is treated. At this analysis, EC-M1 (≤ nC-M1) events will have been observed

while other patients will have been on the trial for a time-period less than TSummary without

experiencing the event. These patients will be censored, as will those who have a ‘survival’

time greater than TSummary but have not yet experienced the event. Thus at chronological time

DInterim for interval time TSummary the one-sided hypothesis, H0 can be tested by

(16.15)

The components of this equation are obtained by use of Equations 16.13 and 16.14. This

zInterim test has a standard Normal distribution with mean 0 and standard deviation 1 if H0 is

true. If zInterim < C1 (see below) then recruitment to the trial is stopped, that is, the hypothesis

H0 : S(TSummary) ≤ S0(TSummary) is accepted.

Otherwise, if the decision is to recruit a further nC-M2 patients over a period DStage2, then 

the last of these patients so recruited will be followed for the minimum period of TSummary.

With the same recruitment rate R as for Stage 1, DStage2 = nC-M2/R. The final analysis will then

be conducted at DFinal = DInterim + DStage2 + TSummary = DAccrual + TSummary. By that time, and 

in addition to the events of some of the Stage 2 patients, there may be more events from the

Stage 1 patients than were observed at DInterim.

At chronological time DFinal, Equation 16.15 is adapted to that involving the alternative

hypothesis HNew. Thus

(16.16)

This zFinal has a standard Normal distribution with mean 0 and standard deviation, 1 if 

HNew is true. If zInterim > C2 (see below) then the alternative hypothesis HNew : S(TSummary) ≥
SNew(TSummary) is accepted and activity is claimed.
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Determining C1 and C2

At the design stage of the trial, the values of the survival rates λ0 and λNew under each hypo-

thesis are specified by the investigators, as are the corresponding error rates α and β. The 

values of C1 and C2 are determined as the solutions to the following equations

1 − Φ2(C1, C2) = α (16.17)

and

1 − Φ2(C1 − ρu, C2 − u) = 1 − β, (16.18)

which can only be found by computer search methods.

In these equations, Φ2(.,.) is the cumulative form of the bivariate Normal distribution while

(16.19)

When planning a two-stage trial, one cannot be certain that Stage 2 will be activated as this

will depend on the patient outcomes from Stage 1, and so Case and Morgan (2003) take the

probability of stopping at the end of Stage 1 (PEarly) into their design considerations. This then

leads to the expected duration of accrual

EDA = DStage1 + (1 − PEarly) DStage2, (16.20)

where DAccrual = DStage1 + DStage2. In this context, expected means the average duration of

accrual that would have occurred had a whole series of studies been conducted with the same

design parameters.

Using the notation of Equation 2.2

PEarly = Φ1(C1), where Φ1(.) is the cumulative form of the univariate standardised 

Normal distribution. (16.21)

In a similar way, the expected total study length (duration) is

ETSL = DStage1 + (1 − PEarly)(DStage2 + TSummary). (16.22)

Assuming there is a constant accrual rate, R, over the recruitment stages of the trial, then there

are four unknowns, nC-M1 (or DStage1), nC-M2 (or DStage2), C1 and C2, but only two constraints,

α and β. As a consequence there are more unknowns than constraints, hence, those design

options that minimise either the EDA of Equation 16.20 or ETSL of Equation 16.22 are chosen.

Case–Morgan–EDA
To determine the expected duration of accrual (EDA) design, the search process assumes 

that the Fleming–A’Hern single-stage design is to be implemented with response rates of

S0(TSummary) and SNew(TSummary). This gives a sample size, NF-A’H, for which the investigator

then specifies how long these would take to recruit, DF-A’H; once specified this is related 

to TSummary. The final (two-stage) solutions from the computer search depend on the ratio 

DF-A’H/TSummary (> 1). A search is then made for each total potential sample size NC-M, to find

the Stage 1/Stage 2 split amongst these with the specific design parameters for survival rates of

S0(TSummary), SNew(TSummary), and error constraints α and β, that minimises the EDA.
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Case–Morgan–ETSL
To determine the ETSL design, the same procedures are followed as for EDA above, except

that the final stage searches for designs that minimise ETSL rather than EDA.

For either design, patients are recruited until chronological time DStage1 to a total of nC-M1.

At this time the Kaplan–Meier estimate of S(TSummary) and its SE are estimated using a 

standard statistical package or by CIA (confidence interval analysis) provided by Altman,

Machin, Bryant and Gardner (2000). From these zInterim is calculated. If the decision is made

to continue, repeat the process after a further nC-M2 patients have been recruited and a further 

additional TSummary of time has elapsed since the last patient.

Randomised design
Simon–Wittes–Ellenberg
When there are several compounds available for potential Phase III testing in the same type 

of patients but practicalities imply that only one of these can go forward for this subsequent

assessment, then the randomised (single-stage) Simon, Wittes and Ellenberg (1985) design

selects the candidate drug with the highest level of activity. Although details of the random

allocation process are not outlined below this is a vital part of the design implementation.

Details are provided by, for example, Machin and Campbell (2005).

The approach chooses the observed best treatment for the Phase III trial, however small 

the advantage over the others. The trial size is determined in such a way that if a treatment

exists for which the underlying efficacy is superior to the others by a specified amount, then 

it will be selected with a high probability.

When the difference in true response rates of the best and next best treatment is δ, then 

the probability of correct selection, Pcs, is smallest when there is a single best treatment and the

other g − 1 treatments are of equal but lower efficacy. The response rate of the worst treatment

is denoted πWorst.

For a specified response π, the probability that the best treatment produces the highest

observed response rate is

Prob(Highest) = (16.23)

where R = i, π = πWorst + δ in Equation 2.9 and

f(i) = [B(i; πWorst, m)]g −1 − [B(i − 1; πWorst, m)]g −1, (16.24)

where R = i − 1 and π = πWorst in Equation 2.9.

If there is a tie among the treatments for the largest observed response rate, then one of 

the tied treatments is randomly selected. Hence, in calculating the probability of correct 

selection, it is necessary to add to Expression 16.23 the probability that the best treatment was

selected after being tied with one or more of the other treatments for the greatest observed

response rate. This is

Prob(Tie) = , (16.25)

where .
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The quantity k(i, j) represents the probability that exactly j of the inferior treatments are

tied for the largest number of observed responses among the g − 1 inferior treatments, and 

this number of responses is i. The factor in Equation 16.25 is the probability that the 

tie between the best and the j inferior treatments, is randomly broken by selecting the best

treatment.

The sum of Expressions 16.23 and 16.25 gives the probability of correct selection, that is

PCS = Prob(Highest) + Prob(Tie). (16.26)

The corresponding tables for the number of patients per treatment group required, is

determined by searching for specified values of πWorst, δ, and g, the value of m which provides

a probability of correct selection equal to a set value for PCS.

Except in extreme cases, when πWorst is small or large, the sample size is relatively insensitive

to these baseline response rates. Since precise knowledge of these may not be available, 

Liu (2001) propose a conservative approach to trial design which involves using the largest

sample size for each g and δ. Unfortunately, with g ≥ 4 groups these designs lead to relatively

large randomised trials and this may limit their usefulness.

Response and toxicity endpoints
Bryant–Day
Bryant and Day (1995) point out that a common situation when considering Phase I and

Phase II trials is that although the former primarily focuses on toxicity and the later on

efficacy, each in fact considers both. This provides the rationale for their Phase II design

which incorporates toxicity and activity considerations. Essentially they combine a design 

for activity with a similar design for toxicity in which one is looking for both acceptable

toxicity and high activity.

The Bryant and Day (1995) design implies that two, one-sided hypotheses, are to be tested.

These are that the true response rates πR is either ≤ πR0, the maximum response rate of 

no interest, or ≥ πRNew, the minimum response rate of interest. Further the probability of

incorrectly rejecting the hypothesis πR ≤ πR0 is set as αR. Similarly αT is set for the hypothesis

πT ≤ πT0 where πT is the maximum non-toxicity rate of no interest. In addition, the hypo-

thesis πT ≥ πTNew has to be set together with β, the probability of failing to recommend a 

treatment that is acceptable with respect to both activity and (non-) toxicity. [The termino-

logy is a little clumsy here as it is more natural to talk in terms of ‘acceptable toxicity’ rates

rather than ‘acceptable non-toxicity’ rates. Thus 1 − πT0 is the highest rate of toxicity above

which the drug is unacceptable. In contrast, 1 − πTNew is the lower toxicity level below which

the drug would be regarded as acceptable on this basis.]

In the Bryant and Day design, toxicity monitoring is incorporated into the Simon (1989)

design by requiring that the trial is terminated after Stage 1 if there is an inadequate number 

of observed responses or an excessive number of observed toxicities. The treatment under

investigation is recommended at the end of Stage 2 only if there are both a sufficient number

of responses and an acceptably small number of toxicities in total.

Since both toxicity and response are assessed in the same patient, the distributions of

response and toxicity are not independent, and these two are linked by means of

1

1j +
⎛

⎝
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⎞
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(16.27)

Here η00 is the true proportion of patients who both fail to respond and also experience 

unacceptable toxicity, η01 is the proportion of patients who fail to respond but have acceptable

toxicity, η10 is the proportion of patients who respond but who have unacceptable toxicity,

and finally η11 is the proportion of patient who respond and also have acceptable toxicity.

The design parameters chosen will establish a particular design with Stage 1 and total sample

sizes (nB-D1, nB-D2), cut-off values for response and toxicity (CR1 and CT1) in order to move

from Stage 1 to Stage 2, and finally cut-off values CR, and CT to declare sufficient activity with

acceptable toxicity once the results from NB-D = nB-D1 + nB-D2 patients has been observed. We

describe these collectively by Q = {nB-D1, CR1, CT1, nB-D2, CR, CT} and this set of six quantities

are then determined by minimising the expected patient accrual under hypotheses of unaccept-

able treatment characteristics (inadequate response, excessive toxicity, or both). In this context,

expected refers to the average sample size that would turn out to have been used had a whole

series of studies been conducted with the same design parameters in situations where the true

activity, and true toxicity levels, remain constant.

In particular, suppose that the true response rate is indeed πR0 and the true non-toxicity

rate is πT0, then for the trial to proceed to Stage 2 both these response and toxicity criterion

must be met.

In such a two-stage design, even if both πR ≤ πR0 and πT ≤ πT0 there is a possibility that 

the trial once conducted will go into the second stage if (by chance) many responses and few 

toxicities have been observed.

The probability of not moving to Stage 2 based on the response criterion is B(CR1 − 1; πR0,

nB-D1), where B(.) is the cumulative binomial distribution of Equation 2.9 with R = CR1 − 1, 

π = πR0 and m = nB-D1. Similarly, based on the toxicity criterion, the probability of not moving

to Stage 2 is B(CT1 − 1; πT0, nB-D1). Thus if we assume response and toxicity are not associated

within patients, that is they are statistically independent, then the overall probability that the

trial does not proceed to Stage II is given by

P00 = PEarly = 1 − [1 − B(CR1 − 1; πR0, nB-D1)] × [1 − B(CT1 − 1; πT0, nB-D1)]. (16.28)

This independence is equivalent to assuming in Equation 16.27 that ϕ = 1.

The expected number of patients accrued given this situation is

N00 = NExpected = nB-D1 + (1 − P00) nB-D2, (16.29)

with similar expressions for NNew0, N0New and NNew,New.

Now suppose that δ00 is the probability of recommending the treatment, then the probability

of recommending the treatment based on the response criterion is:

(16.30)

where b(y; πR0, nB-D1) is Equation 2.8 with r = y, π = πR0 and m = nB-D1. Similarly for the 

toxicity criterion,

(16.31)
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Note that each of these expressions involve multiplying the probability that the trial pro-

ceeds to Stage II with the probability that the Stage II results eventually conclude ‘success’,

that is a recommendation of the treatment. Thus the overall probability of recommending the

treatment given that true response rate is πR0 and the true non-toxicity rate is πT0 is given by

δ00 = δR0 × δT0 (16.32)

Similarly the corresponding values: δNew0 = δRNew × δT0, δ0New = δR0 × δTNew and δNew,New =
δRNew × δTNew are obtained.

The design then seeks the value of Q which minimises the maximum of {N0New, NNew0}, sub-

ject to the conditions δ0New ≤ αR, δNew0 ≤ αT and δNew,New ≥ 1 − β. This is done by a computer

search of all the values of Q that satisfy the constraints and then choosing the appropriate one.

There is a corresponding set of (more complex) equations if the value of ϕ, of Equation 16.27,

is not assumed equal to 1 and for which a similar such process can be conducted. However,

assuming independence between response and toxicity, that is, ϕ = 1 gives designs which are

close to optimal and so Bryant and Day (1995) recommend that this is adequate for general

use and it is implemented in .

16.3 Bibliography

Fleming (1982) and A’Hern (2001) provide further details of the single-stage design discussed.

Gehan (1961) gives the theory and formulae for Equations 16.4 and 16.8 and corresponding

tables. Simon (1989) describes two designs, one optimal for Stage I and the second to minimise

the total recruitment from both stages. He provides tables for sample size and compares the

two approaches. Tan, Machin, Tai et al. (2002) provide examples of two trials designed with the

Simon–Minimax design, but reassessed using a Bayesian approach. Tan and Machin (2002)

discuss the original versions of the Bayesian single and dual threshold designs and compare

these with the Simon (1989) designs. Several other papers discuss the properties and expand

on the ideas of Tan and Machin, including Mayo and Gajewski (2004), Tan, Wong and

Machin (2004), Wang, Leung, Li et al. (2005) and Gajewski and Mayo (2006). Phase II designs

with survival outcomes are discussed in detail by Case and Morgan (2003). Alternative

designs for such endpoints have also been proposed by Mick, Crowley and Carroll (2000) as

well as Cheung and Thall (2002), among others. As for the randomised designs as well as the

designs looking at both response and toxicity, full details of these can be found in Simon,

Wittes and Ellenberg (1985) and Bryant and Day (1995) respectively.

16.4 Examples and use of the tables

Table 16.1 Fleming–A’Hern
Example 16.1bsequential hormonal therapy in advanced and metastatic breast cancer

Iaffaioli, Formato, Tortoriello et al. (2005) used A’Hern’s design for two Phase II studies of

sequential hormonal therapy with first-line anastrozole (Study 1) and second-line exemestane

(Study 2) in advanced and metastatic breast cancer.

SSS
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For Study 1 they set α = 0.05, 1 − β = 0.9, π0 = 0.5 and πNew = 0.65. With these inputs, 

gives for the A’Hern design a sample size of 93, with 55 being the minimum number of

responses required for a conclusion of ‘efficacy’.

In the event 100 patients were recruited amongst whom eight complete responses and 

19 partial responses were observed. These give an estimated response rate of 27% with 95% CI

19.3 to 36.4% calculated using Equation 2.14. This is much lower than the desired minimum

of 65%.

For Study 2, the investigators set α = 0.05, 1 − β = 0.9, π0 = 0.2 and πNew = 0.4, giving rise to

a sample size of 47 with a minimum of 15 responses required.

In the event 50 patients were recruited amongst whom one complete response and three

partial responses were observed. These give an estimated response rate of 8% (95% CI 3.2 to

18.8%). Again this is much lower than the desired minimum of 40%.

Tables 16.2 and 16.3 Gehan’s design
Example 16.2bdexverapamil and epirubicin in non-responsive breast cancer

Lehnert, Mross, Schueller et al. (1998) used the Gehan design for a Phase II trial of the combina-

tion dexverapamil and epirubicin in patients with breast cancer. For Stage 1 they set πNew = 0.2

and β = 0.05, which corresponds to keeping the chance of rejecting a drug of efficacy at least

20% to below 0.05. This gives rise to a sample size of nG1 = 14. Using Equation 16.4 with nG1 = 14

and π = 0.2, gives the chance of rejecting the drug as 0.044. Of these 14 patients, rG1 = 3

responses were observed, then their requirement of γ = 0.1 implies a further nG2 = 9 patients

were to be recruited.

Finally a total of four (17.4%) responses was observed from the NGehan = nGI + nG2 = 14 + 9

= 23 patients. Using the ‘recommended’ method for calculating CIs of Equation 2.16 gives the

corresponding 95% CI for π from 7 to 37%.

Table 16.4 Simon’s Optimal and Minimax designs
Example 16.3bgemcitabine in metastatic nasopharyngeal carcinoma

In a trial of gemicitabine in previously untreated patients with metastatic nasopharyngeal 

carcinoma (NPC) Foo, Tan, Leong et al. (2002) utilised the Simon’s Minimax design. The

trial design assumed a desired overall response rate (complete and partial) of at least 30% and

no further interest in gemicitabine if the response was as low as 10%.

Thus for α = 0.05, 1 − β = 0.8, π0 = 0.1 and πNew = 0.3, gives:

Stage 1 Sample size of 15 patients: if responses less than two, stop the trial and claim gemi-

citabine lacks efficacy.

Stage 2 Overall sample size of 25 patients for both stages, hence 10 more patients were to be

recruited; if the total responses for the two stages combined is less than six, stop the trial as

soon as this is evident and claim gemicitabine lacks efficacy.

Once the Phase II trial was conducted, the investigators observed rS1 = 3 and rS2 = 4 responses,

giving p = (3 + 4)/25 or 28% (95% CI 14 to 48%).

Had the above trial been designed using the optimal design but with the same characteristics

namely, α = 0.05, 1 − β = 0.8, π0 = 0.1 and πNew = 0.3, then in gives the following results:

Stage 1 Sample size of 10 patients: if responses less than two, stop the trial and claim gemicitabine

lacks efficacy.

SSS

SSS

SSS
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Stage 2 Overall sample size of 29 patients for both stages, hence 19 more patients to be

recruited; if total responses for two stages combined is less than six, stop the trial as soon 

as this is evident and claim gemicitabine lacks efficacy.

In this case, for the same design parameters, the optimal design has 5 fewer patients in Stage 1

of the design, but 4 more patients if the trial goes on to complete Stage 2, than the correspond-

ing minimax design. However, the number of responses to be observed are the same in each

stage for both designs.

Example 16.4bpaclitaxel for unresectable hepatocellular carcinoma

Chao, Chan, Birkhofer et al. (1998) state in their methods that a Simon (1989) design was used

in which if the response rate was ≤ 3 of 19 in the first stage, then the trial would be terminated.

The authors set α = 0.1, β = 0.1 but did not specify π0 or πNew. With a back calculation using

it is possible to deduce that the minimax design was chosen with π0 = 0.2, πNew = 0.4 and

nS1 = 19.

In this trial zero responses were observed in Stage 1 and so Stage 2 was not implemented.

This implies that the response rate π is estimated by p = 0/17 or 0% with 95% CI obtained 

from Equation 2.15 of 0 to or approximately 0 to 17%. Thus 

even with an optimistic view of the true response rate as possibly close to 17% this is far below

the expectations of the investigators who set πNew = 0.4 or 40%.

Tables 16.5 and 16.6 Bayesian STD and DTD
Example 16.5bcombination therapy for nasopharyngeal cancer

A Phase II trial using a triplet combination of paclitaxel, carboplatin and gemcitabine in

metastatic nasopharyngeal carcinoma was conducted by Leong, Tay, Toh et al. (2005).

The trial was expected to yield a minimum interest response rate of 80% and a no further

interest response of 60%. The anticipated response rate was assumed to be equal to the 

minimum interest response rate and the overall threshold probability at the start and end 

of the trial was set to be 0.65 and 0.7 respectively. The sample size of the trial was calculated

using the DTD.

Entering the no interest response rate π0 = 0.6; minimum interest response rate πNew = 0.8;

anticipated response rate πPrior = 0.8; minimum desired threshold probability at the start of

the trial λ1 = 0.65; minimum desired threshold probability at the end of the trial λ2 = 0.7,

along with the default settings of ε = 0.05 and nPrior = 3 (corresponding to a vague prior), 

gives the following design:

Stage 1 Sample size of 19 patients; if responses less than 15, stop the trial as soon as this

becomes apparent and declare lack of efficacy. Otherwise complete Stage 1 and commence

Stage 2.

Stage 2 Overall sample size of 32 patients for both stages, hence 13 Stage 2 patients to be

recruited; if total responses for the two stages combined is less than 28, stop trial as soon as

this becomes apparent and declare lack of efficacy. Otherwise complete the trial.

Had the investigators instead chosen the first STD design of Table 16.5, that is with πPrior = 0.1

and πNew = 0.3; then the first row corresponding to, λ1 = 0.6 and λ2 = 0.7, suggests recruit-

ing 5 patients to Stage 1 and if two or more responses are observed recruiting another 
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(24 − 5) = 19 patients. The corresponding DTD of Table 16.6 for these same design specifica-

tions and π0 = 0.2 suggests 15 patients for Stage 1 and 9 to Stage II to give the same total of 24.

Only three responses would be sufficient to move into Stage II, but should such a low figure in 

practice occur, then all the 6 Stage II patients would have to respond to claim efficacy.

Tables 16.7 and 16.8 Case–Morgan EDA and ETSL designs
Example 16.6bgemcitabine and external beam radiotherapy for resectable pancreatic cancer

Case and Morgan (2003) consider the design of a Phase II trial of the effectiveness of adjuvant

gemcitabine and external beam radiotherapy in the treatment of patients with resectable 

pancreatic cancer with null hypothesis that 1-year survival is 35% or less. They plan a 90%

power at an alternative 1-year survival of 50%, for testing this hypothesis at 10% (one-sided)

significance level.

In our notation, TSummary = 1, S0(1) = 0.35, SNew(1) = 0.50, from which λ0 = −log 0.35 = 1.0498

and if SNew(1) = 0.5 then λNew = −log 0.5 = 0.6931. Further 1 − β = 0.9 and α = 0.1. begins

by calculating the A’Hern single-stage sample size with design parameters set as π0 = S0(1)

and πNew = SNew(1). This gives NA’H = 72.

The investigators then decide on how long it would take to recruit this number of patients,

and this is input into . We assume 3 years for this to be achieved, giving an accrual rate of

72/3 = 24 per year. Thus DA’H = 3 and TSummary = 1, so R = DA’H /TSummary = 3.

The ETSL design then suggests that Stage 1 recruits nC-M1 = 54, which will take 54/24

= 2.2 years. For Stage 2 nC-M2 = 29 patients, taking a further 29/24 = 1.2 years. Giving a total

recruitment time of DAccrual = 2.2 + 1.2 = 3.4 years. Thus the final analysis will occur 1 year

later at 4.4 years.

With the EDA design the corresponding nC-M1 = 46, nC-M2 = 79, so NC-M = 79 with a final

analysis at (79/24) + 1 = 4.3 years post start of the trial.

Table 16.9 Simon–Wittes–Ellenberg design
Example 16.7bgemcitabine, vinorelbine or docetaxel for advanced non-small-cell lung cancer

Leong, Toh, Lim et al. (2007) conducted a randomised Phase II trial of single-agent gem-

citabine, vinorelbine or docetaxel in the treatment of elderly and/or poor performance status

patients with advanced non-small-cell lung cancer. The design was implemented with the

probability of correctly selecting the best treatment assumed to be 90%. It was anticipated

that the single-agent activity of each drug has a baseline response rate of approximately 20%.

In order to detect a 15% superiority of the best treatment over the others, how many patients

should be recruited per treatment for the trial?

For the difference in response rate δ = 0.15, smallest response rate πWorst = 0.2, prob-

ability of correct selection PCS = 0.90 and treatment groups, g = 3, gives a sample size of 

m = 44 per treatment group. Thus the total number of patients to be recruited is given as 

N = 3 × 44 = 132. In the event, the trial proceeded to recruit 135 patients.

Example 16.8bnon-Hodgkin’s lymphoma

Itoh, Ohtsu, Fukuda et al. (2002) describe a randomised two-group Phase II trial comparing

dose-escalated (DE) with biweekly (dose-intensified) CHOP (DI) in newly diagnosed patients

with advanced-stage aggressive non-Hodgkin’s lymphoma. Their design anticipated at least a

SSS

SSS
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65% complete response rate (CR) in both groups. To achieve a 90% probability of selecting the

better arm when the CR rate is 15% higher in one arm than the other, at least 30 patients would

be required in each arm. [The more detailed tabulations of give 29 as opposed to 30.]

In the event, they recruited 35 patients to each arm and observed response rates with DE

and DI of 51% and 60% respectively. Their follow on study, a randomised Phase III trial,

compares DI CHOP with the Standard CHOP regimen.

Table 16.10 Bryant–Day design
Example 16.9bifosfamide and vinorelbine in ovarian cancer

González-Martín, Crespo, García-López et al. (2002) used the Bryant and Day two-stage

design with a cut-off point for the response rate of 10% and for severe toxicity, 25%. Severe

toxicity was defined as grade 3–4 non-haematological toxicity, neutropenic fever or grade 4

thrombocytopenia. They do not provide full details of how the sample size was determined

but their choice of design specified a Stage 1 of 14 patients and Stage 2 a further 20 patients. 

In the event, in these advanced platinum-resistant ovarian cancer patients, the combination

of ifosfamide and vinorelbine was evidently very toxic. Hence the trial was closed after 

12 patients with an observed toxicity level above the 25% contemplated.

In fact this corresponds to a design with αR = αT = 0.1, β = 0.2; πR0 = 0.1, πRNew = 0.3; 

πT0 = 0.25 and πTNew = 0.45. On this basis, the completed Stage 1 trial of 14 patients proceeds

to Stage 2 if there are at least two responses and there are also 10 or fewer patients with 

high toxicity. The Stage 2 trial size is a further 20 patients, for a total of 34 for the whole trial, 

and sufficient efficacy with acceptable toxicity would be concluded if there were six or more

responses observed and 22 or fewer with high toxicity.

Had they chosen instead the first design of Table 16.10, that is, αR = αT = 0.1, β = 0.15; 

πR0 = 0.1, πRNew = 0.3; πT0 = 0.6 and πTNew = 0.8, then Stage 1 consists of nB-D1 = 19 patients. The

trial would proceed to Stage 2 if there are at least CR1= 2 responses and there are also CT1 = 12

or fewer patients with high toxicity. The Stage 2 trial size is a further 21 patients, to a total of

NB-D = 40 for the whole trial, and sufficient efficacy with acceptable toxicity would be concluded

if there were CR = 6 or more responses observed and CT = 27 or fewer with high toxicity.
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Table 16.1 Fleming–A’Hern single-stage Phase II design. Sample size and minimum
number of successes required to conclude that the drug is effective.

αα

0.05 0.01

1 −− ββ 1 −− ββ

ππ0 ππNew 0.8 0.9 0.8 0.9

0.10 0.25 8 / 40 10 / 55 13 / 62 15 / 78
0.30 6 / 25 7 / 33 9 / 37 11 / 49
0.35 5 / 18 6 / 25 7 / 25 9 / 35
0.40 4 / 13 5 / 18 6 / 19 7 / 24
0.45 4 / 11 4 / 13 5 / 14 6 / 19
0.50 3 / 8 4 / 12 5 / 12 5 / 14
0.55 3 / 7 3 / 8 4 / 9 5 / 13
0.60 3 / 6 3 / 7 4 / 8 4 / 9

0.20 0.35 17 / 56 22 / 77 27 / 87 34 / 115
0.40 12 / 35 15 / 47 18 / 52 22 / 67
0.45 8 / 21 10 / 29 14 / 36 16 / 44
0.50 7 / 17 8 / 21 11 / 26 13 / 33
0.55 6 / 13 7 / 17 9 / 19 10 / 23
0.60 5 / 10 6 / 13 8 / 16 9 / 19
0.65 4 / 7 5 / 10 7 / 13 8 / 16
0.70 4 / 7 5 / 9 6 / 10 7 / 13

0.30 0.45 27 / 67 36 / 93 43 / 104 53 / 133
0.50 17 / 39 22 / 53 27 / 60 34 / 79
0.55 12 / 25 16 / 36 20 / 41 25 / 53
0.60 9 / 17 12 / 25 14 / 26 18 / 36
0.65 8 / 14 9 / 17 12 / 21 14 / 26
0.70 6 / 10 8 / 14 10 / 16 12 / 21

0.40 0.55 36 / 71 46 / 94 58 / 113 72 / 144
0.60 23 / 42 29 / 56 35 / 63 45 / 84
0.65 16 / 28 19 / 34 25 / 42 31 / 54
0.70 12 / 19 15 / 25 18 / 28 22 / 36
0.75 10 / 15 12 / 19 15 / 22 17 / 26
0.80 8 / 11 9 / 13 11 / 15 14 / 20

0.50 0.65 42 / 69 55 / 93 69 / 112 86 / 143
0.70 24 / 37 33 / 53 42 / 64 51 / 80
0.75 16 / 23 22 / 33 28 / 40 34 / 50
0.80 13 / 18 16 / 23 20 / 27 25 / 35
0.85 10 / 13 12 / 16 15 / 19 17 / 22
0.90 7 / 8 9 / 11 12 / 14 14 / 17

0.60 0.75 44 / 62 59 / 85 74 / 103 92 / 131
0.80 27 / 36 33 / 45 42 / 55 52 / 70
0.85 17 / 21 21 / 27 26 / 32 33 / 42
0.90 12 / 14 14 / 17 19 / 22 21 / 25

0.70 0.85 40 / 49 55 / 69 65 / 79 84 / 104
0.90 24 / 28 31 / 37 38 / 44 45 / 53
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Table 16.2 Gehan two-stage Phase II design—

Stage 1. The initial sample size nG1 required for

anticipated therapeutic effectiveness πNew for Stage 1

rejection error, η.

ηη

ππNew 0.10 0.05

0.05 45 59

0.06 38 49

0.07 32 42

0.08 28 36

0.09 25 32

0.10 22 29

0.11 20 26

0.12 19 24

0.13 17 22

0.14 16 20

0.15 15 19

0.16 14 18

0.17 13 17

0.18 12 16

0.19 11 15

0.20 11 14

0.25 9 11

0.30 7 9

0.35 6 7

0.40 5 6

0.45 4 6

0.50 4 5

0.60 3 4

0.70 2 3

0.80 2 2

0.90 2 2

9781405146500_4_016.qxd  9/8/08  10:24  Page 226



Phase II trials 227

Table 16.3 Gehan two-stage Phase II design—Stage 2. The number of additional patients nG2 required

in Stage 2, for anticipated therapeutic effectiveness πNew, for required standard error γ, Stage I rejection

error η, and the number of responses in Stage 1 ranging from 1 to 6.

Therapeutic Number of 

efficacy patients Stage 1 Number of responses in Stage 1, rG1

ππNew nG1 1 2 3 4 5 6

γγ == 0.1, 1 −− ηη == 0.90

0.10 22 0 0 0 0 0 2

0.12 19 0 0 0 3 5 6

0.14 16 0 2 5 8 9 9

0.16 14 1 6 9 11 11 11

0.18 12 5 10 12 13 13 12

0.20 11 7 11 14 14 14 11

0.30 7 16 18 17 12 5 –

0.40 5 20 19 11 1 – –

0.50 4 21 15 3 – – –

0.60 3 19 6 – – – –

0.70 2 10 – – – – –

0.80 2 10 – – – – –

γγ == 0.1, 1 −− ηη == 0.95

0.10 29 0 0 0 0 0 0

0.12 24 0 0 0 0 0 0

0.14 20 0 0 0 1 3 4

0.16 18 0 0 2 4 6 7

0.18 16 0 2 5 8 9 9

0.20 14 1 6 9 11 11 11

0.30 9 11 15 16 15 12 7

0.40 6 18 19 15 8 – –

0.50 5 20 19 11 1 – –

0.60 4 21 15 3 – – –

0.70 3 19 6 – – – –

0.80 2 10 – – – – –
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Table 16.4 Simon Optimal and Minimax designs. The denominators in the table give the size of 

Stage 1, nS1, and the total sample size, NSimon, for circumstances when Stage 2 is necessary. The

numerators give the minimum number of successes required, RS1, to move to Stage 2 and to conclude

that the drug is effective, R.

αα == 0.05 Optimal Minimax

ππ0 ππNew 1 −− ββ Stage 1 Overall Stage 1 Overall

ππNew −− ππ0 == 0.15 RS1/nS1 R/NSimon RS1/nS1 R/NSimon

0.05 0.20 0.8 1 / 10 4 / 29 1 / 13 4 / 27

0.9 2 / 21 5 / 41 2 / 29 5 / 38

0.10 0.25 0.8 3 / 18 8 / 43 3 / 22 8 / 40

0.9 3 / 21 11 / 66 4 / 31 10 / 55

0.20 0.35 0.8 6 / 22 20 / 72 7 / 31 16 / 53

0.9 9 / 37 23 / 83 9 / 42 22 / 77

0.30 0.45 0.8 10 / 27 31 / 81 17 / 46 26 / 65

0.9 14 / 40 41 / 110 28 / 77 34 / 88

0.40 0.55 0.8 12 / 26 41 / 84 29 / 59 35 / 70

0.9 20 / 45 50 / 104 25 / 62 46 / 94

0.50 0.65 0.8 16 / 28 49 / 83 40 / 66 41 / 68

0.9 23 / 42 61 / 105 29 / 57 55 / 93

0.60 0.75 0.8 18 / 27 47 / 67 19 / 30 44 / 62

0.9 22 / 34 65 / 95 49 / 72 58 / 84

0.70 0.85 0.8 15 / 19 47 / 59 17 / 23 40 / 49

0.9 19 / 25 62 / 79 34 / 44 54 / 68

0.80 0.95 0.8 8 / 9 27 / 29 8 / 9 27 / 29

0.9 17 / 19 38 / 42 32 / 35 36 / 40

ππNew −− ππ0 == 0.20

0.05 0.25 0.8 1 / 9 3 / 17 1 / 12 3 / 16

0.9 1 / 9 4 / 30 1 / 15 4 / 25

0.10 0.30 0.8 2 / 10 6 / 29 2 / 15 6 / 25

0.9 3 / 18 7 / 35 3 / 22 7 / 33

0.20 0.40 0.8 4 / 13 13 / 43 5 / 18 11 / 33

0.9 5 / 19 16 / 54 6 / 24 14 / 45

0.30 0.50 0.8 6 / 15 19 / 46 7 / 19 17 / 39

0.9 9 / 24 25 / 63 8 / 24 22 / 53

0.40 0.60 0.8 8 / 16 24 / 46 18 / 34 21 / 39

0.9 12 / /25 33 / 66 13 / 29 28 / 54

0.50 0.70 0.8 9 / 15 27 / 43 13 / 23 24 / 37

0.9 14 / 24 37 / 61 15 / 27 33 / 53

0.60 0.80 0.8 8 / 11 31 / 43 9 / 13 26 / 35

0.9 13 / 19 38 / 53 16 / 26 33 / 45

0.70 0.90 0.8 5 / 6 23 / 27 20 / 23 22 / 26

0.9 12 / 15 30 / 36 14 / 18 27 / 32
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Table 16.5 Bayesian single threshold design (STD). Sample sizes and cut-off values for Stage 1 and overall trial size for πPrior

and πNew. The two rows correspond to designs for the pairs (λ1, λ2) of (0.6, 0.7) and (0.6, 0.8) respectively. A implies designs

for which NT-M < 2; and B those with NT-M ≥ 2 but nT-M1 < 1, and C those with NT-M > 90 or nT-M1 > 89. The denominators 

in the table give the size of Stage 1, nT-M1, and the total sample size, NT-M, for circumstances when Stage 2 is necessary. 

The numerators give the minimum number of successes required to move to Stage 2, RT-M1, and to conclude that the drug 

is effective, RT-M.

ππPrior 0.1 0.3 0.5 0.7 0.9

ππNew Stage 1 Overall Stage 1 Overall Stage 1 Overall Stage 1 Overall Stage 1 Overall

0.30 2 / 5 9 / 24 B A A A

2 / 5 22 / 61 B B A A

0.35 4 / 10 12 / 30 1 / 2 9 / 22 B A A

4 / 10 28 / 70 1 / 2 25 / 62 B B A

0.40 7 / 14 16 / 35 4 / 7 13 / 28 B A A

7 / 14 36 / 78 4 / 7 32 / 70 B B B

0.45 9 / 17 20 / 40 6 / 11 17 / 33 2 / 4 13 / 25 B A

9 / 17 42 / 84 6 / 11 38 / 76 2 / 4 34 / 68 B B

0.50 11 / 20 25 / 44 9 / 15 21 / 37 5 / 9 17 / 30 B B

11 / 20 49 / 88 9 / 15 45 / 81 5 / 9 41 / 73 B B

0.55 14 / 23 29 / 47 11 / 18 25 / 41 8 / 12 21 / 34 4 / 6 16 / 26 B

C 11 / 18 51 / 84 8 / 12 47 / 77 4 / 6 42 / 69 B

0.60 17 / 26 33 / 50 14 / 21 29 / 44 10 / 15 25 / 37 6 / 9 20 / 30 2 / 2 15 / 22

C 14 / 21 56 / 86 10 / 15 51 / 78 6 / 9 47 / 71 2 / 2 41 / 63

0.65 21 / 29 37 / 52 17 / 24 33 / 46 13 / 18 28 / 39 10 / 13 23 / 32 5 / 6 18 / 25

C 17 / 24 61 / 86 13 / 18 56 / 79 10 / 13 50 / 71 5 / 6 45 / 64

0.70 24 / 31 40 / 53 20 / 26 36 / 47 16 / 21 31 / 41 12 / 15 26 / 34 8 / 10 21 / 27

C 20 / 26 63 / 84 16 / 21 58 / 77 12 / 15 53 / 70 8 / 10 48 / 63

0.75 27 / 33 43 / 53 23 / 28 39 / 48 19 / 23 34 / 42 15 / 18 28 / 35 10 / 12 24 / 29

27 / 33 71 / 88 23 / 28 65 / 81 19 / 23 60 / 75 15 / 18 55 / 68 10 / 12 48 / 60

0.80 30 / 35 46 / 53 26 / 30 40 / 47 22 / 25 35 / 41 17 / 20 31 / 36 13 / 15 25 / 29

30 / 35 71 / 83 26 / 30 66 / 77 22 / 25 60 / 70 17 / 20 54 / 63 13 / 15 48 / 56

0.85 33 / 36 46 / 51 28 / 31 42 / 46 24 / 26 36 / 40 19 / 21 32 / 35 15 / 16 27 / 29

33 / 36 69 / 76 28 / 31 63 / 70 24 / 26 58 / 64 19 / 21 52 / 57 15 / 16 45 / 50

0.90 35 / 36 47 / 49 31 / 32 42 / 44 26 / 27 37 / 38 22 / 23 32 / 33 18 / 18 26 / 27

35 / 36 64 / 67 31 / 32 58 / 61 26 / 27 53 / 55 22 / 23 47 / 49 18 / 18 41 / 43

0.95 36 / 36 44 / 44 32 / 32 39 / 39 27 / 27 34 / 34 23 / 23 30 / 30 19 / 19 25 / 25

36 / 36 55 / 55 32 / 32 49 / 49 27 / 27 44 / 44 23 / 23 38 / 38 19 / 19 33 / 33
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Table 16.6 Bayesian dual threshold design (DTD). Sample sizes and cut-off values for Stage 1 and overall trial size for πPrior

and π0. The two rows correspond to designs for the pairs (λ1, λ2) of (0.6, 0.7) and (0.6, 0.8) respectively. A implies designs for
which NT-M < 2; B those with NT-M ≥ 2 but nT-M1 < 1; and C those with NT-M > 90 or nT-M1 > 89. The denominators in the table
give the size of Stage 1, nT-M1, and the total sample size, NT-M, for circumstances when Stage 2 is necessary. The numerators
give the minimum number of successes required to move to Stage 2, RT-M1, and to conclude that the drug is effective, RT-M.

ππPrior 0.1 0.3 0.5 0.7 0.9

ππ0 ππNew Stage 1 Overall Stage 1 Overall Stage 1 Overall Stage 1 Overall Stage 1 Overall

nT-M1 NT-M nT-M1 NT-M nT-M1 NT-M nT-M1 NT-M nT-M1 NT-M

0.1 0.2 4 / 18 5 / 19 5 / 23 6 / 24 6 / 27 7 / 28 6 / 32 7 / 33 7 / 36 8 / 37
1 / 18 10 / 38 2 / 23 8 / 29 6 / 27 7 / 28 7 / 32 8 / 33 8 / 36 9 / 37

0.2 0.3 3 / 15 9 / 24 7 / 20 9 / 21 8 / 25 9 / 26 10 / 30 11 / 31 11 / 35 12 / 36
3 / 15 22 / 61 4 / 20 19 / 53 4 / 25 16 / 44 8 / 30 12 / 34 12 / 35 13 / 36

0.3 0.4 3 / 10 16 / 35 4 / 15 13 / 28 9 / 21 10 / 22 11 / 26 12 / 27 13 / 31 14 / 32
3 / 10 36 / 78 4 / 15 32 / 70 6 / 21 28 / 62 7 / 26 24 / 53 8 / 31 20 / 44

0.4 0.5 1 / 2 25 / 44 4 / 9 21 / 37 6 / 15 17 / 30 12 / 21 13 / 22 14 / 26 15 / 27
1 / 2 49 / 88 4 / 9 45 / 81 6 / 15 41 / 73 8 / 21 36 / 65 10 / 26 32 / 57

0.5 0.6 B B 5 / 9 25 / 37 7 / 15 20 / 30 13 / 20 15 / 22
C B 5 / 9 51 / 78 7 / 15 47 / 71 10 / 20 41 / 63

0.6 0.7 B B B 4 / 7 26 / 34 8 / 14 21 / 27
C B B 4 / 7 53 / 70 8 / 14 48 / 63

0.7 0.8 B B B B 4 / 5 25 / 29
B B B B 4 / 5 48 / 56

0.1 0.25 5 / 18 6 / 19 6 / 23 7 / 24 7 / 27 8 / 28 8 / 32 9 / 33 9 / 36 10 / 37
1 / 18 16 / 51 2 / 23 13 / 42 5 / 27 10 / 32 9 / 32 10 / 33 10 / 36 11 / 37

0.2 0.35 3 / 15 12 / 30 7 / 20 9 / 22 10 / 25 11 / 26 11 / 30 12 / 31 13 / 35 14 / 36
3 / 15 28 / 70 4 / 20 25 / 62 4 / 25 22 / 54 5 / 30 18 / 45 14 / 35 15 / 36

0.3 0.45 3 / 10 20 / 40 4 / 15 17 / 33 9 / 21 13 / 25 13 / 26 14 / 27 15 / 31 16 / 32
3 / 10 42 / 84 4 / 15 38 / 76 6 / 21 34 / 68 7 / 26 30 / 60 8 / 31 26 / 51

0.4 0.55 1 / 2 29 / 47 4 / 9 25 / 41 6 / 15 21 / 34 11 / 21 16 / 26 15 / 26 16 / 27
C 4 / 9 51 / 84 6 / 15 47 / 77 8 / 21 42 / 69 10 / 26 37 / 61

0.5 0.65 B B 5 / 9 28 / 39 7 / 15 23 / 32 13 / 20 18 / 25
C B 5 / 9 56 / 79 7 / 15 50 / 71 10 / 20 45 / 64

0.6 0.75 B B B 4 / 7 28 / 35 9 / 14 24 / 29
B B B 4 / 7 55 / 68 8 / 14 48 / 60

0.7 0.85 B B B B 4 / 5 27 / 29
B B B B 4 / 5 45 / 50

0.1 0.3 3 / 18 9 / 24 8 / 23 9 / 24 9 / 27 10 / 28 10 / 32 11 / 33 11 / 36 12 / 37
1 / 18 22 / 61 2 / 23 19 / 53 2 / 27 16 / 44 10 / 32 12 / 34 12 / 36 13 / 37

0.2 0.4 3 / 15 16 / 35 5 / 20 13 / 28 11 / 25 12 / 26 13 / 30 14 / 31 15 / 35 16 / 36
3 / 15 36 / 78 4 / 20 32 / 70 4 / 25 28 / 62 5 / 30 24 / 53 11 / 35 20 / 44

0.3 0.5 3 / 10 25 / 44 4 / 15 21 / 37 8 / 21 17 / 30 14 / 26 15 / 27 17 / 31 18 / 32
3 / 10 49 / 88 4 / 15 45 / 81 6 / 21 41 / 73 7 / 26 36 / 65 8 / 31 32 / 57

0.4 0.6 1 / 2 35 / 50 4 / 9 29 / 44 6 / 15 25 / 37 11 / 21 20 / 30 17 / 26 18 / 27
C 4 / 9 56 / 86 6 / 15 51 / 78 8 / 21 47 / 71 10 / 26 41 / 63

0.5 0.7 B B 5 / 9 31 / 41 7 / 15 26 / 34 14 / 20 21 / 27
C B 5 / 9 58 / 77 7 / 15 53 / 70 10 / 20 48 / 63

0.6 0.8 B B B 4 / 7 31 / 36 10 / 14 25 / 29
B B B 4 / 7 54 / 63 8 / 14 48 / 56

0.7 0.9 B B B B 4 / 5 26 / 27
B B B B 4 / 5 41 / 43
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Table 16.7 Case and Morgan EDA design with α = 0.05. nC-M1 gives the size of Stage 1, C1 the
threshold to move to Stage 2, NC-M the total sample size and C2 the threshold for efficacy, if Stage 2 
is initiated.

Power 1 −− ββ == 0.8 Power 1 −− ββ == 0.9

S0(T) SA(T) R C1 C2 nC-M1 NC-M C1 C2 nC-M1 NC-M

0.30 0.45 2 0.166 1.567 46 75 0.082 1.590 65 102
2.5 0.264 1.554 42 77 0.188 1.581 60 103
3 0.322 1.544 39 78 0.252 1.574 57 105

0.50 2 0.177 1.565 27 44 0.082 1.590 37 58
2.5 0.270 1.552 24 45 0.193 1.579 34 59
3 0.315 1.545 23 45 0.250 1.573 33 60

0.35 0.50 2 0.177 1.567 46 76 0.088 1.591 67 105
2.5 0.270 1.553 42 78 0.192 1.580 62 107
3 0.328 1.544 40 79 0.249 1.574 58 108

0.55 2 0.188 1.564 28 46 0.097 1.590 37 58
2.5 0.274 1.552 26 47 0.208 1.578 34 59
3 0.330 1.543 24 48 0.252 1.574 33 60

0.40 0.55 2 0.180 1.567 48 80 0.094 1.591 66 103
2.5 0.268 1.554 44 81 0.202 1.580 61 105
3 0.318 1.547 41 82 0.249 1.574 57 106

0.60 2 0.188 1.565 29 47 0.091 1.590 39 61
2.5 0.286 1.550 26 48 0.217 1.577 36 63
3 0.331 1.542 24 49 0.262 1.573 34 63

0.45 0.60 2 0.195 1.565 47 79 0.097 1.591 68 107
2.5 0.280 1.553 43 80 0.211 1.579 63 110
3 0.322 1.545 40 81 0.256 1.574 59 110

0.65 2 0.185 1.567 29 47 0.108 1.590 38 59
2.5 0.280 1.552 26 48 0.211 1.579 35 60
3 0.331 1.544 24 49 0.262 1.573 33 61

0.50 0.65 2 0.192 1.567 47 77 0.105 1.590 65 102
2.5 0.278 1.553 42 79 0.211 1.579 60 104
3 0.322 1.546 40 80 0.256 1.574 56 105

0.70 2 0.208 1.562 25 42 0.123 1.588 37 58
2.5 0.289 1.550 23 43 0.209 1.579 34 59
3 0.325 1.545 21 43 0.264 1.572 32 60

0.55 0.70 2 0.204 1.565 47 79 0.108 1.591 64 101
2.5 0.292 1.552 43 80 0.224 1.578 59 103
3 0.331 1.546 40 81 0.268 1.573 56 104

0.75 2 0.205 1.564 25 42 0.117 1.589 35 55
2.5 0.287 1.551 23 43 0.212 1.578 32 56
3 0.346 1.541 22 43 0.256 1.574 30 57

0.60 0.75 2 0.201 1.567 42 70 0.126 1.589 59 94
2.5 0.297 1.551 38 71 0.209 1.581 54 95
3 0.331 1.546 36 72 0.265 1.574 51 96

0.80 2 0.208 1.564 24 41 0.129 1.588 32 50
2.5 0.293 1.552 22 42 0.220 1.579 29 50
3 0.340 1.543 21 42 0.272 1.572 27 51

0.65 0.80 2 0.209 1.565 37 62 0.126 1.589 52 82
2.5 0.296 1.552 34 63 0.218 1.579 48 84
3 0.335 1.544 32 64 0.277 1.572 45 85

0.85 2 0.211 1.565 21 35 0.126 1.589 29 46
2.5 0.284 1.553 19 36 0.205 1.580 27 47
3 0.346 1.542 18 36 0.271 1.573 26 48
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Table 16.8 Case and Morgan ETSL design with α = 0.05. nC-M1 gives the size of Stage 1, C1 the

threshold to move to Stage 2, NC-M the total sample size and C2 the threshold for efficacy, if Stage 2 

is initiated.

Power 1 −− ββ == 0.8 Power 1 −− ββ == 0.9

S0(T) SA(T) R C1 C2 nC-M1 NC-M C1 C2 nC-M1 NC-M

0.3 0.45 2 0.662 1.485 53 83 0.639 1.520 77 111
2.5 0.634 1.490 48 83 0.611 1.525 70 111
3 0.606 1.494 44 83 0.577 1.532 65 110

0.50 2 0.667 1.482 31 48 0.634 1.521 44 63
2.5 0.631 1.490 28 48 0.614 1.522 40 64
3 0.617 1.492 26 48 0.583 1.528 37 63

0.35 0.5 2 0.664 1.486 54 84 0.637 1.522 79 115
2.5 0.634 1.490 48 84 0.608 1.525 72 115
3 0.609 1.497 45 84 0.591 1.529 67 114

0.55 2 0.667 1.482 33 51 0.643 1.520 44 63
2.5 0.634 1.490 29 51 0.605 1.526 40 63
3 0.611 1.493 27 51 0.592 1.527 37 63

0.40 0.55 2 0.669 1.484 56 88 0.645 1.520 78 113
2.5 0.639 1.491 50 88 0.604 1.528 70 112
3 0.614 1.495 47 88 0.584 1.531 65 112

0.60 2 0.671 1.484 33 52 0.646 1.520 46 67
2.5 0.639 1.489 30 52 0.602 1.528 42 67
3 0.621 1.492 28 52 0.584 1.531 39 67

0.45 0.60 2 0.669 1.484 55 87 0.649 1.522 81 117
2.5 0.642 1.491 50 87 0.609 1.527 73 117
3 0.615 1.494 46 87 0.589 1.530 68 117

0.65 2 0.674 1.484 33 52 0.642 1.521 45 65
2.5 0.644 1.487 30 52 0.611 1.526 40 65
3 0.618 1.494 28 52 0.587 1.529 37 65

0.50 0.65 2 0.673 1.485 54 86 0.650 1.522 77 111
2.5 0.639 1.491 49 85 0.618 1.525 69 111
3 0.617 1.495 45 85 0.592 1.530 64 111

0.70 2 0.675 1.483 29 46 0.653 1.520 44 63
2.5 0.646 1.488 26 46 0.611 1.527 39 63
3 0.628 1.491 24 46 0.589 1.530 37 63

0.55 0.70 2 0.672 1.487 55 87 0.650 1.522 75 110
2.5 0.640 1.491 49 87 0.615 1.527 68 110
3 0.616 1.495 46 86 0.596 1.529 64 110

0.75 2 0.679 1.483 29 46 0.656 1.519 41 60
2.5 0.639 1.491 26 46 0.620 1.524 37 60
3 0.625 1.492 24 46 0.589 1.530 35 60

0.60 0.75 2 0.677 1.485 48 77 0.652 1.521 70 102
2.5 0.645 1.490 44 77 0.618 1.528 63 101
3 0.621 1.494 40 77 0.592 1.531 59 101

0.80 2 0.683 1.482 28 45 0.650 1.522 37 54
2.5 0.642 1.490 25 45 0.617 1.526 34 54
3 0.623 1.494 24 45 0.593 1.530 31 54

0.65 0.80 2 0.680 1.484 43 68 0.656 1.521 61 90
2.5 0.645 1.492 39 68 0.618 1.526 55 90
3 0.625 1.493 36 68 0.592 1.530 52 90

0.85 2 0.687 1.481 24 39 0.655 1.521 35 50
2.5 0.644 1.490 22 39 0.620 1.526 31 50
3 0.625 1.493 20 39 0.594 1.530 29 50
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Table 16.9 Simon, Wittes and Ellenberg design. For the probability of correctly selecting the best

treatment PCS = 0.9, the table gives the number of patients m in each group required to identify the

best drug under investigation for the number of treatments g, the worst response rate πWorst and

difference in the superior response rate δ.

δδ == 0.1, PCS == 0.9

Smallest response rate,
Number of treatments, g

ππ Worst 2 3 4 5 6

0.10 42 62 74 83 90

0.15 53 79 95 106 115

0.20 62 93 111 125 136

0.25 69 104 125 141 153

0.30 75 113 136 153 166

0.35 79 119 144 162 175

0.40 82 123 149 167 181

0.45 82 124 150 169 183

0.50 82 123 149 167 182

0.55 79 120 145 162 177

0.60 75 113 137 154 168

0.65 69 105 127 142 155

0.70 62 94 113 127 138

0.75 53 80 97 109 118

0.80 42 63 77 86 94

0.85 29 44 53 60 65

δδ == 0.15, PCS == 0.9

0.10 21 31 37 41 45

0.15 26 38 45 51 55

0.20 29 44 52 59 64

0.25 32 48 58 65 71

0.30 35 52 62 70 76

0.35 36 54 65 73 79

0.40 37 55 67 75 81

0.45 37 55 67 75 81

0.50 36 54 65 73 80

0.55 35 52 63 71 77

0.60 32 49 59 66 72

0.65 29 44 53 60 65

0.70 26 39 47 53 57

0.75 21 32 38 43 47

0.80 16 24 29 32 35
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Table 16.9 (continued ): Simon, Wittes and Ellenberg design. For the probability of correctly selecting

the best treatment PCS = 0.9, the table gives the number of patients m in each group required to

identify the best drug under investigation for the number of treatments g, the worst response rate

πWorst and the superior difference in response rate δ.

δδ == 0.2, PCS == 0.9

Smallest response rate,
Number of treatments, g

ππWorst 2 3 4 5 6

0.10 13 19 23 25 27

0.15 16 23 27 31 33

0.20 18 26 31 35 38

0.25 19 28 34 38 41

0.30 20 30 36 40 44

0.35 21 31 37 42 45

0.40 21 31 38 42 46

0.45 21 31 37 42 45

0.50 20 30 36 41 44

0.55 19 28 34 39 42

0.60 18 26 32 36 39

0.65 16 23 28 32 34

0.70 13 20 24 27 29

0.75 11 16 19 21 23

δδ == 0.25, PCS == 0.9

0.10 9 13 16 18 19

0.15 11 16 19 21 22

0.20 12 17 21 23 25

0.25 13 19 22 25 27

0.30 13 19 23 26 28

0.35 13 20 24 27 29

0.40 13 20 24 27 29

0.45 13 20 24 26 29

0.50 13 19 23 25 28

0.55 12 18 21 24 26

0.60 11 16 19 22 23

0.65 9 14 17 19 20

0.70 8 11 13 15 16
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Table 16.10 Bryant and Day design. Sample sizes and rejection criteria for πR0, πRNew, πT0, πTNew with

odds ratio, φ = 1. nB-D1 is the number of Stage 1 patients and NB-D is the total to be accrued to both

stages. At the end of Stage 1, the treatment will be rejected if the number of positive responses is < CR1

or when the number who do not experience toxicity is CT1. At the end of Stage 2, the treatment will be

rejected if the number of responses is < CR or the number who do not experience toxicity is CT.

ππR0 ππRNew ππT0 ππTNew nB-D1 CR1 CT1 NB-D CR CT

ααR == 0.10; ααT == 0.10; ββ == 0.15

0.1 0.3 0.60 0.80 19 3 13 40 7 28

0.2 0.4 0.60 0.80 20 5 13 41 12 29

0.3 0.5 0.60 0.80 20 7 13 43 17 30

0.4 0.6 0.60 0.80 20 9 13 46 23 32

0.5 0.7 0.60 0.80 17 9 11 43 26 30

0.6 0.8 0.60 0.80 18 12 12 43 30 30

0.1 0.3 0.75 0.95 9 1 7 25 5 22

0.2 0.4 0.75 0.95 18 5 15 34 10 29

0.3 0.5 0.75 0.95 19 7 16 37 15 31

0.4 0.6 0.75 0.95 14 6 11 37 19 32

0.5 0.7 0.75 0.95 16 9 13 39 24 34

0.6 0.8 0.75 0.95 13 9 11 37 26 31

ααR == 0.10; ααT == 0.10; ββ == 0.10

0.1 0.3 0.60 0.80 21 3 14 46 8 32

0.2 0.4 0.60 0.80 24 6 16 54 15 37

0.3 0.5 0.60 0.80 23 8 15 57 22 39

0.4 0.6 0.60 0.80 25 11 16 53 26 37

0.5 0.7 0.60 0.80 22 12 14 52 31 36

0.6 0.8 0.60 0.80 20 13 13 49 34 34

0.1 0.3 0.75 0.95 14 2 12 34 6 29

0.2 0.4 0.75 0.95 18 4 14 37 11 32

0.3 0.5 0.75 0.95 22 8 18 46 18 39

0.4 0.6 0.75 0.95 22 10 18 46 23 39

0.5 0.7 0.75 0.95 20 11 16 43 26 37

0.6 0.8 0.75 0.95 19 13 16 43 30 36
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Table 16.10 (continued ): Bryant and Day design. Sample sizes and rejection criteria for πR0, πRNew, πT0,

πTNew with odds ratio, φ = 1. nB-D1 is the number of Stage 1 patients and NB-D is the total to be accrued

to both stages. At the end of Stage 1, the treatment will be rejected if the number of positive responses

is < CR1 or when the number who do not experience toxicity is < CT1. At the end of Stage 2, the

treatment will be rejected if the number of responses is < CR or the number who do not experience

toxicity is CT.

ππR0 ππRNew ππT0 ππTNew nB-D1 CR1 CT1 NB-D CR CT

ααR == 0.15; ααT == 0.15; ββ == 0.15

0.1 0.3 0.60 0.80 15 2 10 30 5 21

0.2 0.4 0.60 0.80 17 4 11 36 10 25

0.3 0.5 0.60 0.80 19 6 12 33 13 23

0.4 0.6 0.60 0.80 20 9 13 37 18 26

0.5 0.7 0.60 0.80 17 9 14 37 22 27

0.6 0.8 0.60 0.80 14 9 9 33 23 23

0.1 0.3 0.75 0.95 12 2 10 22 4 19

0.2 0.4 0.75 0.95 12 3 10 28 8 24

0.3 0.5 0.75 0.95 13 4 10 27 11 23

0.4 0.6 0.75 0.95 17 8 14 30 15 25

0.5 0.7 0.75 0.95 17 10 14 30 18 25

0.6 0.8 0.75 0.95 14 9 12 25 18 21

ααR == 0.15; ααT == 0.15; ββ == 0.10

0.1 0.3 0.60 0.80 16 2 10 36 6 25

0.2 0.4 0.60 0.80 24 6 16 41 11 28

0.3 0.5 0.60 0.80 22 7 14 42 16 29

0.4 0.6 0.60 0.80 26 11 17 41 20 28

0.5 0.7 0.60 0.80 24 13 15 39 23 27

0.6 0.8 0.60 0.80 18 11 11 36 25 25

0.1 0.3 0.75 0.95 13 2 11 31 5 26

0.2 0.4 0.75 0.95 16 4 13 36 10 30

0.3 0.5 0.75 0.95 20 7 16 36 14 30

0.4 0.6 0.75 0.95 17 7 13 36 18 30

0.5 0.7 0.75 0.95 15 8 12 37 22 31

0.6 0.8 0.75 0.95 15 10 12 33 23 28
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Sample size software 

SUMMARY
The sample size software, , implements the sample-size computation methods and dose-finding

study designs discussed in this book.

17.1 Introduction

There are three ways in which may be used:

Sample-size calculator

The first is as a sample-size calculator, which can be accessed under Sample Size Calculator in

the main menu, to compute sample sizes corresponding to various choices of input values. The

calculator can be used for all methods described except those of Chapter 15 on dose finding studies.

Sample-size table printer

The second use of is as a sample-size table printer, which can be accessed under Tabulation

in the main menu, for computing sample sizes for a range of input values, with the ability 

to print out the corresponding sample-size tables. This will facilitate discussions amongst the

Study Team during the design of a trial as to the appropriate sample size to be used. This use of

is available for all sample size methods discussed except those of Chapter 15 on dose

finding studies and Chapter 16 on Phase II trials.

Database for early phase trials

For the implementation of dose finding studies, provides a database to allow for the capture

of key data relevant to the trial design. This feature is also available for use with Phase II trials

(Chapter 16). However, it should be noted that the included database is not meant to take the

place of a full trial database, which would still need to be set up so as to capture all relevant

information from the trial.

17.2 System requirements

It is essential to make sure that your computer meets the minimum system requirements of

the program in order for it to run smoothly. If you are experiencing poor performance, kindly

SSS
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check to make sure that your system hardware supports the requirements. The minimum 

system requirements are:

Operating System: Windows XP, 2000;

CPU: 500 MHz;

RAM: 128 MB;

Disc drive: 16x CD drive;

Hard drive: 10 MB of free space

17.3 Installation instructions

To install the software, insert the CD into the CD-ROM/DVD drive, and follow the

instructions that appear on the screen. If autorun has been disabled, the program can be run

manually by clicking the setup icon in the appropriate drive.

There may be situations during the installation of the software whereby the system will

prompt the user that his/her system files are older than the version required by the software.

Should this happen, the user should run the Windows Update that comes with the Operating

System so as to update the system files from the Microsoft website, prior to re-installing .

17.4 Help guide

For more details on using , users should refer to the Help file available under Help in the

main menu of the software.
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