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Overview

The description of survival analysis techniques can be mathematically com-
plex. The primary goal of the following description, however, is a sophis-
ticated introduction to survival analysis theory and practice using only
elementary mathematics, with an emphasis on examples and intuitive expla-
nations. The mathematical level is completely accessible with knowledge of
high school algebra, a tiny bit of calculus, and a one-year course in basic sta-
tistical methods (for example, #-tests, chi-square analysis, correlation, and
some experience with linear regression models). With this minimal back-
ground, the reader will be able to appreciate why the analytic methods work
and, with the help of modern computer systems, to effectively analyze and
interpret much of epidemiologic and medical survival data.

A secondary goal is the introduction (perhaps the review) of a variety
of statistical methods that are key elements of survival analysis but are also
central to statistical data analysis in general. Such techniques as statistical
tests, transformations, confidence intervals, analytic modeling, and likeli-
hood methods are presented in the context of survival data but, in fact, are
statistical tools that apply to many kinds of data. Similarly, discussions of
such statistical concepts as bias, confounding, independence, and interac-
tion are presented in the context of survival analysis but also are basic to a
broad range of applications.

To achieve these two goals, the presented material is divided into nine
topics:

Chapter 1: Rates and their properties

Chapter 2: Life tables

Chapter 3: Two especially useful estimation tools
Chapter 4: Product-limit estimation
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Overview

Chapter 5: Exponential survival time probability distribution
Chapter 6: Weibull survival time probability distribution
Chapter 7: Analysis of two-sample survival data

Chapter 8: General hazards model: parametric

Chapter 9: General hazards model: nonparametric

These topics make up essentially a second-year, one-semester biostatistics
course. In fact, this course has been taught at the University of California,
Berkeley as part of the biostatistics/epidemiology master of public heath
degree major, at the Graduate Summer Institute of Epidemiology and Bio-
statistics at Johns Hopkins Bloomberg School of Public Health, and at the
Graduate Summer Session in Epidemiology at the University of Michigan.

All statistical methods are extensively illustrated with both analytic and
graphical examples from the San Francisco Men’s Health Study. This unique
study was established in 1983 to conduct a population-based prospective
investigation of the epidemiology and natural history of the newly emerging
disease Acquired Immunodeficiency Syndrome (AIDS). The collected data
are a source of valuable and comprehensive information about the AIDS
epidemic in its earliest years. These data illustrate realistically the discussed
statistical techniques. A “workbook” of noncomputer problems is included
to further explore the practical side of survival analysis methods. Finally, a
small amount of computer code gives a sense of survival analysis software.
The statistical analysis system called “R” is chosen because it is extensive and
fully documented and both the software and documentation can be obtained
without cost (http://www.r-project.org).

Clearly many kinds of phenomena fail. Data collected to study the failure
of equipment, machine components, numerous kinds of products, and the
structural integrity of various materials are frequently analyzed with survival
analysis techniques (sometimes called time-to-failure data and methods).
For the following description of survival analysis, however, the terminology
is by and large in terms of human mortality (survived/died). For example,
rates are described in terms of mortality risk (risk of death). The language of
human mortality is chosen strictly for simplicity. The theory and applications
of the methods discussed are essentially the same regardless of the subject
matter context. Using general terminology complicates explanations and is
avoided to clearly focus on the statistical issues important in the analysis of
epidemiologic and medical survival data.
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Overview

It has been remarked (by Churchill Eisenhert) that the practical power of
a statistical procedure is the statistical power multiplied by the probability
that the procedure will be used. The material in this text has some of this
same spirit. A number of analytic approaches are presented because they
are simple rather than optimally efficient. For example, simple stratification
procedures are suggested for estimation, exploring linearity of a variable,
identifying the source of interactions, and assessing the proportionality of
hazard functions. Also in the spirit of simplicity, all confidence intervals are
set at the 95% level because other levels of significance are rarely used.

Steve Selvin, 2007






Rates and their properties

Rates are ratios constructed to compare the change in one quantity to the
change in another. For example, postal rates are the price per unit weight
for mailing a letter (price per ounce); miles divided by time produces a rate
of speed (miles per hour). However, to understand and clearly interpret a
rate applied to human survival data, a more detailed description is neces-
sary. This description begins with Isaac Newton, who in the 17th century
mathematically defined a rate and derived many of its properties.

The key to describing human survival, measured by rates of death or
disease, is a specific function, traditionally denoted by S(t), called the survival
function. A survival function produces the probability of surviving beyond a
specific point in time (denoted t). In symbols, a formal definition is

S(#) = P(surviving from time = 0 to time = ¢)
= P(surviving during interval = [0, t])

or, equivalently,
S(t) = P(surviving beyond time t) = P(T > t).

Because S(t) is a probability, it is always between zero and one for all values
of t (0 < S(¥) <1).

A simple survival function, S(t) = ¢~

, illustrates this concept (Fig-
ure 1.1). Perhaps such a function describes the pattern of 18th-century mor-
tality for any age t (probability of living beyond age t). The probability
of surviving beyond t = 20 years is, for example, S(20) = P(T > 20) =

—0.04(20)

e = 0.449 (Figure 1.1). Similarly, this survival function dictates that

half the population lives beyond 17.327 years. Thus,

P (surviving beyond 17.327 years) = S(T > 17.327) = e~ %1732 — (.50,
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A simple survival function—S(t) = P(T < t) = e 004,

To create a rate that does not depend on the length of the time interval,
Newton defined an instantaneous rate as the change in S(¢) as the length
of the time interval (denoted §) becomes infinitesimally small. This version
of a rate is the derivative of the survival function S(t) with respect to t or, in
symbols,

d
the derivative of S(t) = = S(t).

The derivative of a function is a rich concept and a complex mathematical
tool completely developed in a first-year calculus course. From a practical
point of view, the derivative is closely related to the slope of a line between
two points (an appendix at the end of the chapter contains a few details).
That is, for two points in time (¢ and ¢ + §), the derivative is approximately

S(t+68)— S(t)
8
= slope of a straight line between S(¢) and S(t + §).

d
— S I~
5, 5(0)



Rates and their properties

When the change in the survival function S(#)[S(#) to S(f + §)] is divided
by the corresponding change in time ¢ (t to t + &), one version of a rate

becomes
. change in S(¢) S(t+68)—S(t) S(t+8)— S
rate = = = .
change in time (t+48)—t 8

The proposed rate, constructed from two specific values of the survival
function S(#) and the length of the time interval §, consists of the change
(decrease) in the survival function S(t) relative to the change (increase) in
time (8). For small values of §, this rate (the slope of a line) hardly differs
from an instantaneous rate. In the following, the slope of a line (one kind of
rate) is frequently used to approximate the derivative of the survival function
at a specific point in time, an instantaneous rate.

Newton’s instantaneous rate is rarely used to describe mortality or disease
data, because it does notreflect risk. Ahomicide rate, for example, of 10 deaths
per month is easily interpreted in terms of risk only when it refers to a
specific population size. A rate of 10 deaths per month in a community of
1,000 individuals indicates an entirely different risk than the same rate in a
community of 100,000.

When the instantaneous rate (d/dt) S(t) is divided by the survival function
S(t), it reflects risk. To measure risk, a relative rate is created, where

d
as(t)

instantaneous relative rate = h(t) = —W.

Multiplying by —1 makes this relative rate a positive quantity, because S(t)
is a decreasing function (negative slope). An instantaneous relative rate h(t)
is usually called a hazard rate in human populations and a failure rate in
other contexts. The same rate is sometimes called the force of mortality or an
instantaneous rate of death or, from physics, relative velocity.

Two properties of a hazard rate complicate its application to collected data.
The exact form of the survival function S(¢) must be known for all values of
time t and the hazard rate is instantaneous. Knowledge is rarely available to
unequivocally define S(t) completely, instantaneous quantities are not intu-
itive, and interpretation frequently requires special mathematical/statistical
tools.
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Instead of an instantaneous rate, an average rate is typically used to measure
risk, particularly from epidemiologic and medical survival data. Formally, a
rate averaged over a time interval from t to t + § is

S(t) — S(t+6)
f:JrS S(u)du .

In more natural terms, an average rate over a specified time period is simply

average rate =

the proportion of individuals who died (“mean number of deaths”) divided
by the mean survival time for all individuals at risk during that period.
Equally, an average rate is the total number of individuals who died divided by
the total accumulated time at risk. Geometrically, the value in the numerator
of an average rate is the decrease in the survival probability between the two
points t and t 4 §. The value of the integral in the denominator is the area
under the survival curve S(#) between the same two points and equals the
mean survival time of individuals who lived the entire interval or died during
the interval.

—0.04% and the time interval ¢ = 20 to

For the survival function S(¢) = e
t = 25 years (§ = 5 years), the proportion of individuals who died (mean
number of deaths) is §(20) — S(25) = 7080 — ¢=1.00 — (.449 — 0.368 =
0.081 (Figure 1.1). The mean survival time for all individuals at risk (area)

during the interval 20 to 25 years (§ = 5) is

t+§8 25
area = / S(u)du:/eo‘04“du
t 20
e 00420 _ g700429) 0,449 — 0.368  0.081
- 0.04 ~ 004 004

= 2.036 person-years.

Thus, the mean survival time lived by individuals who survived the entire
five-year interval and those who died during the interval (20-25 years) is
2.036 years. A mean time at risk of 2.036 years makes the average mortality
rate

mean number of death e 080 _ =100 ~0.081

mean survival time 2.036 "~ 2.036

average rate =

= 0.040 deaths per person-year
= 40 deaths per 1,000 person-years.
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The geometry of an approximate average rate for the interval t=20to t+ 8 =50
(approximate rate = 0.036 and exact = rate = 0.040).

In many situations, particularly in human populations, the area under
the survival curve is directly and accurately approximated without defining
the survival function S(t), except at two points. When the survival function
between the two points t and ¢ + § is a straight line, the area under the curve
has a simple geometric form. It is a rectangle plus a triangle (Figure 1.2).
Furthermore,

area of the rectangle = width x height = ([t + 8] — t) x S(¢+ &)
=385(t+9)

and

area of the triangle =  base x altitude
= 3([t+8] — 1) x [S(t) — S(t + 8)]

= 38[S(1) = S(t+ 8)],
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Table 1.1. Approximate and exact areas for the time interval t = 20 and
t+ 8 = 20 + § for the survival function S(f) = e %94 (exact rate = 0.04).

8 ttot+48 S(t) S(t+ ) d(t) area* area™* rate™*
30 20 to 50.0 0.449 0.135 0.314 7.850 8.770 0.036
20 20 to 40.0 0.449 0.202 0.247 6.186 6.512 0.038
10 20 to 30.0 0.449 0.301 0.148 3.703 3.753 0.039

5 20 to 25.0 0.449 0.368 0.081 2.036 2.043 0.039
20to 21.0 0.449 0.432 0.018 0.440 0.441 0.040
0.1 20 to 20.1 0.449 0.448 0.002 0.045 0.045 0.040

* = exact S(t)
** = approximate (straight line).

making the total area

area = rectangle + triangle
=8S(t+8) + 18[S(t) — S(t+8)] = 18[S(t) + S(t+8)].

Figure 1.1 displays the geometry for the survival function S(t) = e~ %%, For
theinterval t = 20tot + § = 25(§ = 5), thearea of therectangleis § S(25) =
5(0.368) = 1.839 and the area of the triangle is %8[8(20) — 5(25)] =
%(5)[0.449 — 0.368] = 0.204, making the total area 1.839 + 0.204 = 2.043
(mean time-at-risk during the interval). Again, the mean number of deaths
is 0.0814. A measure of risk becomes the approximate average rate =
0.0814/2.043 = 0.039 (exact = 0.04) or 39 deaths per 1,000 person-years.

The approximate area is usually an accurate estimate of the exact area
because the human survival curve in most situations is approximately a
straight line over a specific and moderately small time interval. More simply,
when a straight line and part of a survival function S(t) are not very different,
using an approximation based on a straight line works well [straight line &~
S(t)]. Table 1.1 and Figure 1.2 illustrate this similarly for t = 20 years, where
the exact average rate is 0.04 for all time intervals.

Because S(t) represents the probability of surviving beyond time t, the
difference S(t) — S(t 4+ §) = d(¢) represents the probability of dying in the
interval from £ to t 4+ §. In addition, the approximate area under the survival
curve S(t) has three equivalent forms, §[S(t) — %d(t)] or §[S(t+8) +
%d(t)] or %S[S(t) + S(t+6)], for the time interval t to t + §. All three
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expressions are the sum of the mean time lived by those who survived the
entire interval [rectangle = § S(t + §)] plus the mean survival time lived by
those who died [triangle = %8 d(t)]. Therefore, to calculate the mean number
of deaths and to approximate the mean time at risk, all that is needed is the
values of S(t) at the two points in time, namely ¢ and ¢ + §. The ratio of
these two mean values is the average approximate mortality rate.

Suppose that out of 200 individuals at risk, 100 individuals were alive Jan-
uary 1, 2004, and by January 1, 2006, suppose 80 of these individuals remain-
ed alive. In symbols, t = 2004, t + § = 2006 (6 = 2 years), S(2004) = 100/
200 = 0.50, and S(2006) = 80/200 = 0.40, making the proportion of the
original 200 at-risk individuals who died during these two years d(2004) =
$(2004) — S(2006) = 0.50 — 0.40 = 0.10 or 20/200 = 0.10. The approx-
imate area enclosed by the survival curve for this § = 2-year period is
% -2(0.50 + 0.40) = 0.90 person-years (area). The average approximate rate
becomes R = (0.50 — 0.40)/0.90 = 0.10/0.90 = 0.111 or, multiplying by
1,000, the rate is 111 deaths per 1,000 person-years. Rates are frequently
multiplied by a large constant value to produce values greater than one (pri-
marily to avoid small fractions). The mortality rate Rreflects the approximate
average risk of death over the period of time from 2004 to 2006 experienced
by the originally observed 200 individuals. In addition, the total accumu-
lated person-years lived by these 200 individuals during the two-year period
is 200(0.90) = 180 person-years because the mean years lived by these 200
individuals during the interval is 0.90 years. Therefore, the number who died
(100 — 80 = 200(0.10) = 20) divided by the total person-years (180) is the
same approximate average rate,

total deaths 20 0.10
average rate = R = = —=——=0.111.
total person-years 180  0.90

The example illustrates the calculation of an approximate average rate
free from the previous two constraints. It is not necessary to define the
survival function S(#) in detail and the rate is not instantaneous. The only
requirements are that the two values S(#) and S(¢ + &) beknown or accurately
estimated and the survival curve be at least close to a straight line over the
time period considered. Both conditions are frequently fulfilled by routinely
collected human data providing a huge variety of mortality and disease rates
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(see the National Center for Health Statistics or the National Cancer Institute
Web site—http://www.cdc.gov/nchs/ or http://www.nci.nih.gov).

Itisimportant to note (or review) the equivalence of two ways to calculate a
rate. An approximate average rate is calculated by dividing the mean number
of deaths (the proportion of deaths) that occur during an interval by the
mean survival time for that interval. That is, the ratio of means is

mean number of deaths

approximate average rate = —
mean survival time

_ d(t)
38[S() + S(t+8)]

Or, more usually but less intuitively, the same rate calculated from a specific
number of individuals (denoted /) in terms of deaths and total person-years
is

total number of deaths

approximate average rate = -
total person-years at-risk

B 1d(1)
{3808 + S(t+ )1}

These two rates are identical.

An approximate average rate is sometimes calculated by dividing the
observed number of deaths by the number of individuals alive at the mid-
point of the interval considered. For example, for the year 2000 in Marin
County, California, there were 247,653 women alive halfway through the
year and 494 deaths from cancer for the entire year. The annual average
cancer mortality rate becomes 494 deaths divided by the midinterval count
of 247,653 persons, and the approximate average rate = (494/247,653) x
100,000 = 199.5 deaths per 100,000 person-years. This “short cut” is no
more than an application of the fact that the midinterval population for
I individuals is approximately the total accumulated person-years at risk
or, in symbols, the midinterval population I x 6 S(¢ + %8) is approximately
I x %S[S(t) + S(t+ 8)] and is exact when S(t) is a straight line.

A number of ways exist to calculate an approximate average rate from mor-
tality data based on the assumption that a straight line closely approximates
the survival function. The following example illustrates three methods using
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Table 1.2. U.S. mortality rates (all causes of death) age 65-74 for the
years 1999, 2000, and 2001.

Person-years

i Year Deaths (d;) (pyrs;) Rate/100,000
1999 387,437 16,167,771 2396.4

2 2000 376,986 16,100,428 2341.5

3 2001 367,128 15,969,452 2298.9
Total 1,131,551 48,237,651 2345.8

U.S. mortality data for individuals aged 65 to 74 during the years 1999-2001
(Table 1.2).

Method 1:
Yd 1,131,551

rate = =
Z pyrs; 48,237,651

= 2,345.8 deaths per 1000,000 person-years

Method 2:
d, 376,986
rate = = = 2,341.5 deaths per 100,000 person-years
pyTS, 16,100,428

and

Method 3:

d; 1,131,551

rate = Z =

3 x pyrs, 3 x 16,1000,428
= 2,342.7 deaths per 100,000 person-years.

The three methods produce essentially the same average mortality rate
because the change in human mortality over short periods of time is usually
close to linear.

Another frequent measure of risk is a probability. A probability, defined in
its simplest terms, is the number of equally likely selected events (a subset)
that might occur divided by the total number of all equally likely relevant
events that could possibly occur (the entire set). In symbols, if n[ A] represents
the number of selected events among a total of n equally likely events, then

A
probability of event A = P(A) = nlA] .
n




10

Survival Analysis for Epidemiologic and Medical Research

For example, the probability of death (denoted q) is ¢ = d/n, where n[A] =
d represents the number of deaths among » individuals who could possi-
bly have died. The complementary probability of survivingis 1 —gq = p =
(n — d)/n. Notice the explicit requirement that all # individuals be members
of a population with a proportion of g deaths and p survivors (next topic).
Other, more rigorous definitions of probability exist, but this basic definition
is sufficient for the following applications to survival analysis.

A probability is always zero (impossible event) or one (sure event) or
between zero and one. In addition, a probability is unitless and does not
depend directly on time. On the other hand, a rate can be any positive value,
is not unitless (per person-time), and depends directly on time. Nevertheless,
these two quantities are closely related. For an average approximate rate R
and a probability g,

R— S(t) — S(t+9) _ S(t)/S(t) — S(t+68)/S(¢) _ q
8[S(1) — 3d(n)]  8[S(1)/S(1) — 3d(1)/S(1)]  8(1 — 39)
and thus
SR
q= m

where probability of death g is d(t)/S(¢) for the interval (¢, t 4+ §). The
probability of survival becomes 1 — g = p = S(¢t + §)/S(¢). Note that g,
and necessarily p, are conditional probabilities, conditional on being alive at
time t. More specifically,

probability of death = g = P(death between t and ¢ 4 § | alive at time ¢)
_ P(deathbetweentand r+45)  d(¢)
o P(alive at time ?) S’

The probability of death or disease in human populations is almost always
small (p &~ 1 or g =~ 0), making the relationship between a rate and a proba-
bility primarily a function of the length of the time interval §. In symbols, the
rate = R ~ /8 when 189 ~ 0. When the period of time considered is one
year, an average annual mortality rate and a probability of death typically
produce almost identical values (R & q). These two quantities are more or
less interchangeable and, particularly in the study of human mortality and
disease, it often makes little practical difference which measure of risk is used.
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For example, a ratio of rates and a ratio of probabilities hardly differ when
applied to the same time interval. In symbols,

R )
rate ratio = —- A ﬁ =4 = relative risk.

Ry qo/8 4o

Under rather extreme conditions, a rate and a probability can differ consid-
erably. For example, among 100 individuals, of whom 80 die in the first month
during a disease outbreak and the remaining 20 survive the rest of the year
(6 = 1), the probability of death is ¢ = 80/100 = 0.8 but the approximate
average mortality rate is R = 80/[20 + 0.5(1/12)(80)] = 0.80/[0.20 +
0.033] = 0.08/0.233 = 3.43 deaths per person-year (area = 0.233). How-
ever, for the year considered, the probability of death is not small and the
survival curve is not close to a straight line.

Statistical properties of the probability of death

When arate is estimated from survival data, a fundamental assumption made
about the sampled population is that the underlying probability of death
(represented again by q) is atleast approximately constant. “Constant,” in this
context, means that the probability g refers to a population made up of two
outcomes (for example, died/survived or disease-present/disease-free) with a
proportion of individuals g of one kind and a proportion of individuals p =
1 — g of another kind. Under this condition, the properties of a sample of n
individuals are described by a binomial probability distribution. Therefore,
the probability that a sample of # independent individuals contains exactly
d individuals who died and n — d who survived is

n

d
only when the probability of death g is constant.

P(D=d):< )qd(l—q)”_d d=0,1,2,...,n

These n + 1 probabilities, determined completely by the two parameters
n and ¢, generate the properties of the binomially distributed variable rep-
resented by D. For example, the mean of the distribution of the count D is
nq and its variance is given by the expression ng(1 — gq). The estimate of
the binomial probability g is the number of sampled individuals who died
divided by the total number sampled, denoted 4 = d/n. The properties of
this estimate also follow directly from the binomial probability distribution.
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For example, the variance of the distribution of the estimate § is q(1 — q)/n
and is naturally estimated by variance(§) = g(1 — g)/n.

The variability of the distribution of the estimate g, estimated by the
expression g(1 — g)/n, reflects the sampling variation accompanying all
statistical estimates. That is, another sample likely produces a different value
of g because another sample will likely be made up of different individuals. It
is this sample-to-sample variation that is measured by q(1 — q)/n. It is this
variation that is described by a binomial probability distribution. Occasion-
ally the variation associated with the estimate § is erroneously attributed to
the fact that individuals vary with respect to the probability of death. Varia-
tion of the probability of death among the sampled population members is
anissue (to be discussed) but it is not the variation associated with a binomial
distribution, which requires the probability represented by g to be constant.
This distinction is important because the binomial distribution is central to
the statistical description of probabilities and rates.

Two notable issues arise in applying a binomial distribution as part of
describing a sample of survival data: the use of the normal distribution as
an approximation and the consequences of assuming that the same constant
probability g applies to all individuals within the sampled population when
it does not.

Normal approximation

Statistical tests and confidence intervals based on a normal distribution are
fundamental statistical tools used to assess the influence of sampling vari-
ation on an estimated value. In many situations, these tools apply to the
estimated binomial probability 4. For example, an approximate 95% confi-
dence interval is § & 1.960,/variance(q) but requires the distribution of the
estimate § to be at least approximately normal. This approximation works
best when g is in the neighborhood of 0.5 and the sample size exceeds 30 or
so (n > 30). These two requirements ensure that the distribution of the esti-
mate § is close to symmetric and, therefore, is accurately approximated by a
normal distribution. For survival data, particularly human survival data, the
probability g typically refers to probabilities that are almost always small and
in some cases extremely small. A consequence of a small probability is that
the associated binomial probability distribution has a limited and positive
range in the neighborhood of zero and is not symmetric. Because the normal
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distribution is symmetric and likely produces negative values near zero, it is
no longer a directly useful approximation for a binomial distribution. Alter-
native approaches to evaluating an estimate g statistically when g is small
employ exact methods or transformations.

Exact methods are conceptually complicated and numerically difficult but
areavailable as part of statistical computer analysis systems. Transformations,
on the other hand, require only a bit of calculation but, unlike exact methods,
are conceptually simple. Transformations are created to make asymmetric
distributions (sush as the binomial distribution with small q) approximately
symmetric. For the transformed variable, the normal distribution once again
becomes a useful approximation and normal-based tests and confidence
intervals apply. In addition, these transformations are designed to always
produce valid values for confidence interval bounds (for example, to never
produce a negative bound for a probability).

Such a transformation of a small probability is the logistic transformation.
A logistic transformation of an estimated probability § (denoted [) is

\ g d
l:log[lqA]=log|: di|.

The transformed estimate [ has an unlimited range and a close to symmetric
and, therefore, a more normal-like distribution. The value [ is the logarithm
of the odds, sometimes called the log-odds or logit. The odds are defined as
the probability that an event occurs divided by the probability that the same

event does not occur (the complementary event). The odds are a popular
measure of risk used most often in gambling and epidemiology. To improve
the accuracy (reduce the bias) of this logistic transformation, a value of
one-half is added to the numerator and denominator, creating a less biased
estimated log-odds,

\ d+3
' =log [ﬁ}
2

The estimated variance of the normal-like distribution of the estimate [ is
given by the expression

(n+1)(n+2)
nd+1)(n—d+1)

variance([) =
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The variance of the distribution of [ is approximately variance( Ha1 /(d+1)
when 7 is much larger than d, which is frequently the case for mortality
and disease data (g is small). The origin of such a variance is discussed in
Chapter 3.

The estimated probability of death from cancer among female residents of
Marin County, California over the age of 30 is § = 494/247,900 = 0.001993
or 199.3 per 100,000 at-risk women (d = 494 deaths among n = 247,900
women who were residents of Marin County at the beginning of the year
2000). Construction of a confidence interval from this estimate provides an
example of applying a logistic transformation to mortality data (small q).

The estimated log-odds value is [ = log(494.5/247406.5) = —6.215 with
estimated variance of the distribution of [ given by variance({) = 0.00202. The
bounds of an approximate 95% confidence interval based on the estimated

log-odds [ = —6.215 and the normal distribution, as usual, are
A = lower bound = [ — 1.9604/ variance([)

= —6.215 — 1.9604/0.00202 = —6.303
and

B = upper bound = [ 4+ 1.9604/ variance(/)

= —6.125 + 1.9604/0.00202 = —6.127.

A little algebra shows that 1/(I + el = q. Therefore, the log-odds 95%
confidence interval bounds A and B calculated from the approximate nor-
mal distribution of [ are identically transformed into the bounds associated
with the estimated probability 4. The approximate 95% confidence interval
bounds for the cancer rate in Marin County become

1 bound ! !
ower bound = " =1 30 = 0.001837
and
1 1
upper bound = = = 0.002178

1 + €_B 1 + 66‘127

or (182.7, 217.8) per 100,000 at-risk women. As required, the probability
g remains 1/(1 + €%2!°) = 0.001993 or 199.3 deaths per 100,000 at-risk
women. In addition, these log-odds calculated bounds will always be between
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0 and 1. (A few details of the construction of confidence intervals based on
transformed estimates are reviewed at the end of the chapter).

The logistic transformation similarly applies to the comparison of esti-
mated probabilities from different populations (sometimes called the two-
sample problem). For example, the probability of a cancer death in Marin
County compared to the same probability for the rest of the state of
California provides a formal evaluation of the observed excess risk expe-
rienced in this county. The Marin County probability is again 199.3 cancer
deaths per 100,000 at-risk women and the same probability for the rest
of the state is 147.6 cancer deaths per 100,000 at-risk women (specifically,
[51,186/34,689,000] x 100,000 = 4§ x 100,000 = 147.6). The correspond-
ing logistic transformed estimates are Inarin = —6.215 and e = —6.517.
Applying the normal distribution approximation again provides an accurate
assessment of the influence of sampling variation on the observed difference
in log-odds transformed values. Specifically, the comparison takes the form

Itarin — Lstate —6.215— (—6.517)  0.302
Zz = _

= - — = = = 6.680,
Jvariance(yirn — ) ~/0-00202 +0.00002  0.045

where the estimated variance(Iyarin — lsare) = variance(Iyarin) + vari-
ance(ly). For the comparison of cancer mortality risk between Marin
County and the state as a whole, the estimated variance is variance(Iyfarin —
fstate) = 0.00204. The test statistic z has an approximately standard normal
distribution when the underlying cancer mortality rates of Marin County
and the state of California are the same, implying that the estimated log-
odds values differ by chance alone. A significance probability (p-value)
of P(|Z| > 6.680| no difference) < 0.001 leaves little doubt that random
variation is an unlikely explanation of the observed difference. The sig-
nificance probability derived from the comparison of the more symmetric
(normal-like) logit transformed probability (—6.215 compared to —6.517)
equally applies to the comparison of the estimated probabilities themselves
(199.3 compared to 147.6 deaths per 100,000). Both comparisons yield
the identical p-value. In symbols, P(|gmarin — Gstate| > 0| no difference) =
P(]Z] = 6.680| no difference) < 0.001.

This statistical test is consistent with the previous confidence interval con-
structed from the Marin County cancer mortality data. The Marin County
approximate 95% confidence interval (182.7, 217.8) defines a range of likely



16

Survival Analysis for Epidemiologic and Medical Research

Table 1.3. Four hypothetical groups (n= 160)
heterogeneous for the probability q.

Group n; d; qi vi

Group 1 60 2 0.033 1.933
Group 2 50 4 0.080 3.680
Group 3 30 6 0.200 4.800
Group 4 20 8 0.400 4.800

Combined 160 20 0.125 17.500

* Variance of d; = v; = n;q;(I — q;).

values for the underlying probability of a cancer death g (per 100,000 women)
and does not include the estimated probability of death for the entire state
(147.6/100,000). Thus, the statewide probability (or log-odds) is not a plau-
sible value for Marin County from either perspective (test or confidence
interval). The two approaches rarely give substantially different answers.

Homogeneity of the binomial probability g

Human populations are never perfectly homogeneous with respect to the
probability of death or disease (q = constant). Age-, race-, location-, and
sex-specific samples of data are frequently collected, but the underlying prob-
ability of death remains heterogeneous to some extent even in these more
highly stratified populations. The consequences of ignoring this residual
heterogeneity are demonstrated by an example.

Suppose a population of 160 (n = 160) individuals consists of four groups
heterogeneous for the probability g (defined in Table 1.3). A natural esti-
mate of the probability q is § = d/n =20/160 = 0.125 (d = ) _ d; and
n =) _ n;) combining the four groups. The estimated variance of the estimate
gisq(l — g)/n=(0.125)(0.875)/160 = 0.0007. Both estimates completely
ignore the heterogeneity of the probability g.

An estimate accounting for heterogeneity is the weighted average g =
> migi/ Y ni =) di/n and again § = 0.125. The estimated variance of
q that accounts for the heterogeneity among the four groups is, however,
reduced. The estimated variance is }_ v;/n* = 0.0006. In symbols, the per-
haps not very intvitive result emerges that

variance(g | accounting for heterogeneity)

< variance(q | ignoring heterogeneity).
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Not accounting for the heterogeneity of the probability g among a series
of groups always produces a conservative estimate of the variability—
conservative in the sense that the estimated variance is likely too large, causing
statistical tests to have larger p-values or confidence intervals with greater
lengths than would occur if the heterogeneity among groups were taken into
account.

The difference in variability is entirely due to the differences among the
gi-values. Specifically, the difference between the two estimated variances
4(1 — q)/nand " v;/n*isstrictlya function of the differences among the §;-
values. Or, in symbols, the expression for differenceis Y n;(§; — q)?/ n?. For
the hypothetical example (Table 1.3), the heterogeneity of g among the four
groups measured by Y 1;(g; — §)*/n? is 0.0001. The variance estimated by
q(1 — g)/nis strictly correct only when §; exactly equals g in all subgroups;
otherwise it is biased upward. That is, the estimated variance of g is increased
by ignoring heterogeneity because it is the sum of the estimated variance of
q that accounts for heterogeneity and the variance of the values of §; among
the groups.

This artificial example is realistic in the sense that the bias arising from
ignoring heterogeneity not only is conservative but is typically small. There-
fore, not entirely accounting for heterogeneity in a sampled population, a
reality in most applied situations, leads to statistical tests and estimated con-
fidence intervals that are likely understated but not likely misleading. For
example, the previous analysis of the Marin County cancer mortality data
does not account for the heterogeneity of the probability of death within the
county, producing a slightly biased confidence interval and statistical test.

Survival probabilities, average rates, and hazard rates: an example

Consider the survival experience of a population of individuals during the age
interval 90 to 100 years. These individuals are envisioned as dying at random
during the next 10 years. Thus, all individuals are equally likely to die at any
time during the 10-year period. Postulating such a mortality pattern is not
entirely unrealistic and has an important application to life table calculations
(next chapter). In other situations, postulating a uniform risk of death among
a subgroup of individuals is frequently part of describing more complicated
survival patterns. Furthermore, even this simple illustration characterizes the
fundamental relationships amonga survival probability, an average mortality
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Figure 1.3. Survival function S(t) describing individuals dying uniformly during the age interval 90
to 100 years.

rate, and a hazard rate. More realistic situations differ in technical details but
often differ little in principle.

When all individuals are equally likely to die at any time during the age
interval from 90 to 100 years, then half the original individuals will live
beyond age 95 and half will die before age 95. In fact, at any time (denoted )
during the 10 years, [100 x (100 — t)/10] percent will be alive and [100 x
(t — 90)/10] percent will have died. For example, at age 97, 30% remain alive
(70% have died). In symbols, the theoretical uniform survival probability
function S(¥) is
S(t)=P(TZt)=F, wherea <t < b.

In the present case, a = 90 and b = 100 years. Geometrically, the survival
function (a continuous series of survival probabilities) is a straight line run-
ning from 1.0 atage 90 to 0.0 atage 100 with slopeof —1/(b — a) = —1/10 =
—0.1. As with all survival functions, the maximum value S(a) is 1.0, occur-
ring at age = a = 90, and the minimum value S(b) is 0.0, occurring at
age = b = 100 (Figure 1.3).
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The average mortality rates of these 90-year-old individuals follows
directly from the survival probabilities. Suppose [ represents the total
population of individuals at risk; then the total number of deaths between
times #; and &, is

l
number of deaths = [ x [S(f) — S(&)] = 5 (b — 1)

—a

and the total person-years these [ individuals lived is

person-years-at-risk = | x area = [ x {rectangle 4 triangle}
=1 x{(h —1)S(t) + 3(n — 0)[S(1) — S(1)]}

(h— )b —3(n + 1))

=1
% b—a

For example, for I = 1,000 individuals at risk, the number of deaths between
ages 93 and 97 would be

1,000
number of deaths = 1,000 x [0.7 — 0.3] = 0 x (97 — 93) = 400

and the total time lived between ages 93 and 97 would be
(97 — 93)[100 — (93 + 97)]
10

The average mortality rate then becomes R = 400/2,000 = 0.2 (200 deaths
per 1,000 person-years). Again, the total person-years lived between two

person-years-at-risk = 1,000 x = 2,000.

pointsin time is the total number of individuals at risk multiplied by the mean
survival time (the area under the survival curve or [ x area = 1,000 x 2.0 =
2,000—Figure 1.3).

For these 90-year-olds, the expression for the average mortality rate for
any interval #; to t, becomes

mean number of deaths

R = average mortality rate = -
mean person-years-at-risk

number of deaths

total person-years-at-risk

b_a(tZ_tl> 1

(b —1)[b—3(h + 1) T h- Hh+1)
b—a

I x
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For the example, the average mortality rate for individuals between the ages
of 93 and 97 is again

1
R= 1
100 — 1(93 +97)

= 0.200 or 200 deaths per 1,000 person-years

and the mortality rate for individuals between the ages of 97 and 100 years
increases to
1
R= -
100 — 1(97 4+ 100)

= 0.667 or 667 deaths per 1,000 person-years.

The average mortality rate indicates risk over a specific time interval. As
the interval becomes smaller, the average mortality rate more accurately
reflects the instantaneous hazard rate. When the length of the interval #, to ;
ultimately becomesOor t; = t, = t (§ = t; — , = 0), the two kinds of rates
become identical. For the uniform mortality case when § = 0, the average
rate becomes the hazard rate,

1
b—i(t+1) bt

hazard rate = h(t) =

This expression, derived directly from the definition of a hazard rate, is
identical, or

d 1
h(t):—ES(tLb‘”: L
S(1) b—t b—t

b—a

This hazard rate for the age interval 90 to 100 years is displayed in Figure 1.4.

The mean survival time for these 90-year-old individuals (entire popula-
tion) is mean years lived = %(b —a) = 0.5(100 — 90) = 5 years. This mean
value is geometrically the total area under the survival “curve” from age 90
to age 100 (area of the entire triangle—Figure 1.3). The total area under the
survival curve is directly related to the total person-years of survival (denoted
L). In symbols, L = I x mean years lived = | x 1(b — a) person-years. In
general,

total person-years L

mean survival time = total area = — = —,
the number of person-at-risk I
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Oi8 1.0
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Hazard rate h(t) for individuals dying uniformly during the age interval 90 to 100 years.

From this point of view, the mean survival time is calculated the same way as
any mean value. It is the total amount of time lived (L) divided by the total
number of individuals (/) who lived it.
The crude mortality rate (mortality rate for all individuals at risk over the
entire interval from age 90 to 100 years) is
total number of deaths d ]
crude rate = =—=—
total person-years L L
1

mean survival time

Higher risk (rate) causes lower survival time (mean survival time) and vice
versa. For the example, the mean survival time of five years makes the crude
mortality rate 1/5 = 0.2 deaths per person-year. Or, calculated directly, the
crude mortality rate is

l l

. d
crude mortality rate = TSI "

1
= —:02
L Ixib-a) 5
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for the entire interval. Notice that the total number of deaths (d) equals the
total number of the original individuals at risk () when the entire time period
is considered (I = d—everyone dies). A rate is not called crude because it is
lacking or rudimentary. The statistical term “crude” applied to a rate simply
means that it is not adjusted for influences from other factors.

The median survival time is that age at which half the original individuals
are alive and half have died (denoted t,,). In symbols, when the survival
probability S(t,,) = 0.5, the median survival time is t,,. For this uniform-
mortality example,

b—tn
S(ty) = % =7 and medianvalue =t, =b — %(b —a)
= %(b—i—a).

For the age period from 90 to 100 years, the median survival age is
tn = %(100 4 90) = 95 years, making the median years survived equal to
5. The mean and median survival times are equal because, for this spe-
cial case of uniform risk, the pattern of mortality is symmetric (mean =
median).

The probability of death during a specific age interval (again denoted q)
is the number of individuals who died in the interval divided by the number
who could have died (all at-risk individuals at the beginning of the interval).
For the uniform mortality case, this conditional probability for the interval
L to b is

total number of deaths

bability of death = g =
probabriity ot dea 1 total number of deaths that could occur

)
I [SH) =S p—a 2" n—y

- % S(n) - b—1f

l =
m(b —h)

For example, the probability of death during the age interval from 93 to
97 years is ¢ = 4/7 = 0.571. More directly, when the original population
consists of I = 1,000 individuals, among the 700 at-risk individuals aged
93, 400 died during the next four years; again g = 400/700 = 0.571. As
before, the symbol g represents a conditional probability of death (condi-
tional on being alive at age t = 93 or conditional on 700 at-risk individuals).
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As with an average mortality rate and a survival probability, the probability
of death (notsurprisingly) is also related to the hazard rate. All three measures
reflect the risk of death. Specifically, the hazard rate at any time ¢ is

1
h(t) = ——,
(t) -
and at time #
1 Hh —
o q

h(t)= = - 9
Y b=t -8 bH-t

producing another version of the previous rate/probability relationship
(R =~ q/38). Specifically, at age 93, the hazard rate is h(93) = 1/(100 — 93) =
1/7 and the probability of death is g = 4/7; thus

_4/7 1

9
h(93) = .
) h—1t 4 7

The relationship between a conditional probability of death and a hazard
rate, as well as several other relationships illustrated, is useful in under-
standing more complex survival and hazard functions (future topics). Four
relationships from this example that are important in other contexts are as
follows:

1. An average rate approximately equals a hazard rate, particularly over a
short interval of time, or

average approximate rate & hazard rate.

2. The hazard rate and the conditional probability of death are related, or

probability of death

hazard rate ~ —
interval length

3. The mean survival time is geometrically the area under the survival curve,
or

total person-years

mean survival time = -
total person-at-risk

= area under the survival curve.

4. The approximate time lived by those who died (d) within the interval
to t is

total person-time ~ %(tz —tf)d = %6 d (a triangle).
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APPENDIX |

Statistical tools: properties of confidence intervals

Consider the estimate of a generic parameter g, denoted ¢. A normal-
distribution-based approximate 95% confidence interval is

P[g —1.960S; < g < §+1.960S;] = Pla < g < b] = 0.95,

where S; represents the estimated standard deviation of the (at least approx-
imate) normal distribution of the estimate §.

A function applied to the lower (a) and upper (b) bounds produces an
approximate 95% confidence interval for the same function of the parameter
g, or, in symbols,

Plf(a) < f(g) < (b)] =0.95.
For example, the estimate ¢ produces

Pllog(a) < log(g) < log(b)] as the 95% confidence interval for
the logarithm of g,
Ple? <ef < et ] as the 95% confidence interval for the value of ef, and
Pla* < g2 < b*]as the 95% confidence interval for gz.
The reverse is also true. A normal-based confidence interval constructed

for a function of the parameter can be transformed to produce a confidence
interval for the parameter itself. Specifically, if

P[f(2) = 1.9608 ) = f(9) = f(§) +1.960S 9] = P[4 < f(g) < B]
=0.95,

then an algebraic manipulation of the function f(g) yields an approximate
95% confidence interval for the parameter g. For example, the estimate f()
produces

P[A <log(g) < B] = P[eA < losl®) < eB] = Ple? < g < eB]

= 0.95[f(g) = log(g)],
PI[A<g < B]=PIVA<g=+VB]=095[f(g) = ¢’], and
P[A < /log(g) < B] = P[A? < log(g) < B?] = P[eA2 <g< eBz]

=0.95[f(g) = 1og(g)].



25 Rates and their properties

1.0

f(t)
0.6

0.2

t

Figure 1.5. A representation of a derivative at the value T.

In short, a 95% confidence interval for the function f(g) can be created
from the 95% confidence interval for the parameter ¢ and a 95% confidence
interval for the parameter g can be created from the 95% confidence interval

for f(g).

APPENDIX II

Statistical tools: properties of a derivative of a function

Functions of continuous values can be represented by curves. Furthermore,
the slope of a curve has no general definition and only one straight line
touchesa curveataspecific point. Combining these three properties produces
the geometry of a derivative. It is the slope of the straight line at exactly the
point where the line uniquely touches the curve. In Figure 1.5, this point is
indicated within a circle and corresponds to the point T = 15.

The “slope” at this point is called the derivative of the function and can
be viewed at the instantaneous “slope” at the point T. A natural property
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of a derivative is that it is approximately equal to the slope of a straight line
calculated from two points in the neighborhood of the point T.

If the curve is increasing, the “instantaneous slope” is positive, and if the
curve is decreasing, the “instantaneous slope” is negative. When a curve
increases and then decreases, the derivative is positive and then is negative.
At the exact point where the curve changes from increasing to decreasing (the
maximum value), the derivative is zero. When a curve is increasing at exactly
a 45° angle, the derivative is 1.0. A long list of other important properties
exist and are a major part of the mathematics of calculus.

The relevance of a derivative to survival analysis is that a hazard function
is the derivative of the survival function at a specific point in time divided by
the value of the survival function at that point (multiplied by —1), and the
hazard function is a central element analyzing and understanding survival
data.
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The life table is perhaps the earliest statistical tool used to study human mor-
tality rigorously. Early scientists Edmund Halley (1693) and John Graunt
(1662) independently developed the first life tables from populations in
Poland and England, respectively. A life table is essentially a highly orga-
nized description of age-specific mortality rates. Its importance has been
reduced by modern methods (to be discussed), but it nevertheless remains
fundamental to understanding survival data. A life table illustrates several
basic statistical issues, particularly the roles of the two principal summaries
of survival data, the survival function and the hazard rate.

Two kinds of life tables exist, called cohort and current life tables. Each
kind has two styles, abridged and complete. A cohort life table is constructed
from data accumulated by recording survival times from the birth of the first
member of a population until the death of the last member. Collecting such
cohort data is clearly impracticable in human populations. Cohort life tables
primarily describe mortality patterns of small animal and insect populations.
An abridged life table is based on a sequence of age intervals of any chosen
length, typically five years. A current and complete life table is the subject
of the following description. The life table components are derived from
present-day observed mortality data (current) and applied to one-year age
intervals (complete).

A life table describes the mortality experience of a cohort that does not
exist. However, this theoretical cohort frequently provides valuable sum-
maries of mortality patterns useful for comparing similarly constructed
life table summaries from other groups or populations. For example, life
table summaries derived from U.S. national mortality data collected in 1900
show that the mean lifetime for males was 46.6 years and for females was
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48.7 years. Today, the same life table estimated summary values are 74.2
(males) and 79.3 (females) years.

Current, complete life table: construction

One-year, age-specific mortality rates produce a current, complete life table.
Seven elements in this process are as follows:

Age interval (x to x+ 1): The symbol x represents the age of the individ-
uals described by the life table. Each age interval is one year except
the last, which is open-ended (for example, 90 years and older or
90" years).

Number alive (I,): The symbol I, represents the number of individuals
alive (at-risk) at exactly age x. The number alive at age x = 0 () is set
at some arbitrary number, such as 100,000, and occasionally called the
radix.

Deaths (dy): The symbol d, represents the number of deaths between ages
xand x+ 1 (one year).

Probability of death (g,): The symbol g, represents the conditional prob-
ability that a member of the life table cohort who is alive at age x dies
before age x 4 1. In symbols,

P (death before age x + 1 | alive at age x) = g,

and g, = d,/l.. The complementary probability p, = 1 — g, repre-
sents the conditional probability that an individual who is alive at age x
survives beyond age x + 1. It is necessary to distinguish clearly between
the conditional survival probability p, (conditional on a specific age)
and the unconditional survival probability (denoted P,). The symbol
P, represents the probability that an original member of the life table
cohort survives beyond age x. In life table notation, these probabilities
are p, = I /1,1 (conditional) and P, = I, /]y (unconditional).

Years lived (L,): The symbol L, represents cumulative time lived by the
entire cohort between the ages x and x + 1. Each individual alive at age
x contributes to the total time lived during the next year; either one year
if an individual lives the entire year or the proportion of the year lived
when the individual dies within the one-year interval. The value of L,
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is the life table total person-years-at-risk accumulated by the I persons
during the one-year age interval x to x + 1.

Total time lived (Ty): The symbol T, represents the total time lived beyond
age x by all individuals who are age x. The value T, is the sum
of the total person-years-at-risk lived in each age interval starting at age
x. In symbols, T, = Ly + Ly+1 + L2 + - - -. The accumulated time
lived, T, is primarily a computational step in the life table construc-
tion.

Expectation of life (e,): The symbol e, represents the mean number of
additional years lived by those members of the life table cohort who
are age x. Computationally, e, = T /I,.

The total timelived by I persons in a specific one-year age interval (person-
years-at-risk) is given by the expression

Lx = (lx - dx) + dxdx-

The quantity (I, — d,) represents the number of individuals who survived
the entire interval (from x to x4 1). Another symbol for the same quantity
is L;;. These individuals contribute (I, — d,) person-years to the total L,
(one year for each person). Individuals who died within the interval each
contribute the part of the year they were alive to the total survival time.
Typically the exact times of death for these individuals are not available,
particularly for age-specific mortality data extracted from public databases.
However, for all but two age intervals, the mean survival time contributed by
those who died (denoted a, ) is essentially one-halfyear (@, = 0.5). Thevalue
0.5 years is a dependable estimate because, for nearly human populations,
individuals who are not extremely young die randomly or close to randomly
throughout a single year. In general, no reason exists for an individual to die
ata particular time during his or her next year of life. The difference between
the probability of dying at the beginning and the end of a one-year age interval
is small and unimportant for nearly all ages. The person-years contributed
to the total survival time by those persons who died are, therefore, accurately
estimated by a,d, = 0.5d, person-years (one-half year, on average, for each
death—Chapter 1).

Two mean values of a, fail to be even close to 0.5. They are the first ()
and the last (d,+) values. The first value, d, is usually set at 0.1. During the
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first year of life, most deaths occur within a few days after birth. That is, infant
deaths do not occur randomly throughout the first year of life. Empirically,
the mean time lived by those infants who died is about one month ora, = 0.1
years. Therefore, the person-years contributed to the first-year total survival
time Ly by the d infants who died before they were one year old are estimated
by 0.1d, person-years (0.1 years per death).

Mortality rates of extremely old individuals are rarely recorded in detail.
After age 80 or so, ages are reported so unreliably that the associated age-
specific mortality rates become equally unreliable. For this reason and the
dramatically decreasing number of individuals at risk, the last several age
intervals of a life table are combined into a single open-ended interval. For
the complete U.S. life table describing the male mortality pattern for the
year 2000 (Table 2.1), the last age interval is not one year but consists of all
individuals who lived beyond age 90 (denoted 90"). The mean time lived
beyond age 90 by all individuals who reached the age of 90 (denoted dgp+)
must be estimated directly from the age-specific rates because the last life
table age interval does not have a specific end point.

For the last age interval (denoted x™), the life table mortality rate (deno-
ted ry+) is
dx+ . lx*

Ly Ly

life table mortality rate (interval x*) = r+ =

because all individuals alive at age x™ ultimately die (I,+ = d,+). The calcu-
lation of the total person-years [+ requires special attention. Substituting the
observed current mortality rate (R,+) for the life table mortality rate (r,+)
yields

Lo+ Lo+

or Lx+ =
xt xt

Ry =

The value I+ represents the total person-years lived beyond age x™ by the
I+ individuals who reached age x*. Then, the mean survival time for the last
interval becomes

L.+ 1
T L+ Res
and, to repeat, R,+ represents the direct observed current mortality rate
for individuals at risk during the last open-ended age interval. For exam-
ple, if Rogg+ = 0.2, then dgg+ = 1/Rgp+ = 1/0.2 = 5.0 years. Once again, the
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reciprocal of a rate equals the mean survival time (Chapter 1). Thus, the
mean survival time a,+ and the total person-years-at-risk L+ = a,l,+ are
estimated from the current mortality rate for the last age interval.

To summarize: for each age interval, the total person-years lived by those
individuals at risk are

Lo= (lp —dy) +0.1dy, for thel, individuals of age 0 (newborn infants),
Ly =(l, —d,)+05d, forthel,individuals of ages 1,2,..., (xT — 1),

and

I e
Ly = == =aule for thely: individuals of age x™
xt

(last and open-ended interval).

Current mortality rates R, also provide estimates of the probability of
death for each age interval, namely estimates of each conditional probability
qx- Again, substituting the current age-specific mortality rate (R,) for the life
table mortality rate (ry), the life table conditional probabilities of death g,
are estimated from current data. In symbols,

d, d d
ey = — = o = q’f = R, because ¢, = =,
Lx lx - axdx 1— Axqx lx

Solving for g, gives the estimated conditional probability of death in the age
interval x to x+ 1 as

— Ry
T TrarR
based on the current age-specific mortality rate R,.. For example, the observed
U.S. male mortality rate in the year 2000 (Table 2.1) for the first year of life
is Ry =15,612/1,949,017 = 0.00801, making the probability of death gy =
0.008. As noted earlier, the average human mortality rate and the probability
of death are essentially the same for a one-year interval (R~ gq/§ =¢q).

The estimation of gy is the first step in life table construction. The num-
ber of life table deaths occurring during the first year becomes dy = lpqo =
100,000(0.00801) = 801 when [ is set at the arbitrarily selected value of
100,000 persons-at-risk. Thus, the number of life table survivors who enter
the second year is /; = 100,000 — 801 = 99,199. The total person-years lived
by the 100,000 individuals (Iy) during the first year becomes Ly = (100,000 —
801) +0.1(801) =99,279. The same kind of calculation yields values q;, d;,
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Table 2.1. Life table: U.S. white males.

Interval  Population = Deaths g¢; d; I; L; T; ¢
0-1 1,949,017 15,612 0.0080 801 100,000 99,279 7,420,473 74.2
1-2 1,953,105 1090 0.0006 55 99,199 99,168 7,321,194 73.8
2-3 1,938,990 746 0.0004 38 99,144 99,123 7,222,026 72.8
3—4 1,958,963 558 0.0003 28 99,106 99,092 7,122,903 71.9
4-5 2,010,658 430 0.0002 21 99,078 99,067 7,023,811 70.9
5-6 2,031,072 430 0.0002 21 99,056 99,046 6,924,744 69.9
6-7 2,058,217 380 0.0002 18 99,035 99,026 6,825,698 68.9
7-8 2,109,868 347 0.0002 16 99,017 99,009 6,726,672 67.9
8-9 2,137,829 349 0.0002 16 99,001 98,993 6,627,663 66.9
9-10 2,186,291 344 0.0002 16 98,985 98,977 6,528,670 65.0

10-11 2,191,244 390 0.0002 18 98,969 98,960 6,429,693 64.0

11-12 2,108,157 441 0.0002 21 98,952 98,941 6,330,733 63.0

12-13 2,087,228 462 0.0002 22 98,931 98,920 6,231,791 63.0

13-14 2,054,008 533 0.0003 26 98,909 98,896 6,132,871 62.0

14-15 2,078,560 725 0.0003 34 98,883 98,866 6,033,975 61.0

15-16 2,065,127 1019 0.0005 49 98,849 98,824 5,935,109 60.0

16-17 2,048,582 1493 0.0007 72 98,800 98,764 5,836,285 59.0

17-18 2,091,280 1952 0.0009 92 98,728 98,682 5,737,521 58.1

18-19 2,087,853 2440 0.0012 115 98,636 98,578 5,638,839 57.1

19-20 2,107,162 2793 0.0013 131 98,521 98,456 5,540,260 56.2

20-21 2,071,220 2812 0.0014 133 98,390 98,324 5,441,805 55.3

21-22 1,965,673 2855 0.0015 143 98,257 98,185 5,343,481 54.4

22-23 1,921,549 2649 0.0014 135 98,114 98,047 5,245,296 53.5

23-24 1,875,400 2546 0.0014 133 97,979 97,913 5,147,249 52.5

24-25 1,853,972 2512 0.0014 132 97,846 97,780 5,049,336 51.6

25-26 1,905,899 2405 0.0013 123 97,714 97,652 4,951,557 50.7

26-27 1,832,383 2349 0.0013 125 97,590 97,528 4,853,905 49.7

27-28 1,914,947 2483 0.0013 126 97,465 97,402 4,756,377 48.8

28-29 2,010,807 2561 0.0013 124 97,339 97,277 4,658,975 47.9

29-30 2,134,724 2821 0.0013 128 97,215 97,151 4,561,697 46.0

30-31 2,174,238 2765 0.0013 123 97,087 97,025 4,464,546 45.0

31-32 2,019,782 2889 0.0014 139 96,963 96,894 4,367,521 45.0

32-33 2,008,877 2918 0.0015 141 96,825 96,755 4,270,627 44.1

33-34 2,018,017 3166 0.0016 152 96,684 96,608 4,173,873 43.8

34-35 2,100,855 3533 0.0017 162 96,533 96,452 4,077,264 42.2

35-36 2,265,621 3861 0.0017 164 96,370 96,288 3,980,813 41.3

36-37 2,247,529 4247 0.0019 182 96,206 96,116 3,884,524 40.4
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Interval  Population = Deaths qi d; l; L; T; e

37-38 2,250,122 4624 0.0021 197 96,025 95,926 3,788,409 394
38-39 2,268,083 5099 0.0022 215 95,828 95,720 3,692,482 38.5
39-40 2,287,341 5393 0.0024 225 95,612 95,500 3,596,762 37.6
40-41 2,352,606 6003 0.0025 243 95,387 95,266 3,501,262 36.7
41-42 2,213,034 6292 0.0028 270 95,144 95,009 3,405,997 35.8
42-43 2,256,543 6731 0.0030 283 94,874 94,733 3,310,988 34.9
43-44 2,178,451 7339 0.0034 318 94,592 94,432 3,216,255 34.0
44-45 2,128,468 7680 0.0036 340 94,273 94,104 3,121,822 33.1
45-46 2,151,115 8170 0.0038 356 93,934 93,756 3,027,719 32.2
46-47 2,009,570 8579 0.0043 399 93,578 93,378 2,933,963 31.3
47-48 1,976,128 9016 0.0046 424 93,179 92,967 2,840,584 30.5
48-49 1,909,672 9531 0.0050 462 92,755 92,524 2,747,617 29.6
49-50 1,843,021 9825 0.0053 491 92,293 92,048 2,655,093 28.8
50-51 1,871,638 10,256 0.0055 502 91,802 91,552 2,563,046 27.9
51-52 1,769,463 10,614 0.0060 546 91,301 91,028 2,471,494 27.1
52-53 1,815,785 11,488 0.0063 572 90,755 90,469 2,380,466 26.2
53-54 1,778,423 12,364 0.0069 625 90,182 89,870 2,289,998 25.5
54-55 1,372,415 10,555 0.0077 686 89,558 89,215 2,200,128 24.6
55-56 1,386,859 11,498 0.0083 734 88,871 88,505 2,110,913 23.7
56-57 1,375,187 12,334 0.0089 787 88,138 87,744 2,022,408 22.0
57-58 1,384,196 13,597 0.0098 854 87,351 86,924 1,934,664 22.1
58-59 1,222,709 13,356 0.0109 940 86,497 86,027 1,847,740 21.4
59-60 1,139,778 13,640 0.0119 1018 85,557 85,048 1,761,713 20.6
60-61 1,111,560 14,152 0.0127 1070 84,539 84,005 1,676,665 19.8
61-62 1,061,679 14,657 0.0137 1144 83,470 82,898 1,592,661 19.1
62—-63 1,033,865 15,832 0.0152 1251 82,325 81,700 1,509,763 18.3
63-64 971,203 16,511 0.0169 1367 81,074 80,391 1,428,063 17.6
64—65 958,320 17,744 0.0183 1462 79,708 78,976 1,347,672 16.9
65-66 950,651 18,614 0.0194 1517 78,245 77,487 1,268,696 16.2
66—-67 864,156 18,960 0.0217 1665 76,728 75,896 1,191,209 15.5
67-68 874,079 20,658 0.0234 1753 75,063 74,186 1,115,313 14.7
68-69 856,145 22,082 0.0255 1867 73,310 72,376 1,041,127 14.2
69-70 855,331 23,621 0.0272 1946 71,443 70,470 968,751 13.6
70-71 844,517 25,690 0.0300 2082 69,497 68,456 898,281 12.9
71-72 798,517 27,007 0.0333 2242 67,414 66,293 829,826 12.3
72-73 791,164 29,167 0.0362 2359 65,172 63,993 763,532 11.7
73-74 751,433 30,297 0.0395 2483 62,813 61,572 699,540 11.1

(cont.)
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Table 2.1 (cont.)

Interval ~ Population  Deaths g; d; I; L; T; e;

74-75 717,281 31,312 0.0427 2577 60,331 59,042 637,968 10.6
75-76 695,865 32,971 0.0463 2673 57,753 56,417 578,926 10.1
76-77 647,773 33,727 0.0507 2795 55,080 53,683 522,509 9.5
77-78 599,742 34,530 0.0560 2926 52,285 50,822 468,827 8.0
78-79 579,368 35,746 0.0599 2954 49,359 47,882 418,005 8.5
79-80 512,708 36,353 0.0685 3178 46,405 44,816 370,123 7.0
80-81 467,013 35,604 0.0734 3175 43,227 41,640 325,307 7.5
81-82 406,546 33,516 0.0792 3171 40,053 38,467 283,667 7.1
82-83 364,815 34,053 0.0892 3289 36,881 35,237 245,200 6.6
83-84 317,289 32,350 0.0970 3259 33,592 31,963 209,964 6.3
84-85 279,234 31,369 0.1064 3226 30,333 28,720 178,001 5.9
85-86 244,874 30,401 0.1169 3169 27,107 25,523 149,281 5.5
86-87 204,981 28,512 0.1301 3113 23,938 22,382 123,758 5.2
87-88 173,520 26,109 0.1399 2914 20,825 19,368 101,376 4.9
88-89 139,395 23,161 0.1534 2748 17,911 16,537 82,008 4.6
89-90 113,731 20,694 0.1668 2529 15,163 13,899 65,471 4.3
90+ 350,497 85,865 1.0000 12,634 12,634 51,572 51,572 4.1

and L; for the second year of life, based on the observed age-specific mor-
tality rate R; and the life table value I; for the second year of life. The
current U.S. male mortality rate for the second year of life, R, =1090/
1,953,105 =0.0006, translates into the conditional probability of death
q1 =0.0006. Thus, the number of life table deaths during the second year
is dy = l1q1 = 99,199(0.0006) = 55 because I} = 99,199 individuals are at
risk after the first year. The number of life table survivors is I, = 99,199 —
55=99,144 and the total person-years lived by the 99,199 individuals at risk
from year one to year two becomes L; = (99,199 — 55) — 0.5(55) = 99,168.
This same calculation is sequentially repeated for each one-year age interval
up to age 89 (Table 2.1).

For the last and open-ended interval (age 90"), the U.S. male mor-
tality rate is Rog+ = 85,856/350,497 = 0.245 and lgg+ = Ig9 — dg9 =15,163 —
2,529 = 12,634 persons-at-risk. All 12,634 of these 90-year-old individu-
als will die during the final interval (Igg+ =doo+ = 12,634 or goo+ = 1.0).
Furthermore, the mean additional years of lifetime lived by these



35

Life tables

individuals is dgo+ = 1/0.245 = 4.082 years, making Loy ™ = 12,634(4.082) =
12,634/0.245 = 51,572 person-years lived during the final open-ended age
interval 90" by the 12,634 individuals who lived beyond age 90. Thus, a
current life table describes the mortality experience of a hypothetical cohort
of Iy individuals from “birth to death” as if they had exactly the same U.S.
mortality rates for the next 100 years or so that were used to construct
the life table (R, = observed current cross-sectional mortality rates become
rx = theoretical life table longitudinal cohort mortality rates, or R, =r,).

Two remaining life table summaries (T and e,) are constructed from
the Ly and I, values. The total lifetime lived beyond age x is T, =) L;
for i =x,x+1,...,x". For the example (Table 2.1), total person-years
lived by the lp=100,000 members of the life table cohort from birth
to death is 75 =99,279 4+ 99,168 + - - - + 51,572 = 7,420,473 person-years
(x =0 to 90" years) and from age 60 years to death, Ty = 84,005+
82,898 + - - - 4+ 51,572 = 1,676,665 person-years (x = 60 to 90T years).

The e,-value summarizes life table survival in terms of mean additional
years of remaining lifetime from age x. This mean value is calculated just like
any mean value. It is

¢, = mean additional years — total person-years lived beyond age x _ E
number of persons of age x Iy

The most fundamental single summary of life table mortality experi-
ence is the mean years of life of a newborn infant (denoted e;). For the
2000 U.S. life table cohort, the mean years lived by a newborn male is
eo = To/lop = 7,420,473 /100,000 = 74.205 years (Table 2.1). For a U.S. male
of age 60 (Table 2.1, again), the mean years of lifetime remaining is cal-
culated in the same way. Specifically, the mean value is egy = Tg0/ls0 =
1,676,665/84,539 = 19.8 years. Or, the typical life table 60-year-old male
lives to age 79.8 years. Table 2.2 displays the mean years of additional life (eg)
of a newborn male child for seven selected countries based on current life
tables.

The life table crude mortality rate and the mean years lived by a newborn
eq are related by

total deaths _ dy
total person—years T, T, ey

ly 1

crude mortality rate =
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Table 2.2. Selected countries
and the life table mean survival
times for newborn males.

Country €

China 66.9
Congo 48.5
India 63.3
Japan 77.6
Mexico 63.8
Norway 76.0
United States 74.2

Source: National Center for Health
Statistics, year 2000.

Specifically, for the year 2000 life table cohort,

100,000 1
7,420,473 74.205
or 1350 deaths per 100,000 person-years (Table 2.1). For 60-year-old indi-
viduals, the life table mean lifetime remaining is 19.8 years and, therefore, the
life table crude mortality rate is 1/19.8 = 0.0505 or 5050 deaths per 100,000
person-years. The risk of death (crude mortality rate) is the reciprocal of the
mean lifetime (e,). As expected, higher risk reduces survival time.

=0.135

crude mortality rate =

The life table survival function from Table 2.1 (actually a series of 92
connected survival probabilities) is displayed in Figure 2.1. Life table survival
probabilities directly calculated from the I, values are:

life table probability of surviving beyond age x = P,

ll lz l3 lx lx
= 1— i) = P = — — — = —
[o=ar=]Tp=gxgxgxxim=4

because the conditional and interval-specific survival probability is p; =

l;/1;_1. The unconditional survival probability P, is the product of a series
of conditional survival probabilities p; and is the life table probability of
surviving from birth to age x, or, more simply, the number of persons of age
x divided by the total number of person at risk (n[x] =1, divided by n = lp—
Chapter 1). The survival curve for U.S. white males (Figure 2.1) displays
the typical pattern for human mortality across the entire life span. A small
dip during the first year of life due to high infant mortality is followed by
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Life table survival curve (P,-values)—U.S. white males. Source: National Center for Health
Statistics, year 2000.

a slow decrease over the next 60 years; then, at about age 60, the survival
probabilities begin to decline rapidly.

The conditional probabilities of death (the age-specific q,-values) reflect
the underlying life table hazard rate. For a life table one-year interval (§ = 1),
the approximate average mortality rate at age x is

Px_Px—H

average mortality rate = Tn o
2 [Px + Px—i—l]

(Chapter 1)

and the approximate life table hazard rate [denoted h(x)] becomes

hix) = Pe—Peyn Lflo—La/le  de _de
(x) ~ 1 It =7 _1; 77 = qx
[P+ Per]  sll/lo+ L /] Le—3de L

because for most ages, d, is much less than I, (d, < I, because I, —
(%)dx ~ I,). For life table mortality (Table 2.1) at age 60, lso = 84,539 and
deo = 1,070, making h(60) ~ g¢o = 0.0127. The approximate hazard func-
tion (a series of 92 connected g,-probabilities) from the 2000 U.S. life
table (Table 2.1) is displayed in Figure 2.2. A slight improvement over
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Life table hazard curve (gy-values)—U.S. white males. Source: National Center for Health
Statistics, year 2000.

estimating the hazard rate by g, is achieved by averaging two consecutive
qx-probabilities. That is, the life table hazard function is estimated by

h(x) ~ 1(qx-1 + qx)-

As noted, the area under the survival curve equals the mean survival
time. For a complete life table where each of the k intervals has length 1.0
(tx_tx—l = l)andPO: 17 Pl’ PZ"”vpk—lapk :O)

mean lifetime = area = Z%(qu + Py) = ZP" —1= x_
1
= [ et a3
1 Ty + 11
P R
To

-— = €y.

lo
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Figure 2.3. Detail of the survival curve—U.S. white males.

Figure 2.3 displays a section of the life table survival curve in detail between
ages 60 and 65, illustrating the geometric pattern (triangle 4 rectangle)
associated with each one-year age interval. The mean lifetime calculated
from the area under the life table survival curve is not exactly equal to
the value ey from a current/complete life table (for example, Table 2.1)
because the first (x = 0) and last age (x = 90™) intervals have a different
geometry.

Figure 2.4 displays the life table survival curves for both males and females
based on the 2000 U.S. mortality rates. The areas under both survival curves
reflect the mean lifetimes for each sex (area = ¢;). For U.S. white males, the
mean lifetime is eg = 74.2 years, and for U.S. females, the mean lifetime is
eo = 79.3 years (U.S. mortality, 2000). The difference, 79.3 — 74.2 = 5.1 years,
is geometrically represented by the area between the survival curves (marked
on the plot).

The 17th-century data collected by John Graunt to construct his original
life table are still available and can be used to construct a modern life table.
Of course, in Graunt’s day there were no central statistical agencies and
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Figure 2.4. Difference between male and female 2000 U.S. life table survival curves. Source: National

Center for Health Statistics, year 2000.

mortality data were not collected routinely. In fact, collecting mortality data
was a new and innovative idea. Using primarily church records in the London
area, he collected data consisting of dates of birth and death. These data are
subject to a number of biases and do not represent anything near 100% of
any population. Taken at face value, the original age-specific mortality rates
produce the life table estimates shown in Table 2.3.

The survival curve (broken line) estimated from these data and the sur-
vival curve estimated from the 2000 U.S. population (solid line) are displayed
in Figure 2.5. The considerable difference is clear. The extreme influence of
17th-century infant and childhood mortality is summarized by comparing
the mean survival time, 18.9 years, to the modern U.S. value of 76.9 years
(based on the 2000 U.S. life table). The difference of 58 years is again geo-
metrically represented by the area between the two survival curves.

Graunt’s life table data (Table 2.3) illustrate once again that the esti-
mated mean survival time (ep) is the area enclosed by the estimated sur-
vival curve. For each age interval x, the width is ¢, — #,_; = 8, = 10 years
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Table 2.3. A modern life table constructed from
John Graunt’s 17th-century mortality data.

Age interval 8, I, P, L, T, ey

0-10 10 100 1.00 770 1890 18.9
10-20 10 54 0.54 440 1120 20.7
20-30 10 34 0.34 275 680 20.0
30-40 10 21 0.21 175 405 19.3
40-50 10 14 0.14 110 230 16.4
50-60 10 8 0.08 65 120 15.0
60-70 10 5 0.05 35 55 11.0
70-80 10 2 002 15 20 10.0
80-90 10 1 001 5 5 50
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Figure 2.5. Survival curve from John Graunt's 17th-century data (broken line) and U.S. 2000 survival
curve (solid line).
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and the area under the survival curve for each 10-year age interval is
area, = %SX(qu + P,), making the total area, as before,

ey = area = Zareax = Z %(Sx(Px_l + P,)
= 310(1.54 +0.88 + 0.55 4 - - - + 0.03) = 18.9 years.

It is notable that the mean additional years of life at age 80 (egp =
10 years) calculated from Graunt’s 17th-century data is not very different
from the mean found in the modern U.S. population (egy = 7.5 years). The
mean years of remaining life for extremely old individuals are frequently
similar among diverse populations. A few egs-values from selected male pop-
ulations (year =2000) are as follows: China = 3.9 years, Congo =4.5 years,
India = 4.1 years, Japan = 5.7 years, Mexico = 4.9 years, Norway = 5.7 years,
and United States = 5.9 years.

A life table translates cross-sectional age-specific current mortality rates
into a theoretical and longitudinal description of a cohort of individuals
as if they were observed for more than 100 years. For a life table cohort,
a newborn infant is assumed to have exactly the same mortality risk after
60 years as that experienced by a person 60 years old during the year the
infant was born. Clearly, mortality patterns are not constant but change over
time. Completely stationary populations do not exist. However, changes over
time in human mortality risk are generally slow, making life table summaries
useful for short-term predictions and, as mentioned, excellent for comparing
mortality patterns among different subgroups or populations.

Life table methods applied to follow-up data

To study the mortality or disease risk in a specific group of individuals, fre-
quently a sequence of intervals is chosen in advance of collecting the data
and the observed survival times are classified into these predetermined cate-
gories. Such data are sometimes referred to as follow-up data and the analysis
is referred to as a clinical life table analysis. The number of intervals cho-
sen matters and typically influences the analytic results. Too few intervals
provide insufficient detail to characterize the distribution of the data. Too
many intervals reduce the number of observations in some or all of the inter-
vals so that estimated values become unstable (large variances). Therefore,
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Table 2.4. Follow-up data: tabulated hypothetical survival times (n = 40)
displayed in Figure 2.6.

Intervals d; w; d; + w; I; I 4i bi b,

0-1 2 9 11 40 35.5 0.056 0.944 0.944
1-2 2 6 8 29 26.0 0.077 0.923 0.871
2-3 4 1 5 21 20.5 0.195 0.805 0.701
3—4 3 3 6 16 14.5 0.207 0.793 0.556
4-5 2 1 3 10 9.5 0.211 0.789 0.439
5-6 2 1 3 7 6.5 0.308 0.692 0.304
6-7 0 0 0 4 4.0 0.000 1.000 0.304
7-8 1 3 4 4 2.5 0.400 0.600 0.182

classifying observations into a sequence of intervals (not just a follow-up
table) involves a trade-off between detail and precision, requiring a bit of
care to get the balance correct.

Consider n = 40 hypothetical follow-up times (in months):

.27 50" 03" 3.0 1.3 0.9 727 23 341t 27
2.8 L6t 1.1 .1t 07 39t 17t 73t 45 7.5%
1.2 09" 06" 02t 21 21T 50 4.0t 08T 5.0
0.5t 1.8% 367 017 79 42 0.1t 34 0.4%t  3.6.

These data, for example, could be the survival times of 40 patients who
received an experimental surgical treatment for a serious disease. The symbol
“+” indicates an incomplete follow-up time. That is, when the study ended
the treated person was still alive. When death occurred, it was at an unknown
time after the study was concluded. These 40 survival times, classified into
a sequence of eight one-month intervals, are presented in Table 2.4 and
displayed in Figure 2.6.

Three kinds of individuals exist within each time interval, those who com-
plete the interval alive (/;1;), those who die during the interval (d; ), and those
who did not complete the interval because of insufficient follow-up time (w;),
giving ;11 = I; — d; — w;. For example, consider the interval 3—4 months:
of the 16 individuals who survived 3 months (began the interval i=4),
10 individuals survived the entire interval (beyond 4 months), three died,
and three were incomplete (denoted I3 = 16, d; = 3, and w3 = 3) making
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Figure 2.6. Follow-up data: survival times of 40 hypothetical individuals from Table 2.4 (x = death
and o =incomplete).

ly=15—ds —ws; =16 —3 — 3=10. Specifically, for the /3 =16 individuals
who began interval 3 months, the survival times are

died in the interval (3): 3.0, 3.4, and 3.6,

incomplete in the interval (3): 3.4%,3.9%, and 3.6™,

survived the entire interval (10): 5.0%, 7.2+, 7.3%, 4.5, 7.5%, 5.0, 4.0T, 5.0,
7.9, and 4.2.

Individuals who complete an interval are observed for a time equal to
the length of the interval. Individuals with incomplete survival times (time
of death unknown) are observed for only part of the interval. It is reason-
able to attribute a survival time to each these individuals equal to one-half
the interval length. Consequently, they contribute to the total survival time
(on average) half the survival time of the individuals who survive the entire
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interval. Based on this assumption, the number of persons alive at the begin-
ning of the interval (/;) is adjusted and called the effective number of persons-
at-risk. The effective number of persons-at-risk (denoted [) is

1

effective number of persons-at-risk = I; = I; — 3

Wi

for the ith interval, where J; represents the number of individuals who began
the interval and w; represents the number of individuals who did not com-
plete theinterval. Using the effective number of persons-at-risk, the estimated
conditional probability of death becomes §; = d;/I] (Table 2.4), compen-
sating for the unobserved deaths. As previously, the estimated unconditional
survival probability for the kth interval is

by = 1_[ pi
where p; =1—4g;andi =1,2,... k.

Another view of the effective number of individuals at risk shows explicitly
the underlying assumption that all individuals in the same interval have the
same probability of death. The observed number of deaths d; is too small,
because it does not include the unobserved deaths among the incomplete
observations. The number of these individuals is effectively 0.5w;, because
observing w; individuals for one-half the interval is equivalent to observing
0.5w; individuals for the whole interval. An estimate of the number of unob-
served deaths among the incomplete observations (died after the ith interval
ended and, therefore, not observed) becomes 0.5w;4; for each interval. That
is, an estimated 0.5w;q; “missing deaths” for the ith interval would have
been observed if complete survival times were known for all |; individuals.

Increasing the observed number of deaths by the estimated amount
0.5w;4; produces the expression for the probability of death for the ith
interval,

_ di + 0.5w;4;
=
Notice that the estimate of the probability 4; is the same for both incom-

A

qi

plete and complete observations. Solving this expression for the conditional

probability of death §; gives the same expression as before,
., di
T T

as long as the estimated value §; applies equally to all sampled individuals.
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Perhaps the simplest view of the number of effective persons-at-risk is the
following: If all incomplete observations occurred immediately at the start of
the interval, then the number of individuals at risk would be I; — w;, and if all
incomplete observations occurred just before the end of the interval, then the
number of individuals at risk would be I;. The effective number of persons-
at-risk is the mean of these two extreme conditions (! = I; — 0.5w;). The
use of the effective number of persons-at-risk to estimate g; is sometimes
called the actuarial estimate.

A common summary value calculated from follow-up data is called the
“five-year survival rate.” This “rate” is actually a five-year survival probabil-
ity. For the hypothetical data, the estimated probability of surviving beyond
five years is P5=0.439 (Table 2.4). An expression for the estimated variance,
frequently called Greenwood’s variance, produces an estimated variance of the
distribution of the estimate P; (details in Chapter 4). This estimated variance
of the estimated survival probability Psisvariance (Ps) = 0.011. The associ-
ated 95% confidence interval becomes approximately 0.439 & 1.9604/0.011
or (0.223, 0.655) based on the normal distribution and the estimated survival
probability P5 = 0.439.

As with an incomplete observation, the complete survival time is not
observed when an individual is lost from the study cohort. Frequently it is
known in which interval an individual is lost. The effective “missing number
of deaths” among the lost individuals is then estimated as 0.5u;4;, where u;
represents the number of lost individuals in the ith interval. For example, if
six individuals are lost (1; = 6), the effective “missing” number of deaths is
estimated by 34; for the entire interval. Including an estimate of the num-
ber of deaths among the lost individuals improves the estimate of the total
number of deaths. In symbols, the estimated total number of deaths in the
ith interval becomes d; + 0.5w;q; + 0.5u;4;. The effective number of indi-
viduals at risk is then I = I; — 0.5(w; + u;). Again, the effective number
at risk is calculated as if the lost individuals had the same interval-specific
probabilities of death as the observed individuals, namely the same proba-
bility g;. Under these conditions, lost individuals are treated as incomplete
observations.

Occasionally, individuals are lost from a study for reasons related to the
outcome. For example, extremely sick individuals may no longer be able to
continue to participate in the study, or relatively well individuals may be able
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to move away from the study area. Assuming that the probability of death
for these kinds of lost individuals is the same as for those who remain in
the study potentially biases the estimation of the survival probabilities Py.
To get an idea of the extent of this bias, the estimates f’k can be calculated
as if all lost individuals died. The estimated conditional probability of death

becomes
Al di —1—0.514,-.
1 l,‘ — O.5Wi

These theoretical probabilities (§;) yield the minimum possible survival
probabilities (}3;() or the maximum bias that could occur from individu-
als lost to follow-up. The differences between the estimated survival prob-
abilities Py and P;< indicate the largest possible bias that would occur by
erroneously assuming that observed and lost individuals have the same prob-
ability of death. When all lost individuals are assumed to survive, the indi-
viduals are effectively not “lost” and the estimation of ¢; does not need to be
modified.

When sufficient numbers of survival times are sampled, follow-up data
can be used to estimate a hazard rate (analogously to the previous life table
estimate). A hazard rate is an instantaneous quantity but is pragmatically
approximated by an estimated average rate over a short interval (Chapter 1).
In symbols, for follow-up data,

number of deaths d;

estimated hazard rate = h(f;) = effective person-time at risk It — ti1)
for the ith interval in a table such as Table 2.4. These estimates are the interval
specific probabilities of death divided by the lengths of the associated time
intervals. In symbols, for the ith interval, again, h(t) = qi/(t; — ti_1). For
the example (Table 2.5), the interval from 4 to 5 months (i = 5) yields
the estimated hazard rate fi(ts) = 2/9.5=0.211. Like a current life table,
for the special case t; — t;_; = 1, the estimated hazard rate h() is again
approximated by 4;. Combining the hazard rates estimated for each time
interval produces an estimate of the hazard function over the entire range
of the survival times. The estimated hazard function for the hypothetical
n = 40 survival times is displayed in Figure 2.7 based on the estimated values
in Table 2.5, along with a smoothed estimate (dashed line).
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Table 2.5. Follow-up data: estimated hazard function
from the hypothetical 40 survival times (Table 2.4).

Intervals  d; [ hi(r) Std. error  Smoothed*
0-1 2 35.5 0.056 0.040 0.040
1-2 2 26.0 0.077 0.054 0.010
2-3 4 20.5 0.195 0.098 0.163
3—4 3 14.5 0.207 0.119 0.192
4-5 2 9.5 0.211 0.149 0.204
5—-6 2 6.5 0.308 0.218 0.220
6-7 0 4.0 0.000 0.000 0.260
7-8 1 2.5 0.400 0.400 0.300

* See the appendix at the end of the chapter for a description
of the smoothing process.

<
o

smoothed estimate -------

hazard rates
0.2
|

0.1

0.0

time

Figure 2.7. Estimated hazard function from the hypothetical 40 survival times (Table 2.5).
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Figure 2.8. Comparison of a hazard function and a survival function applied to the same set of

survival “data” (Table 2.6).

A slightly biased estimate of variance of the estimated hazard rate h(s) is
given by the expression
[h(1:))?

variance[h(5;)] = T

For most survival data, the interval-specific estimates of the hazard func-
tion are based on small numbers of observations (large standard errors—
Table 2.5) and are frequently only rough approximations of the underlying
hazard function (much more efficient estimates of a hazard function will be
discussed, starting with Chapter 5).

Onelast point: Both the survival and hazard functions have importantroles
in the analysis of survival data. However, the hazard function is typically a
more sensitive reflection of risk. From a descriptive point of view, the hazard
function displays the risk of death or disease in a more intuitive fashion.
To illustrate, the artificial data in Table 2.6 were created to emphasize the
difference in descriptive properties of two summaries.

Figure 2.8 shows two descriptions of the same survival experience. Three
different stages of risk are clearly identified by the hazard function and not
by the survival function (a sharp increase in risk until about time ¢ = 30,
followed by a constant period until about time = 50, where increasing risk
again occurs but at a high-rate than for the earlier pattern). The inability
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to clearly identify patterns of risk with a survival function becomes an issue
because major changes in survival frequently take place after the survival
probabilities have become small, making these changes difficult to detect. In
addition, the period of lowest survival (highest risk) is frequently the most
informative part of a survival function. In the example, by time =20 all
remaining survival probabilities are less than 0.01 and these changes in risk
are not visible on the survival probability scale.

APPENDIX

Statistical tools: a smoothing technique

Most smoothing techniques are variations on a simple principle. A sequence
of n values {x1,x,..., x,} is made smooth by increasing the similarity of
neighboring values. There are many ways to make neighboring values sim-
ilar and many ways of defining neighborhood. The following describes one
smoothing technique among a large variety of choices that is an easily applied
and usually an effective approach.

The first step (called the median moving average) consists of choosing a
value and the next smallest and next largest neighbors, and then replacing
the chosen value with the median of these three values. In symbols,

step 1: x/ = median (x;_1, x;, X; 1) fori =2,3,...,n—1.

This median moving average removes extreme values, replacing them with
locally similar values. However, the process tends to produce sequences of
identical values (level spots on a plot) and has no influence on a sequence of
three strictly increasing values.

A second step consists of a mean moving average. For this step, the mov-
ing average is a weighted sum of three consecutive values. Each already
smoothed value (x]) is replaced by a moving average of three consecutive
values (x]_,, x/, xi’H). In symbols,

step 2: x; = 0.25x;_; + 0.50x; + 0.25x; fori =2,3,...,n—1.

The moving average removes “flat” sequences and smooths sequences of
increasing values. The first and last values are not affected by the two kinds
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of moving averages. Using the twice-smoothed sequence to predict these two
values yields

*

x) =2x; —x; (firstvalue) and x, =2x_,

—x,_, (last value).

The following table illustrates this three-step smoothing technique applied
to the eight estimated hazard rates in Table 2.5 and displayed in Figure 2.7:

i | 1 2 3 4 5 6 7 8

x; = h(t;) | 0.06 008 020 021 021 031 000 0.40
step1(x;) | 0.06 0.08 020 021 021 021 021 040
step2 (x¥) | 0.06 010 0.6 0.19 020 022 026 0.40
smoothed | 0.04 0.10 0.16 0.19 020 022 026 0.30



Two especially useful estimation tools

Estimates of parameters based on statistical models and their evaluation are
major components of statistical methods. The following outlines two tech-
niques that are key to statistical estimation in general, namely maximum
likelihood estimation and the derivation of the statistical properties of ana-
lytic functions. These somewhat theoretical topics are not critical to under-
standing the application of survival analysis methods, but provide valuable
insight into the origins of parameter estimates and the variances of their
distributions.

Maximum likelihood estimation

53

Maximum likelihood estimation is used in the vast majority of statistical
analyses to determine values for the parameters of models describing the
relationships within sampled data. The complexity of this technique lies in
the technical application and not its underlying principle. Maximum like-
lihood estimation is conceptually simple. A small example introduces the
fundamental considerations at the heart of the maximum likelihood estima-
tion process.

Suppose that a thumbtack tossed in the air has an unknown probability of
landing with the point up (denoted p). Furthermore, three tacks are tossed
and one lands point up and the other two land point down. The probability
of this result is 3p(1 — p)*. When two values are proposed as an estimate of
p,itis not hard to decide the most likely to have produced the observed result
(one up and two down) and therefore is the better estimate of the unknown
probability p. For the example, the likelihood that one up-tack occurs out
of three tossed when p = 0.2 is 3(0.2)(0.8)* = 0.384 and the probability of
the same outcome when p = 0.8 is 3(0.8)(0.2)* = 0.096. The “maximum
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likelihood” question becomes: Which of the two postulated probabilities (0.2
or 0.8) is the better estimate of the unknown underlying value p? Although no
unequivocal answer exists, selecting the probability p = 0.2 is simply more
sensible. The observed data “better” support this answer because p = 0.2
makes the observed results four times more likely than p = 0.8. Of the two
choices, selecting p = 0.2 is more consistent with the observed data.

Maximum likelihood estimation is an extension of the same logic. The
data are considered as fixed and all values of the parameter are consid-
ered (not just two values). The parameter that makes the observed data
the most likely (maximizes the likelihood of their occurrence) is chosen as
the “best” estimate. It is again the value most consistent with the observed
data. For the thumbtack example, this value is 0.333. No other choice of p
makes the observed data (one up and two down) more likely. For all other
possible values of the parameter p, the probability 3p(1 — p)? is less than
3(0.333)(0.667)? = 0.444. For the tack data (one-up and two-down), the
maximum likelihood estimate p = 0.333 is not the correct value but is the
most sensible choice in light of the observed data.

Expanding this example continues to illustrate the logic of the maximum
likelihood estimation process. Say n = 50 tacks are tossed in the air and
x = 15 land point up. That is, the data are

up, up, down, up, down, down, ..., down, and up.

The probability that this event occurred is
L=pxpx(1=p)xpx(l=p)x(1—p)x--x(1=p)xp
or more succinctly

L=p”(1-p).

The expression L is called the likelihood function. As with the previous exam-
ples, the value of the parameter p is unknown. The maximum likelihood
question becomes, Out of all possible values for p, which value makes the
observed result (x = 15 up-tacks) mostlikely to have occurred? The answer is
found by calculating the likelihood function L for all possible values of p and
identifying the largest value. Because sums are easier to describe conceptually
and deal with mathematically, instead of the likelihood L (a product), the
logarithm of L (a sum) is used [denoted log(L )]. For the thumbtack example,
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Table 3.1. Selected values of the parameter p and the corresponding log-likelihood
values for x = 15 up-tacks among n = 50 tosses.

p 0.05 0.10 0.15 0.20 0.25 030 035 040 045 050 0.55 0.60
log(L) —46.7 —38.2 —34.1 —32.0 —30.9 —30.5 —30.8 —31.6 —32.9 —34.7 —36.9 —39.7

MAXIMUM (~30.5)

-30
I

-35
I

log-likelihood value

—45
I

-50

T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

parameter p

Figure 3.1. The log-likelihood function for the thumbtack data (n =50 and x = 15).

thelikelihood value Lis the product L = p'>(1 — p)* and thelog-likelihood
value is the sum log(L) = 15log(p) + 35log(1 — p). The value that max-
imizes the log-likelihood function also maximizes the likelihood function.
For the thumbtack data, 12 selected values of p produce the log-likelihood
values in Table 3.1. In fact, the possible values of p range continuously from 0
to 1. Figure 3.1 displays the log-likelihood values log(L ) for a relevant range
of p (0.04 to 0.7).

The log-likelihood function increases until p = 0.3 and then decreases.
The value 0.3 is the value of p that maximizes the log-likelihood function
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log(L) and, therefore, maximizes the likelihood function L. It is denoted p
and called the maximum likelihood estimate of the parameter p. To repeat,
no other value is more consistent with the observed data. The occurrence
of 15 up-tacks (35 down-tacks) is most likely when p is 0.3, making p =
0.3 the maximum likelihood estimate. Technically, the log-likelihood value
log(Ly—o3) = —30.5is greater than log(L) for all other possible values of the
probability p (Figure 3.1).

A natural and commonly used estimate of the probability that a tack lands
up is the proportion of up-tacks observed among the total number tossed or,
for the example, the natural estimateis p = x/n = 15/50 = 0.3. Anamazing
property of maximum likelihood estimation is that it frequently provides a
rigorous justification for “everyday” estimates. For example, mean values,
proportions, and rates are frequently maximum likelihood estimates.

A maximum likelihood estimate is typically derived with a calculus argu-
ment. The thumbtack example continues to illustrate. The maximum of a
single-valued log-likelihood function is that point where the derivative of
the function is zero. In symbols, the maximum of the function log(L ) occurs
at the value of p that is the solution to the equation (d/dp)log(L) = 0. For
example, when x tacks land up out of # tosses, then

d d

p log(L) = %[x log(p) + (n — x)log(1 — p)] = 0.
Thus,

i Ty yields the solution p = f,

p 1-p n

where log(L) = log[p*(1 — p)"™*] = xlog(p) + (n — x) log(1 — p) is the
log-likelihood function for all possible parameter values p (0 < p < 1).
Again, the estimated value p = x/n maximizes the likelihood function and
is also the natural estimate of the parameter p (proportion of up-tacks).

In addition, the variance of a maximum likelihood estimate can be esti-
mated from the log-likelihood function. For the example, the variance of
the distribution of the estimate p is estimated by p(1 — p)/n. In general,
maximum likelihood estimates are found with a computer program, so the
details of the numerical estimation process and the derivation of the variance
expressions are rarely issues in analyzing data and are left to more theoretical
presentations.
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When more than one parameter is estimated, the notation and com-
putation become more elaborate, but the maximum likelihood principle
remains the same. Regardless of the complexity of the likelihood function,
the estimates are the set of values that are most likely to have produced
the observed data. Suppose that [ parameters are to be estimated; then the
maximum likelihood estimates are the ] parameter values that make the like-
lihood function the largest possible. In symbols, the I parameters denoted
01, 0,, 05, ..., 0 havemaximum likelihood estimates,, 85, 05, . .., ; when
the likelihood value L evaluated at these values is larger than the likelihood
values calculated from all other possible parameter values 6;, 95, 05, . . ., 6; or
LBy,0,,05,...,0) > L(6,,6,,...,0). The computer techniques applied
to find this set of estimates are sophisticated and complex but the interpre-
tation of the estimated values remains simple. They are the unique set of
estimates that are most consistent with the observed data. In other words,
among all possible sets of the parameters, it is that set that makes the occur-
rence of the observed data most likely.

For most statistical techniques, the parameter values are thought of as
fixed and the data are subject to sampling variation. Maximum likelihood
estimation reverses the situation. The observed data are considered fixed and
the parameters are varied over all possible values to determine the specific
value or values that maximize the likelihood function.

It is frequently difficult to construct the likelihood function L for a sta-
tistical model. Furthermore, the computational process necessary to find
specific estimates and their variances is extremely tedious for more than
two parameters. Consequently, a computer algorithm is almost always used
to create the likelihood function and to estimate statistical model para-
meters.

Four key properties of maximum likelihood estimates

1. Maximum likelihood estimates based on large numbers of observations
have approximate normal distributions. Often, as few as 10 or 20 observa-
tions are sufficient to produce estimates with approximately normal dis-
tributions. Therefore, the assessment of maximum likelihood estimates in
terms of confidence intervals and statistical tests follows typical patterns.
For example, when 6 represents a maximum likelihood parameter esti-
mate, an approximate 95% confidence intervalis @ 4 1.960 y/variance ()
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based on the approximate normal distribution. In addition, the test
statistic

X=z7= 7(9 — GO)ZA
variance(9)

has an approximate chi-square distribution with one degree of freedom
when 6, is the “true” underlying parameter value estimated by . The
word “true” in this statistical context means that the difference between
the estimate # and the parameter 6, is due entirely to random variation.
The maximum likelihood estimated variance, denoted Variance(é ), serves
as an estimate of the variance of the approximate normal distribution
that describes the variation of the estimated value, . This chi-square
assessment of a maximum likelihood estimated parameter is sometimes
called Wald’s test.

. A maximum likelihood estimate is optimal in the sense that it usually

has a smaller variance than competing estimates. When the sample size
is large, the maximum likelihood estimate is always the most precise esti-
mate available (smallest variance). Thus, for a wide variety of analyses,
the estimates that most efficiently utilize the sampled data are found by
maximizing the likelihood function.

. As noted, the estimated variance of a maximum likelithood estimate is

necessarily calculated as part of the estimation process. The computer
algorithm that produces the estimates produces estimates of their vari-
ances.

. A function of a maximum likelihood estimate is itself a maximum likeli-

hood estimate and has properties 1, 2, and 3. When the estimate 6 rep-
resents a maximum likelihood estimate, then, for example, ¢? or V0 or
nb or 1/6 is also a maximum likelihood estimate. These estimates also
have minimum variance and approximate normal distributions for large
sample sizes. For the thumbtack tossing example, because p = 0.3 is the
maximum likelihood estimate of the probability that a tack lands up, then
np = 100(0.3) = 30 is the maximum likelihood estimate of the number
of up-tacks that would occur among n = 100 tosses. Furthermore, the
probabilityg =1 — p =1 — 0.3 = 0.7 makes 4 the maximum likelihood
estimate of the probability that a tack lands point down.
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Likelihood statistics

Producing optimal parameter estimates and their estimated variances from
sampled data is only one of the valuable properties of a likelihood function.
The likelihood function or the logarithm of the likelihood function (not
just the maximum) reflect the probability that the collected data occurred
for a specific set of parameters. For example, if p = 0.8, then the likeli-
hood of one-up and two-down tacks is L = 3p(1 — p)* = 3(0.8)(0.2)> =
0.096 (log(L) = —2.343).

Table 3.1 shows that the log-likelihood valuelog(L ) is —34.7 when p = 0.5
is postulated as the underlying probability for tossing # = 50 thumbtacks.
This likelihood value is clearly not the maximum but, nevertheless, reflects
the probability that fifteen up-tacks occur as if p were 0.5. The maximum
value of the log-likelihood occurs at p = 0.3 and is log(L) = —30.5.

The two log-likelihood values —34.7 and —30.5 differ for one of two
distinct reasons. Because the estimate p is subject to random variation,
the two log-likelihood values possibly differ simply by chance alone when
p = 0.5 is the underlying parameter. Alternatively, the value p = 0.5 may
not be the underlying parameter, causing the two log-likelihood values to
differ systematically. The question of why p = 0.3 differs from p = 0.5 is
addressed by the difference in log-likelihood values. The larger the difference,
the smaller the probability that the two likelihood values differ by chance
alone.

To help choose between these two alternatives (random versus systematic?)
based on the observed difference between two log-likelihood values gener-
ated from two statistical models, a theorem from theoretical statistics is an
important analytic tool. The theorem states that the difference between two
log-likelihood values, multiplied by —2, has an approximate chi-square dis-
tribution when three conditions hold. The first condition is that the two
models generating the log-likelihood values must be calculated from exactly
the same data. Second, the compared models must be nested. Nested means
that one model is a special case of the other (examples follow). Third, the two
log-likelihood values must differ only because of random variation. When the
first two conditions apply, a test statistic with a chi-square distribution (called
the likelihood ratio test statistic) produces an assessment of the plausibility
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of the third condition in terms of a probability. The question becomes: Is
the observed difference between log-likelihood values calculated from the
same data an indication of systematic differences between two nested mod-
els or likely due only to the influence of random variation? To help answer
this question, the comparison of two log-likelihood values and a chi-square
distribution produces a significance probability ( p-value). Specifically, the
likelihood ratio test statistic is

X? = —2[log(Ly) — log(L1)]

and has an approximate chi-square distribution with m degrees of freedom
whenlog(L)andlog(L) calculated from two nested models differ by chance
alone. The degrees of freedom m is the difference between the number of
parameters estimated to calculate each log-likelihood value.

The thumbtack tossing example conforms to all three requirements if
the underlying underlying probability that a tack lands up is p = 0.5 (null
hypothesis) and the estimated value p = 0.3 differs strictly by chance alone.
Then, the likelihood ratio test statistic (using the log-likelihood values from
Table 3.1 and Figure 3.1)

X% =—2[log(L y—o5) —log(L p=g3)] = —2[(—34.657) — (=30.543)] = 8.228

is a single observation from a chi-square distribution with one degree
of freedom. For log(L,—3), one estimate is made (namely, p = 0.3),
and for log(Ly—os), no estimate is made (p = 0.5 was selected), yielding
one degree of freedom. The probability that a more extreme difference
between the log-likelihood values occurs by chance alone is then p-value =
P(X? > 8.228 | p = 0.5) = 0.004 from a chi-square distribution with one
degree of freedom. Thus, the actual value of the parameter p is not likely in
the neighborhood of 0.5 but is likely closer to 0.3. The conjecture that the
selected value of p = 0.5 is the underlying parameter of the distribution that
produced the thumbtack data and the estimate p = 0.3 occurred by chance
is not plausible.

In fact, the comparison of two likelihood values produces statistical tests
similar to many familiar procedures. Such likelihood comparisons give results
similar to chi-square tests, t-tests, and tests based on the normal distribution,
such as approximate tests of a proportion. For example, when again n = 50
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and x = 15, the classic test of the hypothesis of p = p, is based on the test
statistic

b—po

(1 p)
and z2 &~ X? has an approximate chi-square distribution with one degree of
freedom. Specifically, for the thumbtack example and py = 0.5,

0.3—-0.5
zZ=—=————=—3.086.

[0.3(1 — 0.3)
50

The test statistic is then z2 = (—3.086)> = 9.524 and is approximately equal
to the likelihood chi-square value of X? = 8.228. The difference between
these two approaches diminishes as the sample size increases or estimates
become closer to the hypothesis-generated test values. For example, when
po = 0.4, then z? = (—1.543)? = 2.381 and the likelihood ratio chi-square
test statistic is X? = 2.160.

Calculating the difference between log-likelihood values is a fundamental
statistical tool and applies to comparing analytic models with any number of
parameters. In general, for a model containing k variables and ! parameters,
the log-likelihood value is represented by

log(L1) = log-likelihood = log[L (6, 6,05, ..., 6 | x1, X2, X3, ..., x)].

Notice that the likelihood value remains conditional on the observed data
(as if the data were fixed). A second log-likelihood value based on creating a
nested model by removing m parameters (set equal to zero) is represented by

log(Ly) = log-likelihood
=log[L(6h =0,...,0,=0,041,.-.,61 | X1, %2, X3, ..., X)].

Or, for a model based on the remaining | — m parameters, the same
likelihood value is represented as

log(Ly) = log-likelihood = log[L (641, ..., 01 | x1, X2, X3, . .., Xk)].

As long as these two log-likelihood values are calculated from the same data,
contrast nested models, and differ only because of random variation, the
likelihood ratio test statistic X* = —2[log(L)o — log(L)] has a chi-square
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distribution. The degrees of freedom are m, where m represents the number
of parameters deleted from the more complex model (most parameters) to
form the simpler and, as required, nested model.

The comparison of two log-likelihood values (almost always calculated
with a computer program) reflects the difference in relative “fit” between
two sets of conditions described in term of two nested models. The observed
difference indicates the effectiveness of the simpler model (based on fewer
parameters) in summarizing the observed data, compared to that of the
more complex model. When a parameter value or a set of parameter
values is eliminated from a model and the log-likelihood value remains
essentially unaffected (only a slight decrease), the inference is made that
the parameters eliminated are relatively unimportant and likely have only
random influences. The log-likelihood difference is said to be consistent
with random variation. Conversely, when a parameter value or a set of
parameter values is eliminated from a model and the log-likelihood value
decreases strikingly, the inference is made that the parameters eliminated
are important and likely have systematic influences. The comparison of two
log-likelihood values, therefore, produces a chi-square test that allows an
evaluation of the difference between two models induced by eliminating
selected model parameters (random or systematic?) in terms of a significance
probability.

The following illustrates a typical contrast of two nested models. Using the
estimated parameters b; to generate two log-likelihood values, the linear
model y = a + byx; + bax; + bsxs is compared to the nested model y =
a + byx; to evaluate the role of the variables represented by x, and x3(b, =
bs = 0?). The likelihood ratio chi-squared test statistic X*> = —2[log(Lg) —
log(L,)] = 6.2 (last column, Table 3.2) has an approximate chi-square dis-
tribution with two degrees of freedom (m = 2), producing the p-value
P(X? > 6.2 | by = b; = 0) = 0.045, when x, and x3 have only random
influences on the variable y. The moderately small p-value gives some indi-
cation that parameter b, or b; or both are important components of the
more complex model.

A log-likelihood value by itself is frequently not a useful assessment of the
goodness-of-fit (a comparison between model-generated values and the
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Table 3.2. The evaluation of the likelihood ratio statistic for two nested
models (hypothetical).

Nested models Constraint  d.f. Log-likelihood values
61+b1X1 +b2X2 +b3X3 — n—4 IOg(Ll):—l453

a+ bix; by=b;=0 n-—2 log(Ly) =—148.4

Difference — m =2 —2[log(Ly) —log(L;)] = 6.2

data). The absolute magnitude of a log-likelihood value is primarily deter-
mined by the sample size; the larger the sample size, the smaller the log-
likelihood statistic. Because a difference between two likelihood values from
nested models is not influenced by the sample size (same data for both calcu-
lations), it reflects the relative difference between the compared models. The
important issue of the adequacy of the model to represent the relationships
within the data is frequently addressed with other methods.

A sometimes handy rule of thumb states that when the likelihood ratio chi-
square test statistic X is less than m (the number of parameters eliminated),
no evidence exists that these parameters play a systematic role in the model.
Theruleissimplyanapplication of the fact that the mean value of a chi-square
distribution is its degrees of freedom. The likelihood ratio test-statistic has
a chi-square distribution with m degrees of freedom when the m eliminated
parameters have only random influences. Therefore, an observed chi-square
value less than its mean value m (X? < m) is not extreme, providing no
evidence of a systematic difference between likelihood values. The smallest
possible p-value is always greater than 0.3. Of course, exact probabilities exist
in tables or are part of statistical computer programs.

The statistical properties of the function f(x)

Consider a variable denoted x with known or postulated properties but
questions arise concerning a function of x, denoted f(x). Two important
statistical questions are: What is the mean and what is the variance of the
distribution of f(x)? Or, in symbols,

mean of the distribution of f(x) =? and variance[f(x)] =?
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The distributions of x and f(x) =1/x.

Two rules allow the mean and the variance of the distribution of the
variable f(x) to be derived from the mean and variance of the distribution

of the variable x. They are as follows:

Rule 1. The mean of the distribution of the variable f(x) (denoted pi¢) is approximately the

value of the function evaluated at the mean of the distribution of x (denoted ). That is,

1 ¢ = mean of the distribution of f (x) & f(u),

where p; represents the approximate mean value of the distribution of the f(x)-values

and p represents the mean value of the distribution of the x-values.

Rule 2. The variance of the distribution of the variable f(x) (denoted variance[ f(x)]) is

approximately

variance of f (x) = variance [f(x)] ~ [dd_x f(;;)]2 variance (x).

The symbol (d/dx) f(u) represents the derivative of the function f(x) with respect to x,

evaluated at the mean value u.
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Both rules 1 and 2 are an application of a basic mathematical tool called
a Taylor series expansion (2], and the application to a statistical function is
sometimes referred to as “the delta method.”

For example, suppose the variable x has a symmetric distribution (Fig-
ure 3.2, top) with a mean value = p = 10 and a variance(x) = 4. The dis-
tribution of f(x) = 1/x (Figure 3.2, bottom) then has an approximate
mean value pur =1/ =1/10=0.1 (rule 1) and an approximate
variance[f (x)] = (1/u*)variance(x) = (1/10*)4 = 0.0004 (rule 2) be-
cause the derivative of 1/x is

d d [1 d 2 1 1
%f(x)=a|:;:|=—; and [af(u)] =E=1_04'

Application 1

A Poisson-distributed variable is sometimes transformed by taking the square
root to produce a more normal-like distribution. For a Poisson distribu-
tion, the mean value (represented by ;= X) and the variance (represented
by variance(x) = A) are equal. The function f(x) = 4/x produces a more
symmetric and approximate normal distribution (if A is not too small) with
mean value = +/A and variance = 1 /4.

Applying rules 1 and 2, the approximate mean value of the normal-like
distribution of \/x is

us = mean of the distribution of VX =pu N BT V. (rule 1).

The approximate variance is
. . 1 ) 1 1
variance of f (x) = variance(v/x) = m variance(x) = ﬁ)‘ =1 (rule 2)

because the derivative of \/x is

d d 1 d S|
af(x):%ﬁ:ﬁ and [af()&)} ~ o

Application 2

Applying rules 1 and 2 to the logarithm of a variable x again yields an
expression for the approximate mean value and variance of the distribution
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of the transformed variable log(x). Thus, when f(x) = log(x), applying rule
1 yields

ws = mean of the distribution of f(x) = piogx) ~ log(u),

where p represents the mean of the distribution of the variable x. The deriva-
tive of log(x) is

d d 1
Ef(x) = Elog(x) = X

and applying rule 2 yields

1
variance of f(x) = variance[f(x)] = variance[log(x)] &~ —zvariance(x).
m

variance(x) ~ uzvariance[log(x)].

Statistical summaries and estimates are frequently transformed to have
more symmetric (normal-like) distributions using logarithms. Such trans-
formations frequently improve the accuracy of statistical tests and confidence
intervals. The mean value and variance of the distribution of the logarithm
of a variable then become necessary parts of the statistical evaluation.

Application 3

The variance of the logarithm of a count is frequently estimated by the
reciprocal of the count. That is, when a count (denoted m) is observed, the
estimated variance of log(m) is variance(log[m]) = 1/m. Such reciprocal
values appear in the variances of the logarithm of odds ratios, the variance
of the logarithm of odds (log-odds), and the variance of the logarithm of
rate-ratios. The estimated variance of the function f(m) = log(m) results
from applying rule 2.
When the count m has a binomial distribution,

the mean = u =np and variance(m) = np(1 — p).
When the count m has a Poisson distribution

themean =y =A =np and variance(m)= A = np.
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Therefore, when pissmall (1 — p & 1) or when m has a Poisson distribution,

-17° 1
variance(log[m]) ~ [E] np = E (rule 2)

because—f(m) —log(m) % and [ f(,u)] [n;]

When m events occur among a series of n observations, the probability of
the occurrence of m is estimated by p = m/n. Therefore, a natural estimate
of the variance of the logarithm of m is

, 11

log(m) = @ m

because np = m.
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Summary values are at the heart of statistical analysis. Similarly, the estima-
tion of survival probabilities and hazard rates is at the center of summarizing
survival data. As might be imagined, a number of ways exist to estimate these
two fundamental statistical summaries of survival experience.

To start, suppose a sample consists of #independent, unique, and complete
survival times. Unique means that all sampled survival times are different.
Complete means that all survival times end in an observed outcome such
as death. For example, consider the unique and complete survival times of
10 (n = 10) extremely ill AIDS patients:

survival times (in days): 2, 72, 51, 60, 33, 27, 14, 24, 4, and 21.

A simple and direct estimate of a survival probability begins with calculat-
ing the conditional probability that an individual dies within a specific time
interval. Among several ways to create these intervals, one is based on the
time of death. Each interval is defined so that it contains only one death. In
this case, the interval limits are constructed from survival times (denoted ¢;).
Unlike constructing a life table, the interval lengths vary and are determined
by observed values. For the example AIDS data, a sequence of 10 such inter-
vals (denoted #;_; to t;) is given in Table 4.1 (second column). For example,
the sixth interval # to # is 24 days to 27 days (i = 6) and, like all 10 intervals,
contains one death.

For these complete data, the estimated conditional probability of dying
within a specific interval (ith interval) is

number of deaths

A

q; = P(death before time ¢; | alive at #;_;) = -
number at risk
_ 1
Cn—i+1
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Table 4.1. Interval specific conditional survival probabilities of
death for the AIDS data (n =10 unique and complete survival
times).

Intervals Deaths At-risk Probabilities Probabilities
i iy — 1t d; n—i+1 g bi
1 02 1 10 1/10 9/10 = 0.900
2 24 1 9 1/9 8/9 = 0.889
30 414 1 8 1/8 7/8 = 0.875
4 1421 1 7 1/7 6/7 = 0.857
5 2124 1 6 1/6 5/6 = 0.833
6 24-27 1 5 1/5 4/5 = 0.800
7 27-33 1 4 1/4 3/4 =0.750
8§ 33-51 1 3 1/3 2/3 =0.667
9 51-60 1 2 1/2 1/2 = 0.500
10 60-72 1 1 1/1 0/1 = 0.000

and the estimated conditional probability of surviving the entire interval
(surviving from ;_; to t;) is

pi =1—4; = P(alive after time #; | aliveat t;_;) = L
n—i+1

The denominator n; = n — i + 1 is the number of individuals at risk at the
start of the ith interval. For example, the number at risk at the start of the
interval 24 to 27 daysis ng = 5, making §¢ = 1/5 = 0.2and Pg =1 — 1/5 =
4/5 = 0.8, where n = 10and i = 6. Thus, the estimated conditional survival
probability of surviving beyond 27 days () given that the AIDS patient was
alive on day 24 (t5) is 0.8. These probabilities are conditional because they
apply only to individuals alive at the beginning of the interval (condition =
alive at time #;_;). That is, the conditional probability of death 4 is

de = P (death between 24 and 27 days survived 24 days)

_ P (death between 24 and 27 days) /10 1 02
N P(survived 24 days) S 5/10 5

The estimated probability of surviving beyond a specific time # (denoted
Py) is the product of the conditional probabilities of surviving each of the
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Table 4.2. Product-limit estimated survival probabilities and
95% confidence intervals from the n =10 AIDS survival times
(complete data).

i oy — & d; n; bi b, lower upper
1 0-2 1 10 0.900 0.9 0.473 0.985
2 2-4 1 9 0.889 0.8 0.409 0.946
3 4-14 1 8 0.875 0.7 0.329 0.892
4 14-21 1 7 0.857 0.6 0.252 0.827
5 21-24 1 6 0.833 0.5 0.184 0.753
6 24-27 1 5 0.800 0.4 0.123 0.670
7 27-33 1 4 0.750 0.3 0.071 0.578
8 33-51 1 3 0.667 0.2 0.031 0.475
9 51-60 1 2 0.500 0.1 0.006 0.358

10 60-72 1 1 0.000 0.0 — —

first k intervals. Thus, the estimated survival probability is

5 . . n—i )
Pi=pixppxoxpe=[p=]]-—77 i=t2...k

The probability Py is called the product-limit estimate or sometimes
the Kaplan—Meier estimate of the survival probability. Continuing the
AIDS example, the estimated probability of surviving beyond # = 27 days
(k=26)is

Pg =0.900 x 0.889 x 0.875 x 0.857 x 0.833 x 0.800 = 0.4.

The product-limit estimated survival probabilities b, P, ..., 1510 are con-
tained in Table 4.2 based on the survival times of the 10 severely ill AIDS
patients.

In fact, the product-limit survival probability calculated from a table of
unique and complete survival times is more simply

. k n—k
szl——z
n n
because
n—1 n—-2 n—-3 n—4 n—k
:1_[15,-: X X X X oor X ————
n—1 n—2 n-3 n—k+1
_n—k_l k
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Product-limit estimated survival probabilities of extremely ill AIDS patients (complete
data) and 95% confidence intervals.

The survival probability Py is naturally estimated by calculating the pro-
portion of individuals who died before or during the kth interval (k/n) and
subtracting this value from one (1 — k/#n). The complementary probability
1 — Py = k/n in other statistical contexts is called the estimated cumu-
lative probability. The estimate Pj from complete data is a typical esti-
mate of a binomial probability. Its estimated variance, for example, is 7y =
Pr(1— Py)/n. )

Ten estimated survival probabilities ( P-values—Table 4.2) from the AIDS
data are displayed in Figure 4.1 along with approximate 95% confidence
bounds (to be discussed). The survival “curve” is no more than a series
of rectangles (height = P;_; and width = ; — #,_;) placed side by side to
display the decreasing pattern of the estimated survival probabilities over
time. The survival “curve” is a histogram-like picture of survival probabilities,
commonly called a step function.
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The mean survival time can be estimated in two ways from complete
survival data: the usual way,
2t

mean survival time = f = , 1=1,2,...,n,
n

or based on the total area enclosed by the estimated survival function,
mean survival time = area = I = Z Pt — ),

where Py = 1.0andi = 1, 2, ..., n. The area of the ith rectangle is height =
b, multiplied by width= #; — #;_;, making the area of each rectangles
area= P;,_,(t; — t;_;). The sum of the n rectangles’ area = ) area; =
> b, (t; — t;_1) is then the total area enclosed by the estimated product-
limit survival function. As noted, the total area enclosed by a survival function
is an estimate of the mean survival time. For the complete AIDS data, either
expression yields the identical estimated mean survival time of f = 1 =
30.8 days.

Clearly, the product-limit estimation of P; and the mean survival time
based on the total area are unnecessary for complete survival data, because
simple and direct estimates are available. However, these two estimates con-
tinue to produce unbiased estimates when the data are not complete (the
time of death is not known for all individuals sampled—next topic).

The median time of death is another important summary of survival
experience. The estimated median value is that survival time (denoted #,,)
when P = 0.5. When an estimated survival probability P; does not exactly
equal 0.5, an estimate of the median value is the upper bound of the interval
containing the survival probability P = 0.5. The estimated median survival
time from the 10 AIDS cases is f,, = 24 days (Figure 4.2).

Other survival times between the lower and upper bounds of the inter-
val containing the survival probability 0.5 serve equally to estimate the
median value. For example, the lower bound or the mean of the upper and
lower bounds or a linear interpolation using the endpoints of the median-
containing interval are essentially equivalent estimates of the median survival
time t,.

Product-limit estimated survival probabilities are fundamental to analyz-
ing survival data because they are estimated entirely without assumptions
about the population that produced the sample of survival times. They are



73

Figure 4.2.

Product-limit estimation

<0.5f---mmrmmemeneees :
I P=05 ___________
>0.5 ----------- f
median ‘
N\
time .

Schematic picture of the estimation of the median survival time.

entirely defined by the properties of the sampled data (called nonparametric
or model-free estimates).

Censored data

The single most defining characteristic of survival analysis methods is the
unbiased description of data when the time of death is not known for all
individuals sampled. Figures 4.3 and 4.4 display two versions of the same
hypothetical pattern of sampled survival times. A study of survival usually
starts by collecting observations over time (labeled “Start” on the figures).
The data are not collected on a single day or, in most cases, not even over
a short period of time. Rather, as the study progresses, each subject is iden-
tified and entered into the study. Subjects are accumulated. The observed
individuals either are alive at the end of the study or die at some point during
the study.

After a period of time the study ends (labeled “End” on the figures), leaving
two kinds of survival times: from the time a subject entered the study to the
time of death (called a complete observation) or from the time a subject entered
the study to the time the study ended (called a censored observation). These
censored survival times are said to be right censored. In studies of survival,
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Figure 4.3. Forty hypothetical survival times as observed over a 10-month study.

ol ., 00000 4
< —o
-
©
ro
. .
—0
O —9
@ ——o
- ——n
[ —
(v =]
Q_ —0
L2 N
O ofl —
T N
®
Q —
 —N
P
—
—X
 E——
o\ ———
~ ) —
L ————
—X
I
)
>
+—o
O - start
T T T T T T
0 2 4 6 8 10
months
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anumber of individuals frequently remain alive at the end of the study period
resulting in right censored observations. Figure 4.3 depicts 40 hypothetical
subjects (repeated from Chapter 2) who entered a study and were observed
over a 10-month period. The entry time is represented by an “x,” the time of
death by an “x,” and the time an observation ends for each individual who

« _»

did not die by an “o” (censored). The 40 specific survival times (repeated) are

1.2 50T 03" 3.0 1.3 0.9 727 23 347 27
2.8 .67 1.1 .17 07 39% 17t 73T 45 7.5
.27 09T 06" 02t 21 21T 50 40" 0.87 5.0
0.5 1.87 36T 017 79 4.2 0.17 34 0.4T  3.6.

The superscript “+” denotes a censored observation (24 censored observa-
tions and 16 deaths make up the sample of 40 observed individuals). For
example, the first three observations (participants 1, 2, and 3—bottom of
Figure 4.3) entered the study 8.8, 5.0, and 9.7 months after the study began.
All three participants were alive at the end of the study (censored survival
times 1.27, 5.0, and 0.37 months). On the other hand, the fourth, fifth,
and sixth subjects (next three lines from the bottom) entered the study 0.3,
2.7, and 8.0 months after the study began and died during the study period
(complete survival times 3.0, 1.3 and 0.9 months). Figure 4.4 displays these
same 40 individuals but in terms of time from the start of observation until
the study participant either was censored (“0”) or died (“x”

If this hypothetical study were continued beyond 10 months, the censored
individuals would add more survival time and, therefore, estimates made
directly from the 40 observed survival times would be biased because the
censored individuals would have under-reported survival times. To make
the product-limit estimated survival probabilities unbiased, it is necessary to
modify the estimation process to account for incomplete survival times. This
modification is easily accomplished when the incomplete observations (cen-
sored) occur at random, called noninformative censoring. That is, the reason
that the time of death is not observed is entirely unrelated to the outcome
under study. The study simply ended while the observed individual was alive.
The statistically important consequence of noninformative censoring is that
the underlying probabilities of death are the same for both censored and
complete observations. The only relevant difference between the two kinds
of observations is that the time of death of the censored individuals is not
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known. The situation, however, is far more complicated when the reason for
censoring is related to the outcome under study. Nonrandom censoring of
survival times is an advanced topic and is left to advanced presentations.

From this point on, the term censored refers to right censored observations
that are noninformative (random!). However, it is worthwhile to mention
several other kinds of incomplete data.

type: Fix time censoring

example: The survival times of a sample of 100 patients are recorded and
each person is observed for no more than 10 months (all censored
individuals are observed for the same amount of time).

type: Fix number censoring

example: The survival times of a sample of 100 patients are recorded and
the study is ended after 75 patients have died.

type: Left censoring

example: Amongleukemia patients sampled to study the time from remis-
sion to relapse, an observation is left censored when the individual
sampled is already in remission. Thus, the “starting time” is not known.

type: Interval censoring

example: Consider the failure times of a sample of patients observed once
a year after an experimental treatment. When a failure is observed as
part of a yearly visit, the exact time of failure is not known but must
have occurred after the last visit and before the present visit.

type: Current status data (a kind of extreme interval censoring)

example: An experimental animal is subjected to a high dose of radiation.
After 10 months, the animal is sacrificed and it is determined if a specific
tumor is present or absent. The exact failure time (“time-to-tumor™) is
not known but either it is less than 10 months (tumor present) or more
than 10 months (tumor absent).

type: Length-biased survival time

example: Social Security recipients are sampled to determine if individuals
with annual incomes greater than $200,000 live longer than average.
The mean survival time is likely length-biased because individuals who
died before age 65 (not receiving Social Security) will not be included
in the sample. Technically, these observations are truncated (missing
completely) and not censored.
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Analytic techniques for these different kinds of incomplete data are described
in detail elsewhere(1).

Another kind of censoring occurs when, for one reason or another, indi-
viduals who originally entered into the study are lost from follow-up and
their survival status (survived/died) cannot be determined. When the rea-
son for being lost is unrelated to the outcome, the observed survival time is
again noninformative right censored. Otherwise, individuals lost to follow-
up become a potential source of bias.

When sampled individuals die from causes entirely unrelated to the dis-
ease under study, they too can be considered as lost to follow-up. That is,
deaths from causes unrelated to the survival outcome (study “endpoint”)
produce noninformative right censored survival times. In a study of AIDS,
for example, a patient who dies in an automobile accident can be treated as a
censored observation. Although simple in principle, situations arise in prac-
tice where it is difficult to determine whether the cause of death is entirely
unrelated to the outcome under study.

When a sample includes censored observations, the estimation process
is adjusted to account for the bias incurred from the incomplete survival
times. Once this adjustment is made, subsequent analysis proceeds in much
the same way as the analysis of most data. For example, the usual statistics
(such as means, medians, variances, plots, confidence intervals, and tests)
produce useful summaries after the bias incurred from censored data is
“removed.”

Survival probabilities estimated from censored data

Parallel to the estimation of survival probabilities from complete data (no
censored observations), product-limit estimates from data containing cen-
sored observations also require that a sequence of intervals be constructed to
estimate a sequence of conditional survival probabilities. Again, these inter-
vals are based on the observed time of death (only complete observations).
In addition, the survival time of a censored individual is relevant only when
the study subject completes the entire interval. Therefore, in each interval
only two kinds of individuals enter into the calculation of the conditional
survival probability, those who died (creating the endpoint of the inter-
val) and those who survived the entire interval. Thus, an individual whose
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Table 4.3. Product-limit estimated survival probabilities for the
n = 10 AIDS survival times with three censored observations
(complete = d = 7 and censored =n —d = 10 — 7 = 3).

A ~

i tio1—t d; n; qi bi P; Vi
1 0-2 1 10 0.100 0.900 0.900 0.095
2 2-4 1 9 0.111 0.889 0.800 0.126
3 4-14 1 8 0.125 0.875 0.700 0.145
4 14-24 1 6 0.167 0.833 0.583 0.161
5 24-27 1 5 0.200 0.800 0.467 0.166
6 27-60 1 2 0.500 0.500 0.233 0.185
7 60-72 1 1 0.000 1.000 0.000 —

censored survival time falls within the interval bounds is not included in
estimates made for that interval or in any subsequent time interval. The
number of persons considered (said to form a risk set) is the total number
who survived the entire interval plus those who died (usually one).

The previous AIDS mortality data illustrate where three observations are
censored (21, 33, and 51 days):

survival times (in days): 2, 72,517, 60, 33,27, 14, 24, 4, and 217

Asbefore, the survival time intervals are constructed so that one death occurs
in each interval. The seven risk sets (one for each complete survival time—
Table 4.3) contain 10, 9, 8, 6, 5, 2, and 1 individuals, respectively. When
sampled individuals have identical survival times, they are simply included
in the same risk set.

The interval-specific conditional probability of death (4;), the correspond-
ing conditional probability of survival (; = 1 — §;), and the probability of
surviving the first k consecutive intervals (P}) are estimated in the same fash-
ion as for complete data. However, the number of individuals in the risk sets
(n;) does not have a predictable pattern. The number of individuals at risk
depends on the distribution of the randomly occurring censored survival
times. For data containing censored observations, the number of intervals
in the product-limit table is denoted d and is also the number of complete
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observations when all survival times are unique. The value d is necessarily
less than or equal to the total number of observations (denoted #).

The estimated survival probability Py is again the product of the condi-
tional survival probabilities p;. Each conditional estimate p; is unaffected
by censored observations (all observations within the interval have the same
survival time); therefore, the product of these estimates is also unaffected by
the incomplete information from the censored observations. The unbiased
product-limit estimate becomes

n,-—di

Be=[]s=]] —, i=1,2,...,k

where d; represents again the number of deaths among the #; individuals in

the ith risk set (usually one). For unique/complete data, the risk set pattern
isn; =n—1i4 1and d; = 1 for all n = d sampled individuals (intervals).

Continuing the AIDS data example, the seven product-limit estimated
conditional survival probabilities (one for each observed AIDS death) are
given in Table 4.3. For the survival probability Ps or P(T > 27), the product-
limit estimate is
R 10—1 9—-1 8§—1 6—1 5—1
Ps = X X X X

10 9 8 6 5
= 0.900 x 0.889 x 0.875 x 0.833 x 0.800 = 0.467.

The variance of the distribution of an estimated survival probability is
calculated from an expression frequently called Greenwood’s variance after
Major Greenwood, an early biometrician (details are at the end of the chap-
ter). This estimated variance of the distribution of the estimated value Pj is
given by the expression
nipi’

where again #; represents the number of individuals in the risk set for the ith

Vi = Variance(pk) = 15% i=1,2,...,k,

interval. When n; = n — i + 1 (no censored survival times), the Greenwood
variance is the estimated binomial distribution variance. In symbols, the
variance of Py becomes vy = V; = Pp(1 — pk)/n when d = n. Figure 4.5
displays the estimated survival function (step function) accounting for the
three censored observations and its 95% confidence intervals.
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Figure 4.5. Survival probabilities (in days) of extremely ill AIDS patients (censored data).

A bit of care is necessary to construct accurate confidence interval
bounds from a product-limit estimated survival probability and its esti-
mated variance. The expression for a 95% confidence interval based directly
on an estimated parameter and the normal distribution is estimate =+

1.960+/variance (estimate). However, the accuracy of a confidence interval
is frequently improved by calculating the confidence bounds from a func-
tion of a parameter and using these limits to derive the confidence interval
bounds for the parameter (Chapter 1). The confidence interval for the sur-
vival probability Py is such a case. The function is §; = log[— log( Py)]. The
estimate $; has a more normal-like distribution than the distribution of P.
The estimated variance of this approximate normal distribution is

variance(Sx) = variance(log[— log(pk)])

Vi

= m (Vk = the Greenwood variance).
klog\ Lk

This expression and many of the variances that follow are derived with
statistical/mathematical tools described in Chapter 3. The calculation of
the approximate 95% confidence bounds based on an estimated survival
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Table 4.4. Approximate 95% confidence
intervals for the six estimated survival
probabilities Py for the example AIDS
data (n = 10-Table 4.3 and Figure 4.5).

k Lower 23 Upper
1 0.473 0.900 0.985
2 0.409 0.800 0.946
3 0.329 0.700 0.892
4 0.230 0.583 0.821
5 0.150 0.467 0.737
6 0.015 0.233 0.606

probability Py) starts with the usual normal-based confidence interval but
constructed from the transformed survival probability ($x), where

Ay = lower bound = §; — 1.960+/variance(§y)

and

By = upper bound = §; + 1.9604/variance($y),

making Ay and By the 95% confidence interval bounds for the transformed
parameter s; from the kth interval. Then, the bounds A; and By become
the basis for estimating the approximate confidence interval bounds for the
survival probability Py. Specifically, they are

—exp(Ax) —exp(Bk) .

lower bound = e and upper bound = e

As required, the estimated survival probability is Py = e~ %), The nota-
tion exp(x) is used in place of the term e* simply to make the expres-
sion easier to read. Six examples of approximate 95% confidence intervals
based on the estimated AIDS survival probabilities (Table 4.3) are given in
Table 4.4.

To illustrate the valuable role a transformation plays in construction of
an accurate confidence interval, an example (based on n = 100 hypothetical
survival times) is displayed in Figure 4.6. The first two plots (first row)
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Figure 4.6. A comparison of the distributions of the survival probabilities P and their transformed
values 3y = log(— log [A]) for n= 100 hypothetical survival times.
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are histograms of the distributions of the survival probabilities P and the
transformed values $; = (log — log| P;]). The second row displays the same
distributions smoothed to emphasize more clearly the asymmetry ( P;) and
symmetry ($;) of these two distributions. The third row contains special-
ized plots, called quantile plots, to compare the distributions of values of Py
and $; to a normal distribution (the straight line indicates a perfect normal
distribution).

An additional feature of this log-log transformation of Py (5 is that the
lower confidence interval bound is never less than 0.0 and the upper bound
is never greater than 1.0, which is consistent with a survival probability that
is also always between these two bounds.

Notice that as the estimated survival probabilities decrease, the lengths of
the confidence intervals generally increase. This increase is primarily due to
the reduction in the number of observations associated with the estimation
of the smaller survival probabilities (longer survival times).

An approximate normal-based confidence interval generated by each
estimate Py is formally called a pointwise confidence interval. At each survival
time (), the probability is approximately 0.95 that the underlying survival
probability Py is contained in the interval constructed from its estimate Py.
Connecting a sequence of lower and upper bounds surrounding the esti-
mated survival function does not form a confidence band (Figures 4.1 and
4.5).

A confidence band is constructed so that the probability is 0.95 that the
lower and upper confidence interval bounds contain the entire survival curve.
Pointwise confidence intervals each contain a specific survival probability Py
with probability 0.95. The probability that a series of such intervals simulta-
neously contains all values of the survival probabilities Py is necessarily less
than 0.95. Thus, the width of a 95% confidence band is larger than the limits
created by connecting a series of pointwise 95% confidence interval bounds.
The theory and a table of specialized values necessary to construct this larger
confidence band exist elsewhere [2].

The process used to estimate the mean survival time (denoted w) from
complete data applies equally to data containing censored observations. The
area under the estimated survival curve remains an estimate of the mean
value. When the survival probabilities are estimated so that they are not
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Table 4.5. Components of the mean survival time estimated from the
product-limit table of the AIDS data (Table 4.3).

Interval i=1 i=2 i=3 i=4 i=4 i=6 i=7
Heights: 15,‘,1 1.00 0.900 0.800 0.700 0.583 0.467 0.233
Widths: ; — £, 2 2 10 10 3 33 12

Areas: Pi_i(t; — t;i_;)  2.00 1.80 8.00 7.00 1.75 15.40 2.80

biased by the influences of censored data, the survival curve constructed from
these probabilities is also not biased by the presence of censored data. Using
the AIDS data illustrates (Table 4.5). The estimated mean survival time is
mean survival time = /i = area = Z area; = Z pi_l(t,- — 1)
= 1.000(2) + 0.900(2) + - - - + 0.467(33) + 0.233(12)
=2.004+1.80+ - - - + 15.40 4 2.80 = 38.750 days,

where the estimated survival probabilities P; are given in Table 4.3 and dis-
played in Figure 4.5.

The estimated variance of the distribution of the estimated mean (area
under the survival curve) requires a sum of a series of values denoted Ay.
These values are related to the d rectangular areas (area;) that make up the
product-limit estimated survival curve and are defined by

A= Zarea,- = Z Piy(t; — tiy),

i=k+1,k+2,...,d (note:Ay=p).

The estimated variance of the distribution of the estimated mean survival
time (i becomes

A
n(ng — 1)’

where again d represents the number of intervals in the product-limit table

variance({1) = Z k=1,2,...,d,

(the number of complete observations if no identical survival times occur).
For the example data from the n = 10 AIDS patients (Table 4.3), the esti-
mated variance is

variance(ft) = 15.006 + 16.965 + - - - 4+ 3.920 = 78.690.

The details of the computation are given in Table 4.6.
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Table 4.6. Details of the calculation of the variance of the product-limit
estimated mean value i = 38.750 days.

k i=2 i=3 i=4 i=5 i=6 i=7 A mj; A7 Jmy,

1 1.80 8.00 7.00 1.75 15.40  2.80 36.75 10x9  15.006
2 — 8.00 7.00 1.75 1540  2.80 34.95 I9x8  16.965
3 — — 7.00 1.75 1540  2.80 26.95 8x7  12.970
4 — — — 1.75 1540  2.80 19.95 6x5  13.267
5 — — — — 15.40  2.80 18.20 5x4  16.562
6 — — — — — 2.80 2.80 2x1 3.920

* my = ni(ng — 1), where ny is the number of at-risk individuals in the kth row of the
product-limit table.

The usual normal-based approximate 95% confidence interval is [ £
1.960,/variance(ft) = 38.750 & 1.960+/78.690 or (21.363, 56.137). When
the data are complete and unique (n = d and no identical survival times
occur), the variance of the estimated mean value is given by variance(ft) =
> (#; — £)*/n?, indicating a slight bias. To correct for this bias, the estimated
variance is multiplied by n/(n — 1).

A mean value estimated to summarize survival experience has two dis-
advantages. It is not defined when the longest survival time is censored
(area = ?). Of more importance, the distribution of survival times is typ-
ically asymmetric (skewed to the right—long right “tail”), making a mean
survival time less representative of a “typical” observation than a median
value. The median value is a more representative summary when the sam-
pled distribution is not symmetric.

The median survival time estimated from censored survival data
follows the same pattern described for complete data but is based on a
product-limit table that accounts for incomplete observations. The inter-
val that contains the survival probability P = 0.5 is located and the esti-
mated median survival time is again the upper bound of that interval.
Two additional interval bounds are also useful, the next smallest bound
(denoted #) and the next largest bound (denoted #,). For the AIDS data,
the estimated median survival time %, is 27, making # = 24 and t, =
60 (Table 4.3). An estimated variance of the distribution of the estimated
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median survival survival time is constructed from these three values. It is

. a [ h—t i|2 N
variance(ty) = | ——— | Vm,
P — P,

where P and P, are the estimated survival probabilities corresponding to
the survival times #; and t,. As before, the quantity denoted Vi represents the
Greenwood estimated variance of the estimated value Pm, where m denotes
the interval containing the survival probability of 0.5.

For the censored AIDS data, the estimated median survival time 7,, is 27
with estimated variance

24 — 60

2
—— [ 0.0275 = 290.743.
0.583 — 0.233

variance(fy,) = [
As noted, the values used to calculate the variance of a median value are
found in the product-limit table. For the example, from Table 4.3 (row =
m = 5), Py = 0.583, P5 = 0.467, Ps = 0.233, i, = 24, {5 = 27, {5 = 60,
and Vs = (0.166)% = 0.0275.

The approximate 95% confidence interval f#, £ 1.960/variance (,)
based on the estimated median value #5 = 27 is (—6.420, 60.420). When
the normal approximation yields an impossible negative bound, it is some-
times conventionally replaced with a zero. The approximate confidence inter-
val for the median survival time is then reported as (0.0, 60.420). Of more
fundamental importance, a negative bound serves as a warning that the accu-
racy of the normal distribution as an approximation is failing. The negative
bound and the wide confidence interval (lack of precision) for the AIDS
data are not surprising, because the estimated median survival time is based
on only 10 observations with three censored survival times (seven complete
observations—d = 7). More effective estimates of the median survival time
and its variance will be discussed (Chapter 5 and beyond).

Estimates exist of the hazard function from product-limit tables [3]. How-
ever, such estimated hazard functions are subject to considerable sampling
variation because they are estimated from intervals that typically contain only
a few observations (usually only one death). In addition, the interpretation
of the resulting estimated hazard function is not simple. Like the median
survival time, extremely efficient estimates of the hazard function will be
discussed that take advantage of the entire data set (Chapter 5 and beyond).
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Although a hazard function is not easily interpreted or accurately esti-
mated from product-limit estimated probabilities, a related summary, called
the cumulative hazard function, is an alternative way to describe survival data
or to contrast survival experiences among different groups. Parallel to the
product-limit estimated survival probability, the camulative hazard function
is a summary derived from cumulative estimates based again on the interval
specific estimated conditional survival probabilities ( p;). This summary pro-
vides another view of the survival pattern but its role in the analysis of
survival data is not fundamentally different from that of a product-limit
estimated survival curve. The estimated cumulative hazard function (some-
times referred to the cumulative disease incidence or mortality function) is
defined by the expression

H(t) = —log(Py) = —log (]‘[ p,-) ——Slog(p).  i=12....k

where, asbefore, IA’k is the product-limit estimated survival probability for the
kthinterval constructed from the estimated conditional survival probabilities
pi. Because log( p) = log(1 — q) =~ —g, an approximate cumulative hazard
function is more simply expressed as

H(t) =Y 4 i=12....k

For most human survival data, H () ~ H*(tk). The interval-specific
approximate values of H*(#;) are

H*(tl) =4

H*(1) =qi+4+- -+ 4

indicating the reason that H(#) is called the estimated cumulative hazard
function (h(t) &~ ¢g—Chapter 1). For the 10 AIDS patients (Table 4.3), the
estimated values H(#) and H*(#) are presented in Table 4.7 and Figure 4.7.
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Table 4.7. Estimated cumulative hazard function H(t)
and H*(t;) for the 10 AIDS survival times (Table 4.3).

i tio1— b d; n; p; H(t) H*(t;)
1 0-2 1 10 0.900 0.105 0.100
2 2—4 1 9 0.889 0.223 0.211
3 4-14 1 8 0.875 0.357 0.336
4 14-24 1 6 0.833 0.539 0.503
5 24-27 1 5 0.800 0.762 0.703
6 27-60 1 2 0.500 1.455 1.203
7 60-72 1 1 0.000 — 2.203
o | — exact
N --- approximate
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Figure 4.7. Estimated cumulative hazard function A(t) and A*(t) for the 10 AIDS survival times
(Table 4.3).

APPENDIX

Statistical tools: Greenwood’s variance expression
A not exactly straightforward application of the expression for the variance
of the logarithm of a variable (described in Chapter 3) produces an estimate
for the variance of an estimated survival probability (Greenwood’s variance
expression).
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Step 1. When p; represents an estimated probability from a binomial distri-
bution, then

ii|2 pi(l—pi) _ 4
pi n nipi’
where §; = 1 — p; and the variance of the distribution of p; is estimated by

pi(1 — pi)/n; (Chapter 1).

Step 2. For the product-limit estimated survival probability (P}, the esti-

2
variance[log( p;)] ~ [ﬁi} variance( p;) = [

i

mated variance is
variance( Py) ~ Pi variance[log(lf’k)].

Step 3. The logarithm of the product-limit estimate of Py is a sum of the
logarithms of k specific conditional survival probabilities py, p., ps, ..., Pk
and is

log(Py) = log (]_[ p,-) =Y log(p).  i=1.2....k

Step 4. Putting steps 1, 2, and 3 together gives Greenwood’s expression,
variance( Py) ~ Pi Variance[log(Pk)] = Pi variance [Z log(ﬁi)]
IA’%Zvariance[log(pi)] R Isi nc'];, i=1,2,---,k
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Exponential survival time probability
distribution

A product-limit estimate of a survival probability is model-free. Thus, the
resulting estimates do not depend on assumptions or require knowledge
about the population that produced the sampled survival data. The value
estimated is entirely determined by the data. A totally different approach
requires that a specific parametric model describe the sampled population.
The exponential survival time probability distribution is one such model.
It is a simple but theoretical distribution that completely defines a survival
probability based on a single parameter (denoted A). Specifically, this survival
function is

survival probability = P(T > t) = S(t) = e~ *.

For example, for time t = 20 years, the survival probability is P(T > 20) =
$(20) = 79429 = (.449 when the exponential distribution parameter is
A = 0.04 (Chapter 1, Figure 1.1). Thus, for a randomly sampled individ-
ual whose survival time is described by these exponential survival time data
(A = 0.04), the probability of surviving beyond time t = 20 years is 0.449.
For any other value of t, the corresponding survival probability is similarly
calculated. The survival time distribution depends entirely on a single param-
eter (in the example, A = 0.04) to completely describe the population sam-
pled. Figure 5.1 displays the geometry of three exponential survival functions
(A = 0.04, 0.15, and 1.0).

The exponential function f(x) = e

* is found in a variety of contexts
other than survival analysis. For example, it is used to describe the physics
of heat loss from an object (Newton’s law of cooling), the loss of electrical
charge, the oscillations of a spring, and the interest accumulated in a bank
account. In general terms, this relationship arises when a rate of change is
proportional only to the size of the quantity that is changing.
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Figure 5.1.

Exponential survival time probability distribution
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Examples of three exponential survival distributions (A =0.04, 0.15, and 1.0).

Survival times sampled from an exponential distribution have a constant
hazard rate, and for a constant hazard rate, the survival times have an expo-
nential distribution. The constant hazard rate associated with exponentially
distributed survival times is

hazard function = h(t) = A.

Remarkably, the parameter that defines the survival function S(t) is also the
hazard rate h(t), namely A. Figure 5.2 displays the three clearly constant haz-
ard functions corresponding to the three exponential survival distributions
in Figure 5.1.

The property that the exponential hazard function is constant follows
directly from the general definition of a hazard rate. Specifically,

d d _— —
h(t):—ES(t) :—Ee " = Ae ™™ =A.
S(t) e—M e—M

Application of the definition of an instantaneous relative rate (Chapter 1)
shows that the hazard rate is constant (the same value regardless of the value
of t). This fact is mathematically unequivocal but not particularly intuitive.
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Figure 5.2. Examples of hazard rates from three exponential distributions (A =0.04,0.15, and 1.0).

Two justifications of the relationship between S(t) and h(¢) follow, based on
less abstract arguments.

Justification 1

The value of the expression (1 + 1/#)" is approximately equal to 2.714 for
moderatelylarge values of n (n in the neighborhood 0f200). When n becomes
infinite, the value of this expression is denoted by the symbol e (“e” for
exponential and in honor of the major contributions of the mathematician
Leonhard Euler). The value of e has been calculated to many nonrepeating
decimal places as 2.71828182846---. Furthermore, the more general
expression

_xn
(R
n

is also approximate for large n and exact for infinitely large 7.

Suppose a time interval (0, ¢) is divided into n equal subintervals of length
8(né = t) and the conditional probability of surviving each subinterval is
exactly the same (represented previously by p; and for this special case p; = p
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for all n subintervals). Then the survival probability is approximately
St)=P(Tz=t)=[]pi=p"'=01-9q)
i=1

ng\" _ _ _
:<1__) %eqn:emn:ekt
n

because the hazard rate A = q /6 is constant (¢ = 1 — p is constant) for all
subintervals and 8n = t. The survival probability S(#) becomes exactly e =**
when 7 is infinitely large, which is another way of saying that the exponen-
tial survival distribution becomes S(t) = e~*!

variable (§ = 0).

when time t is a continuous

Justification 2

The probability of surviving from time = 0 to time = t, divides into two
obvious intervals, 0 to #; and # to t,. Thus, the probability of surviving
beyond time t, is

S)=P(T=2t)=P(T=>26|T=4t)P(T =1).

For exponentially distributed survival times, this survival probability be-
comes

Sh)y=e ™ =P(T>t|T=>t)e ",
and for the interval #; to t,, the conditional survival probability is
P(T>t|T>n)=e b1,

This straightforward relationship indicates the key property of exponen-
tially distributed survival times. The probability of surviving from time
t; to t, depends only on the magnitude of the difference #, — #; and not
the actual values of #; and #,. For example, when t, — #; = 20 years (A =
0.04), the survival probability P(T > t, | T > t;) = ¢~ %%% = (0.449 for
t, = 100 and t; = 80 or for , = 25 and f; = 5. Therefore, the probability of
surviving 20 additional years is the same for 80-year-olds as for 5-year-olds.
The probability is 0.449 for any 20-year period. In general, exponential sur-
vival describes the risk for individuals who do not age or objects that do not
wear out. In other words, the hazard rate is constant.

This “no memory” property obviously does not apply across the full spec-
trum of the human lifetime. Clearly, the risk of death differs considerably
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between 80-year-olds and 5-year-olds (Chapter 2, Figure 2.2). However,
some kinds of accidents appear to have constant risk (constant hazard rate).
Computer chips do not wear out and, therefore, their failure times are
accurately described by an exponential distribution. Occasionally, special
populations experience essentially constant hazard rates. For example, an
approximately constant hazard rate frequently describes the mortality risk of
extremelyill or extremely old individuals. Most relevant to epidemiologic and
medical data, over short time intervals, the changes in human mortality rates
are typically small, making risk approximately constant (hazard rate = A).

A classicsituation described by an exponential probability model (constant
hazard rate model) is the survival of a wine glass. The probability that a wine
glass is broken (“failure”) does not depend on how long the wine glass has
lasted or how many times it has been used. Wine glasses do not wear out.
Glasses are broken with the same probability (at random) regardless of age
or amount of use. Unlike most things, wine glasses have the same risk of
being broken whether they are new or old. Thus, the lifetime of a wine glass
is accurately described by a constant hazard rate for all glasses at all times. An
exponential distribution, therefore, accurately predicts the probability that
a wine glass will last a specified amount of time. The lifetime of a wine glass
(in months) might look like this:

Present age  Additional lifetime

0 40
20 40
40 40
60 40
80 40

A unique and defining property of survival times with an exponential
distribution (a constant hazard rate) is that all individuals at a specific time
to have the same mean additional survival time. When the hazard rate is
constant, individuals who have survived 80 weeks or 40 weeks or 5 weeks have
the same mean additional survival time (denoted (). More technically, the
survival probabilities at any time f, continue to be exponentially distributed
with the same hazard rate (1), namely S(t) = e~*!~%), Regardless of the
value of t — f,, the hazard rate remains A (constant). Risk necessarily remains,
therefore, the same regardless of past survival experience (“no memory”),
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putting all individuals on an even footing in terms of the amount of future
survival time (such as wine glasses).

The previously analyzed 10 AIDS survival times (denoted again ¢;, where
n=10,d =7 complete, and n —d = 3 censored observations) are as
follows:

survival times (in days): 2, 72, 517,60, 33", 27, 14,24, 4,and 217

As before, unbiased estimates based on these data must account for the
incomplete survival times. When these AIDS survival times are sampled
from a population that is at least approximately described by an exponential
survival distribution, accounting for the influence of the incomplete survival
times is relatively simple.

To begin, the three incomplete values must be randomly censored (non-
informative). These censored values are then made “complete.” The survival
times become 51 + w, 33 + u, and 21 + u, where w is the mean survival
time of the underlying exponential survival distribution. Because the haz-
ard rate is constant and censoring noninformative, all surviving individuals
have identical remaining mean survival time p, regardless of the previously
observed survival time t. The estimated mean survival time, calculated from
the seven complete and three “completed” survival times, is then

ﬂ_2+72+(51+,&)+60+(33+ﬂ)+27+14+24+4+(21+;2)
o 10

or

A

308+ 34
10

Solving for [t gives an unbiased estimated mean survival time of 1 =
308/7 = 44 days. When the incomplete nature of the censored survival times
is ignored, the biased estimate (likely too small) is # = ) t;/n = 308/10 =
30.8 days.

From another point of view, the directly estimated mean valuef = ) #;/n
is likely too small because the sum of all observed survival times (}_ )
includes censored individuals who would have added more survival time if
the observation period had been extended. Therefore, including an estimate
of the “missing” survival time gives

>t + (n— d)ji

n

= i=1,2,...,n = total number of observations,
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where (n — d) i estimates the total amount of unobserved survival time accu-
mulated by the censored individuals. Each of the n — d censored individuals
is unobserved for, on the average, u days. The sum ) t; is the total amount
of observed survival times accumulated by both censored and uncensored
individuals. Adding the estimated “missing” survival time to the numerator
of the estimate of the mean survival time produces an unbiased estimate
of the total survival time (observed time + estimated “missing” time). The
estimate of the underlying mean value p is unbiased as long as the hazard
rate of the sampled population is constant and the exponential distribution
sampled is the same for censored and complete observations (noninforma-
tive censoring). Consequently, the mean survival time is the same for both
censored and complete observations. Solving the previous expression for (1
gives the estimated mean survival time as

2t
7

where the total observed survival time (complete plus censored values) is

divided by the number of complete observations d and not the total number

o= i=1,2,...,n = number of observations,

of observations #. Dividing by the smaller value d increases the estimated
mean value, compensating for the unobserved survival time. The mean sur-
vival time of the 10 AIDS patients is again L = 308/7 = 44 days.

An estimated variance of the estimated mean survival time & is

"2
variance(fl) = —

d

and provides an estimate of the variance of the distribution of i estimated
from either complete (d = n) or censored (d < n) exponential survival data.

Notice that the precision of the estimated survival time is not affected
by the number of censored observations (n — d). Thus, accounting for the
influence of the censored observations is an issue of bias and not precision.
Incidentally, the estimate /& is the maximum likelihood estimate of the mean
survival time . That is, maximizing the likelihood function produces the
same estimated mean value and variance.

As noted previously (Chapter 4), the accuracy of an approximate confi-
dence interval can be improved by constructing the interval bounds from
a transformed value of the estimate. For the estimate i, the transformed
value is log(/t). In general, the accuracy of the coverage probability of an
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approximate confidence interval based on a normal distribution improves
when the variance of the estimate does not depend on the estimated value
(estimated value and its variance are unrelated). The logarithm of the esti-
mated mean survival time log(/t) has this property. The estimated variance
of the distribution of the logarithm of estimated mean survival time is

1 2

1 1
variance(log[/t]) = — variance(f1) = - = — (Chapter 3)
[ prd d

and depends only on the number of complete observations (d), making

it independent of the estimate (. Thus, normal-distribution-based confi-
dence interval bounds from exponentially distributed survival times using
the transformed estimate log(/1) are

1
A = lower bound = log(t) — 1.960\/2

and

1
B = upper bound = log() + 1.960\/;

andlead to approximately 95% confidence interval bounds for the underlying
mean value u given by (e#, e?), calculated from the estimated mean value /1.
Another feature of confidence bounds based on alogarithmic transformation
is that the lower bound is never negative, which is important because the
mean survival time is also never negative.

The San Francisco Men’s Health Study (SEMHS) was established in 1983 to
conduct a population-based study of the epidemiology and natural history of
the newly emerging disease Acquired Immunodeficiency Syndrome (AIDS).
The study design was a prospective investigation based on a random sample
of single men 25-54 years of age living in a highly affected San Francisco
neighborhood known as the “Castro District.” The group studied ultimately
contained 1,034 men, which resulted from a roughly 70% response rate
from a random sample of 19 selected San Francisco census tracts. Study
participants were examined and questioned every six months from July 1984
through June 1994. The data explored here are a small subset consisting of
the individuals who entered the study during the first year (see Table A.2,
p- 248). Survival time is defined as the number of months from diagnosis of
AIDS to death for these data.
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For the 174 white men from this SFMHS cohort (d = 155 deaths and
n—d =19 censored individuals), the estimated mean survival time is
fa=> t;/d =3578/155 = 23.084 months, based on the assumption that
survival times were sampled from an exponential probability distribution.
The approximate 95% confidence interval bounds using the transformed
estimate log(/1) = log(23.084) = 3.139 are

[ 1
A = lower bound = 3.139 — 1.960 155 = 2.982

and

1
B = upper bound = 3.139 + 1.960,/ I55 = 3.297.

The approximately 95% confidence interval bounds for the mean survival
time p become (e4, eB) = (e2982, ¢3297) = (19.721, 27.020).

Higher risk clearly dictates lower survival time and vice versa, as already
noted (Chapters 1, 2, and 4). Expressed formally for the exponential survival
distribution, the relationship between a mean survival time and a hazard

rate is

1 . . 1
hazard rate = A = — or mean survival time = pu = T

i
Again risk is inversely related to survival time. More technically,

x oo
/. = mean survival time = area = / S(u)du = / e Mdu = %

0 0
because the area enclosed by the survival function S(¢) is the mean survival
time (Chapter 1). The geometry of this reciprocal relationship between risk
and survival is displayed in Figure 5.3 for three survival functions with hazard
rates (A = 0.04, 0.1, and 0.5). As required, the larger hazard rates (risk)
produce survival curves with smaller enclosed areas (mean survival times)
and vice versa.

A natural estimate of a constant hazard rate follows as the number of

deaths divided by the total person-time, or

- 1 d
oot

For the SEMHS data, the estimated constant hazard rateis A = 1 /23.084 =
155/3578 = 0.043. Because [ is a maximum likelihood estimate, the
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estimated rate A (a function of /1) is also a maximum likelihood estimate.
The maximum likelihood estimated variance of the approximate normal
distribution of the estimate 4 is

variance( 1) =

>y

Because A = 1 /i1, confidence interval bounds based on the estimated
rate A are the same reciprocal function of the previously calculated lower
and upper bounds derived from the estimated mean survival time /1.

Specifically, the lower bound = 1/e® = 1/e*%7 = 1/27.020 = 0.037 and
upper bound = 1/e? = 1/e>%% = 1/19.721 = 0.051 produce the approxi-
mate 95% confidence interval (0.037, 0.051) for the hazard rate based on
the estimated rate A = 1//1 = 1/23.084 = 0.043. The same 95% confidence
interval is

exp {log(i) + 1.960 Variance(log[i])} — STl 900/Vd

The exponential distribution of survival times is a theoretical justification
of the widely used estimate of an average mortality rate (Chapter 1). That is,
an average mortality rate is commonly estimated by

total deaths _ d i 1

total person-time ) f; o

average rate =

where ) #; is the total observed person-time (again censored plus complete
survival times). This estimate accurately reflects mortality risk only when the
underlying hazard rate is constant. A single estimate requires that the quantity
estimated be a single value. To create data where the rate is approximately con-
stant, mortality and disease data are typically collected from groups that are
as homogeneous as possible (for example, age-, sex-, race-specific groups). A
homogeneous group of sampled individuals is more likely to have at least an
approximately constant risk of death or disease (constant hazard), reflected
accurately by the single estimated rate A, particularly when the time interval
considered is small. Experience has shown that these estimates are generally
effective in human populations.

Under the assumption that the data are sampled from a population with a
constant hazard rate, an estimate of the median survival time (denoted again
tm) is straightforward. As with all survival distributions, the exponential
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survival function requires the median value to be the value that makes the
survival function equal to one-half. Specifically,

S(tm) =3 =e ™" or fy =log(2)/A = plog(2).

The natural estimate of the median value #,, is then log(2) / dorp log(2) and
is the maximum likelihood estimate because it is a function of the maximum
likelihood estimate fi. Therefore, the estimated median survival time has the
properties of a maximum likelihood estimate, namely an approximate nor-
mal distribution with minimum variance when the sample size is large. From
the SFMHS data, the estimated median survival timeis #,, = log(2)/0.043 =
23.084 log(2) = 16.005 months.

The accuracy of the estimated confidence interval for the median survival
time is also improved by a logarithmic transformation. Specifically, the trans-
formation log(f,,,) is used and the estimated variance of the distribution of
the logarithm of the estimated median 7, is

variance[log(f,,)] = variance(log[/t log(2)])
= variance(log(/1) + log[log(2)])

1
= variance[log(/1)] = '

The variance of the logarithm of the median value is the same as the variance
of the logarithm of the mean value because adding a constant to a variable
does not change its variance (details are given at the end of the chapter).
Therefore, the width of a confidence-interval-based on the estimated median
value is smaller than a confidence interval based on the estimated mean
value [the ratio of the lengths is log(2)]. For normally distributed data, the
estimated median value is always less precise than the estimated mean value
(larger confidence interval).

Parallel to the estimated mean value, an approximate 95% confidence
interval for the logarithm of the median survival time of the population that
produced the SFMHS data is then log(16.001) £ 1.960 /1/155 = 2.773 &+
0.157, yielding the confidence interval (2.615, 2.930). The approximate 95%
confidence interval for the median survival time estimated by #,, = 16.001
becomes (e%°1°, ¢293%) = (13.670, 18.729).

More succinctly, because the median value is log(2)t = 16.001, the
lower and upper bounds of a 95% confidence interval are the same func-
tion of the confidence interval bounds based on the estimated mean survival
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Estimated product-limit survival probabilities (step function) and exponential survival
function for the SFMHS data (continuous line).

time. Specifically, the approximate 95% confidence interval bounds are again
log(2)[19.721] = 13.670 and log(2)[27.020] = 18.729. The values 19.721
and 27.020 are the previous 95% confidence bounds based on the estimated
mean survival time 1. As mentioned, the length of the confidence interval
for the median survival time is smaller than the interval for the mean by
a factor of log(2) = 0.693, where 18.729 — 13.607 = 5.059 versus 27.020 —
19.721 = 7.298, respectively.

A critical question that must be addressed as part of an analysis based
on a parametric survival distribution is: Does the postulated exponential
probability distribution accurately represent the relationship between time
and the likelihood of survival? or, Is the exponential model useful? or, Is the
hazard rate constant? An investigation of this issue (goodness-of-fit) begins
with the comparison of the product-limit estimated survival probabilities
(no parametric assumption) to the corresponding estimated exponential
survival probabilities (parametric assumption). For the SFMHS data, Fig-
ure 5.4 displays this comparison where the natural parametric estimate of
the exponential survival function is

SA(t) — e—kt — 6_0'043t.
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The graphic comparison of nonlinear relationships is not as simple or
intuitive as the comparison of straight lines. For the exponential survival
function, a transformation produces a straight line. Specifically, the trans-
formation log(—1log[S(#)]) yields the straight line, denoted I(t),

I(t) = log(—log[S(#)]) = log(—log[e_“]) = log(rt) = log(A) + log(t).

Thus, the “log—log” transformed estimated survival probabilities from
an exponential survival time distribution randomly deviate from a straight
line with intercept log(A) and slope 1.0. Figure 5.5 illustrates the log—log
transformation applied to two sets of fictional survival time data. The plot
labeled “exponential” is a random sample from an exponential distribu-
tion and the other is not. Estimated survival probabilities transformed into
straight lines clearly indicate the correspondence (top figure) and the lack of
correspondence (bottom figure) between theory and data.

For the San Francisco AIDS patients (n = 174), the estimated straight
line based on an exponential distribution is ] (t;) = log(— log[ﬁ(ti)]) =
—3.139 +log(#;) with intercept = log(0.043) = —3.319 and slope = 1.0
(solid line in Figure 5.6). Applying the same transformation to the product-
limit estimated survival probabilities p; produces values log(—log[f)i] ). The
least-squares-estimated straight line based on these transformed survival
probabilities and the values log(t; ) yields a straight line with estimated inter-
cept —3.696 and slope 1.195 (dashed line in Figure 5.6). The estimated line
—3.696 + 1.195log(t;) provides a second linear measure of goodness-of-
fit that does not depend on postulating an underlying survival distribu-
tion (model-free). That is, the slope and intercept can have any value. The
correspondence between the exponential model and the distribution-free
product-limit estimated survival probabilities is now clearly displayed as a
difference between two straight lines (Figure 5.6). Both lines randomly differ
from the same “45° line” by chance alone when the survival data are sam-
pled from an exponential probability distribution (constant hazard rate).
Substantial differences provide clear visual evidence that the survival times
are not adequately described by a single parameter exponential distribution,
which does not appear to be the case for the SEMHS data.

A survival probability for a selected time ¢, is estimated by S(ty) = e~ Mo
Similar to the previous confidence intervals, confidence bounds for a specific
survival probability are constructed from a transformed estimated value,
namely the straight line I(t). The estimate of [(¢) for a selected survival time
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Figure 5.5. Examples of the fit of transformed exponential and nonexponentially distributed survival
times.

t (denoted ;) has a particularly simple variance and confidence interval.
When [(¢) = log(—log[g(t)]) = log(i) + log(t), the estimated variance of
the distribution of the estimated value /() is

variance([[y]) = Variance[log(—log[ﬁ(to)])] = variance[log( 1)+ log(ty)]

A 1
= variance[log(A)] = —.

d
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Figure 5.6. Comparison of transformed survival curves (goodness-of-fit).

Because t; is a selected value, it is, therefore, a nonrandom (fixed) value.
Its variance is zero (variance[log(#)] = 0). For example, suppose inter-
est is focused on the survival time #; = 20 months, then the estimated
survival probability S(ty) = $(20) = e~ +20) — p=0.04320) §5 ) 420 and the
transformed value is [(ty) = [(20) = log(0.043) + log(20) = —0.143. The
normal distribution derived approximate lower and upper 95% confidence
interval bounds based on [(20) are

lower bound = [(ty) — 1.960,/1/d = —0.143 — 1.960,/1/155 = —0.301
and

upper bound = [(t) + 1.960,/1/d = —0.143 4 1.960,/1/155 = 0.014.

The approximately 95% confidence interval bounds based on the survival
probability estimated by $(20) become

lower bound = ¢~ (014 — (363

and

upper bound = e~P30) — ¢ 477

and necessarily $(20)e~eP(0-143) — 0 420.
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Table 5.1. Estimates associated with the exponential survival
distribution.
Notation:

t = survival time,

n = total number of sampled survival times,

d = number of deaths (complete survival times),
p = probability,

and
i=1,2,...,n.
Parameter Symbol Estimated value Estimated variance
Dotk s
Mean L= §2 ==
H I d @ P
Rat A =2 S? »
ate = f=—
Z t; A d
) . —log(0.5) ,  f
Median tm tm = 7 S{m =
. —log(1 — p) 5 ff,
Percentile t tp = 3 L=
Note:

variance(log[/t]) = variance(log| i) = variance(log[#s])

= Variance(log[fp]) = variance(log(— log[ﬁ(to)])) = 7

because the five estimates differ only by constant values.

One last point: the linear relationship I(¢) = log(—log[S(#)]) = log(A) +
log(t) suggests a more general survival model created by postulating a slope
other than 1.0. In symbols, this model is

I(tr) = log(—log[S(#)]) = log(A) + y log(t) (slope = y).

Solving this expression for S(t) yields the survival function S(t) = 7.

This two-parameter (A and y ) survival function, called the Weibull survival
function, is the next topic (Chapter 6). The data in Figure 5.5 (bottom) are
an example of log-log transformed survival times sampled from a Weibull
distribution (slope = y = 1.8). Table 5.1 contains a review of the estimates
and variances from the exponential survival distribution.
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Summarizing mortality and disease rates

The best way to describe the differences between two or more sets of mor-
tality rates is a direct comparison of age-specific rate to age-specific rate.
When the number of age-specific rates is large or several populations are
compared, a direct “rate-to-rate” comparison remains important but lacks
the simplicity of comparing summary values. For example, overall mortality
risk is frequently described by combining a sequence of age-specific mortality
rates into a single summary age-adjusted mortality “rate.” Direct and indi-
rect age-adjustment are popular techniques that produce “adjusted rates”
from age-specific mortality or disease data ([1] or [4]).

The easily calculated and interpreted probability of death also serves as a
summary of age-specific rates. To illustrate, Table 5.2 contains the number of
deaths (d, ) from lung cancer for males and females in the United States (year
2000) and the corresponding number of individuals at risk (I,) for age x.
Also included are the sex- and age-specific estimated average mortality rates
per 100,000 person-years calculated in the usual way (denoted 4, ). Implicit
is the assumption that these male and female estimated mortality rates are at
least approximately constant within each of the relatively short ten-year age
intervals. This assumption allows the direct calculation of the age-specific
survival probabilities based on the exponential survival distribution (con-
stant hazard rate). These probabilities can then be combined to estimate the
survival probability.

To summarize the age-specific rates A, with a single survival probability,
each rate is converted into an age-specific conditional survival probability
P based on the assumption that the rate is constant within each age interval
xto x + & (exponential survival time). The age-specific exponential survival
probabilities become
px = P(surviving from x to x 4+ §) = e 3,

For example, the male lung cancer rate 62.7/100,000 for ages 50 to 60 trans-
lates into the conditional survival probability P (surviving from 50 to 60) =
Peo = e70000027010) — .9938 (§ = 10 years).

Much like the product-limit and life table estimates, the product of the age-
specific conditional survival probabilities succinctly summarize the mortality
risk over a sequence of age intervals. From Table 5.2, the probability of dying
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Table 5.2. Age-specific rates of lung cancer deaths for U.S. males and females.

Males Females

Age Deaths (d,) At-risk (I,) Rate (A,)* Deaths (d,) At-risk () Rate (A )*

50-60 9915 15,819,750  62.7 6919 16,616,620  41.7
60-70 21,218 9,821,436 216.0 14,239 11,012,221 129.3
70-80 29,280 7,280,991 402.1 21,069 9,559,703  220.4
80-90 13,754 3,110,375 442.2 11,808 5,529,059 213.6
90™ 1394 454,171 392.6 1783 1,346,803 132.4
Total 75,561 36,486,723 207.1 55,818 44,064,406 126.7

* Age-specific lung cancer mortality rates per 100,000 person-years, ages x tox + 10
years (age = x > 50).
Source: National Center for Health Statistics, 2000.

of lung cancer after the age of 50 is estimated by

P (dying of lung cancer beyond age 50) = 1—{ pso X P70 X Pgo X Poo+] =
1— [e‘iw‘S x @408 g hwd = hond o e_i"”‘s] =1- [e_‘sz;\"] ~§ Z A
The approximation e ™ &~ 1 — x is accurate when x is moderately small
(—0.2 < x < 0.2—Figure 5.7).

Approximately, the probability of death from a specific cause over a period
of time (a sequence of intervals) is the sum of the age-specific rates multiplied
by the lengths of the corresponding age intervals () §; ;). For males (§; =
10 years), a summary probability of dying of lung cancer after age 50 is
approximately

P (male death) &~ 10{62.68/100,000 + 216.04/100,000
+---+306.93/100,000] = 0.143.

The comparable summary probability from the female lung cancer mortality
datais P (female death) & 0.074. The straightforward interpretation of these
probabilities is that an estimated 14.3% of the males and 7.4% of the females
will die of lung cancer after age 50. Both probabilities are “age-adjusted” in
the sense that differences in male/female age distributions have essentially
no impact on the comparison.

Although it is not usually an issue with national data (Table 5.2)
because the extremely large numbers of persons-at-risk makes the variance
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Figure 5.7. The geometry of approximating e* by 1 — x.

inconsequentially small, the estimated variance of the distribution of this
estimated survival probability Py = 1 — 3" 8; 4, is approximately

, 8d;
variance(P) ~ 11_21 i=1,2,..., k = number age intervals.

The symbol d; represents the number of deaths in the ith age interval of length
8; among /; individuals at risk. For the U.S. lung cancer mortality data, the

standard errors are +/ Variance(Pmale) = 0.00095 and \/ variance(Pfemale) =

0.00042, showing the negligible influence from sampling variation on these

estimated summary probabilities due to the large number of observations.
Unlike the estimate of the summary survival probability Py, the variance of
the estimate Py is influenced by differences in the age distributions of the
groups compared.

These estimated survival probabilities are approximate for two reasons.
First, the approximate value (1 — ) §;A;) is used instead of the exact value
(e~ 2%%). Second, and of more importance, cross-sectional data (the year
2000) are used to estimated probabilities over a 50-year-period, which would
be strictly correct only if mortality risk remained perfectly constant.
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APPENDIX

Statistical tools: properties of variance
The following reviews three relevant properties of variance (both population
variance and estimated sample variance). Rigorous proofs are readily found
in elementary statistical texts. Here the three properties are defined and small
examples illustrate them.

1. The variance of X + a is the same as the variance of X when aisa constant
or
variance(X + a) = variance(X) -
Example. X:{2,4,6,8,10} and X +5:{7,9,11, 13,15}

wherea = 5: variance(X 4+ 5) = 10 and variance(X) = 10.
2. The variance of a X equals the variance of X multiplied by a? or

variance(a X) = a?® variance (X).
Example. X:{2,4,6,8,10} and aX:{1,2,3,4,5} where a = %:

10
variance(aX) = 2.5 and a?variance(X) = (%)2 10 = “ = 2.5.

3. The variance of X + Y equals variance(X) plus variance(Y) when X and
Y are uncorrelated, or

variance(X + Y) = variance(X) + variance(Y)

when correlation (X, Y) = 0.

Example. X:{2,4,6,8,10} and Y:{1,7,14,7,1}:

variance(X) = 10 and variance(Y) = 29, making variance(X + Y) = 39,

because correlation (X, Y) = 0.

In general, for values x;, x,, ..., xx, the variance of a sum is the sum of
the variances,

variance (E xi) = E variance(x; ),

when correlation (x;, xj) = Oforalli # j =1,2,...,k.
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Weibull survival time probability
distribution

Postulating that survival times are sampled from a population with a con-
stant hazard rate is undoubtedly unrealistic in many situations. The Weibull
probability distribution is defined by two parameters; a parameter (denoted
A, X > 0) called the scale parameter and a parameter (denoted y, y > 0)
called the shape parameter. The two parameters of the Weibull probability dis-
tribution provide increased flexibility that potentially improves the descrip-
tion of collected survival time data. Of most importance, the shape parameter
allows the hazard function to increase or decrease with increasing survival
time.

To repeat (Chapter 5), the Weibull survival probabilities are given by the
expression

S)=P(T=t)=e".
Using two algebraic approximations, the Weibull distribution hazard func-

tion can be justified from the previous definition of a relative rate (Chapter 1).
The approximations are

(t4+8)8 =18 +grf 710+ 1g(g — 128 + -+ 88 ~ 18 + g18715

for small values of §(§ < 0.2), and, again

e~ 1—x (Chapter5).

For example, when t = 20, § = 0.1,and g = 1.8, (t + §)¢ = (20 + 0.1)!® =

221.693 and approximately ¢ + g#!§ = 2018 + 1.8(20°8)(0.1) =
221.690 ~ 221.693. Then, for small values of §, the hazard function for the
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Figure 6.1. Three Weibull survival functions S(f)(scale = » = 0.04, shape = y = {0.8, 1.1, and 1.2}).

Weibull distribution is

£S(1) _ [S(t+8) — S(1]/8

h(t) = — R —
() S(t) S(t)
[e*(H+8) _ e—m]/g oM A
- e~ MY - 5
1=A(4+8)Y =] =1 A +8pty L —¢
_ [(t+ 3) ] _ [t + )/8 ] e

The identical hazard function also follows directly from the general

definition of an instantaneous relative rate (Chapter 1), or the hazard rate is

£S(t) _ ayrrle

B

=iyt L

Figures 6.1 and 6.2 display the two-parameter Weibull survival and hazard
functions (A = 0.04 and y = 0.8, 1.1, and 1.2). For y = 1.0, the Weibull
and the exponential survival probabilities are identical (constant hazard).
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Four Weibull hazard functions h(t)(scale = » = 0.04, shape = y = {0.8, 1.0, 1.1, and
1.2}).

For y > 1.0, the hazard rate strictly increases in a nonlinear pattern with
increasing survival time. Human mortality and disease patterns, for example,
have increasing hazard rates with age. For y > 1.0, the hazard rate strictly
decreases, also in a nonlinear pattern, with increasing survival time. For
example, the risk of a recurrence of a tumor after surgery might be charac-
terized by a decreasing hazard rate with increasing time. Further illustrations
of Weibull survival and hazard functions are displayed at the end of the chap-
ter (see Figures 6.10, 6.11, and 6.12).

To repeat from Chapter 3, the maximum likelihood estimates of the two
defining parameters of the Weibull survival distribution are the most efficient
estimates (lowest variances) and have approximate normal distributions.
However, the estimation of these two parameters is numerically complex and
is usually done with a computer program. The maximum likelihood estima-
tion process also accounts for noninformative censored observations mak-
ing the estimates unbiased. As mentioned, the bias incurred from censored
values is rarely a concern once it is accounted for in the estimation process.
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Estimated Weibull survival and hazard functions (A = 0.0257 and y = 1.156).

Certainly one of the most important properties of the maximum likelihood
process is that it produces estimates of the variances of the distributions of
the estimated values (approximate normal distributions).

For the SFMHS AIDS survival data (n = 174), the computer-generated
maximum likelihood estimates of the Weibull distribution defining para-
meters A and ¥ and their associated variances are as follows:

scale parameter: % = 0.0257 with estimated variance(}) = 0.00004
and
shape parameter: = 1.156 with estimated variance(y) = 0.00519.

Estimates of the survival and hazard functions follow directly from the esti-
mated parameters (Figure 6.3). They are as follows:

. . . A A4 _ 1.156
estimated survival function: §(¢) = e " = 70027

and

estimated hazard function: h(t) = Apt’~1 =0.0257(1.156) %1%,

Confidence intervals based on each of the estimated Weibull survival func-
tion parameters are again more accurately constructed from a logarithmic
transformation. The estimates A and $ from 174 AIDS patients illustrate.
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A log transformation yields

log(ﬁ) = —3.662 with a estimated Variance[log(ju)]

1 A
= — variance(A) = 0.0663
A

and

log(y) = 0.145 with an estimated variance[log(y )]

1
== variance(y) = 0.00388.
14

The variances of A and 7, as noted, are estimated as part of the maxi-
mum likelihood estimation process. An approximate 95% confidence inter-
val based on the normal distribution and the transformed log-estimate is
log(estimate) & l.960\/Variance[log(estimate)]. As before, the log trans-
formation improves the normal distribution approximation by creating a

more symmetric distribution and exponentiating guarantees that the lower
limit is positive. Specifically, for log(}), the 95% approximate confidence
interval is

bounds = —3.662 £+ 1.9604/0.0663 or (A, B) = (—4.167, —3.157),
and for log(y), it is
bounds = 0.145 4+ 1.9604/0.0039 or (A, B) = (0.023, 0.267).

Exponentiating these estimated bounds (e#, e?) yields approximate 95%
confidence intervals for the Weibull parameters. They are as follows:

scale parameter: A = 0.0257 produces the 95% confidence interval
(0.016, 0.043)

and

shape parameter: y = 1.156 produces the 95% confidence interval
(1.023, 1.306).

The log-log transformation introduced in Chapter 5 provides alternative
and intuitive estimates of the two Weibull distribution parameters because
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the transformed Weibull survival probabilities are random deviations from
a straight line. Again, the line is

I; = log(—log[ P;]) = a + blog(t;) = log(\) + y log(#),

where the product-limit survival probabilities P; are estimated from the
observed survival times f;. Usual least-squares estimation yields estimates
of the intercept a and the slope b and, therefore, the Weibull parameters
estimates of A = e? and b = 7.

For the previous SFMHS data (n = 172 and d = 155), the product-limit
estimated survival probabilities P; produce the line [; = —3.696 + 1.195
log(t;) from the 155 observed pairs = {x;, y;} = {log(#), log(—log[Pi])}.
The Weibull parameter estimates J = e36% = 0.025 (scale) and P =
1.195 (shape) follow directly. The previous maximum likelihood estimates
(A = 0.0257and § = 1.156) have optimum properties and are almost always
used. However, estimates based on a straight line are conceptually simple and
provide a natural alternative to the more complex computer-generated max-
imum likelihood estimates.

The estimated mean survival time based on the conjecture of a Weibull
survival distribution is

p=3"""ra +1/9).

The symbol I'(1 + 1/y) represents a gamma function evaluated at 1 4+ 1/y.
(T is the capital Greek letter gamma.) A plot of the gamma values I'(x) for
x = 0.3 to x = 3.5 (the usual range of y for human survival data) is dis-
played in Figure 6.4. The gamma function and the derivation of the mean
survival time expression are mathematically sophisticated and are not dis-
cussed in detail. However, the estimation of the mean value is straightfor-
ward because values of a gamma function can be looked up in tables, found
on the Internet, or calculated with computer routines. It is worth noting
that when y = 1.0, the estimated mean survival time is &t = 1/A (constant
hazard) because I'(2) = 1.0. For the AIDS data, the estimated parameters
A = 0.0257 and = 1.156, along with the corresponding gamma value
'(1+1/1.156) = I'(1.865) = 0.950, produce an estimated mean survival
time of L = 0.0257~/11%6(0.950) = 22.597 months.

Estimates of the median survival time or other percentiles of a Weibull
probability distribution follow from the estimated survival function S(1).



117

Figure 6.4.

Weibull survival time probability distribution
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Gamma values displayed for x from 0.3 to 3.5 (the usual range for survival data) with
'(x=1)=1,I'(x=2)=1, and I'(x = 3) = 2 (symbol = 0).

For the probability p, the corresponding p-level percentile (denoted ¢,) is

estimated by

. [—log(l — p)]w

tp = -~ .
A

The technical/mathematical name for this expression is the inverse Weibull
survival function. That is, the Weibull survival function S(¢) produces a
probability p from a survival time ¢. The inverse Weibull function produces
a survival time ¢ from a probability p. The percentile expression is found
by solving the relationship S(#,) =1 — p for the value #,. Applied to the
AIDS survival data, the estimated median survival time ( p = 0.5—the 50th
percentile) is

o log(2.0)
9> 7170.0257

1/1.156
] = 17.315 months.

A rough measure of the symmetry of a distribution of data is the difference
between the mean and the median values. The Weibull summary estimates
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are as follows: the mean = 1 = 22.597 and the median = #,5 = 17.315.The
distribution of the AIDS data clearly shows the asymmetry (skewed to the
right—excess of large values) often found in survival data.

The expression for #, produces estimates of any percentile, making it
possible to characterize the entire survival distribution. To illustrate, nine
selected percentiles from the estimated Weibull survival time probability
distribution (A = 0.0257 and y = 1.156) are

p 01 02 03 04 0.5 0.6 0.7 0.8 0.9

fp 34 65 97 133 173 220 279 359 489

For example, the estimated Weibull parameters yield the estimated 30th
percentile (p = 0.3) of 9.7 months. Thus, for the SFMHS population, an
estimated 70% will survive beyond 9.7 months after a diagnosis of AIDS,
based on the estimated Weibull survival distribution.

The Weibull inverse function linking a probability to a corresponding sur-
vival time allows the creation of random “data” with a specified Weibull prob-
ability distribution. For parameters (or estimates of parameters) A and y, a
randomly generated probability p substituted into the expression for a per-
centile (inverse function) produces a randomly generated Weibull distribu-
tion “survival time.” For example, for the estimates A = 0.256 andy = 1.156,
the randomly generated probability 0.320 produces the randomly gener-
ated random survival time ¢ = [—log(1 — 0.320)/0.0257]"/1:15¢ = 10.426.
Most computer systems, and even some handheld calculators, produce ran-
dom probabilities (uniformly distributed values between 0 and 1). Such
computer-generated Weibull-distributed “data” are then available to ver-
ify theories or estimate variances of complicated functions of the parame-
ters, explore empirically the properties of summary values, or describe just
about any property of the Weibull or exponential (y = 1) survival distribu-
tions. For example, generating a large number of random “survival times”
directly produces an accurate estimate of the Weibull-distributed survival
times, its mean survival time pu, its median survival time ¢y, and their vari-
ances without theory or mathematics. The mean value of such a computer-
generated distribution based on the AIDS survival data (Weibull parameters
A = 0.0257 and 7 = 1.156) is displayed in Figure 6.5. The estimated mean
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Figure 6.5. Computer-simulated distribution of 10,000 randomly sampled survival times from a

Weibull probability distribution (A = 0.0257 and 7 = 1.156).

value is i = f = 22.643 with an estimated variance of the distribution of
mean survival times of variance() = 2.490 using 10,000 random “survival
times.” An estimate of the variance, as always, leads to statistical tests and
confidence interval bounds. Similarly, from the same computer-generated
data, the estimated median survival time is #,, = 17.048 with an estimated
variance of variance(f,,) = 3.024.

Parallel to applying an exponential probability distribution to summarize
survival time data, the adequacy of the Weibull survival time distribution as
a description of the sampled data should be explored as part of a complete
analysis. A goodness-of-fit assessment follows the same pattern suggested for
the exponential distribution (Chapter 5).

The comparison of the parametrically estimated Weibull and the non-
parametrically (product-limit) estimated survival probabilities is again the
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Goodness-of-fit: two survival curves (parametric and model-free) for the SFMHS AIDS
data.

first step. The estimated model-generated Weibull survival probabilities
(parameters A = 0.0257 and = 1.156—solid line) and the corresponding
model-free estimated product-limit survival probabilities (step function)
from the SFMHS cohort (n = 174) are displayed in Figure 6.6. From the
example, for survival time ¢ = 20, the Weibull estimated survival proba-
bility P(T > 20) = §(20) = ¢~%025720""™ — 0 442 and the corresponding
product-limit estimate of 0.442 are almost identical.

Again, parallel to the evaluation of the exponential distribution, trans-
formed values of both the Weibull and product-limit estimated sur-
vival probabilities improve the visual goodness-of-fit comparison by
contrasting straight lines. The Weibull distribution estimated line is
I(t) = log(—log[S()]) = log(X) + y log(t) = —3.662 4 1.156log(t). The
product-limit estimated straight line (the ordinary least-squares estimate)
is again based on the pairs of values log(#;) and log(— log[ﬁi]), where P;
represents a product-limit estimated survival probability. The model-free
estimated line from the SFMHS data is —3.696 + 1.195log(t;). Both
straight lines are displayed in Figure 6.7. The comparison leaves little doubt
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Figure 6.7. Goodness-of-fit: comparison of the log-log transformed survival functions for the Weibull
model (parametric) and the product-limit estimates (model-free).

that the two-parameter Weibull distribution based on parameter estimates
A =0.0257 and § = 1.156 closely corresponds to the less parsimonious
but model-free product-limit estimate. Thus, the estimated two-parameter
Weibull model allows an extremely efficient, useful, and, most important of
all, simple description of the survival pattern that the data were collected
to describe. Parameters for the three straight lines (intercepts and slopes)
calculated from the transformed exponential, product-limit, and Weibull
estimated survival probabilities are summarized in Table 6.1 (SFMHS data).

Instead of comparing the parametric exponential or Weibull survival prob-
abilities to the model-free product-limit estimates, an alternative is based on
parametric and nonparametric estimated cumulative hazard functions. The
cumulative hazard function estimated from the product-limit estimated sur-
vival probabilities describes the survival pattern of the n = 174 AIDS patients
(Figure 6.8; step function—solid line). In symbols, this model-free estimate is
H() = —log(?i) for each complete survival time i = 1,2, ..., d. Because
the estimated cumulative hazard function is derived from the model-free
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Table 6.1. Intercepts and slopes of summary straight lines
representing the transformed exponential, product-limit, and
Weibull survival distributions (SFMHS data).

Intercepts Slopes
Exponential distribution* log(2) 1.0
Exponential model estimates* —3.139 1.0
Product-limit estimates —3.696 1.195
Weibull distribution log(2) y
Weibull model estimates —3.662 1.156

* From Chapter 5.
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Figure 6.8. Cumulative hazard functions: model-free product-limit, exponential distribution (i =
0.043 and y = 1.0), and Weibull distribution (A = 0.0257 and 7 = 1.156) estimates.

product-limit estimate of survival probabilities, it too is model-free. The
approximate 95% pointwise confidence interval bounds for product-limit
generated survival probabilities (step-function) are

H(f) + 1.960\/Variance[lﬁl(tk)]
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using the estimated variance of the estimated cumulative hazard function at
the time #, given by

i=1,2,...,k.
nip;

variance[H(#,)] =

This expression for the estimated variance of H(t) is a variation of
the Greenwood variance of an estimated survival probability (Chapters 3
and 4).

In addition, the theoretical (model-based) Weibull cumulative hazard
function is

H(t) = —log(S[t]) = —log(e™") = At”.

From the AIDS data (A = 0.0257 and y = 1.156), the estimate becomes
H(t) = 0.0257¢1% 1t follows that the cumulative hazard function for the
exponential distribution is H(t) = At (y = 1), a straight line with intercept
equal to zero and slope equal to the constant hazard rate L. From the AIDS
data (A = 0.043—Chapter 5), the estimate becomes H(t) = 0.043t. Fig-
ure 6.8 displays these two parametrically estimated cumulative hazard rates
(Weibull = dotted line and exponential = dashed line). Again, it is visually
apparent that the Weibull distribution is an accurate representation of the
data and is an improvement over the exponential distribution (constant
hazard).

The question arises: Is the Weibull survival distribution a better description
of the sampled survival data than the exponential survival distribution? The
answer is Yes. Improvement in the correspondence between estimates and
data (goodness-of-fit) always occurs when a two-parameter model is chosen
over a nested one-parameter model. More extensive models always fits better.
The important question becomes: Is the improvement greater than would be
expected by chance? Comparing a plot of a survival function or cumulative
hazard function estimated from a model to the corresponding plot made
directly from the data (Figure 6.7) is a start, but when obvious differences
do not occur, this question remains unanswered.

A comparison of log-likelihood values (likelihood ratio test), however,
provides a statistically rigorous and quantitative comparison of the Weibull
and the exponential survival distributions. The two survival functions are
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Table 6.2. Estimated summary values from the
exponential and Weibull survival time distributions
(SFMHS data, n= 174).

Parameter Symbol Exponential ~ Weibull
Estimate by 0.043 0.026
Standard error variance(}) 0.003 0.007
Estimate 4 — 1.156
Standard error variance(}) — 0.072
Mean i3 23.262 22.643*
Standard error variance([1) 1.864 1.578*
Median fos 16.197 17.048*
Standard error  +/variance(fp5) 1.653* 1.739*

* Estimates from 10,000 simulated values (Figure 6.5).

nested models because the exponential distribution (y = 1) is a special case
of the Weibull distribution (y # 1). For the AIDS data, the corresponding
log-likelihood values are

log — likelihood = log(L,~;) = —641.566

(exponential distribution —y = 1)
and

log — likelihood = log(L, ) = —639.078
(Weibull distribution — y # 1),

yielding the likelihood ratio test-statistic

Xt = —2[log(Ly=1) —log(Ly+1)]
= —2[—641.566 — (—639.078)] = 4.976.

The test statistic X* has a chi-square distribution with one degree of
freedom when the observed difference reflects only random influences of
sampling variation. That is, the difference arises because the two-parameter
model always more effectively capitalizes on random variation to produce
a better fit and this property is the only source of improvement. The small
p-value P(X? > 4.976 | y = 1) = 0.026 indicates that random variation is
not likely the entire explanation for the difference in log-likelihood values.
It is therefore likely that the additional flexibility of the Weibull model takes
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advantage of a systematic pattern within the AIDS data to more accurately
represent the survival pattern. More simply, evidence exists that the hazard
rate is not constant (y is not equal to one). This result is consistent with the
previous 95% confidence interval (1.0024, 1.306) based on the estimated scale
parameter = 1.156. The confidence interval does not contain the value 1.0.
From both perspectives, it appears that an increasing hazard function reflects
animportantaspect of the SFMHS survival data not captured by an exponen-
tial model (constant hazard). The estimated values for both the exponential
and Weibull survival time distributions are summarized in Table 6.2.

APPENDIX

Statistical tools: properties of inverse functions

The mathematical term inverse function is familiar in statistics. The standard
normal distribution allows a probability to be calculated froma percentile and
the inverse function allows a percentile to be calculated from a probability.
The inverse standard normal distribution is a complicated function, but a
table of standard normal values produces probabilities from percentiles and,
therefore, inversely produces percentiles from probabilities. For example, the
standard normal distribution produces the probability p = 0.95 from the
95th percentile z = 1.645 and the inverse normal function produces the 90th
percentile z = 1.282 from the probability p = 0.90.

Some functions have simple and easily derived inverses. For example, for
the function F(x) = x?, the inverse function is G(x) = 4/x. The defining
property of an inverse functionisthat F[G(x)] = xor G[ F(x)] = x. Specif-
ically, (/x)? = V/x2 = x.

The exponential function provides another example, where

F(t) = e *" and G(p) = —log(p)/x, where F[G(p)]
= pand G[F(#)] =t¢.

Geometrically, the function F(#) = e (A = 1) describes the path from
the value f to the probability p (Figure 6.9a). From the plot, the value
t = 1.5 produces the probability F(1.5) = e~ 1.5 = 0.223. The inverse func-
tion G(p) describes the path from the probability p to the value ¢ (Fig-
ure 6.9b). From the plot, the probability p = 0.4 producesthevalue G(0.4) =
—log(0.4) = 0.916.
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Figure 6.9. (a) F(t) = exp(—t)—function. (b) G(p) = — log(p)—inverse function.
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Analysis of two-sample survival data

Rigorous statistical comparisons between small sets of data (20 observations
or so) began with W. S. Gossett’s t-distribution (1908). The statistical com-
parison of data from two groups is fundamentally important in general.
Both parametric and nonparametric methods exist to identify differences in
survival experience based on data sampled from two populations. The log-
rank test illustrates the nonparametric approach and the two-sample hazards
model illustrates the parametric approach. In addition, the two-sample haz-
ards model serves as an introduction to the multivariable hazards model
(Chapters 8 and 9).

Two-sample analysis: log-rank test

129

A popular nonparametric two-sample comparison technique, called the log-
rank test, begins with classifying survival data into a sequence of intervals
based on the times of death. Parallel to the product-limit estimation of sur-
vival probabilities (Chapter 4), a sequence of 2 x 2 tables is created from
this sequence. For each time interval, the collected observations are clas-
sified by binary outcome and risk factor variables. Again avoiding general
terminology, the outcome variable is referred to as died/survived and the
two compared groups are referred to as risk factor present (F ) or absent (F ).
However, the log-rank test applies to most kinds of survival or failure time
data.

A 2 x 2 table is created for each unique and complete survival time ¢
(each time interval f;_; to f;). The form of this 2 x 2 table describing n;
at-risk individuals at survival time ¢; is
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Time = ¢; | Dead Alive Total

F a; bi a; + b,’
F Ci d; ci +d;
Total ai+c¢ bi+d

Similarly to the analysis of many 2 x 2 tables, the individuals at risk are
classified into these tables to address the question: Is the risk factor associated
with survival? To effectively address this question with a single measure of
association, the chosen measure must be constant with respect to survival
time. To create such a single comprehensive summary, the data are stratified
by time of death. A measure of risk is uninfluenced by survival time when
it is calculated within each stratum (table) and combined over all strata to
summarize the association between risk factor and outcome.

Consider the survival times of n = 23 African-American male participants
in the SFMHS. These times are months from diagnosis of AIDS to death from
AIDS or to the end of study participation (censored). The survival times
classified by nonsmoker (F ) and smoker (F) status are as follows:

Nonsmokers (F): 27,42%, 277,22, 26", 16, 31, 37, 15, 30, 127", 5, 80,
29,13,1,and 14
Smokers (F): 211, 4,25, 8,23, and 18.

There are ny = 17 nonsmokers with five censored survival timesand n; = 6
smokers with one censored survival time.

A good place to start the comparison of the survival experiences between
two groups is a plot of the two product-limit estimated survival functions.
This plot has the advantage that it contrasts survival times in natural units,
allowing a visual and intuitive comparison of group differences. Product-
limit estimated survival functions for SEMHS African-Americans nonsmok-
ers and smokers are plotted in Figure 7.1. The disadvantage of a visual com-
parison is that it does not formally account for the influence of sampling
variation on the estimated values. A log-rank test brings this element to a
comparison and together both methods produce a distribution-free evalua-
tion of the observed differences in survival experience between two groups
of sampled individuals.

The nonsmoking/smoking data produce a sequence of 17 log-rank 2 x 2
tables. A single table is constructed for each unique and complete survival
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Figure 7.1.

Analysis of two-sample survival data
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Product-limit estimated survival functions for SFMHS African-Americans, comparing non-
smokers and smokers.

time. Parallel to product-limit estimation, incomplete survival times are
included only in those tables (time intervals) completed by the censored
individuals. For the AIDS smoking data, the time of death #; = 1 month
(time interval 0 to 1 month) generates the first 2 x 2 table, where

Hh=1 | Dead Alive Total
Smoker 0 6 6
Nonsmoker | 1 16 17
Total 1 22 23

For the second complete survival time, , = 4 months (time interval 1 to 4
months), the next 2 x 2 table is

h=4 | Dead Alive Total
Smoker 1 5 6
Nonsmoker | 0 15 15

Total 1 20 21
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Table 7.1. The 17 tables (strata) generated to assess the association
between smoking exposure and survival in SFMHS data (African-
American males, n = 23).

Data Estimates
Interval a; b; C; d; n; A; C; 7;
0-1 0 6 1 16 23 0.261 0.739 0.193
1-4 1 5 0 15 21 0.286 0.714 0.204
4-5 0 5 1 14 20 0.250 0.750 0.188
5-8 1 4 0 14 19 0.263 0.737 0.194
8-13 0 4 1 12 17 0.235 0.765 0.180
13-14 0 4 1 11 16 0.250 0.750 0.188
14-15 0 4 1 10 15 0.267 0.733 0.196
15-16 0 4 1 9 14 0.286 0.714 0.204
16-18 1 3 0 9 13 0.308 0.692 0.213
18-22 0 2 1 8 11 0.182 0.818 0.149
22-23 1 1 0 8 10 0.200 0.800 0.160
23-25 1 0 0 8 9 0.111 0.889 0.099
25-29 0 0 1 5 6 0.000 1.000 0.000
29-30 0 0 1 4 5 0.000 1.000 0.000
30-31 0 0 1 3 4 0.000 1.000 0.000
31-37 0 0 1 2 3 0.000 1.000 0.000
37-80 0 0 1 1 1 0.000 1.000 0.000
Total 5 — 12 — — 2.898 14.102 2.166

The third table, 3 = 5 (time interval 4 to 5 months), is

t3 =5 | Dead Alive Total
Smoker 0 5 5
Nonsmoker | 1 14 15
Total 1 19 20

The individual censored after 2 months (27) is included in the first table
but is excluded from consideration in subsequent tables because his survival
time does not span the entire second interval. Table 7.1 displays the complete
sequence of 17 tables (strata) for the smoking/survival data.

After accounting for the censored observations (Table 7.1), a log-rank
procedure is not different in principle from the analysis of the independence
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between two binary variables from series of 2 x 2 tables in general
(sometimes referred to as the Cochran—Mantel-Haenszel test for indepen-
dence). For each table (stratum), an estimated number of deaths is calculated
as if the risk factor and survival outcome were unrelated (null hypothesis).
The expected number of deaths in the ith table when the risk factor is present
(F) is then

a; + b;

1

estimated number of deaths (F): A; = [ i| (a;i +¢;)

and the corresponding observed number is a;. The observed/expected dif-
ference a; — A, reflects either random variation or both random variation

and a systematic influence from the risk factor. The comparison is not influ-
enced by the survival time, because both a; and A; are calculated for the same
stratum (the same survival time, #;). As with the product-limit estimate of
a survival probability, the strata-specific comparisons are also not biased
by censored observations. Therefore, a summary estimate constructed from
these unbiased estimates is also unbiased.

The term “expected” has a technical meaning. In a statistical context,
this term refers to a theoretical value or values calculated as if specified
conditions are exactly fulfilled. Thus, expected values are treated as fixed
values (not subject to sampling variation). The value represented by A; (the
expected number of deaths among smokers at time ¢;) is an example of such
an expected value.

The variance of the distribution of the a;-counts (smokers who died) is
estimated with the expression

(a;i + bi)(a; + c;)(c; +d;)(b; + d;)
ni(ni — 1)

variance(q;) = v; =

for each table (ith table). When a; + b; = 1, the case when no identical
survival times occur, the expression for the same variance estimate is

(a; + b;)(ci +d;)
> )

n;

variance(q;) = v; =

This estimated variance is also encountered as part of a specific kind of
analysis of a 2 x 2 table called Fisher’s exact test. A detailed description of
this test, used to assess association in a single 2 x 2 table, is found in many
first-year statistics texts.
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Each complete survival time generates a table. Each table generates three
values; an observed value (a;), a theoretical value (4;), and an estimated
variance (V;). For the first 2 x 2 table (0 to 1 month), one death (a; = 1)
occurred among smokers, A} = 6(1)/23 = 0.261 deaths are expected when
smoking and survival are unrelated, and the estimated variance of the count
ay is ¥, = 6(17)/23% = 0.193. All 17 stratum-specific values of a;, A;, and
v; are given in Table 7.1.

Statistics summarizing the association between risk factor and survival
time for the entire sequence of 2 x 2 tables are as follows: (1) the total
number of deaths among individuals with the risk factor, represented by
> a;, (2) the total number of deaths among individuals with the risk factor
estimated as if the risk factor and survival status were unrelated, represented
by Y A;, and (3) the variance of the summary ) a;, represented by > 7;.
For the African-American AIDS data, these sums are found in the last row
of Table 7.1.

The comparison of Y a; and ) A; indicates the overall risk/survival
association. A formal test statistic measuring the overall strength of the
association is

2

2= > (ai — Ap) [ - Ai)]2 _ [>ai — ZAZ']Z

variance () a;) ~ variance (X ai) 2V ’

where ) "(a; — A;) is assumed to have at least an approximate normal distri-
bution. The test statistic X* then has an approximate chi-square distribution
with one degree of freedom when ) a; and ) A; differ by chance alone
(no association). As with most single summary measures of association, the
chi-square statistic measures the risk/survival association only when each
deviation a; — A; reflects the same underlying value within each stratum
(homogeneous).
From the SFMHS data in Table 7.1, these summary values are

Zai=5, ZA,-=2.898, and Zﬁ,-:2.166.

A greater number of deaths exist among smokers ( F ) relative to the number
estimated as if no association existed (5 versus 2.898). However, the chi-
square test statistic

,  (5—2.898)*

X = ——=2.040
2.166
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generates a p-value of P(X? > 2.040 | risk and survival status unrelated) =
0.153, indicating that this increased number of deaths is plausibly due to
random sampling variation.

Essentially the same chi-square procedure is frequently applied to any
series of 2 x 2 tables. However, when the sequence of tables is generated
from censored survival data, the procedure is called a log-rank test. To
this point, the description of the log-rank test refers to neither logarithms
nor ranks. These terms come from an alternative derivation of the same
technique [3].

The application of a chi-square distribution is not strictly correct. The
estimated variance of a sum [variance()_ a;)] is the sum of the estimated
variances [ _ variance(a; )] only when the values a; are uncorrelated (Chap-
ter 4). This is not the case among the 2 x 2 log-rank tables. All but the first
table contain participants from earlier tables, introducing a table-to-table
association. This lack of independence, however, has only a minor influence
on the accuracy of the summary chi-square test statistic.

Itis important to remember that the log-rank procedure requires that cen-
soring be random (noninformative). A number of techniques are available to
study this issue. Some examples are basic statistical comparisons (censored
versus complete), descriptive plots, and cluster and logistic regression tech-
niques. In all cases, the goal is to identify the possibility that the censoring is
related to survival time. The number of censored observations is not nearly
as important as the reason for the censoring. In addition, it is implicitly
assumed that censoring and group membership are unrelated. In light of
these two requirements (typically assumptions), it is always a good idea to
examine the censored observations for nonrandom patterns. For example,
the number of randomly censored observations in each group should be
approximately proportional to the size of the group.

An alternative approach to assessing an association between a risk factor
and survival measured across a sequence of time intervals (strata) consists of
contrasting the difference in the number of deaths among the individuals with
and without the risk factor. Evidence of a nonrandom difference indicates a
likely risk factor influence on survival time. Analogously to the log-rank test,
the total numbers of deaths among the individuals with (D _ a;) and without
the risk factor () ¢;) are counted. The corresponding number of expected
deaths among individuals with (}_ A;) and without (}_ C;) the risk factor
are estimated again as if risk factor and survival time were unrelated. For the
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ith-interval (table), the number of observed deaths is ¢; and the theoretical
number of deaths C; is

a; +¢;

1

estimated number of deaths (F): C; = |: ] (c; +d;)
for individuals without the risk factor (column eight in Table 7.1). When all
survival times are unique (no ties),¢c; = 1 —a; and C; = 1 — A;.

The two summary values () ¢; and ) C;) and the two previously cal-
culated summary values () _a; and ) A;) form the natural chi-square test
statistic:

Xzzz (observed; — expected;)? (Xai—) Ai)2 X=X Ci)z.

expected, N YA + > G
The value X? has an approximate chi-square distribution with one degree
of freedom when risk factor and survival status are unrelated. Again for the
SFMHS data, the differences in summary values ) a; = 5 versus »_ A; =
2.898 among smokers and ) _¢; = 12 versus Y  C; = 14.102 among non-
smokers (Table 7.1) are evaluated with the chi-square test statistic

,  (5—12.898)% (12 —14.102)°
o 2.898 14.102
yielding a p-value of P(X? = 1.838 | risk and survival time unrelated) =

0.175.

The test statistic X* from this version of a chi-square test is always less than
thelog-rank chi-square value calculated from the same data, but both address

= 1.838,

the identical issue. A feature of this alternative approach is the possibility of
identifying an association between risk and survival time in a sequence of
2 x k tables (k-level risk factor).

Two-sample analysis: exponential proportional hazards model

When no censoring occurs, it is possible to represent survival time (¢) and
its relationship to a series of explanatory variables (x) with a linear regres-
sion model (such as t; = a + b;x;; + baxj, + - - ). However, survival data
without censored observations are relatively rare. Of more importance, esti-
mation of survival probabilities and hazard functions is key to understanding
the underlying mechanisms of the risk/survival relationship. The relevance
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of survival probabilities and hazard functions to the description of survival
data has been discussed and becomes even clearer in the following. In addi-
tion, unlike data typically analyzed with linear regression models, survival
times are rarely normally distributed and are more accurately described by
right-skewed distributions.

An effective two-sample analysis based on a parametric model begins with
the comparison of two hazard functions, one from each population sampled,
denoted ho(t) and h(t). The difference between these two hazard functions
is measured by a constant ratio or

hi(t) — .
ho(t)

That is, the two-sample hazards model requires the hazard rates from each
sampled population to be proportional for all survival times. When ¢ is

or hi(t) = hy(t) x c.

greater than one, h1(t) > h(t), and when c is less than one, h;(t) < ho(t).
An obvious and important case occurs when ¢ = 1, making ho(t) = h;(t).
Nevertheless, the ratio is the same for all survival times. For the exponential
distribution of survival times, the hazard function is constant (does not
depend on time). Therefore, the two exponential model hazard functions
ho(t) and h;(t) are necessarily proportional.

When the comparison of proportional hazard functions is expressed in
terms of two parameters, the two-sample exponential model becomes

h(t| F)=eth®,

where F = 0 produces a hazard rate called the baseline hazard rateand F = 1
produces a second and proportional hazard rate. Specifically, the two-sample
hazards model consisting of parameters b, and b; becomes

F=0:hy(t)=e” and F =1:h;(t) = et = hy(r)e?,

making the ratio of the hazard functions ¢ = h;(t)/ ho(t) = e, The model
is completely determined by two parameters, by and b,. Furthermore, the
parameter b; becomes the primary summary measure of the difference
between the two samples of survival data. For example, when no difference
exists between the survival times from two compared groups, b; = 0, then
¢ =1land h(t) = ho(t).
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The proportional hazards model is based on the expression e *¥'¥ for
three reasons. It requires the hazard function associated with one of the
sampled populations to be a product of two components, a baseline hazard
function and a multiplicative constant (proportional). Thus, the comparison
between groups results in a familiar form similar to the relative risk or odds
ratio measure of association. It is essentially a rate ratio. In addition, the
hazard ratio model naturally generalizes (as will be seen) to other survival
distributions and is easily extended to incorporate any number of explana-
tory variables. And, the estimate of the hazard ratio c is positive under all
circumstances.

For the SEMHS data, the white participants (n = 174) consisted of 80 men
who did not smoke (1, = 80 with dy = 71 deaths and ny — dy = 9 censored
observations) and 94 men who did smoke (n; = 94 with d; = 84 deaths and
n; — d; = 10 censored observations). These data illustrate the application
of the exponential two-sample proportional hazards model. Although the
comparison of two samples from exponential survival time distributions is
simple and direct (comparison of two mean values), a fully developed analysis
based on a proportional hazards model serves to introduce the more compli-
cated analyses using other survival distributions applied to more extensive
multivariable data.

As with all statistical models, the collected data are used to estimate the
model parameters. Although the parameters of a survival model typically
require computer estimation, the maximum likelihood estimates for the
exponential model parameters can be calculated directly. Again, the esti-
mated mean survival times are the key. For each SFMHS group, they are as
follows:

nonsmokers: estimated mean survival time = iy = > _ t;/dy = 24.775

11
Lo  24.775

months, making ho(t) = Ao = = 0.040 and

smokers: estimated mean survival time = [1; = ) ;/d; = 21.655

1

— = = 0.046.
A1 21.655

months, making /i, (t) = A, =
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Table 7.2. Exponential proportional hazards model parameter
estimates from the SFMHS—nonsmokers (ny = 80) versus
smokers (n; = 94).

Variables Symbols  Estimates  Std. errors  p-values
Baseline by —3.210 — —
Nonsmoker/smoker b, 0.135 0.161 0.404

LogLikelihood = —641.216

The estimated exponential hazards model parameters are then b, =
log(io) = log(0.040) = —3.210 and b, = log(il/io) = log(/io/f11) =
log(24.775/21.665) = 0.135. The estimated proportional hazards model
becomes

fl(t | F) — equrblF — 673.210+O.135F‘

More specifically,

nonsmokers (F = 0): fzo(t) = 3\0 = eBO = e 2% = 0.040

baseline hazard function
and

smokers (F = 1): le(t) =i = ez’“z" = ¢ 321040135

= (0.040)(1.144) = 0.046.

The estimated constant ratio of hazard functions is ¢ = hi(t)/ ho(t) =
el = ¢%135 = 1.144 (also denoted hr) and hr = 0.046/0.040 = 1.144. The
estimates b, and b; are maximum likelihood estimates because they
are functions of the maximum likelihood estimated mean values [l
and f1;. The estimated hazards model parameters are summarized in
Table 7.2.

Survival functions based on the estimated hazard rates o = 0.040 and
A1 = 0.046 are directly estimated (also maximum likelihood estimates).
These estimates are

So(t) = e Mt = 0040 for nonsmokers and

S1(f) = e Mt = 00461 for smokers.
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The estimated survival curve So(¢) is always above the estimated survival
curve $,(t) because b, is greater than zero, which only occurs when o is
greater than A, making So(¢) > S;(t) for any time t.

Once the model parameters are estimated, they provide a variety of ways
to describe the differences in survival experience. For example, the reciprocal
relationship between mean survival time and risk measured by a rate is once
again apparent. That is,

1 1 1
hazard function ~ h(t | F)  ebothF’
For the SFMHS data, for nonsmokers

1 1

1
mean survival time (F =0) = ———— = — = ——— =24.775
h(t| F=0) b e3210

mean survival time =

and for smokers

) ) 1 1 1
mean survival time (F = 1) = R(E|F =1)  ebrth  g-321040135
= 21.655.

The model parameters produce estimates of the median survival time for
each sampled population, given by the expression

fp = log(z)e—(éﬁizm _ log(z)e_(_3'21°+°'135F).

Thus, for nonsmokers, the estimated median survival time is £, =
log(2)(24.775) = 17.172 (F = 0) and, for smokers, the estimated median
survival time is f; = 0.693 (21.655) = 15.010 (F = 1). Furthermore, the
ratios of the model-estimated hazard rates, mean values, and median val-
ues are identical. From the exponential model, the ratios are ¢ = b9 /5»0 =
fio/ A1 = to/t; in general and, specifically, for the AIDS data, they are
¢ =1.144.

The question certainly arises: Is the observed difference between sam-
ple estimates due to chance (for the example, Ay = 0.040 compared to
A1 = 0.046 or fy = 17.172 compared to f; = 15.010 or ¢ = 1.144 compared
to 1.0) or does evidence exist of a systematic difference between compared
groups? In symbols: Is b; = 0 or b; # 0? Three essentially equivalent statis-
tical approaches help provide an answer. They are as follows:
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1. Anormal-distribution-based statistical test: the maximum likelihood esti-

mate b, has an approximate normal distribution with estimated variance
of 0.026 (Table 7.2), yielding the test statistic

by—0  0.135-0

y/variance(b,) -~ J/0.026

The value z has an approximate standard normal distribution when no

z = = 0.835.

difference exists between the compared groups (b; = 0or uy =
or kg = Ay orc = 1). The corresponding p-value of P(|Z]| > 0.835 |
by = 0) = 0.404 provides little evidence of a systematic difference
between the survival patterns of nonsmokers and smokers. As noted, such
a test of a maximum likelihood estimated parameter is frequently called
Wald’s test (z°).

For the exponential hazards model, the test of the estimated coefficient
b, is identical to a comparison of the log-mean survival times or

_ by—0  [log(f) — log(11)] — 0
Jvariance(b;) 1,1
W
_ log(24.775) — log(21.665) =0 _ .o
1 1
717" 8

. A normal-distribution-based confidence interval: an approximate 95%

confidence interval based on the estimated parameter b, from the SEMHS
smoking data and the normal distribution is

by £ 1.9604/ variance(b;) = 0.135 + 1.960+/0.026 or (—0.181, 0.451).

As usual, the probability is approximately 0.95 that the underlying model
parameter b is contained in the estimated confidence interval (—0.181,
0.451). The value zero is contained in the interval. The value zero is thus
a plausible value for the parameter b, again providing no persuasive evi-
dence of a systematic influence from smoking exposure. In other words,
the conjecture that the parameter b; = 0 appears consistent with the range
oflikely parameter values —0.181 to 0.451 in light of the variation observed
in the sampled data. Alternatively, the approximate 95% confidence inter-
val based on the estimated hazard ratio ¢ = iir = %1% = 1.144 has a
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lower bound = ¢7%18! = (0.835 and an upper bound = %% = 1.569
and contains the value one (¢ = hr = 1.0).

. Alikelihood ratio comparison: contrasting two log-likelihood values effec-

tively identifies systematic differences between two nested survival time
models. First, a log-likelihood value is estimated under the condition
that by = 0 (ho(t) = hi(t) or ¢ = 1) and then under the condition that
b1 # 0 (ho(t) # hi(t) or ¢ # 1). The comparison of the log-likelihood
values likely reflects any important difference in survival time between
the compared groups (significant?). For the AIDS smoking data, the two
relevant log-likelihood values from the exponential hazards models are

no two-sample difference exists (b; = 0): log(Lp,—o) = —641.566
and

a two-sample difference exists (b; # 0): log(Lp, ) = —641.216.
The likelihood ratio test-statistic

X? = —2[log(Lp,—o) —log(Ly,x0)]
= —2[—641.566 — (—641.216)] = 0.699

has an approximate chi-square distribution with one degree of freedom
when b; = 0. The p-valueis P(X? > 0.699 | b; = 0) = 0.403. The three
approaches essentially agree (note: X = 0.699 ~ (0.835)? = z?). Fur-
thermore, these three approaches to a two-sample comparison generally
give similar results.

Aside. A confidence interval for a specific parameter (denoted g) is related to a Wald test

of the hypothesis that the estimated value (denoted ¢) differs from zero by chance alone.
Specifically, when the value zero is not contained in a 95% confidence interval, the parallel
test of the hypothesis ¢ = 0 produces a p-value less than 0.05.

The reason these two approaches produce the same answer is as follows: For a 95%
confidence interval based on the normal distribution of the estimate ¢, when either the
lower bound = ¢ — 1.960S; > 0 or the upper bound = ¢ + 1.960S; < 0 (zero excluded),
the Wald test statistic § /S is necessarily either greater than 1.960 or less than 1.960, causing
the significance perbability to be less than 0.05.

Avisual “analysis” provides another perspective on the differences between

estimated hazard functions. The interpretation of a graphic comparison is
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“Log-log" transformed survival functions using the SFMHS data—honsmokers (ng = 80)
versus smokers (n; = 94).

certainly more subjective than a statistical test but yields a direct and intuitive
impression of the two-sample difference. As previously described, a “log—
log” transformation of an exponential survival function produces a straight
line with intercept log(A) and slope 1.0 when plotted for values log(t).
The plots of the estimated lines lo(t) = log(—log[ﬁo(t)]) = log(io) +
log(t;) = —3.210 + log(t;) for nonsmokers and I1(t) = log(—log[ﬁl(t)]) =
log(4) + log(t;) = —3.075 + log(t;) for smokers are displayed in Figure 7.2.
The vertical distance between the two parallel lines (slopes = 1) is () —
[o(t) = log(il) - log(io) = log(il/%) = by, directly displaying the loga-
rithm of the estimated ratio of the hazard functions h;(¢) and k¢ (t). For the
smoking data, this distance is by = 0.135 (hr = b = 1.144). Visually, these
two lines show almost no separation. Again, the difference in survival times
between nonsmokers and smokers at best appears slight.

Formal statistical methods exist to evaluate the correspondence between
an exponential model and the sampled data. These goodness-of-fit tech-
niques are discussed in Chapters 8 and 9. In addition to a formal statistical
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assessment, graphic comparisons between the model-generated survival
probabilities and the product-limit estimated survival probabilities are always
a good idea. The estimated hazard rates %o and A, allow visual comparisons
of the corresponding parametric estimated survival functions for both non-
smokers and smokers to their corresponding product-limit nonparametric
estimated survival functions (Figure 7.3).

Two-sample analysis: Weibull proportional hazards model

A comparison of survival data collected from two groups can be based on
a number of parametric descriptions of the sampled populations. The two-
parameter Weibull probability distribution isa common and frequently effec-
tive choice. Although a two-parameter distribution increases the complex-
ity of the estimation process, a second parameter potentially improves the
description of the sampled data. Statistical models always involve a trade-off
between complexity (additional parameters, for example) and obtaining a
clear and simple sense of the relationships within the data.

As with the previous exponential survival model, a constant ratio of two
hazard functions is the foundation of the two-sample comparison. The two
hazard functions are again postulated to be proportional. In symbols,

hi(t) = ho(t) x c.

However, the Weibull model hazard function is not constant, making the
following description a bit more complex than the exponential case but not
different in principle.

The Weibull two-sample proportional hazards model becomes

h(t | F) = e(b“J’blF)Vyl"’_1 = Apyt’ !

and

when F = 0: ho(t) = "yt~ = pgyt? ™! baseline hazard function,
where the scale parameter Ao equals e?” and

when F = 1: hy(t) = ebot00v =1 = j pr ey = ho(t)e?”

where the scale parameter A; equals e'®™?)7_ Thus, the constant ratio of
the two hazard functions is ¢ = hr = e?. As in the exponential model, the
analytic focus is again on the model parameter b;.
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Table 7.3. Weibull proportional hazards model parameter estimates
from the SFMHS—nonsmokers (ny = 80) versus smokers (m = 94).

Variables Symbols Estimates Std. errors p-values
Baseline by —3.240 — —
Nonsmoker/smoker b, 0.135 0.139 0.331
Shape 1% 1.160 0.072 0.017

LogLikelihood = —638.605

The influences of the Weibull model explanatory variables are described
by the differences in the scale parameters. In addition, the shape parameter is
required to be the same for both groups compared, guaranteeing proportion-
ality. These two properties are roughly analogous to the classic two-sample
t-test comparison. Based on the ¢-distribution, the influence of the “explana-
tory” variable is described by the difference between two mean values (scale:
U1 — U2), whereas the variances (shape: 012 = 022 = 02) are required to be
the same for both sampled populations.

A fundamental reason for postulating a proportional hazards model is to
capture the continuous nature of survival time data. When a logistic model
is applied to survival data, for example, the natural measure of association
is an odds ratio reflecting risk in terms of a binary variable, which does not
account for the time of occurrence of the event under study. Furthermore,
the odds ratio summarizes binary outcomes only for complete observations.
A comprehensive and more sensitive description of a survival time pattern
based on hazard functions emerges by comparing values that continuously
vary over the time period that the study individuals are observed. From a
practical point of view, a hazards model fully utilizes the continuous obser-
vations (survival times), producing greater statistical precision.

Once a model is postulated, the data provide estimates of the parameter
values, and in the Weibull model case the parameters are b, b; (scale param-
eters), and y (shape parameter). Using the AIDS smoking data again, the
model estimates (Table 7.3) produce a comparison of survival times between
nonsmokers and smokers in terms of computer-generated maximum likeli-
hood estimated parameters, particularly the model coefficient b;.

The estimated shape parameter is = 1.160 (Table 7.3) but the p-value is
calculated based on the logarithm of the parameter. As with most bounded
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parameters (y > 0), the distribution of the logarithm of the estimate y
produces a more symmetric (“normal-like”) distribution. That is, the test
statistic

log(y) —log(1.0)  log(1.160) — 0
zZ = =
J/variance[log(y)] 4/0.00389

is a single observation from an approximate standard normal distribu-
tion when y = 1.0 (constant hazard ratio), yielding a p-value of P(|Z] >
2.379 | y = 1.0) = 0.017. Thus, the Weibull hazards model (y # 1) likely
provides a substantially better description of the SEMHS smoking exposure

= 2.379

data than the exponential hazards model (y = 1).
The Weibull proportional hazards model based on estimated parameters
from the SFMHS smoking data becomes

hi(t] F) = (~3240+0.135F)1160 1 10,0160

More specifically, the baseline hazard function is

when F = 0: ig(t) = ¢ >2400191 160%1%0 = 0.023(1.160)¢*'%
and

when F = 1: iy (¢) = ho()e®' 1% = f5(£)1.170,

making the ratio of hazard functions hi(t)/ho(t) = 1.170 (or é = hr =
eh? — 0135(1.160) — 1 170). The two estimated hazard functions fo(t)
and f,(t) are displayed in Figure 7.4.

A fundamental property of a Weibull distribution survival model is that
the hazard rates themselves are not constant but the ratio of the hazard
rates is constant. Although it is not visually obvious from Figure 7.4, the
ratio of the estimated model hazard functions is the same for all survival
times ¢ [hr = hy(¢)/ho(t) = b = 1.170]. As required, the model hazard
functions are proportional. The critical importance of this property is that a
single estimate by (or hr) then accurately summarizes the differences between
two groups. This single summary becomes the focus of testing, confidence
intervals, inferences, and interpretations unaffected by any specific survival
time. When a hazard ratio is not constant, the comparison is not interpreted
simply in terms of a single parameter.
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Figure 7.4. Weibull model hazard functions estimated for nonsmokers and smokers from the AIDS
smoking data (n= 174).

Using the mean survival time (Chapter 5) produces the parallel two-sample
expression

mean survival time = up = k;l/VF(l +1/y), where Ap = ebotbi Py
and yields an estimated mean survival time for each group (F = 0 and
F =1). Applied to the AIDS smoking data (n = 174), the estimated mean
survival times are [iy = 24.245 months for nonsmokers (F = 0) and fi; =
21.180 months for smokers (F = 1). The ratio of these estimates is, like the
hazard ratio, constant and is fig/fi; = el = 1.145.

The median survival time t,, is

Y Y
S(ty) = % — e hrim — e_exp[(b(ﬁ‘bl}:)y]tm’

giving a model-estimated median value for each group as

fm = [log(2)] 1/9 g=(bot+b: F)
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For the two-sample smoking data, the estimated median survival times are
nonsmokers (F = 0): fo = [log(2)]"/!1%0 3240 = 18.622

and

smokers (F = 0): £y = [log(2)]/160 3195 — 16.268.

Identical to the mean value, the ratio of these model estimated median values
is fo/t; = b = 1.145 for any survival time t.

The key summary parameter is again the coefficient b;. For the smok-
ing AIDS data, the Weibull proportional hazards estimate is b; = 0.135
(Table 7.3). Although the estimate of by is essentially equal to the estimate
from the exponential model applied to the same data, an increase in the
precision is achieved from the two-parameter model [standard errors of b;:
0.139 (Weibull) and 0.161 (exponential)].

When b, = 0,thehazardratioishr = h(t)/ ho(t) = 1.0 (constant hazard
rate). Thus, the model coefficient b; is a single measure of the difference
between the two proportional Weibull hazard functions, much as in the
exponential model. As described in the context of the exponential model,
three equivalent ways exist to assess the influence of random variation on
the estimated parameter b,. The comparison of log-likelihood values is one
of these methods. Again, the question becomes: Is b; = 0 or b; # 0? For the
smoking data, the specific estimated log-likelihood values are

no two-sample difference exists (b; = 0): log(L;,_,) = —639.078

and

a two-sample difference exists (b; # 0): log(Ly,.,) = —638.605,
producing the likelihood ratio chi-square test-statistic

X? = —2[log(Ly —o) —log(Ly 20)] = —2[—639.078 — (—638.605)] = 0.945.

The associated p-value is P(X? > 0.945 | b; = 0) = 0.331. A significance
probability of 0.331 indicates that the estimate b; = 0.135 and the param-
eter b; = 0 plausibly differ by chance alone, providing again no substantial
evidence of a systematic influence from smoking exposure on survival time.
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Figure 7.5. Weibull model estimated survival curves for nonsmokers and smokers—SFMHS data
(n=174).

The two estimated Weibull survival functions are

A —ant? _ 1.160

So(t) = e~ h0t" = 70023 nonsmokers
and

A _a oy _ 1.160

S1(f) = e Mt = 70027 smokers,

where, as before, the estimated scale parameter is Ap = elbothi Py —
e(73:2404+0.135F)1.160 9pnd F = 0 (nonsmokers) and F =1 (smokers). A
graphic comparison of the estimated survival curves associated with non-
smokers and smokers is displayed in Figure 7.5. Visually, these estimates
are consistent with the likelihood analysis and show only slight differences
between nonsmokers and smokers from the SFMHS data.

When a Weibull proportional hazards model is used to identify differences
between two samples of survival data, the shape parameter must be the same

for both groups. When the shape parameter y differs between compared
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groups, the hazard ratio is not constant (not proportional) and, therefore,
not accurately summarized by a single value.

Critical to all models postulated to have proportional hazard functions
is the following question: Are the hazard functions proportional? A first
step in exploring this question is to divide the data into groups (for the
example, nonsmokers and smokers) and plot for each group the log-log
transformed survival probabilities from the product-limit estimated survival
function (Figure 7.6, top). Also included in Figure 7.6 (bottom) is a plot of
two summary least-squares estimated straight lines based on the pairs of
values log(#;) and log(-log[ P;]) for nonsmokers and smokers. In symbols,
the two estimated straight lines are

[p(t) =dr + by log(t;),
where

[o(t) = —3.362 + 1.094 log(t;) nonsmokers = F =0 and
[,(t) = —3.736 4+ 1.166 log(t;) smokers = F = 1.

Proportionality requires that these estimated lines be parallel (give or take
random variation). This graphic assessment of proportionality is useful when
the data analyzed are relatively simple and can be divided into a few mean-
ingful groups. A more extensive data set (for example, one containing sev-
eral continuous explanatory variables—next two chapters) requires a more
sophisticated approach.

For the Weibull two-sample model, the distance between these two parallel
lines is the logarithm of the hazard ratio (namely, b;) or

11(2) = Io(2) = [log(A1) + v log(t)] — [log(Ao) + y log(#)]

Al
=1 — | =b;.
o8 (Xo) :

This expression shows that the shape parameters must be equal (y; = yp =
y) or the two Weibull hazard functions are not proportional. That is, the
hazard ratio is constant (does not depend on survival time ¢) only when
Y1 = Yo = ¥, causing the lines denoted Iy(t) and /;(t) to be parallel and
differences are accurately summarized by a single value, namely b;.

More formally, log-likelihood values provide a straightforward and gen-
eral method for statistically evaluating the observed differences between two



152 Survival Analysis for Epidemiologic and Medical Research

Product-limit estimated lines

—— smokers
o 4
---- nonsmokers
o
[«2)
o
L
o N
o |
o | -
|
<
|
T T T T T
0 1 2 3 4
log(time)
Least-squares estimated lines
—— smokers
o 4
---- nonsmokers
£
[«))
o
<L
o) N
fe) |
[sp 2
|
<
]
T T T T T
0 1 2 3 4

log(time)

Figure 7.6. Plots of the log-log transformation product-limit survival probabilities (log[—log(P)]) for
values of the logarithm of the survival time log(f)—nonsmokers versus smokers.
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Table 7.4. Summary values for the assessment of the assumption
of equal shape parameters (proportionality—y = y; = y).

n j»0 A 14 log(L)
Nonsmoker (y¢) 80 0.024 — 1.151 —297.794
Smoker (y1) 94 — 0.027 1.168 —340.805
Combined (y) 174 0.023 0.027 1.160 —638.605

Weibull shape parameters estimated from two samples, such as the nonsmok-
ing/smoking data from the SFMHS AIDS patients. First, the log-likelihood
values are calculated separately from hazards models applied to each group
(Yo # y1—not proportional). Then, for a combined analysis, a single log-
likelihood value is calculated (yy = 31 = y—proportional). Combined, in
this context, means that the model accounts for differences between groups
(differences in scale) but is based on a single shape parameter common to
both groups, namely y. The sum of the two log-likelihood values (model:
Yo 7 Y1) compared to the single log-likelihood value (model: y, = y4) rig-
orously measures the differences between requiring two shape parameters
rather than one.

For the AIDS smoking exposure data, the estimated shape parameters and
the associated log-likelihood values are given in Table 7.4. The resulting chi-
square test statisticis X?> = —2[—638.605 — (297.794 + 340.805)] = 0.013.
The observed X?-value has an approximate chi-square distribution with
one degree of freedom when the underlying Weibull hazard functions are
proportional. The obvious similarity in the likelihood values (638.605 ver-
sus 638.599) is reflected by a p-value of P(X? > 0.013 |yo =y =y) =
0.908. No evidence exists to suspect the assumption that the Weibull haz-
ard functions from the two smoking exposure groups are proportional
(same shape parameter). Simply stated, the estimated shape parameters
y1 = 1.168 and y = 1.151 likely differ by chance alone.

One last property of the Weibull distribution two-sample comparison
enriches the interpretation of the two-sample proportional hazards model.
The ratio of the hazard rates (multiplicative comparison) is

()
o -7

hazard ratio = hr =




154

Survival Analysis for Epidemiologic and Medical Research

and as estimated from the AIDS data becomes fir = 1.170. In addition, the
ratio of the mean and median values is

@ — t_O — eb]

231 3]

and as estimated from the AIDS data becomes e*!%> = 1.145. Algebraically,
the relationship of the ratio of median values and ratio of mean values to the
ratio of hazard rates is

b [l‘oi|y [Mo]y hi (1)
r = —_ = —_ = = C
h M1 ho(1)
and as estimated from the AIDS smoking data becomes fir = 1.145""1%0 =

1.710.
A proportional hazards survival model dictates that the measure of

a two-sample difference be a multiplicative and constant ratio of haz-
ard functions (hazard ratio = hir = 1.710). Alternatively, the differences
between two groups can be equally described in terms of ratios of mean or
median values estimated from a Weibull hazards model, because the ratios
fo/ = to/t; = eb . For the smoking data, in terms of mean or median val-
ues, their ratios are j1o /i = o/t = e%!%> = 1.145. It is said that nonsmok-
ing “accelerates” the survival time by a factor of 1.145 relative to smokers
(fio = 1.1454; or fy = 1.145¢;). Other accelerated failure time models exist
generating time scale comparisons, which would be a topic in a more exten-
sive presentation of survival analysis methods. The Weibull proportional
hazards model is the only survival model that can be interpreted using either
scale (ratio or time scales) [3].
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on

The exponential and Weibull hazards models can be extended naturally from
the two-sample case to include any number of explanatory variables. In a
model context, explanatory variables have a variety of names. They are called
independent variables or predictor variables or risk variables or sometimes just
co-variables. These variables can be of any kind. They can be binary variables
(such as the two-sample model), counts, categorical indicator variables, or
continuous measures. Technically, it is said that the explanatory variables are
unrestricted. The outcome variable (sometimes called the dependent variable
or response variableor y-variable) for a survival model is the observed survival
time and continues to be denoted by t.

As with the two-sample model, a convenient way to assess the influence ofa
set of explanatory variables on survival time is a comparison of proportional
hazard functions. Once again, the form of the proportional hazards model is

h;(t) = ho(t) X ¢;.

To incorporate the influences of k explanatory variables (denoted x;,
X2, ..., Xr) into a survival model, a constant of proportionality ¢; is
constructed that is a function of the dependent variables. Specifically, the
model becomes

hi(t | xin, Xiz,s - .. i) = ho(t) X ¢;
— h()(t) X eblx,'1+b2x,-2+-~+bkx,-k
= ho(t) x eX=bi%i,

Thus, the hazard ratio is ¢; = hr; = eXb%i, where i=12,..., k=
number of explanatory variables. This expression describes an additive
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proportional hazards model relating the hazard function h;(?) for the ith per-
son, observation, or group to a baseline hazard function h (t) for a specific
set of explanatory variables. For a single binary explanatory variable x; = F,
the multivariable model reduces to the previous two-sample case, where

h(t | F) = ho(t)e’F = ho(t) x ¢ and ¢ = hr = *F.

When the baseline hazard function is a specific parametric function (this
chapter), the model is naturally called parametric. The parametric approach,
as might be expected, requires a complete description of the specific proba-
bility distribution that produced the sampled survival times. It is, however,
not always necessary to define explicitly the sampled probability distribution.
The model is then called semiparametric (next chapter). The term semipara-
metric refers to the property that the baseline hazard function hy(f) does
not require a parametric definition, but the b;-coefficients (called regression
coefficients) are parametric measures that remain in the model to measure
the influences of the explanatory variables.

The key feature of a multivariable survival model is that the hazard func-
tions are proportional. Specifically,

hi(t | xin, X, - o Xik) b
ho(2)

The model dictates that the ratio of hazard functions does not depend on sur-

hazard ratio = hr; =

vival time ¢ (proportional = constant hazard ratio). The ratio then exclusively
reflects the influences of the explanatory variables and becomes a primary
focus of the statistical analysis. Perhaps a more familiar form for the multi-
variable hazards model is

log hazard ratio = log[h; (¢ | xi1, iz, - . ., Xix)] = log[ho(#)] + Z b;xi;.

This linear-regression-like expression separates the logarithm of the hazard
ratio into an “intercept” term that depends on time and a term that entirely
depends on the values of the explanatory variables. A slight modification of
this expression,

hi il 129 = ooy 1
log hazard ratio = log[ (t]x 1hx(j‘) xk)] = log(hr;) = Z bjxij,
0
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shows again that the proportional hazards model requires the influence of the
explanatory variables to be determined solely by the model parameters (the
bi-coefficients). Not unlike other regression models, a function of the depen-
dent variable transforms the model into a linear function of the explanatory
variables. In the case of a single explanatory variable (x), the log (hazard
ratio) becomes a straight line with slope b. In symbols, h;(t) = ho(t)e?™ or
log[hi(t)] = log[ho(t)] + bx;, and clearly the hazard ratio does not depend
on the survival time.

Properties

Property 1

A k-variable proportional hazards model is constructed to have many of
the same fundamental properties as most multivariable regression models.
Consider two sets of explanatory variables, x;, x,, ..., X and x], x5, ..., x;
(for example, two individuals). Two additive proportional hazards models
(labeled G and H) based on the two sets of k variables x,; and x;, j are

hG(t | Xgl, ng, ey ng) = ho(t)ezbjng
and
bix.
hH(t | x}/xllv x;ﬂ, ey x;k) = ho(t)ez i%nj
The ratio of these two model hazard functions is

/ / /
hu(t | xp, X, - - -5 Xp) — b =)

ratio of hazard functions = hr =
hG(t | ‘xg17 nga cecy xgk)

When all the explanatory variables (x-values) are the same except one (in
symbols, x;, i = Xgi forall j # m =1, 2, ..., k), the hazard ratio reflects only
the influence of that variable. The influence of the mth explanatory variable
is, for example,

relative hazard ratio = hr,, = e?(Xim= %)

Additive models are designed so that each regression coefficient b; mea-
sures the separate contribution of each variable x; as if the other k —1
explanatory, variables were held constant. Thus, each relative hazard ratio
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from an additive model indicates the separate influence of each explanatory
variable. This property is referred to in a number of ways. It is said that the
influence reflected by the coefficient b; is adjusted for the influences of the
other explanatory variables or the influence measured by the coefficient b;
accounts for the influences of the other explanatory variables or the coeffi-
cient b; measures the independent influence of the jth explanatory variable.
Such a model is called an additive model because each variable adds its own
influence to the survival time, unaffected by the other k— 1 explanatory vari-
ables. For example, when x}, j T Xei = 1, the relative hazard ratio (hr; = ebi)
indicates the amount of change in the hazard ratio for a one-unit increase
of the jth explanatory variable regardless of the values of the other variables
in the model. Additive models are extremely effective statistical tools exactly
because of this property.

An ideal comparison occurs when two compared groups are identical
in all respects except for one specific variable. Then, logically, any differ-
ence observed between the groups is due to that single variable. Assign-
ing individuals at random to one group that receives a treatment and to
another that does not receive the treatment (randomization) is an attempt
to approximate this ideal comparison. In this case, the groups are not
identical but likely balanced with respect to all variables other than the
treatment.

The comparison of human survival between nonrandomized groups, how-
ever, is frequently far from this ideal. The groups compared typically differ in
anumber of respects, making it difficult (at best) to attribute observed differ-
ences to a single influence (not balanced). An additive model is designed to
produce statistical comparisons as if the compared groups were “identical”
for all but one variable. Each estimated regression coefficient indicates the
influence of a single variable as if the other k — 1 variables were balanced
between the compared groups, leading to an easily interpreted measure of
association. Of course, the imbalances caused by other variables are only
“equalized” when they are measured and included in the model. Of equal
importance, the model must accurately represent the relationships within the
collected data. When randomization is not possible, frequently the situation
in the study of human mortality and disease, an additive model provides an
opportunity to interpret comparisons between variables as if the groups had
been formed by randomization.
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Hazard ratios are fundamental and essential summaries of survival data.
They are the natural summaries of an additive proportional hazards model.
However, hazard ratios are easy to calculate and simple to interpret only
when they are estimated from additive models. When, for example, explana-
tory variables have nonlinear influences or joint influences exist among the
explanatory variables (nonadditivity), calculating a hazard ratio becomes
more complex and interpretation more difficult.

A remaining issue is the description of an estimated hazard ratio izrj
relative to the value one (exactly no influence from an explanatory variable).
For example, a relative hazard ratio of 0.2 (hr; = h;(t)/ ho(t) = 0.2) might
beinterpreted as an 80% decrease in the hazard rate relative to the “null” value
of one. A better description of the decrease is to note that the hazard ratio
is five times smaller than the value 1.0. A ratio scale, as the name suggests,
measures differences in terms of ratios. For the hazard ratio hr = 0.2, the
symmetric hazard ratio 1/0.2 = 5 measures the same degree of influence
of an explanatory variable relative to the value 1.0 and is a 400% change,
not an 80%. For a multiplicative scale, symmetric means that 1/x and x
express the same but opposite influences relative to 1.0. That is, the ratios
0.2 and 5.0 both indicate a fivefold change. From another point of view, a
property of a ratio scale is that log(x) and —log(1/x) reflect the same degree
of influence relative to zero but in opposite directions on an additive scale
(for example, log(5.0) = —log(0.2) = 1.609—a 38% change). As always,
logarithms convert multiplicative relationships into additive relationships.

Property 2
A multivariable additive hazards model possesses another property common
to additive models. The joint influence of two or more additive explanatory
variables is a simple function of their separate influences. In the case of a
proportional hazards model, the hazard ratio is a product of relative hazard
ratios, or

hazard ratio = hr = 2t —%i) — l_[ el —%ei) — l_[ hr;,
where, as before,

relative hazard ratio = hr; = ebj(xi“ffx“), j=12,...,k
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The expression hr; = e %) reflects only the influence of the jth explana-
tory variable in terms of a specific relative hazard ratio and the overall hazard
ratio (hr) is the product of k separate relative hazard ratios. When a mul-
tivariable summary is a product of a series of individual summaries (one
for each measured variable), the influences of the explanatory variables are
frequently referred to as independent. For example, a measure of the joint
influence of the variable g and the variable h on survival time is the product
of the relative hazard ratios hry x hr, when these variables have indepen-
dent influences. Independence in this context results directly from the model
additivity. When the explanatory variables are additive, their influences are
independent and vice versa. Independence is the key property of the additive
model but is not necessarily a property of the data. Evaluating the degree of
correspondence between the relationships postulated by the model (such as
independence/additivity) and the relationships within the collected data is
an essential part of survival analysis (goodness-of-fit) and will be discussed.

Application

The SFMHS includes a cohort of 88 homosexual/bisexual men who were
determined to be seropositive (HIV-positive) and entered into a special study
(July 1984 to December 1987). The “survival” time for these HIV-positive
study participants is the time from entry into the study until the diagnosis
of AIDS (in weeks). The end point is illness, not death, but, nevertheless, the
length of this AIDS-free time period is referred as a survival time for con-
sistency in terminology. This SFMHS cohort produced 51 complete (AIDS
cases) and 37 censored observations (AIDS-free cases) at the end of a 42-
month period (3.5 years). The influence of three factors potentially related to
the prognosis of AIDS is explored: the CD4 lymphocyte count (CD4-count),
the serum B-microglobulin level (B-level), and the age (age) of the study
subject. The units associated with CD4-counts are cells/mm?, but in keeping
with the simplest possible terminology, these three covariables are expressed
without including the units of measurement. Previous studies of CD4-counts
and B,-microglobulin levels described their separate associations with dis-
ease severity. Two histograms (Figure 8.1) display the distributions of these
two immunologic responses to infection. The following survival analysis also
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Figure 8.1. The distributions of CD4-counts and B,-microglobulin levels from the SFMHS HIV/AIDS
data.

relates to the significance of these risk measures in the prognosis of the dis-
ease, particularly in predicting time-to-AIDS (“survival”) based on the extent
of infection indicated by the joint influence of the CD4-counts and S-levels
while accounting for the age of the patient. Throughout the discussion, the
multivariable Weibull proportional hazards model is used to identify and
assess this joint indication of the level of infection. The exponential hazards
model is a special case and its application would follow almost the identical
pattern (y = 1). A semiparametric analysis of the same data follows in the

next chapter.
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Table 8.1. Estimates of the Weibull proportional
hazards model parameters describing the influence of
the reported CD4-counts on survival time.

Variables Symbols  Estimates Std. errors  p-values
Intercept by —3.333 — —
CD4-counts b —0.002 0.001 <0.001
Shape y 1.339 0.747 0.016

LogLikelihood = —282.085

A single-variable Weibull proportional hazards model representing the
relationship among hazard functions and reported CD4-counts is

hi(t| CD4) = hy(t) x ¢; = Ay t? ! = elbotbicddily, pr=1

for the ith study participant, where the baseline hazard function is hy(t) =
ey t7~1, making the hazard ratio ¢; = hr; = e"(¢44)7 per CD4-count. As
before, the Weibull distribution scale parameter A ;is constructed to reflect the
influence of the explanatory CD4-count, where y; = elbotbicddily 1 addi-
tion, the shape parameter y is assumed to be constant (the same for all
sampled individuals).

Thereported CD4-count (denoted cd4;) is entered directly into the hazards
model, as reported. This model has the same form as the previously described
two-sample proportional hazards model (Chapter 7), but the essentially con-
tinuous nature of the CD4-count variable gives it a different character. The
HIV/AIDS data (n = 88 and d = 51) yield the maximum likelihood esti-
mated model parameters b, by, and 7 (Table 8.1).

The estimated model coefficient associated with the CD4-count (b, =
—0.002) translates into the estimated hazard ratio hr = ¢=0-002(1339) —
0.997. The estimated hazard ratio is less than but close to one. A hazard ratio
less than one means that lower levels of an explanatory variable produce
higher risk (shorter survival times). Thus, the CD4-hazard ratio indicates
that two persons who differ by a single CD4-count have hazard functions
that differ by an estimated ratio of 0.997 over the entire range of survival
time. Such a small difference might appear inconsequential. However, the
model coefficient b; measures response per unit change of the explanatory
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Table 8.2. Details of a model created to explore the relationships among five
nominal categories of CD4-counts (strata).

Interval 21 2z 27z zz Model

= e"" = ho(1)
— e (bo+b1)y — ]’lo(t ebll’

CD4 < 450

450 < CD4 < 600
600 < CD4 < 850
850 < CD4 < 1000
CD4 > 1000

h(t| z1, 22, z3, z4)

h(t| z1, 22, z3, z4) )

h(t ] z1, 22, 23, 24) = eboH0Y = p(1)
( 22) = ey = (1)
( ) = ety = (e

ebzl’

h(t| zi, 22, 23, 24 e

S O O = O
oS O = O O
S = O O O
—_ o O O O

h(t| zi, 22, 23, 24

variable. That is, the magnitude of by (estimated hazard ratio = ebi? ) reflects
the change in risk per unit (per CD4-count) and f x b, (estimated hazard
ratio = [ei’”’]f ) reflects the change in risk per f units. For example, two
individuals who differ by a CD4-count of f= 400 have hazard functions that
differ by a ratio of 2.8 [hr = 0.9974° = 0.336 (1/0.336 = 2.813)],a close to
three-fold difference in risk.

A fundamental question becomes: Is the postulated linear representa-
tion of the influence of CD4-counts (namely, the scale parameter = A; =
elbotbicddily) sufficiently accurate, or will a more sophisticated characteri-
zation of the pattern of influence substantially improve the accuracy of the
hazards model? An answer to this question potentially emerges from a plot
of the coefficients estimated from a model especially constructed to describe
a continuous explanatory variable temporarily classified into a sequence of
categories (strata).

For the CD4-counts, the sequence of categories chosen is as follows: less
than or equal to 450,450 to 600, 600 to 850, 850 to 1000, and greater than 1000.
A variable consisting of k unconstrained categories is referred to as a nominal
variable. A Weibull hazards model postulated to explore the relationship of
these five CD4-categories to survival time based on a nominal variable is

hi(t | 21, 22, 23, Z) = e[bo+b|Zi1+sziz+h32i3+b4Zi4]VVtV*I

ho(t)e[hlzil+sziz+b32i3+h4Zi4])’ .

This hazards model produces five estimated regression coefficients b; (details
are in Table 8.2). These coefficients potentially indicate any pattern among
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the four categories relative to the low CD4-count category. The z;;-values are
components of a design variable specifically created to allow a k-level nominal
variable to be incorporated into the scale parameter of the hazards model.
Figure 8.2 illustrates one possible role of each category in the nominal variable
model. The first coefficient (b,) establishes a “baseline” level and the other
k — 1 coefficients indicate the relative pattern of influence of the explanatory
variable. In other words, the amount of change in response associated with
each category is measured relative to a referent category. The hypothetical
display (Figure 8.2) shows a nonlinear increasing relationship. However, the
bi-coefficients can have any value, in any order.

The estimated influences from the nominal variable (coefficients b;) indi-
cate, in a not an extremely efficient fashion (low statistical power), the com-
pletely unconstrained relationship between the explanatory variable and
survival time in terms of a series of categories. That is, the k coefficients
characterize the relationship between a continuous explanatory variable
and survival time as well as occasionally suggesting a possible mathematical
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Table 8.3. Summary of the application of the Weibull survival
model to the five nominal categories of CD4-counts.

Variables Symbols  Estimates  Std. errors  p-values
Intercept by 3.923 — —

450 < CD4 < 600 b; —0.573 0.286 0.045
600 < CD4 < 850 b, —0.926 0.287 0.002
850 < CD4 <1000 b; —0.990 0.398 0.013
CD4 > 1000 b, —1.111 0.483 0.002
Shape y 1.336 0.287 0.313

LogLikelihood = —282.765

representation. Unconstrained means that the relationship can be linear or
nonlinear or random or any pattern that can be described with k values.
Unlike an additive model, the data entirely determine the observed rela-
tionship. Thus, the estimated coefficients associated with the levels of the
nominal variable potentially identify a risk/survival time pattern that can be
incorporated into a more extensive and efficient hazards model.

The five coefficients estimated from the Weibull proportional hazards
model reflect the pattern of influence of the five nominal categories of CD4-
counts (Table 8.3) on the time to diagnosis of AIDS. The principal purpose of
constructing a nominal variable model is to produce a plot such as Figure 8.3.
Visually, the plot (CD4 categories versus b;-coefficients) suggests that the
originally proposed linear representation of the CD4-counts (dashed line) is
not misleading.

When a more complicated relationship is identified, it can be represented
by a more sophisticated mathematical expression. For example, the influence
of a continuous explanatory variable could be represented by a polynomial
expression. Instead of the variable x alone, the three terms x, 2, and x° could
beincluded in the model, potentially improving the model as a representation
of the relationship between explanatory variable (x) and survival time. That
is, instead of bx, the expression by x + b,x* + b;x®> might more accurately
reflect the pattern of influence of the variable x. A linear representation of
the influence of the independent variable (b x x) is the simplest possible
but not a requirement of an additive model.
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Estimated Weibull hazards model coefficients applied to five nominal categories of CD4-
counts.

An estimated median survival time based on the additive Weibull hazards
model for a specific CD4-count is

. [log(2)7"” o
median(cd4;) =ty = [ Oi( )] = [log(2)]"/7 ¢~ (botbicds)

1
= [10g(2)]1/1.339 o~ (—3.333-0.002cd4;)

The expression for estimating the median value again is found by solving the
expression S(r) = et = (.5 for the value denoted tn. For the example, an
individual with the mean CD4-count 657.8 (cd4 = 657.8) has an estimated
median survival time of £, = 75.9 weeks. The estimated median survival
time clearly depends on an individual’s CD4-count. Model estimated median
survival times are displayed in Figure 8.4 for a range of CD4-counts. The
estimated median survival time sharply increases (risk decreases) as the CD4-
count increases.

The same issue of the appropriate representation of a risk variable arises
in constructing a model that includes the influence of B,-microglobulin
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Figure 8.4. Model generated median survival times estimated from the Weibull proportional hazards
model (Table 8.1) for a range of CD4-counts.

Table 8.4. Estimates of the Weibull proportional hazards
model parameters describing the influence of the reported
B2-microglobulin on survival time.

Variables Symbols Estimates Std. errors p-values
Intercept by —5.551 — —
B-levels b 0.371 0.121 0.002
Shape y 1.293 0.122 0.035

LogLikelihood = —284.656

levels. Parallel to the CD4-model (linear), directly incorporating the reported
B-levels (denoted ;) into the scale parameter as part of the proportional
hazards model

hi(t| B) = e[bo+b1ﬂi])/yt7—1

produces the maximum likelihood estimated parameters in Table 8.4.
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Figure 8.5. Estimated Weibull hazards model coefficients applied to five nominal categories of g-
levels.

Assessing the choice of a linear representation of the §,-microglobulin
influences on survival time follows a pattern similar to assessing the CD4-
counts. Again, temporarily categorizing the B-levels (category bounds: 0,
1.75, 2.25, 2.75, 4.25, and 6) produces a plot reflecting its totally uncon-
strained relationship to survival time (Figure 8.5). A linear representation
again appears to summarize accurately the 8-level/survival relationship. As
with the CD4 plot, no apparent evidence exists to justify a representation of
other than the linear influence (scale parameter = A; = elbotbifily),

Again parallel to the CD4 analysis, the median survival times are estimated
from the Weibull proportional hazards model (Table 8.4) for a range of ;-
microglobulinlevels (Figure 8.6). The median survival time sharply decreases
as the B-levels increase.

Multivariable hazards model
An additive multivariable hazards model, as the name suggests, is cre-
ated from a weighted sum of more than one explanatory variable. The
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Figure 8.6. Model generated median survival times estimated from the Weibull proportional propor-

tional hazards model (Table 8.3) for a range of g-levels.

three SEMHS variables CD4-counts, ,-microglobulin, and age from the
HIV/AIDS data produce the additive multivariable model, again in terms of
proportional hazard functions, given by

hi(t | cdd4, B, age) = ho(t) x ¢; = ho(t)enetithabitbsage
or, for the Weibull hazards model,

hi(t| cd4, B, age) = e[hO"Fblfd4i+b2ﬁi+b3age,‘]yytV_l
= ho(t) e[blfd4i+bzl3;+b3ﬂg€;]y

where hy(t) = e?”y "=, As before, the scale parameter exclusively reflects
the influence of the explanatory variables, namely the scale parameter =
A; = elbotbicdditbofitbiagely The three explanatory variables are entered into
the analysis as reported. In addition, their influences are postulated as addi-
tive, producing independent multiplicative changes in the Weibull scale
parameter. In the context of a statistical model, additive means (to repeat)

that the contribution of each variable to the hazard ratio is reflected by a single
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parameter b; and this contribution is unaffected by the levels of the other
explanatory variables in the model. For the example, the degree of influence
of CD4-counts (b;) is independent of whether the study subject is young or
old. For any age, the CD4-count influence remains entirely determined by
the coefficient b; and the reported CD4-count.

Models created to describe explanatory variables that do not influence
survival in an additive (independent) fashion are called nonadditive. An
example of a nonadditive Weibull hazards model using the three explanatory
measures CD4-counts, §-levels, and age is

hi(t | cd4, B, age)
— ]’lo(t) e[hlcd4,~+h2ﬂ,'+b3agei+b4(cd4,'><ﬂ,~)+h5(cd4i><age,~)+b6(ﬁ,~><agei)]y.

The explanatory variables are no longer independent. The model allows the
relationship between a specific variable and the hazard rate to be influenced
by the level of other variables in the model. For example, the three variable
nonadditive HIV/AIDS model allows the relationship between the CDA4-
count and the hazard rate to be influenced by the age of the study subject.
The joint influence is more clearly seen from the expression

hi(t| cd4, B, age)
— ]’lo(t) e[(b1+b5><age,-)><cd4,'+ by Bi+bsage;+by(cd4; x Bi)+by(cd4; x Bi)+bs(Bi x age;) |y

where the relevant model coefficients are b; and bs. The second model is
identical to the first nonadditive model, but the variables are rearranged to
emphasize the influence of age on the relationship between the CD4-counts
and the hazard rate.

Specifically, the influence of the CD4-count on the hazard rate depends on
age aslongas bs is not zero. The influence is determined by the reported CD4-
count multiplied by the factor (b, + b5 x age). For example, if b; = —0.008
and bs = 0.0002, then for age 20, the CD4-count is multiplied by 0.003, and
for age 40, the same count is multiplied by 0.001. The model dictates that an
increase in the study subject’s age decreases the influence of the CD4-count
on the hazard rate. A twenty-year difference in age reduces the influence
of the CD4-count by a factor of 3. Such a nonadditive relationship requires
the survival of older individuals to be less influenced by the level of their
CD4-count. This kind of joint influence is referred to as nonadditivity or an
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Table 8.5. Estimates from the Weibull survival time
model applied to the HIV/AIDS CD4-counts, 8-levels,
and age data including all two-way interactions.

Variables ~ Symbols Estimates  Std. errors  p-values

Intercept by 1.923 — —
cd4 b —0.008 0.0042 —
B by —0.103 0.829 —
age bs —0.215 0.119 —
cdd x B b, —0.0004 0.0005 0.525
cd4 x age  bs 0.0002 0.0001 0.039
B x age b 0.020 0.024 0.423
Shape % 1.465 0.120 0.001

LogLikelihood = —275.705

interaction or nonindependence or an effect measure modification. However,
the model hazard rates remain proportional with respect to time.

The estimated coefficients from the nonadditive hazards model based on
the HIV/AIDS data (n= 88 and d=51) are given in Table 8.5. The estimated
coefficient associated with the CD4/age interaction term (bs) indicates that
age has a plausibly systematic (nonrandom) influence on the CD4/hazard
relationship (Wald’s test: X? = (—0.000235/0.000114)% = 4.249, yielding
the p-value =0.039). More generally, the comparison of log-likelihood values
produces a similar p-value of 0.042. Formally, the chi-square likelihood ratio
test statistic is

X? = —2[~log[Ly.—o] — (—log[ Lp,201)]
= —2[—277.768 — (—275.705)] = 4.127

with the resulting p-value=P(X? > 4.127 | b5 = 0) = 0.042.=0.042. Vari-
ables that interact are symmetric in the sense that the CD4-counts can also
be viewed as influencing the age/hazard rate relationship. From either point
of view, evidence exists that the estimate bs is not likely to be a random
deviation from zero.

Itis important to keep in mind that the influence from a single explanatory
variable is not simply identified in a nonadditive model. Nevertheless, the
associated and usually meaningless p-values are frequently given by computer
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estimation programs. For example, when the interaction term cd4 x age
appears in the model, the single variables cd4 and age must also be included,
a total of three terms. Thus, two model coefficients are required to measure
the influence of an explanatory variable on survival time when a two-way
interaction is present. In the presence of an interaction, such as the cd4 x age
interaction, a meaningful summary of the relationship between CD4-counts
and the hazard rate is not possible with a single coefficient, as indicated by
the suppression of the p-values in Table 8.5. For example, the coefficient
by = —0.008 does not directly reflect the influence of the CD4-count and
the coefficient b; = —0.152 also does not directly reflect the influence of age
(Table 8.5). An interaction means that an unbiased estimate of the influence
of the CD4-count is accurately achieved only for a specific age. A single
coefficient summarizes the role of a single variable only when it has an
additive influence. In practical terms, a test of the absence/presence of an
interaction addresses the question: Is a single regression coefficient sufficient
to summarize accurately the influence of a specific variable on survival time?

When a statistical model contains nonadditive terms, adjusted coefficients
are not an issue. Nonadditivity means that a summary based on a single vari-
able is misleading. Therefore, the degree to which the influence on survival
time from a single variable is affected by another explanatory variable or
variables (confounding) is moot. In other words, when an interaction exists,
confounding is not a relevant issue. Conversely, an additive model provides
the opportunity to explore separately and parsimoniously the influence of
each explanatory variable. Adjustment for the influence of other explana-
tory variables then becomes a relevant and important issue. This funda-
mental property of a multivariable model (independence?) makes the choice
between describing the survival data with a nonadditive or an additive rela-
tionship critically important to the analysis.

A word of warning is worthwhile at this point. Two kinds of errors can
be made. Nonadditive terms can be included in the model when they are
not necessary or nonadditive terms can be omitted from the model when
they are necessary. The former error is not serious. The later error is poten-
tially devastating. “Wrong model bias” incurred by not including necessary
nonadditivity produces at best approximate and at worst entirely misleading
results (many examples exist).

A first step in describing the pattern of nonadditivity identified with a
multivariable model is to stratify the data by one of the two nonindependent
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Table 8.6. The relationships between CD4-count and the hazard
rate (model coefficients) and their approximate 95% confidence
interval bounds for four age categories (strata).

Age categories n Estimates Lower Upper

age <25 18 —0.0036 —0.0064 —0.0008
25 < age < 30 22 —0.0025 —0.0048 —0.0001
30 < age < 35 32 —0.0020 —0.0034 —0.0006
age > 35 16 —0.0010 —0.0002 0.0014

variables. For the HIV/AIDS example, four strata are created by temporarily
categorizing the age variable to explore the CD4/age interaction. Parallel to
the previous nominal variable models, the creation of temporary sequence
of age categories (< 25, 2510 30, 30 to 35, and > 35) and a stratified analy-
sis potentially reveals the pattern of nonadditivity. The model coefficients
reflecting the influence of the CD4-count estimated within each of the four
age groups are given in Table 8.6. Again, the analysis employing categorical
variables is not a powerful approach but possibly suggests model-free pat-
terns of influence and, for the HIV/AIDS-data, the possible pattern of the
CD4/age interaction.

From the analysis based on stratified age categories (Table 8.6), the CD4-
count influence on the hazard rate appears similar (little or no interaction)
for individuals less than 35-years old (age < 35). For these men, their CD4-
count have a more or less constant influence on the hazard rate (I;—coefﬁcients
in the neighborhood of —0.0025). The influence of the CD4-count observed
in men older than 35 years (b-coefficient = —0.0010) is considerably smaller.
Essentially the same result is achieved by applying the Weibull proportional
hazards model made up of the CD4-counts (as reported) with age as a nom-
inal variable and including all two-way interactions.

The four analyses summarized in Table 8.6, despite the unavoidably small
numbers of observations, indicate that an additive hazards model likely pro-
ducesan accurate and potentially useful summary of the relationship between
the CD4-count and survival time for men under 36 years of age. Such an
additive Weibull proportional hazards model is (repeated)

hi(t | cd4, B, age) = elbotbicdditbfitbsagaly, 4y =1
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Table 8.7. Estimates from the additive Weibull proportional hazards model
based on the variables CD4-counts, s-levels and age (n =72, age < 35).

Variables Symbols Estimates Std. errors p-values
Intercept by —3.439 — —

cd4 b —0.002 0.001 0.005

B b, 0.265 0.123 0.031
age bs —0.010 0.028 0.726
shape y 1.309 0.130 0.038

LogLikelihood =—232.281

The estimated coefficients (Table 8.7) define this additive model for the
HIV/AIDS data, excluding the 16 study subjects who are older than 35 years
(n=72).

For an additive model, the first analytic issue is the assessment of the
impact of random variation on the estimated model coefficients. Test statis-
tics (Wald’s tests, for example) and their p-values indicate the variables that
likely have nonrandom influences on survival time. Both the CD4-counts
(p-value = 0.005) and the B-levels (p-value = 0.031) likely influence the
hazard rate in a systematic way. No similar evidence exists for the influence
of age (p-value = 0.729). In addition, the estimated Weibull shape parameter
(¢ = 1.309) indicates that a description of survival time based on the simpler
exponential hazards model (y = 1) would be inadequate (p-value = 0.039).

An additive model, because it requires each explanatory variable to have a
separate influence on survival time, is frequently an excellent statistical tool
for clearly describing the relationships within the sampled data. The model
estimates simply describe the relative and independent contributions to the
overall hazard rate (risk) from each explanatory variable. Direct comparisons
among the coefficients, however, fail to produce profitable information when
the variables are measured in different units. For example, the CD4-count
is not less important than the age in the prediction of a hazard rate because
the estimated regression coefficient by = —0.002 (cd4) is closer to zero than
the coefficient b3 = —0.010 (age). Measurement units largely determine the
magnitude of a regression coefficient. When a study participant’s age is mea-
sured in months rather than years, for example, the coefficient 133 decreases
by a factor of 12 (new-b; = —0.001).
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Dividing estimated coefficients by their standard errors creates unitless val-
ues providing direct and sometimes useful comparisons. The standardized
coefficients are said to be commensurate (same units). Again, these compar-
isons require the coefficients to be estimated from an additive model.

For the AIDS data, commensurate statistical summaries are as follows:

\ by  —0.00228
cd4-counts: B,y = — = ———— = —3.479,
Sh, 0.00065
\ b 0.265
B-levels: Bg = 2 = =157
Sp,  0.123
and
5 by  —0.010 0,350
age: = — = = V. .
86 e = g, T T0.028

For these men (age less than 35 years), the level of CD4-counts has the
most influence on the estimated hazard ratio, followed by an important
but smaller influence from the level of B,-microglobulin. Their age has a
relatively small and likely random influence. The Wald test-statistics and the
p-values associated with these summaries are also commensurate measures
and comparisons reflect the relative influences. In fact, a number of ways
exist to make these kinds of commensurate comparisons among explanatory
variables and typically produce similar but not identical results.

The defining feature of an additive model is a simple description of the joint
influences of the explanatory variables. For example, the joint influences of
CD4-counts, -levels, and age are effectively described by the median survival
time (time scale) based on the estimated Weibull proportional hazards model,
where

[log(2)] 17 g=(bo+X bjxij)

median value = %,
[log(z)]l/f/ ef(iJngE] cd4;+Bzﬁi+Bzagei)

[log(2)] 1/1.309 e_(_3~439+0~0025d4i+0‘265ﬂi —0.010age;) .

For HIV-positive men of age 28.5 years (mean value), estimated median
values describe the joint influences on survival time from nine selected
pairs of CD4-counts and S-levels (Table 8.8). That is, these model-generated
summary values provide a rigorous and intuitive description of the degree
of joint response to infection (time scale—weeks).
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Table 8.8. The joint influence (time scale) of CD4-counts
and B,-microglobulin in terms of estimated median time
to AIDS (age = 27.5 years).

B2-microglobulin levels

cd4-counts = 400
cd4-counts = 700
cd4-counts = 1000

1.5 2.5 3.5
52.1 39.9 30.7

103.0 79.1 60.7

203.9 156.5 120.0

Table 8.9. The joint influence (ratio scale) of CD4-
counts and B,-microglobulin in terms of estimated
hazard ratios (age =27.5 years).

B>-microglobulin levels

cd4-counts = 400
cd4-counts = 700
cd4-counts = 1000

1.5 2.5 3.5

1.73 2.44 3.46
0.71 1.00 1.41
0.29 0.41 0.58

Note: Hazard ratios are relative to CD4-count = 700, 8-

level = 2.5 for age = 28.5.

Another natural description of the joint influence of the three explanatory
variables is the hazard ratio (ratio scale). As will be described (Chapter 9),
hazard ratios can be estimated without specifying a specific parametric model
(baseline hazard function). However, based on the Weibull additive model
(age < 35), the overall hazard ratio (product of variable specific relative haz-
ard ratios) directly calculated from the estimated additive model regression

coefficients for the ith individual is

iy 00 _
ho(t)

— 0-002(cd4;)1.309

eiii(Cd‘li)f/ x el;z(ﬁi)f/ X ei?a(ﬂge,-)f’

0.265(B;)1.309

X e X e

= 0.997°% x 1.417% x 0.987%¢,

Again for HIV-positive men aged 28.5 years, Table 8.9 contains the estimated
joint influences of the previous nine selected pairs of values of CD4-counts

—0.010(age;)1.309
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and S-levels described in terms of hazard ratios relative to an individual with
a CD4-count of 700 and a B-level of 2.5 (hr = 1.0). A little algebra shows
that the estimated median and hazard ratio are related.

Goodness-of-fit

Once a model hazard function is estimated, the corresponding estimated
survival function directly follows. In general, the relationship is, as follows:

when  h;i(t) = ho(t) e then S;(t) = [So(£)]oP2 b)),

Therefore, an estimate of the baseline survival function S,(f) and a set of
explanatory variables produce an estimate of the survival function for a
specific person or group.

To illustrate, consider the exponential proportional hazards model. The
general hazards model is

hi(t) = ho(t)eX "%,

Because the hazard rates (h;(t) = A;) are constant (exponential survival),
A = Agex it

multiplying by the survival time fand exponentiating gives

et = [e | EE) and - §i(1) = [So(0) =0,

For the Weibull proportional hazards model, similarly the survival func-
tion is

Si(1) = [ear ] R,

where Ay = eb

The baseline scale parameter Ao and the shape parameter y are estimated
from the data.

For the SFMHS HIV/AIDS data, each individual observation (survival
time ¢ plus specific values of the CD4-, -, and age-variables) generates an
estimated Weibull survival probability given by

$:(1) = [6—0‘011#309]

and Sy(t) = Mt — 6_0'01“]'309, where Ay = ¢4¥1309 = _0 011.

exp([—0.002¢d4;+0.2658;—0.010age;]1.309)
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The expression for S;(#) shows that proportional hazard functions dictate
that the survival functions do not intersect. Thus, a plot of the product-
limit estimated survival functions provides a preliminary visual evaluation
of proportionality but certainly not a conclusive one. Random variation can
cause survival functions to cross when the underlying hazard functions are
proportional and not to cross when the underlying hazard functions are not
proportional.

For all regression models, a specifically designed statistic to evaluate the
accuracy of a postulated model (goodness-of-fit) is called a residual value.
Residual values reflect the difference between the model-estimated values and
the observed data that generated the model estimates. Typically a residual
value of zero occurs when a model generated value perfectly corresponds to
an observed value. Otherwise, residual values indicate what is not reflected by
the model. When a model “fits” the data, the residual values are likely small
and certainly randomly distributed. When a model fails to “fit” the data
in some systematic way, at least some of the residual values are likely large
and nonrandom. Occasionally, their observed pattern indicates the specific
reason for the “lack of fit.”

Statistical justification of the properties of residual values is occasionally
mathematically complex and the more complex details are not presented.
Assessment of the model’s fit based on residual values, however, is not com-
plicated and is simply applied without detailed knowledge of their mathe-
matical origins. The final product is frequently a plot designed to produce an
easily interpreted visual picture of the correspondence between the statistical
model and the observed data (introduced in Chapters 5 and 6). Using the
HIV/AIDS data (CD4-counts, S-levels, and age) and the estimated Weibull
hazards model, a description follows of two goodness-of-fit techniques.

A simple transformation of the survival function S(¢) yields residual values
with several special and advantageous properties. The transformation is r; =
—log| S(#)], called the Cox—Snell residual value. In more detail, the Cox—Snell
residual value 7; is

ri = —log[So(£;)] = —log[So(t;)]e!=bixil,

These r;-values apply to survival distribution models in general. Therefore,
for a specific survival model, the estimated baseline survival function So(t)
and the estimated coefficients ?Jj allow a residual value r; to be calculated for
each survival time t; and each set of explanatory variables {x;1, xi2, ..., xik}.
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For the Weibull proportional hazards model, the Cox—Snell residual values
are

r = [iot?]e[zfjjxij]f/

using the hazards model estimates Xy, ¥ and the k estimated regression
coefficients Bj.

The more familiar residual values resulting from the application of a linear
regression model always have a mean value of exactly zero and any variance;
they take on any value (in mathematics, it is said that they range from minus
infinity to plus infinity) and are uncorrelated with the predicted value. Perfect
correspondence between an estimate and an observed values produces a
residual value of exactly zero. When a linear model is appropriate, plots
of these residual values lead to symmetric displays. The Cox—Snell residual
values have none of these properties. Their mean value and variance depend
on the number of randomly censored observations, they take on only positive
values, and they typically have an asymmetric distribution. These residual
values are never zero. When the survival model is appropriate, plots of these
residual values do not lead directly to symmetric displays. The role of these
residual values in evaluating an estimated model, however, is not different
in principle from that of the more typical residual values created to evaluate
most regression models.

Residual values estimated from all statistical models have a property in
common. When the model is satisfactory, the properties of the residual values
are known. An important property of the Cox—Snell residual values is that
they are a random sample from an exponential distribution (Chapter 5) with
parameter A = 1 when the estimated survival model S(¢) accurately reflects
the postulated survival model S(£). In symbols, the probability distribution of
these residual values rbecomes G(r) = P(R > r) = e~ " when the survival
functions $(¢) and S(¢) differ by chance alone.

For survival models such as the Weibull proportional hazards model, a
residual value can be calculated for all observations (complete and censored).
A residual value for each observation is defined as

m; = r; when the observation t; is complete
and

m; = r; + 1 when the observation t; is censored.
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Because the r;-values have an exponential distribution, the residual values
associated with censored values are made “complete” on average by adding
the mean value ¢ = 1/A = 1.0. The same strategy was used (Chapter 5) to
estimate the mean value of exponentially distributed survival times. When a
variable has an exponential distribution, all randomly censored observations
have the same mean value as the observed values, namely p or, in the case of
residual values, ; = 1.0. Therefore, a single residual m;-value exists for each
observation. These complete and “completed” Cox—Snell residual values are
called modified Cox—Snell residual values.

When the estimated hazards model is appropriate, the modified Cox—
Snell residual values are random with respect to the variables used in the
analysis (“no more remains to be explained”). When the model fails to capture
aspects of an explanatory variable or variables, the pattern associated with
the modified Cox—Snell residual values will likely be noticeably nonrandom.
Plots of the modified Cox—Snell residual values, therefore, potentially reveal
evidence of lack of fit. As mentioned, observed patterns may also suggest
ways to improve the correspondence between model and data.

Application

Three plots of the modified Cox—Snell residual values (;) from the three-
variable additive Weibull hazards model (Table 8.7) are displayed in Fig-
ure 8.7. The m; values plotted against the CD4-counts appear to have a
nonrandom pattern but with no apparent systematic features. The S-level
and age plots show no obvious indication of nonrandomness among the
residual values. In general, no reason exists that the variables plotted have
to be those included in the hazards model. The appearance of a pattern of
modified residual values associated with a variable not in the model indicates
a possible role in the study of survival times.

Another assessment of model “fit” based on the Cox—Snell residual val-
ues employs a transformation that produces a straight line. A straight line
provides a clear and an intuitive comparison to a straight line theoretically
expected when the model exactly reproduces the data. Rupert Miller [5] states
in his text on survival analysis,

Basic Principle. Select the scales of the coordinate axes so that if the model holds, a plot of
the data resembles a straight line, and if the model fails, a plot resembles a curve.
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Modified Cox-Snell residual plots for the explanatory variables CD4-counts, g-levels, and
age from the Weibull proportional hazards additive model (Table 8.7).

When the data are accurately represented by the estimated hazards model,
as stated without justification, the residual values are a random sample from
a “unit” exponential probability distribution (denoted previously as G(r) =
P(R > r) = e™"). As noted, log—log transformed exponentially distributed
survival probabilities randomly deviate from a straight line with intercept
log(A) and slope of 1 (Chapter 5). Thus, log—log transformed residual values
plotted against the logarithms of the residual values themselves will randomly
deviate from a straight line (intercept = log(A) = log(1) = 0and slope =
1) when the estimated model “fits” the data. By “fits,” as before, is meant
that the model generated values and the corresponding observed values differ
only because of random variation. It has been suggested that the accuracy of
this kind of assessment of the residual values is not reliable for small samples
of data making it most effective when the sample size is large [2].

The plots of the estimated probabilities (denoted G[r]]) associated with
each residual value (r;) are displayed in Figures 8.8 and 8.9 for the SFMHS
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Figure 8.8. Plot of the Cox-Snell estimated probabilities (G[r;]) against the residual values (r;)—
exponential?

HIV/AIDS data. Figure 8.8 is a direct plot of the estimated probabilities
(G[r]) and the Cox=Snell residual values (exponential?). Figure 8.9 is the plot
of the “log-log” transformed estimated probabilities and the logarithm of the
Cox—Snell residual values (a straight line with intercept = 0 and slope = 1?).
The plotted transformed residual values in Figure 8.9 appear to ran-
domly deviate from a straight line (estimated intercept = 0.003 and slope =
0.962), producing no apparent evidence that the additive Weibull haz-
ards model based on three explanatory variables (Table 8.7) can be sub-
stantially improved. That is, the exponential distribution (A = p = 1)
appears to be an accurate description of the residual values, which occurs
when the estimated hazards model is a useful description of the sampled
survival data.

Nonrandom residual values might indicate that additional explanatory
variables are necessary or that more sophisticated representations of specific
explanatory variables are required or, of course, both. For example, instead of
an explanatory variable represented by x (linear), explanatory variables such
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as ax + bx? + cx’ ory/x or log(x) or x log(x) might better characterize the
relationship of an explanatory variable to survival time improving a model’s
“fit.” Also, for additive models, a potential source of lack of fit is the failure of
the explanatory variables to be additive (failure to include interactions terms
in the model).

A substantial weakness exists in evaluating survival models using residual
values and their plots, such as Figures 8.7, 8.8, and 8.9. There is no objective
means to unequivocally identify deficiencies visually. In addition, even when
nonrandom elements are identified, no guarantee exists that the model can
be substantially improved. The truth of the matter is that few rules exist
to guide the creation of an appropriate survival time model. Subject mat-
ter considerations plus observing changes in residual value patterns from a
trial and error approach are typically at the center of developing successful
statistical models. Although not emphasized in most statistical texts, model
selection is largely a subjective process. Frank Harrell [6] notes, “Using the
data to guide the data analysis is almost as dangerous as not doing so.”
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When the underlying statistical structure of a sampled population is not
accurately described by a postulated probability distribution or is simply
unknown, a parametric hazards model is not a feasible analytic approach to
describing survival time data. Statistician David Cox has provided an alter-
native. Instead of a fully defined parametric model (Chapter 8), he developed
a method of estimating the influences of the explanatory variables that does
not require a baseline hazard function to be specified. Furthermore, the
baseline hazard function is not much of an issue in many survival analyses,
where the main focus is on the role of the explanatory variables, making
this distribution-free approach an important statistical tool for analyzing
survival data.

The form of the multivariable hazards model remains the same as in the
parametric case, where

hi(t) = ho(t) x ¢; = ho(t)ezhjxij‘

The model hazard functions are again proportional. However, the model
regression coefficients (represented by b; ) are estimated without assumptions
about the baseline hazard function h¢(t) or the population that generated
the data. The Cox approach is said to be “robust” because it applies to a wide
variety of situations.

As noted, the estimation process is not assumption-free. It remains
required that the sampled hazard functions be proportional. As before, a
key component of the analysis is the answer to the question: Are the relation-
ships within the sampled data accurately represent by proportional hazard
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functions? The application of the Cox semiparametric technique, like most
model-based techniques, requires an assessment of the goodness-of-fit. In
addition, censoring of survival times is still required to be noninformative.

An important role of nonparametric methods is the comparison to the
parametric methods applied to the same data. Previously, the survival curve
estimated from a nonparametric approach (product-limit estimate) was
compared to the survival curve estimated based on the parametric assump-
tion that the data were sampled from an exponential distribution (Figure 5.4).
The degree of success of the parametric model was apparent from a plot of
these two estimates. A similar comparison was made for the Weibull esti-
mated survival curve (Figure 6.6). The comparison of the Cox estimated
hazards model to the parallel parametric approach is similarly useful as part
of a strategy for choosing an appropriate hazards model. If the semipara-
metric and fully parametric analyses produce close to the same results, the
richer, simpler, and more efficient parametric model typically becomes the
better choice. Conversely, when the two approaches differ substantially,
the parametric model has failed in some important respect. The strategy
then becomes to fix the parametric model or to use the Cox model instead.

Obviously, not all survival times are accurately represented by propor-
tional hazard functions. Two commonly encountered situations that are not
likely to produce proportional hazard functions are displayed in Figures 9.1
and 9.2.

Figure 9.1 displays two hazard functions that might describe survival data
from critically ill patients, such as those who need an organ transplant,
where two choices can arise: a high-risk surgical procedure or the usual
treatment. The hazard function reflecting the transplant patients’ survival
would increase initially because of the high risk of the surgery, followed by
relatively constant risk. The “usual-care” patients’ survival would likely be
described by a steadily increasing hazard function over time (continually
increasing risk). The ratio of these two kinds of hazard functions would not
be constant (Figure 9.1).

Figure 9.2 displays two hazard functions that might describe survival data
from a clinical trial. To evaluate a new treatment, a clinical trial starts with
patients randomly divided into two groups. One group receive a treatment
and the other serve as controls. At the beginning of the trial, both groups
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have similar risks because of the original randomization. However, if the
new treatment increases survival time, the group receiving the treatment
will experience a hazard rate that increases at a slower rate. Again, a direct
application of a proportional hazards model would fail to accurately reflect
the risk/survival relationship (Figure 9.2).

Cox estimation for proportional hazards model: two-sample case

The two-sample proportional hazards model provides a simple introduction
to the estimation and interpretation of the semiparametric approach. The
two-sample proportional hazards model is again

he(t) = ho(t) x ¢ = ho(t) x eF,

where, as before, the symbol F represents a binary variable (coded 0 or
1), indicating two sources of survival data. Using a process called par-
tial likelihood estimation, the single coefficient b and its variance are esti-
mated based on this proportional hazards model and, to repeat, no assump-
tion is made about the parametric form of the baseline hazard function
ho(t).

Using the AIDS survival data classified into nonsmokers and smokers
(n = 23 African-Americans—Chapter 7) and the assumption that ho(t)
is a Weibull baseline hazard function, an estimate of the hazard ratio
is hr = eb = =075 — 0.468 (S; = 0.557). The same parameter, estimated
without specifying the baseline hazard function (partial likelihood estimate),
is hr = eb = ¢70823 — 0.439 (S, = 0.592). Like maximum likelihood esti-
mates, the estimated standard error is part of the partial likelihood estimation
process.

Although partial likelihood estimates are nonparametric, they have the
same kinds of properties as maximum likelihood estimates. Therefore, the
interpretation and evaluation of the estimated model components are essen-
tially the same as for other regression models. Thus, the partial likelihood
estimate b has an approximate normal distribution as long as the sam-
ple size is moderately large, making it possible to assess the influence of
sampling variation directly with the usual statistical tools (tests and
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confidence intervals). For example, the previous Wald test statistic from
the African-American smoking data (b = 0?),

X2 . = 2_02— _0'823_02—( 1.390)2 = 1.933
Wad T s | T L 0.592 o T

has an approximate chi-square distribution with one degree of freedom
when h(t) = ho(t) or b = 0. The associated p-value P(X? > 1.933 | b =
0) = 0.164 yields no persuasive evidence of an important difference in sur-
vival times between nonsmokers and smokers. The similar result from the
parametric-based Weibull distribution analysis is

, [b—07" [-0759—07? ,
b .

and the p-value is 0.173.
Again, parallel to the maximum likelihood approach, the difference in

partial log-likelihood values calculated from two nested models (multiplied
by —2) produces a test statistic with an approximate chi-square distribution
when only random differences exist between the compared samples of sur-
vival times. For the comparison of the African-American nonsmokers and
smokers, the difference in log-likelihood values,

Xiatinood = —2[10g(Lp—o) —log(L p0)] = —2[—38.422 — (—37.517)] = 1.809,

has an approximate chi-square distribution with one degree of freedom. The
probability, that this difference arose by chance alone is p-value = 0.179.
As previously noted, these two approaches (Wald and likelihood statistics)
generally produce similar results, particularly when large samples of data
are available from sampled populations. However, it should be noted that
when a Wald test statistic is extremely large (evidence that the null hypoth-
esis is extremely likely to be false), its distribution is no longer accurately
approximated with a chi-square distribution. Because this inaccuracy is not
a property of the likelihood approach, it is generally the preferred statistical
assessment.

A log-rank test (Chapter 7) addresses the same question: Do the survival
times of nonsmokers and smokers systematically differ? This assessment
of a two-sample difference also does not require assumptions about the
exact nature of the underlying survival distribution, particularly the hazard
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functions. The statistical summaries from log-rank test applied to the
African-American AIDS data are as follows (repeated from Chapter 7):

1. > a; = 5—the total deaths observed among smokers,

2. 3" A; = 2.898—the total deaths among smokers estimated as if smoking
exposure were entirely unrelated to survival time, and

3. Y _v; = 2.166—the variance of the summary statistic ) a;.

The chi-square distributed test statistic is

(Xai - A)  (5-289%)

X? = = = 2.040.
log=rank ™y ariance (Xai) 2.166

The three approaches to comparing survival times between nonsmokers
and smokers among the 23 African-American study participants give similar
results (X{,q = 1.93, X ginood = 1-81,and Xt = 2.04).

The log-rank test is a special case of comparing partial likelihood values
calculated from a two-sample proportional hazards model. Thus, these two
seemingly different techniques always give similar results. The log-rank test
and a slightly different likelihood procedure, called a score likelihood test,
are algebraically identical when all sampled survival times differ (“no ties”).
A rigorous demonstration of the equality of these two procedures exists in
several more theoretical survival analysis texts [5].

The fact that the log-rank test is a special case of the two-sample Cox
approach gives a hint of the underlying process that produces the estimate
b without specifying the parametric form of the hazard function. The log-
rank test begins with a measure of the association between a risk factor
and an outcome estimated within each of a sequence of strata, namely
a; — A;. Each stratum estimate is based only on survival times of equal
lengths. The log-rank test statistic X*> combines these stratum-specific mea-
sures to create an overall single summary of the risk/outcome association
that is, therefore, not influenced by survival time or noninformative cen-
sored observations. No assumptions are made about the sampled populations
(nonparametric).

A similar process creates the estimate of the coefficient b using the Cox
partial likelihood approach. For each stratum, again based on the same sur-
vival times, an estimate of the parameter b is made. These stratum-specific
estimates of the association between a risk factor and an outcome are also
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combined to create an overall single summary, namely b. And, like the log-
rank procedure, the overall estimate is not influenced by survival time and
is not biased by noninformative censored observations.

The estimate b reflects the same hazard ratio at all survival times as long
as the compared hazard functions are proportional. Thus, for the smoking
data, using the estimate b = —0.823, the

hazard ratio = ¢ = ¢’ = ¢ 78 = 0.439 or 1/0.439 = 2.278

estimates this single constant ratio.

A general property of the Cox estimation process is evident from the two-
sample smoking data. The hazard ratio is readily estimated but, in contrast to
the Weibull and exponential models, estimates of the specific components of
the ratio are not available. For example, under the assumption of a sampled
Weibull distribution, the estimated scale parameters from the smoking data
are as follows: for nonsmokers, 5»0 = 0.00678, and for smokers, A; = 0.0145,
with estimated shape parameter y = 1.421. Furthermore, the estimated haz-
ard ratio hr = €%7% = 2.136 is hir = 0.0145/0.00678 = 2.136. The lack of
similar estimates of the specific components of the hazard ratio is a cost
incurred by the Cox partial likelihood approach.

As with the previous maximum likelihood estimated model coefficients,
the Cox partial likelihood estimated coefficients and variances also produce
approximate 95% confidence intervals. From the smoking data, such a con-
fidence interval is

b+ 1.960S;, = —0.823 £ 1.960(0.592),

which produces the 95% bounds (—1.984,0.337) for the parameter
b. The approximate 95% confidence interval becomes (e~!%%4, ¢%-337) =
(0.137,1.401) for the underlying hazard ratio hr estimated by ir = e8> =
0.439. This confidence interval is consistent with the previous assessments
of the influence of random variation on the estimated coefficient b. The
parameter value b = 0 (hr = 1) is contained in the 95% confidence interval.

A two-sample model is readily extended. The addition of a second explana-

tory variable (denoted x) creates the proportional hazards model

hi(t| F, x) = ho(t)eblF-H?z(x,-—x).
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Table 9.1. Estimated coefficients from the SFMHS data (n =72 and age < 35)
for three models (estimated standard errors in parentheses).

Coefficients Interaction model Additive model Two-sample model
b —0.904 (0.335) —0.898 (0.335) —0.873 (0.334)
b, —0.052 (0.044) 0.026 (0.035) —

bs 0.072 (0.075) — —
LogLikelihood —158.827 —159.301 —159.559

Again, using the HIV-positive subjects from the SEMHS data (n = 72,
age < 35) to illustrate, a binary CD4-variable is defined as “normal” when
CD4 > 700 (F = 0) and “low” when CD4 < 700 (F = 1). In addition, the
study subject’s age is included in the model as reported (x; = age;). The
specific proportional hazards model becomes

hi(t | F, age) = ho (1) el Fbzlagei—age)

The “centered” variable (age, — age) produces a useful interpretation of
the baseline hazard function. The baseline hazard function ho(t) reflects
risk for “normal” CD4-level individuals (F = 0) who are of average age
(age = 28.583). In symbols, h;(t | F = 0, age; = 28.583) = hy(t). Occa-
sionally computational advantages exist to centering the variables in a pro-
portional hazards model. Using centered variables in an additive model
changes the estimated regression coefficients but does not affect the sta-
tistical analysis (tests or p-values or inferences).

Three hazards models important in exploring the relationship of CD4-
counts (as a binary variable) and age to survival time are

interaction model:  h;(t | F, age) = ho(t)ebi F +b2(age;—age) +bs F x (age; —age)
additive model:  h;(t | F, age) = ho(t)e? F+b2(asi=) and
two-sample model: (¢t | F, age) = ho(t)ebF.

The Cox partial likelihood approach yields estimates of the coefficients for
these three nested models (Table 9.1) and, to repeat, no parametric assump-
tion about hy(¢) is necessary. However, unlike the parametric estimates
(Chapters 7 and 8), the Cox approach does not produce an estimate of the
“intercept” term (previously denoted by). Note that the estimate of a specific
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Table 9.2. Three hazard ratios calculated from the
interaction model for selected ages 25, 30, and 35
years (CD4 < 700 versus CD4 > 700).

Hazard ratios age =25 age = 30 age = 35

hr 0.313 0.448 0.641
1/hr 3.195 2.232 1.560

coefficient b; changes depending on the other variables in the model. This
is a property of statistical models in general and, not surprisingly, the results
(for example, p-values) are a combination of the properties of the data and
the choice of the model.

The hazard function models include the variable age because the two
groups compared (“normal” versus “low” CD4-counts) have different age
distributions (mean = age, = 29.000 for “low” and mean = age, = 28.032
for “normal” groups) that possibly influence the comparison of survival times
between the two CD4-groups. Specifically, an important question becomes:
Does the relationship between “low/normal” CD4-count and survival time
differ depending on the age of the individuals compared?

Estimates of the hazard ratio for three selected ages (ages = 25, 30, and 35
years—Table 9.2) based on the interaction model describe the influence of
an individual’s age on the CD4/survival relationship. The expression for the
hazard ratio contrasting the influence of the two levels of CD4-exposure on
survival time for the same age (denoted a;) is

_ h;(t| F =1, age = a;) _ 651+E3(ai_@) — ,—0.904+0.072(a; —age)
hi(t | F =0, age = a;)

hr

(4

As required, a hazard ratio estimated from the interaction model depends
on the age of the individuals considered. That is, the influence of the binary
CD4-variable on the hazard ratio is independent of age only when b3 = 0
(additive model).

The estimated model coefficient b3 formally measures the magnitude of
the cd4 x age interaction. That is, it reflects dependence (nonadditivity)
between CD4-counts and age. As before, several ways exist to statistically
assess the influence of sampling variation on this single estimated regression
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coefficient (Wald’s test, a confidence interval, or a likelihood comparison—
Chapter 8). The likelihood comparison is the most general. For the
comparison of the interaction model (b3 # 0) to the additive model (b3 = 0),
the likelihood ratio chi-square statistic is

X? = —2[log(Ly—) — log(Lp,+0)] = —2[—159.301 — (—158.827)] = 0.949.

A p-value of P(X? > 0.949 | b; = 0) = 0.330 indicates that the simpler
additive model does not differ greatly from the interaction model. From
another perspective, a p-value of 0.330 indicates that chance is a plausible
explanation of the observed differences among the hazards ratios (“low” ver-
sus “normal” CD4-count) estimated for the three ages 25, 30, and 35 years
(Table 9.2). In other words, the likelihood ratio assessment suggests that a
single estimated hazard ratio is likely an accurate and certainly a simpler sum-
mary of CD4-risk. For the example, hir = ¢=%%% = 0.407 from the additive
model.

An additive model (b; = 0) provides a considerable simpler interpretation
by separating the influence of the CD4-count on the hazard ratio from the
influence of age. The coefficient b; measures the influence of the CD4-count
regardless of the study subject’s age and b, measures the influence of age
regardless of the study subject’s CD4-count. The influence of each variable
is “adjusted” for the independent influence of the other.

The comparison of the partial likelihood values calculated from the addi-
tive model (b, # 0) and the nested two-sample model (b, = 0) reflects the
independent importance of age in the description of the hazard ratios. The
specific likelihood ratio chi-square test statistic

X?* = —2[log(Lp,—0) — log(Lp,20)]
— —2[—159.559 — (—159.301)] = 0.515

produces the p-value of 0.473. An individual’s age does not appear to influ-
ence survival time (no evidence of a systematic effect). Unlike the influence
of age, the binary measure of CD4-risk has a strong and negative associa-
tion with the hazard ratio. The estimated hazard ratio is ir = 0.407 with a
p-value = 0.008 in the additive model and hir = 0.414 with a p-value =
0.006 in the two-sample model. These two estimated hazard ratios are sim-
ilar because of the lack of influence of a study subject’s age on survival
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time. Thus, the hazard function describing risk for the “normal” group is
2.5(1/0.407) times lower than that for the “low” group at any survival time.

The term confounding informally means the confusing or mixing of the
effects that influence a relationship. When an additive model contains sev-
eral variables, issues arise concerning the influence of one or more of these
variables on a specific variable’s relationship to the outcome variable. Untan-
gling confounding influences is a goal of statistical models in general. One
of the important features of an additive model is that the confounding
associated with a specific variable or variables is simply defined and easily
determined.

Before confounding is discussed in the context of a survival model, it is
useful to describe the simplest case. Consider again the comparison of two
groups (coded F = 0 and 1) and a second variable (denoted x—a continu-
ous variable) that may influence the observed difference between groups. A
two-sample linear model represented by y = by + b1 F + b,x illustrates the
primary issue. For example, cholesterol levels (y) may differ between two
groups because of the presence of a binary risk factor (F ). However, the level
of socioeconomic status (x = personal income) may also differ between the
compared groups. Differences associated with levels of income (x) poten-
tially interfere with a clear interpretation of the risk factor’s influence on
the observed difference between cholesterol levels. A direct measure of this
influence x on the risk/outcome relationship (confounding) consists of com-
paring two additive models, a model with the potential confounding variable
x included and the same model with the variable x excluded. In terms of the
two-sample example, the model y = by + b1 F + b,x is compared to the
model y = By + B;F. The influence of variable x on the relationship
between the binary variable F and the outcome y is directly measured by the
difference between the estimates of the coefficients by and B,. Specifically,
the difference B, — b, measures confounding, where B, represents the esti-
mate of B; from the model with the variable x excluded and b, represents
the estimate of b, from the model with the variable x included. The variable
x does not have an important confounding influence when B, — by is small
and inconsequential. Otherwise, the variable x influences the comparison
between groups and the two-variable model accounts for this influence. The
estimated coefficient b, is then said to be “adjusted” for the influence of
variable x. The quotation marks are a reminder that adjustment depends on
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a specific definition of confounding, an additive model, and, in this example,
a linear influence of x.

For this two-sample linear model, an expression for the confounding influ-
ence of x is b, (%, — %) or

By — by = by(x, — %),

where X is the estimated mean value of the variable x in one group (F = 0)
and % is the estimated mean value in the other group (F = 1). The two basic
features necessary for a variable to have a confounding effect are evident: the
sample mean values must differ between groups (X, # %) and the variable
x must be directly related to y (b, # 0). In other words, the two groups
are not balanced for variable x and variable x is not independently related
to the outcome y.

The issue of confounding is much the same for an additive proportional
hazards model. The two-sample hazards model (repeated) including a poten-
tial confounding variable x is

hi(t | F,x) = ho(t)eh FHoxi=%),

The degree of confounding is approximately b, (x; — %) and does not differ
in interpretation from the linear model case. When b, or %, — X, is near
zero, no reason exists to include the variable x in the model to adjust for its
influence (adjust the coefficient b;). Conversely, when Xy # X4 and b, #0
produce a substantial value of b, (%, — %), the variable x influences the
comparison between groups (F = 0 versus F = 1) and usefully contributes
to the model.

Comparison of survival times between groups with “high” and “low” CD4-
counts from the SFMHS data illustrates the estimation and interpretation
of a confounding influence. The question becomes: Does an individual’s age
influence the difference in the survival times between two groups of men
based on their CD4-counts (ng = 41 men with CD4 < 700 and n; = 31 men
with CD4 > 700)? When age is included in the additive hazards model,
the estimated CD4-coefficient by is b; = —0.898. When age is excluded
from consideration, the estimated CD4-coefficient B; is B; = —0.873. The
confounding influence associated with age causes the difference B, — b, =
—0.873 — (—0.898) = 0.025. Incidentally, the approximate value is essen-
tially the same where b, (age, — age,) = —0.026(28.032 — 29.000) = 0.025.
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Another measure of confounding influence caused by a specific variable is
the percent difference between the estimated coefficients B and b. Specifically,
for a variable x;,

A A

% change = 100 x b
bi

The percentage change is unitless, so, as with all percentages, values associated
with several variables can be compared regardless of their original measure-
ment units. From the example, the percentage change in the CD4/survival
coefficient associated with age is 100 x (0.898 — 0.873)/0.898 = 2.8%.
Although no definitive rule exists, a value in the neighborhood of 3% appears
small. Several authors suggest that confounding is not an important issue
unless more than a 10% change occurs between the estimated coefficients.

An important question remains: How is the degree of confounding
assessed? First, it is important to note that the magnitude of confounding
depends on both the choice of measurement units and the measure of associa-
tion. For the CD4 example, the logarithms of the relative hazard functions are
compared (regression coefficients). A different magnitude of confounding
emerges if the confounding is measured in terms of the change in the haz-
ard ratios. The change in hazard ratios is 0.010 (e~%%7% — ¢=09%% = 0.010),
yielding a percentage change of 2.5%. Of less importance, when survival
time is measured in days rather than months, the degree of confounding
also changes. In general, assessment of confounding takes on a subjective
character because typically no concrete reasons exist to choose specific mea-
surement units or measure of association.

Not accounting for age, for the example data, decreases the estimate of
the coefficient b; by 0.025. Whether such a reduction is due to random
variation or a systematic effect is not a particularly important question. The
observed confounding (the difference between estimates) is a property of
the collected data and a choice has to be made to use a model that either
includes or excludes the confounding variable. This choice is primarily a
subject matter decision, and other than estimating the magnitude of the
confounding influence, further statistical analysis is not much help.

Creating a binary variable from a more extensive variable, such as creat-
ing a binary CD4-variable from the original CD4-counts, rarely improves
the analysis. Two issues arise. First, there is a loss of statistical power. The
loss of power (increased variability of the estimated values) comes from the
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Table 9.3. Estimated coefficients from the SFMHS interaction
and additive CD4/age models for three definitions of low/
normal CD4-counts (p-values in parentheses).

“Low” CD4 Interaction model (b3) Additive model (b,)
CD4 <900 —0.093 (0.350) —0.625 (0.162)
CD4 <700 0.072 (0.340) —0.899 (0.008)
CD4 < 500 0.233 (0.003) —1.562 (<0.001)

failure to use the collected data efficiently. A variable entered directly into the
model as reported takes advantage of all information available. Measured in
terms of sample size, a continuous variable can be 40% more efficient than
creating a binary variable. Thus, a sample of 60 continuous observations
achieves approximately the same statistical power as a sample of 100 binary
observations.

A second and more important issue is bias. Results of an analysis typi-
cally depend on the way a binary variable is defined. Different definitions
frequently lead to different analytic results, introducing a usually unwanted
subjectivity into assessment and interpretation. The suspicion arises that the
observed influence is due, at least in part, to the artificiality of the created
explanatory variable. Table 9.3 illustrates this influence on the estimated
regression coefficients b3 and b; from the interaction and additive models
(Table 9.1) for three definitions of “low” CD4-counts. The estimates and
statistical tests differ, sometimes considerably, depending on the definition
of “low” CD4-counts. Classification of a continuous variable into more than
two categories creates a similar potential for bias. However, as the number
of categories increases, the bias decreases.

Cox estimation for proportional hazards model: k-variable case
Once again, the expression for the k-variable proportional hazards model is
Byt | i, iz, - %) = ho(1) X ¢ = ho(t) x €=,

The Cox semiparametric approach employs the same general form as the
parametric multivariable model (Chapter 8) but differs in the estimation
procedure. As in the two-sample case, the regression coefficients b; are
estimated without specific information or assumptions about the baseline
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hazard function h(t). That is, the distribution of the sampled survival times
is again not relevant to the estimation process. The Cox model/estimation is
truly nonparametric, in the sense that the estimated regression coefficients
are identical when the observed survival times are replaced by their ranks.
Furthermore, the estimates are corrected for the bias incurred from nonin-
formative censored observations.

The previously analyzed HIV-positive study subjects measured for CD4-
counts, B,-microglobulin levels, and age along with the multivariable addi-
tive proportional hazards model

hi(t | cda, B, age) = ho(t) X ¢; = ho(t) x V(= +ba(fi=p)+bs(age,—ag0)

illustrate the partial likelihood estimation and interpretation of the haz-
ards model coefficients. As always, this additive model does not necessarily
produce accurate estimates of the risk/survival relationships and the hazard
functions are not necessarily proportional. The assessment of additivity and
proportionality remains a critical element of the analysis, even for the Cox
distribution-free approach.

A good place to start a survival analysis is with the comparison of mod-
els including interaction terms to models with selected interaction terms
excluded. The difference in partial log-likelihood values likely indicates the
influence of the variables excluded from the model. For the HIV/AIDS data,
the model containing three pairwise interaction terms is

hi(t | cd4, B, age) = ho(t) X c;,

where the constant of proportionality ¢; (hazard ratio) is defined by

c; = exp {bl(Cd4i — cd4) + by(B; — B) + bs(age; — age)
+ by(cd4; — cdd)(B; — B) + bs(cd4; — cd4)(age; — age)
+b(B: — Bage, — 7o) }.

Note that, when the explanatory variables equal their mean values, the hazard
function h; (t | cd4, B, age) = hy(t). Table 9.4 displays the partial likelihood
estimates of the six regression coefficients necessary to describe the postu-
lated nonadditive hazards model applied to the n = 72 HIV-positive SEMHS
subjects who are less than 36 years old.
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Table 9.4. Estimated regression coefficients based on the Cox
proportional hazards model containing three two-way
interaction terms from the SFMHS data (n = 72, age < 35).

Terms Coefficients Estimates Std. errors p-values
CD4 b, —0.0049 0.0073 —

B b, 0.5566 1.5611 —

age bs —0.1454 0.2259 —

CD4 x B by —0.0009 0.0010 0.311
CD4 x age bs 0.0002 0.0002 0.466

B x age bs 0.0123 0.0474 0.795

LogLikelihood = —151.280

For example, the three estimated “interaction” coefficients (by, bs, and bg)
give no indication of an important pairwise dependence among the three
explanatory variables (p-values 0.311, 0.466, and 0.795, respectively). How-
ever, ad hoc comparisons among several estimated “interaction” coefficients
are not the best assessment of the joint influences among the model variables.
For the example, the three p-values (Table 9.4) likely reflect the absence of
interactions, but the p-values do not lend themselves to rigorous inferences
or simple interpretations.

The difficulty with a one-at-a-time interpretation of the model-estimated
“interaction” coefficients arises from the property that the estimated value
of each coefficient depends on the presence or absence of the other inter-
action terms in the model. For the three estimated interaction coefficients
(by, bs, and bg), a tempting interpretation is that the interactions involv-
ing age are unimportant because estimates b5 and by appear to reflect only
random influences (not significant). However, if these two terms are elimi-
nated from the model, the estimate b, takes on a different value, primarily
because all three estimated coefficients are highly correlated. The coefficient
by = —0.001 with p-value = 0.31 becomes —0.003 with p-value = 0.20. In
general, the direction and magnitude of these kinds of changes are not easily
predicted from a series of p-values.

The comparison of likelihood values, however, yields a simply interpreted
test-statistic and follows the usual pattern. The chi-square likelihood ratio
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Table 9.5. Estimated regression coefficients for the additive
Cox proportional hazards model applied to the HIV/AIDS data
(n=172, age < 35).

Variables Coefficients ~ Estimates  Std. errors  p-values
CD4-counts b, —0.003 0.001 <0.001
B-levels b, 0.366 0.162 0.024
age b; —0.017 0.037 0.653

LogLikelihood = —152.355

test statistic measuring the simultaneous influences of the three interaction
terms is

XZ = —2[108(L additive) - log(L interaction)]
— —2[—152.355 — (—151.280)] = 2.151.

The test statistic X? is an observation from an approximate chi-square dis-
tribution with three degrees of freedom (three deleted parameters—m = 3)
when only random differences exist between the interaction and additive
models. The additive model appears to be an adequate and, as always, a
simpler representation of the relationships within the sampled sample HIV
data (p-value = P(X? > 2.151 | by = bs = bs = 0) = 0.542). Partial like-
lihood estimated coefficients for the additive regression model are presented
in Table 9.5.

The additive model produces substantial evidence that CD4-counts and
B2-microgolbulin levels systematically and independently influence survival
time and essentially no evidence of an influence from the study partici-
pant’s age (CD4-counts: p-value < 0.001, B-levels: p-value = 0.024, and age:
p-value = 0.653).

Statistically commensurate measures (B i= b il S;,j) of the influence of
these three variables are as follows:

N —0.00283
cd4-counts: By = —— = —3.438,
0.00083
. 0.366
B-levels: B = ——— = 2.260, and
0.162
n —0.017
age: B3 = = —0.449.

0.037
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Table 9.6. The efficiency ratio* of the Weibull and Cox models
in terms of the standard errors for the two-sample regression
coefficients.

Ratio y=1 y =15 y =2 y =3 y =4
Afro=1 1.0 1.5 2.0 3.0 4.0
AM/Aog =2 1.0 1.6 2.1 3.2 4.2
AM/Ag =4 1.2 1.8 2.4 3.5 4.8

) ) variance(bcox)
* Efficiency ratio = .| —————>—.
variance(bweibun)

Comparisons among the three commensurate coefficients (B j-values) indi-
cate again the relative roles of the explanatory variables in predicting the
time between detection of HIV and a diagnosis of AIDS. The Cox-model
comparisons are similar to the parallel comparisons based on the paramet-
ric assumption that the survival times are a random sample from Weibull
probability distribution (Chapter 8).

The interpretations of the estimates, the tests, and their associated p-values
from a Cox estimated additive model are not different from additive models
in general. This property and the property that the Cox partial likelihood
method does not require detailed assumptions or knowledge about the sam-
pled populations are major reasons this approach is widely used. There is,
however, a cost.

When a parametric model is “correct,” the model parameters are typi-
cally estimated with greater efficiency (smaller variances) [2] and, of course,
the hazard and survival functions are simply estimated and more intu-
itively describe the survival data. The two-sample Weibull hazards model
shows that, as expected, the Weibull parametric estimation has greater effi-
ciency (lower variance) than the Cox semiparametric estimation (Weibull:
S; = 0.557 and Cox: S; = 0.592). The difference in statistical efficiency
depends primarily on the Weibull shape parameter y and increases as it
increases. Table 9.6 shows the ratio of the standard errors of the estimated
two-sample regression model coefficients for selected values of y for hazard
ratios A1 /Ao = 1, 2, and 4. However, for the range usually encountered in the
study ofhuman mortality or disease, only small differences exist in estimation
precision.
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Table 9.7. Comparison of the estimated standard errors for the Weibull and
Cox multivariable proportional hazards models (SFMHS data—n = 72 for age
< 35).

Weibull Cox

Variable  Estimates  Std.errors  p-value  Estimates  Std. errors  p-value

CD4 —0.002 0.001 0.005 —0.003 0.001 <0.001
B 0.265 0.123 0.031 0.366 0.162 0.024
age —0.010 0.028 0.726 —0.017 0.037 0.653

A summary of multivariable analyses (Cox versus Weibull—Table 9.7)
shows that the standard errors from the Weibull model (repeated from
Table 8.7—Chapter 8) are only slightly less than those from the Cox model
(repeated from Table 9.5) calculated from the same HIV/AIDS data (SFMHS
data—n = 72 for age < 35). In fact, for these two approaches, no impor-
tant differences are observed between the parametric and non-parametric
analyses.

Survival function

As might be expected, without a parametric model, the estimation of the
hazard and survival functions is not straightforward but not impossible.
For the Weibull and exponential survival models, these estimates are eas-
ily calculated. The estimated parameters in conjunction with the postulated
parametric model produce direct and intuitive estimates of the baseline haz-
ard and survival functions. Estimates without a parametric model are not as
simple. The essence of the process is similar to product-limit estimation of a
survival function. An assumption that the survival function is approximately
constant between complete survival times makes it possible to estimate this
constant value. As with the product-limit estimate, these constant and con-
ditional estimates are combined to produce an estimated survival function
over the range of the sampled data. Although this approach is simple in prin-
ciple, the details produce a complex equation and its solution is best left to a
computer program. However, for the two-sample model when the survival
times are unique (no ties), approximate estimates are easily calculated and
suggest the process for more complicated models.
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Table 9.8. Estimated survival functions based on
SFMHS data (African-Americans, n= 23 and d =17).

Time At-risk So(1)* So(1)** Si(n)f
1 23 0.960 0.957 0.911
4 21 0.920 0.911 0.826
5 20 0.878 0.865 0.743
8 19 0.836 0.820 0.664

13 17 0.790 0.772 0.585

14 16 0.745 0.723 0.512

15 15 0.701 0.675 0.445

16 14 0.657 0.627 0.383

18 13 0.613 0.579 0.328

22 11 0.560 0.526 0.260

23 10 0.507 0.474 0.213

25 9 0.449 0.421 0.162

29 6 0.365 0.351 0.101

30 5 0.285 0.281 0.057

31 4 0.209 0.210 0.028

37 3 0.138 0.140 0.011

80 1 0.040 0.000 0.001

* Cox model computer generated—nonsmoker.
** Approximate—nonsmoker.
t8o(t) = [8o(#)]**"8—smoker.

Using again the smoking/survival data for the SFMHS African-American
subjects (Chapter 7), the computer estimate and the approximate survival
functions illustrate (Table 9.8). Figure 9.3 displays the Cox model computer
estimated baseline survival function Sy(¢) for nonsmokers and the corre-
sponding estimated survival function $1(t) for smokers.

An approximate baseline survival function can be estimated using the
expression

Sute) ~ [T ~ [T
1

where d; represents the number of deaths among #; individuals in the ith risk

setandi =1, 2, ..., d = number of complete survival times. The second
expression is the product-limit estimate (Chapter 4).
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Estimates of the survival functions for n = 23 nonsmoking and smoking SFMHS African-
American subjects using the Cox proportional hazards model.

Once a baseline survival function is estimated, estimation of survival func-
tions associated with selected levels of the explanatory variables follows the
natural pattern, where

Si(t | Xiv Xin oo xip) = [So(£)]oP(X i),

Using the two-sample model and smoking data, the estimated survival func-
tion for smokers (F = 1 and b = —0.823) is

S1(t1F =1) = [So(6)]*PD = [§,(£)]>¥ (Table 9.8).

For example, for + = 15 months, So(t) = 8o(15) = 0.701(nonsmokers),
yielding$,(t) = §,(15) = (0.701)>??® = 0.445 (smokers).

Two issues need to be kept in mind in interpreting an estimated survival
function:

1. Survival functions estimated from the baseline values [So(¢)
produces §;(t)] require the hazard functions to be proportional, which is
an assumption and not a fact.
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2. Also, survival functions estimated from baseline probabilities are fre-
quently extrapolated beyond the limits of the data (a poor idea in most
circumstances).

For the example data, the baseline survival function (Table 9.8 and Fig-
ure 9.3) is based on the assumption of an additive proportional hazards
model and estimated from 17 (n = 23 and d = 17) survival times ranging
from 0 to 80 months. The survival function for the smokers (Figure 9.3)
is estimated from a hazards model assumed to be proportional, primarily
dominated by data on nonsmokers, and much of the curve represents prob-
abilities extrapolated beyond the observed data for smokers. There are only
six smokers and their survival times range from 4 to 23 months.

Goodness-of-fit

The assessment of the Cox estimated proportional hazards model as a sum-
mary of the relationships within the survival time data follows the pattern
described for parametric models (Chapter 8). The nonparametric estimation
process is not an important factor. A primary issue is again the proportion-
ality of the hazard functions. As before, it is essential to verify as well as
possible that the influence of explanatory variables does not depend on sur-
vival time. When the hazard functions fail to be proportional, the estimated
regression coefficients (b i) no longer parsimoniously reflect the influence
of the explanatory variables. That is, the influence of a single variable is not
reflected by a single coefficient.

The SFMHS smoking data (African-American, n = 23) provide a simple
illustration of exploring goodness-of-fit issues with residual values. As with
the Weibull distribution, the Cox—Snell residual values calculated from a
two-sample analysis are estimated by

ri = —log(8[t; | F]) = —eb* log(So[4]).

The specific r;-values are given in Table 9.9 based on the computer-estimated
survival function Sy(¢) (Table 9.8—column 3). These residual values are
treated much like “data.” As before, product-limit estimation produces the
probability G(r;) = P(R > r;) associated with each complete survival time
(Table 9.10—column 3). For example, the estimated probability of observing
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Table 9.9. The Cox-Snell residual values
for the two-sample analysis of
nonsmokers and smokers among the

n = 23 African-American SFMHS subjects.

t; So(ti) T
1. 1 0.960 0.033
2. 4 0.920 0.154
3. 5 0.878 0.105
4. 8 0.836 0.330
5. 13 0.790 0.190
6. 14 0.745 0.237
7. 15 0.701 0.287
8. 16 0.657 0.339
9. 18 0.613 0.899
10. 22 0.560 0.468
11. 23 0.507 1.248
12. 25 0.449 1.470
13. 29 0.365 0.812
14. 30 0.285 1.012
15. 31 0.209 1.262
16. 37 0.138 1.595
17. 80 0.040 2.595

a residual value greater than rs5 = 0.237 is G(rs) = P(R > 0.237) = 0.767.
These probabilities are again a random sample from an exponential dis-
tribution with A = u = 1 (Figure 9.4) when only random differences exist
between model and data. The plotted r;-values (Figure 9.4) appear to corre-
spond to the “unit” exponential distribution.

In addition, the points created by plotting the log-log transformed esti-
mated probability function G(r) for each logarithm of the residual value
log(r) randomly deviate from a straight line (intercept = 0 and slope = 1)
when the residual values represent only the random variation associated with
a “unit” exponential distribution (Figure 9.5). Specifically, ignoring ran-
dom variation for the moment, when G(r) = e’ then log(—log[G(r)]) =
log(r), a straight line (intercept =0 and slope = 1). The least-squares
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Table 9.10. Comparison of log(r) and log(—log[G(r)])
to assess the goodness-of-fit of the Cox estimated
proportional hazards model from the SFMHS smoking

data (n = 23).
ri G(ri)  log(r;)  log(—log[G(r)])
1. 0033 0957  —3.423 —3.113
2. 0.105 0911  —2254 —2.373
3. 0.154  0.863  —1.872 —1915
4, 0.190 0815  —1.661 —1.587
5. 0237 0767  —1.438 —1.328
6. 0287 0719  —1248 —1.110
7. 0330 0671  —1.109 —0.920
8. 0339  0.623  —1.081 —0.749
9. 0468 0575  —0759  —0.593
10. 0812 0518  —0208 —0.418
11. 0.899  0.460  —0.107 —0.254
12. 1012 0.395 0.012  —0.072
13. 1248 0329 0222 0.107
14. 1262 0.263 0233  0.289
15. 1470 0.197 0385  0.484
16. 1595  0.132 0.467  0.707
17. 2595 0.000 0954 —

estimated straight line in Figure 9.5 has an estimated intercept of 0.005 and
slope of 0.966, providing evidence of a “good fit” of the proportional haz-
ards model to the smoking data. Graphically, both plots show no apparent
systematic patterns and, therefore, no persuasive reason exists to modify the
hazards model. As always, straight lines reflecting fit are easily interpreted and
intuitive and provide simple identification of randomness/nonrandomness.

A goodness-of-fit evaluation of the multivariable Cox model applied to
the HIV/AIDS data to assess the influences of the CD4-counts, B-levels, and
age variables also does not differ in principle from the parametric residual
analysis. Figure 9.6 displays the plot of the log-log transformed residual
values from the Cox additive model describing the survival experience of
the n = 72 HIV/AIDS study subjects (Table 9.5). As with the smoking data,
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Figure 9.4. Plot of the residual values (r) and their estimated probabilities G(r) = P(R > r) as well
as the “unit” exponential curve e from the SFMHS African-American smoking data
(n=23).
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Figure 9.5. Plot of the logarithms of the residual values log(r) and their log-log transformed proba-
bilities log(—log[f](r)]) from the SFMHS African-American smoking data (n = 23).
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log(-log[G(r)])

log(r)

Figure 9.6. Plot of the logarithms of the residual values and their log-log transformed probabilities

from the SFMHS HIV/AIDS data (n= 72, age < 35).

the plot of the transformed residual values gives no indication of a substantial
lack of fit. The intercept and slope of the straight line describing the 72
transformed residual values are intercept = 0.047 and slope = 1.071. The
corresponding values that are expected to occur when the model “fits” are
zero and one.

Once residual values are calculated, they can be plotted in a variety of ways
to assess randomness. They can be simply plotted in some order (called an
index plot). For example, the residual values can be plotted by date of entry
into the study or by their identification numbers or practically any other
potentially useful variable. Residual values can be plotted against survival
times, ranks of survival times, explanatory variables in the model, or vari-
ables not in the model. They can be transformed and plotted against values
of explanatory variables. In short, residual values can be plotted against a
long list possibilities with the goal of detecting nonrandom patterns. The
process is not governed by a set of rules. These plots are simply a search for
nonrandomness. When such a search fails to identify a pattern, confidence
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Figure 9.7. Transformed modified Cox—Snell residual values—CD4-counts.

is increased that the model is at least an adequate representation of the rela-
tionships within the collected data.

Among the many choices from plotting residual values, the modified Cox—
Snell residual values (denoted again m;—Chapter 8) again provide a fre-
quently useful statistical/graphical tool to identify any substantial lack of
fit associated with an explanatory variable. In fact, transformed m;-values
have an approximately symmetric distribution with mean value zero. Such a
transformation makes the plotted residual values easier to interpret visually.
This somewhat complex transformation is

M, = sign(ri)\/—Z(ri + 6; log[8; — i),

where sign(r;) = —1 for r; < 0 and +1 otherwise and §; = 1 for complete
observations and §; = 0 for censored observations. Figures 9.7, 9.8, and 9.9
are plots of the M residual values for the HIV/AIDS CD4-count, the 8-level,
and the age explanatory variables from the additive model (Table 9.5). The
plots include a line (smoothed residual values—Chapter 4) summarizing
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Figure 9.8. Transformed modified Cox-Snell residual values—g-levels.
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the residual pattern (if any) associated with each variable. No striking non-
randomness is apparent, with the possible exception of the CD4-counts.

To repeat one more time because it is critically important—the influences
of the explanatory variables in a survival model (parametric or semiparamet-
ric) are summarized and described by hazard functions that are proportional.
When the ratio of the hazard functions is constant over the entire range of
time considered (proportional!), then and only then, the influence of each
explanatory variable is simply summarized. However, an explanatory vari-
able may become less related to survival over time, become more predictive,
or change in some other nonproportional way. For example, CD4-counts
might become a stronger indicator of a diagnosis of AIDS as survival time
decreases.

Previously a categorical variable was temporarily created (strata) to explore
the linearity of an explanatory risk variable or the interaction between two
explanatory variables (Chapter 8). Much the same strategy can be used to
explore the assumption that two or more hazard functions are proportional.
As before, the data are classified into strata. In the case of assessing the
relationship between an explanatory variable and survival time, the strata
are based on the survival time itself. It is then a simple matter to compare the
strata-specific estimated regression coefficients. When the hazard functions
are proportional, these estimates differ by chance alone.

The measured CD4-levels from the HIV/AIDS data (n = 72 study sub-
jects) and the Cox proportional model hazards model,

hi(t) = ho(t)e ™,

illustrate the comparison of the two estimated values of the regression coef-
ficient b,. The value (b)) estimated from survival times less than the median
value is compared to the value (Eu) estimated from survival times greater
than or equal to the median value (b; = b,? or proportional?). The two esti-
mated coefficients are as follows: for t < 72.0 weeks, b; is —0.0037, and for
t > 72.0 weeks, b, is —0.0017 (estimated median value = 72.0 weeks). The
estimated coefficients appear to differ. However, the approximate 95% confi-
dence intervals are (—0.0054, —0.0017) and (—0.0046, 0.0012), respectively.
Because of the substantial variation associated with these estimates (n = 36
values in each group), they provide at best weak evidence that the influence
of the CD4-counts on survival time differs between strata.
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Dividing the data into strata is a simple but not a statistically powerful
approach to the question: Are the hazard functions proportional? The sam-
ple size in each strata is considerably reduced producing in many data sets
unstable estimates (high variability). For the example, the estimated coeffi-
cients from the stratified analysis of the HIV/AIDS data are each based on
36 observations (33 and 10 complete observations in each group). However,
a more sophisticated approach exists that does not require a continuous
survival time variable to be subdivided into separate analyses.

A substantially more powerful method is created by incorporating survival
time (as reported) directly entered into a hazards model. More formally,
an interaction term (variable x time) is added to the model, potentially
identifying survival-time-related changes in the influence of an explanatory
variable. A simple example of a two-sample hazards model that produces a
hazard ratio that is not constant with respect to time (not proportional) is

hl(t) — ho(t)6b1F+b2 log(t) .
The hazard ratio is

hi(t) _ G Fbalog)
ho(t)

and obviously depends on survival time except when b, =0 (in fact,

hazard ratio =

log(hazard ratio) = b; F + b, log(#) is a linear function of time).
Continuing the HIV/AIDS data example, an extended proportional haz-
ards model is proposed where

hl(t) — ho(t)eblcd4i+b2[cd4iXlog(ti)] — ho(t)e[b1+bzlog(ti)]cd4,~.

The interaction of CD4-counts with survival time (log[#;] x cd4;) is a formal
description of time dependency (lack of proportionality). More simply, when
b, is not zero, the hazard ratio depends on survival time. The estimated
regression coefficient b, directly reflects the proportionality assumption and
allows a statistical assessment (test) of this conjecture. Because the estimate
b, will never be exactly zero when estimated from sampled data, the question
becomes: Is there statistical evidence that b, is not zero?

The logarithm of survival time log(#) is directly entered into the model
primarily for computational reasons. Furthermore, estimation of the “inter-
action” model coefficients requires special but generally available software.
The SAS, SPLUS, STATA, and R statistical analysis systems, for example, allow
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Table 9.11. Estimated coefficients from an extended Cox model to explore
the possibility of nonproportional hazard functions (SFMHS data, n = 72).

Terms Coefficients Estimates Std. errors p-values
CD4 by —0.0092 0.0028 —
log(time) x CD4 b, 0.0018 0.0008 0.018

LogLikehood = —151.913

estimation of parameters from a hazards model containing time-dependent
interaction terms (log(#) x variable).

Using the HIV/AIDS data and the extended proportional hazards model
yields the estimated coefficient b, = 0.0018 associated with the CD4/time
interaction (Table 9.11). The usual statistical assessment of the estimated
b,-coefficient and, therefore, an assessment of time-dependency associated
with the CD4-count is

2 [b2=07 _ o008 -0 _
LS, /L ooooos | T

The associated chi-square test statistic X* (degrees of freedom = 1) yields a
p-value of P(X? > 5.579 | b, = 0) = 0.018, suggesting nonproportionality
(evidence of an interaction with survival time). In other words, it is likely that
the influence of the CD4-count on survival time is not accurately measured
by a single coefficient.

The strategy of adding interaction terms to a hazards model to explore
possible time dependency (nonproportionality) applies to any number of
explanatory variables. The HIV/AIDS data continue to illustrate. The time-
dependent (nonadditive) proportional hazards model based on the three
explanatory variables, CD4-count, ,-microgolbulin, and age, becomes

hi(t) = ho(t)eh1fd4i+hz/3i +bsage; +ba[cddi xlog(t;)]4-bs [ Bi xlog(t:)14-bs [age; xlog(t:)]

Not unlike the previous nonadditive models, the explanatory variables are
no longer independent. Each variable depends on survival time. The six
estimated coefficients for this extended Cox proportional hazards model are
given in Table 9.12. Both the single-variable model (Table 9.11) and the
three-variable model (Table 9.12) indicate a possible lack of proportionality
associated with the CD4-counts. The parallel assessments of the B-levels and
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Table 9.12. Estimated coefficients from an extended three
variable Cox estimated model allowing the possibility of
nonproportional hazard functions (SFMHS HIV/AIDS data,
n=72 and age < 35).

Terms Coefficients  Estimates  Std. errors  p-values
CD4 b —0.007 0.003 —

B b, 0.420 0.662 —

age b3 —0.145 0.143 —
log(time) x CD4 by 0.001 0.001 0.084
log(time) x B bs —0.024 0.181 0.894
log(time) x age  bs 0.038 0.040 0.332

LogLikehood = —149.507

the study subject’s age indicate that a proportional hazards model is probably
an adequate representation of their relationship to survival time. However, a
comparison between likelihood values from the extended model (Table 9.12)
and the additive model (Table 9.5) shows a difference of

X? = —2[—149.507 — (—152.355)] = 5.697,

with a corresponding p-value of 0.127 (degrees of freedom = 3).

Stratified analysis

A possible reason for a lack of proportionality among hazard functions is
that the baseline hazard functions differ among the levels of another vari-
able. In this case, a proportional hazards model fails to adequately summarize
the collected survival data without special modification. A direct and sim-
ple strategy consists of conducting a separate analysis within each of several
more homogeneous strata. A series of stratified proportional hazards models
(one within each stratum) then produces estimates of the regression coeffi-
cients unbiased by the stratum variable.

Alternatively, a more efficient hazards model that accounts for differences
in baseline hazard functions is

hi(£) = hy(t)eXbivi k=1,2,...,¢g = number of groups (strata).
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This model postulates a different baseline hazard function for each stratum
[h1(1), ha(t), ..., hg(t)], whereas the explanatory variable coefficients (b;)
remain the same within all strata. Partial likelihood estimates, nevertheless,
produce estimated regression coefficients without defining the g baseline
hazard functions. The estimates of the regression coefficients b j canbe viewed
as pooled estimates of each of g stratum-specific estimates. The estimation of
these coefficients requires special estimation techniques but their evaluation
and interpretation follow the usual pattern.

Once the regression coefficients are estimated, comparisons of the log—
log transformed product-limit estimated survival functions allow a simple
graphic assessment of the assumption that the hazard functions are propor-
tional among the strata. That is, within each stratum, log-log transformed
estimated survival functions plotted for the values of thelogarithm of the sur-
vival times deviate randomly from straight and parallel lines (proportional).
Thus, the hazard functions differ only because the baseline hazard functions
differ. The statistical tests and interpretations of the model-estimated coef-
ficients (b ;) are then “free” from the influences of differing baseline hazard
functions (the stratum variable).

The n = 72 SFMHS participants measured for their CD4-counts classi-
fied as “hard” drug users (drugs other than marijuana, amyl nitrate, and
nitrous oxide) and nonusers illustrate the application of a stratified hazards
model. Using Cox proportional hazards partial likelihood estimates modi-
fied to account for differing baseline hazard functions within each drug user
category gives close to the same estimated CD4-coefficient (b = —0.00027—
S; = 0.0008) that was observed in the previous model (drug-user status
ignored—Table 9.5).

Figure 9.10 shows the two stratum-specific product-limit estimated sur-
vival functions. Figure 9.11 displays the two log-log transformed product-
limit estimated survival functions plotted against the log of the survival time.
In symbols, log( —log[lA’i]) is plotted against log[t;]) for each stratum. The
least-squares estimated line for users (intercept = —4.478 and slope =
1.055) appears essentially parallel to the estimated line for nonusers
(intercept = —4.770 and slope = 0.943).

Another useful comparison of the log—log transformed survival functions
is achieved by plotting the transformed survival function for nonusers (hor-
izontal axis) against the transformed survival function for users (vertical



1.0

0.8

0|.6

survival time

0.4

—— nonusers
---- users

0.2

0.0

T
0 20 40 60 80 100
time

Figure 9.10. Stratified analysis by drug use (presence/absence)—product-limit estimated survival func-
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functions for SFMHS data, age less than 36 years, n = 72.
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Figure 9.12. The log-log transformed product-limit survival function for drug users plotted against the

log-log transformed product-limit survival function for nonusers—stratified analysis.

axis). When two functions form parallel lines, the plot of values from one
against the values from the other is a straight line with slope 1.0. Figure 9.12
is such a plot for the AIDS/drug-user transformed product-limit estimated
survival functions and, consistent with Figures 9.10 and 9.11, shows only
moderate deviations from a straight line with slope = 1.0.

Stratified data in general allow adjustment for a variable without postu-
lating a relationship or model. A hazards model that postulates a number
of different baseline hazard functions behaves like stratification in general.
The within-stratum estimates are not influenced by the different baseline
hazard functions and, therefore, neither is the summary estimates of the
regression coefficients that result from combining these estimates. In the
example, the CD4/survival relationship is not influenced by the drug-user
statuses that make up the two strata. When these stratum-specific estimates
randomly differ from the same value, the combined values are efficiently
estimated and, of more importance, provide a single and useful summary of
the relationship to the survival pattern.
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The R-code and its explanation, presented in the following, are, as they say,
“the tip of the iceberg.” The statistical language called R is extensive, fully
documented online, and described in a number of manuals and books. In
fact, there is an entire book completely devoted to the application of R to
survival data [11]. Unlike statistical programs (e.g., SAS, STATA, and SPSS),
Ris a computer language that consists of a large (very large) number of com-
mands. These commands are combined to read data into a computer system,
process data into an appropriate form, and create a sequence of functions
to statistically analyze the question at hand. This process frequently requires
considerable effort, but the payoff is that it is done in an interactive envi-
ronment that allows complete freedom in choice of techniques and analytic
approaches. To use the R computer tools specifically designed for survival
analysis, it is necessary to have some knowledge of the R-language in general.
Therefore, the following pages assume a basic knowledge of the R-language
and are presented more to give a feeling for the R-system than as a detailed
description of the computer analysis of survival data.

What follows primarily illustrates the four fundamental R-functions that
are at the heart of the computer techniques for the analysis survival data.
They are:

1. SURVFIT (product-limit estimation—Chapter 4)

2. SURVREG (parametric model estimation—Chapters 5, 6, 7, and 8)

3. SURDIFF (log-rank test—Chapter 7)

4. COXPH (semiparametric Cox proportional hazards model—Chapter 9).
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R-documentation copied directly from the computer “online manual”
indicates the general pattern of the R-language. These four fundamental
R-functions are obviously a small part of an extensive computer system that
is useful for most statistical calculations.

Four R-functions for survival analysis

SURVFIT: Compute a Survival Curve for Censored Data

Description
Computes an estimate of a survival curve for censored data using either the Kaplan-
Meier or the Fleming—Harrington method or computes the predicted survivor function
for a Cox proportional hazards model.

Usage
sunvfit(formula, data, weights, subset, na.action,
newdata, individual=F, conf.int=.95, se.fit=T,
type=c("kaplan-meier”,“fleming-harrington”, “fh2"),
error=c(“greenwood"”,“tsiatis"),
conf.type=c(“log”,"log-log","plain”,"none"),
conf.lower=c(“usual”, “peto”, “modified"))

SURVREG: Regression for a Parametric Survival Model

Description
Regression for a parametric survival model. These are all time-transformed location mod-
els, with the most useful case being the accelerated failure models that use a log trans-
formation.

Usage
survreg(formula=formula(data), data=parent.frame(), weights,
subset,na.action,dist="weibull”, init=NULL, scale=0,
control=survreg.control(),parms=NULL,model=FALSE, x=FALSE,
y=TRUE, robust=FALSE, . . .)

SURVDIFF: Test Survival Curve Differences

Description
Tests if there is a difference between two or more survival curves using the G-rho family
of tests, or for a single curve against a known alternative.

Usage
survdiff(formula, data, subset, na.action, rho=0)
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COXPH: Fit Proportional Hazards Regression Model

Description

Usage

Fits a Cox proportional hazards regression model. Time-dependent variables, time-
dependent strata, multiple events per subject, and other extensions are incorporated
using the counting process formulation of Andersen and Gill.

coxph(formula, data=parent.frame(), weights, subset,
na.action, init, control, method=c(“efron”,"breslow”,"exact”),
singular.ok=TRUE, robust=FALSE,
model=FALSE, x=FALSE, y=TRUE, . . .)

The following applied examples using these four R-functions are slightly
edited (deleting a few details to focus on the important issues).

Example 1

Estimation for exponential and Weibull survival distributions

#exponential and Weibull survival distributions (Chapters 5 and 6)

library(survival)  #invokes the library of R-functions specific to survival analysis

data
<-¢(.2,5.0,0.3,3.0,1.3,0.9,7.2,2.3,3.4,
.7,2.8,1.6,1.1, 1.1,0.7,3.9,1.7,7.3,4.5,
.5,1.2,0.9,0.6,0.2,2.1,2.1,5.0,4.0,0.8,5.0,
.5,1.8,3.6,0.1,7.9,4.2,0.1,3.4,0.4,3.6)

o J N =

cc <- ¢(0,0,0,1,1,1,0,1,0,1,1,0,1,0,1,0,0,
Ol110701OIO!OlllOrllolOrllOIO!Ololllllollloll)

n <-length(t)  #number of observations
d <- sum(cc) #number of complete observations

#exponential distribution estimates

mean <- sum(t)/d
1 <- 1/mean
median <- mean*log(2)
round(cbind(n,d,1,mean,median),3)

n d 1 mean median
[1,] 40 16 0.150 6.688 4.635

#Estimation of the product-limit (Kaplan—Meier) survival curve
fit <- survfit(Surv(t,cc)1)
summary(fit)
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Call: survfit (formula=surv(t,cc)™1)

time n.risk n.event survival std.err lower upper
0.7 33 1 0.970 0.0298 0.913 1.000
0.9 31 1 0.938 0.0422 0.859 1.000
1.1 29 1 0.906 0.0517 0.810 1.000
1.3 25 1 0.870 0.0610 0.758 0.998
2.1 21 1 0.828 0.0708 0.701 0.979
2.3 19 1 0.785 0.0794 0.644 0.957
2.7 18 1 0.741 0.0861 0.590 0.931
2.8 17 1 0.698 0.0914 0.540 0.902
3.0 16 1 0.654 0.0955 0.491 0.871
3.4 15 1 0.610 0.0986 0.445 0.838
3.6 13 1 0.563 0.1016 0.396 0.802
4.2 9 1 0.501 0.1079 0.328 0.764
4.5 8 1 0.438 0.1111 0.267 0.720
5.0 7 2 0.313 0.1091 0.158 0.620

plot(fit, xlab="“time”, ylab="survival probability”, main="“Example data”)

#exponential model estimates
fit <- survreg(Surv(t,cc)™1, dist="“exponential”)
sumarvy(fit)

Call: survreg (formula=Surv (t,cc)’l, dist="exponential")

Value Std. Error =z P
(Intercept) 1.9 0.25 7.6 2.94e-14

Exonential distribution
Loglik (model)= -46.4 Loglik (intercept only)= -46.4

b <- fit$coefficients #estimated model parameters
L <- —2*fit$loglik([2] #—2log-likelihood value
mean <- exp(b)

1 <- 1/mean

median <- log(2)/1

> round (cbind(n,d,1,mean,median, L), 3)
n d 1 mean median L

[1,] 40 16 0.150 6.688 4.635 92.808

#Weibull distribution model estimates
fit <- survreg(Surv(t,cc)1, dist=“weibull”)
summary(fit)
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Call: survreg(formula=Surv(t,cc)’l, dist="weibull")

Value Std. Error z P
(Intercept) 1.714 0.152 11.30 1.25e-29
Log (scale) -0.521 0.189 -2.76 5.78e-03
Scale = 0.594
Weibull distribution
Loglik (model)= -43.4 Loglik(intercept only)= -43.4
b <- fit$coefficients #estimated model parameters
L <- —2*fit$loglik[2] #—2log-likelihood value
s <- fit$scale #estimated reciprocal of the shape parameter
1 <- exp(—b/s) #scale parameter
g<-1/s #shape parameter
mean <-1"(—1/g)*gamma(1+1/g)
median <-(log(2)/1)*(1/g)
round (cbind(n,d, 1, g,mean,median, L), 3)

n d 1 g mean median L
(Intercept) 40 16 0.056 1.683 4.958 4.667 86.745

Example data

1.0

0|.8

0.6

survival probability
0.4

0.2
1

0.0

time
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Example 2

Estimation for exponential and Weibull distribution two-sample models

#Two-sample analysis (Chapter 7)

library(survival) #invokes the library of R-functions specific to survival analysis

data

<-¢(.2,5.0,0.3,3.0,1.3,0.9,7.2,2.3,3.4,
.7,2.8,1.6,1.1,1.1,0.7,3.9,1.7,7.3,4.5,
.5,1.2,0.9,0.6,0.2,2.1,2.1,5.0,4.0,0.8,5.0,
.5,1.8,3.6,0.1,7.9,4.2,0.1,3.4,0.4,3.6)

o J N o+t =

cc <- ¢(0,0,0,1,1,1,0,1,0,1,1,0,1,0,1,0,0,
0,,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1)

sex <- ¢(1,1,0,1,0,1,0,0,1,0,1,0,0,1,2,0,0,0,1,
0,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,1,0,1)

n <- length(t) #number of observations
d <- sum(cc) #number of complete observations

#Product-limit (Kaplan—Meier) estimated survival curve
fit <- survfit(Surv(t,cc)sex)
summary(fit)

Call: survfit (formula=Surv(t,cc)” sex)
sex=0

time n.risk n.event survival std.err lower upper

1.1 17 1 0.941 0.0571 0.836 1.000
1.3 16 1 0.882 0.0781 0.742 1.000
2.1 13 1 0.814 0.0972 0.645 1.000
2.3 11 1 0.740 0.1131 0.549 0.999
2.7 10 1 0.666 0.1237 0.463 0.959
4.2 6 1 0.555 0.1446 0.333 0.925
5.0 5 1 0.444 0.1525 0.227 0.871
sex=1

time n.risk n.event survival std.err lower upper

0.7 15 1 0.933 0.0644 0.815 1.000
0.9 13 1 0.862 0.0911 0.700 1.000
2.8 8 1 0.754 0.1284 0.534 1.000
3.0 7 1 0.646 0.1485 0.412 1.000
3.4 6 1 0.538 0.1581 0.303 0.957
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3.6 4 1 0.404 0.1663 0.180 0.905
4.5 3 1 0.269 0.1561 0.086 0.839
5.0 2 1 0.135 0.1231 0.022 0.808

plot(fit, xlab="“time”, ylab="survival probabilities”, 1ty=1:2, main="“Two-sample data”)
text(3, 0.4, “Male”, cex=1.5)
text(6, 0.5, “Female”, cex=1.5)

#exponential distribution estimates (females)

t0 <- t[sex==0]

c0 <- cc[sex==0]

n0 <- length(t0) #number of complete observations
d0 <- sum(c0) #number of complete observations

mean0 <- sum(t0)/d0
10 <-1/mean0
median0 <- mean0*log(2)

round (cbind (n0,d0,10,mean0,median0), 3)
n0 do 10 mean0 median0
[1,] 21 8 0.118 8.450 5.857

#exponential distribution estimates (males)

tl <- t[sex==1]

cl <- cc[sex==1]

nl <-length(tl) #number of observations

d1 <- sum(cl) #number of complete observations
meanl <- sum(tl)/d1

11 <- 1/meanl

median 1 <-meanl *log(2)

round (cbind(nl,dl,11,meanl,medianl), 3)
nl dl 11 meanl medianl
[1,] 19 8 0.203 4.930 3.414

#logrank test (male compared to female survival)
survdiff(Surv(t,cc)sex)

Call: survdiff (formula=Surv(t,cc) sex)

N Observed Expected (0-E)"2/E (0-E)"2/V
sex=0 21 8 10.21 0.478 1.42
sex=1 19 8 5.79 0.844 1.42
Chisg= 1.4 on 1 degrees of freedom, p= 0.233
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fit <- coxph(Surv(t,cc)sex)

summary(fit)
Call: coxph(formula = Surv(t, cc) ~ sex)
coef exp (coef) se (coef) z P
sex 0.619 1.86 0.522 1.18 0.24
exp (coef) exp (-coef) lower.95 upper.95
sex 1.86 0.539 0.667 5.17

Likelihood ratio test= 1.40 on 1 df, p=0.236
Wald test = 1.40 on 1 df, p=0.236
Score (logrank) test = 1.45 on 1 df, p=0.229

#exponential model estimates (males/females)
fit <- survreg(Surv(t,cc)sex, dist="exponential”)
summary(fit)

Call: survreg(formula=Surv(t,cc) sex, dist="exponential")

Value Std. Error z P
(Intercept) 2.13 0.354 6.04 1.58e-09
sex -0.54 0.500 -1.08 2.80e-01

Exponential distribution
Loglik(model)= -45.8 Loglik(intercept only)= -46.4
Chisg= 1.15 on 1 degrees of freedom, p= 0.28

b <- fit§coefficients #estimated model parameters
L <- —2*fit$loglik([2] #—2log-likelihood value
mean0 <- exp(b[1]) #estimated scale parameter
ratio <- exp(b[2]) #estimated hazard ratio

meanl <-mean0O*ratio
10 <- 1/mean0
11 <- 10/ratio
median0 <- log(2)/10
medianl <-log(2)/11

round (cbind (10,11, mean0, meanl,median0,medianl, ratio,L), 3)

10 11 mean0 meanl median0 medianl ratio L
(Intercept) 0.118 0.203 5.857 3.414 5.857 3.414 0.583 91.656
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#Weibull distribution model estimates
fit <- survreg(Surv(t,cc)sex, dist="weibull”)
summary(fit)

Call: survreg(formula=Surv(t,c)’sex, dist="weibull")

Value Std. Error z o)
(Intercept) 1.891 0.196 9.64 5.30e-22
sex -0.477 0.273 -1.75 8.08e-02
Log (scale) -0.605 0.194 -3.12 1.83e-03

Weibull distribution
Loglik(model)= -42 Loglik(intercept only)= -43.4
Chisg= 2.75 on 1 degrees of freedom, p= 0.097

s <- fit$scale #estimated reciprocal of the shape parameter
b <- —fit$coefficients/s #estimated model parameter
L <- —2*fit$loglik([2] #—2log-likelihood value

10 <- exp(b[1])

11 <- exp(b[1]+b[2])

g<—1/s

mean0 <- 10"(—1/g)*gamma(1+1/g)
meanl <- 11"(—1/g)*gamma(1+1/g)
median0 <- (log(2)/10)"(1/g)
medianl <- (log(2)/11)"(1/g)

round (cbind(n,d,10,11,g,mean0,meanl, median0,medianl, L), 3)
n d 10 11 g mean0 meanl median0 medianl L
(Intercept) 40160.03130.0751.8325.8863.6535.423 3.366 83.993

#plot of male and female survival curves assuming Weibull distributed survival times
plot(fit, xlab="“time”, 1ty=1:2, ylab="survival probability’, main="“Two-sample data”)
T <-seq(0,8,0.1)

S0 <- exp(—10*T"g) #estimated baseline survival function
lines(T, SO, 1ty=2)
S1 <- exp(—11*T"g) #estimated survival function

lines(T, S1, 1ty=3)

text(3, 0.4,”Male”, cex=1.5)

text(6.5, 0.5,”Female”, cex=1.5)

label <- c(“Product-limit estimates”, “Weibull model (female)”, “Weibull model (male)”)
legend(1, 0.2, label, 1ty=1:3)
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Example 3

Estimation for multivariable proportional hazards models

#Multivariable proportional hazards model (Chapters 8 and 9)

library(survival)  #invokes the library of R-functions specific to survival analysis

#data

t <- ¢(1.2,5.0,0.3,3.0,1.3,0.9,7.2,2.3,3.4,
2.7,2.8,1.6,1.1, 1.1,0.7,3.9,1.7,7.3,4.5,
7.5,1.2,0.9,0.6,0.2,2.1,2.1,5.0, 4.0,0.8,5.0,
0.5,1.8,3.6,0.1,7.9,4.2,0.1,3.4,0.4,3.6)

cc <~ ¢(0,0,0,1,1,1,0,1,0,1,1,0,1,0,1,0,0,
6,1,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1)
sex <- c¢(1,1,0,1,0,1,0,0,1,0,1,0,0,1,1,0,0,0,1,
0,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,1,0,1)

age <- c(40,48,33,42,41,46,53,57,55,48,33,59,44,
52,51,40,33,37,41,41,46,47,46,41,44,53,37,38,
38,47,54,44,42,51,35,43,53,48,37,52)

n <- length(t) #number of complete observations
d <- sum(cc) #number of complete observations
cbind(n,d)

n
[1,1] 40 24

#Product-limit (Kaplan—Meier) survival curves
fit <- survfit(Surv(t,cc)sex)
summary(fit)

Call: survfit(formula = Surv(t, cc) ~ sex)

sex=0

time n.risk n.event survival std.err lower upper

1.1 17 1 0.941 0.0571 0.836 1.000
1.3 16 1 0.882 0.0781 0.742 1.000
2.1 13 1 0.814 0.0972 0.645 1.000
2.3 11 1 0.740 0.1131 0.549 0.999
2.7 10 1 0.666 0.1237 0.463 0.959
4.2 6 1 0.555 0.1446 0.333 0.925
5.0 5 1 0.444 0.1525 0.227 0.871
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sex=1

time n.risk n.event survival std.err lower upper

0.7 15 1 0.933 0.0644 0.815 1.000
0.9 13 1 0.862 0.0911 0.700 1.000
2.8 8 1 0.754 0.1284 0.540 1.000
3.0 7 1 0.646 0.1485 0.412 1.000
3.4 6 1 0.538 0.1581 0.303 0.957
3.6 4 1 0.404 0.1663 0.180 0.905
4.5 3 1 0.269 0.1561 0.086 0.839
5.0 2 1 0.135 0.1231 0.022 0.808

plot(fit, xlab="“time”, ylab="survival probability”, 1ty=1:2, main="“Two-sample data”)
text(6, 0.65, “Female”, cex=1.5)
text(3, 0.4, “Male”, cex=1.5)

#age less than 45
fit <- surfit(Surv(t[age<45],cc[age<45])sex[age<45])
summary(fit)

Call: survfit(formula=Surv (t[age<45],ccl[age<d45]) sex[age<d45])

sex[age < 45]=0

time n.risk n.event survival std.err lower upper
1.1 11 1 0.909 0.0867 0.754 1.000
1.3 10 1 0.818 0.1163 0.619 1.000
2.1 8 1 0.716 0.1397 0.488 1.000
4.2 4 1 0.537 0.1871 0.271 1.000

sex [age < 45]=1

time n.risk n.event survival std.err lower upper

2.8 4 1 0.75 0.217 0.426 1.000
3.0 3 1 0.50 0.250 0.188 1.000
4.5 2 1 0.25 0.217 0.046 1.000

plot(fit, xlab="“time”, ylab="“survival probability’, 1ty=1:2, main="“Two-sample data”)
text(6, 0.9, “age less than 457, cex=1.5)

text(6, 0.65, “Female”, cex=1.5)

text(3.5, 0.4, “Male”, cex=1.5)

#age 45 and older
fit <- survfit(Surv(t[age>=45],cc[age>=45]"sex[age>=45])
summary(fit)
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Call: survfit(formula=Surv(t [age>=45],cc [age>=45])"

sex[age>=45])

sex[age >= 45]=0

time n.risk n.event survival std.err lower upper

2.3 4 1 0.75 0.217 0.426 1.000
2.7 3 1 0.50 0.250 0.188 1.000
5.0 2 1 0.25 0.217 0.046 1.000

sex[age >= 45]=1

time n.risk n.event survival std.err lower upper

0.7 8 1 0.875 0.117 0.673 1.000
0.9 7 1 0.750 0.153 0.503 1.000
3.4 4 1 0.562 0.199 0.281 1.000
3.6 2 1 0.281 0.222 0.060 1.000

plot(fit, xlab="“time”, ylab="survival probabilitg”, 1ty=1:2, main="“Two-sample data”)
text(4, 0.9, “age 45 and older”, cex=1.5)

text(2.0, 0.5, “Female”, cex=1.5)

text(4.0, 0.65, “Male”, cex=1.5)

#Weibull distribution model—interaction with age?
fit <- survreg(Surv(t,cc) (sex+age)"2, dist="“weibull”)
summary(fit)

Call: survreg(formula=Surv(t,cc) (sex+age)”2, dist="weibull")

Value Std. Error z P

(Intercept) 3.1374 1.1986 2.618 0.00886
sex -2.0919 1.7867 -1.171 0.24167
age -0.0287 0.0263 -1.092 0.27488
sex:age 0.0370 0.0399 0.928 0.35336
Log(scale) -0.6306 0.1928 -3.270 0.00108
Weibull distribution

Loglik(model)= -41.4 Loglik(intercept only)=

-43.4
Chisg= 3.96 on 3 degrees of freedom, p= 0.27

L <- fit$loglik[2] #log-likelihood value
fit <- survreg(Surv(t,cc)sex+age, dist=“weibull”)
summary(fit)
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Call: survreg (formula = Surv (t, cc) sex + age, dist =
"weibull")

Value Std. Error Z P
(Intercept) 2.4085 0.9016 2.671 0.00755
sex -0.4514 0.2722 -1.658 0.09728
age -0.0122 0.0203 -0.598 0.54998
Log (scale) -0.6202 0.1947 -3.185 0.00145

Weibull distribution
Loglik (model)= -41.8 Loglik(intercept only)= -43.4
Chisg= 3.1 on 2 degrees of freedom, p= 0.21

L0 <- fit$loglik[2] #log-likelihood value

X2 <- =2*(L0-L) #likelihood ratio chi-square statistic
p-value<-1-pchisq(X2,1)

round(cbind(X2,p.value),3)

X2 p.value
[1,1 0.864 0.353

#additive model—parameter estimates
fit <- survreg(Surv(t,cc)sex+age, dist="weibull”)
summary(fit)

Call: survreg(formula=Surv(t,cc) sextage, dist="weibull")

Value Std. Error b P
(Intercept) 2.4085 0.9016 2.671 0.0076
sex -0.4514 0.2722 -1.658 0.0973
age -0.0122 0.0203 -0.598 0.5500
Log (scale) -0.6202 0.1947 -3.185 0.0015
Weibull distribution
Loglik (model)= -41.8 Loglik (intercept only)= -43.4

Chisg= 3.1 on 2 degrees of freedom, p= 0.21

s<-fit$scale

b <- —fit$coefficients/s #estimated model parameters
g<-1/s #shape parameter
10<- exp(b[1]) #scale parameter (baseline/females)

11 <- exp(b[1]+b[2]) #scale parameter (males)
median0 <- (—log(0.5)/10)*(1/g)
medianl <- (—log(0.5)/11)*(1/g)
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mean0 <- 10"(—1/g)*gamma(1+1/g)
meanl <-11"(—1/g)*gamma(1+1/g)

round (cbind (n,d,10,11,g,mean0,meanl,median0,medianl), 3)
n d 10 11 g mean0 meanl median0 medianl
(Intercept) 40 16 0.011 0.026 1.859 9.873 6.286 9.129 5.812

#impact of age? and confounding influence of age?
fit <- survreg(Surv(t,cc)sex, dist=“weibull”)
summary(fit)

Call: survreg (formula=Surv (t,cc)’sex, dist="weibull")

Value Std. Error b4 o)
(Intercept) 1.891 0.196 9.64 5.30e-22
sex -0.477 0.273 -1.75 8.08e-02
Log (scale) -0.605 0.194 -3.12 1.83e-03
Weibull distribution
Loglik (model)= -42 Loglik(intercept only)= -43.4

Chisg= 2.75 on 1 degrees of freedom, p= 0.097

s <- fit$scale #estimated reciprocal of the shape parameter
B <- fit$coefficients/s  #estimated parameters

L1 <- fit$loglik([2] #log-likelihood value

X2 <- -2*(L1-L0) #likelihood ratio statistic

p-value <- 1-pchisq(X2,1)
round(cbind(X2,p.value),3)

X2 p.value
[1,] 0.347 0.556

#confounding

age0 <- mean(age[sex==0])
agel <- mean(age[sex==1])

B0 <- B[2] #age removed from the model
b0 <- b[2] #age included in the model
bias<- B[2]-b[2]

round (cbind (age0O, agel,B0,b0,bias),3)
age0 agel BO b0 bias
sex 44.095 45.474 0.874 0.839 0.034
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#baseline survival and hazard functions

par(mfrow=c(1,2))

par(pty="s")
T<-0:10
S <- exp(—10*T"g) #estimated baseline survival

plot(T, S, type=“1")

title(“Survival function”)

H <-10*g*T*(g—1) #estimated hazard function
plot(T, H, type=“17)

title(“Hazard function”)

#Cox proportional hazards model
f <- coxph(Surv(t,cc)sex+age)
summary(f)

Call: coxph(formula=Surv(t,cc) sex+age)

function

n= 40

coef exp (coef) se (coef) z P
sex 0.5834 1.79 0.5251 1.111  0.27
age 0.0288 1.03 0.0403 0.714 0.48

exp (coef) exp (-coef) lower .95 upper
sex 1.79 0.558 0.640 5.02
age 1.03 0.972 0.951 1.11
Likelihood ratio test= 1.91 on 2 df, p=0.385
Wald test =1.90 on 2 df, p=0.387
Score (logrank) test = 1.95 on 2 df, p=0.377

par(mfrow=c(1,1))

plot(survfit(f), xlab="“time”, ylab="survival probability”)

title(“Baseline survival function—Cox estimated model”)

#plots

f0 <- survfit(f)

T <- fo$time

S <- f0$surv #estimated survival function

plot(T, S, type="s”, xlab="“time”, ylab="survival probability”)

S1 <- S"exp(b0) #b0 from additive model
lines(T, S1, type="s”, 1ty=2)

title(“Survival functions—Cox estimated model”)
text(2.5, 0.4, “Male”, cex=1.5)

text(6, 0.4, “Female”, cex=1.5)

.95



235 Examples of R

Two-sample data—by sex
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survival probability
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Two-sample data—by sex (age 45 and older)
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Hazard function
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Survival function—Cox estimated model
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Example 4

Residual analysis: multivariable proportional hazards models

#Residual values from the Cox approach (Chapter 9)

library(survival) ~#invokes the library of R-functions specific to survival analysis

data

<- ¢(1.2,5.0,0.3,3.0,1.3,0.9,7.2,2.3,3.4,
.7,2.8,1.6,1.1, 1.1,0.7,3.9,1.7,7.3,4.5,
.5,1.2,0.9,0.6,0.2,2.1,2.1,5.0, 4.0,0.8,5.0,
.5,1.8,3.6,0.1,7.9,4.2,0.1,3.4,0.4,3.06)

O J Nt ==

cc <- ¢(0,0,0,1,1,1,0,1,0,1,1,0,1,0,1,0,0,
0,1,¢0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,1,0,1,0,1)
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sex <- ¢(1,1,0,1,0,1,0,0,1,0,1,0,0,1,2,0,0,0,1,
0,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,1,0,1)

age <- c(40,48,33,42,41,46,53,57,55,48,33,59, 44,
52,51,40,33,37,41,41,46,47,46,41,44,53,37, 38,
38,47,54,44,42,51,35,43,53,48,37,52)

n <- length(t) #number of observations
d <-sum(cc) #number of complete observations

cbind(n,d)

#Cox proportional hazards model
fit <- coxph(Surv(t,cc) sex+age,method="‘breslow’)
summary(fit)

Call: coxph(formula = Surv(t, cc)’sex + age, method =

"breslow")

n= 40
coef exp (coef) se (coef) 4 P
sex 0.5748 1.78 0.5241 1.097 0.27
age 0.0295 1.03 0.0403 0.733 0.46

exp (coef) exp (-coef) lower .95 upper .95
sex 1.78 0.563 0.636 4.96
age 1.03 0.971 0.952 1.11

Likelihood ratio test= 1.89 on 2 df, p=0.390
Wald test 1.87 on 2 df, p=0.392
1.93 on 2 df, p=0.381

Score (logrank) test

r <- f$residual #modified residuals

rr <- cc-1 #recovering the Cox—Snell residual values from the modified values
fit <- survht(Surv(rr,cc)1)

S <- fit$surv #estimated baseline survival function

T <- fit$time

#plot residual values
plot(T, S, xlim=range(T), ylim=c(0,1), xlab=“time”, ylab="residual values”)
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title(“Residual plot: residual values (exponential?)”)
t0 <- seq(0,max(T),0.05)

S0 <- exp(~t0) #estimated baseline survival function
lines(t0,S0)

#transformed
plot(log(T), log(-log(S)), xlab="log(time)”, ylab="log(-log[residual values])”)
abline(0,1)

title(“Residual plot: transformed residual values (straight line?)”)

#binomial test of distribution censored values: males versus females

n0 <- length(cc[sex=0])
n <- length(cc)
binom.test(n0, n, p=0.5)

Exact binomial test

data: n0 and n
number of successes = 21, number of trials = 40, p-value =
0.8746 alternative hypothesis: true probability of success is
not equal to 0.5
95 percent confidence interval:

0.3612801 0.6848803
sample estimates:
probability of success

0.525

#transformed modified Cox—Snell residuals by age

m <- sign(r)*sqrt(-2*(r+cc*log(cc-r1)))

plot(age, m, xlab="age”, ylab="“modified residual values”)
abline(h=0)

title(“Modified residual values by age—example data”)
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Residual plot: residual values (exponential?)
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Modified residual values by age—example data
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Example 5

Simulation of a Weibull distribution with censored observations

#simulate.weibull.r (Chapter 8)

library(survival)  #invokes the library of R-functions specific to survival analysis

#sets the parameters of the Weibull distribution

1<-0.04

g<-2.5

#simulated data: n = number of observations

n<-100

tl <- (—log(1-runif(n))/1)"(1/g)

t2 <- (—log(1-runif(n))/1)"(1/g)

cc <- ifelse(t1-t2<0,1,0) #random censored/noncensored survival times
t <- ifelse(cc==1,t1,t2) #survival times
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#Estimate the Weibull parameters from the simulated data
fit <- survreg(Surv(t,cc) ~ 1,dist="“weibull”)

summary(fit)

Call: survreg(formula = Surv(t, cc) ~ 1, dist = "weibull")
Value std. Error Z P

(Intercept) 1.160 0.0489 23.7 2.85e-12

Log (scale) -0.946 0.0986 -9.6 8.33e-22

Scale= 0.388

Weibull distribution
Loglik (model) = -115.9 Loglik (intercept only)= -115.9

L <- exp(-fit$coefficients/s)
G <- 1/fit$scale

round (cbind (1,L,qg,G), 4)
1 L g G
(Intercept) 0.04 0.0374 2.5 2.568

#plot the estimated survival function

0 <- order(t)

c0 <- cc[o]

t0<- t[o]

S0<- exp(-L*t0"G)

plot(t0, SO, type="“1", xlab="time”, ylab="Survival probability”)

#Calculate residual values and plot probability distribution
r< -log(S0)

f <- survfit(Surv(r,c0)1)

r0 <- f$surv

plot(r,r0, pch=“0", xlab="residual”, ylab="probability”)
lines(r, exp(-r))

#Transform the residual values and plot
plot(log(r), log(—log(r0)), pch=“0" xlab="“log(residual)”, ylab="“transformed residu-
als”) abline(0,1)
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Survival distribution
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Transformed residual values distribution
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Data

Table A.1. AIDS data—23 African-American men
from the San Francisco Men'’s Health Study.

Time Status Smoker
1 1 1 1
2 2 0 1
3 4 1 0
4 5 1 1
5 8 1 0
6 12 0 1
7 13 1 1
8 14 1 1
9 15 1 1
10 16 1 1
11 18 1 0
12 21 0 0
13 22 1 1
14 23 1 0
15 25 1 0
16 26 0 1
17 27 0 1
18 29 1 1
19 30 1 1
20 31 1 1
21 37 1 1
22 42 0 1
23 80 1 1

247
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Table A.2. AIDS data—174 white men from the San Francisco Men’s Health Study.

smk

cc

smk

cc

smk

cc

smk

cc

25

133
134

18
18
18
19
19
19
19
19
19
19
20
20
20
20
20
20
21

89
90
91

45

26
26
26
26
27
27
27
27
28
28
28

46

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

47

92

48

93

49

94
95

50
51

10
10
10
10
10
10
10
11
11
11
12
12
12
12
13
13

96
97

52
53

98

54
55
56
57
58
59
60
61

10
11

99
100
101
102
103
104

12
13

29

29
30

31

14
15

16
17
18
19
20
21

31

105
106
107
108
109
110
111

33
34
35
35

21

62

21

63

21

64
65

21

38
38
42

21

66
67

22

21

14
14
14
15
15
15
15
15
15
15
15
15

23

21

112
113
114
115
116
117
118

68

24
25

42

22
22
22
23
23
23
23
23
23
24
24
24
24
24
24
24
25
25

69
70

71

44
44
44
48

26
27

72
73
74
75
76
77
78
79
80
81

28
29
30
31

52
55
57
58
61

119
120
121
122
123
124
125

32
33

34
35

61

16
16
16
16
16
16
17
17
17
17

61

36

66
67

37
38
39
40

126
127
128
129

82
83

70
73

172
173
174

84
85
86
87

95
108

41

130
131
132

42
43

25
25

88

44

Note: t = time, cc = censored/complete, and smk = nonsmoker/smoker.
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Table A.3. HIV/AIDS data—88 white men from the San Francisco Men’s Health Study.

Data

Time Status cd4 B Age Time Status cd4 B Age

1 1 1 485 2.79 25 45 69 1 615 2.79 18
2 2 1 74 2.74 21 46 70 0 415 2.06 34
3 3 1 49 3.90 24 47 74 1 827 2.20 31
4 5 0 263 5.51 44 48 75 1 598 2.55 38
5 6 0 908 2.18 21 49 76 1 568 1.84 28
[§ 12 1 1020 3.36 25 50 76 1 692 2.08 26
7 13 1 346 3.70 32 51 77 1 536 2.71 31
8 16 1 341 4.67 20 52 80 0 724 2.61 32
9 16 1 567 2.59 27 53 84 0 1013 1.81 30
10 18 1 389 4.13 29 54 84 1 747 1.49 33
11 18 1 431 4.73 33 55 85 1 640 4.02 28
12 19 1 570 2.21 25 56 85 1 356 1.97 29
13 20 1 581 2.12 32 57 90 1 676 2.03 28
14 20 1 417 0.79 33 58 95 0 788 1.68 33
15 21 1 918 2.58 35 59 96 0 681 2.17 35
16 22 1 296 3.03 41 60 96 0 493 2.97 47
17 22 1 528 2.62 33 61 97 0 970 1.66 33
18 22 1 451 3.19 31 62 97 0 597 1.64 29
19 23 0 341 2.61 36 63 97 0 648 1.79 24
20 25 1 389 3.22 33 64 97 0 872 1.52 28
21 26 1 373 3.62 26 65 97 0 825 2.40 32
22 37 0 937 1.81 18 66 98 1 873 1.60 32
23 37 1 830 3.15 34 67 98 0 534 3.00 26
24 42 1 544 1.96 39 68 98 0 742 2.02 16
25 42 1 996 1.74 23 69 98 0 922 2.53 26
26 45 1 261 3.95 32 70 98 0 928 3.22 27
27 45 1 533 2.40 30 71 98 0 1140 2.55 32
28 45 1 439 2.77 31 72 100 0 592 1.60 32
29 46 1 643 2.67 29 73 100 0 745 1.95 21
30 47 1 805 2.39 26 74 100 0 1468 1.97 25
31 47 1 719 2.57 31 75 100 0 598 3.95 30
32 48 1 297 2.45 36 76 100 0 654 1.61 35
33 49 0 764 1.79 38 77 101 0 406 2.98 36
34 49 1 558 1.76 31 78 101 0 799 2.34 33
35 50 1 738 1.86 28 79 101 0 782 1.15 27
36 54 1 1359 1.94 23 80 101 1 800 2.35 36
37 56 0 478 2.11 38 81 101 0 774 2.46 24
38 57 1 906 3.39 38 82 101 0 543 1.95 26
39 59 1 981 4.22 24 83 101 0 685 4.86 26
40 60 1 476 1.69 33 84 101 0 897 1.71 38
41 61 1 562 2.66 25 85 102 0 467 1.78 34
42 62 1 677 2.83 37 86 102 0 413 2.46 40
43 63 1 625 2.12 35 87 102 1 1199 2.67 33
44 65 1 646 2.94 41 88 102 0 1137 1.98 33
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Table A.4. Hypothetical data (n = 40).

Time Status Sex Age
1 1.2 0 1 40
2 5.0 0 1 48
3 0.3 0 0 33
4 3.0 1 1 42
5 1.3 1 0 41
6 0.9 1 1 46
7 7.2 0 0 53
8 2.3 1 0 57
9 3.4 0 1 55
10 2.7 1 0 48
11 2.8 1 1 33
12 1.6 0 0 59
13 1.1 1 0 44
14 1.1 0 1 52
15 0.7 1 1 51
16 3.9 0 0 40
17 1.7 0 0 33
18 7.3 0 0 37
19 4.5 1 1 41
20 7.5 0 0 41
21 1.2 0 1 46
22 0.9 0 0 47
23 0.6 0 1 46
24 0.2 0 1 41
25 2.1 1 0 44
26 2.1 0 0 53
27 5.0 1 1 37
28 4.0 0 0 38
29 0.8 0 1 38
30 5.0 1 0 47
31 0.5 0 0 54
32 1.8 0 1 44
33 3.6 0 0 42
34 0.1 0 1 51
35 7.9 1 0 35
36 4.2 1 0 43
37 0.1 0 1 53
38 3.4 1 1 48
39 0.4 0 0 37
40 3.6 1 1 52




Problem set

Chapter 1. Rates and their properties

1. An expression for an average approximate rate from time ¢ to time ¢ + 8 is

S(t) — S(t +6)
SHISH) + S(t+9)]

R =

Suppose S(t) = e M = ¢~ 0015,

i. Find Ry and Ry for § = 10.0.
ii. Find Ry and R¢ for § = 1.0.
iii. Find Ry and R for § = 0.1.

iv. Show that (§/2)[S(¢) + S(t + 8)] = 8[S(t +6) + %d(t)] = §[S(t)—
%d(t)],where S(t) = P(T = t)and d(t) = S(t) — S(t + 9).

v. Show that, when S(t) = (b —t)/(b —a), R = average mortality rate =
1/[b — %(tl +15)].

2. Binomial/normal based 95% confidence interval:
If X = 4 outcomes occur among N = 200 possibilities, then the proportion § =
X/N = 4/200 = 0.02 is an estimate of the underlying binomial probability 4.
i. Construct an approximate-normal-based 95% confidence interval from this esti-
mate, where

lower limit = § — 1.9604/variance(g§) = ?
upper limit = § 4 1.960,/variance(§) = ?

251
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Using the same date, apply a logistic transformation to created a 95% confidence

interval.

ii. Constructanapproximate-normal-based 95% confidence interval using the logis-

tic transformed estimate ¢ (denoted [), where

lower limit = [ + 1.960\/Variance(lA) = ?
upper limit = [ — 1.960/ variance([) = ?

iii. Now, use this result to estimate a 95% confidence interval based on §

lower limit = ?

upper limit = ?

Note that the exact bounds are (0.0055, 0.0504).

between married and single men, for both races and for whites and blacks seqarately.

Prostatic cancer by race, age, and marital status: cases (1969-1971)

White Black
Age 35-44 45-54 55-64 35-44 45-54 55-64
Single 3 11 18 1 4 2
Married 16 100 187 2 11 29

Prostatic cancer by race, age, and marital status: populations

White Black
Age 35-44 45-54 55-64 35-44 45-54 55-64
Single 74,457 61,665 46,009 12,374 7,569 4,492

Married 923,669 929,227 670,266 79,874 75,641 54,154

Prostatic cancer by race, age, and marital status: logistic transformed values

White Black
Age 35-44 45-54 55-64 35-44 45-54 55-64

Single
Married

. Use the logistic transformation to investigate the differences in prostatic cancer rates
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Prostatic cancer by race, age, and marital status: variances

White Black
Age 35-44 45-54 55-64 35-44 45-54 55-64
Single
Married

A contrast is defined, as ¢ = ) a;[; when the [;-values are independent logistic
transformed probabilities and Y a; = 0. The variance of a contrast is variance(¢) =
> aiz variance([;). For example, a contrast ¢ =1; + [, — (f5 +1,) has an estimated
variance of variance(¢) = variance(l,) + variance(l,) + variance(l3) + variance(ly).

Test the three conjectures with the above data and detemine the associated p-value:

i. Single does not differ from married in prostatic cancer risk—all men

ii. Single does not differ from married in prostatic cancer risk—white only

iii. Single does not differ from married in prostatic cancer risk—black only

. Heterogeneity of the probabilities g;:

Two basic rules of variance are (1) ) variance(x;) = variance(}_ x;) when the x;-

2

values are uncorrelated and (2) for the constant a, variance(ax;) = a*variance(x;),

always.

i. Show thatwhen g = Y n;4;/n, then the variance(q) is Y_ n;4; (1 — 4;)/n?, where
4; = x;i/n;, variance(x;) = n;4;(1 — §;) and n = ) _n;.

ii. Create an example using a set of hypothetical numbers x; and n; (q; = x;/n;) that
demonstrate that bias = i1q(1 — q) — > m;4;(1 — §;) = Y n:(§; — §)*, where
q =2 xi/n.
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Chapter 2. Life tables

1. In general, L, = (I, — dy) + a,d, but the last open-ended interval is a special case
and L+ = (ly+ —dy+) + ay+de+; thus
Lo+

Ry+

Iyv —der = ? and ay+ = ? making L+ =

’

where R+ is the current mortality rate for individuals beyond age x.

Verify that Log+ = 51,572 (Chapter 2, Table 2-1).
2. Data—survival times (n = 30):

45.5,70.5,26.8, 1.7%, 21.5%, 78.1%, 11.6, 38.5%, 0.5, 37.5, 29.17F, 31.3%,
31.3,50.0, 2.0, 45.1, 49.3, 23.57, 9.1, 10.3%, 65.9, 12.7T, 0.3, 57.71,
29.9,57.7F,24.6, 15.1%, 18.0, 15.9, where n —d = 13 censored and
d = 17 complete observations.

Observations from follow-up data

30

2|5

20

15

particicapnts

10

0 20 40 60 80 100
time in study
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Fill in the following life table:

i Interval Deaths  Censored [ I qi bi Py
1 0-10 —_— —_—
2 10-20 R R
3 20-30 —
4 3040 — —
5 40-50 —_— —_—
6  50-60 —_— e
7  60-70 —_— —_—
8 70-80 —_— —_—
9 80-90 —_— —_—
10 90-100 —_— —_—
3. The survival probabilities from John Graunt’s original life table are:
Age 0 10 20 30 40 50 60 70 80 90
P, 1.0 054 034 021 0.14 0.08 0.05 0.02 0.01 0.00

Plot the survival curve from the 17th-century data.

John Graunt'’s life table and S(t)

0.6 0.8 1.0
Il Il

0.4

survival probability

0.2
Il

20 40 60 80
age
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4. Calculate the crude mortality rate () from Table 2.3 (Chapter 2). Estimate and display
the exponential survival curve S(¢). That is, for t from 0 to 90, plot O e on
the previous set of axes. Interpretation?

5. Calculate a three-year survival probability from the following annual cohorts of data;
include the standard error and a 95% confidence interval (x = time survived from

diagnosis):

Year xtox+1 L, d, Uy Wy
1996 0-1 9 3 1 —
1-2 5 1 0 —
2-3 4 1 0 —
34 3 1 0 —
4-5 2 0 0 2
1997 0-1 17 10 0 —
1-2 7 0 0 —
2-3 7 1 0 —
3—4 6 2 2 2
1998 0-1 29 10 0 —
1-2 19 11 0 —
2-3 6 0 0 6
1999 0-1 34 10 0 —
1-2 24 3 3 18
2000 0-1 50 25 1 24

i. First, combine the cohort data into a summary table and estimate the effective
number of individuals at risk for each year after diagnosis (x to x + 1), namely /.
Note: I, = alive a time x, d, = died in the interval x to x + 1, 4, = missing in
the interval x to x + 1, and w, = withdrawn from consideration in the interval
xtox—+ 1.

Calculation of a survival probability from cohort data: summary data

xtox+1 I dy Uy Wy

0-1
1-2
2-3
34
4-5
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Calculation of a survival probability from cohort data: computations

xtox+1 I d, dx D Py

0-1
1-2
2-3
34
4-5

ii. Estimate the three-year survival probability P53 = ?

iii. Construct an approximate 95% confidence interval based on this estimate:
lower bound = ? and upper bound = ?

iv. The estimated variance of the distribution of the estimate Pj is
variance(Py) = 13% > 4i/(pini) (Greenwood’s expression for the variance of by
fori =1,2,...,k).

Chapter 3. Two especially useful estimation tools

1. The probabilities from the Poisson probability distribution are given by the expression

ek
k!

Consider the following random sample from a Poisson probability distribution
(n = 10):

P(X=k)=

data(x;): 0,2,4,0,1,2,3,0,0,and 1.

i. Construct the likelihood expression for these data based on the Poisson probability
distribution function. Specifically, for any value of A, the likelihood value L is
L=T[2 P(X =x).

ii. Evaluate the log-likelihood values:

forh = 1.0 log (L) = ?
fork =12 log(L) = ?
forh =14 log(L) = ?

forh = 1.6 log(L) = ?
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iii. Compute the mean value: * = ?

iv. Evaluate the log-liklihood values:

for A = x log (L) = ?
forh = x-0.01 log(L) = ?
forh = x4+0.01 log(L) = ?

With a bit of calculus, it can be shown that the maximum likelihood estimate of A
is in general 70 = %).

v. Test the conjecture that A = 2:
Calculate log-likelihood for A = x; then —2log (L) = ?

Calculate log-likelihood for 1y = 2; then —2log (Ly) = ?

Calculate the likelihood ratio chi-square statistic contrasting these two log-
likelihood values to asses the likelihood that A and A, = 2 differ by chance alone:

p-value = ?

2. Use the approximate relationship that

2

variance(x) = x“ variance(log[x])

to show that

e x? . y? 1
if variance(x) = —, thenvariance(y) = ~— wheny = —.
n n x

Basic data set: Leukemia clinical trial data

A clinical trial to evaluate the efficacy of maintenance chemotherapy for acute myel-
ogenous leukemia (AML) was conducted by Embury et al. at Stanford University. After
reaching a state of remission through treatment by chemotherapy, the patients who
entered the study were randomized into two groups. The first group received maintenance
chemotherapy and the second or control group did not. The objective of the trial was to
see if maintenance chemotherapy prolonged the time until relapse, that is, increased the
length of remission time (“survival time”).
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These data are to be used for many of the following problems.

Preliminary data collected during the course of the trial are (in weeks):

Maintained (n; = 1land d; = 7)

remission times : 9, 13, 137, 18, 23, 28", 31, 34, 45T, 48, and 161"
Nonmaintained (ny = 12 and dy = 11)

remission times : 5, 5, 8, 8, 12, 16T, 23, 27, 30, 33, 43, and 45

+ = censored.

Chapter 4. Product-limit estimation

1. Fill in the following table using the leukemia clinical trial data (maintained group),
ignoring the censoring and deleting the tied value (13") to creat 10 artifical unique

and complete survival times.

Interval Deaths At-risk Probability Probability Survival Std. error*

i ot d; n; gi bi by Vi

0-9 S— SN —

9-13 - -
13-18 — -
18-23 —_— —
23-28 — —
28-31 — SR
31-34 —_— —_— —
34-45 — — —
4548 — — —
48-161 e — e

O 0 N QN Ul W N

—
o

* = Vi = P(1 = Py)/ny.
i. Estimate the mean survival time two ways:

Ay = ? tn =
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ii. Estimate the median survival time:
fos = ?

iii. Show that for unique and complete data, where i = 1,2, 3,..., n, that
N R R 1 _
P, (t;, —t,_,) = t_1(Pioy— P;)=— i =1t.
> P D=2 (P =Py =—-3"
(note: Py =1and P, =0.)

2. Fill in the following table using the leukemia clinical trial data accounting for the
influence of the censored data.

Maintained

Interval Deaths At-risk Probability Probability Survival Std. error*

i L —t d,‘ n; qi p,‘ Pk f/k
1 0-9 —_— —_—
2 9-13 —_— —_—
3 13-18 N N
4 18-23 —  —
5 23-31 - -
6 31-34 I -
7  34-48 R — _
== Pi > Gi/(pini) (Greenwood’s expression for the variance of Py fori=1,
2,..., k).

i. Estimate the mean survival time iy = ?

ii. Estimate the survival probability Ps = ?

iii. Construct an approximate 95% confidence interval based on the estimated prob-
ability Ps:

lower bound = ? and upper bound = ?
iv. Estimate the median survival time (5 = ?

v. Construct an approximate 95% confidence interval based on the estimated median

fo.5:

lower bound = ? and upper bound = ?
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vi. Plot the estimated survival distribution.

Product-limit plot—Maintained

1.0

0.8

probability
0.6

0.4

0.0

T
0 10 20 30 40 50 60
time

3. Fill in the following table using the leukemia clinical trial data accounting for the
influence of the censored observations.

Nonmaintained

Interval Deaths At-risk Probability Probability Survival Std. error*
L —t d,‘ n; qi i)i Py Vi

-

0-5 —_— —_—
5-8 —_— —_—
8-12 —_— —_—
12-23 —_— —_—
23-27 - -
27-30 —_— —_—
30-33 —_— —_—
33-43 — —_—
43-45 — —_—

O 0 N QN Ul W N =

* See note to previous table.
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ii.

iii.

iv.

vi.

Estimate the mean survival time finy =
Estimate the survival probability P5 =

Construct an approximate 95% confidence interval based on the estimated prob-
ability Ps :

lower bound = and upper bound =
Estimate the median survival time £y 5 = ?

Construct an approximate 95% confidence interval based on the estimated median
fo.s:

lower bound = and upper bound =

Plot the estimated survival distribution:

Product-limit plot—Nonmaintained

1.0

probability
0.6

0.4

0.2

0.0

time

4. Constant probability of death—q

Supose t;,; — t; = 10 months and g; = g = 0.3 for all survival times intervals.
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i. Fill in the following table:

lip1 — i qi pi P;
0-10
10-20
20-30
30-40
40-50
50-60
60-70
70-80
80-90
90-100
100-110
120-130

ii. Plot the survival curve.

Survival curve—q = 0.3

1.0

survival probability
0.4

0.2

0.0

T T
0 20 40 60 80 100 120
time

iii. Estimate the mean survival time:

=
Il
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iv. Estimate the median survival time:
b = ?
Suppose ti11— t; = § and q; = qfor all intervals.
v. Create an expression for the survival probability function for the kth interval.
vi. Find a general expression for the mean survival time /.

vii. What is the value of & when the number of intervals in the table is extremely
large?

viii. Estimate /2 for p = 0.7 when the number of intervals is infinite (time is conti-
nuous).

Chapter 5. Exponential survival time probability distribution

1. Using the AML clinical trial data, compare the maintained and nonmaintained treat-
ment of the leukemia patients, assuming each sample is a random sample from expo-
nential survival distribution (constant but possibly different hazard rates).

i. Estimate the mean survival time in both groups:

Maintained: estimated mean survival time = Ay = ?
Construct an approximate 95% confidence interval from the estimate:
lower bound = ? and upper bound = ?
Nonmaintained: estimated mean survival time = Anyu = ?
Construct an approximate 95% confidence interval from the estimate:
lower bound = ? and upper bound = ?
ii. Estimate the rate of relapse in both groups:
Maintained: estimated survival rate = Ay = ?
Construct an approximate 95% confidence interval from the estimate:
lower bound = ? and upper bound = ?
Nonmaintained: estimated survival rate = Any = ?
Construct an approximate 95% confidence interval from the estimate:

lower bound = ? and upper bound = ?
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iii. Estimate the median survival time in both groups:

Maintained: estimated median survival time = #,5 = ?
Construct an approximate 95% confidence interval from the estimate:
lower bound = ? and upper bound = ?
Nonmaintained: estimated median survival time = #y5 = ?
Construct an approximate 95% confidence interval from the estimate:

lower bound = ? and upper bound = ?

iv. Estimate the exponential survival function for both groups and plot these functions

Spm(t) and S (1) on the same set of axes.

Maintained (=) and nonmaintained (  ---

1.0

0.8

survival probability
0.4

0.2

0.0

0 10 20 30 40 50 60
time

Chapter 6. Weibull survival time probability distribution

1. Using maximum likelihood estimation and a computer algorithm, the estimated scale
and shape parameters from the Weibull distribution (A and y ) applied to the leukemia
clinical trial data are as follows:
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Maintained:
Aum = 0.0145 with a standard error of S, = 0.0053
Pm = 1.032 with a standard error of S;,, = 0.2859

Nonmaintained:

Axm = 0.0063 with a standard error of iy = 0.0012.

Pnm = 1.574 with a standard error of S;,,, = 0.3841

VNM

i. Construct 95% confidence intervals based on these estimates:

95% confidence bounds

Lower Bound Upper Bound

v
Awin
™
MN

ii. Estimate the mean and median values based on the estimates A and  (hint: read
the gamma values of I'(x) from the following plot):

maintained: estimated mean value iy = ?
maintained: estimated median value £y 5 = ?
nonmaintained: estimated mean value fixy = ?
nonmaintained: estimated median value #y5 = ?
Gamma
o
2
@ ©
E N
I
®
()]
-
S o
» N
()
=)
®
>
w© |
<

0.5 1.0 1.5 2.0 25 3.0 3.5
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iii. Estimate the hazard functions for the maintained and nonmaintained sam-
ples of survival times and plot these two hazard functions on the same set of

axes:

Maintained (—) and nonmaintained (-

O.|06

hazard function

time

Add to the plot the two hazard functions estimated for the exponential probability
distribution (last section—problem set 4).

iv. Is the fit of the Weibull survival distribution to the leukemia data substantially
better than the exponential survival distribution? Cite the statistical evidence (test,
confidence interval, plots, ... ) to justify your answer.

Chapter 7. Analysis of two-sample survival data

1. Using the AML clinical trial data, perform a log-rank test to assess the difference

between maintained and nonmaintained treatment groups.
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Log-rank test:

i

ii.

iii.

Fill in the following table:

i Interval a; A; 0 variance(a;)
1 0-5
2 5-8
3 8-9
4 9-12
5 12-13
6 13-18
7 18-23
8 23-27
9 27-30

10 30-31

11 31-33

12 33-34

13 34-43

14 43-45

15 45-48

Total —

Compute the following summary values:

da; = ? YA = ? and variance(}_ g;) = ?
then X2 = ? and p-value = ?

Calculate the values ¢; and C; for the 15 intervals (tables) and compare observed
sums Y a; and Y _ ¢; to the corresonding expected sums Y A; and ) C; with
chi-square statistic:

then X2 = ? and p-value = ?

2. The following parameter estimates summarize the Weibull hazards survival model
applied to the AML clinical trial data:

Parameter Estimate  Std. error

Intercept by —3.180 0.241
Group b —0.929 0.383
Shape y 1.265  0.225
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i. Estimate the three selected percentiles for the maintained and nonmaintained
groups.

Percentiles 0.10 0.50 0.90

Maintained

Nonmaintained

ii. Calculate the p-value for the comparison of the two groups (maintained versus
nonmaintained—b; = 0?):

z= p-value = ?

iii. Estimate Ay and Any from the model coefficients by and b;. Demonstrate numer-
ically that log(iNM/iM) = l;lf/.

3. i. Plot the estimated survival functions for the maintained and nonmaintained sam-
ples of clinical trial data using the product-limit estimates (nonparametric) and
the Weibull based estimates (parametric). Plot all four curves on the same set of

axes.
Maintained (—) and nonmaintained (  J--
e
[ce]
©
> ©
23
e}
®©
el
g <
8 3
N
o
o
S
T T T T T T T
0 10 20 30 40 50 60
time
ii. Evaluate the difference in the shape parameters: yy; = 1.032 with standard

error = 0.286 and pny = 1.574 with standard error = 0.384. Note that
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variance(x — y) = variance(x) + variance(y) and
(x—=y)—0
variance(x — y)

has an approximate standard normal distribution when no difference exists
between the two estimated value x and y. Therefore, evaluate the hypothesis that

Y™ = YNM:

X = ? p-value ?

4. Another approach involves three log-likelihood statistics:

ii.

from the maintained group: —2 x log-likelihood (yy) = 71.408
from the nonmaintained group: —2 x log-likelihood (ynm) = 88.288
from the combined groups: —2 X log-likelihood (y) = 161.043

Use these three log-likelihood values to test the equality of shape parameters
(ym = ynm?) and compare the results to the previous test-statistic z°:

X = ?  p-value ?

Transform the survival probabilities from the two previously estimated product-
limit survival curves (maintained and nonmaintained) and plot the values. That
is, plot the pairs of values log(— log| P;]) and log (#;) for each survival function.
Estimate two survival functions [ Sy (£) and S ()] based on the estimated Weibull
two-sample model and plot the “log-log” transformed straight lines on the same
set of axes.

Maintained (=) and nonmaintained (  ---

1.0

log(-log[S])
0.5

-1.0

-1.5

-2.0

-2.5

1 2 3 4 5
log(time)
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Chapter 8. General hazards model: parametric

1. The leukemia data supplemented with the hypothetical ages of the children partici-
pating in the trial are as follows:
Preliminary data collected during the course of the trial are as follows:

Maintained (n; = 11)

remission times (in weeks): 9, 13, 131, 18, 23, 287, 31, 34, 45T, 48, and 161"
age (years): 2,2,5,1,6,4,3,1,2,1,and 2

Nonmaintained (n; = 12)

remission times (in weeks): 5, 5, 8, 8, 12, 167, 23, 27, 30, 33, 43, and 45
age (years): 3,5,4,2,2,1,3,3,2,5,3,and 3

Three hazards models for the leukemia data (F = {0 or 1} indicates group member-
ship and age = age as reported) are

1. h(t) = elbo+biF +ba(age—a) + bs F x (agefﬁ)]yytl/*l
2. h(t) — e[bo+b|F+b2(age—ﬁ)]yyty71

3. h(t) = e[bo+b1F]yyty—l

Results from three models are described in the following table:

Model 1 Model 2 Model 3
Intercept (bg) —3.535 —3.4458 —3.180
Group (b)) 0.696 0.858 0.929
Age (b,) —0.114 —0.164 -
Group X age (bs) —0.060 — -
% 1.267 1.310 1.264
Log (L) —80.376 —80.391 —80.521

Note: a = mean age of all 23 study participants = 2.826 years

i. Comparing log-likelihood values, evaluate the influence of the interaction term in
the model:

Xt = ? p-value ?

ii. Comparing log-likelihood values, evaluate the influence of the age in the additive
model:

Xt = ? p-value ?

iii. Comparing log-likelihood values, evaluate the influence of the treatment ignoring
age [hint: Ly = —83.179 when h(t) = hy(1)]:

Xt = ? p-value ?
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iv. Using the additive model including both age and treatment, estimate and plot the
baseline survival functions [that is, F = 0 = nonmaintained and age = a =
mean(age)]. In addition, estimate the survival function for the maintained group
[thatis, F = 1 and age = @ = mean(age)] and plot it on the same set of axes.

Q
-

0.4 0.6 0.8

survival probability

0.2

0.0

0 50 160 150 260
time
v. Usingthe additive model including both age and treatment, again compute and plot
the baseline survival function [that is, F = 0 = nonmaintained and age = a =
mean(age)]. In addition, estimate the survival function for the nonmaintained
group for ages one and five years and plot these curves on the same set of axes (that
is, F = 0 and age = 1 and age = 5, where a = 2.826 years).

<
-

survival probability
0.4 0.6 0.8

0.2

0.0

T T T
0 50 100 150 200
time
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Chapter 9. General hazards model: nonparametric

1. The following again uses the leukemia data supplemented with the hypothetical ages
(previous problem).

Model 1: Two-sample model—F = 0 = nonmaintained and F = 1 = maintained
I () = ho(t)e®
i. Fillin the table:

B Si z-score p-value

Treatments —0.904 0.512

ii. Calculate the approximate 95% confidence for the regression coefficient B

(treatments);
lower bound ¢ upper bound ?
iii. Estimate the hazard ratio = hr = ?

iv. Calculate the approximate 95% confidence for the hazard ratio fir:
lower bound ?  upper bound ?
Model 2: Two-variable additive model
hi(t| F,age) = ho(t)eh T +b2a8e
v. Fill in the table:

A

b; Sp, z-score p-value

Treatments —0.823 0.531

Age 0.105 0.203

vi. Calculate the approximate 95% confidence for the regression coefficient b,
(treatments):
lower bound ? upper bound ?

vii. Estimate the hazard ratio associated with the treatments = hr = ?

viii. Calculate the approximate 95% confidence for the hazard ratio hr:
lower bound ? upper bound ?
ix. Calculate the approximate 95% confidence for the regression coefficient b, (age):

lower bound ? upper bound ?
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Xi.

Xii.

Xiii.

Xiv.

. Calculate the hazard ratio associated with the combined influences of treatment

and age = 5 years old (HR):

HR ?

Calculate the confounding bias associated with the variable age:
bias ?

Estimate the hazard ratio based on the Weibull additive model applied to the two-
sample leukemia data. Compare this hazard ratio with the hazard ratio for the Cox
proportional hazards model (treatment only).

Using these estimates, calculate the hazard ratio = hr = ?

Compare the hazard ratios from the Cox and Weibull approaches.

2. Survival Curves. Use the nonmaintained group as the “baseline function” and product-

limit process to estimate the survival curve So(9).

i

ii.

Estimate the survival curve for the maintained groups $1(¢) based on the estimate
Sy (t) and the two-sample Cox proportional hazards model. Estimate the survival
curves for the nonmaintained $y(f) and maintained $,(#) assuming an underly-
ing Weibull distribution (i.e., the parameters previously estimated). Fill in the
following table:

Cox model Weibull model
Time So(1) S1() $0(D) $1(0)

12
16
23
27
30
33
43
45

Plot both Cox estimated curves [step functions— 38, (#) and §,(#)] on the same
set of axes. Also, plot continuous (smooth line) versions of the Weibull estimated
survival curves $(f) and §;(¢) on the same axes.
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Maintained and nonmaintained survival curves

1.0

0i8

0.6
1

0.4

survival probabilities

0.2

0.0
1

0 10 20 30 40
time

iii. An alternative comparison is achieved by plotting one survival curve against the
other. If they are parallel, the plotted points will randomly deviate from a straight
line with slope = 1 and intercept = 0. Plot the points from the table— S ()
(x-axis) and $¢(#) (y-axis). Add a 45° line.

Nonmaintained

0.8 1.0
|

0.6
1

survival (Weibull)
0.4

0.2

0.0
1

T
0.0 0.2 0.4 0.6 0.8
survival (Cox)
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Then, plot the points from the table—38; (£) (x-axis) and $;(¢) (y-axis). Add a 45°
line.

Maintained

1.0

0.8

0.6
1

0.4

survival (Weibull)

0.2

0.0

T T
0.0 0.2 0.4 0.6 0.8
survival (Cox)

Demonstrate that two lines with the same slope (for example, a + bxand A + bx)
form a straight line with slope = 1.0 when values from one line are plotted against
values from the other line.
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