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Preface

This text arose from my many years working with several long-term population-
based observational studies. As I was asked to put together a third-semester statistics
course for our new Ph.D. program in Population Health, I decided to assemble the
information I had seen investigators and students need most often, and I also
decided to answer as many questions as possible out of those I had typically been
asked. The resulting mix of topics is guided by this experience. I have attempted to
pull in and deal with the aberrations of observational data such as confounding and
selection bias. Some traditional topics regarding small sample inference, analysis
of variance, and experimental design are deemphasized, as I have found that they
confuse rather than help population health researchers. I am using data sets from
my own research and collaborations as examples to ensure that subject matter
interpretations are meaningful, and that the reader becomes familiar with the “non-
textbook” appearance of real data.

While keeping the material immediately applicable by providing detailed instruc-
tions for how to run and interpret procedures in SAS, I find it irresponsible to do so
without creating some “common sense” about the methods and their assumptions.
The beginning chapters lay the mathematical groundwork necessary for topics in
later chapters. Whenever possible, I have made a point of inserting practical issues
that are answered by specific mathematical derivations.

In addition, each topic starts with an explanation of the theoretical background
necessary to allow reasonable judgment as to when the technique is applicable and
to facilitate future learning of related methods and software. In the process the
reader is exposed to some of the underpinnings of statistics that are often omitted
from applied texts and courses. While the text is anchored in the terminology of
the biostatistical tradition, I point to some important connections to techniques
and terminology used in econometrics and psychometrics. Because of the historic
emphasis of biostatistics on experiments and randomization, I have often found that
econometric approaches provide further insight in the observational framework.
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xvi PREFACE

For progress in addressing current population health issues, it is necessary for
researchers in epidemiology and health services to understand and apply regression
analysis with weights to deal with unequal variance and correlated and longitudinal
outcomes by mixed effects, generalized linear models, and generalized estimat-
ing equations. In addition, many data sets in these areas include survey weights.
Increasingly, investigators are also called upon to examine the possible impact on
their results of missing observations. I suggest straightforward methodology that
can be implemented with standard software. The material is presented on a level
that will make it accessible to epidemiologists and health services researchers,
as well as to applied statisticians. This corresponds roughly to a third-semester
applied statistics sequence for statistics non-majors. It is assumed that the reader
is already well acquainted with ordinary and logistic regression analysis and has at
least rudimentary knowledge of the SAS package.

The explanations are designed to assume as little background in mathematics and
statistical theory as possible, except that some knowledge of calculus is necessary
for certain parts, such as in understanding maximum likelihood and generalized
linear models. The reader may wish to review the rules and uses of derivatives,
which are not covered here. On the other hand, all relevant aspects of linear algebra
and statistical theory are explained within the text. Important formulas are derived,
but with an eye to avoiding excessive algebra.

SAS commands are provided for applying the methods. The SAS procedures
emphasized are PROC REG, PROC MIXED, and PROC GENMOD, with occa-
sional references to others. Useful data manipulation commands are introduced as
needed to illustrate the techniques in the specific data sets, and the SAS ODS
system is briefly introduced to accomplish viewing random effects from mixed
models. However, basic commands used to read in data sets and annotate them are
considered well known and are not always provided in the text.

Mari Palta
Madison, Wisconsin
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Introduction

Some Data Sets Used as Examples in This Text

In this book, we focus on extending ordinary regression analysis by considering
situations where some of the usual assumptions are violated. As we discuss in
more detail in future chapters, violations of assumptions are common in population
health data sets. For example, when we want to model presence versus absence of
a disease the outcome variable is binary. Because ordinary regression is designed
for normally distributed outcomes, the presence of binary outcomes leads to the
extension of ordinary regression to logistic regression. We discuss this extension
and others that apply to non-normally distributed outcomes in later chapters. With
normally distributed outcomes, we encounter situations with violation of equal
variance and independence assumptions. For example, subjects may be followed
longitudinally, which leads to correlated residuals. The fitting of models and infer-
ence in such cases is the topic of the earlier chapters. Throughout, we illustrate
with the use of data sets that have accrued from population health research. The
purpose of this introduction is to briefly describe these data sets. All analyses were
run in SAS 8.2 [1] for Solaris. For graphics we occasionally used SAS 8.2 for
Windows.

I.1 NEWBORN LUNG PROJECT

The Newborn Lung Project enrolled a cohort that included all very-low-birth-
weight admissions to six neonatal intensive care units in Wisconsin and Iowa
during 8/1/88–6/30/91. There were 1040 admissions during this time period, and
some baseline data were collected on all of them. Neonatal nurses collected medical
record information on factors such as birth weight, supplemental oxygen use the
first 24 hours, and hospital of birth without identifiers. Parents were approached as
soon as possible for informed consent for interview and medical record abstracting.
Due to human subjects concerns, parents were not approached after the neonate had

xxi



xxii INTRODUCTION

died or if the neonate was in critical condition. A total of 810 infants survived the
hospitalization, and the parents of 633 provided informed consent for abstracting.
Recontract addresses were available only for the subgroup with informed consent.
By age 5, six additional children had died. Among the 804 survivors, 438 were
located, and a follow-up interview including health information and a functional
assessment of 422 was performed. The parents of 345 children also gave informed
consent for complete abstracting of medical records.

The original purpose of the study was to establish severity scores for neonatal
lung disease and to find risk factors associated with it. Later, we described func-
tional and respiratory outcomes at ages 5 and 8 years and their predictors. The
record abstracting led to longitudinal data on number of hospitalizations and clinic
visits during every year of life.

Examples used in the text arise from data collected during the initial hospital-
ization and from the follow-up. For example, we analyze functional outcome at
age 5 and hospitalizations during the first five years of life as outcomes in regres-
sion analysis. We briefly illustrate principal component analysis of socioeconomic
indicators collected by this study. We will also use this data set to show how to
use the available data on those not followed to examine selection bias.

Some references that present data included in this text and that provide further
background on the Newborn Lung Project are listed at the end of this Introduction.

I.2 WISCONSIN DIABETES REGISTRY

The Wisconsin Diabetes Registry targeted all individuals <30 years of age diag-
nosed with Type I diabetes in a 28-county area in southern Wisconsin 5/1/87–
4/30/92. The primary mode of recruitment was by physician, diabetes educator,
and self-referral. Also, all hospitals and most multipractice clinics were telephoned
every 3 months to ascertain any unreferred cases. A total of 733 cases were found.
Out of these, 597 gave informed consent for participation. Participants underwent
a baseline interview, were requested to submit blood samples every 4 months,
were sent a questionnaire inquiring about hospitalizations and other events every
6 months, and underwent physical examinations at 4, 7, and 9 years of duration.
The blood samples were used to determine glycosylated hemoglobin (GHb), an
important indicator of glycemic control. The purpose of the study is to map the
acute and chronic outcomes of Type 1 diabetes from diagnosis and to consider risk
factors such as GHb from the earliest stages of the disease onwards.

Examples used in this text arise from the longitudinal glycosylated hemoglobin
measurements performed on the blood samples. Figure I.1 obtained by PROC
CHART shows the number of participants with GHb data for 1 year, 2 years,
and so on, up to 14 years of follow-up, at the time the data sets for this text were
compiled. In most analysis here, we will for simplicity average all the GHb mea-
sures in a given year. The commands use to produce the number of years of GHb
measurements for each individual were:
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Fig. I.1 The number of participants with GHb

PROC SORT; BY ID;
PROC MEANS NOPRINT; BY ID; VAR GHB;
OUTPUT OUT=MM N=NG;
DATA B; SET MM;
LABEL NG=‘YEARS OF GHB’;
PROC CHART; HBAR NG;

Some references pertaining to GHb measurements in the Wisconsin Diabetes
Registry Study are listed at the end of this Introduction.

I.3 WISCONSIN SLEEP COHORT STUDY

A survey questionnaire inquiring about sleep and sleep-related problems was sent
to 6900 employees age 30–60 at four State of Wisconsin agencies. Completed
surveys were received from 4927 respondents. A stratified random sample of the
respondents was invited to spend the night in a completely equipped clinical sleep
laboratory for overnight polysomnography and other tests. A total of 1370 indi-
viduals participated. Sleep studies were performed over an extended time period,
resulting in some individuals being age 65 and older at the first visit. Blood pressure
measurements were taken in the laboratory, and height and weight were measured.
Subjects are reinvited for sleep studies every four years. The goals of the project
are to identify risk factors and outcomes associated with sleep disorders.
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Data used in this text are the longitudinal measures of systolic blood pressure
and hypertension as associated with age, gender, and body mass index. Sample sizes
in specific analyses vary slightly due to measurements sometimes being missing.
For example, out of the 1370 total individuals, 5 had their first blood pressure
measurement at the second visit. We also use data from a subproject on the cost of
medical care for the cohort. A list of references from the study that involve these
variables is provided below.
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C H A P T E R O N E

Review of Ordinary Linear
Regression and Its Assumptions

1.1 THE ORDINARY LINEAR REGRESSION EQUATION
AND ITS ASSUMPTIONS

A linear regression equation can be alternatively specified as

yi = β0 + β1xi + εi or

µy|x = β0 + β1x or (1.1)

E(y|x) = β0 + β1x

to describe the quantitative relationship between a single predictor x and an out-
come y. In the population health research projects described in the Introduction,
y may be a measured GHb or the score of a very-low-birth-weight (VLBW) child
on a test, or the systolic blood pressure (SBP) at a visit to the sleep clinic. In the
first equation εi is a random regression error describing the deviation of a given
value yi from its mean. It can be viewed as capturing unmeasured influence on the
outcome. In order to make both the first and the second equations of (1.1) correct, it
is assumed that E(εi |xi) = 0. In other words, if the second equation is to describe
the relationship of the mean y to x correctly, the random errors in the first equation
must average to 0 for all x. This also implies that εi does not depend on xi . The
last two equations are just saying the same thing in different notation because the
“expected value” E(·) of a variable is by definition the mean of that variable.

We assume that the reader is familiar with the “conditional on” notation implied
by the “|”. Conditioning on a variable means that the variable is (at that moment)
considered a constant, so the parameters of the distribution of y may depend on
x. In other words, when conditioning systolic blood pressure on a given age x, we
are interested in the parameters of the distribution of blood pressure at that age.
Estimation of the parameters of equations (1.1) usually proceeds by the method
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of least squares. In dealing with the regression equation, forming estimators, and
drawing inference, we commonly make a number of assumptions:

1.1.1 Straight-Line Relationship

Equation (1.1) implies that x and the mean of y are related in a straight-line fashion.
This assumption can be alternatively stated as a constant difference in mean y

between every pair of x′s that are separated by the same number of steps. For
example, if y is systolic blood pressure from visit 1 in the Sleep Cohort Study
and x is age, linearity implies that the difference in mean blood pressure between
a 50-year-old and a 40-year-old is the same as that between a 40-year-old and
a 30-year-old. Regardless of the level of x, µy|x+1 − µy|x = β1, so that the
regression coefficient is the difference in mean with one step increase in x. Again,
if y is systolic blood pressure and age x is recorded in years, β1 is the increase in
mean blood pressure every year. The linearity assumption is an inherent structural
assumption, the validity of which is driven by the biological, sociological, and so
on, mechanisms that relate y to x. When the linearity assumption holds, we are
ahead statistically, because we need to estimate only two parameters β0 and β1
instead of a separate µy|x for every x.

Only in the situation that x is binary (e.g., designating two treatment groups)
is the linearity assumption moot, or automatically satisfied. If y is systolic blood
pressure and x is a 0–1 indicator of gender where 1 indicates male, then β1 is the
difference in mean blood pressure between males and females, and β0 is the mean
for females. In this situation, µy|x is simply a notation for representing the means
of two groups (females and one-step difference involved). Since no assumptions are
made on the mean structure, equations (1.1) estimate two parameters either way.

In other situations, the original x may just serve as a label for different groups,
such as ethnic categories or treatments. The linearity assumption then makes little
sense. However, we can expand (1.1) through the device of binary indicator vari-
ables, which bypass the linearity assumption, but again do not save us parameters
as compared to estimating µy|x separately for each group. In the Wisconsin Sleep
Cohort Study, we may wish to compare mean blood pressure between the four state
agencies surveyed, by using three indicator variables. In SAS, indicator variables
are created in many procedures by the CLASS statement [1].

In the simple cases presented in this chapter, we emphasize linearity of µy|x
versus a single predictor. We can easily generalize equation (1.1) to more compli-
cated cases by transforming y or x or by adding squared, cubic, and so on, terms in
x. Note, however, that even when x or y is transformed or when polynomial terms
are added, ordinary regression remains a linear expression of the regression param-
eters. This simplifies estimation. In Chapter 12, we will consider some situations
when the regression equation for the mean is not linear in the parameters.

1.1.1.1 Example
OUTPUT PACKET I shows regression equations, plots of residuals versus predicted
values, and mean plots for some variables from the data sets of interest. Later, we
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will analyze some of these data sets longitudinally. However, for now we chose
only one data point for each individual. Systolic blood pressure is analyzed from
visit 1 to the sleep lab, and we selected GHb measured around 4 years diabetes
duration. These variables are both regressed on age. To discern nonlinearity in the
regression analysis, we look for any trend in the mean residual. Recall that the
mean of the residual εi should be 0 at all levels of the predicted value µy|x and at
all levels of x. Even a linear trend in the residual plot would indicate nonlinearity
in the regression. (In contrast, we would look for curvature in a scatter plot, or
a plot of means versus levels of x.) We see in the plot of GHb residuals on age
that the residuals appear higher in the middle of the plot, at ages corresponding to
the teenage years. It is known that adolescence is associated with poor glycemic
control [2]. In the Sleep Cohort data set there is a hint of downturn of blood pressure
residuals at the highest predicted values. We will see later that this may be due to
some individuals with the highest levels of predicted systolic blood pressure taking
blood-pressure-lowering medications. However, we see that all three residual plots
display a great deal of variability in the data. This is typical of many epidemiologic
and health services studies and can make it difficult to discern nonlinearity from
such plots.

The regression analysis and residual plots can be generated by statements such as

PROC REG; MODEL SBP=AGE; PLOT RESIDUAL. *PREDICTED.;

However, to have residuals and predicted values available for further analysis,
and especially for producing a histogram, we used statements

PROC REG; MODEL SBP=AGE; OUTPUT OUT=dataset R=RESID P=PRED;
PROC PLOT; PLOT RESID*PRED;
PROC UNIVARIATE PLOT: VAR RESID;

Here, residuals and predicted values are stored in the data set “dataset” together
with the original variables. PROC UNIVARIATE provides a histogram of the resid-
uals. PROC REG differs from most other SAS regression programs in its lack
of ability to automatically create indicator variables and interactions. It has the
advantage of being easy to run, and of accepting multiple model statements.

The plots of mean yi were obtained by grouping xi into intervals, so that ygroup
can be plotted against xgroup . To do so (except for the duration of diabetes, which
was already an integer), we used statements

AGEGP=5*INT(AGE/5);
PROC SORT; BY AGEGP;
PROC MEANS NOPRINT; BY AGEGP; VAR SBP;
OUTPUT OUT=MM MEAN=SBPMEAN;
PROC PLOT; PLOT SBPMEAN*AGEGP;

Note how the integer function was applied to efficiently create 5-year age groups
(e.g., 5*INT (57/5) = 5*INT(11.2) = 5*11 = 55, so that subjects age 55–59 are
in age group 55). The over-65 group was pooled with the 60–64 group. There is
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a fairly linear relationship between age and systolic blood pressure at the time of
the first visit to the sleep laboratory. On the other hand, the mean plot confirms
that the relationship of mean GHb to age is far from linear. It appears that GHb
rises rapidly until about age 14 or 15 and then declines.

1.1.1.2 Comment on Bias
If the linearity assumption does not hold in (1.1), the mean of εi is not 0 for all xi ,
and (1.1) is not a good representation of µy|x . The linearity assumption can also
be phrased as lack of bias in representing, and later estimating, the mean µy|x by
the regression equation. Lack of bias is often seen as the most important attribute
of an estimator, making the linearity assumption of paramount importance in (1.1).

Technically, unbiasedness in an estimator is defined as the property of being
“correct on average.” As long as the linearity assumption holds, it can be shown
(as we do later) that least-squares estimators of β0 and β1 are unbiased. This means
that if studies producing estimators for (1.1) were done many, many times over,
and the estimators β̂0 and β̂1 averaged across all these studies, the result would be
the true β0 and β1. When β̂0 and β̂1 average to their correct values and (1.1) is a
correct formulation, µ̂y|x is an unbiased estimator of the mean y at a given x.

As we will discuss in Chapter 7, bias can also be created by unequal probability
sampling from the population. We will demonstrate there how to correct for such
bias. A special case of selection bias occurs when subjects are chosen based on
screening high on some risk factor [3].

1.1.1.3 Comment on Causal Interpretation
Even when there is technically no bias in equation (1.1) as stated conditionally on
x, it is important to remember that β1 may not have a causal interpretation. Consider
a situation where the causal model conditional on both x and all confounders can
be formulated:

yi = β ′
0 + β ′

1xi + β2 wi + εi (1.2)

where β ′
1 measures the causal effect of x on y and where w is a confounder. (Recall

the definition of a confounder as a variable associated with both the outcome and
risk factors.) If x and w are both normally distributed with correlation ρxw and
variances σ 2

x and σ 2
w, respectively, it can be shown that the formulation of (1.1),

conditionally on only x, becomes

yi = β0 +
(

β ′
1 + β2ρxw

σw

σx

)
xi + εi (1.3)

with all assumptions of (1.1) satisfied. However, β1 is confounded as

β1 = β ′
1 + β2ρxw

σw

σx

The above situation is known as confounding in epidemiology and as endogene-
ity in econometrics. Another way to describe endogeneity is that the unknown or
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error part β2wi + ei in (1.2) does not have mean 0 for all x. However, we will not
know that when we are fitting (1.1), unaware of the presence of w.

1.1.2 Equal Variance Assumption

The equal variance assumption can be written Var(ε|x) = σ 2
y|x , which implies that

the variability of y around its mean is the same at every x. For example, the
variability in systolic blood pressure is assumed to be the same at every age. The
assumption enters in the formulation of the least-squares equations. Recall that in
applying the least-squares principle, the expression

∑
(yi − µ̂yi |xi

)2 is minimized,
where µ̂

yi |xi
= β̂0 + β̂1xi . This expression treats all observation points equally.

But, if Var(εi |xi) is not equal at all points, it would be sensible to give less weight
to the points where this variability is greater. Where variability is wider, obser-
vations yi tell us less about where the mean is. For example, at ages where GHb
variability is the greatest, measurements are less informative about the location of
the curve describing the mean. With biological measurements the variance often
tends to increase with the size of the measurement, so if y is positively related to
x, Var(εi |xi) is often higher when xi is higher.

In addition to the above consideration, the estimate of the residual variance
is difficult to interpret and cannot be assumed to yield valid significance tests
when the true residual variance is not constant. We will see, in later chapters, how
significance tests can be corrected to take unequal variance into account.

1.1.2.1 Example
In a plot of residuals versus predicted values, we assess the equal variance assump-
tion by looking for whether the plot tends to fan out, usually to the right side. Some
caution is in order, as there will be more spread among points in areas with many
observations. In our residual plots, we see fanning out toward the high side of the
predicted GHb. This corresponds to greater variability during the adolescent years
when GHb peaks.

1.1.2.2 Comment on Efficiency
It is a general principle in statistics that weighting an observation by the inverse of
its variance yields estimators with the smallest standard errors. Hence we foresee
that similarly weighting observations in the least-squares estimator may be benefi-
cial. However, we will need to provide mathematical justification for exactly how
to do this weighting.

The property of smallest possible standard errors is referred to as efficiency. The
word efficiency is used similarly when referring to an electrical device or engine:
how well the input (i.e., the electricity/fuel or data) is utilized in producing the
desired product (e.g., refrigeration/mileage or regression estimators). One familiar
situation where the equal variance assumption is clearly violated is when yi is a
binary variable. Then Var(yi) is πi(1 − πi), which depends on the proportion of
success πi . When yi is coded 0, 1 we have πi = µy|xi

, so the variance depends on
the mean of yi . We will see later how such relationships are taken into account. A
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common solution for binary outcome is to apply logistic regression, abandon the
idea of least-squares estimation, and apply maximum likelihood. We will emphasize
the link between the two approaches.

1.1.3 Normality Assumption

We usually assume that the distribution of the error term εi is normal. This assump-
tion enters in forming inferences for the estimators. The normality assumption
allows us use of the t-distribution to obtain tests and confidence intervals for
individual coefficients and the validity of F -tests for the model as a whole. How-
ever, it can be shown that in large samples β̂0, β̂1, and their test statistics have
approximately normal sampling distributions regardless of whether εi is normally
distributed. The beauty of the t- and F -tests is that they are applicable even with
small sample sizes as long as the normality assumption holds for the residuals. The
reader is probably familiar with how, when we abandon the normality assumption,
in logistic regression, we are “stuck with” χ2-tests that yield correct inference
only in large samples. It may be noted that for large sample sizes when the
degrees of freedom for the estimator s2

y|x is large, so its random error vanishes, the

t-distribution approaches the normal, t2 approaches χ2 (1), and the F distribution
with m numerator degrees of freedom approaches χ2(m)/m.

Using maximum likelihood requires that a distributional assumption be made on
εi . We will see later that the normality assumption leads to equality of least-squares
and maximum likelihood estimators for model (1.1). However, even later we will
see that the normal distribution is one example in a broader framework and that it
is convenient to draw connections between maximum likelihood and least-squares
estimation procedures for many common distributions.

1.1.3.1 Examples
The normality assumption can be assessed informally, but adequately, by looking at
a histogram of the residuals. Our graph for the residuals of systolic blood pressure
on age shows very slight skewness. This is rather typical. With a large data set, it
is not of great concern, unless skewness is extreme. With a small data set, on the
other hand, it may be difficult to assess normality.

Note that it is normality of the residuals that is required for t- and F -tests of
regression coefficients to be valid in small samples, not normality of the outcome
before taking x into account. It is not uncommon to see that normality improves
when conditioning on x. The final example in OUTPUT PACKET I shows a regres-
sion analysis of number of days VLBW infants spend in the NICU on birth weight.
We see that while the number of days has a rather skewed distribution, the skewness
disappears when conditioning on the infant’s birth weight.

1.1.3.2 Comment on Normality
Sometimes, a variable’s distribution is fairly well known from previous studies to
be normally distributed in populations that are unselected for the variable. Sys-
tolic blood pressure is an example of a measure that has been widely studied. It is
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usually found to be very close to normally distributed, although some investigators
have applied the transformation log(SBP-50) [4]. In our case this transformation
reduced skewness only slightly, and the distribution became skewed in the opposite
direction instead. It is interesting that designed variables such as IQ are typically
scaled to have normal distributions in the population. Hence, the normality of such
variables is “man-made,” while the normality of biological variables is considered
to be the result of many factors being added up, so that by the central limit the-
orem the end result is normally distributed. Recall that the central limit theorem
states that means and sums of many independent variables tend toward normal
distributions.

1.1.4 Independence Assumption

We usually assume that εi and εi ′ are independent for i �= i′ —that is, that the
residuals for two different observations on y do not “travel together” once their
corresponding x’s are taken into account. We will see that the assumption enters
when deriving the standard errors of regression coefficients. Intuitively, one can
see that if εi and εi ′ are positively correlated, we really have less information
than we presume, when we base our inference on thinking that all y’s contribute
a given piece. In other words, lack of independence implies that only part of the
information about β0 and β1 imparted by yi ′ is new; the rest has already been
gained from yi .

Consider the data from the Wisconsin Diabetes Registry. Each individual pro-
vided a number of measurements on glycosylated hemoglobin across several years.
Say we wish to examine how glycosylated hemoglobin (GHb) relates to the dura-
tion of diabetes. Obviously, much variability in GHb exists at each duration and is
reflected in the ε. While it may be fairly reasonably assumed that ε from different
individuals are independent, GHb of the same individual may tend to be uniformly
on the high or low side, depending on the person’s diet, diabetes care regimen,
exercise level, and so on. We can usually not begin to hope that we have captured
all these influences in the x’s we have in the study. Hence ε on the same individual
are not independent. Similarly, in the sleep study, having blood pressure data on
1251 measurements from three visits on 520 individuals does not convey the same
information on, for example, gender differences as having 1251 measurements on
1251 different individuals.

Because there is less information in the data when residuals are positively cor-
related than when they are independent, standard errors can be underestimated. We
will see that lack of independence can be dealt with either by maximum likelihood
estimation where the joint distribution of the measurements is correctly modeled,
or a modified least-squares approach.

1.1.4.1 Example
It is not easy to discern most cases of dependence in an overall scatter plot, or
residual plot. One may target special cases of dependency that are expected in
a given study. In OUTPUT PACKET I, we included only one GHb observation
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Fig. 1.1 Wisconsin Diabetes Registry Study GHb for the first five subjects

per individual, to improve independence of measurements. (Of course this is very
wasteful, and one of our goals is to enable inclusion of all the data in the analysis).
In Figure 1.1, GHb versus duration is shown for the first five individuals in the
data set. We see that the values of a given individual tend to be on the high or low
side. In fact, the average correlation among residuals from the same individual is
0.51. Systolic blood pressure residuals across visits in the sleep study correlate at
0.35 within person.

1.2 A NOTE ON HOW THE LEAST-SQUARES ESTIMATORS
ARE OBTAINED

We need calculus to minimize the expression
∑

(yi − β̂0 − β̂1xi)
2 with respect to

the estimators β̂0, β̂1. In this case, the two estimators constitute two “variables”
in the calculus sense, and we take the derivatives of the least-squares expression,
invoking the chain rule. Noting that

LS =
∑

LSi =
∑

(yi − β̂0 − β̂1xi)
2 =

∑
ε̂2
i

we have that

dLSi

dε̂i

= 2ε̂i
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so

∂LSi

∂β̂0
= 2ε̂i

∂ε̂i

∂β̂0
= 2(yi − β̂0 − β̂1xi)(−1)

and

∂LSi

∂β̂1
= 2ε̂i

∂ε̂i

∂β̂1
= 2(yi − β̂0 − β̂1xi)(−xi)

We apply the rule that the derivative of a sum is the sum of derivatives. Then
setting the final derivatives to 0 we obtain:

∂LS

∂β̂0
= −2

∑
(yi − β̂0 − β̂1xi) = 0

∂LS

∂β̂1
= −2

∑
xi(yi − β̂0 − β̂1xi) = 0

(1.4)

Simultaneously solving these equations results in the usual estimators

β̂1 =
∑

(xi − x)(yi − y)∑
(xi − x)2

β̂0 = y − β̂1x

OUTPUT PACKET I: EXAMPLES OF ORDINARY
REGRESSION ANALYSES

I.1. Analysis of SBP Versus Age: Wisconsin Sleep Cohort Study

The REG Procedure

Model: MODEL1
Dependent Variable: SBP

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 11604 11604 56.43 <0.0001
Error 1363 280294 205.64520
Corrected total 1364 291898

Root MSE 14.34033 R-square 0.0398
Dependent mean 125.09145 Adjusted R-square 0.0390
Coefficient of variation 11.46388
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Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t |
Intercept 1 107.98092 2.31066 46.73 <0.0001
Age 1 0.36605 0.04873 7.51 <0.0001
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                          SBP predicted by age

Plot of resid*pred. Legend: A = 1 obs, B = 2 obs, and so on. Note: 13 obs had missing values.
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Plot of sbpmean*ageg. Legend: A = 1 obs, B = 2 obs, and so on.
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The UNIVARIATE Procedure

Variable: resid (residual of SBP versus age)

Moments

N 1365 Sum weights 1365
Mean 0 Sum observations 0
Standard deviation 14.3350769 Variance 205.49443
Skewness 0.41763912 Kurtosis 0.61294189
Uncorrected SS 280294.403 Corrected SS 280294.403
Coefficient of variation Standard error of mean 0.38800177

Basic Statistical Measures

Location Variability

Mean 0.00000 Standard deviation 14.33508
Median −0.64707 Variance 205.49443
Mode 13.66973 Range 99.99362

Interquartile range 18.47016

Tests for Location: Mu0 = 0

Test Statistic p Value

Student’s t t 0 Pr > |t | 1.0000
Sign M −23.5 Pr ≥ |M| 0.2131
Signed rank S −15323.5 Pr ≥ |S| 0.2930

Quantiles (Definition 5)

Quantile Estimate

100% Max 55.669359
99% 41.669569
95% 24.621515
90% 17.771212
75% Q3 8.770605
50% Median −0.647072
25% Q1 −9.699556
10% −17.683597
5% −22.715642
1% −29.571613
0% Min −44.324258
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Extreme Observations

Lowest Highest

Value Obs Value Obs

−44.3243 1167 47.8313 85
−35.4823 1080 53.4092 802
−33.3630 1190 54.6771 367
−32.3541 896 55.0596 1208
−32.0275 1194 55.6694 1322

Missing Values

Percent of
Missing All Missing
Value Count Observations Obs

13 0.94 100.00

                   Histogram                      #         Boxplot
57.5+*                                            2            0
    .*                                            2            0
47.5+*                                            4            0
    .**                                           6            0
37.5+**                                           8            0
    .****                                        18            |
27.5+*****                                       24            |
    .*********                                   45            |
17.5+*************                               65            |
    .****************************               138            |
 7.5+********************************           157         +-----+
    .**************************************     190         |  +  |
-2.5+****************************************   198         *-----*
    .************************************       177         +-----+

-12.5+****************************               137            |
    .*******************                         92            |

-22.5+***********                                 54            |
    .********                                    36            |

-32.5+**                                          10            |
    .*                                            1            |

-42.5+*                                            1            0
----+----+----+----+----+----+----+----+

     *May represent up to 5 counts
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Normal probability plot.

I.2. Analysis of GHb Versus Age—Wisconsin Diabetes Registry

GHb Versus Age—Wisconsin Diabetes Registry
The REG Procedure

Model: MODEL1
Dependent Variable: GHb

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 0.04566 0.04566 0.01 0.9381
Error 413 3119.52820 7.55334
Corrected total 414 3119.57387

Root MSE 2.74833 R-square 0.0000
Dependent mean 11.28859 Adjusted R-square −0.0024
Coefficient of variation 24.34613

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t |
Intercept Intercept 1 11.26650 0.31444 35.83 <0.0001
Age Age 1 0.00155 0.02000 0.08 0.9381
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Residual Plot Versus Predicted Value
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f    |                       ABAAA      A       A
r    |                   A
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s  0 +      AAAAA A A BABAC AB  A  A A B     A         A           AA  AAA
i    |     AAA AABAAAAE   AAABACCBAA     BA A A       A        A A
o    |      C B  BBBACCACA   BBB AA  AA   AAA         A A   A           A
n    |      C AA  AAA AC  ABCA AA   BA A  ABA A          A C      A      AA
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o    |      CA BAA CA  A     AB A A  AAAAAA A          A             B A
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                                   Predicted by age

Plot of resid∗pred. Legend: A = 1 obs, B = 2 obs, and so on.
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Mean GHb by Four-Year Age Groups
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       |
       |
       |
       |
       |
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       |
       |
       |
       |
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       |

---+-------+-------+-------+-------+-------+-------+-------+-------+--
          0       4       8      12      16      20      24      28      32

Four-year age group

Plot of ghmean∗iage. Legend: A = 1 obs, B = 2 obs, and so on.
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Histogram of GHb Residuals
The UNIVARIATE Procedure

Variable: resid (residual from regression versus age)

Moments

N 415 Sum of weights 415
Mean 0 Sum of observations 0
Standard deviation 2.74501226 Variance 7.53509228
Skewness 1.28441431 Kurtosis 2.835934
Uncorrected SS 3119.5282 Corrected SS 3119.5282
Coefficient of variation Standard error of mean 0.13474735

Basic Statistical Measures

Location Variability

Mean 0.00000 Standard deviation 2.74501
Median −0.43380 Variance 7.53509
Mode −1.10334 Range 17.89502

Interquartile range 3.02800

                  Histogram                     #             Boxplot
11.5+**                                          3                *
   .*                                           1                *
   .**                                          3                0
   .**                                          3                0
   .*                                           1                0
   .*                                           2                0
   .*****                                       9                |
   .*******                                    13                |
   .******                                     11                |
2.5+***************                            30                |
   .**********************                     43             +-----+
   .***************************                54             |  +  |
   .*************************************      74             *-----*
   .***************************************    78             +-----+
   .***************************                54                |
   .***********                                21                |
   .*******                                    13                |
   .*                                           1                |

-6.5+*                                           1                0
----+----+----+----+----+----+----+----

    *May represent up to 2 counts
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I.3. Analysis of Days in NICU Versus Birth Weight—Newborn Lung Project

Days in NICU on Birth Weight for Survivors—Newborn Lung Project
Distribution of Number of Days

The UNIVARIATE Procedure

Variable: len (days in NICU)

Moments

N 767 Sum of weights 767
Mean 60.7118644 Sum of observations 46566
Standard deviation 29.2531787 Variance 855.748462
Skewness 0.76237889 Kurtosis 0.35614049
Uncorrected SS 3482612 Corrected SS 655503.322
Coefficient of variation 48.1836276 Standard error of mean 1.05627106

Basic Statistical Measures

Location Variability

Mean 60.71186 Standard deviation 29.25318
Median 55.00000 Variance 855.74846
Mode 44.00000 Range 172.00000

Interquartile range 39.00000

            Histogram                       #       Boxplot
175+*                                              1          0
   .*                                              2          0
   .*                                              1          0
   .***                                            7          0
   .*                                              2          |
   .*****                                         13          |
   .**********                                    29          |
   .*************                                 37          |
   .***************                               44          |
   .****************                              48          |
   .*******************                           55       +-----+
   .*********************************             98       |  +  |
   .***************************************      117       *-----*
   .******************************************   126       +-----+
   .********************************              96          |
   .********************                          58          |
   .*********                                     26          |
  5+***                                            7          |

----+----+----+----+----+----+----+----+--
    *May represent up to 3 counts
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Regression of Number of Days in NICU
The REG Procedure

Model: MODEL1
Dependent Variable: len (days in NICU)

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 280517 280517 572.28 <0.0001
Error 765 374986 490.17803
Corrected total 766 655503

Root MSE 22.13996 R-square 0.4279
Dependent mean 60.71186 Adjusted R-square 0.4272
Coefficient of variation 36.46728

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error

Intercept Intercept 1 145.15576 3.61932
Birth weight Birth weight in grams 1 −7.49741 0.31341

Parameter Estimates

Variable Label DF t Value Pr > |t |
Intercept Intercept 1 40.11 <0.0001
Birth weight Birth weight in grams 1 −23.92 <0.0001
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Days in NICU on Birth Weight for Survivors—Newborn Lung Project
Distribution of Number of Days Conditional on Birth Weight

The UNIVARIATE Procedure

Variable: resid (residual of number of days versus birth weight)

Moments

N 767 Sum weights 767
Mean 0 Sum observations 0
Standard deviation 22.1255081 Variance 489.53811
Skewness 0.70011397 Kurtosis 1.96459767
Uncorrected SS 374986.193 Corrected SS 374986.193
Coefficient of variation Standard error of mean 0.7989058

Basic Statistical Measures

Location Variability

Mean 0.0000 Standard deviation 22.12551
Median −1.5933 Variance 489.53811
Mode −11.9428 Range 186.09306

Interquartile range 24.74767

                  Histogram                       #       Boxplot
105+*                                              1          *
  .*                                              1          *
  .

.*                                              4          0
  .**                                             8          0
  .**                                             8          0
  .****                                          15          0
  .********                                      29          |
  .************                                  48          |
15+**********************                        85       +-----+
  .******************************************   165       |  +  |
  .****************************************     157       *-----*
  .********************************             128       +-----+
  .******************                            71          |
  .*******                                       28          |
  .****                                          14          |
  .*                                              2          0
  .*                                              2          0
-75+*                                              1          0

----+----+----+----+----+----+----+----+--
   *May represent up to 4 counts
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The Maximum Likelihood Approach
to Ordinary Regression

In the above, we presented the usual least-squares approach to estimation in ordi-
nary regression. This approach is based on minimizing

∑
(yi − µ̂y|x)2. Minimizing

the sum-of-squared distances of the points from the regression line turns out to be
a good idea, because the expression is in the numerator of s2

y|x and of the standard
errors of regression coefficient estimators. Minimizing the variance of estimators
is always a goal, as it means that the estimators are efficient. The least-squares
principle is quite general, and estimation can be carried out without any reference
to how the points are actually distributed. Note how the assumptions of ordinary
regression came into play only gradually. First, no assumption was made in choos-
ing the least-squares principle. Then assumptions on the variance of the points were
made, but not on the entire distribution. The normality assumption came into play
only in the last step—in constructing the t- and F -tests. This gradual approach has
many advantages, as we can decide how many assumptions we wish to make.

2.1 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood takes the completely opposite path. We start with an assump-
tion on the entire distribution of the data. For simple regression, this amounts to
assuming both that y is normally distributed around the regression line (i.e., con-
ditionally on x) and that all sample points are independent. Mathematically, the
normality assumption is written yi |xi ∼ N(β0 + β1xi, σ 2

y|x) or εi ∼ N(0, σ 2
y|x).

The fact that we also assume independence can be written εi
i .i .d .∼ N(0, σ 2

y|x), where
the i.i.d. stands for “independently, identically distributed.”

The likelihood of a sample is often thought of as the joint probability of
the particular observations expressed with the parameters of the probability as
unknowns. For example, in constructing the likelihood of a sample consisting of

Quantitative Methods in Population Health, by Mari Palta
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binary observations, where the probability of success π is to be estimated, we
multiply together π ’s for the successes and (1 − π)’s for the failures. Normally
distributed data points, however, are by definition assumed to be continuous. In
that case, we are used to seeing probabilities of intervals, rather than probabilities
of individual data points—for example, P (y > 140) is of interest if y is systolic
blood pressure measured in mmHg. Such probabilities can be obtained from the
table of the standardized normal distribution (once the mean and standard deviation
of y are known). It makes little sense, however, to speak of a particular observation
(say a blood pressure of 115.11111 or 115.1111111111) having a probability. The
probability becomes smaller and smaller to a vanishing point as more and more
decimals are added. Instead, the limiting probability of an infinitely narrow interval
around a point y is based on calculus concepts and is referred to as the density.
The density is the function that generates the probabilities of y falling in given
intervals by mathematical integration. For discrete y (such as binary or counts) the
density is simply equal to the probability of observing y.

The particular integral that generates the probability up to a given point—that
is, F(y) = P (Y ≤ y)—is called the distribution function. It is common to denote
a density by a lowercase letter and to denote the distribution by the corresponding
uppercase letter. For the normal distribution, the density is

f (y) = φ(y) = 1

σ
√

2π
exp

(
− (y − µ)2

2σ 2

)

The normal distribution function is often denoted by � but cannot be written
as a neat formula, only as an integral of φ. Luckily, this is the integral that has
been evaluated numerically and tabulated in normal distribution tables for the case
µ = 0 and σ = 1. For example, the integral from −∞ to 1.96 equals 0.975.
Substituting the parameters we are interested in for describing µ, which are now
those of µy|x from a regression line, we obtain

f (yi) = 1

σy|x
√

2π
exp

(
− (yi − β0 − β1xi)

2

2σ 2
y|x

)

Maximum likelihood estimators are defined as those that maximize the joint
density of the sample. If we were dealing with discrete data, it would also be the
joint probability of the sample. Because we assumed that all points are independent,
the density of the sample is just the product of the individual densities of the
observations

L =
n∏

i=1

1

σy|x
√

2π
exp

(
− (yi − β̂0 − β̂1xi)

2

2σ 2
y|x

)

=
(

1

σy|x
√

2π

)n

exp


−

n∑
i=1

(yi − β̂0 − β̂1xi)
2

2σ 2
y|x



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where we have applied the rule that when multiplying exponentials one takes the
sum of the exponents. Note that the β’s have “∧” on them to indicate that they
are the unknowns to be estimated. Generally, σy|x is unknown too, but let’s first
consider the situation of known σy|x .

For example, if we had a sample with just three people aged 42, 50, and 55, and
they had respective systolic blood pressures of 110, 145 and 135, and we knew that
the standard error of blood pressure measurements in the population is 12 (say),
the likelihood would be

L =
[

1

12
√

2π
exp

(
− (110 − β̂0 − β̂142)2

2(12)2

)]

×
[

1

12
√

2π
exp

(
− (145 − β̂0 − β̂150)2

2(12)2

)]

×
[

1

12
√

2π
exp

(
− (135 − β̂0 − β̂155)2

2(12)2

)]

=
(

1

12
√

2π

)3

exp


−

(110 − β̂0 − β̂142)2 + (145 − β̂0 − β̂150)2

+ (135 − β̂0 − β̂155)2

2(12)2




When embarking on the maximization of the likelihood, one always takes the
logarithm because it is easier to maximize a sum than a product, and maximizing
the log of the likelihood also maximizes the likelihood itself. In our case

log(L) = −n log(σy|x
√

2π) −

n∑
i=1

(yi − β̂0 − β̂1xi)
2

2σ 2
y|x

It is pretty clear that, regardless of the value of σy|x or how it is obtained (known
or estimated), this expression is at its largest when

∑n
i=1(yi − β̂0 − β̂1xi)

2 is at
its smallest. It turns out that way because we assumed all observations to have the
same variance σ 2

y|x . We have reproduced the unweighted least-squares equation for
estimating β0 and β1.

What we have just shown is that, in the case of ordinary regression, under
the normality and equal variance assumptions, maximum likelihood and the least-
squares approach yield the same estimators of the regression coefficients.

Turning to the estimator of σy|x , the situation is not quite so simple. When we
proceed to maximize

log(L) = −n log(σ̂y|x
√

2π) −

n∑
i=1

(y
i
− β̂0 − β̂1xi)

2

2σ̂ 2
y|x

(2.1)
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with respect to σ̂y|x we find that

σ̂ 2
y|x =

n∑
i=1

(yi − β̂0 − β̂1xi)
2/n

while our usual estimator is

s2
y|x =

n∑
i=1

(yi − β̂0 − β̂1xi)
2/(n − 2)

In the latter estimator, we divide by the sample size, minus the number of param-
eters in the regression equation for the mean. Both estimators are legitimate and
have their proponents. Clearly, when n is very large, they are almost the same any-
way. At the moment, most of the statistical community favors the second approach.
To obtain this estimator, while remaining in the maximum likelihood framework,
they developed a slightly modified maximum likelihood approach called “restricted
maximum likelihood” or REML. (The usual maximum likelihood is usually abbre-
viated ML.) Those who wish to see the mathematical foundation are referred to
McCullagh and Searle [5] or Diggle et al. [6] for more details. The basic idea is
to base the likelihood, not on the original observations, but on the residuals. The
number of independent residuals equals the degrees of freedom in the variance, so
n − 2 (for example) becomes the sample size for estimating σ 2

y|x .
Both ML and REML can be fit in SAS by the procedure PROC MIXED. OUT-

PUT PACKET II contains an analysis of the blood pressure data from visit 1 in
the Wisconsin Sleep Cohort Study. PROC MIXED will be used extensively in this
text.

2.2 EXAMPLE

The first example of OUTPUT PACKET II contains the output from PROC REG
for the relationship between systolic blood pressure and age. The commands used
were simply

PROC REG; MODEL SBP=AGE;

The second example contains the results from PROC MIXED. As this procedure
has very extensive capabilities that we will rely on later, it takes a little longer to
run. The commands used for producing the second page were

PROC MIXED METHOD=ML; MODEL SBP=AGE/S;

These commands tell SAS to use the maximum likelihood approach. The /S
option (S stands for solution) tells the procedure to print the regression coefficients.
Strange as it may sound, this is not automatic in this procedure, as sometimes inves-
tigators may want only the significance tests for the model. Looking at the output
we see that, as expected, the coefficients are identical to those from PROC REG.
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The residual variance estimator σ̂ 2
y|x, however, is minutely smaller. While PROC

REG estimated s2
y|x = 205.64520, ML yields “Residual” = 205.34. The difference

is very small because n = 1365 is large. You may note that PROC MIXED is
designed to be able to handle multiple observations per subjects, and that has led
to strange labels on parts of the output. As we may understand better later, the
commands above (because they don’t need a SUBJECT specification) lead SAS to
think there is only one subject with multiple observations.

Other features of the output are statistics derived from log(L), which we will
use later. Some are familiar. For example, −5570.9 is the value of log(L). The
“−2 Log likelihood”, you may recall, is to be used for comparing nested models
by χ2 tests.

The third example of the output was produced by

PROC MIXED METHOD=REML; MODEL SBP=AGE/S;

We did not actually need to say METHOD=REML as that is the default, We see
that this output provides estimates that are all identical to those of PROC REG.
Likelihood statistics are now based on the restricted likelihood, and can be treated
and used the same way as ordinary likelihood quantities (see Section 5.2).

2.3 PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS

Maximum likelihood estimators have many desirable properties that statisticians look
for when judging how good an estimator is. The advantage is, of course, also that
these properties hold for all estimators obtained by maximum likelihood, so they don’t
need to be re-proven for each situation. You will often see these properties referred
to in statistical papers and texts. The two involved most often are consistency and
efficiency. More information on the properties of maximum likelihood estimators can
be found in any text on mathematical statistics—for example, Rice [7].

1. Consistency This is the most important property. It means that the estimator
tends to come closer to the truth when the sample size is increased. Think of it
as any bias in the estimation of the parameter, as well as the standard error of the
estimator going to 0 as the sample size becomes large.

2. Efficiency As discussed above, efficiency means that the best possible use is
made of the data. Maximum likelihood estimators are “asymptotically efficient,”
which means that they are precise as possible in large samples. We will return to
the standard errors for maximum likelihood estimators in Chapter 5.

3. Invariance This property means that reparameterization does not produce
different maximum likelihood estimators of the same quantities. This is logical and
desirable. For example, if β̂1 is the maximum likelihood estimator of a regression
slope β1, then 1/β̂1 is the maximum likelihood estimator of 1/β1. Formally, if
θ̂ is a maximum likelihood estimator of θ, then g(θ̂) is a maximum likelihood
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estimator of g(θ). You may have seen this principle illustrated in logistic regres-
sion of a 2 × 2 table. There, we obtain the same estimator of the probabilities pi,

whether we obtain the ML directly or parameterize it according to a logistic model
with x equal 0 or 1 to indicate the two columns in the table as pi = exp(β0+β1xi)

1+exp(β0+β1xi)
.

4. Normality In large samples, maximum likelihood estimators have a normal
sampling distribution, with a variance that can be computed from the likelihood
(see Chapter 5). Hence, we will have standard errors for the estimators. Since the
estimators are normally distributed and, in addition, the errors in the standard errors
themselves vanish in large samples, we can always form large sample Z or χ2 tests
for maximum likelihood estimators.

5. Comment Because of the above properties, maximum likelihood estimators
tend to be viewed as kind of a “gold standard.” However, sometimes they cannot
be obtained because a reasonable distribution cannot be specified, or because it is
computationally too hard to maximize log(L). In addition, because the consistency
and efficiency apply to large sample sizes, other estimators can be better in small
samples. You may note, for example, that the properties listed do not include
“unbiasedness.” In fact, maximum likelihood estimators can be biased in small
samples (as is indeed the ML estimator of σ 2

y|x).

2.4 HOW TO OBTAIN A RESIDUAL PLOT WITH PROC MIXED

PROC MIXED deals with residual plots slightly differently than PROC REG. The
statements needed to produce a residual plot from the regression of SBP on Age
are

PROC MIXED; MODEL SBP=AGE/S OUTPRED=oo;
PROC PLOT; PLOT Resid*Pred;

These statements simply create data set “oo”, which contains (among other
things) the desired quantities.

OUTPUT PACKET II: USING PROC MIXED AND COMPARISONS
TO PROC REG

Analysis of SBP on Age—Wisconsin Sleep Cohort Study MIXED Versus REG
Using PROC REG

The REG Procedure

Model: MODEL1
Dependent Variable: SBP
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Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 11604 11604 56.43 <0.0001
Error 1363 280294 205.64520
Corrected total 1364 291898

Root MSE 14.34033 R-square 0.0398
Dependent mean 125.09145 Adjusted 0.0390
Coefficient variation 11.46388 R-square

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t |
Intercept 1 107.98092 2.31066 46.73 <0.0001
Age 1 0.36605 0.04873 7.51 <0.0001

Using PROC MIXED with ML
The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Diagonal
Estimation method ML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Residual

Dimensions

Covariance parameters 1
Columns in X 2
Columns in Z 0
Subjects 1
Maximum observations per subject 1378
Observations used 1365
Observations not used 13
Total observations 1378
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Covariance Parameter
Estimates

Cov Parm Estimate

Residual 205.34

Fit Statistics

−2 Log Likelihood 11141.9
AIC (smaller is better) 11147.9
AICC (smaller is better) 11147.9
BIC (smaller is better) 11163.6

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t |
Intercept 107.98 2.3090 1363 46.77 <0.0001
Age 0.3660 0.04869 1363 7.52 <0.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Age 1 1363 56.51 <0.0001

Using PROC MIXED with REML
The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Diagonal
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Residual
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Dimensions

Covariance parameters 1
Columns in X 2
Columns in Z 0
Subjects 1
Max observation per subject 1370
Observations used 1365
Observations not used 5
Total observations 1370

Covariance Parameter
Estimates

Cov Parm Estimate

Residual 205.34

Fit Statistics

−2 Log likelihood 11141.9
AIC (smaller is better) 11147.9
AICC (smaller is better) 11147.9
BIC (smaller is better) 11163.6

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t |
Intercept 107.98 2.3107 1363 46.73 <0.0001
Age 0.3660 0.04873 1363 7.51 <0.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Age 1 1363 56.43 <0.0001
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Reformulating Ordinary Regression
Analysis in Matrix Notation

We have seen that expressing the estimators connected with equation (1.1) alge-
braically is a pretty easy task. However, as we turn to the situation of multiple
regression, including additional predictors on the right-hand side of equation (1.1),
it rapidly becomes difficult and then impossible to write the estimators. As an
example, with two predictors x1 and x2 the formula for β̂1 is (only found in
textbooks, such as Snedecor and Cochran [8, p. 342])

β̂1 =

∑
i

(x1i − x1)(yi − y)
∑

i

(x2i − x2)
2

∑
i

(x1i − x1)
2
∑

i

(x2i − x1)(x2i − x2)
2

−

∑
i

(x2i − x2)(yi − x2)(yi − y)
∑

i

(x1i − x1)(x2i − x2)

∑
i

(x1i − x1)
2
∑

i

(x2i − x1)(x2i − x2)
2

One practically never finds these types of expressions written out for any situ-
ation beyond that of two predictors. Instead, mathematical notation using matrices
has been developed that allows estimators to be expressed in simple ways by
formulas that explain the structure of the equations, and that can be evaluated
by computers. This notation is so universally used in textbooks, methodologi-
cal papers, and computer manuals that it becomes impossible to learn and utilize
recently developed quantitative tools without understanding it. The last page of this
chapter summarizes the matrix algebra needed. Readers unfamiliar with any of the
matrix operations listed on this page should refer to the Appendix (at the end of
this book) for detailed information on matrix algebra.
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3.1 WRITING THE ORDINARY REGRESSION EQUATION
IN MATRIX NOTATION

Equation (1.1) stated the equation for ordinary regression as

yi = β0 + β1xi + εi

Note how there is actually a separate equation for each subject i = 1, 2, . . . , n,

because they have potentially different xi and almost certainly different εi . In other
words,

y1 = β0 + β1x1 + ε1

y2 = β0 + β1x2 + ε2

...

yn = β0 + β1xn + εn

In matrix notation, the outcomes yi are stacked into a matrix

Y =




y1
y2
...

yn


 which equals




β0 + β1x1 + ε1
β0 + β1x2 + ε2

...

β0 + β1xn + εn




However, using the rules of matrix algebra, the right-hand side can be rewritten




β0 + β1x1 + ε1
β0 + β1x2 + ε2

...

β0 + β1xn + εn


 =




β0 + β1x1
β0 + β1x2

...

β0 + β1xn


 +




ε1
ε2
...

εn




where



β0 + β1x1
β0 + β1x2

...

β0 + β1xn


 =




1 x1
1 x2
...

...

1 xn




(
β0
β1

)

Denoting




1 x1
1 x2
...

...

1 xn


 by X,

(
β0
β1

)
by β, and




ε1
ε2
...

εn


 by ε
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the regression equation can now be written in matrix form as

Y = Xβ + ε (3.1)

It is important to note that X has a row for each of the n subjects, as do Y

and ε. The number of columns in X is determined by the number of covariates.
Interestingly, one can view the intercept as a covariate that is the same (=1) for all
subjects. If there were predictors x1i , x2i , . . . , xmi, the matrix X would be




1 x11 x21 · · · xm1
1 x12 x22 · · · xm2
...

...
...

. . .
...

1 x1n x2n · · · xmn




but equation (3.1) would look the same. It is clear that equation (3.1) seamlessly
generalizes into multiple regression.

3.1.1 Example

The matrix Y containing systolic blood pressures for the first visit to the sleep
laboratory for the first five subjects in the Wisconsin Sleep Cohort is

Y =




119.333
138.333
119.333
111.667
148.333




where the decimals arise from averaging three measurements. When regressing
SBP only on age the matrix X for the same five subjects is

X =




1 47.1677
1 52.0137
1 53.5359
1 30.1383
1 42.8282




while if both age and BMI are included, we obtain

X =




1 47.1677 20.1956
1 52.0137 24.0509
1 53.5359 28.0190
1 30.1383 26.2507
1 42.8282 27.6095



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3.2 OBTAINING THE LEAST-SQUARES ESTIMATOR β̂

IN MATRIX NOTATION

We examine the least-squares equations (1.2)

∂LS

∂β̂0
= −2

∑
(yi − β̂0 − β̂1xi) = 0 or

∑
(yi − β̂0 − β̂1xi) = 0 (3.2)

∂LS

∂β̂1
= −2

∑
xi(yi − β̂0 − β̂1xi) = 0 or

∑
xi(yi − β̂0 − β̂1xi) = 0

(3.3)
Matrix property 15 from the list tells us that (3.2) can be written

(
1 1 · · · 1

)



(y1 − β̂0 − β̂1x1)

(y2 − β̂0 − β̂1x2)
...

(yn − β̂0 − β̂1xn)


 = 0

and equation (3.3) can be written

(
x1 x2 · · · xn

)



(y1 − β̂0 − β̂1x1)

(y2 − β̂0 − β̂1x2)
...

(yn − β̂0 − β̂1xn)


 = 0

But these equalities can be stacked into a larger matrix as

(
1 1 · · · 1
x1 x2 · · · xn

)



(y1 − β̂0 − β̂1x1)

(y2 − β̂0 − β̂1x2)
...

(yn − β̂0 − β̂1xn)


 = 0 (3.4)

Recognizing matrixes and operations introduced above, we see that (3.4) can be
written

X′(Y − Xβ̂) = 0 (3.5)

Thinking through how equations (1.2) arose, we realize that (3.5) would stay
the same even if there were additional predictors. Additional predictors would just
add additional equations like (3.3), and hence additional rows of x′s to X′.

Solving equation (3.5) for β̂ by matrix operation is not difficult and involves
the following steps:
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X′(Y − Xβ̂) = 0 we can multiply into parentheses

X′Y − X′Xβ̂ = 0 we can move terms to the other side of the
equation

X′Y = X′Xβ̂ we can multiply both sides by the same
quantity

(X′X)−1X′Y = (X′X)−1X′Xβ̂ (X′X)−1X′X = I by definition

β̂ = (X′X)−1X′Y (3.6)

The last line in (3.6) presents the ordinary least-squares estimator in matrix
notation.

Hidden in the derivation that leads to (3.6) is the assumption that X′X is an
invertible matrix. We will take care to make this true in all our analyses. In prac-
tice it involves (1) making sure that predictors in X are not linear combinations of
other predictors in X and (2) using at most (k −1) indicator variables to describe k

groups. The second point reflects the tradition followed in most observational stud-
ies. Analyses of designed experiments sometimes follow other traditions of coding
and/or generalizations of (3.6) that allow for X′X not being directly invertible.

We may note that based on only the assumption that E(Y |X) = Xβ, we can
show that the ordinary least-squares estimator is unbiased (its mean or expected
value equals the parameter):

E(β̂) = E[(X′X)−1X′Y |X] = (X′X)−1X′E(Y |X)

= (X′X)−1X′Xβ = β

Since we also know that under the equal variance assumption the ordinary least-
squares estimator minimizes σ 2

y|x, and since the estimator is a linear expression in
yi, it is sometimes referred to as the “best linear unbiased estimator” or “BLUE”
of β. More information can be found in McCullagh and Searle [5].

3.2.1 Example: Matrices in Regression Analysis

The following output shows analysis of only the first five subjects in the Wisconsin
Sleep Cohort Study and illustrates the matrix computations involved in obtaining
regression estimators. The commands ran to show the detail are

PROC PRINT; VAR ID AGE SBP;
PROC REG ALL; MODEL SBP=AGE;

Producing output

Obs id age sbp

1 S1 47.1677 119.333
2 S2 52.0137 138.333
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3 S3 53.5359 119.333
4 S4 30.1383 111.667
5 S5 42.8282 148.333

Model Crossproducts X’X X’Y Y’Y

Variable Label Intercept age

Intercept Intercept 5 225.68377824
age uncentered age in years 225.68377824 10538.880935
sbp systolic blood pressure 636.99999999 28930.815423

Model Crossproducts X’X X’Y Y’Y

Variable Label sbp

Intercept Intercept 636.99999999
age uncentered age in years 28930.815423
sbp systolic blood pressure 82089.222219

X’X Inverse, Parameter Estimates, and SSE

Variable Label Intercept age

Intercept Intercept 5.9837951594 -0.128139364
age uncentered age in years -0.128139364 0.0028389139
sbp systolic blood pressure 104.50122963 0.5073198115

X’X Inverse, Parameter Estimates, and SSE

Variable Label sbp

Intercept Intercept 104.50122963
age uncentered age in years 0.5073198115

sbp systolic blood pressure 844.76311845%

However, not all the output produced is shown. (The ALL option produces a lot!)
Extracting relevant parts of the information shown, we see the matrices

X′X =
(

5 225.68
225.68 10538.88

)
and X′Y =

(
636.999

28930.82

)

This follows because X′X is printed in the upper 2 × 2 segment of the “Model
Crossproducts,” X′Y is printed as the last row (two entries), and Y ′Y is the very
last entry. Y ′Y is not needed for producing β̂, but is used in obtaining the “Total
sum of squares” for the ANOVA table.

Further down, we also see

(X′X)−1 =
(

5.984 −0.1281
−0.1281 0.00284

)
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3.3 LIST OF MATRIX OPERATIONS TO KNOW

1. Matrix dimension n × m refers to n = #rows, m = #columns. If m = n, the
matrix is a square matrix.

2. Matrix notation: A=




a11 · · · a1 m

...
. . .

...

an1 · · · anm




3. Addition of matrices—straightforward—add corresponding elements. Matri-
ces must be of same dimension.

4. Multiplication of a matrix by a constant—multiply each element by the
constant.

5. Multiplication of two matrices—row 1 of the first matrix multiplies corre-
sponding elements of column 1 of the second matrix, then these products are
summed up to form product element (1, 1) of the new matrix, row 1 with
column 2 forms product element (1, 2), and so on. When multiplying A by
B to form AB, # columns in A has to equal # rows in B.

6. Identity matrix I has 1’s on the diagonal and 0’s elsewhere. It is a square
matrix of any dimension. When multiplying A by I, one gets back A. In fact
AI = A and IA = A, as long as the matrices can be multiplied.

7. Transpose of A denoted by A′. The transpose is obtained by flipping rows
and columns. Note that AA′ is a square matrix, as is A′A. However, the two
do not usually equal each other. In fact, if A is n×m then AA′ is n×n, but
A′A is m × m.

8. Symmetric matrix—A is symmetric if A = A′. Symmetric matrices are
important because they will often be encountered in statistics. Both AA′ and
A′A are symmetric matrices.

9. The transpose of a product. It can be demonstrated that (AB)′ = B ′A′. We
will need this when showing how the standard error of the estimators of the
regression parameters are obtained.

10. Cofactor of a matrix element aij —the determinant of the smaller matrix
obtained when row i and column j are deleted, multiplied by (−1)i+j .

11. Determinant: The determinant of any n × n matrix is
∑n

i=1 aij (−1)i+1Ai1,

where Ai1 is the determinant of the matrix obtained when the first column
and the ith row are deleted, and (−1)i+1Ai1 is the cofactor of element ai1.
Note that the determinant of a 2 × 2 matrix

∣∣∣ a
c

b
d

∣∣∣ = ad − bc (which by the

cofactor formula is derived as (−1)2ad + (−1)3cb). In examples, we will
only use the determinant of a 2 × 2 matrix.

12. Inverse A−1. Defined by AA−1 = A−1A = I . A matrix is invertible if
it is square and has nonzero determinant. A noninvertible square matrix is
sometimes referred to as singular (and an invertible one as nonsingular). A−1
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is obtained by 1
determinant (cofactormatrix)′. It is handy to know that

(
a b

c d

)−1

= 1

ad − bc

(
d −b

−c a

)

13. Diagonal matrices have especially simple properties. Obtaining the inverse
involves inverting each of the diagonal elements (i.e., 1/a11, etc.). When
a diagonal matrix has the same entry along its entire diagonal, multiplying
another matrix by it has the same effect as multiplying by that constant. For
example, 

a 0 0
0 a 0
0 0 a


B = aB

14. When there is a string of matrices multiplied by each other, a constant mul-
tiplier anywhere in the string can be moved up front. For example,

A

(
k k

k k

)
B = kA

(
1 1
1 1

)
B and A

(
k 0
0 k

)
B = kAB

15. Based on the rules of matrix multiplication, sums arise from multiplying a
row of ones into a column, that is,

(
1 1 · · · 1

)



a1
a2
...

an


 =

n∑
i=1

ai

Sums of cross products arise from any multiplication of a row with a column,
that is,

(
b1 b2 · · · bn

)



a1
a2
...

an


 =

n∑
i=1

biai



C H A P T E R F O U R

Variance Matrices and Linear
Transformations

Chapter 3 showed how writing variables and parameters in matrix form results in
simple-looking equations for regression estimators. Another important application
of matrix algebra, as well as of more advanced matrix theory, is in working with
variance matrices. Variance matrices are a generalization of the simple variance in
that they allow expressing the variances of several variables simultaneously. We
will need variance matrices to express the variances (and hence standard errors)
of estimators and to be able to write formulas that extend ordinary regression to
situations where the usual assumptions do not hold.

This is a multipurpose chapter centered around variance matrices. First of all,
it defines variance matrices and provides further practice of matrix operations. We
will define a linear transformation and obtain its variance. This sets the framework
for future developments. In the process we will look at the variance of a mean and
a difference, which are useful in other contexts.

4.1 VARIANCE AND CORRELATION MATRICES

We will make extensive use of the concept of a variance matrix, usually denoted by
V . For a single measurement, the variance matrix simply consists of the constant
σ 2 (a 1 × 1 matrix). However, when we have several outcomes, possibly with
different variances, it is convenient (for reasons we will soon see) to present the
variances along the diagonal of a matrix, for example,

V = Var(Y ) = Var


y1

y2
y3


 =


σ 2

1 . .

. σ 2
2

. . σ 2
3




Quantitative Methods in Population Health, by Mari Palta
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The equal variance assumption in Chapter 1 translates to

Var(Y |X) = Var


ε1

ε2
ε3


 =




σ 2
y|x . .

. σ 2
y|x .

. . σ 2
y|x




We have not yet filled in the elements off the diagonal. In a variance matrix,
these consist of covariances. While the variance of yi (where i = 1, 2, . . . as
referring to each outcome) is defined as σ 2

i = σ 2
yi

= E[(yi − µyi
)2] (i.e., the mean

of all squared deviations) and is usually estimated from n measurements of yi by

s2
yi

=
∑
j

(yij − yi)
2/(n − 1)

the covariance refers to two y’s together and is defined as σyiyi′ = E[(yi−µyi
)(yi ′−

σyiyi′ )] = E[(yi − µyi
)(yi ′ − µy

i′
)]. When i = i′, the covariance is the variance.

Hence, while the variance refers to a single measurement, the covariance refers
to how two measurements behave together or “covary.” The covariance can be
estimated by

sii ′ = syiyi′ =
∑
j

(yij − yi)(yi ′j − yi ′)/(n − 1)

An alternative estimator is divided by n − 2 (or n minus “degrees of freedom”)
and forms the basis for an “adjusted” correlation, such as seen on regression analysis
output. From remembering the formula for estimating the usual Pearson correlation
between yi and yi ′

r =

∑
j

(yij − yi)(yi ′j − yi ′)

√∑
j

(yij − yi)
2
∑
j

(yi ′j − yi ′)
2

we see that the covariance estimator is just r × (syi
syi′ ). The same relationship

holds for the parameters, that is, σyiyi′ = ρσyi
σyi′ . We present the covariance this

way because the correlation is a better known entity than the covariance. The fact
of the matter is, however, that the correlation arises from the covariance by the
definition

ρ = Cov(y
i
, yi ′)/(σyi

σyi′ )

Now we can fill in the variance matrix as

V = Var(Y ) = Var


y1

y2
y3


 =


σ 2

1 σ12 σ13

σ21 σ 2
2 σ23

σ31 σ32 σ 2
3






40 VARIANCE MATRICES AND LINEAR TRANSFORMATIONS

The row and column indicators correspond to the respective covariance, so
that σ12 is the covariance between y1 and y2, and so on. By the definition of
the covariance, σij = σji . The variance matrix is, therefore, a symmetric matrix,
meaning that V = V ′. Since independent observations are uncorrelated, and ρ =
0 implies that the covariance is 0, the independence assumption in Chapter 1 for
simple regression analysis results in

Var(Y |X) = Var


ε1

ε2
ε3


 =




σ 2
y|x 0 0
0 σ 2

y|x 0
0 0 σ 2

y|x


 = σ 2

y|xI

where I is the identity matrix.

4.1.1 Example

When measuring blood pressure, it is common to obtain more than one measure-
ment on each individual to improve precision. For two sequential systolic blood
pressure measurements (SBP1 and SBP2) on a person, each with standard deviation
10 mmHg, correlated at 0.80, the variance matrix is

Var(Y ) = Var

(
SBP1
SBP2

)
=

(
100 80
80 100

)
= 100

(
1 0.80
0.80 1

)

The first matrix is the variance matrix and the second is the correlation matrix.

4.2 HOW TO OBTAIN THE VARIANCE OF A LINEAR
TRANSFORMATION

A linear transformation refers to a combination of variables, where variables are
multiplied by constants and then added or subtracted from each other. The sum
of two variables is one simple example, and a variable transformed to a different
scale (e.g., ◦F to ◦C by ◦C = (˚F − 32) × 5

9 ) is another. It is useful to know how
to obtain the variance of a linear transformation of variables—not only for the
purposes here, but in general. Often, one needs to obtain the variance or standard
error of a difference of variables, or a combination of regression coefficients, such as
may occur if there is an interaction effect. In the latter case (see example at the end
of this chapter) we need the standard error of expressions β̂x1 + β̂x1×x2x2, meaning
the “effect” of variable x1 at a given level of another interacting variable x2.

4.2.1 Two Variables

The basic formula for a linear combination of two variables is t1y1 + t2y2. For a
sum t1 = t2 = 1, while for a difference t1 = 1, t2 = −1.
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If the two variables are correlated at ρ, the formula for the variance of this
linear combination is

Var(t1y1 + t2y2) = t2
1 Var(y1) + t2

2 Var(y2) + 2t1t2ρ
√

Var(y1) Var(y2) (4.1)

or equivalently

Var(t1y1 + t2y2) = t2
1 Var(y1) + t2

2 Var(y2) + 2t1t2Cov(y1, y2)

We do not derive these formulas here, but they follow from the basic definitions
of variance and covariance given above. Note that when y1 and y2 are independent
replicates of the same random variable, and t1 = t2 = 0.5, so that t1y1 + t2y2 is
just the usual mean of two independent measurements,

Var(t1y1 + t2y2) = 0.25 Var(y1) + 0.25 Var(y2) + 0

= 2(0.25) Var(y1) + 0 = Var(y1)

2

Reasonably enough, the formula simplifies to the usual one for means of inde-
pendent variables when ρ = 0.

For variables y1, y2 with equal variance σ 2, more generally we have

Var(y1 + y2) = 2σ 2(1 + ρ) or Var

(
y1 + y2

2

)
= σ 2(1 + ρ)

2

using the formula Var(t1y) = t2
1 Var(y). Furthermore,

Var(y1 − y2) = 2σ 2(1 − ρ)

4.2.1.1 Example
Often, when planning data collection for a study, we may wonder how much benefit
there will be in obtaining repeat measurements of variables and then use the mean
of the repeats. In another setting, we may be planning a study where change in
variables is a primary outcome, and wonder how the variability of the difference
compares to that of the measurements themselves.

For the blood pressure example above, the variance across persons of the mean
blood pressure is

Var

(
SBP1 + SBP2

2

)
= 102(1 + 0.8)

2
= 90

so that the standard deviation of the mean is
√

90 = 9.5 . Another way to look at
this is that we have reduced the variability between people by 10%. Because the
two measurements are highly correlated, the standard deviation of the mean is only
slightly lower than the standard deviation of a single measurement. Logically, if
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ρ = 1, so that we have two perfectly correlated measurements, there is no gain at
all in using the mean. The lower the correlation, the greater the gain. Of course,
a low correlation would imply a great deal of measurement error or moment-to-
moment variation in the measurement. We see that it is very worthwhile to take
several measurements when there is a lot of measurement error.

For the difference between the two measurements, we obtain

Var(SBP1 − SBP2) = 2(10)2(1 − 0.8) = 40

Here we see that if ρ were 1, we would have no variability at all. This makes
sense, because ρ = 1 implies that the two variables are in a fixed relationship to
each other. It would in fact not be very interesting to analyze the difference in
that situation. With ρ = 0, the variability would be twice as high as that of the
individual measurements. The relatively high correlation ρ = 0.8 works to reduce
the variability in the difference considerably.

Note the usefulness of the formula for the difference in projecting the standard
error for a paired t-test. The variance of the difference is the basis for the paired
test, as the standard error used is the variance across subjects of the differences
divided by

√
n . Given some knowledge of the variance of the measurement across

unpaired subjects, and the correlation within pairs, one can estimate the standard
error for use in sample size and power projections. The last part of the discussion
implies that a lot is gained by a paired versus an unpaired t-test, when there is a
strong correlation between members of the pair, because that’s when (1 − ρ) is
small.

4.2.2 Many Variables

With linear combinations involving any number of variables, expression (4.1) gen-
eralizes so that

Var
(∑

tiyi

)
=

∑
t2
i Var(yi) +

∑
i �=i ′

ti ti ′ρii ′
√

Var(yi) Var(yi ′) (4.2)

The second part of this formula involves the correlation between each pair of
variables. The way the expression is written, each pair of observations is counted
twice. There are other ways to write (4.2); for example,

Var
(∑

tiyi

)
=

∑
t2
i Var(yi) + 2

∑
i<i ′

ti ti ′ρii ′
√

Var(yi) Var(yi ′)

It turns out that a linear combination can be expressed more concisely in matrix
form.

∑
tj yj = (

t1 t2 · · · )



y1
y2
...


 = T ′Y
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This matrix operation is referred to as a linear transformation of Y . It is not
necessary that the matrix T have only one column. In cases where there are more
columns, we still refer to the multiplication of T ′ and Y as a linear transformation,
but actually several different linear combinations of the elements of Y are being
produced (see example below).

Using slightly more algebra, one can show that (4.2) can be expressed as

Var(T ′Y) = T ′ Var(Y )T (4.3)

This is an important formula that will come in handy in future chapters.

4.2.2.1 Example
Returning to the above blood pressure example, the mean blood pressure can be
written

SBP1 + SBP2

2
= (

1
2

1
2

) (
SBP1
SBP2

)
= T ′

mean

(
SBP1
SBP2

)

so that

Tmean =
(

1
2
1
2

)

and by the matrix formula

Var

(
SBP1 + SBP2

2

)
= (

1
2

1
2

) (
100 80
80 100

) (
1
2
1
2

)

= (
1
2 100 + 1

2 80 1
2 80 + 1

2 100
) (

1
2
1
2

)

= (
90 90

)(
1
2
1
2

)
= 90

1

2
+ 90

1

2
= 90

as before. For the difference, a similar computation can be carried out with

Tdiff =
(+1

−1

)

However, formula (4.3) can give us the variance matrix for the mean and dif-

ference jointly. Let Y =
(

SBP1
SBP2

)
as before, and combine Tmean and Tdiff into an

overall T so that

T =
(

1
2 +1
1
2 −1

)



44 VARIANCE MATRICES AND LINEAR TRANSFORMATIONS

Now

T ′Y =
(

SBP1+SBP2
2

SBP1 − SBP2

)

producing both the mean and the difference by one linear transformation, and

Var(T ′Y) = T ′ Var(Y )T =
(

1
2

1
2+1 −1

) (
100 80
80 100

) (
1
2 +1
1
2 −1

)

=
(

90 90
20 −20

) ( 1
2 +1
1
2 −1

)
=

(
90 0

0 40

)

We see that the variances we obtained by the more mundane (nonmatrix) approach
appear on the diagonal. However, in deriving the entire variance matrix for the mean
and difference, we have provided the additional result that the mean and difference
are uncorrelated. This is reflected in the off-diagonal elements in the covariance
matrix being 0. We will see later that one way to deal with correlated data is to
relate risk factor changes to differences in outcome within individuals, clusters, or
matched sets. Another way is to do ordinary regression on cluster means. More
sophisticated analyses, such as we will do with PROC MIXED in effect, combine
the two approaches in ways that we will illustrate in Chapter 9.

4.2.2.2 Example: How to Obtain the Standard Error of Regression
Coefficients of Predictors When There Is Interaction
When there is an interaction effect in a model, the main effects of variables and
their standard errors have to be interpreted with caution. Assume that we have
a model

yi = β0 + β1x1i + β2x2i + β3x1i × x2i + εi

This implies that the regression coefficient of variable xi depends on the value
of variable x2 through the relationship

βx1|x2 = β1 + β3x2

Hence, β1 represents the coefficient of x1 when x2 = 0, and unless care is taken
in scaling x2 to a reasonable 0 point, β1 has no meaning. We ran the following
commands for the regression of systolic blood pressure at visit 1 in the Wisconsin
(one person was not weighed at visit 1, making all analyses with BMI have one
observation less.)

PROC REG; MODEL SBP=BMI AGE AGE BMI/COVB;

The output is
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obtaining the se of beta(bmi) at age 50
obtaining the standard error from the variance matrix of
coefficients

The REG Procedure
Dependent Variable: SBP systolic blood pressure

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error

Intercept Intercept 1 65.65235 10.70434
age uncentered age in years 1 0.88162 0.23313
bmi uncentered bmi kg/m2 1 1.47030 0.35480
age_bmi uncentered intercation 1 -0.01826 0.00771

Parameter Estimates

Variable Label DF t Value Pr > |t|

Intercept Intercept 1 6.13 <.0001
age uncentered age in years 1 3.78 0.0002
bmi uncentered bmi kg/m2 1 4.14 <.0001
age_bmi uncentered intercation 1 -2.37 0.0180

Covariance of Estimates

Variable Label Intercept age

Intercept Intercept 114.58288366 -2.462545415
age uncentered age in years -2.462545415 0.0543507542
bmi uncentered bmi kg/m2 -3.715985671 0.0798520374
age_bmi uncentered intercation 0.0798316556 -0.001761434

Covariance of Estimates

Variable Label bmi age_bmi

Intercept Intercept -3.715985671 0.0798316556
age uncentered age in years 0.0798520374 -0.001761434
bmi uncentered bmi kg/m2 0.1258847378 -0.002700182
age_bmi uncentered intercation -0.002700182 0.0000594663

obtaining the se of beta(bmi) at age 50
obtaining the standard error by centering the interaction

The REG Procedure
Dependent Variable: SBP systolic blood pressure
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Parameter Estimates

Parameter
Variable Label DF Estimate

Intercept Intercept 1 65.65235
age uncentered age in years 1 0.88162
bmi uncentered bmi kg/m2 1 0.55731
agec_bmi interaction with age centered 1 -0.01826

at 50

Parameter Estimates

Standard
Variable Label DF Error t Value

Intercept Intercept 1 10.70434 6.13
age uncentered age in years 1 0.23313 3.78
bmi uncentered bmi kg/m2 1 0.06732 8.28
agec_bmi interaction with age centered 1 0.00771 -2.37

at 50

Parameter Estimates

Variable Label DF Pr > |t|

Intercept Intercept 1 <.0001
age uncentered age in years 1 0.0002
bmi uncentered bmi kg/m2 1 <.0001
agec_bmi interaction with age centered 1 0.0180

at 50

Here AGE BMI is the interaction AGE*BMI (age in years is not centered,
neither is BMI). The option COVB prints the variance matrix of the regression
coefficients, which we will use in a minute. For now, notice that the interaction
is statistically significant and that the value β̂bmi = 1.47 is the coefficient of BMI
extrapolated to age 0. Clearly, this is meaningless. To obtain the coefficient of BMI
at a more reasonable age, say 50 (which is close to the mean age of the sample),
we calculate 1.47 − 0.0183 × 50 = 0.555. Note that this is a linear transformation

β̂1 + β̂3x2 = (
1 x2

) (
β̂1

β̂3

)
= (

1 50
)(

β̂1

β̂3

)

so that T =
(

1
50

)
. Then we can obtain the standard error of the coefficient of

BMI at age 50 via the variance formula for a linear transformation. The above
output provides the variance matrix of the BMI and interaction coefficients. Note
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that the diagonal elements of this matrix are just the standard errors squared. The
off-diagonal elements are the covariances. Regression coefficient estimators tend
to be correlated because they were fit together. We see that

Var

(
β̂1

β̂3

)
=

(
0.126 −0.00270

−0.00270 0.0000595

)
so

Var(β̂1 + β̂3x2) = (
1 50

) (
0.126 −0.00270

−0.00270 0.0000595

) (
1

50

)

= (
0.126 − 50 × 0.00270 −0.00270 + 50 × 0.0000595

) (
1

50

)

= 0.126 − 50 × 0.00270 − 50 × 0.00270 + 2500 × 0.0000595

= 0.00475

Then the standard error of the coefficient is
√

0.0047 = 0.0689. Obviously, the
same procedure can be used to obtain the coefficient for BMI and its standard
error at any age, as long as the regression estimators and their variance matrix are
provided.

A slightly more accurate and painless method is to center the interaction at the
value of AGE at which we want to obtain the regression coefficient of BMI. This
was done in the second approach above. Now

β̂BMI|age=x2 = β̂ ′
1 + β̂3(x2 − 50)

so that the coefficient of BMI at age 50 is β̂ ′
1 = 0.557 with standard error 0.0673.

We note that the first method is more flexible and does not require access to the
original data. However, it is laborious and prone to round-off error unless many
decimals are carried along.

4.2.2.3 Another Example: How the Variance of the Difference
Affects a Paired t-Test
The next output example shows some results from the Wisconsin Diabetes Registry.
GHb levels are being compared between the first (duration DUR = 0) and second
(DUR = 1) years of diabetes for individuals who have provided data for both
years. We compute the variance of the difference in GHb between the two years
by formula (4.3) and directly from the data. In the process we also compare the
results from performing unpaired and paired t-tests.

Because the data for different years were originally in different records, a merged
data set was created for performing the paired t-test. Note the command for the
paired t-test, which does not use a CLASS statement. The commands run were
(except that some additional programming is not shown that was needed to delete
from the unpaired t-test individuals with missing data in either year):
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DATA A;
......
LABEL DUR=‘year of diabetes’;
PROC TTEST; CLASS DUR; VAR GHB;
DATA A1; SET A;
IF DUR=1; GHB0=GHB;
KEEP ID GHB0;
PROC SORT; BY ID;
DATA A2; SET A; IF DUR=2;
GHB1=GHB; KEEP ID GHB1; DATA PAIR; MERGE A1 A2; BY ID;
IF GHB0=. OR GHB1=. THEN DELETE;
PROC CORR; VAR GHB0 GHB1;
PROC TTEST; PAIRED GHB0*GHB1;

Another way to achieve the merging is:

DATA A;
.....
PROC SORT; BY ID DUR;
DATA PAIR (KEEP=GHB0 GHB1);
ARRAY G{2} GHB0-GHB1;
DO I=1 TO 2;
SET A; BY ID DUR;
G{I}=GHB;
IF LAST. ID THEN RETURN;
RUN;
PROC CORR; VAR GHB0 GHB1;
PROC TTEST; PAIRED GHB0*GHB1;

which makes use of the SAS array feature and also the ability to pinpoint the last
(or first) observation for a person. The output follows.

Wisconsin Diabetes Registry, comparing GHb between first two
years

unpaired t-test

The TTEST Procedure

Statistics

Lower CL Upper CL Lower CL
Variable dur N Mean Mean Mean Std Dev

M_GHB 1 446 9.1101 9.3245 9.539 2.1624
M_GHB 2 446 10.252 10.49 10.729 2.4039
M_GHB Diff (1-2) -1.486 -1.166 -0.846 2.3283
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Upper CL
Variable dur Std Dev Std Dev Std Err Minimum Maximum

M_GHB 1 2.3043 2.4664 0.1091 4.75 22.98
M_GHB 2 2.5617 2.7418 0.1213 5.5125 23.2
M_GHB Diff (1-2) 2.4364 2.5551 0.1632

T-Tests
Variable Method Variances DF t Value Pr<|t|

M_GHB Pooled Equal 890 -7.15 <.0001

correlation for constructing variance matrix

The CORR Procedure

Pearson Correlation Coefficients, N = 446
Prob > |r| under H0: Rho=0

ghb0 ghb1

ghb0 1.00000 0.48060
<.0001

ghb1 0.48060 1.00000
<.0001

paired t-test

The TTEST Procedure

Lower CL Upper CL
Difference N Mean Mean Mean Std Dev Std Err

ghb0 - ghb1 446 -1.397 -1.166 -0.934 2.4896 0.1179

T-Tests

Difference DF t Value Pr > |t|

ghb0 - ghb1 445 -9.89 <.0001

The first part of output consists of an unpaired t-test. (This is, of course, not
the test that should be done, given that the data were actually paired.) We see that
the mean GHb level in the first year was 9.32 with a standard deviation of 9.30.
In the second year, the level was 10.49 with a standard deviation of 2.56. The
standard error for the difference (not taking correlation into account) is 0.1632. We
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see that the GHb’s from the two years correlate at r = 0.48060. This correlation
will dictate how much is gained by the matched analysis.

We now know that the variance matrix of these two measurements is

V =
(

2.30432 (0.4806)(2.3043)(2.5617)

(0.4806)(2.3043)(2.5617) 2.56172

)

To form the difference between the measurements, we choose the matrix

T =
(

1
−1

)

and obtain the variance of the difference by formula (4.3) as

(
1 −1

) (
2.30432 (0.4806)(2.3043)(2.5617)

(0.4806)(2.3043)(2.5617) 2.56172

)(
1

−1

)

=
(

2.30432 − (0.4806)(2.3043)(2.5617)

(0.4806)(2.3043)(2.5617) − 2.56172

)′ (
1

−1

)

= (
2.4729 −3.7254

) (
1

−1

)
= 6.1983

The paired t-test at the end provides descriptive statistics for the difference
between the two measurements obtained directly from the data. The sample variance
of the difference is 2.48962 = 6.1981. The standard error for the paired test is
0.118, a substantial reduction from 0.163 of the unpaired test. We note that the
paired t-test value for the difference (H0:µdiff = 0) is t (445) = −9.89, and the
unpaired t-test value (for unequal variance) is (approximately) t (880) = −7.15.
Because of the large sample size, they are both highly significant. If, however, the
sample size had been much smaller (about 20), the unpaired t-test would have been
nonsignificant at two-sided α = 0.05.

At the design stage of a study, a decision may need to be made whether a
matched design is worthwhile. If one has estimates of σ 2 and ρ, one can project
the sample size or power both ways and assess the benefits of matching. In this
projection, one would use the fact that the variance of an unpaired difference is
2σ 2/n, and that of a paired difference is 2σ 2(1−ρ)/n. A paired design is beneficial
when ρ is large—in other words, when the matching characteristics are “strong.”
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Variance Matrices of Estimators
of Regression Coefficients

Chapter 4 introduced both the variance of regression coefficient estimators and
the covariance between these estimators as provided by PROC REG. We saw how
variances and covariances can be compactly summarized in a matrix. In this chapter,
we will derive this variance matrix from least-squares and maximum likelihood
perspectives.

5.1 USUAL STANDARD ERROR OF LEAST-SQUARES ESTIMATOR
OF REGRESSION SLOPE IN NONMATRIX FORMULATION

We first look at the estimator of the ordinary least-squares estimator of the slope
β1 in nonmatrix notation. There is assumed to be only one covariate x, so that

β̂1 =

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2

=

n∑
i=1

(xi − x)yi

n∑
i=1

(xi − x)2

We can easily show that the (−y) is not needed as

n∑
i=1

(xi − x)y = y

n∑
i=1

(xi − x) = y(nx − nx) = 0

Now, to get the se(β̂1) =
√

Var(β̂1), we use the nonmatrix formula for the variance
of a sum:

Quantitative Methods in Population Health, by Mari Palta
ISBN 0-471-45505-9 Copyright c© 2003 John Wiley & Sons, Inc.
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Var(β̂1) =
n∑

i=1




xi − x
n∑

j=1

(xj − x)2




2

Var(yi |xi)

=
n∑

i=1




xi − x
n∑

j=1

(xj − x)2




2

Var(εi) (5.1)

Note that the independence assumption has made Cov(εi, εi ′) = 0, eliminating
that part of expression (4.2). Now comes the point at which a decision has to be
made regarding what to assume about the variance Var(yi |xi) = Var(εi). The equal
variance assumption leads to

ˆvar(β̂1) =
n∑

i=1




xi − x
n∑

j=1

(xj − x)2




2

V̂ar(yi |xi) = σ̂ 2
y|x

n∑
i=1




xi − x
n∑

j=1

(xj − x)2




2

= σ̂ 2
y|x

n∑
i=1

(xi − x)2

[
n∑

i=1

(xi − x)2

]2
= σ̂ 2

y|x
1

n∑
i=1

(xi − x)2

the square root of which is the usual standard error of β̂1. The estimator σ̂ 2
y|x can be

obtained by the various approaches we have discussed (from the MSE, by ML or
by REML), with the MSE being the natural approach with least-squares estimation.

5.2 STANDARD ERRORS OF LEAST-SQUARES REGRESSION
ESTIMATORS IN MATRIX NOTATION

As an alternative to the above “pedestrian” approach, we can use the matrix formu-
las from Chapter 4 to derive the variance matrix of the regression coefficients. The
variance matrix of the regression estimators includes variances and covariances of
all estimated coefficients.

The estimators are in matrix β with one column containing the intercept and
all the regression slopes. First note that formula (3.6) for β̂ is just a linear
transformation of Y, β̂ = (X′X)−1X′Y = T ′Y , where using the matrix transpose
formula (AB)′ = B ′A′ and the fact that X′X and, therefore, its inverse are sym-
metric, we obtain

T = [(X′X)−1X′]′ = X[(X′X)−1]′ = X(X′X)−1
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By formula (4.2) we obtain

Var(T ′Y |X) = T ′Var(Y |X)T = (X′X)−1X′[Var(Y |X)]X(X′X)−1

Again, if we make the equal variance and independence assumptions, we have

Var(Y |X) =




σ 2
y|x 0 · · ·
0 σ 2

y|x · · ·
...

...
. . .


 = σ 2

y|xI

Then using property 14 from the matrix formula list, along with the property of
an identity matrix, we obtain

V̂ar(β̂) = (X′X)−1X′[σ̂ 2
y|xI ]X(XX′)−1

= σ̂ 2
y|x(X

′X)−1X′X(X′X)−1

= σ̂ 2
y|x(X

′X)−1 (5.2)

This is the usual expression for the variance matrix of ordinary least-squares
estimator of the regression coefficients.

5.2.1 Example

It is instructive to write out (X′X)−1 for the situation of simple regression (only
one covariate). Then

X =




1 x1
1 x2
...

...

1 xn




and

X′X =
(

1 1 · · · 1
x1 x2 · · · xn

)



1 x1
1 x2
...

...

1 xn


 =




n

n∑
1

xi

n∑
1

xi

n∑
1

x2
i




It is useful to remember that X′X is a square matrix that always has the same
number of rows and columns as there are regression parameters.
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Now, by the formula for matrix inversion we obtain

(X′X)−1 = 1

n
∑n

1 x2
i −

(∑1
n xi

)2

( ∑n
1 x2

i − ∑n
1 xi

− ∑n
1 xi n

)

=




∑n
1 x2

i

/
n∑n

1 x2
i − (∑n

1 xi

)2 /
n

−
∑n

1 xi

n
∑n

1 x2
i − (∑n

1 xi

)2

−
∑n

1 xi

n
∑n

1 x2
i − (∑n

1 xi

)2
1∑n

1 x2
i − (∑n

1 xi

)2 /
n




Examining the (2, 2) element in this matrix, we find that because

∑
(xi − x)2 =

∑
x2
i −

(∑
xi

)2
/n

we have

V̂ar(β̂1) = σ̂ 2
y|x

1
n∑

i=1

(xi − x)2

as before. However, the matrix approach has also provided the variance of the
estimator of the intercept, along with the covariance of the slope and intercept
estimators.

5.3 THE LARGE SAMPLE VARIANCE MATRIX OF MAXIMUM
LIKELIHOOD ESTIMATORS

You may note that the normality assumption was not involved in the derivation of
the variance matrix above. It would enter only when we start using the standard
errors to form t-tests, F -tests, and confidence intervals. We will now derive the
large sample variance matrix of the estimators based on maximum likelihood,
when the equal variance assumption holds. To use maximum likelihood, we do
need to assume that the observations or regression errors are normally distributed.
This section illustrates the general approach to obtaining the standard errors of
maximum likelihood estimators.

Recall the log of the likelihood for a regression analysis with one predictor from
equation (2.1). (For simplicity we use just one predictor, although all principles
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apply to the more general case.) Based on the observations yi , conditionally on
xi, all being normally distributed with variance σ 2 = σ 2

y|x , being independent, and
having mean of β0 + β1xi , we have

log(L) = −n log(σ̂y|x
√

2π) −
n∑

i=1

(yi − β̂0 − β̂1xi)
2

2σ̂ 2
y|x

One of the pleasing properties of maximum likelihood estimators is efficiency
(in large samples). The ML estimators are known to be to be efficient, because
their large sample (sampling) variance has been derived for all situations and can
be obtained directly from log(L). It is extremely convenient that the large sample
variance can be obtained by the same method, no matter what is being estimated.
For other estimators the variance often needs to be derived for the specific situation;
the only problems encountered in large sample maximum likelihood are numeric.

Estimation of the large sample variance of maximum likelihood estimators when
there is more than one parameter being estimated involves the inversion of a matrix.
This matrix consists of (minus) second derivatives of log(L). In general, the matrix
must include derivatives with respect to all the parameters, but the regression log(L)

above estimates the β̂’s and the σ̂y|x independently. Because of this we can illustrate
the principle by deriving the variance matrix only for the β̂’s. If we did include the
regression parameters and the variance together, they would form separate blocks
in the matrix, and these blocks will be separately inverted.

First we obtain the second derivatives (remember, there are three for the two
parameters):

∂2

∂β̂2
0

log(L) = − n

σ̂ 2
y|x

∂2

∂β̂2
1

log(L) = −
∑ x2

i

σ̂ 2
y|x

∂2

∂β̂0∂β̂1
log(L) = −

∑ xi

σ̂ 2
y|x

Next we remove the—signs and place these in a matrix (known as the infor-
mation matrix I)

I =




n

σ̂ 2
y|x

∑ xi

σ̂ 2
y|x∑ xi

σ̂ 2
y|x

∑ x2
i

σ̂ 2
y|x


 = 1

σ̂ 2
y|x

(
n

∑
xi∑

xi

∑
x2
i

)
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We know the inverse of this matrix is obtained as

I
−1 = σ̂ 2

y|x
1

n
∑

x2
i − (∑

xi

)2

( ∑
x2
i − ∑

xi

− ∑
xi n

)

= σ̂ 2
y|x




∑
x2
i

n
∑

x2
i − (∑

xi

)2 −
∑

xi

n
∑

x2
i − (∑

xi

)2

−
∑

xi

n
∑

x2
i − (∑

xi

)2
n

n
∑

x2
i − (∑

xi

)2




The (1, 1) element in this matrix is the variance of the intercept, the (2, 2)
element is the variance of the slope, and the (1, 2) element (which equals the (2,
1) element) is the covariance of the two. We see that the estimators of the intercept
and the mean are correlated from sample to sample.

The (2, 2) element is again recognizable as the usual

Var(β̂1) =
σ̂ 2

y|x∑
(xi − x)2

Here, it is common to obtain σ̂ 2
y|x by ML or REML (which happens to coincide

with the MSE approach).

5.4 TESTS AND CONFIDENCE INTERVALS

Both least-squares and maximum likelihood estimators are approximately normally
distributed in large samples. This follows from applications of the central limit
theorem. When the residuals are normally distributed, least-squares estimators are
normally distributed also in small samples. Because the two coincide in the current
situation, so are the maximum likelihood estimators for ordinary regression. How-
ever, when residuals are not normally distributed, the distributions of maximum
likelihood estimators in small samples are pretty much unknown.

Because of the approximately normal sampling distribution in large samples,
where errors in s2

y|x vanish, the standard error estimates obtained from I−1 are
used for forming inference based on the normal distribution, or squared to form
so-called Wald χ2-tests for the coefficients. Recall that when a statistic with a
standard normal distribution is squared, the new variable follows a χ2-distribution
with 1 degree of freedom. The normally distributed residual case is special in that
small sample distributions have been derived that take error in s2

y|x into account
and allow us to use the t-test for inference, instead of the Wald test. As we
noted earlier: In large samples, the t-distribution is very close to the normal,
and the F -distribution is close to the χ2-distribution (divided by its degrees of
freedom).
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The reader is assumed to be familiar with other tests and procedures associ-
ated with maximum likelihood estimation. Most likelihood-based SAS procedures
provide the Wald test for individual regression coefficients (or in the special case
of PROC MIXED, the t-test for individual coefficients). Comparisons of nested
models is often based on likelihood ratio tests. These are formed as differences
in −2 log(L) or −2 log(REML) between models that are nested (i.e., one model
contains all the parameters in the other, plus some more). The likelihood ratio test
has a χ2-distribution with degrees of freedom equal to the difference in number of
parameters. Generally, likelihood ratio tests have been found to be more stable than
Wald tests, and some SAS procedures provide likelihood ratio tests and confidence
intervals for the coefficients as an option. Again note that for normally distributed
residuals, the likelihood ratio test can be replaced by an F -test.

A piece of terminology used by SAS for F and likelihood ratio tests are Type 1
and Type 3 (Type 2 also exists, but is not used much). Type 1 refers to tests arising
from sequential model building; that is, the test is performed on a variable with all
preceding, but not any of the subsequent, variables in the model. Type 3 tests are
performed with all the other variables in the model. Both types can be very useful.

Finally, we will encounter adjustments to the −2 log(L) or −2 log(REML) that
impose a penalty for introducing more parameters, just as the adjusted R2 equals
1− n−1

n−m−1 (1− regular R2) for ordinary regression. These criteria will be explained
when we encounter them, and they can be used to compare both nested and not
nested models.

5.4.1 Example-Comparing PROC REG and PROC MIXED

The output was created for the visit 1 blood pressure data by the statements below
From now onward, we center age and BMI at values 50 and 27, respectively,

unless otherwise noted. This improves interpretability of the age and BMI coeffi-
cients, as well as of the intercept, which is now the estimated mean blood pressure
at age 50 for a person with BMI of 27. The above example also illustrates the
capability of PROC MIXED to generate interactions automatically, while they
have to be preconstructed for PROC REG. (PROC REG is an aberration, since
most other regression-related procedures in SAS can now generate interactions.)
PROC MIXED also has the ability to incorporate the alphabetic variable SEX,
via the CLASS statement. As is the default in SAS, the indicator variable that
is automatically generated is set to 0 for the “last” value of SEX—that is, for
SEX=‘M’. Again, PROC REG does not have this capability, and the indicator
variable GENDER has to be preconstructed.

It is easily seen that the variance matrix for the coefficients obtained by the
(default) REML option coincides with the one obtained by PROC REG. PROC
MIXED does not (as a default) provide Wald χ2-tests for the coefficients, but
takes advantage of known properties of the normal distribution that lead to more
exact t- and F -tests in small samples. (Later, when with non-normal distributions,
we will use Wald tests). Note the “Type 3” terminology at the end of the PROC
MIXED output.
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AGEC=AGE-50; BMIC=BMI-27;
AGEC BMIC=AGEC*BMIC;
GENDER=0;
IF SEX=‘F’ THEN GENDER=1;
PROC REG; MODEL SBP=GENDER AGEC BMIC AGEC BMIC/COVB;
PROC MIXED; CLASS SEX;
MODEL SBP=SEX AGEC BMIC AGEC*BMIC/S COVB;

some comparisons of PROC MIXED and PROC REG

The REG Procedure
Dependent Variable: SBP systolic blood pressure

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 50562 12641 71.18 <.0001
Error 1359 241336 177.58357
Corrected Total 1363 291898

Root MSE 13.32605 R-Square 0.1732
Dependent Mean 125.09176 Adj R-Sq 0.1708
Coeff Var 10.65302

Parameter Estimates

Parameter
Variable Label DF Estimate

Intercept Intercept 1 127.44900
gender 1 -6.57305
agec age centered at 50 1 0.36912
bmic 1 0.59454
agec_bmic interaction with age centered 1 -0.01892

at 50, bmi at 27

Standard
Variable Label DF Error t Value

Intercept Intercept 1 0.52502 242.75
gender 1 0.73184 -8.98
agec age centered at 50 1 0.04946 7.46
bmic 1 0.06556 9.07
agec_bmic interaction with age centered 1 0.00750 -2.52

at 50, bmi at 27
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Variable Label DF Pr > |t|

Intercept Intercept 1 <.0001
gender 1 <.0001
agec age centered at 50 1 <.0001
bmic 1 <.0001
agec_bmic interaction with age centered 1 0.0117

at 50, bmi at 27

some comparisons of PROC MIXED and PROC REG

Covariance of Estimates

Variable Intercept gender agec

Intercept 0.275650084 -0.217411056 0.008512363
gender -0.217411056 0.535586414 0.0015878648
agec 0.008512363 0.0015878648 0.0024459371
bmic -0.011065139 -0.003033067 -0.000807341
agec_bmic -0.000839358 0.0000535935 -0.000147062

Covariance of Estimates

Variable bmic agec_bmic

Intercept -0.011065139 -0.000839358
gender -0.003033067 0.0000535935
agec -0.000807341 -0.000147062
bmic 0.0042985464 0.0002577128
agec_bmic 0.0002577128 0.0000561809

some comparisons of PROC MIXED and PROC REG

The Mixed Procedure

Model Information

Data Set WORK.A
Dependent Variable sbp
Covariance Structure Diagonal
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Residual
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Class Level Information

Class Levels Values

sex 2 F M

Dimensions

Covariance Parameters 1
Columns in X 6
Columns in Z 0
Subjects 1
Max Obs Per Subject 1378
Observations Used 1364
Observations Not Used 14
Total Observations 1378

Covariance Parameter

Estimates

Cov Parm Estimate

Residual 177.58

Fit Statistics

-2 Res Log Likelihood 10945.9
AIC (smaller is better) 10947.9
AICC (smaller is better) 10947.9
BIC (smaller is better) 10953.1

some comparisons of PROC MIXED and PROC REG
Solution for Fixed Effects

Standard
Effect sex Estimate Error DF t Value Pr > |t|

Intercept 127.45 0.5250 1359 242.75 <.0001
sex F -6.5731 0.7318 1359 -8.98 <.0001
sex M 0 . . . .
agec 0.3691 0.04946 1359 7.46 <.0001
bmic 0.5945 0.06556 1359 9.07 <.0001
agec*bmic -0.01892 0.007495 1359 -2.52 0.0117

Covariance Matrix for Fixed Effects

Row Effect sex Col1 Col2 Col3 Col4 Col5

1 Intercept 0.2757 -0.2174 0.008512 -0.01107
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2 sex F -0.2174 0.5356 0.001588 -0.00303
3 sex M
4 agec 0.008512 0.001588 0.002446 -0.00081
5 bmic -0.01107 -0.00303 -0.00081 0.004299
6 agec*bmic -0.00084 0.000054 -0.00015 0.000258

Covariance
Matrix for

Fixed Effects

Row Col6

1 -0.00084
2 0.000054
3
4 -0.00015
5 0.000258
6 0.000056

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F

sex 1 1359 80.67 <.0001
agec 1 1359 55.70 <.0001
bmic 1 1359 82.23 <.0001
agec*bmic 1 1359 6.37 0.0117



C H A P T E R S I X

Dealing with Unequal Variance
Around the Regression Line

We have now set the framework for moving forward with extending regression
analysis by considering the situation of unequal variance around the regression line.
We will first examine what really goes wrong with the usual unweighted (ordinary)
least-squares approach in this situation. In Chapter 3, we showed that the ordinary
least-squares estimator is unbiased as long as the model is correctly specified. The
problem with unequal variance arises not so much from the estimator itself, as from
the fact that standard error estimators are not correct. To derive the standard errors
in (5.2), we definitely used the equal variance assumption. We will see how to
obtain valid estimators of the standard errors when the equal variance assumption
does not hold. Also, of course, the usual estimators are no longer efficient. The
latter part of this chapter is devoted to methods for constructing more efficient
estimators.

6.1 ORDINARY LEAST SQUARES WITH UNEQUAL VARIANCE

When we demonstrated that the ordinary least-squares estimator is unbiased in
Chapter 3, we went through two crucial steps:

1. First we realized that since we condition on X, all expressions that contain
only X (i.e., not Y or ε) can be treated as constants. This led to evalu-
ation of E(β̂) as E[(X′X)−1X′Y |X] = E[matrix of constants × Y |X] =
matrix of constants × E[Y |X]

2. Then we implemented that we have assumed E[Y |X] = Xβ —that is, that the
model is correct—and obtain (matrix of constants) × Xβ = β, from matrix
properties. Note that β̂ is not a constant. It is an estimator and varies from
sample to sample, but its mean is the (constant) parameter β.

Quantitative Methods in Population Health, by Mari Palta
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One important aspect of steps 1 and 2 is that the equal variance assumption
simply does not enter. Hence, we can rest assured that the ordinary least-squares
estimator is unbiased even if the equal variance assumption is violated.

To remember the point at which the equal variance assumption enters in the
derivation of the variance of regression parameters, we first look at the estimator
of the slope β1 in nonmatrix notation:

β̂1 =

n∑
1

(xi − x)(yi − y)

n∑
1

(xi − x)2

=

n∑
1

(xi − x)yi

n∑
1

(xi − x)2

which, as before in (5.1), leads to

Var(β̂1) =
n∑
1




xi − x
n∑
1

(xj − x)2




2

Var(yi |xi)

Previously, we made the decision to assume that Var(yi |xi) is equal for all i.
Now, if the equal variance assumption does not hold, some other V̂ar(yi |xi) needs
to be supplied, and the expression does not simplify as much. It is often the case
that, while we suspect that Var(yi |xi) is not equal for all i, its correct value or
structure is not known. One approach is to separately estimate this quantity for
each i by

V̂ar(yi |xi) = ε̂i
2 = (yi − β̂0 − β̂1xi)

2

Note that this expression is kind of extreme, because it makes no assumptions
about how the variance of the residuals changes along the regression line. Each
observation has its own variance estimate, so to say. Of course, this leads to a
very poor estimator of the variance for individual i, but can be acceptable in large
samples when inserted into the expression for Var(β1). Then

V̂ar(β̂1) =
n∑
1

(xi − x)2ε2
i[

n∑
1

(xi − x)2

]2

In the next section we show how to obtain this estimator with PROC MIXED
EMPIRICAL.

To obtain a general expression for the sampling variance of all regression coeffi-
cients, we use matrix notation. If we cannot make the equal variance assumption, we
again take the extreme approach of making no assumptions on the variance itself.
But we stick to the independence assumption, so we need to insert for V̂ar(Y |X) a
matrix with 0’s off the diagonal and (yi − β̂0 − β̂1x1i − β̂2x2i · · · )2 on the diagonal.
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We can write

V̂ar(β̂) = (X′X)−1X′ε̂ε̂′
X(X′X)−1 (6.1)

where ε̂ is a diagonal matrix with (yi − β̂0 − β̂1x1i − β̂2x2i · · · ) on the diagonal,
so that

ε̂ε̂
′ =




(y1 − β̂0 − β̂1x11 − β̂2x21 · · · )2 0 · · ·
0 (y2 − β̂0 − β̂1x12 − β̂2x22 · · · )2 · · ·
...

...
. . .




Formula (6.1) is a special case of the so-called “sandwich estimator.” It gets
its name from the ε’s being sandwiched in between the X′s. As it makes few
assumptions, it is also known as a “robust” variance estimator. It was originally
proposed by Huber [9] and by White [10]. Because the usual (PROC REG) standard
errors for the least-squares estimator are derived under assumptions that make the
estimator the most efficient (i.e., standard errors small), one can expect that the
standard errors from (6.1) will tend to be larger. This is generally the case, but
standard errors can turn out to be smaller with (6.1) in a given data set, especially
if many observations are in the range where residuals are most variable, and if
there are many outliers.

Several procedures in SAS can produce the estimator (6.1). However, as we will
be using PROC MIXED for the first part of this text, we first show examples of
how to implement the standard error estimation with this procedure. The statements
for telling PROC MIXED to provide standard errors based on (6.1) are

PROC MIXED NOCLPRINT EMPIRICAL;
CLASS ID; MODEL y = x · · ·/S;
REPEATED/SUBJECT=ID;

EMPIRICAL asks that formula (6.1) be used in obtaining the variance matrix
of the regression coefficients. However, because PROC MIXED is so general,
the other statements are needed to tell it exactly what to do. More specifically,
PROC MIXED needs to know what observations can be assumed to be inde-
pendent, because it can also deal with correlated observations. The REPEATED/
SUBJECT=ID; statement tells MIXED that we are assuming independence between
observations on different individuals. Because we have only one observation per
person right now, this amounts to total independence.

It is safest to include the variable that indicates individual in a CLASS statement.
The CLASS ID; statement tells PROC MIXED that the ID is a label and not a
measurement. Finally, the NOCLPRINT prevents the ID’s of all the subjects from
being printed, as would be the default with the CLASS statement.

6.1.1 Examples

For these examples refer to OUTPUT PACKET III. It contains analyses of GHb,
as well as of systolic blood pressure. We reanalyze the GHb data only for the age
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Table 6.1 Regression Coefficients (se) Modeling GHb to
Ages up to 15 Years

Ordinary Regression
Ordinary Regression with Empirical

Intercept 8.59 (0.447) 8.59 (0.381)

Age (per year) 0.27 (0.0413) 0.27 (0.0414)

range of rise, up to (and including) age 15. The restriction results in a sample size
of n = 274. We first fit an ordinary regression by PROC REG. The regression
coefficients are in Table 6.1, and the original output and residual plot are included
in OUTPUT PACKET III. We see the increase in residual variance with increasing
predicted value of GHb.

Then we used PROC MIXED to obtain robust standard errors as above:

PROC MIXED NOCLPRINT EMPIRICAL; CLASS ID;
MODEL GHB=AGE/S;
REPEATED/SUBJECT=ID;

As expected, the estimates of the regression coefficients themselves did not
change with the EMPIRICAL option. This is always true, since EMPIRICAL does
not interfere in that part of the analysis. In our analysis, we see that the standard
errors did not change much either and that there was actually a decrease in the
standard error of the intercept with the empirical option. One may conjecture that
this may be caused by many rather outlying GHb residuals that made the initial s2

y|x
large. We can view the robust analysis as a confirmation that tests and confidence
intervals from the original analysis are not too far off. However, we will see below
that the efficiency of the analysis can be improved by taking the unequal variance
into account in estimation in a more pervasive manner.

After adding gender, age, bmi, and the age by bmi interaction to the regression of
systolic blood pressure from visit 1 in the Wisconsin Sleep Cohort Study, inequality
of the residual variance seems to be present also in this analysis. OUTPUT PACKET
III shows a residual plot. We ran the commands

PROC MIXED NOCLPRINT EMPIRICAL; CLASS SEX ID;
MODEL SBP=SEX AGE BMIC AGEC*BMIC/S;
REPEATED/SUBJECT=ID;
PROC REG; MODEL SBP=GENDER AGEC BMIC AGEC BMIC;
OUTPUT OUT=RRR=RESID P=PRED; PROC PLOT; PLOT RESID*PRED;

Here, the variables entered are as defined in the last example in Chapter 5.
Results are summarized in Table 6.2.

We see that in this case the empirical option has generally increased the estimates
of the standard errors.
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Table 6.2 Regression Coefficients (se) Modeling SBP in Wisconsin Sleep Cohort

Ordinary Regression
Ordinary Regression with Empirical

Intercept 127 (0.525) 127 (0.549)
Female −6.57 (0.732) −6.57 (0.726)
Age (per year—centered at age 50) 0.369 (0.495) 0.369 (0.0510)
BMI (centered 27) 0.595 (0.0656) 0.595 (0.0720)
Age *BMI (centered) −0.0189 (0.00750) −0.0189 (0.00888)

6.2 ANALYSIS TAKING UNEQUAL VARIANCE INTO ACCOUNT

Although the above analysis using unweighted ordinary regression is not wrong,
it is not efficient. In the rest of this chapter we will discuss approaches that more
directly deal with situations that violate the equal variance assumption of ordinary
regression analysis.

6.2.1 The Functional Transformation Approach

A very standard and technically easy approach is to take a mathematical transfor-
mation of the outcome variable Y . There is a formula (derived by Taylor expansion)
that is handy for choosing a transformation f :

Var[f (y)] ≈ [f ′(µy)]
2 Var(y)

The most common use of this formula is to see that when sd(y) is proportional to
µy (i.e., Var(y) = cµ2

y), taking the log of y leads to approximately equal variance
across µy . Because f ′(µy) is then 1/µy , we have

[f ′(µy)]
2 Var(y) =

(
1

µy

)2

(cµ2
y) = c

that is, constant. When Var(y) is proportional to µy , taking the square root of y

works to equalize the variance. The residual plot, or calculating the variance in
subgroups of predicted value, may give a clue as to how the variance changes with
the mean.

The log and square root transformations have the additional effect of pulling in
upper tails of the error distribution. This is often helpful in improving normality.
However, in situations with a few low values, the log transformation aggravates
the problem of outliers on the low end. Obviously, linearity may also be destroyed
after transforming y, making additional transformations of x or polynomial terms
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Table 6.3 Regression Coefficients (se) Modeling Transformed GHb on Age

Inverse GHb Inverse β̂/se(β̂) Original (Empirical) β̂/se(β̂)

Intercept 0.111 (0.00331) 33.4 22.5
GHb per % −0.00190 (0.000306) −6.22 6.57

necessary. Technically, linearity cannot hold for both the untransformed and trans-
formed models, although it may nearly hold in some regions of the covariates.

6.2.1.1 Example
The residual plot of GHb as predicted by age shows a rather steep increase in
residual standard deviation with predicted values, especially when the predicted
value is at the upper end. We may conjecture that the standard deviation increases
proportionally to the predicted value squared in this case. Then Var(y|x) increases
proportionally to µ4

y , so f ′(µy) needs to be ±1/µ2
y . Consequently, the function f

should be chosen as the inverse 1/y.
Analyses in OUTPUT PACKET IV are based on taking the inverse of GHb

and predicting this transformed variable by age. The residual plot in the PACKET
implies that after the transformation, the variance of the residuals is more or less
constant. Table 6.3 shows the estimated regression coefficients. We calculated val-
ues for β̂/se(β̂) for this model as well as for the empirical option above to assess
any gain in efficiency from using a model where the equal variance assumption
more nearly holds. We see that there was no gain. (Note that the intercepts cannot
be compared.) This is because GHb is quite linear in age, while an equation that is
linear in age somewhat overestimates 1/GHb at the higher ages. This nonlinearity
of the transformed outcome is not statistically significant, but its presence pre-
vented the gain in efficiency which might otherwise have resulted from equalizing
the variance.

The interpretation of the coefficients on the inverse scale is that a unit increase
in a covariate leads to a change of β̂ in mean of the inverse of the outcome. This
interpretation is not very satisfactory for practical purposes.

6.2.1.2 Interpretation of log on log Regression- and Another Example
In some applications, investigators have preferred, or become used to, transformed
variables. Traditionally, regression coefficients from modeling the log of an out-
come on the log of a predictor has held special importance in econometrics. There,
the resulting regression coefficient is referred to as an elasticity, and it is inter-
preted as the percent increase in the mean outcome with one percent increase in
the predictor. The basis for this interpretation comes from Taylor approximation.
Since for µy2/µy1 close to 1 we have

log(µy2) − log(µy1) = log(µy2/µy1) ≈ µy2/µy1 − 1
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and a similar approximation holds for x, it follows that

log(µy|x2) − log(µy|x1) = β1[log(x2) − log(x1)]

can be approximated

µy2/µy1 − 1 ≈ β1[x2/x1 − 1]

and the interpretation follows.
As may be expected, the elasticity concept has been particularly applied to costs

and prices. Even there, it may be argued that an absolute interpretation of expenses,
and so on, may be more desirable. However, the elasticity has the advantage of
being independent of currency used, as well as independent of change in the value
of currency over time.

6.2.1.3 Example
OUTPUT PACKET IV also contains a regression analysis of the quarterly cost
in dollars of medical care in the Wisconsin Sleep Cohort [11] as predicted by an
individual’s gender and BMI. Analysis on the original scale and its residual plot
indicates violation of the linearity assumption, extreme skewness in the residu-
als, and possibly inequality of variance toward the higher end of predicted value.
Skewness of this type is especially common when modeling the cost of care in a
basically healthy population.

The outcome variable was transformed as log(cost +10), where 10 was added so
that individuals with 0 cost during the data collection period could be included. We
see marked improvement in the residual plot (except almost unavoidable nonlinear-
ity for the 0 values, which could be dealt with by more advanced methods such as a
tobit model or by a two-part model [12]). The interpretation of the regression coef-
ficients is that a 1% increase in BMI leads to approximately 0.53% increase in cost
of medical care (+10) and that men’s cost of medical care is exp(−0.389) = 0.68
of women’s.

6.2.1.4 Comment
Examples 6.2.1.1 and 6.2.1.3 illustrate that the functional transformation approach
at first appears convenient. However, it can destroy linearity and normality of the
data. Also, the desirability of the transformation approach depends on the appli-
cation. In some situations the regression coefficients in the transformed equation
make perfect sense. Other times, the practical usefulness of the equation is much
reduced by transformations. For further discussion of these issues see Manning and
Mullahy [13].

6.2.2 The Linear Transformation Approach

When we apply transformations such as the log to the left-hand side of the regres-
sion equation, we may destroy linearity. In addition, the meaning of the regression
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coefficients is changed. To preserve the meaning with a transformation, one would
need to transform the whole right-hand side of the regression equation. For example,
if the true regression equation is

yi = β0 + β1xi + εi (6.2)

the new equation after taking the log of y, with the meaning of the regression
coefficients preserved, would be

log(yi) = log(β0 + β1xi + εi)

But this is no longer a linear equation. The coefficients and error term are both
inside a log, making estimation complicated.

To preserve the structure of equation (6.1), we need to apply a linear transfor-
mation. At the end of this section we will see that the appropriate choice of linear
transformation combined with unweighted least-squares estimation is equivalent to
weighted least-squares estimation. In fact, it is most common to take the latter
shortcut in practice. We first present the linear transformation perspective, because
it provides the justification for weighted least-squares estimation. The same deriva-
tion, in more mathematical form, is found in almost all other books that present
the theory of regression analysis (see, e.g., Draper and Smith [14]).

If we know the variance of each yi , it turns out to be fairly easy to find a linear
transformation that equalizes the variance around the regression line. Of course,
this is not usually the case, but we make the assumption for illustration of the
transformation principle. Assume that Var(yi |xi) = Var(εi) = σ 2

i . If we have the
regression equation

yi = β0 + β1xi + εi

and divide each side by σi , we obtain

yi

σi

= β0
1

σi

+ β1
xi

σi

+ εi

σi

or
newyi = β0newvariable + β1newxi + newεi

where now, because of the way the transformation was chosen, new εi have
the same variance along the regression line, because Var(newεi) = Var( εi

σi
) =

1
σ 2

i

σ 2
i = 1, which is constant. (Recall that Var(t1y) = t2

1 Var(y).) We can also write

σ 2
i = ciσ

2, and transform the original equation by

yi√
ci

= β0
1√
ci

+ β1
xi√
ci

+ εi√
ci

(6.3)

In this regression equation, the new residual has constant variance σ 2.
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We will proceed in matrix notation to see what estimator we end up with. Define
the matrix

P =




σ
√

c1 0 · · ·
0 σ

√
c2 · · ·

...
...

. . .




which has
√

Var(εi) on the diagonal. Because taking the inverse of a diagonal
matrix amounts to taking the regular inverses of all the elements on the diagonal,
we have

P −1 =




1
σ
√

c1
0 · · ·

0 1
σ
√

c2
· · ·

...
...

. . .




Then (6.3) can be written in matrix notation as

σP −1Y = σP −1Xβ + newε

where Var(new ε) = σ 2I . We use P −1 rather than T to denote the transformation
matrix here to better conform with the notation in this context of standard books
on regression analysis and the analysis of variance.

Now we can obtain an efficient (BLUE) estimator by the ordinary least-squares
equation using new quantities newX = σP −1X, and so on, in matrix form

β̂ = [newX′newX]−1[newX′newY ]

= [(σP −1X)′σP −1X]−1[(σP −1X)′σP −1Y ]

= [X′σP −1σP −1X]−1[X′σP −1σP −1Y ]

= 1

σ 2
[X′P −1P −1X]−1[X′P −1P −1Y ]σ 2

= [X′P −1P −1X]−1[X′P −1P −1Y ]

We have applied the usual matrix formula for a linear regression estimator, the
formula for the transpose of a product so that (P −1X)′ = X′[P −1]′, and the fact
that P −1 is symmetric (all diagonal matrices are symmetric). We now see that

P −1P −1 =




1
Var(ε1)

0 0

0
. . . 0

0 0 1
Var(εn)


 = V −1



ANALYSIS TAKING UNEQUAL VARIANCE INTO ACCOUNT 71

where V is the variance matrix of ε, or equivalently V = Var(Y |X). Then we can
write

β̂ = [X′V −1X]−1[X′V −1Y ] (6.4)

Equation (6.4) is the ordinary least-squares estimator for the transformed
equation. Because of the way we derived it, we know that (6.4) gives an effi-
cient estimator of the original β. For practical purposes, it is good to note that it
doesn’t matter whether we use the actual V −1 or σ 2V −1 in formula (6.4). By the
rules of how constants multiply matrices (Property 14 in the list in Chapter 3) σ 2

cancels in (6.4), and we only need to specify ci .
More generally, if we are not sure of V −1, we can write

β̂W = [X′WX]−1[X′WY ] (6.5)

where β̂W is a general weighted least-squares estimator. It is important to note that
as long as E(Y |X) = Xβ, E(β̂W) = [X′WX]−1[X′WX]β = β, so the estimator
(6.5) is unbiased even if W is not V −1. It may not be efficient.

The above framework is hard to implement exactly as presented, because we do
not usually know ci(or σ 2

i ), so we can’t directly know what V −1 to use in (6.4).
Using the “empirical” formula s2

i = (yi − β̂0 − β̂1x1i − β̂2x2i · · · )2 for each i is
out, because the number of estimators would increase with the number of subjects
n, so we would not have consistency. Potentially, subjects could be grouped to
produce a limited number of s2

i . We will illustrate another route that is more in
line with the functional approach above, and also with the context of generalized
linear models (Chapter 12).

As indicated above, the residual variance often changes systematically with µy|x ,
and we may glean information on how, from the residual plot of the residuals on the
predicted values. The spread of residuals in that plot is an approximate presentation
of how the standard deviation changes with the predicted value. We can then choose
ci as a function of µy|x, g(µy|x). In reality this means that we first have to estimate
the regression line by ordinary regression and then use the predicted values µ̂yi |xi

in the weights. For example, if we think that the residual standard deviation is
proportional to the predicted value, we can choose ci as (µyi |xi

)2 and weight
by the matrix with (1/µ̂yi |xi

)2 on the diagonal. Most computer programs require
specification of these diagonal elements. It should be noted that we have ignored
interpretation and estimation of σ 2 here.

6.2.2.1 Example
OUTPUT PACKET V has further analyses of GHb versus age at approximately
four years’ diabetes duration. Initial analyses above had shown that the standard
deviation around the regression line may be increasing approximately proportion-
ally to the square of the predicted value. To illustrate the above transformation, we



72 DEALING WITH UNEQUAL VARIANCE AROUND THE REGRESSION LINE

Table 6.4 Regression Coefficients (se) Modeling GHb to Ages up to 15 Years by
Weighted Regression

Weighted with Ordinary with
Weighted Regression Empirical Empirical

Intercept 8.63 (0.366) 8.63 (0.346) 8.59 (0.381)
Age (per year) 0.268 (0.0371) 0.268 (0.0376) 0.272 (0.0414)

first fit the ordinary regression line and obtain the predicted values. We then choose

W =




1
µ̂4

y1|x1

0 0

0
. . . 0

0 0 1
µ̂4

yn|xn




so that the diagonal is proportional to the inverse of the variance for each observa-
tion. In SAS, formula (6.4) can be implemented by both PROC REG and PROC
MIXED, by commands such as those below:

PROC REG; MODEL GHB=AGE;
OUTPUT OUT=RR P=PRED R=RESID;
DATA NEW; SET RR;
WGT=1/PRED**4;
PROC REG;
MODEL GHB=AGE;
WEIGHT WGT;

The results are in the second column of Table 6.4:
Furthermore, we implement the transformation to examine the behavior of the

new residuals by the commands:

PROC REG; MODEL GHB=AGE; OUTPUT OUT=RR P=PRED;
DATA NEW; SET RR;
NGHB=GHB/PRED**2;
NINT=1/PRED**2;
NAGE=AGE/PRED**2;
PROC REG; MODEL NGHB=NINT NAGE/NOINT;
OUTPUT OUT=XX R=NRESID P=NPRED;
PROC PLOT; PLOT NRESID*NPRED;

Note that while the weights are inverses of the predicted value to the fourth
power, the transformation multiplies by the square root of that weight. The /NOINT
option is used to avoid the fitting of the intercept. (Regression equation (6.3) does
not have an intercept in the usual sense.) We see in OUTPUT PACKET V that
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the residual plot from the transformed regression displays a more constant residual
variance than the corresponding plot from the untransformed regression.

In Table 6.4 there is a slight difference between the coefficients from the
unweighted and weighted estimation. For example, the coefficient of age is 0.272 in
the original regression and is 0.268 in the weighted regression. This is a minor change.
Because the unweighted estimators are unbiased, there should not be a major differ-
ence between the weighted and unweighted estimators when the model is correct.
In fact, there is a goodness-of-fit test for regression, called the Hausman test, that is
essentially based on this principle [15]. This test is quite widely used in econometrics.

We should be aware that we still have not weighted the regression estimators
in the best way because the above procedure obtained the predicted values for the
weights from the unweighted regression. The predicted values of GHb from the
weighted regression are, of course, slightly different. We can compute them and
repeat the estimation process to slightly improve efficiency. We could also apply
maximum likelihood directly on the normal, unequal variance structure implied.
PROC GENMOD, which we address in Chapter 11, can do this with an iter-
ative procedure of updating parameter estimates. Unweighted regression can be
fit without iteration by either least-squares or maximum likelihood only because
the regression parameter estimates can be obtained independently of the variance
estimate in that special case.

6.2.3 Standard Errors of Weighted Regression Estimators

We can derive the variance matrix of a weighted regression estimator by again
using formula (4.3) for the variance of a linear transformation. Also, because we
may be either quite sure of the variance or not so sure, we can derive the standard
errors without and with the empirical approach. In this context the estimators that
assume that we know V −1 are called “model-based.” In formula (6.5) the linear
transformation of Y uses the matrix

T ′ = [X′WX]−1[X′W ]

and we have
β̂W = T ′Y

Then applying the linear transformation variance formula

Var(β̂W) = [X′WX]−1[X′W ] Var(Y |X)[W ′X][X′WX]−1 (6.6)

by the same principles as in the unweighted case. For the model-based situation,
we assume

W = [Var(Y |X)]−1 = V −1
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so we can insert W−1 for Var(Y |X), obtaining

Var(β̂W ) = [X′WX]−1[X′W ] Var(Y |X)[W ′X][X′WX]−1

= [X′WX]−1[X′W ]W−1[W ′X][X′WX]−1

= [X′WX]−1[X′WX][X′WX]−1

which equals

Var(β̂W ) = [X′WX]−1 (6.7)

Note also that in the special case of equal variance we have

W = (σ 2I )−1 = 1

σ 2
I

and (6.7) simplifies to the usual

Var(β̂) = σ 2(X′X)−1

In the situation when we are not quite sure of the variance Var(Y |X) or have
used only one iteration to obtain it, we can use the empirical approach, parallel to
formula (6.1). Inserting ε̂ε̂

′ for Var(Y |X), we obtain

V̂ar(β̂) = (X′WX)−1X′W ε̂ε̂
′
WX(X′WX)−1 (6.8)

The prime has been removed from W as in situations of interest in practice; W

is always taken as symmetric. PROC MIXED can be requested to use formula (6.8)
by the EMPIRICAL OPTION. Using the ALL option PROC REG ALL; includes
the same result under the heading “consistent variance matrix” in the massive
output produced, but this seems more cumbersome than using PROC MIXED
EMPIRICAL.

Note again that the approach in formula (6.8) is appropriate when we either
know or suspect that W is not exactly V −1.

6.2.3.1 Example
Table 6.4 contains both model-based and empirical standard error estimates for
the weighted regression of GHb on age. We see that again the model-based and
empirical coefficients are the same. Comparison of the empirical estimates for
weighted and unweighted options indicates a gain in efficiency with weighting.
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OUTPUT PACKET III: APPLYING THE EMPIRICAL OPTION TO
ADJUST STANDARD ERRORS

III.1. Regressing GHb on Age in Wisconsin Diabetes Registry

Analysis of GHb Versus Age for Those Less than 15 Years Old
The REG Procedure

Model: MODEL1
Dependent Variable: GHb at about 4 years of diabetes

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 205.87840 205.87840 43.22 <0.0001
Error 272 1295.67016 4.76349
Corrected total 273 1501.54856

Root MSE 2.18254 R-square 0.1371
Dependent mean 11.40352 Adjusted R-square 0.1339
Coefficient of variation 19.13921

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 8.59390 0.44725 19.22
Age Age 1 0.27154 0.04130 6.57

Parameter Estimates

Variable Label DF Pr > |t |
Intercept Intercept 1 <0.0001
Age Age 1 <0.0001
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Regression Analyses of GHb Versus Age
Original Residual Plot
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Plot of resid*pred. Legend: A = 1 obs, B = 2 obs, and so on.



OUTPUT PACKET III: APPLYING THE EMPIRICAL OPTION TO ADJUST STANDARD ERRORS 77

Unweighted Regression with Empirical Option
The Mixed Procedure

Model Information

Data set WORK.RES
Dependent variable Ghb
Covariance structure Variance components
Subject effect Id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 1
Columns in X 2
Columns in Z 0
Subjects 274
Maximum observations per subject 1
Observations used 274
Observations not used 0
Total observations 274

Iteration Historya

Iteration Evaluations −2 Res Log-Likelihood Criterion

0 1 1210.03720983
1 1 1210.03720983 0.00000000

a Convergence criteria met.

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

Residual id 4.7635

Fit Statistics

−2 Residual log likelihood 1210.0
AIC (smaller is better) 1212.0
AICC (smaller is better) 1212.1
BIC (smaller is better) 1215.7
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Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t |
Intercept 8.5939 0.3814 272 22.53 <0.0001
Age 0.2715 0.04135 272 6.57 <0.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Age 1 272 43.12 <0.0001

III.2. Regressing SBP Versus Age, BMI, and Sex—Wisconsin Sleep Cohort

Unequal Variance Example, Wisconsin Sleep Cohort Study
Ordinary Regression and Residual Plot for SBP Versus Age Gender and BMI

The REG Procedure

Model: MODEL1
Dependent Variable: SBP, systolic blood pressure

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 4 50562 12641 71.18 <.0001
Error 1359 241336 177.58357
Corrected total 1363 291898

Root MSE 13.32605 R-square 0.1732
Dependent mean 125.09176 Adjusted R-square 0.1708
Coefficient of variation 10.65302
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Parameter Estimates

Parameter
Variable Label DF Estimate

Intercept Intercept 1 127.44900
gender 1 −6.57305
agec Age centered at 50 1 0.36912
bmic 1 0.59454
agec bmic Interaction with age centered 1 −0.01892

at 50, bmi at 27

Standard
Variable Label DF Error t Value

Intercept Intercept 1 0.52502 242.75
gender 1 0.73184 −8.98
agec Age centered at 50 1 0.04946 7.46
bmic 1 0.06556 9.07
agec bmic Interaction with age centered 1 0.00750 −2.52

at 50, bmi at 27

Variable Label DF Pr > |t |
Intercept Intercept 1 <0.0001
gender 1 <0.0001
agec Age centered at 50 1 <0.0001
bmic 1 <0.0001
agec bmic Interaction with age centered 1 0.0117

at 50, bmi at 27
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Plot of resid*pred. Legend: A = 1 obs, B = 2 obs, and so on.
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Applying the Empirical Option to Regression of SBP Versus Age Gender and BMI
The Mixed Procedure

Model Information

Data set WORK.RR
Dependent variable sbp
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 1
Columns in X 6
Columns in Z 0
Subjects 1373
Maximum observations per subject 1
Observations used 1370
Observations not used 6
Total observations 1370

Iteration Historya

Iteration Evaluations−2 Res Log-Likelihood Criterion

0 1 10945.85019390
1 1 10945.85019389 0.00000000

a Convergence criteria met.

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

Residual id 177.58

Fit Statistics

−2 Res log-likelihood 10945.9
AIC (smaller is better) 10947.9
AICC (smaller is better) 10947.9
BIC (smaller is better) 10953.1
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Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 127.45 0.5494 1359 231.96 <0.0001
sex F −6.5731 0.7263 1359 −9.05 <0.0001
sex M 0 . . . .
agec 0.3691 0.05103 1359 7.23 <0.0001
bmic 0.5945 0.07196 1359 8.26 <0.0001
agec*bmic −0.01892 0.008882 1359 −2.13 0.0334

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1359 81.90 <.0001
agec 1 1359 52.33 <.0001
bmic 1 1359 68.26 <.0001
agec*bmic 1 1359 4.54 0.0334
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OUTPUT PACKET IV: ANALYSES WITH TRANSFORMATION OF THE
OUTCOME VARIABLE TO EQUALIZE RESIDUAL VARIANCE

IV.1. Analysis of Inverse of GHb Versus Age—Wisconsin Diabetes Registry

Analysis of GHb Versus Age for Those Less than 15 Years Old
Regression of Inverse GHb Versus Age

The REG Procedure

Model: MODEL1
Dependent Variable: fghb

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 0.01013 0.01013 38.72 <.0001
Error 272 0.07113 0.00026152
Corrected total 273 0.08126

Root MSE 0.01617 R-square 0.1246
Dependent mean 0.09108 Adjusted R-square 0.1214
Coefficient of variation 17.75486

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t |
Intercept Intercept 1 0.11079 0.00331 33.43 <0.0001
Age Age 1 −0.00190 0.00030604 −6.22 <0.0001
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Residual Plot from Regression of Inverse GHb
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Plot of fres*fpred. Legend: A = 1 obs, B = 2 obs, and so on.
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IV.2. Analysis of Cost Data from Wisconsin Sleep Cohort

Analysis of Medical Cost Data—Wisconsin Sleep Cohort
Regression Analysis of Untransformed Data

The REG Procedure

Model: MODEL1
Dependent Variable: avcost—average cost of medical care per quarter

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 816335 408168 12.03 <.0001
Error 686 23269242 33920
Corrected total 688 24085578

Root MSE 184.17431 R-square 0.0339
Dependent mean 150.47676 Adjusted R-square 0.0311
Coefficient of variation 122.39386

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 117.98755 36.06740 3.27
Gender 1 −62.93287 14.21548 −4.43
BMI Body Mass Index (kg/m2) 1 2.37457 1.17892 2.01

Parameter Estimates

Variable Label DF Pr > |t |
Intercept Intercept 1 0.0011
Gender 1 <0.0001
BMI Body Mass Index (kg/m2) 1 0.0444
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Residual Plot from Untransformed Analysis
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Plot of oresid*ppred. Legend: A = 1 obs, B = 2 obs, and so on.



OUTPUT PACKET IV: ANALYSES WITH TRANSFORMATION 87

Histogram of Untransformed Residuals
The UNIVARIATE Procedure

Variable: oresid (untransformed residual)

Moments

N 689 Sum of weights 689
Mean 0 Sum of observations 0
Standard deviation 183.906425 Variance 33821.5731
Skewness 3.36346689 Kurtosis 17.4059317
Uncorrected SS 23269242.3 Corrected SS 23269242.3
Coefficient of variation . Standard error of mean 7.00627679

Basic Statistical Measures

Location Variability

Mean 0.0000 Standard deviation 183.90642
Median −55.7239 Variance 33822
Mode . Range 1709

Interquartile range 136.85957

Tests for Location: Mu0 = 0

Test Statistic p Value

Student’s t t 0 Pr > |t | 1.0000
Sign M −120.5 Pr > |M| <0.0001
Signed rank S −34638.5 Pr > |S| <0.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 1493.6630
99% 710.1336
95% 359.8459
90% 198.2884
75% Q3 36.1587
50% Median −55.7239
25% Q1 −100.7009
10% −132.7012
5% −156.5006
1% −189.8031
0% Min −215.6743
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Extreme Observations

Lowest Highest
Value Observed Value Observed

−215.674 543 857.664 339
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−200.984 207 1294.453 48
−199.359 151 1408.392 683
−198.138 231 1493.663 4
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Regression Analysis with Log-Transformed Outcome
The REG Procedure

Model: MODEL1
Dependent Variable: lcost log cost + 10

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 32.73356 16.36678 16.68 <0.0001
Error 686 673.24538 0.98141
Corrected total 688 705.97895

Root MSE 0.99066 R-square 0.0464
Dependent mean 4.59310 Adjusted R-square 0.0436
Coefficient of variation 21.56843

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t |
Intercept Intercept 1 3.03979 0.64783 4.69 <.0001
Gender 1 −0.38919 0.07645 −5.09 <.0001
lbmi log bmi 1 0.53116 0.19275 2.76 0.0060



90 DEALING WITH UNEQUAL VARIANCE AROUND THE REGRESSION LINE

Residual Plot from Transformed Regression Analysis
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Plot of resid*pred. Legend: A = 1 obs, B = 2 obs, and so on.
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Histogram of Residuals from Transformed Analysis
The UNIVARIATE Procedure

Variable: resid (residual of log cost on log bmi)

Moments

N 689 Sum of weights 689
Mean 0 Sum of observations 0
Standard deviation 0.98921905 Variance 0.97855434
Skewness −0.1833497 Kurtosis 0.05761522
Uncorrected SS 673.245384 Corrected SS 673.245384
Coefficient of variation . Standard error of mean 0.03768624

Basic Statistical Measures

Location Variability

Mean 0.000000 Standard deviation 0.98922
Median 0.025537 Variance 0.97855
Mode . Range 5.40296

Interquartile range 1.27033

Tests for Location: Mu0 = 0

Test Statistic p Value

Student’s t t 0 Pr > |t | 1.0000
Sign M 5.5 Pr > |M| 0.7033
Signed rank S 2126.5 Pr > |S| 0.6844

Quantiles (Definition 5)

Quantile Estimate

100% Max 2.6914562
99% 2.0543739
95% 1.6107023
90% 1.2552759
75% Q3 0.6698180
50% Median 0.0255368
25% Q1 −0.6005144
10% −1.2781850
5% −2.0140941
1% −2.3903305
0% Min −2.7115048
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Extreme Observations

Lowest Highest
Value Observations Value Observations

−2.71150 543 2.40959 48
−2.68872 401 2.52120 339
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−2.41839 497 2.69146 164

                  Histogram                    #             Boxplot
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OUTPUT PACKET V: WEIGHTED REGRESSION ANALYSES OF GHb
DATA ON AGE

Weighted Regression Analyses of GHb—Wisconsin Diabetes Registry
Weighted Regression with Weights Based on Predicted**4

The REG Procedure

Model: MODEL1
Dependent Variable: ghb GHB at about 4 years of diabetes

Weight: WGT

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 0.01337 0.01337 52.36 <.0001
Error 272 0.06943 0.00025526
Corrected total 273 0.08280

Root MSE 0.01598 R-square 0.1614
Dependent mean 11.12560 Adjusted R-square 0.1583
Coefficient of variation 0.14360

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value

Intercept Intercept 1 8.62642 0.36619 23.56
Age Age 1 0.26826 0.03707 7.24

Parameter Estimates

Variable Label DF Pr > |t |
Intercept Intercept 1 <0.0001
Age Age 1 <0.0001
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Weighted Regression with Empirical Option
The Mixed Procedure

Model Information

Data set WORK.NEW
Dependent variable ghb
Weight Variable WGT
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 1
Columns in X 2
Columns in Z 0
Subjects 274
Maximum observations per subject 1
Observations used 274
Observations not used 0
Total observations 274

Iteration Historya

Iteration Evaluations −2 Residual Log Likelihood Criterion

0 1 1180.17787127
1 1 1180.17787127 0.00000000

a Convergence criteria met.

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

Residual id 0.000255

Fit Statistics

−2 Residual log likelihood 1180.2
AIC (smaller is better) 1182.2
AICC (smaller is better) 1182.2
BIC (smaller is better) 1185.8
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Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t |
Intercept 8.6264 0.3464 272 24.90 <.0001
Age 0.2683 0.03761 272 7.13 <.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Age 1 272 50.88 <.0001

Linearly Transformed Regression
The REG Procedure

Model: MODEL1
Dependent Variable: NGHb

Note: No intercept in model. R-square is redefined.

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 2 2.14599 1.07300 4203.55 <0.0001
Error 272 0.06943 0.00025526
Uncorrected total 274 2.21542

Root MSE 0.01598 R-square 0.9687
Dependent mean 0.08822 Adjusted R-square 0.9684
Coefficient of variation 18.10979

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t |
NINT 1 8.62642 0.36619 23.56 <0.0001
NAGE 1 0.26826 0.03707 7.24 <0.0001
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Plot of Transformed Residuals
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Plot of NRESID*NPRED. Legend: A = 1 obs, B = 2 obs, and so on.



C H A P T E R S E V E N

Application of Weighting
with Probability Sampling
and Nonresponse

In this chapter we digress a bit from the development of regression estimators with
general variance structure. While in Chapter 6 we applied weighting to achieve
greater efficiency, we now turn to situations where weighting is applied to avoid
or reduce bias. These are situations where based on the sample E(Y |X) �= Xβ, but
weights are available such that E(WY |X) = Xβ. In the situation to be discussed
here, weights arise from consideration of how the sample was selected from the
population about which inferences are to be made. This chapter is included because
of its practical importance for observational studies where either by study design
or missing data mechanisms, not every data point in the population has the same
probability of ending up in the sample.

In Chapter 6 we discussed weighting in obtaining regression estimators from
the viewpoint of improving efficiency of estimators, but the key equation (6.6) can
be derived regardless of the choice of weights.

Var(β̂W) = [X′WX]−1[X′W ]Var(Y |X)[W ′X][X′WX]−1

We saw that this equation can be used to obtain the variance matrix of regression
estimators in general situations, by using the “empirical” method for estimating
Var(Y |X). Often the empirical method is used just because, even though we guessed
that Var(Y |X) = W−1, we are not sure. So, in order not to overestimate the
significance of regression coefficients, we choose the safe route. There are other
equally common and important applications of weighted regression estimators and
empirical estimation of the variance of regression coefficients in the context of
sample surveys and in investigating the effects of selection bias. In these situations,
weights W have no relationship to Var(Y |X).

Quantitative Methods in Population Health, by Mari Palta
ISBN 0-471-45505-9 Copyright c© 2003 John Wiley & Sons, Inc.
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7.1 SAMPLE SURVEYS WITH UNEQUAL PROBABILITY SAMPLING

The conceptually simplest way to perform a survey is to select people with equal
probability by what is called “simple random sampling.” For example, for a sample
of University of Wisconsin employees, we could generate a list of random numbers,
count the names sequentially down the phone directory, and select the people
whose sequence numbers in the phone book match one of the random numbers.
Our analyses up hill now have assumed that the sample arose from such a process.
Each observation in the sample can then be thought of as equally “representative”
of the underlying population.

However, the method of simple random sampling is sometimes not feasible in
practice. Many designs are available for facilitating selection and actual imple-
mentation of sampling. National surveys generally employ the procedure of first
sampling regions, then smaller units within the region, and finally people within
those units. This procedure of selection is called “multistage sampling,” and the
fact that larger units (than those that are the target of eventual analyses) are selected
at some stages is called “cluster sampling.” Another feature often used is “over-
sampling” of certain subcategories. This means that members of subgroups such
as rural residents, women, or blacks are invited to participate in proportionately
larger numbers. These techniques may be employed because the subgroup can be
reached conveniently (for example, there may be less extra cost if we include
everyone within a certain community once that community has been selected than
if we select yet another city). In a medical record survey of everyone with a given
diagnostic code in a hospital record computer file, it may be easier to request all
records from hospitals that are contacted anyway. This leads to patients at larger
hospitals having greater probability of selection. Most importantly, the technique
of oversampling is employed to achieve a sufficiently large sample of subgroups
of special interest.

The Wisconsin Sleep Cohort Study employed unequal probability sampling to
assemble the sleep cohort from state agencies surveyed [16]. This was done to
ensure that there would be sufficiently many subjects with sleep apnea in the
sample, an important consideration because the study is to not only determine the
prevalence and incidence of sleep disordered breathing, but also map its long-
and short-term consequences. Because of this, the initial survey sent to everyone
contained questions on snoring and gasping during sleep. A selection algorithm
based on these questions was used to identify people who were relatively more
likely to have sleep-disordered breathing. The subjects who fell in the high-risk
category were all invited to be studied in the sleep laboratory. A random sample
of one-third of those in the low-risk category were also invited.

In the situation when all subjects don’t have the same probability of being
in the sample, estimators of population parameters are not unbiased unless they
are weighted. Before considering the more complex case of regression estimation,
consider the estimation of a population mean. Also, let’s first think of the simple
case when there are only two different sampling categories, usually referred to
as strata in the population. Assume that there are N1 people in the first stratum
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(e.g., habitual snorers and gaspers in the Sleep Cohort Study) and N2 in the second
stratum. Assume that a sample of n1 people of the first kind are selected and n2
people of the second kind and that the probabilities of selection are π1 and π2,
respectively. In the Sleep Cohort Study, π1 = 1 and π2 = 1/3. If the mean of some
variable y in the population is µy , it must be that µy = (N1µy1+N2µy2)/(N1+N2),
where µy1 and µy2 are the means of the two subgroups. Then the unbiased way
to estimate µy is as (N1y1 + N2y2)/(N1 + N2). This is essentially to directly
standardize the sample mean to the population composition. Because π1 = n1/N1
and π2 = n2/N2, so that N1 = n1/π1 and N2 = n2/π2, this can be rewritten

y =
(

n1

π1
y1 + n2

π2
y2

)/(
n1

π1
+ n2

π2

)
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which is a weighted average of the sample observations, giving each observation a
weight that is the inverse of its sampling probability. In the more general case, if
we assume that a random sample y1, y2, . . . , yn was selected by a mechanism so
that the probabilities of being sampled were π1, π2, . . . , πn, the unbiased estimator
of the population mean would be

y =
n∑
1

yi

πi

/ n∑
1

1

πi

The denominator is there to ensure that the weights sum up to one. In the simple
random sample case we have πi = π and all observations end up receiving equal
weight, because

y =
n∑
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yi

π

/ n∑
1

1

π
= 1

π
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1
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1

1

]
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the ordinary sample mean. Again, “direct standardization” often used in demogra-
phy and public health is closely related to the weighted formulas provided here,
which “standardize the sample to the population composition.”
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Moving to the regression situation, we first note that while the ordinary mean
can be written in matrix notation as
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the weighted mean can be written as
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where W is the matrix with the inverses of the sampling probabilities on the
diagonal. The idea generalizes to the regression situation, where X contains not
only the column of 1’s, but also other columns of covariates xji . Hence we have
the following as an unbiased estimator of regression coefficients in the population
for the unequal probability sampling situation:

β̂W = [X′WX]−1[X′WY ]

where W is matrix with the inverse sampling probability of each observation on the
diagonal. In this case, we are quite sure that W is not the inverse of the variance
matrix of the observations. Nor do we wish to make an equal variance assumption,
because the sampling strata introduce unknown influences on the variance. (The
reasons we chose stratified sampling acknowledges the fact that strata may be
different with respect to both mean and variance. Furthermore, the mix of strata
represented at different levels of X may differ, again making the variance unequal.)
It is therefore customary to use the variance matrix

Var(β̂W) = (X′WX)−1X′W = (X′WX)−1X′W ε̂ε̂
′
WX(X′WX)−1

To those familiar with survey sampling, the above discussion will appear to
have made a mistake in omitting “finite population” corrections (especially as all
snorers were selected for study). The reason such correction was not a concern
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in, for example, the sleep study (or in many other epidemiologic studies) is that
the sampling frame itself was considered a representative sample of an even larger
“hyper population” (say “employed middle-aged men and women in the United
States”) to which the results would be expected to generalize. Further discussion
of survey sampling context would lead us far afield from the main emphasis of
this course.

SAS version 8 contains several procedures specifically designed for use with
complex survey sampling (including PROC SURVEYMEAN; and PROC SUR-
VEYREG;). These will not be covered here, because PROC MIXED serves our
present purpose. We have also not covered how to deal with cluster sampling or
estimation of weights. Interested readers are referred to the book by Korn and
Graubard [17] for more details on how to deal with complex surveys.

7.1.1 Example

The above development implies that we should have taken the sampling into
account when fitting regression equations to the blood pressure data from the Sleep
Cohort Study. In this situation

W =




1 0 0 · · · · · ·
0 1 0 · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · 0 1/3 0
· · · · · · 0 0 1/3




where the number of 1’s on the main diagonal equals the number of subjects in the
sample from the high-risk group. Because the situation falls under the general case
of weighted regression, the following statements were used to obtain the weighted
regression estimators and their standard errors. The first PROC MIXED produces an
unweighted regression with empirical errors for comparison. To form the weights,
the statements make use of the fact that the first letter of the ID in this study
indicates the group. The GROUP$ 1 tells SAS to go back and read the letter in the
first column of each input record separately. The letter S indicates the oversampled
high-risk subjects, all other subjects were sampled with 1/3 probability (In light of
the above note, W only needs to indicate the relative size of sampling probabilities
as long as we don’t care about σ 2

y/x). Outputs are in OUTPUT PACKET VI:

DATA A;
INFILE ‘filename’;
INPUT ID$ VISIT AGE BMI SEX$ SBP GROUP$ 1;
IF VISIT=1;
WGT=3;
IF GROUP=‘S’ THEN WGT=1;
PROC MIXED EMPIRICAL NOCLPRINT;
CLASS ID SEX;
MODEL SBP=AGEC BMIC SEX AGEC*BMIC/S;
PROC MIXED EMPIRICAL NOCLPRINT;
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Table 7.1 Unweighted and Weighted β̂ (Empirical se) of Wisconsin Sleep Cohort
SBP

Unweighted Weighted

Intercept 127 (0.549) 126 (0.629)
Female −6.57 (0.726) −6.25 (0.799)
Age (centered at 50) 0.369 (0.0510) 0.344 (0.0586)
BMI (centered at 27) 0.595 (0.0720) 0.567 (0.0813)
Age *BMI (centered) −0.0189 (0.00888) −0.0182 (0.0103)

CLASS ID SEX;
MODEL SBP=AGEC BMIC SEX AGEC*BMIC/S;
WEIGHT WGT;
REPEATED/SUBJECT=ID;

Here again, SEX as an alphabetic variable can be entered in PROC MIXED as
long as it is declared a CLASS variable.

We see in OUTPUT PACKET VI and Table 7.1 that the coefficients change
slightly with the weighting and that the standard errors become larger. The latter is
usually the case, because weighting here is not performed for increasing efficiency,
but rather for validity. As the p-value of the interaction coefficient is higher with
weighting, it slips to the nonsignificant side of 0.05.

National surveys such as NHANES (conducted by the National Center for Health
Statistics) contain variables that provide the weights to be used in analyses (and
additional information used to boost standard errors to take clustering into account).
There has been some controversy about the importance of weights in analyses that
are performed to estimate association. Some of this may have arisen from the fact
that the empirical error estimators can be unstable. Even estimators of regression
coefficients themselves can be unstable if small sample sizes in subgroups lead to
very high weighting of some observations in the sample. (However, techniques for
“smoothing” weights exist [18].) Another argument against weighting is that it loses
its importance if the variables that form the basis for the weights are included in the
model (i.e., adjusted for). Many situations arise, however, where inclusion of the
selection variables is undesirable. We would not, for example, want snoring status in
the model when examining the relationship between BMI and SBP. This is because
high BMI may lead to snoring and both high BMI and snoring may elevate blood
pressure. We would be underestimating the total effect of BMI in the population.
A variable higher in the causal chain should not be included in the model as a
confounder in the epidemiologic investigation of the total effect of a risk factor.

7.2 EXAMINING THE IMPACT OF NONRESPONSE

Up till now, this chapter has dealt with intentionally unequal probabilities of sam-
pling. However, almost every study of human subjects involves unintentionally (as
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far as the investigators, not necessarily the subjects themselves, are concerned!)
unequal probabilities of inclusion in the sample by nonresponse. The difference
is only that we may not know all the factors that affect the response, and there-
fore sampling, probability. Many statisticians recommend that in this situation, one
should still determine the sampling probabilities based on known factors. In princi-
ple this is very similar to statistically analyzing the associations of outcomes with
risk factors that have not been assigned by randomization. If, for example, peo-
ple with less than a high school education are less likely to respond to a survey,
one (a) computes the proportion responding out of all subjects in that group and
(b) weights the analysis by the inverse of that probability. NHANES provides such
weights in addition to the “regular” sampling weights arising from the design. They
use the terminology “post-stratification weights” to designate weights that take into
account differential nonresponse by factors that were not part of the initial design.

Another set of terminology [19] is popular when there are missing data or non-
response. You will hear the terms “missing completely at random,” designating
that nonresponse does not depend on any known or unknown factors, “missing
at random,” designating that nonresponse depends only on known and measured
factors, and “nonignorable missingness,” which means that nonresponse depends
on unknown or unmeasured factors. The weighting scheme described here assumes
that nonresponses are “missing at random.”

A complete investigation of all measured factors that may have affected the
response is obviously a time-consuming undertaking. Nonetheless, it is a good
idea to prepare for such an investigation by collecting as much data as possible on
all subjects, including nonresponders. For example, it may be possible to determine
the socioeconomic level of the neighborhood even of persons who do not fill out a
survey. When nonresponse is found to depend on any of the measured factors, it is
useful to perform a sensitivity analysis to ensure that major study conclusions are
not changed by reweighting the data by the response probabilities. When important
changes occur with weighting, this should be noted in the study report. If differences
in results do not change the main study conclusions, the initial unweighted analyses
may still be the main results presented.

The above approach is one of several ways to examine the possible biases
introduced by missing data and nonresponse. Unfortunately, none of these several
appropriate methods are common in the medical or even epidemiologic literature.
Instead, one often encounters a “Table 1” with significance testing of differences
between respondents and nonrespondents. As you know, the statistical signifi-
cance of the difference depends on its magnitude and on the absolute numbers
of respondents and nonrespondents. The importance of the difference for the actual
conclusions, on the other hand, depends on its magnitude and on the proportion
of nonresponders. In addition, we hardly care if the differences between nonre-
sponders and responders arose by chance or systematically (which is the only
aspect the p-value clarifies). What matters is whether our results would have
substantially changed, had we been able to obtain the relevant data on all the non-
responders. Philosophically, the goals when examining biases due to nonresponse
are similar those in examining potential confounders, and so are the problems.
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One never knows whether all confounders have been adjusted for, or whether all
factors influencing response probabilities have been determined and weighted on.
Nonetheless, the analysis should take into account everything that is known.

7.2.1 Example (of Reweighting as Well as Some SAS Manipulations)

The Newborn Lung Project consists of several study stages. One stage was the
determination of health at age 5 years, which included a functional assessment [20].
Reasonably, one may view all children who were originally admitted to the six
neonatal care units and who survived to age 5 as the underlying sample of interest.
An effort was made (with the help of the neonatal unit) to identify all deaths up to
age 5.

A great number of variables were collected during the neonatal period and
could form the basis for reweighting analyses. To keep things somewhat simple,
we illustrate the methods using a few variables which predicted participation at age
5. (Nonparticipants here consist mostly of children who could not be located, and
a few refusals to participate once located.) The particular variables considered as
predictors of participation were available on all neonates.

Table 7.2 shows the usual type “Table 1” seen in papers, although many vari-
ables that did not differ between groups would normally be included. For example,
oxygen use at 24 hours of age was almost identical in the two groups.

Table 7.2 establishes that children who were larger at birth, who were born at
another hospital (and then transported to the NICU), and who were singleton births
were less likely to participate. It also shows that these differences were probably
not due to chance. The only unexpected finding is that of a birth weight difference.
An excess of multiple births among participants reflects the fact that once a parent
of multiples is enrolled, one gains several children into the study.

It seems more reasonable to present a table that shows how much the group
composition is altered from the original intended by not being able to include the
nonresponders in analyses. Table 7.3 is recommended instead of Table 7.2.

Table 7.3 can then be supplemented by examining the sensitivity of the main
study analyses to differences in the distributions of these characteristics among the
participants from the distribution among all admissions. This is based on reweight-
ing the participant sample to reflect the distribution in the NICU admission group.
(Again, note the similarity in spirit to direct standardization.)

Table 7.2 Comparison of Birth Characteristics Between Participants and
Nonparticipants in Functional Assessment at Age 5 Years

Birth characteristic Nonparticipants Participants p-Value

n 382 422
Birth weight (g), mean (sd) 1148 (256) 1105 (254) 0.019
Born at another hospital (%) 17.8 8.8 0.001
Multiple birth (%) 16.0 29.9 0.001
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Table 7.3 Comparison of Birth Characteristics Between
All Survivors and Participants in Functional Assessment at
Age 5 Years

Birth Characteristic All Survivors Participants

n 804 422
Birth weight (g), mean (sd) 1125 (256) 1105 (254)
Born at another hospital 13.1 8.8
Multiple birth (%) 23.3 29.9

Some of the study aims were related to the prediction of social function at
age 5 from socioeconomic and neonatal clinical characteristics and study year.
Social function was a continuous measurement with standardized normative mean
of 50 and standard deviation of 10 among “normal” children studied by the devel-
oper of the instrument [21]. OUTPUT PACKET VI shows the results of analyses
using PROC MIXED. The empirical option was included as a couple of vari-
ables has slightly higher standard errors with this option. A summary is provided
in Table 7.4. Not shown in the table are the regression coefficients for the indi-
cator variable for NURSE. These were included to adjust for any differences in
interview technique that may affect the social function score. Prior to running
the regression analysis, an overall socioeconomic score was constructed based on
whether the child was living with both parents, parents’ occupation, mother’s
education, and neighborhood income level from census data. Other predictors
indicate whether the child had severe respiratory disease at age 30 days and the
grade of intraventricular hemorrhage. The effect of birth year was of special inter-
est, because the introduction of surfactant treatment for neonatal lung immaturity
during the period study births accrued increased the survival of very premature
babies [22]. In the analyses INDYR and SURFYR indicate the years when sur-
factant was available as an investigational new drug, and generally available,
respectively.

We see that, in general, higher socioeconomic level and less neonatal illness is
associated with higher social function. Additionally, there appears to have been a

Table 7.4 Unweighted and Weighted Regression Coefficients (empirical se) for
Predicting Social Function at Age 5 Years for VLBW Children

Unweighted Weighted for participation

Male −2.15 (1.09) −2.04 (1.10)
Socioeconomic level 2.75 (0.591) 2.90 (0.584)
Neonatal respiratory disease −4.41 (1.30) −4.66 (1.35)
Grade of IVH −3.23 (0.606) −3.35 (0.633)
IND period birth −0.860 (1.49) −1.28 (1.56)
Surfactant period birth −4.58 (1.51) −4.14 (1.56)
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decrease in social function associated with the third study year. Girls had slightly
higher social function than did boys.

The following statements were now run, where the variable PARTIND=1 if the
child was a respondent for 5-year assessment and PARTIND=0 if the child was a
nonresponder. Output is in PACKET VI.

PROC LOGIST DESCENDING;
MODEL PARTIND=BW BPLACE MULT SURFYR BPLACE*SURFYR;
OUTPUT OUT=PROBS P=PPART;
DATA B; SET PROBS;
FILE ‘PROBS. DAT’;
PUT ID PPART;
PROC UNIVARIATE PLOT; VAR PPART;

Note that PROC LOGIST in version 8 of SAS (in contrast to earlier versions)
can handle both interaction effects and categorical variables directly. A new data
set called PROBS is created by the OUTPUT that, for each participant, contains the
estimated probability of being a participant based on the characteristics included
in the model. The probabilities are written to a new file, so that they will be
conveniently available for all kinds of further analyses. The UNIVARIATE proce-
dure result illustrates the wide range in predicted participation probabilities from
21% to 83%.

Now, the original data used for analysis were in DATA PART;. This data set
was merged with the probabilities in the set PROBS, and a weighted regression
analysis was run by PROC MIXED:

DATA P;
INFILE ‘PROBS. DAT’;
INPUT ID$ PPART;
PROC SORT; BY ID;
DATA NEW; MERGE PART P; BY ID;
WGT=1/PPART;
PROC MIXED EMPIRICAL NOCLPRINT;
CLASS SEX NURSE;
MODEL SOC=NURSE SEX SOCIOEC RESPDIS GRADEIVH INDYR SURFYR/S;
WEIGHT WGT;
REPEATED/SUBJECT=ID;

Table 7.4 provides a comparison of the key regression coefficients without and
with weighting.

We see that the result of reweighting is an increase in the coefficients of almost
all variable. The exceptions are that SEX which was borderline significant loses sig-
nificance further, and that the effect of the third time period is somewhat reduced.
These results confirm the importance of the variables, but could lead one to empha-
size the time period slightly less. It appears that the changes with weighting came
about partly because there were relatively few children born at other hospitals
among the participants in the first study year (5.2%) and relatively many among
the nonparticipants (17.5%). The imbalance was less in the last study year. By and
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large, children born at other hospitals did worse. Then, reweighting to reflect more
outborn children in the first year tended to imply that this function may have been
relatively worse than originally thought. However, the relationships are complex,
and the main thing to look at here is the overall effect of reweighting. Although it
led to some changes in results, there was no major shift in the main conclusions.
This is despite a low participation probability and despite differences in some birth
characteristics between participants and nonparticipants.

7.2.2 A Few Comments on Weighting by a Variable Versus Including
it in the Regression Model

This section attempts to clarify an issue that seems to arise quite often in stud-
ies employing stratified sampling as well as in studies investigating complex
causal chains. It can be skipped by individuals who have not yet encountered
these problems.

All analyses involve inherent weighting whether explicitly acknowledged or not,
as parameter estimates are based on the mixture of characteristics that end up in the
sample. The list below differentiates between a few options that may be considered
for explicit and implicit weighting in the analysis. To make the comparison more
concrete, assume that an analysis is to be undertaken to regress self-reported health
(“health”) on level of exercise. Also assume that another determinant of “health”
is body mass index and that body mass index is lowered by increasing exercise.
(For the sake of the argument, we ignore that BMI may influence the likelihood
that someone exercises.) In addition we assume that people with lower body mass
index are more likely to participate in the study.

Throughout considering the various analytic options, it is necessary to keep in
mind exactly what question is to be answered. Most likely it would be either (a)
What is the total effect of exercise on “health,” regardless of whether the effect
occurs directly or through lowering body mass index? or (b) What is the effect of
exercise on “health” additional to its effect on body mass index, or in other words:
If two people with the same body mass index were compared, how much better
would the person feel who exercises more?

The scattergram in Figure 7.1, based on fictitious data, shows the relationship
between “health” and exercise in a simple random sample of the population. Empty
circles indicate the observations that are not available because of lower response by
individuals with high body mass indices. The regression line for health on exercise
level is estimated as µhealth = −1.68 + 2.10 × exercise for the complete data set.
With data missing as indicated, the line becomes µhealth = 0.273+1.857×exercise,
so the effect in exercise on health is underestimated.

The following approaches are possible in the analysis:

1. Ignore body weight and just regress “health” on exercise level. This would
be fine for answering (a) if there were no selection bias—that is, if response
was complete or nonresponse occurred “completely at random.” As it is,
the sample underrepresents people with higher body mass index. Because
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Fig. 7.1 Missing data in describing the relationship between health and exercise.

body mass index is related to exercise and “health,” observations on the
lower left-hand side of Figure 7.1 are disproportionately missing. The result
is underestimation of the total effect of exercise on “health.” The inherent
weighting in this analysis is to the mix of body mass index in the sample.
People at different exercise levels have different mixes of body mass, and
the comparison reflects the effect of exercise minus the attenuation imposed
by differential exclusion of high body mass among people who exercise less.
In effect, people with low exercise levels appear to feel more healthy than
they would if there were no nonresponse.

2. Adjust for body mass index in the regression. This is fine for answering ques-
tion (b). The inherent weighting compares people at the different exercise
levels, where the mix of body mass indices is the same at all the levels.
The mix to which each exercise level “is standardized” is chosen for max-
imum statistical efficiency. However, the choice of mix is only important
when there are (statistically significant or nonsignificant) interaction effects
between body mass index and exercise in their effect on “health.” Hence,
when there is truly no interaction, reweighting to correct selection bias is not
necessary when the variable; underlying selection into the sample is included
in the model.

3. Weight the analysis under 1 by inverse sampling probabilities based on body
mass index. This will result in comparison of exercise levels, each of which
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has the body mass mix, respectively, that they have in the population. The
results are relevant to goal (a) above.

4. Weight the analysis under 2 by inverse participation probabilities based on
body mass index. This analysis addresses (b) above. It will not differ from
2 except in statistical efficiency (which will be less) and in the resulting
influence of potential interaction effects. Instead of representing a mixture
of body mass specific exercise effects representing the most efficient mix of
the population, it will represent the mix in the underlying population. Thus
“external validity” will be greater than for the analysis in 2, at the price of
reduced statistical efficiency

The above discussion avoids the even more complex issue that people at lower
body mass index may choose to exercise more. Hence body mass index may
simultaneously be both a confounder and an intermediate variable. None of the
above techniques suffice to deal with this situation. Solutions can be based on
the introduction of a new variable that predicts exercise independently of body
mass and can be used either as a so-called “instrument” [23] or to produce weights
for a weighted analysis similar to above [24]. These techniques are a mainstay
of econometric analyses, and they are gaining popularity in AIDS research. It is
often difficult to identify appropriate predictive factors in the general epidemi-
ologic setting, but future work in the area will probably help prepare for such
analyses.

OUTPUT PACKET VI: SURVEY AND MISSING DATA WEIGHTS

VI.1. Survey Weighted Analyses—Wisconsin Sleep Cohort

Unequal Probability Weighting—Wisconsin Sleep Cohort
Unweighted Regression with Empirical Option

The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within
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Dimensions

Covariance parameters 1
Columns in X 6
Columns in Z 0
Subjects 1370
Maximum observations per subject 1
Observations used 1364
Observations not used 6
Total observations 1370

Iteration Historya

Iteration Evaluations −2 Residual Log Likelihood Criterion

0 1 10945.85019390
1 1 10945.85019389 0.00000000

aConvergence criteria met.

Covariance Parameter Estimates

Covariance Parameter SubjectEstimate

Residual id 177.58

Fit Statistics

−2 Residual log likelihood 10945.9
AIC (smaller is better) 10947.9
AICC (smaller is better) 10947.9
BIC (smaller is better) 10953.1

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000

Solution for Fixed Effects

Effect Sex Estimate Standard Error DF t Value Pr > |t |
Intercept 127.45 0.5494 1359 231.96 <0.0001
sex F −6.5731 0.7263 1359 −9.05 <0.0001
sex M 0 . . . .
agec 0.3691 0.05103 1359 7.23 <0.0001
bmic 0.5945 0.07196 1359 8.26 <0.0001
agec*bmic −0.01892 0.008882 1359 −2.13 0.0334
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Type 3 Tests of Fixed Effects

Effect Num DFDen DFF Value Pr > F

sex 1 1359 81.90 <0.0001
agec 1 1359 52.33 <0.0001
bmic 1 1359 68.26 <0.0001
agec*bmic 1 1359 4.54 0.0334

Weighted Regression with Empirical Option
The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable sbp
Weight variable wgt
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 1
Columns in X 6
Columns in Z 0
Subjects 1370
Maximum observations per subject 1
Observations used 1364
Observations not used 6
Total observations 1370

Iteration Historya

Iteration Evaluations−2 Residual Log Likelihood Criterion

0 1 11130.31257378
1 1 11130.31257378 0.00000000

aConvergence criteria met.

Covariance Parameter Estimates

Covariance Parameter SubjectEstimate

Residual Id 361.91
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Fit Statistics

−2 Residual log likelihood 11130.3
AIC (smaller is better) 11132.3
AICC (smaller is better) 11132.3
BIC (smaller is better) 11137.5

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000

Solution for Fixed Effects

Effect Sex Estimate Standard Error DF t Value Pr > |t |
Intercept 126.44 0.6292 1359 200.94 <0.0001
sex F −6.2500 0.7989 1359 −7.82 <0.0001
sex M 0 . . . .
agec 0.3441 0.05856 1359 5.88 <0.0001
bmic 0.5668 0.08130 1359 6.97 <0.0001
agec*bmic −0.01823 0.01031 1359 −1.77 0.0772

Type 3 Tests of Fixed Effects

Effect Num DFDen DFF Value Pr > F

sex 1 1359 61.21 <0.0001
agec 1 1359 34.52 <0.0001
bmic 1 1359 48.60 <0.0001
agec*bmic 1 1359 3.13 0.0772

VI.2. Weighted Analyses to Adjust for Loss to Follow-up—Newborn Lung
Project

Weighting to Adjust for Missing Data in NLP Follow-up
Estimating the Probabilities of Participation

The LOGISTIC Procedure

Model Information

Data set WORK.SELECT
Response variable partind
Number of response levels 2
Number of observations 804
Model binary logit
Optimization technique Fisher’s scoring
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Response Profilea

Ordered partind Total
Value Frequency

1 1 422
2 0 382

aProbability modeled is partind=1.

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 1.0847 0.3432 9.9899 0.0016
bw 1 −0.00087 0.000289 9.1383 0.0025
bplace 1 −1.1335 0.2928 14.9886 0.0001
mult 1 0.8224 0.1796 20.9683 <0.0001
surfyr 1 −0.2502 0.1638 2.3349 0.1265
bplace*surfyr 1 0.9398 0.4556 4.2545 0.0391

Description of the Probabilities of Participation
The UNIVARIATE Procedure

Variable: ppart (Estimated Probability)

Moments

N 804 Sum of weights 804
Mean 0.52487562 Sum of observations 422.000002
Standard deviation 0.1200934 Variance 0.01442243

Basic Statistical Measures

Location Variability

Mean 0.524876 Standard deviation 0.12009
Median 0.516567 Variance 0.01442
Mode 0.458788 Range 0.62097

Interquartile range 0.14884

Note: The mode displayed is the smallest of 2 modes with
a count of 7.



114 APPLICATION OF WEIGHTING WITH PROBABILITY SAMPLING AND NONRESPONSE

The UNIVARIATE Procedure
Variable: ppart (Estimated Probability)

Extreme Observations

Lowest Highest
Value Observations Value Observations

0.210726 13 0.776052 56
0.212915 493 0.778473 380
0.214384 721 0.791742 249
0.215121 7 0.796033 41
0.215859 729 0.831694 132

 Histogram                        #     Boxplot
0.825+*                                                1        0
    .******                                          21        |
    .*************                                   51        |
   .****************                                63        |

    .*******************                             73     +-----+
    .*************************                       98     |     |

0.525+**************************************         150     *--+--*
    .********************************************   176     +-----+
    .*****************                               66        |
    .************                                    48        |
    .****                                            16        |
    .******                                          21        |

0.225+*****                                           20        0
----+----+----+----+----+----+----+----+----

     *May represent up to 4 counts

The Mixed Procedure

Model Information

Data set WORK.FINAL
Dependent variable soc
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Empirical
Degrees of freedom method Between–within
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Dimensions

Covariance parameters 1
Columns in X 19
Columns in Z 0
Subjects 422
Maximum observations per subject 1
Observations used 422
Observations not used 382
Total observations 804

Iteration Historya

−2 Residual Log
Iteration Evaluations Likelihood Criterion

0 1 3079.26827535
1 1 3079.26827535 0.00000000

aConvergence criteria met.

Covariance Parameter Estimates

Covariance
Parameter Subject Estimate

Residual id 116.14

Fit Statistics

−2 Residual log likelihood 3079.3
AIC (smaller is better) 3081.3
AICC (smaller is better) 3081.3
BIC (smaller is better) 3085.3

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000
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Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t |
Intercept 55.7751 7.3771 404 7.56 <0.0001
nurse 1 −14.7507 7.4541 404 −1.98 0.0484
nurse 2 −2.5405 7.5769 404 −0.34 0.7340
nurse 3 −9.1882 7.3403 404 −1.25 0.2120
nurse 4 −8.6320 7.6529 404 −1.13 0.2591
nurse 5 −6.9527 7.2882 404 −0.95 0.3427
nurse 6 −0.1903 7.8059 404 −0.02 0.9841
nurse 7 −4.3978 7.3942 404 −0.59 0.5555
nurse 8 −11.6370 8.4062 404 −1.38 0.1684
nurse 9 −18.5109 7.4301 404 −2.49 0.0132
nurse 12 −2.9982 7.7448 404 −0.39 0.6967
nurse 13 −22.3962 8.2839 404 −2.70 0.0072
nurse 14 0 . . . .
sex −2.1474 1.0899 404 −1.97 0.0495
socioec 2.7465 0.5914 404 4.64 <0.0001
respdis −4.4097 1.3025 404 −3.39 0.0008
gradeivh −3.2317 0.6055 404 −5.34 <0.0001
indyr −0.8604 1.4857 404 −0.58 0.5602
surfyr −4.5842 1.5140 404 −3.03 0.0026

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

nurse 11 404 7.13 <0.0001
sex 1 404 3.88 0.0495
socioec 1 404 21.57 <0.0001
respdis 1 404 11.46 0.0008
gradeivh 1 404 28.48 <0.0001
indyr 1 404 0.34 0.5602
surfyr 1 404 9.17 0.0026
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Weighted (for Missingness) Regression with Empirical Option
The Mixed Procedure

Model Information

Data set WORK.FINAL
Dependent variable soc
Weight variable wgt
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 1
Columns in X 19
Columns in Z 0
Subjects 422
Maximum Observations per subject 1
Observations used 422
Observations not used 382
Total observations 804

Iteration Historya

−2 Residual Log
Iteration Evaluations Likelihood Criterion

0 1 3087.25704177
1 1 3087.25704177 0.00000000

aConvergence criteria met.

Covariance Parameter Estimates

Covariance
Parameter Subject Estimate

Residual id 218.95

Fit Statistics

−2 Residual log likelihood 3087.3
AIC (smaller is better) 3089.3
AICC (smaller is better) 3089.3
BIC (smaller is better) 3093.3
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Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t |
Intercept 57.0301 5.9336 404 9.61 <0.0001
nurse 1 −16.0385 6.1600 404 −2.60 0.0097
nurse 2 −3.7356 6.1345 404 −0.61 0.5422
nurse 3 −11.3305 5.8846 404 −1.93 0.0543
nurse 4 −9.7720 6.3061 404 −1.55 0.1219
nurse 5 −8.2304 5.8216 404 −1.41 0.1593
nurse 6 −0.7458 6.4768 404 −0.12 0.9045
nurse 7 −5.2964 5.9019 404 −0.90 0.3687
nurse 8 −12.2269 6.9042 404 −1.77 0.0775
nurse 9 −20.1466 6.0061 404 −3.35 0.0009
nurse 12 −5.1332 6.3858 404 −0.80 0.4242
nurse 13 −24.8656 7.1301 404 −3.49 0.0005
nurse 14 0 . . . .
sex −2.0350 1.0968 404 −1.86 0.0636
socioec 2.9017 0.5843 404 4.97 <0.0001
respdis −4.6566 1.3526 404 −3.44 0.0006
gradeivh −3.3465 0.6338 404 −5.28 <0.0001
indyr −1.2820 1.5586 404 −0.82 0.4101
surfyr −4.1405 1.5570 404 −2.66 0.0081

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

nurse 11 404 7.94 <0.0001
sex 1 404 3.44 0.0643
socioec 1 404 24.66 <0.0001
respdis 1 404 11.85 0.0006
gradeivh 1 404 27.88 <0.0001
indyr 1 404 0.68 0.4101
surfyr 1 404 7.07 0.0081
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Principles in Dealing
with Correlated Data

Correlated data arise in many situations in health research. On the organismal
level, there may be measurements on several tumors, both hands, all teeth, and so
on. It is usually expected in such cases that the measurements on a given indi-
vidual are more similar than those on different individuals. For example, finding
decay on one tooth in a person may make decay on another tooth more likely.
Other situations often encountered in population studies of health are data aris-
ing from clusters of individuals (for example, families) and data collected on a
set of individuals longitudinally in time. The first type of correlated data often
arises in survey sampling, when sampling units may contain several individuals.
When a household has been selected and enrolled based on, for example, ran-
dom dialing, the effort involved to obtain health data on all its members may
be relatively minimal. However, members of a family may be similar in health
habits, diet and health status and therefore not well represent the variation in the
population. The second type arises in cohort or panel studies. In health studies,
we may enroll all patients with a given diagnosis, at the beginning of the dis-
ease, and repeatedly remeasure them to document treatment effect or progression
of disease. Figure 1.1 (Chapter 1) showed that measurements of GHb taken lon-
gitudinally in the Wisconsin Diabetes Registry on the same individual tend to
be similar.

Yet another type of correlation between observations arises, even if there are no
clusters or repeated measurements on the same individuals, because observations
that are close in time may be more similar than those distant from each other in
time. Such situations are the concern of so-called time series analyses. Indicators
of economic trends and measurements of air quality in a community are examples
of data that are often subjected to time series analyses. We will touch on this topic
only inasmuch as it intersects with situations of cluster sampled and longitudinal
data, which will be the main focus here. Time series analysis has a long history
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and rich terminology associated with how it has been adapted to deal with various
practical and theoretical problems [25].

The difference in the types of analyses emphasized here and time series analysis
enters in how the covariances in the variance matrix Var(Y |X) are structured. The
situations have in common that the measurements are not independent, as assumed
in ordinary regression analysis. However, our interest here is in the situation when
observations on different individuals or sampling units can still be assumed inde-
pendent. The independence assumption is violated only for observations on the
same individuals or units. In other words, we will deal with situations where the
observations are correlated within individual or unit.

We first consider the consequences of analyzing correlated data with ordinary
unweighted least-squares, and then proceed to discuss different correlation struc-
tures and how they lead to a weighted analysis. In what follows, we will refer to the
clusters or units within which observations are correlated as “individuals.” This is
consistent with our correlated data examples being from longitudinal studies where
correlation arises between repeated observations on the same person. The methods
discussed apply equally to studies with clusters, such as families.

8.1 ANALYSIS OF CORRELATED DATA BY ORDINARY
UNWEIGHTED LEAST-SQUARES ESTIMATION

Exactly as in the case of unequal variance, it can be shown easily that ordinary
least-squares estimators are unbiased even when the observations are correlated.

β̂ = (X′X)−1X′Y

The part containing the X is a constant, and the mean of Y is Xβ. Hence, it
follows that

E(β̂) = E[(X′X)−1X′Y ] = [(X′X)−1X′Y ]

= (X′X)−1X′E(Y |X) = (X′X)−1X′Xβ = β

However, the usual estimators of the standard errors of the regression coefficients
do not work. Just as before, we obtain

Var(β̂) = Var[(X′X)−1X′Y ] = (X′X)−1X′Var(Y |X)X(X′X)−1 (8.1)

but now the residuals are not independent around the regression line, Var(Y |X) is
not a diagonal matrix, and off-diagonal elements need to be estimated in addition
to the elements. When data fall into clusters that are independent from each other,
it is necessary only to compute these quantities within clusters, while elements
corresponding to covariances of residuals in different clusters can be set to 0. We
will come back to the estimation of Var(Y |X) after introducing some new notation.

Before we proceed, it is necessary to introduce notation that allows us to distin-
guish which observations belong to the same cluster. To this end, we now reserve
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the previous subscript i for individuals and add a subscript j that differentiates
several observations on the same individual. Hence, observations on the first covari-
ate are x1i1 · · · x1ik

i
, and so on, where individual i has ki observations, and the

corresponding observations on the outcome are yi1 · · · yiki
. We can include all the

covariate values for individual i in a matrix Xi of dimension ki × m, so that

Xi =




1 x1i1 · · · xmi1

1 x1i2 · · · xmi2

· · · · · · · · · · · ·
1 x1iki

· · · xmiki




Similarly,

Yi =




yi1
yi2
...

yiki




The overall matrices X and Y can then be written

X =




X1
...

Xn


 and Y =




Y1
...

Yn




where the n indicates the number of individuals.
To further understand what the special structure with independence between

individuals does to the formulas used to produce regression estimators (e.g., in
PROC MIXED), we look at a matrix multiplication example.

8.1.1 Example

A matrix that has “submatrices” along the main diagonal and 0’s elsewhere is
called a “block diagonal” matrix. Such matrices arise naturally with clustered and
longitudinal data and are computationally easier to deal with than general matrices
that can have nonzero elements anywhere. To see why, we consider an example
of matrix multiplication of block diagonal matrices. Note that the expression being
evaluated is one that in general form can be written X′WX:

(
1 2 10 20

)



1 2 0 0
2 3 0 0
0 0 10 100
0 0 100 20







1
2
10
20




= (
1 + 4 2 + 6 100 + 2000 1000 + 400

)



1
2

10
20




= (1 + 4) × 1 + (2 + 6) × 2 + (100 + 2000) × 10 + (1000 + 400) × 20
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We notice that elements in the upper block only multiply elements from the first
two columns of the first matrix and the first two rows of the third matrix, while
the lower block multiplies the last two columns and last two rows. In fact, the end
result of the multiplication can be written

(
1 2

) (
1 2
2 3

)(
1
2

)
+ (

10 20
) (

10 100
100 20

)(
10
20

)

In general, if X =




X1
...

Xn


 with Xi being of dimension ki × m, it follows

that X′ = (X′
1, · · ·X′

n) and if W =

W1 0 0

0 · · · 0
0 0 Wn


 where Wi is ki × ki , then

X′WX = ∑n
i=1 X′

iWiXi . This greatly reduces the dimension of matrices that need
to be inverted to obtain regression estimators and their standard errors.

8.1.2 Deriving the Variance Estimator

Now, consider again the form of an estimator of Var(Y |X). Since we have not yet
introduced any assumptions on the structure of this matrix, we can again take the
empirical approach. Variances on the diagonal can be obtained from the residuals
as before. With the double subscript notation:

V̂ar(εij ) = ε̂2
ij = (yij − β̂0 − β̂1x1ij − β̂2x2ij · · · )2

Off-diagonal covariance elements can be obtained as

ˆCov(εij , εij ′) = ε̂ij ε̂ij ′

= (yij − β̂0 − β̂1x1ij − β̂2x2ij · · · )(yij ′ − β̂0 − β̂1x1ij ′ − β̂2x2ij ′ · · · )

Note that the cross products are formed only for the same i. Because of the inde-
pendence assumed between individuals, the entire matrix Var(Y |X) will have form

E =




E1 0 0

0
. . . 0

0 0 En




where we use boldface to indicate that the quantities inside the matrix are matrices
in themselves. The Ei correspond to clusters or subjects, and the elements inside
Ei are estimates of the quantities Var(εij ) on the diagonal and Cov(ε

ij , εij ′) off
the diagonal.
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Given the above expressions, we can write

Ei = ε̂i ε̂
′
i

where the ε̂i are matrices of form

ε̂i =




ε̂i1
...

ε̂ik


 =




yi1 − β̂0 − β̂1x1i1 − β̂2x2i1 · · ·
...

yik − β̂0 − β̂1x1ik − β̂2x2ik · · ·




Note that as opposed to the multiplication X′X that “collapses” the two large
matrices X′ and X into a matrix of dimension m × m, the multiplication εiε

′
i

expands the matrices with one column and one row, respectively into a ki × ki

matrix.
Returning to the issue of “sandwiching” a block diagonal matrix, we can now

write middle part of formula (8.1):

X′Var(Y |X)X = (
X′

1 · · · X′
n

)



E1 0 0

0
. . . 0

0 0 En







X1
...

Xn




Here the Xi are the pieces of X that belong to different subjects. Just as in
the example, this multiplication collapses into a sum of “bite-size sandwiches”
involving the Xi and the blocks Ei

(
X′

1 · · · X′
n

)



E1 0 0

0
. . . 0

0 0 En







X1
...

Xn


 =

n∑
i=1

X′
iEiXi =

n∑
i=1

X′
i ε̂i ε̂

′
iXi

Thus formula (8.1) becomes

Var(β̂) = (X′X)−1
n∑

i=1

X′
i ε̂i ε̂

′
iXi(X

′X)−1

=
(

n∑
i=1

X′
iXi

)−1 n∑
i=1

X′
i ε̂i ε̂

′
iXi

(
n∑

i=1

X′
iXi

)−1

Apart from weights, which we will introduce soon, the formula now resembles
the one given in the EMPIRICAL option description in the SAS manual for PROC
MIXED. In the situations described in previous chapters, when each “cluster” had
only one observation, εiε

′
i was the special case of a 1 × 1 matrix. However, the

general notation was slightly different in that case.
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Table 8.1 Regression Results for All Visits β̂ (se) and Empirical se

All Visits All Visits (Empirical se)

Intercept 126 (0.401) (0.461)
Female −6.02 (0.577) (0.668)
Age (centered at 50) 0.355 (0.0388) (0.0435)
BMI (centered at 27) 0.677 (0.0457) (0.0540)
Age *BMI (centered) −0.0154 (0.00559) (0.00666)

8.1.3 Example

We now analyze the systolic blood pressure data across all visits. OUTPUT
PACKET VII includes analyses by PROC MIXED of all visits with the EMPIRI-
CAL option using the commands below. Note that the commands are identical for
the first visit and all visits analyses, but the data set is different.

PROC MIXED; CLASS SEX;
MODEL SBP=SEX AGEC BMIC AGEC*BMIC/S;
PROC MIXED NOCLPRINT EMPIRICAL; CLASS ID SEX;
MODEL SBP=SEX AGEC BMIC AGEC*BMIC/S;
REPEATED/SUBJECT=ID;

As before, SUBJECT=ID tells PROC MIXED which observations are indepen-
dent, so that it knows how to form the “bite-size sandwiches.” Comparing the
results to Table 6.2 allows us to see how much precision was gained by using all
visits, and also how much difference the robust standard error approach made for
correlated data. The main results are in summarized in Table 8.1.

We see that while there was a decrease in standard errors when all visits were
included, each observation did not add quite as much new information as a new
person would have, because it was correlated to other observations on the same
individual. The EMPIRICAL option makes quite a difference for both analyses,
but the increase in standard error is more consistent across the coefficients for the
correlated situation. This is usually the case. We also notice that the regression
coefficients are somewhat changed in the longitudinal analysis. We will examine
this further in the next chapter.

8.2 SPECIFYING CORRELATION AND VARIANCE MATRICES

Although regression coefficients obtained by ordinary regression are unbiased even
when the independence assumption is violated, the estimators are not efficient.
In addition, there may be inherent interest in estimating the correlations between
observations. The basic solution to how to incorporate correlation into regression
analysis is similar to that employed for data where the equal variance assumption
does not hold. Again (in theory) a linear transformation is applied to both sides of
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the regression equation. However, in this case the transformation is more complex,
because the new variables must be made to have uncorrelated residuals in addition
to equal variance. We address the details of this transformation in the next section.
To find the transformation and to perform the weighted analysis that follows, some
type of estimable structure needs to be postulated for how the observations are
correlated. In this section we demonstrate some options for how this can be done.

First of all it should be noted that the procedure employed by the EMPIRICAL
option to supply the Var(Y |X) piece in the formula for Var(β̂) cannot be directly
used in estimating the parameters of the distribution of Y given X. It is only a “post
hoc” fix-up of the standard errors, considering that the variance structure may have
been misspecified. The reason the EMPIRICAL approach cannot be used directly in
the estimation is that EMPIRICAL allows each subject to have its own parameters
inside the Var(Yi |Xi) matrix. For estimators to have desirable properties such as
consistency (i.e., the property of coming closer and closer to the parameter as the
sample size increases), the number of parameters to be estimated cannot increase
together with the sample size. If it did, nothing would be gained even if the sample
size was increased indefinitely, because there would be more and more parameters
to estimate. For clustered and longitudinal data, the “sample size” usually refers
to the number of subjects n. The number of parameters is allowed to increase
with the number of observations per subject k, as long as n/k increases with n.
Hence, we must choose ways to parameterize the variance matrix that allow pooling
information across subjects. Most commonly, the variance matrix is assumed to be
the same for all subjects (except for its dimension ki × ki, when k varies).

PROC MIXED has a vast array of options for selecting the variance matrix for
the observations within a subject. The notation in the manual and outputs for this
variance matrix is Ri . So far, we have fit

Ri = σ 2
y|xIki×ki

where Iki×ki
is the k1 × ki identity matrix. This is referred to as the “independence

option” and is the default selected by PROC MIXED when no other variance
matrix is indicated. Somewhat confusingly, SAS refers to this default option as
“variance components.” The reason is the option of random effects models that we
will address in Chapter 10. In that context an independent error term is one of the
several components of variance. Other options can be specified in the REPEATED
statement by stating TYPE=xx, where xx stands for one of the variance matrix
structures listed in the manual. For example, the statement

REPEATED/SUBJECT=ID TYPE=CS;

fits the so-called “compound symmetry” variance matrix

Ri = σ 2
y|x




1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1



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We note that this particular variance matrix assumes that the variance is the
same for all observations and that all observations within a subject are equally
correlated. This may not be realistic in longitudinal data, where one may expect
that observations that are further apart in time have lower correlation with each
other. A variance matrix that incorporates this type of pattern is TYPE=AR(1),
which is a so-called “autoregressive” structure borrowed from time series analysis.
In this case

Ri = σ 2
y|x




1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1




so that the exponent of each element equals the absolute difference between the
row and column indicators.

Another popular choice is TYPE=UN, the “unstructured” covariance matrix.
Here

Ri =




σ 2
1 σ12 σ13 σ14

σ12 σ 2
2 σ23 σ24

σ13 σ23 σ 2
3 σ34

σ14 σ24 σ32 σ 2
4




The only restriction on this variance matrix is that it is assumed to be the
same for all subjects. The subscript i is not needed on R if all subjects have the
same number of observations. Of all variance matrices the default “independence”
variance, the compound symmetry, and the unstructured are the most popular (in
decreasing order). In a future chapter we will discuss yet another more complex,
but popular, choice that is constructed from random effects.

One may wonder why we are using the TYPE statement to specify the variance
matrix for correlated data, but used the WEIGHT statement for unequal variance
data. This is because PROC MIXED does not have the ability to let the variance
matrix differ between individuals (SUBJECT’s). It can only deal with differences
in variance between time points within individuals. In fact, the variance is assumed
to be the same across all individuals (with some flexibility to specify groups with
different matrices). When dealing with unequal variance as in Chapter 6, the dif-
ferences were between individuals, and the only way to deal with this in PROC
MIXED is through the WEIGHT statement.

8.3 THE LEAST-SQUARES EQUATION INCORPORATING
CORRELATION

When we dealt with the problem of unequal variance, the solution to the problem of
fitting least-squares equations was found in transforming the regression equation
so that the assumption of equal variance was made true. Then, in the end, it
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turned out that this simply meant that analyses were weighted by the inverse of
the variance matrix. The same approach is taken to come up with least-squares
equations for correlated data. In this case, a linear combination is taken of each
cluster of correlated observations, in such a way that the resulting new variables
are uncorrelated. We, in fact, did this in Chapter 4. There, we saw that for pairwise
correlated observations that have equal variance, their mean was uncorrelated with
their difference.

A rather technical approach is employed to find the linear transformation that
works to produce new independent residuals. It is based on a theorem from linear
algebra [26]:

Theorem 1 (Spectral Theorem) For every symmetric matrix V there exists a
matrix T such that T ′V T = D is a diagonal matrix and T ′T = T T ′ = I .

When V is the variance matrix of Y, it is symmetric. The theorem then tells
us that in theory we can always find a transformation T ′Y with a variance matrix
T ′Var(Y )T = T ′V T that has off-diagonal elements 0. Then T ′ is the kind of
transformation we want to apply to Y to be able to fit the least-squares equations.
Note that the second part of the theorem implies that the matrix T has T ′ as its
inverse.

8.3.1 Another Application of the Spectral Theorem

While we use the spectral theorem here to motivate a weighted analysis of corre-
lated data, it has many other applications in statistics. We briefly address one of
them as well as some additional terminology associated with the theorem.

The theorem above is called the “spectral theorem” because the set of elements
on the diagonal of D is known as the “spectrum” of V . The individual elements
on this diagonal are known as “eigenvalues” of V . Because Var(T ′Y) = T ′V T,

they are the variances of the linear combinations resulting from T ′Y . The linear
combinations themselves are known as the “principal components” of V . In prac-
tice, principal components are thought of as a way to combine variables. In that
context, the principal components with the largest eigenvalues are chosen as a way
to reduce the number of variables (“reduce dimensionality”) [27]. Choosing the
linear combinations with the largest eigenvalues captures the most variability in
the data, and capturing variability is good in constructing risk factor scores X, or
for differentiating between people on a psychological test.

Starting from the estimated variance matrix of several variables from a data set,
the principal components can be obtained by SAS by

PROC PRINCOMP; VAR y1 . . . yk;

The result is a set of linear combinations of the variables, which are uncorrelated
with each other. Investigators usually choose the two or three linear combinations
with the largest variances (i.e., corresponding to the largest “eigenvalues”) to work
with. If the number of original variables k is large, this can simplify model fitting
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and presentation of results a great deal. However, it makes sense only if the linear
combinations appear to be meaningful. Very often the “first” principal component
(the one with the largest variance) turns out to be close to the average of all
the variables. The variable SOCIOEC in the functional assessment example in
Chapter 7 was formed this way from a set of socioeconomic indicators. They
were scaled to have mean 0 and variance 1, as is commonly done with principal
components. Principal components are not explicitly involved linear regression
analysis of correlated data, but both rely on the spectral theorem.

8.4 APPLYING THE SPECTRAL THEOREM TO THE REGRESSION
ANALYSIS OF CORRELATED DATA

Given that we have found the matrix T that serves our purpose of “diagonalizing”
V, we can apply matrix algebra and the fact that T ′T = I to see that

V = T DT ′

and

V −1 = (T DT ′)−1 = T D−1T ′

Then the transformation P −1Y with

P −1 = D− 1
2 T ′

will result in least-squares equations

β̂ = [(P −1X)′P −1X]−1[(P −1X)′P −1Y ]

= [X′(P −1)′P −1X]−1[X′(P −1)′P −1Y ]

= [X′T D− 1
2 D− 1

2 T ′X]−1[X′T D− 1
2 D− 1

2 T ′Y ]

= [X′V −1X]−1[X′V −1Y ]

just as before. The difference is that V and its inverse now have nonzero off-
diagonal elements arising from the correlation between observations, while when
only unequal variance was the problem P −1 = D− 1

2 could be used for the trans-
formation, because only diagonal elements needed to be transformed.

In the situations dealt with by PROC MIXED, we define the blocks on the
variance matrix as Ri . As discussed in the section above, they describe how the
residuals εij for individual i vary and covary. Because observations are assumed
to be independent between clusters or individuals, matrix V −1 in the equation for
β̂ has submatrices along the main diagonal and 0’s elsewhere. This means that,
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for example,

V =




σ 2 ρσ 2 0 0 · · ·
ρσ 2 σ 2 0 0 · · ·

0 0 σ 2 ρσ 2 · · ·
0 0 ρσ 2 σ 2 · · ·

· · · · · · · · · · · · · · ·




Because of the block diagonal structure, it can be shown that the expression for
the estimator can then be written as the weighted least-squares estimator

β̂ =
∑

(X′
iR

−1
i Xi)

−1
∑

X′
iR

−1
i Yi (8.2)

For the above V, Ri =
(

σ 2 ρσ 2

ρσ 2 σ 2

)
, a structure that assumes that the two

observations for each individual have the same variance σ 2, and the same correla-
tion ρ, for all individuals.

If the variance is correctly specified, it can be shown as was done for formula
(6.7) that

Var β̂ =
(

n∑
i=1

X′
iWiXi

)−1

(8.3)

The robust or “empirical” standard error can also be derived as before and is
given by

V̂ar(β̂) =
(

n∑
i=1

X′
iWiXi

)−1 n∑
i=1

X′
iWi ε̂i ε̂

′
iWiXi

(
n∑

i=1

X′
iWiXi

)−1

(8.4)

8.5 ANALYSIS OF CORRELATED DATA BY MAXIMUM LIKELIHOOD

Again, a similar analysis of correlated data can be presented from the maximum
likelihood perspective. In Chapter 2 we briefly discussed regression analysis in
a maximum likelihood context. We saw there that for simple regression analysis
with the usual assumptions of linearity, independence of errors, equal variance, and
normality, the likelihood is

L =
n∏

i=1

1

σ̂
√

2π
exp

(
− (yi − β̂0 − β̂1xi)

2

2σ̂ 2

)

=
(

1

σ̂
√

2π

)n

exp




−

n∑
i=1

(yi − β̂0 − β̂1xi)
2

2σ̂ 2


 (8.5)
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Because
∑n

i=1(yi − β̂0 − β̂1xi)
2 appears in a negative exponent, the likeli-

hood is maximized when the least-squares expression is minimized. Then ML and
the least-squares approach yield exactly the same estimators for the regression
coefficients. In this particular case, the estimation of σ̂ 2 can take place completely
separately. Recall that maximum likelihood and least-squares do not yield exactly
the same estimator of σ̂ 2, but restricted maximum likelihood coincides with the
least squares estimator.

We will now see how (8.2) changes when the assumptions of equal variance
and independence are abandoned. In the process we will point out how the results
related to the least-squares-based development above.

8.5.1 Non equal Variance

If we insert a different variance for each factor of L, we obtain

L =
n∏

i=1

1

σ̂i

√
2π

exp

(
− (yi − β̂0 − β̂1xi)

2

2σ̂ 2
i

)

=
[

n∏
i=1

1

σ̂i

√
2π

]
exp

(
−1

2

n∑
i=1

(yi − β̂0 − β̂1xi)
2

σ̂ 2
i

)
(8.6)

We see that a weighted least-squares expression comes into the exponent. Several
problems arise in minimizing this least-squares expression. The way (8.7) is stated,
there are as many σ̂ 2

i as there are observations. We suggested two ways of dealing
with this problem. One was that, perhaps, the relationship between σ 2

i and µy|x
is known, so that σ 2

i can be described by a fixed number of parameters (i.e., the
number of parameters no longer increases with n). The other was to assume that
there are actually only k different σ 2

i .
It is difficult to directly maximize (8.6) for β̂’s and σ̂ 2

i simultaneously, even
using derivatives, because the estimators of regression coefficients depend on σ̂ 2

i .
For some situations, it has been shown that shown that iteratively pretending that
σ 2

i is known, then estimating the β’s, and adjusting σ̂ 2
i will result in convergence

toward the estimators that truly maximize (8.6). This means that if the process of
iteration is repeated a lot of times, we can get arbitrarily close to the maximum
likelihood estimators [28]. The method is referred to as “iteratively reweighted
least squares.” In other situations such as when the variance depends directly on
the mean, the iteratively reweighted least-squares estimator is still consistent, but
only an approximation to the maximum likelihood estimator from (8.6). They will
be close in large samples, because weighted least-squares and maximum likelihood
estimators are both consistent. Many other numerical techniques exist for obtaining
maximum likelihood estimators in the general case.
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8.5.2 Correlated Errors

Equation (8.6) is generalized to clusters of correlated data by considering each clus-
ter an observation from the multivariate normal distribution. All the observations
in a cluster in effect constitute one “multivariate” observation, and the factors in
the likelihood no longer represent single observation, but instead individuals. This
makes sense, because individuals are still assumed independent. The multivariate
normal distribution is defined by starting with a set of k independently standard
normally distributed variables yi1 · · · yik and placing them in a matrix

Y =




yi1
yi2
...

yik




Recall that a univariate normal variable with mean µ and variance σ 2 can be
obtained from a standard normal variable Z, by the transformation Y = σZ + µ.

For the multivariate situation we apply the more general, but similar, transformation

Y = AY + µ

where A is a k × k matrix of constants and µ is a column of constants. A set of
variables Y that can be obtained this way is said to follow a multivariate normal
distribution. The constants in µ allow a different mean for each yij . The multipli-
cation by A changes the variance of each yij and introduces correlation. We see
that the means of the elements of Y are given by µ and that the variance matrix
of Y is V = AA′. The process just described is the flip side of the development
of least-squares estimation above, where we started with a variance matrix and
showed that it can be written in form AA′.

The multivariate density describing the joint behavior of the elements of Y can
be written

fY (Y ) = 1

(2π)
k
2
√

detV
exp

[
−1

2
(Y − µ)′V −1(Y − µ)

]

(Proving this is beyond the scope here. It involves the application of so-called
“Jacobian” matrices; for example, Ref. 29.) One way to see how the above formula
works is to apply it to the case when V −1 is diagonal, so there is no correlation.
The above formula then results in multiplication of the independent individual
normal densities. The likelihood for correlated data is constructed from products

of multivariate densities, each containing the observations Yi =




yi1
...

yij

...

yik




for that
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cluster and allowing each of these observations to have their own covariate values

µ = µ̂i =




β̂0 + β̂1x1i1 + · · ·
...

β̂0 + β̂1x1ik + · · ·




Again the result is that
∑n

i=1(Yi − µ̂i )
′V −1

i (Yi − µ̂i ) needs to be minimized,
which is done by iteratively reweighted least squares. As before, we have a choice
of using either ML or REML for estimating the elements inside V . Because the
regression coefficient estimators now depend on the variance estimators (which
was not the case with the equal variance assumption), ML and REML estimators
of the coefficients will differ slightly.

8.5.3 Example

OUTPUT PACKET VII contains outputs from the blood pressure data analysis
using the compound symmetry and unstructured options for the within subject
variance. This is achieved through the following statements. For the unstructured
option, the order of the observations matters, so we sort by ID and VISIT before
running PROC MIXED.

PROC SORT; BY ID VISIT;
PROC MIXED NOCLPRINT (EMPIRICAL); CLASS ID SEX;
MODEL SBP=SEX AGEC BMIC AGEC*BMIC/S;
REPEATED/SUBJECT=ID RCORR TYPE=CS;
PROC MIXED NOCLPRINT (EMPIRICAL); CLASS ID SEX;
MODEL SBP=SEX AGEC BMIC AGE*BMIC/S;
REPEATED/SUBJECT=ID TYPE=UN;

The first run for each variance matrix option is without the EMPIRICAL option,
and the RCORR option leads to the correlation matrix being printed. The section
with “COVARIANCE PARAMETER ESTIMATES” contains the estimator for the
matrix Ri for a subject with 3 observations in this case. For subjects with fewer
observations, R̂i is the appropriate upper left block. We also see that the compound
symmetry option estimated the (average) within subject correlation to be 0.35. For
the unstructured option we have

R̂i =

179.4 84.9 17.0

84.9 212.4 76.4
17.0 76.4 226.7




The correlation matrix is

1 0.44 0.08

0.44 1 0.35
0.08 0.35 1



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Table 8.2 β̂ (Model-Based se), (Empirical se) Based on Different Correlation
Structures

Compound Symmetry Unstructured

Intercept 126 (0.460), (0.462) 126 (0.458), (0.465)
Female −5.90 (0.663), (0.664) −6.08 (0.659), (0.658)
Age (centered at 50) 0.269 (0.0426), (0.0436) 0.282 (0.0425), (0.0427)
BMI (centered at 27) 0.627 (0.0510), (0.0544) 0.630 (0.0515), (0.0539)
Age *BMI (centered) −0.0152 (0.00597), (0.00679) −0.0136 (0.00600), (0.00672)

We observe that the variance becomes larger with follow-up time. This is con-
sistent with the higher variance we observed cross-sectionally at higher predicted
blood pressure values. It could be due to variable effects of aging (as we will
actually examine in Chapter 10) or weight gain across people, or due to the vari-
ance (blood pressure lability) biologically depending on the absolute mean blood
pressure. We also observe that the correlation is much lower between visits 1 and
3 than between 1 and 2, or between 2 and 3. There are, of course, fewer obser-
vations at visit 3, so the correlation estimates with SBP at this visit may be more
unstable than that between visits 1 and 2. We may note that the correlation struc-
tures we are considering are nested, so we can perform likelihood ratio tests. We
see that −2 log (REML) is 19491.5 for the independence structure with just one
variance parameter (the residual variance), 19353.3 for compound symmetry with
two variance parameters, and 19300.5 for unstructured variance with six variance
parameters. The “Null Model Likelihood Ratio test” on the output tests both of
the latter options versus independence. A test for unstructured versus compound
symmetry can be constructed as 19353.3−19300.5 = 52.8, which can be compared
with a χ2-distribution with four degrees of freedom. For example, the 95th per-
centile of this distribution is 9.49. Hence the difference between the unstructured
and compound symmetry models is highly statistically significant.

Table 8.2 shows estimated regression coefficients with model based and empiri-
cal standard errors with compound symmetry and unstructured variance structures.
The same results for the independence structure were in Table 8.1. We see that the
unstructured option, although seemingly much more correct, leads to only slight
decrease in the standard errors. Hence, there is little efficiency gained. This is not
unusual and has led many investigators to routinely choose independence or other
simple options for their analysis. The empirical option yields larger standard errors
in each case. There is also a change in the estimates of regression coefficients with
different covariance structures. This may indicate some lack of model fit. We will
further examine it in Chapter 9.

Non-nested models can be compared via the AIC, AICC, and BIC criteria listed
on the output. These criteria are based on the −2 log (REML), but involve a penalty
for the number of parameters fitted. The AIC equals −2 log (REML) plus 2 times
the number of variance parameters (i.e., −2 log (REML) + 2d), while the BIC
equals −2 log (REML) + d log(n). The penalty makes sense because efficiency is
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Table 8.3 β̂ (Model-Based se), (Empirical se) Based
on Autoregressive AR(1) Variance Structure

Autoregressive

Intercept 126 (0.461), (0.463)
Female −5.96 (0.665), (0.661)
Age (centered at 50) 0.278 (0.0429), (0.0431)
BMI (centered at 27) 0.637 (0.0513), (0.0539)
Age *BMI (centered) −0.0138 (0.00602), (0.0671)

lost when too many parameters are fitted, yet −2 log (REML) will decrease with
adding parameters to a model. BIC has become popular, especially in the social
sciences, and there is some evidence that it performs better than AIC [30]. Cer-
tainly BIC, as compared to AIC, will favor models that have simpler structure.
For independence and the models in Table 8.2 we have BIC 19498.7, 19367.7,
and 19343.8, respectively, so the unstructured option appears best of the three.
Yet another variance structure is the autoregressive AR(1) mentioned above. It
has two variance parameters, just as compound symmetry, so the two are not
nested. (Independence is nested into all structures, and all structures specified
by REPEATED are nested in the unstructured.) AR(1) yields a BIC of 19331.6.
Hence, the autoregressive model appears even better based on the BIC. The
−2 log REML for the autoregressive model is 19317.1, still statistically significantly
worse than the unstructured. The results from fitting the autoregressive model are
in Table 8.3.

We see that the results are quite similar to those for the unstructured option
in Table 8.2. As the above discussion indicates, the choice of the best model is
not always clear-cut and depends on the purposes of the analysis. If understand-
ing the correlation structure is of inherent interest, more emphasis may be put
on the likelihood ratio tests and the BIC. If, as is often the case, the regression
coefficients themselves are of primary interest, a simple structure such as inde-
pendence or compound symmetry will often suffice and not lead to notable lack
of efficiency. It has become common in recent years to include consideration of
the empirical standard errors rather than to rely on the model-based option with
correlated data.

Finally, OUTPUT PACKET VII shows the unstructured analysis using ML rather
than REML. It is included to show that because the estimators taking correlation
and unequal variance into account depend on the variance estimators, ML and
REML estimators differ slightly.
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OUTPUT PACKET VII: ANALYSIS OF LONGITUDINAL DATA IN
WISCONSIN SLEEP COHORT

VII.1. Unweighted Least-Squares Approach

Analysis of SBP—All Visits Wisconsin Sleep Cohort
Independence Correlation Structure—Model-Based Standard Error

The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 1
Columns in X 6
Columns in Z 0
Subjects 1370
Maximum Observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

Iteration Historya

Iteration Evaluations −2 Residual Log Likelihood Criterion

0 1 19491.46408153
1 1 19491.46408154 0.00000000

aConvergence criteria met.

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

Residual Id 193.39
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Fit Statistics

−2 Residual Log Likelihood 19491.5
AIC (smaller is better) 19493.5
AICC (smaller is better) 19493.5
BIC (smaller is better) 19498.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.58 0.4006 1368 313.50 <.0001
sex F −6.0230 0.5770 1368 −10.44 <.0001
sex M 0 . . . .

agec 0.3550 0.03875 1031 9.16 <.0001
bmic 0.6765 0.04571 1031 14.80 <.0001
agec*bmic −0.01539 0.005587 1031 −2.76 0.0060

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1368 108.98 <.0001
agec 1 1031 83.95 <.0001
bmic 1 1031 219.08 <.0001
agec*bmic 1 1031 7.59 0.0060

Independence Correlation Structure—Empirical Standard Error

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Parameter
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within
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Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.58 0.4612 1368 272.27 <.0001
sex F −6.0230 0.6675 1368 −9.02 <.0001
sex M 0 . . . .
agec 0.3550 0.04352 1031 8.16 <.0001
bmic 0.6765 0.05404 1031 12.52 <.0001
agec*bmic −0.01539 0.006659 1031 −2.31 0.0210

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1368 81.42 <0.0001
agec 1 1031 66.56 <0.0001
bmic 1 1031 156.70 <0.0001
agec*bmic 1 1031 5.34 0.0210

VII.2. Fitting Compound Symmetry Variance

Analysis of SBP—All Visits Wisconsin Sleep Cohort
Compound Symmetry—model-based Standard Error

The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Compound symmetry
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within

Dimensionsa

Covariance parameters 2
Columns in X 6
Columns in Z 0
Subjects 1370
Maximum Observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

aConvergence criteria met.
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Estimated R Correlation: Matrix for id S0001

Row Col1 Col2 Col3

1 1.0000 0.3498 0.3498
2 0.3498 1.0000 0.3498
3 0.3498 0.3498 1.0000

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

CS id 68.0259
Residual 126.45

Fit Statistics

−2 Residual log likelihood 19353.3
AIC (smaller is better) 19357.3
AICC (smaller is better) 19357.3
BIC (smaller is better) 19367.7

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 138.20 <0.0001

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.55 0.4598 1368 273.07 <0.0001
sex F −5.9026 0.6634 1368 −8.90 <0.0001
sex M 0 . . . .
agec 0.2694 0.04255 1031 6.33 <0.0001
bmic 0.6267 0.05104 1031 12.28 <0.0001
agec*bmic −0.01516 0.005972 1031 −2.54 0.0113

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1368 79.17 <.0001
agec 1 1031 40.08 <.0001
bmic 1 1031 150.74 <.0001
agec*bmic 1 1031 6.44 0.0113
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Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Compound symmetry
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.55 0.4620 1368 271.75 <0.0001
sex F −5.9026 0.6642 1368 −8.89 <0.0001
sex M 0 . . . .
agec 0.2694 0.04364 1031 6.17 <0.0001
bmic 0.6267 0.05440 1031 11.52 <0.0001
agec*bmic −0.01516 0.006786 1031 −2.23 0.0257

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1368 78.96 <0.0001
agec 1 1031 38.10 <0.0001
bmic 1 1031 132.73 <0.0001
agec*bmic 1 1031 4.99 0.0257

VII.3. Fitting Unstructured Variance

Analysis of SBP—All Visits Wisconsin Sleep Cohort
Unstructured—Model-Based Standard Error

The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Unstructured
Subject effect id
Estimation method REML
Residual variance method None
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within
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Dimensions

Covariance parameters 6
Columns in X 6
Columns in Z 0
Subjects 1370
Maximum observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

Estimated R Correlation: Matrix for id S0001

Row Col1 Col2 Col3

1 1.0000 0.4350 0.08442
2 0.4350 1.0000 0.3484
3 0.08442 0.3484 1.0000

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

UN(1,1) Id 179.40
UN(2,1) Id 84.9037
UN(2,2) Id 212.40
UN(3,1) Id 17.0236
UN(3,2) Id 76.4409
UN(3,3) Id 226.66

Fit Statistics

−2 Residual log likelihood 19300.5
AIC (smaller is better) 19312.5
AICC (smaller is better) 19312.5
BIC (smaller is better) 19343.8

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

5 190.99 <0.0001
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Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.76 0.4578 1368 274.74 <0.0001
sex F −6.0757 0.6594 1368 −9.21 <0.0001
sex M 0 . . . .
agec 0.2816 0.04249 1368 6.63 <0.0001
bmic 0.6301 0.05148 1368 12.24 <0.0001
agec*bmic −0.01364 0.005996 1368 −2.27 0.0231

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1368 84.89 <0.0001
agec 1 1368 43.92 <0.0001
bmic 1 1368 149.79 <0.0001
agec*bmic 1 1368 5.17 0.0231

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Unstructured
Subject effect Id
Estimation method REML
Residual variance method None
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.76 0.4645 1368 270.74 <0.0001
sex F −6.0757 0.6575 1368 −9.24 <0.0001
sex M 0 . . . .
agec 0.2816 0.04265 1368 6.60 <0.0001
bmic 0.6301 0.05391 1368 11.69 <0.0001
agec*bmic −0.01364 0.006723 1368 −2.03 0.0427
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Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1368 85.40 <.0001
agec 1 1368 43.59 <.0001
bmic 1 1368 136.58 <.0001
agec*bmic 1 1368 4.11 0.0427

VII.4. Fitting AR(1) Variance

Analysis of SBP—All Visits Wisconsin Sleep Cohort
Autoregressive—Model-Based Standard Error

The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Autoregressive
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 2
Columns in X 6
Columns in Z 0
Subjects 1370
Maximum observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

Estimated R Correlation: Matrix
for id A0001

Row Col1 Col2 Col3

1 1.0000 0.4032 0.1626
2 0.4032 1.0000 0.4032
3 0.1626 0.4032 1.0000
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Covariance Parameter Estimates

Covariance Parameter Subject Estimate

AR(1) id 0.4032
Residual 194.20

Fit Statistics

−2 Residual log likelihood 19317.1
AIC (smaller is better) 19321.1
AICC (smaller is better) 19321.1
BIC (smaller is better) 19331.6

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

1 174.35 <0.0001

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.52 0.4608 1368 272.37 <0.0001
sex F −5.9596 0.6654 1368 −8.96 <0.0001
sex M 0 . . . .
agec 0.2783 0.04286 1031 6.49 <0.0001
bmic 0.6370 0.05128 1031 12.42 <0.0001
agec*bmic −0.01375 0.006016 1031 −2.29 0.0225

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Sex 1 1368 80.21 <0.0001
Agec 1 1031 42.15 <0.0001
Bmic 1 1031 154.29 <0.0001
agec*bmic 1 1031 5.23 0.0225
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Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Autoregressive
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.52 0.4628 1368 271.24 <0.0001
sex F −5.9596 0.6613 1368 −9.01 <0.0001
sex M 0 . . . .
agec 0.2783 0.04308 1031 6.46 <0.0001
bmic 0.6370 0.05393 1031 11.81 <0.0001
agec*bmic −0.01375 0.006714 1031 −2.05 0.0408

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1368 81.23 <0.0001
agec 1 1031 41.72 <0.0001
bmic 1 1031 139.54 <0.0001
agec*bmic 1 1031 4.20 0.0408



C H A P T E R N I N E

A Further Study of How
the Transformation Works
with Correlated Data

The transformations applied to correlated data in constructing least-squares estima-
tors are quite technical and messy. In practice, of course, analyses are performed
by the application of weighting, rather than by directly transforming the equation.
Nonetheless, we will briefly illustrate the transformation approach for two obser-
vations per individual (k = 2) to generate insight into the components that go into
the estimator. More specifically, we will see that clustered or longitudinal models
combine information on how covariates relate to the outcome between and within
individuals. This chapter, although somewhat technical and ultimately philosophi-
cal, is important for understanding the implications of analyses of correlated data
in observational studies.

Consider the situation of two correlated observations per individual discussed
in Chapter 4. This means that we assume each individual to have two observations
yi1 and yi2, multivariately seen as

Yi =
(

yi1

yi2

)

which are related to Xi by the regression equation

Yi = Xiβ =
(

β0 + β1xi1 + εi1

β0 + β1xi2 + εi2

)
(9.1)

Quantitative Methods in Population Health, by Mari Palta
ISBN 0-471-45505-9 Copyright c© 2003 John Wiley & Sons, Inc.
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where εij have equal variance σ 2. Note that both observations follow the same
regression equation. We found in Chapter 4 that the transformation matrix

T = Ti =
(

1
2 +1
1
2 −1

)

produced the means and differences, and that these were uncorrelated linear com-
binations. The previous development dealt with unconditional y. However, the
same transformation can be applied to both sides of a regression equation, and the
mean and difference of εi1, εi2 will be uncorrelated (as long as the equal variance
assumption holds).

To make Ti into the Ti of the spectral theorem in Chapter 8, we have to rescale
its columns so that TiT

′
i = I . The following matrix works, as can verified by

performing the multiplication TiT
′
i :

Ti = 1√
2

(
1 1
1 −1

)

We have just multiplied the mean and difference by constants, so the two result-
ing linear combinations are still independent. We showed before that

Var(yi |xi1, xi2) = Var

[
y1 + y2

2

∣∣xi1, xi2

]

= Var

(
εi1 + εi2

2

)
= σ 2(1 + ρ)

2

Var(�y) = Var(y1 − y2) = Var(εi1 − εi2) = 2σ 2(1 − ρ)

where we have substituted εi1 and εi2 for y1 and y2. Now taking 1√
2
(εi1 + εi2) and

1√
2
(εi1 − εi2) as the linear transformation matrix Ti implies

Var

(
1√
2
(εi1 + εi2)

)
= 1

2
[2σ 2(1 + ρ)] = σ 2(1 + ρ)

Var

(
1√
2
(εi1 − εi2)

)
= 1

2
[2σ 2(1 − ρ)] = σ 2(1 − ρ)

We have found the matrix Ti of the spectral theorem that makes the variance
diagonal

T ′V T = D =
(

σ 2(1 + ρ) 0
0 σ 2(1 − ρ)

)
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but we still have to make the variances on the diagonal equal by creating P −1 of
Chapter 8:

P −1 = D
− 1

2
i T ′

i = 1√
2




1√
(1+ρ)σ 2

0

0 1√
(1−ρ)σ 2


(

1 1
1 −1

)

= 1√
2




1√
(1+ρ)σ 2

1√
(1+ρ)σ 2

1√
2(1−ρ)σ 2

− 1√
(1−ρ)σ 2




so that

P −1Yi =



1√
2(1+ρ)σ 2

(yi1 + yi2)

1√
2(1−ρ)σ 2

(yi1 − yi2)


 =

( √
w1 yi√
w2�yi

)

where now w1 = 2
(1+ρ)σ 2 and w2 = 1

2(1−ρ)σ 2 . With corresponding expressions for
the terms on the right-hand side of (9.1)

P −1Xi =
(√

w1
√

w1 xi

0
√

w2 �xi

)

so that ( √
w1 yi√
w2�yi

)
=

(√
w1[β0 + β1xi]√

w2β1�xi

)
+

(
ei1
ei2

)

We have two regressions with independent errors, represented by the two rows.
One is based on the mean y’s of each individual’s observations, and the other is
based on the difference of the two observations for each individual. The second one
has no intercept, because when forming the differences, the intercept cancels out.
The weights w1 and w2 serve to make ei1 and ei2 have the same variance, so that
the least-squares equations from the two regression can be combined for estimating
β1. In effect, the resulting estimator β̂1 combines between individual information
on how y changes with x (through the regression of yi on xi) and within individual
information on how y changes with x (through directly considering the change �yi

in y with a change �xi in x). It is important to realize that since both equations
have the same slope β1, these two aspects of the y − x relationship are assumed
to be the same. We will refer to a regression slope based on between individual
information as βB and will refer to a regression slope based on within individual
change as βW .

9.1 WHY WOULD βW AND βB DIFFER?

Although the discovery that βW and βB may differ goes back at least to 1938 [31],
it has received little attention in longitudinal and clustered analyses in biostatistics
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until recently [32–36]. This is despite the fact that such differences have been
reported in many applications [37–39].

The topic has been much more vigorously addressed in econometrics [40–44]
and in survey research [45]. This is probably because biostatistics has traditionally
emphasized randomly assigned X such that Xi = X. As we see above, βB can
affect the analysis only when xi. differ between individuals.

Logical considerations imply that if the regression coefficient measures a causal
effect of x on y, one would expect that the difference in y observed after a given
change in x would be the same as the difference in y between individual having that
difference in x. For example, we may assume that if a study shows that people who
run a mile a day have 10 mmHg lower blood pressure on average than do sedentary
people, then starting to run a mile a day will lower a person’s blood pressure on
average 10 mmHg. An obvious problem is that within-individual changes in x may
not have an immediate impact on y. For example, if a person starts running, blood
pressure may not decrease right away. Hence, the first reason we may observe
differences in βW and βB is that there are “lagged” or “carry-over” effects of
x [35]. When investigating factors x that may not affect y immediately, or that
are cumulative, longitudinal analyses may be difficult to interpret. On the other
hand, βW can capture short-term effects not reflected in βB . For example, exercise
just before taking the blood pressure may increase it, while regular exercise may
decrease blood pressure.

The coefficients βW and βB may also differ because confounders do not equally
affect both. For example, there may be characteristics (e.g., related to health con-
sciousness) that influence whether a person runs a mile a day and also have an effect
on blood pressure separate from that of the exercise itself. These characteristics
may differ between individuals, but stay relatively constant within individual. As
discussed in Chapter 1, confounding regularly happens also in ordinary regression,
but may be hard to detect. Luckily, the circumstance of longitudinal data offers
greater potential for discovering the omission, because it may affect between and
within individual regressions differently.

In a longitudinal model, omitted covariates can be split into within and between
individual components. The below formulas expand (1.2) and (1.3) for the longitu-
dinal data situation. Within-individual correlations and variances are annotated by
asterisks while corresponding quantities without asterisks denote between-individual
quantities.

yij = β0 + β ′
1xij + β2(wi + w∗

ij ) + eij

Where wij has mean 0, is independent from wi and represents within individual
changes from the overall wi for individual i. It can be shown [32] that then

βW = β ′
1 + β2ρ

∗
xw

σ ∗
w

σ ∗
x
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and

βB = β ′
1 + β2

[
(1 − ηx)ρ∗

xw

σ ∗
w

σ ∗
x

+ ηxρxz

σw

σx

]

ηx = σ 2
x

σ 2
x

+ σ ∗2
x

/k

We see that if ρxw
σw
σx

�= ρ∗
xw

σ ∗
w

σ ∗
x
, βW and βB differ, and the omission can be

detected by methods we outline below.
An important example concerns aging effects, which are commonly examined

in longitudinal analyses. Individuals who differ in age during the time frame of
a study were also born in different years. There may be differences associated
with birth year in the outcome y. For example, persons born in earlier years may
have had a different childhood diet. Thus “age” in the model reflects not only the
effects of aging, but also those of birth year and different unmeasured variables wi

correlated with birth year. Such effects are called “cohort effects.” More generally,
cohort effects may be considered to include not only birth cohort phenomena, but
also aberrations such as attracting a different type of person into a multiyear study
in different study years.

On the other hand, longitudinal studies must remain alert to time trends in
general and drifts in measurement technique of the study. Such effects, which are
also a form of confounding or omitted covariates w∗

ij , are referred to as “period
effects.” Other unmeasured covariates may act similar to cohort and period effects
and also cause βW and βB to differ. Cohort effects change βB while period effects
can change both βB and βW (see, e.g., Dwyer et al. [46] for additional examples).

Measurement error in covariates can cause βW and βB to differ [47, 48]. In that
situation, under the most common models for measurement error, both coefficients
are biased, but βB will tend to be less biased and also stronger. Another, more
mathematical reason for differing βW and βB , is nonlinearity, or poorly chosen
functions for the relationship of x to y. It has been shown that in most situations,
if the relationship is not truly linear, the two coefficients will emphasize different
parts of the curve and then not be the same [49]. Finally, differential dropout of
individuals with different time trends can cause the two coefficients to differ.

The above scenarios of between and within individual differences are discussed
in further detail by Shen [50] and Palta and Seplaki [51].

9.2 HOW THE BETWEEN- AND WITHIN-INDIVIDUAL ESTIMATORS
ARE COMBINED

We explicitly derived the process involved in combining between and within indi-
vidual estimators only for the case of two observations per person. The development
can be generalized to any number of observations k, when Var(Yi |Xi) is assumed
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to have compound symmetry structure. It may be noted that when k = 2, all
correlation structures (that do not vary with individual), except independence, are
the same. The compound symmetry estimator, written as an expression combin-
ing between and within individual regressions, is known in econometrics as the
Balestra–Nerlove estimator [52]. It can be derived by a generalization of the above
transformation approach. This estimator is written as

β̂1 =
weightBβ̂B +

n∑
i=1

weightWi
β̂Wi

weightB +
n∑

i=1

weightWi

=

1

(1 − ρ + kρ)

n∑
i=1

(xi − x)2β̂B + 1

(1 − ρ)k

n∑
i=1

k∑
j=1

(xij − xi)
2β̂Wi

1

(1 − ρ + kρ)

n∑
i=1

(xi − x)2 + 1

(1 − ρ)k

n∑
i=1

k∑
j=1

(xij − xi)
2

(9.2)

In formula (9.2), weightB = 1
(1−ρ+kρ)

∑n
i=1(xi − x)2 is proportional to the

inverse of the variance of β̂B, and weightWi
= 1

(1−ρ)k

∑k
j=1(xij − xi)

2 is propor-

tional to the inverse of the variance of each β̂Wi
· β̂B and all β̂Wi

are mutually
independent estimators of β̂1. Hence, to optimally use all the information, they
should be combined (as (9.2) does) with inverse variance weights. If analysis is
based only on between-individual information β̂B from regression of yi on xi

could be used. If only within-individual information is to be used, the overall
within-individual estimator can be obtained by

β̂W =

n∑
i=1

k∑
j=1

(xij − xi)
2β̂Wi

n∑
i=1

k∑
j=1

(xij − xi)
2

Formula (9.2) is another demonstration of the well-known principle that when
statistics are assumed to estimate the same parameters they should be combined,
weighted by the inverse of their respective variances. The compound symmetry
variance structure dictates the form of the variances of the relevant between- and
within-individual regression estimators.

Although, for k > 2, formula (9.3) holds only to compound symmetry variance
structure, the principles it reflects apply to other cases. These principles are:

1. The higher the correlation within cluster, the more weight a combined estima-
tor gives to the within-individual change in y with x. In other words: When
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within-individual correlation is high, the regression estimators from PROC
MIXED (say) will emphasize the effects of within individual change in x.
This at first appears counterintuitive, but remember from Chapter 4 that the
variance of a difference is smaller the higher the correlation between the mea-
surements. Within-individual changes are like within-individual differences,
and they are given more weight when their variance is smaller.

2. The more xi varies between individuals, the more weight a combined estima-
tor gives to differences in yi between individuals with different xi . In other
words: If there tend to be larger differences in x between individuals than
within (e.g., if a study includes a wide age range, but follows individuals
for a relatively short time), the regression estimators from PROC MIXED
(say) will represent comparison of individuals at different levels of x. When
xij = xj β̂ = β̂w.

3. The larger k is, the more weight a combined estimator gives to the within-
individual change in y with x. In other words: When each individual has a
large number of observations, the regression estimator from PROC MIXED
(say) tends to emphasize within individual change.

9.3 HOW TO PROCEED IN PRACTICE

It is a good idea to check the equality of βW and βB for all covariates that change
within individual before finalizing a model. This can be done either by explic-
itly forming the estimators β̂B and β̂W given above or by simplifying β̂W to the
unweighted average

β̂W =
n∑

i=1

β̂Wi
/n

Even simpler in most situations, especially when there are several covariates, is
to fit the model

yij = β0 + β ′
1xij + γ xi + εij

or with several x,

yij = β0 + β ′
1x1ij + γ1x1i + β ′

2x2ij + γ2x2i + · · · + εij (9.3)

From this model we see that

yi = β0 + β ′
1x1i + γ1x1i + · · · + εi

so that βB = β ′
1 + γ,. Subtracting the first equation from the second, we obtain

yij − yi = β ′
1(x1ij − x1i ) + · · · + εij − εi

So β ′
1 is actually the regression of within-individual changes in y on within-

individual changes in x. By definition, then β ′
1

= βW and γ = βB − βW . We
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recommend first fitting model (9.3) and checking whether the βB and βW differ
substantially by testing the hypothesis H0 : γ1 = γ2 = · · · = 0 [53]. These checks
are quite sensitive for lack of model fit in situations where xi varies considerably
between individuals. When it is found that between- and within-individual effects
differ significantly and substantively, it becomes necessary to either find the cause
and correct for it, or to fit a model with separate within- and between-individual
components

yij = β0 + βW(xij − xi) + βBxi + εij

Unfortunately, this model can be difficult to interpret when βB and βW differ,
but it would be equally unfortunate to take the combined longitudinal estimator
at face value. As a general rule, investigators tend to put more faith in the causal
nature of βW, but as we discussed above, this assumes a high level of continuous
quality control of measurement, no lags or abberant short-term effects, and also
that no events intervened either as a consequence of the study or externally, as we
see happening in the example below. Another problem is that efficiency is usually
reduced when βB and βW cannot be combined. Because of the relatively short
duration of most studies in population health, β̂W usually has the larger standard
error. We see this to be the case in our example below.

Finally, it should be pointed out that there are other ways to define between-
and within-individual effects. For example, Diggle et al. [6] recommend fitting the
terms xi1 and (xij − xi1). Different choices may be appropriate for different data
accrual patterns. We emphasize (xij −xi.) and xi due to the connection to compound
symmetry estimators and because of the economics tradition.

9.3.1 Example

We analyze the systolic blood pressure on age data in the above light, with outputs
shown in OUTPUT PACKET VII. We already observed in Chapter 8 that the
combined coefficients for AGE are β̂age = 0.355 with independence structure and
β̂age = 0.269 with compound symmetry structure. This indicates (based on point
1 above) that the blood pressure may increase less with aging within persons than
expected based on comparison of individuals at different ages. To examine this
further, we include mean age in the model. The following commands were used:

DATA A;
PROC SORT; BY ID;
PROC MEANS NOPRINT; BY ID; VAR AGEC;
OUTPUT OUT=MM MEAN=AGEM;
DATA COMB; MERGE A MM; BY ID;
PROC MIXED NOCLPRINT; CLASS ID SEX;
MODELS SBP= SEX AGEC AGEM BMIC AGEC*BMIC AGEM*BMIC/S;
REPEATED/SUBJECT=ID TYPE=CS;

We see that the coefficient of AGEM is significant at p < 0.001, indicating a
difference in age effect between and within individuals. However, the interaction



HOW TO PROCEED IN PRACTICE 153

Table 9.1 β̂ (Empirical se) Fitting an Overall Model by Compound Symmetry, and
Fitting Separate Between- and Within-Individual Effects for Age

Overall Model Between and Within Effects

Intercept 126 (0.462) 126 (0.458)
Female −5.90 (0.664) −5.82 (0.659)
Age (centered at 50) 0.269 (0.0436)
Age between (centered at 50) 0.419 (0.0451)
Age within (centering cancels) −0.710 (0.104)
BMI (centered at 27) 0.627 (0.0544) 0.678 (0.0551)
Age *BMI (centered) −0.0152 (0.00679)
Age between *BMI (centered) −0.0124 (0.00695)

effects did not differ significantly for between and within age components. The final
model was fit to specifically obtain β̂W and β̂B for age. We could have proceeded
several ways with the interaction effect. Since the within and between interactions
did not differ significantly, and since the between interaction was estimated with
more precision we chose to include the latter only. This choice also makes the
model easily interpretable.

AGED=AGEC-AGEM;
PROC MIXED NOCLPRINT; CLASS ID SEX;
MODEL SBP=SEX AGED AGEM BMIC AGEM*BMIC/S;
REPEATED/SUBJECT=ID TYPE=CS;

Table 9.1 shows the results of fitting within- and between-individual effects as
compared to the results of fitting the overall model.

Here we see that β̂B = 0.419 (at BMI of 27). Because the age range of the
subjects is large, relative to the age change during the study, and there are only
1–3 observations per subject, the original combined coefficient for AGE is closer
to the between-individual age effect. As expected, the within-individual effect has
a much larger standard error than does the between-individual effect.

Somewhat surprisingly, we see that β̂W = −0.710 is negative. The reason is the
increase during the study in the use of hypertensive medication. Using the above
terminology, this would be referred to as primarily “period effect,” although med-
ication use may well have lowered the coefficient of the between individual age as
well. A downward trend in blood pressure and an increase in the use of hypertensive
medications has been reported nationally over the last several decades [54]. Due to
the difficulties in determining underlying blood pressure in medicated individuals,
longitudinal analyses published from the study have concentrated on the binary
outcome “hypertensive” versus “nonhypertensive,” including medicated individ-
uals in the former category [55]. We pursue this approach in Chapter 15, and
we find that doing so removes the difference in within and between individual
effects.
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OUTPUT PACKET VIII: INVESTIGATING AND FITTING WITHIN-
AND BETWEEN-INDIVIDUAL EFFECTS

VIII.1. Testing for the Presence of Different Effects—Wisconsin Sleep Cohort

Investigating Between- and Within-Individual Effects of Age
Testing Significance of Age (Mean)

The Mixed Procedure

Model Information

Data set WORK.AB
Dependent variable SBP
Covariance structure Compound symmetry
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

CS id 71.6869
Residual 116.65

Fit Statistics

Residual log likelihood −9627.1
Akaike’s information criterion −9629.1
Schwarz’s Bayesian criterion −9634.3
−2 Residual log likelihood 19254.2

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.56 0.4589 1367 273.64 <0.0001
sex F −5.8178 0.6594 1367 −8.82 <0.0001
sex M 0 . . . .
agec −0.6339 0.1099 1030 −5.77 <0.0001
agem 1.0527 0.1144 1367 9.20 <0.0001
bmic 0.6818 0.05517 1030 12.36 <0.0001
agec*bmic −0.02414 0.01740 1030 −1.39 0.1656
agem*bmic 0.01168 0.01835 1030 0.64 0.5247
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VIII.2. Fitting Within- and Between-Individual Effects—Wisconsin
Sleep Cohort

Investigating Between- and Within-Individual Effects of Age
Explicitly Fitting Within and Between Effects

The Mixed Procedure

Model Information

Data set WORK.AB
Dependent variable sbp
Covariance structure Compound symmetry
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

CS id 71.4929
Residual 116.87

Fit Statistics

Residual log likelihood −9625.0
Akaike’s information criterion −9627.0
Schwarz’s Bayesian criterion −9632.3
−2 Residual log likelihood 19250.1

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.55 0.4588 1367 273.66 <0.0001
sex F −5.8223 0.6590 1367 −8.83 <0.0001
sex M 0 . . . .
agem 0.4191 0.04509 1367 9.29 <0.0001
aged −0.7100 0.1044 1031 −6.80 <0.0001
bmic 0.6775 0.05510 1031 12.30 <0.0001
agem*bmic −0.01241 0.006953 1031 −1.79 0.0745
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Random Effects

So far we have dealt with correlated data by directly stating the correlation struc-
ture within each unit such as an individual. This was done by implementing the
REPEATED statement in PROC MIXED. This chapter introduces an alternative
approach to modeling correlation, which involves a logical two step process and
also introduces additional flexibility. The approach builds on so-called “random
effects,” which are implemented by PROC MIXED via the RANDOM statement.
Models with random effects (also called mixed effects models) became popular in
biostatistics following the publication of a paper by Laird and Ware in 1982 [56].

10.1 RANDOM INTERCEPT

In the simplest possible random effects model, we assume that correlation within
individuals arises from each individual having a different overall level of response.
This is captured by individual specific intercepts. It is convenient and most common
to write this intercept as a sum of the overall intercept and a random individual
component γi (which is assumed to have mean 0 at each combination of values of
the covariates). Therefore the model can be written

yij = β0 + γi + β1xij + εij (10.1)

for j = 1, . . . , k and i = 1, . . . , n

With the equation for the mean y at a given value of xij [57], we obtain

µy|x = β0 + β1xij as before

If there were a limited number of individuals of interest (i.e., our n people in the
study are the whole population), we could have let the γi represent the parameters
needed—that is, (n − 1) indicator variables in the MODEL statement. Statistical
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properties of the estimators would then be based on increasing the number of obser-
vations ki for each individual. The approach is referred to as modeling by “fixed”
effects for individuals. But this is not how data in observational studies usually
arise. As implied in previous chapters, we tend to view the n individuals in the
study as a sample from a larger population. The reader is referred to McCullagh and
Searle [5] for further discussion of the choice of fixed versus random effects. The
specific γi’s in our sample are a random sample from a distribution of individual
level intercepts. Our interest becomes modeling the parameters of that distribution.
The distribution of γi can be modeled as, for example, normal so that there are only
two parameters µγ and σ 2

γ , rather than the whole set of {γi, i = 1, . . . , n − 1}. In
addition to having mean 0, the random γi are assumed independent of each other
and of εij .

One way to understand the γi is to consider them as unmeasured subject charac-
teristics that influence the response; that is, γi = awi for some unknown covariate
wi . Since we have made the assumption that the mean of γi is 0 at each xij so that
γi are uncorrelated with xij , these characteristics are inherently defined not to be
confounders. Only unmeasured covariates that are not confounders can be modeled
as random effects. This is different from the omitted covariate situation discussed
in Chapter 9 that dealt with confounders. If wi were known, the strength of their
influence on the outcome would be measured by the magnitude of a. Now, because
the exact values of wi are not known, we measure their influence by the variance
of γ

i
. This makes sense, because if we standardize w to have variance 1, then we

obtain Var(γi) = a2.
Depending on the discipline of application, models such as (10.1) are presented

either as “hierarchical,” where there are two stages of regression, one for the
outcomes conditionally on the individual parameters [58]

yij = β0i + β1xij + εij

and another for the individual specific parameters

β0i = β0 + γi

or as an overall model

yij = β0 + β1xij + γi + εij = β0 + β1xij + eij

where eij = γi + εij now defines the error term. With the second way of formulat-
ing the model, the variance is said to have several “components.” This refers to the
variance of the error term eij having contributions from variability between individ-
uals and from “pure” residual error. The presentation of PROC MIXED in the SAS
manual is aligned with the second formulation, but the two representations describe
exactly the same model. We also usually assume that all the εij are independent
(although PROC MIXED does have options to specify dependence between εij

with the same i). If, in addition, the variance of εij is assumed to be constant, we
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have Var(εij ) = σ 2. We note that for the summed error terms in (10.1),

Var(γi + εij ) = σ 2
γ + σ 2

with σ 2
γ and σ 2 being the two variance components.

With the random intercept model, independence of γi from εij and of εij ′ from
each other leads to

Cov(γi + εij , γi + εij ′) = Cov(γi, γi) + Cov(γi, εij ′)

+ Cov(εij , γi) + Cov(εij , ε
ij

′ )

= σ 2
γ + 0 + 0 + 0

so that

Var




ei1
ei2
...

eiki


 =




σ 2
γ + σ 2 σ 2

γ · · · σ 2
γ

σ 2
γ σ 2

γ + σ 2 · · · σ 2
γ

...
...

. . .
...

σ 2
γ σ 2

γ · · · σ 2
γ + σ 2




which is a compound symmetry matrix because all the diagonal elements are the
same, and so are all the covariances. The within-individual correlation is σ 2

γ /(σ 2
γ +

σ 2). In the SAS manual, compound symmetry matrices are presented this way, with
σ 2

γ being denoted by σ 2
1 . Hence, the model with a random intercept is identical to

a model with no random intercept, but a compound symmetry variance structure.
Nothing very exciting has been gained mathematically, but the random effects
perspective helps in interpreting the model.

PROC MIXED uses special notation to describe the variance components of
random effects models. The variance matrix of the random effects is denoted by
G. In the above case of random intercepts we have

G = (σ 2
γ )

a 1×1 matrix. Just as the ordinary covariates (associated with the β’s) for a person
are summarized in the matrix Xi, covariates for the random effects are summarized
in a parallel matrix Zi and the regression equation (10.1) is written.

Yi = Ziγ i + Xiβ + εi

In the random intercept case, Zi consists of the intercept column, so that

Zi =




1
1
...

1



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PROC MIXED retains the notation Ri for the variance matrix of the εij . With
the above assumptions, Ri is a ki × ki matrix

Ri =




σ 2 0 · · · 0
0 σ 2 · · · 0
...

...
. . .

...

0 0 · · · σ 2




We see from the variance formula for a linear transformation, along with the
independence of γ i and εij , that the general form for the variance matrix for
subject i is

Vi = Var(Ziγ i + εi) = Var(Ziγ i ) + Var(εi) = ZiGZ′
i + Ri

All of the development above depend only on the assumptions of independence
between covariates, error terms, and the random effect. To actually fit the model (by
REML or ML), PROC MIXED makes the additional assumption that the random
effects are normally distributed, so that the multivariate normal likelihood approach
can be applied. We have made the assumption for εij all along, and when γi is
also assumed normally distributed, it follows that γi + εij is normally distributed,
as were all previous error terms modeled by PROC MIXED.

10.1.1 Example

We fit the systolic blood pressure data from the sleep cohort both by compound
symmetry by the REPEATED statement and by a random intercept model. Outputs
are found in OUTPUT PACKET IX. Because of the finding in Chapter 9 that
within and between effects of age differ, we retain these components. The following
statements were used with AGEM and AGED defined as in Chapter 9.

PROC MIXED NOCLPRINT; CLASS ID SEX;
MODEL SBP=AGEM AGED SEX BMIC AGEM*BMIC/S;
REPEATED/SUBJECT=ID TYPE=CS;
PROC MIXED NOCLPRINT; CLASS ID SEX;
MODEL SBP=AGEM AGED SEX BMIC AGEM*BMIC/S DDFM=BW;
RANDOM INTERCEPT/SUBJECT=ID;

The option DDFM=BW is needed for the degrees of freedom to be correct for
the random effects model and for the option COVTEST-induced Wald tests of ran-
dom effects to be performed. The DDFM=BW option and a likelihood ratio test
versus a null model happen automatically with the REPEATED statement. With
the large sample sizes we tend to have in studies of population health, degrees
of freedom usually do not matter very much. OUTPUT PACKET IX shows that
the results of the compound symmetry and random intercept models are identi-
cal, with a slight change in the labeling of the output. However, the RANDOM
statement took longer to run in SAS. Results of these runs were already tabulated
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Table 10.1 β̂ (se) and Variance Components (se) Random Intercept Model

Fixed Effects Random Components

Intercept 126 (0.457)
Female −5.82 (0.659)
Age between (centered at 50) 0.419 (0.0455)
Age within (centering cancels) −0.710 (0.952)
BMI (centered at 27) 0.678 (0.0515)
Age between *BMI (centered) −0.0124 (0.00635)
Variance of intercepts 71.4 (6.21)
Variance of residuals 117 (5.06)

for the compound symmetry structure in Table 9.1 with empirical standard errors.
Following the current tradition for random effects models, we provide the results
from the random intercept model with model-based standard errors in Table 10.1. It
should be noted that Wald standard errors have been found unstable for the variance
components and that likelihood ratio tests should be performed in borderline cases.

In Chapter 9 we saw that xi. was significant when added to the original model,
and we showed that this provides evidence that within- and between-individual
effects of age differ. In a random effects model we can also consider the test of the
coefficient of xi. a check on whether γi is correlated with xij —that is, whether γi

inadvertently contains confounders. From a hierarchical perspective, this amounts
to modeling the intercept as

β0i = β0 + γF xi. + γ ′
i

leading to the overall model

yij = β0 + γF xi + β1xij + γ ′
i + εij

and testing the significance of γF . Now γ ′
i is assumed independent of xij and εij ,

making the model assumptions of independent variance components correct. (It can
be shown that the assumption holds, for example, for a missing covariate structure
similar to the one in Chapter 9 [32]). Just as in Chapter 9, if xi is included in the
model and found significant, it makes sense to subtract xi from xij to separately
model the within- and between-individual effects.

In general, since the covariates can either vary with j (“time-varying,” such as
age) or be constant for a person (such as gender), one can hierarchically consider
the latter included in the model for the intercept as well. Then the model for the
observations, conditionally on the parameters, becomes

yij = β0i + β1W(x1ij − xi) + εij

while the individual specific parameter model is

β0i = β0 + γ1F xi + β2x2i + γ ′
i
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with γ1F having the interpretation β1B . Here x2i is another covariate, such as
gender, that does not change within individual. From the perspective of PROC
MIXED we fit the resulting overall model

yij = β0 + β1W (x1ij − x1i.) + β1Bx1i. + β2x2i + γ ′
i + εij

Again the hierarchical and PROC MIXED models are identical, but the hierar-
chical perspective helps in interpretation. As in any regression model, when we add
important fixed effects, we delegate less information to the variance components,
and statistical precision tends to improve.

10.1.2 Example

From the hierarchical perspective, in the model in Table 10.1 for the intercept for
an individual is

β0i = 126 + 0.418 × (mean age − 50) − 5.92 × (female) + γ ′
i

where the intercept is defined at BMI = 27 and Var(γ ′
i ) = 71.4. For the observa-

tions we have

yij = β0i − 0.710 × (age − mean age) + (0.678 + mean age − 50)

×(BMI − 27) + εij

where the variance of the residual error is Var(εij ) = 117.

10.2 RANDOM SLOPES

The next step in random effects modeling is to add random components also to
other coefficients—that is, random slopes to coefficients of time varying covariates.
This can be thought of as adding interaction terms between measured factors and
unknown individual level variables that are not confounders. If for the intercept
we have

β0i = β0 + γ0i where γ0i = awi

and for the slope

β1i = β1 + γ1i where γ1i = bwi

the overall model is

yij = β0i + β1ixij + εij = β0 + awi + β1xij + bwixij + εij

This is clearly a model with an interaction effect between the unmeasured covari-
ate wi and the measured covariate xij . Just as when including interaction effects
between measured covariates in a model, one needs to be careful to
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1. Include the corresponding main effects (in this case xij and a random intercept).

2. Interpret the main effects according to how centering was done. In this case,
the unmeasured factor is already centered at 0, so interpretation of the effect
of xij is clear. However, interpretation of the variance and covariance of
the random intercept depends on where xij is centered. In a model with
random slopes, it is especially inappropriate to let the 0 point of xij lie
outside its observed range (e.g., let age be centered at 0 years in a study of
elderly adults). The overall model statistics are not affected by the choice of
centering, but interpretation of the variance components is.

In PROC MIXED notation, adding random slopes involves adding columns
to Zi . Because random slopes are akin to interaction effects, it has become a
convention to include in Zi only columns that are also in Xi . (This applies in
the case we are discussing here, where the added columns correspond to slopes.
PROC MIXED has other applications, where added columns represent multiple
levels of clusters, which may proceed differently than outlined here.) If there are
m covariates and p random slopes, we obtain

Yi = Ziγ i + Xiβ + εi

where

Xi =




1 x1i1 · · · xpi1 · · · xmi1

1 x1i2 · · · xpi2 · · · xmi1
...

...
. . .

...
. . .

...

1 x1iki
· · · xpiki

· · · xmiki




Zi =




1 x1i1 · · · xpi1

1 x1i2 · · · xpi2
...

...
. . .

...

1 x1iki
· · · xpiki




γ i =




γ0i

γ1i
...

γpi




β =




β0

β1
...

βp
...

βm



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In a variance component model

Yi = Xiβ + ei (10.2)

the new error term ei has variance

Var(ei) = Vi = ZiGZ′
i + Ri (10.3)

Expression (10.3) holds for the error term of Model (10.2) regardless of the num-
ber of random effects (which follows from the formula Var(Ziγi) = ZiVar(γ i )Z

′
i

and the assumption that the error terms are independent). To examine the variance
structure closer, we complete the matrix multiplications for the case p = 1. To
avoid too many subscripts, we let

G =
(

σ 2
a σab

σab σ 2
b

)

when there is a random slope γ0i and random intercept γ1i . Looking at the impli-
cations of formula (10.3), we then see that

Var(ei ) =




1 xi1
1 xi2
...

...

1 xik


 Var

(
γ0i

γ1i

) (
1 1 · · · 1

xi1 xi2 · · · xik

)
+ Var




εi1
εi2
...

εik




=




σ 2
a + xi1σab σab + xi1σ

2
b

σ 2
a + xi2σab σab + xi2σ

2
b

...
...

σ 2
a + xikσab σab + xikσ

2
b




(
1 1 · · · 1

xi1 xi2 · · · xik

)

+ Var




εi1
εi2
...

εik




=




σ 2
a + 2xi1σab + x2

i1σ
2
b · · ·

σ 2
a + xi1σab + xi2σab + xi1xi2σ

2
b · · ·

...
...

σ 2
a + xikσab + xikσab + xi1xikσ

2
b · · ·


 + Var




εi1
εi2
...

εik




It follows that the covariance (and therefore correlation) emerging from the ran-
dom effects structure with random slopes incorporates dependence of the pairwise
correlation on the x’s. If there were random effects associated with x2ij , and so
on, the expression would expand to include the variance of that random effect as
well as its covariance with all the other random effects.
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To fit (10.3) with PROC MIXED, we need to specify

1. Which random effects are to be fitted. This is done by listing the correspond-
ing variable names in the random statement.

2. The structure of G = Var(γ )—that is, how σ 2
a , σ 2

b , σab · · · are to be fitted.
This is done by the TYPE option in the random statement. It is most common
to fit TYPE=UN, unstructured. There is usually no reason to believe that
different random effects have the same variance, and we usually want to
allow the effects to be correlated, at least as the first step.

3. The structure of Ri = Var




εi1
εi2
...

εik


. This is done by the REPEATED state-

ment as before. One has to be quite careful, however, to avoid requesting
the estimation of parameters that overlap with the random effects part (a
situation referred to as “overparameterization” or “nonidentifiability”). We
already saw that a compound symmetry model can be fitted either by the
REPEATED statement or by the RANDOM statement with a random inter-
cept. Specifying both a random intercept and TYPE=CS with REPEATED
will result in error, as the program would then ask for several parameters that
are actually the same. Partly because of this danger, it is most common to fit
Ri as independence and equal variance, and we hope that the random effects
part will adequately capture the correlation structure by itself. Independence
is the default when no REPEATED statement is present. Authorities on mixed
effects data analysis currently suggest fitting nonindependence structures that
reflect diminishing correlation between measurements that are further apart
together with random effects. This is beyond the scope here. Also, you will
find that PROC MIXED is rather slow with random effects. Sometimes the
estimators “do not converge”. Specifying “starting values” for the parame-
ters by the PARMS statement sometimes helps. The reader interested in these
further issues is recommended to read Linear Mixed Models in Practice, by
Verbeke and Molenberghs [57].

The question is often asked, How many random effects should be included in the
variance structure? Note that what is being estimated are the variance parameters
of the random effects. Models with different numbers of random effects can then
be viewed as models “nested within each other,” and the difference in −2 log(L)

(or −2 log(REML)) can be used to test the significance of random effects. The pro-
cedure is the same as when comparing different numbers of regression parameters.
If a model has two random effects as above, and the correlation structure of the
random effects was specified as unstructured, it has three random effects covariance
parameters (σ 2

a , σ 2
b , and σab). If that model is compared to a model with just a

random intercept, two parameters will be dropped. Then −2 log(L2)−[−2 log(L1)]
has the χ2-distribution with two degrees of freedom (in general, df = difference
in number parameters), and the statistical significance of the added random effects
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can be tested against this distribution. The COVTEST option in the PROC MIXED
statement produces the line “Null Model Likelihood Ratio Test,” which is this chi-
square of the variance structure versus an independence/equal variance model. In
other words, it is a test of whether we needed to bother with PROC MIXED at all
(vis-à-vis PROC REG).

10.2.1 Example

We now fit the blood pressure data from the Wisconsin Sleep Cohort with two
random effects, one for the intercept and another for the age effect. Since random
slopes make sense only for time-varying covariates, the new random component
is added for the within-individual age component. We allow this random slope
to be both uncorrelated and correlated with the random intercept. Outputs are in
OUTPUT PACKET IX. The statements used were

PROC MIXED NOCLPRINT COVTEST;
CLASS ID SEX;
MODEL SBP=SEX AGEM AGED BMIC AGEM*BMIC/S;
RANDOM INTERCEPT AGED/SUBJECT=ID (TYPE=UN GCORR);

The GCORR option computes the correlation between random effects. We also
fitted a random intercept model and an AR(1) model for comparison. The latter was
chosen because it allows correlation between time points to differ and also because
it was found to be the best choice based on BIC in Chapter 8. Looking at the
output, we first see that −2 log(L) for the random intercept, random slope and inter-
cept, and correlated intercept and slope models are 19250.1, 19233.7, and 19223.0,
respectively, with one-degree-of-freedom difference with each subsequent model
(χ2

0.95(1) = 3.84). Their corresponding BIC are 19264.5, 19255.4, and 19251.9.
Hence, it appears worthwhile to retain the full random effects covariance structure.

There is a significant correlation of 0.30 between the random intercept and
slope, which indicates that individuals with higher blood pressure at their study
midpoint (adjusted for gender, BMI, and mean age) also have more increase (or
less decrease) in the blood pressure across the study years. It is of interest to know
that this correlation refers to true blood pressure, as the covariance is inherently
adjusted for short-term fluctuations in the measurement. For a long time there was
a debate over the issue whether people who have higher blood pressures also tend
to greater increases with age. This is because a simple correlation between initial
blood pressure and rise is affected by regression to the mean (more on this below).
The issue was finally settled by Blomquist [59] by an analysis similar to the one
here. In our study we encounter the interfering effects of medication which make
biological interpretation of the correlation difficult.

Note again that the meaning of the intercept effect and its variability changes
when x is centered differently. In the present situation, UN(1, 1) is the between-
individual variability in a person’s blood pressure at the study midpoint, adjusted
for all the fixed effects. UN(2, 2) is variability adjusted for all fixed effects. Its size
1.88 is large relative to the mean slope of −0.678. The “Residual” on the output is
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Table 10.2 β̂ (se) from a model with random slope and from an AR(1) Model

Random Slope AR(1)

Intercept 126 (0.457) 126 (0.455)
Female −5.96 (0.657) −5.89 (0.657)
Age between (centered at 50) 0.410 (0.0452) 0.416 (0.454)
Age within (centering cancels) −0.678 (0.102) −0.671 (0.101)
BMI (centered at 27) 0.683 (0.0516) 0.681 (0.0515)
Age between *BMI (centered) −0.0117 (0.00634) −0.0126 (0.00635)

Var(ε) and is estimated at 93.8 (so sd = 9.69). This variance is interpreted as the
variability not due to age, sex, BMI, or random individual specific characteristics.
It includes components such as diurnal and day-to-day variability in blood pressure
and variability due to measurement error.

While the random effects analysis above gives us a lot of information, the BIC of
the autoregressive model is actually the smallest at 19244.3. The variance structure
of this analysis offers us only the information that adjacent blood pressures corre-
late at 0.40, while those two visits apart correlate at 0.17. The residual variance is
188.14, but it should be remembered that this contains all the random variation. In
contrast, the random variation in the random effects model has been split into com-
ponents. Clearly, the random effects analysis is more interesting because it provides
insight into the sources of variation. However, if the sole purpose of the analysis
is estimation of the fixed effects, Table 10.2 shows that the best random effects
model and the autoregressive model yield very similar results. Sometimes, models
fitted by the REPEATED approach (such as AR(1) here) are termed “marginal”
or “population averaged”. Random effects models are then referred to as “cluster
specific”.

Finally we interpret Table 10.2 from a hierarchical perspective. We now have
models that contain random components for the intercept β0i and the age slope
β1i , while slope for BMI depends only on a fixed effect, mean age. We can write

β̂BMI = 0.683 − (mean age − 50) × 0.117

β0i = 126 − 5.96 × female + 0.410 × (mean age) + γ0i

βage,i = −0.678 + γage,i

yij = β0i + βage,i × (age − mean age) + β̂BMI × (BMI − 27) + εij

where the covariance matrix for the random effects γ0i and γage,i is

(
85.5 3.84
3.84 1.88

)

and the variance of εij is Var(εij ) = 93.8.



OBTAINING “THE BEST” ESTIMATES OF INDIVIDUAL INTERCEPTS AND SLOPES 167

10.3 OBTAINING “THE BEST” ESTIMATES OF INDIVIDUAL
INTERCEPTS AND SLOPES

We noted at the beginning of Chapter 10 that it is not possible to estimate the
random effects for each individual as separate parameters. The situation is similar
to when using the empirical standard error: Individual random effects cannot be
estimated as model parameters, but after the model is fitted, the parameters can be
used to estimate the individual effects. PROC MIXED provides such estimates as
we will see in the example below. They are based on a method called “empirical
Bayes” [60].

A “naive” approach is to obtain individual random effects estimates by simply
fitting separate regression lines to each individual separately. The intercepts would
then be estimates of β0 + γ0i and the slopes of the appropriate x, estimates of
β1 + γ1i . The first problem one encounters with this approach is that there is no
way of allowing for some slopes not having random components. Fitting separate
lines, in effect, fits a random slope for every covariate. One will also notice that
slopes fit this way tend to be unstable unless the number of observations for each
individual i, i.e. ki is large. Typically there are several individuals with very high
or low intercepts or slopes because they had few observations. To remedy this
problem, one needs to discount the part of the “extremeness” that is due to error
in estimation. You probably recall the concept of “regression to the mean.” This
phenomenon arises from the fact that observations that are relatively extreme are
likely to be that way because they happened to be measured with an error in the
direction of the extremeness. In other words, the true value is likely to be closer to
the overall mean of the sample distribution than we first think. Then, of course, the
individual may be found to be less extreme on subsequent measurements, hence
the name of the phenomenon. Regression to the mean is very important, and it
may have caused thousands of erroneous scientific conclusions. In fact, it may be
a contributor to the famous “placebo effect” in clinical trials and practice [61].

Empirical Bayes estimation is a way to obtain estimates that have been adjusted
for regression to the mean. Essentially, because we know that extreme measure-
ments are closer to the mean than we think, especially if they are based on relatively
little information (e.g., small ki), the method uses an appropriately weighted average
of the actual measurement, or individual estimate, and the overall mean across the
sample as the new estimate. Those familiar with the methods used at the National
Center for Health Statistics will recognize the approach, because it is often applied
to estimate “small area” mortality rates [62]. The appropriate weights to be used in
the averaging process depend on both the underlying distribution and the relative
magnitude of the measurement or estimation variance. PROC MIXED is able to
choose the weights based on its inherent normality assumption and on the estimates
of residual versus random effects variance.

10.3.1 Example

Returning to the sleep cohort blood pressure analysis with random intercept and age
slope, we use PROC MIXED commands that store the estimated realizations of the
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random slope and intercept. These commands utilize the so-called “Output Delivery
System”=ODS introduced in SAS version 8. This system has extensive capabilities
to modify the printing of SAS output, as well as to save all or parts of it in SAS
data files. In the example below, we simply (1) tell SAS that we don’t want all the
random slopes and intercepts printed (this would be very cumbersome because there
are 1374 subjects) and (2) save the part of the output that contains these quantities.

Different parts of the PROC MIXED output is referred to by SAS names, listed in
the SAS manual. The output that is relevant here is named SolutionR, where capital-
izing the S and the R is essential for SAS to recognize the name. There is a separate
record for each random effect, identified by a variable called “EFFECT.” This vari-
able takes on values “Intercept” (again, the capitalized I is essential for recognition),
and the name of the variable associated with the random effect (“aged” in our case).

OUTPUT PACKET IX contains histograms of the estimated random effects.
The commands to produce the graphs were as follows:

PROC MIXED NOCLPRINT; CLASS IS SEX;
MODEL SBP=SEX AGEM AGED BMIC AGEM*BMIC/S;
RANDOM INTERCEPT AGED/SUBJECT=ID S;
ODS LISTING EXCLUDE SolutionR;
ODS OUTPUT SolutionR=EFF;
DATA INT; SET EFF;
IF EFFECT=‘Intercept’;
TITLE ‘random intercepts’;
PROC UNIVARIATE PLOT; VAR ESTIMATE;
DATA SLOPE; SET EFF;
IF EFFECT=‘aged’;
PROC UNIVARIATE PLOT; VAR ESTIMATE;

Note that the S is needed in the RANDOM statement to instigate the estimation
of the individual effects. We can now view the distribution of these estimated ran-
dom effects. To obtain actual intercept and slopes, one needs to add the fixed effect
intercept 126 and slope −0.678 to each. From the histograms we can judge whether
the distribution of the random effects is indeed normal (as assumed) and whether
there were any influential observations. We see that there is some skewness and that
especially the slopes have some outliers. We may wish to examine these further.

Note 1 We see that while the mean of the random effects is 0 as expected,
the estimates do not reflect the correct variance, which we know from PROC
MIXED to be 85.5 for the intercepts and 1.88 for the slopes. There are
methods for correcting this [63].

Note 2 It has been shown that the regression estimators are still valid, when
there is non-normality of the random effects distribution. However, the EM-
PIRICAL option should be specified to obtain the correct standard errors in
such cases [57, page 88].

Note 3 Methods such as those presented above for estimating the random
effects are very important in small area estimation. If the random intercepts
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were mortality rates rather than blood pressure, they would be plotted on
a map. Also, they would have been obtained from different distributional
assumptions—typically a Poisson distribution for ε and a gamma distribution
for the random effects [62].

OUTPUT PACKET IX: FITTING RANDOM EFFECTS MODELS

IX.1. Random Intercept Model Compared to Compound Symmetry

Comparing Compound Symmetry and Random Intercept Models
Compound Symmetry Model

The Mixed Procedure

Model Information

Data set WORK.AB
Dependent variable sbp
Covariance structure Compound symmetry
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 2
Columns in X 7
Columns in Z 0
Subjects 1370
Maximum observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

Iteration Historya

Iteration Evaluations−2 Residual Log Likelihood Criterion

0 1 19417.87183223
1 2 19250.10105675 0.00000087
2 1 19250.09453612 0.00000000

aConvergence criteria met.
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Covariance Parameter Estimates

Covariance Parameter Subject Estimate

CS id 71.4929
Residual 116.87

Fit Statistics

−2 Residual log likelihood 19250.1
AIC (smaller is better) 19254.1
AICC (smaller is better) 19254.1
BIC (smaller is better) 19264.5

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

1 167.78 <0.0001

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.55 0.4567 1367 274.89 <0.0001
sex F −5.8223 0.6587 1367 −8.84 <0.0001
sex M 0 . . . .
agem 0.4191 0.04548 1367 9.22 <0.0001
aged −0.7100 0.09518 1031 −7.46 <0.0001
bmic 0.6775 0.05153 1031 13.15 <0.0001
agem*bmic −0.01241 0.006347 1031 −1.96 0.0508

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1367 78.12 <0.0001
agem 1 1367 84.92 <0.0001
aged 1 1031 55.65 <0.0001
bmic 1 1031 172.87 <0.0001
agem*bmic 1 1031 3.82 0.0508
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Random Intercept Model
The Mixed Procedure

Model Information

Data set WORK.AB
Dependent variable sbp
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 2
Columns in X 7
Columns in Z per subject 1
Subjects 1370
Maximum observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

Iteration Historya

Iteration Evaluations−2 Residual log likelihood Criterion

0 1 19417.87183223
1 2 19250.10105675 0.00000087
2 1 19250.09453612 0.00000000

aConvergence criteria met.

Covariance Parameter Estimates

Standard Z

Covariance Parameter Subject Estimate Error Value Pr Z

Intercept id 71.4929 6.2137 11.51 <0.0001
Residual 116.87 5.0618 23.09 <0.0001

Fit Statistics

−2 Residual log likelihood 19250.1
AIC (smaller is better) 19254.1
AICC (smaller is better) 19254.1
BIC (smaller is better) 19264.5
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Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.55 0.4567 1367 274.89 <0.0001
sex F −5.8223 0.6587 1367 −8.84 <0.0001
sex M 0 . . . .
agem 0.4191 0.04548 1367 9.22 <0.0001
aged −0.7100 0.09518 1031 −7.46 <0.0001
bmic 0.6775 0.05153 1031 13.15 <0.0001
agem*bmic −0.01241 0.006347 1031 −1.96 0.0508

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1367 78.12 <0.0001
agem 1 1367 84.92 <0.0001
aged 1 1031 55.65 <0.0001
bmic 1 1031 172.87 <0.0001
agem*bmic 1 1031 3.82 0.0508

IX.2. Fitting Models with Random Slope

Fitting Models with Random Slope
Random Slope for Age with Correlation Between Intercept and Slope

The Mixed Procedure

Model Information

Data set WORK.AB
Dependent variable sbp
Covariance structure Unstructured
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within
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Dimensionsa

Covariance parameters 4
Columns in X 7
Columns in Z per subject 2
Subjects 1370
Maximum observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

aConvergence criteria met.

Estimated G Correlation Matrix

Row Effect id Col1 Col2

1 Intercept S0001 1.0000 0.3031
2 Aged S0001 0.3031 1.0000

Covariance Parameter Estimates

Standard Z

Covariance Parameter Subject Estimate Error Value Pr Z

UN(1,1) id 85.5144 6.7758 12.62 <0.0001
UN(2,1) id 3.8434 1.1910 3.23 0.0013
UN(2,2) id 1.8808 0.4692 4.01 <0.0001
Residual 93.7882 6.2991 14.89 <0.0001

Fit Statistics

−2 Residual log likelihood 19223.0
AIC (smaller is better) 19231.0
AICC (smaller is better) 19231.0
BIC (smaller is better) 19251.9

Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

3 194.92 <0.0001



174 RANDOM EFFECTS

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.59 0.4571 1367 274.73 <0.0001
sex F −5.9648 0.6567 1367 −9.08 <0.0001
sex M 0 . . . .
agem 0.4099 0.04515 1367 9.08 <0.0001
aged −0.6783 0.1016 1031 t-6.68 <0.0001
bmic 0.6833 0.05158 1031 13.25 <0.0001
agem*bmic −0.01172 0.006342 1031 −1.85 0.0649

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1367 82.49 <0.0001
agem 1 1367 82.44 <0.0001
aged 1 1031 44.57 <0.0001
bmic 1 1031 175.47 <0.0001
agem*bmic 1 1031 3.41 0.0649

Random Slope for Age with no Correlation Between Intercept and Slope

Model Information

Data set WORK.AB
Dependent variable sbp
Covariance structure Variance components
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within

Dimensionsa

Covariance parameters 3
Columns in X 7
Columns in Z per subject 2
Subjects 1370
Maximum observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

aConvergence criteria met.
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Covariance Parameter Estimates

Standard Z

Covariance Parameter Subject Estimate Error Value Pr Z

Intercept id 84.0447 6.8030 12.35 <0.0001
aged id 1.6816 0.4585 3.67 0.0001
Residual 95.8804 6.4227 14.93 <0.0001

Fit Statistics

−2 Residual log likelihood 19233.7
AIC (smaller is better) 19239.7
AICC (smaller is better) 19239.7
BIC (smaller is better) 19255.4

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.55 0.4576 1367 274.34 <0.0001
sex F −5.8065 0.6598 1367 −8.80 <0.0001
sex M 0 . . . .
agem 0.4151 0.04549 1367 9.12 <0.0001
aged −0.6778 0.1013 1031 −6.69 <0.0001
bmic 0.6758 0.05165 1031 13.08 <0.0001
agem*bmic −0.01235 0.006348 1031 −1.95 0.0520

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1367 77.44 <0.0001
agem 1 1367 83.25 <0.0001
aged 1 1031 44.73 <0.0001
bmic 1 1031 171.17 <0.0001
agem*bmic 1 1031 3.78 0.0520
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Autoregressive Model
The Mixed Procedure

Model Information

Data set WORK.AB
Dependent variable sbp
Covariance structure Autoregressive
Subject effect id
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Between–within

Dimensionsa

Covariance parameters 2
Columns in X 7
Columns in Z 0
Subjects 1370
Maximum observation per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

aConvergence criteria met.

Estimated R Correlation: Matrix
for id S001

Row Col1 Col2 Col3

1 1.0000 0.4156 0.1727
2 0.4156 1.0000 0.4156
3 0.1727 0.4156 1.0000

Covariance Parameter Estimates

Standard Z

Covariance Parameter Subject Estimate Error Value Pr Z

AR(1) id 0.4156 0.02586 16.07 <0.0001
Residual 188.14 5.8275 32.28 <0.0001

Fit Statistics

−2 Residual log likelihood 19229.9
AIC (smaller is better) 19233.9
AICC (smaller is better) 19233.9
BIC (smaller is better) 19244.3
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Null Model Likelihood Ration
Test

DF Chi-Square Pr > ChiSq

1 188.00 <0.0001

Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.52 0.4553 1367 275.67 <0.0001
sex F −5.8933 0.6574 1367 −8.97 <0.0001
sex M 0 . . . .
agem 0.4158 0.04537 1367 9.17 <0.0001
aged −0.6710 0.1013 1031 −6.63 <0.0001
bmic 0.6808 0.05154 1031 13.21 <0.0001
agem*bmic −0.01257 0.006352 1031 −1.98 0.0481

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1367 80.37 <0.0001
agem 1 1367 84.01 <0.0001
aged 1 1031 43.91 <0.0001
bmic 1 1031 174.49 <0.0001
agem*bmic 1 1031 3.92 0.0481

IX.3. Estimates of Individual Random Effects

Random Intercepts
The UNIVARIATE Procedure

Variable: Estimate

Moments

N 1370 Sum of weights 1370
Mean 0 Sum of observations 0
Standard deviation 7.06834366 Variance 49.9614822
Skewness 0.49675359 Kurtosis 0.52105557
Uncorrected SS 68397.2691 Corrected SS 68397.2691
Coefficient of variation . Standard error of mean 0.19096658
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Basic Statistical Measures

Location Variability

Mean 0.00000 Standard deviation 7.06834
Median −0.41782 Variance 49.96148
Mode . Range 45.58094

Interquartile range 9.10450

Tests for Location: Mu0 = 0

Test Statistic p Value

Student’s t t 0 Pr > |t | 1.0000
Sign M −32 Pr > |M| 0.0887
Signed rank S −21231.5 Pr > |S| 0.1472

Quantiles (Definition 5)

Quantile Estimate

100% Max 28.921164
99% 19.803465
95% 12.157012
90% 9.166159
75% Q3 4.211867
50% Median −0.417823
25% Q1 −4.892630
10% −8.709071
5% −10.860915
1% −14.057379
0% Min −16.659780



OUTPUT PACKET IX: FITTING RANDOM EFFECTS MODELS 179

Random Intercepts

   Histogram                       #       Boxplot
29+*                                              1          0
  .*                                              1          0
  .*                                              3          0
  .*                                              2          0
  .**                                             5          0
  .**                                             8          0
  .****                                          14          |
  .****                                          16          |
  .******                                        22          |
  .***********                                   42          |
  .***************                               59          |
  .*******************                           74          |
  .****************************                 110       +-----+
  .**********************************           133       |     |
  .*****************************************    163       |  +  |
  .**************************************       149       *-----*
  .******************************************   167       |     |
  .********************************             127       +-----+
  .****************************                 111          |
  .*******************                           73          |
  .************                                  45          |
  .********                                      31          |
  .***                                           11          |

-17+*                                              3          |
----+----+----+----+----+----+----+----+--

   *May represent up to 4 counts

Random Slopes
The UNIVARIATE Procedure

Variable: Estimate

Moments

N 1370 Sum of weights 1370
Mean 0 Sum of observations 0
Standard deviation 0.54972217 Variance 0.30219446
Skewness 0.2619336 Kurtosis 3.73289701
Uncorrected SS 413.704214 Corrected SS 413.704214
Coefficient variation . Standard error of mean 0.01485193

Basic Statistical Measures

Location Variability

Mean 0.00000 Standard deviation 0.54972
Median −0.00073 Variance 0.30219
Mode . Range 6.84861

Interquartile range 0.54700
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Tests for Location: Mu0 = 0

Test Statistic p Value

Student’s t t 0 Pr > |t | 1.0000
Sign M −1 Pr > |M| 0.9784
Signed rank S −6388.5 Pr > |S| 0.6629

Quantiles (Definition 5)

Quantile Estimate

100% Max 3.738042849
99% 1.545551655
95% 0.898375686
90% 0.631162830
75% Q3 0.270318028
50% Median −0.000733775
25% Q1 −0.276678880
10% −0.603518420
5% −0.888367817
1% −1.475208166
0% Min −3.110567508

Random Slopes

                      Histogram                         #   Boxplot
3.75+*                                                  1      *
    .
    .*                                                  2      *
    .*                                                  2      *
    .*                                                  9      0
    .****                                              35      0
    .*************                                    134      |
0.25+**********************************************   501   +--+--+
    .*********************************************    494   *-----*
    .*************                                    140      |
    .****                                              39      0
    .**                                                12      0
    .
    .

-3.25+*                                                  1      *
----+----+----+----+----+----+----+----+----+-

     *May represent up to 11 counts
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The Normal Distribution and
Likelihood Revisited

It is now time to address the generalization of regression analysis to the situ-
ation of non-normally distributed residuals. We start by placing our well-known
normal distribution into the generalized context. This chapter introduces new termi-
nology for maximum likelihood estimation for the normal distribution with equal
variance and an alternative generalizable PROC for achieving it. The terminol-
ogy arises from the context of generalized linear models further addressed in
Chapter 12, where we consider the regression error to follow some non-normal
distributions such as binomial and Poisson. For review, we return to likelihood
equation (8.2).

In Chapter 2 and again via equation (8.5), we pointed out that when obtaining
maximum likelihood estimators for ordinary regression,

∑n
i=1(yi − β̂0 − β̂1xi)

2

needs to be minimized, just as for least-squares estimation. We showed in Chap-
ters 1 and 2 how this is done. Recall that log(L) is given by

log(L) = −n log(σ̂y|x
√

2π) −

n∑
i=1

(yi − β̂0 − β̂1xi)
2

2σ̂ 2
y|x

(11.1)

and that the score equations for the regression parameters are

X′(Y − Xβ̂) = 0 (11.2)

or

X′(Y − E(Y |X)) = 0
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and the maximum likelihood estimator for the variance around the regression line is

σ̂ 2
y|x =

n∑
i=1

(yi − β̂0 − β̂1xi)
2

n

A whole host of new terminology is introduced to generalize the above devel-
opment to situations with non-normally distributed regression errors. In the SAS
outputs that follow and in the theory of generalized linear models [64] connected
with it, σy|x is called the scale parameter, while σ 2

y|x is called the dispersion param-

eter. The sum
∑n

i=1(yi − β̂0 − β̂1xi)
2 is the deviance, while we previously called it

the “residual” or “error” sum of squares. The change in terminology to “deviance”
comes from viewing

∑n
i=1(yi − β̂0 − β̂1xi)

2 not as a sum of squared residuals,
but as the difference in (−2 log L)σ 2 between two models with known σ 2: One
model has β estimated and the other perfectly fits the data. Perfectly fitting the
data means that

−2 log(LP ) = 2n log(σy|x
√

2π) +

n∑
i=1

(yi − yi)
2

σ 2
y|x

= 2n log(σy|x2π)

while the −2 log likelihood for the model is

−2 log(LM) = 2n log(σy|x
√

2π) +

n∑
i=1

(yi − β̂0 − β̂1xi)
2

σ 2
y|x

the difference is

n∑
i=1

(yi − β̂0 − β̂1xi)
2

σ 2
y|x

and multiplying by σ 2
y|x leads to the deviance being the error sum of squares.

11.1 PROC GENMOD

In the remaining chapters we will use PROC GENMOD in SAS to obtain estima-
tors of regression parameters. This program is based on the theory of generalized
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linear models that uses maximum likelihood estimation for normal and non-normal
distributions as a starting point. Because of the genesis of PROC GENMOD, it
uses terminology that is different from what we have seen with PROC REG and
PROC MIXED. Again, the strength of PROC GENMOD is that it can fit distribu-
tions other than the normal. This is important in population health research, where
we often have binary variables or rates as outcomes. PROC MIXED, however, has
more flexibility when the regression error is normally distributed. For example,
PROC GENMOD does not fit random effects. PROC NLMIX, available from the
SAS version (8.0 forward does this, but is beyond the scope of this text).

The example below compares PROC GENMOD with PROC REG and PROC
MIXED.

11.1.1 Example

The output in OUTPUT PACKET X was produced for visit 1 blood pressure data
from the Sleep Cohort, by the following statements:

PROC REG; MODEL SBP=AGE;
PROC MIXED METHOD=ML; SBP=AGE/S;
PROC GENMOD; MODEL SBP=AGE;

We first notice that PROC REG, PROC MIXED and PROC GENMOD have all
produced the same estimates of the regression coefficients. The standard errors of
these coefficients, on the other hand, are not identical, because PROC GENMOD and
PROC MIXED used maximum likelihood estimation of σ̂ 2

y|x while PROC REG used
the unbiased approach of dividing the error sums of squares by the degrees of freedom
n − 2. We may also note that PROC REG used t-tests for the regression parameters,
founded in small sample theory, while PROC GENMOD used Wald χ2-tests. We see
that both PROC MIXED and PROC GENMOD provide the log likelihood.

Below the regression coefficients on the GENMOD output, we see the SCALE,
which is estimated at 14.3298. This is close to the “Root MSE” on the PROC REG
output of 14.34033. Again, PROC GENMOD divided the “deviance” or “error sum
of squares” by 1365 rather than 1363 to obtain the ML-based SCALE. Further up
on the outputs, we see that the “deviance” and “error sum of squares” are indeed the
same. Finally, we see that PROC GENMOD does provide the “deviance” divided
by the degrees of freedom after all, and that its value 205.6452 is the same as that
of the “mean square error” provided by PROC REG.

For the normal distribution, the Pearson χ2, which is more familiar from applica-
tion to risks and rates, is defined to be the same as the deviance. Finally, the “scaled”
values of the deviance and the Pearson chi-square are simply the deviance/degrees
of freedom, divided by the maximum likelihood estimator of the dispersion. For
the normal distribution, this is simply (n − k)/n.

The remainder of PACKET X is discussed in the next chapter.



184 THE NORMAL DISTRIBUTION AND LIKELIHOOD REVISITED

OUTPUT PACKET X: INTRODUCING PROC GENMOD

X.1. Comparing PROC REG, PROC MIXED, and PROC GENMOD

SBP Versus Age REG, MIXED GENMOD—Wisconsin Sleep Cohort
Using PROC REG

The REG Procedure

Model: MODEL1
Dependent Variable: SBP

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F

Model 1 11604 11604 56.43 <0.0001
Error 1363 280294 205.64520
Corrected Total 1364 291898

Root MSE 14.34033 R-square 0.0398
Dependent mean 125.09145 Adjusted R-square 0.0390
Coefficient of variation 11.46388

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value Pr > |t |
Intercept 1 107.98092 2.31066 46.73 <0.0001
Age 1 0.36605 0.04873 7.51 <0.0001

Using PROC MIXED with ML
The Mixed Procedure

Model Information

Data set WORK.A
Dependent variable SBP
Covariance structure Diagonal
Estimation method ML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method Residual
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Dimensions

Covariance parameters 1
Columns in X 2
Columns in Z 0
Subjects 1
Maximum observation per subject 1370
Observations used 1365
Observations not used 5
Total observations 1370

Covariance Parameter
Estimates

Covariance
Parameter Estimate

Residual 205.34

Fit Statistics

−2 Log likelihood 11141.9
AIC (smaller is better) 11147.9
AICC (smaller is better) 11147.9
BIC (smaller is better) 11163.6

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t |
Intercept 107.98 2.3090 1363 46.77 <0.0001
Age 0.3660 0.04869 1363 7.52 <0.0001

Using PROC GENMOD
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Normal
Link function Identity
Dependent variable SBP
Observations used 1365
Missing values 13
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Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 1363 280294.4030 205.6452
Scaled deviance 1363 1365.0000 1.0015
Pearson chi-square 1363 280294.4030 205.6452
Scaled Pearson X2 1363 1365.0000 1.0015
Log likelihood −5570.9493

a Algorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 107.9809 2.3090 103.4554 112.5064 2187.05
Age 1 0.3660 0.0487 0.2706 0.4615 56.51
Scale 1 14.3298 0.2743 13.8022 14.8776

Analysis of Parameter
Estimates

Parameter Pr > ChiSq

Intercept <0.0001
Age <0.0001
Scale

Note: The scale parameter
was estimated by maximum
likelihood.

X.2. Changing the Relationship of Covariates to the Mean

SBP from Wisconsin Sleep Cohort with Identity and Log Link
Identity Link

The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Normal
Link function Identity
Dependent variable SBP
Observations used 1364
Missing values 14
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Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1359 241336.0660 177.5836
Scaled deviance 1359 1364.0000 1.0037
Pearson chi-square 1359 241336.0660 177.5836
Scaled Pearson X2 1359 1364.0000 1.0037
Log likelihood −5465.3065

Analysis of Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 127.4490 0.5241 126.4219 128.4761 59143.9
sex F 1 −6.5731 0.7305 −8.0048 −5.1413 80.97
sex M 0 0.0000 0.0000 0.0000 0.0000 .
agec 1 0.3691 0.0494 0.2724 0.4659 55.91
bmic 1 0.5945 0.0654 0.4663 0.7228 82.53
agec∗bmic 1 −0.0189 0.0075 −0.0336 −0.0043 6.39
Scale 1 13.3016 0.2547 12.8117 13.8102

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
sex F <0.0001
sex M .
agec <0.0001
bmic <0.0001
agec∗bmic 0.0115

Note: The scale parameter was estimated by maximum
likelihood.

Log Link
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Normal
Link function Log
Dependent variable SBP
Observations used 1364
Missing values 14
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Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1359 241924.2212 178.0164
Scaled deviance 1359 1364.0022 1.0037
Pearson chi-square 1359 241924.2212 178.0164
Scaled Pearson X2 1359 1364.0022 1.0037
Log likelihood −5466.9666

Analysis of Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 4.8475 0.0041 4.8394 4.8555 1396599
sex F 1 −0.0530 0.0059 −0.0645 −0.0414 80.57
sex M 0 0.0000 0.0000 0.0000 0.0000 .
agec 1 0.0030 0.0004 0.0022 0.0038 55.52
bmic 1 0.0046 0.0005 0.0036 0.0056 83.75
agec∗bmic 1 −0.0001 0.0001 −0.0003 −0.0000 6.92
Scale 1 13.3178 0.2550 12.8273 13.8270

Analysis of Parameter
Estimates

Parameter Pr > ChiSq

Intercept <0.0001
sex F <0.0001
sex M .
agec <0.0001
bmic <0.0001
agec∗bmic 0.0085
Scale

Note: The scale parameter was
estimated by maximum likeli-
hood.
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Taking Log of Outcome
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Normal
Link function Identity
Dependent variable LSBP (log of systolic blood pressure)
Observations used 1364
Missing values 14

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1359 15.1214 0.0111
Scaled deviance 1359 1364.0000 1.0037
Pearson chi-square 1359 15.1214 0.0111
Scaled Pearson X2 1359 1364.0000 1.0037
Log likelihood 1134.9763

Analysis of Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 4.8417 0.0041 4.8336 4.8498 1362269
sex F 1 −0.0542 0.0058 −0.0655 −0.0428 87.77
sex M 0 0.0000 0.0000 0.0000 0.0000 .
agec 1 0.0029 0.0004 0.0021 0.0037 55.23
bmic 1 0.0048 0.0005 0.0037 0.0058 84.18
agec∗bmic 1 −0.0001 0.0001 −0.0003 −0.0000 6.31
Scale 1 0.1053 0.0020 0.1014 0.1093

Analysis of Parameter Esti-
mates

Parameter Pr > ChiSq

Intercept <0.0001
sex F <0.0001
sex M .
agec <0.0001
bmic <0.0001
agec∗bmic 0.0120
Scale

Note: The scale parameter was esti-
mated by maximum likelihood.
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The Generalization to Non-normal
Distributions

Among regression analyses with non-normally distributed outcome, logistic regres-
sion is perhaps the most well known and widely used. There are many ways to
motivate, derive, and interpret logistic regression. In the last decade or so, the
most common framework for linking logistic and ordinary regression, as well as
regression analyses for other distributions of the outcome, has been the approach
of generalized linear models [64]. The approach starts with the realization that
the score equations for estimating regression parameters for many distributions
for the outcome can be written in a form similar to (11.2). To see this general-
ity, it is useful to be aware that the probability or probability density of many
commonly used distributions can be expressed by a single formula. This formula,
discussed briefly below, describes the so-called exponential family of distribu-
tions, which includes (among others) the normal, the binomial, and the Poisson
distribution.

12.1 THE EXPONENTIAL FAMILY

Statisticians have found that many distributions we are interested in, such as the
normal, binomial, and Poisson, have probability (density) that can be written

f (y) = exp{(yθ − b(θ))/a(φ) + c(y, φ)} (12.1)

Here, a, b, and c are functions that determine what type of distribution (12.1)
describes. There are two parameters θ and φ. Usually φ, which is labeled the
“dispersion parameter,” is assumed “known.” As indicated in Chapter 11, the dis-
persion parameter is σ 2 for the normal distribution, so this is a stretch in that
case. However, as we saw there and earlier, σ 2 can be estimated almost as an
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afterthought, so it can be considered “temporarily” known. The parameter θ is the
center of attention, because it is related to the mean µ of the distribution. As we
have seen, regression analysis usually focuses on estimating the mean of y condi-
tionally on x. The parameter θ is known as the canonical parameter; and for the
normal distribution, actually θ = µ. To see this, the normal probability density can
be expressed as

f (y) = 1

σ
√

2π
exp

(
− (y − µ)2

2σ 2

)

= exp{(yµ − µ2/2)/σ 2 − 1

2
[y2/σ 2 + log(2πσ 2)]

To verify remember that exp[−1/2 log(2πσ 2)] = 1
σ
√

2π
and that (y − µ)2 =

(y2 + µ2 − 2yµ). Identifying the above expression with (12.1), one finds that

a(φ) = φ = σ 2

b(θ) = θ2/2

c(y, θ) = −1

2
{y2/σ 2 + log(2πσ 2)}

for the normal distribution.
Although the general formula for the exponential family has the parameters θ

and φ, these themselves do not usually hold any particular interest in statistical
applications. Typically, we are focusing on the mean and variance of y. It can be
shown that the mean and variance are related to functions of the canonical parameter
θ . The relevant functions are derivatives of the function b in the definition of the
distribution:

E(y) = µ = d

dθ
b(θ) = b′(θ)

Var(y) =
[

d2

dθ2
b(θ)

]
a(φ) = b′′(θ)a(φ)

In the above, µ is expressed as a function of θ . It also follows that if we want
to obtain θ from µ, θ(µ) = b′−1(µ), so θ can also be expressed in terms of µ.
The relationships can be verified for the normal distribution because the derivative
of b(θ) = θ2/2 is b′(θ) = θ, which we already saw was = µ, and the second
derivative of b(θ) is b′′(θ) = 1, so that the variance is a(φ), which is φ = σ 2.

Most often, the function a is assumed to be of form

a(φ) = φ/ω

The other part of Var(y) is b′′(θ), known as the variance function. It is given in
Table 12.1 as a function of the mean µ. For the normal distribution, the function
a is just a constant = 1.
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Table 12.1 Characteristics of Three Distributions in the Exponential Family

Normal Binomial Poisson

Outcome y Continuous measurement Proportion in m # of events
trials during t

Parameters µ, σ 2 µ = π,m µ = λt

a(φ) σ 2 1/m 1

b(θ) θ2/2 log(1 + exp(θ)) exp(θ)

c(y, φ) − 1
2 (y2/φ + log(2πφ)) log

(
m

my

)
− log y!

µ(θ) = b′(θ) θ
exp(θ)

1+exp(θ)
exp(θ)

θ(µ) = b′−1(µ) µ log
(

µ
1−µ

)
log(µ)

Canonical link identity logit log

V (µ) = b′′(θ(µ)) 1 µ(1 − µ) µ

Table 12.1 provides the functions a, b, and c, as well as some additional infor-
mation we will use later for the three distributions we consider in this text.

12.1.1 The Binomial Distribution

You will recall that the usual formulation of the binomial distribution is for the
probability of “number of successes s in m independent trials.” For population
health, an application of the binomial distribution may be to compute the probability
of a certain number of people developing a disease in a cohort. A binary (or
Bernoulli, as it is also called) outcome, is just the binomial with m = 1. The usual
way to write the binomial probability is

Prob(s|m) =
(

m

s

)
πs(1 − π)m−s

where s is the number of successes. The mean of this distribution is E(s) = mπ,

so that when there is only one trial and s is either 0 or 1, E(s) = π . The vari-
ance is Var(s) = mπ(1 − π). For easier transition between the exponential family
functions for m > 1 to m = 1 trials, the information in Table 12.1 is given not for
s; but for the outcome y = s/m, the proportion of successes in m trials. Clearly,
then s = my. Focusing on the proportion being the outcome has the advantage of
the mean µ being equal to the probability of success for both binary and binomial
outcomes.

Applying the functions from Table 12.1 and some facility with exponentials and
logarithms leads to
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Prob(y|m) = f (y) = exp

{(
y log

(
µ

1 − µ

)
− log

(
1

1 − µ

))
m + log

(
m

my

)}

=
(

m

my

)
exp

(
log

[(
µ

1 − µ

)ym (
1

1 − µ

)−m
])

=
(

m

my

)
µym(1 − µ)m−ym

The binomial distribution makes the assumption that the events are independent.
This assumption is most commonly violated by trials falling into clusters with
different π, or by an event in one person leading to an event in another person.

12.1.1.1 Example
In the sleep survey at five state agencies, the overall percentage of subjects reporting
habitual snoring was 32.7%. Hence among state workers the probability of being
a habitual snorer is estimated at 0.327. This means that the probability of finding
4 to be habitual snorers in a sample of 10 state workers is

Prob(4|10) =
(

10

4

)
0.3274(1 − 0.327)6

= 10 × 9 × 8 × 7

1 × 2 × 3 × 4
0.3274(1 − 0.327)6 = 0.223

The mean of the distribution of the number of snorers in the sample is 3.27,
and the variance is 10 × 0.327(1 − 0.327) = 2.2. The independence assump-
tion is likely to hold here, if the sample is obtained randomly. Independence
could be violated if individuals discussed the question and influenced each other’s
answers.

12.1.2 The Poisson Distribution

Another important distribution in population health research is the Poisson. This
distribution is used to obtain the number of events in a population in a given
time period or per person years of event-free observation. It is different from the
binomial in several ways. First of all, it is assumed that the population size is
infinite compared to the number of events. Hence no upper limit m for the number
of events is imposed. Second, by introducing the concept of “per time period” or
“per person year,” varying follow-up times are allowed. In fact, the mean of the
Poisson distribution per follow-up unit (time or person year) is known as a rate. The
probability of y events during a time period t (say) from the Poisson distribution
is given as

Prob(y) = (λt)y exp(−λt)

y!
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Here λ is the rate per whatever time unit t is measured in. Both the mean and
variance of the Poisson distribution are equal to µ = λt . When the population
size n is large, and the probability π of an event is small as often happens in
population health, the binomial distribution and the Poisson distribution give very
similar probabilities for observing y events. In that case λt ≈ π , which is a
statement of the well-known fact that when the risk is low, the rate and the risk are
approximately equal (see, e.g., Ref. 65). Because of this, the Poisson distribution
is also used for situations such as “prevalence” of a disease, which do not refer
to a time period. In these situations, t represents the size of the population from
which the prevalence arose.

The Poisson distribution makes the assumption that events are independent, that
the rate is constant, and that the probability of an event goes to 0 when the time
period becomes small The independence assumption is often violated, but is more
likely to hold for small t .

The formula for the Poisson distribution can again be obtained by inserting
functions from Table 12.1 into the exponential distribution and applying rules for
exponentials and logarithms.

12.1.3 Example

The rate of hospitalization of children aged 0–2 in Wisconsin is 90 per 1000 person
years (i.e., 0.09 year −1) [66]. Then, if the population between these ages in an
area is 100, the mean number of hospitalizations in a year is 100 × 0.09 = 9, and
the variance is 9 as well. The probability of no hospitalizations in the age group
during a year is

Prob(0) = (0.09 × 100)0 exp(−0.09 × 100)

0!
= 0.00012

The Poisson distribution may be violated, because some children have multi-
ple hospitalization due to some underlying chronic condition. Also outbreaks of
infectious diseases may lead to clusters of cases.

12.2 SCORE EQUATIONS FOR THE EXPONENTIAL FAMILY AND
THE CANONICAL LINK

Because of the “exponential nature” of the exponential family, it’s quite easy to
obtain that

log(L) =
n∑

i=1

L({yiθ − b(θ)}/a(φ) + c(yi, φ))

If the purpose were to estimate θ (φ is considered “known”), one can easily
obtain the relevant score equation (see Chapter 11 for the definition of a score)

n∑
i=1

{yi − b′(θ̂ )}/a(φ) = 0 (12.2)
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This is based on taking the derivative with respect to θ̂ . However, we are not
usually interested in estimating θ per se. Rather, our purpose is regression analysis
relating parameters to covariates. If we set

θ = β0 + β1x1i + · · ·

the chain rule would apply as in Chapter 1, and we obtain equations

n∑
i=1

{yi − b′(β̂0 + β̂1x1i + · · · )}/a(φ) = 0

n∑
i=1

x1i{yi − b′(β̂0 + β̂1x1i + · · · )}/a(φ) = 0

· · ·

(12.3)

Remembering that b′(θ) equals the mean and realizing that a(φ) can be canceled,
equation (12.3) can also be written

X′(Y − µ̂y|x) = 0

or X′(Y − Ê(Y |X)) = 0 (12.4)

identically to the score equations (11.2) for the normal distribution. However, for-
mula (12.4) hides a generalization, because if the canonical parameter θ is linear
in the predictors, then the mean µy|x is related to the predictors through

µy|x = b′(β0 + β1x1i + · · · β0 + β1x1i + · · · ) (12.5)

which implies linearity in the mean

µy|x = β0 + β1x1i + · · ·β0 + β1x1i + · · ·

only for the normal distribution. In contrast to the normal distribution case, we know
from Table 12.1 that for a binomial outcome y, the quantity Ê(Y |X) resulting from
b′ in equation (12.4) is

µy|x = exp(β̂0 + β̂1x1i + · · · )
1 + exp(β̂0 + β̂1x1i + · · · )

and for Poisson outcome

µy|x = exp(β0 + β1x1i + · · ·β0 + β1x1i + · · · )

These equations can be rewritten as

log

(
µy|x

1 − µy|x

)
= log

(
π

1 − π

)
= β0 + β1x1i + · · ·
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and
log(µy|x) = β0 + β1x1i + · · ·

respectively. A transformation applied this way to the mean, and set equal to a
linear expression in β’s, is referred to as a link function. In the above, after we set
θ equal to a linear expression, b′−1(µ) = θ was automatically linearly related to the
predictors. This link function is referred to as the canonical link. It is the canonical
link that yields equation (12.4) for estimating β. It should also be noted that,
although equation (12.4) looks simple, because of what is hidden in µ̂y|x, it can
generally be solved only through iterative numerical methods (see McCullagh and
Nelder [64]). The names of the three canonical link functions we have addressed
are in Table 12.1.

12.3 OTHER LINK FUNCTIONS

Further generalization is possible, because we can apply functions other than the
canonical link b′−1 to µy|x. We denote a general link function by h (either h or
g is used in the literature). Then the canonical link means h = b′−1; that is, h

is the inverse of the function b′. If h is not the canonical link, we have the more
complicated relationship where θ is not linear

θ = b′−1(µy|x) = b′−1[h−1(β0 + β1x1 + · · · )]

and obtaining the score equations for β̂ involves applying the chain rule not once,
but twice. For example,

∂θ

∂β1
= dθ

dµy|x
∂µy|x
∂β1

= 1

b′′(µy|x)
∂µy|x
∂β1

where we have also used the rule for a derivative of an inverse. The corresponding
score equation element becomes

∑ (
dµy|x
dβ1

× 1

V (µy |x)
{yi − µ̂y|x}

)
= 0

where we have incorporated that b′′ is the variance function V (θ) from Table 12.1.
Initially we expressed the variance as a function of θ and φ, but as shown in
Table 12.1, the part that depends on θ can also be expressed in terms of µy|x .
Putting together all the score equations for the regression parameters in matrix
form, most books and papers express the score equation as

D′V −1(Y − µ) = 0 (12.6)

where D′ has a row for each subject i = 1, . . . , n, and the columns of D′ are
derivatives of µy|x with respect to the respective regression coefficient. V −1 is the
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diagonal matrix with the inverse of the variance of each observation expressed as a
function of the mean on the main diagonal. Hence expression (12.6) is in longhand:




∂h−1(β0+β1x11··· )
∂β0

∂h−1(β0+β1x12··· )
∂β0

· · ·
∂h−1(β0+β1x11··· )

∂β1

∂h−1(β0+β1x12··· )
∂β1

· · ·
...

...
. . .




×




1/Var[h−1(β0 + β1x11 · · · )] 0 · · ·
0 1/Var[h−1(β0 + β1x12 · · · )] · · ·
...

...
. . .




×







y1
...

yn


 −




h−1(β0 + β1x11 · · · )
...

h−1(β0 + β1x1n · · · )





 = 0

The information above is provided to facilitate further reading on this topic
and to recognize mathematical expressions often presented in papers on regression
analysis of non-normally distributed data. PROC GENMOD can painlessly fit an
array of link functions, but assumes the canonical link for each distribution as the
default.

12.3.1 Example

Looking back at the GENMOD output in OUTPUT PACKET X, we see that the
link is listed as IDENTITY, and the distribution is listed as NORMAL. This is the
default if no other distribution or link is specified to GENMOD. If, for some reason
we do not want the identity link for the normal distribution, we must specify that.
Output from the following is also in OUTPUT PACKET X. Consider a regression
equation

log(µy|x) = β0 + β1x1i + · · ·

which may be relevant if the dependence of the mean on covariates is stronger
than linear. We consider fitting this model to the visit 1 blood pressure data from
the sleep study. The following statements produce regression analyses, where we
predict the logarithm of the mean blood pressure from age, and another analysis
predicting the mean of the log blood pressure from age:

LSBP=LOG(SBP);
PROC GENMOD; CLASS SEX;
MODEL SBP=SEX AGEC BMIC AGEC*BMIC/LINK=LOG DIST=NORMAL;
PROC REG; MODEL LSBP=AGE;

We see that PROC GENMOD, like PROC MIXED, has the ability to create
CLASS variables and interactions. In OUTPUT PACKET X we see that the link
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function is indeed now listed as log. We notice that the deviance is slightly larger
for the log link, however, indicating that this structure for the mean fits less well.
For comparison, output packet X provides an ordinary regression analysis using
log (SBP) as the outcome. The coefficients are very similar. However, one soon
notices that the two approaches do not really represent the same analysis. The
difference comes in the fact that the error term has not been transformed by PROC
GENMOD. In fact, GENMOD has transformed only the mean and has fit the model

yi = exp(β0 + β1sexi + β2ageci · · · ) + εi

where εi has a normal distribution with variance σ 2(= φ) along the whole curve.
In fact, we see that the scale parameter using the log link is not too different from
that using the identity link. PROC REG, on the other hand, has fit the regression

yi = exp(β0 + β1sexi + β2agei · · · + εi)

PROC REG makes the assumption that it is the error term of log(yi) that has
equal variance.



C H A P T E R T H I R T E E N

Modeling Binomial and Binary
Outcomes

Readers are probably already familiar with logistic regression for binary data.
As mentioned above, the goal with such data is to model the response prob-
ability π of having a certain outcome. In epidemiology and population health,
logistic regression is chosen for several reasons. First of all, it is a transforma-
tion that spreads the originally limited value of π across the whole range of
real numbers. This makes predicted values of π̂ resulting from the regression
realistic. Second, the regression coefficients have very desirable interpretation as
logs of odds ratios. With this comes not only convenience, but all the favor-
able properties of the odds ratio. These include the applicability of the regression
analysis to case-control studies. As we saw, the formulation of the exponential
family also singles out the logit transform as a natural one from a mathematical
perspective.

The framework of generalized linear models does not change logistic regression.
By placing logistic regression in a larger context, though, it allows us to express
the regression equation, the likelihood, and the score equations in more general
notation. The framework seamlessly incorporates transformations other than the
logit (i.e., other link functions h) and creates the bridge to the analysis of correlated
data (see Chapter 15).

13.1 A BRIEF REVIEW OF LOGISTIC REGRESSION

Logistic regression is based on the transformation log( π
1−π

), which is set equal
to the linear regression β0 + β1x1i + · · · . Traditionally, instead of relying on
the likelihoods and score equations presented in Chapter 12 for the exponential
family, results for logistic regression have been be derived directly by specifying

Quantitative Methods in Population Health, by Mari Palta
ISBN 0-471-45505-9 Copyright c© 2003 John Wiley & Sons, Inc.

199



200 MODELING BINOMIAL AND BINARY OUTCOMES

the logistic response probability to be [65]

πi = exp(β0 + β1x1i + · · · )
1 + exp(β0 + β1x1i + · · · )

and the nonresponse probability to be

(1 − πi) = 1

1 + exp(β0 + β1x1i + · · · )
then multiplying these together according to the observed data. The observed data
can be either individual binary outcomes, or a set of yi indicating the proportion
of successes in mi trials. Formulating the likelihood in terms of binary outcomes
and letting s be the number of successes, one obtains

L =
s∏

i=1

π̂i

n∏
i=s+1

(1 − π̂i ) (13.1)

which is

L =
s∏

i=1

exp(β̂0 + β̂1x1i + · · · )
1 + exp(β̂0 + β̂1x1i + · · · )

n∏
i=s+1

1

1 + exp(β̂0 + β̂1x1i + · · · )

One then proceeds by taking derivatives of log(L) directly with respect to the
β’s. We can use PROC GENMOD to fit logistic regression for both binary and
binomial (mi > 1) outcomes. An example is given in OUTPUT PACKET XI.

PROC LOGIST requires a DESCENDING option to be specified for the coef-
ficients to predict log( π

1−π
) rather than log( 1−π

π
). (The same feature has been

added to version 8.2 of GENMOD for the binary data situation.) This convention
arose through the genesis of PROC LOGIST from an older weighted least-squares
solution that preceded the generalized linear model framework as presented in
Chapter 12 [67]. PROC LOGIST has the advantage of many features in the output
and options that are useful in population health research. Among these is the fact
that PROC LOGIST painlessly provides odds ratios and their confidence inter-
vals. PROC LOGIST also provides several likelihood-based statistics; and through
the/LACKFIT option, the Hosmer and Lemeshow [68] goodness-of-fit test Ver-
sion 8 of SAS allows categorical variables to be introduced directly into the model
by the CLASS statement and allows interaction effects to be created by the vari-
ablea*variableb notation. Because the purpose here is to discuss logistic regression
from the generalized models perspective, we will emphasize the application of
PROC GENMOD below. However, many analyses involving logistic regression
specifically are better served by PROC LOGIST.

13.1.1 Example: Review of the Output from PROC LOGIST

In the Newborn Lung Project, we modeled the probability of a very-low-birth-
weight infant dying before one month of age (DEATH=1 if died DEATH=0 if
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survived [22]). The data set includes all babies admitted to the 6 NICU’s. Predictors
INDYR and SURFYR are indicator variables for time periods of birth (just as
in Chapter 7). The importance of these time periods derives from the fact that
INDYR=1 represents the year (8/1/89–7/31/90) when exogenous surfactant therapy
was first available as an investigational new drug (IND). SURFYR represents the
period after 7/31/90 when surfactant was generally available. INDYR=SURFYR=0
represents the year 8/1/88–7/31/89 when surfactant was available only to a very
small group of infants participating in randomized trials.

The following commands were run:

PROC LOGIST DESCENDING; MODEL DEATH=INDYR SURFYR;

Referring to OUTPUT PACKET XI, we see that PROC LOGIST provides the
−2 log(L) and two other likelihood-based tests for the model at hand versus one
with an intercept only. Equivalently, these test the significance of all the covariates
together (i.e., of whether there are mortality differences between the time periods).
The three tests are the likelihood ratio test, formed as −2 log(L1) + 2 log(L2), the
score test based on the first derivatives of log(L), and their variance matrix evalu-
ated under the null hypothesis, and the Wald statistic-based estimated coefficients
and their variance matrix under the fitted model. In the case at hand, they yield
similar results (χ2(2) = 8.19, 8.12, and 8.02, respectively) and are all statistically
significant. These tests tell us that the model with different mortality risk for the
three time periods fits the data significantly better than a model which assumed con-
stant mortality throughout the three years. You may also note the AIC, which in this
case is the −2 log(L) adjusted for the three fixed parameters (so −2 log(L)+2×3).

Turning to the regression coefficients, recall that we created the indicator vari-
ables for the time periods, so that each coefficient is the difference in log( π

1−π
)

of that time period from the pre-surfactant era. Hence the coefficients and corre-
sponding odds ratios obtained by exp(β1) = exp(−0.572) = 0.565 and exp(β2) =
exp(−0.246) = 0.782 are those of death during the two post-surfactant time periods
versus the pre-surfactant time period. The odds ratios and their (Wald) confidence
intervals, which would otherwise be obtained by calculating exp[β̂ ± 1.96se(β̂)],
are automatically provided by PROC LOGIST. From Chapter 5, we know that the
standard error in this expression is obtained from the inverse of minus the matrix
of second derivatives of log(L), known as the information matrix. The χ2s of the

coefficients were obtained by [ β̂

se(β̂)
]2 and are Wald chi-squares. We know that

both the confidence intervals and good only in large samples. If the sample size
were small, we should have turned to “exact” procedures similar to Fisher’s exact
test, some of which are available in version 8 of SAS as part of PROC LOGIST
and PROC FREQ.

For the sake of completeness, it should be pointed out that (just as in PROC
GENMOD below) we could have used a categorical variable BIRTHYR coded 0, 1,
2 for the three time periods directly. Including the statement CLASS BIRTHYR;
would have created indicator variables with the last year serving as the default
baseline category. Also, if the data had been provided in a binomial fashion as
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number of births NUMB and number of deaths NDTHS, the same model could
have been fit by the command

PROC LOGIST; MODEL NDTHS/NUMB=INDYR SURFYR;

Because the model with indicator variables for the years makes no linearity
assumptions, the only manner in which it would not fit is lack of independence
between outcomes so that the correct likelihood is not the product of individual
probabilities. Such violation could enter via clustering of deaths and would lead to
standard errors being underestimated just as in the correlated normal residual case.
We have seen little evidence, however, that clustering (e.g., caused by multiple
births or hospital of admission) has influenced results emerging from this data set.

13.2 ANALYSIS OF BINOMIAL DATA IN THE GENERALIZED
LINEAR MODELS FRAMEWORK

In the exponential family notation,

µ = π = exp(θ)

1 + exp(θ)

is the function b′ in Chapter 12 for binomial outcome. Table 12.1 shows that the
scale parameter φ is 1 for the binomial distribution with the number of trials m = 1.
This is because the variance of the binary outcome is π(1 − π), hence completely
determined by the mean µ = π , or in exponential family notation because a(φ) = 1
and b′(θ) = exp(θ)

1+exp(θ)
= π we have

V ar(y) = b′′(θ)a(φ) = b′′(θ) = d

dθ

exp(θ)

1 + exp(θ)

= exp(θ)

1 + exp(θ)
−

[
exp(θ)

1 + exp(θ)

]2

= π(1 − π)

Another important feature of a generalized linear model is the deviance function,
briefly mentioned in Chapter 11. It was not addressed in Chapter 12, because the
interpretation of the deviance is somewhat specific to the distribution at hand and
generalization is not as helpful as it is for the score equations. The deviance is the
difference in −2 log(L)φ between two models with the same dispersion parameter,
the one at hand and the one that fits the data perfectly. It is the latter part that
turns out to be very specific, as we will see in examples below. We first rewrite
the likelihood (13.1) in some helpful ways.

If the data have been ordered so that the first s observations have y = 1,

equation (13.1) for the likelihood can be written

log(L) =
k∑

i=1

log(π̂i) +
n∑

i=s+1

log(1 − π̂i ) (13.2)
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or (switching notation to be more generic)

log(L) =
n∑

i=1

[yi log(µ̂i) + (1 − yi) log(1 − µ̂i)] (13.3)

where, since yi is coded 0, 1, the first part of the expression is nonzero only for
the first observations and vice versa. For the general binomial case, where yi is the
proportion of positive responses in mi trials and miyi is the number of positive
responses, we have a grouped version of (13.3)

log(L) =
n∑

i=1

miyi log(π̂i) +
n∑
1

(mi − miyi) log(1 − π̂i )

which can also be written

log(L) =
n∑

i=1

mi[yi log(µ̂i) + (1 − yi) log(1 − µ̂i)]

This latter expression simplifies to (13.3) when mi = 1. Note that the above
formulations of log(L) do not involve any link function. The construction of this
likelihood only assumes the observations to be independent. However, in a regres-
sion situation, a link function is hidden in

µ̂i = h−1(β̂0 + β̂1x1i + · · · )
It is when this specific expression linking πi(= µi) to a linear regression is

inserted, and derivatives ∂µ
∂β

taken with respect to β, that the link function begins
to matter.

Returning to the derivation of the deviance, the perfect fit for binary data pro-
duces a likelihood L = 1 because “perfect fit” means that πi = 1 for “successes”
and (1 − πi) = 1 for “failures,” so the likelihood is a product of 1’s. Then the
log(L) = 0 for that model. Hence the deviance for binary outcome just equals
−2 log(L). However, for binomial outcome the deviance turns out differently. Then,
“perfect fit” implies

log(L) =
n∑

i=1

mi[yi log(yi) + (1 − yi) log(1 − yi)]

so the difference in −2 log(L) between the fitted and the perfect model becomes

− 2
n∑

i=1

mi[yi log(µ̂i) + (1 − yi) log(1 − µ̂i)]

+ 2
n∑

i=1

mi[yi log(yi) + (1 − yi) log(1 − yi)]

= 2
n∑

i=1

[miyi log(yi/µ̂i) + mi(1 − yi) log[(1 − yi)/(1 − µ̂i)] (13.4)
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Equation (13.4) is the usual expression for the deviance of the binomial dis-
tribution (where we have retained the notation that yi denotes the proportion of
successes.) Multiplying denominators and numerators inside the logs by mi leads to

deviance =

2
n∑

i=1

{miyi log(miyi/miµ̂i) + mi(1 − yi) log[mi(1 − yi)/(mi(1 − µ̂i))]}

which is sometimes written [65]

deviance = 2
2n∑
l=1

Ol log(Ol/El) (13.5)

where Ol is the observed and El the expected (from the model) number of observa-
tions falling in each cell of the n×2 table formed by the binomial group by outcome
classification. Because of the way the deviance was constructed, it follows a χ2-
distribution with degrees of freedom equal to n minus the number of parameters
estimated in obtaining El . Obviously, only group level covariates can be included
with grouped data, so the maximum number of parameters is n. Fitting n param-
eters produces the perfect fit and is referred to as a “saturated” model. The upper
limit on the number of parameters with grouped data allows the saturated model to
have a restricted number of parameters, and it leads to the deviance approximately
following a χ2-distribution when the miπi and mi(1 − πi) are reasonably large.
Obviously this condition cannot hold for individual level binary data.

Another common measure of goodness of fit for grouped data is the Pearson
statistic [65]. For the normal distribution, we saw that this statistic equals the
deviance. For binomial outcome, it is given by

2n∑
l=1

(Ol − El)
2/El

with quantities defined as above. It is of interest that the Pearson statistics can also
be written

n∑
i=1

(yi − π̂i)
2/[π̂i (1 − π̂i )/ni]

so it is a direct comparison of (a) the variability in the proportion “with success”
observed between groups and (b) the variability predicted in that proportion based
on the model and the binomial distribution. For grouped data the statistic has a
limiting χ2-distribution, when cell sizes become large.

Note that the deviance and Pearson statistics in GENMOD are not the same
as the χ2-tests automatically provided by PROC LOGIST. The latter test whether
the model does any good for prediction (compared to a model with no predictors).
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PROC GENMOD can produce similar likelihood ratio statistics that test the benefit
of adding variables via the TYPE1 and TYPE3 options in the MODEL statement.
The default GENMOD chi-squares are for testing the reverse, namely how much
lack of prediction there is compared to a saturated model. Unfortunately these
goodness-of-fit chi-squares can only be used when the data fall into a finite number
of predetermined groups. Otherwise, we again have the problem that the degrees
of freedom go up together with the sample size, and the large sample distribution
properties break down. The limited number of parameters arises from the fact that
the binomial (grouped) model only can accommodate group level variables. In our
example, however, a variable such as birth weight can be properly adjusted for
only in the binary outcome model.

For data that are not grouped, a grouping of some kind has to be imposed
before performing tests for lack of fit. This can be done, for example, by the
/LACKFIT option in PROC LOGIST, which forms deciles of predicted risk groups.
The LACKFIT χ2 is similar to the Pearson lack-of-fit test, and it pertains to a
situation where the data have been grouped into an arbitrary number of risk groups.
Hosmer and Lemeshow [68] showed that assuming the test has degrees of freedom
two less than the number of groups (i.e., usually 8) works well. All goodness-of-fit
tests discussed are sensitive to (a) misspecification of the relationship of covariates
to the mean [including linearity (etc.) assumptions and choice of link function] and
(b) lack of independence between observations.

From the generalized linear model framework, the transformation log( π
1−π

) of
π was the most natural choice of link function h. It is a link function, because
π is the mean of the distribution of the binary outcome y or of the proportion
of “successes” in the binomial case. The logistic link is the canonical link b′−1,

resulting in the simplified score or “estimating” equations (12.4)

X′(Y − E(Y |X)) = 0

which in this case translate into


 1 1 · · · 1

x11 x12 · · · x1n

· · · · · · · · · · · ·










y1
...

yn


 −




exp(β0 + β1x11 · · · )
1 + exp(β0 + β1x11 · · · )

...

exp(β0 + β1x1n · · · )
1 + exp(β0 + β1x1n · · · )







= 0

These cannot be solved directly. However, the technique used to obtain an iter-
ative solution (known as Fisher scoring) is beyond the scope here. It is described
in the book by McCullagh and Nelder [64]. PROC GENMOD, of course, does
this for us (as does PROC LOGIST). We will first discuss our example as ana-
lyzed with the logit link, but will introduce some alternative link functions in
Section 13.3.
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13.2.1 Example of Logistic Regression with Binary Outcome

OUTPUT PACKET XI contains the analysis of the neonatal mortality data with
PROC GENMOD. GENMOD was applied in several ways to illustrate different
aspects of how it works. We first consider the result of the following basic
statements.

PROC GENMOD DESCENDING;
MODEL DEATH=INDYR SURFYR/DIST=BINOMIAL;

We did not need to specify the link, because GENMOD automatically chooses
the canonical link, which is logit for the binomial. Comparison of the first output
from GENMOD with that of LOGIST confirms that coefficients and standard errors
are the same. The scale parameter is given as 1, as expected. We also see that the
deviance from PROC GENMOD is indeed identical to the −2 log(L) = 983.735
provided by LOGIST.

Without additional options and special statements, PROC GENMOD output
is a bit thin as compared to that of PROC LOGIST. We added odds ratios and
their confidence intervals by the statements below. The output is on the next
page of OUTPUT PACKET XI. We also added a TYPE1 option to the model
statement.

PROC GENMOD DESCENDING;
MODEL DEATH=INDYR SURFYR/DIST=BINOMIAL TYPE1;
ESTIMATE ‘OR INDYR’ INDYR 1/EXP;
ESTIMATE ‘OR SURFYR’ SURFYR 1/EXP;
ESTIMATE ‘OR SURF VS IND’ INDYR -1 SURFYR 1/EXP;

The ESTIMATE commands tell GENMOD to exponentiate the coefficients of
INDYR and SURFYR and give the resulting odds ratios the names in quotes. The
quantity “1” indicates that the odds ratio will be for one unit change. Other con-
stants could have been chosen. The last statement leads to an estimate of the odds
ratio between the last two time periods, as the coefficient of INDYR is multiplied
by −1 and added to the coefficient of SURFYR. We see that the resulting odds
ratios and 95% confidence intervals are 0.565 [0.380, 0.930], 0.782 [0.540, 1.13]
and 1.38 [0.925, 2.07], respectively. In addition, we created a sequential (Type 1)
likelihood ratio analysis, which shows that INDYR added to the model by itself had
χ2(1) = 6.48 (p = 0.011) and that adding SURFYR to the model with intercept
and INDYR led to likelihood ratio χ2(1) = 1.71 (p = 0.190). Part of the upturn in
neonatal mortality after the IND period and lack of significance of the coefficient
of SURFYR is explained by admission of ever smaller neonates to the NICU’s.
We show some birth weight adjusted analyses in Section 13.2.3 below.

To have GENMOD create the indicator variables, we can use the original 0, 1,
2 birth year variable BIRTHYR in a CLASS statement. This statement will, as a
default, choose the last category as the comparison group. However, we can craft
the ESTIMATE statements to compute odds ratios to reflect any comparisons we
want. Below, we see that this involves setting up a so-called “contrast” [69] that
tells the procedure how the comparison between the three years is to be made.
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PROC GENMOD DESCENDING; CLASS BIRTHYR;
MODEL DEATH=BIRTHYR/DIST=BINOMIAL;
ESTIMATE ‘OR INDYR’ BIRTHYR -1 1 0/EXP;
ESTIMATE ‘OR SURFYR’ BIRTHYR -1 0 1/EXP;
ESTIMATE ‘SURF VS IND’ BIRTHYR 0 -1 1/EXP;

We see that the ESTIMATE statements result in the same odds ratios as above. It
is also important to know that the specific way indicator variables are created does
not affect overall tests for the model, nor does it affect goodness-of-fit statistics.

Finally, we run an analysis without the CLASS statement. The commands
used were

PROC GENMOD DESCENDING;
MODEL DEATH=BIRTHYR/DIST=BINOMIAL;
ESTIMATE ‘OR INDYR’ BIRTHYR 1/EXP;
ESTIMATE ‘OR SURFYR’ BIRTHYR 2/EXP;
ESTIMATE ‘SURF VS IND’ BIRTHYR 1/EXP;

The important difference between this analysis and the previous one is the
assumption here that the odds ratio is constant between subsequent years. When
we duplicate the comparisons we made above in the ESTIMATE commands, the
assumption is reflected in the ‘OR INDYR’ and ‘SURF VS IND’ odds ratios being
estimated the same way—that is, as the exponential of a one-unit change in year
0.878 [0.724, 1.06]. The odds ratio between the surfactant year and baseline is
estimated as the exponential of a two-year change 0.771 [0.525, 1.13]. Because all
three odds ratios are based on the same regression coefficient, they all have the
same χ2(1) statistic.

We have touched upon the fact that different ways of choosing indicator variables
do not affect the overall −2 log(L). The linear trend in the latest model can actually
be framed as another choice of one indicator variable (with the other indicator to
completely capture all differences between years being a quadratic trend), so the
linear trend model is nested in all two indicator models. This means that we can
compare the deviance 990.1765 for the latest model with that for the indicator
variable model of 983.735. The deviance difference (which is the same as the
difference in −2 log(L)) is quite significant (χ2

0.95(1) = 3.84), indicating that the
differences between years cannot be well captured by a linear trend.

13.2.2 Example with Binomial Outcome

Sometimes data on binary outcomes are more conveniently obtainable as counts y

of the number of deaths (say) and population sizes, rather than as individual binary
outcomes. This can happen when data are not specifically collected for research,
but are acquired from official or government sources, say, or when individual level
data cannot be obtained due to human subject confidentiality considerations. Of
course, a major disadvantage in modeling such a data set is the lack of individual
level information.
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To illustrate the analysis of grouped data, the mortality data from the NICU’s
were collapsed into numbers of admissions and numbers of deaths each year. (This
was done only to show how GENMOD works in this situation, as the natural choice
for our data was the analysis given above.) The collapsing was performed by the
statements

PROC SORT; BY BIRTHYR;
PROC MEANS N MEAN SUM; BY BIRTHYR; VAR DEATH;
OUTPUT OUT=COLL SUM=NDTHS N=NUMB;

OUTPUT PACKET XII contains some output from these statements. The tab-
ulation includes the number of births (the risk denominator, obtained through the
N option), the proportion of deaths in each deaths in each time period (i.e., risks,
obtained by the MEAN option), and the number of deaths in each time period
(obtained by the SUM option). The new SAS data set is named COLL and con-
tains the number of deaths NDTHS for each BIRTHYR, along with the number of
births NUMB in the same time period. The data set COLL has only three observa-
tions—one for each time period (and three variables BIRTHYR NDTHS NUMB).

Now, to obtain the logistic regression on these data, we run

DATA NEW; SET COLL;
PROC GENMOD;
CLASS BIRTHYR;
MODEL NDTHS/NUMB= BIRTHYR/DIST=BINOMIAL;

Here, we have told GENMOD that the binomial numbers of outcomes arose
from the number NUMB of “trials.” Note that the DESCENDING option is not
used in this case. The output is in OUTPUT PACKET XII.

Looking at the output, we see that the regression coefficients and their standard
errors are identical to those obtained by the binary outcome analysis. The log(L)

is also identical. However, the deviance has turned out to be 0 in this case. This is
because, for the grouped data, the model fits perfectly. It is a so-called “saturated
model.” (Chapter 7 in Selvin [70] has further discussion of saturated models.) There
are three “means” to be fitted (the three probabilities of death); there are also three
parameters, one for each mean. A saturated model just reproduces the observed
probabilities. The deviance was not 0 when the data were left as binary, because
the death or survival of each single baby was not exactly predicted.

To illustrate further how the deviance works, we run the logistic analysis.

PROC GENMOD; MODEL NDTHS/NUMB=BIRTHYR/DIST=BINOMIAL;

The output is in OUTPUT PACKET XII. Here, we are forcing a linear trend
across risks of death in the three time periods. Hence the model is no longer
saturated. We see that the deviance is now 6.44, the difference in −2 log(L) between
this model and the previous model. It is identical to the likelihood ratio test result
we obtained when comparing the saturated and trend models with binary outcome
in the previous section. The models with binary and binomial data are the same;
only the deviances are computed differently.
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13.2.3 Some More Examples of Goodness-of-Fit Tests

In the above example it is not necessary to group the entire data set to compute
the grouped deviance. The deviance and Pearson χ2-tests for the model with trend
can be obtained by

PROC GENMOD DESCENDING;
MODEL DEATH=BIRTHYR/DIST=BINOMIAL AGGREGATE=BIRTHYR;

The output from this statement is in OUTPUT PACKET XIII. We see that the
deviance χ2(1) is 6.44 and that the Pearson χ2(1) is similar at 6.22, as before.
It is a limitation that the AGGREGATE option can be used only with categorical
variables that are in the model. Hence it is most useful to test for trends across
levels of ordinal variables (as we did here), or for more complex models with
interactions between categorical variables.

For testing the fit of models with continuous predictors, we revert to PROC
LOGIST. As indicated above, birth weight of those admitted to the NICU’s changed
across the study period. We therefore include birth weight as a continuous variable,
and we assess the fit of the model by statements

PROC LOGIST DESCENDING;
MODEL DEATH=BW INDYR SURFYR/LACKFIT;

Outputs are in OUTPUT PACKET XIII. We see that the model does not appear
to fit very well as the Hosmer and Lemeshow test yields p = 0.0155 for goodness
of fit. We also notice that there tend to be too few deaths expected in the low-
risk deciles, whereas there tend to be too many in the high-risk deciles. We add
(BW-1000)**2 to the model and find the fit to be very good with p = 0.89
and good agreement between observed and expected values. The odds ratios are
now more similar for the IND year versus baseline of 0.507 [0.326, 0.789] and
for the surfactant year versus baseline of 0.645 [0.423, 0.983], respectively. After
adjustment for birth weight, the neonatal mortality after surfactant became generally
available is significantly lower than presurfactant.

13.3 OTHER LINKS FOR BINARY AND BINOMIAL DATA

Although the logit link is the canonical link and, for good reasons, most favored by
epidemiologist, there are at least three other traditional links (or transformations)
of π = µ or of the observed proportion y (with grouped data) used in various
fields of application. The first, and currently perhaps least important, one stems
from randomized experiments and the tradition of analysis of variance. In the days
when software was nonexistent, people were eager to transform proportions into
quantities that had equal variance, so that they could perform the usual ANOVA
and regression tests. They found that, as long as the sample size m is the same in
each group, the transformation sin−1 √

y, achieves this [71]. The transformation,
of course, was applied to the observed proportions, as the whole point was to affect
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the variance of the error term. In contrast, a link function is applied to the true
underlying mean, leaving the error term to follow the binomial distribution.

From the fields of pharmacology [72] and psychometrics [73] comes the probit
(sometimes also called the normit) link. The origin of the probit link is in so-called
latent variable analysis. One imagines (or—in some cases—knows) that there is a
normally distributed variable underlying the response. There may be a continuous
variable Y that represents “true health” of individuals in the population. When
asked, people may say they are in “good health” if their health level is above a
threshold D. Then, the probability of a positive response yi = 1 for a person is
given by

Prob(yi = 1) = Prob(D < Yi)

If Y is normally distributed with mean µY and variance σ 2
Y in the population,

we have that

Prob

(
D − µY

σY

<
Yi − µY

σY

)
= Prob

(
Zi < −D − µY

σY

)
= �

(
−D − µY

σY

)

where � denotes the standard normal cumulative probability distribution (e.g.,
�(−1.96) = 0.025). If, in addition, the true health of a person depends on charac-
teristics x, we may have a linear regression equation

µY |x = β0 + β1x1 + · · ·

where Y has variability σ 2
Y |x around the regression line. The probability a person

will say they are in good health is then

Prob(yi = 1|D, x1 · · · ) = µy = πy

= �

(
−D − β0 + β1x1i + · · ·

σY |x

)

= �

(
β0

σY |x
− D

σY |x
+ β1

σY |x
xii + · · ·

)

We see that the cumulative normal probability serves as link function to model
the probability of response linearly on covariates. This is the probit link and can be
specified in GENMOD as such (LINK=PROBIT). Standardization of the coefficients
must occur, because we would not know what standard deviation to use just from
the binary outcome. Hence, the coefficients estimated are β1/σY |x , and so on.

A final link that is somewhat popular with binary or binomial outcomes is the
complementary log(− log) defined as h(π) = log[− log(1−π)]. A less well known
feature of this link is the fact that if events are imagined as arising from underlying
rates λi where log(λi) depends linearly on the risk factors, the complementary
log(− log) will produce the coefficients of that regression. In other words, the
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coefficients from this link can be interpreted as logarithms of rate ratios (or hazard
ratios). In this sense, it is the log(− log) link that generalizes into Poisson regression
and into models for censored data such as the proportional hazards model (not
covered in this text). For more information on survival analysis, the reader is
referred to the book by Klein and Moeschberger [74].

Of course, linearity with the logit link does not imply linearity with either of
the other two links—quite the opposite. In the strict sense, at most one of these
links can produce a truly linear relationship between h(π) and the risk factors.
However, in practice they are usually so close that the difference can be ignored.
When the response probability is low, the logit and complementary log(− log) are
almost indistinguishable, which is a result of rates, risks, and odds being similar in
that situation. The probit and logit are close in their predictions and in significance
of the coefficients, except for very high or very low outcome probabilities.

Due to the latent variable framework described above under the probit link, it can
be shown that: (a) If there is indeed a continuous normally distributed underlying
variable, the coefficients from the probit will be the same as coefficients from
ordinary regression of that variable- standardized to σY |x units. (b) The coefficients
from the logit link will be approximately 1.8 times as large as those from the
probit link. This is because 1/1.8 represents the standard deviation of the logistic
distribution that may be imagined to hold for the continuous latent scale. (The
logistic distribution has shape very similar to the normal.) It is reassuring to know
that when a normally distributed variable is dichotomized, the results of regression
analyses using the probit or logit link will yield parallel or almost parallel results
to those that could have been obtained from the original continuous scale. Of
course, statistical efficiency will be lost by the dichotomization. The advantage of
dichotomizing is that if the continuous variable is not normally distributed, the
dichotomized results are still valid as referring to the probability of response. In
that case, the coefficients of the probit and logit regressions can be seen as related to
those of an underlying variable that is a transformation of the original scale to make
it normally distributed. The transformation, however, is not explicitly specified.

13.3.1 Example

OUTPUT PACKET XIV contains outputs from the logit, probit, and complementary
log(− log) links from the neonatal death data. The commands used were

PROC GENMOD DESCENDING;
MODEL DEATH=INDYR SURFYR/DIST=BINOMIAL TYPE3;
PROC GENMOD DESCENDING;
MODEL DEATH=INDYR SURFYR/DIST=BINOMIAL LINK=PROBIT TYPE3;
PROC GENMOD DESCENDING;
MODEL DEATH=INDYR SURFYR/DIST=BINOMIAL LINK=CLL TYPE3;

Because no linearity assumptions have been made in these saturated models,
the likelihoods and deviances are identical. All three models produce the same µ̂i

but differ in, for example, β̂INDYR = h(µ̂INDYR) − h(µ̂BASELINE). The difference
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in coefficients is to be interpreted simply as different choices of measure of asso-
ciation in this case. The link function, in fact, dictates the measure of association
produced. As expected, the ratio between the INDYR coefficient from the logit
model (−0.5715) to the coefficient from the probit model (−0.3212) is 1.80. The
probit coefficient can be interpreted as a standardized improvement with surfactant
in the underlying (latent) continuous illness level of the neonate. It is assumed in
this way of thinking that when that illness level crosses a threshold, the neonate
dies. The complementary log(− log) coefficient can be thought of as the log of a
ratio of underlying mortality operating on month-old infants, so the ratio between
the IND and baseline periods is 0.596, fairly similar to the odds ratio of 0.565.

A somewhat disturbing result is the difference in the Wald χ2’s for the coef-
ficients for the different link function. However, we see that the more reliable
likelihood ratio tests produced by the TYPE3 option are the same.

Finally we fit models that include birth weight and birth weight squared. Theoret-
ically, we know that not all three link functions can fit the birth weight relationship
correctly. We see that the models are not exactly the same now, but the deviances
are quite similar, with the lowest deviance for the logit link. The significance of
the birth year comparison is also strongest for the logit link, perhaps indicating that
birth weight was the most appropriately adjusted for with this link function.

OUTPUT PACKET XI: LOGISTIC REGRESSION ANALYSIS
WITH PROC LOGIST AND PROC GENMOD

XI.1 Basic PROC LOGIST and PROC GENMOD Outputs

Analysis of Binary Infant Death Data by PROC LOGIST and PROC GENMOD
PROC LOGIST with Indicators for Birthyr

The LOGISTIC Procedure

Model Information

Data set WORK.A
Response variable death
Number of response levels 2
Number of observations 1040
Model binary logit
Optimization technique Fisher’s scoring
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Response Profile

Ordered Total
Value Death Frequency

1 1 191
2 0 849

Probability modeled is death = 1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) is satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 993.929 989.735
SC 998.876 1004.576
−2 log L 991.929 983.735

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood ratio 8.1937 2 0.0166
Score 8.1163 2 0.0173
Wald 8.0164 2 0.0182

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 −1.2338 0.1303 89.5993 <40.0001
indyr 1 −0.5715 0.2019 8.0140 0.0046
surfyr 1 −0.2464 0.1887 1.7065 0.1914

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

indyr 0.565 0.380 0.839
surfyr 0.782 0.540 1.131
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Association of Predicted Probabilities and Observed Responses

Percent concordant 39.7 Somers’ D 0.124
Percent discordant 27.3 Gamma 0.185
Percent tied 33.0 Tau-a 0.037
Pairs 162159 c 0.562

Default GENMOD Output for Binary Data
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function Logit
Dependent variable death
Observations used 1040

Response Profile

Ordered Total
Value Death Frequency

1 1 191
2 0 849

PROC GENMOD is modeling the prob-
ability that death = ‘1’.

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 1037 983.7354 0.9486
Scaled deviance 1037 983.7354 0.9486
Pearson chi-square 1037 1040.0000 1.0029
Scaled Pearson X2 1037 1040.0000 1.0029
Log likelihood −491.8677

a Algorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −1.2338 0.1303 −1.4893 −0.9783 89.60
surfyr 1 −0.2464 0.1887 −0.6162 0.1233 1.71
indyr 1 −0.5715 0.2019 −0.9672 −0.1758 8.01
Scale 0 1.0000 0.0000 1.0000 1.0000
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Analysis of Parameter
Estimates

Parameter Pr > ChiSq

Intercept <0.0001
surfyr 0.1914
indyr 0.0046
Scale

XI.2. Adding Information to the PROC GENMOD Output

Analysis of Binary Infant Death Data by PROC LOGIST and PROC GENMOD
PROC GENMOD with Options Giving Odds Ratios and Type 1 LR Tests

The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function Logit
Dependent variable death
Observations used 1040

Response Profile

Ordered Total
Value Death Frequency

1 1 191
2 0 849

PROC GENMOD is modeling the
probability that death = ‘1’.

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 1037 983.7354 0.9486
Scaled deviance 1037 983.7354 0.9486
Pearson chi-square 1037 1040.0000 1.0029
Scaled Pearson X2 1037 1040.0000 1.0029
Log likelihood −491.8677

a Algorithm converged.
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Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −1.2338 0.1303 −1.4893 −0.9783 89.60
indyr 1 −0.5715 0.2019 −0.9672 −0.1758 8.01
surfyr 1 −0.2464 0.1887 −0.6162 0.1233 1.71
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter
Estimates

Parameter Pr > ChiSq

Intercept <0.0001
indyr 0.0046
surfyr 0.1914
Scale

Note: The scale parameter
was held fixed.

LR Statistics for Type 1 Analysis

Source Deviance DF Chi-Square Pr > ChiSq

Intercept 991.9291
indyr 985.4462 1 6.48 0.0109
surfyr 983.7354 1 1.71 0.1909

Contrast Estimate Results

Standard
Label Estimate Error Alpha Confidence Limits

OR indyr −0.5715 0.2019 0.05 −0.9672 −0.1758
Exp (OR indyr) 0.5647 0.1140 0.05 0.3802 0.8388
OR surfyr −0.2464 0.1887 0.05 −0.6162 0.1233
Exp (OR surfyr) 0.7816 0.1474 0.05 0.5400 1.1312
OR surf vs. ind 0.3250 0.2058 0.05 −0.0784 0.7285
Exp (OR surf vs. ind) 1.3841 0.2849 0.05 0.9246 2.0719
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Contrast Estimate Results

Label Chi-Square Pr > ChiSq

OR indyr 8.01 0.0046
Exp (OR indyr)
OR surfyr 1.71 0.1914
Exp (OR surfyr)
OR surf vs. ind 2.49 0.1143
Exp (OR surf vs. ind)

XI.3. Other Ways of Coding Birth Year

Analysis of Binary Infant Death Data by PROC LOGIST and PROC GENMOD
Using the Indicator Variables GENMOD Generates

The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function Logit
Dependent variable death
Observations used 1040

Class Level Information

Class Levels Values

birthyr 3 0 1 2

Response Profile

Ordered Total
Value Death Frequency

1 1 191
2 0 849

PROC GENMOD is modeling the prob-
ability that death = ‘1’.

Parameter Information

Parameter Effect Birthyr

Prm1 Intercept
Prm2 birthyr 0
Prm3 birthyr 1
Prm4 birthyr 2
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Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 1037 983.7354 0.9486
Scaled deviance 1037 983.7354 0.9486
Pearson chi-square 1037 1040.0000 1.0029
Scaled Pearson X2 1037 1040.0000 1.0029
Log likelihood −491.8677

a Algorithm converged.

Analysis of Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 −1.4802 0.1364 −1.7475 −1.2129 117.80
birthyr 0 1 0.2464 0.1887 −0.1233 0.6162 1.71
birthyr 1 1 −0.3250 0.2058 −0.7285 0.0784 2.49
birthyr 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
birthyr 0 0.1914
birthyr 1 0.1143
birthyr 2 .
Scale

Note: The scale parameter was held fixed.

Contrast Estimate Results

Standard
Label Estimate Error Alpha Confidence Limits

OR indyr −0.5715 0.2019 0.05 −0.9672 −0.1758
Exp (OR indyr) 0.5647 0.1140 0.05 0.3802 0.8388
OR surfyr −0.2464 0.1887 0.05 −0.6162 0.1233
Exp (OR surfyr) 0.7816 0.1474 0.05 0.5400 1.1312
OR surf vs. ind 0.3250 0.2058 0.05 −0.0784 0.7285
Exp (OR surf vs. ind) 1.3841 0.2849 0.05 0.9246 2.0719
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Contrast Estimate Results

Label Chi-Square Pr > ChiSq

OR indyr 8.01 0.0046
Exp (OR indyr)
OR surfyr 1.71 0.1914
Exp (OR surfyr)
OR surf vs. ind 2.49 0.1143
Exp (OR surf vs. ind)

Fitting Birth Year as Trend
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function Logit
Dependent variable death
Observations used 1040

Response Profile

Ordered Total
Value Death Frequency

1 1 191
2 0 849

PROC GENMOD is modeling the prob-
ability that death = ‘1’.

Parameter Information

Parameter Effect

Prm1 Intercept
Prm2 birthyr

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 1038 990.1765 0.9539
Scaled deviance 1038 990.1765 0.9539
Pearson chi-square 1038 1040.5245 1.0024
Scaled Pearson X2 1038 1040.5245 1.0024
Log likelihood −495.0882

a Algorithm converged.
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Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −1.3630 0.1241 −1.6062 −1.1198 120.65
birthyr 1 −0.1300 0.0983 −0.3227 0.0627 1.75
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
birthyr 0.1860
Scale

Note: The scale parameter was held fixed.

Contrast Estimate Results

Standard
Label Estimate Error Alpha Confidence Limits

OR indyr −0.1300 0.0983 0.05 −0.3227 0.0627
Exp (OR indyr) 0.8781 0.0863 0.05 0.7242 1.0647
OR surfyr −0.2600 0.1966 0.05 −0.6454 0.1254
Exp (OR surfyr) 0.7710 0.1516 0.05 0.5245 1.1335
OR surf vs. ind −0.1300 0.0983 0.05 −0.3227 0.0627
Exp (OR surf vs. ind) 0.8781 0.0863 0.05 0.7242 1.0647

Contrast Estimate Results

Label Chi-Square Pr > ChiSq

OR indyr 1.75 0.1860
Exp (OR indyr)
OR surfyr 1.75 0.1860
Exp (OR surfyr)
OR surf vs. ind 1.75 0.1860
Exp (OR surf vs. ind)
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OUTPUT PACKET XII: ANALYSIS OF GROUPED BINOMIAL DATA

Analysis of Grouped Binomial Data by GENMOD
Number at Risk, Risk, and Number of Deaths Each Year

The MEANS Procedure

Analysis Variable: death

N Mean Sum

birthyr = 0

337 0.2255193 76.0000000

birthyr = 1

347 0.1412104 49.0000000

birthyr = 2

356 0.1853933 66.0000000

Saturated Model
The GENMOD Procedure

Model Information

Data set WORK.COLL
Distribution Binomial
Link function Logit
Response variable (events) ndths
Response variable (trials) numb
Observations used 3
Number of events 191
Number of trials 1040

Class Level Information

Class Levels Values

birthyr 3 0 1 2
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Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 0 0.0000 .
Scaled deviance 0 0.0000 .
Pearson chi-square 0 0.0000 .
Scaled Pearson X2 0 0.0000 .
Log likelihood −491.8677

a Algorithm converged.

Analysis of Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 −1.4802 0.1364 −1.7475 −1.2129 117.80
birthyr 0 1 0.2464 0.1887 −0.1233 0.6162 1.71
birthyr 1 1 −0.3250 0.2058 −0.7285 0.0784 2.49
birthyr 2 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
birthyr 0 0.1914
birthyr 1 0.1143
birthyr 2 .

Note: The scale parameter was held fixed.

Trend Across Birth Years
The GENMOD Procedure

Model Information

Data set WORK.COLL
Distribution Binomial
Link function Logit
Response variable (events) ndths
Response variable (trials) numb
Observations used 3
Number of events 191
Number of trials 1040
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Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 1 6.4411 6.4411
Scaled deviance 1 6.4411 6.4411
Pearson chi-square 1 6.2187 6.2187
Scaled Pearson X2 1 6.2187 6.2187
Log likelihood −495.0882

a Algorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −1.3630 0.1241 −1.6062 −1.1198 120.65
birthyr 1 −0.1300 0.0983 −0.3227 0.0627 1.75
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
birthyr 0.1860
Scale

Note: The scale parameter was held fixed.

OUTPUT PACKET XIII: SOME GOODNESS-OF-FIT TESTS FOR
BINOMIAL OUTCOME

XIII.1. Grouped Data

Some Goodness-of-Fit Tests for Infant Death Data
PROC GENMOD Testing with the Aggregate Option

The GENMOD Procedure

Model Information

Data set WORK.A

Distribution Binomial

Link function Logit

Dependent variable death

Observations used 1040
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Response Profile

Ordered Total
Value Death Frequency

1 1 191
2 0 849

PROC GENMOD is modeling the
probability that death = ‘1’.

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 1 6.4411 6.4411
Scaled deviance 1 6.4411 6.4411
Pearson chi-square 1 6.2187 6.2187
Scaled Pearson X2 1 6.2187 6.2187
Log likelihood −495.0882

a Algorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −1.3630 0.1241 −1.6062 −1.1198 120.65
birthyr 1 −0.1300 0.0983 −0.3227 0.0627 1.75
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
birthyr 0.1860
Scale
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XIII.2. The Hosmer and Lemeshow Test with Continuous Covariates

Some Goodness-of-Fit Tests for Infant Death Data
PROC LOGIST with the Lackfit Option

The LOGISTIC Procedure

Model Information

Data set WORK.A
Response variable death
Number of response levels 2
Number of observations 1040
Model binary logit
Optimization technique Fisher’s scoring

Response Profilea

Ordered Total
Value Death Frequency

1 1 191
2 0 849

Probability modeled is death = 1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) is satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 993.929 824.187
SC 998.876 843.975
−2 log L 991.929 816.187

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood ratio 175.7425 3 <0.0001
Score 167.4647 3 <0.0001
Wald 133.4080 3 <0.0001
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 2.8372 0.3660 60.0796 <0.0001
bw 1 −0.00407 0.000359 128.3807 <0.0001
indyr 1 −0.7221 0.2220 10.5757 0.0011
surfyr 1 −0.4645 0.2106 4.8656 0.0274

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

bw 0.996 0.995 0.997
indyr 0.486 0.314 0.751
surfyr 0.628 0.416 0.950

Association of Predicted Probabilities and Observed Responses

Percent concordant 77.9 Somers’ D 0.562
Percent discordant 21.7 Gamma 0.565
Percent tied 0.4 Tau-a 0.169
Pairs 162159 c 0.781

Partition for the Hosmer and Lemeshow Test

death = 1 death = 0
Group Total ObservedExpectedObserved Expected

1 104 3 2.60 101 101.40
2 105 10 3.99 95 101.01
3 104 6 5.50 98 98.50
4 105 10 7.92 95 97.08
5 104 5 11.09 99 92.91
6 104 16 15.86 88 88.14
7 105 17 21.60 88 83.40
8 106 25 28.95 81 77.05
9 104 36 38.70 68 65.30

10 99 63 54.78 36 44.22

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

18.8901 8 0.0155
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Adding a Squared Term of Birth Weight
The LOGISTIC Procedure

Model Information

Data set WORK.A
Response variable death
Number of response levels 2
Number of observations 1040
Model binary logit
Optimization technique Fisher’s scoring

Response Profilea

Ordered Total
Value Death Frequency

1 1 191
2 0 849

a Probability modeled is death = 1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) is satisfied.

Model Fit Statistics

Intercept
Intercept and

Criterion Only Covariates

AIC 993.929 816.664
SC 998.876 841.399
−2 log L 991.929 806.664

Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood ratio 185.2651 4 <0.0001
Score 208.4817 4 <0.0001
Wald 148.3246 4 <0.0001
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 2.3158 0.3847 36.2421 <0.0001
bw 1 −0.00382 0.000340 126.1807 <0.0001
bwsq 1 3.728E-6 1.208E-6 9.5161 0.0020
indyr 1 −0.6796 0.2258 9.0545 0.0026
surfyr 1 −0.4381 0.2150 4.1532 0.0416

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

bw 0.996 0.996 0.997
bwsq 1.000 1.000 1.000
indyr 0.507 0.326 0.789
surfyr 0.645 0.423 0.983

Association of Predicted Probabilities and Observed Responses

Percent concordant 78.0 Somers’ D 0.566
Percent discordant 21.4 Gamma 0.569
Percent tied 0.6 Tau-a 0.170
Pairs 162159 c 0.783

Partition for the Hosmer and Lemeshow Test

death = 1 death = 0
Group Total ObservedExpectedObserved Expected

1 105 4 4.50 101 100.50
2 104 6 5.59 98 98.41
3 107 9 7.34 98 99.66
4 103 8 8.27 95 94.73
5 104 7 9.90 97 94.10
6 104 17 13.10 87 90.90
7 104 15 17.66 89 86.34
8 104 24 24.74 80 79.26
9 104 40 37.60 64 66.40

10 101 61 62.29 40 38.71

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq

3.5940 8 0.8918
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OUTPUT PACKET XIV: THREE LINK FUNCTIONS FOR BINARY
OUTCOME

XIV.1. Saturated Models

Fitting Different Link Functions to Binary Outcome
Logit Link

The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function Logit
Dependent variable death
Observations used 1040

PROC GENMOD is modeling the
probability that death = ‘1’.

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1037 983.7354 0.9486
Scaled deviance 1037 983.7354 0.9486
Pearson chi-square 1037 1040.0000 1.0029
Scaled Pearson X2 1037 1040.0000 1.0029
Log likelihood −491.8677

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −1.2338 0.1303 −1.4893 −0.9783 89.60
indyr 1 −0.5715 0.2019 −0.9672 −0.1758 8.01
surfyr 1 −0.2464 0.1887 −0.6162 0.1233 1.71
Scale 0 1.0000 0.0000 1.0000 1.0000
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Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
indyr 0.0046
surfyr 0.1914
Scale

LR Statistics for Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

indyr 1 8.18 0.0042
surfyr 1 1.71 0.1909

Probit Link
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function Probit
Dependent variable death
Observations used 1040

PROC GENMOD is modeling the
probability that death = ‘1’.

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1037 983.7354 0.9486
Scaled deviance 1037 983.7354 0.9486
Pearson chi-square 1037 1040.0000 1.0029
Scaled Pearson X2 1037 1040.0000 1.0029
Log likelihood −491.8677

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −0.7537 0.0758 −0.9023 −0.6051 98.84
indyr 1 −0.3212 0.1128 −0.5423 −0.1002 8.11
surfyr 1 −0.1413 0.1081 −0.3532 0.0706 1.71
Scale 0 1.0000 0.0000 1.0000 1.0000
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Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
indyr 0.0044
surfyr 0.1911
Scale

LR Statistics for Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

indyr 1 8.18 0.0042
surfyr 1 1.71 0.1909

Complementary Log–Log Link
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function CLL
Dependent variable death
Observations used 1040

PROC GENMOD is modeling the
probability that death = ‘1’.

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 1037 983.7354 0.9486
Scaled deviance 1037 983.7354 0.9486
Pearson chi-square 1037 1039.9999 1.0029
Scaled Pearson X2 1037 1039.9999 1.0029
Log likelihood −491.8677

a Algorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −1.3643 0.1150 −1.5897 −1.1389 140.69
indyr 1 −0.5181 0.1835 −0.8777 −0.1584 7.97
surfyr 1 −0.2202 0.1686 −0.5507 0.1103 1.71
Scale 0 1.0000 0.0000 1.0000 1.0000
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Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
indyr 0.0048
surfyr 0.1916
Scale

LR Statistics for Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

indyr 1 8.18 0.0042
surfyr 1 1.71 0.1909

XIV.2. Models That Make Assumptions on Mean–Covariate Relationship

Fitting Different Link Functions to Binary Outcome
Logit Link with Birth Weight

The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function Logit
Dependent variable death
Observations used 1040

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1035 806.6641 0.7794
Scaled deviance 1035 806.6641 0.7794
Pearson chi-square 1035 1040.2302 1.0051
Scaled Pearson X2 1035 1040.2302 1.0051
Log likelihood −403.3320
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Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 2.3158 0.3847 1.5618 3.0697 36.24
bw 1 −0.0038 0.0003 −0.0045 −0.0032 126.18
bwsq 1 0.0000 0.0000 0.0000 0.0000 9.52
indyr 1 −0.6796 0.2258 −1.1222 −0.2369 9.05
surfyr 1 −0.4381 0.2150 −0.8594 −0.0168 4.15
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
bw <0.0001
bwsq 0.0020
indyr 0.0026
surfyr 0.0416

LR Statistics for Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

bw 1 166.68 <0.0001
bwsq 1 9.52 0.0020
indyr 1 9.23 0.0024
surfyr 1 4.18 0.0409

Probit Link with Birth Weight
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function Probit
Dependent variable death
Observations used 1040
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Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1035 806.9772 0.7797
Scaled deviance 1035 806.9772 0.7797
Pearson chi-square 1035 1045.6487 1.0103
Scaled Pearson X2 1035 1045.6487 1.0103
Log likelihood −403.4886

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 1.2518 0.2074 0.8453 1.6583 36.42
bw 1 −0.0022 0.0002 −0.0025 −0.0018 145.12
bwsq 1 0.0000 0.0000 0.0000 0.0000 13.77
indyr 1 −0.3697 0.1240 −0.6128 −0.1266 8.88
surfyr 1 −0.2417 0.1200 −0.4769 −0.0066 4.06
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
bw <0.0001
bwsq 0.0002
indyr 0.0029
surfyr 0.0439
Scale

LR Statistics for Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

bw 1 166.83 <0.0001
bwsq 1 13.80 0.0002
indyr 1 8.99 0.0027
surfyr 1 4.08 0.0435
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Complementary Log–Log Link with Birth Weight
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Binomial
Link function CLL
Dependent variable death
Observations used 1040

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1035 808.4619 0.7811
Scaled deviance 1035 808.4619 0.7811
Pearson chi-square 1035 1053.6994 1.0181
Scaled Pearson X2 1035 1053.6994 1.0181
Log likelihood −404.2310

Analysis of Parameter Estimates

Standard Wald 95% Confidence

Parameter DF Estimate Error Limits Chi-Square

Intercept 1 1.6788 0.3388 1.0148 2.3428 24.55
bw 1 −0.0033 0.0003 −0.0039 −0.0027 114.26
bwsq 1 0.0000 0.0000 0.0000 0.0000 4.14
indyr 1 −0.5443 0.1884 −0.9136 −0.1750 8.34
surfyr 1 −0.3006 0.1744 −0.6425 0.0413 2.97
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
bw <0.0001
bwsq 0.0418
indyr 0.0039
surfyr 0.0848
Scale

LR Statistics for Type 3 Analysis

Source DF Chi-Square Pr > ChiSq

bw 1 164.37 <0.0001
bwsq 1 3.96 0.0465
indyr 1 8.52 0.0035
surfyr 1 2.97 0.0847



C H A P T E R F O U R T E E N

Modeling Poisson
Outcomes—The Analysis
of Rates

Many investigations in population health are concerned with numbers of events
(deaths, cases of disease, accidents, etc.) in the population. Under certain assump-
tions detailed below, the number of events follows the Poisson distribution
described in Chapter 12 as one of the members of the exponential family of distri-
butions. Usually, the interest of population health investigators lies in the rate of
events, calculated as the number of events per person year of exposure. The rate is
the parameter λ of the Poisson distribution as given in Chapter 12. In this case, as
we see in Table 12.1, the canonical link is log. Other links are very rarely used with
the Poisson distribution, although sometimes rates may be just assumed normally
distributed, and the identity link used. Hence, the usual regression analysis of the
number of events or the rate falls neatly into the framework of generalized linear
models with canonical link.

14.1 REVIEW OF RATES

The observed rate of an event is defined as

r = # events

person time units at risk

or

r = # events

time unit

In the following discussion makes no conceptual difference what is chosen as
the denominator for the rate. The important thing to remember is that the quantity t

Quantitative Methods in Population Health, by Mari Palta
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in the Poisson distribution formula should be in the same units. Often, the person
time units (say, person years) of exposure cannot be exactly obtained. In a geo-
graphic area, for example, people move in and out. It is then common to make
the “stable population assumption” that holds when people who move spend on
average half the year in the community, and that events occur uniformly through
the time interval. With these assumptions, the number of person years of exposure
equals the midyear population in the community, so that

r = # events

person years at risk
= # events

mid year population

This is how most population-based rates are computed. For example, there were
405 cancer deaths among men aged 45–54 years in Wisconsin in 1996, with a
midyear estimated population in the age group of 309,972. This led to a cancer
mortality rate of 130.65 per 100,000, or 130.65 per 100,000 person-years.

As rates are often calculated for whole geographic areas, the argument can be
made that they are then not estimators with sampling distributions, but actually
observed parameters. Depending on the use of the rate, this can be a valid argu-
ment. (In addition, even if sampling variability is considered, it is often small
because of the large sample size.) Assume that we are looking at nationwide, vital
statistics based infant mortality rates for the United States and Canada for 1995.
An example of the use of observed rates that would lend itself to comparison
without consideration of sampling variation would be: “Was infant mortality in
the United States in 1995 higher than infant mortality in Canada in 1995.” Notice
that generalization from the observed data to a larger population does not apply
here. The populations of interest are represented in their entirety in the data. To
answer the question, we only need to look at the two rates and see which is
higher. On the other hand, questions such as “Is infant mortality in the United
States higher than infant mortality in Canada?” and “Was infant mortality in 1995
higher in countries without a single payer system of health insurance?” imply pos-
sible generalization. In the first case, it is implied that although we have data
from only 1995, we wish to infer something for other years. In the second case,
we want to infer something for other countries with the same type of insurance
system.

When we want to do inferences on rates, we need to consider from what type of
distribution of events the rates may have arisen, so that we can compute sampling
errors of the estimators. The basic assumptions underlying the Poisson distribution
is that events occur independently—that is, that the occurrence of one event does
not lead to higher probability of another event close in time and that the rate λ

of events stays constant across time and individuals. Clearly, these assumption
can be violated quite easily. Perhaps for population-wide total mortality, even if
an accident or disaster killed a group of people within a certain time interval,
this may be evened out by a time period of special caution, or simply have little
impact on deaths from all causes. However, in a study of accident-related mortality
in a smaller group of people (say), it may be that events are clustered by being
caused either by accidents that killed more than one person or by subpopulations
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at higher risk. If accident occurrence rather than death was studied, events will be
additionally clustered as there are accident-prone individuals. We will deal with
these situations under the heading overdispersion.

If we persist in making the Poisson assumption and wish to take sampling vari-
ation into account, we recall that for the Poisson distribution the variance equals
the mean. Hence, if we have observed y events in a year with a midyear popu-
lation n, we have the rate r = y

n
with variance Var(r) = 1

n2 Var(y) = y

n2 = r
n

.
There are some exact methods and tables available for forming tests and con-
fidence intervals based on the Poisson distribution when the number of events
is small. For reasonably large numbers of events, however, the distribution of
the number of events (and the estimated rate) can be approximated by the nor-
mal. Hence we would obtain a 95% confidence interval for the true popula-

tion rate by r ± 1.96
√

r
n

. The confidence interval for the cancer mortality rate
of 45- to 54-year-old men in Wisconsin (note the implied generalization across
years) is

130.65 ± 1.96

√
130.65

309,972
× 100,000 = 130.65 ± 12.7 per 100,000

It should be noted that this confidence interval takes into account only the
variability predicted from the Poisson distribution, not variability between years
caused by mortality trends or other changes in circumstances (e.g., age shift within
the age group). If there is nonconstancy of the rate between years due to other
factors, the interval will be too narrow to capture the true rate 95% of the time.
Comparing mortality across 19 years, we found that after adjusting for a downward
trend in mortality in the age and sex group, the above standard error was fairly
similar to estimated year-to-year variability.

Tests for comparing two rates can be based on the same types of standard
errors.

14.1.1 Relationship Between Rate and Risk

It is useful to consider how rate is related to the risk of a person having an event
in a given time period. We can start by constructing the probability that a person
will not have an event during time period t. When the assumptions of the Poisson
distribution holds, the probability of no events during t person time units (i.e. for
duration t for one person) is

Prob(0) = (λt)0 exp(−λt)

0!
= exp(−λt)

This is the probability of no event, or “event-free survival” to time t , so the
complementary probability of at least one event (the risk) is
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1 − Prob(0) = 1 − exp(−λt) (14.1)

Expression (14.1) provides the connection between rate and risk in the situa-
tion when the assumptions of the Poisson distribution hold. The function S(t) =
exp(−λt) describing the probability of no events until time t is often referred to as
an exponential survival function. It can be used in analyses where one compares
survival of patients receiving treatments, or in studying the longevity of equip-
ment, as long as the rate λ is constant. This assumption rarely holds for a long
time period, but can be a good approximation for short subintervals.

With the cancer rate for men aged 45–54 in 1996 being 130.65 per 100,000,
the probability for a person to die from cancer within 10 years is with the above
assumption

1 − exp(−10 × 130.65/100,000) = 1.30%

As the cancer mortality rate is 1.31%, per 10 years, we again see how risks are
similar to rates when they are low.

Both the binomial and the Poisson distribution deal with counts of events. When
the sample size giving rise to the events is large compared to the number of
events, the two are almost indistinguishable. We see that, for example, the bino-
mial variance for the number of events mπ(1 − π) is then ≈ mπ ≈ mr , which
is the Poisson variance, leading to very similar confidence intervals for the rate
and risk.

From (14.1) we see that − log(1 − π) = λ, so log(− log(1 − π)) = log(λ).

Hence, when the assumptions hold and follow-up time does not vary between
subjects, the log link for the rate and the complementary log(− log) for the binary
outcome give identical regression coefficients. This is true regardless of whether
the risk is small. When π is small, in addition log( π

1−π
) ≈ log(π), so that the link

for the risk also yields similar results as the log link for the corresponding rate. We
found already in Chapter 13 that for low π, logit and log(− log) links are similar.

14.2 REGRESSION ANALYSIS

As the Poisson distribution is in the exponential family of distributions, we can
rely on the framework of Chapter 12 to construct likelihoods. We see in Table 12.1
that b(θ) = exp(θ). It then follows that b′(θ) = exp(θ) and that b′′(θ) = exp(θ)

as well. Since the dispersion parameter φ equals 1, (as indicated in Table 12.1),
µ = exp(θ) and Var(y) = µ. The canonical link b′−1

(µ) equals log(µ).
For the Poisson distribution there is a happy coincidence that the logarithmic

function is the canonical link and that investigators are usually interested in ratios
of rates. We will see below that with the log link, the regression parameters will be
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logarithms of rate ratios (just as the logit link for binary data provided logarithms
of odds ratios).

It follows from the log likelihood for the exponential family that for the Poisson
distribution the part of the likelihood that depends on λ (and therefore contributes
to the estimating equations) is

log(L) =
∑(

{yiθ − b(θ)}/a(φ)
)

=
∑

{yi log(λiti ) − exp(log(λi ti ))}

=
∑(

yi log(λiti ) − (λi ti )
)

The deviance is the difference in −2 log(L)φ computed with an estimator of λi

and with λiti replaced by the “perfectly fitting” observed values yi . Hence

2 log(Lperfect) − 2 log(Lfitted)

= 2
∑(

yi log(yi) − yi

)
− 2

∑(
yi log(λ̂i ti ) − (λ̂i ti )

)

= 2
∑(

yi log

(
yi

λ̂i ti

)
− (yi − λ̂i ti )

)

Just as in the binomial case, the deviance can be used to check the fit of the
model, if the observations are in subsets that do not increase in number with the total
number of events or follow-up time. Alternatively, the classical Pearson chi-square
can be used:

χ2(n − k) =
∑ (yi − λ̂i ti )

2

λ̂i ti

where k is the number of parameters in the model. Similarly to the binomial case,
this test compares the observed and expected (under Poisson) variability in counts.

Let the link function h(µi) be expressed as

h(µi) = h(λit) = log(λit) = β0 + β1x1i + · · · (14.2)

This implies that

µi = λit = h−1(β0 + β1x1i + · · · ) = exp(β0 + β1x1i + · · · )

However, in practice it is often the case that t is not the same for all observations.
Typically, the geographic areas in the analysis may have unequal population sizes,
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or individuals being followed are in the study for varying lengths of time. It is
therefore common to model λ instead of µ and replace (13.2) by

h(µi) = h(λti) = log(λti) = log(λ) + log(ti) so

log(λi) = − log(ti) + β0 + β1x1i + · · ·

The quantity log(ti) is referred to as an off-set. It can be viewed as an observed
predictor with known regression coefficient = 1.

Following the development for canonical links, the estimating (score) equations
for the Poisson are given by the matrix equation


 1 1 · · · 1

x11 x12 · · · x1n

· · · · · · · · · · · ·










y1
...

yn


 −




exp(log(t1) + β0 + β1x11 · · · )
...

exp(log(tn) + β0 + β1x1n · · · )





 = 0

14.3 EXAMPLE WITH CANCER MORTALITY RATES

We consider the relationship of total cancer-related mortality in Wisconsin in 1996
to age and sex. Data were obtained from CDC WONDER [75] in 10-year age
groups starting at age 35 years. The variable AGEM was created to designate the
age groups. We found that the relationship of log(rate) and log(age − 30) was nearly
linear, as shown in the first plot in OUTPUT PACKET XV, and that there was
an interaction effect between log(age − 30) and sex. This interaction is explained
by breast cancers occurring at a young age among women, while men have higher
rates of other cancers, such as lung cancer, later in life. An offset variable LPOP
was created as the log of the population in the relevant age by sex group, and the
following commands were run:

LAGE=LOG(MAGE-30);
RATE=100000*DTS/POP;
LRATE=LOG(RATE);
PROC PLOT; PLOT LRATE*LAGE=SEX;
PROC GENMOD; CLASS SEX;
MODEL DTS=LAGE SEX*LAGE SEX/DIST=POISSON OFFSET=LPOP;
OUT=PP P=PRED;
DATA C; SET PP;
PRED=100000*PRED/POP;
PROC PRINT; VAR AGEM RATE PRED

The last set of commands created a printout showing how observed and predicted
rates agree. Coefficients and standard errors are in Table 14.1, and we see that
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predicted values are obtained by the formula

pred = exp[− log(pop) − 14.5 + (2.68 − 0.531(female))

× log(age − 30) + 1.52(female))]

Since the prediction is for the number of deaths, we convert it to a rate comparable
with the observed rate. Rate ratios between genders and ages are obtained from
the coefficients, and are somewhat complicated by the nonlinearity and interaction
effects. For males we obtain, for example, that the rate ratio between ages 60 and
50 is given by

exp[2.68(log(30) − log(20))] = exp[2.68 × 0.4055] = 2.97

We can also obtain rate ratios by the ESTIMATE command. For example, to
obtain a rate ratio between ages 60 and 50, we can insert the multiplier 0.4055 and
use the command

ESTIMATE ‘RR BETWEEN AGES 60 AND 50’ LAGE 0.4055/EXP;

SAS style in dealing with main effects that also have interaction effects involving
class variable is to average the interaction effect in equal proportion across classes.
This yields the rate ratio 2.66 [2.62, 2.72]. Often, the easiest way around these
types of decisions by SAS is to bypass the CLASS feature and create one’s own
indicator variables.

Finally, we see that the model has significant deviance and Pearson χ2(8) statis-
tics, both with p < 0.0001. This can be due to lack of fit of the model for rate on
age (nonlinearity) or due to the data not following the Poisson distribution. Since
the observed and expected rates do not have systematic differences, we conjec-
ture that the reason for lack of fit is variability beyond Poisson at the different
ages or between genders. We will further examine the effect of such variability in
Section 14.3.

14.3.1 Example with Hospitalization of Infants

We look at the rehospitalization rate of very-low-birth-weight infants in the first year
of life. The number of hospitalizations (not counting the initial NICU stay) is given
in OUTPUT PACKET XV. We see that while the majority of infants do not get
rehospitalized, up to seven rehospitalizations took place. The subsequent analysis
shows the fraction of the first year that the infant was at risk. Differences between
infants arose, because they could not, by definition, become rehospitalized before
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they were discharged from the initial stay. The third analysis shows the results of
Poisson regression. The commands run were

LTIME=LOG(TIME);
BWC=BW-1000; PROC CHART; HBAR NHOSP/DISCRETE;
PROC UNIVARIATE PLOT; VAR TIME;
PROC GENMOD;
MODEL NHOSP=BWC/DIST=POISSON OFFSET=LTIME;
ESTIMATE ‘RATE RATIO’ BW 100/EXP;

LINK=LOG could be specified, but is the default for the Poisson. Here, the
variable TIME is used to create the offset (in this case the unit is years) as discussed
above. We see from the output that birth weight in grams was predictive of the
number of hospitalizations. To interpret the regression coefficient, we exponentiate
it (either by hand or by using the ESTIMATE command). We see that for a 100 g
increase in birth weight, the rate ratio is exp(100×(−0.0018)) = 0.84. This means
that the rate of rehospitalization is 0.84 times less for every 100 g increase in birth
weight. The confidence interval for this ratio is given [exp(100 × (−0.0025)) =
0.78, exp(100 ∗ (−0.0010)) = 0.90] or [0.78, 0.90]. These were obtained by the
last statement with greater precision.

As usual, the fitting of a link function with a continuous predictor involves a
linearity assumption. In this case, the assumption implies that the difference in
the log rate stays constant with every unit increase in the predictor, or, equiva-
lently, that the rate ratio stays constant. Because the predictor BW is continuous,
we cannot assign p-values to the deviance and Pearson statistics in this case. The
assumption can instead be checked in a few other ways. A plot similar to the one
for cancer mortality can be generated for the log rate by birth weight groups. Other
approaches are to fit indicator variables for birth-weight groups and look at the
coefficient and fitting additional polynomial terms. Various residual plots can also
be generated. For example, adding the commands

OUTPUT OUT=RR STDRESDEV=RESID P=PRED
PLOT RESID*PRED;

generates a residual plot of “deviance residuals” (the individual pieces in the
deviance). As can be seen in OUTPUT PACKET XV, these residuals tend to
be more difficult to interpret than those from ordinary regression.

14.4 OVERDISPERSION

It is very often the case with Poisson data, such as those in the above examples,
that the assumption of independence of events leading to the mean equals variance
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property of the Poisson distribution is hardly believable. For example, there are
many factors both known and unknown that make one infant be hospitalized repeat-
edly, while another is hospitalized once or not at all. It is even possible that one
hospitalization may lead to another due to iatrogenic complications. Similarly, there
may be unknown factors that influence cancer rate variation between age groups.
For example, different types of cancer predominate at different ages. These types
of circumstances lead to the variance of the counts being greater than expected
based on the Poisson distribution. It is therefore known as overdispersion. The
consequence of overdispersion is that standard errors of regression coefficients
are underestimated, and significance over estimated by assuming that the Poisson
mean-variance relationship holds.

Several approaches are available for dealing with overdispersion. First of all,
it is advisable to avoid aggregation of data as far as possible. Retaining the
smallest possible units with their individual covariates tends to reduce the prob-
lem of overdispersion. We discuss three other approaches and apply them to our
data sets.

14.4.1 Fitting a Dispersion Parameter

One solution to the problem of overdispersion is to fit a dispersion parameter in the
generalized linear model. This is achieved by the SCALE options in PROC GEN-
MOD. Specifying a different scale does not change parameter estimates. However,
because it is now assumed that the variance function is φµ (in the case of Poisson),
standard errors of the parameters are multiplied by

√
φ (i.e., the SCALE parameter

in the GENMOD output). Scaled χ2 statistics are divided by φ. With overdisper-
sion, taking φ into account can lead to sharply increased standard errors and reduce
the significance of coefficients.

There are several methods for estimating the dispersion parameter. Perhaps the
most popular is estimation by Pearson residuals. This is the Pearson chi-square
divided by degrees of freedom or

φ̂ =
∑ (yi − µ̂i)

2

µ̂i

/(n − k)

where k is the number of parameters fit. As you can see, this quantity is almost
like the mean square error from the residuals of the model, except each squared
residual is divided by the mean, which equals the variance under the Poisson
assumptions. Because we then have a quantity based on the ratio of observed to
assumed variance, overdispersion is a fitting name if the estimated φ̂ is greater
than 1.

The Pearson dispersion parameter estimate is obtained by

PROC GENMOD;
MODEL y = VAR1....... / DIST=POISSON PSCALE;
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PSCALE can be replaced by DSCALE to obtain the deviance-based dispersion
parameter adjustments.

14.4.2 Fitting a Different Distribution

Sometimes, a distribution can be found that would be expected to fit the data
and that has an increase in variance as the mean increases. The negative binomial
distribution is such an alternative. PROC GENMOD can fit a version of the negative
binomial where the variance depends on the mean through a quadratic relationship,
that is,

Var(y) = µ + νµ2

The parameter ν is called the “dispersion”, but as we can see, it is not equivalent
to φ. The negative binomial is not in the exponential family, but PROC GENMOD
fits the model by maximum likelihood. The default link is still the log, so the
offset and the interpretation of parameters is the same as for the Poisson. The
negative binomial is available as a choice in SAS version 8 as DIST=NB by using
the commands

PROC GENMOD;
MODEL y = VAR1....... / DIST=NB;

14.4.3 Using Robust Standard Errors

Just as we did in the ordinary regression case by PROC MIXED, we can use PROC
GENMOD to implement empirical-type standard errors based on ordinary residu-
als, instead of using model-based standard errors. We do not derive the formula
here, because it involves Taylor expansion and demonstrating that the approxi-
mation becomes increasingly accurate for large n. For the canonical link (log for
Poisson) the empirical or “robust” variance of the regression coefficient estimators
is given by

Var(β̂) = (X′X)−1(X′ε̂ε̂′
X)(X′X)−1

where ε̂ is a diagonal matrix with residuals (yi −exp(β̂0 + β̂1x1i · · · )) on diagonal.
In SAS, GENMOD can be “tricked” similarly to PROC MIXED by the statements

PROC GENMOD; CLASS ID;
MODEL y = VAR1....... / DIST=POISSON;
REPEATED SUBJECT=ID;

PROC GENMOD differs from PROC MIXED in not having a “/” in front of
the “SUBJECT” option. The desired standard errors are found in the second half
of the resulting output under “Analysis of GEE Parameter Estimates—Empirical
Standard Error Estimates.”
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14.4.4 Applying Adjustments for Over Dispersion to the Examples

Table 14.1 displays the coefficients and various standard errors for the cancer mor-
tality example. The regression coefficient estimates are identical for all cases except
the negative binomial, but they were very close even in this case and are not
separately provided below (they are in OUTPUT PACKET XV).

There is definitely evidence of overdispersion in the data set. The standard error
estimates are quite similar with all methods that take overdispersion into account.
This is because the data are grouped, and the sample size is very large. We note,
however, that the negative binomial does not seem to appropriately model the
variance structure in these data.

A similar table (Table 14.2) is provided below for the infant hospitalization
model.

Results of the adjustments are similar, with the exception of the DSCALE
approach. Our preference is the empirical option, but we are not aware of studies
that have systematically compared the different options for adjusting for overdis-
persion.

Finally, overdispersion is often reduced when additional variables are added
to the model. In the infant hospitalization example, improvements were not dra-
matic because a full model (not shown) including many clinical conditions of the
neonate estimated the scale to be 1.42 by the Pearson method and 1.16 by the
deviance method.

Table 14.1 Standard Errors for Wisconsin Cancer Mortality in 1996 Model, Taking
Overdispersion into Account

Predictor β̂ Poisson dscale pscale nb Empirical

Intercept −14.5 0.140 0.324 0.324 0.240 0.314
log(age − 30) 2.68 0.0378 0.0878 0.0878 0.0670 0.0823
female 1.53 0.193 0.449 0.449 0.321 0.448
log(age − 30) × female −0.531 0.0522 0.121 0.121 0.0899 0.117
scale/dispersion 1 2.32 2.32 0.048

Table 14.2 Standard Errors for Infant Hospitalization Model, Taking
Overdispersion into Account

Predictor β̂ Poisson dscale pscale nb Empirical

Intercept −0.268 0.0721 0.113 0.0913 0.119 0.112
Birth weight −0.0018 0.0003 0.0004 0.0004 0.0005 0.004
Scale/dispersion 1 1.27 1.57 2.55
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OUTPUT PACKET XV: POISSON REGRESSION

XV.1. Analysis of Cancer Mortality, Wisconsin 1996

Analysis of Wisconsin Cancer Mortality in 1996

lrate |
      |
  8.0 +
      |                                                   M
      |
      |
  7.5 +                                               M
      |
      |                                                   F
      |
  7.0 +                                          M    F
      |
      |
      |
  6.5 +                                          F
      |
      |
      |                                   M
  6.0 +
      |
      |                                   F
      |
  5.5 +
      |
      |
      |
  5.0 +
      |                         M
      |
      |
  4.5 +
      |
      |
      |
  4.0 +
      |
      |        F
      |
  3.5 +
      |        M
      |
      |
  3.0 +
      |

--+-----------+-----------+-----------+-----------+-----------+-
       2.0         2.5         3.0         3.5         4.0         4.5

log(age-30) 

Note: 1 obs hidden.

Plot of lrate*lage: log of rate per 10000 versus log(age − 30). Symbol is value of sex.
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Poisson Regression
The GENMOD Procedure

Model Information

Data set WORK.B
Distribution Poisson
Link function Log
Dependent variable dts Number of cancer deaths
Offset variable lpop
Observations used 12

Class Level Information

Class Levels Values

sex 2 F M

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 8 43.1814 5.3977
Scaled deviance 8 43.1814 5.3977
Pearson chi-square 8 43.2141 5.4018
Scaled Pearson X2 8 43.2141 5.4018
Log likelihood 62701.4074

aAlgorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Chi-Square
Parameter DF Estimate Error Confidence Limits

Intercept 1 −14.5184 0.1395 −14.7918 −14.2450 10833.4
lage 1 2.6826 0.0378 2.6086 2.7566 5043.01
sex F 1 1.5275 0.1933 1.1488 1.9063 62.48
sex M 0 0.0000 0.0000 0.0000 0.0000 .
lage*sex F 1 −0.5313 0.0522 −0.6337 −0.4290 103.53
lage*sex M 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000
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Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <.0001
lage <.0001
sex F <.0001
sex M .
lage*sex F <.0001
lage*sex M .
Scale

Note: The scale parameter was held fixed.

Contrast Estimate Results

Standard
Label Estimate Error Alpha Confidence Limits

RR age 60 vs. 50 0.9801 0.0106 0.05 0.9593 1.0008
Exp(RR age 60 vs. 50) 2.6646 0.0282 0.05 2.6099 2.7205

Contrast Estimate Results

Label Chi-Square Pr > ChiSq

RR age 60 vs. 50 8569.2 <0.0001
Exp(RR age 60 vs. 50)

Rate Observed Versus Rate Predicted by
Poisson Regression

Observed Sex agem Rate Predicted

1 M 40 29.02 23.84
2 M 50 130.65 153.07
3 M 60 457.02 454.21
4 M 70 1036.21 982.69
5 M 80 1768.68 1788.09
6 M 90 2799.60 2916.08
7 F 40 40.03 32.32
8 F 50 124.37 143.55
9 F 60 328.47 343.43

10 F 70 667.61 637.70
11 F 80 1055.09 1030.61
12 F 90 1470.87 1525.58
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XV.2. Hospitalization of VLBW Infants—Newborn Lung Project

Rehospitalization of VLBW Infants—Newborn Lung Project
Distribution of Number of Hospitalizations per Infant

nhosp                                     Cum.              Cum.
                                    Freq. Freq.  Percent  Percent
        |
    0   |*************************   245   245    71.01    71.01
        |
    1   |*****                        54   299    15.65    86.67
        |
    2   |***                          25   324     7.25    93.91
        |
    3   |*                            10   334     2.90    96.81
        |
    4   |                              3   337     0.87    97.68
        |
    5   |                              4   341     1.16    98.84
        |
    6   |                              1   342     0.29    99.13

   |
    7   |                              3   345     0.87   100.00
        |

-----+----+----+----+----+
             50  100  150  200  250

                 Frequency

Distribution of Time at Risk (unit = year)
The UNIVARIATE Procedure

Variable: time

Moments

N 345 Sum of weights 345
Mean 0.82533254 Sum of observations 284.739726
Std deviation 0.08101985 Variance 0.00656422
Skewness −1.4165375 Kurtosis 3.87385908
Uncorrected SS 237.263051 Corrected SS 2.25809013
Coeff variation 9.81663057 Standard error of mean 0.00436196

Basic Statistical Measures

Location Variability

Mean 0.825333 Standard deviation 0.08102
Median 0.841096 Variance 0.00656
Mode 0.849315 Range 0.58630

Interquartile range 0.09589
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Quantile Estimate

100% Max 1.000000
99% 0.950685

95% 0.928767
90% 0.909589
75% Q3 0.879452
50% Median 0.841096
25% Q1 0.783562
10% 0.720548
5% 0.687671
1% 0.490411
0% Min 0.413699

                Histogram                  #             Boxplot
1.025+*                                     1                |
    .**                                    4                |
    .*****************                    49                |
    .*******************************      92             +-----+
    .*********************************    97             *--+--*
    .****************                     46             +-----+

0.725+***********                          33                |
    .******                               16                |
    .*                                     2                0
    .
    .*                                     1                0
    .*                                     3                *

0.425+*                                     1                *
----+----+----+----+----+----+---

     *May represent up to 3 counts

Poisson Regression
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Poisson
Link function Log
Dependent variable nhosp
Offset variable ltime
Observations used 345

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 343 550.8603 1.6060
Scaled deviance 343 550.8603 1.6060
Pearson chi-square 343 841.5825 2.4536
Scaled Pearson X2 343 841.5825 2.4536
Log likelihood −300.3755
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Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −0.2678 0.0721 −0.4091 −0.1266 13.81
bwc 1 −0.0018 0.0003 −0.0023 −0.0012 37.75
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.0002
bw <0.0001
Scale

Contrast Estimate Results

Standard
Label Estimate Error Alpha Confidence Limits

RATE RATIO −0.1762 0.0287 0.05 −0.2324 −0.1200
Exp(RATE RATIO) 0.8385 0.0240 0.05 0.7926 0.8869
RATE at 1000 g −0.2678 0.0721 0.05 −0.4091 −0.1266
Exp(RATE at 1000 g) 0.7650 0.0551 0.05 0.6642 0.8811

Contrast Estimate Results

Label Chi-Square Pr > ChiSq

RATE RATIO 37.75 <0.0001
Exp(RATE RATIO)
RATE at 1000 g 13.81 0.0002
Exp(RATE at 1000 g)
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Deviance Residuals Versus Predicted Values
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Note: 1 obs hidden.

Plot of resid*pred. Legend: A = 1 obs, B = 2 obs, and so on.
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OUTPUT PACKET XVI: DEALING WITH OVERDISPERSION IN RATES

XVI.1. Four Methods Applied to Wisconsin Cancer Mortality in 1996

Overdispersion in Wisconsin Cancer Mortality in 1996
Poisson Regression with Deviance Overdispersion

The GENMOD Procedure

Model Information

Data set WORK.B
Distribution Poisson
Link function Log
Dependent variable dts Number of cancer deaths
Offset variable lpop
Observations used 12

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 8 43.1814 5.3977
Scaled deviance 8 8.0000 1.0000
Pearson chi-square 8 43.2141 5.4018
Scaled Pearson X2 8 8.0061 1.0008
Log likelihood 11616.3719

Analysis of Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 −14.5184 0.3241 −15.1536 −13.8832 2007.05
lage 1 2.6826 0.0878 2.5106 2.8546 934.29
sex F 1 1.5275 0.4490 0.6475 2.4075 11.57
sex M 0 0.0000 0.0000 0.0000 0.0000 .
lage*sex F 1 −0.5313 0.1213 −0.7691 −0.2935 19.18
lage*sex M 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 2.3233 0.0000 2.3233 2.3233
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Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <.0001
lage <.0001
sex F 0.0007
sex M .
lage*sex F <.0001

Note: The scale parameter was estimated
by the square root of DEVIANCE/DOF.

Poisson Regression with Pearson Overdispersion
The GENMOD Procedure

Model Information

Data set WORK.B
Distribution Poisson
Link function Log
Dependent variable dts Number of cancer deaths
Offset variable lpop
Observations used 12

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 8 43.1814 5.3977
Scaled deviance 8 7.9939 0.9992
Pearson Chi-square 8 43.2141 5.4018
Scaled Pearson X2 8 8.0000 1.0000
Log likelihood 11607.5850

Analysis of Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 −14.5184 0.3242 −15.1538 −13.8830 2005.53
lage 1 2.6826 0.0878 2.5105 2.8547 933.59
sex F 1 1.5275 0.4492 0.6472 2.4078 11.57
sex M 0 0.0000 0.0000 0.0000 0.0000 .
lage*sex F 1 −0.5313 0.1214 −0.7692 −0.2934 19.17
lage*sex M 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 2.3242 0.0000 2.3242 2.3242
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Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
lage <0.0001
sex F 0.0007
sex M .
lage*sex F <0.0001

Note: The scale parameter was estimated by
the square root of Pearson’s chi-square/DOF.

Negative Binomial Regression
The GENMOD Procedure

Model Information

Data set WORK.B
Distribution Negative binomial
Link function Log
Dependent variable dts Number of cancer

deaths
Offset variable lpop
Observations used 12

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 8 14.0236 1.7530
Scaled deviance 8 14.0236 1.7530
Pearson chi-square 8 13.6014 1.7002
Scaled Pearson X2 8 13.6014 1.7002
Log likelihood 62706.9634

Analysis of Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 −14.3718 0.2398 −14.8418 −13.9018 3591.55
lage 1 2.6400 0.0670 2.5087 2.7714 1551.16
sex F 1 1.5640 0.3209 0.9351 2.1930 23.75
sex M 0 0.0000 0.0000 0.0000 0.0000 .
lage*sex F 1 −0.5407 0.0899 −0.7168 −0.3645 36.20
lage*sex M 0 0.0000 0.0000 0.0000 0.0000 .
Dispersion 1 0.0048 0.0032 0.0013 0.0177
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Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
lage <0.0001
sex F <0.0001
sex M .
lage*sex F <.0001

Note: The negative binomial dispersion parameter
was estimated by maximum likelihood.

Robust Variance
The GENMOD Procedure

Model Information

Data set WORK.B
Distribution Poisson
Link function Log
Dependent variable dts Number of cancer deaths
Offset variable lpop
Observations used 12

Criteria For Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 8 43.1814 5.3977
Scaled deviance 8 43.1814 5.3977
Pearson chi-square 8 43.2141 5.4018
Scaled Pearson X2 8 43.2141 5.4018
Log likelihood 62701.4074

Analysis of Initial Parameter Estimates

Standard Wald 95%
Parameter DF Estimate Error Confidence Limits Chi-Square

Intercept 1 −14.5184 0.1395 −14.7918 −14.2450 10833.4
lage 1 2.6826 0.0378 2.6086 2.7566 5043.01
sex F 1 1.5275 0.1933 1.1488 1.9063 62.48
sex M 0 0.0000 0.0000 0.0000 0.0000 .
lage*sex F 1 −0.5313 0.0522 −0.6337 −0.4290 103.53
lage*sex M 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000
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Analysis of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept −14.5184 0.3141 −15.1340 −13.9028 −46.23 <0.0001
lage 2.6826 0.0823 2.5212 2.8440 32.58 <0.0001
sex F 1.5275 0.4483 0.6489 2.4061 3.41 0.0007
sex M 0.0000 0.0000 0.0000 0.0000 . .
lage*sex F −0.5313 0.1173 −0.7613 −0.3014 −4.53 <0.0001
lage*sex M 0.0000 0.0000 0.0000 0.0000 . .

XVI.1 Four Methods Applied to Rehospitalization of VLBW Infants

Overdispersion in Rehospitalization of VLBW Infants
Deviance-Based Overdispersion Correction

The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Poisson
Link Function Log
Dependent variable nhosp
Offset variable ltime
Observations used 345

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 343 550.8603 1.6060
Scaled deviance 343 343.0000 1.0000
Pearson chi-square 343 841.5825 2.4536
Scaled Pearson X2 343 524.0218 1.5278
Log likelihood −187.0325

aAlgorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −0.2678 0.0913 −0.4469 −0.0888 8.60
bwc 1 −0.0018 0.0004 −0.0025 −0.0010 23.50
Scale 0 1.2673 0.0000 1.2673 1.2673
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Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.0034
bwc < 0.0001
Scale

Note: The scale parameter was estimated
by the square root of DEVIANCE/DOF.

Pearson Based Overdispersion Correction
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Poisson
Link function Log
Dependent variable nhosp
Offset variable ltime
Observations used 345

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 343 550.8603 1.6060
Scaled deviance 343 224.5116 0.6546
Pearson chi-square 343 841.5825 2.4536
Scaled Pearson X2 343 343.0000 1.0000
Log likelihood −122.4227

aAlgorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −0.2678 0.1129 −0.4891 −0.0465 5.63
bwc 1 −0.0018 0.0004 −0.0026 −0.0009 15.38
Scale 0 1.5664 0.0000 1.5664 1.5664

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.0177
bwc <0.0001
Scale

Note: The scale parameter was estimated by
the square root of Pearson’s chi-square/DOF.
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Fitting Negative Binomial Distribution
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Negative Binomial
Link function Log
Dependent variable nhosp
Offset variable ltime
Observations used 345

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 343 243.7728 0.7107
Scaled deviance 343 243.7728 0.7107
Pearson chi-square 343 354.6229 1.0339
Scaled Pearson X2 343 354.6229 1.0339
Log likelihood −243.6425

aAlgorithm converged.

Analysis of Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −0.2391 0.1187 −0.4717 −0.0065 4.06
bwc 1 −0.0017 0.0005 −0.0026 −0.0008 14.33
Dispersion 1 2.5537 0.5054 1.7327 3.7638

Analysis of Parameter Estimates

Parameter Pr > ChiSq

Intercept 0.0440
bwc 0.0002
Dispersion

Note: The negative binomial dispersion parame-
ter was estimated by maximum likelihood.
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Robust (Empirical) Standard Errors
The GENMOD Procedure

Model Information

Data set WORK.A
Distribution Poisson
Link function Log
Dependent variable nhosp
Offset variable ltime
Observations used 345

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 343 550.8603 1.6060
Scaled deviance 343 550.8603 1.6060
Pearson chi-square 343 841.5825 2.4536
Scaled Pearson X2 343 841.5825 2.4536
Log likelihood −300.3755

Analysis of Initial Parameter Estimates

Standard Wald 95% Confidence
Parameter DF Estimate Error Limits Chi-Square

Intercept 1 −0.2678 0.0721 −0.4091 −0.1266 13.81
bwc 1 −0.0018 0.0003 −0.0023 −0.0012 37.75
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Initial Parameter
Estimates

Parameter Pr > ChiSq

Intercept 0.0002
bwc <0.0001
Scale
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GEE Model Information

Correlation structure Independent
Subject effect id (345 levels)
Number of clusters 345
Correlation matrix dimension 1
Maximum cluster size 1
Minimum cluster size 1

Analysis of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept −0.2678 0.1118 −0.4870 −0.0487 −2.40 0.0166
bwc −0.0018 0.0004 −0.0026 −0.0009 −4.11 <0.0001



C H A P T E R F I F T E E N

Modeling Correlated Outcomes
with Generalized Estimating
Equations

It is now time to bring two streams of development in this text together. Starting
from Chapter 8, we dealt with correlated data, but only when the residuals could
be assumed normally distributed. More recently, starting with Chapter 12, we dealt
with non-normally distributed data, but only in the situation where the observations
were independent. Obviously, it is very common to have both situation simultane-
ously. In the sleep cohort study, we may wish to model not only systolic blood
pressure, but also hypertensive medication use over time. In the very-low-birth-
weight cohort, we may wish to study how the rate of hospitalization changes with
age. These two are examples of longitudinal binary and Poisson data, respectively.

15.1 A BRIEF REVIEW AND REFORMULATION OF THE NORMAL
DISTRIBUTION, LEAST SQUARES AND LIKELIHOOD

When we encountered correlated normally distributed data, two approaches pre-
sented themselves. The first was a linear transformation allowing extension of
least-squares linear regression to correlated residuals. The theory of this approach
was delineated in Chapters 8 and 9. It works when we specify and estimate a vari-
ance matrix for the data. We showed that even if the variance matrix is not correctly
specified, the estimator β is still unbiased, and we had a fix-up called the empirical
variance to still obtain correct standard errors for the regression coefficients. If the
variance matrix is correct, the estimators are also minimum variance among those
that are unbiased linear transformations of Y , although we did not prove this for-
mally. In statistics there is a long history in working with least-squares estimators
and proving their properties.

Quantitative Methods in Population Health, by Mari Palta
ISBN 0-471-45505-9 Copyright c© 2003 John Wiley & Sons, Inc.

263



264 MODELING CORRELATED OUTCOMES WITH GENERALIZED ESTIMATING EQUATIONS

The second approach for normally distributed data is the maximum likelihood
approach. It can be applied even to correlated data, because the so-called “joint”
distribution generating all the data points can be specified as the multivariate normal
distribution. Whenever we have a distribution for all the data points, we can specify
a likelihood function and proceed along well-established lines constructing score
equations and obtaining standard errors of the estimators from the information
matrix. Maximum likelihood estimators have the most desirable properties of all
(such as efficiency), but only in large samples, and test statistics become χ2-
distributed. For example, we can’t usually say that maximum likelihood estimators
are unbiased (which is a small sample property), only that they are consistent.
This means that they will converge to the parameter value as the sample size n

goes to infinity. We also, in most cases, don’t know the sampling distributions of
maximum likelihood estimators in small samples, only that they and test statistics
become approximately normally or chi-square distributed in large samples. With
normally distributed residuals we can often do better than likelihood theory in
small samples by relying on special developments, such as unbiased estimators for
variance components, t- and F -tests.

The multivariate normal distribution was given in Chapter 8 as

fY (Y ) = 1

(2π)
k
2
√

detV
exp

[
−1

2
(Y − µ)′V −1(Y − µ)

]

In Chapter 8 we did not write the score equations arising from the multivari-
ate normal distribution. However, because we already know that the estimator is
[equation (8.2), replacing R by V to move away from PROC MIXED, REPEATED
statement notation]

β̂ =
(∑

X′
iV

−1
i Xi

)−1 ∑
X′

iV
−1
i Yi

we can infer (backwards) that the score equations are

∑
X′

iV
−1
i (Yi − Xi β̂) = 0

Because (in line with what we have seen in Chapter 12) the derivatives of each
element of Xi β̂ with respect to the elements of β̂ are (1, x1i , x2i , . . . ), the matrix
Xi is actually the matrix of derivatives from each data point for person i, and we
can write the score equations in the notation similar to that of Chapter 12 as

∑
D′

iV
−1
i (Yi − Xi β̂) =

∑
D′

iV
−1
i (Yi − µ̂i ) (15.1)

15.2 FURTHER DEVELOPMENTS FOR THE EXPONENTIAL FAMILY

The basic problem in generalizing developments such as the above is that there are
few convenient multivariate distributions corresponding to non-normal members
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of the exponential family. There are some, of course, and new formulations of
distributions are continually proposed in the literature. However, the mainstream
of analysis has moved away from the pure maximum likelihood approach and
looked at other options.

The first step in further development of Chapter 12 without specifying new
multivariate distributions is taking a close look at equation (12.6):

D′V −1(Y − µ̂) = 0 (15.2)

Equation (15.2), as we recall, contains the score equations for the exponential
family with arbitrary link function (i.e., when h is not necessarily the canonical
link). When we solve the equations, we, of course, obtain maximum likelihood
estimators for the regression parameters lurking inside the inverse link function.
The difference between equations (15.2) and (15.1) is that in (15.2) the data points
were assumed independent, so that V −1 is diagonal, and that µ contains the inverse
of the link function h so D′ contains s derivatives of that inverse besides the x’s.

The beauty of (15.2) is that the only traces that are left of the original dis-
tribution used to construct the likelihood equation in the first place are its mean
structure and its variance. All other quantities (e.g., its skewness and kurtosis)
do not matter for obtaining the maximum likelihood estimators. This is a rather
remarkable feature of the exponential family. Based on this observation, people
started thinking that if they had the two functions needed—h describing the link
between the mean and the regression equation, and g describing how the vari-
ance depends on the mean—they could just assume that (15.2) is a score equation
from a likelihood. One can even integrate (15.2) and come up with a likelihood
from a supposed distribution from the exponential family. Sometimes it turns out
to be a known distribution. The method of starting from (15.2) assuming that
the formula arose from a likelihood is referred to as quasi-likelihood [64]. When
people use that approach they take second derivatives to obtain standard errors
etc. Quasi-likelihood serves the purpose of taking us away from thinking we have
to know the distribution. It is closely related to least squares because we have
similar weighted estimating equations and have not made specific distributional
assumptions. As long as we think we are dealing with some type of likelihood,
we can form tests and obtain standard errors for large samples based on likelihood
theory.

Quasi-likelihood as usually developed still only deals with independent data.
However, looking at equation (15.1) and comparing it to (15.2), statisticians came
up with the further idea that they could be combined. After all, quasi-likelihood
had freed them from the need to specify distributions. Why not expand (15.2) to
look like (15.1) by making the variance be a matrix containing both variances and
covariances and then letting D have elements h

−1′(β0 + β1x1ij + · · · ) × x1ij . Note
that a subscript j has been added to indicate that there are now several observations
for each i. Assuming that observations from different individuals are independent
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(as we have done), we obtain

∑
D′

iV
−1
i (Yi − µi ) = 0 (15.3)

In these situations, it is common to separate the contributions of the correlation
and the variance to Vi by writing

Vi = A
1
2
i RiA

1
2
i

=




σ1 0 0 · · ·
0 σ2 0 · · ·
0 0 σ3 · · ·

· · · · · · · · · · · ·







1 ρ12 ρ13 · · ·
ρ12 1 ρ23 · · ·
ρ13 ρ23 1 · · ·
· · · · · · · · · · · ·







σ1 0 0 · · ·
0 σ2 0 · · ·
0 0 σ3 · · ·
· · · · · · · · · · · ·




We see that Ai is the matrix that has the variances of εij in the diagonal and A
1
2 i

has the square root of those variances (i.e., the standard deviations). The variances
on the diagonal of Ai are based on the relationship between the mean and the
variance. For example, if we are dealing with Poisson data, we have

σ 2
j = µij = exp(β0 + β1x1i + · · · )

Because of the uncertainty about variances in the situation with correlated data,
overdispersion is always taken into account in these situations. It happens auto-
matically with the equations used in estimating the standard errors (see below).
The equations contained in (15.3) in the case of correlated data are referred to as
generalized estimating equations (GEE ). Also, because we don’t know that Ri is
the true correlation matrix, whatever we specify for the estimation is referred to as
a working correlation matrix.

15.3 HOW ARE THE GENERALIZED ESTIMATING EQUATIONS
JUSTIFIED?

The above development is intuitively appealing, but somewhat ad hoc. Of course
it could not be used unless people had proven that the resulting estimators are
reasonable. We obviously can no longer depend on maximum likelihood to assure
us that things are OK. No distribution that gave rise to the estimating equations in
the correlated case may exist. Nor do we necessarily know that we have specified
the correct variance structure, even if a distribution with that structure existed and
lead to score equations that depended only on the mean and variance. Because
of this, the papers that originally introduced the above framework (the most well
known and most often cited being by Liang and Zeger [76]) proved that:

1. The estimators obtained by solving (15.3) are consistent as long as the mean
structure is correctly specified, and reasonable (converging as n becomes
large) estimators are plugged in for the variance parameters. However, it is
not necessary that the variance structure be correctly specified.



HOW ARE THE GENERALIZED ESTIMATING EQUATIONS JUSTIFIED? 267

2. In large samples the variance matrix of estimators obtained from (15.3) can
be estimated by

V̂β = V̂ar(β̂)

=
(∑

D′
iWiDi

)−1 (∑
D′

iWi ε̂i ε̂
′WiDi

) (∑
D′

iWiDi

)−1
(15.4)

where Wi is V −1
i with the working correlation.

Formula (15.4) is very similar to that of the empirical variance (8.5) used by
PROC MIXED and the one we used to adjust for overdispersion in Chapter 14.
When h is the identity link function, the empirical variance from PROC MIXED
and (15.4) are indeed the same. For other cases, Xi is replaced by Di that contains
the derivatives of the inverse link function, besides x. In this general case, ε̂ consists
of the elements

εij = yij − h−1(β0 + β1x1i + · · · )

Note that equation (15.4) does not explicitly include the dispersion parameter.
Rather, the “variance” is empirically obtained for each observation. In other words,∑

ε̂i ε̂
′
i is not obtained as a single estimator φ (and εi are the ordinary, not Pearson

or deviance, residuals).
It is important to note that although the results here look similar to those for the

multivariate normal distribution, all statements about the properties of the estimators
are prefaced in large samples. Instead of unbiasedness in the face of misspecifi-
cation of the variance structure, we have consistency; and the variance of the
regression parameters also holds only in large samples. Its derivation, in addition
to the formulas for variances for linear transformations we used before, contains
Taylor approximations that hold only in large samples. The actual way the param-
eters are estimated is beyond the scope here. As usual, an iterative least-squares
solution is employed.

We demonstrate the application and results of the above procedures in our lon-
gitudinal data sets with systolic blood pressure as an example of a variable with
normally distributed residuals, hypertension as an example of binary outcome, and
the number of hospitalizations at each age up to 5 years as an example of count data.

15.3.1 Analysis of Longitudinal Systolic Blood Pressure by PROC MIXED
and GENMOD

We start with a comparison of PROC MIXED and PROC GENMOD for fitting the
longitudinal (continuous) data on systolic blood pressure from the Wisconsin Sleep
Cohort. This is a normally distributed residual case with identity link function, and
we fit a compound symmetry correlation structure. (Although the AR(1) structure
fits better, the compound symmetry option makes the comparison of the procedures
more transparent.) In the context of generalized estimating equations, the compound
symmetry is often referred to as “exchangeable,” but GENMOD accepts either name
in its REPEATED statement. Not specifying a correlation structure for GENMOD
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in SAS version 8 leads to the independence option just as it does in PROC MIXED.
The commands we used for PROC MIXED were as usual, except that we requested
the ML method for greater comparability with GENMOD:

PROC MIXED NOCLPRINT EMPIRICAL METHOD=ML;
CLASSES ID SEX;
MODEL SBP=SEX AGEM AGED BMIC AGEM*BMIC/S;
REPEATED/SUBJECT=ID TYPE=CS RCORR;

For PROC GENMOD the commands were

PROC GENMOD; CLASSES ID SEX;
MODEL SBP=SEX AGEM AGED BMIC AGEM*BMIC;
REPEATED SUBJECT=ID/TYPE=CS CORRW;

In each case we requested the correlation matrix to be printed by the RCORR
and CORRW options, respectively. The output is in OUTPUT PACKET XVII. It
is important to notice that GENMOD has given two sets of analyses. The first
assumes that the data are independent. The likelihood, and so on, refer to that
case, and they are markedly different from the likelihood given by MIXED that
is based on the multivariate normal distribution with nonzero correlation between
residuals. The second part of the GENMOD output is based on the generalized
estimating equation (GEE) approach. For the normal case, the estimating equations
are actually (14.1) from the likelihood, but GENMOD does not acknowledge this.
Because GEE is generalized beyond the likelihood situation, no likelihood related
statistics are provided for the correlated analysis. We compare coefficients with the
CS option, empirical standard errors, and some other statistics in Table 15.1.

Comparing parameter estimates and standard errors from the second part of
GENMOD and MIXED, one sees that they are very similar, but not identical.
This is due to differences in algorithms used in fitting and of little consequence.
The −2 log(L) from GENMOD (=19,397) is comparable to the −2 log(REML)

Table 15.1 Comparing Results from PROC MIXED and PROC GENMOD for SBP

MIXED GENMOD

Intercept 126 (0.459) 126 (0.458)
Female −5.82 (0.659) −5.83 (0.659)
Age between (centered at 50) 0.419 (0.0451) 0.421 (0.0450)
Age within (centering cancels) −0.710 (0.104) −0.710 (0.104)
BMI (centered at 27) 0.678 (0.0551) 0.679 (0.0550)
Age between *BMI (centered) −0.0124 (0.00695) −0.0126 (0.0069)
within individual correlation 0.378 0.354
Total variance 71.0570 + 116.74 = 188 13.67422 = 187
Residual variance 116.74
−2 log(L) for CS model 19230.7
−2 log(L) with independence 2(9698.822)
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from PROC MIXED in Section 8.5.3 of 19,491.5. The SCALE parameter from
GENMOD and the residual from MIXED are fundamentally different as GENMOD
estimates the SCALE for the independence situation, and they do not separate out
the variance parameters. Rather the SCALE from GENMOD corresponds to the
square root of the total variance from PROC MIXED. It is clear that for the special
case of normally distributed residuals, PROC MIXED provides more information
than does PROC GENMOD.

15.3.2 Analysis of Longitudinal Hypertension Data by PROC GENMOD

Throughout this text, we have alluded to the fact that differences in the between-
and within-individual coefficients when regressing systolic blood pressure on age
were caused by an increase in taking hypertensive medications. We are now finally
in a position to analyze data on hypertension that take into account medication use.
Readers who might have thought all along that we could somehow have “adjusted”
analyses of SBP for medication use are referred to Heitjan and Landis [77] for a
discussion of the difficulties.

Hypertension status was determined by blood pressure (SBP ≥ 140 or DBP ≥
90) for individuals not taking hypertensive medication. All individuals on hyper-
tensive medication at a given visit were classified as hypertensive at that visit. The
longitudinal hypertension data were analyzed as hypertensive (HBP = 1) or not
(HBP = 0) by PROC GENMOD. We first confirm that the difference in within-
and between-individual coefficients is gone, by a procedure that is parallel to the
one we recommended in Chapter 9 (Chao, Palta, and Young [78] generalized the
approach to binary outcome data).

PROC GENMOD DESCENDING; CLASS ID SEX;
MODEL HBP=SEX AGEM AGED BMIC AGEM*BMIC/DIST=BINOMIAL;
REPEATED SUBJECT=ID/TYPE=CS;

Outputs are in OUTPUT PACKET XVII. The results show that both the coef-
ficient of mean age and the coefficient of the age by BMI interaction are now far
from significance and are also small in size compared to the main effects. Pos-
sibly, the interaction we found with continuous outcome was generated by more
obese older persons being more likely to receive hypertensive medication. The
longitudinal model for hypertension was therefore fit without these effects by the
commands:

PROC GENMOD DESCENDING; CLASS ID SEX;
MODEL HBP= SEX AGEC BMIC/DIST=BINOMIAL;
REPEATED SUBJECT=ID/TYPE=CS CORRW;

Again our attention will be directed to the second part of the output that
uses the empirical standard errors. Table 15.2 shows the independence-based and
correlation-corrected regression coefficients and standard errors.

We see that the standard errors are uniformly larger from the correlated analysis
than those assuming independence of observations. If the model fits well, we expect
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Table 15.2 β̂(Model se) for Independence and β̂ (Empirical se) for Compound
Symmetry

Independence Compound Symmetry

Intercept (age 50, BMI 27) −0.846 (0.637) −0.846 (0.0723)
Female −0.688 (0.0997) −0.633 (0.112)
Age (per year) 0.0506 (0.0059) 0.0529 (0.0065)
BMI 0.0965 (0.0075) 0.0923 (0.0085)

little difference in the estimates of the regression coefficients whether independence
(as in the first part of the output) or compound symmetry (second part) is used.
Finally, we see in the output that the correlation between the binary observations
for an individual is estimated at 0.322. It is common for binary outcomes to yield
lower correlation than the corresponding continuous outcomes.

15.3.2.1 Some Additional Adjustments
There is still a slight difference between coefficients based on the independence
and compound symmetry models, and we may want to make sure there is not bias
due to some individuals completing a larger number of visits.

We demonstrate one way to adjust for the number of visits by a so-called pattern
mixture approach [79,80]. We ran the following commands where the variable
NOBS is the number of visits completed by an individual centered at 1.77 (i.e.,
ki −1.77 in our usual notation). The centering was chosen, because 2 is the average
number of visits. We ran

PROC GENMOD DESCENDING; CLASS ID SEX;
MODEL HBP= SEX AGEC BMIC NOBS NOBS*SEX/DIST=BINOMIAL;
REPEATED SUBJECT=ID/TYPE=CS;

These commands have the effect of “adjusting” the effect of gender to the
“level of follow-up for the average person.” We have shown this to be an accept-
able procedure for adjusting for dropout in many situations [80]. Table 15.3 pro-
vides adjusted coefficients for the independence and compound symmetry models.
Finally, we also reapplied the survey weights discussed in Chapter 7. This is done
by a WEIGHT statement in GENMOD. Although GENMOD refers to the weights

Table 15.3 Adjusting for Number of Follow-up Visits and for Survey Weights

CS Adjusted with
IN Adjusted CS Adjusted Survey Weights

Intercept (age 50, BMI27) −0.883 (0.0747) −0.863 (0.0744) −0.943 (0.0844)
Female −0.602 (0.116) −0.587 (0.115) −0.491 (0.129)
Age (per year) 0.0503 (0.0059) 0.0530 (0.0065) 0.0578 (0.0073)
BMI 0.0961 (0.0075) 0.0921 (0.0085) 0.0901 (0.0097)
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as “scale weights,” their application leads to the desirable end result, as long as
the empirical GEE standard errors are chosen. (In fact the weights we applied in
PROC REG and PROC MIXED were also internally treated as scale weights.)

The coefficients of NOBS and its interaction hold no subject matter importance,
and they cannot be generalized to other situations. They just serve to adjust for
study dropout. We see that the adjustment for the number of visits has little effect
on odd analysis. Survey weights affect the coefficient of sex in the hypertension
analysis, although the effect of applying weights in the systolic blood pressure
analysis in Chapter 7 was moderate disguised the weight effect.

The regression coefficients are as always with the logit link interpreted as
log(odds ratios). The commands

ESTIMATE ‘PER DECADE’ AGEC 10/EXP;
ESTIMATE ‘PER UNIT BMI’ BMIC 1/EXP;
ESTIMATE ‘FEMALE’ SEX 1 -1/EXP;

were added to the run. These produce odds ratios and confidence intervals for the
associations of hypertension with a 10-year increase in age, with a unit increase
in BMI, and between females and males. Note how the last ESTIMATE statement
accommodates the fact that the variable SEX was declared in the CLASS statement.

We provide the odds ratios, 95% confidence intervals, and risk of hypertension
at age 50 and BMI 27 in Table 15.4. The odds ratios were obtained by ESTIMATE
commands, and the risk was obtain by

π̂0 = exp(β̂0)/(1 + exp(β̂0)) = exp(−0.943)/(1 + exp(−0.943)) = 0.280

The confidence intervals for this risk were obtained by the formula from Chapter 6
(also cf. formulas in Section 13.2),

Var[f (y)] ≈ [f ′(µy)]
2Var(y) = [0.280(1 − 0.280)]2 × (0.0844)2 = 0.000240

where the last quantity is the standard error of β̂0. Then se(π̂0) = √
0.00301 =

0.0174, and the confidence interval for the risk follows.

15.3.3 Analysis of Hospitalizations Among VLBW Children Up to Age 5

In the data set on very-low-birth-weight children, medical records were obtained up
to age 5, and all hospitalizations were recorded. Turning to a longitudinal analysis of

Table 15.4 Risk, Odds Ratios, and 95% Confidence
Intervals from Final Model

Hypertension risk (age 50, BMI 27) 0.280 [0.247, 0.313]
Odds ratio: female vs. male 0.612 [0.476, 0.788]
Odds ratio: for age (per decade) 1.783 [1.545, 2.058]
Odds ratio: for BMI (per unit) 1.094 [1.074, 1.115]
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the hospitalization data, OUTPUT PACKET XVIII first shows the total number of
hospitalizations at each age. It is clear that the majority of hospitalizations occurred
in infancy. A regression was fit to all years of follow-up by the commands

AGESQ=AGE**2;
BWC=BW-1000;
LTIME=LOG(TIME);
PROC GENMOD; CLASS ID;
MODEL NHOSP=AGE AGESQ BWC/DIST=POISSON OFFSET=LTIME;
REPEATED SUBJECT=ID/TYPE=CS CORRW;
ESTIMATE ‘BW/100G’ BW 100/EXP;
ESTIMATE ‘AGE 2 VS. 0’ AGE 2 AGESQ 4/EXP;
ESTIMATE ‘RATE AGE 0 1000G’ INTERCEPT/EXP;

This run tells GENMOD to use the compound symmetry correlation option.
The CORRW options asks GENMOD to print out the estimated correlation matrix.
Output is in OUTPUT PACKET XVIII. Again, the “initial estimates” do not take
correlation into account, and attention should be directed toward the second set
“GEE Parameter Estimates.” Table 15.5 shows a comparison of the longitudinal
results with those of modeling hospitalization only during the first year of life. In
both cases, we show the empirical standard errors produced by GENMOD.

Not much power was gained by the longitudinal analysis over using just the
first-year observations. This is because the number of hospitalization decreased
drastically with age. Of course, GEE has the unique advantage of allowing us to
include age as a covariate in the first place. We see that the hospitalization rate
decreased with age, but then flattened out. We used the ESTIMATE commands to
translate the model into the rate at age 0 and 1000 g birth weight, the rate ratio with
100 g increase in birth weight and the rate ratio between ages 2 and 0 (Table 15.6).
This used the commands

ESTIMATE ‘RR/100G’ BWC 100/EXP;
ESTIMATE ‘RR age 0 vs 2’ AGE 2 AGESQ 4/EXP;
ESTIMATE ‘ AGE 0, 1000 G’ INTERCEPT 1/EXP;

The 95% confidence intervals are automatically based on the empirical standard
errors. A point to be noted is that because all children are observed at the same
ages in the above analyses and since birth weight is a non-time-varying covariate,

Table 15.5 Regression Coefficients (Empirical se) for
Hospitalization of VLBW Children

First Year Only Up to Age 5

Intercept −0.268 (0.112) −0.278 (0.112)
Age −1.40 (0.166)
Age squared 0.246 (0.397)
Birth weight (g) −0.0018 (0.0004) −0.0015 (0.0004)
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Table 15.6 Rate and Rate Ratios (Empirical se) for
Hospitalization of VLBW Children

Rate at age 0, 1000 g 0.758 [0.609, 0.943]
Rate ratio age 2 vs. 0 0.162 [0.111, 0.236]
Rate ratio per 100 g birth
weight

0.859 [0.797, 0.927]

the issue of between- and within-individual effects does not enter. All age effects
are automatically within-individual effects.

The CORRW option estimates a correlation of 0.386 between years, but it should
be noted that the correlation matrix is not estimated very reliably by GEE. In addi-
tion, the correlation between binary or count variables is not the most interpretable
measure of association. There are alternative approaches that yield more meaningful
parameters of association between measurements.

15.4 ANOTHER WAY TO DEAL WITH CORRELATED BINARY DATA

A pure within-individual (i.e., pure longitudinal) analysis can be performed by
so-called conditional likelihood. With this approach, all comparisons are within-
individual, and non-time-varying covariates can only enter as interaction effects
with time-varying covariates. Conditional logistic regression is well known in epi-
demiologic applications with matched cases and controls [65]. PROC PHREG in
SAS can be tricked into doing conditional logistic regression. As an illustration, a
conditional logistic regression for the hypertension data can be run by

AGE10=AGE/10;
STATUS=2-HBP;
PROC PHREG NOSUMMARY;
MODEL STATUS*HBP(0)= AGE10 BMIC/TIES=DISCRETE RL;
STRATA ID;

The explanation of what this program does is beyond the scope here. Basically,
it just happens that the likelihood for grouped, stratified survival data coincides
with that for conditional logistic regression. The NOSUMMARY option prevents
the printing of all the IDs, much like the NOCLPRINT option in PROC MIXED.
The RL option leads to the printing of confidence intervals.

The odds ratios as computed by this procedure are compared with the corre-
sponding odds ratios from GENMOD based on Table 15.2. The conditional logistic
odds ratio for age was obtained by the above rescaling of age to be measured in
decades. Note the labeling “hazard ratio,” which implies that the exponentiated
coefficient is in fact a rate ratio. This is not the case, however, with “discrete” out-
comes as here, where the odds ratio is used as an approximation to the hazard ratio.

The results are in OUTPUT PACKET XIX. Table 15.7 illustrates the substantial
loss in power when cross-sectional information (e.g., comparison of people at dif-
ferent ages and BMI’s) is discarded. This leads to individuals who did not change
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Table 15.7 Odds Ratios [95% CI] from GEE and from
Conditional Logistic Regression

GEE Conditional Logistic

Age (per decade) 1.71 [1.50, 1.95] 3.16 [1.82, 5.48]
BMI 1.10 [1.08, 1.12] 1.04 [0.952, 1.14]

hypertension status not entering the analysis at all. In fact, BMI is no longer sig-
nificant. We note the much higher odds ratio for age with the conditional logistic
procedure. This partly due to the known discrepancy [65] that matched odds ratios
are higher than unmatched ones. This difference is difficult to operationalize, but
can be best understood in terms of the latent variable concept [81]. In this context,
conditional ratios, sometimes known as “subject-specific” odds ratios, are regres-
sion coefficients standardized to the within-individual standard deviation of the
outcome. GEE, also known as “marginal” or “population-averaged” coefficients,
are standardized to the standard deviation that includes between-individual vari-
ation. Neuhaus et al. [82] performed an extensive comparison of subject-specific
and population-averaged coefficients.

Finally, we have not covered here a whole host of procedures based on ran-
dom effects for generalized linear models. Such models differ quite fundamentally
from the GENMOD approach outlined above. Random effects models for binary
data, in fact, are closely related to the latent variable approach briefly introduced
in Chapter 12, because a continuous random effect will serve as a latent variable.
When independence of random effects from the covariates is satisfied, coefficients
from random effects models for binary data produce regression coefficients that
are, in principle, the same as those from conditional logistic regression. How-
ever, between-individual information is not discarded, and within- and between-
individual coefficients can differ just as with a marginal analysis [83].

Random effects models for generalized linear models with normally distributed
random effects can be fit in SAS by PROC NLMIXED. Pendergast et al. [84]
provides a broad review of the methods of this chapter and others.

OUTPUT PACKET XVII: MIXED VERSUS GENMOD FOR
LONGITUDINAL SBP AND HYPERTENSION DATA

XVII.1. Longitudinal Analysis with ML and Compound Symmetry

Analysis of sbp-MIXED vs. GENMOD—All Visits Wisconsin Sleep Cohort
Compound Symmetry with PROC MIXED

The Mixed Procedure
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Model Information

Data set WORK.AB
Dependent variable SBP
Covariance structure Compound symmetry
Subject effect id
Estimation method ML
Residual variance method Profile
Fixed effects SE method Empirical
Degrees-of-freedom method Between–within

Dimensions

Covariance parameters 2
Columns in X 7
Columns in Z 0
Subjects 1370
Maximum observations per subject 3
Observations used 2404
Observations not used 33
Total observations 2437

Estimated R Correlation: Matrix
for id S0001

Row Col1 Col2 Col3

1 1.0000 0.3784 0.3784
2 0.3784 1.0000 0.3784
3 0.3784 0.3784 1.0000

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

CS id 71.0570
Residual 116.74

Fit Statistics

−2 Log likelihood 19230.7
AIC (smaller is better) 19246.7
AICC (smaller is better) 19246.8
BIC (smaller is better) 19288.5
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Solution for Fixed Effects

Standard
Effect Sex Estimate Error DF t Value Pr > |t |
Intercept 125.55 0.4588 1367 273.67 <0.0001
sex F −5.8227 0.6590 1367 −8.84 <0.0001
sex M 0 . . . .
agem 0.4191 0.04508 1367 9.30 <0.0001
aged −0.7100 0.1044 1031 −6.80 <0.0001
bmic 0.6776 0.05509 1031 12.30 <0.0001
agem*bmic −0.01242 0.006953 1031 −1.79 0.0743

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

sex 1 1367 78.06 <0.0001
agem 1 1367 86.43 <0.0001
aged 1 1031 46.24 <0.0001
bmic 1 1031 151.26 <0.0001
agem*bmic 1 1031 3.19 0.0743

Compound Symmetry with PROC GENMOD
The GENMOD Procedure

Model Information

Data set WORK.AB
Distribution Normal
Link function Identity
Dependent variable SBP (Systolic blood pressure

in mmHg)
Observations used 2404
Missing values 33

Class Level Information

Class Levels Values

id 1374 S0001 S0003 S0005 S0007 S0008 S0009 S0012 S0013
S0014 S0017 S0018 S0019 S0020 S0021 S0022 S0023
S0027 S0028 S0031 S0032 S0035 S0036 S0037 S0038
S0039 S0040 S0042 S0046 S0049 S0050 S0051 S0053
S0054 S0055 S0057 S0061 S0062 S0065 S0066 S0067
S0071 S0072 ...

sex 2 F M
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Parameter Information

Parameter Effect Sex

Prm1 Intercept
Prm2 sex F
Prm3 sex M
Prm4 agem
Prm5 aged
Prm6 bmic
Prm7 agem*bmic

Criteria for Assessing Goodness of Fita

Criterion DF Value Value/DF

Deviance 2398 449511.3477 187.4526
Scaled deviance 2398 2404.0000 1.0025
Pearson chi-square 2398 449511.3477 187.4526
Scaled Pearson X2 2398 2404.0000 1.0025
Log likelihood −9698.8228

aAlgorithm converged.

Analysis of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square

Intercept 1 125.5403 0.3935 124.7690 126.3115 101772
sex F 1 −5.9850 0.5674 −7.0971 −4.8729 111.26
sex M 0 0.0000 0.0000 0.0000 0.0000 .
agem 1 0.4387 0.0397 0.3609 0.5164 122.37
aged 1 −0.7079 0.1195 −0.9422 −0.4737 35.08
bmic 1 0.7048 0.0455 0.6157 0.7938 240.45
agem*bmic 1 −0.0143 0.0057 −0.0255 −0.0031 6.25
Scale 1 13.6742 0.1972 13.2931 14.0663

Analysis of Initial Parameter
Estimates

Parameter Pr > ChiSq

Intercept <0.0001
sex F <0.0001
sex M .
agem <0.0001
aged <0.0001
bmic <0.0001
agem*bmic 0.0124
Scale

Note: The scale parameter was esti-
mated by maximum likelihood.
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GEE Model Informationa

Correlation structure Exchangeable
Subject effect id (1370 levels)
Number of clusters 1370
Clusters with missing values 33
Correlation matrix dimension 3
Maximum cluster size 3
Minimum cluster size 0

aAlgorithm converged.

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 0.3542 0.3542
Row2 0.3542 1.0000 0.3542
Row3 0.3542 0.3542 1.0000

Analysis of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept 125.5499 0.4584 124.6515 126.4482 273.91 <0.0001
sex F −5.8303 0.6589 −7.1216 −4.5389 −8.85 <0.0001
sex M 0.0000 0.0000 0.0000 0.0000 . .
agem 0.4205 0.0450 0.3322 0.5088 9.34 <0.0001
aged −0.7100 0.1044 −0.9147 −0.5053 −6.80 <0.0001
bmic 0.6791 0.0550 0.5713 0.7869 12.35 <0.0001
agem*bmic −0.0126 0.0069 −0.0262 0.0010 −1.81 0.0703

XVII.2. Analysis of Longitudinal Hypertension Data (Binary Outcome)

Analysis of Longitudinal Hypertension Data with GENMOD
Checking Model Fit by Including Mean Age

The GENMOD Procedure

Model Information

Data set WORK.AB
Distribution Binomial
Link function Logit
Dependent variable HBP
Observations used 2404
Missing values 1
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Class Level Information

Class Levels Values

id 1370 S0001 S0003 S0005 S0007 S0008 S0009 S0012 S0013
S0014 S0017 S0018 S0019 S0020 S0021 S0022 S0023
S0027 S0028 S0031 S0032 S0035 S0036 S0037 S0038
S0039 S0040 S0042 S0046 S0049 S0050 S0051 S0053
S0054 S0055 S0057 S0061 S0062 S0065 S0066 S0067
S0071 S0072 ...

sex 2 F M

Response Profilea

Ordered Total
Value HBP Frequency

1 1 752
2 0 1652

aPROC GENMOD is modeling
the probability that hbp = ‘1’.

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 2398 2677.8374 1.1167
Scaled deviance 2398 2677.8374 1.1167
Pearson chi-square 2398 2367.4793 0.9873
Scaled Pearson X2 2398 2367.4793 0.9873
Log likelihood −1338.9187

Analysis of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square

Intercept 1 −0.8352 0.0642 −0.9611 −0.7094 169.29
sex F 1 −0.6958 0.0998 −0.8914 −0.5001 48.58
sex M 0 0.0000 0.0000 0.0000 0.0000 .
agec 1 0.0591 0.0200 0.0200 0.0982 8.78
agem 1 −0.0027 0.0211 −0.0441 0.0386 0.02
bmic 1 0.0935 0.0077 0.0783 0.1086 146.55
agem*bmic 1 −0.0016 0.0010 −0.0036 0.0004 2.53
Scale 0 1.0000 0.0000 1.0000 1.0000
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GEE Model Information

Correlation structure Exchangeable
Subject effect id (1370 levels)
Number of clusters 1370
Clusters with missing values 1
Correlation matrix dimension 3
Maximum cluster size 3
Minimum cluster size 1

Analysis of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept −0.8361 0.0729 −0.9790 −0.6933 −11.47 <0.0001
sex F −0.6379 0.1119 −0.8573 −0.4185 −5.70 <0.0001
sex M 0.0000 0.0000 0.0000 0.0000 . .
agec 0.0589 0.0172 0.0252 0.0926 3.43 0.0006
agem −0.0015 0.0189 −0.0386 0.0357 −0.08 0.9388
bmic 0.0893 0.0088 0.0721 0.1065 10.19 <0.0001
agem*bmic −0.0014 0.0012 −0.0037 0.0009 −1.15 0.2485

Initial Model for Hypertension
The GENMOD Procedure

Model Information

Data set WORK.AB
Distribution Binomial
Link function Logit
Dependent variable HBP
Observations used 2404
Missing values 1

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 2400 2680.5704 1.1169
Scaled deviance 2400 2680.5704 1.1169
Pearson chi-square 2400 2360.3061 0.9835
Scaled Pearson X2 2400 2360.3061 0.9835
Log likelihood −1340.2852
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Analysis of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square

Intercept 1 −0.8464 0.0637 −0.9713 −0.7215 176.32
sex F 1 −0.6878 0.0997 −0.8832 −0.4924 47.59
sex M 0 0.0000 0.0000 0.0000 0.0000 .
agec 1 0.0506 0.0059 0.0391 0.0620 74.53
bmic 1 0.0965 0.0075 0.0817 0.1112 164.81
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of Initial Parameter Estimates

Parameter Pr > ChiSq

Intercept <0.0001
sex F <0.0001
sex M .
agec <0.0001
bmic <0.0001
Scale

Note: The scale parameter was held fixed.

GEE Model Information

Correlation structure Exchangeable
Subject effect id (1370 levels)
Number of clusters 1370
Clusters with missing values 1
Correlation matrix dimension 3
Maximum cluster size 3
Minimum cluster size 1

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 0.3216 0.3216
Row2 0.3216 1.0000 0.3216
Row3 0.3216 0.3216 1.0000
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Analysis of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept −0.8460 0.0723 −0.9877 −0.7043 −11.70 <0.0001
sex F −0.6328 0.1120 −0.8522 −0.4133 −5.65 <0.0001
sex M 0.0000 0.0000 0.0000 0.0000 . .
agec 0.0529 0.0065 0.0402 0.0656 8.18 <0.0001
bmic 0.0923 0.0085 0.0757 0.1090 10.90 <0.0001

XVII.3. Adjusting for Compliance and Survey Weights

Analysis of Longitudinal Hypertension Data with GENMOD
Adjusting for Number of Visits

The GENMOD Procedure

Model Information

Data set WORK.AB
Distribution Binomial
Link function Logit
Dependent variable HBP
Observations used 2404
Missing values 1

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 2398 2676.0363 1.1159
Scaled deviance 2398 2676.0363 1.1159
Pearson chi-square 2398 2354.3237 0.9818
Scaled Pearson X2 2398 2354.3237 0.9818
Log likelihood −1338.0182
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Analysis of Initial Parameter Estimates

Standard Wald 95% Chi-
Parameter DF Estimate Error Confidence Limits Square

Intercept 1 −0.8825 0.0695 −1.0186 −0.7463 161.37
sex F 1 −0.6020 0.1071 −0.8120 −0.3921 31.58
sex M 0 0.0000 0.0000 0.0000 0.0000 .
agec 1 0.0503 0.0059 0.0387 0.0619 72.40
bmic 1 0.0961 0.0075 0.0814 0.1109 163.42
nobs 1 0.1105 0.0818 −0.0499 0.2708 1.82
nobs*sex F 1 −0.2894 0.1362 −0.5564 −0.0225 4.52
nobs*sex M 0 0.0000 0.0000 0.0000 0.0000 .
Scale 0 1.0000 0.0000 1.0000 1.0000

Analysis of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept −0.8627 0.0744 −1.0085 −0.7169 −11.60 <0.0001
sex F −0.6586 0.1147 −0.8115 −0.3693 −5.11 <0.0001
sex M 0.0000 0.0000 0.0000 0.0000 . .
agec 0.0530 0.0065 0.0403 0.0658 8.14 <0.0001
bmic 0.0921 0.0085 0.0755 0.1088 10.83 <0.0001
nobs 0.0867 0.0964 −0.1023 0.2757 0.90 0.3687
nobs*sex F −0.2823 0.1566 −0.5893 0.0246 −1.80 0.0714
nobs*sex M 0.0000 0.0000 0.0000 0.0000 . .

The GENMOD Procedure

Model Information

Data set WORK.AB
Distribution Binomial
Link function Logit
Dependent variable HBP
Scale weight variable wgt
Observations used 2404
Missing values 1
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GEE Model Information

Correlation structure Exchangeable
Subject effect id (1370 levels)
Number of clusters 1370
Clusters with missing values 1
Correlation matrix dimension 3
Maximum cluster size 3
Minimum cluster size 1

Working Correlation Matrix

Col1 Col2 Col3

Row1 1.0000 0.3281 0.3281
Row2 0.3281 1.0000 0.3281
Row3 0.3281 0.3281 1.0000

Analysis of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept −0.9427 0.0844 −1.1081 −0.7773 −11.17 <0.0001
sex F −0.4910 0.1238 −0.7434 −0.2385 −3.81 <0.0001
sex M 0.0000 0.0000 0.0000 0.0000 . .
agec 0.0578 0.0073 0.0435 0.0722 7.90 <0.0001
bmic 0.0901 0.0097 0.0710 0.1092 9.25 <0.0001
nobs −0.0222 0.1101 −0.2379 0.1935 −0.20 0.8402
nobs*sex F −0.2535 0.1722 −0.5910 0.0839 −1.47 0.1409
nobs*sex M 0.0000 0.0000 0.0000 0.0000 . .

Contrast Estimate Results

Standard
Label Estimate Error Alpha Confidence Limits

per decade 0.5783 0.0732 0.05 0.4349 0.7218
Exp(per decade) 1.7831 0.1305 0.05 1.5448 2.0581
per unit bmi 0.0901 0.0097 0.05 0.0710 0.1092
Exp(per unit bmi) 1.0943 0.0107 0.05 1.0736 1.1153
female −0.4910 0.1278 0.05 −0.8001 −0.2992
Exp(female) 0.6120 0.0788 0.05 0.4755 0.7878
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OUTPUT PACKET XVIII: LONGITUDINAL ANALYSIS OF RATES

Rehospitalization of VLBW children—Newborn Lung Project
Number of Hospitalizations (Total) by Age
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Poisson Regression with Rate Ratio per 100 g Birth Weight
The GENMOD Procedure

Model Information

Data set WORK.G
Distribution Poisson
Link function Log
Dependent variable nhosp
Offset variable ltime
Observations used 1725

Criteria for Assessing Goodness of Fit

Criterion DF Value Value/DF

Deviance 1721 1488.1153 0.8647
Scaled deviance 1721 1488.1153 0.8647
Pearson chi-square 1721 3632.8425 2.1109
Scaled Pearson X2 1721 3632.8425 2.1109
Log likelihood −864.0146

Analysis of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square

Intercept 1 −0.2878 0.0714 −0.4277 −0.1479 16.25
age 1 −1.3747 0.1262 −1.6220 −1.1274 118.73
agesq 1 0.2413 0.0334 0.1758 0.3067 52.22
bwc 1 −0.0014 0.0002 −0.0017 −0.0010 45.11
Scale 0 1.0000 0.0000 1.0000 1.0000
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Analysis of Initial Parameter
Estimates

Parameter Pr > ChiSq

Intercept <0.0001
age <0.0001
agesq <0.0001
bwc <0.0001
Scale

Note: The scale parameter was held
fixed.

GEE Model Information

Correlation structure Exchangeable
Subject effect id (345 levels)
Number of clusters 345
Correlation matrix dimension 5
Maximum cluster size 5
Minimum cluster size 5

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5

Row1 1.0000 0.3862 0.3862 0.3862 0.3862
Row2 0.3862 1.0000 0.3862 0.3862 0.3862
Row3 0.3862 0.3862 1.0000 0.3862 0.3862
Row4 0.3862 0.3862 0.3862 1.0000 0.3862
Row5 0.3862 0.3862 0.3862 0.3862 1.0000

Analysis of GEE Parameter Estimates and Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
Intercept −0.2775 0.1117 −0.4963 −0.0587 −2.49 0.0129
age −1.4021 0.1660 −1.7275 −1.0767 −8.45 <0.0001
agesq 0.2463 0.0397 0.1685 0.3241 6.21 <0.0001
bwc −0.0015 0.0004 −0.0023 −0.0008 −3.92 <0.0001
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Contrast Estimate Results

Standard
Label Estimate Error Alpha Confidence Limits

RR/100 g −0.1517 0.0387 0.05 −0.2276 −0.0758
Exp(RR/100 g) 0.8593 0.0333 0.05 0.7965 0.9270
RR age 0 vs. 2 −1.8189 0.1919 0.05 −2.1950 −1.4429
Exp(RR age 0 vs. 2) 0.1622 0.0311 0.05 0.1114 0.2362
rate age 0, 1000 g −0.2775 0.1117 0.05 −0.4963 −0.0587
Exp(age 0,1000 g) 0.7577 0.0846 0.05 0.6088 0.9430

OUTPUT PACKET XIX: CONDITIONAL LOGISTIC REGRESSION OF
HYPERTENSION DATA

Conditional Logistic Regression of Hypertension
The PHREG Procedure

Model Information

Data set WORK.AB
Dependent variable status
Censoring variable hbp
Censoring value(s) 0
Ties handling DISCRETE

Convergence Status

Convergence criterion (GCONV = 1E-8) satisfied.

Model Fit Statistics

Without With
Criterion Covariates Covariates

−2 LOG L 378.988 354.951
AIC 378.988 358.951
SBC 378.988 368.138
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Testing Global Null Hypothesis: BETA = 0

Test Chi-Square DF Pr > ChiSq

Likelihood ratio 24.0365 2 <0.0001
Score 23.4913 2 <0.0001
Wald 22.5662 2 <0.0001

Analysis of Maximum Likelihood Estimates

Parameter Standard
Variable DF Estimate Error Chi-Square Pr > ChiSq

age10 1 1.14893 0.28182 16.6209 <0.0001
bmic 1 0.04166 0.04610 0.8166 0.3662

Analysis of Maximum Likelihood Estimates

Hazard 95% Hazard Ratio
Variable Ratio Confidence Limits

age10 3.155 1.816 5.481
bmic 1.043 0.952 1.141
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Appendix: Matrix Operations

Matrices are two-dimensional arrays of numbers that come with rules on how
to combine and transform them in various ways by addition, multiplication, and
inversion. The purpose of working with matrices is to be able to write, in short-
hand, expressions where large sets of numbers are summed or form sums of cross
products. The algebraic rules for matrices are designed so that most properties of
ordinary numbers hold. Matrices are extensively used in a wide range of applica-
tions including statistics, population ecology, and physics.

A matrix is typically constructed when there are several sets of multiple num-
bers measuring a set of phenomena. For example, there may be a set of covariates
measured on each person, or there may be percentages of a population in dif-
ferent age groups at given time points. To demonstrate matrix operations, we let
these numbers be generic and chosen to be easy to add and multiply. Matrices are
typically designated by bold uppercase letters. Let the matrix A be defined as

A =
(

1 5 2
4 3 1

)

Typically, this means that one person or time point had measurements 1, 5, 2 and
another had 4, 3, 1. These individual numbers are called elements of the matrix.
We refer to the above matrix as having 2 rows and 3 columns, or as being of
dimension 2 by 3 (written as 2 × 3). The special case of a 1 × 1 matrix consists of
just one number. Generically, we will designate the number of rows as n and the
number of columns as m, and write a matrix as

A =




a11 a12 · a1j · a1m

a21 a22 · a2j · a2m

. · · · · ·
ai1 ai2 · aij · aim

. · · · · ·
an1 an2 · anj · anm



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Here the generic element is aij , with i denoting row and j column. A matrix with
the same number of rows as columns (i.e., n = m) is called a square matrix. For
example,

A =
(

1 5
4 3

)

is a square 2×2 matrix. An important type of square matrix is a symmetric matrix.
In a symmetric matrix, the ith row is the same as the ith column, so that the upper
right triangle is the “mirror image” of the lower left triangle. An example of a
symmetric matrix is

A =

1 4 2

4 3 6
2 6 9




Clearly, a symmetric matrix can be specified by just its diagonal and the ele-
ments above it. The reader has probably seen computer outputs with correlation
coefficients between a set of variables. These can be arranged into a symmetric
matrix.

A special case of a symmetric (square) matrix is a diagonal matrix. In a diagonal
matrix, all elements off the diagonal are 0. An example of a diagonal matrix is

A =




2 0 0 0
0 9 0 0
0 0 4 0
0 0 0 1




A.1 ADDING MATRICES

Matrices of the same dimension can be added. The sum is the matrix that contains
the sum of all the corresponding elements in the matrices being added. If, for
example,

A =

1 4 2

4 3 6
2 6 9




and

B =

3 1 −4

4 1 6
7 2 1




then

A + B =

1 + 3 4 + 1 2 − 4

4 + 4 3 + 1 6 + 6
2 + 7 6 + 2 9 + 1


 =


4 5 −2

8 4 12
9 8 10



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Because addition of matrices involves only adding individual elements, all the usual
rules of ordinary addition apply. For example, it does not matter what order the
matrices are added, that is,

A + B = B + A

and subtraction involves adding the negative of an element. Naturally, any number
of matrices can be added together.

A.2 MULTIPLYING MATRICES BY A NUMBER

In the matrix context, a number is often referred to as a scalar to differentiate it
from a matrix. A matrix can be multiplied by a scalar by multiplying each element
by it. For example,

0.5

(
2 1 5
1 3 1

)
=

(
1 0.5 2.5
0.5 1.5 0.5

)

The usual rules of arithmetic apply to multiplication of a matrix by a scalar.

A.3 MULTIPLYING MATRICES BY EACH OTHER

Multiplication of matrices with each other is a more complex operation. Matrices
A and B can be multiplied A × B if they “match” in such a way that the number
of columns in A equals the number of rows in B. The general formula for matrix
multiplication is

A × B = AB

=




a11 a12 · a1j · a1m

a21 a22 · a2j · a2m

· · · · · ·
ai2 ai2 · aij · aim

· · · · · ·
an1 an2 · anj · anm







b11 b12 · b1j · b1p

b21 b22 · b2j · b2p

· · · · · ·
bi2 bi2 · bij · aip

· · · · · ·
bm1 bm2 · bmj · bmp




=




m∑
l=1

a1lbl1

m∑
l=1

a1lbl2 ·
m∑

l=1

a1lblj ·
m∑

l=1

a1lblp

m∑
l=1

a2lbl1

m∑
l=1

a2lbl2 ·
m∑

l=1

a2lblj ·
m∑

l=1

a2lblp

· · · · · ·
m∑

l=1

ailbl1

m∑
l=1

ailbl2 ·
m∑

l=1

ailblj ·
m∑

l=1

ailblp

· · · · · ·
m∑

l=1

anlbl1

m∑
l=1

anlbl2 ·
m∑

l=1

anlblj ·
m∑

l=1

anlblp



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We see that each element in the product is constructed as the sum of cross products
of rows of A with columns of B. Consider a simple example:

(
2 4 1
1 6 5

)
1 3 2 1 4

2 1 5 6 2
4 3 1 6 5




=
(

2 × 1 + 4 × 2 + 1 × 4 2 × 3 + 4 × 1 + 1 × 3 25 32 21
1 × 1 + 6 × 2 + 5 × 4 1 × 3 + 6 × 1 + 5 × 3 37 67 41

)

Another example shows how matrices can be used to calculate sums and sums of
squares:

(
1 1 1
x1 x2 x3

)
1 x1

1 x2
1 x3


 =




3
3∑

i=1

xi

3∑
i=1

xi

3∑
i=1

x2
i




The above type of matrix operation is performed often in regression analysis.
A difference between ordinary multiplication and matrix multiplication is that

the order matters. Usually, AB does not equal BA. However, it is very useful to
know that (AB)′ = B′A′. For example,

[(
2 4
3 1

) (
7 1
4 2

)]′
=

(
30 10
25 5

)′
=

(
30 25
10 5

)

which equals

(
7 4
1 2

)(
2 3
4 1

)
=

(
14 + 16 21 + 4
2 + 8 3 + 2

)
=

(
30 25
10 5

)

It follows from the above rule that AA′ and A′A are both (square) symmetric
matrices. Note, however, that they are not equal. Even their dimensions are usually
not the same, as AA′ is a n × n matrix, while A′A is a m × m matrix.

The commutative property AB = BA is the only property of ordinary multipli-
cation of numbers that does not hold for the multiplication of matrices. Both the
associative

A(BC) = (AB)C

and distributive
A(B + C) = AB + AC

properties hold.
Diagonal matrices have especially simple properties in matrix multiplication.

When multiplying by a diagonal matrix from the left, every row i in the matrix
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being multiplied is multiplied by the corresponding element dii in the diagonal
matrix. 

1.5 0 0
0 2 0
0 0 0.5





6 2

2 3
1 5


 =


 9 3

4 6
0.5 2.5




When multiplying with a diagonal matrix from the right, it is every column that
gets multiplied. It follows that multiplication by a diagonal matrix with all the
elements identical has the same effect as multiplication by a scalar. For example,


2 0 0

0 2 0
0 0 2





3.5

2
4


 =


7

4
8


 = 2


3.5

2
4




A diagonal matrix with 1’s on the diagonal is called an identity matrix and is
written as I. Multiplication by I does not change a matrix, that is,

IA = AI = A

A.4 THE INVERSE OF A MATRIX

“Division” of matrices is accomplished via multiplication by an inverse. With
ordinary numbers, we can write a/b or equivalently ab−1. Here the inverse number
b−1 has the property that bb−1 = b−1b = 1. Similarly for matrices, the inverse of
a square matrix A is defined as the matrix A−1 that has the property

AA−1 = A−1A = I

The concept of inverses is practical only for square matrices. The inverse can be
used to solve matrix equations, similarly to how ordinary equations of numbers are
solved. For example, if we have the equation

AX = B

we can multiply each side by A−1 and obtain

A−1AX = A−1B

or
X = A−1B

Often in statistics, a matrix is changed into a square matrix by multiplication by
the transpose so that the inverse can be constructed.
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Actually obtaining the inverse of a matrix is not a trivial task in most cases.
For a diagonal matrix, it is easy, because the inverse is just the matrix with the
inverses of the individual elements on its diagonal, that is,


a1 0 0

0 a2 0
0 0 a3




−1

=




1
a1

0 0

0 1
a2

0

0 0 1
a3




This can easily be verified by multiplying the two matrices.
For other matrices, the computation of an inverse is tied to the concept of a

determinant. First of all, only matrices with nonzero determinants can be inverted.
For a diagonal matrix the determinant is the product of all the diagonal elements.
Clearly, if one of the elements is 0, the inverse of that element would entail
division by 0, so the inverse of the matrix cannot be formed. For a 1 × 1 matrix
the determinant equals the single element of the matrix. For a 2 × 2 matrix, the
determinant can also be easily calculated. The determinant of is sometimes denoted
by det of the matrix, or by slashes around the elements, as follows:

det

(
a b

c d

)
=

∣∣∣∣a b

c d

∣∣∣∣ = ad − bc

For example ∣∣∣∣2 3
0 1

∣∣∣∣ = 2

indicating that the matrix is invertible. A matrix with determinant >0 is referred
to as positive definite. However,

∣∣∣∣3 2
6 4

∣∣∣∣ = 0

indicating that the matrix is not invertible. A determinant is 0 when a row (or a
column) is a multiple or linear combination of other rows or columns. We see that
in the above matrix the second row is obtained by multiplying each corresponding
element in the first row by 2. The determinant will also, more obviously, be 0 if
an entire row or column consists of 0’s.

The inverse of a 2 × 2 matrix is given by

(
a b

c d

)−1

= 1

ad − bc

(
d −b

−c a

)

Notice that the determinant is in the denominator, so the requirement that it not be
0 makes sense. On can easily verify that the above expression yields the inverse
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by carrying out the multiplication
(

a b

c d

)
1

ad − bc

(
d −b

−c a

)
= 1

ad − bc

(
a b

c d

)(
d −b

−c a

)

= 1

ad − bc

(
ad − bc −ab + ba

cd − dc −cb + da

)
=

(
1 0
0 1

)

Notice how, in the first step, we made use of the fact that a scalar can be moved
anywhere in the chain of multiplication (but obviously matrices have to stay in
their positions).

As an example, the inverse of the matrix
(

2 3
0 1

)
is 1

2

(
1 −3
0 2

)
=

(
0.5 −1.5
0 1

)

To be able to write determinants and inverses in general form requires the definition
of the cofactor. The cofactor of a matrix element aij is defined in as the determinant
of the smaller matrix obtained when row i and column j are deleted, multiplied
by (−1)i+j of a matrix element aij . In the above 2 × 2 matrix,

(
a b

c d

)

the cofactor of the element a is (−1)2b = b, and the cofactor of the element b is
(−1)3c = −c. In a 3 × 3 matrix


a11 a12 a13

a21 a22 a23
a31 a32 a33




the cofactor of a11 is (−1)2(a22a33 − a23a32) while the cofactor of a23 is (−1)5

(a11a32 − a12a31).
The definition of the cofactor allows one to build up determinants in a recursive

manner, because the determinant of any n × n matrix is given by the formula

n∑
i=1

ai1(−1)i+1Ai1
′

where (−1)i+1Ai1 is the cofactor of element ai1. Note that the determinant of

a 2 × 2 matrix

∣∣∣∣a b

c d

∣∣∣∣ = ad − bc can be derived by the cofactor formula as

(−1)2ad+(−1)3cb. For the 3×3 matrix above, the determinant formula means that
we go down the first column and calculate the determinants of the corresponding
2×2 matrices that result when the first column and respective row i are deleted. We
will not use the general formula for the determinant in practice because computer
algorithms are available to invert matrices for us.
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Finally, the determinant and cofactors are used to obtain the general formula for
an inverse of a matrix as

A−1 = 1
detA




(−1)2A11 (−1)3A12 · (−1)1+jA1j · (−1)1+mA1m

(−1)3A21 (−1)4A22 · (−1)2+jA2j · (−1)2+mA2m

· · · · · ·
(−1)i+1Ai1 (−1)i+2Ai2 · (−1)i+jAij · (−1)i+mAim

· · · · · ·
(−1)n+1An1 (−1)n+2An2 · (−1)n+jAnj · (−1)n+mAnm




′

This is the inverse of the determinant times the transpose of the matrix of cofactors.
In examples we will only compute the inverse of a 2×2 matrix, explicitly. Applying
the above formula to a 2 × 2 matrix, we again obtain

1
ad−bc

(
d −c

−b a

)′
= 1

ad−bc

(
d −b

−c a

)
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binomial data 203
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Linear combination of variables
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271
Variance of mean 41, 43
VLBW xix

Wald confidence intervals 201
Wald test

general 56, 201, 212
random effects 160

Weighted least squares
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