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Preface

This text arose from my many years working with several long-term population-
based observational studies. As I was asked to put together a third-semester statistics
course for our new Ph.D. program in Population Health, I decided to assemble the
information I had seen investigators and students need most often, and I also
decided to answer as many questions as possible out of those I had typically been
asked. The resulting mix of topics is guided by this experience. I have attempted to
pull in and deal with the aberrations of observational data such as confounding and
selection bias. Some traditional topics regarding small sample inference, analysis
of variance, and experimental design are deemphasized, as I have found that they
confuse rather than help population health researchers. I am using data sets from
my own research and collaborations as examples to ensure that subject matter
interpretations are meaningful, and that the reader becomes familiar with the “non-
textbook™ appearance of real data.

While keeping the material immediately applicable by providing detailed instruc-
tions for how to run and interpret procedures in SAS, I find it irresponsible to do so
without creating some “common sense” about the methods and their assumptions.
The beginning chapters lay the mathematical groundwork necessary for topics in
later chapters. Whenever possible, I have made a point of inserting practical issues
that are answered by specific mathematical derivations.

In addition, each topic starts with an explanation of the theoretical background
necessary to allow reasonable judgment as to when the technique is applicable and
to facilitate future learning of related methods and software. In the process the
reader is exposed to some of the underpinnings of statistics that are often omitted
from applied texts and courses. While the text is anchored in the terminology of
the biostatistical tradition, I point to some important connections to techniques
and terminology used in econometrics and psychometrics. Because of the historic
emphasis of biostatistics on experiments and randomization, I have often found that
econometric approaches provide further insight in the observational framework.

XV



xvi PREFACE

For progress in addressing current population health issues, it is necessary for
researchers in epidemiology and health services to understand and apply regression
analysis with weights to deal with unequal variance and correlated and longitudinal
outcomes by mixed effects, generalized linear models, and generalized estimat-
ing equations. In addition, many data sets in these areas include survey weights.
Increasingly, investigators are also called upon to examine the possible impact on
their results of missing observations. I suggest straightforward methodology that
can be implemented with standard software. The material is presented on a level
that will make it accessible to epidemiologists and health services researchers,
as well as to applied statisticians. This corresponds roughly to a third-semester
applied statistics sequence for statistics non-majors. It is assumed that the reader
is already well acquainted with ordinary and logistic regression analysis and has at
least rudimentary knowledge of the SAS package.

The explanations are designed to assume as little background in mathematics and
statistical theory as possible, except that some knowledge of calculus is necessary
for certain parts, such as in understanding maximum likelihood and generalized
linear models. The reader may wish to review the rules and uses of derivatives,
which are not covered here. On the other hand, all relevant aspects of linear algebra
and statistical theory are explained within the text. Important formulas are derived,
but with an eye to avoiding excessive algebra.

SAS commands are provided for applying the methods. The SAS procedures
emphasized are PROC REG, PROC MIXED, and PROC GENMOD, with occa-
sional references to others. Useful data manipulation commands are introduced as
needed to illustrate the techniques in the specific data sets, and the SAS ODS
system is briefly introduced to accomplish viewing random effects from mixed
models. However, basic commands used to read in data sets and annotate them are
considered well known and are not always provided in the text.

Mari Palta

Madison, Wisconsin
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Introduction

Some Data Sets Used as Examples in This Text

In this book, we focus on extending ordinary regression analysis by considering
situations where some of the usual assumptions are violated. As we discuss in
more detail in future chapters, violations of assumptions are common in population
health data sets. For example, when we want to model presence versus absence of
a disease the outcome variable is binary. Because ordinary regression is designed
for normally distributed outcomes, the presence of binary outcomes leads to the
extension of ordinary regression to logistic regression. We discuss this extension
and others that apply to non-normally distributed outcomes in later chapters. With
normally distributed outcomes, we encounter situations with violation of equal
variance and independence assumptions. For example, subjects may be followed
longitudinally, which leads to correlated residuals. The fitting of models and infer-
ence in such cases is the topic of the earlier chapters. Throughout, we illustrate
with the use of data sets that have accrued from population health research. The
purpose of this introduction is to briefly describe these data sets. All analyses were
run in SAS 8.2 [1] for Solaris. For graphics we occasionally used SAS 8.2 for
Windows.

I.1 NEWBORN LUNG PROJECT

The Newborn Lung Project enrolled a cohort that included all very-low-birth-
weight admissions to six neonatal intensive care units in Wisconsin and Iowa
during 8/1/88—6/30/91. There were 1040 admissions during this time period, and
some baseline data were collected on all of them. Neonatal nurses collected medical
record information on factors such as birth weight, supplemental oxygen use the
first 24 hours, and hospital of birth without identifiers. Parents were approached as
soon as possible for informed consent for interview and medical record abstracting.
Due to human subjects concerns, parents were not approached after the neonate had

Xxi



xxii INTRODUCTION

died or if the neonate was in critical condition. A total of 810 infants survived the
hospitalization, and the parents of 633 provided informed consent for abstracting.
Recontract addresses were available only for the subgroup with informed consent.
By age 5, six additional children had died. Among the 804 survivors, 438 were
located, and a follow-up interview including health information and a functional
assessment of 422 was performed. The parents of 345 children also gave informed
consent for complete abstracting of medical records.

The original purpose of the study was to establish severity scores for neonatal
lung disease and to find risk factors associated with it. Later, we described func-
tional and respiratory outcomes at ages 5 and 8 years and their predictors. The
record abstracting led to longitudinal data on number of hospitalizations and clinic
visits during every year of life.

Examples used in the text arise from data collected during the initial hospital-
ization and from the follow-up. For example, we analyze functional outcome at
age 5 and hospitalizations during the first five years of life as outcomes in regres-
sion analysis. We briefly illustrate principal component analysis of socioeconomic
indicators collected by this study. We will also use this data set to show how to
use the available data on those not followed to examine selection bias.

Some references that present data included in this text and that provide further
background on the Newborn Lung Project are listed at the end of this Introduction.

1.2 WISCONSIN DIABETES REGISTRY

The Wisconsin Diabetes Registry targeted all individuals <30 years of age diag-
nosed with Type I diabetes in a 28-county area in southern Wisconsin 5/1/87—
4/30/92. The primary mode of recruitment was by physician, diabetes educator,
and self-referral. Also, all hospitals and most multipractice clinics were telephoned
every 3 months to ascertain any unreferred cases. A total of 733 cases were found.
Out of these, 597 gave informed consent for participation. Participants underwent
a baseline interview, were requested to submit blood samples every 4 months,
were sent a questionnaire inquiring about hospitalizations and other events every
6 months, and underwent physical examinations at 4, 7, and 9 years of duration.
The blood samples were used to determine glycosylated hemoglobin (GHb), an
important indicator of glycemic control. The purpose of the study is to map the
acute and chronic outcomes of Type 1 diabetes from diagnosis and to consider risk
factors such as GHb from the earliest stages of the disease onwards.

Examples used in this text arise from the longitudinal glycosylated hemoglobin
measurements performed on the blood samples. Figure I.1 obtained by PROC
CHART shows the number of participants with GHb data for 1 year, 2 years,
and so on, up to 14 years of follow-up, at the time the data sets for this text were
compiled. In most analysis here, we will for simplicity average all the GHb mea-
sures in a given year. The commands use to produce the number of years of GHb
measurements for each individual were:
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Cum. Pet. Cum.

Freq. Freq. Pct.

Years of GHB
1

37 37 6.62 6.62
38 75 680 1342
47 122 841 21.82
51 173 9.12  30.95
64 237 1145 4240
60 297 1073  53.13
57 354 1020 63.33
76 430 13.60  76.92
37 467  6.62 83.54
31 498 555  89.09
26 524 465 9374
25 549 447 9821

9 558 1.61  99.82

1 559 0.18 100.00

O e N N W R W

_ = = =
W = O

—_
=

0 10 20 30 40 50 60 70 80

Frequency

Fig. I.1 The number of participants with GHb

PROC SORT; BY ID;

PROC MEANS NOPRINT; BY ID; VAR GHB;
OUTPUT OUT=MM N=NG;

DATA B; SET MM;

LABEL NG=‘YEARS OF GHB’;

PROC CHART; HBAR NG;

Some references pertaining to GHb measurements in the Wisconsin Diabetes
Registry Study are listed at the end of this Introduction.

1.3 WISCONSIN SLEEP COHORT STUDY

A survey questionnaire inquiring about sleep and sleep-related problems was sent
to 6900 employees age 30—60 at four State of Wisconsin agencies. Completed
surveys were received from 4927 respondents. A stratified random sample of the
respondents was invited to spend the night in a completely equipped clinical sleep
laboratory for overnight polysomnography and other tests. A total of 1370 indi-
viduals participated. Sleep studies were performed over an extended time period,
resulting in some individuals being age 65 and older at the first visit. Blood pressure
measurements were taken in the laboratory, and height and weight were measured.
Subjects are reinvited for sleep studies every four years. The goals of the project
are to identify risk factors and outcomes associated with sleep disorders.
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Data used in this text are the longitudinal measures of systolic blood pressure
and hypertension as associated with age, gender, and body mass index. Sample sizes
in specific analyses vary slightly due to measurements sometimes being missing.
For example, out of the 1370 total individuals, 5 had their first blood pressure
measurement at the second visit. We also use data from a subproject on the cost of
medical care for the cohort. A list of references from the study that involve these
variables is provided below.
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CHAPTER ONE

Review of Ordinary Linear
Regression and Its Assumptions

1.1 THE ORDINARY LINEAR REGRESSION EQUATION
AND ITS ASSUMPTIONS

A linear regression equation can be alternatively specified as

yi = Po+ Pixi +¢€ or
Kylx = Po + Bi1x  or (L.D)
E(y|lx) = Bo + Bix

to describe the quantitative relationship between a single predictor x and an out-
come y. In the population health research projects described in the Introduction,
y may be a measured GHb or the score of a very-low-birth-weight (VLBW) child
on a test, or the systolic blood pressure (SBP) at a visit to the sleep clinic. In the
first equation ¢; is a random regression error describing the deviation of a given
value y; from its mean. It can be viewed as capturing unmeasured influence on the
outcome. In order to make both the first and the second equations of (1.1) correct, it
is assumed that E(¢;|x;) = 0. In other words, if the second equation is to describe
the relationship of the mean y to x correctly, the random errors in the first equation
must average to O for all x. This also implies that €; does not depend on x;. The
last two equations are just saying the same thing in different notation because the
“expected value” E(-) of a variable is by definition the mean of that variable.

We assume that the reader is familiar with the “conditional on” notation implied
by the “|”. Conditioning on a variable means that the variable is (at that moment)
considered a constant, so the parameters of the distribution of y may depend on
x. In other words, when conditioning systolic blood pressure on a given age x, we
are interested in the parameters of the distribution of blood pressure at that age.
Estimation of the parameters of equations (1.1) usually proceeds by the method
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2 REVIEW OF ORDINARY LINEAR REGRESSION AND ITS ASSUMPTIONS

of least squares. In dealing with the regression equation, forming estimators, and
drawing inference, we commonly make a number of assumptions:

1.1.1 Straight-Line Relationship

Equation (1.1) implies that x and the mean of y are related in a straight-line fashion.
This assumption can be alternatively stated as a constant difference in mean y
between every pair of x’s that are separated by the same number of steps. For
example, if y is systolic blood pressure from visit 1 in the Sleep Cohort Study
and x is age, linearity implies that the difference in mean blood pressure between
a 50-year-old and a 40-year-old is the same as that between a 40-year-old and
a 30-year-old. Regardless of the level of x, pyxy1 — pyx = Bi1, so that the
regression coefficient is the difference in mean with one step increase in x. Again,
if y is systolic blood pressure and age x is recorded in years, S is the increase in
mean blood pressure every year. The linearity assumption is an inherent structural
assumption, the validity of which is driven by the biological, sociological, and so
on, mechanisms that relate y to x. When the linearity assumption holds, we are
ahead statistically, because we need to estimate only two parameters So and S
instead of a separate wy), for every x.

Only in the situation that x is binary (e.g., designating two treatment groups)
is the linearity assumption moot, or automatically satisfied. If y is systolic blood
pressure and x is a 0—1 indicator of gender where 1 indicates male, then B is the
difference in mean blood pressure between males and females, and B is the mean
for females. In this situation, wy|, is simply a notation for representing the means
of two groups (females and one-step difference involved). Since no assumptions are
made on the mean structure, equations (1.1) estimate two parameters either way.

In other situations, the original x may just serve as a label for different groups,
such as ethnic categories or treatments. The linearity assumption then makes little
sense. However, we can expand (1.1) through the device of binary indicator vari-
ables, which bypass the linearity assumption, but again do not save us parameters
as compared to estimating (|, separately for each group. In the Wisconsin Sleep
Cohort Study, we may wish to compare mean blood pressure between the four state
agencies surveyed, by using three indicator variables. In SAS, indicator variables
are created in many procedures by the CLASS statement [1].

In the simple cases presented in this chapter, we emphasize linearity of fiyx
versus a single predictor. We can easily generalize equation (1.1) to more compli-
cated cases by transforming y or x or by adding squared, cubic, and so on, terms in
x. Note, however, that even when x or y is transformed or when polynomial terms
are added, ordinary regression remains a linear expression of the regression param-
eters. This simplifies estimation. In Chapter 12, we will consider some situations
when the regression equation for the mean is not linear in the parameters.

1.1.1.1 Example
OUTPUT PACKET I shows regression equations, plots of residuals versus predicted
values, and mean plots for some variables from the data sets of interest. Later, we
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will analyze some of these data sets longitudinally. However, for now we chose
only one data point for each individual. Systolic blood pressure is analyzed from
visit 1 to the sleep lab, and we selected GHb measured around 4 years diabetes
duration. These variables are both regressed on age. To discern nonlinearity in the
regression analysis, we look for any trend in the mean residual. Recall that the
mean of the residual ¢; should be 0 at all levels of the predicted value piy) and at
all levels of x. Even a linear trend in the residual plot would indicate nonlinearity
in the regression. (In contrast, we would look for curvature in a scatter plot, or
a plot of means versus levels of x.) We see in the plot of GHb residuals on age
that the residuals appear higher in the middle of the plot, at ages corresponding to
the teenage years. It is known that adolescence is associated with poor glycemic
control [2]. In the Sleep Cohort data set there is a hint of downturn of blood pressure
residuals at the highest predicted values. We will see later that this may be due to
some individuals with the highest levels of predicted systolic blood pressure taking
blood-pressure-lowering medications. However, we see that all three residual plots
display a great deal of variability in the data. This is typical of many epidemiologic
and health services studies and can make it difficult to discern nonlinearity from
such plots.

The regression analysis and residual plots can be generated by statements such as

PROC REG; MODEL SBP=AGE; PLOT RESIDUAL. *PREDICTED.;

However, to have residuals and predicted values available for further analysis,
and especially for producing a histogram, we used statements

PROC REG; MODEL SBP=AGE; OUTPUT OUT=dataset R=RESID P=PRED;
PROC PLOT; PLOT RESID*PRED:;
PROC UNIVARIATE PLOT: VAR RESID;

Here, residuals and predicted values are stored in the data set “dataset” together
with the original variables. PROC UNIVARIATE provides a histogram of the resid-
uals. PROC REG differs from most other SAS regression programs in its lack
of ability to automatically create indicator variables and interactions. It has the
advantage of being easy to run, and of accepting multiple model statements.

The plots of mean y; were obtained by grouping x; into intervals, so that y,,,,
can be plotted against Xgy,p. To do so (except for the duration of diabetes, which
was already an integer), we used statements

AGEGP=5*INT(AGE/5);

PROC SORT; BY AGEGP;

PROC MEANS NOPRINT; BY AGEGP; VAR SBP;
OUTPUT OUT=MM MEAN=SBPMEAN;

PROC PLOT; PLOT SBPMEAN*AGEGP;

Note how the integer function was applied to efficiently create 5-year age groups
(e.g., S¥INT (57/5) = S*INT(11.2) = 5*11 = 55, so that subjects age 55-59 are
in age group 55). The over-65 group was pooled with the 60—64 group. There is
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a fairly linear relationship between age and systolic blood pressure at the time of
the first visit to the sleep laboratory. On the other hand, the mean plot confirms
that the relationship of mean GHb to age is far from linear. It appears that GHb
rises rapidly until about age 14 or 15 and then declines.

1.1.1.2 Comment on Bias

If the linearity assumption does not hold in (1.1), the mean of ¢; is not O for all x;,
and (1.1) is not a good representation of fy,. The linearity assumption can also
be phrased as lack of bias in representing, and later estimating, the mean (ty, by
the regression equation. Lack of bias is often seen as the most important attribute
of an estimator, making the linearity assumption of paramount importance in (1.1).

Technically, unbiasedness in an estimator is defined as the property of being
“correct on average.” As long as the linearity assumption holds, it can be shown
(as we do later) that least-squares estimators of 8o and B; are unbiased. This means
that if studies producing estimators for (1.1) were done many, many times over,
and the estimators ,30 and ,31 averaged across all these studies, the result would be
the true o and B1. When BO and /§ 1 average to their correct values and (1.1) is a
correct formulation, fiy), is an unbiased estimator of the mean y at a given x.

As we will discuss in Chapter 7, bias can also be created by unequal probability
sampling from the population. We will demonstrate there how to correct for such
bias. A special case of selection bias occurs when subjects are chosen based on
screening high on some risk factor [3].

1.1.1.3 Comment on Causal Interpretation

Even when there is technically no bias in equation (1.1) as stated conditionally on
X, it is important to remember that 81 may not have a causal interpretation. Consider
a situation where the causal model conditional on both x and all confounders can
be formulated:

yi = By + Bixi + B2 wi + € (1.2)

where ] measures the causal effect of x on y and where w is a confounder. (Recall
the definition of a confounder as a variable associated with both the outcome and
risk factors.) If x and w are both normally distributed with correlation py,, and
variances GXZ and cr,%, respectively, it can be shown that the formulation of (1.1),
conditionally on only x, becomes

, o
yi =fo+ (ﬂl + ﬂszwg—w> xi + € (1.3)

X
with all assumptions of (1.1) satisfied. However, B; is confounded as

/ Ow

:31 = :81 + ,82pxw_

Ox
The above situation is known as confounding in epidemiology and as endogene-
ity in econometrics. Another way to describe endogeneity is that the unknown or
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error part Sow; + e; in (1.2) does not have mean 0 for all x. However, we will not
know that when we are fitting (1.1), unaware of the presence of w.

1.1.2 [Equal Variance Assumption

The equal variance assumption can be written Var(e|x) = O-)?Ix’ which implies that
the variability of y around its mean is the same at every x. For example, the
variability in systolic blood pressure is assumed to be the same at every age. The
assumption enters in the formulation of the least-squares equations. Recall that in
applying the least-squares principle, the expression ) (y; — fly;| x,)2 is minimized,
where [Lyilxl_ = ,30 + ,élx,-. This expression treats all observation points equally.
But, if Var(e;|x;) is not equal at all points, it would be sensible to give less weight
to the points where this variability is greater. Where variability is wider, obser-
vations y; tell us less about where the mean is. For example, at ages where GHb
variability is the greatest, measurements are less informative about the location of
the curve describing the mean. With biological measurements the variance often
tends to increase with the size of the measurement, so if y is positively related to
x, Var(e;|x;) is often higher when x; is higher.

In addition to the above consideration, the estimate of the residual variance
is difficult to interpret and cannot be assumed to yield valid significance tests
when the true residual variance is not constant. We will see, in later chapters, how
significance tests can be corrected to take unequal variance into account.

1.1.2.1 Example

In a plot of residuals versus predicted values, we assess the equal variance assump-
tion by looking for whether the plot tends to fan out, usually to the right side. Some
caution is in order, as there will be more spread among points in areas with many
observations. In our residual plots, we see fanning out toward the high side of the
predicted GHb. This corresponds to greater variability during the adolescent years
when GHb peaks.

1.1.2.2 Comment on Efficiency

It is a general principle in statistics that weighting an observation by the inverse of
its variance yields estimators with the smallest standard errors. Hence we foresee
that similarly weighting observations in the least-squares estimator may be benefi-
cial. However, we will need to provide mathematical justification for exactly how
to do this weighting.

The property of smallest possible standard errors is referred to as efficiency. The
word efficiency is used similarly when referring to an electrical device or engine:
how well the input (i.e., the electricity/fuel or data) is utilized in producing the
desired product (e.g., refrigeration/mileage or regression estimators). One familiar
situation where the equal variance assumption is clearly violated is when y; is a
binary variable. Then Var(y;) is m; (1 — m;), which depends on the proportion of
success ;. When y; is coded 0, 1 we have m; = py|y;, so the variance depends on
the mean of y;. We will see later how such relationships are taken into account. A
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common solution for binary outcome is to apply logistic regression, abandon the
idea of least-squares estimation, and apply maximum likelihood. We will emphasize
the link between the two approaches.

1.1.3 Normality Assumption

We usually assume that the distribution of the error term ¢; is normal. This assump-
tion enters in forming inferences for the estimators. The normality assumption
allows us use of the t-distribution to obtain tests and confidence intervals for
individual coefficients and the validity of F'-tests for the model as a whole. How-
ever, it can be shown that in large samples ,30, ,31, and their test statistics have
approximately normal sampling distributions regardless of whether ¢; is normally
distributed. The beauty of the #- and F-tests is that they are applicable even with
small sample sizes as long as the normality assumption holds for the residuals. The
reader is probably familiar with how, when we abandon the normality assumption,
in logistic regression, we are “stuck with” y2-tests that yield correct inference
only in large samples. It may be noted that for large sample sizes when the
degrees of freedom for the estimator s)z,l . 1s large, so its random error vanishes, the
t-distribution approaches the normal, 1> approaches x2 (1), and the F distribution
with m numerator degrees of freedom approaches x2(m)/m.

Using maximum likelihood requires that a distributional assumption be made on
€;. We will see later that the normality assumption leads to equality of least-squares
and maximum likelihood estimators for model (1.1). However, even later we will
see that the normal distribution is one example in a broader framework and that it
is convenient to draw connections between maximum likelihood and least-squares
estimation procedures for many common distributions.

1.1.3.1 Examples

The normality assumption can be assessed informally, but adequately, by looking at
a histogram of the residuals. Our graph for the residuals of systolic blood pressure
on age shows very slight skewness. This is rather typical. With a large data set, it
is not of great concern, unless skewness is extreme. With a small data set, on the
other hand, it may be difficult to assess normality.

Note that it is normality of the residuals that is required for - and F-tests of
regression coefficients to be valid in small samples, not normality of the outcome
before taking x into account. It is not uncommon to see that normality improves
when conditioning on x. The final example in OUTPUT PACKET I shows a regres-
sion analysis of number of days VLBW infants spend in the NICU on birth weight.
We see that while the number of days has a rather skewed distribution, the skewness
disappears when conditioning on the infant’s birth weight.

1.1.3.2 Comment on Normality

Sometimes, a variable’s distribution is fairly well known from previous studies to
be normally distributed in populations that are unselected for the variable. Sys-
tolic blood pressure is an example of a measure that has been widely studied. It is
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usually found to be very close to normally distributed, although some investigators
have applied the transformation log(SBP-50) [4]. In our case this transformation
reduced skewness only slightly, and the distribution became skewed in the opposite
direction instead. It is interesting that designed variables such as 1Q are typically
scaled to have normal distributions in the population. Hence, the normality of such
variables is “man-made,” while the normality of biological variables is considered
to be the result of many factors being added up, so that by the central limit the-
orem the end result is normally distributed. Recall that the central limit theorem
states that means and sums of many independent variables tend toward normal
distributions.

1.14 Independence Assumption

We usually assume that ¢; and ¢; are independent for i # i’—that is, that the
residuals for two different observations on y do not “travel together” once their
corresponding x’s are taken into account. We will see that the assumption enters
when deriving the standard errors of regression coefficients. Intuitively, one can
see that if ¢; and ¢; are positively correlated, we really have less information
than we presume, when we base our inference on thinking that all y’s contribute
a given piece. In other words, lack of independence implies that only part of the
information about By and B; imparted by y;; is new; the rest has already been
gained from y;.

Consider the data from the Wisconsin Diabetes Registry. Each individual pro-
vided a number of measurements on glycosylated hemoglobin across several years.
Say we wish to examine how glycosylated hemoglobin (GHbD) relates to the dura-
tion of diabetes. Obviously, much variability in GHb exists at each duration and is
reflected in the €. While it may be fairly reasonably assumed that € from different
individuals are independent, GHb of the same individual may tend to be uniformly
on the high or low side, depending on the person’s diet, diabetes care regimen,
exercise level, and so on. We can usually not begin to hope that we have captured
all these influences in the x’s we have in the study. Hence € on the same individual
are not independent. Similarly, in the sleep study, having blood pressure data on
1251 measurements from three visits on 520 individuals does not convey the same
information on, for example, gender differences as having 1251 measurements on
1251 different individuals.

Because there is less information in the data when residuals are positively cor-
related than when they are independent, standard errors can be underestimated. We
will see that lack of independence can be dealt with either by maximum likelihood
estimation where the joint distribution of the measurements is correctly modeled,
or a modified least-squares approach.

1.1.4.1 Example

It is not easy to discern most cases of dependence in an overall scatter plot, or
residual plot. One may target special cases of dependency that are expected in
a given study. In OUTPUT PACKET I, we included only one GHb observation
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Duration in years

Fig. 1.1 Wisconsin Diabetes Registry Study GHb for the first five subjects

per individual, to improve independence of measurements. (Of course this is very
wasteful, and one of our goals is to enable inclusion of all the data in the analysis).
In Figure 1.1, GHb versus duration is shown for the first five individuals in the
data set. We see that the values of a given individual tend to be on the high or low
side. In fact, the average correlation among residuals from the same individual is
0.51. Systolic blood pressure residuals across visits in the sleep study correlate at
0.35 within person.

1.2 A NOTE ON HOW THE LEAST-SQUARES ESTIMATORS
ARE OBTAINED

We need calculus to minimize the expression Y (y; — 30 — ﬁ 1)c,')2 with respect to
the estimators ,30, ,31. In this case, the two estimators constitute two “variables”
in the calculus sense, and we take the derivatives of the least-squares expression,
invoking the chain rule. Noting that

LS=) LS =Y (vi—po—Pix)*=) &
we have that

dLS;
dé;

2¢;
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SO
% 26,25 i — By — B (=)
9o apo
and
8LASi = 2€i8—6:i =203 — Bo — Bixi)(=x1)
B ap1

We apply the rule that the derivative of a sum is the sum of derivatives. Then
setting the final derivatives to 0 we obtain:

aLS O
= =-2% (yi—fo—Pixi) =0
9Bo
(1.4)
aLS A A
—=-2) xi(vi—po—Pix)=0
9p1
Simultaneously solving these equations results in the usual estimators
LY i =DGi—Y)
B = —
> (xi —X)
Po=7 - Bix

OUTPUT PACKET I: EXAMPLES OF ORDINARY
REGRESSION ANALYSES

I.1. Analysis of SBP Versus Age: Wisconsin Sleep Cohort Study
The REG Procedure

Model: MODEL1
Dependent Variable: SBP

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr> F
Model 1 11604 11604 56.43 <0.0001
Error 1363 280294 205.64520
Corrected total 1364 291898
Root MSE 14.34033  R-square 0.0398
Dependent mean 125.09145  Adjusted R-square  0.0390

Coefficient of variation 11.46388
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Parameter Estimates

Parameter  Standard
Variable DF  Estimate Error ¢ Value Pr > [¢]

Intercept 1 107.98092 231066 46.73  <0.0001

Age 1 0.36605  0.04873 7.51  <0.0001
B A A
A A
A AR
A A A A A
A A
AR A A A
A BA A A
A A CB A ARA A A
A B AA A A AR CB A A
A AB AABAAB AR AB
A A AABA AA CABB BA AAR
AB ABA A AA AAABAAA AAD A BBAA A A
A BABBBBBBAAAABB AABB AAAA A
BAAC D AC A CCDDABACADACC B ADA A A
AC B ACDEADA ABEBBAGEGBDAEBCB BCEA A A
B DCDCDCBDABAACECEADDABABEABB DAA AR

B BAA BBACEBDEEFFAICBCADBHA CADCBB AAAA
ACAB AB CFCCBDHAGCEFCDC BDCCEABDEBB B A

A ACBA BFEDBBFHAEBCDDCDFAACBDBE BECCB A
BAABBED BGCDCAEHEHCCCHBBDDBCDCDCA AAB
AAAD CCBDFFDEBHCGFIFGABEEAF A CA B AA A
B AAB BCECDABEEBEBCDBBCBCDACBBABAACAAA AA
BBAB EDB CDACIAECCADCACBBCACACAAAAB

ADC BABCCB DDGDDABEAABA ABA BA A BA A

B A AC CBFBBC ACDCBACBBABD CA AB A

A A A A A BADC AAB ABBACBA AB
A AAA A A CB A B CAA ABA AAAAA B
A B A BAA BA BAA B A CA AAABA A
A AAA A B A AA A A A
A A AAB A A A
A A
A
7777777 B e e e e e

117.5 120.0 122.5 125.0 127.5 130.0 132.5 135.0

SBP predicted by age

Plot of resid*pred. Legend: A =1 obs, B = 2 obs, and so on. Note: 13 obs had missing values.
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The UNIVARIATE Procedure

Variable: resid (residual of SBP versus age)

Moments

N 1365 Sum weights 1365
Mean 0 Sum observations 0
Standard deviation 14.3350769 Variance 205.49443
Skewness 0.41763912 Kurtosis 0.61294189
Uncorrected SS 280294.403 Corrected SS 280294.403
Coefficient of variation Standard error of mean 0.38800177

Basic Statistical Measures

Location Variability
Mean 0.00000  Standard deviation 14.33508
Median —0.64707  Variance 205.49443
Mode 13.66973  Range 99.99362

Interquartile range 18.47016

Tests for Location: Mu0 =0

Test Statistic p Value
Student’s ¢ t 0 Pr> |t 1.0000
Sign M —-235 Pr>|M| 02131

Signed rank S —15323.5 Pr>|S| 0.2930

Quantiles (Definition 5)

Quantile Estimate

100% Max 55.669359
99% 41.669569
95% 24.621515
90% 17.771212
75% Q3 8.770605
50% Median —0.647072
25% Q1 —9.699556
10% —17.683597
5% —22.715642
1% —29.571613

0% Min —44.324258
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Lowest Highest

Value Obs Value Obs

—44.3243 1167 47.8313 85
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—33.3630 1190 54.6771 367
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Missing Values
Percent of
Missing All Missing
Value Count Observations  Obs

13 0.94 100.00
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Normal probability plot.

L.2. Analysis of GHb Versus Age—Wisconsin Diabetes Registry

GHb Versus Age— Wisconsin Diabetes Registry
The REG Procedure

Model: MODEL1
Dependent Variable: GHb

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 1 0.04566 0.04566 0.01 0.9381
Error 413 3119.52820 7.55334
Corrected total 414 3119.57387
Root MSE 2.74833  R-square 0.0000
Dependent mean 11.28859  Adjusted R-square  —0.0024

Coefficient of variation 24.34613

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value Pr > |t]
Intercept Intercept 1 11.26650 0.31444 35.83 <0.0001

Age Age 1 0.00155 0.02000 0.08 0.9381
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Residual Plot Versus Predicted Value
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Plot of resid*pred. Legend: A = 1 obs, B =2 obs, and so on.
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Mean GHb by Four-Year Age Groups
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Plot of ghmean*iage. Legend: A = 1 obs, B = 2 obs, and so on.
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Histogram of GHb Residuals
The UNIVARIATE Procedure

Variable: resid (residual from regression versus age)

Moments
N 415 Sum of weights 415
Mean 0 Sum of observations 0
Standard deviation 2.74501226 Variance 7.53509228
Skewness 1.28441431 Kurtosis 2.835934
Uncorrected SS 3119.5282 Corrected SS 3119.5282
Coefficient of variation Standard error of mean 0.13474735
Basic Statistical Measures
Location Variability
Mean 0.00000  Standard deviation 2.74501
Median —0.43380 Variance 7.53509
Mode —1.10334 Range 17.89502
Interquartile range 3.02800
Histogram # Boxplot
11.5+%% 3 *
L * 1 *
Lk 3 0
Lk 3 0
* 1 0
* 2 0
LRk k ok ok 9 ‘
Kk kkk kK 13 ‘
Lkkkkkok 11 ‘
2.5+*************** 30 ‘
'********************** 43 $-=-==- +
kkkkkkkkkkkkhkhkhkkhkhkkkhkk kK * 54 ‘ + ‘
.************************************* 74 * o — - = *
.*************************************** 78 B +
.*************************** 54 ‘
LRk ok ok ok ok ok ok ok ok 21 ‘
Lkkkkkkok 13 ‘
* 1 |
-6.5+% 1 0
e e e i niaiail e T

*May represent up to 2 counts
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1.3. Analysis of Days in NICU Versus Birth Weight—Newborn Lung Project

Days in NICU on Birth Weight for Survivors— Newborn Lung Project
Distribution of Number of Days
The UNIVARIATE Procedure

Variable: len (days in NICU)

Moments
N 767 Sum of weights 767
Mean 60.7118644 Sum of observations 46566
Standard deviation 29.2531787 Variance 855.748462
Skewness 0.76237889 Kurtosis 0.35614049
Uncorrected SS 3482612 Corrected SS 655503.322
Coefficient of variation 48.1836276 Standard error of mean 1.05627106
Basic Statistical Measures
Location Variability
Mean 60.71186  Standard deviation 29.25318
Median 55.00000 Variance 855.74846
Mode 44.00000 Range 172.00000
Interquartile range 39.00000
Histogram # Boxplot
175+% 1 0
* 2 0
Lk 1 0
Sk 7 0
* 2 |
Lok ok ko 13 ‘
LRk kkkkkKkokk 29 |
‘************* 37 ‘
‘*************** 44 ‘
Lkkkkkkkkkkkkkkkk 48 ‘
'******************* 55 +-—-——— +
.********************************* 98 + I
.*************************************** 117 * e e m - - *
.****************************************** 126 Hm————— +
'******************************** 96
.******************** 58 }
Kok ok ok ok ok ok Kk 26 ‘
Sk kx 7 |
e e e e e A T T i

*May represent up to 3 counts
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Regression of Number of Days in NICU
The REG Procedure

Model: MODELI
Dependent Variable: len (days in NICU)

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 1 280517 280517 572.28 <0.0001
Error 765 374986 490.17803
Corrected total 766 655503
Root MSE 22.13996  R-square 0.4279
Dependent mean 60.71186  Adjusted R-square 0.4272

Coefficient of variation 36.46728

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error
Intercept Intercept 1 145.15576 3.61932
Birth weight Birth weight in grams 1 —7.49741 0.31341
Parameter Estimates
Variable Label DF t Value Pr > |t]
Intercept Intercept 1 40.11 <0.0001

Birth weight Birth weight in grams 1 —23.92 <0.0001
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Days in NICU on Birth Weight for Survivors— Newborn Lung Project
Distribution of Number of Days Conditional on Birth Weight

The UNIVARIATE Procedure

Variable: resid (residual of number of days versus birth weight)

Moments
N 767 Sum weights 767
Mean 0 Sum observations 0
Standard deviation 22.1255081 Variance 489.53811
Skewness 0.70011397 Kurtosis 1.96459767
Uncorrected SS 374986.193 Corrected SS 374986.193
Coefficient of variation Standard error of mean 0.7989058
Basic Statistical Measures
Location Variability
Mean 0.0000 Standard deviation 22.12551
Median —1.5933  Variance 489.53811
Mode —11.9428 Range 186.09306
Interquartile range 24.74767
Histogram # Boxplot
105+* 1 *
* 1 *
:* 4 0
LKk 8 0
JRE 8 0
. * % % % 15 O
KKK KKKKK 29 |
Lkkkkkkkkkk kK 48 |
15+********************** 85 - +
.****************************************** 165 | + |
.**************************************** 15’7 * - - - - - *
.******************************** 128 - +
Lkkkkkkkkhkkkkkkkkkk 71 |
LKKKKKKK 28 |
LRk kK 14 |
* 2 0
L 2 0
-75+%* 1 0
B e e e e e e e

*May represent up to 4 counts



CHAPTER TWO

The Maximum Likelihood Approach
to Ordinary Regression

In the above, we presented the usual least-squares approach to estimation in ordi-
nary regression. This approach is based on minimizing > (y; — /fLy|x)2. Minimizing
the sum-of-squared distances of the points from the regression line turns out to be
a good idea, because the expression is in the numerator of sil . and of the standard
errors of regression coefficient estimators. Minimizing the variance of estimators
is always a goal, as it means that the estimators are efficient. The least-squares
principle is quite general, and estimation can be carried out without any reference
to how the points are actually distributed. Note how the assumptions of ordinary
regression came into play only gradually. First, no assumption was made in choos-
ing the least-squares principle. Then assumptions on the variance of the points were
made, but not on the entire distribution. The normality assumption came into play
only in the last step—in constructing the 7- and F-tests. This gradual approach has
many advantages, as we can decide how many assumptions we wish to make.

2.1 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood takes the completely opposite path. We start with an assump-
tion on the entire distribution of the data. For simple regression, this amounts to
assuming both that y is normally distributed around the regression line (i.e., con-
ditionally on x) and that all sample points are independent. Mathematically, the

normality assumption is written y;|x; ~ N(Bo + B, xi, Uy2|x) or ¢, ~ N(O, o)?lx).

The fact that we also assume independence can be written eii‘i,d‘N (0, 0y2|x), where
the i.i.d. stands for “independently, identically distributed.”

The likelihood of a sample is often thought of as the joint probability of
the particular observations expressed with the parameters of the probability as
unknowns. For example, in constructing the likelihood of a sample consisting of

Quantitative Methods in Population Health, by Mari Palta
ISBN 0-471-45505-9  Copyright © 2003 John Wiley & Sons, Inc.

21



22 THE MAXIMUM LIKELIHOOD APPROACH TO ORDINARY REGRESSION

binary observations, where the probability of success m is to be estimated, we
multiply together 7’s for the successes and (1 — 7)’s for the failures. Normally
distributed data points, however, are by definition assumed to be continuous. In
that case, we are used to seeing probabilities of intervals, rather than probabilities
of individual data points—for example, P(y > 140) is of interest if y is systolic
blood pressure measured in mmHg. Such probabilities can be obtained from the
table of the standardized normal distribution (once the mean and standard deviation
of y are known). It makes little sense, however, to speak of a particular observation
(say a blood pressure of 115.11111 or 115.1111111111) having a probability. The
probability becomes smaller and smaller to a vanishing point as more and more
decimals are added. Instead, the limiting probability of an infinitely narrow interval
around a point y is based on calculus concepts and is referred to as the density.
The density is the function that generates the probabilities of y falling in given
intervals by mathematical integration. For discrete y (such as binary or counts) the
density is simply equal to the probability of observing y.

The particular integral that generates the probability up to a given point—that
is, F(y) = P(Y < y)—is called the distribution function. It is common to denote
a density by a lowercase letter and to denote the distribution by the corresponding
uppercase letter. For the normal distribution, the density is

1 > —w?

FO) =¢®) GmeXp< 792 >

The normal distribution function is often denoted by & but cannot be written
as a neat formula, only as an integral of ¢. Luckily, this is the integral that has
been evaluated numerically and tabulated in normal distribution tables for the case
u = 0 and o = 1. For example, the integral from —oo to 1.96 equals 0.975.
Substituting the parameters we are interested in for describing p, which are now
those of py)x from a regression line, we obtain

. By — )2
o — (i = Bo ﬂ,m)

1
Oy V2 < 20y2|x
Maximum likelihood estimators are defined as those that maximize the joint
density of the sample. If we were dealing with discrete data, it would also be the
joint probability of the sample. Because we assumed that all points are independent,
the density of the sample is just the product of the individual densities of the

observations
n A A0
1 P — .
L=T] oxp (_(y, Bo — Bixi) )

2
i1 OyxvV2m 2(7y|x
n
n n R
< 1 ) Y i —Bo—Pixi)’
=|—+=] exp —
oy V2 1L 57

ylx
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where we have applied the rule that when multiplying exponentials one takes the
sum of the exponents. Note that the 8’s have “A” on them to indicate that they
are the unknowns to be estimated. Generally, oy, is unknown too, but let’s first
consider the situation of known oy|y.

For example, if we had a sample with just three people aged 42, 50, and 55, and
they had respective systolic blood pressures of 110, 145 and 135, and we knew that
the standard error of blood pressure measurements in the population is 12 (say),
the likelihood would be

P R . (110 = By — fi42)?
| 2var P 2(12)2

[ (145 — fo — 3150)2)}
8 _

1
€X
12V P ( 2(12)2

(035 B — Bi59)?
ENCz 2122

. (110 — Bo — B142)> + (145 — By — B150)?
b4~ fo
)exp B + (135 — Bo — B155)
2(12)2

N (12@

When embarking on the maximization of the likelihood, one always takes the
logarithm because it is easier to maximize a sum than a product, and maximizing
the log of the likelihood also maximizes the likelihood itself. In our case

Z()’i — o — Bixi)?
log(L) = —nlog(oy+/27) — =2

2
2‘Tylx

It is pretty clear that, regardless of the value of oy, or how it is obtained (known
or estimated), this expression is at its largest when ) 7_,(y; — ﬁo — ﬁlxi)z is at
its smallest. It turns out that way because we assumed all observations to have the
same variance ayZ‘x. We have reproduced the unweighted least-squares equation for
estimating By and fj.

What we have just shown is that, in the case of ordinary regression, under
the normality and equal variance assumptions, maximum likelihood and the least-
squares approach yield the same estimators of the regression coefficients.

Turning to the estimator of oy, the situation is not quite so simple. When we
proceed to maximize

> ;= Bo— Bixi)’
log(L) = —nlog(8,,+/27) — =2

2.1
A2
2cry|x
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with respect to &y, we find that

67 =Y i — Bo— Brxi)*/n

i=1

while our usual estimator is
n
Sy = D0 = Bo = Bixi)*/(n = 2)
i=1

In the latter estimator, we divide by the sample size, minus the number of param-
eters in the regression equation for the mean. Both estimators are legitimate and
have their proponents. Clearly, when #n is very large, they are almost the same any-
way. At the moment, most of the statistical community favors the second approach.
To obtain this estimator, while remaining in the maximum likelihood framework,
they developed a slightly modified maximum likelihood approach called “restricted
maximum likelihood” or REML. (The usual maximum likelihood is usually abbre-
viated ML.) Those who wish to see the mathematical foundation are referred to
McCullagh and Searle [5] or Diggle et al. [6] for more details. The basic idea is
to base the likelihood, not on the original observations, but on the residuals. The
number of independent residuals equals the degrees of freedom in the variance, so
n — 2 (for example) becomes the sample size for estimating 03‘ .

Both ML and REML can be fit in SAS by the procedure PROC MIXED. OUT-
PUT PACKET II contains an analysis of the blood pressure data from visit 1 in
the Wisconsin Sleep Cohort Study. PROC MIXED will be used extensively in this
text.

2.2 EXAMPLE

The first example of OUTPUT PACKET II contains the output from PROC REG
for the relationship between systolic blood pressure and age. The commands used
were simply

PROC REG; MODEL SBP=AGE;

The second example contains the results from PROC MIXED. As this procedure
has very extensive capabilities that we will rely on later, it takes a little longer to
run. The commands used for producing the second page were

PROC MIXED METHOD=ML; MODEL SBP=AGE/S;

These commands tell SAS to use the maximum likelihood approach. The /S
option (S stands for solution) tells the procedure to print the regression coefficients.
Strange as it may sound, this is not automatic in this procedure, as sometimes inves-
tigators may want only the significance tests for the model. Looking at the output
we see that, as expected, the coefficients are identical to those from PROC REG.
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The residual variance estimator &yzl .» however, is minutely smaller. While PROC
REG estimated s2

W = 205.64520, ML yields “Residual” = 205.34. The difference
is very small because n = 1365 is large. You may note that PROC MIXED is
designed to be able to handle multiple observations per subjects, and that has led
to strange labels on parts of the output. As we may understand better later, the
commands above (because they don’t need a SUBJECT specification) lead SAS to
think there is only one subject with multiple observations.

Other features of the output are statistics derived from log(L), which we will
use later. Some are familiar. For example, —5570.9 is the value of log(L). The
“—2 Log likelihood”, you may recall, is to be used for comparing nested models
by x? tests.

The third example of the output was produced by

PROC MIXED METHOD=REML; MODEL SBP=AGE/S;

We did not actually need to say METHOD=REML as that is the default, We see
that this output provides estimates that are all identical to those of PROC REG.
Likelihood statistics are now based on the restricted likelihood, and can be treated
and used the same way as ordinary likelihood quantities (see Section 5.2).

2.3 PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS

Maximum likelihood estimators have many desirable properties that statisticians look
for when judging how good an estimator is. The advantage is, of course, also that
these properties hold for all estimators obtained by maximum likelihood, so they don’t
need to be re-proven for each situation. You will often see these properties referred
to in statistical papers and texts. The two involved most often are consistency and
efficiency. More information on the properties of maximum likelihood estimators can
be found in any text on mathematical statistics—for example, Rice [7].

1. Consistency  This is the most important property. It means that the estimator
tends to come closer to the truth when the sample size is increased. Think of it
as any bias in the estimation of the parameter, as well as the standard error of the
estimator going to O as the sample size becomes large.

2. Efficiency  As discussed above, efficiency means that the best possible use is
made of the data. Maximum likelihood estimators are “asymptotically efficient,”
which means that they are precise as possible in large samples. We will return to
the standard errors for maximum likelihood estimators in Chapter 5.

3. Invariance  This property means that reparameterization does not produce
different maximum likelihood estimators of the same quantities. This is logical and
desirable. For example, if B is the maximum likelihood estimator of a regression
slope Bi, then 1/ B, is the maximum likelihood estimator of 1 /B1. Formally, if
6 is a maximum likelihood estimator of 6, then g(@) is a maximum likelihood
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estimator of g(6). You may have seen this principle illustrated in logistic regres-
sion of a 2 x 2 table. There, we obtain the same estimator of the probabilities p;,
whether we obtain the ML directly or parameterize it according to a logistic model

with x equal 0 or 1 to indicate the two columns in the table as p; = %.

4. Normality  In large samples, maximum likelihood estimators have a normal
sampling distribution, with a variance that can be computed from the likelihood
(see Chapter 5). Hence, we will have standard errors for the estimators. Since the
estimators are normally distributed and, in addition, the errors in the standard errors
themselves vanish in large samples, we can always form large sample Z or x2 tests
for maximum likelihood estimators.

5. Comment  Because of the above properties, maximum likelihood estimators
tend to be viewed as kind of a “gold standard.” However, sometimes they cannot
be obtained because a reasonable distribution cannot be specified, or because it is
computationally too hard to maximize log(L). In addition, because the consistency
and efficiency apply to large sample sizes, other estimators can be better in small
samples. You may note, for example, that the properties listed do not include
“unbiasedness.” In fact, maximum likelihood estimators can be biased in small
samples (as is indeed the ML estimator of U)%I -

24 HOW TO OBTAIN A RESIDUAL PLOT WITH PROC MIXED

PROC MIXED deals with residual plots slightly differently than PROC REG. The
statements needed to produce a residual plot from the regression of SBP on Age
are

PROC MIXED; MODEL SBP=AGE/S OUTPRED=o0;
PROC PLOT; PLOT Resid*Pred;

These statements simply create data set “00”, which contains (among other
things) the desired quantities.

OUTPUT PACKET II: USING PROC MIXED AND COMPARISONS
TO PROC REG

Analysis of SBP on Age— Wisconsin Sleep Cohort Study MIXED Versus REG
Using PROC REG

The REG Procedure

Model: MODEL1
Dependent Variable: SBP
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Total observations

1378

Sum of Mean
DF Squares Square F Value Pr> F
1 11604 11604 56.43 <0.0001
1363 280294 205.64520
Corrected total 1364 291898
Root MSE 14.34033  R-square 0.0398
Dependent mean 125.09145  Adjusted 0.0390
Coefficient variation 11.46388 R-square
Parameter Estimates
Parameter  Standard
Variable DF Estimate Error ¢ Value Pr> [t]
Intercept 1 107.98092 2.31066 46.73 <0.0001
1 0.36605  0.04873 7.51  <0.0001
Using PROC MIXED with ML
The Mixed Procedure
Model Information
Data set WORK.A
Dependent variable SBP
Covariance structure Diagonal
Estimation method ML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method  Residual
Dimensions
Covariance parameters 1
Columns in X 2
Columns in Z 0
Subjects 1
Maximum observations per subject 1378
Observations used 1365
Observations not used 13
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Covariance Parameter

Estimates
Cov Parm Estimate
Residual 205.34
Fit Statistics
—2 Log Likelihood 11141.9
AIC (smaller is better) 11147.9
AICC (smaller is better) 11147.9
BIC (smaller is better) 11163.6
Solution for Fixed Effects
Standard
Effect Estimate Error DF ¢ Value Pr > [t]
Intercept  107.98 2.3090 1363  46.77 <0.0001
Age 0.3660 0.04869 1363 7.52 <0.0001
Type 3 Tests of Fixed Effects
Num Den
Effect DF DF F Value Pr> F
Age 1 1363 56.51 <0.0001
Using PROC MIXED with REML
The Mixed Procedure
Model Information
Data set WORK.A
Dependent variable SBP
Covariance structure Diagonal
Estimation method REML
Residual variance method Profile
Fixed effects SE method Model-based
Degrees-of-freedom method  Residual
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Dimensions
Covariance parameters 1
Columns in X 2
Columns in Z 0
Subjects 1
Max observation per subject 1370
Observations used 1365
Observations not used 5
Total observations 1370
Covariance Parameter
Estimates
Cov Parm Estimate
Residual 205.34
Fit Statistics
—2 Log likelihood 11141.9
AIC (smaller is better) 11147.9
AICC (smaller is better) 11147.9
BIC (smaller is better) 11163.6
Solution for Fixed Effects
Standard
Effect Estimate Error DF ¢ Value Pr> 7]
Intercept  107.98 2.3107 1363 46.73 <0.0001
Age 0.3660 0.04873 1363 7.51 <0.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr> F

Age 1 1363 5643 <0.0001

29



CHAPTER THREE

Reformulating Ordinary Regression
Analysis in Matrix Notation

We have seen that expressing the estimators connected with equation (1.1) alge-
braically is a pretty easy task. However, as we turn to the situation of multiple
regression, including additional predictors on the right-hand side of equation (1.1),
it rapidly becomes difficult and then impossible to write the estimators. As an
example, with two predictors x; and x; the formula for Bi is (only found in
textbooks, such as Snedecor and Cochran [8, p. 342])

D i = X0 =) Y (i — %)’

B =
Z(Xli —x1)’ Z(m — X1)(x2 — X2)°

Y i =X (i =X (i =) Y_ (X1 —X1) (x2i — X2)

D i =X Y (v — ¥1)(x2i — X2)?

One practically never finds these types of expressions written out for any situ-
ation beyond that of two predictors. Instead, mathematical notation using matrices
has been developed that allows estimators to be expressed in simple ways by
formulas that explain the structure of the equations, and that can be evaluated
by computers. This notation is so universally used in textbooks, methodologi-
cal papers, and computer manuals that it becomes impossible to learn and utilize
recently developed quantitative tools without understanding it. The last page of this
chapter summarizes the matrix algebra needed. Readers unfamiliar with any of the
matrix operations listed on this page should refer to the Appendix (at the end of
this book) for detailed information on matrix algebra.

Quantitative Methods in Population Health, by Mari Palta
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3.1 WRITING THE ORDINARY REGRESSION EQUATION
IN MATRIX NOTATION

Equation (1.1) stated the equation for ordinary regression as
yi =Bo+Bxi +¢
Note how there is actually a separate equation for each subjecti = 1,2, ... ,n,

because they have potentially different x; and almost certainly different €;. In other
words,

y1 = Bo+ Bix1 + €1
y2=PBo+ Bix2+e

Yn = Bo + Bixn + €,

In matrix notation, the outcomes y; are stacked into a matrix

Vi Bo + Bix1 + €1

y2 ] Bo + Bix2 + €2
Y=1" which equals .

Yn Bo + Bixn + €n

However, using the rules of matrix algebra, the right-hand side can be rewritten

Bo + Bix1 + € Bo + Bix1 €1
Bo + Pix2 + e Bo + Bi1x2 €
Bo + Bix, + €, Bo + Bi1xy €n
where
Bo + Bixi I x
Bo + Bixz L x| /g,
: I R AV
Bo + Bixn |
1 x €]

1 X2 ,30 €2
Denoting L by X, < ) by B, and . by €

1 x, €,
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the regression equation can now be written in matrix form as

Y=XB+e€ 3.1

It is important to note that X has a row for each of the n subjects, as do Y

and €. The number of columns in X is determined by the number of covariates.
Interestingly, one can view the intercept as a covariate that is the same (=1) for all

subjects. If there were predictors xi;, x2i, ... , Xmi, the matrix X would be
I X1 x21 -+ Xml
1 oxpp o x2 o0 xm2
I Xin Xm0 -+ Xmn

but equation (3.1) would look the same. It is clear that equation (3.1) seamlessly
generalizes into multiple regression.

3.1.1 Example

The matrix Y containing systolic blood pressures for the first visit to the sleep
laboratory for the first five subjects in the Wisconsin Sleep Cohort is

119.333
138.333
Y = | 119.333
111.667
148.333

where the decimals arise from averaging three measurements. When regressing
SBP only on age the matrix X for the same five subjects is

1 47.1677
1 52.0137
X=1]1 53.5359
1 30.1383
1 42.8282

while if both age and BMI are included, we obtain

47.1677 20.1956
52.0137 24.0509
53.5359 28.0190
30.1383 26.2507
42.8282 27.6095

)
I
—
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3.2 OBTAINING THE LEAST-SQUARES ESTIMATOR /§
IN MATRIX NOTATION

We examine the least-squares equations (1.2)

aLS A A N N
g = Y i—ho—Pix)=0 or Y (i—Po—px)=0 (32
0
oLS N R A
i =2 xi(i—Bo—Pix)=0 or D xi(yi—fo—Bix) =0
1
(3.3)
Matrix property 15 from the list tells us that (3.2) can be written
1 — éo - ,lexl)
(y2 — Bo — Bix2)
11 -1 . =
n — IBAO - len)
and equation (3.3) can be written
O — ﬂ:o - f)flxl)
(y2 — Bo — Bix2)
(_xl X2 e xn) : —
O — BO - len)
But these equalities can be stacked into a larger matrix as
1 — ,3:0 - ,3:1)61)
e (y2 — Bo — Bix2)
( bl ! ) . =0 34
X1 X2 P Xn

A

n — Bo — Bixa)

Recognizing matrixes and operations introduced above, we see that (3.4) can be
written

X' (Y -XB) =0 (3.5)

Thinking through how equations (1.2) arose, we realize that (3.5) would stay
the same even if there were additional predictors. Additional predictors would just
add additional equations like (3.3), and hence additional rows of x’s to X'.

Solving equation (3.5) for B by matrix operation is not difficult and involves
the following steps:
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XY -X ﬁ) =0 we can multiply into parentheses
XY —-XXB=0 we can move terms to the other side of the
equation
XY =X'XB we can multiply both sides by the same
quantity
X'X)"'X'Y = (X'X)"'X'XB (X'X)"'X'X =1 by definition
B=XX)"'XY (3.6)

The last line in (3.6) presents the ordinary least-squares estimator in matrix
notation.

Hidden in the derivation that leads to (3.6) is the assumption that X’X is an
invertible matrix. We will take care to make this true in all our analyses. In prac-
tice it involves (1) making sure that predictors in X are not linear combinations of
other predictors in X and (2) using at most (k — 1) indicator variables to describe k
groups. The second point reflects the tradition followed in most observational stud-
ies. Analyses of designed experiments sometimes follow other traditions of coding
and/or generalizations of (3.6) that allow for X’X not being directly invertible.

We may note that based on only the assumption that E(Y|X) = X8, we can
show that the ordinary least-squares estimator is unbiased (its mean or expected
value equals the parameter):

EQB) = E[(X'X)"'X'Y|X] = (X' X)"'X'E(Y|X)
=X'X)"'X'xBp=8
Since we also know that under the equal variance assumption the ordinary least-
squares estimator minimizes azx, and since the estimator is a linear expression in

yi, it is sometimes referred to as the “best linear unbiased estimator” or “BLUE”
of B. More information can be found in McCullagh and Searle [5].

3.2.1 Example: Matrices in Regression Analysis

The following output shows analysis of only the first five subjects in the Wisconsin
Sleep Cohort Study and illustrates the matrix computations involved in obtaining
regression estimators. The commands ran to show the detail are

PROC PRINT; VAR ID AGE SBP;
PROC REG ALL; MODEL SBP=AGE;

Producing output

Obs id age sbp

1 S1 47.1677 119.333
2 S2 52.0137 138.333
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3 S3 53.5359 119.333
S4 30.1383 111.667
5 S5 42.8282 148.333

Model Crossproducts X'X X'Y Y'Y

Variable Label Intercept age
Intercept Intercept 5 225.68377824
age uncentered age in years 225.68377824 10538.880935
sbp systolic blood pressure 636.99999999 28930.815423

Model Crossproducts X'X X'Y Y'Y

Variable Label sbp
Intercept Intercept 636.99999999
age uncentered age in years 28930.815423
sbp systolic blood pressure 82089.222219

X’X Inverse, Parameter Estimates, and SSE

Variable Label Intercept age
Intercept Intercept 5.9837951594 -0.128139364
age uncentered age in years -0.128139364 0.0028389139
sbp systolic blood pressure 104.50122963 0.5073198115

X’'X Inverse, Parameter Estimates, and SSE

Variable Label sbp
Intercept Intercept 104.50122963
age uncentered age in years 0.5073198115
sbp systolic blood pressure 844.76311845%

However, not all the output produced is shown. (The ALL option produces a lot!)
Extracting relevant parts of the information shown, we see the matrices

o (5 22568 [ 636999
X X_<225.68 10538.88) and - XY _<28930.82)

This follows because X'X is printed in the upper 2 x 2 segment of the “Model
Crossproducts,” X'Y is printed as the last row (two entries), and Y'Y is the very
last entry. Y'Y is not needed for producing f! , but is used in obtaining the “Total
sum of squares” for the ANOVA table.

Further down, we also see

oot 5984  —0.1281
(XX _(—0.1281 0.00284
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3.3

10.

11.

12.

REFORMULATING ORDINARY REGRESSION ANALYSIS IN MATRIX NOTATION

LIST OF MATRIX OPERATIONS TO KNOW

. Matrix dimension n x m refers to n = #rows, m = #columns. If m = n, the

matrix is a square matrix.

ap -+ dlm

. Matrix notation: A=

anl -+ dnm

. Addition of matrices—straightforward—add corresponding elements. Matri-

ces must be of same dimension.

. Multiplication of a matrix by a constant—multiply each element by the

constant.

. Multiplication of two matrices—row 1 of the first matrix multiplies corre-

sponding elements of column 1 of the second matrix, then these products are
summed up to form product element (1, 1) of the new matrix, row 1 with
column 2 forms product element (1, 2), and so on. When multiplying A by
B to form AB, # columns in A has to equal # rows in B.

. Identity matrix I has 1’s on the diagonal and O’s elsewhere. It is a square

matrix of any dimension. When multiplying A by I, one gets back A. In fact
Al = A and A = A, as long as the matrices can be multiplied.

. Transpose of A denoted by A’. The transpose is obtained by flipping rows

and columns. Note that AA’ is a square matrix, as is A’A. However, the two
do not usually equal each other. In fact, if A is n x m then AA’ is n x n, but
A’A is m x m.

. Symmetric matrix—A is symmetric if A = A’. Symmetric matrices are

important because they will often be encountered in statistics. Both AA’ and
A’A are symmetric matrices.

. The transpose of a product. It can be demonstrated that (AB) = B’A’. We

will need this when showing how the standard error of the estimators of the
regression parameters are obtained.

Cofactor of a matrix element a;;—the determinant of the smaller matrix
obtained when row i and column j are deleted, multiplied by (—1)'*/.

Determinant: The determinant of any n X n matrix is 27: 1 Gi j(—l)i+1Ai1,
where A;; is the determinant of the matrix obtained when the first column

and the ith row are deleted, and (—1)t1A;| is the cofactor of element ;1.

Note that the determinant of a 2 x 2 matrix “Z Z‘ = ad — bc (which by the

cofactor formula is derived as (—1)%ad + (—1)>ch). In examples, we will
only use the determinant of a 2 x 2 matrix.

Inverse A~!. Defined by AA™! = A=A = I. A matrix is invertible if
it is square and has nonzero determinant. A noninvertible square matrix is
sometimes referred to as singular (and an invertible one as nonsingular). A~
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is obtained by m(cofactormatrix)’ . It is handy to know that

a b\ 1 d —b

c d) — ad—bc\-c a
13. Diagonal matrices have especially simple properties. Obtaining the inverse
involves inverting each of the diagonal elements (i.e., 1/aji, etc.). When
a diagonal matrix has the same entry along its entire diagonal, multiplying

another matrix by it has the same effect as multiplying by that constant. For
example,

B =aB

S O Q
QOO

0
a
0

14. When there is a string of matrices multiplied by each other, a constant mul-
tiplier anywhere in the string can be moved up front. For example,

k k 1 1 k O

15. Based on the rules of matrix multiplication, sums arise from multiplying a
row of ones into a column, that is,

ai

a n
(1 1 - 1) ; => a

: =

ay l

Sums of cross products arise from any multiplication of a row with a column,
that is,

ai
az

n
(b1 by -+ by) : =Zbiai
: i=1

dn



CHAPTER FOUR

Variance Matrices and Linear
Transformations

Chapter 3 showed how writing variables and parameters in matrix form results in
simple-looking equations for regression estimators. Another important application
of matrix algebra, as well as of more advanced matrix theory, is in working with
variance matrices. Variance matrices are a generalization of the simple variance in
that they allow expressing the variances of several variables simultaneously. We
will need variance matrices to express the variances (and hence standard errors)
of estimators and to be able to write formulas that extend ordinary regression to
situations where the usual assumptions do not hold.

This is a multipurpose chapter centered around variance matrices. First of all,
it defines variance matrices and provides further practice of matrix operations. We
will define a linear transformation and obtain its variance. This sets the framework
for future developments. In the process we will look at the variance of a mean and
a difference, which are useful in other contexts.

4.1 VARIANCE AND CORRELATION MATRICES

We will make extensive use of the concept of a variance matrix, usually denoted by
V. For a single measurement, the variance matrix simply consists of the constant
o2 (a 1 x 1 matrix). However, when we have several outcomes, possibly with
different variances, it is convenient (for reasons we will soon see) to present the
variances along the diagonal of a matrix, for example,

i 012 .
V=Var¥)=Var|[n|=| . o}
V3 .. o3

Quantitative Methods in Population Health, by Mari Palta
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The equal variance assumption in Chapter 1 translates to

2

€] Gylx
Var(Y|X)=Var|e | = | . o}?lx
€3 . . o

ylx

We have not yet filled in the elements off the diagonal. In a variance matrix,
these consist of covariances. While the variance of y; (where i = 1,2,... as
referring to each outcome) is defined as oiz = cryzl, = E[(y; — ,uyl.)z] (i.e., the mean
of all squared deviations) and is usually estimated from n measurements of y; by

st=Y (i =¥/ (=1
J

the covariance refers to two y’s together and is defined as oy, yir = E[(yi —uy,) (yir —
oyiy )] = EL(Qi — 1y (yir — ,uyi/)]. When i = i/, the covariance is the variance.
Hence, while the variance refers to a single measurement, the covariance refers
to how two measurements behave together or “covary.” The covariance can be
estimated by

Sii! = Syyy = Z(yz‘j =¥y —yi)/(n—1)
J

An alternative estimator is divided by n — 2 (or n minus “degrees of freedom”)
and forms the basis for an “adjusted” correlation, such as seen on regression analysis
output. From remembering the formula for estimating the usual Pearson correlation
between y; and y;/

> i =IOy = Vi)
J

r =
\/Z(y,»,- —52 Y 0wy =3
J J

we see that the covariance estimator is just r x (syisy’,,). The same relationship
holds for the parameters, that is, oy, yy = POy, 0y,. We present the covariance this
way because the correlation is a better known entity than the covariance. The fact
of the matter is, however, that the correlation arises from the covariance by the
definition

o= Cov(y,. s yi/)/(in U}'i’)

Now we can fill in the variance matrix as

2
V1 o 012 013

V=Va(¥)=Var |y | =|0oa 0o} o2
Y3 031 032 032
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The row and column indicators correspond to the respective covariance, so
that o1y is the covariance between y; and y;, and so on. By the definition of
the covariance, 0;; = o0j;. The variance matrix is, therefore, a symmetric matrix,
meaning that V = V’. Since independent observations are uncorrelated, and p =
0 implies that the covariance is 0, the independence assumption in Chapter 1 for
simple regression analysis results in

2
€1 O 0 0
Var(Y|X) =Var|ex | =] O Uyz\x 0 |= U)%le
€3 0 0 O—)%\x

where [ is the identity matrix.

4.1.1 Example

When measuring blood pressure, it is common to obtain more than one measure-
ment on each individual to improve precision. For two sequential systolic blood
pressure measurements (SBP; and SBP») on a person, each with standard deviation
10 mmHg, correlated at 0.80, the variance matrix is

_ SBP;\ (100 80\ _ 1 0.80
Var(Y) = Var (SBPQ) = < 80 100) = 100 <O.80 1 )
The first matrix is the variance matrix and the second is the correlation matrix.

4.2 HOW TO OBTAIN THE VARIANCE OF A LINEAR
TRANSFORMATION

A linear transformation refers to a combination of variables, where variables are
multiplied by constants and then added or subtracted from each other. The sum
of two variables is one simple example, and a variable transformed to a different
scale (e.g., °F to °C by °C = (°F — 32) x %) is another. It is useful to know how
to obtain the variance of a linear transformation of variables—not only for the
purposes here, but in general. Often, one needs to obtain the variance or standard
error of a difference of variables, or a combination of regression coefficients, such as
may occur if there is an interaction effect. In the latter case (see example at the end
of this chapter) we need the standard error of expressions ,3 v+ /§ v xx, X2, Meaning
the “effect” of variable x; at a given level of another interacting variable x,.

4.2.1 Two Variables

The basic formula for a linear combination of two variables is #1y; + 2 y». For a
sum t; = tp = 1, while for a difference tj = 1, = —1.
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If the two variables are correlated at p, the formula for the variance of this
linear combination is

Var(t; y1 + t2y2) = 17 Var(y1) + 13 Var(y2) + 2t12p+/Var(yy) Var(y2) — (4.1)

or equivalently
Var(t1y1 + hy2) = tlz Var(yy) + t22 Var(y2) + 2t1t2Cov(y1, y2)

We do not derive these formulas here, but they follow from the basic definitions
of variance and covariance given above. Note that when y; and y; are independent
replicates of the same random variable, and ;| = #, = 0.5, so that #;y; + f2y2 is
just the usual mean of two independent measurements,

Var(ty; + t2y2) = 0.25 Var(y;) + 0.25 Var(y2) + 0

Var(y1)

=2(0.25) Var(y;) + 0 = 5

Reasonably enough, the formula simplifies to the usual one for means of inde-
pendent variables when p = 0.

For variables y1, y» with equal variance o2

, more generally we have

yit+y\ _ o*(l+p)
2 n 2

Var(y; + y2) = 20%(1 4+ p) or Var(

using the formula Var(t1y) = t12 Var(y). Furthermore,

Var(y; — y2) = 20%(1 — p)

4.2.1.1 Example
Often, when planning data collection for a study, we may wonder how much benefit
there will be in obtaining repeat measurements of variables and then use the mean
of the repeats. In another setting, we may be planning a study where change in
variables is a primary outcome, and wonder how the variability of the difference
compares to that of the measurements themselves.

For the blood pressure example above, the variance across persons of the mean
blood pressure is

90
2 2

SBP; + SBP;, 102(1 4 0.8)
Var ( ) = =
so that the standard deviation of the mean is +/90 = 9.5 . Another way to look at
this is that we have reduced the variability between people by 10%. Because the
two measurements are highly correlated, the standard deviation of the mean is only
slightly lower than the standard deviation of a single measurement. Logically, if
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p = 1, so that we have two perfectly correlated measurements, there is no gain at
all in using the mean. The lower the correlation, the greater the gain. Of course,
a low correlation would imply a great deal of measurement error or moment-to-
moment variation in the measurement. We see that it is very worthwhile to take
several measurements when there is a lot of measurement error.

For the difference between the two measurements, we obtain

Var(SBP; — SBP,) = 2(10)%(1 — 0.8) = 40

Here we see that if p were 1, we would have no variability at all. This makes
sense, because p = 1 implies that the two variables are in a fixed relationship to
each other. It would in fact not be very interesting to analyze the difference in
that situation. With p = 0, the variability would be twice as high as that of the
individual measurements. The relatively high correlation p = 0.8 works to reduce
the variability in the difference considerably.

Note the usefulness of the formula for the difference in projecting the standard
error for a paired ¢-test. The variance of the difference is the basis for the paired
test, as the standard error used is the variance across subjects of the differences
divided by +/n . Given some knowledge of the variance of the measurement across
unpaired subjects, and the correlation within pairs, one can estimate the standard
error for use in sample size and power projections. The last part of the discussion
implies that a lot is gained by a paired versus an unpaired ¢-test, when there is a
strong correlation between members of the pair, because that’s when (1 — p) is
small.

4.2.2 Many Variables

With linear combinations involving any number of variables, expression (4.1) gen-
eralizes so that

Var (Z liyz') =Y tf Var(y) + Y _ titispiiry/ Var(y;) Var(y;r) (4.2)
i

The second part of this formula involves the correlation between each pair of
variables. The way the expression is written, each pair of observations is counted
twice. There are other ways to write (4.2); for example,

Var (Z tiyz') = Z 17 Var(y;) + 2 Z tity i/ Var(y;) Var(y;r)
i<i’

It turns out that a linear combination can be expressed more concisely in matrix
form.

Y1
Suv=lo oo )|2] =1
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This matrix operation is referred to as a linear transformation of Y. It is not
necessary that the matrix 7' have only one column. In cases where there are more
columns, we still refer to the multiplication of T’ and Y as a linear transformation,

but actually several different linear combinations of the elements of Y are being

produced (see example below).
Using slightly more algebra, one can show that (4.2) can be expressed as

Var(T'Y) = T’ Var(Y)T 4.3)
This is an important formula that will come in handy in future chapters.

4.2.2.1 Example
Returning to the above blood pressure example, the mean blood pressure can be

written
SBP1+SBP2_(1 1) SBP; _ 7 SBP;
2 —\2 2/\SBp,/) ~ "mean\SBP,
1
Tmean= (%)
2
l) 100 80
2 80 100

— (1 1 1 1
= (5100 + 380 380+ 3100) (

so that

and by the matrix formula

D=

SBP SBP
Var (%) = (

B[ — D —

D — D |—

)

1
3 1 1

= (90 90) (f) =90= +90= =90
1 2 72

as before. For the difference, a similar computation can be carried out with

+1
Taitt = (_1)

However, formula (4.3) can give us the variance matrix for the mean and dif-
SBP;

ference jointly. Let ¥ = SBP,

)as before, and combine Tinean and Tyiff into an

+1
—1

overall T so that

D= =
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Now

SBP,+SBP,
T'Y = 2
SBP; — SBP,

producing both the mean and the difference by one linear transformation, and

1 L 100 80
vy — T (2 2
Var(T'Y) =T Var(Y)T = <+1 _1> ( 80 100)

_ (90 90\ (3 +1) _[% 0
- (20 —20) (% —1) - ( 0 40)

We see that the variances we obtained by the more mundane (nonmatrix) approach
appear on the diagonal. However, in deriving the entire variance matrix for the mean
and difference, we have provided the additional result that the mean and difference
are uncorrelated. This is reflected in the off-diagonal elements in the covariance
matrix being 0. We will see later that one way to deal with correlated data is to
relate risk factor changes to differences in outcome within individuals, clusters, or
matched sets. Another way is to do ordinary regression on cluster means. More
sophisticated analyses, such as we will do with PROC MIXED in effect, combine
the two approaches in ways that we will illustrate in Chapter 9.

(]

4.2.2.2 Example: How to Obtain the Standard Error of Regression
Coefficients of Predictors When There Is Interaction

When there is an interaction effect in a model, the main effects of variables and
their standard errors have to be interpreted with caution. Assume that we have
a model

yi = Bo+ Bixti + Paxai + Baxti x x2; + €

This implies that the regression coefficient of variable x; depends on the value
of variable x; through the relationship

Bxilx, = B1 + B3x2

Hence, B; represents the coefficient of x; when x, = 0, and unless care is taken
in scaling x> to a reasonable 0 point, 8; has no meaning. We ran the following
commands for the regression of systolic blood pressure at visit 1 in the Wisconsin
(one person was not weighed at visit 1, making all analyses with BMI have one
observation less.)

PROC REG; MODEL SBP=BMI AGE AGE_BMI/COVB;

The output is
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obtaining the se of beta(bmi) at age 50
obtaining the standard error from the variance matrix of
coefficients

The REG Procedure

Dependent Variable: SBP systolic blood pressure

Variable

Intercept
age

bmi

age bmi

Variable

Intercept
age

bmi

age bmi

Variable

Intercept
age

bmi

age bmi

Variable

Intercept
age

bmi

age bmi

Parameter Estimates

Parameter Standard

Label DF Estimate Error
Intercept 1 65.65235 10.70434
uncentered age in years 1 0.88162 0.23313
uncentered bmi kg/m2 1 1.47030 0.35480
uncentered intercation 1 -0.01826 0.00771
Parameter Estimates
Label DF t Value Pr > |t
Intercept 1 6.13 <.0001
uncentered age in years 1 3.78 0.0002
uncentered bmi kg/m2 1 4.14 <.0001
uncentered intercation 1 -2.37 0.0180
Covariance of Estimates
Label Intercept age
Intercept 114.58288366 -2.462545415
uncentered age in years -2.462545415 0.0543507542
uncentered bmi kg/m2 -3.715985671 0.0798520374

uncentered intercation 0.0798316556

Covariance of Estimates

Label bmi
Intercept -3.715985671
uncentered age in years 0.0798520374
uncentered bmi kg/m2 0.1258847378
uncentered intercation -0.002700182

obtaining the se of beta(bmi) at age 50

-0.001761434

age bmi

0.0798316556
-0.001761434
-0.002700182
0.0000594663

obtaining the standard error by centering the interaction

Dependent Variable:

The REG Procedure

SBP systolic blood pressure
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Parameter Estimates

Parameter
Variable Label DF Estimate
Intercept Intercept 1 65.65235
age uncentered age in years 1 0.88162
bmi uncentered bmi kg/m2 1 0.55731
agec_bmi interaction with age centered 1 -0.01826
at 50
Parameter Estimates
Standard
Variable Label DF Error t Value
Intercept Intercept 1 10.70434 6.13
age uncentered age in years 1 0.23313 3.78
bmi uncentered bmi kg/m2 1 0.06732 8.28
agec_bmi interaction with age centered 1 0.00771 -2.37
at 50
Parameter Estimates
Variable  Label DF Pr > |t]
Intercept Intercept 1 <.0001
age uncentered age in years 1 0.0002
bmi uncentered bmi kg/m2 1 <.0001
agec_bmi interaction with age centered 1 0.0180
at 50

Here AGE_BMI is the interaction AGE*BMI (age in years is not centered,
neither is BMI). The option COVB prints the variance matrix of the regression
coefficients, which we will use in a minute. For now, notice that the interaction
is statistically significant and that the value Bbmi = 1.47 is the coefficient of BMI
extrapolated to age 0. Clearly, this is meaningless. To obtain the coefficient of BMI
at a more reasonable age, say 50 (which is close to the mean age of the sample),
we calculate 1.47 — 0.0183 x 50 = 0.555. Note that this is a linear transformation

,31+,é3xz=(1 xz) 'BAI =(l 50) IBAI
3 B3

so that T = (510) Then we can obtain the standard error of the coefficient of

BMI at age 50 via the variance formula for a linear transformation. The above
output provides the variance matrix of the BMI and interaction coefficients. Note
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that the diagonal elements of this matrix are just the standard errors squared. The
off-diagonal elements are the covariances. Regression coefficient estimators tend
to be correlated because they were fit together. We see that

var (B1) _ (0126 —0.00270
$3) = \=0.00270  0.0000595
SO

2 Lo 0.126  —0.00270 1
Var(i + frx) = (1 50) (—0.00270 0.0000595) <50>

= (0.126 — 50 x 0.00270 —0.00270 4 50 x 0.0000595) <5(1))

=0.126 — 50 x 0.00270 — 50 x 0.00270 4 2500 x 0.0000595
= 0.00475

Then the standard error of the coefficient is +/0.0047 = 0.0689. Obviously, the
same procedure can be used to obtain the coefficient for BMI and its standard
error at any age, as long as the regression estimators and their variance matrix are
provided.

A slightly more accurate and painless method is to center the interaction at the
value of AGE at which we want to obtain the regression coefficient of BMI. This
was done in the second approach above. Now

BBMIlage:xz = B} + B3(x2 — 50)

so that the coefficient of BMI at age 50 is ,3{ = 0.557 with standard error 0.0673.
We note that the first method is more flexible and does not require access to the
original data. However, it is laborious and prone to round-off error unless many
decimals are carried along.

4.2.2.3 Another Example: How the Variance of the Difference

Affects a Paired t-Test

The next output example shows some results from the Wisconsin Diabetes Registry.
GHD levels are being compared between the first (duration DUR = 0) and second
(DUR = 1) years of diabetes for individuals who have provided data for both
years. We compute the variance of the difference in GHb between the two years
by formula (4.3) and directly from the data. In the process we also compare the
results from performing unpaired and paired 7-tests.

Because the data for different years were originally in different records, a merged
data set was created for performing the paired #-test. Note the command for the
paired ¢-test, which does not use a CLASS statement. The commands run were
(except that some additional programming is not shown that was needed to delete
from the unpaired ¢-test individuals with missing data in either year):
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......

LABEL DUR="‘year of diabetes’;

PROC TTEST; CLASS DUR; VAR GHB;
DATA Al; SET A;

IF DUR=1; GHB0=GHB;

KEEP ID GHBO0;

PROC SORT; BY ID;

DATA A2; SET A; IF DUR=2;

GHB1=GHB; KEEP ID GHB1; DATA PAIR; MERGE A1l A2; BY ID;

IF GHB0=. OR GHB1=. THEN DELETE;
PROC CORR; VAR GHB0 GHB1;
PROC TTEST; PAIRED GHB0*GHB1;

Another way to achieve the merging is:

PROC SORT; BY ID DUR;

DATA PAIR (KEEP=GHB0 GHB1);
ARRAY G{2} GHB0-GHB1;

DO I=1 TO 2;

SET A; BY ID DUR;

G{I}=GHB;

IF LAST. ID THEN RETURN;

RUN;

PROC CORR; VAR GHB0 GHBI1;
PROC TTEST; PAIRED GHB0*GHBI1;

which makes use of the SAS array feature and also the ability to pinpoint the last
(or first) observation for a person. The output follows.

Wisconsin Diabetes Registry, comparing GHb between first two

Upper CL Lower CL

years
unpaired t-test
The TTEST Procedure
Statistics
Lower CL
Variable dur N Mean
M_GHB 1 446 9.1101
M _GHB 2 446 10.252

M_GHB Diff (1-2) -1.486

Mean Mean Std Dev
9.3245 9.539 2.1624
10.49 10.729 2.4039
-1.166 -0.846 2.3283
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Upper CL
Variable dur Std Dev Std Dev Std Err Minimum Maximum
M_GHB 1 2.3043 2.4664 0.1091 4.75 22.98
M_GHB 2 2.5617 2.7418 0.1213 5.5125 23.2
M_GHB Diff (1-2) 2.4364 2.5551 0.1632
T-Tests

Variable  Method Variances DF t Value Pr<|t|
M_GHB Pooled Equal 890 -7.15 <.0001

correlation for constructing variance matrix
The CORR Procedure

Pearson Correlation Coefficients, N = 446
Prob > |r| under HO: Rho=0

ghbo ghbl

ghbo 1.00000 0.48060
<.0001

ghbl 0.48060 1.00000
<.0001

paired t-test

The TTEST Procedure

Lower CL Upper CL
Difference N Mean Mean Mean Std Dev Std Err
ghb0 - ghbl 446 -1.397 -1.166 -0.934 2.4896 0.1179
T-Tests
Difference DF t Value Pr > |t
ghb0 - ghbil 445 -9.89 <.0001

The first part of output consists of an unpaired #-test. (This is, of course, not
the test that should be done, given that the data were actually paired.) We see that
the mean GHb level in the first year was 9.32 with a standard deviation of 9.30.
In the second year, the level was 10.49 with a standard deviation of 2.56. The
standard error for the difference (not taking correlation into account) is 0.1632. We
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see that the GHb’s from the two years correlate at » = 0.48060. This correlation

will dictate how much is gained by the matched analysis.
We now know that the variance matrix of these two measurements is

v 2.30432 (0.4806)(2.3043)(2.5617)
= 1(0.4806)(2.3043)(2.5617) 2.56172

To form the difference between the measurements, we choose the matrix

7= ()

and obtain the variance of the difference by formula (4.3) as

(1 -1 2.30432 (0.4806)(2.3043)(2.5617) 1
(0.4806)(2.3043)(2.5617) 2.56172 —1
(230432 — (0.4806)(2.3043)(2.5617)\ [ 1
~ 1(0.4806)(2.3043)(2.5617) — 2.56172) \ -1
1
= (24729 —3.7254) (_1> = 6.1983

The paired #-test at the end provides descriptive statistics for the difference
between the two measurements obtained directly from the data. The sample variance
of the difference is 2.4896> = 6.1981. The standard error for the paired test is
0.118, a substantial reduction from 0.163 of the unpaired test. We note that the
paired z-test value for the difference (Ho:ugisf = 0) is 1(445) = —9.89, and the
unpaired z-test value (for unequal variance) is (approximately) #(880) = —7.15.
Because of the large sample size, they are both highly significant. If, however, the
sample size had been much smaller (about 20), the unpaired 7-test would have been
nonsignificant at two-sided o = 0.05.

At the design stage of a study, a decision may need to be made whether a
matched design is worthwhile. If one has estimates of o> and p, one can project
the sample size or power both ways and assess the benefits of matching. In this
projection, one would use the fact that the variance of an unpaired difference is
202 /n, and that of a paired difference is 262(1—p)/n. A paired design is beneficial
when p is large—in other words, when the matching characteristics are “strong.”



CHAPTER FIVE

Variance Matrices of Estimators
of Regression Coefficients

Chapter 4 introduced both the variance of regression coefficient estimators and
the covariance between these estimators as provided by PROC REG. We saw how
variances and covariances can be compactly summarized in a matrix. In this chapter,
we will derive this variance matrix from least-squares and maximum likelihood
perspectives.

5.1 USUAL STANDARD ERROR OF LEAST-SQUARES ESTIMATOR
OF REGRESSION SLOPE IN NONMATRIX FORMULATION

We first look at the estimator of the ordinary least-squares estimator of the slope
B1 in nonmatrix notation. There is assumed to be only one covariate x, so that

D =D -y Y (D
i=1

i=1

D @i —x)? D i —%)?
i=1 i=1

B =

We can easily show that the (—¥) is not needed as

Y i —XDF =YY (5 — %) =F (¥ —n¥) =0

i=1 i=1

Now, to get the se(,él) =,/ Var(,él), we use the nonmatrix formula for the variance
of a sum:
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n X; — X 2
Var(B) =3 [ 3y w2 | VarGile)
i=1 \ 5

Xi — X 2

ﬁi@j—ff Var(e;) 5.1)
j=1

n

i=1
Note that the independence assumption has made Cov(e;, €;r) = 0, eliminating
that part of expression (4.2). Now comes the point at which a decision has to be
made regarding what to assume about the variance Var(y;|x;) = Var(e;). The equal
variance assumption leads to
= 2 = 2

Xi — X Xi — X
n B TEE— n 7

var(fy) = Z Z(xl' —%)? Var(y; |x;) = a'y2|x Z Z(x.i %2

=1\ ;o i=1

> i —x)?

A2 =l ) 1

=%t , 2 = %k
[Zui - ﬂ DG =%
i=1

i=1

j=1

the square root of which is the usual standard error of ,3 1. The estimator 6V2|x can be
obtained by the various approaches we have discussed (from the MSE, by ML or
by REML), with the MSE being the natural approach with least-squares estimation.

5.2 STANDARD ERRORS OF LEAST-SQUARES REGRESSION
ESTIMATORS IN MATRIX NOTATION

As an alternative to the above “pedestrian” approach, we can use the matrix formu-
las from Chapter 4 to derive the variance matrix of the regression coefficients. The
variance matrix of the regression estimators includes variances and covariances of
all estimated coefficients.

The estimators are in matrix § with one column containing the intercept and
all the regression slopes. First note that formula (3.6) for ,3 is just a linear
transformation of Y, /§ = (X’ X)_IX 'Y = T'Y, where using the matrix transpose
formula (AB) = B’A’ and the fact that X’X and, therefore, its inverse are sym-
metric, we obtain

T=[XX)"'X7T=X[(XX)"""=xX'X)"!



STANDARD ERRORS OF LEAST-SQUARES REGRESSION ESTIMATORS IN MATRIX NOTATION 53
By formula (4.2) we obtain
Var(T'Y|X) = T'Var(Y | X)T = (X'X) "' X/[Var(Y | X)] X (X' X) !
Again, if we make the equal variance and independence assumptions, we have

2
Oylx (2)
Var(Y|X)=| 0 % | =op.d

Then using property 14 from the matrix formula list, along with the property of
an identity matrix, we obtain

Var(B) = (X'X)"' X'[67, 11X (XX")™!

=65, X' X)X X(X'x)™!

=65,(x'x)"! (5.2)

This is the usual expression for the variance matrix of ordinary least-squares
estimator of the regression coefficients.

5.2.1 Example

It is instructive to write out (X’'X)~! for the situation of simple regression (only
one covariate). Then

xi
1 x»
X = .
1 x,

and
n
1 x
" Y
_ 1
I N n
. D% D%
X
n 1 1

It is useful to remember that X’'X is a square matrix that always has the same
number of rows and columns as there are regression parameters.
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Now, by the formula for matrix inversion we obtain

n 2 _ n .
Ko o] (2 - z>

- (She) \-Xix o
> xzz/” Zl Xi
| ST e - (S
> i

_ 1
WY — (), AR — (i) /e

Examining the (2, 2) element in this matrix, we find that because

Y -w =5 (Xw)
we have

Var(B1) = 62 :

ylx n

D i —%)?
i=1

as before. However, the matrix approach has also provided the variance of the
estimator of the intercept, along with the covariance of the slope and intercept
estimators.

5.3 THE LARGE SAMPLE VARIANCE MATRIX OF MAXIMUM
LIKELIHOOD ESTIMATORS

You may note that the normality assumption was not involved in the derivation of
the variance matrix above. It would enter only when we start using the standard
errors to form f-tests, F-tests, and confidence intervals. We will now derive the
large sample variance matrix of the estimators based on maximum likelihood,
when the equal variance assumption holds. To use maximum likelihood, we do
need to assume that the observations or regression errors are normally distributed.
This section illustrates the general approach to obtaining the standard errors of
maximum likelihood estimators.

Recall the log of the likelihood for a regression analysis with one predictor from
equation (2.1). (For simplicity we use just one predictor, although all principles
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apply to the more general case.) Based on the observations y;, conditionally on
x;, all being normally distributed with variance o> = ovzlx, being independent, and

having mean of By + Bix;, we have “

"y — By — Brxi)?
log(L) = —n1og(Gyxv/21) — Y | (yi i{;z B1xi)

i=1 ylx

One of the pleasing properties of maximum likelihood estimators is efficiency
(in large samples). The ML estimators are known to be to be efficient, because
their large sample (sampling) variance has been derived for all situations and can
be obtained directly from log(L). It is extremely convenient that the large sample
variance can be obtained by the same method, no matter what is being estimated.
For other estimators the variance often needs to be derived for the specific situation;
the only problems encountered in large sample maximum likelihood are numeric.

Estimation of the large sample variance of maximum likelihood estimators when
there is more than one parameter being estimated involves the inversion of a matrix.
This matrix consists of (minus) second derivatives of log(L). In general, the matrix
must include derivatives with respect to all the parameters, but the regression log(L)
above estimates the A’s and the Gy|x independently. Because of this we can illustrate
the principle by deriving the variance matrix only for the B’s. If we did include the
regression parameters and the variance together, they would form separate blocks
in the matrix, and these blocks will be separately inverted.

First we obtain the second derivatives (remember, there are three for the two
parameters):

2

—log(L) = ——

B3 &3

92 x2
— log(L) =) —
81812 Oyix
" ogty =~y

8,BAOa,BAl 6y2|x

Next we remove the—signs and place these in a matrix (known as the infor-
mation matrix J)

n Xi

O3l 2 O3l 1 n DX
i il BAFEN Yoxi Ya?

Z rS) Z %) ylx i i
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We know the inverse of this matrix is obtained as

j_l A2 1 (lez _in)

IR T EIEIRACS S
L o
L | T e - ()
ylx T

Y2 (Tu) e (Txn)

The (1, 1) element in this matrix is the variance of the intercept, the (2, 2)
element is the variance of the slope, and the (1, 2) element (which equals the (2,
1) element) is the covariance of the two. We see that the estimators of the intercept
and the mean are correlated from sample to sample.

The (2, 2) element is again recognizable as the usual

A2
Oylx

Y i %7

Here, it is common to obtain 53\)5 by ML or REML (which happens to coincide
with the MSE approach).

Var(f)) =

5.4 TESTS AND CONFIDENCE INTERVALS

Both least-squares and maximum likelihood estimators are approximately normally
distributed in large samples. This follows from applications of the central limit
theorem. When the residuals are normally distributed, least-squares estimators are
normally distributed also in small samples. Because the two coincide in the current
situation, so are the maximum likelihood estimators for ordinary regression. How-
ever, when residuals are not normally distributed, the distributions of maximum
likelihood estimators in small samples are pretty much unknown.

Because of the approximately normal sampling distribution in large samples,
where errors in s2| . vanish, the standard error estimates obtained from J~! are
used for forming inference based on the normal distribution, or squared to form
so-called Wald x2-tests for the coefficients. Recall that when a statistic with a
standard normal distribution is squared, the new variable follows a xz-distribution
with 1 degree of freedom. The normally distributed residual case is special in that
small sample distributions have been derived that take error in 527|x into account
and allow us to use the z-test for inference, instead of the Wald test. As we
noted earlier: In large samples, the z-distribution is very close to the normal,
and the F-distribution is close to the x2-distribution (divided by its degrees of
freedom).
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The reader is assumed to be familiar with other tests and procedures associ-
ated with maximum likelihood estimation. Most likelihood-based SAS procedures
provide the Wald test for individual regression coefficients (or in the special case
of PROC MIXED, the t-test for individual coefficients). Comparisons of nested
models is often based on likelihood ratio tests. These are formed as differences
in —2log(L) or —21log(REML) between models that are nested (i.e., one model
contains all the parameters in the other, plus some more). The likelihood ratio test
has a x2-distribution with degrees of freedom equal to the difference in number of
parameters. Generally, likelihood ratio tests have been found to be more stable than
Wald tests, and some SAS procedures provide likelihood ratio tests and confidence
intervals for the coefficients as an option. Again note that for normally distributed
residuals, the likelihood ratio test can be replaced by an F'-test.

A piece of terminology used by SAS for F and likelihood ratio tests are Type 1
and Type 3 (Type 2 also exists, but is not used much). Type 1 refers to tests arising
from sequential model building; that is, the test is performed on a variable with all
preceding, but not any of the subsequent, variables in the model. Type 3 tests are
performed with all the other variables in the model. Both types can be very useful.

Finally, we will encounter adjustments to the —21og(L) or —2log(REML) that
impose a penalty for introducing more parameters, just as the adjusted R? equals
- L 7 (1 —regular R?) for ordinary regression. These criteria will be explained
when we encounter them, and they can be used to compare both nested and not
nested models.

54.1 Example-Comparing PROC REG and PROC MIXED

The output was created for the visit 1 blood pressure data by the statements below

From now onward, we center age and BMI at values 50 and 27, respectively,
unless otherwise noted. This improves interpretability of the age and BMI coeffi-
cients, as well as of the intercept, which is now the estimated mean blood pressure
at age 50 for a person with BMI of 27. The above example also illustrates the
capability of PROC MIXED to generate interactions automatically, while they
have to be preconstructed for PROC REG. (PROC REG is an aberration, since
most other regression-related procedures in SAS can now generate interactions.)
PROC MIXED also has the ability to incorporate the alphabetic variable SEX,
via the CLASS statement. As is the default in SAS, the indicator variable that
is automatically generated is set to O for the “last” value of SEX—that is, for
SEX=‘M’. Again, PROC REG does not have this capability, and the indicator
variable GENDER has to be preconstructed.

It is easily seen that the variance matrix for the coefficients obtained by the
(default) REML option coincides with the one obtained by PROC REG. PROC
MIXED does not (as a default) provide Wald x2-tests for the coefficients, but
takes advantage of known properties of the normal distribution that lead to more
exact ¢- and F-tests in small samples. (Later, when with non-normal distributions,
we will use Wald tests). Note the “Type 3” terminology at the end of the PROC
MIXED output.
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AGEC=AGE-50; BMIC=BMI-27;

AGEC_BMIC=AGEC*BMIC;

GENDER=0;

IF SEX=‘F’ THEN GENDER=1;

PROC REG; MODEL SBP=GENDER AGEC BMIC AGEC_BMIC/COVB;
PROC MIXED; CLASS SEX;

MODEL SBP=SEX AGEC BMIC AGEC*BMIC/S COVB;

some comparisons of PROC MIXED and PROC REG

The REG Procedure
Dependent Variable: SBP systolic blood pressure

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F
Model 4 50562 12641 71.18 <.0001
Error 1359 241336 177.58357
Corrected Total 1363 291898

Root MSE 13.32605 R-Square 0.1732

Dependent Mean 125.09176 Adj R-Sg 0.1708

Coeff Var 10.65302

Parameter Estimates

Parameter

Variable Label DF Estimate
Intercept Intercept 1 127.44900
gender 1 -6.57305

agec age centered at 50 1 0.36912

bmic 1 0.59454
agec_bmic interaction with age centered 1 -0.01892

at 50, bmi at 27
Standard

Variable Label DF Error t Value
Intercept Intercept 1 0.52502 242.75
gender 1 0.73184 -8.98
agec age centered at 50 1 0.04946 7.46
bmic 1 0.06556 9.07
agec_bmic interaction with age centered 1 0.00750 -2.52

at 50, bmi at 27
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Variable  Label DF Pr > |t]
Intercept Intercept 1 <.0001
gender 1 <.0001
agec age centered at 50 1 <.0001
bmic 1 <.0001
agec_bmic interaction with age centered 1 0.0117
at 50, bmi at 27
some comparisons of PROC MIXED and PROC REG
Covariance of Estimates
Variable Intercept gender agec
Intercept 0.275650084 -0.217411056 0.008512363
gender -0.217411056 0.535586414 0.0015878648
agec 0.008512363 0.0015878648 0.0024459371
bmic -0.011065139 -0.003033067 -0.000807341
agec_bmic -0.000839358 0.0000535935 -0.000147062
Covariance of Estimates
Variable bmic agec _bmic
Intercept -0.011065139 -0.000839358
gender -0.003033067 0.0000535935
agec -0.000807341 -0.000147062
bmic 0.0042985464 0.0002577128
agec _bmic 0.0002577128 0.0000561809

some comparisons of PROC MIXED and PROC REG
The Mixed Procedure

Model Information

Data Set WORK.A
Dependent Variable sbp
Covariance Structure Diagonal
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based

Degrees of Freedom Method Residual
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Class Level Information

Class Levels Values
sex 2 F M
Dimensions

Covariance Parameters 1
Columns in X 6
Columns in Z 0
Subjects 1
Max Obs Per Subject 1378
Observations Used 1364
Observations Not Used 14
Total Observations 1378

Covariance Parameter

Estimates
Cov Parm Estimate
Residual 177.58
Fit Statistics

-2 Res Log Likelihood 10945.
AIC (smaller is better) 10947.
AICC (smaller is better) 10947.
BIC (smaller is better) 10953.

= v v v

some comparisons of PROC MIXED and PROC REG
Solution for Fixed Effects

Standard
Effect sex Estimate Error DF t Value
Intercept 127.45 0.5250 1359 242.75
sex F -6.5731 0.7318 1359 -8.98
sex M 0 . . .
agec 0.3691 0.04946 1359 7.46
bmic 0.5945 0.06556 1359 9.07
agec*bmic -0.01892 0.007495 1359 -2.52
Covariance Matrix for Fixed Effects
Row Effect sex Coll Col2 Col3 Col4
1 Intercept 0.2757 -0.2174 0.008512

Pr > |t

<.0001
<.0001

<.0001

<.0001
0.0117

Cols

-0.01107
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sex F -0.2174 0.5356

sex M

agec 0.008512 0.001588

bmic -0.01107 -0.00303

agec*bmic -0.00084 0.000054
Covariance

Matrix for
Fixed Effects

Row Cole
1 -0.00084
2 0.000054
3
4 -0.00015
5 0.000258
6 0.000056

Type 3 Tests of Fixed Effects

0.001588

0.002446
-0.00081
-0.00015

Num Den
Effect DF DF F Value
sex 1 1359 80.67
agec 1 1359 55.70
bmic 1 1359 82.23
agec*bmic 1 1359 6.37
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-0.00303

-0.00081
0.004299
0.000258

Pr > F

.0001
.0001
.0001
.0117

o AN N A



CHAPTER SIX

Dealing with Unequal Variance
Around the Regression Line

We have now set the framework for moving forward with extending regression
analysis by considering the situation of unequal variance around the regression line.
We will first examine what really goes wrong with the usual unweighted (ordinary)
least-squares approach in this situation. In Chapter 3, we showed that the ordinary
least-squares estimator is unbiased as long as the model is correctly specified. The
problem with unequal variance arises not so much from the estimator itself, as from
the fact that standard error estimators are not correct. To derive the standard errors
in (5.2), we definitely used the equal variance assumption. We will see how to
obtain valid estimators of the standard errors when the equal variance assumption
does not hold. Also, of course, the usual estimators are no longer efficient. The
latter part of this chapter is devoted to methods for constructing more efficient
estimators.

6.1 ORDINARY LEAST SQUARES WITH UNEQUAL VARIANCE

When we demonstrated that the ordinary least-squares estimator is unbiased in
Chapter 3, we went through two crucial steps:

1. First we realized that since we condition on X, all expressions that contain
only X (i.e., not Y or €) can be treated as constants. This led to evalu-
ation of E(ﬁ) as E[(X'X)"'X'Y|X] = E[matrix of constants x Y|X] =
matrix of constants x E[Y|X]

2. Then we implemented that we have assumed E[Y|X] = X —that is, that the
model is correct—and obtain (matrix of constants) x X8 = B, from matrix
properties. Note that ﬁ is not a constant. It is an estimator and varies from
sample to sample, but its mean is the (constant) parameter f.

Quantitative Methods in Population Health, by Mari Palta
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One important aspect of steps 1 and 2 is that the equal variance assumption
simply does not enter. Hence, we can rest assured that the ordinary least-squares
estimator is unbiased even if the equal variance assumption is violated.

To remember the point at which the equal variance assumption enters in the
derivation of the variance of regression parameters, we first look at the estimator
of the slope B; in nonmatrix notation:

n n

D =D -y Y (=D

1 _ 1
> i —x)? > i =%
1 1

which, as before in (5.1), leads to

B =

- 2

n RN S SN

X; —X
Var(f) =Y i@/—f)Z Var(yilx;)
1

1

Previously, we made the decision to assume that Var(y;|x;) is equal for all i.
Now, if the equal variance assumption does not hold, some other \far(yi |x;) needs
to be supplied, and the expression does not simplify as much. It is often the case
that, while we suspect that Var(y;|x;) is not equal for all i, its correct value or
structure is not known. One approach is to separately estimate this quantity for
each i by

Var(yi|x;) = é% = (yi — Po — Pixi)?

Note that this expression is kind of extreme, because it makes no assumptions
about how the variance of the residuals changes along the regression line. Each
observation has its own variance estimate, so to say. Of course, this leads to a
very poor estimator of the variance for individual i, but can be acceptable in large
samples when inserted into the expression for Var(8;). Then

n

Var(Bi) =)

(x; — )7)261-2
Y i —%)7°
1

In the next section we show how to obtain this estimator with PROC MIXED
EMPIRICAL.

To obtain a general expression for the sampling variance of all regression coeffi-
cients, we use matrix notation. If we cannot make the equal variance assumption, we
again take the extreme approach of making no assumptions on the variance itself.
But we stick to the independence assumptign, so we need to insert for VAar(Y|X ) a

A A

matrix with 0’s off the diagonal and (y; — Bo — B1x1; — Baxai - - - )2 on the diagonal.

2
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We can write
Var(B) = (X'X)" ' X'ee' X (X' X)~! 6.1)

where € is a diagonal matrix with (y; — ,30 — ﬁlxli — ,32x2,' --+) on the diagonal,
so that

(1 — Bo — Bixi1 — Baxar - -)? R 0 R
e = 0 (2 — Bo — Bixi2 — Paxaz -+ +)?

Formula (6.1) is a special case of the so-called “sandwich estimator.” It gets
its name from the €’s being sandwiched in between the X’s. As it makes few
assumptions, it is also known as a “robust” variance estimator. It was originally
proposed by Huber [9] and by White [10]. Because the usual (PROC REG) standard
errors for the least-squares estimator are derived under assumptions that make the
estimator the most efficient (i.e., standard errors small), one can expect that the
standard errors from (6.1) will tend to be larger. This is generally the case, but
standard errors can turn out to be smaller with (6.1) in a given data set, especially
if many observations are in the range where residuals are most variable, and if
there are many outliers.

Several procedures in SAS can produce the estimator (6.1). However, as we will
be using PROC MIXED for the first part of this text, we first show examples of
how to implement the standard error estimation with this procedure. The statements
for telling PROC MIXED to provide standard errors based on (6.1) are

PROC MIXED NOCLPRINT EMPIRICAL;
CLASS ID; MODEL y = x - - -/S;
REPEATED/SUBJECT=ID;

EMPIRICAL asks that formula (6.1) be used in obtaining the variance matrix
of the regression coefficients. However, because PROC MIXED is so general,
the other statements are needed to tell it exactly what to do. More specifically,
PROC MIXED needs to know what observations can be assumed to be inde-
pendent, because it can also deal with correlated observations. The REPEATED/
SUBJECT=ID; statement tells MIXED that we are assuming independence between
observations on different individuals. Because we have only one observation per
person right now, this amounts to total independence.

It is safest to include the variable that indicates individual in a CLASS statement.
The CLASS ID; statement tells PROC MIXED that the ID is a label and not a
measurement. Finally, the NOCLPRINT prevents the ID’s of all the subjects from
being printed, as would be the default with the CLASS statement.

6.1.1 Examples

For these examples refer to OUTPUT PACKET III. It contains analyses of GHb,
as well as of systolic blood pressure. We reanalyze the GHb data only for the age
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Table 6.1 Regression Coefficients (se) Modeling GHb to
Ages up to 15 Years

Ordinary Regression

Ordinary Regression with Empirical
Intercept 8.59 (0.447) 8.59 (0.381)
Age (per year) 0.27 (0.0413) 0.27 (0.0414)

range of rise, up to (and including) age 15. The restriction results in a sample size
of n = 274. We first fit an ordinary regression by PROC REG. The regression
coefficients are in Table 6.1, and the original output and residual plot are included
in OUTPUT PACKET III. We see the increase in residual variance with increasing
predicted value of GHb.

Then we used PROC MIXED to obtain robust standard errors as above:

PROC MIXED NOCLPRINT EMPIRICAL; CLASS ID;
MODEL GHB=AGE/S;
REPEATED/SUBJECT=ID;

As expected, the estimates of the regression coefficients themselves did not
change with the EMPIRICAL option. This is always true, since EMPIRICAL does
not interfere in that part of the analysis. In our analysis, we see that the standard
errors did not change much either and that there was actually a decrease in the
standard error of the intercept with the empirical option. One may conjecture that
this may be caused by many rather outlying GHb residuals that made the initial 52 N
large. We can view the robust analysis as a confirmation that tests and confidence
intervals from the original analysis are not too far off. However, we will see below
that the efficiency of the analysis can be improved by taking the unequal variance
into account in estimation in a more pervasive manner.

After adding gender, age, bmi, and the age by bmi interaction to the regression of
systolic blood pressure from visit 1 in the Wisconsin Sleep Cohort Study, inequality
of the residual variance seems to be present also in this analysis. OUTPUT PACKET
IIT shows a residual plot. We ran the commands

PROC MIXED NOCLPRINT EMPIRICAL; CLASS SEX ID;

MODEL SBP=SEX AGE BMIC AGEC*BMIC/S;
REPEATED/SUBJECT=ID;

PROC REG; MODEL SBP=GENDER AGEC BMIC AGEC_BMIC;
OUTPUT OUT=RRR=RESID P=PRED; PROC PLOT; PLOT RESID*PRED;

Here, the variables entered are as defined in the last example in Chapter 5.
Results are summarized in Table 6.2.

We see that in this case the empirical option has generally increased the estimates
of the standard errors.
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Table 6.2 Regression Coefficients (se) Modeling SBP in Wisconsin Sleep Cohort

Ordinary Regression

Ordinary Regression with Empirical
Intercept 127 (0.525) 127 (0.549)
Female —6.57  (0.732) —6.57  (0.726)
Age (per year—centered at age 50) 0.369 (0.495) 0.369 (0.0510)
BMI (centered 27) 0.595 (0.0656) 0.595 (0.0720)
Age *BMI (centered) —0.0189 (0.00750) —0.0189 (0.00888)

6.2 ANALYSIS TAKING UNEQUAL VARIANCE INTO ACCOUNT

Although the above analysis using unweighted ordinary regression is not wrong,
it is not efficient. In the rest of this chapter we will discuss approaches that more
directly deal with situations that violate the equal variance assumption of ordinary
regression analysis.

6.2.1 The Functional Transformation Approach

A very standard and technically easy approach is to take a mathematical transfor-
mation of the outcome variable Y. There is a formula (derived by Taylor expansion)
that is handy for choosing a transformation f:

Var[ f ()] & [ (14y)]* Var(y)

The most common use of this formula is to see that when sd(y) is proportional to
Wy (i.e., Var(y) = c,u%), taking the log of y leads to approximately equal variance
across (. Because f’(uy) is then 1/u,, we have

1 2
Lf' (1y)]? Var(y) = (—) (cuy) =c
Hy

that is, constant. When Var(y) is proportional to uy, taking the square root of y
works to equalize the variance. The residual plot, or calculating the variance in
subgroups of predicted value, may give a clue as to how the variance changes with
the mean.

The log and square root transformations have the additional effect of pulling in
upper tails of the error distribution. This is often helpful in improving normality.
However, in situations with a few low values, the log transformation aggravates
the problem of outliers on the low end. Obviously, linearity may also be destroyed
after transforming y, making additional transformations of x or polynomial terms



ANALYSIS TAKING UNEQUAL VARIANCE INTO ACCOUNT 67

Table 6.3 Regression Coefficients (se) Modeling Transformed GHb on Age

Inverse GHb Inverse ﬁ /se(B) Original (Empirical) B / se(B)
Intercept 0.111  (0.00331) 334 22.5
GHb per % —0.00190 (0.000306) —6.22 6.57

necessary. Technically, linearity cannot hold for both the untransformed and trans-
formed models, although it may nearly hold in some regions of the covariates.

6.2.1.1 Example

The residual plot of GHb as predicted by age shows a rather steep increase in
residual standard deviation with predicted values, especially when the predicted
value is at the upper end. We may conjecture that the standard deviation increases
proportionally to the predicted value squared in this case. Then Var(y|x) increases
proportionally to M‘;, so f'(uy) needs to be £1/ u? Consequently, the function f
should be chosen as the inverse 1/y.

Analyses in OUTPUT PACKET IV are based on taking the inverse of GHb
and predicting this transformed variable by age. The residual plot in the PACKET
implies that after the transformation, the variance of the residuals is more or less
constant. Table 6.3 shows the estimated regression coefficients. We calculated val-
ues for ,3 /se(,é) for this model as well as for the empirical option above to assess
any gain in efficiency from using a model where the equal variance assumption
more nearly holds. We see that there was no gain. (Note that the intercepts cannot
be compared.) This is because GHb is quite linear in age, while an equation that is
linear in age somewhat overestimates 1/GHb at the higher ages. This nonlinearity
of the transformed outcome is not statistically significant, but its presence pre-
vented the gain in efficiency which might otherwise have resulted from equalizing
the variance.

The interpretation of the coefficients on the inverse scale is that a unit increase
in a covariate leads to a change of ,é in mean of the inverse of the outcome. This
interpretation is not very satisfactory for practical purposes.

6.2.1.2 Interpretation of log on log Regression- and Another Example

In some applications, investigators have preferred, or become used to, transformed
variables. Traditionally, regression coefficients from modeling the log of an out-
come on the log of a predictor has held special importance in econometrics. There,
the resulting regression coefficient is referred to as an elasticity, and it is inter-
preted as the percent increase in the mean outcome with one percent increase in
the predictor. The basis for this interpretation comes from Taylor approximation.
Since for fty,/uy, close to 1 we have

log(ﬂyz) - log(ﬂyl) = log(uyz/ﬂ)'l) ~ Myz/,uyl -1
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and a similar approximation holds for x, it follows that

lOg(,U«y\xz) - IOg(lLylxl) = Billog(xz) — log(x1)]

can be approximated

My, /iy, — 1T~ Bilxa/x1 — 1]

and the interpretation follows.

As may be expected, the elasticity concept has been particularly applied to costs
and prices. Even there, it may be argued that an absolute interpretation of expenses,
and so on, may be more desirable. However, the elasticity has the advantage of
being independent of currency used, as well as independent of change in the value
of currency over time.

6.2.1.3 Example

OUTPUT PACKET 1V also contains a regression analysis of the quarterly cost
in dollars of medical care in the Wisconsin Sleep Cohort [11] as predicted by an
individual’s gender and BMI. Analysis on the original scale and its residual plot
indicates violation of the linearity assumption, extreme skewness in the residu-
als, and possibly inequality of variance toward the higher end of predicted value.
Skewness of this type is especially common when modeling the cost of care in a
basically healthy population.

The outcome variable was transformed as log(cost +10), where 10 was added so
that individuals with O cost during the data collection period could be included. We
see marked improvement in the residual plot (except almost unavoidable nonlinear-
ity for the O values, which could be dealt with by more advanced methods such as a
tobit model or by a two-part model [12]). The interpretation of the regression coef-
ficients is that a 1% increase in BMI leads to approximately 0.53% increase in cost
of medical care (+10) and that men’s cost of medical care is exp(—0.389) = 0.68
of women’s.

6.2.1.4 Comment

Examples 6.2.1.1 and 6.2.1.3 illustrate that the functional transformation approach
at first appears convenient. However, it can destroy linearity and normality of the
data. Also, the desirability of the transformation approach depends on the appli-
cation. In some situations the regression coefficients in the transformed equation
make perfect sense. Other times, the practical usefulness of the equation is much
reduced by transformations. For further discussion of these issues see Manning and
Mullahy [13].

6.2.2 The Linear Transformation Approach

When we apply transformations such as the log to the left-hand side of the regres-
sion equation, we may destroy linearity. In addition, the meaning of the regression
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coefficients is changed. To preserve the meaning with a transformation, one would
need to transform the whole right-hand side of the regression equation. For example,
if the true regression equation is

yi = Bo+ Bixi + € (6.2)

the new equation after taking the log of y, with the meaning of the regression
coefficients preserved, would be

log(y;) = log(Bo + Bixi + €;)

But this is no longer a linear equation. The coefficients and error term are both
inside a log, making estimation complicated.

To preserve the structure of equation (6.1), we need to apply a linear transfor-
mation. At the end of this section we will see that the appropriate choice of linear
transformation combined with unweighted least-squares estimation is equivalent to
weighted least-squares estimation. In fact, it is most common to take the latter
shortcut in practice. We first present the linear transformation perspective, because
it provides the justification for weighted least-squares estimation. The same deriva-
tion, in more mathematical form, is found in almost all other books that present
the theory of regression analysis (see, e.g., Draper and Smith [14]).

If we know the variance of each y;, it turns out to be fairly easy to find a linear
transformation that equalizes the variance around the regression line. Of course,
this is not usually the case, but we make the assumption for illustration of the
transformation principle. Assume that Var(y;|x;) = Var(e¢;) = ol.z. If we have the
regression equation

yi =Po+ Brxi +¢

and divide each side by o;, we obtain

— = ﬂo— + ,31 + —
O O
or
newy; = Bonewvariable + Sinewx; + newe;

where now, because of the way the transformation was chosen, new ¢; have

the same variance along the regression line, because Var(newe;) = Var(%) =
1

ﬁaiz = 1, which is constant. (Recall that Var(t;y) = t12 Var(y).) We can also write

ai2 = ¢;0%, and transform the original equation by

€

ffff

(6.3)

In this regression equation, the new residual has constant variance 2.



70 DEALING WITH UNEQUAL VARIANCE AROUND THE REGRESSION LINE

We will proceed in matrix notation to see what estimator we end up with. Define
the matrix

o 0
p=| 0 oJ&

which has /Var(e¢;) on the diagonal. Because taking the inverse of a diagonal
matrix amounts to taking the regular inverses of all the elements on the diagonal,
we have

Then (6.3) can be written in matrix notation as
o P7'Y =0 P 7' XB + newe

where Var(new €) = o2I. We use P! rather than T to denote the transformation
matrix here to better conform with the notation in this context of standard books
on regression analysis and the analysis of variance.

Now we can obtain an efficient (BLUE) estimator by the ordinary least-squares
equation using new quantities newX = o P! X, and so on, in matrix form

B = [newX'newX] ™' [new X 'newY
=[P 'X)oP ' XI ' [(cP™'X) o P Y]
=[X'oP o P XI X0 P o P7Y]
1
= —X'P P X17' X' P P Y]0?
o
=X P PIXI X P P Y)

We have applied the usual matrix formula for a linear regression estimator, the
formula for the transpose of a product so that (P~!X) = X'[P~'7, and the fact
that P~! is symmetric (all diagonal matrices are symmetric). We now see that

1
Var(e) 0 0
—1 p—1 . _y—1
1
0 0 Var(e;,)
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where V is the variance matrix of €, or equivalently V = Var(Y|X). Then we can
write

B=[XV'x1'[x'v'y] 6.4)

Equation (6.4) is the ordinary least-squares estimator for the transformed
equation. Because of the way we derived it, we know that (6.4) gives an effi-
cient estimator of the original B. For practical purposes, it is good to note that it
doesn’t matter whether we use the actual V! or 62V ~! in formula (6.4). By the
rules of how constants multiply matrices (Property 14 in the list in Chapter 3) 2
cancels in (6.4), and we only need to specify c;.

More generally, if we are not sure of v~1, we can write

Bw = XWX ' [X'WY] (6.5)

where BW is a general weighted least-squares estimator. It is important to note that
as long as E(Y|X) = X8, E(,BW) = [X'WX]"'[X’'WX]B = B, so the estimator
(6.5) is unbiased even if W is not V~L. It may not be efficient.

The above framework is hard to implement exactly as presented, because we do
not usually know c; (or al.z), so we can’t directly know what V=1 to use in (6.4).
Using the “empirical” formula sl.2 = (yi — ,30 — ﬁlxli — ,ézxzi .-+)2 for each i is
out, because the number of estimators would increase with the number of subjects
n, so we would not have consistency. Potentially, subjects could be grouped to
produce a limited number of siz. We will illustrate another route that is more in
line with the functional approach above, and also with the context of generalized
linear models (Chapter 12).

As indicated above, the residual variance often changes systematically with i)y,
and we may glean information on how, from the residual plot of the residuals on the
predicted values. The spread of residuals in that plot is an approximate presentation
of how the standard deviation changes with the predicted value. We can then choose
¢; as a function of [ty |y, g(iy[x). In reality this means that we first have to estimate
the regression line by ordinary regression and then use the predicted values fiy, |y,
in the weights. For example, if we think that the residual standard deviation is
proportional to the predicted value, we can choose c; as (iy;| xl.)z and weight
by the matrix with (1/ ﬂyzlxi)z on the diagonal. Most computer programs require
specification of these diagonal elements. It should be noted that we have ignored
interpretation and estimation of o2 here.

6.2.2.1 Example

OUTPUT PACKET V has further analyses of GHb versus age at approximately
four years’ diabetes duration. Initial analyses above had shown that the standard
deviation around the regression line may be increasing approximately proportion-
ally to the square of the predicted value. To illustrate the above transformation, we
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Table 6.4 Regression Coefficients (se) Modeling GHb to Ages up to 15 Years by
Weighted Regression

Weighted with Ordinary with

Weighted Regression Empirical Empirical
Intercept 8.63  (0.366) 8.63  (0.346) 8.59 (0.381)
Age (per year) 0.268 (0.0371) 0.268 (0.0376) 0.272 (0.0414)

first fit the ordinary regression line and obtain the predicted values. We then choose

1
_ 0 0
“i‘l\xl
W=1 o 0
0 0

H ynlxn

so that the diagonal is proportional to the inverse of the variance for each observa-
tion. In SAS, formula (6.4) can be implemented by both PROC REG and PROC
MIXED, by commands such as those below:

PROC REG; MODEL GHB=AGE;
OUTPUT OUT=RR P=PRED R=RESID;
DATA NEW; SET RR;
WGT=1/PRED**4;

PROC REG;

MODEL GHB=AGE;

WEIGHT WGT;

The results are in the second column of Table 6.4:
Furthermore, we implement the transformation to examine the behavior of the
new residuals by the commands:

PROC REG; MODEL GHB=AGE; OUTPUT OUT=RR P=PRED;
DATA NEW; SET RR;

NGHB=GHB/PRED*%2;

NINT=1/PRED##2;

NAGE=AGE/PRED*#2;

PROC REG; MODEL NGHB=NINT NAGE/NOINT;

OUTPUT OUT=XX R=NRESID P=NPRED;

PROC PLOT; PLOT NRESID*NPRED:;

Note that while the weights are inverses of the predicted value to the fourth
power, the transformation multiplies by the square root of that weight. The /NOINT
option is used to avoid the fitting of the intercept. (Regression equation (6.3) does
not have an intercept in the usual sense.) We see in OUTPUT PACKET V that
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the residual plot from the transformed regression displays a more constant residual
variance than the corresponding plot from the untransformed regression.

In Table 6.4 there is a slight difference between the coefficients from the
unweighted and weighted estimation. For example, the coefficient of age is 0.272 in
the original regression and is 0.268 in the weighted regression. This is a minor change.
Because the unweighted estimators are unbiased, there should not be a major differ-
ence between the weighted and unweighted estimators when the model is correct.
In fact, there is a goodness-of-fit test for regression, called the Hausman test, that is
essentially based on this principle [15]. This test is quite widely used in econometrics.

We should be aware that we still have not weighted the regression estimators
in the best way because the above procedure obtained the predicted values for the
weights from the unweighted regression. The predicted values of GHb from the
weighted regression are, of course, slightly different. We can compute them and
repeat the estimation process to slightly improve efficiency. We could also apply
maximum likelihood directly on the normal, unequal variance structure implied.
PROC GENMOD, which we address in Chapter 11, can do this with an iter-
ative procedure of updating parameter estimates. Unweighted regression can be
fit without iteration by either least-squares or maximum likelihood only because
the regression parameter estimates can be obtained independently of the variance
estimate in that special case.

6.2.3 Standard Errors of Weighted Regression Estimators

We can derive the variance matrix of a weighted regression estimator by again
using formula (4.3) for the variance of a linear transformation. Also, because we
may be either quite sure of the variance or not so sure, we can derive the standard
errors without and with the empirical approach. In this context the estimators that
assume that we know V! are called “model-based.” In formula (6.5) the linear
transformation of Y uses the matrix

T = [X'WX] X' W]

and we have R
By =TY

Then applying the linear transformation variance formula
Var(ﬁW) = [X'WX]"'[X'W] Var(Y | X)[W' X][X' W X] ! (6.6)

by the same principles as in the unweighted case. For the model-based situation,

we assume
W =[Var(Y|X)] ' = Vv!



74 DEALING WITH UNEQUAL VARIANCE AROUND THE REGRESSION LINE

so we can insert W ™! for Var(Y|X), obtaining

Var(By) = [X'WX]™'[X'W] Var(Y | X)[W' X][X' W X] !
= X'wWxI ' xwiw ' wxx'wx)!
= XWX ' XWX X'wx)!

which equals
Var(By) = [X'WX]™! 6.7)

Note also that in the special case of equal variance we have

1
W=('n"==I
o

and (6.7) simplifies to the usual
Var(B) = o2(X'X) ™!

In the situation when we are not quite sure of the variance Var(Y|X) or have
used only one iteration to obtain it, we can use the empirical approach, parallel to

Anl

formula (6.1). Inserting €€ for Var(Y|X), we obtain
Var(B) = (X' WX) ' X' Wee wx (X' WX)~! (6.8)

The prime has been removed from W as in situations of interest in practice; W
is always taken as symmetric. PROC MIXED can be requested to use formula (6.8)
by the EMPIRICAL OPTION. Using the ALL option PROC REG ALL; includes
the same result under the heading ‘“consistent variance matrix” in the massive
output produced, but this seems more cumbersome than using PROC MIXED
EMPIRICAL.

Note again that the approach in formula (6.8) is appropriate when we either
know or suspect that W is not exactly V.

6.2.3.1 Example

Table 6.4 contains both model-based and empirical standard error estimates for
the weighted regression of GHb on age. We see that again the model-based and
empirical coefficients are the same. Comparison of the empirical estimates for
weighted and unweighted options indicates a gain in efficiency with weighting.
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OUTPUT PACKET III: APPLYING THE EMPIRICAL OPTION TO
ADJUST STANDARD ERRORS
I11.1. Regressing GHb on Age in Wisconsin Diabetes Registry

Analysis of GHb Versus Age for Those Less than 15 Years Old
The REG Procedure

Model: MODEL1
Dependent Variable: GHb at about 4 years of diabetes

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 1 205.87840 205.87840 43.22 <0.0001
Error 272 1295.67016 4.76349
Corrected total 273 1501.54856
Root MSE 2.18254  R-square 0.1371
Dependent mean 11.40352  Adjusted R-square 0.1339

Coefficient of variation 19.13921

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value

Intercept  Intercept 1 8.59390  0.44725 19.22
Age Age 1 0.27154 0.04130 6.57

Parameter Estimates
Variable Label DF  Pr > |¢]

Intercept Intercept 1 <0.0001
Age Age 1 <0.0001
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Regression Analyses of GHb Versus Age

Original Residual Plot
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Plot of resid*pred. Legend: A =1 obs, B =2 obs, and so on.
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Unweighted Regression with Empirical Option

The Mixed Procedure

Model Information

Data set

Dependent variable
Covariance structure
Subject effect

Estimation method
Residual variance method
Fixed effects SE method
Degrees-of-freedom method

WORK.RES

Ghb

Variance components
Id

REML

Parameter

Empirical
Between—within

Dimensions

Covariance parameters 1
Columns in X 2
Columns in Z 0
Subjects 274
Maximum observations per subject 1
Observations used 274
Observations not used 0
Total observations 274

Iteration History®

Iteration Evaluations —2 Res Log-Likelihood Criterion

0 1 1210.03720983
1 1 1210.03720983 0.00000000

@ Convergence criteria met.

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

Residual

id 4.7635

Fit Statistics

—2 Residual log likelihood 1210.0

AIC (smaller is better) 1212.0
AICC (smaller is better) 1212.1
BIC (smaller is better) 1215.7

77
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Null Model Likelihood Ratio
Test

DF Chi-Square Pr > ChiSq

0 0.00 1.0000

Solution for Fixed Effects

Standard
Effect Estimate  Error DF ¢ Value Pr> [f]

Intercept  8.5939  0.3814 272 2253  <0.0001
Age 0.2715 0.04135 272 6.57 <0.0001

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr> F

Age 1 272 43.12 <0.0001

IT1.2. Regressing SBP Versus Age, BMI, and Sex— Wisconsin Sleep Cohort

Unequal Variance Example, Wisconsin Sleep Cohort Study
Ordinary Regression and Residual Plot for SBP Versus Age Gender and BMI

The REG Procedure

Model: MODELI
Dependent Variable: SBP, systolic blood pressure

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr> F
Model 4 50562 12641 71.18 <.0001
Error 1359 241336 177.58357
Corrected total 1363 291898
Root MSE 13.32605  R-square 0.1732
Dependent mean 125.09176  Adjusted R-square 0.1708

Coefficient of variation 10.65302
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Parameter Estimates

Parameter

Variable  Label DF  Estimate

Intercept Intercept 1 127.44900

gender 1 —6.57305

agec Age centered at 50 1 0.36912

bmic 1 0.59454

agec_bmic Interaction with age centered 1  —0.01892

at 50, bmi at 27
Standard
Variable  Label DF  Error t Value
Intercept Intercept 1 0.52502 242.75
gender 1 0.73184 —8.98
agec Age centered at 50 1 0.04946 7.46
bmic 1 0.06556 9.07
agec_bmic Interaction with age centered 1 0.00750 —-2.52
at 50, bmi at 27

Variable  Label DF Pr > |t

Intercept Intercept 1 <0.0001

gender 1 <0.0001

agec Age centered at 50 1 <0.0001

bmic 1 <0.0001

agec_bmic Interaction with age centered 1 0.0117

at 50, bmi at 27
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Applying the Empirical Option to Regression of SBP Versus Age Gender and BMI
The Mixed Procedure

Model Information

Data set WORK.RR
Dependent variable sbp

Covariance structure Variance components
Subject effect id

Estimation method REML

Residual variance method Parameter

Fixed effects SE method Empirical

Degrees-of-freedom method  Between—within

Dimensions

Covariance parameters 1

Columns in X 6
Columns in Z 0
Subjects 1373
Maximum observations per subject 1
Observations used 1370
Observations not used 6
Total observations 1370

Iteration History?

Iteration Evaluations—2 Res Log-Likelihood Criterion

0 1 10945.85019390
1 1 10945.85019389  0.00000000

% Convergence criteria met.

Covariance Parameter Estimates

Covariance Parameter Subject Estimate

Residual id 177.58

Fit Statistics

—2 Res log-likelihood 10945.9
AIC (smaller is better) 10947.9
AICC (smaller is better) 10947.9
BIC (smaller is better) 10953.1
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Null Model Likelihood Ratio

Test

DF  Chi-Square Pr > ChiSq

0 0.00 1.0000
Solution for Fixed Effects

Standard

Effect Sex Estimate Error DF t Value Pr > |t]
Intercept 127.45 0.5494 1359 231.96 <0.0001
sex F —6.5731 0.7263 1359 -9.05 <0.0001
sex M 0 . . . .
agec 0.3691 0.05103 1359 7.23 <0.0001
bmic 0.5945 0.07196 1359 8.26 <0.0001
agec*bmic —0.01892 0.008882 1359 -2.13 0.0334

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr> F
sex 1 1359 81.90 <.0001
agec 1 1359 5233 <.0001
bmic 1 1359 6826 <.0001
agec*bmic 1 1359 454  0.0334
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OUTPUT PACKET IV: ANALYSES WITH TRANSFORMATION OF THE

OUTCOME VARIABLE TO EQUALIZE RESIDUAL VARIANCE

IV.1. Analysis of Inverse of GHb Versus Age— Wisconsin Diabetes Registry

Analysis of GHb Versus Age for Those Less than 15 Years Old
Regression of Inverse GHb Versus Age

The REG Procedure

Model: MODEL1
Dependent Variable: fghb

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 1 0.01013 0.01013 38.72 <.0001
Error 272 0.07113 0.00026152
Corrected total 273 0.08126
Root MSE 0.01617  R-square
Dependent mean 0.09108  Adjusted R-square

Coefficient of variation 17.75486

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error t Value
Intercept  Intercept 1 0.11079  0.00331 33.43

Age Age 1 —0.00190 0.00030604 —6.22
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Residual Plot from Regression of Inverse GHb
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IV.2. Analysis of Cost Data from Wisconsin Sleep Cohort

Analysis of Medical Cost Data— Wisconsin Sleep Cohort

Regression Analysis of Untransformed Data
The REG Procedure

Model: MODEL1
Dependent Variable: avcost—average cost of medical care per quarter

Analysis of Variance
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Sum of Mean
Source DF Squares Square F Value Pr>F
Model 2 816335 408168 12.03 <.0001
Error 686 23269242 33920
Corrected total 688 24085578
Root MSE 184.17431  R-square 0.0339
Dependent mean 150.47676  Adjusted R-square 0.0311
Coefficient of variation 122.39386
Parameter Estimates
Parameter Standard
Variable Label DF Estimate Error t Value
Intercept Intercept 1 117.98755 36.06740 3.27
Gender 1 —62.93287 14.21548 —4.43
BMI Body Mass Index (kg/mz) 1 2.37457 1.17892 2.01
Parameter Estimates
Variable Label DF Pr> [t]
Intercept  Intercept 1 0.0011
Gender 1 <0.0001

BMI Body Mass Index (kg/m?) 1 0.0444
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Residual Plot from Untransformed Analysis
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Histogram of Untransformed Residuals
The UNIVARIATE Procedure

Variable: oresid (untransformed residual)

Moments

N 689  Sum of weights 689
Mean 0  Sum of observations 0
Standard deviation 183.906425  Variance 33821.5731
Skewness 3.36346689  Kurtosis 17.4059317
Uncorrected SS 23269242.3  Corrected SS 23269242.3
Coefficient of variation Standard error of mean  7.00627679

Basic Statistical Measures

Location Variability

Mean 0.0000  Standard deviation  183.90642

Median  —55.7239  Variance 33822

Mode Range 1709
Interquartile range  136.85957

Tests for Location: Mu0 =0

Test Statistic p Value

Student’s ¢ t 0 Pr> |t 1.0000

Sign M —120.5 Pr> |M| <0.0001

Signed rank S —34638.5 Pr>|S] <0.0001

Quantiles (Definition 5)

Quantile Estimate

100% Max 1493.6630
99% 710.1336
95% 359.8459
90% 198.2884
75% Q3 36.1587
50% Median —55.7239
25% Q1 —100.7009
10% —132.7012
5% —156.5006
1% —189.8031
0% Min —215.6743
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Extreme Observations

Lowest Highest
Value Observed Value Observed
—215.674 543 857.664 339
—211.572 401 1016.734 164
—200.984 207 1294.453 48
—199.359 151 1408.392 683
—198.138 231 1493.663 4
Histogram # Boxplot
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The UNIVARIATE Procedure

Variable: oresid (untransformed residual)
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Regression Analysis with Log-Transformed Outcome
The REG Procedure

Model: MODELI
Dependent Variable: lcost log cost 4 10

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 2 32.73356 16.36678 16.68 <0.0001
Error 686 673.24538 0.98141
Corrected total 688 705.97895
Root MSE 0.99066  R-square 0.0464
Dependent mean 4.59310 Adjusted R-square  0.0436

Coefficient of variation 21.56843

Parameter Estimates

Parameter Standard
Variable Label DF Estimate Error ¢ Value Pr > |f|

Intercept  Intercept 1 3.03979  0.64783 4.69 <.0001
Gender 1 —0.38919 0.07645 —5.09 <.0001
Ibmi logbmi 1 0.53116  0.19275 276 0.0060
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Residual Plot from Transformed Regression Analysis
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