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PREFACE

The increasing power and sophistication of computers over the past decade

has placed many scientific disciplines in a position to incorporate formal

mathematical tools, statistical techniques, and computer modeling and

simulations into their methodologies. At the same time, there has been

a growing interest among mathematicians, physicists, computer scientists,

and engineers in the complex systems and databases of the life sciences.

The resulting natural alliance of biologists with mathematicians, physi-

cists, computer scientists, and engineers has led to the emergence of the

rapidly growing and highly interdisciplinary field of Integrative Life Sci-

ences. In today’s environment, the volume of data available for medical

research has increased dramatically. Quantitative Analysis can assist by

applying advanced statistical analysis techniques and mathematical tools

to help one get more information from the data sources. With quantitative

biomedical data analysis, one can better understand the data and interpret

the discovered biomarkers for diagnostic applications. In addition to tra-

ditional statistical techniques and mathematical models using differential

equations, new developments with a very broad spectrum of applications,

such as wavelets, spline functions, and learning theory, have found their

mathematical home in Biomedical Data Analysis.

This book gives new and integrated introduction to quantitative medical

data analysis from the viewpoint of the biomathematicians, biostatisticians,

and bioinformaticians. Topics include mathematical models for cancer

invasion and clinical sciences, data mining techniques and subset selec-

tion in data analysis, survival data analysis and survival models for cancer

patients, statistical analysis and neural network techniques for genomic

and proteomic data analysis, wavelet and spline applications for mass

spectrometry data preprocessing, and statistical computing. The book of-

fers a definitive resource to bridge mathematics, statistics, and biomedical

sciences. It will be of interest to mathematicians, statisticians, and com-

puter scientists working in biomedical data mining and analysis, disease

v
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modeling, and related applications. It will be also useful for biological and

medical researchers who want an application-based introduction to current

biomathematical models and statistical methods.

The contributors of this volume include experts in the fields. Besides

the invited submissions for this review volume, selected papers presented

at a workshop “Quantitative Medical Data Analysis”, held at Johnson

City, Tennessee from October 13-14, 2005 are included. All of the papers

were peer reviewed. The workshop was sponsored by the National Security

Agency. The Offices of the Vice Provost for Research and the Dean of Basic

& Applied Sciences at Middle Tennessee State University (MTSU).

The editors gratefully acknowledge the support provided by the

National Science Foundation (NSF), the National Security Agency (NSA),

and the National Institutes of Health (NIH) during the past several years.

The editors would also like to thank their colleagues: Maria A. Byrne,

Curtis Church, Lisa Green, Robert Greevy, Changbin Guo, Peter Hinow,

Aixiang Jiang, Cen Li, Anhua Lin, Yali Liu, Ginger Rowell, Ping Zhang,

and Jan Zijlstra for their valuable suggestions and kind assistance in the

editing of this book. The time and effort contributed by the anonymous

reviewers to this edited volume for publication are greatly appreciated. We

are also grateful to Jennifer Hong and Mindy Hong for their assistance on

the proofreading of many articles. It is a pleasure to acknowledge the great

support given to us by Ying Oi CHIEW and Lai Fun KWONG from World

Scientific Publishing. Finally, we owe deep thanks to our families for their

constant love, patience, understanding, and support. It is to them that we

dedicate this book.

Don Hong and Yu Shyr

Nashville, Tennessee, USA
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CHAPTER 1

AN OVERVIEW ON VARIABLE SELECTION FOR

LONGITUDINAL DATA

John J. Dziaka and Runze Lib

Department of Statistics and the Methodology Center,

The Pennsylvania State University,

University Park, PA 16802-2111, USA

E-mails: ajdziak@stat.psu.edu
brli@stat.psu.edu

During the past two decades, there have been many new developments
in longitudinal data analysis. Authors have made many efforts on devel-
oping diverse models, along with inference procedures, for longitudinal
data. More recently, researchers in longitudinal modeling have begun ad-
dressing the vital issue of variable selection. Model selection criteria such
as AIC, BIC, Cp, LASSO and SCAD can be extended to longitudinal
data, although care is required to adapt the classical ideas and formulas
to deal with within-subject correlation. This chapter presents a review on
recent developments on variable selection criteria for longitudinal data.

1. Introduction

Since the 1980s, there has been considerable literature on the topic of longi-

tudinal data analysis. Researchers have invested much effort in developing

diverse models and proposing statistical inference procedures for longitudi-

nal data (see, e.g., [12]). However, although variable selection is an essential

part of statistical analysis, it has only recently received adequate attention

in the context of longitudinal data analysis.

Often in longitudinal studies, many variables are measured. The num-

ber of potential predictors can be large, especially when nonlinear terms

and interactions between covariates are introduced to reduce possible mod-

eling biases. It is common in practice to include only a subset of important

variables in the model, to enhance predictability and model parsimony.

There are many existing subset selection criteria and procedures for linear

regression models; for critical reviews see [5], [43], [19], and [33]. Some of

3
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the traditional variable selection criteria, including Cp, AIC, and BIC (see

[31], [2], and [42], respectively), have been extended for longitudinal data.

This chapter will give a systematic introduction of variable selection for

longitudinal data.

In Section 2 we give an overview on variable selection for linear

mixed effects models. Selecting significant fixed effect variables is relatively

straightforward, but identification of significant random effects variables is

very challenging; existing works dealing with this issue include Chen and

Dunson10 and Vaida and Blanchard46. Selection of significant random ef-

fects is closely related to covariance selection. Thus, we review some recent

work on covariance selection in Section 3.

Generalized estimation equations (GEE) are very popular for analyzing

binary, count and categorical longitudinal data. Penalized generalized esti-

mating equations have recently been proposed for variable selection under

the GEE framework (e.g., by Pan36,37, Fu18, and Dziak13). In Section 4 we

present an overview of variable selection methods for GEE, and we explore

their performance empirically in Section 5. In Section 6 we give an intro-

duction to variable selection for partial linear models, which are useful for

modeling longitudinal data semiparametrically.

2. Variable Selection for Linear Mixed Effects Models

Suppose that we have a sample of n subjects. For the i-th subject, we

collect the response variable yij , the d × 1 covariate vector xij , and the

q × 1 covariate vector zij , at various times tij , j = 1, · · · , ni, where ni is

the number of observations on the i-th subject and N =
∑

i ni is the total

number of observations. Covariates may be constant within each subject,

or may change over time.

For succinct presentations, we will use matrix notation. Let yi =

(yi1, · · · , yini
)T , Xi = (xT

i1, · · · ,xT
ini

)T and Zi = (zT
i1, · · · , zT

ini
)T . In gen-

eral, the linear mixed effects model is defined as

yi = Xiβ + Ziγi + εi, (2.1)

where β is the fixed effect parameter vector, γ i is subject-specific ran-

dom effects with γi ∼ N(0,A), and εi is a random error vector following

N(0, σ2I). In the context of (2.1), model selection is a broader issue than

variable selection; for example, one may choose the best among several can-

didate mean structures50. However, for simplicity we focus only on variable

selection in this section, and in Section 3 we will review some methods for

covariance selection problems.
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There are two kinds of variable selection problems for linear mixed ef-

fects models: identifying significant fixed-effects variables when the random

effects are not subject to selection, and identifying both significant fixed

effects and random effects. We may select significant fixed effects covariates

by using a relatively straightforward penalized likelihood approach, but se-

lection of significant random effects is more challenging. Let us begin with

selection of fixed effects covariates.

2.1. Fixed effects variable selection

When the random effects are not subject to selection, we rewrite the mixed

effects model as

yi = Xiβ + ξi, (2.2)

where ξi ∼ N(0, Φi(θ)) with Φi(θ) = ZiAZT
i + σ2I . Here θ consists of

all unknown parameters in A and σ2. Thus, (2.2) is a linear model with

correlated errors. This enables us to modify variable selection procedures for

ordinary linear regression models to select significant variables for (2.2). Liu,

et al.30 proposed a leave-one-out cross validation method to estimate the

predicted residual sum of squares (PRESS) and select significant variables

for model (2.2) via minimizing the PRESS. Let us assume for the moment

that θ is known. Let ei = yi − Xiβ̂ be the ordinary residuals, with β̂

being the maximum likelihood estimate (MLE, equivalently the weighted

least squares estimate) of β. Define e(−i) = yi −Xiβ̂(−i) to be the deleted

residual with β̂(−i) defined as the parameter estimate when the i-th subject

is deleted from the analysis. Define

PRESS =

n∑

i=1

‖e(−i)‖2, (2.3)

where ‖ · ‖ is the Euclidean norm. As for the ordinary linear regression

model, a fast algorithm can be developed here to calculate the PRESS

statistic. Let X = (X1, · · · ,XT
n )T , Φ = diag{Φi(θ), · · · , Φn(θ)}, H =

X(XT Φ−1X)−1XT Φ−1 = {Hij}, with i, j = 1, · · · , n, be one version of

the hat matrix for model (2.3), where Hij is ni ×nj . Define Q = I−H and

let Qii be the i-th diagonal block of Q. As shown in [30],

e(−i) = Q−1
ii ei .

Thus,

PRESS =

n∑

i=1

‖Q−1
ii ei‖2. (2.4)
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Then the PRESS statistic can be calculated without fitting the model n

times. Although the parameter θ is unknown in practice, we replace θ in

PRESS by its MLE or residual maximum likelihood estimate (REMLE).

Then one selects the best subset by minimizing the PRESS statistic over

all 2d possible subsets. Liu, et al.30 also studied the theoretical properties

of PRESS. For linear regression models, leave-one-out cross-validation is

asymptotically equivalent to the Cp criterion and the AIC criterion (see

[43]), and intuitively such a relationship should still hold for model (2.2).

Thus, the PRESS variable selection criterion will be asymptotically incon-

sistent, i.e., the probability of selecting the smallest correct model does not

converge to 1 as either n or N go to ∞.

We then introduce penalized likelihood approaches, such as AIC and

BIC for model (2.2). Pauler38 derived the BIC and its modifications for lin-

ear mixed effects models, and Vaida and Blanchard46 proposed conditional

AIC for mixed effects models. Let `i(β, θ) be the logarithm of the condi-

tional likelihood function of yi given xi and zi. Then define a penalized

conditional log-likelihood function as

1

n

n∑

i=1

`i(β, θ) −
d∑

j=1

pλj
(|βj |), (2.5)

where pλj
(·) is a penalty function with a regularization parameter λj . Max-

imizing (2.5) yields a penalized likelihood estimate. λj controls model com-

plexity, and can be set to a fixed value (as in AIC or BIC) or chosen adap-

tively by a data-driven method such as the generalized cross-validation

(GCV)11. In fact, the tuning parameters λj need not be the same for all j;

this allows us to incorporate prior information for the unknown coefficients

by using different λ values for each predictor. For instance, we may wish to

be sure of keeping certain theoretically important predictors in the model,

so we might choose not to penalize their coefficients.

Residual (restricted) maximum likelihood (REML) is often used to con-

struct an unbiased estimate for θ in mixed effects models. Thus, we might

consider penalized residual likelihood instead of penalized conditional like-

lihood, see [20] for a discussion of penalized REML. As yet another alter-

native, we may consider penalized profile likelihood by replacing the con-

ditional likelihood
∑

i `i(β, θ) by the profile likelihood
∑n

i=1 `i(β, θ(β)),

where θ(β) is the MLE of θ given β. Throughout this paper, we focus on

the penalized likelihood (2.5).
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Let the penalty function be the entropy or L0 penalty, namely,

pλj
(|βj |) =

1

2
λ2I(|βj | 6= 0),

where I(·) is an indicator function and all λj = λ. The penalized likelihood

with the entropy penalty can be rewritten as

1

n

n∑

i=1

`i(β, θ) +
1

2
λ2|M |, (2.6)

where |M | =
∑

j I(|βj | 6= 0), the size of the candidate model. The AIC2

and AICC (the finite sample correction of AIC, see [23]), have been ex-

tended to linear mixed effects model in [46], and the BIC42 was extended

for the linear mixed effects model in [38], in which two modifications of the

BIC were further proposed by considering an arbitrary, possibly informa-

tive prior and the generalized Cauchy prior of Jeffreys24. Both AIC and

BIC can be written as the penalized likelihood (2.6) with certain values of

λ. Specifically, the AIC corresponds to λ =
√

2/n in (2.6). Classical BIC

corresponds to λ =
√

log(ne)/n, where ne is the effective number of obser-

vations and may be taken to be either n or N , based on the model structure

of interest38. Theorem 1 of Jiang and Rao25 gives conditions on λ, under

which the resulting criterion is asymptotically consistent. Using Jiang and

Rao’s results, it may be verified that if ni is uniformly bounded, the BIC

(by either formula) is asymptotically consistent, while the AIC is not.

Many other penalties have been considered in the penalized least squares

case, i.e., for linear regression models with iid error, and they can be ex-

tended to the longitudinal case. The form of pλ(·) determines the general be-

havior of the estimator. Define the Lp penalty to be pλj
(|βj |) = λjp

−1|βj |p,
p > 0. It is well known that the L2 penalty with least squares results

in a ridge regression estimator21. The Lp penalty with 0 < p < 2 yields

bridge regression17, with properties intermediate between best-subset and

ridge regression. With the L1 penalty specifically, the penalized likeli-

hood estimator is the LASSO of Tibshirani45. Antoniadis and Fan derived

characterizations of penalized least squares with orthonormal design ma-

trix, and Li, Dziak and Ma28 extended these to non-orthogonal design

matrices and explored the insights they provide into choice of penalty

functions. Fan and Li15 suggested using the smoothly clipped absolute

deviation (SCAD) penalty, defined by
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Fig. 1. Penalty Functions

pλ(|β|) =





λ|β|, if 0 ≤ |β| < λ;
(a2−1)λ2−(|β|−aλ)2

2(a−1) , if λ ≤ |β| < aλ;
(a+1)λ2

2 , if |β| ≥ aλ.

The SCAD uses two tuning parameters, λ and a. Fan and Li15 suggested

fixing a = 3.7 based on a Bayesian argument. They also found that in terms

of empirical performance in simulations, the SCAD estimate using a = 3.7

was as good as the SCAD estimate with the value of a chosen by GCV.

The SCAD penalty, the L1 and L2 penalty functions are depicted in Fig-

ure 1. The SCAD estimator is similar to the LASSO estimator since it gives

a sparse and continuous solution, but the SCAD estimator has lower bias

than LASSO. Directly applying Theorems 1 and 2 of Fan and Li15, it can

be shown that under certain regularity conditions and with proper choice

of penalty functions and tuning parameter, the SCAD-penalized estimate

is
√

n−consistent and possesses the oracle property asymptotically. In par-

ticular, when λ → 0 and
√

nλ → ∞, maximizing the penalized likelihood
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function with the SCAD penalty yields an estimate β̂ = (β̂1, · · · , β̂d)
T and

θ̂ such that with probability tending to one, β̂j = 0 if the true value of βj is

0, while for those βj with nonzero true value of βj , the coefficient estimates

enjoy the same asymptotic efficiency as that of the oracle estimator (i.e.,

an estimator that knows in advance which βj are 0).

The penalties in the penalized likelihood can be viewed as a prior for β

(see [45]). The penalized likelihood estimate is the posterior mode, which

is much easier to compute than the posterior mean. Weiss, Wang and

Ibrahim48 proposed Bayesian variable selection procedure using Bayes fac-

tors. They specified a multivariate normal prior for β given σ2 and A, an

inverse gamma prior for σ2, and a Wishart prior for A.

2.2. Random effects covariate selection

Vaida and Blanchard46 proposed conditional AIC (cAIC) for choosing sig-

nificant random effects covariates. They focus on prediction at the cluster

level, conditioning on the clusters, so that the random effects γi act as

parameters. Therefore the relevant likelihood is the conditional likelihood

given the γi’s. Their proposed cAIC is distinguished from the AIC defined

in the last section, in that the model likelihood is conditional on γ i = γ̂i

and the number of parameters is related to the effective degrees of freedom

ρ, defined by ρ = tr(H1), where H1 is the hat matrix mapping the observed

data vector y into the fitted vector ŷ = H1y. In practice, H1 depends on

A/σ2 and needs to be estimated. Note that both σ2 and A are nuisance

parameters. We estimate them using the MLE or REMLE under the full

model. As in [46], let us treat both σ2 and A as known. Consider a given

submodel of the linear mixed effects model (2.1):

yi = Xisβs + Zisγis + εi. (2.7)

We first estimate βs by using its MLE or REMLE β̂s and predict γis

using γ̂is = E(γi|β̂,y), the empirical Bayes estimator. Thus, twice the

conditional log-likelihood is

2`c(y|β̂s, γ̂
′
iss) = −

n∑

i=1

[ni{log(2π) + log σ2} + ‖yi − xT
isβ̂s − zT

isγ̂is‖2/σ2].

(2.8)

Then the cAIC proposed by Vaida and Blanchard46 is defined to be

cAIC = −2`c(y|β̂s, γ̂
′
iss) + 2ρ.
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In practice, we may replace σ2 by its MLE under the full model, denoted by

σ̂2
F . To select the best subset of random effect covariates, we then minimize

n∑

i=1

‖yi − xT
isβ̂s − zT

isγ̂is‖2 + 2ρ̂σ̂2
F

over all possible subsets, where ρ̂ is an estimate of ρ; this approach is similar

to the Cp criterion for the linear regression model31.

Alternatively, we may replace σ2 by its conditional MLE, the maximizer

of the conditional likelihood (2.8), i.e.,

σ̂2
cs =

1

N

n∑

i=1

‖yi − xT
isβ̂s − zT

isγ̂is‖2,

where N =
∑n

i=1 ni. Then we find a subset of x and z which minimizes

N log σ̂2
cs + 2ρ̂

and this can be viewed as an extension of AIC for linear regression models.

Vaida and Blanchard46 also proposed a finite sample correction for cAIC;

here we omit the details.

Chen and Dunson10 propose a hierarchical Bayesian model to identify

random effects having zero variance. A key step in their approach is to

apply a modified Cholesky decomposition for the covariance matrix A

of the random effects:

A = DΓΓT D, (2.9)

where D = diag{d1, · · · , dq} is a diagonal matrix, and Γ is a lower tri-

angular matrix with one on its diagonal. Represent γi = DΓvi, where

vi = (vi1, · · · , viq)
T is a vector of independent standard normal latent vari-

ables. Thus, model (2.1) can be rewritten as

yi = Xiβ + ZiDΓvi + εi.

Thus, we can select significant random effects variables by identifying

nonzero diagonal elements of D. This can be done by choosing mixture

priors with positive point mass at zero for dj under the Bayesian variable

selection framework. Following standard convention, Chen and Dunson10

choose conjugate priors for β and σ2. The modified Cholesky decomposi-

tion allows us to choose the prior for nonzero off-diagonal elements of Γ,

given d1, · · · , dq , to be a normal distribution. With these priors, we are

ready to run MCMC to get the posterior distribution of the parameters,

including posterior probabilities for models. Since the priors for the dj ’s
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have point mass at zero, non-significant random effects can be estimated at

zero variance (i.e., removed from the model).

3. Covariance Selection

As demonstrated in the last section, selection of significant random effects is

closely related to covariance selection. A modified Cholesky decomposition,

slightly different from (2.9), is the main device for handling covariance se-

lection problems. There are a number of works on applications of Cholesky

decomposition to longitudinal data analysis and estimation of large covari-

ance matrices39,40,35,49,22,28. In this section, we introduce the covariance

selection problem in general terms. The methods described here can be di-

rectly applied to longitudinal data analysis and parsimonious estimation of

large covariance matrices.

Suppose that e1, · · · , en are a m-dimensional random sample from a

population with mean zero and covariance matrix Σ. Using the modified

Cholesky decomposition, we have

LΣLT = Λ,

where L is a lower triangular matrix having ones on its diagonal, and

Λ = diag{σ2
1 , · · · , σ2

d)T is a diagonal matrix. Note that Σ is symmetric

and positive definite. The modified Cholesky decomposition allows us to

use m parameters in Λ and m(m − 1)/2 parameters in L to model Σ.

Parsimonious estimation of Σ can be done by imposing sparsity on the el-

ements of L. Smith and Kohn44 assumed that the random samples follow

a m-dimensional normal distribution, and applied a Bayesian variable se-

lection approach for Σ by specifying prior distribution for D and L and

by allowing lij (i > j), the strictly lower diagonal elements of L having a

positive mass at 0. Following a typical Bayesian variable selection for linear

regression models, they obtained the posterior distribution using MCMC.

Since the prior for lij has positive mass at 0, the Bayesian approach may

yield a sparse model for L.

Let −φtj , 1 ≤ j < t ≤ m, be the (t, j)th of L, Denote ui = Lei =

(ui1, · · · , uim)T . Thus, for 2 ≤ t ≤ m

eit =
t−1∑

j=1

φtjeij + uit (3.1)

where (ei1, · · · , eim) = ei. That is, the eit, t = 2, · · · , m, is an autoregressive

(AR) series, which gives an interpretation for elements of L and D. Huang
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et al.22 imposed a normality assumption on the population, and imple-

mented covariance selection by minimizing the following negative penalized

likelihood function with Lq penalty:

m∑

t=1

(
n log σ2

t +

n∑

i=1

{eit −
∑t−1

j=1 φtjeij}2

σ2
t

)
+ λ

m∑

t=2

t−1∑

j=1

|φij |q .

Note that since D is diagonal, ui1, · · · , uid are uncorrelated. The AR repre-

sentation for elements of L and D allows us to use penalized least squares

for covariance selection (see [28]). Thus, without the normality assump-

tion, we are still able to parsimoniously estimate the covariance matrix.

We first estimate σ2
t using the mean squared errors from model (3.1). For

t = 2, · · · , m, covariance matrix structure can be selected by minimizing

the following penalized least squares functions:

1

2n

n∑

i=1

(eit −
t−1∑

j=1

φtjeij)
2 +

t−1∑

j=1

pλt,j
(|φtj |), (3.2)

where pλt,j
(·)’s are penalty functions with tuning parameter λt,j . This re-

duces the non-sparse elements in the lower triangle matrix L. With esti-

mated L and D, Σ can be easily estimated by L̂
−1

D̂(L̂
−1

)T .

4. Variable Selection for GEE Model Fitting

The generalized estimating equations (GEE) approach of Liang and Zeger27

provides a unified way to fit regression models with clustered/longitudinal

data for discrete or continuous y. It can be viewed as an extension of quasi-

likelihood approach for generalized linear models (GLIM; see [1], [32]) to

allow longitudinally correlated clusters. Let µij = E(yij |xij) = g(xT
ijβ)

for known link function g(·), and Var(yij |xij) = φ V(µij) for a scale pa-

rameter φ and variance function V(·). Let µi = (µi1, · · · , µini
)T , xij =

[xij1, ..., xijd]T , and Di be a matrix with (j, k)-element ∂µij/∂βk. Liang

and Zeger27 proposed estimating β by solving the following generalized

estimating equations

Ġ(β)
def
=
∑n

i=1
DT

i A
−1/2
i R−1

i A
−1/2
i (yi − µi) = 0, (4.1)

where Ai is a ni × ni diagonal matrix with elements φ V(µij), and Ri is

the working correlation matrix.
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4.1. Extensions of traditional variable selection procedures

Since a GEE model does not specify a likelihood structure, traditional mea-

sures of model fit and of degrees of freedom are not well defined in the

GEE approach. Thus, extending traditional variable selection criteria, such

as Cp, AIC and BIC, to the GEE approach is challenging. Different mea-

sures of model fit and degrees of freedom lead to different variations upon

traditional variable selection procedures.

Let us begin with the cross-validation method, which is conceptually

simple, but computationally expensive. To extend cross-validation to GEE,

we first need to define a measure of model fit. A simple measure is the

residual sum of squares, defined by

RSSS =

n∑

i=1

ni∑

j=1

{yij − g(xT
ijβ̂)}2,

where β̂ is the resulting estimate of the GEEs (4.1). Based on the RSSS,

the cross-validation method can be extended for GEE methods by leav-

ing one-subject out rather than leaving one-observation out so that no

cluster is broken up. To reduce computational cost, one may apply k-fold

cross-validation rather than leave-one-out cross validation (in fact, this may

improve performance, see [4], [43]). The marginal RSS criterion does not

take into account the heteroscedasticity of observations. Cantoni, Field,

Flemming and Ronchetti8 considered generalized least squares loss. Let

rij = {yij − g(xT
ijβ̂)}/{φ̂V (µ̂ij)} and define the generalized residual sum of

squares

RSSW =

n∑

i=1

ni∑

j=1

wijr
2
ij .

where wij ’s are weights, which can be specified based on data analyst’s

experience and simply set to be 1. Replacing RSSS by RSSW , we also can

extend the cross-validation method for longitudinal data.

Another cross-validation approach was suggested by Pan37, who pro-

posed choosing a model to minimize some linear combination of the

expected predictive bias

EPB = ExEy | Ġ(Y |X, β̂(X) | (4.2)

on new data. This is a generalization of the Cp in that Pan37 tries to predict

a risk function for future data, but is much more general than quadratic loss.

Pan’s scheme for finding the model which minimizes EPB involves cross-

validation and bootstrapping. Perhaps because (4.2) is rather abstract and
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estimating it requires computational effort, this criterion has unfortunately

received little attention.

For linear regression models with independent observations, leave-one-

out cross validation is asymptotically equivalent to two simple and easily

implemented criteria, Mallows’ Cp and AIC. To extend Cp and AIC for

GEE methods, we need to define degrees of freedom for model fit. A simple

but reasonable (see [52]) definition of degrees of freedom is the number of

regression coefficients used in the model, denoted by dfS ; we define others

later. It is also necessary to choose a goodness of fit measure. It is known

that Mallows’ classical Cp for linear regression models estimates a quadratic

predictive risk. Cantoni, Flemming and Ronchetti9 extended the Cp crite-

rion to GEE fit using a weighted quadratic predictive risk, resulting in a

generalized Cp, denoted as GCp. The weights allow data analysts to incor-

porate their professional experience easily and incorporate robustness (see

[7]), but implementing the GCp with a general weighting scheme requires

bootstrapping or Monte Carlo simulation to estimate the effective degrees

of freedom of the model fit. This is very computationally expensive and

may become infeasible in practice. Fortunately, the GCp with all weights

equal has a simple, closed form. Let

M = n−1
n∑

i=1

DT
i V−1

i Di, and N = n−1
n∑

i=1

DT
i A−1

i Di,

where Vi = A
1/2
i RiA

1/2
i . Cantoni, Flemming and Ronchetti9 set the de-

grees of freedom for GEE model fit to be

dfC = tr(M−1N).

The GCp is then

GCp =

n∑

i=1

ni∑

j=1

r2
ij −

n∑

i=1

Ji + 2 dfC . (4.3)

The definition of degrees of freedom is motivated by the definition of robust

sandwich formula for the GEE estimate, and if working independence is

used then dfC = dfS , see [9] for a more detailed derivation of the degrees

of freedom.

The classic AIC is asymptotically equivalent to Cp for linear models, but

applies more generally. It estimates the relative Kullback-Leibler distance of

the likelihood function specified by a model, from the true likelihood func-

tion which generated the data. AIC cannot be used directly in GEE since

the likelihood is not specified (although a quasi-likelihood may be implicitly
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specified). Pan36 considered the problem of extending Akaike’s derivation

of AIC to GEE models. Pan’s procedure works best with a working in-

dependent correlation matrix, so we use this formulation. With working

independence, the GEE model fit can be seen as a maximum pseudo quasi-

likelihood fit. To take into account the within-subject correlation, Pan36

sets the degrees of freedom for a GEE estimate β̂ with working indepen-

dent correction matrix to be

dfP = tr(Ω̂V̂),

where Ω̂ is the observed Fisher information matrix for the logarithm of

pseudo quasi-likelihood denoted by QL(β), i.e., Ω̂ = −∂2QL(β̂)/∂β∂βT ,

and V̂ is the estimated covariance matrix of β̂ using robust sandwich for-

mula. Pan36 thus suggests selecting significant variables by minimizing the

following the quasi-AIC (QIC)

QIC = −2QL(β̂) + 2dfP . (4.4)

See [36] for heuristic derivation of these formulas. This QIC is similar to

Takeuchi’s information criterion, a more general form of Akaike’s infor-

mation criterion in the classical case; it is also closely related to earlier

adjustments to AIC for overdispersion (see [6, pp. 65-69]). If the responses

are independent and the model is adequate, then QIC is equivalent to AIC.

However, QIC’s reliance on working independence may make it less effective

if within-subject correlation is high.

Ad hoc generalization of the BIC is possible along the same lines, al-

though the ambiguity of the sample size becomes a difficulty (see [38]

and [20]). Näive possibilities include −2QL(β̂) + log(n)df and −2QL(β̂) +

log(N)df , but more research is needed.

We conclude this section with a remark. Although several authors have

made efforts in developing variable selection for GEE model fit, it is not

clear which measure of model fit is the best or which definition of degrees

of freedom will perform best. Further research to provide both theoreti-

cal insights and empirical justification for extending traditional variable

selection procedures to longitudinal data are clearly needed. Some other

practical remarks on GEE model selection are found in [3].

4.2. Penalized GEE

In this section, we extend the non-concave penalized likelihood

approach45,15 to GEE model fitting. We combine selection and esti-

mation by solving the following penalized generalized estimating
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equations:

Q̇(β)
def
= Ġ(β)+N Ṗ(β) =

n∑

i=1

DT
i A

−1/2
i R−1

i A
−1/2
i (yi −µi)+N Ṗ(β) = 0,

(4.5)

where Ṗ(β) = [p′λ1
(|β1|)sgn(β1), · · · , p′λd

(|βd|)sgn(β1)]
T .

Fu18 studied the asymptotic properties of these penalized generalized

estimating equations with Lq penalties, including L1 as a special case. He

further addressed practical implementation issues and recommmended an

adaptation of the GCV (see [11]) to select the regularization parameter λj .

As demonstrated in Fan and Li15, the SCAD penalty defined in Section

2.1 retains the main virtues of L1 while reducing estimation bias. Here

we suggest using the SCAD penalty instead of the L1 penalty in (4.5).

The oracle property for penalized GEE with the SCAD penalty can be

established using the same strategy as that in [15], see [13] for more details.

Since the SCAD penalty is singular at the origin, and is nonconvex over

(0,∞), it is not straightforward to solve the penalized GEE with the SCAD

penalty.

For practical implementation, we use a modified Newton-Raphson algo-

rithm to solve the penalized GEEs, with iterative local quadratic approx-

imation (LQA, [15]) to approximate the SCAD penalty. Given an initial

value β(0) that is close to the solution of (4.5), for coefficient estimates not

too close to zero (|β̂j | ≥ η where in practice η could be .001, or smaller if

the standard error of β̂ is very small), the penalty pλj
(|βj |) can be locally

approximated by the quadratic function as

[pλj
(|βj |)]′ = p′λj

(|βj |)sgn(βj) ≈ {p′λj
(|β(0)

j |)/|β(0)
j |}βj .

With the local quadratic approximation, the Newton-Raphson algorithm

can be implemented directly to solve the penalized GEE (4.5). When the

algorithm converges, the solution satisfies the penalized GEE equations

Q̇(β) = 0. Of course, for |β̂j | < η we set |β̂j | to zero. Following conventional

techniques in GEE approaches, we may use a sandwich formula to estimate

the standard error of the coefficient estimates in the final model. A similar

LQA algorithm can be used to find Lq-penalized estimates also; this is very

similar to the adjusted iterative algorithm mentioned by Fu18.

To implement penalized GEE in practice, it is desirable to have an

automatic data-driven method for selecting the tuning parameters λ =

(λ1, · · · , λd). Fan and Li15 chose the tuning parameters by minimizing a

GCV criterion. Wang, Li and Tsai47 later proposed a BIC-like tuning pa-

rameter selector. They demonstrate that the BIC selector performs better
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than the GCV selector, in that selecting the tuning parameters by BIC

guarantees that the resulting estimator possesses the asymptotic oracle

property, while using GCV does not. Thus, we will use the BIC selector

for the SCAD in our numerical comparison.

By some straightforward calculation, the effective number of parameters

in the last step of the Newton-Raphson algorithm is

e(λ) = tr[{G̈(β) + NΣλ(β̂)}−1G̈(β)],

where G̈(β) = ∂G(β)/∂β, corresponding to the nonzero components of β̂

and Σλ(β̂) is a diagonal matrix with diagonal elements p′
λj

(|β̂j |)/|β̂j | for

nonzero β̂j ’s.

Parallel to two extensions of the BIC proposed in [38], the BIC statistic

can be defined as follows:

BIC1(λ) =
1

N
log(

1

N

n∑

i=1

ni∑

j=1

r2
ij) + log(n)e(λ), (4.6)

or

BIC2(λ) =
1

N
log(

1

N

n∑

i=1

ni∑

j=1

r2
ij) + log(N)e(λ), (4.7)

where rij is the Pearson residual corresponding to β̂, given λ. One may

replace the Pearson residuals with deviance residuals if they are available.

The BIC2 is more compatible with the original definition of the BIC (and

is equivalent under working independence), but in practice it tends to be

a little too strong, and it tends to give somewhat poorer empirical perfor-

mance than BIC1. Both presumably have similar asymptotic behavior if

the ni are bounded (see [43]).

We can select λ by minimizing, say, BIC1. To find an optimal λ, the

BIC selector needs to be minimized over a d-dimensional space, an unduly

onerous task. However, it is intuitively expected that the magnitude of λj

should be proportional to the standard error of estimate of βj . Therefore, we

may set λ = λ se(β̂GEE) in practice, where se(β̂GEE) stands for the stan-

dard error of the unpenalized GEE estimate. Thus, we minimize the BIC

score over the one-dimensional space, saving a great deal of computational

cost. This scheme is used in our simulations.

5. Numerical Comparison

This section presents some comparisons of variable selection procedures for

longitudinal data. Comparisons of variable selection procedures for linear
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mixed models can be found in [20], and some comparisons of covariance

selection are found in [28].

Example 1. In this example, we generated 200 data sets using Octave

code (a free version of Matlab), each consisting of n = 50 subjects with

each subject having J = 5 observations (i.e, all ni equals J = 5), from the

following linear model:

yij = xT
ijβ + 3εij ,

where β = (3, 1, 0, 0, 2, 0, 0, 0)T (i.e., there were 5 inactive and 3 active

predictors), and xij ∼ N8(0,Σ), where the diagonal elements of Σ all equal

1, and all off-diagonal elements equal 0.6. Furthermore, (εi1, · · · , εiJ )T are

multivariate normal with AR(1) true correlation structure with ρ = 0.7.

In our simulation, we compare the following GEE model selection cri-

teria:

(1) näive AIC ignoring correlation, defined as N log(RSSS/N) + 2dfS;

(2) näive Cp, defined to be RSSS + 2dfSσ̂2, where σ̂2 is the MSE under

the full model;

(3) Cantoni’s Cp defined in (4.3);

(4) Pan’s AIC, defined in (4.4);

(5) Fu’s penalized GEE with L1 penalty. The λj were proportional to the

unpenalized standard errors; their magnitude was chosen using the

modified GCV-like statistic defined in [18].

(6) Penalized GEE with the SCAD penalty. The tuning parameters are

selected by using BIC1 and BIC2 tuning parameter selectors described

in Section 4.2. Corresponding to the BIC1 and BIC2, this procedure

is referred to as SCAD1 and SCAD2 in Table 1, respectively.

To find the subset which minimizes AIC and Cp criteria in (1)—(4),

we exhaustively search all 28 possibilities. Thus, the corresponding results

represent best subset variable selection with the underlying criterion.

We compare each variable selection procedure in terms of model com-

plexity and model error, defined by ME(β̂) = (β̂ − β)T E(xxT )(β̂ − β) (see

[15]). Table 1 depicted the mean of model error for each procedure and

summarized model complexity in terms of correct deletions, the average

number per simulation of truly zero coefficients correctly estimated as zero,

erroneous deletions, the average number of truly nonzero coefficients erro-

neously set to zero, and proportion correct models, the proportion of trials

in which exactly the true subset of nonzero predictors was chosen.
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To study the impacts of choice of working correlation structure, we com-

pare every procedures under three working correlation structures: working

independence, AR(1) and compound symmetry; these are abbreviated as

Ind, AR, CS in Table 1.

Table 1. Comparison of GEE Model Selection (Continuous Response)

Criterion 10 × Mean ME Prop. True Models

Working Corr. Matrix: Ind AR CS Ind AR CS

Full 2.87 1.25 1.69 0.00 0.00 0.00

Näive AIC 1.87 0.77 1.13 0.63 0.65 0.63

Näive Cp 1.87 0.77 1.13 0.63 0.66 0.63
AIC (Pan) 1.87 0.85 1.11 0.58 0.35 0.41
Cp (Cantoni) 1.87 0.80 1.08 0.63 0.44 0.42
LASSO (Fu) 2.18 1.14 2.03 0.08 0.40 0.25
SCAD1 1.68 0.64 1.04 0.50 0.41 0.33
SCAD2 1.73 0.64 1.12 0.70 0.62 0.50

Correct Deletions Erroneous Deletions

Working Corr. Matrix: Ind AR CS Ind AR CS

Full 0.00 0.00 0.00 0.00 0.00 0.00

Näive AIC 4.59 4.60 4.59 0.06 0.03 0.06

Näive Cp 4.59 4.61 4.59 0.06 0.03 0.06
AIC (Pan) 4.53 4.08 4.21 0.04 0.01 0.02
Cp (Cantoni) 4.59 4.26 4.24 0.06 0.01 0.02
LASSO (Fu) 2.66 4.14 3.70 0.00 0.00 0.01
SCAD1 4.26 4.17 4.04 0.03 0.00 0.01
SCAD2 4.63 4.51 4.39 0.03 0.00 0.01

From Table 1, taking correlation into account led to much better es-

timation performance than using working independence. Not surprisingly

using the correct correlation structure, AR(1), was better than using an

incorrect (compound symmetric) correlation structure. In general, parsi-

monious methods outperformed less parsimonious ones, partly because the

true model in this example is rather simple. SCAD tended to give smaller

models than LASSO, and generally better estimation performance. Over-

all, SCAD outperforms the other procedures in terms of model errors and

model complexity.

Example 2. In this example, we compare the variable selection procedures

for data with correlated binary responses. The simulations were conducted

using R code since we used the correlated random binary data generator

by Leisch and Weingessel26. We conducted 200 simulations, and in each

simulation, n = 100 subjects with J = 10 observations (i.e., all ni equals
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10). We generated correlated binary response with marginal distribution:

yij |xij ∼ Bernoulli{p(xij)},

where p(x) = exp(−0.5 + xT
i β)/{1 + exp(−0.5 + xT

i β)}, β is the same as

that in Example 1, xij ∼ N8(0,Σ), where the diagonal elements of Σ all

equal 1, and all off-diagonal elements equal 0.5. The binary responses were

exchangeably correlated (i.e., with compound symmetry).

Since the classic Cp criterion is not well defined for binary data, we

do not include it in our comparison. Simulation results are summarized in

Table 2, in which MSE is the mean squared error in coefficient estimation.

Table 2. Comparison of GEE Model Selection (Binary Response)

Criterion 10 × Mean MSE Prop. True Models

Working Corr. Matrix: Ind AR CS Ind AR CS

Full 1.11 0.87 0.82 0.00 0.00 0.00

Näive AIC 0.88 0.62 0.66 0.38 0.53 0.46
AIC (Pan) 0.88 0.64 0.69 0.38 0.41 0.31
LASSO (Fu) 0.77 0.65 0.63 0.01 0.00 0.00
SCAD1 0.78 0.62 0.66 0.69 0.72 0.70
SCAD2 0.86 0.76 0.79 0.61 0.57 0.56

Correct Deletions Erroneous Deletions

Working Corr. Matrix: Ind AR CS Ind AR CS

Full 0.00 0.00 0.00 0.00 0.00 0.00

Näive AIC 4.09 4.41 4.34 0.07 0.10 0.10
AIC (Pan) 4.07 4.22 4.05 0.07 0.08 0.09
LASSO (Fu) 1.92 1.70 1.63 0.00 0.01 0.01
SCAD1 4.83 4.93 4.88 0.23 0.22 0.23
SCAD2 4.94 4.97 4.98 0.38 0.41 0.43

The SCAD with BIC2 had a false deletion rate higher than we would

wish; the SCAD with BIC1 had almost as good a correct deletion rate but

a noticeably lower false deletion rate. In general, then, the lighter version

seems to be better. Pan’s AIC does fairly well. The LASSO provides good

estimation performance but not very sparse models.

6. Variable Selection for Other Models

Although mixed effects models and GEE are very popular formulations for

analyzing longitudinal data, many other models have also been used. In this

section, we will briefly introduce variable selection procedures for a partial

linear model, a semiparametric approach highly relevant to longitudinal

data (see [51], [34], [29], and [16]).
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Suppose that we have a sample of n subjects. For the i-th subject,

the response variable yi(t) and the covariate vector xi(t), are collected at

times t = ti1, · · · , tini
, where ni is the total number of observations on

the i-th subject. The partial linear model for longitudinal data has the

following form:

yi(tij) = α(tij) + βT xi(tij) + εi(tij) (6.1)

for i = 1, · · · , n, and j = 1, · · · , ni. As before, variable selection is important

in the partial linear model, because the number of available x variables in

(6.1) can be large.

Fan and Li16 proposed a class of variable selection procedures via the

nonconvex penalized quadratic loss

1

2n

n∑

i=1

(yi − αi − Xiβ)T Wi(yi − αi − Xiβ) +

d∑

j=1

pλj
(|βj |). (6.2)

where αi = [α(ti1), · · · , α(tini
)]T . We can then implement entropy, Lq , or

SCAD penalties for the pλj
(|βj |). Since α(t) is an unknown nonparametric

smooth function, (6.2) cannot directly be minimized in β. Therefore, Fan

and Li16 proposed eliminating the nuisance function α(·) using a profiling

technique; see [16] for details. Then the resulting estimate of (6.2) is a

penalized profile least squares estimate. The sampling properties of the

penalized profile least squares estimate were studied by Fan and Li16, who

demonstrated that with a proper choice of regularization parameters and

penalty functions, the proposed variable selection procedures perform as

well asymptotically as an oracle estimator.

More research is needed to study how to choose significant variables for

other existing models for longitudinal data. For example, there is little or

no existing work in the literature on variable selection for generalized linear

mixed effects models and generalized partial linear models for longitudinal

data.
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In statistics, model selection has a long standing history, while new re-
sults in this area still keep coming. At this point, it is nearly impossible
and not helpful to give a comprehensive survey on all the available the-
orems. We take a special angle: from where more results are likely to be
generated. Our perspective is based on some recent interesting findings
in applied mathematics; namely, in some cases a subset of NP hard prob-
lems can be solved effectively by some convex optimization approaches,
which only require polynomial time. We discuss the potential of this ap-
proach. For users who would like to know more about the existing ideas
in model selection, we provide a summary in the end.

1. Introduction

Model selection is a classical topic in statistics. Here, for simplicity, we

restrict to an ordinary linear regression model. For classical results, an

excellent survey is given by George22, while Kadane and Lazar29 give a

superior survey from a Bayesian viewpoint. Since their appearance, many

new interesting results have come out. Presenting all of them here is nearly

impossible and also distractive. As anticipated, researchers have taken dif-

ferent angles in tackling the model selection problem.

The perspective taken in this paper is new. It can be summarized into

the following three steps.

• First of all, it is proven (see [28]) that many classical criteria

25
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in model selection require solving NP-hard problems. Hence, in

general, there is no efficient algorithmic solution.

In fact, the state-of-the-art algorithm in solving this problem is still

the leaps-and-bounds [18], which was proposed in 70’s and basically

utilizes the branch-and-bound technique that is widely used in com-

binatorial optimization. There are some recent improvements; for

example LBOT38. However, when the number of predictors is more

than 40 to 50, most of these methods will take intolerable amount

of time.

• In applied mathematics, it is found that even though some problems

are NP-hard in general, there are special cases, under which they

are solvable in polynomial time. A case that has been cited for

many times is Donoho and Huo11. This motivates us to search for

special conditions, which (a) can be verified in polynomial time and

(b) indicate that a model selection problem has polynomial time

solution.

• The above leads to the action: finding a group of conditions, which

help to identify solvable model selection problem. See some initial

results in [28].

The above differs from many existing works in the following way: we

consider the computational aspect, in particular the solvability of model

selection problems, assuming that the model selection criteria are based

on a prefixed class of optimization problems; while other works may em-

phasize more on the statistical properties of the results of model selection

approaches, as we will summarize in Section 5.

Another difference (from many existing statistically algorithmic papers)

is that instead of considering a particular numeric method, we abstract

them into two types of problems: (P0) and (P1), which will be defined

in the next section. Instead of finding an efficient algorithm for either of

them, we consider when do these two problems have the identical solutions.

Such an equivalence is argued to establish an efficient algorithm to solve

the model selection problem. More details will be articulated.

As a fundamental tool, progress in model selection is likely to improve

the methodologies in biostatistics. This paper does not focus on biostatis-

tical applications in particular.

This chapter is organized as follows. We give an overview of our perspec-

tive in Section 2. Details on related literature and formulation are presented

in Section 3. In Section 4, we use two extreme examples to illustrate the
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model selection problem. Section 5 summarizes various interesting find-

ings/ideas that have been published recently — for obvious reasons, we

give an emphasis on publications that come after the two survey papers

mentioned at the beginning of this article.

2. Our Perspective

We consider two types of optimization problems:

• one optimization problem that is based on a counting measure,

(P0) min
x

‖y − Φx‖2
2 + λ0 · ‖x‖0,

where Φ ∈ R
n×m, x ∈ R

m, y ∈ R
n, notation ‖·‖2

2 denotes the sum of

squares of the entries of a vector, constant λ0 ≥ 0 is an algorithmic

parameter, and quantity ‖x‖0 is the number of nonzero entries in

vector x;

• one optimization problem that depends on a sum of absolute values,

(P1) min
x

‖y − Φx‖2
2 + λ1 · ‖x‖1,

where ‖x‖1 =
∑m

i=1 |xi| for vector x = (x1, x2, . . . , xm)T , and con-

stant λ1 ≥ 0 is another algorithmic parameter whose role will be

discussed later.

Note ‖x‖0 (respectively, ‖x‖1) is a quasi-norm (respectively, norm) in

R
m. In the literature of sparse signal presentation, they are called `0-norm

and `1-norm, respectively. The numbers “0” and “1” in the notations (P0)

and (P1) follow such a convention in Donlho and Huo11, Donoho, et al.10,

and Chen and Huo4,5.

Model selection in regression is equivalent to subset selection. In subset

selection under linear regression, many well known criteria – including Cp

statistic, Akaike information criterion (AIC), Bayesian information criterion

(BIC), minimum description length (MDL), risk inflation criterion (RIC),

and so on — are special cases of (P0), by assigning different values to

λ0. Details regarding the foregoing statement will be provided later. It is

shown that problem (P0) in general is NP-hard (Theorem 1; also see Huo

and Ni28).

On the other hand, (P1) is the mathematical problem that is called

upon in Lasso47. Recent advances (whose details and references are pro-

vided in Section 3.2) demonstrate that some stepwise algorithms (e.g., least

angle regressions (LARS) presented in Efron, et al.14) reveal the solution
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paths of problem (P1), while parameter λ1 takes a range of values. More

importantly, most of these algorithms only take polynomial number of oper-

ations — i.e., they are polynomial-time algorithms. In fact, the complexity

of finding a solution path for (P1) is the same as implementing an ordinary

least square fit14.

The main objective of this chapter is to find when (P0) and (P1) give

the same result in the subset selection. Following Huo and Ni28, a subset

that corresponds to the indices of the nonzero entries of the minimizer of

(P0) (respectively, (P1)) is called a type-I (respectively, type-II) optimal

subset with respective to λ0 (respectively, λ1). A subset that is both type-I

and type-II optimal is called a concurrent optimal subset. It is known that

there exists a necessary and sufficient condition for the type-II optimal

subset, and this condition can be verified in polynomial time. However,

in general, there is no polynomial-time necessary and sufficient condition

for the type-I optimal subset. Therefore, we search for easy-to-verify (i.e.,

polynomial-time) sufficient conditions for type-I optimal subsets. Two types

of results are derived in Huo and Ni28. The first is based on the assumption

that the covariates whose correlations with the response vector are higher

than the others form the optimal subset. The second result is motivated by

a new advance in sparse signal representation, and is rather general. Since

this is not the theme of this chapter, we omit further details.

3. Formulation and Related Literature

We review more literature in subset selection. Recall in a regression setting,

Φ ∈ R
n×m(n > m) denotes a model matrix. Vectors x ∈ R

m and y ∈ R
n are

coefficient and response vectors. The columns of matrix Φ are covariates.

A regression model is y = Φx + ε, where ε is a random vector. Let I =

{1, 2, . . . , m} denote all the indices of the coefficients. A subset of coefficients

(or, covariates) is denoted by Ω ⊆ I. Let |Ω| denote the cardinality of set Ω.

Let xΩ denote the coefficient vector that only takes nonzero values when the

coefficient indices are in the subset Ω. A subset selection problem has two

competing objectives in choosing a subset Ω: firstly, the residuals, which

are in the vector y −ΦxΩ, are close to zeros; secondly, the size of the set Ω

is small.

3.1. Subset Selection Criteria and (P0)

Rich literature can be found on the criteria regarding subset selection.

Miller36 and George and Foster22 provided an excellent overview. An inter-
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esting fact is that a majority of these criteria can be unified under (P0),

where ‖y − Φx‖2
2 is the residual sum of squares (denoted by RSS(x)) un-

der the coefficient vector x, and constant λ0 depends on the criteria. The

following summarizes some well-known results:

• Paper [1] defines its criterion by maximizing the expected log-

likelihood E
X,θ̂

(log f(X |θ̂)), where θ̂ is the estimation of param-

eter θ, f(X |θ) is the density function. This is equivalent with max-

imizing the expected Kullback-Leibler’s mean information for the

discrimination between f(X |θ̂) and f(X |θ), i.e.: E
X,θ̂

(log f(X|θ̂)
f(X|θ)),

for a known true θ. Under a Gaussian assumption in the linear re-

gression, the above leads to the Akaike information criterion (AIC)

that minimizes

AIC =
RSS(x)

σ2
+ 2 · ‖x‖0,

where σ2 is the noise variance, and other notations have been de-

fined at the beginning of this section. It is a special case of (P0)

by assigning λ0 = 2σ2.

• Mallows’ Cp (see [35, 24]), which is derived from the unbiased risk

estimation, minimizes

Cp =
1

σ̂2
RSS(x) + 2 · ‖x‖0 − n,

where σ̂ is an estimate of parameter σ. When σ̂2 = σ2 is assumed,

Mallows’ Cp is equivalent to AIC. Again, Cp is a special case of

(P0).

• Motivated by the asymptotic behavior of Bayes estimators,

Bayesian information criterion (BIC)43 chooses to select the model

that maximizes

log f(X |θ̂) − 1

2
· log n · ‖x‖0.

Here, under the squared error loss and the Gaussian model assump-

tion with known variance σ2, BIC is to minimize

BIC =
RSS(x)

σ2
+ log n · ‖x‖0.

The above is again a special case of (P0) by assigning λ0 = σ2 log n.

• The equivalence between BIC and the minimum description length

(MDL) is well known, see Hastie, et al.27 . Hence, MDL is a special

case of (P0) as well.
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• Risk inflation criterion (RIC) is suggested in George and Foster19

from a minimax estimation vantage point. RIC recommends the

model that minimizes

RIC =
RSS(x)

σ2
+ 2 log p · ‖x‖0,

where p is the number of available predictors. This is derived from

selecting the model with minimum risk inflation. Readers can see

that RIC is another special case of (P0), by taking λ0 = 2σ2 log p.

Although (P0) is a fine compendium of many subset selection criteria,

solving (P0) generally requires exhaustive search of all the possible sub-

sets. When ‖x‖0 (i.e., the number of the selected covariates) increases, the

methods based on exhaustive search become rapidly impractical. In fact,

solving (P0) in general is an NP-hard problem. The following theorem can

be considered as an extension of a result that was originally presented by

Natarajan37.

Theorem 1: Solving the problem (P0) with a fixed λ0 is an NP-hard

problem.

Using the idea of Lagrange multiplier, we can see that solving (P0)

with λ0 is equivalent to solving the sparse approximate solution (SAS)

problem in Natarajan37 with ε, which is proven in Natarajan37 to be NP-

hard. Hence, in general, solving (P0) is NP-hard.

3.2. Greedy Algorithms and (P1)

Due to the hardness of solving (P0), a relaxation idea has been pro-

posed. The relaxation replaces the `0 norm with the `1 norm in the ob-

jective, which leads to (P1). The idea of relaxation started in sparse signal

representation6. Theoretical properties are derived later in [11, 10]. A par-

tial list of new representative results includes Tropp49,48, Gribonval and

Nielsen25, and Chen and Huo4,5. Being compared with the problem in

this chapter, the problem of sparse signal representation has a different

objective. In sparse signal representations, researchers consider a redun-

dant dictionary33,23 and the conditions under which the sparsest repre-

sentation can be solved via a linear programming. Their formulations of

(P0) and (P1) are slightly different from ours. However, a group of results

in this chapter are certainly motivated by some recent results in sparse

representation. More connections are discussed in Huo and Ni28.
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At the same time, (P1) has been proposed in statistics as a way of sub-

set selection. The method is named Lasso47. An interesting recent develop-

ment — the least angle regressions (LARS)14 — demonstrates that certain

greedy algorithms can reveal the solutions to (P1) with varying values of

λ1, based on the idea of homotopy39. More recent analysis demonstrates

further that greedy algorithms can literally render the entire solution path

in a large class of problems, referring to Hastie, et al.26 and the references

therein. A recent conference presentation32 gives the most succinct solution

in generating solution paths, utilizing a homotopy continuation method40

and an analysis of subdifferential. A standard reference for the background

of this material is Rockafellar42.

4. Case Study

To illustrate further the necessity and feasibility of deriving equivalence

conditions between (P0) and (P1), we describe two extreme examples. In

the first example, solutions of (P1) and (P0) completely disagree. In the

second example, (P1) and (P0) share the same subset.

4.1. An Extreme Example for the Least Angle Regressions

Least Angle Regression14 is a forward variable selection method. An ex-

tensive manual regarding forward selection can be found in Atkinson, et

al.2. As been indicated previously, LARS can give the solution path of (P1).

However, this homotopy does not guarantee that LARS always reveal the

optimal solutions of (P0); i.e., (P0) and (P1) could disagree. In this sub-

section, we present one particular case, in which LARS choose wrongly in

the first iteration and end up correcting it inefficiently. As a result, LARS

do not include the correct covariates until the last step. Initially, such an

example motivated us to consider the conditions of equivalence.

Details of LARS algorithm can be found in Efron, et al.14 . In a nut-

shell, LARS start with zero coefficients, select the most correlated covariates

with the signal (i.e., the response) s, then move along the direction that is

equiangular among the selected covariates until some other covariates have

as much correlation with the current residual, add these new covariates un-

der consideration and move along the new equiangular direction. When the

covariates and the response are standardized to have mean 0 and unit norm,

correlation between vectors is proportional to the inner product. In the fol-

lowing, for clarity, we first give an example with nonstandardized vectors,

and choose the covariates according to the inner products. The correspond-
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ing example with standardized covariates and signal is presented later in

Section 4.1.1. Section 4.1.2 shows how to use the result to come up with a

dramatic example for presentation.

The first example is generated as follows. Let φi ∈ R
n, i = 1, 2, ..., m,

denote the ith column of the model matrix Φ. Hence, Φ = [φ1, φ2, ..., φm].

Let δi ∈ R
n, i = 1, 2, ..., m, denote the dirac vector taking 1 at the ith posi-

tion and 0 elsewhere. For i = m−A+1, m−A+2, ..., m, let φi = δi, where

A is a positive integer. Consider a special signal s = 1√
A

∑m
i=m−A+1 φi.

Obviously, in this case, the optimal subset is {m − A + 1, ..., m}. For the

first m − A columns of Φ, make φj = aj · s + bj · δj , where 1 ≤ j ≤ m − A

and a2
j + b2

j = 1. Note φi’s and s are all unit-norm vectors. From now on,

for simplicity, we always assume 1 ≤ j ≤ m − A and m − A + 1 ≤ i ≤ m.

It is easy to verify that

〈s, φj〉 = aj and 〈s, φi〉 = 1/
√

A.

In this example, we choose 1 > a1 > a2 > · · · > am−A > 1/
√

A > 0.

Now we consider the procedure of LARS. In the first step, since φ1 has

the largest inner product with s, evidently column φ1 will be chosen. The

residual will be r1 = s− c1φ1, where c1 is the coefficient to be determined.

The following result about the consequent step in LARS is proved in the

Appendix of [28].

Lemma 2: In the consequent step of LARS, covariate φ2 is chosen, with

c1 = a1−a2

1−a1a2

.

Hence, the residual of the first step becomes

r1 = s − c1φ1

= s − a1 − a2

1− a1a2
(a1s + b1δ1)

=
b2
1

1 − a1a2
s − (a1 − a2)b1

1 − a1a2
δ1

=
b2
1

1 − a1a2
[s − a1 − a2

b1
δ1].

Note that in LARS, only the direction of a residual vector determines the

selection of the next covariate(s). The amplitude of a residual vector does

not change the variable selection. Hence, we introduce a surrogate residual

with a simpler form:

r̃1 = s − a1 − a2

b1
δ1.
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Residuals r̃1 and r1 have the same direction. This is an important step to

simplify our analysis.

As a sanity check, the following calculations are performed:

(1) For i, 〈φi, r̃1〉 = 1/
√

A.

(2) For j,

〈φj , r̃1〉 = 〈ajs + bjδj , s −
a1 − a2

b1
δ1〉

= aj −
bj(a1 − a2)

b1
〈δj , δ1〉.

As special cases: 〈φ1, r̃1〉 = a2, 〈φ2, r̃1〉 = a2, and for j ≥ 3, 〈φj , r̃1〉 =

aj .

The above analysis demonstrates some basic techniques that will be

used in the consequent LARS steps. Now we can use induction to show the

following.

Theorem 3: In the example described in the beginning of this section,

LARS choose covariates φ1, φ2, ..., φm−A one by one sequentially in the first

m − A steps.

It takes some energy to verify the above theorem. We skip it. Readers

can find the proof in Huo and Ni28. This example shows that LARS can

choose all the covariates outside an intuitively optimal subset before it

reaches any covariate inside the optimal subset.

4.1.1. Standardized Covariates

Readers may notice that LARS should proceed along the direction that

depends on the correlations between φi’s and the residual. Meanwhile, in

our previous case study, the proceeding direction is determined due to the

inner product. The inner product is not proportional to the correlation since

the response s and the covariate vectors φi’s are not standardized to have

mean 0. However, this discrepancy can be easily remedied as follows. The

key observation is that LARS only depend on geometric information. More

specifically, the result depends only on 〈φi, s〉, i = 1, 2, ..., m, and 〈φi, φj〉,
1 ≤ i, j ≤ m. For example, an orthogonal transform of both s and φi’s will

retain the results in LARS. We state this without a proof.

Lemma 4: After a simultaneously orthogonal transform on both response

and covariates, the results of LARS from the transformed data is the same

orthogonal transform of the LARS results from the original data.
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Hence, if we can find another set of standardized vectors, which retain

the inner products and are the orthogonal transforms of φi’s and s in the

previous example, the same results can be predicted for LARS.

The standardization can be incorporated according to the following. The

main idea is that an n-dimensional linear space can be treated as a subspace

of R
n+1, which is orthogonal to vector (1, 1, ..., 1). Let {b0, b1, ..., bn} denote

an orthonormal basis of R
n+1, with b0 = 1√

n+1
(1, 1, ..., 1)T . Denote the unit-

norm vectors s = (s1, s2, ..., sn)T and φi = (φi1, φi2, ..., φin)T , i = 1, 2, ..., m.

Define s′ =
∑n

j=1 sjbj , φ′
i =

∑n

j=1 φijbj , i = 1, 2, ..., m. One can easily

verify that 〈s′, φ′
i〉 = 〈s, φi〉 for 1 ≤ i ≤ m, and 〈φ′

i, φ
′
j〉 = 〈φi, φj〉 for

1 ≤ i, j ≤ m. Hence, applying LARS to s′ and φ′
i’s will produce the same

result as in the first case study. It is not hard to verify that s′ and φ′
i’s are

standardized. Therefore, the conclusions in our case study can be extended

to the case with standardized response and covariates.

Theorem 5: There exists an orthogonal transform that can be applied to

the previous example to create a case in which all the covariates and the

response are standardized, and LARS select all the covariates outside the

optimal subset before it chooses any covariate inside the optimal subset.

4.1.2. To Create a Dramatic Presentation

The foregoing example is developed in a fairly general form, without speci-

fying the controlling parameters: A and m. To see how dramatic an example

can be, let us consider the case where A = 10 and m = 1, 000, 000. Based on

the previous analysis, LARS will select the first 999, 990 covariates before it

selects any of the last ten covariates. At the same time, the optimal subset

is formed by the last ten covariates.

4.2. Variable Selection with Orthogonal Model Matrix

In order to gain more insights, a case in which Φ is orthogonal is considered.

This example has been studied in the original LARS paper14. The purpose

of restating it here is to illustrate that there is a case in which LARS find

the type-I optimal subset. I.e., (P0) and (P1) coincide.

Theorem 6: Let x̃0 and x̃1 denote the solutions to (P0) and (P1), re-

spectively. When Φ is orthogonal, we have

x̃0,i =

{
0, if |zi| ≤

√
λ0,

zi, if |zi| >
√

λ0,
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and

x̃1,i =

{
0, if |zi| ≤ λ1/2,

sign(zi)(|zi| − λ1

2 ), if |zi| > λ1/2.

Here, x̃0,i and x̃1,i denote the ith entry of x̃0 and x̃1, respectively, and zi

is the ith entry of z = ΦT y.

For readers who are familiar with soft-thresholding and hard-

thresholding12, the above is not a surprise. Proof is omitted.

From the above, verifying the following becomes an easy task. Let

supp(x) denote the set of indices of the nonzero entries in vector x.

Corollary 7: When
√

λ0 = λ1/2, one has supp(x̃0) = supp(x̃1), i.e., there

is a concurrent optimal subset. Moreover,

x̃0,i − x̃1,i =

{
0, if i /∈ supp(x̃0),
λ1

2 · sign(zi), if i ∈ supp(x̃0).

The proof is obvious and is omitted.

Now there are two opposing examples. On one hand, if Φ is orthogonal,

both LARS and Lasso discover the optimal subset in (P0). On the other

hand, we found an example in which a version of LARS would choose all

the covariates outside the optimal subset before choosing anything inside.

These inconsistencies encourage us to analyze the solutions of (P0) and

(P1), and the conditions for a subset to be the concurrent optimal subset.

This is the place where more results are anticipated. Readers may see details

in more technical papers thereafter.

5. Other Topics

We must admit that this article presents a somewhat unique aspect of

the model selection problem. In the following, we discuss other works and

possibly their relation with the theme of this article.

5.1. Computing Versus Statistical Properties

As mentioned earlier, the question that we addressed in this paper is quite

different from many other statistical works. In the present paper, we identify

easy-to-verify (polynomial time) conditions for the type-I optimal subset.

Our direct motivation is that certain greedy algorithm can find a path of

type-II optimal subsets. If one of these type-II optimal subset is confirmed
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to be type-I optimal, then a concurrent optimal subset is obtained. In the

above sense, our question is more statistical computing than prediction.

In traditional approaches of subset selection, researchers try to answer

the questions regarding the consistency of variable selection, as well as the

optimal accuracy rate in submodel prediction. There is a large scope of ex-

isting efforts. It is impossible and unnecessary for us to give a comprehensive

survey here. We will just list some publications that have been informative

and inspiring to us. Papers14,50,13,45,54, and the references therein give some

interesting results in model estimation, integrating the prediction accuracy.

Consistency of variable selection has been studied in Zheng and Loh53.

Nowadays, due to the rapid rising of data sizes, it becomes increasingly

important to develop statistical principles that can be realized in computa-

tionally efficient ways. Our idea of finding efficient sufficient conditions for

otherwise unsolvable (i.e., NP-hard) subset selection principle is an incar-

nation of this ideology.

5.2. Other Works in Variable Selection

Despite their generality, the formulations of (P0) and (P1) do not cover

all the existing works in statistical model selection. We review some recent

works that have attracted our attention.

Fan and Li15 propose a family of new variable selection methods based

on a nonconcave penalized likelihood approach. The criterion is to minimize

Fan&Li = RSS(x) + 2n ·
‖x‖0∑

j=1

pλ(|θj |),

where pλ(·) is a penalty function which is symmetric, nonconcave on (0,∞)

and has singularities at origin. With proper choice of λ, Fan and Li show

that the estimators would have good statistical properties, such as sparsity

and asymptotic normality. The oracle property that they established is very

interesting.

Shen and Ye46 suggest an adaptive model selection procedure to esti-

mate the algorithmic parameter λ from the data. In detail, the optimal

value of λ is obtained by minimizing

Shen&Ye = RSS(x) + ĝ0(λ0) · σ2,

which is derived from the optimal estimator of the loss l(θ, θ̂). Quantity

ĝ0(λ0) is the estimator of g0(λ0), which is independent of the unknown
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parameter θ. Value g0(λ0)/2 is called the generalized degrees of freedom in

Ye52.

The above two are merely the representative examples of many inter-

esting approaches.

5.3. Back Elimination

Subset selections include at least three basic approaches: forward selection,

backward elimination, and all subset selection. Problem (P0) is an all sub-

set selection method. The greedy algorithms that have been discussed in

this chapter are assumed to be forward selection algorithms.

In Couvreur and Bresler8, a very interesting result is proved for the

backward elimination. It is shown that under certain conditions, back elim-

ination finds the solution of (P0). Such a result reveals the properties of

problem (P0) from another angle.

5.4. Other Greedy Algorithms and Absolutely Optimal

Subset in Variable Selection

We have treated LARS as a stepwise algorithm. Other greedy algorithms

have made significant impact in other fields (e.g., signal processing). Two

representative ones are matching pursuit (MP)9,34 and its improved version

– orthogonal matching pursuit (OMP)41. MP and OMP do not generate

the regularized solution path, while a version of LARS does. However, the

intensive research effort following MP and OMP will provide researchers

powerful tools.

Researchers have studied on the subsets that are unconditionally con-

current optimal, i.e., its concurrent optimality depends on neither the co-

efficients nor the corresponding residuals. The representative works include

[10, 49], and [48]. The concept of exact recovery coefficient (ERC)48 has

inspired many recent works.

Note that in our sufficient conditions, both coefficient and residuals are

taken into account. This is due to the different emphasis of the problems.

Compared with our works, the results mentioned in the last paragraph can

be considered as an analysis of the worst cases.

5.5. Model Selection versus Variable Selection

We may think that model selection and variable selection are interchange-

able. It is pointed out in [30] that there are differences between the two
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problems. Model selection is to choose a statistical model that is based on

a subset of variables, such that the chosen model has optimal predictive

power; while variable selection is to determine the subset of variables that

have predictive effect. Conceptually, the model selection may take a subset

of the variables from the variable selection to create a model.

It is interesting to read the model-free variable selection approach in Li,

et al.30. They adopt the framework that is the same as the one for “central

subspace.” Their proposed procedure is like back elimination, where step-

wise statistical hypothesis testings are used to guide the variable selection.

We believe that more results along this line will come out in a near future.

Some potential research problems include: what is the statistical properties

of these methods?

5.6. Beyond Model Selection

The model selection considered here is just one stage of statistical inference.

Other researchers have considered the statistical properties of the outcomes

from these model selection methods. As an example, Shen et al.44,45 con-

sider the bias of model selection, and suggest methods to correct it. Efron13

studied the relation between the outcomes and prediction power via their

covariance structure. These works require mathematical formulations that

are very different from the one that is considered here. We choose not to

explore further in this direction.

5.7. Beyond Ordinary Linear Regression

In the contemporary statistics, ordinary linear regression is a classical how-

ever small fraction. Many other models have been created and studied in

statistical practice. We notice some recent works on model selection in lon-

gitudinal data analysis3,17 and survival analysis16.

5.8. Bayesian Approach

Due to the difficulty in solving the model selection problem — as mentioned

earlier, they are NP-hard in general — researchers have explored random

sampling approaches. Some computational experiments are described in

[21], and later on, more thorough Bayesian approaches are developed in [7,

20]. An interesting Monte Carlo strategy is introduced in [31] too.

Although interesting results are obtained in experiments, a major prob-

lem associating with this approach is the lack of theoretical justification.



May 23, 2007 18:57 WSPC/Trim Size: 9in x 6in for Review Volume chapter2

Model Selection 39

For example, given an estimate from random sampling, can we determine

how good this estimator is? Recent works have started to address the prob-

lems of this kind. This is another area where we anticipate to see many new

results in a near future.

5.9. Other Related Topics

Variable selection is a critical problem in supersaturated design. A citation

search of Wu51 will provide most of existing literature. A numerically effi-

cient condition on the optimality of subsets has the potential to identify a

good design.
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CHAPTER 3

SOME STATE SPACE MODELS OF AIDS EPIDEMIOLOGY

IN HOMOSEXUAL POPULATIONS
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This article illustrates how to develop state space models for AIDS epi-
demic in homosexual populations. A generalized Bayesian procedure is
proposed to estimate the unknown parameters and the state variables.
As an application, the model and the method are applied to the AIDS
incidence data of homosexual and bisexual men of Switzerland. The anal-
ysis of these data clearly indicates that the model and methods can solve
many difficult problems which are not possible by other currently avail-
able models and approaches.

1. Introduction

As shown by Tan9, the AIDS epidemics are very complicated biologically

involving very complex stochastic processes. In these cases, it is very diffi-

cult to estimate the unknown parameters and to predict the state variables,

especially in cases where not many data are available. To ease the prob-

lems of estimation and prediction and to extract more information from

the system, in this article we propose a state space modelling approach by

combining stochastic models with statistical models. Then one can readily

apply the Gibbs sampling method and the Markov Chain and Monte Carlo

approach (MCMC) to estimate the unknown parameters and to predict

the state variables. By using these estimates, one can validate the model

and extract more information from the system which are not possible by

using stochastic model alone or statistical model alone. We will illustrate

the model and the method by using some data of the AIDS epidemic in

homosexual population of Switzerland.

43
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2. The State Space Models and the Generalized Bayesian

Approach

To illustrate, consider an infectious disease such as AIDS. Let X(t) be the

vector of stochastic state variables for key responses of the disease. Then,

X(t) is the stochastic model (stochastic process) for this disease. For this

process one can derive stochastic equations for the state variables of the

system by using basic biological mechanism of the disease; by using these

stochastic equations, one may also derive the probability distributions for

the state variables. If some observed data are available from this system,

one may also derive some statistical models to relate the data to the system.

Combining the stochastic model of the system with the statistical model,

one has a state space model for the system. That is, the state space

model of a system is a stochastic model consisting of two sub-models: The

stochastic system modelwhich is the stochastic model of the system and

the observation model which is a statistical model relating some available

data to the system. It extracts biological information from the system via

its stochastic system model and integrates this information with those from

the data through its observation model.

2.1. Some Advantages of the State Space Models

The state space model of the system is advantageous over the stochastic

model of the system alone or the statistical model of the system alone in

several aspects. The following are some specific advantages:

(1) The statistical model alone or the stochastic model alone very often

are not identifiable and can not provide information regarding some

of the parameters and variables. These problems usually do not

exist in state space models (see [2, 9, 15, 17]).

(2) State space model provides an optimal procedure to updating the

model by new data which may become available in the future. This

is the smoothing step of the state space models (see [3, 6]).

(3) The state space model provides an optimal procedure via Gibbs

sampling and the generalized Bayesian approach to estimate si-

multaneously the unknown parameters and the state variables of

interest; see Tan10, Tan and Ye 15, Tan, Zhang and Xiong17. It is

optimal in the sense that the estimates are posterior mean values

which minimize the Bayesian risk under squared loss function.

(4) The state space model provides an avenue to combine information

from various sources (see [10]).
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The state space model was originally proposed by Kalman and his

associates in the early 1960’s for engineering control and communication7.

Since then it has been successfully used as a powerful tool in aero-space

research, satellite research and military missile research. It has also been

used by economists in econometrics research and time series research5 for

solving many difficult problems which appear to be extremely difficult from

other approaches. It was first proposed by Tan and his associates for AIDS

research and for cancer research (see [9, 10, 15, 13, 14, 16, 17, 18]). Appar-

ently state space models can be extended to other diseases as well, including

heart disease and tuberculosis11.

2.2. A General Bayesian Procedure for Estimating

Unknown Parameters and State Variables via State

Space Models

Applying the state space models, Tan and his associates9,10,11,15,16,17 have

developed a general Bayesian procedure to estimate simultaneously the un-

known parameters and the state variables. These procedures would combine

information from three sources: (1) previous information and experiences

about the parameters in terms of the prior distribution of the parameters,

(2) biological information via the stochastic system equations of the stochas-

tic system, and (3) information from observed data via the statistical model

from the system.

The general Bayesian procedure is given and illustrated in detail in

Tan10, Chapter 9 and will be used to derive estimates of the unknown

parameters and the state variables in state space models, see Section 4.3.

3. Stochastic Models of AIDS Epidemic in Homosexual and

Bisexual Populations

In US and Western countries such as Europe and Australia, the CDC (Cen-

ter of Disease Control and Prevention, Atlanta, Georgia, USA) had reported

that most of the AIDS cases were observed in homosexual and bisexual men

(about 60%) and IV drug users (about 30%); other avenues such as hetero-

sexual transmission were not common in these countries.

To illustrate how to develop state space models for the AIDS epidemic,

we will thus consider a large population of homosexual and bisexual men

who are at risk for AIDS. In this population, under risk for AIDS, then one

can identify three types of people in the population: S people (susceptible

people), I people (infective people) and AIDS patients (A people).
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S people are healthy people but can contract HIV to become I people

through sexual contact and/or IV drug contact with I people or A people

(AIDS patients) or through contact with HIV-contaminated blood. I people

are people who have contracted HIV and can pass the HIV to S people

through sexual contact or IV drug contact with S people. According to

the 1993 AIDS case definition4 by the Center of Disease Control (CDC)

at Atlanta, GA, an I person will be classified as a clinical AIDS patient

when this person develops AIDS symptoms and/or when his/her CD4+

T-cell counts fall below 200/mm3. In this section we will illustrate how to

develop a discrete time stochastic model for the HIV epidemic with variable

infection duration in these populations. (With no loss of generality we will

let month be the time unit unless otherwise stated.)

To start the AIDS epidemic, we assume that at time t0 = 0, a few HIV

were introduced into the population to start the HIV epidemic so that with

probability one, I(0, 0) > 0 and I(u, 0) = 0 if u > 0.

Let S(t) denote the number of S people at time t, A(t) the number of

new AIDS cases during the month [t, t + 1) and I(u, t) the number of I

people who have contracted HIV at time t − u (t ≥ u). (We refer u as the

infection duration of I people and denote by I(u) infective people with infec-

tion duration in [u, u+1).) When time is discrete, we are then entertaining

a multi-dimensional stochastic process {S(t), I(u, t), u = 0, 1, . . . , t, A(t)}

with discrete time and discrete state space. This is basically a Markov pro-

cess with discrete state space and with discrete time; however, the number

of state variables increases as time increases. For this stochastic process,

the traditional approaches from most texts are too complicated and can

hardly lead to useful results. For deriving useful results, we will thus use

an alternative approach through stochastic difference equations.

3.1. The Stochastic Difference Equations for the State

Variables

To develop a stochastic model for the above stochastic process, let pS(t)

be the probability that a S person will contract HIV to become an I(0)

person during [t, t + 1) and γ(u, t) the probability that an I(u) person will

develop AIDS symptoms to become a clinical AIDS patient during [t, t+1).

Let dS(t) be the probability that a S person will die during [t, t + 1) and

dI(u, t) the probability that an I(u) person will die during [t, t+1). Further,

we make the following assumptions:

(1) We may assume that pS(t) and γ(u, t) are deterministic functions12.
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As in the literature [2, 9], we further assume that {ds(t) = ds, γ(u, t) =

γ(u), dI(u, t) = dI(u)}.

(2) As in the literature 2, 9], we assume that there are no reverse tran-

sition from I to S and from AIDS cases to I .

(3) Because of the awareness of AIDS, we assume that there are no

immigration and recruitment of A people and that there are no sexual and

IV contacts between S people and AIDS patients.

Let RS(t) denote the number of immigrants and recruitment of S peo-

ple during [t, t+1) and RI(u, t) the number of immigrants and recruitment

of I(u) people during [t, t + 1). For dealing with immigration and recruit-

ment, in what follows we will assume that the RS(t) given S(t) and the

RI(u, t) given I(u, t) are negative binomial random variables with param-

eters {S(t), ω} (0 < ω < 1) and {I(u, t), ω}, respectively, unless other-

wise stated. ( We note that different distributions with the same mean

numbers give similar estimates of the state variables and the HIV infec-

tion, the HIV incubation distributions and the death rates.) Then the

conditional means and the conditional variances of these variables are

given by E[RS(t)|S(t)] = ΛS(t) = S(t)ω/(1 − ω), E[RI(u, t)|I(u, t)] =

ΛI(u, t) = I(u, t)ω/(1 − ω), Var[RS(t)|S(t)] = σ2(t) = S(t)ω/(1 − ω)2

and VarRI(u, t) = σ2
I (u, t) = I(u, t)ω/(1− ω)2.

To derive stochastic equations for the state variables, denote by:

I(0, t + 1) = FS(t) = Number of S −→ I(0) during [t, t + 1),

FI(u, t) = Number of I(u) −→ A during [t, t + 1),

DS(t) = Number of death of S people during [t, t + 1),

DI(u, t) = Number of death of I(u) people during [t, t + 1).

Assume that RS(t) and RI(u, t) are independently distributed of each

other and of the other random variables. Then, the conditional distribution

of [FS(t), DS(t)] given S(t) is multinomial with parameters {S(t), pS(t), dS}

(i.e. FS(t)|S(t) ∼ ML{S(t), pS(t), dS}) independently of the immi-

gration and recruitment process. Similarly, [FI(u, t), DI(u, t)]|I(u, t) ∼

ML{I(u, t), γ(u), dI(u)} independently of the other state variables and the

immigration and recruitment processes. Then, under assumptions (1)-(3)

given above, we have the following stochastic equations for the state
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variables:

S(t + 1) = S(t) + RS(t) − FS(t) − DS(t),

= ΛS(t) + S(t){1− [pS(t) + dS(t)]} + εS(t + 1), (1)

I(0, t + 1) = FS(t) = S(t)pS(t) + εI(0, t + 1), (2)

I(u + 1, t + 1) = I(u, t) + RI(u, t) − FI(u, t) − DI(u, t)

= ΛI(u, t) + I(u, t){1 − [γ(u) + dI(u, t)]}

+ εI(u + 1, t + 1), u = 0, . . . , t, (3)

A(t + 1) =

t
∑

u=0

FI (u, t) =

t
∑

u=0

I(u, t)γ(u) + εA(t + 1), (4)

where the random noises ε(t + 1) = [εS(t + 1), εI(u, t + 1), u = 0, 1, . . . , t +

1, εA(t + 1)]T are derived by subtracting the conditional means from the

respective random variables in the above equations and are given by:

εS(t) = [RS(t) − ΛS(t)] − [FS(t) − S(t)pS(t)]

− [DS(t) − S(t)dS ],

εI(0, t + 1) = [FS(t) − S(t)pS(t)],

εI(u + 1, t + 1) = [RI(u, t) − ΛI(u, t)] − [FI (u, t) − I(u, t)γ(u)]

− [DI(u, t) − I(u, t)dI(u)], u = 0, 1, . . . , t

εA(t + 1) =

t
∑

u=1

[FI(u, t) − I(u, t)γ(u)].

In equations (1)-(4), given X(t) the random noises ε(t) have expectation

zero. It follows that the expected value of these random noises is 0. Using the

basic formulae Cov(X, Y ) = E{Cov[(X, Y )|Z]} + Cov[E(X |Z), E(Y |Z)], it

is also obvious that elements of ε(t) are uncorrelated with elements of X(t)

as well as with elements of ε(τ) for all t 6= τ . Further, these random noises

are linear combinations of negative binomial, binomial and multinomial

random variables. Hence one may readily derive variances, covariances and

higher moments and cumulants of these random noises.

3.2. The Probability Distributions of

X(t) = {S(t), I(r, t), r = 0, 1, . . . , t}

Let X = {X(1), . . . ,X(tM )}, where tM is the last time point and Θ =

{Θ1, Θ2, Θ3}, where Θ1 = {pS(t), γ(t), t = 0, 1, . . . , tM}, Θ2 = {dS , dI(u),

u = 0, . . . , tM} and Θ3 = ω. Then X is the collection of all the state
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variables, Θ1 the collection of all incidence of HIV infection and HIV in-

cubation, Θ2 the collection of all the death probabilities and Θ3 the pa-

rameter for immigration and recruitment. Let fS(j; t) be the probabil-

ity of (RS(t) = j) and fI(j; u, t) the probability of (RI (u, t) = j). Let

Pr{X(t + 1)|X(t), Θ} denote the conditional probability density function

of X(t+1) given X(t). Using results in Section (2.1), the conditional prob-

ability distribution Pr{X|X(0)} of X given X(0) is

Pr{X|X(0)} =

tM−1
∏

j=0

Pr{X(j + 1)|X(j), Θ} (5)

and

Pr{X(t + 1)|X(t), Θ} = {

S(t)
∑

i=0

(

S(t)

i

)

dS
i(1 − dS)S(t)−i

(

S(t) − i

I(0, t + 1)

)

× [
pS(t)

1 − dS

]I(0,t+1)[1 −
pS(t)

1 − dS

]S(t)−i−I(0,t+1)

× fS [ai(t), t]H(i; I(u, t), u = 0, . . . , t)}, (6)

where

H(i : I(u, t), u = 0, . . . , t) =

t
∏

u=0

{

I(u,t)
∑

j1=0

I(u,t)−j1
∑

j2=0

(

I(u, t)

j1, j2

)

[γ(u)]j1

× [dI (u)]j2 [1 − γ(u) − dI(u)]I(u,t)−j1−j2

× fI(bj(u, t); u, t)}, (7)

where ai(t) = Max(0, S(t+1)−S(t)+I(0, t+1)+i) , bj(u, t) = Max(0, I(u+

1, t + 1) − I(u, t) + j1 + j2).

4. A State Space Model of AIDS Epidemic in Homosexual

Populations

Given AIDS incidence data of homosexual and bisexual men, in this section

we develop a state space model for AIDS epidemic in this population.

In the state space model, the state variables are X(t) = {S(t), I(u, t), u =

0, 1, . . . , t} and the stochastic system model is given by the stochastic dif-

ference equations (1)-(4) and the probability distribution of these state

variables in (3.2). The observation model is a statistical model based on

AIDS incidence data which relate the observed AIDS incidence to A(t).
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4.1. The Stochastic System Model, the Augmented State

Variables and Probability Distributions

The probability distribution of the state variables in equation (6) is quite

complicated and not manageable. To implement the multi-level Gibbs sam-

pling procedure to estimate unknown parameters and state variables, we

thus expand the model by augmenting some un-observable dummy state

variables U(t) = {FS(t), DS(t), FI (u, t), DI(u, t), u = 0, 1, . . . , t}
′

. By the

distribution results in Section (3.1), it is easily seen that the conditional

density of U(t) given X(t) is

P{U(t)|X(t)} =

(

S(t)

DS(t), FS(t)

)

dS
DS(t)pS(t)

FS(t)
(1 − dS

− pS(t))S(t)−DS(t)−FS(t)
t

∏

u=0

{

(

I(u, t)

FI(u, t), DI(u, t)

)

γ(u)
FI(u,t)

× [dI(u)]DI (u,t)(1 − γ(u) − dI (u))I(u,t)−FI(u,t)−DI (u,t)}. (8)

From the model and distribution results in Section (3.1), the conditional

density of X(t + 1) given {X(t),U(t)} is

P{X(t + 1)|X(t),U(t)} = fS(cS(t), t)}

t
∏

u=0

fI(cI(u, t); u, t), (9)

where cS(t) = Max(0, S(t + 1) − S(t) + I(0, t + 1) + FS(t) + DS(t)) and

cI(u, t) = Max(0, I(u + 1, t + 1) − I(u, t) + FI(u, t) + DI(u, t)).

Put U = {U(t), t = 0, 1, . . . , tM −1}. Then, the joint density of {X, U}

is

P{X, U |Θ} = P{X(0)}

tM−1
∏

i=0

P{X(i + 1)|X(i),U(i)}P{U(i)|X(i)}. (10)

Notice that the equation in (10) is a product of densities of negative bi-

nomials, multinomials and binomial variables so that the above distribution

is referred to as a chain negative binomial-multinomial distribution.

4.2. The Observation Model

Let Y (j) be the observed number of new AIDS cases during the time period

[tj−1, tj) j = 1, . . . , n. Then, the equation for the observation model of the
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state space model is given by the equation:

Y (j) = Aj + e(j) =

tj−1
∑

t=tj−1

A(t) + e(j) =

tj
∑

t=tj−1

t
∑

u=0

FI(u, t) + e(j)

where e(j) is the measurement error (reporting error for reporting AIDS

incidence) for observing Y (j) and Aj =
∑tj−1

t=tj−1
A(t).

After correcting for reporting delay and under reporting for the AIDS

incidence data, one may assume that the e(j)’s are independently dis-

tributed as normal random variables with mean zero and with variance

σ2
j depending on Aj . Since AIDS may be assumed as an inflated Poisson

process (variance is much greater than the mean), one may assume that

Wj = {Y (j) − Aj}/
√

Aj as normal with mean 0 and variance σ2 so that

σ2
j = Ajσ

2. It follows that the conditional density of Y = (Y (j), j =

1, . . . , n) given {X, U} is P{Y |X, U} =
∏n

j=1 g{Y (j)|X , U}, where

g{Y (j)|X, U} = g{Y (j)|Aj} = (2πAjσ
2)−

1
2

× exp{−
1

2Ajσ2
[Y (j) − Aj ]

2}. (11)

The the joint density of {X, U , Y } is

Pr{X, U , Y } = = P{X(0)}

n
∏

j=1

g{Y (j)|Aj}

×

tj−1
∏

t=tj−1

P{X(t + 1)|X(t),U(t)}P{U(t)|X(t)}. (12)

The above distribution will be used to derive the conditional posterior

distribution of the unknown parameters Ω = {Θ, σ2} given {X, U , Y }.

Notice that because the number of parameters is very large, the classical

sampling theory approach by using the likelihood function P{Y |X, U} is

not possible without making assumptions about the parameters; however,

this problem can easily be avoided by new information from the stochastic

system model and the prior distribution of the parameters.

4.3. The Posterior Distribution of the Unknown

Parameters and State Variables

Let P{Ω} be the prior distribution of Ω = {Θ, σ2}. From equations

(11)-(12), the conditional posterior distribution P{Ω|X, U , Y } of Ω given
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{X, U , Y } is:

P{Ω|X, U , Y } ∝ P{Ω}{(σ2)−
n
2 exp

(

−
(n − 1)σ̂2

2σ2

)

dS
{
∑tM

t=1
DS(t)}

× (1 − dS){
∑tM

t=1
[S(t)−DS(t)]}

× ω{
∑tM

t=0
[RS(t)+

∑

t
u=0

RI(u,t)]}

× (1 − ω){
∑tM

t=0
[S(t)+

∑

t
u=0

I(u,t)]}

×

tM−1
∏

t=0

[
pS(t)

1 − dS

]I(0,t+1)[1 −
pS(t)

1 − dS

]S(t)−DS(t)−I(0,t+1)

× γ(t)
∑tM

r=t+1
FI(t,r)[dI(t)]

∑tM
r=t+1

DI (t,r)

× (1 − γ(t) − dI(t))
∑tM

r=t+1
[I(t,r)−FI(t,r)−DI(t,r)]}, (13)

where σ̂2 = 1
n−1

∑n

j=1
1

Aj
[Y (j) − Aj ]

2.

For the prior distribution of the unknown parameters, we will assume

that a priori σ2, Θi, i = 1, 2, 3 are independently distributed of one an-

other. Furthermore, we will follow Box and Tiao1 to assume P (σ2) ∝ (σ2)−1

and assume natural conjugate priors for the other parameters. That is, we

assume:

P{Θi, i = 1, 2, 3} ∝ dS
aS−1(1 − dS)bS−1ωa0−1(1 − ω)b0−1

×

tM−1
∏

t=0

[
pS(t)

1 − dS

]uS(t)−1[1 −
pS(t)

1 − dS

]vS(t)−1

× [γ(t)]aG(t)−1[dI (t)]
bG(t)−1

× (1 − γ(t) − dI (t))
vG(t)−1, (14)

where the hyperparameters {aS , bS, a0, b0, uS(t), vS(t), aG(t), bG(t), vG(t)}

are positive real numbers. These hyperparameters can be estimated from

previous studies. In the event that prior studies and information are not

available, we will assume all these parameters to be 1 to reflect the fact

that our prior information are vague and imprecise.

4.4. The Generalized Bayesian Method for Estimating

Unknown Parameters and State Variables

Using the above distribution results, the multi-level Gibbs sampling

procedures for estimating the unknown parameters (Θ, σ2) and the state

variables X are given by the following loop:
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(1) Given the parameter values, we will use the stochastic equations

(1)-(3) and the associated probability distributions to generate a

large sample of {X, U}. Then, by combining this large sample

with P{Y |X, U}, we select {X, U} from this sample through the

weighted Bootstrap method due to Smith and Gelfant8. This se-

lected {X, U} is then a sample generated from P{X, U |Ω, Y } al-

though the latter density is unknown (for proof, see Tan10, Chapter

3). Call the generated sample {X(∗), U (∗)}.

(2) On substituting {U (∗), X(∗)} which are generated numbers from

the above step, generate {Θ, σ2} from the conditional density

P{Θ, σ2|X(∗).U (∗), Y } given by equation (13).

(3) With {Θ, σ2} being generated from Step 2 above, go back to Step

1 and repeat the above (1)-(2) loop until convergence.

The convergence of the above algorithm has been proved in Tan10, Chap-

ter 3. At convergence, one then generates a random sample of {X, U} from

the conditional distribution P{X, U |Y } of {X, U} given Y , independent

of Ω and a random sample of Ω from the posterior distribution P{Ω|Y }

of Ω given Y , independent of {X, U}. Repeat these procedures one then

generates a random sample of size N of {X, U} and a random sample of

size M of Ω. One may then use the sample means to derive the estimates

of {X, U} and Ω and use the sample variances as the variances of these

estimates.

5. Some Illustrative Examples

To illustrate the usefulness of state space models of AIDS epidemic given

in Section 4, in this section we apply the model and method to the Swiss

AIDS data sets of homosexual men. To assess the AIDS epidemic in this

population we will estimate simultaneously the death rates, the immigration

rate, the HIV infection distribution, the HIV incubation distribution and

the numbers of S people, I people and AIDS cases in these populations.

Given in Table 1 are the AIDS incidence data from 1981 until 1995 for the

homosexual population in Switzerland. (To avoid the problem of reporting

delay, we have used the data only up to December 1995.)
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Table 1. Some AIDS Incidence Data from the SWISS Population of

Homosexual and Bisexual Men

Year J F M A M J J A S O N D

80 . . . . . . . . . . 1 .

81 . . . . . . . . . 1 . 1

82 . . . . . . . . . . . .

83 . . . 2 . . 1 1 2 . 1 .

84 2 2 1 2 2 . 4 . . 3 4 1

85 6 . 5 4 4 2 13 1 6 6 4 3

86 4 6 5 5 9 6 27 4 6 9 4 15

87 13 4 4 12 7 11 15 9 7 14 15 14

88 17 18 15 14 18 15 30 18 16 5 6 19

89 18 18 15 14 20 14 18 15 21 20 23 15

90 15 21 22 13 20 20 37 21 12 20 17 9

91 17 16 22 18 14 15 23 27 14 21 15 14

92 15 22 20 18 27 22 35 22 26 16 27 23

93 24 24 15 20 17 25 44 16 11 10 13 22

94 22 17 19 24 17 24 23 21 15 15 24 21

95 17 14 15 18 14 23 13 11 13 15 26 13

5.1. The Initial Size

Since the average AIDS incubation period is around 10 years and since the

first AIDS case was reported in 1981, to derive the estimates from the state

space model we thus assume January 1, 1970 as t0 = 0. Tan and Xiang13,14

have shown that the estimates were very insensitive to the choice of the

time origin t0.) It is also assumed that at time 0 there are no AIDS cases

and no HIV infected people with infection duration u > 0 but to start the

HIV epidemic, some HIV were introduced into the population at time 0 so

that I(0, 0) > 0.

To specify the initial numbers of S people and I(0, 0) people at time 0,

we proceed as follows: (1) We take I(0, 0) as I(0, 0) = 3 for the homosexual

since this is the observed number of AIDS incidence in this population in

1981 and since the average incubation period is about 10 years. (2) We

assume S(0) as S(0) = 25, 000 for the Swiss homosexual population by

comparing the observed AIDS incidence with that of the San Francisco

homosexual population and by noting that the estimate of S(0) in the

latter population is roughly 40,000 in January 1970. We have also tried
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other initial size for S(0) and did not notice significant differences of results

between them.

5.2. The Prior Distributions of pS(t) and γ(u)

For the prior distributions, because we have very little information about

the Swiss populations, we will assume uniform prior for Θ and will follow

Box and Tiao1 to assume P (σ2) ∝ (σ2)−1. For assessing effects of different

prior distributions and because we believe that behaviors of homosexual

populations in the western countries are quite similar, we will also assume

natural conjugate priors with hyper-parameters being estimated using esti-

mates from by Tan and Xiang13,14 for HIV infection and incubation in the

San Francisco homosexual population.

Given the above prior distributions and given {S(0), I(0, 0) = I(0)}, by

using procedures given in Section 3, we have derived simultaneously the es-

timates of the HIV infection distribution, the HIV incubation distribution,

the death rates, the immigration rate as well as the number of AIDS cases

over the time span in the Swiss homosexual and bisexual population. The

estimates of the HIV infection, HIV incubation distributions and the num-

bers of the predicted AIDS cases are plotted in Figures 1-3. Given below

we summarize our basic findings:
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(a) The estimates of (dS , dI(u) = dI) are given by (8.35× 10−7± 4.49×

10−7, 3×10−4±1.62×10−4) per month respectively. These results indicate

that the death and retirement rate of I people is much greater (at least 100

times greater) than that of S people in the Swiss population of homosexual

and bisexual men. This suggests that HIV infection may have increased the

death rates of HIV infected people.

(b) The estimate of the proportion of immigration and recruitment rate

are 2.48×10−3±6.094×10−4 per month for the population of homosexual

and bisexual men. This estimates is about 10 times greater than that of the

estimates of the death and retirement rates of the I people. These results

indicate that the size of the Swiss population of homosexual and bisexual

men is increasing with time.

(c) From Figure 1, the estimated density of the HIV infection distri-

butions showed a mixture of distributions with two obvious peaks in the

Swiss population of homosexual and bisexual men. The first peak occurs

around May of 1980. The second peak occurs around August of 1992 and

is considerably lower than that of the first peak. Comparing the estimated

density of the HIV infection in Figure 1 with the estimated density from

the San Francisco homosexual population by Tan and Xiang14, one may

notice that the two curves are quite similar to each other but the Swiss

population appears about 6 months earlier for the first peak and about 2

years earlier for the second peak.
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(d) From Figure 2, the estimated density of the HIV incubation distribu-

tion also appeared to be a mixture of distributions with two obvious peaks.

The higher peak occurs at around 320 months after infection and the lower

peak occurs around 232 months after infection in the homosexual popula-

tion. These results seem to suggest a staged model for HIV incubation as

used by many statisticians (see 9, Chapter 4).

(e) From Figure 3, we observe that the estimates of the AIDS incidence

by the Gibbs sampler are almost identical to the corresponding observed

AIDS incidence, suggesting the usefulness of the method. These results

indicate that the estimates by the Gibbs sampler can trace the observed

values very closely if observed values are available.

(f) From results not shown here, it appears that the prior distributions

seem to have little effects on both the HIV infection distribution and the

HIV incubation distribution.

(g) To start the procedure, one needs some initial parameter values for

pS(t) and γ(u). In this chapter, we first assumed a Weibull distribution for

the initial incubation distribution with a mean of 10 years and derive es-

timates of the infection distribution by using the standard backcalculation

method2. This assumed incubation distribution and the associated estimate

of the infection distribution will then be used to give initial values for the

parameters pS(t) and γ(u). To check effects of the initial incubation distri-
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bution and to monitor convergence of the multi-level Gibbs sampling

method, we have assumed many other different incubation distributions as

the initial assumed distribution. These assumed distributions include uni-

form distribution, exponential distribution, Gamma distribution, Weibull

distribution and the generalized Gamma distributions with the same mean

value of 10 years. We are elated to find out that all initial distributions gave

almost identical estimates.

6. Conclusions

In this article, we have developed a state space model for the AIDS epidemic

in homosexual and bisexual populations. We have developed a generalized

Bayesian method to estimate the unknown parameters and the state vari-

ables. The numerical examples indicate that the methods are useful and

promising. Of course, more studies are needed to further confirm the use-

fulness of the method and to check the efficiency of the method.
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By surveying recent studies by molecular biologists and cancer geneti-
cists, in this chapter we have proposed general stochastic models of car-
cinogenesis and provided biological evidences for these models. Because
most of these models are quite complicated far beyond the scope of the
MVK two-stage model, the traditional Markov theory approach becomes
too complicated to obtain analytical results. To develop these stochastic
models, in this chapter we thus propose an alternative approach through
stochastic differential equations. Given observed cancer incidence data,
we further combine these stochastic models with statistical models to de-
velop state space models for carcinogenesis. By using these state space
models, we then develop a generalized Bayesian procedure to estimate
the unknown parameters and to predict state variables via multi-level
Gibbs sampling procedures. In this chapter we have used the multi-event
model as an example to illustrate our modeling approach and some basic
theories.
Keywords: Generalized Bayesian procedures, Observation model,
Multi-event model of carcinogenesis, Multi-level Gibbs sampling pro-
cedures, Multiple pathway model of carcinogenesis, State space model,
Stochastic differential equations, Stochastic system model.

1. Introduction

It is now universally recognized that carcinogenesis is a multi-stage ran-

dom process involving genetic changes, epigenetic changes and stochastic

proliferation and differentiation of normal stem cells and genetically altered

stem cells (see [41, 55] and Remark 1). Specifically, studies in molecular

biology have confirmed that each cancer tumor develops through stochas-

tic proliferation and differentiation from a single stem cell which has sus-

61
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tained a series of irreversible genetic changes. Furthermore, the number of

stages and the number of pathways of the carcinogenesis process are signif-

icantly influenced by environmental factors underlying the individual41,55.

Recently, it has been demonstrated that carcinogenesis is an evolution pro-

cess in cell populations referred to as a micro-evolution process; and each

cancer tumor is the outcome of growth of a most fitted genetically altered

stem cell8,28.

In this chapter we will summarize recent results from cancer biology

and propose general stochastic models of carcinogenesis. For these models,

mathematical results by the classical methods are very difficult even under

some simplifying assumptions which may not be realistic in the real world;

see Remark 2. It follows that except possibly for the simplest two stage

model, analytical mathematical results remain to be developed and pub-

lished. In order to derive analytical mathematical results and to relax some

unrealistic assumptions, in this chapter we will provide new approaches

through stochastic differential equations to analyze these models.

For combining information from different sources and for easing problems

of identifiability, we will combine these stochastic models with statistical

models to develop state space models for carcinogenesis. By using these

state space models, we will develop generalized Bayesian method and pre-

dictive inference procedures to estimate the unknown parameters and to

predict the state variables.

In Section 2, we will summarize recent results from cancer biology. Based

on these cancer biology, in Section 3, we will propose general stochastic

models of carcinogenesis. To derive analytical results and to extend the

models, in Section 4, we will propose an alternative approach to analyze

these stochastic models through stochastic differential equations. For com-

bining information from stochastic models and statistical models and for

fitting the models to cancer data, in Section 5, we will proceed to develop

state space models for the process of carcinogenesis. In Section 6, we

will illustrate the application of the models and methods by analyzing the

British data from physician’s lung cancer and smoking. Finally in Section

6, we will discuss some possible applications of these models and methods.

Remark 1: The number of cells increases through somatic cell division

by entering into cell division cycle and complete the cell division cycle

giving rise to daughter cells. This has been referred to as cell proliferation.

When a cell enters into cell division cycle, there is also a chance that this

cell would differentiate to become a differentiated cell without completing

the cell division cycle. This is referred to as cell differentiation. In terms
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of the stochastic birth-death process, proliferation is equivalent to birth

and differentiation to death in general terms in the stochastic birth-death

process. Notice that cell differentiation is not death but simply a process

to remove cells from the cell population.

Remark 2: In the multi-stage stochastic models, as illustrated in

many publications36,38,39,55,58, to apply the classical method to derive an-

alytical results, one need to make several assumptions. These assumptions

include: (a) The last stage initiated cell (ie. Ik cells in the k-stage model)

grow instantaneously into malignant tumors, (b) the mutation rates, birth

rates, death rates are independent of time (i.e., time homogeneous), (c)

all mutation rates before the (k-1)-stage in the k-stage model are equal39.

(d) the number of normal stem cells is a deterministic function of time

and hence grows deterministically with no random disturbances. Obviously,

many of these assumptions do not hold in many practical situations68. For

example, assumptions (b) and (c) may not hold in many cases and if as-

sumption (a) is violated, the process involving cancer tumors is no longer

Markov (see [58]). Hanin and Yakovlev24 have also shown that even for

the simplest 2-stage homogeneous model, using the classical approach the

model is not identifiable in the sense that one can only estimate 3 paramet-

ric functions; in particular, one can not estimate the birth rate and death

rate of the initiated cell, only the difference of birth rate and death rate.

2. Some Recent Cancer Biology for Modeling

Carcinogenesis

Using tissue culture method, biologists have shown that all organs consist

of two types of cells: The differentiated cells which are major components

of the organ proper and the stem cells from which cancer tumors develop

(see [1, 4]). Only stem cells can divide giving rise to new stem cells and new

differentiated cells to replace old differentiated cells; the differentiated cells

do not divide and are end cells to serve as components of the tissue and to

perform specific functions of the tissue. That is, stem cells are subject to

stochastic proliferation and differentiation with differentiated cells replacing

old cells of the organ.

To understand cancer, notice that in normal individuals, there is a bal-

ance between proliferation and differentiation in stem cells and there are

devices such as the DNA repair system and apoptosis in the body to protect

against possible errors in the metabolism process. Thus, in normal individ-

uals, the proliferation rate of stem cells equals to the differentiation rate
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of stem cells so that the size of organ is normally not changed. If some

genetic changes have occurred in a stem cell to increase the proliferation

rate of the cell; then the proliferation rate is greater than the differentiation

rate in this genetically altered cell so that this type of genetically altered

cells will accumulate; however, with high probability these genetically al-

tered cells will be eliminated by apoptosis or other protection devices unless

more genetic changes have occurred in these cells to abrogate apoptosis and

to overcome other existing protection devices. Furthermore, it requires at

least one round of cell proliferation for a genetic change to be fixed (see [15,

33]). Also, since genetic changes are rare events, further genetic changes

will occur in at least one of the genetically altered cells only if the number

of these cells is very large. These steps have clearly been demonstrated by

cell culture experiments by Barrett and coworkers42 using rat tracheal ep-

ithelial cells and on Syrian hamster embryo fibroblasts; for more detail and

some more specific examples, see Chapter 1 in Tan55.

These results as well as cancer biology studies41 indicate that carcino-

genesis in humans and animals is a multi-step random process and that

these steps reflect genetic changes and/or epigenetic changes that drive the

progressive transformation of normal stem cells into highly malignant ones.

The age-dependent cancer incidence data for many human cancers imply

four to seven rate-limiting stages from normal stem cells to malignant can-

cer tumors48.

The above discussion and studies in cancer biology41 illustrate that can-

cer is initiated by some genetic changes or epigenetic changes to increase

cell proliferation while decreasing differentiation and death. Further genetic

changes or epigenetic changes are required to overcome existing protection

devises in the body resulting in abrogation of apoptosis, telomere protec-

tion (immortalization) and uncontrolled growth as well as angiogenesis and

metastasis. Because somatic cell division occurs through cell division cycle

whereas gene mutation and genetic changes occur only during cell division,

most of the genetic changes affect carcinogenesis through the control of

cell division cycle. By articulating these findings, Hanahan and Weinberg23

have proposed six basic acquired capabilities which each normal stem cell

must require to become a malignant cancer tumor. These six capabilities

are: (1) Self-sufficiency of growth factor signals via genetic changes and/or

epigenetic changes. This follows from the observation that cells can be in-

duced to enter cell division cycle to start cell division only by growth factor

signals23. (2) Insensitivity to anti-growth signals via silencing or inactiva-

tion of some tumor suppressor genes to abrogate cell differentiation. (3)
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Evading apoptosis. (4) Unlimited replicative potential (immortalization).

(5) Sustained angiogenesis, and (6) Tissue invasion and metastasis. The

first 4 capabilities are required to establish uncontrollable growth of stem

cells (avacular carcinogenesis) whereas the last two are for the development

of cancer spread and metastasis of cancer cells (vascular carcinogenesis).

Each of the above capabilities involves at least one or many genetic and/or

epigenetic changes although in some cases some genetic changes may invoke

more than one capabilities. To understand carcinogenesis, in what follows

we further discuss some important items in carcinogenesis.

2.1. The Multi-Staging and Sequential Nature of

Carcinogenesis

The discussion above and studies in cancer biology41 also indicate that

for a normal stem cell to develop into a malignant cancer tumor cell, it

must accumulate many gene mutations or genetic changes. Because gene

mutations and genetic changes are rare events and can occur only during cell

division, it is a statistical near-impossibility that all mutation and genetic

changes can occur simultaneously during a single cell division. It follows

that different gene mutations or genetic changes must occur in different

cell division at different times. This also leads to the observation that all

steps in the carcinogenesis process must occur in sequence. Furthermore,

while any genetic changes can take place at any time, only certain sequence

or order of genetic changes can lead to a successful completion of the cascade

of carcinogenesis to generate cancer tumors. For example, in FAP (Familial

Adenomatous Polys) and in most sporadic human colon cancer, the first

event leading to the cancer phenotype is the mutation or loss of the APC

gene at 5q, followed by loss or inactivation or mutation of the Smad4 gene

in chromosome 18q and p53 in chromosome 17p (see [29, 31, 35, 47, 53,

10, 18]). The mutation or activation of the oncogenes ras and src, and

the mutation or inactivation of the suppressor p53 appear to be relatively

late. In human lung cancer, as reported by Fong and Sekido20, Osada and

Takahashi44, and Wistuba et al.67, the loss of the suppressor genes (i.e.

FHIT and VHL) in 3p through Loss of Heterozygosity (LOH) are the early

event, followed by the loss of the gene p16INK4 in 9p through LOH, the

loss of p53 in 17p through LOH and the mutation of the oncogene ras.
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2.2. The Genetic Changes and Cancer Genes

Carcinogenesis is initiated either by genetic changes (see [23, 27, 37, 41,

46, 52, 55, 66]) or by epigenetic change through activation of oncogene

product or silencing effects of suppressor genes (see [2, 3, 7, 14, 17, 30, 32,

40, 43, 49, 64]). The genetic change may either be as small as point gene

mutation, or as large as some chromosomal aberrations such as deletion of

chromosomal segments, chromosome inversion and chromosomes translo-

cation leading to mutation or deletion of some cancer genes, or activation

of some dominant cancer genes, or inactivation of some recessive cancer

genes. The cancer genes which contribute to the creation of cancer phe-

notype are the oncogenes (dominant cancer genes), the suppressor genes

(recessive cancer genes) and the mis-match repair genes (MMR) which are

involved in DNA synthesis and repair and/or chromosomal segregation. (As

the suppressor genes, MMR genes are recessive genes.) The oncogenes, the

suppressor genes and the MMR genes are the major genes for the creation

of the cancer phenotype although some other modifying genes may also con-

tribute to cancer through its interaction with proteins of oncogenes and/or

suppressor genes or its interference with some cancer pathways. To date,

about 200 oncogenes and about 50 suppressor genes have been identified.

Oncogenes are highly preserved dominant genes which regulate develop-

ment and cell division. When these genes are activated or mutated, normal

control of cell growth is unleashed, leading to the cascade of carcinogene-

sis. Specifically, some of the oncogenes such as the Ras oncogene induces

G0 → G1 by functioning as a signal propagator from signal receptor at the

cell membrane to the transcription factors in the cell nucleus in the signal

transduction process. Some of the oncogenes serve as transcription factors

(e.g., myc, jun and fos, etn) to affect DNA synthesis during the S stage

while some other oncogenes serve as anti-apoptosis (e.g. bcl-2) agents.

Suppressor genes are recessive genes whose inactivation or mutation

lead to uncontrolled growth. Mutation or deletion of MMR genes (suppres-

sor genes) lead to microsatellite repeats and create a mutator phenotype,

predisposing the affected cells to genetic instability and to increase mu-

tation rates of many relevant cancer genes. Many of the suppressor genes

either function to control the gap stages (G1 and G2) or by abrogating the

apoptosis process or function to control the activation of an oncogene such

as myc. For example, the protein of the suppressor gene RB forms a com-

plex with E2F and some poked proteins to block transition from G1 → S;

when the RB gene protein is phosphorylated or the RB gene inactivated
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or mutated, E2F is unleashed to push the cell cycle from the G1 phase to

the S phase. The protein products of the suppressor gene p16INK4 at 9p21

inhibit the function of cyclin D1 and CDk4 proteins which phosphorylate

the RB gene product to release E2F. The inactivation of many suppressor

genes such as the p53 gene abrogates or suppresses the apoptosis process.

In colon cancer, the mutation or deletion of both copies of the suppressor

gene APC at 5q lead to increased expression level of the myc gene and D1

gene in the nucleus. Recent studies have shown that the APC gene may

also affect the G2 checking point dominantly by interfering with the mi-

crotube and hence centrosome causing aberrant chromosomal segregation

and hence aneuploidy and polyploidy daughter cells19,21. (In this sense, the

APC gene in chromosome 5q act both as a recessive gene and a dominant

gene.)

2.3. Epigenetic and Cancer

Cancer initiation and progression are achieved and controlled by gene mu-

tations and genetic changes. However, these genetic effects can also be

achieved by changes of functions of these gene products through non-genetic

avenues without affecting the nucleotide sequences in DNA molecules (see

[2, 3, 7, 14, 17, 30, 32, 40, 43, 49, 64]). These are called epigenetic

changes which mainly involve activation of oncogenes products or silencing

of suppressor genes proteins through DNA methylation of cytosine at CpG

base pair islands (see [2, 3, 7, 14, 17, 30, 32, 40, 43, 49, 64]) or histone

acetylation43, or loss of imprinting (LOI)49, or tissue disorganization and

gap junction disruption40,43. For example, Ferreira et al16 have showed that

besides genetic inactivation or mutation of the RB gene, the process that

the RB gene represses E2F-regulated genes in differentiated cells can also

be achieved by an epigenetic mechanism linked to heterochromatin and in-

volving histone H3 and promoter DNA methylation. In human colon cancer,

Breivik and Gaudernack7 showed that either methylating carcinogens or hy-

permethylation at CpG islands would lead to G/T mismatch which in turn

leads to Mis-match Repair (MMR) gene deficiency or epigenetic silencing

of the MMR genes and hence MSI (Microsatellite Instability); alternatively,

either hypo-methylation, or bulky-adduct forming (BAF) carcinogens such

as alkylating agents, UV radiation and oxygen species promote chromo-

somal rearrangement via activation of mitotic check points (MCP), thus

promoting CIS (Chromosomal Instability). These data clearly suggest that

the epigenetic changes and/or interaction between genetic and epigenetic
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changes cancer phenotype are equally important as genetic changes in gen-

erating the cancer phenotype.

2.4. Telomere, Immortalization and Cancer

It is well-documented that normal stem cells have finite life span and can

divide only a finite number of times whereas cancer tumor cells can prolifer-

ate indefinitely (i.e. immortalized)5,25,50. Biological studies have shown that

this is related to telomeres which make up the ends of chromosomes to pro-

tect it from recombination and degradation activities. Telomeres are special

chromatin structures and are composed of tandem repeats of TTAGGG se-

quences and single stranded overhang of the G-rich strand. When each nor-

mal stem cell divides, telomeres shorten by 50-200 bp, due to the fact that

the lagging strand of DNA synthesis is unable to replicate the extreme 3
′

end of the chromosome. When telomeres are sufficiently shortened, cells en-

ter an irreversible growth arrest called cellular senescence; when the length

of the telomeres have shortened below some critical points resulting in loss

of telomere protection of the chromosomes, then the cells will die or lead

to chromosomal instability. In cancer cells, the telomerase helps to stabilize

telomere length so that cancer cells become immortalized and can divide

indefinitely.

Telomerase is a reverse transcriptase and is encoded by the TERT

(Telomerase Reverse Transcriptase) gene. This gene recognizes the 3
′

-OH

group of the end of the G-strand overhang of telomere. It elongates telom-

eres by extending from this group using the RNA, which is encoded by

the TERT, as a template. Blasco5 has shown that besides being substrate

for telomerase and the telomere repeat-binding factors, the telomeres are

also bound and regulated by many chromatin regulators and related pro-

teins, including TRF1, TRF2, TERT, TERC, DKC1, SUV39H1, SUV39H2,

SUV20H1, HP1α, HP1β, HP1γ and the retinoblastoma family of proteins

(RB1, RBL1, RBL2). This implies that the telomere length and function are

also regulated by many chromatin and regulator proteins as given above.

For example, if the retinoblastoma gene has been inactivated so that the

RB1 function is lost, then trimethylation of H4-K20 is down, leading to

abnormally long telomeres; as shown by Blasco5, this telomere length elon-

gation can also be achieved by epigenetic regulation of telomeric chromatin.

Henson et al.26 have shown that lengthening of telomere and hence immor-

talization can also be achieved by telomerase-independent mechanisms.
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2.5. Single Pathway Versus Multiple Pathways of

Carcinogenesis

In some type of cancers such as retinoblastoma, cancer tumor is derived by

a single pathway9,34,55. In many other cancers, however, the same cancer

may arise from different carcinogenic pathways. This include skin cancers,

liver cancers and mammary gland in animals, the melanoma development

in skin cancer in human beings, breast cancer, colon cancer, liver cancer

and lung cancer in human beings.

To serve as an example, consider the colon cancer of human beings. For

this cancer, genetic studies have indicated that there are two major avenues

by means of which colon cancer is developed (see [29, 31, 35, 39, 47, 53, 10,

18, 22, 45, 65]): The Chromosomal Instability (CIN) and the Micro-Satellite

Instability (MSI). The CIN pathway involves loss or mutation of the sup-

pressor genes- the APC gene in chromosome 5q, the Smad4/DCC gene in

chromosome 18q and the p53 gene in chromosome 17p. This pathway ac-

counts for about 75-80% of all colon cancers and has been referred to as the

LOH (Loss Of Heterozygosity) pathway because it is often characterized by

aneuploidy /or loss of chromosome segments (chromosomal instability); it

has also been referred to as the APC-β − catenin − Tcf − myc pathway

because it involves β- catenin, Tcf (T-cell factor) and the myc oncogene;

see Remark 3. The MSI pathway involves microsatellite mis-match re-

pair genes (MMR gene), hMLH1, hMSH2, hPMS1, hPMS2, hMSH6 and

hMSH3. (Mostly hMLH1 and hMSH2.) This pathway accounts for about

10-15% of all colon cancers and appears mostly in the right colon. It has

been referred to as the MSI (Micro-Satellite Instability ) pathway or the

mutator phenotype pathway because it is often characterized by the loss or

mutations in the mis-match repair genes creating a mutator phenotype to

significantly increase the mutations rate of many critical genes.

Remark 3: In the APC-β − catenin − Tcf − myc pathway, the APC

gene forms a complex with β-catenin and GSK − 3β (Glycogen Synthase

Kinases 3-β) to degrade the β−catenin protein. When both copies of APC

gene is lost or mutated, the β-catenin protein then accumulates to form

a complex with Tcf to promote cell proliferation, usually via the elevated

level of the myc gene and /or cyclin D1.

3. Some Stochastic Models of Carcinogenesis

Based on the above biological mechanisms of carcinogenesis, we now pro-

pose some general stochastic models of carcinogenesis.
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3.1. The Extended Multi-Event Model of Carcinogenesis

The most general model for a single pathway is the extended k-stage

(k ≥ 2) multi-event model proposed by Tan and co-workers58,63. This is

an extension of the multi-event model first proposed by Chu11 and studied

by Tan55 and Little36. It views carcinogenesis as the end point of k (k ≥ 2)

discrete, heritable and irreversible events (mutations, genetic changes or

epigenetic changes) with intermediate cells subjected to stochastic prolifer-

ation and differentiation. It takes into account cancer progression by follow-

ing Yang and Chen69 to postulate that cancer tumors develop from primary

Ik cells by clonal expansion (i.e. stochastic birth-death process), where a

primary Ik cell is an Ik cell which arise directly from an Ik−1 cell.

Let N denote normal stem cells, T the cancer tumors and Ij the j−th

stage initiated cells arising from the (j − 1)−th stage initiated cells (j =

1, . . . , k) by mutation or some genetic changes. Then the model assumes

N → I1 → I2 → · · · → Ik with the N cells and the Ij cells subject

to stochastic proliferation and differentiation. The cancer tumors develop

from primary Ik cells by clonal expansion.

 N I1 I2 I3 I4                 I5 I6

Second Copy

 of APC

Ras Second Copy of p53 

APC in 5q P53 in 17P     Second Copy

of Smad4

Myc

Carcinomas

Src

Smad4 in 18q 

Fig. 1. The APC-β-Catenin-TCF-Myc Pathway of Human Colon Cancer. Here, N =
Normal stem cell, Ij = The jth-stage initiated cell in the LOH pathway, ↓ denotes
mutation, inactivation or loss of suppressor genes (APC, Smad, p53), and ↘ denotes
mutation or activation of oncogenes (Ras, Src, Myc).
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As an example, consider the APC − β − Catenin − Tcf pathway for

human colon cancer. This is a multi-stage model involving the suppressor

genes in chromosomes 5q, 17p and 18q (see [29, 31, 35, 39, 47, 53, 10, 18]).

A schematic presentation of this pathway is given in Figure 1. This is only

one of the pathways for the colon cancer although it is the major pathway

which accounts for 80% of all colon cancers (see [29, 31, 35, 39, 47, 53, 10,

18]). In Figure 2, we present another multistage model for human colon

cancer involving mis-match repair genes (mostly hMLH1 and hMSH2) and

the Bax gene in chromosome 19q and the TGFβRII gene in chromosome

3p. This pathway accounts for about 15% of all human colon cancer.

The above example and studies in cancer biology41 illustrate that car-

cinogenesis may involve a large number of cancer genes but only a few are

stage limiting genes whereas other cancer genes may be dispensed with al-

though these genes can enhance the cascade of carcinogenesis. As shown

by Renan48, it has been noted that while mutation of a single gene may

initiate the cascade of carcinogenesis in some cases such as retinoblastoma,

the process of carcinogenesis would usually involve 5 to 10 genes.

 N J1 J2 J3 J4            J5 J6 J7

Second Copy

 of   hMSH2

 (hMLH1)
Ras

Second Copy

of BAX 

Second Copy of

TGF RII

Mutation of 

hMSH2 in

2p16

(or hMLH

1 in 3p21) 

BAX in 19q13-Catenin in 3p21 

or other genes 

TGF  RII in 3p22 

Myc

Carcinomas

Fig. 2. The MSI-BAX-TGFβ RII Pathway of Human Colon Cancer. Here, N = Normal
stem cell, Ji = The ith-stage initiated cell in the MSI pathway, ↓ denotes mutation,
inactivation or loss of suppressor genes (hMSH2, hMLH1, BAX, TGFβ RII), ↘ denotes
mutation or activation of oncogenes (Ras, Myc).
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3.2. The Mixed Models of Carcinogenesis

In the population, for the same type of cancer, different individual may

involve different pathways or different number of stages (see [41, 54, 55, 56,

57, 59, 60, 61, 62]). These models have been referred by Tan54,55 and Tan

and Singh62 as mixed models of carcinogenesis. These models are basic

consequences of the observations: (1) Different individuals are subject to

different environmental conditions, (2) the mutation of critical cancer genes

can occur in either germline cells or in somatic cells, and (3) As shown in

the previous section, the same cancer can be derived by several different

pathways, referred to as multiple pathways.

To serve as an example, consider again the human colon cancer. The

multiple pathways for human colon cancer as described in the previous sec-

tion then leads to the following 5 different pathways: The sporadic LOH

(about 70%, see Figure 1), the familial LOH (FLOH, about 10-15%), the

FAP (Familial Adenomatous Polys, about 1%), the sporadic MSI (about

10-15%, see Figure 2) and the HNPCC (Hereditary Non-Polyposis Colon

Cancer, about 4-5%). For sporadic pathways, the individuals at birth are

normal individuals and do not carry any mutated or inactivated suppres-

sor genes. For FAP, the individual has inherited a mutated APC gene

in chromosome 5 at birth. For HNPCC, the individuals has inherited a

mutated mis-match gene hMLH1 or hMSH2. For the familial colon can-

cer, the individuals have inherited a low penetrance mutated gene such as

APCI1307K at birth. Hence, FAP and FLOH are special cases of the APC-

β − catenin − Tcf − myc pathway and HNPCC a special case of the MSI

pathway.

The above indicates that from the population perspective, the human

colon cancer can best be described by a mixture of five pathways. Let Yj be

the number of people who develop colon cancer during the j−th age group

[tj−1, tj). The above then indicates that the probability density of Yj is:

P (Yj) =

5
∑

i=1

ωi(j)fi(Yj ; Θi),

where fi(Yj ; θi) is the probability that the individual develops colon cancer

during the j−th age group [tj−1, tj) by the i−th pathway and where ωi(j)

is the proportion for the i−th pathway during the j−th age group; see

Remark 4

Remark 4: Notice that ωi(j) is a function of j (the age group). For the

earlier age group, one may expect that most of the colon cancer cases are
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derived by the FAP and/or the HNPCC pathways while for the age groups

after 50 years old, most of the colon cancer cases would derive from the LOH

pathway. To reflect the real situation, we will thus assume that ωi(j) =

ωiPi(j)/{
∑5

u=1 ωuPu(j)}, where Pi(j) is the conditional probability that

the individual will develop colon cancer during the j−th age group given

that this person develops colon cancer by following the i−th pathway.

4. Some New Approaches for Analyzing Stochastic Models

of Carcinogenesis

To develop mathematical theories for the stochastic models of carcino-

genesis, the traditional approach in the literature55 is by way of Markov

theories. The basic approach along this line consists of the following four

basic steps: (a) Deriving the probability generating function (PGF) of the

number of cancer tumors, (b) deriving the incidence function of cancer

tumors, (c) deriving the probability distribution of time to tumor onset,

and (d) deriving the probabilities of the number of cancer tumors. This

approach has been described and illustrated in detail in [55].

Using the above approach, theoretically one may derive some useful

information for stochastic models of carcinogenesis. However, a careful

scrutiny would reveal that the above approach suffers from several draw-

backs: (1) The process may not be Markov so that the above approach is

not applicable. For example, if one can not ignore cancer progression, then

the number of cancer tumors is not Markov since it depends on the time

when the last stage initiated cell is generated (see [54, 58, 60, 61, 63]) ; see

also Remark 2. (2) As illustrated in [55], it is mathematically manageable

only for a two stage model under very restrictive assumptions as described

in Remark 2; further many of these assumptions have significant impacts

on cancer incidence (see [54, 55, 58, 60, 61, 63, 68]). (3) It is extremely diffi-

cult, if not impossible, to fit and to adapt to cancer data, especially beyond

the simplest MVK two stage model. (4) The cancer stages and many of the

parameters are not identifiable when three or more stages are involved. In

fact, as shown by Hanin and Yakovlev24, even for the simple homogeneous

two-stage MVK model, it is not possible to estimate {b1, d1, λ0} and α1 sep-

arately; hence, not all parameters are estimable by using the above Markov

approach unless some other data and some further external information

about the parameters is available.

Because of the above difficulties, we have developed an alternative ap-

proach to developed stochastic models of carcinogenesis. As shown by Tan
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and Chen58 through pgf (probability generation function) method, this al-

ternative approach is equivalent to the above approach but is more powerful

and can get more information. In this section we illustrate how to derive

some basic results by using an extended k-stage multi-event model of car-

cinogenesis with (k ≥ 2 ) carcinogenesis as an example.

4.1. Stochastic Differential Equations

For the extended k-stage multi-event model, it is assumed that the number

N0(t) = I0(t) of normal stem cells are deterministic functions of time since

these numbers are usually very large. Hence, for this model, the state vari-

ables are (Ii(t), i = 1, . . . , k − 1, T (t)), where Ii(t) = number of Ii cells at

time t, and T (t) =number of cancer tumors at time t.

To derive stochastic differential equations for Ij(t), j = 1, . . . , k−1, note:

(i) The numbers of {Ij , j = 1, . . . , k − 1} cells at time t + ∆t derive from

the numbers of {Ij , j = 0, 1, . . . , k − 1} cells at time t through stochastic

birth and death processes and mutation processes. (ii) The birth-death-

mutation processes during the small interval with length ∆t is equivalent

to multinomial distributions.

Define for j = 1, . . . , k − 1:

• Bj(t) =Number of new Ij cells generated by stochastic cell prolif-

eration (birth) of Ij cells during (t, t + ∆t],

• Dj(t) =Number of death of Ij cells during (t, t + dt],

• Mj(t) =Number of new Ij cells arising from Ij−1 cells by mutation

or some genetic changes during (t, t + ∆t], j = 1, 2, . . . , k.

Then, for j = 0, 1, . . . , k − 1, the above principle leads to:

M1(t) ∼ Poisson{λ0(t)∆t},

where λ0(t) = I0(t)α0(t), and for j = 1, . . . , k − 1,

[Bj(t), Dj(t), Mj+1(t)]|Ij(t) ∼ ML[Ij(t); bj(t)∆t, dj(t)∆t, αj(t)∆t].

It follows that EM1(t) = λ0(t)∆t and for j = 1, . . . , k − 1,

E{Bj(t)|Ij(t)} = Ij(t)bj(t)∆t,

E{Dj(t)|Ij(t)} = Ij(t)dj(t)∆t,

E{Mj+1(t)|Ij(t)} = Ij(t)αj(t)∆t,

By the conservation law,we have then for i = 1, . . . , k − 1,

Ii(t + ∆t) = Ii(t) + Mi(t) + Bi(t) − Di(t).
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The stochastic differential equations for the state variables are:

∆Ij(t) = Ij(t + ∆t) − Ij(t) = Mj(t) + Bj(t) − Dj(t)

= {Ij−1(t)αj−1(t) + Ij(t)γj(t)}∆t + εj(t)∆t,

j = 1, . . . , k − 1, (1)

where γj(t) = bj(t) − dj(t), j = 0, 1, . . . , k − 1 and for j = 1, . . . , k − 1,

ej(t)∆t = [Mj(t) − Ij−1(t)αj−1(t)∆t] + [Bj(t) − Ij(t)bj(t)∆t] − [Dj(t) −

Ij(t)dj(t)∆t].

4.2. The Probability Distribution of T (t)

To develop probability distribution for T (t), observe that cancer tumors

develop from primary Ik cells by following a stochastic birth-death process

with birth rate bT (s, t) and death rate dT (s, t), where s is the time the

primary tumor cell was generated. Hence we can derive the probability

distribution for number of detectable cancer tumors at time t (i.e. T (t)).

Then as shown in Tan56, Chapter 8, the conditional distribution of T (t)

given {Ik−1(s), s ≤ t} is:

T (t)|{Ik−1(s), s ≤ t} ∼ Poisson(ΛT (t)), (2)

where ΛT (t) =
∫ t

t0
I1(x)αk−1(x)PT (x, t)dx, and the PT (s, t) is given by:

PT (s, t) =
1

hT (s, t) + gT (s, t)

(

gT (s, t)

hT (s, t) + gT (s, t)

)NT −1

, (3)

where NT is the number of tumor cells for the tumor to be detectable,

hT (s, t) = exp{−

∫ t

s

[bT (s, y) − dT (s, y)]dy}

and

gT (s, t) =

∫ t

s

bT (s, y)hT (y, t)dy.

4.3. Probability Distribution of the State Variables

Chose some fixed small interval for ∆t as 1 time unit (i.e. ∆t ∼ 1)

and denote by X
∼

(t) = {Ii(t), i = 1, . . . , k − 1}. Let g0{j; λ0(t)} de-

note the probability M1(t) = j from the Poisson distribution M1(t) ∼
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Poisson{λ0(t)}; for r = 1, . . . , k − 1, let fr{i, j|Ir(t)} denote the prob-

ability {Br(t) = i, Dr(t) = j} from the multinomial distribution

{Br(t), Dr(t)} ∼ ML[Ir(t); br(t), dr(t)] and let hr{j|ir, jr, Ir(t)} be the

probability of (Mr(t) = j) from the binomial distribution Mr(t) ∼

Binomial{Ir(t)− ir −jr;
αr(t)

1−br(t)−dr(t)}. Then, from results in Section (4.1),

the probability density function of X = {X
∼

(1), . . . , X
∼

(tM )} is

P (X) =

tM
∏

t=1

{P [X
∼

(t)|X
∼

(t − 1)]}

and for t = 0, 1, . . . , tM − 1,

P{X
∼

(t + 1)|X
∼

(t)} =

I1(t)
∑

i1=0

I1(t)−i1
∑

j1=0

f1{i1, j1|I1(t)}g0{a1(t), λ0(t)}

×

I2(t)
∑

i2=0

I2(t)−i2
∑

j2=0

f2{i2, j2|I2(t)}h1{a2(t)|i2, j2, I2(t)}

× · · · ×

Ik−1(t)
∑

ik−1=0

Ik−1(t)−ik−1
∑

jk−1=0

fk−1{ik−1, jk−1|Ik−1(t)}

× hk−2{ak−1(t)|ik−1, jk−1, Ik−1(t)}, (4)

where ar(t) = Max(0, Ir+1(t) − Ir(t) − ir + jr).

5. A State Space Model for the Extended Multi-Event

Model of Carcinogenesis

State space model is a stochastic models which consists of two sub-

models: The stochastic system model which is the stochastic model of the

system and the observation model which is a statistical model based on

available observed data from the system. Hence it takes into account the

basic mechanisms of the system and the random variation of the system

through its stochastic system model and incorporate all these into the ob-

served data from the system; furthermore, it validates and upgrades the

stochastic model through its observation model and the observed data of

the system. Thus the state space model adds one more dimension to the

stochastic model and to the statistical model by combining both of these

models into one model. As illustrated in 56, Chapters 8-9, the state space

model has many advantages over both the stochastic model and the statis-

tical model when used alone since it combines information and advantages

from both of these models.
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As an example, in this section we will illustrate how to develop a state

space model for the extended multi-event model given in Section (3.1) with

the observation model being based on the observed number of cancer inci-

dence over time. For this state space model, the stochastic system model

is specified by the stochastic equations given by (1) with the probability

distribution of state variables being given in Section (4.3). The observa-

tion model is a statistical model based on the number of cancer cases

(yi(j), i = 1, . . . , m, j = 1, . . . , n) over n different age groups and m dif-

ferent exposure levels.

5.1. The Stochastic System Model, the Augmented State

Variables and Probability Distribution

The probability distribution for the state variables in equation (4) is ex-

tremely complicated involving many summations. For implementing the

Gibbs sampling procedures to estimate the unknown parameters and the

state variables, we thus expand the model by augmenting the dummy

un-observable variables U
∼

(t) = {Br(t), Dr(t), r = 1, . . . , k − 1} and put

U = {U
∼

(t), t = 0, . . . , tM − 1}. Then, from the distribution results in Sec-

tion (4.3), we have:

P{U
∼

(t)|X
∼

(t)} =
k−1
∏

i=1

fi{Bi(t), Di(t)|Ii(t)};

P{X
∼

(t + 1)|U
∼

(t), X
∼

(t)} = g0{b0(t), λ0(t)}
k−1
∏

i=2

hi−1{bi(t)|Bi(t), Di(t)},

where for i = 1, . . . , k − 1, bi−1(t) = Ii(t + 1) − Ii(t) − Bi(t) + Di(t).

The joint density of {X, U} is

P{X, U} =

tM
∏

t=1

P{X
∼

(t)|X
∼

(t − 1), U
∼

(t − 1)}P{U
∼

(t − 1)|X
∼

(t − 1)}. (5)

5.2. The Observation Model and the Probability

Distribution of Cancer Incidence

The observation model is based on yij , where yij is the observed number

of new cancer cases in the j−th age group [tj−1, tj) under exposure to the

carcinogen with dose level si. Let ni(j) be the number of normal people

from whom the yij are generated. To derive the probability distribution of
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yij given ni(j) and given the state variables, let {Ik−1(t; i, r) be the number

of Ik−1(t) cells in the r−th individual who was exposed to the carcinogen

with dose level si and let αk−1(i) be the rate of the transition Ik−1 → Ik

under exposure to the carcinogen with dose level si. Among people who have

been exposed to the carcinogen with dose level si, let Pr(i, j) denote the

conditional probability given the state variables that the r−th individual

would develop cancer during the j-th age group. Then, as shown in Tan56,

Chapter 8, Pr(i, j) is given by:

Pr(i, j) = exp{−

tj−1−1
∑

t=0

Ik−1(t; i, r)αk−1(i)}(1 − e−R(i,j,r)αk−1(i)),

where R(i, j, r) =
∑tj−1

t=tj−1
Ik−1(t; i, r).

From the above it follows that the conditional probability density of

yij given ni(j) and given the state variables I
∼

k−1(i, j) = {Ik−1(t; i, r), t ≤

tj , r = 1, . . . , ni(j)} is

P{yij |ni(j), I
∼

k−1(i, j)} =

(

ni(j)

yij

) yij
∏

r=1

Pr(i, j)

ni(j)
∏

u=yij+1

[1 − Pu(i, j)]. (6)

Let Ik−1(t; i) denote the number of Ik−1 cells at time t under dose level

si. When ni(j) and ni(j) − yi(j) are very large and when ni(j)Pr(i, j) are

finite for all r, the above probability is closely approximated by:

P{yij |ni(j), I
∼

k−1(i, j)} =
1

yij !
exp{−λi(j)}

yij
∏

r=1

[ni(j)Pr(i, j)], (7)

where λi(j) = ni(j)EPT (i, j) = ni(j)EPr(i, j), r = 1, . . . , ni(j) and where

PT (i, j) = exp{−

tj−1−1
∑

t=0

Ik−1(t; i)αk−1(i) + log(1 − e{−R(i,j)αk−1(i)})},

with R(i, j) =
∑tj−1

t=tj−1
Ik−1(t; i). (For Proof, see [63])

From equation (7), the conditional likelihood of the parameters given

data Y = {yij , i = 1, . . . , m, j = 1, . . . , n} and given the state variables is

L{Θ|Y , I
∼

k−1} =

m
∏

i=1

n
∏

j=1

P{yij |ni(j), I
∼

k−1(i, j)}, (8)
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Also, since αk−1(i) is very small, it can be shown63 that with ᾱk−1(i) =

106αk−1(i),

E[PT (i, j)] = exp{−
1

106

tj−1−1
∑

t=0

EIk−1(t; i)ᾱk−1(i)

+ E log(1 − e−
1

106
R(i,j)ᾱk−1(i))}

≈ Bi(j)ᾱk−1(i)exp{−Ai(j)ᾱk−1(i)},

where Ai(j) = 1
106 {

∑tj−1
t=0 EIk−1(t; i) − 1

2ER(i, j)} and Bi(j) =
1

106 ER(i, j).

From the above distribution results, it is obvious that the joint density

of {X, U , Y } is

P{X, U , Y } =
m
∏

i=1

n
∏

j=1

P{yij |ni(j), I
∼

k−1(i, j)}

×

tj
∏

t=tj−1+1

P{X
∼

(t)|X
∼

(t − 1), U
∼

(t − 1)}

× P{U
∼

(t − 1)|X
∼

(t − 1)}. (9)

Notice that in the above equation, the birth rates, death rates and

mutation rates {λ0(t), br(t), dr(t), αr(t), r = 1, . . . , k − 1} are functions of

the dose level si.

The above distribution will be used to derive the conditional posterior

distribution of the unknown parameters Θ given {X, U , Y }. Notice that

because the number of parameters is very large, the classical sampling the-

ory approach by using the likelihood function P{Y |X, U} is not possible

without making assumptions about the parameters; however, this problem

can easily be avoided by new information from the stochastic system model

and the prior distribution of the parameters.

5.3. The Posterior Distribution of the Unknown

Parameters and State Variables

In many practical situations, one may assume that the birth rates, death

rates and mutation rates are time homogeneous. For the i-th dose level,

denote these rates by {λi, αji, bji, dji, j = 1, . . . , k− 1}. Then the set of un-

known parameters are Θ = {λi, αji, bji, dji, j = 1, . . . , k − 1, i = 1, . . . , m}.

To derive the posterior distribution of Θ given {X, U , Y }, let P{Θ} be the

prior distribution of Θ and for the i−th dose level, denote the {X
∼

(t), U
∼

(t)}

by X
∼

(i)(t) = {I
(i)
j (t), j = 1, . . . , k − 1} and U

∼

(i)(t) = {B
(i)
j (t), D

(i)
j (t), j =
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1, . . . , k−1} . From equations (7)-(9), the conditional posterior distribution

P{Θ|X, U , Y } of Θ given {X, U , Y } is:

P{Θ|X, U , Y } ∝ P{Θ}

m
∏

i=1

λi
{
∑tM −1

t=0 M1(t)}e{−tM λi}
k−1
∏

j=1

[bji]
{
∑tM −1

t=0 B
(i)
j

(t)}

× [dji]
{
∑tM −1

t=0 D
(i)
j (t)}αji

{
∑tM −1

t=0 R
(i)
j (t)}

× (1 − bji − dji − αji)
{
∑tM

t=1[Ij(t)−B
(i)
j

(t)−D
(i)
j

(t)−R
(i)
j

(t)]},
(10)

where R
(i)
j (t) = I

(i)
j (t + 1) − I

(i)
j (t) − B

(i)
j (t) + D

(i)
j (t).

For the prior distribution of the unknown parameters, we will assume

that a priori the parameters in Θ are independently distributed of one

another. Furthermore, we will assume natural conjugate priors for all the

parameters. That is, we assume:

P{Θ} ∝

m
∏

i=1

λi
pi−1exp{−λiqi}

k−1
∏

j=1

[bji]
uji−1[dji]

vji−1αji
rji−1

× (1 − bji − dji − αji)
wji−1, (11)

where the hyperparameters {pi, qi, uji, vji, wji, rji} are positive real num-

bers. These hyperparameters can be estimated from previous studies. In the

event that prior studies and information are not available, we will follow

Box and Tiao6 to assume that P{λi, i = 1, . . . , m} ∝
∏m

i=1(λi)
−1 and that

all other parameters are uniformly distributed to reflect the fact that our

prior information are vague and imprecise.

5.4. The Generalized Bayesian Method for Estimating

Unknown Parameters and State Variables

Using the above distribution results, the multi-level Gibbs sampling proce-

dures for estimating the unknown parameters Θ and the state variables X

are given by the following loop:

(i) Given the parameter values, we will use the stochastic equa-

tion (1) and the associated probability distributions to generate

a large sample of {X, U}. Then, by combining this large sample

with P{Y |X, U}, we select {X, U} from this sample through the

weighted Bootstrap method due to Smith and Gelfand51. This se-

lected {X, U} is then a sample generated from P{X, U |Θ, Y } al-

though the latter density is unknown (for proof, see Tan56, Chapter

3). Call the generated sample {X(∗), U (∗)}.
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(ii) On substituting {U (∗), X(∗)} which are generated numbers

from the above step, generate Θ from the conditional density

P{Θ|X(∗).U (∗), Y } given by equation (10).

(iii) With Θ being generated from Step (ii) above, go back to Step (i)

and repeat the above [i]-[ii] loop until convergence.

The convergence of the above algorithm has been proved in Tan56, Chap-

ter 3. At convergence, one then generates a random sample of {X, U} from

the conditional distribution P{X, U |Y } of {X, U} given Y , independent

of Θ and a random sample of Θ from the posterior distribution P{Θ|Y }

of Θ given Y , independent of {X, U}. Repeat these procedures one then

generates a random sample of size N of {X, U} and a random sample of

size M of Θ. One may then use the sample means to derive the estimates

of {X, U} and Θ and use the sample variances as the variances of these

estimates. Alternatively, one may also use Efron’s bootstrap method13 to

derive estimates of the standard errors of the estimates.

6. Analysis of British Physician Data of Lung Cancer and

Smoking

It has long been recognized that smoking can cause lung cancer20,44,67 in

most cases. To reveal the basic mechanisms of how tobacco nicotine cause

lung cancer, in this section we will apply the above state space model to

analyze the British physician smoking data given in Doll and Peto12. Given

in Table 1 is the British physician data extracted from the paper by Doll

and Peto12. In this data set, we have included only the age groups between

40 years old and 80 years old because in this data set, lung cancer incidence

are non-existent before 40 years old and are also rare among people who

are older than 80 years old.

From data in Table 1, observe that there are 8 dose levels represented

by the number of cigarettes smoked per day and there are 8 age groups

each with a period of 5 years. Because lung cancer incidence were reported

for a 5 years period, as in [36, 38, 39, 55] we will assume that the initiated

cells in the last stage grow instantaneously into malignant tumors, unless

otherwise stated. To implement the procedures in Sections 5, we let ∆t ∼ 1

correspond to a period of 3 months.

To analyze data given in Table 1, we will use the state space model with

the observation model being given by the number (yij) of total lung cancer

incidence. For the stochastic system model we will entertain four extended

k-stage multi-event models: (a) A time non-homogeneous 2-stage model, (b)
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a time homogeneous 2-stage model, (c) a time homogeneous 3-stage model,

(d) a time homogeneous 4-stage model, and (e) a time homogeneous 5-

stage model. In models (b)-(e), the mutation rates, the birth rates and the

death rates are assumed to be independent of time. In model (a), while the

mutation rates are independent of time, we assume the birth rate and the

death rate on initiated cells are 2-step piece-wise non-homogeneous with

t1 = 60 years old as the cut-off time point.

To assess effects of dose level, we let xi = log(1 + ui), where ui is

the mean dose of the i−th dose level. Then, based on some preliminary

analysis63 we assume a Cox regression model for the mutation rates and

assume linear regression models for the birth rates and the death rates.

Thus, we let λ0(i, t) = a00(t)e
a01(t)xi , αj(i) = aj0e

aj1xi for all models; but

let {bj(i) = bj0 + bj1xi, dj(i) = dj0 + dj1(i)xi} for the time homogeneous

models and let {b1(i, s) = b10(s) + b11(s)xi, d1(i) = d10(s) + d11(s)xi} with

s = 1 for t ≤ t1 and s = 2 for t > t1 for the two-stage time nonhomogeneous

model.

Applying the procedures in Section 5, we have estimated the parameters

and fitted the data in Table 1. The AIC and BIC values of all models as well

as the p-values for testing goodness of fit of the models are given in Table 2.

The p-values are computed using the approximate probability distribution

results
∑m

i=1

∑n
j=1(yij − λ̂ij)

2/λ̂ij ∼ χ2(mn − k), for large mn, where k is

the number of parameters estimated under the model. The estimates for the

unknown parameters given the 4-stage model are given in Table 3. From the

p-values of the models, apparently that all models except the 5-stage model

fit the data well, but the values of AIC and BIC suggested that the 4-stage

model is more appropriate for the data. This 4-stage model seems to fit

the following molecular biological model for squamous cell lung carcinoma

proposed recently by Wistuba et al.67: Normal epithelium → Hyperplasia

(3p/9p LOH, Genomic Instability) → Dysplasia (Telomerase dysregulation)

→ In situ Carcinoma (8p LOH, FHIT gene inactivation, gene methylation)

→ Invasive Carcinoma (p53 gene inactivation, k-ras mutation).

From results given in Tables 3, we observe the following interesting

results:

(1) The estimates of λ0(i) increases as the dose level increases. This

indicates the tobacco nicotine is an initiator. From molecular bio-

logical studies, this initiation process may either be associated with

the LOH (loss of heterozygosity) of some suppressor genes from

chromosomes 3p or silencing of these genes by epigenetic actions
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(see [2, 3, 7, 14, 17, 30, 32, 40, 43, 49, 64]).

(2). The estimates of the mutation rates αj(i) = αj for j = 1, 2, 3 are

in general independent of the dose level xi. These estimates are of

order 10−5 and do not differ significantly from one another.

(3). The results in Table 3 indicate that for non-smokers, the death rates

dj(0) (j = 1, 2, 3) are slightly greater than the birth rates bj(0) so

that the proliferation rates γj(0) = bj(0) − dj(0) are negative. For

smokers, however, the proliferation rates γj(i) = bj(i)−dj(i)(i > 0)

are positive and increases as dose level increases (the only exception

is γ2(3)). This is not surprising since most of the genes are tumor

suppressor genes which are involved in cell differentiation and cell

proliferation and apoptosis (e.g., p53) (see [20, 44, 67]).

(4). From Table 3, we observed that the estimates of γ3(i) are of or-

der 10−2 which are considerably greater that the estimates of γ1(i)

respectively. The estimates of γ1(i) are of order 10−3 and are con-

siderably greater than the estimates of γ2(i) respectively. The esti-

mates of γ2(i) are of order 10−4 and γ2(3) assumed negative value.

One may explain these observations by noting the results: (1) Sig-

nificant cell proliferation may trickle apoptosis leading to increased

cell death unless the apoptosis gene (p53) has been inactivated and

(2) the inactivation of the apoptosis gene (p53) occurred in the very

last stage; see [67].

7. Conclusions and Summary

Based on most recent biological studies, in this chapter we have presented

some stochastic models for carcinogenesis. To develop mathematical analy-

sis for these models, the traditional approach based on theories of Markov

process is extremely difficult and has some serious drawbacks. To get around

these difficulties, in this chapter we have proposed an alternative approach

through stochastic differential equations and state space models for car-

cinogenesis. This provides an unique approach to combine information from

both stochastic models and statistical models of carcinogenesis. By using

state space models, we have developed a general procedure via multiple

Gibbs sampling method to estimate the unknown parameters. In this pa-

per we have used the multi-event model as an example to illustrate the

basic approach and our new modeling ideas.

To illustrate some applications of results of this chapter, we have applied

the model and method to the British physician data on lung cancer and



June 7, 2007 9:39 WSPC/Trim Size: 9in x 6in for Review Volume chapter4

84 W. Y. Tan and L. J. Zhang

smoking. Our analysis has shown that a 4-stage homogeneous stochastic

model fits the data well. This model appears to be consistent with the

molecular biological model of squamous cell lung carcinoma proposed by

Wistuba67. By assuming a 4-stage model for the data we have obtained the

following results:

(1) The tobacco nicotine is both an initiator and promoter.

(2) The mutation rates can best be described by the Cox regression

model so that αj(i, t) = αj0(t) exp{αj1(t)xi}, j = 0, 1; similarly, the birth

rates bj(i, t) and the death rates dj(i, t) can best be described by linear

regression models.

(3) The estimates of the mutation rates and proliferation rates appear

to be consistent with biological observations.
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Table 1. British Physician Lung Cancer Data with Smoking Information

CIGARETTES/DAY(RANGE AND MEAN)

Age Group 0 1-4 5-9 10-14 15-19 20-24 25-29 30-34 35-40
(years) 0 2.7 6.6 11.3 16 20.4 25.4 30.2 38

17846.51 1216 2041.5 3795.5 4824 7046 2523 1715.5 892.5
40-44 02 0 0 1 0 1 0 1 0

03 0 0 0 0 1 0 1 0

15832.5 1000.5 1745 3205 3995 6460.5 2565.5 2123 1150
45-49 0 0 0 1 1 1 2 2 0

0 0 0 1 1 2 1 2 1

12226 853.5 1562.5 2727 3278.5 5583 2620 2226.5 1281
50-54 1 0 0 2 4 6 3 3 3

1 0 0 1 2 4 3 3 2

8905.5 625 1355 2288 2466.5 4357.5 2108.5 1923 1063
55-59 2 1 0 1 0 8 5 6 4

1 0 0 2 2 6 4 5 4

6248 509.5 1068 1714 1829.5 2863.5 1508.5 1362 826
60-64 0 1 1 1 2 13 4 11 7

0 0 0 2 2 9 5 7 6

4351 392.5 843.5 1214 1237 1930 974.5 763.5 515
65-69 0 0 1 2 2 12 5 9 9

0 0 0 3 2 10 6 7 7

2723.5 242 696.5 862 683.5 1055 527 317.5 233
70-74 1 1 2 4 4 10 7 2 5

1 0 0 4 2 8 7 4 5

1772 208.5 517.5 547 370.5 512 209.5 130 88.5
75-79 2 0 0 4 5 7 4 2 2

0 0 0 4 2 7 4 3 3

Notes: 1 population, 2 observed lung cancer incidence, 3 predicted lung cancer incidence
based on 4 stage homogeneous model.
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Table 2. BIC, AIC and Loglikelihood Values for 2, 3 and 4 Stages Models

Model BIC AIC Log of Likelihood P-value for

Values = log L(Θ̂|Y ) Goodness of fit

Homogeneous 2-stage 188.93 182.07 -87.04 0.10
None-Homogeneous 2-stage 177.48 167.20 -77.60 0.42

Homogeneous 3-stage 151.42 139.42 -62.71 0.98
Homogeneous 4-stage 150.76 133.61 -56.81 0.99
Homogeneous 5-stage 211.67 189.38 -81.69 0.06

Notes: (1)The p-value is based on
∑

m
i=1

∑

n
j=1{yij − λ̂ij}

2/λ̂ij ∼ χ2(72 − k),

(k = the number of parameters under the model)

(2) log L(Θ̂|Y ) =
∑

m
i=1

∑

n
j=1{−λ̂ij + yij log λ̂ij − log (yij !)}, λ̂ij = nijpi(j)

Table 3. Estimates of Parameters for the 4 Stage Homogeneous Model

with Predictive

CIGARETTES/DAY(RANGE AND MEAN)

0 1-4 5-9 10-14 15-19
Parameters 0 2.7 6.6 11.3 16

λ0(i) 218.03 247.95 286.41 285.07 295.57
±12.81 ±15.79 ±16.79 ±16.04 ±16.73

b1(i) 5.93E − 02 6.72E − 02 7.17E − 02 7.47E − 02 7.66E − 02
±8.77E − 05 ±5.40E − 05 ±3.43E − 05 ±1.46E − 05 1.16E − 05

d1(i) 6.18E − 02 6.02E − 02 5.99E − 02 5.95E − 02 5.93E − 02
±9.68E − 05 ±4.78E − 05 ±2.90E − 05 ±1.06E − 05 1.50E − 05

b1(i) − d1(i) −1.31E − 03 1.78E − 03 3.95E − 03 5.21E − 03 6.21E − 03
±5.60E − 05 ±6.07E − 05 ±6.64E − 05 ±4.12E − 05 3.17E − 05

α1(i) 5.29E − 05 6.74E − 05 5.48E − 05 5.68E − 05 5.52E − 05
±2.67E − 06 ±1.67E − 06 ±1.12E − 06 ±3.96E − 07 ±3.65E − 07

b2(i) 8.08E − 02 8.92E − 02 8.97E − 02 9.14E − 02 9.34E − 02
±1.59E − 03 ±7.34E − 04 ±5.04E − 04 ±2.10E − 04 2.62E − 04

d2(i) 8.84E − 02 8.63E − 02 9.00E − 02 9.19E − 02 9.37E − 02
±1.99E − 03 ±6.82E − 04 ±5.52E − 04 ±2.15E − 04 2.15E − 04

b2(i) − d2(i) −7.60E − 03 2.90E − 03 −3.00E − 04 −5.00E − 04 −3.00E − 04
±2.55E − 03 ±1.00E − 03 ±7.47E − 03 ±3.01E − 04 3.39E − 04

α2(i) 4.01E − 05 5.55E − 06 3.28E − 06 3.84E − 05 1.61E − 05
±3.86E − 05 ±4.99E − 06 ±3.70E − 06 ±4.75E − 06 ±3.37E − 06

b3(i) 1.08E − 02 9.32E − 02 4.79E − 02 9.84E − 02 1.01E − 01
±1.07E − 02 ±2.53E − 04 ±1.65E − 02 ±7.63E − 04 4.89E − 04

d3(i) 7.18E − 02 6.27E − 02 1.10E − 01 8.59E − 02 8.16E − 02
±2.45E − 02 ±1.68E − 04 ±2.45E − 02 ±5.60E − 04 4.49E − 04

b3(i) − d3(i) −2.21E − 03 7.88E − 03 1.46E − 02 1.97E − 02 2.11E − 02
±2.42E − 03 ±2.71E − 03 ±1.84E − 03 ±4.78E − 04 5.79E − 04

α3(i) = α3 9.54E − 06 ± 2.51E − 08
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(Table 3 continued)

CIGARETTES/DAY(RANGE AND MEAN)

20-24 25-29 30-34 35-40
Parameters 20.4 25.4 30.2 38

λ0(i) 313.02 318.24 330.79 341.41
±16.86 ±16.40 ±18.61 ±19.33

b1(i) 7.81E − 02 7.94E − 02 8.04E − 02 8.18E − 02
±7.85E − 06 ±8.83E − 06 ±9.26E − 06 ±7.29E − 06

d1(i) 5.92E − 02 5.91E − 02 5.90E − 02 5.89E − 02
±7.83E − 06 ±7.30E − 06 ±7.99E − 06 ±6.56E − 06

b1(i) − d1(i) 6.79E − 03 7.30E − 03 7.86E − 03 8.30E − 03
±2.09E − 05 ±2.66E − 05 ±2.15E − 05 ±3.21E − 05

α1(i) 5.52E − 05 5.44E − 05 5.56E − 05 5.51E − 05
±2.03E − 07 ±2.24E − 07 ±2.28E − 07 ±1.85E − 07

b2(i) 9.49E − 02 9.61E − 02 9.70E − 02 9.80E − 02
±1.49E − 04 ±1.34E − 04 ±1.30E − 04 ±1.26E − 04

d2(i) 9.42E − 02 9.40E − 02 9.46E − 02 9.53E − 02
±1.54E − 04 ±1.42E − 04 ±1.67E − 04 ±1.24E − 04

b2(i) − d2(i) 7.00E − 04 2.10E − 03 2.40E − 03 2.70E − 03
±2.13E − 04 ±1.95E − 04 ±2.12E − 04 ±1.77E − 04

α2(i) 1.42E − 05 7.39E − 06 1.48E − 05 1.20E − 05
±2.12E − 06 ±1.16E − 06 ±2.11E − 06 ±1.50E − 06

b3(i) 1.01E − 01 1.05E − 01 1.04E − 01 1.07E − 01
±9.55E − 04 ±4.39E − 04 ±6.81E − 04 ±2.70E − 04

d3(i) 8.16E − 02 7.90E − 02 7.99E − 02 8.02E − 02
±8.36E − 04 ±4.00E − 04 ±6.56E − 04 ±2.06E − 04

b3(i) − d3(i) 2.48E − 02 2.69E − 02 2.74E − 02 2.98E − 02
±2.58E − 04 ±2.98E − 04 ±1.85E − 04 ±3.85E − 04

α3(i) = α3 9.54E − 06 ± 2.51E − 08

Notes: λ00 = 215.17 ± 4.90 λ01 = 0.12 ± 7.90E-03
b10 = 0.0592 ± 0.0001 b11 = 0.0062 ± 0.0001
d10 = 0.0615 ± 0.0002 d11 = -0.0008 ± 0.0001

α10 = 5.82E-05 ± 3.63E-06 α11 = -0.01 ± 0.02
b20 = 0.0814 ± 0.0008 b21 = 0.0044 ± 0.0003
d20 = 0.0862 ± 0.0012 d21 = 0.0024 ± 0.0005

α20 = 3.30E-05 ± 1.16E-05 α21 = -0.30 ± 0.18
b30 = 0.0265 ± 0.0153 b31 = 0.0239 ± 0.0057
d30 = 0.0752 ± 0.0107 d31 = 0.0025 ± 0.0040
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Outcome-dependent sampling (ODS) is a cost effective way to enhance
study efficiency. The case-control design for binary outcomes is a main-
stay of epidemiology research. As the field of epidemiology expanding
and evolving, an increasing number of studies are conducted using the
ODS design with a “continuous” outcome. In an ODS design, obser-
vations made on a judiciously chosen subset of the base population can
provide nearly the same statistical efficiency as observing the entire base
population. Different statistical inference procedures are needed in or-
der to reap the benefits of such sampling. We review recently developed
methods that account for the ODS design. These methods are all semi-
parametric approaches.

1. Introduction

Observational epidemiologic studies are to evaluate the relationship be-

tween an exposure and a disease, taking into account the effects of addi-

tional covariates such as age and sex. Cohort and case-control designs

are the two most commonly used designs in such studies. In a cohort study,

subjects are randomly selected from the population. The selection may or

may not depend on covariates, but is independent of the response. In a

case-control study, sampling is conditional on the response. Both designs

allow one to evaluate the association between risk factors and disease. Some

large cohort studies cost hundreds of millions of dollars to conduct. Case-

control studies, on the other hand, are often preferred for rare diseases

because they can yield an equal number of diseased individuals in a much

smaller study. Since the work by Cornfield1, the case-control method has

93
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become a fundamental statistical tool in epidemiologic studies because of its

efficiency relative to the cohort study. An outcome-dependent sampling

(ODS) scheme is a retrospective sampling scheme like the case-control study

where one observes the exposure/covariates with a probability, maybe un-

known, that depends on the outcome variable. The principal idea of an

ODS design is to concentrate resources where there is the greatest amount

of information. By allowing the selection probability of each individual in

the ODS sample to depend on the outcome, the investigators attempt to

enhance the efficiency and reduce the cost of the study.

Although the case-control design for binary outcomes is a mainstay

of epidemiology research, an increasing number of studies are conducted

using the ODS design with a “continuous” outcomes as the field of epi-

demiology expanding and evolving. In particular, analytical epidemiology

investigations are often designed to characterize the study population, such

as with respect to disease prevalence, and investigate the potential effect

of an exposure on various health outcomes. Without a more appropriate

method for handling the ODS with a continuous outcome, many inves-

tigators have chosen to analyze data using a dichotomized outcome that

is defined based on whether the measurement is above or below a certain

cutoff point (e.g. hypertension and neuro development abnormality). Draw-

backs of dichotomizing or categorizing a continuous outcome include a loss

of efficiency, an increased risk of misclassification bias, and a decrease in

the external validity of the analysis since the results may be sensitive to

the choice of cut point.

An example of using ODS design is a study from the Collaborative

Perinatal Project (CPP) to access the relationship between maternal poly-

chlorinated biphenyls (PCB) level and children’s health development. The

CPP is a propespectively designed study to provide precise data for studies

of a wide variety of neurological outcome and birth detects2. Subjects were

enrolled through 12 university affiliated medical clinics, with the centers

contributing unequal numbers of subjects. In all, 55,908 pregnancies were

registered, representing the experience of about 44,000 women. The study

subjects are children who were born into the CPP. Eligible children met

the following criteria: a) live born singleton, b) availability of a 3 ml third

trimester maternal serum specimen, and c) non missing data for at least one

of 8 specified study outcomes. Of the CPP children, 44,075 met all of the

eligibility criteria. Since it was too expensive to assay the PCB exposure for

the entire study population of 44,075 subjects, the investigators decided to

obtain exposure measurements for an ODS from the population. In partic-
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ular, in addition to taking an SRS from the entire population, they decided

to oversample from the tails of the distributions about the children’s health

development indices such as the Weschler Intelligence Scale(IQ), hearing

level, vision and birth defect, etc.

Likelihood based inference for data from an ODS scheme inevitably

involves the distribution of covariates. Parametric modeling of a covariate

distribution is not robust to model misspecification. Methods that do not

require parametric modeling of the underlying distribution of covariates are

desirable.

We discuss the recently developed methods that deal with various forms

of data sets from ODS schemes. In particular, we consider (i) an overall SRS

sample and several supplemental samples with continuous outcome (Section

2); (ii) an overall SRS sample, several supplemental samples and some infor-

mation for the underlying population with continuous outcome (Section 3);

(iii) an overall SRS sample, several supplemental samples with ordinal out-

come and auxiliary covariate (Section 4); and (iv) an overall SRS sample,

several supplemental samples and additional information for the underly-

ing population with ordinal outcome (Section 5). These methods are all

semiparametric in nature and include semiparametric empirical likelihood,

semiparametric estimated likelihood, and semiparametric penalized spline

estimated likelihood methods.

In Section 2, we discuss a semi-parametric approach for data from an

ODS design with a continuous outcome. In Section 3, we discuss an esti-

mated likelihood method when in addition to the ODS sample, information

on the underlying population is available. In Section 4, we discuss appli-

cation of ODS methods to an ordinal outcome. In Section 5, we review a

penalized spine methods to deal with nonlinear problems in ODS design.

2. Semiparametric Empirical Likelihood for ODS with a

Continuous Outcome Variable

This section considers semiparametric methods for dealing with ODS data

with X observed on an overall SRS sample and several supplemental sam-

ples, and the outcome being continuous. In the CPP data structure, com-

plete data are only available for 849 children from the SRS and for 189

children from the two supplemental samples. Specifically, there are 81 chil-

dren with IQs less than or equal to 82 and 108 children with IQs greater

than 110.
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Empirical likelihood (EL) in its simplest form is just a nonparametric

likelihood. Let x1, . . . , xn be i.i.d. observations from an unknown d-variate

distribution F . The nonparametric likelihood is in fact maximized by the

empirical CDF, Fn(x) = 1
n

∑n
i=1 I(Xi ≤ x). Owen3,4 introduced an em-

pirical likelihood ratio statistic for nonparametric parameters. He showed

that the statistic has a limiting chi-square distribution and how to obtain

tests and confidence intervals for a parameter, expressed as functional θ(F ).

Many extensions and applications of empirical likelihood have been devel-

oped for biased sampling and censored data. See [5] for a comprehensive

review. Zhou, et al.15, Wang and Zhou12 have applied the empirical like-

lihood to the problem of biased sampling (outcome dependent sampling).

Vardi10,11 and Qin6 have discussed the biased sampling problem in the

case of a completely known the weight function. When the weight function

involves unknown parameters, one usually needs methods to combine the

empirical likelihood with the parametric likelihood.

2.1. Data Structure and Likelihood

Zhou, et al.15 proposed a semiparametric empirical likelihood to deal with

the two component outcome dependent data set, in which there is an overall

SRS sample and several supplemental samples. These supplemental sam-

ples are selected dependent on the outcome. The proposed semiparametric

empirical likelihood can deal with the continuous outcome and does not

make any assumption for the distribution of covariates.

Let Y denote the continuous outcome variable and X denote the vector

of covariates. Assume that the domain of Y is a union of K mutually

exclusive intervals: Ck = (ak−1, ak], k = 1, . . . ,K with ak, k = 0, 1, . . . ,K

being known constants satisfying a0 = −∞ < a1 < a2 < . . . < aK = ∞.

The structure of the two component ODS sample consists an overall simple

random sample (the SRS sample) and a simple sample from each of the K

intervals of Y (the supplement samples). Let k be the index for intervals of Y

and i be the individuals. Then the observed data structure is as follows: one

observes the supplement sample {Yki, Xki|Yki ∈ Ck} where k = 1, 2, . . . ,K

and i = 1, 2, . . . , nk. The overall SRS sample is denoted by {Y0i, X0i} where

i = 1, 2, . . . , n0. For CPP data, in the sampling notation, we have that

a1 = 82, a2 = 110, n0 = 849, n1 = 81, n2 = 0 and n3 = 108.

For the ease of the presentation, let GX and gX denote the cumulative

distribution and density function of X , respectively. The joint likelihood
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function of the observed ODS data is

L(β,GX ) =

n0
∏

i=1

fβ(Y0i, X0i)
K
∏

k=1

nk
∏

i=1

fβ(Yki, Xki|Yki ∈ Ck).

By the Bayes’ law, one can rewrite L(β,GX ) into

L(β,GX ) =

{

n0
∏

i=1

fβ(Y0i|X0i)

K
∏

k=1

nk
∏

i=1

fβ(Yki|Xki)

Pr(Yki ∈ Ck|Xki)

}

·
{

K
∏

k=0

nk
∏

i=1

gX(Xki)

K
∏

k=1

nk
∏

i=1

Pr(Yki ∈ Ck|Xki)

Pr(Yki ∈ Ck)

}

= L1(β) ×L2(β,GX ),

where

Pr(Yki ∈ Ck) =

∫

Pr(Yki ∈ Ck|x)gX (x)dx.

Obviously, L(β) is the conditional likelihood function based on the ob-

served ODS data. L(β,GX ) can be viewed as a marginal likelihood based

on (X01, . . . , X0n0
, . . . , X11, . . . , X1n1

, . . . , XKnK
). For fixed β, this is an

extension of the biased sampling likelihood as discussed by Vardi10,11 and

Qin6.

2.2. Algorithm and Asymptotics

The semiparametric empirical likelihood estimation for β proposed by Zhou,

et al15 can be obtained as follows.

• First profile L2(β,GX ) by fixing β and obtaining an empirical likelihood

estimator ĜX (·), over all discrete distributions whose support contains the

observed X values. This can be achieved by using the Lagrange multiplier

method.

• The resulted profile likelihood function is L(β, ĜX ).

• Use the Newton-Raphason procedure to maximize the resulted likelihood

from L(β, ĜX ).

They illustrate the above algorithm with a simple setting corresponding

to a real study (the CPP in Zhou, et al.15).

K = 3, n2 = 0, n1 > 0, n3 > 0 which corresponds to the Collaborative

Perinatal Project. Denote π1 = F (a1), π3 = 1−F (a2), pi = gX(wi), where

(w1, . . . , wn) = (X01, . . . , X0n0
, X11, . . . , X1n1

, X31, . . . , X3n3
). Then, for a
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fixed β, one has

L2(β, {pki})∞
3
∏

k=0

nk
∏

i=1

pki

3
∏

k=1

π−nk

k .

{p̂ki}, k = 0, . . . ,K, i = 1, . . . , nk can be searched by maximizing L2 under

the following constraints:
[

K
∑

k=0

nk
∑

i=1

pki = 1,

K
∑

k=0

nk
∑

i=1

pki {Pr(Y ∈ Cs|Xki) − πs} = 0, s = 1, 3

]

where pki ≥ 0. These constraints reflect the properties of GX(x) as a dis-

crete distribution with support points at the observed X values. Using the

Lagrange multiplier argument to derive the maximum over {pki}. Specifi-

cally, write

H = logL2(β, {pki}) + ρ

(

1 −
K
∑

k=0

nk
∑

i=1

pki

)

−n
[

λ1

K
∑

k=0

nk
∑

i=1

pki {Pr(Y ∈ C1|Xki) − π1}
]

−n
[

λ3

K
∑

k=0

nk
∑

i=1

pki {Pr(Y ∈ C3|Xki) − π3}
]

where ρ and (λ1, λ3)
′s are Lagrange multipliers. Take derivatives with

respect to pki, and setting

∂H/∂pki = 0 and

K
∑

k=0

nk
∑

i=1

pki∂H/∂pki = 0,

one has

ρ = n, pki =
1

n
· 1

1 + λ1{Pr(Y ∈ C1|Xki) − π1} + λ3{Pr(Y ∈ C3|Xki) − π3}
,

with restriction

K
∑

k=0

nk
∑

i=1

1

n

Pr(Y ∈ Cj |Xki) − πj

1 +
∑K−1

s=1 λs{Pr(Y ∈ Cs|Xki) − πs}
= 0, for j = 1, . . . ,K − 1.

where n = n0 + n1 + n3. Let ν1 = λ1 − k1/π1, ν3 = λ3 − k3/π3, ki = ni/n,

i = 0, 1, 3, η = (π1, π3, ν1, ν3), ξ
′ = (β′, η′). The log transformation of the

resulting profile likelihood function has the form

l(ξ) = logL1(β) + logL2(β, η) = l1(β) + l2(β, η),
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l2(β, η) = −
n
∑

i=1

log{1 + ν′h(wi)} −
n
∑

i=1

log{∆(wi)} − n1 logπ1 − n3 logπ3

+

n1
∑

j=1

logF (a1|x1j) +

n3
∑

k=1

log{1 − F (a2|x3k)}

where h(w) = (h1(w), h3(w)), h1 = {F (a1|wi) − π1}/∆(wi), h3 = {1 −
F (a2|wi) − π3}/∆(wi) and ∆(wi) = k0 + k1

π1

F (a1|wi) + k3

π3

{1− F (a2|wi)}.
Let ξ̂ be the maximizer for l(ξ). Define

V1(β) =

(

I1(β) 0

0 0

)

, I1(β) = − 1

n
E{∂2l1/∂β∂β

′}

V2(ξ) = k0Cov(e0) + k1Cov(e1) + k3Cov(e3), U(ξ) = − 1

n
E{∂2l(ξ)/∂ξ∂ξ′},

where vectors e0, e1, e3 are

e0i =











− 1
∆(x0i)

∂∆(x0i)
∂β

1
∆(x0i)

k1

π2

1

F (a1|x0i)
1

∆(x0i)
k3

π2

3

F̄ (a2|x0i)

−h(x0i)











, e1j =











1
F (a1|x1j)

∂F (a1|x1j)
∂β − 1

∆(x1j)
∂∆(x0j)

∂β
1

∆(x1j)
k1

π2

1

F (a1|x1j) − 1
π1

1
∆(x1j)

k3

π2

3

F̄ (a2|x1j)

−h(x1j)











and

e3k =













1
F̄ (a2|x3k)

∂F̄ (a2|x3k)
∂β − 1

∆(x3k)
∂∆(x3k)

∂β
1

∆(x3k)
k1

π2

1

F (a1|x3k)
1

∆(x3k)
k3

π2

3

F̄ (a2|x3k) − 1
π3

−h(x3k)













.

The following theorem is due to Zhou, et al.15.

Theorem 1: Under general regularity conditions, n1/2(ξ̂ − ξ0) →D

N(0,Σ(ξ0)) in a neighborhood of the true ξ0 = (β, π1, π2, 0, 0)′, where →D

denotes convergence in distribution, Σ(ξ0) = U−1(ξ0)V (ξ0)U
−1(ξ0) and

V (ξ0) = V1(ξ0) + V2(ξ0). A consistent estimator of the variance-covariance

matrix is Û−1(ξ̂)V̂ (ξ̂)Û−1(ξ̂), where Û and V̂ are obtained by replacing the

large sample quantities in U and V with their corresponding small sample

quantities.

3. Semiparametric Estimated Likelihood for Two-Stage

ODS with a Continuous Outcome Variable

This section concerns statistical inference for ODS design where in addition

to the complete data considered in Section 2, some information about the
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rest of study cohort is also available. In CPP study, the additional infor-

mation about various health outcomes for the 44,075 subjects is known.

Weaver and Zhou14 considered statistical inference for a two-stage ODS

design where in addition to the ODS data considered by Zhou et al.15 some

information is available for the underlying population. These information

includes IQ, SES (socioeconomic status of the child’s family), EDU (the

mother’s education), SEX (the gender of the child) and RACE (the race of

the child) (i.e., everything but PCB).

Assume Y partitions the study population into K strata such that for

k = 1, . . . ,K the {Y ∈ Ck} stratum has Nk individuals. The total sample

size in is N =
∑K

k=1 Nk. For each stratum {Y ∈ Ck} of the first stage, one

selects an outcome-dependent validation subsample, denoted as Vk , of size

nVk
such that individuals in Vk will have their true exposure variable X

observed besides their Y , while the remaining nV̄k
= Nk − nVk

individuals,

denoted as V̄k , have only their Y observed. For the {Y ∈ Ck} stratum of

the study population, the date structure of two-stage sampling is

The first stage: {Yi} for i ∈ Vk + V̄k

The second stage: {Xi|Y ∈ Ck} for i ∈ Vk

When data have been obtained through a two-stage design, it is easy

to see that conditional on the observed size {nV̄k
}, the observations in the

non-validation sample are independent of the observations in the validation

sample.

Using the Bayes formula, Weaver and Zhou14 showed that the likelihood

for the second stage observations can be shown to be

L1(β) =

K
∏

k=1

∏

i∈Vk

fβ(Yi|Xi, Yi ∈ Ck)gX(Xi)

=

K
∏

k=1

∏

i∈Vk

I(Yi ∈ Ck)fβ(Yi|Xi)gX(Xi)

EI(Yi ∈ Ck)

=

K
∏

k=1

∏

i∈Vk

fβ(Yi|Xi)gX(Xi)

K
∏

k=1

{EI(Yi ∈ Ck)}−nVk .

They derived the likelihood function based on all N observations, both with

complete and incomplete information. Conditional on the component sizes

of the ODS being fixed, the stratum sizes for the nonvalidation sample,
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nV k
= Nk − nk, k = 1, . . . ,K, follow a multinomial law such that

Pr({nV k
}) =

N
∏K

k=1Nk!

K
∏

k=1

{EI(Yi ∈ Ck)}Nk .

Furthermore, the observations in the nonvalidation sample contribute the

following terms to the full-information likelihood function,

L2(β) =
K
∏

k=1

∏

j∈V̄k

fβ(Yj)/ {EI(Yi ∈ Ck)}

where the quantity fβ(Yj) =
∫

fβ(Yj |x)dGX (x) is the contribution from a

non-validation set member which involves an unspecified GX .

Conditional on the observed size nV̄k
, the observations in the nonvalida-

tion sample are independent of the observations in the validation sample,

which contribute the terms in L2 to the full-information likelihood. Thus,

after combining and simplifying these terms, the joint likelihood of the

two-stage study can be written as

L(β) =
K
∏

k=1

∏

i∈Vk

fβ(Yi|Xi)gX(Xi)
K
∏

k=1

∏

j∈V̄k

fβ(Yj).

Obviously, direct maximization L(β) is not possible since GX is unknown.

Recognizing the distribution of X can be written as

GX (x) = Pr(X ≤ x) =

K
∑

k=1

Pr(X ≤ x|Y ∈ Ck)Pr(Y ∈ Ck),

therefore, a consistent estimator of G(x) has the form

ĜX(x) =

K
∑

k=1

Ĝk(x)
Nk

N
,

where Ĝk(x) =
∑

i∈Vk
I(Xi ≤ x)/(nk + n0,k). Accordingly, a weighted

estimator for fβ(Yj) is

f̂β(Yj) =

∫

fβ(Yj |x)dĜX (x) =

K
∑

k=1

∑

i∈Vk

Nk

(nk + n0,k)N
fβ(Yj |Xi).

Then the estimated log likelihood function has the form

L̂(β) =
∑

i∈V

log fβ(Yi|Xi) +
∑

j∈V̄

log

{

K
∑

k=1

∑

i∈Vk

Nk

(nk + n0,k)N
fβ(Yj |Xi)

}

.
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The proposed estimator β̂ is the solution to the score equation

∂L̂(β)/∂β = 0. Estimates can be obtained by using the Newton-Raphson

iterative procedure. The following theorem is due to Weaver and Zhou14.

Theorem 2: Under some regularity conditions the proposed estimator β̂

is asymptotic normally distributed. That is
√
N(β̂ − β) →D N(0,Ω) as N → ∞,

where

Ω = I−1(β) +

K
∑

k=1

π2
k

ρkρV + πkρ0ρV
I−1(β)Σk(β)I−1(β)

where

I(β) = −ρ0ρV E

[

∂2 log fβ(Y |X)

∂β∂β′

]

−
K
∑

k=1

ρkρV Ek

[

∂2 log fβ(Y |X)

∂β∂β′

]

−
K
∑

k=1

[πk(1 − ρ0ρV ) − ρkρV ]Ek

[

∂2 log fβ(Y )

∂β∂β′

]

Σk(β) = VarX|Y ∈Ck

{

K
∑

k1=1

[πk1
(1 − ρ0ρV ) − ρk1

ρV ]EX|Y ∈Ck
[MX(Y ;β)]

}

and

MX(Y ;β) =
∂fβ(Y |X)/∂β

f̂β(Y )
− ∂fβ(Y )/∂β

(f̂β(Y ))2
× fβ(Y |X).

A consistent estimator for Ω can be constructed using sample quantities.

Specifically, define

Ω̂ = Î−1(β̂) +

K
∑

k=1

(Nk/N)2

(nk + n0,k)/N
Î−1(ζ̂)Σ̂k(ζ̂)Î−1(β̂),

where

Î(β) = − 1

N

∂2L̂(β)

∂β∂β′
, Σ̂k(β) = V̂ar(Xi:i∈Vk)

{

K
∑

l=1

nV̄ ,k

N

}

M̂Xi,l(β)

with

M̂Xi,l(β) =
∑

j∈V̄l











∂fβ(Yj |Xi)
∂β

f̂β(Yj)
−
f(Yj |Xi)

∂fβ(Yj)
∂β

[

f̂β(Yj)
]2











/nV̄ ,l.
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4. ODS with an Ordinal Outcome Variable and Auxiliary

Covariate

In this section, we consider inference for ODS design with ordinal outcomes.

For example, in CPP one ordinary outcome variable is preterm birth where

preterm is defined as delivery that occurs before 37 completed weeks of

gestation.

In this section, we will review some semiparametric methods for the

ODS scheme in which the outcome variable is ordinal.

4.1. Semiparametric Empirical Likelihood

Wang and Zhou12 extended the semiparametric empirical likelihood method

developed by Zhou, et al.15 to the case that there exists auxiliary covariate

information. They focused on the ordinal outcome variable.

Let Y be a categorical disease outcome with possible values 1, . . . , J ,

and X be a vector of covariates, X be a vector of covariates, X can consist

of either continuous or discrete variable. fβ(Y |X) is the conditional density

function of Y given X . Let W be an auxiliary covariate for X with possible

values 1, . . . ,K. Wang and Zhou12 considered a sampling scheme in which

the subsamples in the two-component study are observed from the K strata

defined by W . From each of the strata {k : W = k} in the study population,

one observes a SRS subsample, denoted as V0k, of size n0k. In addition, one

observes an ODS subsample from each of the strata {j, k : Y = j,W = k}
denoted as Vjk , having sizes n1,k, . . . , njk, respectively. Then the likelihood

of the two-component study with auxiliary information is

L =
K
∏

k=1

∏

i∈V0k

fβ(Yi|Xi)dG(Xi|Wi = k)
K
∏

k=1

·
J
∏

j=1

Pr(Yi = j|Xi)

Pr(Yi = j|Wi = k)
dG(Xi|Wi = k)

where G(x|w) is the cumulative distribution of X given W . Because of the

constraint Pr(Yi = j|w) =
∫

Pr(Y = j|x)dG(x|w), the above likelihood

involves G(x|w).

For ease of presentation, Wang and Zhou12 considered the case of a

binary outcome. Let Y be a binary disease outcome with 1 for the positive

outcome and 2 for the negative outcome. Without losing generality, let

W = 1, 2(K = 2) be a binary auxiliary covariate. Define Vk = ∪2
j=0Vjk with

size nk =
∑2

j=0 njk and V = ∪2
k=1Vk with the total study size n =

∑2
k=1 nk,
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πjk = Pr(Y = j|w = k). Then the logarithm transformation of the resulted

profile likelihood function has the form

l(ξ) = logL1(β) + logL2(β, η) = l1(β) + l2(β, η),

where

logL1(β) =
∑

i∈V

log fβ(Yi|Xi),

L2(β, η) = −
2
∑

k=1

∑

i∈Vk

logSk(Xi)−
2
∑

k=1

2
∑

j=1

njk logπjk−
2
∑

k=1

∑

i∈Vk

log{1+νkhk(Xi)}

where

Sk(Xi) =
n0k

nk
+
n1k/nk

π1k
Pr(Y = 1|Xi) +

n2k/nk

1 − π1k
P (Y + 2|Xi),

hk(Xi) =
Pr(Y = 1|Xi) − π1k

Sk(Xi)
and νk = λk − n1k/nk

π1k
+
n2k/nk

1 − π1k
.

Let ξ̂ be the maximizer for l(ξ). Denote

V (ξ0) =

k
∑

k=1

ρk

2
∑

j=1

ρjk

{∫

mjk(x, y, ξ)⊗2wjk(x, ξ)dydGk(x)

−
(∫

mjk(x, y, ξ)wjk(x, xi)dydGk(x)

)⊗2
}

U(ξ) = − 1

n
E{∂2l(ξ)/∂ξ∂ξ′},

where a⊗2 = aa′, ρk = nk/n and ρjk = njk/nk as n → ∞, w0k(x, ξ) = 1,

w1k(x, ξ) = Pr(Y = 1|X)/π1k and w2k = Pr(Y = 2|X)/(1− π1k),

mjk(x, y, ξ) =







∂ log fβ(y|x)
∂β − ∂Sk(x)/∂β

Sk(x) − νk∂hk(x)/∂β
1+νkhk(x)

djk − ∂Sk(x)/∂π1k

Sk(x) − νk∂hk(x)/∂π1k

1+νkhk(x)

− hk(x)
1+νkhk(x)







with d0k = 0, d1k = −1/π1k and d2k = 1/(1− π1k).

The following theorem is due to Wang and Zhou12.

Theorem 3: Under general regularity conditions, n1/2(ξ̂ − ξ0) →D

N(0,Σ(ξ0)) in a neighborhood of the true ξ0 = (β, π11, π12, π21, π22, 0, 0)′,

where Σ(ξ0) = U−1(ξ0)V (ξ0)U−1(ξ0). A consistent estimator of the
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variance-covariance matrix is Û−1(ξ̂)V̂ (ξ̂)Û−1(ξ̂), where Û and V̂ are ob-

tained by replacing the large sample quantities in U and V with their

corresponding small sample quantities.

4.2. Semiparametric Estimated Likelihood

Wang and Zhou12 extended the semiparametric estimated likelihood

method to allow some components of the covariate vector to be observed

for each individual in the population and there exists auxiliary information

for unobserved exposure variables. Especially, let {X,Z} be the vector of

modeling covariates, where X is an exposure variable that is observed only

when an individual is selected into the second stage and Z is a vector of

additional covariates that are always observed. In addition, let W be a dis-

crete or continuous variable, which contains auxiliary information for X .

Wang and Zhou13 considered a two-stage design in which the subsample

selection depends on both the outcome Y and a discrete variable C. Let

C be a discrete variable with L levels defined on the auxiliary covariate

W ; C = h if W ∈ (cl−1, cl] for l = 1, . . . , L. The lth interval, (cl−1, cl],

is defined by a pair of ordered real values where c0 = −∞ and cL = ∞.

They assumed Y ×C partitions the study cohort into a total K×H strata

such that the stratum {Y = k, C = l} contains Nkl subjects. The total

sample size in is N =
∑K

k=1

∑L
l=1 Nkl. For each stratum {Y = k, C = l}

of the first stage, one selects an outcome-dependent validation subsample,

denoted as Vkl, of size nVkl
such that individuals in Vkl will have their true

exposure variable X observed besides their Y and W , while the remaining

nV̄kl
= Nkl − nVkl

individuals, denoted as V̄kl, have only their Y and W

observed. For the {Y = k, C = l} stratum of the study population, the date

structure of two-stage sampling is

The first stage:{Yi, Zi,Wi} for i ∈ Vkl + V̄kl

The second stage: {Xi, Zi,Wi|Y = k, C = l} for i ∈ Vkl

By the same argument as in last section, after combining and simplifying

these terms, the joint likelihood of the two-stage study can be written as

L(β) =
K
∏

k=1

L
∏

l=1

∏

i∈Vkl

fβ(Yi|Xi, Zi)g(Xi|Zi,Wi)
K
∏

k=1

L
∏

l=1

∏

j∈V̄kl

fβ(Yj |Zj ,Wj).

Obviously, direct maximization L(β) is not possible. Note that some com-

ponents of (Z,W ) may be uninformative with respect to the distribution of
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X . Let S denote the informative components of (W,Z), in the sense that

G(X |Z,W ) = G(X |S) almost surely. Recognizing

G(x|s) =

K
∑

k=1

L
∑

l=1

πkl(s)Gkl(x|s),

where

πkl(s) = Pr(Y = k, C = l|s) and Gkl(x|s) = G(x|s, Y = k, C = l).

Further, a kernel estimator of πkl(s) is given by

π̂kl(s) =

∑N
i=1 I(Yi = k, Ci = l)Kh(Si − s)

∑N
i=1 Kh(Si − s)

and a kernel estimator of Gkl(x|s) is given by

Ĝkl(x|s) =

∑

i∈Vsl
I(Xi ≤ x)Kh(Si − s)

∑

i∈Vsl
Kh(Si − s)

where Kh(·) = K(·/h)/h and h is the bandwidth. Then one can construct

a weighted kernel-based empirical distribution estimator for G(x|s),

Ĝ(x|s) =
L
∑

l=1

K
∑

k=1

π̂lk(s)Ĝlk(x|s).

Accordingly, a weighted estimator for fβ(Yj |Zj ,Wj) is

f̂β(Yj |Zj ,Wj) =

∫

fβ(Yj |x, Zj)d

{

K
∑

k=1

L
∑

l=1

π̂kl(Sj)Ĝkl(x|Sj)

}

.

Then the estimated log likelihood function has the form

L̂(β) =
K
∑

k=1

L
∑

l=1

∑

i∈Vkl

log fβ(Yi|Xi, Zi) +
K
∑

k=1

L
∑

l=1

∑

j∈V̄kl

log f̂β(Yj |Zj ,Wj).

The proposed estimator β̂ is the solution to the score equation

∂L̂(β)/∂β = 0. The following theorem is due to Wang and Zhou13.

Theorem 4: Under some regularity conditions β̂ is asymptotically normal,

that is
√
N(β̂ − β) →D N(0,Ω) as N → ∞ where

Ω = I−1(β) +

K
∑

k=1

L
∑

l=1

π2
kl

ψkl
I−1(β)Σkl(β)I−1(β),
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where

I(β) = −
K
∑

k=1

L
∑

l=1

{

ψklEkl

[

∂2 log fβ(Y |X,Z)

∂β∂β′

]

+(πkl − ψkl)Ekl

[

∂2 log fβ(Y |Z,W )

∂β∂β′

]}

Σkl(β) = VarX,Z,W |Y ∈Ck,W∈Bl

·
{

K
∑

k1=1

L
∑

l1=1

(

1 − ψk1l1

πk1l1

)

πk1l1(Wi)EY |Y ∈Ck,W∈Bl
{MX,Z,W (Y )}

}

and

MX,Z,W (Y ) =
∂fβ(Y |X,Z)/∂β

f̂β(Y |Z,W )
− ∂fβ(Y |Z,W )/∂β

{f̂β(Y |Z,W )}2
× fβ(Y |X,Z).

By the same argument as in last section, one can construct a consistent

estimator for Σ.

5. Penalized Spline Estimated Likelihood

In this section, we consider nonlinear covariate effects in the ODS designs.

Most of the the results for ODS regression analysis are established in the

setting of linear regression. While in some applications, parametric models

are adequate to capture the underlying relationships between the response

variables and the associated covariates, most of the time they are chosen

simply for their convenience. For example, Zhou, You and Longnecker16

found that the relationship between IQ and EDU may be not linear. In this

section, we review the partially linear regression analysis for a two-stage

outcome dependent sample in which one allow the relationship between the

response and exposure variable to be unspecified16,7. By combining the pe-

nalized splines8 and the estimated maximum likelihood14,16 proposed a pe-

nalized spline maximum likelihood estimation (PSMLE) for the parametric

and nonparametric components of a partially linear regression model under

the population based two component ODS sampling scheme.

Assume that the conditional density of Yi given {Xi, Zi} belongs to a

canonical exponential family, i.e.,

fα(·),β(Yi|Xi, Zi) = exp{[Yiηi − b(ηi)]/a(φ) + c(Yi, φ)},
where a(·), b(·) and c(·, ·) are all known functions, φ is a dispersion param-

eter and ηi is related to the Xi and Zi by

ηi = α(Xi) + β′Zi.
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where α(·) is an unknown function. Similar to Section 3 we can construct

an estimated log likelihood for (Yi, Xi, Zi) which has the form:

L̂(α(·), β) =

K
∑

k=1

∑

i∈Vk

log fα(·),β(Yi|Xi, Zi) +

K
∑

k=1

∑

j∈V̄k

log f̂α(·),β(Yj |Zj).

The unknown univariate function α(·) can be estimated by a penalized

spline8,9. Assume that

α(x) = δ0 + δ1x+ . . .+ δmx
m +

κ
∑

k=1

δm+k(x− ϑk)m
+ ,

where {ϑk}κ
k=1 are spline knots. Define the spline coefficient vector δ =

(δ0, δ1, . . . , δm+κ)′ and spline basis

B(z) = (1, z, . . . , zm, (z − ϑ1)
m
+ , . . . , (z − ϑκ)m

+ ).

the spline model is α(z) = δ′B(z). The PSMLE of (β′, δ′)′ is defined as

(β̂′, δ̂′)′ that minimizes

Qλ,N (β, δ) = L̂(β, δ) + λδ′Dδ

where λ ≥ 0 is a penalty parameter, D is an appropriate positive semi-

definite symmetric matrix such that

δ′Dδ =

∫ max(Xi)

min(Xi)

[α
′′

(x)]2dx,

which yields the usual quadratic integral penalty (Ruppert 2002),

L̂(β, δ) =

K
∑

k=1

∑

i∈Vk

log fδ,β(Yi|Xi, Zi) +

K
∑

k=1

∑

j∈V̄k

log f̂δ,β(Yj |Zj).

The proposed estimator ζ̂ = (β̂′, δ̂′)′ of ζ = (β′, δ′)′ is the solution to

the score equation ∂L̂(β, δ)/∂ζ = 0. Estimates can be obtained by using

the Newton-Raphson iterative procedure.

The asymptotic property of the proposed estimator ζ̂ is summarized in

the following theorem (see [16]).

Theorem 5: Under some regularity conditions and λN = o(N−1), ζ̂ is

asymptotically normal, that is
√
N(ζ̂ − ζ) →D N(0,Ω) as N → ∞, where

Ω has the same form as in Theorem 3.
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6. Concluding

In this paper, we have reviewed several recently developed statistical mod-

eling procedures for data from an ODS scheme. These procedures include

semiparametric empirical likelihood and semiparametric estimated likeli-

hood. Semiparametric empirical likelihood can be used to deal with the

ODS scheme with an overall SRS sample and several supplemental samples

and the semiparametric estimated likelihood can be used to deal with the

ODS scheme with an overall SRS sample, several supplemental samples and

some information for the underlying population. These are robust methods

as they do not require parametric modeling of the underlying distribution of

covariates. Generally, an ODS design, coupled with an appropriate analysis,

can be a powerful alternative to commonly used sampling scheme.

A complexity in practical studies often involves the cluster- or center-

effects of the study subjects. In this situation a random effects model is

often used since it allows the investigators to interpret their results beyond

the limited participating centers. Zhou, You and Longnecker16 has extended

the semiparametric empirical likelihood method developed by Zhou, et al.15

to the setting with center-effects. However, there are no results for other

two semiparametric methods.

Another important case is that the response may be multivariate. An

example is the Collaborative Perinatal Project (CPP) about the study of

left and right hearing level. When the response is multivariate, extending

the above work to multiple responses is still an open problem.
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CHAPTER 6

AUTOMATED PEAK IDENTIFICATION

IN A TOF-MS SPECTRUM
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The high throughput capabilities of protein mass fingerprints measure-
ments have made mass spectrometry one of the standard tools for pro-
teomic research, such as biomarker discovery. However, the analysis of
large raw data sets produced by the time-of-flight (TOF) spectrometers
creates a bottleneck in the discovery process. One specific challenge is
the preprocessing and identification of mass peaks corresponding to im-
portant biological molecules. The accuracy of mass assignment is another
limitation when comparing mass fingerprints with databases. Under sur-
vey conditions, where the positions of the desired mass peaks are not
known beforehand, a TOF instrument requires a peak-picking proce-
dure to distinguish mass peaks from a slowly varying background. We
have developed an automated peak identification algorithm based on
a maximum likelihood approach that effectively and efficiently detects
peaks in a TOF spectrum. This approach produces maximum likelihood
estimates of peak positions and intensities, and simultaneously develops
estimates of the uncertainties in each of these quantities. Shifts in arrival
time of the same peak in different spectra have been observed. Using the
quantities from this peak detection procedure, different spectra can be
brought into alignment.

1. Introduction

Though great success has been made in genome sequencing, it has been

increasingly recognized that the genome, by itself, is not sufficient to un-

derstand the behavior and functions of cells, tissues, and biological systems.

A current research focus in molecular biology is to test the hypothesis that

113
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proteins, instead of DNA, give more complete information related to cell

function. Hence, proteins, the final product of genes, are receiving increased

attention and a new field, proteomics, which focuses on protein characteri-

zation, protein identification and protein function, has emerged.

Although two-dimensional gel electrophoresis and amino acid sequenc-

ing, which have been in use for decades, retain their important roles in bio-

chemical analysis, recent developments in mass spectrometry (MS) have

now made it an additional analytical tool in proteome research1,2. Mass

spectrometry can give accurate mass “fingerprints” which, in conjunction

with protein database searching, can rapidly provide information about

protein identification, protein function and protein post-translational mod-

ification (i.e., modifications after the polypeptide is synthesized).

In protein identification, matrix assisted laser desorption/ionization

mass spectrometry (MALDI-MS) and electrospray ionization mass spec-

trometry (ESI-MS) are often used because they can ionize large biological

molecules ‘softly’ without breaking most of them into smaller pieces.

To identify proteins, proteins are often digested by a protease such as

trypsin into peptides and mass fingerprints of the resulting peptides are

often measured by MALDI. The mass fingerprints of these peptides are

then compared with tryptic peptide masses that are theoretically gener-

ated from protein sequence databases using programs such as Sequest or

Mascot. These programs use sophisticated scoring algorithms to evaluate

the degree of match between the theoretically predicted mass spectra and

the experimentally generated spectra.

The high throughput, high sensitivity and quantitative analysis of mass

spectrometry make it possible to analyze hundreds of analytes over a large

mass range simultaneously even if the sample volume is small. If a biologi-

cal fluid, such as blood, is measured, a protein “profile” may be developed.

This leads to the potential for finding biomarkers that are overexpressed

or underexpressed or modified. Such biomarkers can then be used to dif-

ferentiate pathological states (disease) from normal states or to assess and

guide drug treatments. If desired, the discovered biomarker can be chemi-

cally extracted for further analysis. Progress has been made with this line

of cancer research as summarized in [3, 4, 5, 6, 7, 8].

All information that mass spectrometry provides is encoded by peaks

that occur at different masses with various intensities in the spectrum.

The number of peaks present varies with the sample under investigation

and the type of mass spectrometer used. If biological or organic samples

are investigated, the peak number can easily rise to a few hundred. In
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blood serum, it is estimated that there may be up to 10,000 proteins with

concentrations ranging over at least 9 orders of magnitude9,10. However,

the dynamic range of MS instruments is only 3∼ 4 orders of magnitude11,

thus careful biochemical sample preparation is critical. As more effort has

been devoted to improving the performance of MS instruments to provide

more detailed information about the sample, to increase resolving power,

and to lower the detection limit, the resulting mass spectra have inevitably

become more complicated. Very often, as in the biomarker discovery for

disease detection, it is not clear beforehand which peak is important. Thus

as many peaks as possible must be detected and characterized. This is also

true for protein identification. Compounding the problem of dense data

sets, roboticized sample preparation and computerized data collection allow

researchers to generate dozens, or hundreds, of such spectra in a few hours.

The analysis of such large raw data sets produced by survey mass spec-

trometers creates a bottleneck in the research process. To overcome this

bottleneck, the first step is to simplify a spectrum that contains thousands,

even millions, of data points down to only the essential information about

peaks, i.e., positions and intensities. In this way, a spectrum can be reduced

to only a few hundreds points that represent peak positions, intensities and

uncertainties in the peak positions and intensities.

We should emphasize that not only mass spectrometry faces this peak

detection problem. In fact, peak identification is a quite general problem in

many analytical instruments. A good automated peak detection procedure

should run rapidly, and give repeatable and accurate results. It should find

all significant peaks in a spectrum but not report false peaks. For some

biological samples, the concentration is very small and the spectrum has a

low signal-to-noise ratio, hence finding peaks is difficult. Missing peaks in a

spectrum, and reporting false peaks, can both potentially lead to discovery

of false “biomarkers.” This could lead to wasted further investment, which

could potentially be costly and time consuming.

A good peak detector should give accurate peak position assignments

and peak intensity estimations. The importance of accuracy in peak posi-

tion is obvious, it has significant influence on the database searching results.

Accurate peak intensity estimations are also important when quantitative

analysis is required. For example, when looking for proteins that are associ-

ated with disease, it is very possible that the proteins we are looking for are

common in both healthy and sick people but are overexpressed or under-

expressed. In this case, it is not a “yes or no” problem, but rather a “more

or less” problem, and the correct peak intensity estimation is essential.
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Another important factor is that the full peak identification procedure

should be automated as much as possible for high-throughput data han-

dling. An additional advantage of an automated peak detection algorithm

is that it minimizes human interaction and thus eliminates potential bias

introduced by investigators. It has been reported that in an inter-laboratory

investigation conducted by the NIST, the same samples were analyzed by

MALDI in different laboratories. It turned out that when comparing exper-

imental results from different laboratories, the reduced data showed more

differences than the raw data in some cases. The differences in the reduced

data were traced back to detailed decisions that investigators made when

the data were reduced12,13. This result highlights the need for adoption of

common, well tested and well understood, automated methods to avoid ad

hoc methods developed in each research group.

During the past few years, various algorithms have been developed for

peak detection. For example, Bryant et al. find peaks by cross-correlating

the spectrum with a predefined peak lineshape14; Gras et al. find peaks in

a spectrum by comparing a segment of the spectrum with a template which

describes the peak shape and isotopic pattern15.

While the above methods require knowledge about the peak lineshape,

Wallace et al. have developed an algorithm based on iterative segmentation

that makes no assumption about peak shape and does not need to smooth

the data before peak detection12. Another peak detection algorithm that

does not depend on the peak shape is due to Jarman et al.16 In their

approach, a spectrum is viewed as a histogram. In regions where there is

no peak, the spectrum is relatively flat and the intensity varies around

a constant. Hence, it can be viewed as a histogram for a noisy uniform

distribution. Deviation from this distribution will be considered evidence

of peak presence.

Efforts have also been made to smooth the spectrum to increase the

signal-to-noise ratio before attempting peak detection. For example, Morris

et al. developed an algorithm to detect peaks based on the mean spectrum

of the spectra from an ensemble of similar samples17. By averaging spectra

of similar samples, the noise is reduced. The mean spectrum can be further

smoothed by wavelet denoising.

Though all of the above peak identification procedures proposed rea-

sonable ways for finding peaks in a spectrum, none of them addresses the

confidence level in peak position and intensity assignments. Because of the

noise in the spectrum, there are always uncertainties associated with the

estimates made. These uncertainties represent the confidence level about
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the peak position and intensity assignments and occur in addition to the

instrument precision. A peak detection procedure that leads to a low peak

position confidence level would degrade the instrument performance that

researchers spent vast amounts of money and effort to improve.

When a peak is detected in a spectrum and compared with a database,

it is very rare to find an exact match. It is almost certain that a search will

return a list of possible chemical IDs around the detected peak. Knowing the

position uncertainty will help us to determine how many possible chemical

IDs we should seriously consider. The position uncertainty would also help

to determine whether peaks that appear at slightly different positions in

different spectra are in fact the same, which is a crucial step in disease

associated biomarker discovery where comparison among a large number of

spectra is involved.

To summarize, what we want is an automated peak detection procedure

which gives best estimates of peak positions and peak intensities along with

their uncertainty estimates.

2. Methodology

2.1. Understanding TOF-MS

Since the goal here is to develop an algorithm that detects peaks in a TOF-

MS spectrum accurately and efficiently, it is important to understand the

nature of mass spectrometry.

Mass spectrometry was started by J. J. Thomson, Physics Nobel laure-

ate of 1906, the discoverer of the electron. Since then, mass spectrometry

has become one the most useful tools in scientific research. A mass spec-

trometer differentiates different molecular/atomic ions, which are generated

from the sample under investigation, according to their mass-to-charge

ratio (m/z). It can also give information about the abundance of each

species in the sample.

Roughly speaking, a mass spectrometer consists of three important com-

ponents: ion source, mass analyzer and ion detector. The ion source gener-

ates ions from the sample; the mass analyzer separates ions based on their

mass-to-charge ratio; the detector records the separated ions.

“Time-of-Flight” refers to the way that ions are separated, i.e., the

mass analyzer. The concept of a TOF mass analyzer is quite simple. Ions

start with the same kinetic energy, e.g., after falling through a fixed elec-

trostatic field Φ, fly through a field-free tube, usually in vacuum, towards

an ion detector at the end of the tube. It is easily shown that the time that
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ions of charge Ze take to fly through the tube of length D is proportional

to the square root of mass:

Ek = ZeΦ =
1

2
mv2; v =

(

2ZeΦ

m

)
1

2

. (1)

Using vt = D, we find:

t =
( m

2ZeΦ

)
1

2

D. (2)

Modern ionization methods like laser desorption ionization (LDI), ESI,

etc., enable ions to be generated efficiently from liquid or solid samples. The

consequences are that increasingly heavier ions like peptides and proteins

can now be generated from a very small amount of sample. For example,

it has been reported that MALDI may achieve a detection limit as low as

zeptomoles (10−21 mol)18. Together with fast electronics that can work at

nanosecond or sub-nanosecond sample rates to record the mass spectrum,

this has led to rapid developments in instrumentation and applications of

TOF-MS. It is now widely used in chemistry, biochemistry, biology and

biomedical science.

Ideally, ions of a specific m/z would hit the detector after the same time

of flight, resulting in a sharp peak lineshape like a delta function of certain

height. In reality, however, because of the finite time during which the

energy source acts on the sample, sample surface morphology and complex

physical and chemical reactions that occur when energy is deposited onto

the sample, ions of the same m/z are formed at different times and positions

according to some initial time distribution and spatial distribution. They

also come off the sample surface with an initial velocity distribution of finite

width. Though there are ion optics strategies that attempt to correct for

these effects, such as time-lag extraction or reflectrons, ions still enter the

free drift region with velocity and time distributions of finite width, which

results in a finite peak width for ions of a specific m/z. We refer to the sum

of total ions of a given mass peak (integrated intensity) as the intensity of

that peak.

Very often, in a TOF instrument, such as MALDI-MS and secondary ion

mass spectrometry (SIMS), laser/primary ions which are very well focused

can be rastered over the sample surface for a number of irradiations in a

certain pattern. For each irradiation, only a small portion of the scanned
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area is irradiated. The sum of the output of each irradiation gives the final

spectrum.

The final spectrum can thus be viewed as consisting of measurements re-

peated many times under nominally identical conditions to gradually build

up a portrait of the probability distribution of arrival times for each m/z.

Though to derive the exact arrival time distribution is rather complicated,

it is clear that, for the sake of reasonable mass resolution, the velocity dis-

tribution at the moment that ions enter the drift region should be sharply

peaked around some nominal value v∗(m) with certain width σ(m). Then

from maximum entropy perspective, this would lead to the choice of a Gaus-

sian for the velocity distribution:

g (v) =
1√
2πσ

exp

(

− (v − v∗)
2

2σ2

)

. (3)

The choice of the maximum-entropy distribution is founded upon the

principle that it maximizes the number of possible outcomes of repeated

observations that are consistent with this assignment of the probability19.

Hence, it is the least biased assignment of the probability that is consistent

with our limited knowledge of the initial distribution. Transforming from

3 to the temporal peak shape, i.e., the arrival time distribution, requires

solving a Fokker-Planck equation, which defines how the probability density

function g evolves along the flying path. The most simple case involves the

ions entering the drift region and flying directly to the detector, receiving

no extra action. The arrival time distribution would be:

p(tk|v∗, σ) =
D√

2πσt2
exp

(

−
(

D
t − v∗

)2

2σ2

)

, (4)

where D is the flying distance.

The final spectrum is a summation of many independent, repeated mea-

surements of the sample under identical conditions and each measurement

is a sampling from a population characterized by the arrival time distribu-

tion p(tk|v∗, σ), which is determined by instrumental function and sample

surface. The ion counts between time tk and tk + ∆t, sk, in the final time

series {s}, is then independent of those ion counts that arrive at any other

time tj , even when tk and tj are associated with the same ion peak. This

independence will be a crucial assumption that underlies the entire analy-

sis we pursue. Any correlations in the signal are assumed to be due to the

electronics and should be taken into account as a part of the model used.
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2.2. Peak Detection

Having understood the nature of a TOF-MS spectrum, we are ready to set

out to detect peaks. We will overview the logic of the peak detection here,

for more details, please refer to [20].

But, before we go further to derive formulas for peak detection, let

us first introduce some notations that we will use throughout the paper.

We are going to use p(X) to denote the probability of some event X ; use

p(X |I) to denote the conditional probability of X given relevant background

information I at hand. We will, when talking about probability, always

condition the statements on the background information, as the ‘absolute

probability’ is not well posed. We will use p(X, Y |I) to denote the joint

probability of X and Y , conditioned on relevant background information I

at hand.

Since a mass spectrum usually consists of a large number of peaks, to

identify them, the first step is to put an observation window of carefully

chosen width N on the spectrum and thus isolate N data points in the

time series. We then compare the hypothesis H1 that there is a peak in

the observation window versus hypothesis H0 that there is no peak in the

window, i.e., just background noise. Once the comparison concludes that

there is a peak inside the window, we then estimate its position and intensity

via parameter fitting by the maximum likelihood method.

It is possible sometimes that there could be more that one peak in an

observation window. This can be addressed in several ways. An easy fix is to

choose an appropriate observation window width such that the window is

wide enough to conclude whether or not there is a peak in the window while

it is too narrow for more than one peak to be in the window. This works

fine when the instrument is of very high resolving power and peaks are not

severely overlapped. If the resolving power of the instrument is not very

high and peaks of nearby masses overlap resulting in a broader, fat peak, a

test on whether there are multiple peaks in the window will be necessary.

The logic of doing such a test would be similar to what we describe below

but more computationally involved. Interested readers may refer to [21].

For the moment, let us just consider two possibilities, i.e., there is either a

peak, or no peak.

From the previous study of a mass spectrum, it is easy to see that all

ions are subjected to the same instrumental function, peaks at different

m/z share the same characteristic shape, the peak lineshape at one m/z

and another m/z are similar up to a shift and rescaling. Let us assume that



May 23, 2007 19:38 WSPC/Trim Size: 9in x 6in for Review Volume chapter6

Automated Peak Identification in a TOF-MS Spectrum 121

we have some peak model, x = f(t − t0), which maximizes at t = t0, and

describes what the peak lineshape, i.e., the arrival time distribution, would

be. This function could be obtained either empirically or derived from laws

of physics/chemistry, but the bottom line is that it captures most of the

characteristics of a typical peak in the spectrum. We are going to use t0 to

label the position of the window.

Thus, for the window at t0, we have N isolated data points, s =

(s1, s2, s3, · · · , sN ), from the spectrum, and we have an N -component vec-

tor that describes the peak lineshape:

x = (x1, . . . xN ) ≡ (f(t1 − t0), . . . f(tN − t0)) . (5)

For convenience, let x be normalized to have unit area:

N
∑

k=1

xk = 1. (6)

This will only introduce a constant correction for the peak intensity

computed later.

The first thing we want to determine is whether or not there is a peak

in the window. This is a comparison between two hypotheses:

• H1 = There is a single peak in the window around t0 with the peak

lineshape described by x but of unknown intensity, embedded in

noise of assumed type. Deviations from this shape in the data are

due to noise. Let us call the associated peak-plus-noise model M1;

• H0 = There is no peak in the widow t0. The data are noise of the

assumed type. Let us call the associated pure-noise model M0;

We want to emphasize that for each model M0 and M1, we mean a

particular choice of peak lineshape x and noise type. If the noise is additive,

for example, the white Gaussian noise, then, hypothesis H1 is equivalent to

assume that the observed signal s within the window is given by:

sk = axk + ηk, k = 1, 2, . . .N, (7)

where a is an unknown intensity and η = (η1, η2 · · · ηN ) is a random process

of the assumed type. Similarly, for hypothesis H0, we have:

sk = ηk k = 1, 2 · · ·N. (8)
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If the noise is Poisson type, then H1 implies that the local rate rk is:

rk = axk + r0, (9)

where r0 characterizes the dark current.

We wish to see that, given the data s, whether H1 is more favorable or

H0 is. This can be done by computing the odds, i.e., taking the ratio of

two probabilities p(H1|s) and p(H0|s):
p(H1|s, t0)
p(H0|s, t0)

=
p(M1|s, t0)
p(M0|s, t0)

. (10)

If the odds is large compared to one, we can be confident that there is

a peak in the window, while if it is approximately one we interpret that

as saying there is only weak evidence of a peak in the window (because

a = 0 is a possible estimate of the peak intensity, which we interpret as ‘no

peak’). Therefore, one may set a threshold for peak detection.

In order to compute the odds in 10, let us invoke Bayes’ theorem:

p(X |Y, I) =
p(Y |X, I)p(X |I)

p(Y |I)
. (11)

Identify Y as data, s, observed in the window, and X as the model Mk:

p(Mk|s, t0) =
p(s|Mk, t0)p(Mk|t0)

p(s|t0)
. (12)

If there is no reason to prefer M0 over M1, then one should assign equal

prior probabilities, i.e., p(M0|t0) = p(M1|t0) = 1/2. Then, when take the

ratio in 10, the denominator would cancel and we have the simple result

that:

p(H1|s, t0)
p(H0|s, t0)

=
p(M1|s, t0)
p(M0|s, t0)

=
p(s|M1, t0)

p(s|M0, t0)
. (13)

Hence, we need to calculate the probability of observing the data s

given the model Mk, p(s|Mk, t0), a quantity called marginal likelihood,

or evidence, and is not conditional on any parameters. It can be computed

through marginalization.

Since, Mk implies a particular noise process, we may characterize it by

parameter λ (e.g., the variance σ and mean µ for a Gaussian process or the

‘dark’ current rate r0 for a Poisson process), and notice that ion counts at

different times are independent, then the likelihood function, i.e., the

probability of observing the particular count sequence s = (s1, s2 · · · sN )

given model Mk and its associated parameters (a, λ) is simply:
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p(s|a, λ, t0, Mk)

= p({s1, s2, . . . sN} |a, λ, t0, Mk)

=
N
∏

i=1

p(si|a, λ, t0, Mk).

(14)

p(s|Mk, t0) can then be computed by marginalizing the likelihood func-

tion 14 over the model parameters (a, λ) using an appropriate prior prob-

ability p(a, λ|Mk, t0):

p(s|Mk, t0) =

∫

dadλp (s|a, λ, Mk, t0) p(a, λ|Mk, t0). (15)

For each model class Mk, there will be a prior probability distribution

for the parameters. For example, for M1, i.e., there is a peak present, we

choose the prior:

p(a, λ|t0, M1) = p(a|t0, M1)p(λ|t0, M1), (16)

where we have assumed that prior for the intensity and that for the noise

are independent. If we know nothing about the values of a and λ, then

we choose uniform priors, or some other priors that are very broad in the

parameter space on the grounds that when we integrate against 14 only the

neighborhood of the maximum likelihood value of (a∗, λ∗) will contribute.

Up to this point, we have set up the concept of doing a model compar-

ison for the data in a window located at t0, all necessary terms have been

computed and the odds is ready to be computed. The window will then

slide across the spectrum point by point. When the window is sliding, the

window width will get wider accordingly if necessary because of instrumen-

tal reasons. For each window, the odds is computed. One can easily imagine

that as the window comes across a peak, the odds will increase, and will

decrease when the window passes a peak. One can then set a threshold for

the confidence we need to have to declare a peak to be detected.

Once we have detected that a peak lies within a certain region of the

time axis, we then fix the position and intensity of the peak using the

maximum likelihood method, i.e., maximizing the likelihood 14 over the

parameters (a, λ, t0). This requires solving the following equations, for a

window located at t0 with isolated data s = (s1, s2 · · · sN ):

∂L(a,λ,t0)
∂a = 0

∂L(a,λ,t0)
∂λ = 0,

(17)
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where L(a, λ, t0) is the natural logarithm of likelihood function 14:

L(a, λ, t0) = ln(p(s|a, λ, Mk, t0)). (18)

Solving equations 17 gives the maximum likelihood estimations of pa-

rameters (a∗, λ∗) for the window with a fixed t0 and data s. If the data

is informative, then the likelihood would sharply peak around the point

(a∗, λ∗) in the parameter space and die off quickly as we move away from

(a∗, λ∗). It is natural to Taylor expand 18 around (a∗, λ∗):

L(a, λ, t0)

≈ L(a∗, λ∗, t0)

+ 1
2

[

∂2L
∂a2 |a∗,λ∗(a − a∗)2 + ∂2L

∂λ2 |a∗,λ∗(λ − λ∗)2
]

+ ∂2L
∂a∂λ |a∗,λ∗(a − a∗)(λ − λ∗)

= L(a∗, λ∗, t0) + 1
2 (X − X∗)′∇∇L(a∗, λ∗, t0)(X − X∗),

(19)

where X =

[

a

λ

]

, and:

∇∇L(a∗, λ∗, t0) =







∂2L
∂a2

∣

∣

∣

a∗,λ∗

∂2L
∂a∂λ

∣

∣

∣

a∗,λ∗

∂2L
∂a∂λ

∣

∣

∣

a∗,λ∗

∂2L
∂λ2

∣

∣

∣

a∗,λ∗






(20)

is the Hessian matrix evaluated at (a∗, λ∗).

It follows from 19 that the leading term of the likelihood function in 14

is approximately:

p(s|a, λ, Mk, t0)

= exp [L(a, λ, t0)]

≈ exp
(

L(a∗, λ∗, t0) + 1
2 (X − X∗)′∇∇L(a∗, λ∗, t0)(X − X∗)

)

= eL(a∗,λ∗,t0)e
1

2
(X−X∗)′∇∇L(a∗,λ∗,t0)(X−X∗).

(21)

This implies that the likelihood function looks like a multivariate normal

distribution in parameter space, centered at (a∗, λ∗) with the following

uncertainties, if a and λ are not coupled:

σa =
(

−∂2L
∂a2 |a∗,λ∗

)−1/2

σλ =
(

−∂2L
∂λ2 |a∗,λ∗

)−1/2

.

(22)

Moreover, the approximation in equation 21 provides a possibly easy

way to compute the evidence in equation 15 in the sense that if the prior
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is independent of (a, λ), for example, a and λ are uniformly distributed in

some region (amin, amax) and (λmin, λmax), with substitution of 21 into 15,

the integration is readily carried out:

p(s|Mk, t0)

=
∫

dadλp(s|a, λ, Mk , t0)p(a, λ|Mk, t0)

=
amax
∫

amin

λmax
∫

λmin

dadλeL(a∗,λ∗,t0)e
1

2
(X−X∗)′∇∇L(a∗,λ∗,t0)(X−X∗) 1

amax−amin

1
λmax−λmin

= 1
amax−amin

1
λmax−λmin

eL(a∗,λ∗,t0) (2π)m/2√
|det[∇∇L(a∗,λ∗,t0)]|

,

(23)

where m is the dimension of parameter space. In the last step of integra-

tion, lower and upper boundaries of integration are extended to infinity.

This is valid if the likelihood function is sharply peaked around (a∗, λ∗)

and (amin, amax) and (λmin, λmax) are large enough such that contribu-

tions from outside these regions are negligible. Otherwise, the integral will

result in an error function. Note | det [∇∇L(a∗, λ∗, t0)] | is the determinant

of the Hessian matrix evaluated at (a∗, λ∗) and 1/
√

| det [∇∇L(a∗, λ∗, t0)] |
is proportional to the ‘volume’ within σa and σλ around (a∗, λ∗) in param-

eter space, i.e.

p(s|Mk, t0) ∼ p(s|a∗, λ∗, Mk, t0)
σa

amax − amin

σλ

λmax − λmin
. (24)

Notice that solving equation 17 only maximizes the likelihood with re-

spect to (a, λ), the maximizing of likelihood with respect to t0 is done

by computing the likelihood for each window position at (a∗, λ∗), i.e.,

p(s|a∗, λ∗, Mk, t0) and then find the maximum point of p(s|a∗, λ∗, Mk, t0)

with respect to t0. However, maximizing over t0 has a different logical char-

acter than the other parameters, because we are comparing different data

sets as we slide the window across the peak. The justification is based upon

the physical reasonableness of the approach: the width of the window is

large compared to the uncertainty in the position of the peak, hence near

the maximum of the likelihood, most of the data being compared comes

from overlapping windows. An alternative way of looking at this is that by

comparing p(s|a∗, λ∗, Mk, t0) at different t0 we are actually looking for a

window in which the data best support the model Mk.

Before we go any further to give an example, let us summarize the pro-

cedure: to detect peaks in a TOF-MS spectrum, we need to put a window of

appropriate width on the spectrum that isolates N data points. For these

N data points, we want to compare model M1 versus M0, in which we
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need to evaluate the odds 10 and compute the evidence in 15 by marginal-

izing the likelihood function 14 over the prior distribution p(a, λ|Mk, t0) of

parameters (a, λ). If the odds is large compare to one, it strongly suggests

that there is a peak in the window; otherwise, it is more likely that there is

no peak. Once the odds concludes that a peak is present, parameters may

be fit by maximizing the likelihood function 14, via solving equation 17.

Equation 23 provides an alternative way of computing the evidence if the

likelihood is strongly peaked in parameter space.

3. Example

Here, we give an example of finding peaks in a static TOF-SIMS spectrum.

In static TOF-SIMS, many primary ion pulses are used to probe the sample

surface and for each pulse only a few secondary ions are generated and

detected. The detector usually has sub-nanosecond time resolution and thus

counts each secondary ion impact, which implies a Poisson process. The final

spectrum is a summation of detected secondary ions from all primary ion

pulses. The peak lineshape x is derived using equation 4. The window width

N is chosen such that the window covers the region from the left half-max

to the right half-max of the peak lineshape x. This is a (rough-and-ready)

compromise between the desire to include as much data as possible in the

window to improve the sampling statistics and the realization that nearby

peaks may overlap and that our peak shape model is probably not very

good out on the tails of the peak. An example peak is shown in Fig. 1

(a), overlapped with appropriately scaled peak lineshape (black dots). The

natural log of the odds is plotted versus the window position t0 in Fig. 1(b).

It behaves as expected: when the window encounters the peak, it goes up,

reaches its maximum when the window is right on top of the peak, and then

decreases as the window leaves the peak. This allows a threshold to be set to

identify a region where we are confident about peak presence. In Fig. 1(c),

log of the maximized likelihood p(s|a∗, λ∗, M1, t0) for each window position

is plotted. The interpretation is the following: when the window is located

in a region with only noise, the likelihood remains high. This means it is

highly likely that only dark current is observed. As the window encounters

the peak, the data in the window begin to climb, the likelihood begins to

drop implying data in the window look like neither noise nor a centered

peak. As the window eventually overlaps the peak, the likelihood peaks

up and forms a spike. When the window leaves the peak, the likelihood

decreases again and then recovers as the window totally leaves the peak.
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Figure 1(d) is an expansion of Fig. 1(c) such that Fig. 1(a), Fig. 1(b) and

Fig. 1(d) have the same y axis coverage. Notice that both Fig. 1(b) and

Fig. 1(d) are plotted in log scale while Fig. 1(a) is plotted in linear scale,

which means the odds and likelihood are very sharply peaked in the region

where there is a peak and the likelihood is even shaper, which implies

extreme sensitivity to peak position. Since Fig. 1(d) is plotted in log scale,

one can fit the center part of it (inside the rectangle) to a parabola and

exponentiate it resulting in a Gaussian-like curve. Then, the center of the

parabola would be the center of the Gaussian and is the best estimation of

peak position. From the curvature of the parabola one can get the width of

the Gaussian that indicates the uncertainty of estimated the peak position.
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Fig. 1. Illustration of peak detection procedure: (a) an example peak overlapped with
peak lineshape (black dots); (b) log of the odds; (c) log of the maximized likelihood for
M1; (d) expansion of the log of the maximized likelihood.

Having detected peaks using the above method, it is found that there

are often shifts in arrival times for the same peak in different spectra, as

illustrated in Fig. 2(a), which shows the overlapped, but shifted parent peak

of Vasopressin in two different spectra, labeled spectrum 1 and spectrum 2.

The multiple peaks seen in Fig. 2(a) are the isotopic pattern. Let p1 and p2
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Fig. 2. Illustration of alignment: (a) shift of arrival time for the same peak in two
spectra; (b) the linear trend of the shifts with respect to peak arrival time; (c) and (d)
after alignment the shift is corrected.

be the estimated peak positions of the first isotopic peak in the two spectra

as indicated in Fig. 2(a), then the shift between this peak pair ∆p = p1−p2

is readily computed. Specifically, using the estimated peak positions, the

shifts between all paired peaks in the two spectra are easily calculated and

are found to increase as peaks arrive at the detector later, as shown in Fig.

2(b), where the shifts are plotted versus peak positions. It is evident from

Fig. 2(b) that the shifts, at least to a first order approximation, increase

linearly with peak position. A possible cause for this linearly increasing shift

may be the difference(s) in surface morphology which affects the kinetic

energy that the ejected ions gain during the acceleration stage. There are,

of course, many other possible reasons. Nevertheless, the observed linear

dependence implies that we can align one spectrum to another by a simple

linear operation. An example would be aligning spectrum 2 in Fig. 2(a) to

spectrum 1. More specifically, using the least squares method, ∆pi is fit to

a linear function of pi
2 as ∆pi = api

2 + b, where the superscript i means the

ith peak pair. The resulting a and b give the information about how the

time axis of spectrum 2 should be scaled and shifted to match spectrum 1.

This simple linear operation is found to effectively enable global alignment
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of two spectra. The result of this global alignment procedure is illustrated

in Fig. 2(c) and Fig. 2(d) for two different mass regions. It is clear that

after the linear operation on spectrum 2, peaks in two spectra have been

brought into alignment.

It has been shown that this alignment procedure is effective and easy to

carry out, as long as two spectra share some known common peaks. After

aligning two spectra based on these known common peaks, one may identify

if there are other common peaks that are not obvious before alignment. This

is performed by comparing the shift in peak positions in all possible peak

pairs with the estimated peak position uncertainties. If the shift is large

relative to the uncertainties, they will be treated as separate peaks that

show in one spectrum but not in the other. Otherwise, they are identified

as common peaks in both spectra. After aligning two spectra, this alignment

can be extended to multiple spectra in the same fashion.

4. Summary

The peak detection algorithm discussed here is based on a physical under-

standing of a TOF-MS spectrum and utilizes Bayes’ theorem. The peak

detection algorithm is automated and can be applied to a variety of TOF-

MS spectra, from counting experiments (TOF-SIMS) to instruments like

MALDI-TOF which integrate the ion signal rather than counting individual

ion. The noise characteristics are different in these devices. The algorithm

automatically provides estimates of uncertainties in the peak positions and

intensities. This information is used to verify that aligned spectra collected

at different spatial positions or at different times are properly aligned.
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CHAPTER 7

MICROARRAY DATA ANALYSIS IN AFFYMETRIX

GENE CHIP
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Microarray technology has advanced genomic research. Among various
platforms, Affymetrix gene chips have been the most widely used to
study thousands of genes simultaneously through mRNA expression.
Analysis of Affymetrix gene expression data requires multiple steps, in-
cluding data quality assessment, gene selection, and gene function classi-
fication. We describe a 2D image plot approach to assess data quality by
examining array comparability. This approach uses a percentile method
to group data, and then applies the 2D image plot to display the grouped
microarray data with an invariant band to quantify degrees of array com-
parability. The method provides an efficient way of visually identifying
incomparable arrays. Next, we describe a probe rank approach to select-
ing differentially-expressed genes. The probe rank approach uses rank
scores to normalize and analyze probe intensity to control for probe ef-
fect, and uses a filter of percentage of probe fold change to account for
cross-hybridization and alternative splicing. In the gene function clas-
sification, we describe an integrated bioinformatics tool to organize the
genomic information of selected genes systematically so that their func-
tional information is readily available for search objectives. The tool
integrates a series of major genomic databases, such as Affymetrix’s
NetAffx Analysis center and Entrez Gene database. The tool classifies
genes and generates readable web-based outputs for investigators to eas-
ily associate significant genes with biological pathways.

133
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1. Introduction

1.1. Data Quality

Microarray is a powerful technology to exploit DNA sequence

information1−5. Because of the dramatic reduction in labor, time, and costs,

this technique has become a popular tool for studying thousands of genes si-

multaneously. Gene expression profiling through this technology has great

promise in biomedicine. For example, the microarray technology can be

used in the identification of biomarkers, evaluation of prognoses, classifica-

tion of disease status, and prediction of clinical outcomes1,2,6,7. While this

technology has merits of genomic research, assessment of data quality poses

a unique challenge because of the enormous volume of data8,9,10.

There are at least two types of data quality assessment for Affymetrix

gene chip: internal and external data quality assessment. Examination

of internal data quality focuses on each gene chip, such as inspection of

the presence of artifacts, the use of spike-in genes to evaluate sample hy-

bridization efficiency, and the application of actin and GAPDH to detect

degradation of RNA and inefficient transcription. Affymetrix software (e.g.,

GCOS or MAS11,12) provides some metrics to evaluate internal data qual-

ity, such as scale-factors, percent-present calls, background, and 3’/ 5’ ratios

of housekeeping genes. In addition, there are other packages available in R

to graphically present these metrics for visual examination of data quality,

such as simpleaffy and affyQCReport13,14.

For external data quality, assessment of array comparability is an im-

portant issue because an analysis including incomparable arrays is likely to

generate invalid results. Unfortunately, issues of array comparability have

not been addressed adequately, either in literature or in practice. For ex-

amples, several studies have used the Pearson correlation and/or scatter-

plot to check degrees of consistency among arrays15,16,17. The Pearson

correlation is a quantitative measure to describe a linear relationship be-

tween two variables18. When the correlation is close to 1 (or −1), if one

variable increases, then the other variable tends to increase (or decrease).

Since data in the gene chips often show a nonlinear pattern, the use of

correlation may not be appropriate to examining array comparability. An-

other approach is scatterplot which is a graphical technique to depict the

relationship between two variables with one variable in the x-axis and the

other in the y-axis19,20. The tool has enjoyed its successful application to

graphical exploration. However, its capability to handle large datasets has

limitations. A huge dataset could hamper the application of scatterplot by
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rendering the data both misleading and inefficient. Specifically, its weakness

to distinguish the high and low densities for a large dataset could mislead

the human eye by overemphasizing the area of a few data points and down-

playing the area of high density. Scatterplot also becomes inefficient as data

points increase, because the tool often requires a longer time to complete

the display especially for data more than million points. The slow display

may cause the graphical window to freeze or halt the system when switch-

ing from one program window to another window on a PC. Moreover, the

resulting huge file (more than 10 MB unit for million points) can cause

inconvenience in delivering the information to clients either by email, by a

floppy diskette, or by printing.

1.2. Gene-Level Data Analysis

Affymetrix oligonucleotide gene chip has been widely used to study gene

expression profiling in the genomic community21−28. The Affymetrix array

uses a set of probes to interrogate a gene expression, where each array con-

sists of thousands of genes. An experiment routinely collects a huge volume

of information; the data structure can be quite complicated. Analyzing such

complex data poses a challenge to biostatisticians to develop an approach

to summarizing probe-level information that can truly reflect the level of

a gene expression adequately, while accounting for probe variation, chip

variation, and interaction effects. In addition, due to resource limitations

and/or sample availability, many microarray experiments, such as in vitro

studies, have only a small number of replicates, statistical inferences such as

the p-value significance testing or confidence interval analysis, which work

well with a large sample size, often break down and become impractical.

For example, MAS 5 employs the Tukey’s Biweight approach to sum-

marizing gene expression intensity from the modified perfect-match (PM)

and mismatch (MM) signals12. Dchip analyzes probe level intensities using

a multiplicative model to decompose each probe signal into a product of

gene expression index and probe-sensitivity index29. Robust multi-array

analysis (RMA) uses a stochastic-model-based approach to improve the

preprocessing of array data by taking into account the presence of optical

noise, nonspecific binding and probe-specific effects30. Specifically, RMA

employs a log scale linear additive model to analyze gene expression based

on PM intensities which have been background corrected and normalized.

The advantage for the use of RMA is the improvement of precision (com-

pared to large variation in MAS 5.0). However, this approach may cause
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some bias because its global background adjustment does not completely

remove nonspecific binding. A modified RMA, GeneChip RMA (GCRMA),

has been introduced to improve the accuracy of RMA without much sacri-

fice in precision31. This new approach combines the strengths of stochastic-

model algorithms and physical models.

These approaches can be referred to as the gene-level-based approach

in which the probe level expression data are summarized into gene level

measures, which then are used for a statistical analysis. One advantage of

this strategy is that the data dimensions are reduced to a manageable scale.

Standard statistical methods can be used to select differentially expressed

genes. For example, Significance Analysis of Microarrays (SAM) has

been widely used as a statistical technique for finding significant genes in

a set of microarray experiments32. This approach calculates a d-score to

each gene which is a ratio of fold-change versus a modified standard devia-

tion (standard deviation plus an exchangeability factor). When genes have

higher scores than an adjustable threshold, permutations of the repeated

measurements are employed to estimate the false discovery rate (FDR), a

measure for multiple comparison.

Since hundreds or thousands of genes are tested simultaneously, simply

using the significance level for a p-value cutoff without adjusting for multiple

tests will increase the chance of false positives. Traditional multiple testing

procedure is to control the family-wise error (FWE) rate33. However, the

FWE approach tends to screen out all genes except the ones with extreme

differential expressions when the number of genes becomes large, as in the

case of microarray experiments. The false discovery rate (FDR)32,34

offers a less stringent alternative because it uses the expected proportion

of false rejections as an error measure. No matter which criterion is used,

determination of the level of significance should depend on the objective of

the experiment. For instance, if the objective is to identify a small number

of truly differentially expressed genes, then a stringent criterion such as

controlling either the family-wise or the false discovery error rate may be

appropriate. On the other hand, for prediction purposes in genomic/genetic

profiling studies, the omission of informative genes in the development of

a predictive classifier generally has a much more serious consequence on

predictive accuracy than the inclusion of non-informative genes. In such

cases, the stringent control of false-positives may not be essential. In this

chapter, we will not consider multiple comparison adjustment.

There are some limitations in using gene-level data for analysis. For

example, gene expressions obtained from oligonucleotide arrays often show
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non-homogeneous probe effects (i.e., different expression intensities among

a set of probes). Such non-homogeneous probe effects shown in probe-level

expressions may not be reflected in gene-level summary data (see Fig-

ure 1). Moreover, expression differences in a two-group comparison could

vary among a set of probes. Some probes may have large differential expres-

sions whereas some probes yield similar expressions between the two groups.

The dependency of differential expressions on probes indicates an interac-

tion effect between probe and treatment effects. The interaction effect may

have potential biological implications, such as alternative splicing35. In this

case, gene-level data analysis may miss this target gene. Even if the gene is

identified, without the information of probe expressions, it is hard to judge

the occurrence of alternative splicing. In this chapter, we present a probe

rank approach to analyze probe level data.

Distribution of Probe Expression 
 (Probe Set ID= 1007_s_at in a HU133 2.0 Plus Gene Chip)
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Fig. 1. Heterogeneity of probe effects in a given gene expression. The probe intensity
shows large variation, ranging from 100 to 1100 with median 392 (denoted by the dashed
line) and geometric mean 376 (denoted by the dotted line). The gene expression using
RMA is 321 (denoted by the solid line).
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1.3. Gene Function Classification

In microarray studies, differentially expressed genes are identified based

on descriptive statistics or a test statistics cut-off (e.g., p-value, false dis-

covery rate, or fold change)36,37,38. The selected genes indicate their sta-

tistical significance of expression change, but researchers would also like

to know their biological relevance. Due to recent rapid developments of

genomic databases, the gene annotation information is now easily avail-

able from the internet. Various tools have been developed to incorporate

the information for gene expression profiling. There are many tools avail-

able for searching and browsing Gene Ontology (GO)39, such as AmiGO40,

EPGO41, GoFish42, Goblet43, and CGAP44. These are either web-based or

java-based tools to search for gene annotations. In addition, numerous tools

have been developed to map microarray data onto the GO structure, such as

GOstat45, eGOn46, DAVID47, GoMiner48, and FatiGO49. These tools can

be used to determine which GO categories are statistically significant for a

list of genes, and to suggest the corresponding biological areas to warrant

further study. These tools also provide detailed analysis results, such as a

hypothesis testing for each GO category, clustering of functionally related

genes within a set of genes, interactive graphics, and numerous listings of

GO annotations for one or many groups of genes.

Moreover, investigators are interested in gene-gene interaction in par-

ticular pathways. Various pathway databases and methods (e.g., KEGG,

GENMAPP, REACTOME, CYTOSCAPE, and BIOCARTA) are available

on the internet for pathway analysis50,51,52,53,54,55. These curated databases

are useful resources to study biological processes, such as the pathways of

intermediary metabolism, regulatory pathways, and signal transduction.

They also help investigators gain insight into the potential functions of

new genes. Since the databases contain massive amounts of information,

it becomes challenging for researchers to convert the enormous amount of

information into useful knowledge. Many approaches have been developed

to provide parsimonious models to analyze gene pathways. For example,

MAPPFinder and Pathway-Miner are bioinformatics tools to create global

gene expression profiles across biological pathways56,57. They classify genes

by integrating the gene ontology (GO) annotations based on metabolic,

cellular and regulatory pathways. Typically, a top list of genes selected

by one of these statistical methods is mapped onto pathways with gene

product association networks for genes that occur in the pathways. A z-

score or the Fisher exact test is then used to test statistical significance of
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pathways. The pathways can be ranked in accordance with the p-values.

Another rigorous approach for gene pathways is the chain reaction model.

The chain reaction model has been widely used in the engineering field to

simulate chemical reactions that occur in combustion devices such as jet

and rocket engines58,59. Its application to gene pathways can be done by

treating the regulated genes as a set of reacting species and calculating the

species changes as the gene expression changes. Since the chain reaction

model uses a set of chemical reactions to describe gene-gene interaction in

gene pathways, it provides an alternative for pathway level analyses such

that parametric studies of various pathways and genes-gene interactions

can be performed in an effective manner. Overall, these tools depict biolog-

ical interaction among genes and provide insights to study associations of

the biological pathways with research outcomes (e.g., disease versus non-

disease or treatment versus control). In this chapter, we describe a tool for

presenting the results in a simple, effective, and self-explanatory format to

facilitate the transition from data analysis to biological interpretation.

2. Methods

2.1. Data Quality Assessment

This subsection describes a 2D image plot to examine array comparability

and to assist verification of differentially expressed genes60. The 2D-image

plot efficiently sums up the information instead of a scatterplot. Moreover,

the 2D image plot can be used as a supplementary tool for gene selection.

By using an invariant band as an exploratory criterion, the 2D image plot

can be used to help validate whether a gene is differentially expressed.

2.1.1. 2D Image Plot

The 2D-image plot first reduces the data dimensions by grouping data using

percentile cutoffs. The percentiles of intensity in each array are used to form

k groups with x% for the interval length. That is, let Q0, Qx, . . . , Q(k−1)×x,

and Q100 denote the cutoffs for the k groups, where Qa represents the ath

intensity percentile and k × x = 100. For every two arrays, their percentile

cutoffs are used to form k× k groups. The relative frequency is then calcu-

lated to represent density in each subgroup (grid). Thus, the high volume

of data is reduced to k × k. The 2D image plot is then applied to the

grouped data. The percentile cutoffs of the two array intensities are used

as the first two-dimensions in the x-axis and y-axis, respectively. Density
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in each subgroup is used for the third dimension to display the distribution

of two array intensities. When two arrays have comparable intensities, the

2D image plot is likely to show a highly dense thin band along the diag-

onal percentile curve. We use the invariant band to reflect the degrees of

consistency between two arrays’ intensities.

2.1.2. Invariant Band

To construct an invariant band, we use m × x% deviation to build up

a lower boundary curve which is formed by data points (Qa, Qb) with

a − b = m × x, and an upper boundary curve formed by data points

(Qa, Qb) with b − a = m × x. Here (A, B) represents data position with

A on the x-axis and B on the y-axis. The parameter m is defined as

the number of x% unit to adjust for random variation in the grouped

data with 0 < m < k. For example, when m = 2 and x% = 5%, the

m × x%(= 10%) invariant band has a lower boundary curve formed by

(Q10, Q0), (Q15, Q5), . . . , (Q95, Q85), and (Q100, Q90), and the upper bound-

ary curve formed by (Q0, Q10), (Q5, Q15), . . . , (Q85, Q95), and (Q90, Q100).

A data point, (Qa, Qb), with |b−a| ≤ m×x will be covered by the m×x%

invariant band. Since the data point is in the tolerable distance away from

the diagonal percentile curve, Qa and Qb are considered to be compara-

ble. Therefore, if the majority of intensities between two arrays are located

within the invariant band, both arrays are likely to have comparable inten-

sity. Thus, given the m×x% invariant band, we compute the degrees of array

variation by a coverage rate, defined as the number of data points inside

the band divided by the total number of data points. A substantial por-

tion of data points outside the band implies a high degree of inconsistency

between two arrays. Such incomparability deserves further investigation of

data quality before analysis (Figures 2.1-2.2).

2.1.3. A Supplementary Tool for Gene Selection

Microarray data are often normalized prior to data analysis. However, the

methods used for normalization remain debatable because different nor-

malization procedures often result in selecting different gene lists. Neverthe-

less, difference in expressions between the two groups can be evaluated in

terms of the relative difference in the raw data, where the relative difference

in the raw data refers to the degrees of discrepancy of the gene intensity

between the control arrays and the experimental arrays. If there is no rel-

ative difference in the raw data, but a large absolute difference occurs in
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Fig 2.1 Fig 2.2 

Fig. 2. Figure 2.1 is a 2D image plot for two replicate arrays, A1-A2. The large discrep-
ancy of intensity can be seen by a wide band in the diagonal curve. In contrast, Figure
2.2 shows high degree of consistency between another two replicates (B1-B2).

the normalized data, then it is possible that such difference is caused by

over-correction in the normalization procedures. It is useful to verify a set

of selected genes in the raw data format (data before normalization) after

these genes are selected. The graphical approach described is useful and

efficient in displaying the relative difference visually by comparing to the

invariant band. We can use the invariant band as an exploratory rule to

examine whether a gene has differential expressions from one experiment

condition to another.

We illustrate using this approach as a supplementary tool for gene se-

lection by the example of a spike-in gene, CreX 5, in the four arrays E1-E4

(Figures 3.1-3.6). The 2D image plots using the 10% deviation invariant

band (i.e., m = 2, x% = 5%) are displayed to show distribution of probe

intensity for the spike-in gene. The pair-wise comparisons of the four ar-

rays show coverage rates of 83%-94%. The high coverage rates suggest these

arrays are comparable, and therefore the data are reliable for analysis. Ex-

amination of within group variations in Figures 3.1 and 3.6 shows that most

probe intensities of CreX 5 are located along the diagonal percentile curve.

This observation indicates that probe intensities of CreX 5 are comparable

between arrays E1 and E2 and between arrays E3 and E4 (i.e., small repli-

cate variation). On the other hand, examination of between group variation

in Figures 3.2-3.5 displays the majority of probe intensities far away from

the invariant band. That is, a large discrepancy of CreX 5 intensities occurs
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between arrays E1 and E2 versus arrays E3 and E4. The pattern suggests

that the gene CreX 5 has differential expression between the two different

experiment conditions (i.e., arrays E1 and E2 versus arrays E3 and E4).
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 Figure 3. 6

Fig. 3. Verification of differentially expressed genes. Figures 3.1-3.6 are the 6 pair-wise
comparisons between the four arrays, E1-E4. Figures 3.1 and 3.6 show smaller within
group variation. In contrast, large between group variation is graphically observed in
figures 3.2-3.5.

2.2. A Probe Rank Approach for Gene Selection

2.2.1. Rank Normalization for PM Intensity

Rank has been used as a normalization tool in microarray data analysis61,62,

but its use was limited to the gene level data. We extend its application to

the probe level data in oligonucleotide arrays. Rank avoids assumptions on

distribution of intensity. Rank also provides a better treatment for alleviat-

ing effects of extreme values. Our experiences from various microarray data

analyses have found that probe intensities in the oligonucleotide array data

often show a skewed distribution in extremely high intensities. In this case,

rank is more robust because the ranks of these extreme values are less in-

fluential than their intensity levels. In addition, unlike other measurements
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generated by complicated normalization, rank is a simple measure using

intensity order.

2.2.2. The Use of PM

Affymetrix oligonucleotide gene chips use a set of pairs of probes to in-

terrogate a given gene. Each pair consists of a perfect match probe (PM)

and a mismatch probe (MM). PM is used to detect mRNA concentration

of a target gene whereas MM is designed to identify background intensity

and cross-hybridization. Here we consider only PM probe level data be-

cause of potential biases introduced by the use of MM. For example, PM

is contaminated with background and cross-hybridization, so PM intensity

is supposed to be greater than MM intensity. However, it is common to see

a substantial portion of probe pairs with MM>PM (30% ∼ 50%) and a

high correlation between PM and MM30. Such patterns suggest MM also

partially measures RNA concentration. Subtraction of MM from PM likely

underestimates mRNA concentration. Thus, we consider PM intensity for

data analysis. We define PM rank as the rank of PM intensity over all

probes in the gene chip. Below we describe a rank approach (un-weighted),

and a weighted rank approach63,64.

2.2.3. Probe Rank Approach

Let Yi,j,k be a PM rank for the jth probe in the ith gene on array k. Assume

group A has arrays a1, a2, . . . , an1
and group B has arrays b1, b2, . . . , bn2

(e.g., treatment versus control groups). Consider a difference of two per-

centiles from the two groups.

D
(i,j)
A,B = (Path percentile of Sa − Pbth percentile of Sb )/n,

where Sa = {Y(i,j,a1), . . . , Y(i,j,an1)}, Sb = {Y(i,j,b1), . . . , Y(i,j,bn2)}, and n

represents the total number of probes in an array (e.g., there are 201,807

probes in a HG-u95A gene chip). Pa could be 0 (i.e., the minimum), and

Pb could be 100 (i.e., the maximum) when sample size is small (e.g., 2 or

3 in vitro study). D
(i,j)
A,B is a measure of difference between group A and

group B. The measure between group B and group A is defined similarly.

Denote the number of probes for gene i as Ji. A gene i is considered to be

an altered gene if
1
Ji

∑Ji

j=1 I(D
(i,j)
A,B > P

(i)
probe,(A,B)) ≥ P

(i)
gene,(A,B) or

1
Ji

∑Ji

j=1 I(D
(i,j)
B,A > P

(i)
probe,(B,A)) ≥ P

(i)
gene,(B,A),

where P
(i)
probe,E represents a probe level threshold with E as (A, B) or (B, A),
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P
(i)
gene,E represents a gene level threshold, and I is an indicator function.

The two thresholds, P
(i)
probe,E and P

(i)
gene,E , are pre-specified constants. The

probe level threshold P
(i)
probe,E provides a cutoff for probe discrepancy be-

tween two groups, and the gene level threshold P
(i)
gene,E provides a cutoff

for determining differential expressions.

2.2.4. Probe Weighted Rank Approach

The probe rank has limitations for detecting expression differences for genes

with extremely high intensity (e.g. in the 98th ∼ 100th percentile). For genes

within this range, their ranks tend to be similar. It becomes difficult to iden-

tify altered genes in this range because of a very small rank difference. In

practice, this situation is rare and likely occurs in a highly abundant gene.

The gene intensity is likely in the range of high percentile at each experimen-

tal group (i.e., treatment and control). Though the difference of intensity

between the two experimental groups may be substantial (e.g., > 2 fold for

treatment versus control), the rank difference remains relatively small. To

overcome the problem, we introduce a weighting factor to the rank. By giv-

ing the weighting factor, a gene with high intensity is likely to have its rank

score amplified substantially because the weighting factor is proportional

to the probe intensity. As a result, difference of the weighted rank scores

becomes large between treatment and control groups. Mathematically, the

weighted rank approach is the same as the rank approach except Yi,j,k

multiplied by a weight wi,j,k . The weight wi,j,k for the jth probe in the

ith gene on array k, is defined as log2(PMi,j,k)/
∑m

i=1

∑Ji

j=1 log2(PMi,j,k)

where PMi,j,k is PM intensity for the jth probe in the ith gene of array

k, m is the total number of genes in an array, and Ji represents the total

number of probes for gene i. The PM weighted rank Y
(weighted)
i,j,k becomes

Yi,j,k × wi,j,k. The probe weighted rank approach uses Y
(weighted)
i,j,k to com-

pute percentile difference (i.e., D
(i,j)
A,B and D

(i,j)
B,A ) and select differentially

expressed genes. By giving a larger weight on high intensity probes, the

probe weighted rank approach can increase the power of detecting expres-

sion differences for highly abundant genes better than the rank approach

does.

2.3. An Integrated Bioinformatics Tool

Analysis of gene selection often yields a long list of genes with detailed

information, such as gene expression fold change, p value, and numerous
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genomic data. Because of the massive quantity of data, investigators may

have difficulty sorting through the information. Below, we describe an in-

tegrated bioinformatics tool to summarize the long list of genes into a few

concise tables which allow researchers to extract relevant biological func-

tions.

2.3.1. Integration of Genomic Databases

It is important to have a reliable database in order to yield more ac-

curate results of gene function classification. Our current database col-

lects major gene databases and integrates them into one more compre-

hensive database for classification. The database includes the Affymetrix

gene database65, NCBI Entrez database66, GO database39, and the KEGG

pathway database67. For example, the database in the Affymetrix’s NetAffx

Analysis Center contains detailed genomic information for each probe set

in Affymetrix gene chips. This information includes probe sequences, gene

annotations, and various functional annotations. However, it is not very in-

clusive, and some important gene variables are not available, such as gene

alias (gene synonym, a non-standard name for a gene) and gene RIF (ref-

erence into function). For gene alias, it is common to see multiple names

published for a particular gene. So, without the gene alias information, it is

difficult to recognize a set of different names for the same target gene. For

gene RIF, it gives a concise phrase (not a keyword) describing a gene func-

tion with a reference to a specific MEDLINE record. The phrase provides a

good opportunity to enhance gene classification. Accordingly, inclusion of

the gene alias and gene RIF with the Affymetrix’s NetAffx database will

undoubtedly make the data more valuable. Since the Entrez Gene database

includes biological information for genes but with limited probe informa-

tion for the Affymetrix gene chip, integration of these databases will make

gene function classification more accurate.

2.3.2. Systematic Layout of All Selected Genes

For a list of significant genes, the integrated bioinformatics tool presents

a summary table to list the up- /down- regulated genes. Sorting the se-

lected genes into up- or down- regulation groups is a basic requirement

by biomedical researchers because an up-regulated gene has a different bi-

ological meaning compared to the same gene having a down-regulation.

To get detailed gene information, this summary table is linked to another

table where all up- (or down-) regulated genes are listed with their expres-
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sion data and brief gene description. This table provides testing statistics,

such as fold change and p value, for investigators to examine the degrees

of expression change. More importantly, the table is readable because it

gives only gene names and their description, allowing researchers to quickly

obtain biological functions for their interesting genes. This effective lay-

out is different from the standard spreadsheet output, which is hard to

read because of the mass of information. In addition, as investigators may

want to know detailed information of a particular gene, we provide a table

for each gene to give detailed annotations. Boxplots for gene-level data or

scatterplots for probe-level data will be displayed to show distribution of

expression differences when the data are provided.

2.3.3. Organization of Selected Genes by GO Annotations

One research interest in microarray experiments for the biomedical com-

munity is to understand the relationship between genes and their biological

functions. Because of a large number of selected genes, it is challenging

for investigators to identify particular gene functions associated with their

genes of interest. One efficient solution is to use GO annotations to sort out

the selected genes with similar genomic properties. The GO annotations

are structured, controlled vocabularies (ontologies) to describe gene prod-

ucts in terms of their associated biological processes, cellular components

and molecular functions. Since the GO terms are concise with consistent

descriptions of gene products in different databases, they can be used to

facilitate the process of gene function classification. The integrated bioin-

formatics tool collects all GO annotations of the selected genes and group

them by up- and down- regulation. In the application, the tool reports the

number of genes at each annotation. This frequency table allows investiga-

tors to efficiently explore possible biological functions. A high frequency of

genes in an annotation may indicate occurrence of a particular biological

functional activity. In addition, this table can be used as prior information

to specify relevant keywords for further study. This is especially useful for

researchers who are newly involved in genomic research or little background

in bioinformatics. Moreover, to further understand the genes in an annota-

tion, a summary table for these genes is given with their expression data,

testing statistics, and gene descriptions. This table provides concise and

useful information to study the relationship among these genes within the

same annotation.
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2.3.4. Classification by Keywords

Classification based on GO annotations presents useful information to study

gene association. However, the lists of annotations may remain large. In-

vestigators would want to narrow down the lists and focus on specific areas

of interest. In addition, GO tries to synchronize the description of genes,

but there are still wide variations in genomic terminology. Gene alias is an

obvious case. For example, the secreted phosphoprotein 1 (SPP1) is a gene

associated with ossification. It has various names, such as OP, Bsp, Eta,

Ric, Apl-1, and minopontin. These names are quite textually different from

the official name. Without the alias information, it would be difficult to

relate the various alias names to this gene if they are used. To effectively

correlate genes with keywords, we consider various variables, in addition to

GO annotations, to search genes associated with the keywords. The cur-

rent variables included in the search-database are GO annotations, gene

alias, gene name, gene description, KEGG pathway, and RIF. Given the

keywords, the tool will search the database and identify the genes associ-

ated with these keywords. A summarized table of keyword classification will

be given. Each keyword classification will include a set of genes associated

with the keyword. The generated table will help investigators expedite the

process of gene function classification.

2.3.5. Implementation

The approach has been written in R software68 (available on request by

email at dtchen@uab.edu). The outputs are a series of html files. Starting

with the main.htm file at the root directory, it will guide the user to the

whole set of regulated genes, GO classification, or keyword classification.

3. Data Example: A Prolactin Study

3.1. Background and Study Design

Prolactin (PRL) is a lactotrophic hormone synthesized and secreted by the

pituitary gland69. It has been indicated to be associated with regulation

of the outgrowth of new capillary blood vessels, a process referred to as

angiogenesis70. In particular, 23 kDa prolactin (23k PRL) has been shown

to be angiogenic while its proteolytic fragment 16 kDa prolactin (16k PRL)

has been shown to be antiangiogenic71. To address how signaling by 23k

and 16k PRL affects endothelial cell function, gene array analysis was per-

formed in the following settings. Recombinant adenovirus expressing the
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23-k PRL (Ad-23k PRL) and 16-k PRL (Ad-16k PRL) were generated

to infect human umbilical vein endothelial cells (HUVECs) for 48 hours.

HUVECs infected with Ad-luciferase (Ad-Luc) were used as the control.

Gene expression profiles were analyzed by using HG-u95Av2 gene arrays

(Affymetrix) containing 12,600 genes and ESTs. The numbers of replicates

were 2, 3, and 3, for the 23k PRL sample, the 16k PRL sample, and the

control sample, respectively.

3.2. Assessment of Array Data Quality

Data quality was examined using the 2D image plot for array comparability

between replicate arrays. Results indicated both the 16k PRL group and

the control group had one incomparable array with a coverage rate less than

80% (The results of the 16k PRL group are shown in Figure 4). Thus, data

analysis was performed with the exclusion of these two potential outlier

arrays.

Fig. 4. Assessment of array data quality. Examination of three arrays in the 16k PRL
group indicated the B array was not comparable to the other two arrays. Data patterns
between the B array versus the A and C arrays were widely spread with 1/3 data points
deviating away from the invariant band (constructed by two yellow curves). In contrast,
the band between the first and third arrays was thinner with coverage rate 97% (coverage
rate is defined the proportion of genes within the yellow upper and lower boundary
curves). This observation indicates the experimental problem in the B array.
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3.3. Gene Selection

We used the probe rank approach to analyze the prolactin data. Since it

was an in vitro study with a small sample size, we use Pa = 0 and Pb = 100.

The probe level threshold was set as 0.05 to calculate the probe percentile

difference and the gene level threshold was fixed at 50% to determine dif-

ferential expression for each gene.

The approach identified 65 regulated genes in the 23k PRL versus the

control group. Among them, 55 genes were down-regulated and 10 genes

were up-regulated. Similarly, 63 regulated genes (28 down-regulated and 35

up-regulated) were identified in the 16k PRL versus the control group. Here

we use the prolactin gene identified from the analysis results to demonstrate

the advantage of the probe level data analysis over the gene level data anal-

ysis in Figure 5. The probe expressions of this gene showed most probes

with differential expressions between the 23k PRL and the control groups.

There were 15 probes (probes 1-15) with percentile difference of weighted

rank greater than 0.67. This observation indicates a main treatment ef-

fect (homogenous differential probe expressions) occurred in the 23k PRL

group. In contrast, comparison of the 16k PRL arrays versus the control

arrays showed only 10 probes (probes 1-7, 10, 12, and 14) with differential

expressions. Specifically, probes 1-7 had a percentile difference of weighted

rank greater than 0.9. The result suggests an interaction effect (expression

differences depend on probes) occurred in the 16k PRL group. These obser-

vations are consistent with the gene structure. The 23k PRL is a wild-type

human prolactin in which its mRNA closely matches the probe set of the

human prolactin gene in the gene chip. As a result, the expression of the

prolactin gene was almost completely differential in the 23k PRL arrays.

On the other hand, 16k PRL has a quarter of the PRL molecule truncated

(i.e., alternative splicing). Thus, in the gene array analysis, only partial

probes showed differential expressions and this explains the occurrence of

interaction effect. Clearly, this example highlights the importance of probe

level data analysis. If the gene level data analysis is used, we may miss this

target gene. Even when we can identify this gene, it only indicates differen-

tial gene expression status without knowing probe expression, which may

reveal useful biological information.

3.4. Gene Function Classification

We used the integrated bioinformatics tool to perform gene function

classification. The regulated genes were grouped according to similar
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Fig. 5. Prolactin gene profile in probe level expression. The figure is the comparisons
of prolactin gene’s probe expression among the 23K PRL, 16 PRL, and the control
groups. In this figure, a solid curve (-o-) represents probe level expression for the 23K
PRL, a dashed curve (−∆−) is for the 16 PRL, and a dotted curve (-+-) is for the
control group. Most probe expressions were differential in the 23k PRL arrays, but only
about half of the probes showed expression changes in the 16k PRL arrays. The results
indicate homogenous differential probe expressions occurred in the 23k PRL group, but
an interaction effect (expression differences depend on probes) occurred in the 16k PRL
group.

biological functions. Here we used the comparison of 16 PRL versus the

control groups for illustration. Figure 6.1 is the main output of analysis

results. It shows the number of regulated genes (28 down-regulated and

35 up-regulated) in the first table of the figure. The numbers of biological

functions related to gene expression change ranged from 8 to 60 in the sec-

ond table. For example, there were 42 annotations of GO biological process,

and 8 pathways involved in the down-regulated genes. A click of the down-

regulated cell in the table of total number of selected genes leads to the

Figure 6.2, where the 28 down-regulated genes are listed with gene name,

fold change, and gene description. The table allows investigators to refine

gene selections based on various criteria, such as fold change. Since there

may be multiple probe sets listed with the same gene names, the table was

sorted by gene name to provide a descriptive assessment of likelihood of

true differential expression. If a gene name appears many times, the chance
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of its being false positive is likely low. For example, the gene chip has two

probe sets with the same gene name, ANGPT2. Both of them (i.e., 1951 at

and 37461 at) were selected here as down-regulated genes with 1.58 ∼ 1.59

fold changes. This information can be used to indicate the likelihood of true

differential expression. If investigators want to know more detailed infor-

mation of the gene (e.g., DKK1), a click of this gene’s probe set ID leads to

Figure 6.3, which lists most important gene properties, such as alias, locus

location, summary, GO annotations, pathway, and reference into function.

A scatterplot was given to display data distribution (e.g., gene expressions

were well separated for the gene, DKK1). A link to NCBI’s Entrez Gene

database is given by clicking the Entrez gene ID if investigators want to

know most of the detailed information.

To check the results of gene function classification, we can click the

cells of the table of “Number of Annotations” in Figure 6.1. For example,

Figure 6.4 illustrates the results of pathway classification for the down-

regulated and up-regulated genes. A higher frequency may indicate higher

likelihood of the corresponding pathway involved in the experiment. A click

of a frequency in the cell of the table will generate a table of listed genes. For

example, there are 3 selected genes associated with cell cycle in Figure 6.5,

which displays gene expression data, gene name, and gene description to

check fold change.

3.5. RT-PCR Validation

Using the integrated bioinformatics tool, the results of gene function classi-

fication led us to identify 6 genes strongly associated with cell proliferation

in Table 1. Five of the 6 genes were verified by quantitative RT-PCR. Four

of the five genes were confirmed to be differentially expressed in the 23k

PRL group. Only one gene, TB1, was misclassified as an up-regulated gene.

In the 16k PRL group, only one gene (Asparagine) was a false negative.

4. Discussion

In summary, microarray data analysis is a complicated process. It requires

multiple steps in order to yield more comprehensive results. First, we have

to check data quality. We describe the 2D image plot to ensure the high

quality of microarray array data for analysis. Once we have good quality of

data, we perform gene selection to identify differentially expressed genes.

We present a probe rank approach to analyze probe level data which has the

advantage over the gene level data analysis, such as detection of alternative
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Fig. 6.1 Main output of the integrated bioinformatics tools. Fig. 6.2 List of all down-regulated genes. 

Fig. 6.4 Pathway classification. 

Fig. 6.3 Display of properties of individual gene. 

Fig. 6.5 Regulated genes associated one gene pathway.

Fig. 6. The Integrated Bioinformatics Tools.

splicing. After we identify a set of regulated genes, we need to classify

and interpret the regulated genes based on biological functions. We use the
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Table 1. Quantitative RT-PCR for the 6 Selected Genes.

Gene Name Probe Set ID Gene Description 23k PRL vs. Luc 16k PRL vs. Luc

PRL 878 s at Prolactin —* —*
IGFBP-5 38650 at insulin-like growth

factor binding protein 5 2.3** 6.5**
CHOP 39420 at DNA-damage-inducible

transcript 3 2.2** 4.5**
Asparagine 36671 at Asparagines synthetase 5.4** 2.9∆

TB1 37178 at Hypothetical protein
BC017169 1.1∆ 1.14∆

DKK1 35977 at Dickkopf homolog 1
(Xenopus laevis) 0.4** 0.4**

Note.
*: The prolactin gene was not included in quantitative RT-PCR test because it was
confirmed in the Kim et al.’s study.48

**: Differential expression by microarray.
∆: Non-differential expression by microarray.

integrated bioinformatics tool to extract the relevant biological information

and effectively present the results so investigators can easily convert them

into useful knowledge.

4.1. Quality Control

The use of 2D image plot is to ensure the high quality of oligonucleotide

array data for analysis. The 2D image plot uses percentile methods to group

data, and then applies the 2D image plot to display the grouped data. Fi-

nally, a coverage rate based on an invariant band is computed to quantify

degrees of array comparability. The 2D image plot is limited to pair-wise

comparisons. When the number of arrays increases, this pair-wise compar-

ison strategy may become impractical. However, in practice, we found it

is not a major issue because, most times, the use of one or two reference

arrays is enough for us to screen out incomparable arrays. Alternatively, we

can average all arrays as the reference. However, this may introduce a con-

founding effect between the average and array incomparability, especially

when the bias among arrays is nonlinear.

4.2. Gene Selection

We use the percentile difference of probe weighted rank to determine the

status of probe expression change. When sample size is small, such as the
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datasets in the data example, the minimum probe rank percentile in one

group is compared to the maximum in the other group. This measure is an

alternative to mean or median difference, and is potentially useful in basic

medical research, especially for in vitro studies where the study is often

well-controlled, and the sample sizes are quite small (usually 2-4). For a

larger sample size, the difference of probe rank percentile could become

median difference. The probe level threshold could be a pre-specified cutoff

based on the percentile difference or a p-value (e.g., p < 0.05) from the

Wilcoxon Mann-Whitney test (a test for median difference between two

groups).

In the data analysis of the prolactin study, the use of the probe weighted

rank approach leads us to identify a subset of genes strongly associated with

cell proliferation. Quantitative RT-PCR confirmed most genes. Moreover,

an alternative splicing form of the prolactin gene was identified. By taking

these observations together, the probe weighted rank approach provides an

alternative for analyzing oligonucleotide gene array data.

4.3. Integrated Bioinformatics Tool

The integrated bioinformatics tool can be used to extract relevant biological

functions associated with gene expression changes efficiently, and generate a

simplified web-based output for investigators to expedite their research. The

tool has the following unique features: (1) Integration of genomic database.

The database is sufficient for researchers to study the association of reg-

ulated genes with biological functions and pathways. Classification based

on GO annotations and KEGG pathway in the database lists all biological

processes, cellular components, molecular functions, and pathways involved

in the regulated genes. Utilizing the corresponding frequency tables to indi-

cate the likelihood of particular biological functional activities, investigators

can easily identify pathways associated with regulated-genes. In addition,

the integrated database includes useful variables, such as gene alias, gene

name, gene description, KEGG pathway, and RIF, to identify genes associ-

ated with keywords of interest; (2) Effective presentation of analysis results.

The results of data analysis are presented in an easily readable format. The

outputs are self-tutorial and easy to operate with very basic knowledge

of using internet web browsers. Starting with a simple main HTML file,

users can easily browse the results from the whole set of regulated-genes

to a single differentially expressed gene. For all regulated-genes, the tool

will group them into subgroups based on their differential expressions, GO
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annotations, pathways, or special keywords. For each sub-group, the tool

summarizes genes in the group with valuable biological information to study

relationships among these genes. For a single regulated gene, the tool details

the gene information such that researchers can have a better understand-

ing of this gene. A link is provided in the HTML file to connect to NCBI

database for further examination. To visualize gene expression change, var-

ious graphical outputs are given, such as scatterplots for probe level data

and boxplots for gene level data.
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High throughput mass spectrometry (MS) has been motivated greatly
from recent developments in both chemistry and biology. Its technology
has been extended to proteomics as a tool in rapid protein identifica-
tion and is emerging as a leading technology in the proteomics revolu-
tion. However, key challenges still remain in the processing of proteomic
MS data. It is substantial to develop a comprehensive set of mathe-
matical and computational tools for proteomic MS data analysis. The
processing goal is to effectively and correctly obtain the true informa-
tion from the raw MS data for further statistical analysis. To provide a
final peak list for future statistical analysis, the whole processing proce-
dure usually takes the following steps: data registration (calibration), de-
noising (smoothing), baseline correction, normalization, peak detection,
and peak alignment (binning). In this chapter, a wavelet-based approach
for data denoising is discussed and a so-called projecting spectrum bin-
ning (PSB) method for proteomic MS cross samples peaks alignment is
introduced. Applications to real MS datasets for different cancer research
projects in Vanderbilt Ingram Cancer Center show that the approach is
efficient and satisfactory.

1. Introduction

Proteomics is the study of the function of all expressed proteins. Mass

Spectrometry (MS) technology makes it possible to study various biological

samples at their protein level. High-throughput Mass Spectrometry, includ-

ing Matrix-Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-

TOF) and Surface-Enhanced Laser Desorption/Ionization Time-of-Flight

159
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(SELDI-TOF) mass spectroscopy, is becoming a leading technology in find-

ing disease-related proteomic patterns in tissue, blood, or other biological

samples. The data generated by this technology holds invaluable informa-

tion leading to the disease diagnosis and treatment1,22,26. However the raw

mass spectrometric data reflects not only the protein information but also

noise information. The data processing goal then is to effectively and cor-

rectly obtain the useful information from the MS data for bimarkers discov-

ery. Biomarkers are biological features such as molecules that are indicators

of physiologic state and also of change during a disease process. At the pro-

tein level, distinct changes occur during the transformation of a healthy cell

into a neoplastic cell, including altered expression, differential protein mod-

ification, changes in specific activity, and aberrant localization, all of which

may affect cellular function. Identifying and understanding these changes

is the underlying theme in cancer proteomics28.

Mass spectrometers are ion optical devices that produce a beam of

gas-phase ions from samples. They sort the resulting mixture of ions ac-

cording to their mass-to-charge (m/z) ratios or a derived property, and

provide analog or digital output signals (peaks) from which the mass-to-

charge ratio and intensity (abundance) of each detected ionic species may

be determined. Masses are not measured directly. Mass spectrometers are

m/z analyzers. The mass-to-charge ratio of an ion is obtained by dividing

the mass of the ion (m), by the number of charges (z) that were acquired

during the process of ionization. The mass of a particle is the sum of the

atomic masses (in Dalton) of all the atoms of the elements of which it is

composed.

Mass spectrometers attempt to answer the basic questions of what and

how much is present by determining ionic masses and intensities. MALDI-

TOF MS is emerging as a leading technology in the proteomics revolution.

Indeed, the year 2002 Nobel Prize in chemistry recognized MALDI’s ability

to analyze intact biological macromolecules. Though MALDI-TOF MS al-

lows direct measurement of the protein “signature” of tissue, blood, or other

biological samples, and holds tremendous potential for disease diagnosis and

treatment, key challenges still remain in the processing of MALDI MS data.

As shown in Figure 1, MALDI MS data sets from the same sample have

obvious intensity noises, baseline artifacts, and m/z location variations.

Mass spectrometry based proteomics experiments usually comprise a

data generation phase, a data preprocessing phase, and a data analysis

phase. In early applications of MALDI-TOF analyzers, the mass resolution

was poor and the mass accuracy was limited. A mathematical model of
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Fig. 1. Raw Data Sets of MALDI-TOF MS.

systems employing uniform electric fields is presented in [29], which allows

“exact” calculations of flight times as functions of mass-to-charge ratio,

initial velocity and position, applied voltages, and instrument geometry.

The whole mathematical processing procedure of MS signals can be

roughly divided into two steps. First, in the “preprocessing” step, we at-

tempt to recover from the time of arrival data, as accurately as possible,

the “true” signal reflecting the mass/charge distribution of the ions origi-

nating from the sample. The preprocessing step includes registration, de-

noising, baseline correction, and deconvolution. In the preprocessing step,

these operations are performed independently of any biological information

one seeks to extract from the data. The second type of processing attempts

to represent the data in a form that facilitates the extraction of biologi-

cal information. This step involves operations such as dimension reduction,

feature selection, clustering, and pattern recognition for classification. Re-

cently, many efforts have been put into preprocessing of proteomic MS

data using mathematical tools2,15,25, statistical techniques3,7,31,32, as well

as computing skills and machine learning methods4,10,30.

In the following, we focus on the preprocessing phase using mathemat-

ical tools such as wavelets and a new developed peak alignment method,

namely the projecting spectrum binning (PSB).
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The paper is organized as follows: mass spectrometric data preprocess-

ing procedures, GG procedure – Gaussian smoothing and Genetic algorithm

for final peak binning, WW procedure – Wavelet denoising and Window-

based peak alignment, as well as the WG procedure – Wavelet denoising

and Genetic algorithm for peak binning, will be briefly reviewed in the next

section. In section 3, the projecting spectrum binning (PSB) method will

be introduced and a new MS data preprocessing procedures using wavelet

denoising and PSB, named as WPSB procedure is proposed. Comparison

results are shown in Section 4. Final remarks and questions for future study

are discussed in the final section.

2. Review of MS Data Processing Procedures

2.1. The GG procedure

The GG procedure was based on Gaussian smoothing and Genetic algo-

rithm for final peak binning, which was adopted by Vanderbilt Medical

Center and can be described as follows.

Step 1, Raw data smoothing and calibration: Use a Gaussian smoothing

function provided by the Data Explorer software (Applied Biosystems, Fos-

ter City, CA). After smoothing, each spectrum was internally calibrated to

minimize the inevitable mass shifts with a single sample as well as between

different samples. The spectra were calibrated using four fixed m/z values.

Step 2, Baseline correction: A piecewise linear function interpolates the

lowest intensity within a series mass windows. The baseline corrected spec-

trum is generated by subtracting the area under the fit.

Step 3, Normalization: Compare each spectrum to one pre-specified ref-

erence spectrum. For each comparison, the common peaks between two

spectra are identified. Calculate the “intensity ratio” for each peak in com-

mon. Fit a linear equation to these ratios. Remove those ratios bigger that

two standard deviations from the fit. Then fit the remaining intensity ratios

again. Rescale the intensity for each spectrum by multiplying the correspon-

dence value of the fitted equation.

Step 4, Peak selection: Based on a pre-specified S/N ratio, decide the

number of peaks for each spectrum27.

Step 5, Peak alignment (binning): Genetic Algorithm (GA) is cus-

tomized to search the best bins for combining the peaks represent the same

protein. A search started to find the optimal window width and location

if it can maximize
∑
n2, n is the number of peaks within that window,

while the maximum width of a window is constrained by 3 + 0.001×Mass
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in Dalton18.

After alignment (binning), the GG procedure provides a p × n matrix

(p rows of mass/charge (m/z values for n samples) for further statistical

analysis. Each row of the final matrix stands for intensities at a certain m/z

value for n samples. The m/z value actually represents the median value

of a binning range involved in GG procedure.

2.2. The WW procedure

The WW procedure applied wavelet denoising with window-based peak

alignments, which was adopted by MD Anderson Cancer Center. The word

“wavelets” means “small waves” (the sinusoids used in Fourier analysis

are “big” waves), and in short, wavelet is an oscillation that decays quickly.

Mathematically, wavelets usually are basis functions of an L2 space that

satisfy so-called multiresolution analysis requirements6,9,16. In recent years,

wavelets have been applied to a large variety of signal processing and image

compression19. Also, there is a growing interest in using wavelets in analysis

of biomedical signals and functional genomics data14. The major steps of

WW procedure can be summarized in the following.

Step 1, Raw data calibration: The calibration was made based on the

three known proteins8 as well as applying linear interpolation method.

Thus, the raw MS data have the common mass for all different spectra

at the very beginning of the processing.

Step 2, Wavelet denoising (Smoothing): To implement the undecimated

discrete wavelet transform (UDWT), and choose a Daubechies wavelet of

certain degree.

Step 3, Baseline correction: Estimate the baseline by fitting a monotone

local minimum curve to the denoised spectra.

Step 4, Normalization: Normalize each spectrum by dividing the total

ion current (summing the observed intensities) in a certain mass/charge

region and then multiplying by the arbitrary constant of 10000. It is mo-

tivated by the idea that the total ion current is a surrogate for the total

amount of protein being measured in the sample.

Step 5, Peak detection: Peak detection has two stages, first, identify

and quantify peaks by simply identifying the local maxima in a processed

spectrum and recording their heights and locations; second, refine the list of

potential peaks found from the first stage by considering the signal-to-noise

ratio S/N greater than a pre-specified value.

Step 6, Peak alignment (binning): To match (align) peaks across spec-
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tra takes two rounds: the first round only considers the set of peaks with

S/N greater than a pre-specified value m1, pool the list of detected peaks

and combine peaks that differ in location by no more than 7 clock ticks or

in relative mass by 0.003, thus the peaks classified within one range cor-

responds to the same protein. The second round is going back to add the

peaks greater than another pre-specified value m2 (m2 ≤ S/N ≤ m1) to

above list only if they fall within the same range limits (7 clock ticks or

0.003 relative mass) of above peaks just identified.

2.3. The WG procedure

The WG procedure is a relatively new method by using wavelets for de-

noising and genetic algorithm (or PSB) for final peak alignment. The WG

procedure combines different portion of WW and GG procedures and the

rationale for proposing it are explained below.

First of all, denoising (smoothing) is an especially important step for de-

tecting true peaks. The GG procedure used Gaussian smoothing, a default

machine software for smoothing and it may have problems, for example,

closely overlapping peaks may not be distinguished27. On the other hand,

the WW procedure applied wavelet smoothing, a very flexible and powerful

method for the signal process like MS data. Wavelet denoising normally

starts by transforming from the time domain to the wavelet domain and

then estimating the variability of the coefficient. Then it sets up a threshold

parameter and applies either soft or hard thresholding, and finally, trans-

forms back to the time domain. More descriptions on advantages of wavelets

methods for MS data processing and medical data analysis can be found in

[5, 8, 14, 15].

For the whole MS data processing procedure, the final peak alignment

is an inevitable step due to the drift in the locations of spectral peaks from

on experiment to another even though they represent the same biochemical

substance across different spectra. Nevertheless, the quality of alignment

method directly affects the final p × n matrix for further statistical anal-

ysis. The alignment (binning) idea of WW method (combining the peaks

that differ by no more than a certain clock tick or a certain relative mass)

sounds reasonable, but in practice, it might be problematic. For example,

consider 20 consecutive peaks found by peak selection. If any two adja-

cent peaks meet the above criteria for combining peaks, we might end up

combining all 20 peaks together. In applications (see section 4), it actually

shows the implementation algorithm by the WW procedure having trou-
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ble distinguishing distinctive peaks for certain spectral data. As a result, it

may combine some different peaks together in a wide bin range. While the

alignment (binning) algorithm of the GG procedure, or the projecting spec-

trum binning (PSB) method, can effectively identify these distinct peaks.

The basic idea of PSB is to projects all MS peaks, from the view of the

top of MS spectra, to a plane, in which one MS spectrum is one row and a

MS peak is one dot on the row. These dots represent the peak distribution

in spectra. The peak distribution has been used to determine bin location

and bin width. The results show that PSB bins peaks both effectively and

efficiently (see next section for details).

If we adapt the strengths of WW and GG procedure, then we have a

sketch of the WG procedure:

Step 1 to 5: adopt the WW procedure for (1) raw data calibration, (2)

wavelet denoising, (3) baseline correction, (4) normalization, and (5) peak

detections.

Step 6: adopt the GG procedure for final peaks alignment (binning).

In the next section, we intruduce the projecting spectrum binning

(PSB) method. PSB is an equivalent yet more efficient method for peak final

alignment than that of the GA binning method. It gaves similar results with

less computation time.

3. Projecting Spectrum Binning Method

Now, let us discuss the cross sample alignment of MS data. For data samples

from patients, as it is mentioned above, the data first has to be preprocessed

with the proper background subtracted, normalized, and the different frac-

tions combined to obtain one integrated spectrum for each patient. The

integrated spectrum is then binned or aligned so that the data for all pa-

tients in the sample is formatted in a matrix with one index representing

the patients and the other index the peaks (discrete m/z’s corresponding

to the mean of the m/z of each bin).

The spectral data sets that result from MS experiments consist of the

sequentially recorded numbers of ions arriving at the detector (intensity)

corresponding to the mass-to-charge ratio (m/z) values. Although variation

occurs in MS data, the following two assumptions are commonly used in MS

data processing and analysis: (i) The peaks from a protein in the spectra

should be positioned in an extremely tight mass range; (ii) the peaks, lo-

cated in an extremely tight mass range in the spectra, should be generated

by a protein. According to these two assumptions and after the peak selec-



June 7, 2007 10:52 WSPC/Trim Size: 9in x 6in for Review Volume chapter8

166 D. Hong, H. Li, M. Li, and Y. Shyr

tion process, for a given appropriate binning location and binning window,

the bin could contain all peaks of a protein in spectra. These peaks in the

bin can be assigned a mass ID of the same protein.

As a powerful searching method, Genetic Algorithm (GA) has been

implemented in many search problems (see [11] for instance). Genetic

algorithms are randomized optimization methods that need minimal in-

formation on the problem to guide the search. They use a population of

multiple structures, each one encoding a tentative solution, to perform a

search from many zones of the problem space at the same time12. GA was

customized to search bins for mass spectra in [6]. Although it performs

very well, GA Binning (GAB) is a computation-intensive method and the-

oretically obtains only a local optimum solution in binning search because

the search space in GAB is incompact18. In [20], though it tried to avoid

binning the peaks in the data processing, the binning idea actually is pre-

sented by using a mean spectrum. The bin locations are determined by

the peaks in the mean spectrum. One of its drawbacks is that the mean

spectrum usually cannot represent the peak distribution of spectra in an

acurate manner. It is desired to find a simple binning method, by which bin

locations are determined by two criteria: (1) the peaks selected in one bin

should meet the requirement for a certain signal to noise (S/N) ratio, and

(2) one bin combines only the peaks that differ by no more than a certain

clock tick or a certain relative mass. This binning method actually uses a

constant initial bin width. Some clustering techniques are applied in [5] to

determine a so-called center spectrum for a binning procedure. In the fol-

lowing, we present a new binning method, named the projecting spectrum

binning (PSB). This method mainly consists of two major steps: spectrum

projection and bin determination. Comparing PSB with GAB, the results

show that PSB bins peaks both effectively and efficiently. Binning approach

reduces the dimension of data significantly.

Given a mass window with window location and window width, the

peak frequency in the mass window for a given set of spectra is easy to be

calculated. Moving the mass window with a certain shifting unit from lower

mass to higher mass, we obtain a set of mass-frequency pairs (x, n), where

the mass x, can be the middle value of the mass window and the frequency

n, is the peak frequency of the spectra in the mass window. In other words,

if w(x) is the window width associated with the mass value x, then the

peak frequency f of the spectra can be expressed as f(x) = f(x,w(x)).

According to the assumptions mentioned above, it is obvious that a protein

would generate a peak in the mass-frequency spectrum and a peak in the
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mass-frequency spectrum may represent a protein. If the peak distribution

of the spectra in a small neighborhood is about symmetric, then f(x) will

have a bell shaped graph in the neighborhood with a peak at x.

Since f(x) projects a stack of mass spectra, which can be viewed as

a 3D image, into a 2D mass-frequency graph, we call the peak frequency

function f(x) the projecting spectrum. Following the notation in [5], we

define maximum bin width function to determine the window width as

w(x) = a + b × x, where a and b are parameters and x is the current

mass value. The window width can be a function other than the linear

format. To generate a projecting spectrum in real application as the mass

window moving along the whole mass range, we need to discretize the mass

range by defining a so-called shifting unit s(x), which is usually a function

of x. In practice, the parameters a and b, along with the shifting unit

function are determined by empirical experiences. They can be defined using

more sophisticated statistical estimating models. In the shifting process,

we use the middle mass value x of the window to represent the window

location. Associating with each window, the peak frequency is calculated

as the number of peaks in the window across all spectra. Thus, each window

has a pair of mass value and peak frequency. In this way, we obtain a discrete

data set, the projecting spectrum of the given spectra.

Figure 2 shows an example of a segment of projecting spectrum with

mass range from about 5,000 Da to 6,000 Da. The entire spectrum has about

19,087 mass-frequency pairs generated using our empirical parameters with

mass ranging from 2,000 Da to 25,000 Da. From the projecting spectrum,

we can see the peak locations clearly. Afterwards, a binning procedure can

be carried out.

In a mass-frequency spectrum, peaks can be quite close to each other.

To prevent two bins from being too close, we add a restriction that if the

distance of the two peaks is less than certain shifting units, they will be

combined as a one-bin. The peak location of the projecting spectrum is

considered as the middle point of each bin. Following this, the bin range is

then extended to certain shifting units from the binning center. The binning

width should be controlled by an upper bound, which is usually called the

maximum window width function, w(x). If overlapping occurs between two

bins, the dip point between the two peaks is the splitting point of two bins.

In the projecting spectrum, there are many small peaks representing a

small percentage of peaks that appeared in the spectra at those points. In

most cases, those small peaks of projecting spectrum represent the “noisy”

peaks in the spectra. Therefore, we need to set up a percentage cut-off level
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Fig. 2. Part of the mass-frequency spectrum. The mass range is from 4950Da to 5994Da.

to remove the “noisy” bins. Again, the cut-off level can be an empirical

value or it can be determined by statistical estimation. In our procedure,

we use the cut-off level of 5%. That is, if the number of samples is 100, then

the bins with 5 peaks or less will be considered as invalid bins.

Experimental results show that PSB reaches about the same goal as

GAB does. In GAB, the initial step and crossover operations contain ran-

dom factors. Therefore, the result can not be exactly reproduced. Compared

with GAB, PSB has at least the following two advantages: First, PSB con-

sistently generates the same bins on a given dataset, while GAB creates

slightly different bins in each run. Second, PSB is more efficient than GAB.

In particular, when the size of spectra increases, time for PSB consumes

has little change, while time for GAB increases vastly. Figure 3 shows the

bins, generated by PSB, with the mass peak distribution of the spectra.

We plot the peaks as dots in the graph and each row as a representive of

a spectrum. The x-axis is mass value and y-axis is the labeled spectrum

number.

The proposed PSB method gives a fast and accurate binning process

for high-throughput mass spectrometry data. It organizes and expresses

MS peak data in an innovative way, which makes binning process simpler

and easier. It performs well with profiles from different research projects
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Fig. 3. Part of mass peak distribution with bins generated by PSB. The total number
of spectra is 382.

and is insensitive to various parameters in preprocessing steps. In the PSB

process, there is no precondition of bin location or bin width. The bins

are generated completely from the distribution of peaks in spectra. The

method introduces the window width function and the shifting unit. They

are the tools to characterize the spectrum data. The parameters used in

the functions of window width as well as the shifting are experimental. The

method only involves the presence of peaks, not the intensities of peaks

and the peak determination. Also, the PSB results are not affected much

by small variation in the data registration.

Remark 1. PSB can be used to generate a more reasonable mean spec-

trum compared to the one derived in [20]. The direct comparisons between

the projecting spectra between normal tissues and cancer tissues should be

very helpful in biomarkers discovery as well.

Remark 2. Similar to many other computer algorithms, one concern

of PSB is the stability of its performance when the size of the spectra is

exceeding to certain number, say 700. In this case, we suggest adding in

some statistical sub-sampling techniques when one applys PSB.
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The PSB software package is available for downloading on the website:

http://www.vicc.org/biostatistics/. Combined with the wavelet denoising

for MS proteomic data, the preprocessing procedure using PSB is called

the WPSB procedure for MS data preprocessing.

4. Applications

4.1. Data

The MS data sets for this application are obtained from the mass spec-

trometry laboratory at the Vanderbilt Medical Center. The 20 replicate

spectra are from two mice with 10 spectrum each. These two mice can

be treated as identical, both having caecal tumor but no liver metastasis.

The mass/charge range we studied is from 4000 Da to 25000 Da. Figure 1

showed these raw spectral data before any preprocessing procedure.

4.2. Results

We applied the GG, WW and WG procedure to this spectral data respec-

tively. The results are summarized in the following plots and tables.

Fig. 4. Results of GG procedure for 20 MS data sets after denoising, baseline correction,
and normalization.
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Figure 4 shows the Gaussian smoothed, baseline corrected and normal-

ized data by the GG procedure for the mass/charge range from 4000 Da

to 25000 Da. Figure 5 displays the wavelet smoothed, baseline corrected

and normalized data by WW and WPSB methods within the mass/charge

range 4000 Da to 25000 Da. The results for WW and WPSB method are

the same until this step.

Fig. 5. Results of WW or WG procedure for 20 MS data sets after denoising, baseline
correction, and normalization.

From these two plots, we may agree that the wavelet method did a

better job in terms of denoising since it filtered out more noise than that of

the Gaussian smoothing method. It clearly demonstrated that the wavelet

is much more powerful in removing the noise components.

This application, at this stage, showed that WPSB (WW) procedure is

better than the GG procedure.

Figure 6, 7, and 8 show the final bin range of the selected peaks for

the mass/charge range from 4000 Da to 25000 Da by the GG, WW and

WPSB procedures respectively. In these plots, we use a pair of parentheses

to represent a bin and a “?” to stand for the peaks detected. The peaks

within a ( ) will be treated to represent the identical biological substance.
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We use the median value of this range to stand for the mass/charge for all

the peaks all in this range. Thus, we are able to provide a p× n matrix.

Fig. 6. Peaks and the bin ranges of 20 MS data sets after GG binning.

In Table 1, we made some summary statistics for these methods. For

these 20 spectra, the alignment method by the GG procedure provides

258 bins, which means it identified 258 peaks. Equivalently, the alignment

method by the WW procedure identified 60 peaks, and that of WPSB pro-

cedure identified 674 peaks. Obviously, it showed that the window-based

alignment by the WW procedure generated relatively wide bin range com-

pare to the PSB alignment method.

Figure 9 gives comparisons on the alignment results for the WW and

WPSB procedures. To take a closer look at this, we only plotted the

mass/charge range between 10000 Da and 12000 Da in the figure. We can

see that the bins from WW procedure (with ( ) in red color) could not able

to separate some distinctive peaks, while the bins from WPSB procedure

(with ( ) in blue color) look very reasonable.

This application shows that the WPSB procedure has advantages among

these procedures.
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Fig. 7. Peaks and the bin ranges of 20 MS data sets after WW binning.

Fig. 8. Peaks and the bin ranges of 20 MS data sets after WG or WPSB binning.
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Table 1. Results of GG, WW and WPSB

Summary
Three procedures

GG WW WPSB

Number of peaks class 258 60 474

Number peaks in one class

(minimum) 2 1 2

(1st Quintile) 2 15 4

(Median) 5 20 6

(Mean) 7.63 17 7

(3rd Quintile) 12 20 10

(Maximum) 20 20 20

Range of the bin

(minimun) 3.6 0 1.89

(1st Quintile) 9.53 37.75 6.89

(Median) 12.85 122.5 9.51

(Mean) 13.87 200 11.34

(3rd Quintile) 17.37 257 14.35

(Maximum) 30.89 1382 32.33

5. Discussion and Future Study

The new procedure, WPSB, provides a potential framework for the feature

extraction method in general. Within this framework, every step has some

room to improve. For example, in the future, different types of wavelets may

be adopted for different types of MS data; more flexible semi-parametric

functions may be considered to fit the baseline; and normalization part

requires more understanding on the biological knowledge to come up a

better schema for spectra comparisons.

It is important to ascertain whether or not the peaks being found by the

algorithm correspond to real phenomena in the spectra. So for searching

a criteria for evaluating a procedure, we need to relay on the biological

knowledge. Statistical results alone may not be adequate to demonstrate

it as a reasonable method or not. Therefore, the idea of evaluating the

methods itself is still an open research topic.

The new generation of mass spectrometers produces an astonishing

amount of high-quality data in a brief period of time, leading to inevitable

data analysis bottlenecks. Automated data analysis algorithms are required

for rapid and repeatable processing of proteomic MS data. Toward this

end a mathematical algorithm is presented in [17] that automatically lo-
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Fig. 9. Comparison binning results of WW (upper-row) and WPSB (lower-row) proce-
dures.

cates and calculates the area beneath peaks. As mentioned in [21], a broad

range of mass spectrometers are used in MS based proteomics research.

Each type of instrument processes a unique design, data system and per-

formance specifications, resulting in strengths and weaknesses for different

types of experiments. However, the original raw data formats produced by

each type of mass spectrometer also differ. A so-called mzXML format was

introduced, using instrument-specific converters, as an open, genetic XML

(extensible markup language) representation of MS data21. To find a com-

mon mathematical representation of MS data signals, we assume, in a very

recent discussion13, the ion cloud as
∑

k αkδβk
and model the output MS

data f after the TOF instrument I as

I(
∑

k

αkδβk
) =

∑

k

αkψk(· − βk).

We hope to separate the output signal into two parts:
∑

|αk|≥ε

αkψk(· − βk) +
∑

αk<ε

αkψk(· − βk)

and expect the second term to be used to remove both baseline and noise.

If the peak locations are determined, say by the mean spectrum method20,
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then in such a model, the most challenge part will be the selection of the

“bump” functions ψk and to determine the the parameters αk and βk.

Though some basic ideas and tools are mentioned in [15], many challenges

remain in the area of research along this direction.
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Asthma remains one of the most common chronic childhood illnesses
and a leading cause of hospital admissions. Our clinical objective was
to assess the effect of gender, birth characteristics and neonatal respi-
ratory disorders on pre-school asthma rates of (i) hospitalization and
(ii) days hospitalized. The proportional rates (PR) model is a flexible
adaptation to recurrent event data of the well-known Cox proportional
hazards model. The PR model is related to Poisson regression, but re-
laxes the often untenable assumption that the events within a subject
are independent. Despite having been originally proposed over a decade
ago, examples of the use of the proportional rates model in the medical
literature are quite rare. Moreover, little attention has been devoted to
the extension of the PR model to accommodate covariate effects which
vary over time. We evaluate the non-proportional rates model through
simulation. We then apply the non-PR model to asthma data from a
retrospective birth cohort study.

1. Introduction

Asthma remains one of the most common chronic childhood illnesses, and

a leading cause of hospital admissions19,22. Rates of hospitalization for

asthma have increased in several countries during the last two decades

including Canada11,27 and the United States26. Childhood asthma usually

181
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begins in infancy or early childhood18; most children that suffer the disease

have their first asthmatic episode before their third birthday9. Pre-school

children hospitalized for asthma reportedly account for a disproportion-

ately large fraction of total acute pediatric asthma admissions and tend to

present the most difficult long-term disease management problems9.

Several previous studies have examined the relationship between neona-

tal conditions and asthma. For example, Schaubel et. al.21 conducted a

retrospective cohort study that examined the effect of a wide variety of

suspected risk factors for pre-school asthma incidence using a large health

administrative database. Of current interest are risk factors for asthma-

attributable hospitalizations and days hospitalized, since both quantities

reflect disease severity as well as health care costs. Since the correlation

among within-subject hospitalizations was not of direct interest, a marginal

model was chosen for our analysis.

Lawless and Nadeau13 proposed a general class of marginal means mod-

els for recurrent event data. The class can accommodate time-dependent

effects. However, to the best of our knowledge, the appropriateness of

asymptotic results in finite samples in the presence of time-dependent ef-

fects has not been evaluated.

In this investigation, we examine the finite-sample properties of the

non-proportional rates model through simulation. We then assess the

effect of birth characteristics on hospitalizations and days hospitalized for

pre-school asthma using semi-parametric marginal rates models with time-

dependent covariates. The remainder of this article is organized as follows.

In Section 2, we describe the data sets used in this study. In Section 3, the

marginal rates model is described, with comparisons made to alternative ap-

proaches. A simulation study to evaluate the non-proportional rates model

is presented in Section 4. An analysis of the asthma data set is presented

in Section 5. The article concludes with a discussion in Section 6.

2. Data Sources

Data were obtained from Manitoba Health, a provincial health administra-

tion organization in Canada. Health care in Canada is publicly funded and

hence is, in theory, universal. For example, residents do not pay when they

go to the hospital. Manitoba was among the first provinces in Canada to

assign a unique identifier to residents at birth; the identifier is known as the

Personal Health Identification Number (PHIN). Through the PHIN, it is

possible to track utilization of various health services (e.g., physician office
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visits; hospital admissions) longitudinally.

Two Manitoba Health files were utilized: hospital admission/discharge

records and a birth information file. From the birth file, data were obtained

on variables which were suspected of being associated with an increased risk

of childhood asthma, such as low birth weight, prematurity and neonatal

respiratory conditions (e.g., respiratory distress syndrome (RDS), transient

tachypnea of the newborn (TTN)). The birth and hospital files were linked

using the PHIN, assigned to each child at birth. Children in the (fiscal) 1984

birth cohort (i.e., born between April 1, 1984 and March 31, 1985) were

followed retrospectively until March 31, 1989 for hospitalizations resulting

from asthma (ICD-9: rubric 493). All newborns had at least 4 years of

observation, each being censored some time between ages 4 and 5. Further

details pertaining to data collection and record linkage are available in

Johansen et. al.11. We now discuss the statistical model of interest.

3. Model and Methods

We begin by defining the requisite notation. Let N ∗

i (t) be the total number

of events for subject i (i = 1, . . . , n) as of time t. The censoring time for

subject i is given by Ci and we define τ = max{C1, . . . , Cn}. The covariate

vector, which may contain time-dependent elements, is denoted by Zi(t).

The observed number of events is denoted Ni(t) = N∗

i (t ∧ Ci), where

a ∧ b = min{a, b}. Event times for subject i are denoted Ti1, . . . , TiNi
,

where Ni = Ni(Ci). Expressed in terms of stochastic integrals, N ∗

i (t) =∫ t

0
dN∗

i (s), where dN∗

i (s) = N∗

i (s) − N∗

i (s−) and s− is the time instant

immediately preceding s. We assume that N ∗

i (t) is a counting process

(e.g., Chiang3), such that N∗

i (t2) ≥ N∗

i (t1) for t2 > t1, dN∗

i (t) =0 or 1, and

dN∗

i (t)dN∗

j (t) = 0 for i 6= j. The dN∗

i (s) quantities are referred to as the

counting process increments.

The proportional means model13,16 is given by:

µi(t) ≡ E[N∗

i (t)|Zi] = µ0(t) exp{βT
0 Zi}, (1)

where µ0(t) is an unspecified baseline mean function and β0 is the parame-

ter of interest. In the case of time-dependent covariates, the proportional

rates model is given by:

dµi(t) ≡ E[dN∗

i (t)|Zi(t)] = dµ0(t) exp{βT
0
Zi(t)}, (2)

where dµ0(t) is the baseline rate function (the rate being interpreted as

the derivative of the mean). Model (1) is more restrictive in that it applies

to covariates that do not vary over time, Zi(t) = Zi for all t. Since it
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can accommodate time-dependent covariates (which play a key role in our

application), we focus on model (2).

The proportional means/rates models, (1) and (2), can be considered

recurrent event analogs of the Cox5 proportional hazards model, for ap-

plication to recurrent event data. Model (2) also has a close connection to

the Andersen-Gill2 model, which can be written as:

dΛi(t) ≡ E[dN∗

i (t)|Fi(t−)] = dΛ0(t) exp{θT
0 Zi(t)}, (3)

where Fi(t) can be thought of as the event history for subject i at time t.

One could refer to (3) and (2) as conditional and marginal models, respec-

tively. Practitioners may prefer the latter for at least two reasons. First,

it is often difficult to capture Fi(t−) through the covariate vector; e.g., by

including N∗

i (t−) or various other related functions of Fi(t) as elements

in Zi(t). Second, consider a study with one covariate, Zi(t) = Zi, which

takes the value 1 for ‘treated’ subjects and 0 for those receiving placebo.

Compare two models, a marginal model,

E[dN∗

i (t)|Zi] = dµ0(t) exp{β0Zi}, (4)

and a conditional model,

E[dN∗

i (t)|Zi, N
∗

i (t−)] = dΛ0(t) exp{θ0Zi + θNN∗

i (t−)}. (5)

The quantity exp{β0} from (4) can be interpreted as the ratio of the event

rate, treated versus placebo (reference) subjects; that is,

E[dN∗

i (t)|Zi = 1]

E[dN∗

i (t)|Zi = 0]
= exp{β0}.

The quantity exp{θ0} from model (5) would be making the same compari-

son, but restricting attention to subjects with the same number of previous

events; i.e.,

E[dN∗

i (t)|Zi = 1, N∗

i (t−) = m]

E[dN∗

i (t)|Zi = 0, N∗

i (t−) = m]
= exp{θ0}.

If Zi affects the event rate, E[dN∗

i (t)], then it will also affect the N∗

i (t−)

and, provided events within-subject are positively correlated, conditioning

on the previous number of events will attenuate the estimated marginal

effect of Zi; i.e., |θ0| < |β0|.

The estimate of the parameter of interest in the proportional rates

model, β0, is the solution to the estimating equation,

n∑

i=1

∫ τ

0

{Zi(t) − Z(t; β)}dNi(t) = 0, (6)
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where 0 is a vector of 0’s and the risk-weighted covariate mean is given by:

Z(t; β) =

∑n

i=1
I(Ci > t)Zi(t) exp{βT Zi(t)}∑n

i=1
I(Ci > t) exp{βT Zi(t)}

.

We can re-express the left side of (6) in a perhaps more familiar form as

n∑

i=1

Ni∑

j=1

{Zi(Tij) − Z(Tij ; β)}, (7)

without the stochastic integral. In the univariate survival setting, where

time until a single event is studied and subjects cannot experience multiple

events (i.e., Ni ≤ 1), the left side of (7) reduces to the partial likelihood6

score equation,

n∑

i=1

∆i{Zi(Tij) − Z(Tij ; β)},

where ∆i = I(Ti < Ci). The correspondence between the Cox score equa-

tion and (7) makes sense in light of the close connection between the propor-

tional hazards and proportional rates models. As such, standard software

(e.g., PROC PHREG in SAS; coxph in R) can be used to fit the propor-

tional rates model, as described in Allison1 and Therneau and Hamilton23.

The model of current interest is given by:

E[dN∗

i (t)|Zi] = dµ0(t) exp{β(t)Zi}, (8)

the non-proportional rates model, which allows the covariate effects to

depend on time. Since the software cannot tell the difference between β(t)Zi

and βZi(t), we can estimate β(t) in (8) by fitting (2) and adding time-

dependent elements to Zi which reflect the nature of the hypothesized time-

dependence of the effects suspected of being non-proportional. For example,

returning to (4), a time-dependent treatment effect could be specified by

the model,

E[dN∗

i (t)|Zi] = dµ0(t) exp{(β0 + φt)Zi}, (9)

where estimators β̂ and φ̂ could be computed by fitting the model,

E[dN∗

i (t)|Zi] = dµ0(t) exp{β0Zi + φZi × t}. (10)

Model (9) allows the effect of Zi on the event rate to change exponentially

with time. Naturally, other functional forms are possible. Depending on
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the application, it may be desirable to shift the time-dependent term. For

example, a model equivalent to model (10) is:

E[dN∗

i (t)|Zi] = dµ0(t) exp{β0Zi + φZi × (t − t0)}, (11)

where t0 would be chosen to be some readily intuited time; e.g., mean,

median, mid-point of follow-up distribution. Due to the non-proportionality,

the rate ratio (Zi = 1 vs. Zi = 0) varies with t in model (10) and equals

exp{β0} at t = t0 in model (11).

4. Simulation Study

To assess the performance of the non-proportional rates model in finite

samples, we conducted a simulation study. A wide range of scenarios were

examined. The number of subjects was set to n = 30, 50, 100 and 200.

Censoring times, Ci, were generated from a Uniform(0,2.5) distribution.

The simulated non-proportional rates model was given by:

dµ0(t) = Qidµ0 exp{β0Zi + φ0Zi × (t − 1.25)}, (12)

with dµ0=0.5, β0 = log(2), φ0 = 0.5, and Qi followed a Gamma distribution

with mean 1 and variance, σ2. The covariate was set to Zi = mod(i, 2),

where mod is the remainder operator.

The frailty variate, Qi, was included in order to accommodate positive

intra-subject event time correlations. Frailty variances employed included

σ2= 0, 0.5, 1.0, and 2.0. For σ2=0, within-subject event times are indepen-

dent. Setting σ2 to 0.5 and 1.0 results in positive correlation among event

times for each subject, with σ2=2.0 resulting in extremely strong event time

correlations. In the analysis of recurrent events, at least among human

subjects in biomedical studies, it would be rare to observe σ2=0 or σ2 >2.

For each subject, N∗

i =25 events were generated from a non-

homogeneous Poisson process (Chiang3), with the j’th event time generated

as:

Ti,j = Ti,j−1 −
1

φ0

log

{
1 −

φ0 log(Ui)

Qidµ0 exp{Zi(β0 − 1.25φ0)}

}
, (13)

for j = 1, . . . , 25, where the Uij are Uniform(0,1) variates and Ti,0 ≡ 0.

Events with (Ti,j > Ci) were treated as unobserved.

Due to the non-proportionality (φ0 6= 0), the effect of Zi on the event

process is not constant over time. The shift in the Zi×t term allows that β0

represents the log rate ratio at t = 1.25, the mid-point of the observation

period or, equivalently, the mean observation time, since E[Ci] = 1.25.
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The parameter φ0 reflects the degree of non-proportionality. In our set-

up, the effect of Zi increases with increasing follow-up time, ranging from

β0 − 0.5 × 1.25 = 0.068 at t = 0 to 1.318 at t = 2.5. The mean number

of observed events was 0.625 for the Zi = 0 subjects and 1.06 for subjects

with Zi = 1. The number of observed events ranged from 0 to 25.

A total of 5,000 replications per data configuration were generated. Bias

was estimated by comparing the mean parameter estimate (across the 5,000

replicates) with its true value. The accuracy of the asymptotic robust stan-

dard error estimators were assessed by comparing their average values (de-

noted ASE) with the empirical standard deviation (ESD) and through com-

paring the empirical coverage probability (ECP) with its nominal value of

0.95.

Simulation results are presented in Table 1. For all data configurations,

β̂ and φ̂ were approximately unbiased, even for n=30. Generally, the accu-

racy of asymptotic standard errors increased as the intra-subject event time

correlation decreased. Coverage probabilities for the asymptotic confidence

intervals for β0 and φ0 were approximately equal across all parameter com-

binations, and increased as intra-subject event time correlation decreased.

For uncorrelated intra-subject event times, n=50 was required to obtain

ECP of at least 0.92; for moderate to high event time correlations (σ2=0.5,

1.0), n=100 was required. A sample size of n=100 failed to yield ECP> 0.92

in the case of extremely high event-time correlation (σ2=2.0), although this

was achieved with n=200.

5. Analysis of Preschool Asthma Data

We fitted separate rate models for asthma-attributable hospitalizations and

days hospitalized. Time, t, was measured in days; since t = 0 corresponded

to the child’s date of birth, the times axis was also the age axis. The selected

set of covariates included binary indicators of low birth weight (LBW),

respiratory distress syndrome (RDS), transient tachypnea of the newborn

(TTN), birth asphyxia, and gender, with each coded as 1 for ‘present’ and

0 for ‘absent’. Gender was coded as 0 for females and 1 for males. Initially,

rate models were fitted, with the degree of departure from proportionality

examined separately for each covariate by sequentially fitting models with

Zij × t interactions, and examining the corresponding Wald statistic (using

a robust SE estimate) and degree of improvement in fit as depicted by plots

of the residual, Ni − µ̂i(Ci; β̂), suggested by Lawless12. The final model is
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Table 1

Simulation Results: Non-proportional Rates Model

β̂ φ̂

n σ2 BIAS ASE ESD ECP BIAS ASE ESD ECP

30 0 0.017 0.429 0.345 0.903 0.001 0.610 0.504 0.913

50 0.012 0.294 0.265 0.927 0.004 0.422 0.384 0.934

100 0.007 0.197 0.187 0.936 0.009 0.286 0.269 0.937

200 0.004 0.135 0.132 0.946 0.007 0.191 0.189 0.945

30 0.5 0.010 0.609 0.460 0.888 -0.002 0.718 0.549 0.887

50 0.010 0.420 0.361 0.904 0.009 0.481 0.416 0.913

100 -0.008 0.279 0.259 0.930 -0.005 0.315 0.294 0.932

200 0.002 0.190 0.185 0.946 0.000 0.215 0.207 0.945

30 1.0 0.010 0.790 0.544 0.868 0.004 0.827 0.587 0.881

50 0.015 0.513 0.428 0.896 0.001 0.529 0.442 0.905

100 0.005 0.335 0.312 0.927 0.000 0.346 0.316 0.928

200 -0.004 0.236 0.223 0.938 -0.004 0.234 0.224 0.940

30 2.0 -0.006 1.331 0.668 0.846 -0.004 1.204 0.653 0.862

50 0.015 0.677 0.522 0.880 0.004 0.627 0.489 0.883

100 0.001 0.436 0.384 0.913 -0.009 0.402 0.350 0.910

200 -0.001 0.292 0.280 0.937 -0.001 0.270 0.253 0.931

given by:

dµi(t) = dµ0(t) exp{β1LBWi + β2RDSi + β3TTNi + β4ASPH.modi

+ β5ASPH.sevi + β6MALEi + β7MALEi(t − 2.5yrs)}. (14)

Having selecting the final model, fitted means and their corresponding

point-wise 95% confidence intervals were computed for selected covariate

patterns.

A risk factor profile of the study population is presented in Table 2, with

respect to all covariates retained in the final model. Each of the birth con-

ditions studied was relatively rare. A summary of the event history of the
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Table 2

Risk factor profile of 1984/85 Manitoba birth cohort (n=16,207)

Characteristic Variable n %

Low birth weight (< 2500 g) LBW 703 4.3

Respiratory distress syndrome RDS 247 1.5

Transient tachypnea TTN 326 2.0

of newborn

Birth asphyxia

mild-to-moderate ASPH.mod 918 5.7

severe ASPH.sev 307 1.9

Male gender MALE 8,357 51.6

birth cohort is provided in Tables 3 and 4. A total of 376 hospitalizations

and 1,377 hospital days were experienced by the 207 children hospitalized

for asthma during age 0 to 4. Among those hospitalized, 65% were hospi-

talized only once. The mode of the length-of-stay distribution was 2 days

(28%); almost 5% of hospitalizations were for 10 days or more.

Results of the non-proportional rates models are listed in Tables 5 and 6

for asthma-attributable hospitalizations and days hospitalized, respectively.

Significant increases in hospitalization rates were associated with low birth

weight (Rate Ratio(RR)=2.03), respiratory distress syndrome (RR=3.65),

severe birth asphyxia (RR=3.41) and male gender (RR=1.89, at t =2.5

years), while an important but not statistically significant increase was

associated with mild-to-moderate birth asphyxia. As indicated in Table 6,

all covariates having a significant effect on mean number of hospitalizations

were also associated with significant increases in mean days hospitalized.

For each parameter estimate, there was great disparity between the naive

and robust standard error estimates indicating strong intra-subject event

correlations, particularly for the days-hospitalized model (Table 6).

As indicated in both Tables 5 and 6, significant departure from pro-

portionality was detected for the gender effect. The trend in the mean
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Table 3

Distribution of number of hospitalizations: 1984/85 Manitoba

birth cohort

Hospitalizations n %

1 134 64.7

2 37 17.9

3 18 8.7

4 6 2.9

≥5 12 5.8

Total 207 100.0

Table 4

Distribution of number of days hospitalized per hospitalization:

1984/85 Manitoba birth cohort

Days hospitalized

per hospitalization n %∗

0 7 1.9

1 73 19.4

2 105 27.9

3 54 14.4

4 34 9.0

5 35 9.3

6 21 5.6

7 11 2.9

8 7 1.9

9 11 2.9

≥10 18 4.8

Total 376 100.0

∗percentage among children hospitalized at least once.
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ratio by age is displayed in Figure 1 for the hospitalization model. The

smooth line represents the RR for the gender covariate estimated by a

model that contained a MALE×(t − 2.5 yrs) interaction term, which as-

sumes an exponential trend in the RR across the 0-4 age interval. The step

function pertains to a model which contained MALE×I(0 ≤ t ≤ 1 year),

. . ., MALE×I(4 years < t ≤ 5 years), assuming a constant RR within each

one-year age interval. As Figure 1 indicates, the decrease in the RR for

MALE is consistent with an exponential decrease; hence, the continuous

form of the time interaction was retained for the remainder of the analysis

in the interests of parsimony and efficiency. As implied by Tables 5 and

6, the interaction term was centered at the mid-point of the observation

period (i.e., 2.5 years). Hence, the rate ratio parameter for MALE (main

effect) refers to the RR for male gender at age 2.5 years.

Table 5

Risk factors for pre-school asthma: Hospitalizations

naive robust

k Covariate β̂k ŜE(β̂k) ŜE(β̂k) exp{β̂k} (95% CI)

1 LBW 0.708 0.192 0.257 2.03 (1.23, 3.36)

2 RDS 1.295 0.226 0.313 3.65 (1.98, 6.75)

3 TTN 0.469 0.269 0.339 1.60 (0.82, 3.10)

4 ASPH.mod 0.517 0.181 0.319 1.68 (0.90, 3.14)

5 ASPH.sev 1.227 0.201 0.471 3.41 (1.36, 8.58)

6 MALE 0.598 0.110 0.202 1.89 (1.22, 2.70)

(t = 2.5 yrs)

7 MALE×t -0.001 0.0003 0.0004 0.9989 (0.9981, 0.9998)

The lack of proportionality with respect to the gender effect was also

suggested by the gender-specific residual plots in Figure 2, where the

residuals were computed as
∑n

i=1
MALEi{Ni − µ̂i(Ci; β̂)} and

∑n

i=1
(1 −
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Table 6

Risk factors for pre-school asthma: Days hospitalized

naive robust

k Covariate β̂k ŜE(β̂k) ŜE(β̂k) exp{β̂k} (95% CI)

1 LBW 0.863 0.095 0.353 2.37 (1.19, 4.74)

2 RDS 1.233 0.112 0.411 3.43 (1.53, 7.68)

3 TTN 0.400 0.139 0.460 1.49 (0.60, 3.68)

4 ASPH.mod 0.212 0.110 0.324 1.24 (0.65, 2.34)

5 ASPH.sev 1.745 0.085 0.590 5.73 (1.80, 18.21)

6 MALE 0.604 0.059 0.279 1.83 (1.06, 3.16)

(t = 2.5 yrs)

7 MALE×t -0.002 0.0002 0.0005 0.9981 (0.9972, 0.9991)

MALEi){Ni − µ̂i(Ci; β̂)} for males and females, respectively. Residuals for

the proportional rates model (denoted by ‘o’) are of far greater magni-

tude than those for the time-dependent model (‘t’). While residuals from

the proportional rates model display a distinct pattern (i.e., bow-shaped),

residuals for the time-dependent model display much little trend and ap-

pear to oscillate about 0. Careful examination of the ‘t’s reveals that some

pattern in the residuals persists even for the non-proportional rates model;

it is possible that a more flexible specification of the time-dependence (e.g.,

including a (t − 2.5 yrs)2 term) may be warranted.

Results were quite similar for the days hospitalized model (data not

shown). Such plots were examined for several covariate combinations. Other

checks of proportionality included examining the Wald statistics of various

interaction terms with time. Evidence of non-proportionality was not found

for any covariate besides gender.

The baseline asthma rate per 1,000 children per day, is plotted against

age in Figure 3 for hospitalizations (top panel) and days hospitalized (bot-
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Fig. 1. Mean ratio (exp{β̂k}), male:female, for asthma hospitalizations. The curve
equals exp{β̂6 + β̂7(t − 2.5yrs)} from model (14), while the step function corresponds to
a model with separate year-specific MALE coefficients.

tom). The baseline rates were smoothed using local regression via the

loess(·) function in R. For both hospitalizations and days hospitalized, the

baseline rate tends to increase with age.

Estimated cumulative mean numbers of asthma-attributable hospital-

izations and days hospitalized are depicted in Figure 4. For children with

no neonatal risk factors (i.e., LBWi + RDSi + . . . + ASPH.sevi = 0), the

model predicts a mean (and 95% CI) of 13.9 (8.7, 19.0) hospitalizations per

1,000 females (top left panel) and 24.9 (18.7, 31.1) per 1,000 males (top

right panel) during the first 5 years of life. For days hospitalized, the corre-

sponding model predicted means (95% CIs) are 43.8 (24.4, 63.1) per 1,000

females (bottom left panel) and 89.5 (54.2, 124.8) per 1,000 males (bottom

right panel) during the same period.

As a check of the adequacy of the final models, the fitted cumula-

tive mean number of asthma events is plotted against time, and com-

pared with the observed counts in Figure 5. These two quantities are the

components of the residuals discussed previously. Several covariate pat-

terns were examined; two are presented for illustration, and labelled ‘un-

exposed’ (LBW+RDS+... +ASPH.sev=0) and exposed (LBW+RDS+...
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Fig. 2. Residuals: for females (left panel) and males (right panel) for asthma hospital-
izations. Comparing models which did (t) and did not (o) include the MALE×(t−2.5 yrs)
term, respectively.

+ASPH.sev>0), referring to presence or absence of adverse birth condi-

tions within the same gender, respectively. Fitted means approximated ob-

served event counts very closely within both groups for each model, as was

observed across most covariate patterns.

6. Discussion

Through simulation, we found that the finite-sample performance of the

semi-parametric non-proportional rates model is generally comparable

to that of its proportional rates counterpart; results are not shown for the
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Fig. 3. Baseline rate of hospitalization (top panel) and days hospitalized (bottom panel)
for asthma per 1,000 children per day during age 0-5.

proportional rates case since pertinent simulation results were already re-

ported by Lin et. al.16. Slightly greater sample size is required for approxi-

mate unbiasedness of the time-dependent (non-proportionality) parameter;

the same holds for its asymptotic variance. For example, in the proportional

means case, even n=30 subjects was sufficient for coverage probabilities to

approximate their nominal values, while n=50 was required in the non-

proportional setting. Hence, for very small data sets, investigators would

be prudent to bootstrap8 SEs and/or CIs since the normal approximation

may lead to false conclusions, particularly when the proportional means as-

sumption fails to hold or when intra-subject correlations are high. Although
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Fig. 4. Mean number of asthma-attributable hospitalizations (per 1,000 children) and
days hospitalized with 95% confidence intervals for female (left panels) and male (right
panels) children free of other birth risk factors listed in Table 1, for t ∈ (0, 5] yrs.

the literature on the bootstrap is quite sparse regarding recurrent events,

general bootstrap methods for the censored data, described by Efron7, could

probably be extended to the multiple failure time setting.

We assessed the effect of gender, birth weight and adverse neonatal res-

piratory conditions on the mean number of hospitalizations (event count

increment=0 or 1) and mean days hospitalized (increments of size ≥0) for

pre-school asthma using the non-proportional means model. Male gender,

birth weight <2.5 kg, respiratory distress syndrome and severe birth as-

phyxia were all independently associated with an increase in mean number
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Fig. 5. Fitted (solid lines) versus observed (dots) number of asthma-attributable hospi-
talizations (top two panels) and days hospitalized (bottom panels) among “unexposed”
(i.e., LBWi + . . .+TTNi = 0) (left panels) and “exposed” (i.e., LBWi + . . .+TTNi > 0)
children (right panels) for t ∈ (0, 5] yrs.

of hospitalizations and mean days hospitalized. The increase associated with

male gender was found to decrease steadily and monotonically during the

0 to 4 age interval.

We then fitted semi-parametric marginal rates models with time-

dependent covariates to data from a retrospective birth cohort study.

Among all simulation trials, the last of line of Table 1 is most relevant in
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terms of evaluating the appropriateness of asymptotic results in the current

investigation, due to parallels with respect to expected number of events

and intra-subject event time correlations. For this data configuration, no

evidence of inappropriateness is revealed for the large sample approxima-

tions employed.

A previous analysis of this birth cohort21 treated hospitalization for

asthma during age 0-4 as a binary variable and employed logistic regres-

sion. Under the assumption that most children who experience asthma very

early in life tend to suffer it the rest of their lives, not incorporating infor-

mation on the number of episodes per child or their timing was deemed

appropriate at the time given the goals of the study. Our objective in the

current investigation was to assess the effect of birth characteristics on the

number of asthma-attributable hospitalizations and days hospitalized. It is

reasonable to assume that both quantities reflect disease severity as well as

health care costs. Hence, while the original study served strictly an etiologic

purpose, the objectives of the current analysis were also pertinent from a

public health perspective.

Often in biomedical studies when patients are followed either prospec-

tively or retrospectively over time, multiple occurrences of the event of

interest are possible. Patients may leave the study before its conclusion, or

may complete the study without experiencing the event of interest. Meth-

ods are well-established to analyze the potentially censored time until first

event by survival analysis. A more informative analysis would incorporate

all event times, requiring a multivariate survival analysis, for which meth-

ods are now fairly well known (Prentice et. al.20; Andersen and Gill2; Wei

et. al.25; Lin et. al.15). Most multivariate failure time methods in-

volve modelling the hazard function. However, in the context of recurrent

event data, the mean or rate is often of direct interest, and is a more inter-

pretable quantity. Compared to the marginal hazards model, an advantage

of the marginal means/rates model is that estimates of the mean number of

events are directly obtainable from model parameters. Both models could

be used to generally assess the effect of covariates on the event process of

interest; both have appeal from an etiologic perspective. However, among

clinicians, public policy officials and health administrators, direct interest

often lies in the mean number of events and, in such cases, the marginal

means/rates model would be preferred. A natural area of application for the

marginal means/rates model is health economics. For example, if cost data

are available for the event of interest, the mean increase in costs associated

with various attributes could be estimated and compared with the costs
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of primary prevention (e.g., through education or intervention programs)

to project the net savings of such programs to the health organization of

concern. From a public health perspective, parameters from the marginal

means/rates model have a direct, intuitive and functional interpretation.

Despite its utility, the marginal means/rates model is inappropriate in

certain settings due to its underlying assumptions. The requirement that

censoring time be independent of the event process may be clearly unten-

able, particularly for biomedical studies. As an obvious example, suppose

that hospitalizations are the event of interest. Subjects can be censored

for a variety of reasons, including death, and increasing numbers of hos-

pitalizations may well be associated with increased mortality rates. Many

interesting approaches exist for modelling recurrent events in the pres-

ence of a terminating event (e.g., Cook and Lawless4; Li and Lagakos14;

Ghosh and Lin10) and this remains an active area of research (e.g., Liu,

Wolfe and Huang17; Wang, Qin, and Chiang24). The issue of informative

censoring is not prominent in our study, as children seldom die from asthma

attacks.
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Lung cancer is the most frequently occuring fatal cancer in the United
States. By assuming a form for the hazard function for a group of lung
cancer patients for survival study, the covariates in the hazard function
are estimated by the maximum likelihood estimation following the pro-
portional hazards regression analysis. Although the proportional hazards
model does not give an explicit baseline hazard function, the function can
be estimated by fitting the data with non-linear least square technique.
The survival model is then examined by a neural network simulation.
The neural network learns the survival pattern from available hospital
data and gives survival prediction for random covariate combinations.
The simulation results support the covariate estimation in the survival
model.

1. Introduction

Cancer develops when cells in a part of the body begin to grow out of
control. It is the second most significant reason for US mortality. In 2001,
cancer caused 553,768 deaths in the United States, accounting for 22.9% of
all deaths in that year [13]. In the past fifty years, efforts have been made
to reduce death rates for different diseases, but the death rate for cancer
remains almost unchanged ([14], [15]). Among the various types of cancers,
lung cancer is the most frequently occuring fatal cancer, for both men
and women, in the United States. Each year there are about 170, 000 new
cases of lung cancer in the U.S.A. and 150,000 deaths attributable to this

201
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disease. Men are affected somewhat more frequently (100,000 cases/year)
than women (70,000 cases/year). Worldwide, there are 1 million new cases
per year. Over the past 5 decades the number of yearly cases has increased,
and the worldwide incidence may double to 2 million per year in the coming
decade. The average patient is 60 years old, and only 1% of cases are under
40 years old. About 90% of patients have historically died from their disease.

Recently, there has been a great deal of interest in modeling survival
data of cancer patients (see [2], [8], [12] for example). Survival analysis

is concerned with studying the time between entry to a study and a subse-
quent event, such as death. In practice, after a lung cancer patient is hospi-
talized, a set of medical data regarding the patients’ condition is recorded.
This data set may include information such as the patient’s survival time,
the tumor’s stage, the health grade, the disease free time, etc. With the
data set, we wish to study how the patient’s conditions might be associated
with the survival pattern and also a lung cancer patient’s survival chance,
or a group of patients’ survival distribution over time.

The goal of this study is to develop a survival model for relating the
hospital data profile to censored survival data such as time to cancer death
or recurrence. Censored survival times occur if the event of interest, i.e.,
the death, does not occur for a patient during the study period. Tradition-
ally, there are two approaches to model the unknown survival distribution.
One is to assume a classical parametric model such as normal, lognormal,
gamma, Weibull, Pareto or beta, then use a histogram, kernel or other
nonparametric estimate of the unknown density function. This method is
straightforward but cannot reflect the contribution of patients’ hospital con-
ditions to the survival distribution. Another is the proportional hazards

model, which was first proposed by D.R. Cox [1] in 1972 to investigate
the effects of covariates on survival patterns, also known as Cox regression
model [7]. The model permits having the patients’ hospital conditions as a
vector of covariates in the hazard function and can estimate the unknown
parameters for the covariates by partial likelihood without putting a struc-
ture of baseline hazard. In this study, however, we propose a structure of
the baseline hazard function, and estimate the parameters by the available
censored survival data so that the explicit survival function is determined.
This estimation is achieved by a least square fit for the cum hazard value
computed by SPSS.

In a survey study, the design parameters for the survey are sometimes
related to the hazard function but do not fit in the model. On some other
occasions, the independence assumption of the covariates may be violated.
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Sometimes correlations exist within each level of nesting. These could cause
biases and affect variances of parameter estimation [10, 11]. Therefore, tests
need to be done to evaluate the goodness of the estimated survival function.
There are two popular ways to test the model. One is to use 1/2 or 2/3 of
the time scale in the survival data to determine the parameters, and then
use the whole data set to examine the model; another is to use the whole
data set to set up the model, then using resample methods to check the
model. Neural networks are increasingly being seen as an addition to the
statistics toolkit which should be considered alongside both classical and
modern statistical methods. It has been pointed out in [16] many different
ways that classification networks have been used for survival data. In this
study, due to the lack of patient data, we propose a neural network model
to simulate the patients’ survival pattern and use the neural network to
generate a long list of “virtual data” to test the survival model.

The remainder of the paper is organized as follows: In Section 2, we
give a description for the survival model. We first introduce the conception
of hazard function and survival function as well as their relationship. We
then outline the method of proportional hazard model and propose and
justify the exponential form for baseline hazard function. In Section 3, we
discuss the parameter estimation by statistical methods including maximum
likelihood estimation (MLE) and non-linear least square estimation (LSE).
We also introduce the idea and conception of the neural network and set up
the proper neural network by MATLAB programs for testing. In Section 4,
we present the computational result with actual patient data. Discussions
and conclusions are given in Section 5.

2. Description of Model

2.1. Survival Function and Hazard Function

Following the notations in Actuarial Mathematics [4], we let T be a nonneg-
ative random variable representing the failure time of an individual in the
population. Assume T is distributed with the probability density function
(pdf) f(t), then the cumulative distribution function (cdf) is

F (t) = Pr[T ≤ t] =
∫ t

0

f(z)dz (2.1)

giving the probability that the event has duration t. The survival

function, S(t), is defined as the complement of the c.d.f., that is

S(t) = Pr[T < t] = 1 − F (t) =
∫ ∞

t

f(z)dz. (2.2)
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The survival function gives the probability of being alive at duration t.
Naturally, when t = 0, S(t) = 1 and t → ∞, S(t) → 0.

An alternative characterization of the distribution of T is given by the
hazard function. Sometimes it is also called the force of mortality,
the mortality intensity function, or the failure rate. The hazard function
is the probability that an individual will experience an event (for example,
death) within a small time interval, given that the individual has survived
up to the beginning of the interval. It can therefore be interpreted as the
instantaneous risk of occurrence of dying at time t. The hazard function
h(t) can be estimated using the following equation:

h(t) = lim
∆t→0

Pr[t < T ≤ t + ∆t|T > t]
∆t

. (2.3)

The numerator of this expression is the conditional probability that the
event will occur in the interval (t, t + ∆t) given that it has not occurred
before, and the denominator is the width of the interval. We obtain a rate
of event occurrence per unit of time. Taking the limit as the width of the
interval decreases to zero, we obtain an instantaneous rate of occurrence.

The conditional probability in the numerator may be written as the
ratio of the joint probability that T is in the interval (t, t + ∆t) and T > t

(which is, of course, the same as the probability that t is in the interval),
to the probability of the condition T > t. The former may be written as
f(t)∆t for small ∆t, while the latter is S(t) by definition. Dividing by dt

and passing to the limit gives the useful result

h(t) =
f(t)
S(t)

=
F ′(t)
S(t)

=
(1 − S(t))′

S(t)
= −S′(t)

S(t)
. (2.4)

This equation suggests the relationship between the survival function and
the hazard function. That is, the rate of occurrence of the event at duration
t equals the density of events at t divided by the probability of surviving to
that duration without experiencing the event. Furthermore, equation (2.4)
suggests that

h(t) = − d

dt
log S(t), (2.5)

then

log S(t) = −
∫ t

0

h(z) dz + C. (2.6)



May 24, 2007 10:26 WSPC/Trim Size: 9in x 6in for Review Volume chapter10

Survival Model and Estimation for Lung Cancer Patients 205

Considering the boundary condition S(0) = 1 as we mentioned before, we
have C = 0, and thus

S(t) = exp{−
∫ t

0

h(z) dz}. (2.7)

Combining (2.7) with (2.4), we obtain

f(t) = h(t)S(t) = h(t) exp{−
∫ t

0

h(z) dz}. (2.8)

A recent survey on dynamic mortality modeling in actuarial mathematics
is given in [17].

2.2. Cox Regression

A Cox model is a well-recognized statistical technique for exploring the re-
lationship between the survival of patient and a set of explanatory variables
(see [1], [16] for example). We call these explanatory variables covariates.

Suppose that we have collected n patients with lung cancer. For the
ith patients, let (ti; δi) be the observed phenotype, where ti is the failure
time (in other words, when death occurs) when δi = 1, and is the censoring
time (e.g., last time known of a patient being cancer-free) when δi = 0. Let
xi = (xi1, · · · , xip) be the vector of p covariates for the ith sample taken
from the ith patient. We assume that a general Cox model with the hazard
function for the ith patient is modeled as

h(t|xi) = h0(t) exp(f(xi)), (2.9)

where h0(t) is called the baseline hazard function. Although f(xi) may
assume many formats, the most popular and also the simplest model for
f(x) is

f(xi) = xi · β = xi1β1 + · · · + xipβp, (2.10)

where β is a column vector of coefficients. In this equation, it is assumed that
the effects of the different covariates on survival are constant over time and
are addictive in a particular scale. The Cox model makes no assumptions
about the form of h0(t), but assumes the parametric form for the effect of
the covariates (predictors) on the hazard. In this sense, the Cox model is a
semi-parametric model.

The vector β of parameters can be estimated by the partial likelihood
method. Let the observed follow up time of the ith individual be ti with
corresponding covariates xi, i = 1, .., n. The conditional probability for the
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ith individual failing at ti given that the individual is from the risk set
R(ti) (i.e., R(ti) = {j |tj ≥ ti}) is [10]:

h0(t) exp(xiβ)∑
�∈R(ti)

h0(ti) exp(x�β)
. (2.11)

Assuming that there are K failures. The partial likelihood function is then:

K∏
i=1

exp(xiβ)∑
�∈R(ti)

h0(ti) exp(x�β)
. (2.12)

Recalling the definition of δi at the beginning of this section, the partial
likelihood function can be expressed as:

L(β) =
n∏

i=1

[
exp(xiβ)∑n

j=1 yj(t) exp(xjβ)

]δi

, (2.13)

where yj(t) = 0 when t ≤ tj , otherwise yj(t) = 1. Equation (2.13) can be
written in another way to remove the expression of δi:

L(β) =
∏

i uncensored

[
exp(xiβ)∑n

j=1 yj(t) exp(xjβ)

]
. (2.14)

For a sample of size n, the log partial likelihood for expression (2.14) is

l(β) = log L(β) =
∏

i uncensored


xiβ − log


 n∑

j=1

yj(t) exp(xjβ)





 . (2.15)

The maximum partial likelihood estimation of β can be obtained as a so-
lution to the equation

∂l(β)
∂β

= 0,

and thus,
n∑

i uncensored

xi −
∑n

j=1 yj(t)xj exp(xjβ)∑n
j=1 yj(t) exp(xjβ)

= 0. (2.16)

Cox and others have shown that this partial log-likelihood can be treated
as an ordinary log-likelihood to derive valid (partial) MLE of β. Therefore,
we can estimate hazard ratios and confidence intervals using maximum
likelihood techniques whose principal will be discussed in the next section.
To avoid the baseline hazard, estimates are based on the partial as opposed
to the full likelihood.
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Usually, the Cox proportional hazard regression model is a very use-
ful tool to estimate the coefficients in a linear combination of covariates
in survival analysis since both SAS PHREG procedure and SPSS Survival
Package perform regression analysis of the survival data based on the pro-
portional hazards model. However, because of the nature of proportional
hazard regression, neither software packages give an explicit function ex-
pression for the baseline hazard function h0(t). In the next section, we will
justify an explicit function of the baseline hazard function h0(t) and also
estimate the parameters in h0(t) using non-linear least square technique
based on the result obtained from the Cox regression for the survival func-
tion fitting the data set of lung cancer patients.

2.3. Baseline Hazard for Lung Cancer Patients

Like any cancer, the exact reason why one particular person is diagnosed
lung cancer and another does not remains unknown. However, certain fac-
tors are strongly correlated with an increase in lung cancer, when groups
of patients are studied. By rank, these factors are listed below [13]:

(i) Tobacco Smoking or exposure to smoke
(ii) Carcinogen Exposures
(iii) Radiation Exposure
(iv) Miscellaneous Risks Factors, including old scars in the lungs.
The first three factors involve an interaction between the individual and

the environment. Presumably an individual is continuously exposed to and
absorbs certain levels of smoke, radiation, or some kind of toxic material
(like carcinogen) which then lead to lung cancer. Though a portion of the
absorbed toxic materials is discharged from the body, the cumulative effect
of retained toxins contributes to the individual’s death [6].

For every given τ in [0, t] and the infinitesimal time element [τ, τ + dτ ],
let the sum δdτ + o(dτ) be the probability that a unit of toxic material
is absorbed during [τ, τ + dτ ] and the sum νdτ + o(dτ) be the probability
that a unit of toxic material in the body is discharged during [τ, τ + dτ ].
Assuming that δ and ν are independent of time, then the probability that
an individual will absorb a unit of toxic material during [τ, τ + dτ ] and will
retain it in his/her body up to time t is given by [6]

δdτ exp{−(t − τ)ν}. (2.17)

Integrating (2.17) over all possible value of τ yields∫ t

0

δ exp{−(t − τ)ν}dτ =
δ

ν
[1 − exp{−νt}]. (2.18)
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The quantity in (2.18) is the expected amount of toxic material absorbed
during the interval [0, t] and present in the body at time t, which leads to a
possible suggestion of a function format for the hazard for cancers caused
through exposure to factors. Suppose the baseline hazard for lung cancer
patients is proportional to the quantity in the following equation:

h0(t) =
a

b
(1 − exp(−bt)). (2.19)

Defining the cumulative baseline hazard function, H0(t), by integrating
h0(t) and applying boundary condition that h0(0) = 0 yield:

H0(t) =
∫ t

0

h0(x)dx =
a

b
[x − 1

b
(1 − exp(−bt))]. (2.20)

3. Statistics Methods and Neural Network

3.1. Maximum Likelihood Estimation

Maximum likelihood estimation begins with writing a mathematical ex-
pression known as the likelihood function of the sample data. Roughly
speaking, the likelihood of a set of data is the probability of obtaining
that particular set of data, given the chosen probability distribution model.
This expression contains the model’s unknown parameters. The values of
these parameters that maximize the sample likelihood are known as the
Maximum Likelihood Estimates, or MLE. Maximum likelihood estimation
is a totally analytic maximization procedure. It applies to every form of
censored or multi-censored data, and is even able to be used across several
stress cells and estimate acceleration model parameters at the same time
as life distribution parameters. Moreover, MLE and likelihood functions
generally have very desirable large sample properties because they: (a) be-
come unbiased minimum variance estimators as the sample size increases,
(b) have approximate normal distributions and approximate sample vari-
ances that can be calculated and used to generate confidence bounds, and
(c) likelihood functions can be used to test hypotheses about models and
parameters. Although it has many good attributes, MLE has an important
drawback, that is, with a small number of failures (say, less than 30, and
oftentimes, less than 50), MLE may be heavily biased and the large sample
optimality properties do not apply.

If X is a continuous random variable with pdf

f(x, β1, β2, · · · , βp), (3.1)
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where β1, · · · , βp are p unknown constant parameters which need to be
estimated. Denote βτ = (β1, · · · , βp). Conduct an experiment and obtain
N independent observations, x1, · · · , xN , which correspond in the case of
life data analysis to failure times. The likelihood function is given by

L = L(x1, · · · , xN |β1, · · · , βp) = ΠN
i=1f(xi|β1, · · · , βp). (3.2)

The Logarithmic function is

l = log L =
N∑

i=1

log f(xi|β1, · · · , βp). (3.3)

For the survival analysis, we assume (2.9) and (2.10). Then the pdf becomes

f(ti|xi) = h(ti|xi)S(ti|xi) = h0(ti) exp{xiβ −
∫ ti

0

h0(z) exp(xiβ) dz}.
(3.4)

The log-likelihood function l(β) has the expression

l =
N∑

i=1

log f(ti|xi) =
∑

i

[log h0(ti) + (xiβ −
∫ ti

0

h0(z) exp(xiβ) dz)]

= N log h0(ti) + h0(ti) +
∑

i

xiβ −
∑

i

∫ ti

0

h0(z) exp(xiβ) dz. (3.5)

When taking partial derivatives with respect to β to maximize l(β), the
computation often becomes very difficult due to the presentation of h0(z)
in the integration term. That is why a proportional hazard model is used
in the Cox models so that the term h0(z) can be canceled out in MLE
calculation.

Recall (2.15), the MLE for β̂ is s(β̂) = 0, where the score function is

s(β) =




∂l(β)
∂β1

. . .
∂l(β)
∂βp


 . (3.6)

One of many nonlinear algorithms to compute this maximization is the
Newton-Raphson iteration. The Newton-Raphson algorithm for computing
β̂ starts with an initial guess β̂(0) and then iteratively determines β̂(m) from
the formula

β̂(m) = U−1(β̂(m−1))s(β̂(m−1)), (3.7)



May 24, 2007 10:26 WSPC/Trim Size: 9in x 6in for Review Volume chapter10

210 X. C. Yuan, D. Hong, and Y. Shyr

where

U(β) = −N · Hessian(β) = N ·




∂2l(β)
∂2β

∂2l(β)
∂β1∂β2

· · · ∂2l(β)
∂β1∂βp

∂2l(β)
∂β2∂β1

∂2l(β)
∂2β2

· · · ∂2l(β)
∂β2∂βp

· · · · · · · · · · · ·
∂2l(β)
∂βp∂β1

∂2l(β)
∂βp∂β2

· · · ∂2l(β)
∂2βp


 . (3.8)

The Hessian matrix is positive definite, so it is strictly concave on β. How-
ever, the computation is obviously more complex. In practice, we use soft-
ware to carry out this process for the MLE.

3.2. Non-Linear Least Square Fit

Least square regression (LSE) is a very popular and useful tool used in
statistics and other fields. Suppose we want to find a relationship between
a dependent (response) variable Y and an independent (predictor) variable
X , in which a statistical relation is

Y = g(X |θ) + ε, (3.9)

where ε is the error, and θ is a vector of parameters to be estimated in
function g. If g assumes a non-linear format in terms of X , we are facing a
non-linear regression. Suppose X = (x1, · · · , xm)τ , Y = (y1, · · · , ym)τ . We
define

fi(θ) = yi − ŷi = yi − g(xi|θ) (3.10)

The non-linear least square regression is to find θ̂ which minimizes F (θ̂),
where F (θ) is defined as

F (θ) =
1
2

m∑
i=1

(fi(θ))2 =
1
2
‖f(θ)‖2 =

1
2
f(θ)τf(θ). (3.11)

There are many non-linear algorithms for finding θ̂. These well-developed
algorithms include the Gauss-Newton method, the Levenberg-Marquardt
method, and Powell’s Dog Leg method (see [7] for example). In this study,
we use the Gauss-Newton method. It is based on the implementation of
first derivatives of the components of the vector function. In special cases,
it can give quadratic convergence as the Newton-method does for general
optimization [8]. The Gauss-Newton method is based on a linear approxi-
mation to the components of f (a linear model of f) in the neighborhood
of θ: For small ‖h‖, we see from the Taylor expansion that

f(θ + h) ≈ �(θ) := f(θ)J(θ)h, (3.12)
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where J is the Jacob matrix. Inserting this to the definition for F , we obtain

F (θ + h) ≈ L(θ) :=
1
2
�(h)t�(h) =

1
2
f tf + htJ tf +

1
2
htJ tJh

= F (θ) + htJ tf +
1
2
htJ tJh. (3.13)

The Gauss-Newton step ĥ minimizes L(h). In practice, the Gauss-Newton
least square fitting the baseline hazard function can be achieved by using
MATLAB software.

3.3. Neural Network Testing

In the Cox model, the main interest is usually about the parameter vector
β. However, when one is interested in making predictions about the failure
time for a given set of covariates, or when one assumes a parametric family
for the baseline hazard function, just as what we have performed, then
testing that h0 is equal to a specified hazard rate function or evaluating
how stable h0 is for varying data source becomes important [12]. In the
field survival analysis, there are two popular methods in order to test a
model. One is to use 1/2 or 2/3 of the time scale in the survival data
to determine the parameters and then use the whole data set to examine
the model. In our study, however, to the short length of data (total of
66 rows, in which approximately two-thirds are censored) and the high
data demand from MLE (refer to section 3.1), this solution is not feasible.
Another way is to use the whole data set to set up the model and then use
a resample method to check the model. This solution also has a problem on
the principle by which we resample the original data. As we have known,
MLE relies heavily on the given data set especially when the length of data
is not exceptionally long. If we randomly resample the original data, the
selected data for testing may be far from the “pattern” of the whole data
set, e.g., having quite different mean and standard deviation.

In this study, we propose an artificial neural network testing model.
First, we let the neural network “learn” the patients’ survival pattern from
the given hospital data. We then use the neural network to generate a
long list of “virtual data” and “simulate” the survival pattern to test our
covariate estimation and baseline hazard estimation. By this process, we
also show that the neural network has great potential as a research tool in
survival analysis.

The conception of neural network came up as early as the middle of this
century. A Neural Network (NN) is an information processing paradigm
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that is inspired by the way biological nervous systems, such as the brain,
process information. Simply speaking, it is software that is “trained” by
having its examples of input and the corresponding desired output pre-
sented to it.

Neural networks, with their remarkable ability to derive meaning from
complicated or imprecise data, can be used to extract patterns and de-
tect trends that are too complex to be noticed by either humans or other
computer techniques. A trained neural network can be thought of as an
“expert” in the category of information it has been required to analyze.

The typical structure of neural network consists of a layer of d (the
dimension of the futures) input units, a layer of output units, and a vari-
able number of hidden layers of units, as shown in Figure 1. Generally
more layers result in higher accuracy, but also are more time-consuming on
computation.

The construction of the NN for this study and test results will be shown
in the next section.

Fig. 1. Typical Structure of Neural Network.

4. Application to Lung Cancer Data

4.1. Data Structure

A data set records the survival times (S−INT, in months) of the patients
seen at Vanderbilt University School of Medicine Hospital. The data set
also records patients’ hospital condition including

PT : patient term, ranges from T 1 to T 4
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PN : occurrence of lymph notes, a symptom of cancer invasion, ranges
from N0 to N2

STAGE: pathological diagnosis of cancer and it is ordinal, ranges from
1A to IV

DF−INT : disease free time, in months
GRADE: the fitness condition when patient in hospital, ranges from

well to poor
STATUS: indicating if the patient is still alive (A) or deceased (D). If

the STATUS of a patient is “A” (alive), this row of data is censored.
In our study, we take PT, PN, STAGE, DF−INT , and GRADE six

variables as covariates to be estimated. The original hospital data set
records information for 66 patients and is listed in Appendix 1.

4.2. Estimation for Covariates

The proportional hazard regression to estimate β is performed by SPSS.
The results are shown in Appendix 2:

The Cox regression gives the mean and standard deviation for each
covariate in given data. The β is estimated at a certain significance level.
For “patient term” and “grade,” β is positive, which means a higher value
for these two variables will result in higher hazard or risk of death. For
“disease free time,” β assumes a negative value. This means that the longer
the patient is disease free, the less likely that he or she will die shortly,
which is reasonable. The β values for PN and STAGE are both near zero,
which indicates that these two variables do not associated much with the
hazard rate.

The Cox regression gives baseline cumulative hazard and overall cumu-
lative hazard vs. survival time, at mean value of covariates. To estimate the
hazard function, we fix the covariates at their mean values, then use least
square regression to estimate the parameters a and b in (2.20), by fitting
two columns of data in the survival table in Appendix 2.

4.3. Estimation for Baseline Hazard Function

Starting from the results of the Cox regression, let

Xτ = SurvivalTime = [1 2 3 4 5 6 8 9 11 16 17 18 33],

Hτ = CumBaselineHazard

= [.006 .010 .022 .029 .037 .054 .065 .089 .129 .163 .303 .377 .991].
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Following the Gauss-Newton least square estimation discussed by sec-
tion 3.2, we find estimations for a and b. The MATLAB computation results
are summarized below.

FITTEDMODEL =

General model:
FITTEDMODEL(x) = a/b*(x-1/b*(1-exp(-b*x)))

Coefficients (with 95% confidence bounds):

a = 0.002185 (0.001524, 0.002845)

b = 0.01727 (-0.01574, 0.05029)

GOODNESS =

sse: 0.0129

rsquare: 0.9854

dfe: 11

adjrsquare: 0.9840

rmse: 0.0342

OUTPUT =

numobs: 13

numparam: 2

residuals: [13x1 double]
Jacobian: [13x2 double]

exitflag: 1

iterations: 7

funcCount: 22

firstorderopt: 1.4601e-004

algorithm: ’Gauss-Newton’

The estimated baseline hazard function is

h0(t) = 0.1265(1− exp(−0.01727t)). (4.1)

Figure 2 shows the fit for the cumulative baseline hazard. Figure 3 plots
the baseline hazard as a function of time.

4.4. Survival Model Testing

With the help of MATLAB command newff, a feed-forward backpropaga-
tion network is constructed to simulate the survival model. This network
has a total of three layers: an input layer of dimension 6, a hidden layer of
dimension 3, and an output layer of dimension 1. The unit of output layer
may assume a value of “0” or “1”, representing “alive” and “dead” respec-
tively. More hidden levels are proven not to improve NN performance. Since
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Fig. 2. Fit for Cumulative Hazard.

Fig. 3. Baseline Hazard as a Function of Time.

the output values assume only two possible values, we use logsig as the
nonlinear transfer function between layers.

When having traingda/learngdm as the training/learning function, the
NN reaches best performance, and the error rate for training set is 9%. The
error rate is defined as the rate of false “alive-dead” judgment for all 66
training cases. The network performance is shown in Figure 4.

After the NN is set up, we generate a 1000 × 6 matrix to
simulate 1000 patients’ record. Each column of the matrix corre-
sponds to a covariate, and each row stores a patient’s information
on PT, PN, STAGE, S−INT, D−INT , and GRADE. Then we use the
trained NN to judge the STATUS of the patient, as we “believe” the NN
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Fig. 4. Network Performance over Epochs.

has learned the “right” survival pattern of lung cancer patients.
At first, we generate the data for each column randomly and uniformly

distributed in the domain. For example, the domain for PN column is the
closed interval [1, 4]. All numbers are rounded to integers. After a Cox
regression analysis, the computation cannot be converged. This result shows
that randomly generated data is not acceptable. The covariates for lung
cancer patients must be distributed with a certain pattern.

Recall the Cox regression results for original hospital data. The mean
and standard deviation for each covariate are calculated. Respecting this
result, another 1000×6 matrix is generated. For each column, the generated
data assume normal distribution with a corresponding mean and standard
deviation that are rounded to integers (disregarding that the rounding may
shift the mean and deviations for each column).

After a Cox regression and a least square fit for the cumulative baseline
hazard as we did before, the baseline hazard for the NN generated data is
plotted as a function of time. It is compared to the baseline hazard function
we found before for the original hospital data, as shown in Figure 5.

Further more, define the score function

s(x, β) = xτ · β. (4.2)

Then the hazard function changes to be

h(t|xi) = h0 exp(s). (4.3)

The score function determines the risk of death. The higher score, the more
likely a patient will die (or will die sooner).
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Fig. 5. Estimated Baseline Functions.

A scatter plot for “score vs. survival time” is shown in Figure 6. Notice
that time assumes a negative value if it is censored (patient is still alive.)

Fig. 6. Scores vs. Time to Death or Censoring.

Figure 6 shows that when a patient scores negative or very small value,
he or she tends to survive; the lower the score is, the longer he or she will
live. On the other hand, a high positive score means death. This proves that
proportional hazard regression is a beneficial way to estimate β coefficients.

Final Remarks: 1. In this study, we set up a survival model for lung
cancer patients. This was achieved by three steps: using proportional hazard
regression to estimate the coefficients for five covariates, using non-linear
least square fit to estimate the exponential baseline hazard function, and
using a neural network to exam the survival model. The analysis tools used
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in this research were SPSS, EXCEL and MATLAB.
2. MLE is a powerful statistical tool but it has its own limitation. When

the data length is short, MLE might be heavily biased. In this study, there
were data for 66 patients, but two thirds were censored and only one third
is used in MLE. The shortage of data resulted in a unideal significance level
of the estimation.

3. Neural network simulation is a new idea for testing the model, es-
pecially when the original data set is short. Neural network application in
survival analysis has promising prospects.

4. Although we assume a linear combination format in the score func-
tion, the five covariates are believed to be correlated with each other. A
randomly generated covariate matrix may not result in a convergent Cox
regression.

5. When the NN generated data assume the same mean and SD with
the original data, they tend to have similar baseline hazard functions by
LSE. This supports our assumption on the format of baseline function.

6. The score function provides a good indication for the risk of death.
This supports the Cox regression for β estimation.

7. In future work, we may do regression for longer hospital data for a
more stable β estimation and attempt to find out the correlation among
the parameters, assuming a more accurate model for f(x|β) in the hazard
function and re-formulate the MLE in proportional hazards regression. This
is quite complex work but truly worth to do. We may also explore more
NN applications in survival analysis.

8. In survival analysis with long-term survivors, handling situations con-
sisting of a proportion of subjects under study that may never experience
the event of interest, one proposes to formulate the model as a mixture of
long-term survivors (subjects that will never “fail”) and susceptibles (sub-
jects that will “fail” eventually). In [18], comparing (4.3), the hazard rate
function is modeled as h(t|xi) = h0(t) exp(s) with h0(t) = pf0(t)

1−pF0(t)
and

0 < p ≤ 1, here, f(t) and F (t) are defined in (2.1). Partial likelihood and
full likelihood are then used to obtain the estimators of the coefficients of
covariates and the proportion of long-term survivors.
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Appendix 1: Patients Data

# PT PN STAGE STAT S−INT DF−INT GRADE

1 T1 N2 IIIA D 11 5 mod
2 T4 N2 IIIB D 11 9 poor
3 T1 N1 IV D 17 0 poor
4 T2 N0 IB A 24 24 well-mod
5 T2 N0 IV D 9 0 mod-poor
6 T2 N2 IIIA A 21 7 well-mod
7 T4 N0 IV D 1 1 poor
8 T1 N0 IA A 21 13 well-mod
9 T3 N0 IIB D 2 0 mod-poor
10 T2 N0 IB A 20 20 mod
11 T1 N0 IA D 3 3 mod
12 T2 N0 IB A 23 23 poor
13 T1 N0 IA D 8 8 mod-poor
14 T2 N1 IIB A 21 21 mod
15 T2 N0 IB A 20 20 mod
16 T2 N0 IB D 33 30 mod-poor
17 T2 N0 IB A 18 18 mod-poor
18 T2 N2 IIIA D 6 0 poor
19 T2 N2 IIIA D 3 3 mod-poor
20 T1 N1 IIA D 5 0 poor
21 T2 N2 IIIA A 21 17 poor
22 T2 N0 IB A 23 10 mod-poor
23 T2 N0 IB A 26 26 well-mod
24 T2 N0 IB A 26 26 mod
25 T1 N2 IIIA D 18 0 poor
26 T2 N1 IIB A 17 17 mod-poor
27 T2 N0 IIB A 33 9 mod
28 T2 N0 IB D 17 17 mod
29 T2 N0 IIB A 42 42 mod-poor
30 T2 N0 IIB D 16 5 poor
31 T1 N1 IIA D 1 0 poor
32 T2 N0 IB D 17 15 poor
33 T2 N2 IIIA D 9 0 poor
34 T2 N2 IIIA D 4 0 mod-poor
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Appendix 1: Patients Data (Cont.)

# PT PN STAGE STAT S−INT DF−INT GRADE

35 T2 N0 IB A 2 1 poor
36 T2 N0 IB A 5 1 well-mod
37 T2 N2 IIIA A 6 6 mod
38 T1 N0 IA A 1 1 well
39 T1 N0 IA A 1 1 mod
40 T1 N0 IA A 3 3 mod-poor
41 T1 N0 IA A 1 1 mod-poor
42 T1 N0 IA A 1 1 well-mod
43 T3 N0 IIB A 1 1 well
44 T1 N0 IA A 1 1 poor
45 T2 N0 IB A 2 2 poor
46 T2 N0 IB A 1 1 well-mod
47 T2 N0 IB A 1 1 mod
48 T1 N0 IA A 12 0 mod-poor
49 T1 N2 IIIA A 6 4 mod-poor
50 T2 N0 IB A 1 1 mod
51 T2 N0 IB A 3 3 poor
52 T3 N0 IIB A 10 4 poor
53 T3 N1 IIIA D 6 6 poor
54 T2 N0 IB A 1 0 mod
55 T4 N1 IIIB A 2 0 mod-poor
56 T2 N0 IB A 1 1 mod
57 T2 N0 IB A 1 1 mod-poor
58 T2 N0 IB A 5 4 poor
59 T1 N2 IIIA A 1 1 poor
60 T1 N0 IA A 1 1 mod
61 T1 N0 IA A 7 7 poor
62 T2 N0 IB A 2 2 mod
63 T2 N1 IIB A 1 1 mod
64 T2 N2 IIIA A 11 4 poor
65 T1 N0 IA A 10 3 poor
66 T1 N0 IA A 1 1 poor
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Appendix 2: Cox Regression Results

Covariate Means

Mean
PT 1.833
PN .515

STAGE 3.000
D−FREE6.879

GRADE 2.788

Survival Table

At mean of covariates
Time Baseline Cum Hazard Survival SE Cum Hazard
1.00 .006 .983 .012 .017
2.00 .010 .971 .018 .029
3.00 .022 .939 .030 .062
4.00 .029 .922 .036 .082
5.00 .037 .903 .042 .102
6.00 .054 .860 .053 .151
8.00 .065 .835 .061 .181
9.00 .089 .780 .073 .248

11.00 .129 .698 .091 .359
16.00 .163 .635 .105 .455
17.00 .303 .431 .123 .842
18.00 .377 .350 .121 1.050
33.00 .991 .064 .115 2.755
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CHAPTER 11

NONPARAMETRIC REGRESSION TECHNIQUES IN

SURVIVAL ANALYSIS

Chin-Shang Li

Department of Biostatistics, St. Jude Children’s Research Hospital,

332 N. Lauderdale St., Memphis, TN, USA

E-mail: chinshang.li@stjude.org

Some nonparametric regression techniques for estimating hazard or log-
hazard functions and functional forms of covariate effects in Cox’s pro-
portional hazard model are introduced. Some nonparametric and semi-
parametric regression models for a conditional hazard function are dis-
cussed as alternatives to the proportional hazard model.

1. Introduction

In biomedical follow-up or industrial life-testing studies, the time to oc-

currence of a certain event of interest (generically called a failure) is the

primary endpoint, e.g., time to hypothyroidism after treatment for pediatric

Hodgkin lymphoma. The interval of interest, called failure time, survival

time, or event time, is often subject to right censoring, that is, the value of

the event time is not known but only that it is greater than or equal to the

censoring time. Other censoring forms include left censoring and interval

censoring . In left censoring, some observed times are greater than or equal

to the actual failure times. Interval censoring means that some failures have

occurred only within some time interval. We will confine this discussion to

right-censored data.

Of particular interest are the survival and hazard functions in summariz-

ing failure time data. Let T be a nonnegative, continuous random variable

representing the failure time of an individual in a homogeneous population

(i.e., no explanatory variables). The survival function is the probability

that the individual survives until time t, i.e., S(t) = Pr(T ≥ t). The hazard

function is the risk or hazard of failure at time t given that failure has not

223
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occurred before time t and is expressed as

h(t) = lim
∆t→0+

Pr(t ≤ T < t+ ∆t|t ≤ T )

∆t
=
f(t)

S(t)
, (1)

where f(t) = lim∆t→0+ Pr(t ≤ T < t + ∆t)/∆t = −dS(t)/dt is the

probability density function of T . The hazard function is also called the

hazard rate, the age-specified death rate, the conditional failure rate,

the instantaneous death rate, the intensity rate, the mortality intensity,

or the force of mortality. It follows from (1) that the survival func-

tion may be written as S(t) = exp (−H(t)), where H(t) =
∫ t

0 h(u)du

is referred to as an integrated or cumulative hazard function. There-

fore, the probability density and survival functions can be completely char-

acterized by the hazard function. For a homogeneous population, para-

metric models for failure time include the exponential, Weibull, extreme

value, gamma, log-normal, log-logistic, and generalized gamma distribu-

tions, among others. The exponential, Weibull, and gamma distributions

are special cases of the generalized gamma distribution. For nonparametric

methods, the Kaplan-Meier(product-limit) (K-M) estimator80 is the most

commonly used nonparametric maximum likelihood (ML) estimator of the

survival function; the Nelson-Aalen (N-A) estimator 103,1, also called Alt-

shuler’s estimator7, estimates the cumulative hazard function, which is an

alternative nonparametric ML estimator of the survival function. In the ab-

sence of censoring, the K-M estimator is an empirical survival function. The

asymptotic properties of the K-M estimator have been studied by Breslow

and Crowley24, Földes and Rejtö52, and Wellner151, among others. Padgett

and McNichols109 reviewed nonparametric density estimation from censored

data.

The failure times of individuals usually depend on characteristics that

are also referred to as explanatory variables, covariates, regressors, or pre-

dictor variables. The explanatory variables may include demographic vari-

ables such as age, sex, and race; physiological variables such as weight,

height, and blood pressure; and behavioral factors such as smoking history

and dietary habits. One can use parametric regression models such as the

exponential, Weibull, and log-normal models to include explanatory vari-

ables. See [79] and [90] for detailed discussions of parametric failure time

models.

Let X = (X1, . . . , Xp) be a p-vector of covariates assumed to be time

independent for simplicity of discussion throughout this chapter. To explore

the possible relationship between the censored failure time and covariates, it
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is often convenient to work with the conditional hazard function of T given

X = x, h(t|x). The Cox or proportional hazards (PH) model34 is the

most commonly used conditional hazard model. The PH model assumes

that the covariates act multiplicatively on the conditional hazard function

and is expressed as follows:

h(t|x) = h(t) exp(xβ), (2)

where h(t) is the conditional hazard function of T given X = 0, which is

called the baseline hazard function, and β = (β1, . . . , βp)
T is a p-vector

of parameters with T denoting transposition. Because no particular func-

tional form of h(t) is assumed, the PH model (2) is referred as a semi-

parametric regression model. The parameter vector β can be estimated by

maximizing the partial likelihood34,35,153. Kalbfleisch and Prentice79 de-

rived an exact expression for the partial likelihood to accommodate tied

observations. A number of approximation methods have been proposed by

Peto112, Breslow23, and Efron42, among others. The asymptotic properties

of the maximum partial likelihood estimator has been studied by Tsiatis144

and Andersen and Gill9.

The PH model does not propose a direct relationship between fail-

ure time and covariates. In contrast, the accelerated failure time (AFT)

model79,97,36 has an intuitive physical interpretation in which the effect of

covariate x is assumed to act multiplicatively on the failure time T or addi-

tively on the log failure time, logT , expressed as logT = xβ + ε with error

density fε(e). The AFT model with unspecified error distribution is called a

semiparametric accelerated failure time model semiparametric accelerated

failure time model and can be considered a semiparametric alternative to

the PH model. Let h(u) be the hazard function of T ∗ = exp(ε). The con-

ditional hazard function can be written in terms of this baseline hazard

function as

h(t|x) = exp(−xβ)h(t exp(−xβ)), (3)

where exp(xβ) is referred to as the accelerated factor. In this model,

the role of covariates is to accelerate or decelerate the time to failure. The

Weibull, log-logistic, the log-normal, gamma, and inverse Gaussian distri-

butions have the AFT property. Among them, the Weibull distribution is

the only one that has both the PH property and the AFT property. See

[114, 118, 145, 150, 87, 88, 159, 55, 78] and [77] for semiparametric inference

procedures for the AFT model.

Hazard functions play a fundamental role in understanding and model-

ing failure time data. See [36] and [21] for a detailed discussion of the role of
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the hazard function. In addition, Aalen and Gjessing2 considered the shape

of the hazard function from a process point of view. In Sec. 2, we will dis-

cuss some nonparametric regression techniques used to estimate hazard or

log-hazard functions. In Sec. 3, we will review nonparametric modeling of

covariate effects in the PH model when the linear effects of the covariates

are not appropriate and some semiparametric and nonparametric regres-

sion models for the conditional hazard model (i.e., hazard function with

covariates) as alternatives to the PH model. A discussion is given in Sec. 4.

2. Smooth Estimation of Hazard Function

One can estimate a hazard function in at least two ways. The first is to

estimate the density and cumulative distribution functions and then use

their estimates to yield an estimate of the hazard function148,4. However, the

shape of the estimate of the hazard function can exhibit serious departures

from the functional form of the hazard function. More specifically, when

the estimate of the density function is smooth and unimodal and when the

hazard function has a smooth monotone increasing form, as it does with

a gamma distribution, the estimate of the hazard function can still have a

major peak and major valley in the middle of the distribution20.

The second way is to estimate the hazard function directly. Once the

hazard function is estimated, one can obtain the estimates of the density

and cumulative distribution functions. The primary advantage of estimat-

ing the hazard function directly is that it can simplify the process when

constraints are placed on the form of the estimate. Therefore, we will re-

view some nonparametric regression techniques used to directly estimate

the hazard or log-hazard functions in this section. A review of estimation

of the hazard function with nonparametric methods was given by Singpur-

walla and Wong128 and Padgett and McNichols109. Wu154 discussed issues

of smoothing empirical hazard functions.

2.1. Kernel-based Estimation

Let Y = min(T,C), where T denotes the failure time, C denotes the cor-

responding censoring time, and T and C are assumed to be independent.

Let ∆ = I(T ≤ C) be a censoring indicator for I(·) being the indica-

tor function. Let (Yi,∆i), i = 1, . . . , n, be a sample of independent and

identically distributed (i.i.d.) random variables, each having the same dis-

tribution as (Y,∆). Let (yi, δi) denote the observed data, where δi = 1 if

yi = min(ti, ci) = ti; 0, otherwise.



May 24, 2007 10:42 WSPC/Trim Size: 9in x 6in for Review Volume chapter11

Nonparametric Regression Techniques in Survival Analysis 227

Ramlau-Hansen116, Tanner and Wong136, and Yandell157 investigated

the asymptotic properties of the following kernel estimator of the hazard

function h(t) with different techniques:

ĥϑ(t) =

n
∑

j=1

∆(j)

n− j + 1
Kϑ

(

t− Y(j)

)

=

n
∑

i=1

∆i

n−Ri + 1
Kϑ (t− Yi) . (4)

Here Y(1), . . . , Y(n) are the ordered Yi’s; ∆(1), . . . ,∆(n) are the correspond-

ing censoring indicators; Ri is the rank of Yi; and ϑ is either a positive

valued bandwidth (smoothing parameter) or bandwidth vector. For the

kernel estimator of h(t), ϑ = b and Kϑ(u) = b−1K (u/b) for K(·), which

is a symmetric nonnegative kernel with integral
∫

K(u)du = 1. The ker-

nel estimator ĥϑ(t) = ĥb(t) is referred to as a 1-parameter estimator and

can be regarded as a convolution smoothing of the formal derivative of the

empirical cumulative hazard function Ĥ(t) =
∑

Yi≤t ∆i/(n − Ri + 1) that

is an N-A estimator of the cumulative hazard function H(t). The kernel

estimator ĥb(t) is a generalized version of the kernel estimator of Watson

and Leadbetter149 for the uncensored case.

Tanner and Wong137 proposed a 3-parameter estimator ĥϑ(t) (4) with

ϑ = (b1, b2, k), and Kϑ(t − Y(j)) = (b1djk)
−1K((t − Y(j))/b2djk) for djk

being the distance to the kth-nearest failure neighbor in the sample from

the point Y(j). The djk will be large (small) and the kernel will be flat

(peaked) in data-sparse (-dense) regions; thus, the 3-parameter estimator

is a variable kernel estimator. They developed a data-based algorithm with

modified-likelihood criterion for bandwidth selection by employing the idea

of cross-validation and showed via a simulation study that the performance

of the data-based 3-parameter estimator is superior to that of the data-

based 1-parameter estimator. Tanner135 studied the asymptotic properties

of the following variable kernel estimator of h(t):

ĥdk(t) =
1

2dk

n
∑

j=1

∆(j)

n− j + 1
K

(

t− Y(j)

2dk

)

, (5)

where dk is the distance to the kth-closest failure neighbor from t.

To tackle the problems of boundary effects near the endpoints of the

support of h(t) and a substantial increase in the variance from left to right

over the range of abscissas where h(t) is estimated, Müller and Wang102

modified the kernel estimator ĥb(t) as follows:

ĥbt
(t) =

1

bt

n
∑

j=1

∆j

n− j + 1
Kt

(

t− Y(j)

bt

)

, (6)
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which allows for variable degrees of smoothing at different time points and

implementation of boundary kernels. Here the bandwidth bt and the ker-

nel Kt(·) depend on the time point t, where the estimate of h(t) is to be

computed. Kt(·) is a kernel if t is in the interior region; it is a polynomial

boundary kernel if t is in the boundary regions. See [102] for details of con-

struction of polynomial boundary kernels. Other specific boundary kernels

have been considered by Gasser, Müller, and Mammitzsch57, Müller101, and

Messer and Goldstein99. Additionally, removing boundary effects has been

proposed by Müller100, Hougarrd73, Hougaard, Plum, and Ribel74, and by

Hall and Wehrly67.

Liebscher96 derived uniform strong convergence rates of kernel estima-

tors of the density and hazard functions when the failure times form a

stationary α-mixing sequence; his results represented an improvement over

Cai’s28.

2.2. Spline-based Estimation

Let ỹ1 < ỹ2 < · · · < ỹs denote the distinct uncensored and censored times,

and let mi and ci be the uncensored and censored numbers, respectively,

at ỹi. The log-likelihood of h(·) can be expressed as

`(h) =

n
∑

j=1

[

δj log(h(yj)) −

∫ yj

0

h(u)du

]

(7)

=

s
∑

i=1

[

mi log(h(ỹi)) − (mi + ci)

∫ ỹi

0

h(u)du

]

. (8)

To get a nonnegative estimate of h(t), by developing Anderson and Senthil-

selvan’s approach8 to estimating the baseline hazard function in the PH

model, Senthilselvan127 made the substitution ξ(t) =
√

h(t) and applied the

penalized likelihood technique that was introduced by Good and Gaskins60

in the context of nonparametric probability density estimation, by adding

the roughness penalty functional λ
∫

I{ξ
′(u)}2du to the log-likelihood `(h)

(8) to obtain the penalized log-likelihood

`p(ξ) =
s

∑

i=1

[

2mi log(ξ(ỹi)) − (mi + ci)

∫ ỹi

0

ξ2(u)du

]

− λ

∫

I

{ξ′(u)}2du. (9)

Here λ is the smoothing parameter to be used throughout this chapter. It

regulates the trade-off between smoothness and goodness-of-fit. The ξ ′(·) is
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the first derivative of ξ(·). I is an interval in the positive real axis containing

the closed interval [ỹ0, ỹs] for ỹ0 = 0. The maximum penalized likelihood

estimate of ξ(t) is a hyperbolic spline function (Schumaker, 1981) with

knots at ỹi, i = 0, . . . , s, which is expressed as

ξ̂(t) = as−1 exp(ωs−1us−1) + bs−1 exp(−ωs−1us−1), t ∈ (ỹ0, ỹs),

where (i) a0 = b0 = 0; (ii) ai = ai−1µ
+
i−1 exp(ωi−1ui−1) +

bi−1µ
−
i−1 exp(−ωi−1ui−1) − Ei/(2ωi), i = 1, . . . , s − 1;

(iii) bi = ai−1µ
+
i−1 exp(ωi−1ui−1) + bi−1µ

−
i−1 exp(−ωi−1ui−1) + Ei/(2ωi),

i = 1, . . . , s − 1; (iv) a2
s−1 exp(2ωs−1us−1) − b2s−1 exp(−2ωs−1us−1) −

1/(λωs−1) = 0 for ui = ỹi+1 − ỹi, µ
+
i = (ωi + ωi+1)/(2ωi+1), µ

−
i =

(ωi−ωi+1)/(2ωi+1) with ωi =
√

∑s

j=i+1(mj + cj)/λ, i = 0, 1, . . . , s−1, and

Ei = mi/{λ[ai−1 exp(ωi−1ui−1) + bi−1 exp(−ωi−1ui−1)]}, i = 1, . . . , s − 1.

Note that ξ̂(·) is continuous on [ỹ0, ỹs], and the discontinuities of ξ̂′(·) are

at the time points ỹi with mi 6= 0. Therefore, for a given value of λ, the

estimate of h(t) is ĥ(t) = ξ̂2(t), t ∈ I. The methods used to maximize

`p(·) (9) with respect to ξ(·) are similar to those in [117]. The proposed

estimation method can be modified to estimate the intensity function of a

nonstationary Poisson process. This method is not applicable to estimation

from grouped data, for which the kernel estimates of Tanner and Wong136

may be used.

Rosenberg119 proposed a flexible parametric procedure to model h(t) as

a linear combination of cubic B-splines as follows:

h(t; a) =

K
∑

k=−3

exp(ak)Bk(t), t ∈ [ymin, ymax] (10)

in which using exp(ak) as coefficients insures that an estimate of h(t) is

nonnegative. Here a = (a−3, . . . , aK)T; K is the number of interior knots

κ1 < · · · < κK , to be used throughout this chapter unless stated otherwise;

and Bk(t) are cubic B-spline functions40 of t expressed as follows:

Bk(t) = (κk+4 − κk)

k+4
∑

`=k

(κ` − t)3+
∏

m6=`m=k,...,k+4

(κm − κ`)
, k = −3, . . . ,K,

for u+ equal to u if u > 0 and 0 if u ≤ 0. This can be constructed by fol-

lowing the parameterization in Atkinson12, letting κ0 = ymin and κK+1 =

ymax, and defining six arbitrary “slack” knots such that κ−i = κ0 − i, and
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κK+1+i = κK+1 + i, i = 1, 2, 3. Using the log-likelihood (7) corresponding

to the model (10), one can have the log-likelihood `(a;K) as follows:

`(a;K) =

n
∑

i=1

{

δi log(h(t; a)) −

K
∑

k=−3

exp(ak) [IBk(yi) − IBk(ymin)]
}

, (11)

where

IBk(t) = −
κk+4 − κk

4

k+4
∑

`=k

(κ` − t)4+
∏

m6=`m=k,...,k+4

(κm − κ`)
.

For a given value of K, one can obtain an ML estimate â of a, hence the cu-

bic B-spline estimates h(t; â) of h(t) and S(t; â) = exp(−
∫ t

ymin
h(u; â)du)

of S(t) by maximizing `(a;K) (11). Within the model framework, three

methods (i.e., delta-method, profile likelihood, and bootstrap) can be used

to calculate confidence intervals of h(t) and S(t). To avoid numerical dif-

ficulties when it occurs that ak → −∞ for some k, Rosenberg suggested

adding a penalty term −105
∑K

k=−3(−10 − ak)3+ to `(a;K) (11). He also

developed an automatic knot selection procedure by choosing the kth knot

corresponding to the k/(K + 1) quantile of the uncensored failure times.

The final model is the one that maximizes the Akaike information criterion5,

AIC(K) = −2`(â;K) − 2(K + 4).

Cai, Hyndman, and Wand27 proposed a linear spline model

η(t; β1,β2) = β10 + β11t+

K
∑

k=1

β2k(t− κk)+ (12)

for the log-hazard function η(t) = logh(t), where β1 = (β10, β11)
T and

β2 = (β21, . . . , β2K)T. The implementation chooses the kth interior knot

κk approximately corresponding to the k sample quantile of the unique

observed times yi and sets K = min(bn/4c, 30), where bac is the greatest

integer less than or equal to a. See Ruppert (2002) for further reference

on the selection of K. To remedy the situation that the estimate of η(t)

will be a somewhat wiggly piecewise linear function, Cai, Hyndman, and

Wand treated the β2ks as random effects and assumed they were inde-

pendent and normally distributed with zero mean and finite variance σ2,

whose reciprocal acts as a smoothing parameter controlling the amount

of smoothing. Let Z1 = [1, yi]1≤i≤n and Z2 = [(yi − κk)+]1≤i≤n;1≤k≤K .

Let H(β1,β2) be the sum of cumulative hazards evaluated at the yis.

Let ˜̀(β1,β2, σ) = δT(Z1β1 + Z2β2) − H(β1,β2) −
1

2σ2 βT
2 β2, where δ =
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(δ1, . . . , δn)T. Cai, Hyndman, and Wand used the ML estimate of σ2 as

a natural, automatic smoothing parameter that maximizes the marginal

log-likelihood `(σ) = log
∫

exp(˜̀(β1,β2, σ))dβ2dβ1 −K log(σ). This is ap-

proximated by

˜̀
(

β̂1(σ), β̂2(σ), σ
)

−
1

2
log

∣

∣ − ˜̀′′
(

β̂1(σ), β̂2(σ), σ
)∣

∣ −K log(σ) (13)

by using Laplace’s method to resolve the problem of the intractable

K + 2-dimensional integral, where for fixed σ2, (β̂1(σ), β̂2(σ)) =

argmaxβ
1
,β

2

˜̀(β1,β2, σ), and ˜̀′′(β̂1(σ), β̂2(σ), σ) is the second-order par-

tial derivatives of ˜̀(β1,β2, σ) with respect to (β1,β2), evaluated at

(β̂1(σ), β̂2(σ)). Once the ML estimate σ̂ of σ is obtained by maximizing

(13), we can have the estimate (β̂1, β̂2) = (β̂1(σ̂), β̂2(σ̂)) of (β1,β2), hence

the penalized spline fit η(t; β̂1, β̂2) = β̂10 + β̂11t+
∑K

k=1 β̂2k(t−κk)+.

Cai, Hyndman, and Wand also proposed a simpler alternative to ob-

tain a mixed model-based estimate of h(t) by approximating the cumu-

lative hazard function via a quadrature formula in which the log-likelihood

`(β1,β2, σ) for (β1,β2, σ) is approximately the log-likelihood correspond-

ing to a Poisson mixed model that can be used to estimate h(t). Given

σ, the covariance matrix of (β̂1, β̂2 − β2)
T can be approximated by

−(˜̀′′(β̂1, β̂2, σ))−1 via the likelihood theory, hence pointwise confidence

intervals of the hazard estimate are available.

Cai and Betensky26 have also used this mixed model approach to spline

estimation of the baseline hazard function in the PH model for interval-

censored data. Bloxom21 proposed a constrained quadratic spline as an

estimator of the hazard function by using a maximum penalized likelihood

procedure. Whittemore and Keller152 estimated the hazard function by us-

ing splines with a nonparametric ML procedure and extended the procedure

to estimate the baseline hazard function in the PH model. O’Sullivian106

proposed a fast algorithm for computation of fully automated or data-driven

penalized likelihood estimators of log-density and log-hazard functions by

using cubic B-spline approximations; the estimator of the log-hazard func-

tion can be generalized to obtain smooth estimators of the baseline hazard

function in the PH model. Cox and O’Sullivian33 described a general ap-

proach to the first-order asymptotic analysis of penalized likelihood and

related estimators, of which O’Sullivian’s hazard estimator106 is a special

case. In addition, see [45, 146, 65] for general treatments of splines.



May 24, 2007 10:42 WSPC/Trim Size: 9in x 6in for Review Volume chapter11

232 C.-S. Li

2.3. Other Smooth Estimation Methods

Paralleling the approach to density estimation proposed by Olkin and

Spiegelman105, Kouassi and Singh85 proposed the model

hwt
(t; θ̂) = wth(t; θ̂) + (1 − wt)ĥ(t) (14)

for h(t). Here the weight parameter wt ∈ [0, 1] is unknown and depends on

the time point t. The wt is estimated by minimizing the mean squared error

(MSE) of hwt
(t; θ̂), and its estimator ŵt is then used in (14) to obtain the

estimator hŵt
(t; θ̂) for h(t). θ̂ is the ML estimator of the unknown parameter

or parameter vector θ in the parametric hazard model h(t; θ) that can be,

e.g., Weibull with unknown shape and scale parameters, and h(t; θ̂) is the

parametric estimator of h(t). The ĥ(t) is any smooth nonparametric hazard

estimator of h(t). For technical simplicity, Kouassi and Singh took ĥ(t) to be

the kernel estimator ĥb(t)
116,136,157. The ŵt provides some insight into which

of the parametric or nonparametric estimators is more commensurate with

the data; it is expected to be close to 1 when the parametric model is valid

or close to 0 otherwise. The hŵt
(t; θ̂) is a semiparametric estimator, because

it is a combination of a parametric and nonparametric estimators. When

the parametric model holds, the semiparametric hazard estimator hŵt
(t; θ̂)

converges to the true model at the same rate as the parametric hazard

estimator; otherwise, it converges at the same rate as the nonparametric

hazard estimator. The proposed method leads to a more precise hazard

estimator in the sense that the MSE of the semiparametric estimator is

smaller than those of its parametric and nonparametric competitors.

In addition, Patil110 and Antoniadis, Grégoire, and Nason10 estimated

the hazard function h(t) with wavelet methods.

3. Smooth Estimation of Hazard Function with Covariates

The linear PH model (2) is a popular regression tool for the analysis of

censored failure time data, but the linearity assumption of the covariate

effects may not be valid in practice. One can remedy the violation by means

of various nonparametric regression techniques. Therefore, in this section we

will first introduce some existing nonparametric regression techniques for

modeling covariate effects in the PH model and then some semiparametric

and nonparametric regression models for the conditional hazard functions

as alternatives to the linear PH model. First, we introduce some notations to

be used in the following sections. Let (Yi,Xi,∆i), i = 1, . . . , n, be a sample

of i.i.d. random variables, each having the same distribution as (Y,X,∆),
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where X is the p-vector of covariates. Let (yi,xi, δi) be observed data. Let

t(1) < · · · < t(m) be m ordered uncensored failure times and dj be the

number of observed failures at time t(j), Rj = {i : Yi ≥ t(j)} the risk set at

time t−(j), just prior to time t(j), j = 1, . . . ,m.

3.1. Local Polynomial PH Models

Assume that the functional form of the covariate effects ψ(x) (i.e., the

logarithm of the relative risk) in the PH model is unspecified. Then, we

refer to the conditional hazard model

h(t|x) = h(t) exp(ψ(x)) (15)

as a nonparametric PH model. For simplicity of discussion, for the moment,

we consider the univariate case; thus, the nonparametric PH model (15)

becomes

h(t|x) = h(t) exp(ψ(x)). (16)

The log-likelihood corresponding to the model (16) is

`(h, ψ) =
n

∑

i=1

{δi [logh(Yi) + ψ(Xi)] −H(Yi) exp[ψ(Xi)]} . (17)

To estimate ψ(x), Fan, Gijbels, and King50 used the local polynomial regres-

sion technique130,131,132,32,46,47,48,121. They assumed that the pth derivative

of ψ(X) at the point x0 exists and, by a Taylor’s expansion, they modeled

ψ(X) as

ψ(X) ≈ X∗β∗, (18)

where X∗ = (1, X − x0, . . . , (X − x0)
p), and β∗ = (β∗

0 , . . . , β
∗
p)T =

(ψ(x0), . . . , ψ
(p)(x0)/p!)

T. We refer to the conditional hazard model

h(t|x) = h(t) exp(x∗β∗) (19)

as a local polynomial PH model.

To estimate β∗, Fan, Gijbels, and King considered two cases − when

the baseline hazard function is parameterized and when it is not. We will

focus on the latter case. When h(t) is not parameterized, they used the local

polynomial model (18) with a local version of the log partial likelihood to

find the β∗ that maximizes the local log partial likelihood

m
∑

j=1

Kb(X{j} − x0)
{

X∗
{j}β

∗ − log
[

∑

i∈Rj

exp(X∗
i β

∗)Kb(Xi − x0)
]}

, (20)
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where {j} denotes the label of the individuals failing at time t(j), j =

1, . . . ,m, and Kb(u) = b−1K(u/b) for K(·) being a symmetric nonnegative

kernel function and b a given bandwidth. Let β̂
∗

= (β̂∗
0 , . . . , β̂

∗
p)T maximize

the local log partial likelihood (20). Then ψ̂(ν)(x0) = ν!β̂∗
ν is an estimator

of ψ(ν)(x0). Note that the local log partial likelihood (20) does not involve

the intercept β∗
0 = ψ(x0) because it cancels out. Therefore, the function

value ψ(x0) is not directly estimable. The identifiability of ψ(x) is ensured

by imposing the condition ψ(0) = 0. The function ψ(x) =
∫ x

0
ψ′(u)du can

be estimated by

ψ̂(x) =

∫ x

0

ψ̂′(u)du. (21)

For practical implementation, Tibshirani and Hastie143 suggested approxi-

mating the integration by the trapezoidal rule.

Fan, Gijbels, and King suggested the estimator H(t; θ̂) =
∑m

j=1 θ̂jI(t(j) ≤ t) for the cumulative baseline hazard function H(t). Here

θ̂ = (θ̂1, . . . , θ̂m)T, and θ̂j = [
∑

i∈Rj
exp(ψ̂(Xi))]

−1, which is the Breslow-

type estimator of the baseline hazard function22,23 for θj in the nonpara-

metric model H(t; θ) =
∑m

j=1 θjI(t(j) ≤ t) for H(t) and can be obtained

by maximizing `(h, ψ), given in (17) with respect to θ = (θ1, . . . , θm)T.

H(Yi; θ) and ψ̂(Xi) replace H(Yi) and ψ(Xi), respectively. One can em-

ploy a kernel smoothing technique to obtain an estimate of h(t) via

h(t; θ̂) =
∫

Wg(t − x)dH(x; θ̂), where Wg(u) = g−1W(u/g) for W being

a given kernel function and g a given bandwidth. An alternative approach

to estimating H(·) and h(·) is the locally approximated H(t) and h(t) as

follows:

H(t) ≈ exp(b0 + b1(t− t0)), and h(t) ≈ exp(b0 + b1(t− t0))b1, (22)

where t is in a neighborhood of t0. For a given estimator ψ̂(·) such as the

one in (21), the local version of the log-likelihood (17) corresponding to the

local linear models (22) can be expressed as

n
∑

i=1

Wg(Yi − t0)
{

δi

[

b0 + b1(Yi − t0) + log b1 + ψ̂(Xi)
]

− exp[b0 + b1(Yi − t0)] exp[ψ̂(Xi)]
}

. (23)

Let b̂0 and b̂1 maximize the local log-likelihood (23). Then Ĥ(t0) =

exp(b̂0), and ĥ(t0) = exp(b̂0)b̂1 are smoothed type estimators of H(t0) and

h(t0), respectively. Consequently, one can have smoothed type estimators
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of H(t|x) and h(t|x). The above approaches are quite different from the

local full likelihood procedure by Gentleman and Crowley58 that used an

iterative procedure.

When there is more than one covariate, one could use a multivariate Tay-

lor’s expansion to approximate ψ(·) locally with a pth-degree polynomial.

This would lead to a straightforward generalization of the above results.

However, a serious problem in multivariate situations is the curse of dimen-

sionality, which was coined by Bellman15. A possible approach to tackling

this problem is to consider, e.g., additive modeling68,69,70,71, hazard regres-

sion models (low-order interaction models)82,83, adaptive regression spline

Cox models91 that used the multivariate adaptive regression spline (MARS)

technique53, and functional analysis of variance (ANOVA) modeling133,75.

Fan and Gijbels49 have also used the local polynomial fitting proce-

dure on the transformed censored data to estimate the mean regression

function. Kim and Truong81 used the local linear fitting to estimate the

conditional survival, cumulative hazard, mean, and median functions by

modifying the procedure of Beran17, who employed local constant fitting

to estimate the conditional survival and cumulative hazard functions as an

alternative to the PH model. Wu and Tuma155 considered a general class of

local hazard models. Betensky, et al.18,19 used the local likelihood method

to estimate the baseline hazard function in the PH model for right- and

interval-censored data.

3.2. Additive PH Models

As Friedman and Stuetzle54, among others, pointed out, dimensionality

problems incurred when using multidimensional smoothers. Friedman and

Stuetzle proposed the projection pursuit regression technique as an alterna-

tive to multidimensional smoothing. An additive model68,69,71 is a special

case of a projection pursuit regression model in which exactly p directions

are fixed at the coordinate directions. The additive model is less general

than the projection pursuit model, but it is more easily interpretable. There-

fore, Hastie and Tibshirani70 proposed an additive model

ψ(x; G) =

p
∑

j=1

gj(xj) (24)

for ψ(x) in the model (15), where G = (g1, . . . , gp); the gj(·)s are unspecified

smooth functions; and gj ∈ Qj that is the space of functions with square

integrable second derivatives on Ωj that is the domain of the jth covariate,
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j = 1, . . . , p. The conditional hazard model

h(t|x) = h(t) exp(ψ(x; G)) (25)

is referred to as an additive PH model. Let Ψ = (ψ(x1; G), . . . , ψ(xn; G))T.

Then, the partial likelihood corresponding to the model (25) with Peto’s

(1972) approximation for ties is

PL(Ψ) =

m
∏

r=1

exp
(
∑

i∈Dr
ψ(xi; G)

)

(
∑

i∈Rr
exp(ψ(xi; G))

)dr
, (26)

where Dr is the set of indices of failures at t(r). To estimate gj(·), Hastie

and Tibshirani maximized the penalized log partial likelihood

`p(Ψ) = `(Ψ) −
1

2

p
∑

j=1

λj

∫

g′′j (x)2dx, (27)

where `(Ψ) = logPL(Ψ) and λj ≥ 0 are smoothing parameters. The first

term in (27) measures the closeness of the fit to the data, and the second

term penalizes the curvature of the fitted functions. One can establish the

existence of a unique solution to this problem under certain conditions by

using the arguments of O’Sullivan107 extended to the additive model by

Buja, Hastie, and Tibshirani25. Given that a unique solution exists, it can

be seen that the solution must be a cubic spline for each j.

One can restrict the infinite-dimensional problem to a finite one by

choosing a suitable basis. A convenient basis can result from considering

the evaluations of the cubic splines gj(·) at the observed points x1j , . . . , xnj .

The penalized log partial likelihood (27) then can be rewritten as

`p(Ψ) = `(Ψ) −
1

2

p
∑

j=1

λjg
T
j Kjgj , (28)

where Kj are symmetric penalty matrices, and gj = (gj(x1j), . . . , gj(xnj))
T

is a vector of the values of gj at x1j , . . . , xnj . One may obtain (28) as the log

posterior from a Bayesian model with independent priors gj ∼ N(0,K−1
j );

the additive function solution lies in a reproducing kernel Hilbert space with
∑p

j=1 K−
j equal to the reproducing kernel evaluated at x1j , . . . , xnj . The

curves gj maximizing `p(Ψ) can be obtained by using the Newton-Raphson

algorithm with the “Gauss-Seidel” method. In the statistical literature, the

Gauss-Seidel method has become known as “backfitting,” which was first

proposed on more heuristic grounds using nonlinear smoothers54. Note that

in the algorithm the functions are standardized to have a mean of zero,
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because any additive constant can be absorbed into h(t). According to Gill,

Murray, and Wright59, if step size is optimized, the proposed algorithm is

globally convergent.

When the x values are tied, fitted values will be required only at the

unique values of a given covariate, so the tied values will reduce the pa-

rameter space. The algorithm handles the tied values correctly as long as

the smoother returns the same estimated value for the same x values. This

is the case for the cubic spline smoother, and other reasonable smoothers.

Hastie and Tibshirani derived some approximate methods for inference and

smoothing parameter selection through heuristic arguments. The proposed

methodology may be applied in principle to time-dependent covariates,

though substantial computational difficulties may arise.

O’Sullivan107 proposed an algorithm for the PH model based on a con-

jugate gradient method in which the cubic B-spline representation was

used for ψ(x); the proposed algorithm is globally convergent. Sleeper and

Harrington129 have also used a liner combination of B-splines to approxi-

mate ψ(x). Durrelman and Simon41 used restricted cubic splines for ψ(x).

In contrast to smooth additive functions for ψ(x) by Hastie and

Tibshirani70, O’Sullivan107, and Sleeper and Harrington129, among others,

LeBlanc and Crowley91 modeled ψ(x) by using the MARS technique53. The

conditional hazard model is referred to as an adaptive regression spline PH

model. The technique can automatically fit models with terms that rep-

resent nonlinear effects and interactions among covariates. LeBlanc and

Crowley’s method is related to the method by Gray63 who used fixed knot

splines in the PH model. However, their method adaptively selects locations

and is restricted to piecewise linear functions of the covariates x.

To ameliorate the curse of dimensionality, Huang, Kooperberg, Stone,

and Truong75 proposed a functional ANOVA model for ψ(x) in which the

overall effect of the covariates is modeled as a specified sum of a constant

effect, main effects (functions of one covariate), and selected low-order in-

teractions (functions of a few covariates). At the same time, the functional

ANOVA model retains the flexibility of nonparametric modeling. This ap-

proach also can deal with the situation of time-dependent covariates. Stone,

Hansen, Kooperberg, and Truong133 gave a comprehensive review of one

approach to functional ANOVA modeling. In addition, Wahba, Wang, Gu,

Klein, and Klein147 discussed ANOVA decompositions for smoothing spline

models in a general context.
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3.3. Partially Linear PH Models

In practice, if without loss of generality the first p1 covariates of x are

assumed to have linear effects and the functional forms of the other covari-

ate effects are unknown and smooth, one can use the model
∑p1

j=1 βjxj +
∑p

j=p1+1 gj(xj), considered by Gray (1992) for ψ(x) in model (15) instead

of the additive model (27), where the gjs are unknown smooth functions. To

simplify this discussion, we will assume that the functional form of the pth

covariate effect is unspecified. Gray64 considered the partially linear

model

ψ(x; β∗
1, g) = x∗

1β
∗
1 + g(xp) (29)

for ψ(x), where x∗
1 = (x1, . . . , xp−1), the first p− 1 covariates for the linear

terms, β∗
1 is the vector of the associated parameters, and g is an unknown

smooth function that gives the pth covariate effect on the outcome. Engle,

Granger, Rice, and Weiss43 were the first to consider the partially linear

model. The conditional hazard model

h(t|x) = h(t) exp(ψ(x; β∗
1, g)) (30)

is referred to as a partially linear or semiparametric additive PH model.

Let B1(xp), . . . , BK+4(xp) be the cubic B-spline basis for the space of cubic

splines with the prespecified interior knots κ1, . . . , κK . Gray64 parameter-

ized g as

g(xp) = θ0xp +

K+2
∑

k=1

θkBk(xp), (31)

where θ0, θ1, . . . , θK+2 are unknown parameters. Because the space of cu-

bic B-splines includes the constant and linear functions, the constant is

absorbed into h(t), and the linear term is specified separately in (31),

only K + 2 of the B-spline basis functions are used in (31). Therefore,

any two of the K + 4 B-spline basis functions could be dropped, provided

the resulting parameterization is of full rank. Let ϑ1 = (θ1, . . . , θK+2)
T and

ϑ2 = (θ0,ϑ
T
1 )T. To investigate the effects of the covariate xp, Gray consid-

ered two hypotheses about g: (i) the hypothesis of no effect, g(xp) = 0, i.e.,

ϑ2 = 0. (ii) the hypothesis of linear effect of xp, g(xp) = θ0xp, i.e., ϑ1 = 0.

Constructing tests for hypothesis (ii) is exactly the same as that for

hypothesis (i), so we will confine our discussion to testing hypothesis (i).

To estimate β∗
1 and g, Gray64 maximized the penalized log partial
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likelihood

`p(β
∗
1,ϑ2) = `(β∗

1,ϑ2) −
1

2
λ

∫

g′′(u)2du, (32)

where `(β∗
1,ϑ2) is the log partial likelihood; 1

2λ
∫

g′′(u)2du = 1
2λϑ

T
1 Kϑ1 =

1
2λϑ

T
2 K∗ϑ2 is a penalty function; K is a positive-definite matrix that is a

function only of the knot locations; K∗ is a (K + 3)× (K + 3) matrix with

zeros in the first row and column and K is in the remainder of the matrix.

To test hypothesis (i) by analogy with the usual (unpenalized) paramet-

ric likelihood procedures, Gray conducted three test statistics: a penalized

quadratic score statistic, a Wald-type statistic, and a penalized likelihood

ratio statistic that is similar to the deviance statistics discussed by Hastie

and Tibshirani70,71 and applied to this setting. The main difference is that

the penalty function in the deviance is not included.

Within the fixed knot framework and assuming that the usual condi-

tions are satisfied so that the standard asymptotic expansions hold for the

unpenalized log partial likelihood9,64 showed that under the null hypothesis

the three test statistics all have the same asymptotic distribution, which is a

linear combination of chi-squares. Imhof76 and Davies38,39 developed meth-

ods for calculating the distribution of a linear combination of chi-squares

based on inverting the characteristic function. For the practical use of the

proposed tests, the value of λ that gives the specified degrees of freedom

of the proposed tests is used. The definition of degrees of freedom corre-

sponds to Definition 3 of Buja, Hastie, and Tibshirani25. The proposed

methodology can be extended for time-dependent covariate effects.

3.4. Extended Hazard Regression Models

Etezadi-Amoli and Ciampi44 proposed the extended hazard regression

(EHR) model

h(t|x) = h(exp(−xα)t) exp(−xβ) (33)

for h(t|x), where h(u) is an unspecified baseline hazard function, and α

and β are vectors of regression parameters. It can be seen that the EHR

model (33) includes the PH (α = 0) and AFT (α = β) models as special

cases. Let u = exp(−xα)y. Etezadi-Amoli and Ciampi44 modeled h(u) with

a quadratic spline with K knots denoted by κ = (κ1, . . . , κK) as follows:

h(u; ζ) =
2

∑

l=0

γ0lu
l +

K
∑

k=1

γ1k(u− κk)2+ (34)

= γ∗0j + γ∗1ju+ γ∗2ju
2 for u ∈ [κj , κj+1], j = 1, . . . ,K − 1, (35)
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where ζ = (γ0,γ1,κ) is the (2K + 3)-vector of parameters for γ0 =

(γ00, γ01, γ02), γ1 = (γ11, . . . , γ1K), γ∗0j = γ00 +
∑j

k=1 γ1kκ
2
k, γ∗1j = γ01 −

2
∑j

k=1 γ1kκk, and γ∗2j = γ02 +
∑j

k=1 γ1k. The log-likelihood corresponding

to the EHR model (33) with the quadratic spline model (34) is

`(α,β, ζ) =

n
∑

i=1

{

δi[−xiβ + logh(ui; ζ)]

− exp(−xi(β − α)) −H(ui; ζ)
}

, (36)

where H(u; ζ) =
∫ u

0 h(t; ζ)dt is a cumulative hazard function. Thus, once

the estimate (α̂, β̂, ζ̂) of (α,β, ζ) is obtained by maximizing `(α,β, ζ), we

can have the estimate of h(t|x). Let umax be the value of u = exp(−xα̂)y

corresponding to the maximum observed time. To ensure that h(u; ζ) must

be nonnegative in [0, umax] while estimating (α,β, ζ), the following con-

straints are needed: (i) γ00 ≥ 0; (ii) h(umax; ζ) > 0; (iii) h(κk; ζ) ≥ 0,

k = 1, . . . ,K; (iv) if the jth polynomial piece of (35) has an extremum in

[κj , κj+1], then

γ∗0j − (γ∗1j)
2/4γ∗2j ≥ 0; (37)

otherwise h((κj + κj+1)/2; ζ) ≥ 0. Notice that (37) is the value of h(u; ζ)

at the extremum of the jth polynomial piece, provided it falls in [κj , κj+1].

The subroutine GRG2 (Lasdon and Waren, Department of General

Business, University of Texas at Austin, 1982) can be used for the numeri-

cally constrained optimization while maximizing `(α,β, ζ) (36) subject to

constraints (i) through (iv). The algorithm, which is based on the general-

ized reduced gradient method3,89, is considered one of the best in regard to

reliability and numerical stability of the solutions123. Within the framework

of the EHR model, the likelihood ratio test can be used to determine the

shape of the baseline hazard function, to determine the significance of the

regression coefficients, and to discriminate between AFT and PH. Although

several approaches to testing the PH assumption have been developed11,142,

the EHR model offers the unique advantage of permitting a comparison be-

tween PH and AFT.

3.5. Hazard Regression

Kooperberg, Stone, and Truong82 developed an adaptive hazard regres-

sion (HARE) methodology to model the conditional log-hazard function

η(t|x) = logh(t|x) as an alternative to the various aforementioned PH

models. Let x = (x1, . . . , xp) range over the subset X = X1 × · · · × Xp of
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R
p for xi ranging over the subset Xi of R, i = 1, . . . , p. Let 1 ≤ q < ∞

and G a q-dimensional linear space of functions on [0,∞) × X such that

g(·|x) is bounded on [0,∞) for g ∈ G. Let B1, . . . ,Bq be a basis of this space.

They used the following linear combination of linear splines and their tensor

products to develop the following HARE model:

η(t|x;Φ) =

q
∑

j=1

φjBj(t|x), (38)

for η(t|x), where Φ = (φ1, . . . , φq)
T. The method is similar to the MARS

technique53. It can be seen from (38) that the approach to modeling η(t|x)

does not depend on the validity of the basic assumption of the PH model

that the conditional log-hazard function is an additive function of time

and the vector of covariates. One can obtain the ML estimate Φ̂ of Φ by

maximizing the log-likelihood corresponding to the HARE model (38) for

η(t|x)

`(Φ) =

n
∑

i=1

{

δiη(yi|xi;Φ) −

∫ yi

0

exp[η(u|xi;Φ)]du

}

, (39)

which is a concave function on R
q . Consequently, the corresponding ML

estimates of the conditional log-hazard function, hazard function, sur-

vival function, and density function are given by η̂(t|x) = η(t|x; Φ̂),

ĥ(t|x) = h(t|x; Φ̂) = exp(η(t|x; Φ̂)), Ŝ(t|x) = exp(−
∫ t

0
ĥ(u|x)du), and

f̂(t|x) = ĥ(t|x)Ŝ(t|x), respectively.

To resolve the problem of choosing the linear space G (i.e., the selection

of the final model), Kooperberg, Stone, and Truong82 proposed an auto-

matic procedure involving the ML method, stepwise addition using Rao

statistic, stepwise deletion using Wald statistic, and the Bayes information

criterion126. If the selected space is the space of constant functions, then

the HARE model (38) has q = 1, B1(t|x) = 1, and η(t|x;Φ) = φ1, which

means that the conditional distribution of T given X = x is exponential

with mean exp(−φ1) independent of x. If none of the basis functions of the

selected space depends on both t and x, then the HARE model (38) is a PH

model, hence the HARE models include PH models as a subclass. However,

if any of the basis functions in the final model depends on both time and

a covariate, a PH model might not be appropriate. Therefore, the presence

or absence of interaction terms between time and covariates in the final

model can be regarded as a check on the proportionality of the underlying

conditional hazard model.
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When the covariates are absent, the model (38) reduces to

η(t|Φ) =

q
∑

j=1

φjBj(t). (40)

Kooperberg, Stone, and Truong82 developed the approach hazard estima-

tion with flexible tails (HEFT) to estimate the log-hazard function by us-

ing cubic splines. To allow for greater flexibility in the extreme tails, they

incorporated two additional log terms into the fitted model for the log-

hazard function. With inclusion of these two basis functions, HEFT can fit

Weibull and Pareto distributions exactly; HEFT is useful as a preprocessor

of HARE. They wrote programs in C for implementing HARE and HEFT

and developed interfaces based on S14,29; the software is available from

statlib [statlib@stat.cmu.edu] by requesting hare from S or heft from S.

Under suitable conditions, Kooperberg, Stone, and Truong83 obtained

the L2 rate of convergence for a nonadaptive version of the proposed

methodology. Kooperberg and Clarkson84 extended the HARE method-

ology to accommodate interval-censored data, time-dependent covariates,

and cubic splines. Gu66 formulated a general procedure for penalized like-

lihood hazard estimation. When a covariate is present, the class of the

conditional hazard models constructed via tensor-product splines includes

the PH model and the model of Zucker and Karr160 as special cases, and

in the absence of the covariate, the estimate of the hazard function reduces

to that of [106]. Gu’s methodology is similar to the HARE methodology.

4. Discussion

We have reviewed some nonparametric regression techniques for estimation

of the hazard or log-hazard functions. We also have discussed functional

forms of the effects of the covariates in the PH model and some semi-

parametric or nonparametric regression models for the conditional hazard

function as alternatives to the PH model. Although we have focused on

nonparametric modeling of time-independent covariate effects in the PH

model (Sec. 3), examining the PH assumption and modeling nonpropor-

tional hazards are also very important issues that have generated an exten-

sive literature. See [115, 138, 124, 61, 56, 13, 113, 141, 62, 122, 72, 108, 6,

37] and those mentioned in the previous sections for details. In addition, the

book140 provided a detailed discussion of model building, testing for the PH

models, and using SAS and S-Plus for these methodologies. The propor-

tional odds regression model16,158 is also an alternative to the PH model.
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Li95 gave a detailed review of the proportional odds regression model.

It is commonly seen in survival analysis that estimated survival curves

level off at a nonzero value after a certain time, even when many individ-

uals are followed beyond that time. This type of data has heavy censoring

at the end of the follow-up period. One can regard the population as con-

sisting of two groups: individuals who are not susceptible to an event of

interest, and individuals who are susceptible to the event if they are fol-

lowed long enough. A number of parametric and semiparametric cure (or

mixture) models for this type of heavily censored data have been proposed

by Farewell51, Yamaguchi156, Kuk and Chen86, Taylor139, Chen, Ibrahim,

and Sinha30, Sy and Taylor134, Peng and Dear111, and Li and Taylor93,94.

See [98] for a detailed introduction to cure models. Li, Taylor, and Sy92

systematically studied the identifiability of cure models. Finally, see [104]

for a detailed review of statistical methodologies used in survival analysis

that were not discussed in this chapter.
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CHAPTER 12

EIGENSLOPE METHOD FOR SECOND-ORDER

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS AND

THE SPECIAL CASE OF CYLINDRICAL CELLULAR

STRUCTURES WITH SPATIAL GRADIENTS IN

MEMBRANE CAPACITANCE

Lloyd Lee Glenna and Jeff Knisley

The Institute for Quantitative Biology,

East Tennessee State University,

P.O. Box 70658, Johnson City, TN 37614, USA

E-mail: aglennl@etsu.edu

Boundary value problems in PDEs usually require determination of the
eigenvalues and Fourier coefficients for a series, the latter of which are
often intractable. A method was found that simplified both analytic
and numeric solutions for Fourier coefficients based on the slope of the
eigenvalue function at each eigenvalue (eigenslope). Analytic solutions
by the eigenslope method resulted in the same solutions, albeit in dif-
ferent form, as other methods. Numerical solutions obtained by calcu-
lating the slope of the eigenvalue function at each root (hand graphing,
Euler’s, Runge-Kutta, and others) also matched. The method applied
to all classes of separable PDEs (parabolic, hyperbolic, and elliptical),
orthogonal (Sturm-Liouville) or non orthogonal expansions, and to com-
plex eigenvalues. As an example, the widespread assumption of uniform
capacitance was tested. An analytic model of cylindrical brain cell struc-
tures with an exponential distribution of membrane capacitance was de-
veloped with the eigenslope method. The stimulus-response properties
of the models were compared under different configurations and shown
to fit to experimental data from dendritic neurons. The long-standing
question was addressed of whether the amount of variation of membrane
capacitance measured in experimental studies is sufficient to markedly
alter the vital neuron characteristic of passive signal propagation. We
concluded that the degree of membrane capacitance variation measured
in cells does not alter electrical responses at levels that are physiologi-
cally significant. The widespread assumption of uniform membrane ca-
pacitance is likely to be a valid approximation.

255
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1. Introduction

Mathematical and statistical models are often the only resort when an im-

portant problem is not amenable to known experimental or empirical meth-

ods. Often, the model is expressed analytically as boundary value problem

in a linear partial differential equation (PDE) or system of PDEs, and solv-

ing the PDE requires the construction of a Fourier series, which in turn re-

quires solving for both eigenvalues and Fourier coefficients. The eigenvalue

problem is not always so difficult and needs to be solved first before the

Fourier coefficients can be determined. The Fourier coefficient prob-

lem can be an obstacle to the development and solution of more realistic

models.

An array of methods have been developed to identify Fourier coeffi-

cients, each of which usually applies to a narrow set of PDEs and boundary

conditions. The methods include the classic method of integration1,2,3, the

modified orthogonality relation4,5, the technique of residues derived from

the theory of functions of a complex variable6,7,8,9,10,11, and others. Of-

ten, the Fourier coefficients of the resulting solutions are unwieldy for all

but the simplest of boundary conditions9,11. The analytic methodology is

consequently restricted to specialized subsets of researchers invested in the

mathematics of a specialized subsets of boundary value problems in partic-

ular PDEs.

The present communication helps removes some of these restrictions

using a more general method that is often more tractable than other ap-

proaches. The eigenslope method12 can be used for analytically and nu-

merically solving those parabolic, hyperbolic, and elliptical PDEs that have

solutions expressed as an orthogonal or non orthogonal Fourier series with

either real or imaginary eigenvalues. As stated above, the method has the

advantage that it not only provides a new approach to the solution of such

models, but also helps clarify the biophysical meaning and significance of

the Fourier coefficients. It applies at least to any second order linear PDE

in which variables can be separated.

2. Overview of the Eigenslope Method

Is there a simple relationship between Fourier coefficients and eigenvalues?

Or is the relationship a complex mathematical relationship that differs for

each different PDE or set of boundary values? The answer is that the re-

lationship is simple. The Fourier coefficient for a given eigenvalue is in-

versely proportional to the product of the eigenslope and eigenvalue, where
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Fig. 1. Definition of eigenslope with an example of multiexponential decay of voltage

across a membrane. The decay rate of the exponentials (inverse of time constant) are
equal to the eigenvalue, and the initial voltages (at t = 0) are proportional to the inverse
of the eigenslope. A: The voltage decay (Σ) is composed of the sum of simple exponential
decays (1, 2, 3, ...). B: Example of transcendental eigenvalue function associated with
multiexponential decay in A. Eigenvalues are the roots (zero crossings) and the eigenslope
is the slope of the curve at the zero crossing. Vertical lines show where eigenvalue function
goes to ±∞. From Glenn and Knisley12 by permission.

the eigenslope is defined to be the slope of the eigenvalue function at the

given eigenvalue12.

The eigenslope is shown in Fig. 1. We consider a Fourier series solu-

tion common in electrical engineering and neurobiology of the form:

V (t) =

∞
∑

i=1

Ci e−βit.

The solution for V (which later will represent membrane voltage) for any

set of initial value and boundary conditions is an infinite series of simple

exponentials, each with a time constant of 1/βi , the first three terms of

which are plotted in Fig. 1A. The eigenvalues βi are obtained from an

eigenvalue function

f(β) = 0

plotted in Fig. 1B, where the eigenvalues are the points where the eigenvalue

function intercepts the abscissa. The eigenslope is then defined as the first

derivative of the equation, or

df(β)/dβ
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at each eigenvalue. To reiterate, the eigenslope has a simple inverse rela-

tion to the Fourier coefficients (C), diagrammatically depicted as

Ci =
k

βif ′ (βi)

where k is independent of βi. Note that the Fourier coefficients can be

obtained numerically, analytically, or even graphically — by measurement

of the plotted slope with ruler and protractor.

The intractability of Fourier coefficients in all but the most simple

boundary conditions is probably the reason why the simple relation be-

tween Fourier coefficients and the eigenslope has not been heretofore rec-

ognized, or at least widely recognized. One of the authors (L.G.) reviewed

45 PDE textbooks, 28 research compendia on 2nd order PDEs, as well as

several hundred articles on PDEs in mathematics, physics, engineering, and

mathematical biology. No previous work could be found that mentioned the

relation between the eigenslope or the relation of the first derivative of the

eigenvalue function to Fourier coefficients. Accordingly, our work on this

topic is described here.

3. Derivation of the Eigenslope Method

Let λi be a sequence of distinct positive eigenvalues for the Fourier series

V (x, t) =

∞
∑

i=1

Aiφi (x) e−λjt

where the Ai are the Fourier coefficients and the φi are trigonometric or

exponential eigenfunctions. As is typical in neuroscience applications, we

assume that
∑ |λk|−1

= ∞ and
∑ |λk|−2

< ∞. Although separation of

variables with modified orthogonality conditions can be used when the

boundary conditions are sufficiently simple, more realistic models usually

require solution by Laplace transforms and the method of residues6,7,11.

The Laplace transform of V (x, t) is

V̂ (x, p) =

∞
∑

i=1

Aiφi (x)

p + λj

It follows that there exists g (p, x) and h (p) that are analytic in p such that

V̂ (x, p) =
g (x, p)

h (p)
(1)
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where h (−λj) = 0 and h′ (−λj) 6= 0, for all j = 1, 2, . . . and where g(x, p)

is also second differentiable in x with g (x,−λj) 6= 0 for all j = 1, 2, . . . and

for all x (for example, define g (x, p) = h (p) V̂ (x, p) where

h (p) =
∞
∏

j=1

(

1 +
p

λj

)

e−p/λj

comes from Hadamard’s theorem6). It follows that

Aiφi (x) = lim
p→−λj

(p + λj) g (x, p)

h (p)
=

g (x,−λj)

h′ (−λj)
. (2)

If g1 (x, p) and h1 (p) are analytic and also satisfy (1), then define m (p)

such that h1 (p) = m (p) h (p) for all p and m (−λj) 6= 0 for all j = 1, 2, . . . .

Since h′
1 (λj) = m (−λj) h′ (−λj) , the limit (2) holds for any ratio of the

form (1).

In particular, it follows that the An are given by

V̂ (x, p) =
−1

pf (x, p)

where f (x,−λj) = 0 for all j. We say that f (x, p) is the eigenvalue function

for the problem. It follows that

Aiφi (x) =
1

λj

[

∂f
∂p (x,−λj)

] .

For each fixed x, we say that fp (x,−λj) is the eigenslope of the eigenvalue

function.

Analytically, the eigenslope approach provides a new approach to finding

the coefficients (Ai), namely, by differentiation of the eigenvalue equation.

Numerically, it provides a new method for determining the coefficients by

finding the slope of the eigenvalue function at each eigenvalue by standard

numeric methods. Conceptually, the eigenslope shows that eigenvalues and

Fourier coefficients are related by a very simple relation. Next, the eigens-

lope method is used to develop, solve, and verify a model that addresses

the significance of non uniform cell membrane capacitance in electrotonic

signal propagation.

4. Application of the Eigenslope Method to Cellular

Models With Propagation

Cell membranes are key building blocks of all cells, and regardless of cell

type, the membranes have the hallmark electrical property of a constant
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capacitance of approximately 1µF per cm213,14,15,16. The existence of an

electrical capacitance across cell membranes is vital to cell life17,18. Ca-

pacitance is used as a mechanism for rapid biological signaling and for in-

tegration of electrical signals over time and space3. Capacitance-dependent

synaptic integration is also the basis of central nervous system function

(thought, sensation, perception, behavior, etc.). Until recently, models of

cellular integration have assumed a constant membrane capacitance over

the cell, usually of 1µF per cm2. Although there is a wide agreement that

cell membranes have an average membrane capacitance near 1µF per cm2,

recent experimental work has led to questions about the assumption that

membrane capacitance is constant over the surface of a cell19. Membrane

capacitance is dependent on ion channel density20,21,22,23 (but see Gentet

et al24.), and evidence has been mounting that ion channels are often dis-

tributed unevenly in cells25,26,27,28,29. The consequences of capacitative non

uniformities in the passive propagation of electrical potentials in cylindrical

membrane processes (such as axons, dendrites, and muscle fibers) are not

known. In fact, the simplifying assumption that membrane capacitance is

fixed has been made in almost all analytic and computational models of

neurons and other cells to date (see reviews by Rall3, Lindsay et al30., and

Glenn and Knisley9). No systematic studies have been conducted to test

this assumption, so one of us (J.K.) used the eigenvalue method to develop

models in space and time of cylinder-shaped brain cells with longitudinally

graded membrane capacitance specifically with an exponential increment

with distance from the end of the cylinder. The hypothesis tested was that

there are no biologically-significant differences between membrane cylinders

with a homogeneous membrane capacitance and those with a exponentially-

graded capacitance, provided that the spatial variation in capacitance is

within the range of that estimated in experimental studies.

4.1. Definition of the General Model

A membrane cylinder with spatially-graded capacitance can be modeled

by the cable equation

∂2V

∂X2
− RmCm(X)

∂V

∂t
− V = 0, 0 < X < L (3)

where V (X, t) is membrane potential, Rm is the specific membrane resis-

tance in ohms, Cm is the specific membrane capacitance in farads, L is the

electrotonic length of the equivalent cylinder, and X is the electronic dis-

tance from the origin (electronic units are dimensionless and by convention,
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dimensionless units are denoted by uppercase variables)52. Note that Cm

is a function of X and varies with distance from origin, which is the end of

the cylinder. We assume sealed-end boundary conditions

∂V

∂X
(L, t) = 0 (4)

∂V

∂X
(0, t) = 0. (5)

Typically, the cell is saturated to a steady state using a somatic cur-

rent source with a constant magnitude of Istim, and then the current source

is switched off (actually, it is switched to a voltage recorder). Thus, the ini-

tial condition for (3) - (5) is the steady state of equations (3) and (5) subject

to the modified boundary condition

∂V

∂X
(L, t) = γIstim.

Separation of variables with V (X, t) = φ(X)T (t) yields

φ′′ + (αRmCm(X) − 1)φ = 0

and

T ′ = −αT.

The solution is of the form8,9,10,11

V (X, t) =

∞
∑

n=0

Anφn (X) e−αnt

where the αn > 0 are the eigenvalues, the An are the Fourier coefficients

and the φn are the separated solutions or eigenfunctions of equations (3)

- (5). We normalize the eigenfunctions so that φn(0) = 1. At the proximal

end of the cylinder,

V (0, t) =

∞
∑

n=0

Ane−αnt.

On L2 [0, L] , we define the inner product with weight τ(X) by

〈f, g〉 =

∫ L

0

f (X) g (X) τ (X) dX.

From Sturm-Liouville theory2 we have orthogonality of the eigenfunctions

and

Ane−αnt =
〈V (·, t) , φn〉
〈φn, φn〉
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which can be used to estimate the An once the eigenvalues and eigenfunc-

tions are known. The Fourier coefficients can be estimated using the method

of residues, as shown below.

Fig. 2. Dependence of decay time ( τ ) on electronic length (L) in the exponential model

with a 10% origin-to-terminal capacitance change. Inset diagram summarizes the three
models developed, including the stimulus and response (Istim, Vm) and the longitudinal
capacitance distribution in the point, step, and exponential models.

Saturation to a steady state by a constant current stimulus prior to

voltage recording implies that the initial potential distribution for (3) - (5)

is the steady state distribution V ss of the system

d2V ss

dX2
− V ss = 0, 0 < X < L

dV ss

dX
(L) = 0

G∞ dV ss

dX
(0) = Istim

where G∞ is the input conductance. The solution is given by

V ss (X) =
−Istim cosh (L − X)

G∞ sinh (L)
. (6)
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It follows that the An are given by

An =
〈V ss, φn〉
〈φn, φn〉

.

This approach was used to solve for three models of non uniform capaci-

tance: (1) point change in capacitance, (2) step change in capacitance, and

(3) exponentially graded capacitance. The three models are diagrammed in

the inset of Fig. 2.

4.2. Definition of Fundamental Point and Stepped Models

The solutions to point capacitance and stepped capacitance models were

first determined as a reference point for the final exponential model. If

Cm = Cm(L) and Cs = Cm(0) (i.e., Cs is capacitance at the soma), then

Cm(X) =

{

Cs if 0 ≤ X ≤ Z

Cm if Z < X ≤ L

for any Z between 0 and L. By previous methods7,10,11, the Laplace trans-

form of the transient at X = 0 is

W (0) =
Istim

G∞sbs

bs + bm tanh (bsZ) tanh (bm (L − Z))

bm tanh (bm (L − Z)) + bs tanh (bsL)
, (7)

where bs =
√

sRmCs + 1 and bm =
√

sRmCm + 1. If we assume that ρ =

G∞ tanh (L) /Z is constant with respect to Z, then (7) is given by

W (0) =
Istim

bs

bs + bm tanh (bsZ) tanh (bm (L − Z))

G∞bm tanh (bm (L − Z)) + ρbs tanh (bsZ) coth (L) /Z
.

It is easy to show that the point membrane capacity model (in Fig. 2)

defined by (7) is a limiting case of the varying capacity model when Cm(X)

is the step function. In the limit as Z → 0, the transient W = W (0) becomes

W =
I in

G∞
√

sRmCm + 1 tanhL
√

sRmCm + 1 + ρ cothL (sRmCs + 1)

which is the solution for the voltage for a membrane cylinder with a different

point membrane capacity at the origin.

4.3. Definition of an Exponentially-Graded Model

The weakness of fundamental models in which membrane capacitance

changes are at a point or are stepped, of course, is that the discontinuity at

the point of change that is unlikely to be biologically realistic. An exponen-

tially graded model, on the other hand, has a smooth, continuous change
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in membrane capacitance, and thus meets the minimum requirement for

biologically realism of continuity.

Unfortunately, the cable equation (3) cannot be solved in general.

The same waveform can be well-approximated by more than one multi-

exponential11, so numerical solutions to (3) - (5) are limited in their ap-

plicability to the problem of parameter identification. There are certain

choices for Cm (X) for which closed form solutions are possible, but for

such choices of Cm (X), it has not been possible to find closed form so-

lutions for the eigenvalues and Fourier coefficients except in special cases.

However, many choices for Cm (X) lead to closed form expressions for the

Laplace transform of the solution. From the Laplace transform solutions,

the eigenvalues and Fourier coefficients can be determined using the theory

of residues from complex analysis1,6,31.

In particular, such a solution is possible if Cm (X) represents the expo-

nentially graded membrane capacitance given by

Cm (X) =
µ

(1 + Me−2X)
2

where for the ratio parameter ε = C/Cm we have

M =
1 −√

ε√
ε − e−2L

µ = C (1 + M)
2
.

In Fig. 2, the relation between τ and L is shown for ε = 0.9, RmCm =

0.005. Note how cylinders with an electrotonic length greater than one, and

a 10% exponential gradient in capacitance produce a decay time that is very

close to that of the uniform capacitance model (in which τ = 0.005 ms).

The Laplace transform of (3) is

V̂ ′′ − (sRC(X) + 1) V̂ = −Cm(X)V ss (8)

which has a solution of the form

V̂ (X) = W (X) − V ss (X)

s
,

where the transient W satisfies the homogeneous equation associated with

(8). The Laplace transform of the transient is given by

W (X) =
√

Me−2x + 1
(

D1

(

M + e2x
)

√
sµ+1/2

+D2

(

M + e2x
)−

√
sµ+1/2

)
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as can be verified by substitution. The sealed end boundary condition at

X = L yields

D2 = D1

(√
sµ + 1 − Me−2L

)

(√
sµ + 1 + Me−2L

)

(

M + e2L
)

√
sµ+1

which is combined with the other boundary condition to yield a transient

at X = 0 where W = W(0) of

W =
Istim (M + 1)

G∞s

(

M+1

M+e2L

)

√
sµ+1

+
(
√

sµ+1−Me−2L)
(
√

sµ+1+Me−2L)

D
(√

sµ + 1 + M
) , (9)

where

D =
(√

sµ+1−M√
sµ+1+M

)(

M+1

M+e2L

)

√
sµ+1

− (
√

sµ+1−Me−2L)
(
√

sµ+1+Me−2L)
.

Table 1. Example of eigenvalues and Fourier coeffi-
cients produced by a model with a step change in mem-
brane capacitance with distance and a model with ex-
ponential spatial variation in membrane capacitance
for a voltage response at X=0 to a current pulse stim-
ulus at X=0 for a membrane cylinder with a length of
L = 1. Amplitude coefficients are reported as a frac-
tion of steady state. Z is the distance from the origin
for a step change in membrane capacity (Fig. 2, in-
set) (Note: The first two Fourier coefficients were com-
puted numerically using the eigenslope method (Knis-
ley and Glenn 1997), and then verified using analytical
expressions. The eigenvalues were found using a bisec-
tion method, and the slopes at the eigenvalues were
found by the divided difference method (see Equation
4 in Section 7.1 of Kincaid and Cheney 1991). The τ0

and τ1 were computed for the point capacitance model
with Cs = 0.9µF , Cm = 1µF , Rm = 5, 000Ω, L = 1,
and rho = 0.5, 1, 2, 3.)

Model τ0(ms) A0 τ1(ms) A1

Exponential 4.8222 0.7551 0.4334 0.1481

Z = 0.2 4.9000 0.7543 0.4355 0.1465
Z = 0.3 4.850 0.7524 0.4304 0.1497
Z = 0.4 4.801 0.7515 0.4282 0.1522

Since the eigenvalues of (9) are negative, the exponents in (9) are imag-

inary, complex exponentials and De Moivre’s formula, transform (9) into
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the eigenvalue function
√

αRmCm − 1 + M tan
(√

αRmCm − 1 ln
(√

M + 1
))

√
αRmCm − 1 tan

(√
αRmCm − 1 ln

(√
M + 1

))

− M

=

√
αRmCm − 1 + Me2L tan

(√
αRmCm − 1 ln

(√
M + e−2L

))

√
αRmCm − 1 tan

(√
αRmCm − 1 ln

(√
M + e−2L

))

− Me2L
.

When M is chosen such that
√

αnµ − 1 6= M, the coefficients An are of the

form

An =
−2Istim (M + 1)

G∞αnf (αn) µ
(√

αnµ − 1 − M
) ·

(

cos

(

√

αnµ − 1 ln

(

M + 1

M + e2L

))

+

i sin

(

√

αnµ − 1 ln

(

M + 1

M + e2L

))

+

(

i
√

αnµ − 1 − Me−2L

i
√

αnµ − 1 + Me−2L

))

, (10)

where f (αn) is given by

f (αn) =

cos
(√

αnµ − 1 ln
(

M+1

M+e2L

))

+ i sin
(√

αnµ − 1 ln
(

M+1

M+e2L

))

i
√

kjµ − 1
ln

(

M + 1

M + e2L

)

− 2M

i
√

αnµ − 1

(

M2e−2L − αnµ + 1
) (

1 − e−2L
)

(

i
√

αnµ − 1− M
)2 (

i
√

αnµ − 1 + Me−2L
)2

.

The Fourier coefficients were subsequently obtained from the eigen-

value function by the eigenslope method12, and confirmed to numeri-

cally match the above solution. Examples of the eigenvalues and Fourier

coefficients for the above models are shown in Table 1.

4.4. Biophysical Representation

The eigenvalues in this model correspond biophysically to the decay rates

of the series of superimposed exponential decays reflected by the ends of

the cylindrical cells. The Fourier coefficients represent the effective (dis-

tributed) membrane capacitance. That is, the coefficients correspond to

the total amount of charge storage at steady-state, for each of the reflected

exponential decays. The eigenslope relation indicates that steady-state

amplitude of each reflected and superimposed decay is an inverse function

of its decay rate and effective membrane capacitance.
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Table 2. Eigenvalues and Fourier coefficients for decomposed exper-
imental waveform (voltage responses to current step) and for model
with exponentially-distributed membrane capacitance. Experimental
data came from a selected spinal motoneuron from Glenn and others
(1987). Amplitude coefficients are reported as a fraction of the steady
state value, V = 0.01266

Experimental Data Model Prediction Deviation

τ0 5.28 ms 5.28 ms 0%

τ1 0.787 ms 0.866 ms 10%
A0 0.4779 0.4826 ms 1%
A1 0.3791 0.2891 ms -23.7%

Fig. 3. Experimental data (solid line) fit with a recording from the exponentially varying
membrane capacity model (dashed line), from 1 ms to 10 ms.

5. Comparison of Model Responses to Experimental

Responses

The question addressed was whether a single membrane cylinder model

with sealed ends and a point or exponential distribution of Cm could ac-

count for the voltage response of single quasi-cylindrical cells to a cur-

rent pulse. Experimental data from studies on spinal motoneurons (stim-

ulation and response determined at X = 0) were used for this purpose.

The values of C, Rm, Cm , and L were chosen from empirical studies on
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spinal motoneurons24,32,33,34,35. The multiexponential decomposition algo-

rithm described in Knisley and Glenn36 was used to estimate τ0, τ1, A0,

and A1 for representative experimental response data from a series of spinal

motoneurons taken from the study of Glenn et al32. Fig. 3 shows the results

of a best fit procedure between the experimental voltage recording and the

theoretical response in the exponential model. Table 2 shows the first two

eigenvalues and initial amplitudes for the two waveforms. The parameters

for the best fit under the above assumption were Cm = 1µF , C = 0.34µF ,

Rm = 7, 000Ω, L = 1.55, and V ss = 0.01266 .

Voltage transients produced by constant current pulses in the soma of

neurons are more closely approximated the exponential model than a point

or stepped model. In experimental waveforms analyzed, A0 varied from 34%

to 75% of the steady state value and had only rarely come close to 90%

of steady state. The point capacitance model could not produce responses

consistent with experimentally-derived curves of electrotonic responses in

the neurons. The stepped model produce similar responses to the neurons

within the range 0.4 < Z < .6, and thus a stepped capacitance change could

account for the empirical findings under this condition. The range condition

has an interesting correlation: It is also the range under which response of

the step model most closely approximated the exponential model (Table 1),

arguing indirectly for the greater applicability of the exponential model.

6. The Constant Membrane Capacitance Assumption

6.1. Errors Produced by Assumption of Constant Cm

In this section, the exponential model developed with the eigenslope

method will finally be applied to the long-standing problem of whether

or not the assumption of constant capacitance is justified. The response

of a membrane cylinder with constant Cm was compared to a cylinder with

an exponential gradient in Cmunder the conditions that the average Cm

is the same in both models and the variation in Cm is within the range

measured in recent studies. As shown in the responses of Fig. 4 and in

measurements of decay rate derived from those responses in Table 3, a 2%

gradient in membrane capacitance causes about a 1.0% error in the time to

decay to 90% of the initial value, a 0.5% error in time to 50% decay, and a

0.3% error in time to 90% decay. A 10% gradient causes about a 7% change

in time to decay to 90% of the initial value, a 3.5% error in time to 50%

decay, an a 2.4% error in time to 90% decay.
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Table 3. Change in decay times in membrane cylinders with ex-
ponentially distributed non uniformity in Cm. The Cm was de-
creased across [0, L] by 2% to 20%, decreased across [0, L] from
-2% to -20%, and made constant (0%). In all cases, the average
Cm across [0, L] remained constant (see 0%) at RmCm = 0.01 s.
Other parameters: L = 1, Istim = G∞

Percentage 90% Decay 50% Decay 10% Decay
Increase in Cm Time (ms) Time (ms) Time (ms)

20% 0.12772 3.98 18.87
10% 0.14597 4.16 19.66
5% 0.15519 4.25 20.04
2% 0.15628 4.29 20.24
0% 0.15693 4.31 20.30
−2% 0.15744 4.33 20.51

−5% 0.15883 4.37 20.70
−10% 0.15948 4.41 21.06
−20% 0.15987 4.52 21.63

6.2. Discussion

The hypothesis tested by the mathematical models was that biologically-

significant differences between membrane cylinders with a homogeneous

membrane capacitance and those with a heterogeneous exponentially-

graded membrane capacitance do not affect passive responses, provided

that the variation in capacitance is within the range estimated in experi-

mental studies. The hypothesis was accepted. An exponential spatial vari-

ation in membrane capacitance at experimentally measured levels (5%)

produces an error of 1.5% in the time it takes the voltage response to a

step stimulus to decay to 50% of its initial value (Table 3), as compared

to the assumption of a uniform membrane capacitance. This is a relatively

small difference. Moreover, although the evidence is limited (see discussion

below), the maximum that capacitance changes with distance is closer to

2%. This produces a 0.5% error in the same. Therefore, for most models

of cells with a non uniform distribution of sodium channels or other chan-

nels, we conclude that the assumption of uniform membrane capacitance is

largely a valid approximation.

The property of capacitance stems from the close proximity of two elec-

trically conducting structures surfaces with the space between them filled

by a poorly conducting medium. The membrane that envelops cells basi-

cally consists of a thin lipid bilayer that incorporates proteins, many of

which span the membrane. The membrane capacitance stems from conduc-

tive extracellular fluid being separated by the inner hydrophobic layer of

the cell membrane, which forms the poorly conducting structure required
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Fig. 4. Effect of Cm non uniformity of 20% on passive voltage responses of a membrane
cylinder. Average Cm over the cylinder was the same in all three models, but it decreased
exponentially with distance in the upper curve (from 1.1µF at X = 0 to 0.9 at X = L =
1), was constant in the middle curve, and increased exponentially with distance in the
lower curve (from 0.9 F at X = 0 to 1.1 at X = L = 1). Other parameters: L = 1,
Rm = 104Ω − cm, Istim = G∞

for the electrical property of capacitance. The capacitance of the mem-

branes depends on the thickness of the membrane, the number of carbons

in the lipid chain that comprises the membrane, the electrical properties

of the non polar, electrically-insulating interior of the bilayer membrane

(dielectric constant), the location and density of non polar residues of the

proteins embedded in the membrane19,37,38, and the size and time course

of ion channel gating currents.

Studies in spinal neurons, brain neurons, cell migration, cardiac muscle

cells, egg fertilization, and others39,40,41,42,43,44 have been in agreement that
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ion channels are not generally uniformly distributed over the surface of cell

membranes. The question is unsettled, however, of whether or not the mem-

brane capacitance changes according to the density of ion channels in the

membrane. Thurbon et al19. suggests that non uniformities in membrane

capacitance are caused by ion channel proteins. Ion channel proteins could

theoretically alter membrane capacitance by changing both the thickness

and dielectric constant of the membrane. However, Gentet et al24. found no

major changes in membrane capacitance from 0.9 µF per cm2 in kidney cells

transfected with a plasmid that added glycine receptors to the membrane.

On the other hand, both theoretical work22,23 and experimental work20,21

found membrane capacitance to be dependent on the density of sodium or

potassium channels in squid axon and pituitary nerve terminals. In models

of the squid giant axon, Schmid22 concluded that “The membrane capac-

ity at rest exhibits a bell-shaped dependence on the ion channel density.”

The greatest changes in membrane capacitance are attributed to gating

currents, which are minute currents in the channel proteins themselves, as-

sociated with conformation changes between the open and closed states.

For the squid giant axon45, the change in membrane capacitance due to

sodium channel gating currents ranged up to 0.15 µF per cm2, which is a

15% difference. Kilic and Lindau21 found the maximum capacitance change

around 0.10µF in pituitary nerve endings, which is a 3% difference in pi-

tuitary capacitance, however the average was lower at 0.03µF, which is a

1% difference. Thus, although the evidence is very limited, the maximum

possible capacitance change would appear to be 15%, and a more likely

value would be between 1% and 5%.

6.3. Clinical Significance

The capacitance across cell membranes is just as vital and central of a

building block of living function as is protein synthesis, chemical recep-

tors, and DNA. Given its fundamental biomedical importance, alterations

in membrane capacitance are accordingly a factor in the pathogenesis of

a great variety of disorders, such as asbestos toxicity46, seizures47, metal

poisoning48, and hearing loss49. The heart beat itself, and its shape and

timing, are dependent on membrane capacitance50. Despite its universality

and importance in maintenance of a healthy state, membrane capacitance

remains difficult to measure and manipulate. This has forced researchers in

thousands of studies in the past 40 years to resort to mathematical models

that assume a uniform capacitance in the face of increasing evidence that
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it is not uniform. Using on the eigenslope method, the present study is

the first to show that the simplifying assumption of uniform capacitance in

neurons has not appreciably affected the findings in previous studies. So,

our present understanding of how brain cells propagate signals and operate

in health and in neurological and psychiatric conditions requires no mod-

ification at present due to the recent discovery of non uniformities in the

cellular distribution of membrane capacitance.

7. Conclusion

The question is often asked of why analytic theory is important when dif-

ferential equations can be solved numerically relatively quickly with com-

putational methods. The answer is that mathematical analytics provides

understanding of the underlying structure of the solution, and not just a

set of numbers called the numerical solution. Understanding flows most

naturally from simple geometrical insights. The eigenslope is such a case

of a simple geometric relation between eigenvalues and Fourier coefficients

within each eigenfunction.

The eigenslope method (1) simplifies the concept of Fourier coefficients

and eigenfunctions, (2) provides a new method of solving for Fourier coeffi-

cients analytically based simply on differentiating the eigenvalue function,

and solving for the slope at each eigenvalue, (3) enables manual graphi-

cal or numerical determination of Fourier coefficients by the Runge-Kutta

method51 without first having the analytic solution, and (4) provides an

easy, independent method of validating analytical solutions numerically.

The eigenslope method was used derive the solutions for an analytic

mathematical model of membrane cylinders (such as tube- or fiber-shaped

cells or cylindrical processes such as dendrites) with exponentially-varying

membrane capacitance. Solved models are provided for point, stepped, and

exponential changes in capacitance with distance along a membrane cylin-

der. Comparison of the passive voltage responses of the three models to

impulse stimuli and curve fitting of the responses to experimental voltage

responses curve data from neurons led to the exponential model to be the

selected model. Variation in the membrane capacitance of the exponential

model of 5%, which is the range of capacitance variation found experi-

mentally by others, produced only a 1.5% change in the half-time of the

responses to impulses.

The widespread assumption of uniform membrane capacitance over the

surface of a cells is thus a valid approximation, in the sense that the degree
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of non uniformity found in cells is unlikely to significantly affect electrical

stimulus responses, electrotonic length estimates, and signal propagation.
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A mathematical model for non-invasive pressure support ventilation
(NIPSV) is presented. The model consists of two differential equations
describing the volume in a one-compartment lung. In this study, we used
the model to simulate spontaneously breathing patients with obstructive
lung disease undergoing pressure support ventilation at 22 cmH2O, and
PEEP of 5 cmH2O. NIPSV can give rise to unintended instability with
potential adverse effect. Tidal volume instability is defined as a situation
when the tidal volume, delivered over 100 consecutive breaths, creates
a coefficient of variation higher than 10%, or a skipped breath occurs.
To explore the tidal volume instability, we investigated the variability of
tidal volume (VT ) delivery during NIPSV under combinations of respi-
ratory resistance, R = 10, 15, 20 and 25 cmH2O/L/s, compliance, C =
0.06, 0.08, 0.10 and 0.12 L/cmH2O, and frequency, f = 14, 16, 18, 20,
and 22 breaths/min at inspiratory flow cut-off levels of 5% to 80%, and
pressure triggering levels of 1, 3, 5, 10 and 15 cmH2O. We discovered that
lower pressure sensitivity, higher lung compliance, higher flow resistance,
and higher breathing frequency increasing the likelihood of instability.

1. Introduction

Non-invasive pressure support ventilation (NIPSV) is an as-

sisted mode of ventilation that is increasingly used in clinical

medicine20,16,27,28,18,25. Recently, it has been utilized in the treatment of

respiratory failure as an alternative to endotracheal intubation. NIPSV pro-

vides a safe and effective way to improve alveolar ventilation and oxygena-

277
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tion in patients with many forms of acute respiratory failure24. For instance,

in patients with acute exacerbation of chronic obstructive pulmonary

disease (COPD) and hypercapnic respiratory failure, adding noninvasive

ventilation to standard therapy could decrease the need for endotracheal

intubation9,12,8, and reduce mortality8. In mechanically ventilated patients,

endotracheal intubation is the single most important predisposing factor

for developing nosocomial bacterial pneumonia and infections13,17 and in-

creases the risk for sinusitis. Endotracheal intubation also injures the com-

pressed tracheal mucosa, inducing inflammation, oedema and submucosal

hemorrhage. These conditions constitute the pathological basis of other

complications, such as airway stenosis13. The recent development of non-

invasive methods of ventilation has resulted from a desire to avoid compli-

cations of invasive mechanical ventilation during acute respiratory failure.

NIPSV is also used in a growing population with sleep apnea.

In NIPSV, the patient determines the inspiratory rate, time, volume

and flow for the pressure support ventilation. Volume delivered to the pa-

tient during NIPSV will be variable and related to pulmonary compliance,

resistance, inspiratory time, and flow rate. The patient triggers the venti-

lator; the ventilator delivers a flow up to a level of ventilatory support, for

example 10 cmH2O, depending on the desired minute volume. The patient

continues the breath for as long as desired, and flow cycles off when the

patient’s inspiratory flow rate falls below a certain percentage of their peak

inspiratory flow (usually 25%). Tidal volumes may vary, just as they do in

normal breathing. NIPSV can be implemented with or without positive

end expiratory pressure (PEEP). On newer ventilators it is possible to

adjust the rate of pressurization and the point at which the ventilator cycles

off (as a percentage of peak flow). For many patients such adjustments are

unnecessary, but in a significant fraction they can make a crucial difference.

The inspiratory flow cut-off (the criteria for terminating inspiratory

pressure application) can affect patient-ventilator synchrony by causing a

neural-mechanical dyssynchrony. This is most often manifested as prolonged

inspiration, requiring active termination by the patient. Prolonged inspira-

tory time can also lead to ineffective inspiration (triggering) efforts by the

patient. These effects are masked by positive pressure breath, prevent trig-

gering of the ventilator, and further contribute to patient-ventilator

asynchrony. There are also some limitations related to the specific trigger-

ing algorithms. These include low sensitivity, resulting in delayed or failed

triggering efforts. Excessive sensitivity may cause auto-triggering that can

give rise to hyperventilation and gas trapping.
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Asynchrony is a term that denotes conflict between the patient and the

ventilator14,10,23. In many cases, failure to synchronize is due to inadequate

flow delivery from the ventilator. A number of technological solutions have

been proposed to solve the problem1,22,15,11,29,21. One of the more com-

monly used is pressure augmentation19,1,22,6,26,15,11,21.

Patients at risk of elevated auto-PEEP, which occurs when there is

insufficient time for exhalation and the next ventilator breath stacks on

the previous breath, typically are characterized by high minute ventila-

tion, high respiratory rate, short expiratory times, and airway obstruc-

tion. Auto-PEEP can cause severe hyperinflation, discomfort and ventilator

asynchrony. Patients with high levels of auto-PEEP may fail to trigger the

ventilator. This is because auto-PEEP represents an inspiratory threshold

load that the patient must first overcome before a ventilator breath can

be triggered. Accordingly, the ventilator fails to sense the patient’s effort.

Such unintended instability in the level of ventilatory support can lead to

dyspnea and/or complicate weaning. Moreover, the stability of tidal volume

(VT ) may be related to the coordination of patient’s effort with the pres-

sure trigger level (Psen). The effect of trigger levels on the stability of tidal

volume has not be studied. To explore the potential for such variability

in NIPSV, we investigate the roles of compliance (C), resistance (R), fre-

quency (f), the inspiratory flow cut-off (α), and pressure trigger level

(Psen) on the stability of ventilation support.

2. Mathematical Model

We first consider a mathematical model for the respiratory system con-

sisting of two ordinary differential equations, each describing a different

phase of a breathing cycle. To obtain differential equations for inspiration

and expiration volumes, we employ a “conservation of pressure” that states

that the applied pressure (Pvent) is the sum of resistive (Presistive), elastic

(Pelastic), and residual pressures (Presidual), assuming that inertial losses

are negligible. That is,

Pvent = Presistive + Pelastic + Presidual.

In their study, Crooke3 proposed linear and nonlinear mathematical models

for noninvasive ventilation, addressing pressure support ventilation (PSV)

applied to a one-compartment lung (Figure 1) with a constant compliance

C. One can then write the following set of differential equations for

the nth breath:
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Inspiration

Ri

(

dV
(n)

i

dt

)ε

+
V

(n)
i

C
+ P

(n−1)
ex = Pset, τ

(n−1)
tot ≤ t ≤ τ

(n−1)
tot + t

(n)
i

V
(n)
i (0) = 0

(1)

Expiration

Re

(

dV (n)
e

dt

)ε

+
V (n)

e

C
+ P

(n)
ex = Ppeep, τ

(n−1)
tot + t

(n)
i ≤ t ≤ τ

(n)
tot

V
(n)
e (t

(n)
tot ) = 0

(2)

where ε is either 1 or 2 and n = 1, 2, · · · . V
(n)
i (t) denotes the inspiratory

lung volume during nth breath, V
(n)
e (t) the expiratory lung volume during

nth breath, P
(n)
ex the end expiratory pressure at the end of nth breath, t

(n)
i

the length of inspiratory time of nth breath, t
(n)
e the length of expiratory

time of nth breath, Pset the applied ventilator pressure during inspiration,

Ppeep the applied ventilator pressure during expiration, Ri the inspiratory

resistance, Re the expiratory resistance, D the inspiratory time fraction,

D = ti

ttot

, and f the number of breaths per minute. Here τ
(n)
tot , n = 1, 2, ...

is the actual time at the end of the nth breath. That is, we assume that

each breath is of length t
(n)
tot = 60k/f , where k is a positive integer, and

t
(n)
i + t

(n)
e = t

(n)
tot . In this notation,

τ
(n)
tot = t

(1)
tot + t

(2)
tot + ... + t

(n)
tot .

In the expression, t
(n)
tot = 60k/f , if k > 1, then this indicates skipped

breaths. If there are no skipped breaths during the nth breath, then

t
(n)
tot = 60/f . If there is one skipped breath during the nth breath, then

t
(n)
tot = 120/f ; if two skipped breaths, then t

(n)
tot = 180/f ; etc.

In equations (1) and (2), the resistive pressure, Presistive , is Ri

(

dV
(n)

i

dt

)ε

and Re

(

dV (n)
e

dt

)ε

, respectively, the elastic pressure, Pelastic, is
V

(n)
i

C
and

V (n)
e

C
,

the residual pressure, Presidual, is the end-expiratory pressure, P
(k)
ex , k =

n − 1, n. The ventilator pressure, Pvent, is the applied ventilator pressure.

That is,
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Pvent =

{

Pset during inspiration

Ppeep during expiration

During expiration, the applied airway pressure to the mask and airway

pressure is fixed and is denoted by the symbol Ppeep. The PEEP pressure

may be zero. In [3], it was assumed that the pressure drop due to the leak

in the face mask is

Pmask = RmQmask

where Rm is a resistance factor and Qmask is the flow through the leak.

Using conservation of mass, the total flow from the ventilator at any

time during inspiration (Qvent) is equal to the sum of the flow into the lung

and flow out through the mask leak (to the atmosphere):

Qvent = Qmask + Qlung .

The flow into the lung, Qlung , was assumed to be equal to the instantaneous

rate of change of the volume of the lung, dVi

dt
.

The flow from the ventilator Qvent(t) is determined by the equation:

Q
(n)
vent(t) =

Pset

Rm

+
1

Ri

(

Pset − P (n−1)
ex −

V
(n)
i (t)

C

)

(3)

for τ
(n−1)
tot ≤ t ≤ τ

(n−1)
tot + t

(n)
i . To determine the end-expiratory pressure,

we set V
(n)
i (τ

(n−1)
tot + t

(n)
i ) = V

(n)
e (τ

(n−1)
tot + t

(n)
i ) and solve for P

(n)
ex .

3. The Linear Lung Model

We now consider a ventilator connected to a patient. The ventilator applies

a constant pressure Pset until the flow Q into the patient drops to specified

fraction α of the initial flow. At this point inspiration ends and the patient

starts expiration. The differential equations for the relative lung volume

during nth breath with ε = 1 are:

Inspiration

Ri

(

dV
(n)

i

dt

)

+
V

(n)
i

C
+ P

(n−1)
ex = Pset, τ

(n−1)
tot ≤ t ≤ τ

(n−1)
tot + t

(n)
i

V
(n)
i (0) = 0

(4)
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Expiration

Re

(

dV (n)
e

dt

)

+
V (n)

e

C
+ P

(n)
ex = Ppeep, τ

(n−1)
tot + t

(n)
i ≤ t ≤ τ

(n)
tot

V
(n)
e (τ

(n)
tot ) = 0

(5)

for n = 1, 2, 3, ... .

In our study, we restrict our analysis to settings where there is no leakage

by the mask i.e., Rm → ∞. In this case, equation (3) becomes

Q
(n)
vent(t) =

1

Ri

(

Pset − P (n−1)
ex −

V
(n)
i (t)

C

)

, τ
(n−1)
tot ≤ t ≤ τ

(n−1)
tot + t

(n)
i .

(6)

The inspiratory time, t
(n)
i , is determined by the ventilator cut-off. If we

assume that the ventilator cuts off at some predetermined fraction of the

initial flow, Q
(n)
vent(τ

(n−1)
tot ), which we denote by α, 0 < α < 1, then, since

we assume that V
(n)
i (τ

(n−1)
tot ) = 0, the inspiratory time during the nth cycle

can be computed as

t
(n)
i = CRi log

(

Pset − P
(n−1)
ex

K(n)Ri

)

n = 1, 2, 3, ... (7)

to which there is a possible solution of Q
(n)
vent(t

(n)
i ) = αQ

(n)
vent(τ

(n−1)
tot ) ≡

K(n).

4. Model Simulations

The inspiratory initial value problem (4) can be solved for V
(n)
i (t), yielding

V
(n)
i (t) = C

(

1 − eki(t−τ
(n−1)
tot

)
)(

Pset − P (n−1)
ex

)

(8)

where ki = 1
CRi

. We may also solve the expiratory initial value problem (5)

for V
(n)
e (t), obtaining

V (n)
e (t) = C

(

1 − eke(τ
(n)
tot

−t)
)(

Ppeep − P (n)
ex

)

(9)

where ke = 1
CRe

. Finally, we determine P
(n)
ex by setting V

(n)
i (τ

(n)
tot + t

(n)
i ) =

V
(n)
e (τ

(n)
tot + t

(n)
i ) and obtain:
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P
(n)
ex = e

−kit
(n)
i

e
ke(t

(n)
i

+τ
(n−1)
tot )

−ekeτ
(n)
tot

(

−ekeτ
(n)
tot

+kit
(n)
i Ppeep

+ e(ki+ke)t
(n)
i

+keτ
(n−1)
tot (Ppeep − Pset)

+ e
ke

(

t
(n)
i

+τ
(n−1)
tot

)

(

Pset +
(

ekit
(n)
i − 1

)

P
(n−1)
ex

)

)

.

(10)

This gives iteratively defined expressions for the inspiratory and expiratory

volumes and the end-expiratory pressure.

The problem is to compute V
(n)
i (t), V

(n)
e (t), P

(n)
ex for n = 1, 2, 3, ... .

This requires that we have a starting point for P
(n)
ex , namely, P

(0)
ex . This can

be done by letting P
(−1)
ex = 0 and t

(0)
tot = ttot = 60/f . Then equation (10)

becomes:

P (0)
ex =

e−kit
(0)
i

eket
(0)
i − 1

(

−e−kit
(0)
i Ppeep + e(ki+ke)t

(0)
i (Ppeep − Pset) + eket

(0)
i Pset

)

(11)

where t
(0)
e = ttot − t

(0)
i , and t

(0)
i is any number in the interval (0, t

(0)
tot), for

example, t
(0)
i = 60D

f
.

At the end of each breath, the patient’s trigger pressure Ptrig is com-

pared against the end expiratory pressure Pex. If Ptrig > Pex, then the

ventilator turns “ON” for another breath. If Ptrig < Pex, then the ventila-

tor stays “OFF” for one breath or more until Ptrig > Pex. We assume that

Ptrig = Ppeep + Psen, where Psen is the sensitivity setting of the ventilator.

In Figure 2 for illustrative purposes, we simulated our model for fifteen

breaths with the following parameter values: C = 0.1 L/cmH2O, Ri = Re =

20 cmH2O/L/s, Pset = 22 cmH2O, Ppeep = 5 cmH2O, Psen = 15 cmH2O,

ttot = 6 s, f = 20 breaths/min, α = 0.3. The ventilator sensitivity, Psen,

in the ICU is usually between 1 − 5 cmH2O. At the first breath (n = 1),

ttot = 60
f

= 3, we calculate thaat Pex = 12.8 and Ptrig = Ppeep + Psen =

20 > Pex = 12.8. Therefore, the ventilator is triggered. At the fourteenth

breath, Pex = 21.1 > Ptrig . Therefore, the ventilator fails to be triggered

and we have a prolonged expiration at the end of which we calculate that

Pex = 6.5. At the end of this long breath, Ptrig > Pex and P
(14)
ex = 6.5,

with t
(14)
tot = 2·60

f
= 6. Thus, a skipped breath has occurred at this point. In

other words, we have expiration occuring for an additional 3 seconds.
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5. Instability Study

Our lung model was used to simulate spontaneously breathing patients with

obstructive lung disease ventilated with PSV using the following parame-

ters: Ri = Re = 20 cmH2O/L/s, Pset = 22 cmH2O, Ppeep = 5 cmH2O,

D = 0.75, C = 0.6, 0.08, 0.10, and 0.12 L/cmH2O, f = 14, 16, 18, 20, and 22

breaths/min, over a range of flow cut-off settings from 5% to 80% of peak

inspiratory flow (0.05 ≤ α ≤ 0.80), and pressure triggering levels of 1, 3,

5, 10 and 15 cmH2O. Instability is said to occur if the tidal volume (VT )

coefficient of variation (CV) is greater than 10% where CV = 100
(

SD
Mean

)

,

or there is a positive integer i such that t
(i)
tot 6= t

(j)
tot, if i 6= j which defines

“skipped breaths.”

Figure 3 shows the tidal volume coefficient of variation (CV) computed

from the lung volume, calculated from our mathematical model (4)-(5)

over 100 consecutive breaths. In Figure 3(a), CV is greater than 10% if

0.08 < α < 0.09 and 0.31 < α < 0.36. At these points, the tidal volume

VT is unstable. In Figure 3(b-d), skipped breaths are seen to occur for

0.08 < α < 0.09 and 0.31 < α < 0.36. For example, at α = 0.36, there are

65 breaths with t
(
totn) = 120

f
and 35 breaths with t

(n)
tot = 60

f
. At these points,

VT is unstable. Figure 3(e) shows the volume wave form for α = 0.20, for

which CV < 10% and there is no skipped breath, that is, for all n, t
(n)
tot = 120

f
,

so that VT is stable. Figure 3(f) shows the volume wave form for α = 0.35,

for which CV > 10%, so that VT is unstable. There is an i = 14 such that

t
(14)
tot = 6 6= 3 = t

(j)
tot, j = 1, 2, ..., 13 .

We plotted the flow cut-off, α, against lung compliance C in Figure 4 in

which Psen is 1.0 and 15.0 cmH2O. It is observed here that lower values of

Psen gives rise to more unstable regions at higher cut-off values. Moreover,

instability is greater with a higher compliance. Figures 5 and 6 show that

increasing respiratory frequency, resistance or compliance exacerbates the

instability of ventilatory support.

6. Comparison of Model Simulation with Experimental

Data

A comparison of model simulations and experimental data with C = 0.08

L/cmH2O, Pset = 22 cmH2O, Ppeep = 5 cmH2O, ttot = 6 s, Psen = 15

cmH2O, f = 20 breaths/min, Ri = Re = 15 cmH2O/L/s, is shown in Fig-

ure 7. In this figure, the tidal volume coefficient of variation (CV) computed

from the lung volume calculated from our mathematical model (4)-(5) over

100 consecutive breaths. It is then plotted against the flow cut-off α. The
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simulation result yields consistently higher C than experimentally observed,

but predicts the rise in CV, becoming higher than 10%, in the proximity of

flow cut-off value of 0.2 which compares well with the laboratory data.

In [4], factors creating instability during pressure support ventilation

were studied by using a mechanical test lung (Hans-Rudolph) with ad-

justable resistance, compliance, and triggering frequency. Ventilatory pat-

terns were examined using PSV over a range of flow cut-off settings from 5%

to 45% of peak inspiratory flow. Instability was defined as a tidal volume

(VT ) delivered with a coefficient of variation greater than 10%. They found

that tidal volume delivery becomes unstable with clinically relevant combi-

nations of inputs. For each frequency, the region above the line is associated

with stable tidal volume delivery and region below the line is unstable (Fig-

ure 8). Increasing resistance shifted the area of instability giving rise to a

system more prone to variable delivery of support. Both Figures 5 and

8 indicate that the region of unstable flow cut-off values enlarges as the

breathing frequency increases.

7. Discussion and Conclusion

Although pressure support ventilation has been used for many years in dif-

ferent clinical settings, there have been relatively few investigations of the

dynamical behavior of this mode of ventilation3. A major limitation in the

employment of noninvasive ventilation, where PSV is frequently applied, is

lack of patient tolerance. It has been reported that up to 30% of patients

with chronic obstructive pulmonary disease (COPD) fail a trial of nonin-

vasive ventilation for reasons which are often unclear although the number

varies3. Since PSV should be capable of providing a level of inspiratory as-

sistance that is adequate for most relaxed COPD patients, it is likely that

intolerance of NIV may be related to the adverse patient-ventilator interac-

tions, namely, ventilator dyssynchrony5. Unstable inspiratory support may

require active patient effort to terminate inspiration, or inspiration may be

spontaneously terminated prematurely. Moreover, breath-to-breath varia-

tions in auto-PEEP will require different levels of patient effort to trigger

the ventilator. These phenomena may lead to failure of PSV.

Earlier studies5,2,3 have revealed that application of pressure support

ventilation in the context of mask leaks, can lead to significant breath

to breath variability in the duration of inspiratory support, to oscillations

in end expiratory lung volume, and to unstable tidal volumes. Although

an adequate seal can usually be obtained, leaks frequently develop between
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the mask and the patient’s face. The leakage likely contributes to instability

since the inspiratory phase of pressure support terminates when flow falls to

a predetermined fraction of peak inspiratory flow5. Instabilities predicted

by the above mentioned studies were found to be entirely independent of

patient’s effort or volition.

Our study highlights the complex dynamic behaviors that occur even

in the absence of a mask leak. Although the mathematical model we em-

ployed is a simple one-compartment linear system, the model simulations,

in which we allowed the total breathing time ttot to vary from one breath

to another (in the case of skipped breaths), agree with experimental ob-

servations, illuminating factors that influence patient ventilator synchrony

and tolerance. Regions of variable (unstable) VT delivery are related to

respiratory frequency, resistance and compliance, pressure sensitivity, and

pressure triggering levels.

As can be seen in Figure 4, for fixed frequency, pressure sensitivity and

resistance, elevated compliance C increases the unstable flow cut-off values,

enlarging the region of instability. Figure 4 also indicates that lower pressure

sensitivity exacerbates the VT instability. On the other hand, for a fixed

pressure sensitivity, Psen, and resistance, increasing respiratory frequency

results in larger region of VT instability for each pressure triggering level.

Figure 6 indicates that higher flow resistance leads to greater VT in-

stability. It pushes the curve for each pressure triggering level further to

the left and higher, and therefore enlarging the region of instability. At a

low resistance level of 15 cmH2O/L/s, with Psen = 5 cmH2O, and f = 14

breaths/min as in Figure 6(a), stability is predicted for all pressure trigger-

ing levels if C < 0.8.

Previous results indicated that the stability of support during PSV de-

pends critically on complex dynamic interactions. As we have shown here,

many of the determinants of instability are amenable to both mathemati-

cal analysis and clinical manipulation. This fact suggests clear potential for

mathematical analysis to guide and improve patient care.
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Fig. 3. Linear model simulations with C = 0.1 L/cmH2O, Ri = Re = 20
cmH2O/L/s, Pset = 22 cmH2O, Ppeep = 5 cmH2O, Psen = 15 cmH2O, ttot = 6
s, f = 20 breaths/minute: (a) Scattergram of coefficients of variation against
flow cut-off; (b) Scattergram of number of breaths (out of a possible 100 breaths)
against flow cut-off for ttot = 60/f ; (c) Scattergram of number of breaths against
flow cut-off for ttot = 120/f ; (d) Scattergram of number of breaths against flow
cut-off for ttot = 180/f ; (e) volume waveform for α = 0.20; (f) volume waveform
for α = 0.35.
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Fig. 4. Unstable flow cut-off values: C = 0.06, 0.08, 0.10 and 0.12 L/ cmH2O,
Ri = Re = 20 cmH2O/L/s, Pset = 22 cmH2O, Ppeep = 5 cmH2O, ttot = 6
s, f = 20 breaths/minute: (a) Psen = 15 cmH2O; (b) Psen = 1 cmH2O. The
diamonds (� − �) indicate unstable flow cut-off region in which ttot changes
from ttot = 60/f to ttot = 120/f . The boxes (� − �) indicate unstable flow
cut-off region in which ttot changes from ttot = 120/f to ttot = 180/f . The
triangles (N−N) indicate unstable flow cut-off region in which ttot changes from
ttot = 180/f to ttot = 240/f , and the dots (◦ − ◦) indicate unstable flow cut-off
region in which ttot changes from ttot = 240/f to ttot = 300/f .
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Fig. 5. Unstable flow cut-off values: C = 0.06, 0.08, 0.10 and 0.12 L/cmH2O,
Ri = Re = 20 cmH2O/L/s, Pset = 22 cmH2O, Ppeep = 5 cmH2O, ttot = 6
s, Psen = 5 cmH2O, (a) f = 14 breaths/minute; (b) f = 22 breaths/minute.
The diamonds (�−�) indicate unstable flow cut-off region in which ttot changes
from ttot = 60/f to ttot = 120/f . The boxes (� − �) indicate unstable flow
cut-off region in which ttot changes from ttot = 120/f to ttot = 180/f . The
triangles (N−N) indicate unstable flow cut-off region in which ttot changes from
ttot = 180/f to ttot = 240/f .
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Fig. 6. Unstable flow cut-off values: C = 0.06, 0.08, 0.10 and 0.12 L/cmH2O,
Pset = 22 cmH2O, Ppeep = 5 cmH2O, ttot = 6 s, f = 14 breaths/min, Psen = 5
cmH2O, (a) Ri = Re = 15 cmH2O/L/second; (b) Ri = Re = 25 cmH2O/L/s.
The diamonds (�−�) indicate unstable flow cut-off region in which ttot changes
from ttot = 60/f to ttot = 120/f . The boxes (� − �) indicate unstable flow
cut-off region in which ttot changes from ttot = 120/f to ttot = 180/f . The
triangles (N−N) indicate unstable flow cut-off region in which ttot changes from
ttot = 180/f to ttot = 240/f .
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Fig. 7. Scattergram of coefficients of variation against flow cut-off with C = 0.08
L/cmH2O, Pset = 22 cmH2O, Ppeep = 5 cmH2O, ttot = 6 s, f = 20 breaths/min,
Psen = 15 cmH2O, Ri = Re = 25 cmH2O/L/s, and 0 ≤ α ≤ 45: (a) experimental
data; (b) model simulation.
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CHAPTER 14
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This paper discusses mathematical models dealing with the growth of
solid tumors. Tumor growth is a very complex process, involving many
different phenomena, which occur at different scales: subcellular, cellular,
and extracellular scales. We survey models that address the problem
at: subcellular scale, cellular scale, and extracellular scale. Then after
we discuss multi-scale models and unification of models results from
different scales.

1. Introduction

Cancer research has become increasingly important. This is because ma-

lignant neoplasms are the 2nd leading cause of death in the United States

of America, and rank among top killers worldwide. Each year billions of

dollars from government and private funding sources are spent on cancer

research. In order to develop effective treatments, it is important to identify

the mechanisms responsible for cancer growth, how they interact, and how

can most easily be manipulated to eradicate (manage) the disease.

In order to gain such insight, it is usually necessary to perform large

amounts of time consuming and intricating experiments but not always.

Through the development and solutions of mathematical models that de-

scribe different aspects of solid tumor growth will provide insight into the

complex mechanisms that control tumor growth and, hence suggest direc-

tions for new therapies. Thus, applied mathematics has potential to prevent

excessive experimentation and also to provide biologists with complemen-

tary and valuable insight into the mechanisms that control the development

of solid tumors.

297
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The paper is organized as follows. In Section 2, we will discuss different

stages of solid tumor. In Section 3, we discuss multistep transformation to

cancer. In Section 4, we discuss experiments on cancer in vitro which are

useful to estimate model parameters. Extracellular scale models, cellular

scale models, and subcellular scales are discussed in Sections 5, 6, and 7

respectively. We discuss models dealing with capsule formation in section

8. The unifying results obtained from models at different scales and models

which couple different scales are discussed in section 9. In Section 10, we

will make conclusions and outlook.

2. Different stages of solid tumor

Cancerous tumors originate from mutation of one or more cells which usu-

ally undergo rapid uncontrolled growth thereby impairing the functioning

of normal tissue. There is a large body of evidence proving that all the cells

within a tumor mass are derived from a single cell. Even though all the cells

within a tumor mass may be derived from a single cell, this does not mean

that all the cells in a tumor are genetically identical. Tumor cells are more

unstable than normal cells, meaning they mutate1,27 at a much higher rate,

they repair themselves much less effectively and they have ceased to re-

spond to normal growth regulatory mechanism. Therefore, the cells within

a tumor are different even from one another.

First, a piece of the DNA strand must be significantly mutated and the

mutations must slip through the repair mechanisms. These mutations may

take place over generations of cells. For example, one generation may have

one mutation; the next may not have any. A subsequent generation may

have another and so on, until the “cancer mutation” have occurred. The

tumor cells respond both through induced alterations in physiology and

metabolism and through altered gene and protein expression12,28

Due to these mutations, the cell must gain the ability to proliferate and

thus lose its normal function. In a sense, the major purpose of the cell must

be to divide.

There are probably only a limited number of alterations that will allow

a cell to lose its functions and divide out of control. Some alterations affect

nothing, others may cause a minor change that is not really threatening to

the cell, and others can outrightly kill the cell. So, to become cancerous,

the cell must maintain its ability to divide without causing any damage to

limit its ability to survive.

If a cell becomes bent on dividing, the cell will just continue dividing
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and crowd out other cells within the area. In some fortunate cases an in-

dividuals own immune system may actually stop the growth of the tumor.

The immune system may recognize that the cells within the tumor are not

normal. If this happens, the immune cells may destroy the tumor. This may

take place a number of times throughout an individuals life without them

ever being affected.

If a tumor goes unnoticed and begins to grow, lack of nutrients can

eventually limit its growth. If nutrients are not continuously supplied, the

tumor cells cannot metabolize. In this case, at the very least, no new growth

can occur. If a tumor becomes unable to grow and unable to support some

of its functions and cell death occurs, the tumor may go into a dormant

state. In this case it cannot spread. Once the tumor reaches this limiting

size, and if it is unable to get more nutrients, it will stay in this dormant

state and may eventually die off. Researchers are trying to develop tests

that will determine whether for example an individuals breast and prostate

tumors will remain dormant or spread. In that way, patients in the future

could be spared unnecessary treatments.

There are many different cancers and there are many different compo-

nents involved in the development of cancer making each person’s cancer

quite unique. Further, each type of cancer (e.g., breast, colon or prostate)

does not necessarily behave like other cancers. For these reasons, there is

no one “cure for cancer.” Rather there will be lots of interventions and

cures that are developed through a systematic approach and understand-

ing. Researchers are constantly looking for ways to develop screening tools

to identify cancers at their earliest phases so that they can be treated with

surgery; however, each organ needs its own individual screening tool. For

example, colon cancer is screened through a variety of techniques including

colonoscopy. Cervical cancer is screened through the Pap test, which exam-

ines scrapings of cells from the cervix and discovers cells in the early stages

of change. The mammogram is used to determine the presence of breast

cancer hopefully at an early stage, but may not detect cells in the earliest

phases of abnormal cell development prior to becoming cancerous.

The first stage growth of cancer is called Avascular. In the avascular

state tumor growth, it has no blood vessels and relatively harmless. Its

nutrients, oxygen and glucose are obtained and it eliminates waste products

via diffusion. Cells in the center starve while Cells on the periphery thrive.

Cells in the interior are quiescent, but not dead and do not divide. The

growth of the avascular tumor is limited to a few mm in diameter. In

response to an externally supplied nutrient, avascular tumors adopt a well
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defined, radially symmetric spatial structure.

Further tumor development, the genetic instability causes continued ma-

lignant alterations, invasion, angiogenesis, metastatic spread, resulting in

a large biologically complex tumor. In fact, many of the later manifesta-

tions of malignancy, including invasion and angiogenesis, are thought to

be enhanced, if not precipitated, by the stressful microenvironment which

develops in the initial, avascular tumor nodule. Consequently, a better un-

derstanding of the regulation of the growth and malignant development of

avascular avascular tumors would be beneficial; insights in such systems

would also be valuable in understanding the heterogeneous microenviron-

ments found within larger tumors27.

The second stage of characteristics of cancer is Angiogenesis. This is

formation of new blood vessels from the existing vasculature. Hypoxia is

a condition in which there is a decrease in the oxygen supply to a tissue.

In cancer treatment, the level of hypoxia in a tumor may help predict

the response of the tumor to the treatment. Hypoxia is known to induce a

chemical cascade which stimulates endothelial cells to aggregate, proliferate,

and migrate towards the tumor.

The third stage of cancer characteristics is blood supply acquired. This is

called the vascular tumor growth. The vascular tumor is made of 50% cells,

10% blood vessels, 40% extra cellular matrix (ECM) is basically connective

tissue. The ECM is made of three major classes of biomolecules: structure

proteins (collagen and elastin), specialized proteins and Proteoglycans.

3. The multistep transformation to cancer

The usual perspective on cancer progression is that it is a form of so-

matic evolution where certain mutations give one cell a selective growth

advantage15. Tumor initiation in an organism (Oncogenesis) is thought to

require several independent, rare mutation events to occur in the lineage

of one cell57. Kinetic analyses have shown that four to six rate-limiting

stochastic mutational events are required for the formation of a tumor5,56.

Hanahan and Weinberg33 proposed the following six attributes that a nor-

mal cell must acquire to become a cancer cell: (i) self-sufficiency in growth

signals, (ii) insensitivity to anti-growth signals, (iii) evasion of apoptosis,

(iv) limitless replicative potential, (v) sustained angiogenesis, and (vi) tis-

sue invasion and metastasis.

Hanahan and Weinberg define genetic instability as an “enabling char-

acteristics” that facilitates the acquisition of other mutations due to de-
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fects. Spencer et al65 foresee cancer research developing into logical sci-

ences, where the molecular and clinical complexities of the disease will be

understood in terms of a few underlying principles.

4. Experiments

4.1. MTS experiments

Multicellular tumor spheroid (MTS) experiments as an in vitro tumor

model can provide data on the duration of the cell cycle, growth rate,

chemical diffusion, etc26,27.

Tumor growth requires the transport of nutrients, for example oxy-

gen, and glucose, from and waste products to the surrounding tissue.

These nutrients regulate cell mitosis, cell death, and potentially cell mu-

tation. MTS experiments have the great advantages of precisely control-

ling the external environment while maintaining the cells in the spheroid

microenvironment27,28. Suspended in culture, tumor cells grow into a

spheroid, in a process that closely mimics the growth characteristics of

early stage tumors. MTS exhibits three distinct phases of growth:

(1) an initial phase during which individual cells form small clumps that

subsequently grow quasi-exponentially;

(2) a layering phase during which the cell-cycle distribution within the

spheroids changes, leading to formation of a necrotic core, accumulation

of quiescent cells around the core, and sequestering of proliferating cells

at the periphery; and

(3) a plateau phase during which the growth rate begins to decrease and

the tumor ultimately attains a maximum diameter.

In order to understand the underlying dynamics of cell growth within a

spheroid, Chandrasekar et al.19 studied the spatial-temporal distribution

of the cells spheroids cultured from cell line. They found that the size of

the spheroids and their growth rates were dependent on the cell number,

the proliferation was mostly limited to out most region as the spheroids

grew in size, and the number of dead cells increased with age and size as

well.

Mechanical effects from the surrounding environment as well as that

generated internally by cellular growth play an important role in regulat-

ing tumor growth. Evidence that cell stress affects proliferation is provided

by Helmlinger et al.34. By culturing spheroids in gels of different stiffness, it

was demonstrated that the stress exerted on tumor cells by their surround-
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ing affects its equilibrium size. High stress is observed to down-regulate cell

proliferation and promote cell death38.

5. Extracellular scale models

The macroscopic (extracellular) scale refers to phenomena which are typical

of continuum systems: cell migration, convection, diffusion (of chemical

factors, nutrients), phase transition (from free to bound cells and vice versa)

detachment of cells and formation of metastases, and so on. The avascular

stage of growth is characterized by:

(i) Small and occult lesions (1-2mm in diameter),

(ii) Formation of a necrotic core of dead tumor cells where a process of

destroying cellular debris may take place,

(iii) Formation of an outer region of proliferating tumor cells and of an

intermediate region of quiescent cells,

(iv) Production of chemical factors, among which several growth inhibitory

factors, generally called GIF, and growth promoting factors, called

GPF, by the tumor mass, thus controlling the mitosis,

(v) Dependence of the tumor cells mitotic rate on the GIF and GPF con-

centration,

(vi) Non-uniformities in the proliferation of cells and in the consumption of

nutrients, which filter through the surface of the spheroid and diffuse

in the intracellular space.

Since at this stage the tumor is not surrounded yet by capillaries, this phase

can be observed and studied in laboratory by culturing cancer cells. On the

other hand, the tumor angiogenic phase is characterized by:

(i) Secretion of tumor angiogenesis factors promoting the formation of new

blood vessels (VEGF, FGF and others) as described in Bussolino et al.13

(ii) Degradation of basement membrane by several enzymes. Endothelial

cells are then free to proliferate and migrate towards the source of the

angiogenic stimulus,

(iii) Recruitment of new blood vessel that supply the tumor (neovascular-

ization) and increase of tumor progression,

(iv) Aberrant vascular structure, abnormal blood flow, with continuous

growth of new tumor blood vessels.
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A macroscopic description of the system should focus on these features and

aim at giving their evolution in time. Obviously, the macroscopic behavior

depends on phenomena occurring at the cellular level, e.g. proliferation,

death, activation and inhibition of single cells, interaction between pairs

of cells, etc. The evolution of macroscopic observable can be described by

models developed in the framework of continuum phenomenologic theories,

e.g. those of continuum mechanics. These models are generally stated in

terms of partial differential equations.

We will start by reviewing the different extracellular models. Over the

last ten years a number of important advancement have been made in the

development of mathematical models to simulate the growth and extracel-

lular scale behavior of solid malignant tumors, for example see the recent

reviews by Araujo and McElain4.

Extracellular scale models deal with phenomena typical of continuous

systems, such as cell migration, convection, diffusion. Evolving from the

early chemical diffusion and differential equation models of Burton14 and

Greenspan30, descriptions of tumor growth has been presented more re-

cently using different approaches have been developed to describe the fea-

tures of avascular tumor growth. Some of these models Continuum includ-

ing those using classical growth models such as logistic or Gompertz

models52,53, a universal growth models of tumors22,31,32, and partial dif-

ferential equations models, for example see, Bellomo et al10; Byrne and

Chaplain15; Owen and Sherratt59; Mallet50;Pettet et al.61. The common

feature of these mathematical model on tumor growth is that they have as-

sumed that the tumor cells are of the same type for the simplicity of closing

the system of mass balance equations. Further extensions of these models

used a continuum, extracellular framework in one space dimension67,69,70.

None of these rate models (empirical ordinary differential equations) can

simulate the evolution of tumor structure, or predict the effect of chemicals

on tumor structure.

Mechanical effects from the surrounding environment as well as that

generated internally by cellular growth play an important role in regu-

lating tumor growth. The resulting gel-like structure lends itself towards

proelastic assumptions in that the tissue is assumed to consist of points

of localized flow and fluid injection in an otherwise elastic medium. In this

case a poroelastic model56 can be used to model neoplastic environment in

solid tumor. The poroelastic model is used to predict stress and pressure in

the tumor and ECM. Verifiable computational models with likely become

part of arsenal of techniques used to better understand tumor evolution
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and treatment strategies in near future. Continuum based models can be

used to predict the evolution of tumors boundary time and this knowledge

may in turn help estimate the effect that various methods of treatment,

for example, chemotherapy and ultrasound, may have on the tumor be-

havior as well as on the ECM and ultimately on the host. A continuous

based mathematical model can also be used how hypoxia is a promoter of

angiogenesis. A model taking account of the main components, that is, tu-

mor size, vessel density, oxygen concentration, anti-angiogenic factors and

pro-angiogenic factors could predict the likelihood of angiogenesis of differ-

ent configurations. Thus the model can be validated against experimental

measurements.

6. Cellular scale models of growth of solid tumors

The cellular scale refers to the main (interactive) activities of the cells:

activation and proliferation of tumor cells and competition with immune

cells. More specifically, one has

(i) Fast proliferation of tumor cells, which are often degenerated endothe-

lial cells, takes place when an environmental cell loses its death program

and/or starts undergoing mitosis without control.

(ii) Competition with the immune system starts when tumor cells are rec-

ognized by immune cells, resulting either in the destruction of tumor

cells or in the inhibition and depression of the immune system.

(iii) After differentiation tumor cells undergo a process of maturation, which

makes them more and more proliferative and aggressive toward the en-

vironment and the immune system. Tumor cells can be additionally

activated towards proliferation by nutrient supply from the environ-

ment.

(iv) Activation and inhibition of the immune cells in their competition with

tumor cells are regulated by cytokine signals. These interactions, de-

veloped at the cellular level, are ruled by processes which are performed

at the subcellular scale.

(v) Activation and inhibition of cells belonging to the tumor and to the

immune system can also be induced by a properly addressed medical

treatment.

A model developed at the microscopic scale defines the time evolution of

the physical state of a single cell. Often these models are stated in terms of

ordinary differential equations. On the other hand, if we aim to describe the



June 7, 2007 10:35 WSPC/Trim Size: 9in x 6in for Review Volume chapter14

Mathematical Models on the Growth of Solid Tumors 305

evolution of a system comprising a large number of cells, then the system

of ordinary differential equations (one for each cell) can be replaced by

a kinetic equation on the statistical distribution of the state of all cells.

The application of methods of mathematical kinetic theory to model the

competition between tumor and immune cells was initiated by Bellomo and

Forni9.

Cellular models39,51 deal with interaction between cells, which is of

course strongly related to what happens at the subcellular level. Cellular

Automata models that treat cells as single points on a lattice, for exam-

ple, the LGCA model of Alarcon et al.2, Dormann and Deutsch23. They

adopt local rules specifying adhesion, pressure (cells are pushed towards

regions of low cell density) and couple the LGCA to a continuum chemical

dynamics. Their two-dimensional simulations produce a layered structure

that resembles a cross-section of an MTS.

6.1. Cellular Potts model

The cellular Potts model is a more sophisticated Cellular Automata model,

which describes individual cells as extended objects of variable shapes. The

cellular Potts model can be applied to model tumor growth. Any cellular

scale model of tumor growth must consider cell-cell adhesion, chemotaxis,

cell dynamics including cell growth, cell division and cell mutation, as well

as the reaction-diffusion of chemicals: nutrients and waste products, and

eventually, angiogenesis factors and hormones. In additional to differential

adhesion and chemotaxis, cellular models can include the reaction-diffusion

dynamics for relevant chemicals:

∂C0

∂t
= D0∇

2C0 − a(x), (1)

∂Cn

∂t
= Dn∇

2Cn − b(x), (2)

∂Cw

∂t
= Dw∇

2Cw + c(x), (3)

where C0, Cn, and Cw are concentrations of oxygen, nutrients (glucose),

and metabolic wastes (lactate), their initial values are a0, b0 and c0 re-

spectively. D0, Dn, and Dw are their respective diffusion constants; are

metabolic rates of the cell located at x; and c is the coefficient of the

metabolic waste production.

a = a0

C0 − CT
0

CO
0
− CT

0

,
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b = b0

Cn − CT
n

CO
n − CT

n

,

and

c = c0

a/a0 − b/b0

2

where CO is the “optimal concentration, and CT is the “threshold” con-

centration. The “optimal” concentration is 0.28mM for oxygen and is 5.5

for glucose. Each cell follows its own cell cycle, which depends sensitively

on its local environment. It is assumed that the target volumes are twice

the initial volumes. The volume constraints in the total energy allows cell

volumes to stay close to the target volume, thus describing cell growth. If

the nutrient concentration falls below a threshold or waste concentration

exceeds its threshold, the cell stops growing and become quiescent: alive

but not growing. When the nutrient concentration drops lower or waste

increases further, the quiescent cell may become necrotic. Only when

the cell reaches the end of its cycle and its volume reaches a target volume

will the cell divide. The mature cell splits its longest axis into two daughter

cells, which may inherit all the properties of the mother cell or undergo a

mutation with a defined probability.

The simulation data show that the early exponential stage of tumor

growth slows down when quiescent cells appear. Other measurements also

qualitatively reproduce experimental data from multicellular spheroids

grown in vitro. These simulations model a monoclonal cell population

(The cells that are derived from a single common ancestor cell are part

of a single clone. For example, all leukemias, lymphomas, and myeloma are

the result of the malignant transformation of a single cell and are mono-

clonal diseases.) in accordance with MTS experiments. However, including

cellular heterogeneity as for example in the model of Kansas et al.40 is

straightforward. Model extensions will incorporate genetic and epigenetic

cell heterogeneity (A factor that changes the phenotype without changing

the genotype). The CPM allows easy implementation of cell differentiation

as well as additional signal molecules. Cellular automation models describe

cell-cell and cell-environment interactions by phenomenological local rules,

allowing simulation of solid growth of tumors.

7. Subcellular models on growth of solid tumors

The subcellular scale refers to the main activities within the cells or at the

cell membrane. Among an enormous number of phenomena one can focus
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on

(i) Aberrant activation of signal transduction pathways that control cell

growth and survival,

(ii) Genetic changes, distortion in the cell cycle and loss of apoptosis,

(iii) Response of the cellular activity to the signals received,

(iv) Absorption of vital nutrients. A large amount of literature related to

the above features can be found.

Several interesting papers are cited in the review paper by Lustig and

Behrens (2003), focusing on the dependence of cancer development on the

aberrant activation of signal pathways that control cell growth and survival.

Subcellular scale models deal with models concerning the intra-celllular

origin of cancer, which involves genetic changes and distortion in the cell

cycle. They refer to the origins of unlimited and inappropriate cell prolif-

eration, loss of apoptosis, and the production, release and recognition of

messenger substances such as interleukins.

Micro environment study of multicellular tumor spheroids is a good

place to start. There is some data evidence that growth inhibitors are due

to small protein factors21,38. The desire to understand tumor complexity

has given rise to mathematical models to describe the tumor microenvi-

ronment. New mathematical models for avascular tumor growth and devel-

opment that spans three distinct scales can be developed. At the cellular

level, a lattice Monte Carlo model describes cellular dynamics (prolifera-

tion, adhesion, and viability). At the subcellular level, a network regulates

the expression of proteins that control the cell cycle. At the extracellular

level, reaction-diffusion equations describe the chemical dynamics (nutrient,

waste, growth promoter, and inhibitor concentrations). Reaction diffusion

equation coupled with an integro differential equation describing tumor ra-

dius response to externally supplied nutrient.

Data from experiments with multicellular spheroids are used to deter-

mine the parameters of the simulations. Starting with a single tumor cell,

these models produce an avascular tumor that quantitatively mimics experi-

mental measurements in multicellular spheroids. Based on the simulations,

these models predict: 1), the microenvironmental conditions required for

tumor cell survival; and 2), growth promoters and inhibitors have diffu-

sion coefficients, corresponding to molecules. Using the same parameters,

the model also accurately predicts spheroid growth curves under different

external nutrient supply conditions.
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In the cellular automaton, a layered tumor has formed, comprised of

necrotic “cell” material, quiescent and proliferating tumor cells.

8. Capsule is a key prognostic indicator

The formation of a capsule of dense, fibrous extracellular matrix around a

solid tumor is a key prognostic indicator in a wide range of cancers. How-

ever, the cellular mechanisms underlying capsule formation remain unclear.

The dormant state is ended by invasion into surrounding tissue. Tumor

encapsulation is the cascade of events that result in the formation of a

multi-layered sheath of epithelium surrounding a tumor. A multilobular

tumor is one in which lobes of different sizes are separated by strands of

connective tissue.

8.1. Capsule composition and importance

Two complementary theories have been postulated in order to explain the

mechanism of capsule formation7,8. One hypothesized mechanism is the ex-

pansive growth hypothesis, which suggests that a capsule may form by the

rearrangement of existing extracellular matrix without new matrix produc-

tion. Berenblum11 observed that tumors growing within the lumen of a

hollow organ, or on the surface of the body, do not become encapsulated, a

finding that Berenblum suggests confirms the hypothesis that capsules can

only be formed in situations where a tumor can exert pressure on surround-

ing tissue. According to the expansive growth hypothesis, the appearance

of fibrous capsule is essentially a passive phenomena, and the capsular col-

lagen is derived from mature, pre-existing collagen rather than being newly

deposited. The aggregation of connective tissue represents the cumulative

effect of a series of lower level interactions at the interface of the expanding

tumor and the connective tissue. The implication of this hypothesis was

proposed studied by Perumpanani at el60. The macrocellular scale model

consists of conservation equations for tumor cells and extracellular matrix

and exhibit traveling wave solutions in which a pulse of extracellular ma-

trix, corresponding to a capsule, moves in parallel with the advancing front

of the tumor. Their model consists of conservation equations for the den-

sities of tumor cells and extracellular matrix, denoted u(x, t) and c(x, t),

respectively, where t and x denote time and space in a one-dimensional

spatial domain:

∂u

∂t
= f(u) +

∂

∂x

[

h(c)
∂u

∂x

]

, (4)
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∂c

∂t
= k

∂

∂x

[

ch(c)
∂u

∂x

]

. (5)

where the term f(u) represents cell division and death; f(0) must clearly be

zero, and for simplicity Sherratt assumed that the cell density was rescaled

so that u = 1 is the equilibrium level within the tumor, implying f(1) = 0.

Random cell movement was assumed, and kinetics of extracellular matrix

are neglected, in keeping with expansive growth hypothesis, so that the

extracellular matrix density only changes because of convection with the

cells. This convection does not imply large-scale movement of intact matrix

by a cell; rather it is the net result of local matrix movement and remod-

eling during cell movement. This will increase with local matrix density

and is represented in the model as kc, and the function h(c) represent the

reduction in cell motility at high matrix density.

Another hypothesis, foreign body hypothesis is derived from the notion

that capsule formation is an attempt by the body localize the tumor and

assumes that, when stress, normal cells begin to secrete collagen or other

fibrous components of ECM. This view is essentially of an active process

where the body mounts a response akin to inflammation to create a fibrous

barrier. Ewing’s25 work suggested that the encapsulated tumors may; thus

be shielded from cellular attack. Similarly, Enneking’s24 work suggests that

the hosts attempt to encapsulate and contain tumors. Barr et al8 gave

a detail review of the mechanism of encapsulation and also suggested a

compromise hypothesis embodying both of the above mechanisms.

The major differences between the foreign body hypothesis and the

expansive growth hypothesis is that the latter is a passive process, where the

former is an active response of the host. Since it is difficult to discriminate

the two hypotheses using experimental techniques, mathematical modeling

provides a natural approach for testing and comparing the assumptions

and the consequences associated with each of them. Jackson and Byrne37

developed a mechanical approach to study both hypotheses.

9. Coupling and unifying different scales

9.1. Unification of model results of different scales

The problem of relationships between the various scales of description seems

to be the most important problems of the mathematical modeling of com-

plex systems, for example modeling of solid tumor growth. The following

strategy can be applied. One starts with the deterministic extracellular

scale model for which the identification of parameters by an experiment is
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easier. Then one provides the theoretical framework for modeling at cellular

scale in such way that the corresponding models at extracellular scale and

cellular prediction should be close. If the cellular scale model is designed

properly, one may hope it covers not only the extracellular behavior of the

system in question, but also some of its cellular scale features. The cellular

model by its nature is richer and it describes a larger variety of phenom-

ena. In a similar manner the subcellular scale model should be richer than

cellular and extracellular scale models.

This survey refers to a general framework for a program for finding

transitions between the different scales of descriptions, interacting entities

(cellular, subcellular), statistical description of test entity, and macroscopic

scale (extracellular).

In mathematical terms the links of the following mathematical struc-

tures was developed for various situations of biological interest43,44,45,46,47:

(1) The micro-scale of stochastically interacting entities (cells, individu-

als,..), in terms of continuous linear semigroups of Markov operators

(continuous stochastic semigroups)48;

(2) The meso-scale of statistical entities in terms of continuous nonlinear

semigroups related to the solutions of bilinear Boltzamann-type nonlo-

cal kinetic equations49;

(3) The macroscopic scale of densities of interacting entities (in terms of dy-

namical systems related to bilinear reaction-diffusion-chemotaxis equa-

tions.

Lachowicz46 deals with the mathematical theory of a large class of

reaction-diffusion systems (with small diffusion) and then generalized to

include reaction-diffusion-chemotaxis systems. This was motivated by a par-

ticular model of tissue invasion by solid tumor reaction-diffusion equations

with a chemotaxis-type term30,55. The model is quite general and can be

applied to a large class of systems at the macroscopic level including the

Keller-Segel-type systems.

There is a huge literature related to the rigorous derivation of chemo-

taxis equations from cellular scale models54. Stevens66 proved that for suf-

ficiently large numbers of particles the dynamics of an interacting particles

system can be approximated by the solutions of chemotaxis systems.

Later, Lachowicz proposed a more general approach in the sense that

it can be applied to large class of models at the macroscopic scale. More-

over it relates the three scales of descriptions. The methods may lead to

new and more accurate modeling of complex process, like tumor growth.
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Usually the description of growth of tumor is carried out at extracellu-

lar scale. The mathematical structures are deterministic reaction diffusion

equations55,56,63.

Following Chaplain and Anderson20, Lavichowicz considered a system of

deterministic reaction-diffusion-chemotaxis equations that is able to model

the invasive spatial spread of solid tumors. The model is able to cap-

ture some aspects of solid tumor growth and invasion at the extracellular

scale (tissue level). The model is based on genetic solid tumor growth at

the avascular stage, and it describes the interactions between the tumor

and surrounding tissue (ECM). The variables in the model are tumor cell

density,ρ1, ECM density, ρ2, and MDE (certain factors produced by the

tumor cells and known as matrix degrading or degrading enzymes) concen-

tration, ρ3. The model describes one key aspect of tissue invasion, namely

the ability of tumors cells to produce and secrete MDEs and their migra-

tory response. Chaplain and Anderson made assumptions that the tumor

cells produce MDEs which degrade the ECM locally; the ECM degradation

aids in tumor cells motility; movement of tumor cells up to a gradient of

ECM is referred as haptotaxis; tumor cell motion is driven only by ran-

dom motility and haptotaxis; the proliferation of tumor cells is not taken

into account.

With these assumptions the model (in dimensionless form) of Chaplain

and Anderson20 yields

∂ρ1

∂t
= d1∇

2ρ1 − γ∇ · (ρ1∇ρ1)

∂ρ2

∂t
= −ηρ2ρ3

∂ρ3

∂t
= d3∇

2ρ3 + αρ1 − βρ3

(6)

where d1, γ, η, d3, α, β are given positive constants (the macroscopic pa-

rameters), d1∇
2ρ1, γ∇ · (ρ1∇ρ1), ηρ2ρ3, d3∇

2ρ3, αρ1, and βρ3 represent

random motility, haptoxis, degradation, diffusion, production and decay re-

spectively. To improve the above model, one should construct cellular model

that correspond to the macroscopic model defined by equation (6).

9.2. Coupling of different scales

Most existing models focus on one scale. They differ considerably from each

other, according to the modeling scale (subcellular, cellular and extracellu-

lar) they focus on. While this may provide valuable insight into processes

occurring at that scale, it does not address fundamental problems of how

phenomena different scales are coupled. This is because one obstacle that
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must be overcome is the intrinsic multiple scale nature of tumor growth. We

present recent research that have been carried with the aim of formulating

multiscales model of tumor growth.

In 2004, Alarcon et al.3 established a modeling framework for develop-

ing a realistic multiple scale model of tumor growth. They used the hybrid

cellular automaton as a basic theoretical framework to combine models that

couple scales ranging from the tissue scale (e.g. vascular structural adap-

tation) through to the intracellular scale (e.g. cell cycle). This has enabled

them to tackle questions such as the effect on tumor growth of blood flow

heterogeneity (Alarcon et al.,2) and the efficiency of current chemotherapy

protocols for the treatment of non-Hodgkins lymphomas. In their modeling

framework, intercellular processes are represented by ordinary differential

equations, extracellular processes by partial differential equations and cell

processes by rules in a cellular automaton. Their models are still largely

phenomenological and simple, with many processes not included. As more

detail is incorporated the computational implementation and analysis be-

come more difficult. The challenge is developing appropriate numerical and

analytical techniques in order to efficiently implement, understand, and

exploit these models.

In 2005, Jiang et al.38 presented a mathematical model for avascular

tumor growth and development that spans three distinct scales. At the cel-

lular level, a lattice Monte Carlo model describes cellular dynamics (pro-

liferation, adhesion, and viability). At the subcellular level, a Boolean net-

work regulates the expression of proteins that control the cell cycle. At the

extracellular level, reaction-diffusion equations describe the chemical dy-

namics (nutrient, waste, growth promoter, and inhibitor concentrations).

Data from experiments with multicellular spheroids were used to deter-

mine the parameters of the simulations. Starting with a single tumor cell,

this model produces an avascular tumor that quantitatively mimics experi-

mental measurements in multicellular spheroids. Based on the simulations,

they predicted:

(1) the microenvironmental conditions required for tumor cell survival, and

(2) growth promoters and inhibitors have diffusion coefficients in the range

between 106 and 107 cm2/h, corresponding to molecules of size 8090

kDa. Using the same parameters, their model also accurately predicted

spheroid growth curves under different external nutrient supply condi-

tions.

In 2006, Ayati et al.6 presented multiscale models of cancer tumor inva-
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sion with components at the molecular level (incorporated via diffusion and

taxis processes), the cellular level (incorporated via a cell age variable), and

the tissue level (incorporated via spatial variables). They provided biologi-

cal justifications for the model components, present computational results

from the models, and discussed the scientific-computing methodology used

to solve the model equations. Their models and methodology form the ba-

sis for developing and treating increasingly complex, mechanistic models of

tumor invasion that will be more predictive and less phenomenological.

10. Conclusions and outlook

The new mathematical models should link all the approaches at different

scales in order to gain better insight into dynamics of tumor growth or

should be a multiscale models. These models will not only replicate ex-

perimental observation but also, more importantly, predict behaviors that

have not yet been observed.
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Artificial Neural Networks are models of interacting neurons that can be
used as classifiers with large data sets. They can also be used for feature
extraction and for reducing the dimensionality of large data sets. Den-
dritic electrotonic models can be used to suggest more robust artificial
neural network models that are amenable to data mining and feature
extraction.

1. Introduction

The very large data sets now being produced by modern scientific in-

struments often require data mining techniques which go beyond the

usual methods of statistical analysis. Among the most popular data min-

ing algorithms used to classify unknown data are the techniques of clus-

tering analysis, principal components analysis, linear discriminant analy-

sis, decision trees, support vector machines, and artificial neural

networks1. The majority of these techniques are applied to unclassified

data sets in order to extract features from the data that cannot be directly

observed. For example, in a clustering analysis, subgroups of the data are

classified so that members of a subgroup are relatively close to each other

while remaining relatively far away from elements in other subgroups2.

However, if some or all of the data is classified a priori–for example, if

a data set can be classified as coming either from an experimental group or

from a control–then support vector machines (SVM) and artificial neural

networks (ANN) are often the tools of choice. In both cases, data sets for

known classifications are used to train the SVM or ANN so that it can

321
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predict the classification of an unknown data set. In such classification

problems, it is natural to ask which features of the underlying data set

are most responsible for the prediction of the classification of a data set.

Artificial neural networks (ANN) can be used to address this question in

a natural and straightforward manner3. Although there are methods of

addressing this question with SVM’s, this article will focus on the use of

ANN’s as classifiers which can also reveal features of the underlying data

set most responsible for that classification.

There are many different neural network algorithms that are used for

classification and feature extraction, including Self Organizing Machines,

the Self Organizing Tree Algorithm, perceptron networks, and multi-

layer perceptron networks (MLP)4. These algorithms are being used in

an ever increasing number of different applications. For example, artificial

neural networks have been used to predict protein structures5, to diag-

nose lymphoma6, to perform clustering analyses7, and to interpret protein

threading scores8, to name a few. The list is far from exhaustive, but it

illustrates the diversity of applications of neural networks for classifying

and interpreting data.

This article describes the use of neural networks for classification and

feature extraction, with an emphasis on applications to microarray data.

The emphasis is on perceptron models, especially as they are used to clas-

sify gene expression in microarray data3. Section 2 introduces and explores

artificial neural networks. Section 3 presents algorithms suitable for classi-

fication and feature extraction, and section 4 suggests methods for improv-

ing ANN algorithms based on mathematical models of dendritic electrical

activity.

2. Artificial Neural Networks

A neuron is known to collect information in the dendrites in the form of

variations in membrane resistance and ion channel interactions at synaptic

junctions. If the resulting variation in membrane potential is not large, then

the potential decays exponentially to a resting potential of about -70 mV.

However, if the potential at the soma surpasses a certain threshold, then

the neuron “fires”, by which we mean that an action potential propagates

along the axon to the synapses of the neuron.

The mechanics of this process are described by the Hodgkin-Huxley

(HH) equations and by dendritic cable models with a lumped soma bound-

ary condition10. Because the HH equations are highly nonlinear and nearly
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Fig. 1. Schematic of a Neuron

intractable, models such as the Fitzhugh-Nagumo model have been cre-

ated as qualitative models of dendritic-somatic-axonal interactions11. An

artificial neuron is a minimalist qualitative model that suggests that

a neuron integrates variations in potential over time and fires if a thresh-

hold is exceeded. An Artificial Neural Network (ANN) is a network of

interconnected artificial neurons.

Specifically, in an ANN, axonal action potentials are represented by

activations which are considered to be in [0, 1], and synaptic activity is

considered to be governed by a parameter known as a synaptic weight. If xj

denotes the activation from the jth neuron in a network, and if wij is the

synaptic weight of the connection between the ith and jth artificial neuron,

then the activation of the ith neuron is

xi = σ





∑

j 6=i

wijxj − θi



 (1)

where the activation function σ (·) is of the form

σ (t) =
1

1 + e−κt

where κ > 0 is a parameter12.

Fig. 2. An Artificial Neuron
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An input neuron is a neuron which takes a single stimulus I as input

and returns an activation of the form x = σ (I) . A multi-layer perceptron

(MLP) has a input layer which is connected to one or more hidden layers,

with the last hidden layer being connected to an output layer. Subsequent

layers are completely connected, but there are no connections between two

neurons in the same layer or between neurons that are not in subsequent

layers. A 3-layer MLP has r input neurons connected to m neurons in a

Fig. 3. A Multi-Layer Perceptron

single hidden layer which are connected to n neurons in an output layer.

It has been shown that a 3-layer MLP can approximate any absolutely

integrable mapping of the type

f (I1, . . . , Ir) = (y1, . . . , yn)

to within any ε > 0, where Ij is the stimulus presented to the jth input

neuron and yk is the activation from the kth output neuron13.

If we let x = (x1, . . . , xr) denote the vector of activations from the input

to the hidden layer, then yj = σ (sj − θj) , j = 1, . . . n and

sj =

m
∑

k=1

αjkσ (wk · x − θk)

where wk = (wk1, . . . , wkr) denotes the vector of weights between the input

layer and the kth hidden neuron, · denotes the standard inner product, and

αjk denotes the weight between the kth hidden neuron and the jth output

neuron.
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Fig. 4. A 3 Layer MLP

If the output q = (q1, . . . , qn) for a given input p = (p1, . . . , pr) is

known, then the pair (p,q) is known as a training pattern because the

pair can be used to estimate the weights wkl and αjk necessary for the

stimulus p to predict a classification of q. The energy function for a

collection
(

p1,q1
)

, . . . , (pr,qr) of training patterns is defined

E =
1

2

t
∑

i=1

∥

∥y − qi
∥

∥

2

where y = (y1, . . . , yn) and where the norm is defined by the corresponding

dot product. The network is trained to a collection of training patterns if

∂E

∂wkl
= 0 and

∂E

∂αjk
= 0

at the inputs pi for all l = 1 . . . r, k = 1 . . .m, and j = 1 . . . n. Because these

equations cannot be solved directly, a gradient-following method called the

backpropagation algorithm is used instead. The algorithm is based on the

observation

σ′ = κσ (1 − σ) ,

which can be used to simplify ∂E/∂αjk and ∂E/∂wkl . In particular,

for each training pattern (pi,qi), a 3-layer MLP first calculates y as

the output to pi, which is the feedforward step. The weights αjk are

subsequently adjusted using

αjk → αjk + λδjξk

where ξk = σ (wk · x − θk), where λ > 0 is a fixed parameter called the

learning rate, and where

δj = κyj (1 − yj)
(

qi
j − yj

)

.
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The weights wkr are adjusted using

wkl → wkl + λεk xl,

where xl = σ
(

pi
l − θl

)

and where

εk = κξk (1 − ξk)

n
∑

j=1

αjkδj .

Before any training sessions begin, the weights αjk and wkr should be

initialized to small random values and λ should be chosen close enough

to 0 to allow the backpropagation algorithm to converge. In each train-

ing session, the patterns should be randomly permuted to avoid bias, and

training should continue until E is sufficiently close to 0. The backpropaga-

tion algorithm is well-established and can be found in many textbooks and

monographs. See, for example, Bose and Liang12 for additional information

about the backpropagation algorithm.

3. Data Mining and Microarrays

Microarrays capture gene expression data for a given state by comparing

mRNA from a population in that state (sample) with mRNA from a pop-

ulation not in that state1. If Ml is the base 2 logarithm of the ratio of the

intensity of the sample to the intensity of the reference for the lth gene,

then on average Ml ≈ 0 for unregulated genes and |Ml| >> 0 for regulated

genes.

More generally, if there are N different classifications for a collection

of training patterns, then for each i = 1, . . . , N there is a pattern vector

πi =
(

πi
1, . . . , π

i
r

)

, where

πi
l =

{

1 if gene l is regulated

0 otherwise

Data sets for the classifications are of the form
(

pi,qi
)

, i = 1, . . . , t, where

each qi is one of a fixed set of output vectors o1, . . . ,oN and the corre-

sponding pi =
(

pi
1, . . . , p

i
r

)

are given by

pi
l = Rl + Ml πj

l

where Rl and Ml are random variables with R̄l = 0 and
∣

∣M̄l

∣

∣ >> 0 for

each l ∈ {1, . . . , r} . Similar to a microarray analysis, the problem is that

of using the training set to predict the pattern πj for each j = 1, . . . , N.

For microarray data, there is only one classification (i.e., the “sam-

ple”), which means that classification and feature extraction of microarray
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Fig. 5. The Perceptron

data can be accomplished with a perceptron, which is an MLP with no

hidden layers and only one output neuron3. In analyzing microarray data,

the pattern vector π = (π1, . . . , πr) represents the genetic expression of the

condition observed in the sample.

The backpropagation algorithm implies that after a large number of

training sessions, the weights are of the form

αl = µl + λκ
∑

{i | qi=1}

y
(

pi
) (

1 − y
(

pi
))2

pi
l − λκ

×
∑

{i | qi=0}

y
(

pi
)2 (

1 − y
(

pi
))

pi
l

where µl is a random initial offset that is very close to 0. It follows that

µl −
∑

{i | qi=1}

pi
l ≤ αl ≤ µl +

∑

{i | qi=1}

pi
l

so that if πl = 0, then we have

µl − R̄ ≤ αl ≤ µl + R̄

or equivalently, αl ≈ µl. That is, input neurons (genes) not in the pattern

π will on average correspond to weights αl which are close to 0 (given that

µl is chosen to be close to 0 as well).

When combined with a simple genetic algorithm that eliminates the

input neurons corresponding to the αl with the smallest magnitudes, the

result is a process for reducing the dimensionality of the classification data
(

pi,qi
)

. A naive implementation of this process can be described as follows:

(1) Let
(

pi
0,q

i
0

)

, i = 1, . . . , N denote the original training set.

(2) For k = 0, 1, 2, . . .

(a) Train the network with the data
(

pi
k,qi

k

)

until the error E is suffi-

ciently close to 0.
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(b) Remove a small number of input neurons (genes) with weights closest

to 0 to create a reduced data set
(

pi
k+1,q

i
k+1

)

, i = 1, . . . , N

The support of pi
k is a prediction of the input pattern π (i.e., the expressed

genes). As a variation on this procedure, it may be more appropriate to

remove a fixed percentages of genes which correspond to weights that are

large in magnitude and then continue until convergence becomes very poor

or no weights remain with magnitudes sufficiently distant from 0.

Perceptrons can be used as classifiers only on data which can be divided

into separate classes by a hyperplane12, thus making it desirable to use an

MLP instead. Although there is no obvious correspondence between input

neurons and weights in an MLP, there are strategies for using MLP’s to

reduce the dimensionality of the classification data.

Let’s begin by deriving a simple algorithm for feature extraction in

multilayer perceptrons. To do so, let us notice that in the back propagation

algorithm, the change in the weights wkl is

∆wkl = λεk xl

so that if xl = pi
l and if πl = 0, then after some large number of training

sessions we have

∆wkl =
∑

λεkRl

where the sum is over the training sessions. If λ is chosen so that |λεk| < 1,

then ∆wkl is close to 0 when the lth neuron is not in the pattern. Such a

criteria in combination with the algorithm above allows the use of a MLP

in reducing the dimensionality of a set of classified data.

This method is similar to methods that use sensitivity analysis to predict

the relative importance of a given input neuron. Specifically, for each i =

1, . . . , n and l = 1, . . . , r, the partial derivative

∂yj

∂xl
= κ2yj (1 − yj)

m
∑

k=1

αjkwklξk (1 − ξk)

measures the sensitivity of the output neuron yj to variations in the in-

put neuron xl (see [15]). Given a training set
(

pi,qi
)

, i = 1, . . . , N , the

significance of the lth input neuron is defined to be

Φl = max
i∈{1,...,N}





1

n

n
∑

j=1

∣

∣

∣

∣

∂yj

∂xl

∣

∣

∣

∣

2

y=qi,xl=σ(pi
l
−θl)





1/2

.
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Large Φl predict input neurons (genes) most significant to the training of

the network, while small Φl predicts neurons with lesser significance16.

Both cases imply a natural criteria for pruning input neurons with lesser

significances. Thus, a general algorithm for dimensionality reduction and

feature extraction is to alternately train the network to predict classifica-

tions and prune weights which are relatively unchanged over large periods

of time.

4. Neuron Inspired Neural Networks

Neural networks are powerful tools for exploring mining data, but there are

also many problems that can arise. It is necessary in Cybenko’s theorem

for the hidden layer to become arbitrarily large, which may also lead to net-

works that converge poorly and slowly at best. Overfitting is problematic,

as it so often is with nonlinear techniques. A training set in which some

(p,q) pairs are errantly associated with each other (mislabeled data) may

also lead to slow convergence of the back propagation algorithm. Misla-

beled data can also produce errant classifications in general.

Many of these issues are addressed in the literature by using known

mathematical techniques to modify ANN algorithms to address such dif-

ficulties. However, we conclude by suggesting how models of real-world

neurons can be used to suggest modifications to artificial neurons.

In particular, models have been developed which incorporate ion chan-

nels (i.e., active properties) into dendritic electrotonic cable models17. In

these models, the dendritic membrane voltage V (X, t) at a dimensionless

distance X from the soma and at time t satisfies

V (X, t) = Vinitial +
n

∑

j=1

∫ t

0

G (X, Xj , t − τ) Ij (τ) dτ

where Xj corresponds to the location of an ionic channel, Ij (τ) is the

activation at that channel, and G (X, Xj , t) is a multi-exponential decay18.

Since V (0, t) is the voltage at the soma and since G (X, Xj , t) is a multi-

exponential decay, the somatic voltage is of the form

Vsoma = Vinitial +

n
∑

j=1

∞
∑

s=1

wjsCjse
−βjst

∫ t

0

eβjsτ Ij (τ) dτ (2)

where βjs is the sth rate of decay at the jth synaptic channel.
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Broadly interpreted, this means that an artificial neuron can be consid-

ered to be of the form

xi = σ





n
∑

j=1

wij

v
∑

s=1

Xjs − θi + µi





where Xsik is some transformation of xi and where µi is a small random

number modeling fluctuations in Vinitial. For example, if Ij (τ) is constant

in (2), then

e−βjst

∫ t

0

eβjsτIj (τ) dτ = β−1

js

(

1 − e−βjst
)

Ij

and the corresponding artificial model is

xi = σ





n
∑

j=1

v
∑

s=1

wijγsjxj − θi + µi





where γsj = Cjsβ
−1

js

(

1 − e−βjsT
)

for some fixed T > 0. Although this

model is mathematically equivalent to (1)—thus allowing back propagation

training—comparison to (2) suggests that the γsj should be trained at

different “time scales” and that small amounts of “noise” may be added at

each iteration.

This confirms recent models obtained without biological inspiration in

which Monte Carlo techniques and extensions of the back propagation train-

ing method have been used to improve neural network performance14,19.

Conversely, it suggests that more recent models of the neuron can produce

improved artificial neural network models. If vision is interpreted to be

feature extraction on a grand scale, then real world neural networks can

be considered to be the ultimate data mining tools, behooving us to con-

tinually revisit our understanding of real neurons in our quest to develop

suitable artificial models designed to perform similar tasks.
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CHAPTER 16

MULTIFRACTAL DISCRIMINATION MODEL (MDM) OF

HIGH-FREQUENCY PUPIL DIAMETER MEASUREMENTS

FOR HUMAN-COMPUTER INTERACTION
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Multifractality present in high-frequency pupil diameter measurements,
usually connected with the irregular scaling behavior and self-similarity,
is modeled with statistical accuracy and discriminatory power. The Mul-
tifractal Discrimination Model (MDM) is proposed to determine ocular
pathology based on the pupillary response behavior (PRB) exhibited by
older adults with and without ocular disease during the performance
of a computer-based task. The MDM consists of two parts: (1) a dis-
criminatory summary of the multifractal spectrum and (2) a combined
k-nearest-neighbor classifier. The multifractal spectrum is used to dis-
criminate the PRB from four groups of older adult users, differing in oc-
ular pathology. Spectral Mode, Broadness, and left Slope (the M.B.S.
summary), three measures characterizing the multifractal spectrum of
observations, are proposed as distinguishing features of PRB across the
groups. The combined k-nearest neighbor classifier is shown to be a valid
classifier for the accurate prediction of ocular pathology from the PRB
measurements.

333
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1. Introduction

The discipline of human-computer interaction (HCI) strives to evaluate and

improve user performance and interaction with information technologies for

users with varying abilities and needs across many different contexts. Men-

tal workload has long been recognized as an important component of human

performance during interaction with complex systems 1, such as comput-

ers. Notably, extreme levels of workload (high and low) have been shown to

be predictive of performance decrements for different users under different

conditions. To this end, this study examines the workload experienced by

users with visual impairments during the performance of a computer-based

task.

Previous investigations have examined the interactions of users with vi-

sual impairment related to Age-related Macular Degeneration (AMD) 2,3,4.

AMD is one of the leading causes of visual impairment and blindness for

individuals 55 years of age and older 5. Since the majority of information

offered by computers is presented visually on a screen, these users are at a

clear disadvantage. Research efforts directed towards the characterization of

computer interaction for users with visual impairments can provide design-

ers with the knowledge to better anticipate user needs in the development

of information technologies.

AMD affects central, high-resolution vision, which has a large impact on

an individual’s ability to perform focus-intensive tasks, such as using a com-

puter 6. Researchers have found that users with AMD tend to perform worse

than normally-sighted users, as measured by performance metrics such as

task times and errors, on simple computer-based tasks 2,3,4. However, lit-

tle work has been done to examine how these performance decrements are

affected by increases in mental workload due to sensory impairments.

Measures of workload can be performance-based, survey-based, or physi-

ologically assessed. Pupil diameter is a well-documented, physiological mea-

sure of mental workload 7,8. While research has shown pupillary response

behavior (PRB) to be related to changes in mental workload and task dif-

ficulty in a number of domains 9,10,11,12, the complex control mechanism

of the pupil has made it difficult to extract the small, meaningful signals,

related to changes in mental workload from the larger, overall noisy signal

of PRB 13.

Additionally, research in ophthalmology has shown that ocular disease

affecting the central visual field – such as AMD – also has an effect on the

physiological mechanism controlling PRB 14,15. This makes the PRB of in-
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dividuals with ocular disease particularly noisy and difficult to use in data

analyses. This being said, it is necessary to develop analytical techniques

that can isolate these small changes in PRB. A more comprehensive anal-

ysis of PRB may provide a solution to this problem and provide a unique

characterization of interaction for individuals with AMD.

The development of analytical tools for high-frequency data lends strong

support to the analysis of PRB data. The high-frequency PRB measure-

ments share many important features with other extensively studied mea-

surements, such as the turbulence 16, internet traffic 17 and high- frequency

financial time series 18. These types of measurements are considered as

fractal processes. Fractal processes are usually divided into two classes –

monofractal processes and multifractal processes. Recent work of Moloney

and colleagues 19 shows the advantages of multifractal process models in

overcoming the data complexity of PRB.

This chapter proposes a Multifractal Discrimination Model (MDM) to

predict ocular pathology from PRB measurements. We describe a multi-

fractal spectral model to fit the PRB measurements and then extract fea-

tures from this model in order to discriminate the measurements coming

from different visual acuity groups. The challenge of this problem is due to

the complexity of PRB, the non-Gaussian distribution of the multifractal

spectral characteristics and the difficulty of building a stable classifier for

multi-class data. The choice of taking the multifractal spectral character-

istics as the classifier input is supported by the descriptive statistics. To

build a predictive multi-class classifier for non-Gaussian data, the combina-

tion of k-nearest-neighbor classifier is employed to improve the predictive

accuracy.

The chapter is organized as follows. The dataset is described in

Section 2. Section 3 includes the description of The multifractal spectrum

model and the features based on the multifractal spectrum. Discriminate

analysis of PRB data using the multifractal model is presented in Section 4.

Section 5 provides conclusions.

2. PRB Measurement

In this section, we briefly describe the datasets and how the data is prepro-

cessed to fit the further analysis.
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2.1. Datasets description

The equipment used to collect PRB data during this study was the Applied

Science Laboratories (ASL) Model 501 head-mounted optics system. Pupil

size was recorded at a rate of 60 Hz for each participant over 105 trials of

a computer-based task using a graphical user interface (GUI). A camera

records the pupil image, which has been distinguished by a near-infrared

beam that illuminates the interior of the eye. Pupil size is assessed as the

number of pixels attributed to the pupil’s image, which has been determined

by real-time edge detection processing of the image. Actual pupil diameter

measurements (in millimeters) are then calculated by multiplying each pixel

value by a scaling factor that is based on the physical distance of the camera

from each participant’s eye.

The dataset is comprised of PRB data streams for 36 individuals, as

described in Table 1. In this table, N refers to the number of individuals

comprising this user group. Visual acuity refers to the range of Snellen

visual acuity scores (assessed by ETDRS) of the better eye for participants

of each group. AMD? refers to the presence (Yes) or absence (No) of this

ocular disease in individuals within each group. Number of data sets refers

to the number of 2048-length data sets that were obtained from the data

streams for each group. For this study, data was collected from four groups

of individuals, classified by visual acuity and the presence or absence of

age-related macular degeneration (AMD). Visual acuity, an individual’s

ability to resolve fine visual detail, was assessed via the protocol outlined

in the Early Treatment of Diabetic Retinopathy Study (ETDRS) 20. The

experimental protocol from this study is fully described in studies by Jacko

and colleagues 3,19.

Table 1. Group characteristics summary

Group N Visual Acuity AMD? Number of Data Sets

Control 19 20/20 - 20/40 No 111
#1 6 20/20 - 20/50 Yes 59
#2 5 20/60 - 20/100 Yes 57
#3 6 20/100 Yes 124

2.2. Preprocessing

Studies of PRB are faced with the problem of how to remove blink artifacts.

A blink generally lasts about 70-100 msec. (producing an artifact spanning
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4-6 observations under 60 Hz sampling) during which time the camera reg-

isters loss and a pupil diameter of zero is recorded. Thus, the detection and

elimination of these contiguous zero observation artifacts from the PRB

records is relatively straightforward. However, on either side of a blink, one

may also observe highly unusual recordings because the pupil may be mea-

sured inaccurately as the eyelid partially obscures the pupil. The result may

be an impossibly small value for the pupil’s size.

To ensure that the analysis is conducted on pupil constriction or dilation

and not on misleading discontinuities caused by blinks or partial blinks, one

must either remove the blink observations from the data entirely or replace

them with linearly interpolated values. Blinks (i.e., zero recordings) have

been found to account for approximately 3-4% of all observations. Partial

blinks account for another 1% of the total number of observations. The

blink-removal procedure removes all observations having zero values (i.e.,

the blink) as well as any extreme values that occur within six additional

observations on either side of the zero value (i.e., partial blinks). Figure 1

presents a preprocessed result of the typical measurements of subjects from

four different vision ability categories.
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Fig. 1. PRB (pupil diameter) time series data for individuals from four different vision
ability categories.
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Because of difficulty of collecting the measurements, especially from

individuals with AMD, the original datasets were cut into equal length

pieces to exploit their usage. Another reason of the segmentation is that the

original measurements are not equally long. The segmentation is conducted

after the ’Six Law’ filtering, as mentioned above. The dataset contains the

sum of 351 segments of measurements after segmentation and necessary

outlier detection and each have the length of 2048. The distribution of the

number of the segments among the four groups (Control, #1, #2 and #3)

is reported in Table 1.

3. Multifractality Features

In this section, we discuss the concept of multifractality and the definition

of the multifractal spectrum and analyze the features of the multifractal

spectrum from the perspective of discrimination.

3.1. Scaling and multifractal spectrum

Many measurements encountered in nature, industry, and science

are characterized by complex scaling behavior, namely multifractality.

Multifractals are processes that possess a continuous range of irregu-

larity indices, rather than a single irregularity index H (usually the worst

overall index of irregularity) typical of monofractality. Prime examples of

multifractals are turbulence measurements where the deviation from the

constant scaling, characterized by a Hurst exponent of 1/3 and called the

Kolmogorov K41 law, is explained by multifractality of such measurements
21.

The wavelet-based energy spectrum is a commonly used tool to check the

scaling behavior of the process. This spectrum describes the second order

statistics (i.e., variance) of the process at different scales (frequency points).

The linearity (or curvature) of this spectrum reflects the fractality of the

process and this connection could be utilized to the estimation of the Hurst

exponent of the process. The exact definition of the wavelet-based energy

spectrum and its estimation could be found in the monograph of Vidakovic
22. Figure 2 shows the wavelet-based energy spectrum of typical PRB

measurement. This spectrum suggests that fractal behavior exists in PRB

and that the multifractal model can be used to identify the inherent features

within the PRB signals of different individuals.

The measure of multifractality is given by the multifractal spectrum,

which describes the “richness” of the process in terms of various regular-
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Fig. 2. Wavelet-based energy spectrum for PRB from a Control subject. The slope in
the intermediate scales is found to be -1.9484 corresponding to the Hurst exponent of
0.4742. The “hockey-stick” effect in the finest two scales is caused by quantization and
possible smoothing of high frequencies of the measuring instrument.

ity indices. The term spectrum connotes the spectral decomposition of the

process into components characterized by their irregularity. Thus, multi-

fractal analysis is not focused on the irregularity/self-similarity of the data

set as measured by a single parameter, but rather on a measure of inho-

mogeneity of such a parameter. In recent years, the multifractal formalism

is implemented with wavelet tools 23,24 and hence could be efficiently used

in practice. The wavelet-based multifractal spectrum is based on the local

singularity strength measure:

α(t) = lim
k2j

→t

1

j
log

2
|dj,k| (1)

where dj,k is the wavelet coefficient at scale j and location k. It has been

shown that the wavelet coefficients can carry the scaling behavior of the

process if the wavelet is more regular than the process 25 and the local

singularity strength measure (1) converges to the local irregularity index

the process at time t. As the name tells, α(t) indicates the oscillation of

the process at time t, with small values of α(t) reflecting the more irregular

behavior at time t. It can be imagined that any inhomogeneous process has a

collection of local singularity strength measures and their distribution f(α)

formulates the multifractal spectrum. The detailed estimation procedure of

the wavelet-based multifractal spectrum is outlined in the seminal work by
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Gonçalvès and colleagues 26.

3.2. Features based on multifractal spectrum

Theoretically, the multifractal spectrum of fBm (a representative of mono-

fractal) consists of three geometric parts: the vertical line, the maximum

point and the right slope. The spectral Mode corresponds to the Hurst

exponent and the vertical line is thought to be an inherent feature, which

distinguishes fBm from the multifractal process. However, it is rare to ob-

tain such a perfect spectrum in practice. Due to the error of estimation, the

spectrum generated from an accurately simulated may even deviate from

the theoretical form, as shown in Figure 3. Even with the lack of precise

estimation of the spectrum, the deviation from the vertical line can still

be utilized in the discrimination between the monofractal and multifractal

processes. In Figure 3, two type processes are presented in the multifrac-

tal spectra. One is the fBm and the other is the turbulence measurement,

which is widely believed to be a multifractal process. Comparing with the

turbulence measurement, the fBm is much closer to the vertical line and

this closeness may be quantified by the left Slope of the spectra. Another

important difference between these two spectra is the width spread of the

spectra. It is obvious that the width spread of the fBm is much smaller

than that of the turbulence measurement.

Despite the existence of the estimation error, the spectrum can be ap-

proximately described by two slopes and one point without loss of the

discriminant information. Alternatively, we can also approximate the spec-

trum by the left Slope, the maximum point and the width spread. A typical

multifractal spectrum, described in this way, is shown in Figure 4.

The left and right slopes can be obtained easily using the linear regres-

sion technique. However, it is not as straightforward to define the width

spread automatically. The difficulties are related to two aspects – one be-

ing how to locate the start and end points of the width spread, while the

other is what to do with the discreteness of the spectrum. It is easy to see

that the former is difficult conceptually, while the latter is difficult compu-

tationally. There are many ways to define the width spread. In this chapter,

we give one definition of width spread, which we name the broadness of

the spectrum.

Definition 1: Suppose that α1 and α2 are two roots which satisfy the

equation f(α) + 0.2 = 0 and α1 < α2 , the Broadness of multifractal

spectrum is defined as B = α2 − α1, where f(α) is the spectrum function
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Fig. 3. Multifractal Spectra for mono- (dashed line) and multi-fractal (solid line) pro-
cesses. The dotted line indicates the theoretical slope of the spectrum for an fBm process
(mono-fractal) with a Hurst exponent of 1/3

in terms of Holder regularity indices α’s.

This definition is also graphically presented in Figure 4. The deviation

from the monofractal could be fairly quantified using this Broadness mea-

sure since it posts a universal standard on the width spread. It is worth

to point out the threshold value 0.2 used in this definition could be ad-

justed empirically in the practice analysis to ensure that this measure is

well defined for all analyzed processes.

As mentioned earlier, the discreteness may produce difficulties in the

computation. The problem is that it may be hard to find the exact roots

of the equation f(α) + 0.2 = 0 among the discrete values of α’s. To get

around this, we try to find the minimum value of |f(α) + 0.2| with respect

of α instead of solving the equation directly.

Applying our idea about extracting the spectral features to the PRB

measurements, we obtain the Broadness, spectral Mode (Hurst exponent),

and left Slope for each measurement. Table 2 summarizes the spectral char-

acteristics of the PRB datsets that we are using in our study. We will use

this result in Section 4.
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Fig. 4. Canonical features of the multifractal spectrum , including the left Slope,
Broadness, and spectral Mode measures.

Table 2. Summary statistics of the multifractal spectral characteristics for
our PRB datasets

Group Left Slope Spectral Mode Broadness

Control Mean 0.5053 0.4177 0.8591
Median 0.4725 0.4153 0.7668

Std. 0.1658 0.1517 0.4956

#1 Mean 0.3787 0.3561 0.8404
Median 0.3701 0.3214 0.7266

Std. 0.0738 0.1511 0.6796

#2 Mean 0.4049 0.4233 0.6989
Median 0.3908 0.4104 0.6804

Std. 0.1105 0.0985 0.1655

#3 Mean 0.484 0.3965 1.348
Median 0.4608 0.3926 0.8562

Std. 0.139 0.1723 1.1761

4. PRB Data Analysis

As mentioned previously, we attempt to find the inherent features which

can separate the measurements with different ocular pathologies from each

other. The empirical evidence (e.g., wavelet-based energy spectrum) has

shown that PRB measurements possess self-similarities and fractalities.

Hence, it is natural to apply multifractal spectra to discriminate these mea-

surements.
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We have discussed the features of multifractal spectra in section 3. The

most important feature of the spectrum is the spectral Mode, which cor-

responds to the Hurst exponent if the process is monofractal. The Hurst

exponent is a measure of “roughness” of the self-similar process. The Hurst

exponent coincides with the Holder regularity index, and processes with H

close to 0 look quite irregular and intermittent, while for H close to 1 the

processes look smooth. Such an important property of the spectral Mode

enables us to explain the dynamics of PRB.

Informally speaking, large values of spectral Mode correspond to less

dynamic changes in pupil size (“frozen eye”) while low values of the expo-

nent indicate bursty and frequent changes. Therefore, the spectral Mode

could discriminate the measurements. The boxplots of spectral modes for

the four groups are shown in Figure 5. According to this figure, the group

#1 have spectral Modes much lower than the Control group, which reflects

that the individuals from this group have more irregular PRB than those

from the Control group.

As can be seen in Figure 5, the spectral Mode could not completely

discriminate the groups. This motivates us to introduce other discrimina-

tory quantities. Another measure we just defined is the Broadness, which is

able to quantify the level of deviations from mono-fractality. The Broadness

measure describes the richness in the distribution of local singularity in-

dices.

PRB measurements with narrow multifractal spectra are close to

monofractals (i.e., the scaling is quite uniform over all scales). The box-

plot of Broadness measures are given in Figure 6. It is very hard to tell

the difference among the four groups. However, the last group #3 signif-

icantly differs in terms of the Broadness from other experimental groups

(#1, #2). Group #3 has relatively high large Broadness measures, which

indicates that the PRB of the individuals from this group deviates from

mono-fractal much more than groups #1 and #2. Physiologically speak-

ing, more change patterns of the PRB dynamics exist in group #3.

Neither the spectral Mode nor the Broadness measure is able to achieve

the complete discrimination by itself, but each of them distinguish the PRB

from different perspectives.

Thus, we need to combined these two measures, characterizing the data

with both measures. Figure 7 presents the centroid points for the four

groups. These four points look nearly evenly distributed on the plane. From

this figure, we can see that the spectral Mode from the Control group is

relatively large although it is not the largest. Only group #2 has a larger
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Fig. 5. Boxplot for spectral modes of multifractality.

spectral Mode than the Control group. Comparing these two groups, we

can tell that the PRB from the Control group is further from monofractal

than group #2 since the Broadness measure of group #2 is the small-

est. Therefore, we can claim that the PRB of individuals from the Control

group is very smooth although the fractal properties are relatively inhomo-

geneous, which implies the causes of the regularity are quite rich. Group

#1 is located on the very left-bottom side of the plane and hence it repre-

sents measurements with much more irregular dynamics and homogeneous

fractal properties, which indicates the cause of the irregularity is relatively

simple. Group #3 located near the top left side signifies that the measure-

ments are quite irregular and have inhomogeneous fractal properties, which

indicates the cause of the irregularity is not single.

Another important task in the analysis of these measurements is the

classifier building. Among the many candidates, the k-nearest-neighbor

classifier is chosen because of its inherent nonparametric characteristic.
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Neither theoretical guidance or empirical evidence is absent to convince

the choice of linear classifier and other parametric classifiers for our PRB

measurements. Therefore, the nonparametric model, like k-nearest-neighbor

classifier, is preferred in this problem for the sake of better modeling ac-

curacy. As usual, it is very easy to build a nonparametric mode with poor

predictive properties if the model is not tuned very well. To get around

this, cross-validation (CV) strategy is often used to ensure the relative good

model is selected. The idea of CV is to divide the dataset into the training

set and test set. The former is used to estimate the model parameters and

the latter is used to validate the predictive accuracy of the model. In our

problems, the original PRB measurements are divided into two parts for

each group, one of them is assigned to training set and the other is used

to test the trained classifier. The training set includes a 90% randomly se-

lected sample of each group from the whole datasets and the rest is taken

to be the test set.
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To choose the nearest neighbor parameter k, the classifier is built as

a learning process. The learning curve, which includes the test error and

training error corresponding to different parameters k, is given in Figure 4.

Although, relatively low training error could be achieved by choosing small

k, the test error is too big for a practically useful classifier. To overcome

these drawbacks, we adapt the model by combining techniques. Model com-

bining is a technique of combining the predictions from different classifiers.

The results have shown to be promising. For the details of this combining

technique, the reader is directed to Xu and colleagues 27. The advantage

of using model combining is due to its ability of overcoming the instability

of the single classifier. In fact, Shi and colleagues 28 provides a Bayesian

justification of the correctness of model combining. In our study, the single

k-nearest-neighbor classifier is not very accurate and robust according to

Figure 8. By applying the model combining technique to these k-nearest-

neighbor classifiers (3 ≤ k ≤ 10), the test errors get much smaller as we
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Fig. 8. Learning curve of k-nearest neighbor (KNN) classifier.

can see from Table 3. Although the combining rules do not make much

differences from each other, the result from mean-combining rule is shown

to be optimal among the alternatives. Up to now, our classifier is based on

only two features: the spectral Mode and Broadness measures. To demon-

strate how an additional measure may affect the classification accuracy, we

add the left Slope into the feature vector and the classification results are

reported in Table 4. It is apparent that both the test and training errors

decrease a lot as the new feature is added (e.g. the test errors drops down

about 6%).

5. Conclusions

The overreaching goal of this detailed analysis was to determine if indi-

viduals with different ocular pathologies exhibit quantifiable differences in

their interaction with graphical user interfaces. These distinctions between
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Table 3. Error rate after combining the nearest neighbor classifiers

rule mean median max min majority voting

Training mean 0.42 0.43 0.44 0.42 0.46
Errors std. dev. 0.01 0.01 0.02 0.02 0.01

Test mean 0.51 0.53 0.52 0.52 0.55
Errors std. dev. 0.09 0.07 0.08 0.09 0.07

Table 4. Error rate after combining the nearest neighbor classifiers(with the Left Slope
feature added)

rule mean median max min majority voting

Training mean 0.407 0.414 0.417 0.401 0.432
Errors std. dev. 0.013 0.012 0.015 0.015 0.013

Test mean 0.446 0.450 0.439 0.459 0.475
Errors std. dev. 0.051 0.045 0.048 0.057 0.050

classes of users can enable developers to design improved interfaces for more

efficient and effective human-computer interactions. PRB is an informative,

yet complex, means of quantifiably assessing differences in the interaction

behaviors of users.

Using measurement of PRB during task performance is one way to study

the effects of mental workload on users. However, the inherent complexity of

PRB requires that robust and valid measures should be developed to extract

the meaningful components of the data stream in order to characterize

those changes in PRB that distinguish changes in mental workload. In this

way, the relative mental workload of users with different visual capabilities

can be examined. These distinctions between user needs can be used to

modify visual interfaces and interaction paradigms in order to best adapt

information technologies for users with visual impairments.

In this chapter, we study how to incorporate characteristics of the mul-

tifractal spectrum into the modeling and discrimination of the PRB high-

frequency measurement. The multifractal process was validated to be ap-

propriate in the analysis of the PRB data. The feature extraction is dis-

cussed in the context of decomposing the spectrum into describable parts.

The concepts of the spectral Mode, Broadness, and left Slope measure (the

M.B.S. summary) of a multifractal spectrum were defined. The analysis

based on the spectal Mode and Broadness measures gave distinguishable

characteristics of the PRB from the individuals with different visual acuity

ranges. The model-free classification method, k-nearest-neighbor classifier,

is applied with the model combining technique to build a robust and accu-

rate classifier.
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