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Preface

This work is called a guide because it is primarily a source of basic methods for
scientists wanting to combine evidence from different experiments. It also promotes
a deeper understanding of the notion of statistical evidence. Many scientists like to
use p-values for this purpose, but evidence is obscured by the p-value. It is rather a
measure of surprise: the smaller the p-value under the null hypothesis, the more
untenable the null hypothesis becomes. As a simple measure for filtering out
unremarkable experimental results, the p-value works remarkably well. But it is
hard to interpret and combine across experiments, especially when one believes the
null is false.

When one has in hand several ‘significant’ p-values from different experiments,
all testing for the same effect, the conviction grows that an alternative hypothesis
could be true. By considering the p-value as a random variable under alternative
hypotheses, one sees that its distribution is highly skewed, making interpretation
and comparison of p-values under alternative hypotheses unwieldy at best. By
transforming the p-value with the probability integral transform T(p) = ®~!
(1 —p), where ® is the standard normal cumulative distribution function, one
obtains the probit scale under the null and a location change of it under alternative,
centered on the expected evidence.

The consequences for interpretation of evidence are profound if one is in the habit
of thinking of p-values as measuring evidence. A ‘highly’ significant p-value of 0.01
represents, on average, only about 40 % more evidence for the alternative than a
significant 0.05 p-value, because ®~'(1 —0.01) =2.326 and ®~!(1 —0.05) =
1.645. There is no conflict here. The p-values are computed under the null and are
measures of surprise, while the evidence lies on a location probit scale. It will be seen
that under alternatives, the evidence measures always have a normal distribution with
standard deviation one. Thus evidence as defined here is a random quantity with a
well-known distribution, and it has a standard error of one unit when estimating its
expected value.

The above statements are strictly true only for the prototypical normal model
with known standard deviation, but as demonstrated in the chapters to follow, many
test statistics can be transformed onto the probit scale by means of variance
stabilizing transformations. Each application requires its own special transforma-
tion, and the mathematical level required for applying them is minimal.



xiv PREFACE

So what can the reader expect from this book? In Chapter 1 the main ideas on
statistical evidence are introduced, to offer a taste of, and hopefully whet the
appetite for, the methods and theory to come.

Part T illustrates how to interpret and combine statistical evidence for the
simplest statistical problems. These methods come first, so those readers wanting
quick access to the ‘how to do it’ can readily find what they want. The why and
wherefore — the philosophy and theory — behind these guidelines are found in
Part II, for those readers piqued by curiosity or skepticism.

Chapters 2-5 present methods for continuous measurements for which the
normal model is deemed appropriate. Chapters 69 describe methods for discrete
measurements for which binomial or Poisson models are adopted.

These two groupings are followed in Chapters 10 and 11 by two applications of chi-
squared statistics, testing for goodness-of-fit and homogeneity. However, the emphasis
is on finding evidence for the alternative hypotheses; for example, evidence for
heterogeneity rather than evidence against homogeneity. Measuring heterogeneity is
important in Chapters 12 and 13 wherein methods for combining evidence for effects
from similar studies are presented. Chapter 13 gives methods for regression of evidence
on covariates, and finally Chapter 14 shows how to account for publication bias.

All chapters in Part I have the same format: data, model, questions of interest,
test statistic, transformation to evidence, interpretation, choosing sample size and
confidence intervals. This general methodology in each chapter is followed by
worked examples. Macros for the software package R which enable the reader to
obtain these and results for other data are provided on the website http://www.wiley.
com/go/meta_analysis.

Part II provides the motivation, theory and results of simulation experiments to
justify the methodology. It is intended to be a coherent introduction to the statistical
concepts required to understand our thesis that evidence in a test statistic can be
calibrated when transformed to a canonical scale. This leads to an appreciation of
the error inherent in evidence, and provides the foundation for combining evidence
from different studies.

The spirit of this theory is akin to the Fisherian tradition in that it attempts to
provide a basis for thinking about test statistics, but it differs from Fisher’s
significance testing in that evidence is calibrated under alternatives, not the null
hypothesis. Links to the Neyman—Pearson tradition can be made, because the
expected evidence is a sum of probits of false positive and false negative rates, from
which an expression for the power function is realized. A totally different approach
to evidence based on the likelihood function is provided by Royall (1997).

The chapters in Part II could easily be the basis for a statistics course for senior
undergraduates, while students working through the examples in Part I will gain some
experience with real data. It is recommended that all readers carefully study the first
two chapters of both Parts I and II, before embarking on more adventurous selections.

Elena Kulinskaya
Stephan Morgenthaler
Robert G. Staudte
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1

What can the reader expect
from this book?

Experiments are conducted. Data are gathered. Researchers are looking for an effect,
a change predicted by their musings over a model. At the very least, they want to
gauge the direction of change: how much evidence is there in the data for a positive
effect? More, they want an estimate of the size of the effect.

The statistical evidence for the direction of changeisfound in atest statistic. But
how does one define and measure this ‘ statistical evidence' ?

In thisbook we provide atheory for inference in which theword evidenceis cen-
tral and meaningful. We show how to transform test statistics from different studies
onto the same calibration scale where it is easier to measure, interpret and combine
the evidence in them. Our approach lays the foundation for a meta-analytic theory
with known weights. Further, it often leads to accurate confidence intervals for stan-
dardized effects using smaller sample sizes than would be achieved through standard
asymptotic approximations.

The coming chapters are divided into two parts, dealing with methods and theory,
respectively. In this chapter we give a taste of things to come. After introducing
the calibration scale for evidence, we apply the methods to data from the meta-
analytic review literature. Then we discuss standardized effects, sometimes called
effect sizes, for two-sample comparisons, and note that each standardized effectisa
simple function of a correlation coefficient.

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd



4 WHAT CAN THE READER EXPECT FROM THIS BOOK?

1.1 A calibration scale for evidence
1.1.1 T-values and p-values

Consider the smple normal model with unknown mean p and standard deviation 1.
Givenn observations X1, . . ., X, onergiectsthenull © = Oinfavor of thealternative
w > 0if the samplemean S = X, is‘large enough’. The test statistic S is known to
contain the evidence required for the test, but the word evidence is rarely defined.
In this case we define the evidence for the alternative to be the transformed statistic
T=.nS=.nX, ThisT isnormally distributed with mean /n . and standard
deviation 1, so T is an unbiased estimator of its mean /n u with standard error 1.

Note that the expected evidence /n u grows linearly with ., and we require that
any definition of evidence for 1 > 0 would grow with w. In addition, the expected
evidence grows with the square root of the sample size; this is consistent with the
notion from estimation that evidence for an unknown w grows only at this rate: one
needsfour times as many observationsto estimate i with twice the accuracy, because
the standard error of X, is1/./n.

Thusevidencefor thealternative asdefined hereisarandom quantity which always
hasinherent error, in fact a standard normal error, whether or not the null hypothesis
holds. If one observes T = 1.645 and reportsthis as evidence for the alternative, one
should aso note the standard error is 1; it is better to write 1.645 + 1. When one does
this, one realizes that what is sometimes called a ‘significant’ outcome could quite
easily have been something else.

Now suppose that one has two independent experiments similar to the one above,
with respective sample means X; based on n; observations and X, based on n,
observations. How can we combine the evidencein Ty = /i1 X1 and > = /n2 X»
to obtain a single evidence T for the alternative u > 0? A good choice is Teomp =
(VniT1+ /n2 To)//n1 + nz, because it is the mean of all ny + n, observations,
rescaled to have variance 1. Also, T is alinear combination of independent normal
variables and hence normal, with expected evidence /n1 + n 1« and standard devi-
ation 1. It is on the same calibration scale as T; and T». In particular if ny =9,
np, =16 and 7y = 1.645, T, = 2.236, then the combined evidence for u > 0 is
Teomp = 2.848 + 1.

Another way of combining the evidence for u > 0 is to take (71 + 1%)/+/2
which is normal with mean (/n1 + \/n12) iu/+/2 and variance 1. For the example
in which T; = 1.645 and 7> = 2.236 this combination yields 2.808 + 1, which is
dightly smaller than Teomp. Note that «/n1 + 17 is adways greater than or equal to
(V11 + /n2)/~/2 and equality is achieved only when nq = n,. Thus, the first com-
bination of the evidenceis on average always at least as good as the second one. The
proof of the cited inequality is left to the reader; it follows from the concavity of the
square root function.

Traditional ‘significance’ is only weak evidence for the alternative

So far we only have transformed the test statistic S onto a scale whose unit equalsthe
standard deviation of T = T(S). A traditional marker on thisscaleis 1.645, the point
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dividing ‘significant’ from ‘nonsignificant’ values. But of course there is almost no
difference between theresults T = 1.644 and T = 1.646, and adding and subtracting
the true standard error of 1 puts evidence into its proper perspective: it has astandard
normal error. The result 7 = 1.645 + 1 illustrates that T = 1.645 is unreliable. If
forced to give an adjective describing such evidence, we would call it ‘weak’. Twice
asmuch evidence, T = 3.3, will then be called ‘ moderate’, and three times as much
evidence, T = 5, will be called ‘strong’. See Figure 1.1 for plots of some evidence
possibilities. These somewhat arbitrary descriptions are necessarily vague because
evidence is a random quantity. But we think they are a more realistic guide than
setting degrees of ‘significance’ based on p-values.

Thep-value of an observed value of atest statistic is often thought to be ameasure
of evidence against anull hypothesis, with smaller valuesindicating larger evidence.
Inacertain sensethisistrue, but thep-valueisconditional onthedatafromaparticular
experiment, and so has relevance only for that particular experiment. If one wants
to compare p-values from different experiments, or even to combine the evidencein
them asin metaanalysis, one must take into account their distributional properties.

First assume the null hypothesis holds. Then the p-value, when considered as a
random variable, isknownto have auniform distribution on the unit interval whenthe
test statistic has a continuous distribution, and nearly uniform if the test statistic has
adiscrete distribution. So, one might argue, one can indeed combine p-values using

0.5

0.3
|

0.1

Figure 1.1 Thedistribution of evidence on the proposed calibration scale is aways
normally distributed with variance 1. When /n 1 = 0, theevidence T iscentered on
theorigin; thisisoften called the null distribution of 7. Other possibilitiesare centered
on /n u = 1.645, 3.3 and 5; respectively shown from left to right. The point is that
evidenceisarandom quantity with an unknown mean but standard normal error. Upon
observing T = 3.3, one should report 7 = 3.3 & 1. Thisgives a clear indication not
only of the magnitude, but also the error inherent in evidence T'.
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their common null uniform distribution, and assumed independence of experiments.
But when one has in hand a number of small p-values, each of which is consid-
ered ‘significant’, the conviction grows that the null distribution isindeed false, and
what is really desired is a combination of evidence that works whether or not the
null hypothesis is true. Such a combination cannot be based on the assumption that
the null hypothesis is true and that the p-value has a rectangular density. These con-
siderationsand others, explained in detail in Chapter 16, lead usto the conclusion that
p-values, when considered as random variables, are on the wrong scale for calibra-
tion and interpretation of statistical evidence, and for forming acombined conclusion
from a set of tests.

Before leaving this section we point out that a p-value for atest based on the T-
statistic can be obtained if desired through the probit transformation of an observed
valuer of theevidence T. Itis p = 1 — ®(¢) = ©(—1). For this simple example the
p-values based on 7' = T(S) are exactly the same as those based on S.

1.1.2 How generally applicable is the calibration scale?

So far we have only considered the simplest model of testing for anormal mean when
the standard deviation is known. The transformation of the test statistic S = X, to
evidence T = /n S only required multiplication by the squareroot of the samplesize.
In general onetriesto select atransformation 4 of thetest statistic S sothat T = i(S)
is on this same unit normal calibration scale. In most routine problems of statistics
this goal cannot be achieved completely, but it can be achieved approximately to a
surprising degree for one- and two-sample binomia and Poisson models, for one-
and two-sample ¢-tests and for chi-squared and F-tests. The first step then isto find
the variance stabilizing transformation 4 (S) for the particular model of interest, and
the results of our and others' endeavors are presented in coming chapters.

In most cases the resulting evidence T is approximately normal with standard
deviation 1 and mean which can be approximated E[T] = ./n K(8). Here again n
isthe sample size, § is a standardized effect and K is the Key Inferential Function.
Knowing the Key islike knowing the power function in traditional Neyman—Pearson
testing; it contains al the important information about the relationship between the
standardized effect § and its transformed value x = KC(8). This information can be
expl oited to choose sampl e sizesto obtain desired amounts of evidence, up to standard
error 1, or to derive confidence intervals for §.

Example 1. The one-sample #-test

Take X1, ..., X, independent, each having the normal distribution with unknown
mean p and variance o2. The raw effect is u — no, Where ug is a known value
determined by scientific context. The standardized effect is § = (u — o) /o. For
testingthenull ;v = o against thealternative . > 1o thetest statistic S = /n (X, —
o) /s, isknown to have a Student ¢-distributionwith n — 1 degrees of freedom under
the null hypothesis and a noncentral ¢ distribution with the same n — 1 degrees of
freedom and noncentrality parameter /n 8. Chapter 20 containsfurther details, where
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it is also shown that a variance stabilizing transformation T = h(S) has the property
that, to auseful approximation, T hasthe N(/n K(8), 1) distribution for awiderange
of valuesof n and §.

The Key Inferential Function for this measure of evidenceis

K(8) = +/2 sinh™%(5/+/2)
= V2In6/vV2 + 1+ 8/2).

This simple monotonic function together with the sample sizer provide all theinfor-
mation required for inference regarding 8, provided » is not too small. For example,
when n = 10 accurate 95 % confidence intervals can be derived for any § satisfying
—2<8<?2

Example 2. The one-sample binomial test

Let X have the binomia distribution with parameters n, p where n is known and
0 < p < 1. For testing thenull p = po against the dternative p > pq itiscustomary
torgject thenull whenthetest statistic X istoolarge; or equivaentlywhen p = X/nis
toolarge. Itiswell known (see Chapter 18) that aclassictransformation of p totheunit
normal calibrationscaleisgivenby T = h(p) = 2/n {arcsin(\/f)) —arcsin(,/po)},
and this transformation is improved if p isreplaced by p = (X 4+ 3/8)/(n + 3/4).
The Key Inferential Function for this transformation is

K(p) = 2{arcsin(/p) — arcsin(/po) }.

This Key could have been expressed as a function of the raw effect p — po or the
standardized effect § = \/n (p — po)//P(A — p) because these effects are mono-
tonic functions of p, but for this example it would be an unnecessary notational
complication. In Section 1.2 we illustrate how this arcsine transformation to the cal-
ibration scale can be employed to find and combine the evidence in severa studies.
But first we need to discuss several issues arising when considering more than one
study on the same subject.

1.1.3 Combining evidence

Returntothesimplenormal model of Section 1.1.1, wherewetacitly assumed that the
true effect u was the same for the two studies, instead of the more realistic assump-
tion that 7o ~ N(/ny 1, 1), T2 ~ N(/n, 112, 1) where both 11, 2 are unknown.
The joint null hypothesis is now w; = 0 = u,, and there are many possible alter-
natives, each possibly requiring a different combination of evidence. For example,
the aternative 1, = (wip1 + wou2)/ (w1 + wy) > 0, for known positive weights
w1, wa, suggests a combination T,, = c(w1T1 + w»T>), with constant ¢ chosen so
that T,, hasvariance 1. And thejoint alternative 13 > 0 and » > 0 suggests acom-
bination of the form Tipiy = 2(Min{Ty, T>}) where h is atransformation to the unit
normal calibration scale. The best combination for each aternative is a chaleng-
ing problem in itself, which we do not pursue here. Rather we test or estimate an
overal effect.
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In traditiona meta analysis it is common to assume the u; values are equal
(the fixed effects model) ; or to assume that the w; values themselves are a random
sample from a N(u, y?) model (the random effects model), where y? is a variance
component introduced to explain the variability in ;. The advantage of these two
modelsis that there is only one parameter of interest u, the overall effect, and one
can test hypotheses regarding . or estimate . without all the complicationsraisedin
the previous paragraph for fixed unequal effects.

Moregeneraly, wehave K independent studiesresultingin evidences 7; whichare
approximately normal withvariancenear LandE[T;] = /n; K(&) fork =1,..., K.
Here T, istheevidencefor §;, > 0 based on n; observationsin the kth study, obtained
by a suitable variance stabilizing transformation, and X is the associated monoton-
ically increasing Key Inferential Function. There is a one-to-one correspondence
between each §;, and «; = K(8;). The fixed standardized effects model in which all
8 = d iseasiest to deal with, because there is only one 8, hence one x = K(8). One
can find the evidence Teomb = > ﬁTk/W, where N = ), ny, asevidence for
the aternative « > 0, and hence also for § > 0. Note that Teomp ~ N(v/N K(8), 1).
One can a'so use Teomp & 71—a/2 to Obtain @ 100(1 — «) % confidenceinterval [L, U]
for «, and by back-transformation for 8, namely [K=X(L/+/N), K~X(U/~/N)].

In many problems the assumption that all §; = § is untenable, and testable using
Cochran’s Q test of homogeneity. In Chapter 24 avariant of Cochran’s Q caled Q*
is applied to the &, ’s to find the evidence T+ for heterogeneity of the «;’s and hence
the §;’s. On the basis of this evidence, the researcher may well prefer the following
model.

The random transformed (standardized) effects model assumes that the «;’s are
arandom sample of size K from the norma model with mean « and variance y2,
with both parameters unknown. Then the conditional distribution of each iy, given
ki, 1S N(ky, 1/ni), and unconditionally it is N(k, y? + 1/ni). Now when the n;'s are
all equal, or when their reciprocals are negligible compared to 2, the k’s are just
a sample of size K from a normal population with mean « and common variance.
Let i and s2 denote the sample mean and variance of these transformed standardized
effects. The usua z-test rejects the null « = 0 in favor of x > 0 when the statistic
S = VK (k — 0)/s.islarge. Theevidenceinthisstatistic for k > 0, and hences > 0,
isessentially T = /2K sinh™1(S/+/2K ), as shown in Chapter 20.

If one desires to compute a confidence interval for §, one can find a ¢-interval
[L, U] for « first, namely i £ tx_11-4/2 se/~/K, and then [K=1(L), K~1(U)] for §
by back-transformation.

1.2 The efficacy of glass ionomer versus resin sealants
for prevention of caries
1.2.1 The data

Thereview by Ahovuo-Salorantaet al. (2004) containsthree studiesin which match-
ing molar teeth in the same children formed the basis for paired comparisons. Two



12 THEEFFICACY OF GLASSIONOMER VERSUS RESIN SEALANTS 9

Table1.1 Summary of three studies by the authors shown. Note the evidence

isin conflict, but this should not preclude an analysis; further studies may
demonstrate that one sealant is superior to another. References to these

three studies and more background can be found in Ahovuo-Saloranta et al. (2004).

Resin sealant
+ - + — + -
Glass lonomer  + 378 28 156 6 191 2
Sealant — 3 3 37 7 9 1

Arrow (1995) Poulsen (20014) Poulsen (2001b)

types of sealants were applied at random to the pair, and then the teeth were
assessed after 24- to 44-month intervals to detect the presence ‘—' of one or more
caries or ‘4’ no caries. The results of these three studies are summarized in
Table 1.1.

The discordant pairs are those for which the treatment and control responses
differ; let f be the number of (4, —) pairs and g be the number of (—, +) pairs.
In the first study there are f = 28 pairs for which the response was (+, —): there
were no caries in one tooth after glass ionomer treatment, while the corresponding
tooth receiving resin sealant did have caries. There were g = 3 pairs in which the
two treatments led to the opposite results (—, +). The conditional distribution of f,
given f + g is binomia with parameters f + g and p, where p is the probability
that a discordant pair is (+, —). A test of symmetry in treatment control outcomes
isatest of p = 0.5, with aternative p > 0.5 corresponding to the treatment (in this
case glass ionomer) having greater probability of *+’ within a discordant pair. (See
Lachin (2000), p. 180, for more details.) We can now compute the evidence for
p > 0.5in each of the three studies using 7 = 2./n {arcsin(,/p) — arcsin(+/0.5)},
where p = (X + 3/8)/(n + 3/4).

1.2.2  Analysis for individual studies
1.2.2.1 Evidence for p; > 0.5 in individual studies

In the first experiment, there are 31 discordant pairs, so conditionally, X, has the
binomial (31, p;) distribution, where p; isthe probability that glassionomer is more
effective than the resin sealant in preventing caries in the first experiment. The evi-
dence against p; = 0.5in favor of p; > 0.5is T3 = 5.05, displayed in column 3 of
Table 1.2; thisiswhat we would call ‘strong’ evidence.

In the second study, the distribution of X5 is binomial (43, p,), where again, p»
is the probability that glass iomomer is more effective in this study. The evidence
against p, = 0.5 in favor of p, > 0.5is T, = —5.16; that is, the evidence is even
stronger than in the first study, but this time in the opposing direction.
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Table1.2 Summary of synthesis of evidence for the sealant datain Table 1.1.

k X n Dk T; T1 Ly Uk Ky

1 28 31 0.903 5.05 5.05 0.763 0.976 0.548
2 6 43 0.140 —-5.16 —0.67 0.057 0.265 —0.560
3 2 11 0.182 —-2.12 -1.39 0.029 0.476 —0.230

For the third study, the evidence against p3 = 0.5 in favor of p3 > 0.5is T3 =
—2.12, whichisweak evidencefor theaternative p; < 0.5. Itisimportant to remem-
ber that al these evidence values have standard error 1.

Confidence intervals for py in individual studies

Confidenceintervals[ Ly, U] for p; arebased on Equation (18.2), and for confidence
95% are shown in columns 7 and 8 of Table 1.2. Note that they are not centered on
D, but are more reliable than intervals based on the standard asymptotic theory of
adding and subtracting 1.96 standard errors to p. For more details, see Chapter 18.
These intervals suggest that the p; are not equal, but nevertheless for completeness
we assume this to be the case in the next section.

1.2.3 Combining the evidence: fixed effects model

If we were to assume that all p; = p, then we could readily combine the evi-
dence in the individua studies for p > 0.5. The results in column 6 of Table 1.2
are obtained sequentially: the entry in row k is based on the first & studies. The
first two studies have strong conflicting evidence, and this is reflected by the com-
bined evidence T1, = (V31 Ty + v/43T») /+/74 = —0.67, shown in column 6. It is
amost negligible. For the three studies, the combined evidenceis Ty.3 = (v/74 T1p +
V11T3)/+/85 = —1.39, which is quite weak evidence in favor of the resin sealant.
Thus combining evidence on the calibration scale allows for cancelation of conflict-
ing evidence, leading to the correct conclusion that thereisno evidence for acommon
p>0.

One can also obtain aconfidence interval for p based on al three studies. Starting
withthe combined evidence T1.3 = —1.39, a95 % confidenceinterval for the expected
evidence /85K (p) is —1.39+ 1.96, or [L, U] = [—3.35, 0.57]. Here the key is
K(p) = 2{arcsin(,/p) — arcsin(+/0.5) }, 0 K~(y) = sin®(y/2 + r/4). Thisleads
to the 95% interval [K~1(L/+/85), K~1(U/+/85)] = [0.32, 0.53] for p.

1.2.4 Combining the evidence: random effects model

The transformed effects k, = K(p,) are shown in Table 1.2, and their respective
approximate normal N(xy, 1/n;) distributions depicted in Figure 1.2. The sample
mean and standard deviationarek = —0.081ands, = 0.569. A test for heterogeneity
of these transformed effects based on Cochran’s Q is described in Chapter 24, and
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Figure1.2 Transformation of the estimated probabilities that glass ionomer out-
performs resin sealant into transformed effects k;, = K(py). The evidence T, for a
positive effect p;, — 0.5 > 0 has distribution that is approximately N(,/n ki, 1), SO
ki = T/ /ni hasdistribution that is approximately N(«, 1/ny). These normal dis-
tributions are centered at respective unknowns k;'s, and depicted in the plot centered
at the respective estimates k;'s.

the evidence for heterogeneity is strong (Ty+ ~ 4.5) so arandom transformed effects
model isin order; it essentially adds avariance component to the model to account for
thevariability from study to study. Detailsaregivenin Section 25.3, whereit isshown
that if thereciprocals of the sample sizesare small compared to thiscomponent, then,
even for asmall number of studies K, the evidence for the overall ¥ > 0, and hence
p>05,isT = +/2K sinh™1(S/v/2K ), where S = K (k — 0)/s,.

For our data S = —+/3(0.081,/0.569) = —0.25 and so the evidence T for k > 0,
and hence p > 0, isnegligible. (Notethat here T ~ § = —0.25, becausethefunction
sinh~! behaves like the identity near the origin.)

A confidence interval for a representative p can also be found, starting with
the r-interval for k of i & 2,0.9755./+/3 or [L, U] = [—1.49, 1.33]. By transforming
thisinterval back via ~1(y) = sinz(y/Z + 7r/4), the 95% confidenceinterval for p
is[0.002, 0.986]. Thisinterval tells usvirtually nothing about p, but of coursethisis
because the number of studiesis small, and the results are contradictory. It confirms
that the very strong assumption of a fixed effects model which led to the interval
[0.32,0.53] for p isunwarranted.

1.3 Measures of effect size for two populations

For usan effect sizeisanother term for standardized effect ; that is, an effect divided by
asuitable measure of scale. For asingle population withmean 1, standard deviation o,
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it is often taken to be the raw effect © — wo divided by o. Here u is a hypothesized
valueof u suggested by scientific context. The advantage of standardized effects over
raw effectsisthat they are free of the units of measurement. For two populationswith
different variances o2, o2, the question arises of how to standardize the difference of
theirmeans A = w1 — 2. Thepurposeof thissectionisto defineastandardized effect
8 for comparing two populations and its associated correlation effect size p = p(6).

Let X4, ..., X, beasample of size n; from thefirst population and estimate 1¢1
by the samplemean X; similarly let ¥ bebased on anindependent sample Yy, ... ., ¥,
from the second popul ation. Then an unbiased estimator of the effect A = K1 — M2
is A =X — Y. Now, because A is unbiased for A, the standard error SE[A] of A

satisfies
2

{SE[A]}? = Var[A] = o, %,
ni

nz

Definition 1.1 Let N = n1 + n», and define the standardized effect by
_ A
 UNSEA]

This effect size § is free of the units of measurement. Note that § is also free of the
sample sizes, but does depend on the relative sample sizes, aswell as A and unknown
population variances.

Thereare numerous other definitions of effect sizesinthe meta-analyticliterature,
including those that are Pearson product moment correlations between the variable
of interest and a classification variable; this group includes the point-biserial correla-
tion coefficient, see Cohen (1988) and Rosnow and Rosenthal (1996) and references
therein. These measures of effect size are often called correlation effect sizes and will
be denoted generically here by p. Each is related to a corresponding standardized

effect 8 by:
)

{14 82)/2°

A plot of p against § is shown in Figure 1.3. Note that p = p(68) is a strictly
increasing function of § with inverse function § = §(p) = p/+/1 — p2. In addition,
p isan odd function of §; that is p(—=8) = —p(8) for al .

p= (1.1)

Examples

The above Definition 1.1 of standardized effect is employed directly in comparing
two normal populationsin Chapter 21. Another special case, comparing two Bernoulli
populations, is also of interest, and discussed in Chapter 19. Here we reexpress the
aboveresultsin asimpler notation for this problem. Assumeeach X; = 1or O, respec-
tively, with probabilities p;, 1 — pa; thatis, X; hasthe Bernoulli(p,) distribution, and
w1 = E[X;] = prando? = p1(1— p1). Similarly let each ¥; ~Bernoulli(py). Then
f’l = X! IA?Z =Y. R

Inthiscontext A = p1 — poand A = p1 — p». Further, lettingg = no/N, where
N = n1 + ny, and following the notation of Brown and Li (2005), let p = gp1 +
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Figure 1.3 The graph of correlation effect size p against standardized effect §.

(1 — g) p2. They observethat NVar[A] = ¢ — A2, where¢ = p(1— p)/{q(1 — ¢)}.
The standardized effect istherefore s = A /+/¢ — A2, and the associated correlation
effect sizeisp = A //Z . Theimportance of thisresult to the theory presented hereis
that in Chapter 19 we define a new and effective variance stabilizing transformation
for the risk difference A = p1 — p, and its associated Key Inferential Function is
smply K(p) = arcsin(p).

1.4 Summary

In this text we provide a unified theory of statistical inference in which the word
‘evidence’ iscentral and meaningful. It growsout of our conviction that thetraditional
ways of measuring evidence, in particular with probabilities, are neither intuitive nor
useful when it comes to making comparisons between experimental results, or when
combining them.

We measure evidence for an aternative hypothesis, not evidence against a null.
To do this, we have in a sense adopted standardized scores for the calibration scale.
Evidence for us is simply a transformation of a test statistic to another one (called
evidence) whose distribution is close to normal with variance 1, and whose mean
grows from 0 with the parameter asit moves away from the null. The transformation
required depends on the model, and there isarich legacy to draw upon from research
in the last century.

The advantages of such atheory are many:

e Conceptual simplicity. Evidence T for an alternative is normally distributed
with unknown mean and variance 1; it is an unbiased estimator of its mean that
always has a standard normal error.
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e Usefulness. The expected evidence often hastheform E[T] = /n K(8), where
K isaknown Key Inferential Function. Thisformulafacilitates finding sample
sizes required to achieve desired amounts of evidence for an alternative, and
deriving confidence intervals for §.

o Effectiveness. Compared to methods based on standard asymptotics, these
methods generally require smaller samplesizesto achieve good approximations
(see Chapter 27).

e Meta-analytic potential. Combining evidence on this calibration scaleis sim-
pler, because it forms combinations of evidence with known weights.

Of coursethere are disadvantages, too, of which the reader isno doubt aware. One
needs to become familiar with square root, arcsine and hyperbolic arcsine transfor-
mations. But in this opening chapter we havetried to convey the abovelisted potential
benefits of defining evidence on the unit normal scale. We have sketched the ideas
for the most important binomial and normal models, and illustrated the meta-analytic
ideason datafromtherecent review literature. We have concluded with somerelations
between effect sizes useful to usin comparing two populations.



2

Independent measurements
with known precision

This chapter is a template for later chapters, and therefore should be read by all
readers. It illustrates the methodology for the simplest normal model where only
one parameter, the mean, is unknown, and the variance is known. In all subsequent
sections a variance stabilizing transformation will be required to bring one onto this
calibration scale.

2.1 Evidence for one-sided alternatives
Data and model

e We are given measurements xs, . . ., x, on avariable X obtained by an instru-
ment of known precision.

e The measurements are regarded as independent observations which form a
sample from anormal population with unknown mean . and known standard
deviation oy, the precision.

Question

e What is the evidence for an effect in a known direction? For example, what is
theevidenceagainst the null hypothesis i« = o andfor thealternative i > 11o?
Herethevalue 1o isknown and determined by scientific context. Thedifference

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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w — i is called the effect, while § = (u — o) /oo is caled the standardized
effect.

e By symmetry, if alternatives 1 < g are of interest, the problem is the same
asfor u > o, except for the direction. The change of direction isreflected in
the sign of the evidence T. The former problem could be transformed into the
latter by reflection about 1o; i.e. replacing the deviations from the null value
x; — po by its negative uo — x;; or, replacing the observations x; by 2ug — x;.
Thuswe only comment onthedirection 1 > o andinterpret positive evidence
as support for 1 > .

Test statistic and distribution

e The usual test statistic is based on the arithmetic mean x, = >, x;/n of the
measurements; large values of S = (x, — o) support the aternative u > g
over thenull u = uo. Thereisno natural boundary separating ‘small’ x, from
‘large’, and that iswhy a calibration scale is desirable.

e The model for x, isaso normal, with the same unknown mean 1, but smaller
variance o3/n. Also, the standard deviation of X, is oo/+/n Which is often
called the standard error of x,,.

Transformation to evidence

e Let the evidencebe T = /n (X, — po)/o0 = /7 8. Then T will, on average,
be equa to T = /n 8. Also, the standard deviation of T is 1, and the values
of T can be thought of as being drawn at random from a bell-shaped normal
distribution. These facts can be summarized symbolically as T ~ N(4/n 8, 1).

Interpretation

e Theevidence T isan unbiased estimator of the expected evidence t = E[T] =
J/n 8, with standard error SE[T] = 1. Therefore the evidenceis closely related
tor, asshowninFigure 1.1. It displaysthedistribution of T for four values, t =
0, 1.645, 3.3 and 5, which in words we describe, respectively, as no evidence,
weak, moderate and strong evidence for the alternative u > o. Notethat there
isasmall amount of overlap in the use of these words.

e Under the null hypothesis i« = o, the standardized effect § = 0, sor = O and
T has the standard normal distribution with cumulative distribution function
®. For an observed sample mean x,, the observed evidenceis T = /n(x, —
o) /oo andthep-valueisp = 1 — ®(T) = &(—T). Thusp-valuescanberecov-
ered from 7.

e The choice of = 1.645 as the basic unit of calibration is for compatibility
with the well-established p = 0.05 in significance testing; while this boundary
traditionally separates ‘significant’ from nonsignificant results, all scientists
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know this boundary is arbitrary and in terms of evidenceit is weak. It is weak
partly because when an experiment has just achieved a boundary result of 0.05,
the expected p-value in an independent replication of the experiment is 0.12
(see Section 16.2.2). It isalso weak because it isunreliablein that the standard
error of T is1, and relativetothesizeof T = 1.645, thisstandard error islarge.

e Therelative error in T, SE[T]/E[T] = 1/t, becomes smaller and smaller as
7 increases. Because T = 4/n 8, choosing the sample size to achieve a desired
expected evidence for arelative effect of interest becomes an option. Another
is combining the evidence from several experiments.

e For any fixed n and u > o which determine the expected evidence t = /n 6,
one needs to increase n by afactor of 4 to move the density of T located at ©
to 2t and by afactor of 9 to moveit from 7 to 3z. In particular, if the expected
evidence is weak, t = 1.645, then 4 times as much work will yield moderate
evidence of 3.3, and 9 times as much work is required for strong evidence of 5.

e The question arises as to what to do with negative values of T. They could be
set equal to 0, because they are in adirection contrary to the alternative © > 0.
However, we view evidence for such one-sided alternatives as the first step in
finding evidence for two-sided alternatives, which are usually advocated. And
preserving the direction of evidence through the sign means that when combin-
ing evidencein severa studies, contradictory results are allowed to cancel each
other out. Not to preserve the sign is to throw away valuable information. For
further discussion of this question and the above remarks, see Section 2.2 and
Chapter 16.

Choosing the sample size to achieve a desired amount of evidence

¢ |f onewantsthe evidence for a particular standardized effect of scientific inter-
est, cal it §1 = (u1 — o) /oo > O, to be 7, one needs to solve T = /n §; for
the sample sizen. For example, to obtain ‘ strong’ expected evidence t = 5one
requiresn = 25/42. This does not guarantee strong evidence T, because T has
standard error 1.

e Letz, denotethea quantileof thestandard normal model; it satisfies®(z,) = a.
For those steeped in the Neyman—Pearson tradition, it is of interest to compare
the above choice of n with that needed to obtain power 1 — 8 of detecting §;
at level «; it satisfies /n 81 = z1_4 + z1-p. Hence the relationship between
expected evidence t, level o« and power 1 — 8 is

T=21-¢+ 218 (2.1

What isusually asked for ispower 0.8 at level « = 0.05, and this correspondsto
expected evidence t = zp.95 + 708 = 1.645 + 0.842 ~ 2.5, which is between
weak and moderate. To obtain moderate evidencefor alternative §, at level 0.05
one needs power 0.95 of detecting it, not 0.8. To obtain strong evidenceof t = 5
and maintain « < B(81), one can take « = 8 = 0.005, say.
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Confidence intervals

o Let ¢ =z14,2. Then a 100(1 — o) % confidence interval for 7 is [T —c,
T + c]. It follows that with the same confidence § = t/./n liesin theinterval
(T —¢)//n, (T +c)//n]; and for the effect .« — o theinterval is

oo(T —¢) oo(T +¢)
NV

Usually 95 % confidence is desired, and for this case ¢ = zg.g75 = 1.96.

2.2)

2.2 Evidence for two-sided alternatives

In many, if not most, applications in which the measurements are modeled by a
symmetric distribution, the researcher does not have enough prior knowledgeto make
the very strong assumption that the alternative to the null . = o can only bein a
specific direction. And doing so in the case of testing for the mean of a symmetric
distribution means the p-value is only one-half what it would be if the two-sided
aternative u # o were specified; thus the evidence against the null is overstated.
Such action is especially notable if an ‘insignificant’ 0.1 result is presented as a
‘significant’ 0.05, and hence strenuous objection to assuming one-sided alternatives
is frequently made.

While we agree with this objection, it is equally important to keep in mind that
when combining evidence from different studies, the direction aswell as the magni-
tude of evidence needsto beknown, so that conflicting findingsare not hidden and can
be accounted for. We therefore recommend reporting both one-sided and two-sided
evidence.

Data, model and test statistic
Exactly asin Section 2.1.
Question
e What isthe evidence for i # wo?

Conversion to evidence

e Letc = zo75/+/2 = 0.6745/+/2 = 0.477. Theevidencefor thetwo-sided alter-
native u # o tothenull uw = po ismotivated in Section 17.4.1 and defined in
terms of the absolute value of evidence |T'| for one-sided alternatives by

T2 — 2 — ¢, for |T| = zo.75;
— { 75 2.3)

¢ —/[o-@5— a7’ =2, for || < 20
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Interpretation

e Evidence of 1.645 or —1.645 for a one-sided alternative, corresponding to a
one-sided p-value of 0.05, is converted into two-sided evidence of 1.10, corre-
sponding to the two-sided p-value of 0.136.

e The difference | T| — T is the amount of evidence one loses for assuming a
two-sided aternative when there is prior knowledge to assume a direction; it
is aso the amount that the evidence is overstated, by assuming a one-sided
alternative when there is no justification for doing so. While this amount is
not negligible, it is much smaller than ‘halving the p-value’ would suggest.
For values of |T'| bigger than about 1.5, this turns out to be approximately the
constant value of ¢ = zg75/+/2 = 0.477.

e One-sided evidence can be positive or negative, indicating support for © > 0
or u < 0, respectively. Since we always want evidence to be roughly normally
distributed, the same must hold for evidence for a two-sided alternative, even
though negative values for the evidence can no longer be interpreted as giv-
ing evidence in the opposite direction. A negative value of the evidence for
two-sided aternatives simply indicates that none of the alternatives is more
convincing than the null value.

2.3 Examples

Mesasurements with known precision are common in manufacturing, where the con-
sumer wantsto know if aproduct meetsthe standard claimed onthelabel. A regulatory
agency can take a random sample of a product under investigation, and look for
evidence that the product complies with the rules. A manufacturer meanwhile will
institute quality control procedures to ensure compliance.

When storing blood samples, do the concentrations of key markers change over
time or do they remain stable? This can be checked with an experiment where two
measurements are taken, one using fresh samples and the other after a period of
storage. Whether these two results are close to each other then becomes the question
of interest.

Determining whether a person is driving under the influence of an illegally high
blood alcohol content is yet another example. M easurements always vary, and if the
precision is known, the sample mean summarizes the available evidence. How does
one calibrate this evidence?

2.3.1 Filling containers

A paint manufacturer fills 10 liters of white paint into cans that hold as much as 10.5
liters. The amount of paint the filling machine squirts into each can varies, and this
inherent variability has known standard deviation og = 0.2 liters. The actual amount
of paint in a sealed can is determined by net weight and conversion of weight to
volume; these measurements are highly accurate and can be taken as exact for our
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purposes. Suppose the manufacturer is subject to regulatory finesif arandom sample
of four cansis found to have a mean volume of less than 9.67 liters. How was this
value determined and how would we judge it from the point of view of evidence?

If arandom sample of four cansleadsto an average exactly equal to the regulatory
limit x4 = 9.67, the p-value turns out to be p = 0.0005. Thusit can be argued that if
the manufacturer is actually complying with the regulations, thereisonly 1 chancein
2000 of mistakenly charging fines for noncompliance. There is nothing wrong with
this calculation. But if one were to add that p = 0.0005 is ‘very strong evidence' in
favor of the average filling volume being less than 10 liters, we would object to the
wordsin quotes. The p-value of 0.0005 soundsimpressively small, and isonly 1/100
of the ‘significant’ 0.05. But isit 100 times more evidence against the null?

TheevidenceisT = /n(x, — jo)/o0 = 2 x (9.67 — 10)/0.2 = 3.3. Wesuggest
that the statistic T is a better measure of evidence for the alternative, and —3.3,
corresponding to 0.0005, isonly twice the size of —1.645, corresponding to 0.05. On
the probit calibration scale, the outcome T' = —3.3 is seen to be moderate evidence
for the alternative . < 10 rather than very strong evidence.

2.3.2 Stability of blood samples

Thisexampleisfrom Brown and Hollander (1977). Thevariable of interest isthelevel
of triglyceride in blood plasma. Two measurements are taken, one on afresh sample
and the second one after 8 months in frozen storage. The concentration is expressed
in mg/100 ml and it isknown that the standard error of the analytic techniqueis equal
to 4. For the difference x of two independent measurements, this resultsin astandard
error of /42 + 42 = oy = 5.7. The rounded differences x; before and after storage
of n = 30 blood samples are:

8 5 -4 -4 -1

188 -9 6 2 -2 7 -3 1
7 -3 -4 -2 -5 -2 5 6

3 4 -1 14 -2 1 13

From this we find x3p = 1.1. The corresponding one-sided evidence against © = 0
isT = +/30(1.1 — 0)/5.7 = 1.1, which is not even large enough to earn the qualifier
of ‘weak evidence'.

The 95% confidence interval for u is

oo(T — 0.477)  oo(T + 0.477)
NG ’ NG

=[-0.94, 3.14], (24

and thus quite wide.

2.3.3 Blood alcohol testing

Blood acohol testing of drivers involved in accidents or even selected ‘at random’
isalega requirement in many countries. An in-depth review of several methods by
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Devleeschouwer et al. (2004) provides estimates of the precision of these methods.
The variable of interest is X, the blood acohol content in gramg/liter.

As is often the case when measuring positive amounts, observations on blood
alcohol have approximately constant coefficient of variation y = o/, where o isthe
standard deviation of the measurements and w is the true blood alcohol content.
For this same reason analytical chemists prefer to express the precision of their
observations in terms of the coefficient of variation.

Because o = yu is apercentage of 1, we cannot apply the test discussed in this
chapter immediately. The link between ¢ and o suggests the use of the logarithmic
transformation. To see why, write X = u x (X/u) and note that X/u has expected
value of 1 and variance 2. Taking the logarithm leads to

In(X) = In(w) +In(X/w) = In(w) + In[1+ (X — w)/pu] = In() + (X — w)/u,

wherewe have used theapproximationIn(1 + u) ~ u for small u. Theabove equation
also shows that In(X) has expected value In(u) and variance y2. The logarithmic
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Figure2.1 Plot of evidence and p-val ue against average of four readingson abreath-
alyzer test. The evidence for the alternative isweak at T = 1.645 when x4 = 0.56,
and this corresponds to the p-value of 0.05. When T = 2.32, which is only dlightly
larger given that the standard error of T is 1, the p-valueis 0.025, and when T' = 3.3,
twice the weak value, the p-value is 0.0005. Both plots are correct; but the interpre-
tation is different, because the p-value plot assumes the null hypothesis u = 0.5 is
true. The plot of T simply assumes p is unknown, and comes with the proviso that
T has standard error 1.
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transformation of an observation with constant coefficient of variation will approxi-
mately have constant standard deviation. Thisis an example of avariance stabilizing
transformation.

A subject involved in an accident must take four independent readings on a test
and these lead to asample mean of x,4. Thisstatistic is used to test the null hypothesis
u = 0.5gramg/liter against thealternative .« > 0.5, withthenull rgjectedif x4 islarge
enough. The standard deviation of X4 is o/+/4, whereas its expected value remains
equal to .. The coefficient of variation of x4 is thus equal to y/+/4. Applying the
above variance stabilizing transformation showsthat In(x4) has expected value In()
and standard deviation y/+/4.

Itisknownthat y = 0.13 for acertain blood testing kit. ThusIn(x4) has approx-
imate standard error 0.13/+/4 . Hence the p-value of an observed %, is

p=1—&(V4{In(xs) — In(0.5)}/0.13).

This p-value is plotted as a function of x4 in Figure 2.1, along with a plot of the
evidence for the alternative T = +/4{In(x4) — In(0.5)}/0.13.

Note that the evidence rises amost linearly with the sample mean (and would be
exactly linear if we had not needed to use the log scale). But the p-value is hard to
read and interpret in the region where it becomes small and is considered significant.



3

Independent measurements
with unknown precision

For normal models with both parameters unknown, one may be interested in making
inferencesregarding u, treating o asanuisance parameter, or o with 1 asthe nuisance,
and traditional methods based on the Student z-statistic or chi-squared statistic are
available. The inference for u is studied here along with inference for § = (u —
wo)/o, the standardized effect. The evidence for the one-sided alternative © > o is
equivalent to § > 0, because o > 0.

3.1 Effects and standardized effects

Data and model

e Given measurements xy, . . ., x,, on avariable X obtained by an instrument of
unknown precision.
e The measurements are considered independent observations from a normal
population with unknown parameters ., o.
Questions
e What is the evidence for a positive effect © — uo > 0; or, equivaently, for a
positive standardized effect § > 0?

e What is aconfidence interval for n or for §?

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
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Test statistic and distribution

e The Student s-statistic 7,1 = /n 3, where § = (%, — o) /s, is an unbiased
estimator of § and X, ands2 = >, (x; — X,)?/(n — 1) aretheusual samplemean
and variance. Larger values of the test statistic favor the alternative § > 0 over
thenull § = 0, and we want to transform the statistic onto the probit calibration
scale.

e The distribution of 1,_; is the noncentral ¢,(1) distribution with v=n — 1
degrees of freedom (hereafter abbreviated df ) and noncentrality parameter A =
J/n 8. Under thenull hypothesis, . = Oand ¢, hasthefamiliar central Student
t-distribution, which approaches the standard normal with increasing n.

Transformation to evidence

e |t turns out that #,_; can be transformed to evidence T' = ﬁlC(S) having an
approximatenormal distributionwith mean r = /n K(8) and variance 1, where
K is given by Equation (3.1), for sample sizesn > 5 and § encountered in
applications.

o A modification Tunb|ased of flC(&) isanalyzedin Section 20.4.2. 1tiSTynpiased =
Jn /Cunmased, with Kunb.ased defined by Equation (20.8). The corrected evidence
Tunbiased 1S preferable to 7. Its performance improves with sample size, as sug-
gested by the following guidelines:

— Forn = 5and |§] < 2thevarianceis stabilized near 0.85, but nominal 95%
confidence intervalsfor § have coverage nearer 97 %.

— Forn = 10and |§| < 10thevarianceisstabilized near 1.0, and nominal 95 %
confidenceintervalsfor § arereliablefor |5] < 2. Thisinterval includes most
§ encountered in applications.

— Forn = 25and |§] < 10thevarianceisstabilized near 1.0, and nominal 95 %
confidence intervals are reliable for |§| < 10.

Interpretation

e Thecrucial ingredient /C which determines the expected evidenceis defined for

each § by
K(8) =+/21In i+\/1+f (3.2)
V2 2 )

whereln(x) = log,(x) isthenatural logarithm. Theformula(3.1) for K(5) looks
complicated, but it has a simple graph, as shown in Figure 3.1. Some values of
T = /n K(8) aregivenin Table 3.1.
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Figure3.1 K (8) plottedasafunctionof §. Thegraphistypical of many key functions
KC(-) which determine the expected evidence in different contexts, in that for small
values § the function /C(8) ~ §, but larger values are diminished in magnitude, in

this case logarithmically. Thus the expected evidence ./ K (8) isnot usualy alinear
function of §, except for the model of Chapter 1.

e The approximate power function of the Student z-test can be obtained from
T as follows, using the norma model N(z, 1), where T = /n K(8), as an
approximation to the distribution of 7. A level-a test rejects the null § =0
when T > z;_,. Let B(81) denote the probability of falsely accepting the null
when §; isthe true aternative. Then the power of the level-« test for detecting
an dternative §; > 0is

1-B(1) = P5,(T > z1-0)
=O(T— 721-0)
= O(V/nK(81) — z1-0)- (3.2

Table3.1 The second row contains some values of the monotonically

increasing function K(8). The expected evidence in the Student ¢-statistic for
thedlternatives > Oist = \/n K(8); examplesforn = 5andn = 10 arealso tabled.
Strong expected evidence of T = 5for § = 2 is possible with sample size 10.

8 050 100 150 200 250 300 350 4.00
K($) 049 093 131 162 18 212 232 249
V5K () 110 208 292 362 422 473 518 557

10 K(5) 155 294 413 513 597 669 732 7.88
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Thisformulacan berewritten to give the expected evidenceinterms of level and
power T = z1_4 + 21—, Here KC(8) is given by (3.1), but these are genera
relationships between expected evidence, level and power for any Neyman—
Pearson test based on a statistic which can be variance stabilized and normalized
simultaneously. Usually it will be arough approximation, but it works well for
the r-test (see the discussion in Example 5 of Section 27.3).

Choosing the sample size to achieve a desired amount of evidence
e Toobtainexpectedevidencet = /n K (1) for astandardized effect of scientific
interest when this effect actually exists, one needs to solve t = /n K(81) for
the sample size n; that is, n = {z/K(1)}2. This sample size calculation works
well for n > 10 (see Table 27.2).

Confidence intervals

e Letc, = t,-1.0.975 bethe0.975 quantile of the Student -distributionwithn — 1
df. A 95% confidence interval for u is given by

(L, U] = { 2 +f} . (33)
o Letc = zp975 = 1.96. A nominal 95 % confidenceinterval for § is given by
T —c T+ c
LU =|K? Skt , 34
o=t () 2 () 59

where K-1(y) = {&/¥2 — e¥/V2}//2 is the inverse function to y = K(3).
Thecoverage of thisinterval isgoodwhenn > 10and || < 2, therangeusually
encountered in applications. The range of good coverage improves with »; for
example when n = 25 the range can be extended to |§| < 10.

3.2 Paired comparisons

Data and model

e Given pairs of measurements (x1, y1), ..., (x4, ¥,) on avariable pair (X, Y),
where the pairing is often deliberate to remove some other factor through
differencing.

e Thedifferencesd; = y; — x;fori = 1, ..., n areconsidered independent obser-

vations from a normal population with unknown parameters w4, o2. Here the
X, Y variables are usually correlated. Each pair is a block within arandomized
block design when the assignment of subjects within each pair is at random:
one to receive treatment, the other serving as control. Then X, say, measures
the control outcome and Y the treatment outcome.
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Questions

e What is the evidence for a positive difference , > 0?

e Or, equivalently, for §; = 4 /04, what is the evidence for a positive standard-
ized effect §; > 0?

Test statistic and distribution

e The Student r-statistic #,_1 = /1 (dy — 1ta)/sn, Where d, and s2 =3,

(d; — dy)?/(n — 1) are the usua sample mean and variance of the d;’s. Larger
values of the test statistic favor the alternative iy, > 0 over thenull uy; = 0.

e Thedistribution of 7,_4 is the noncentral z,(1) distribution with v = n — 1 df
and noncentrality parameter A = /n 8.

Conversion to evidence, interpretation and confidence intervals

e The evidence T, in the ¢-statistic based on the differences is obtained as in
Section 3.1. Confidence intervals for w, or §, are found using (3.3) and (3.4)
of Section 3.1, with 7, replacing T'.

e Only the interpretation changes, because two variables are involved. With dif-
ferencesdefined by d; = y; — x;, positive evidence T,; measures the support for
the Y variable exceeding the X variable. The confidenceinterval for ., captures
the size of the mean difference, while the confidence interval for 8, captures
the size of the mean difference relative to the precision of the differences.

3.3 Examples

These examples compare data summarized in a one-sample ¢-statistic with a fixed
boundary of scientific interest. The second arises as a result of taking differences of
paired observations, so the boundary or null hypothesisisO.

3.3.1 Daily energy intake compared to a fixed level

The average daily energy intake in kilojoules (kJ) of 11 healthy women is compared
to a standard recommended intake level of 7725 kJ in a study by Manocha et al.
(1986) and aso analyzed in Altman (1991). The 11 observations are, after ordering,

5260, 5470, 5640, 6180, 6390, 6515, 6805, 7515, 7515, 8230, 8770.

A normal model with unknown parameters 1., o2 is proposed for testing the null
hypothesis u = uo = 7725 against & < 1o Or u # wo. The sample mean and stan-
dard deviation are x = 6753.6 and s = 1142.1. Thus the ¢-statistic is7 = +/11 (X —
o) /s = —2.821, which supports the one-sided alternative i < o with a p-value
of 0.009 and the two-sided alternative with p-value 0.018. A two-sided -interval
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for the effect u — o is obtained by subtracting po from (3.3) and equas
[—1738.7, —204.1]. These are the traditional ways of summarizing the data. But
they do not give the evidence for the one- or two-sided alternatives, nor a confidence
interval for § = (u — po)/o, the mean effect, relative to the population standard
deviation.

By transforming the r-statistic with (20.4) one obtains evidence for the one-sided
alternative of T = —1.947 £ 1 and for the two-sided alternative of 7+ = 1.63 £ 1.
The standard errors are recorded to emphasize the error in measuring evidence. The
evidencein thisexperiment for thetwo-sided alternativeisweak, whichisnot unusual
when the p-values are in the 0.01 to 0.05 range.

The relative mean effect § is a measure of how the dietary intake differs from a
recommended level in unitso which are particul ar to the population of interest, and is
free of the units of measurement. Thisisarguably amore useful concept than the raw
effect © — no, unless one has a good understanding of kilojoules. The confidence
interval for § obtained from (3.4) is[—1.470, 0.004].

3.3.2 Darwin’s data on Zea mays

M easurements on the plant Zea mays were collected by Charles Darwin and analyzed
by Fisher (1935). Asreported by Manly (1991), Darwin took 15 pairs of plantswhere
within each pair thetwo plants‘ were of exactly the same age, were subjected fromthe
first to last to exactly the same conditions, were descended from the same parents'.
Oneindividual in each pair was cross-fertilized and the other was self-fertilized. The
heights (x;, y;) for the pair of offspring were then measured to the nearest eighth of
an inch over 12 inches. The original data are shown in the next section; here we just
list the differencesd; = x; — y;, i =1,...,15:

49, —67, 8, 16, 6, 23, 28, 41, 14, 29, 56, 24, 75, 60, —48.

The question of interest to Darwin was whether these results confirm the general
belief that the offspring from crossed plantsare superior to thosefrom self-fertilizedin
the sense of having greater mean height. Thuswewant totest 1, = u» andthegeneral
belief isthe one-sided alternative i1 > o. However, itispossiblethat 1 < up, SO
evidence for both one- and two-sided alternatives will be cal cul ated.

The Student ¢-statistic 14 = v/15 (d — 0) /sq = 2.148 has 14 df so the one-sided
p-vaueisfound to be 0.025 and the two-sided p-valueistherefore 0.05. A 95 % con-
fidence interval for the mean difference is[0.03, 41.84]. Manly (1991) also explains
how to compute p-values and confidence intervals for p, using permutation argu-
ments which do not require the assumption of a normal model.

We next find the evidence in 114 for the one-sided alternative by transformation
to evidence T, = 1.73 for the one-sided aternative §; > 0. By Equation (2.3) the
evidenceis Tdi = 1.38 for the two-sided alternative 8, # 0. Each of these measures
of evidenceisbest reported together with their standard errors 1.73 + 1and 1.38 + 1.
While some may lament the fact that these values are weak evidence with error in
them, it is more redlistic than reporting 0.025 and 0.05 as ‘significant’ measures
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of evidence with no error in them. These latter numbers are of course, correct
p-valuesto two decimal places; itisonly theinterpretation of them asevidencethat is
wrong.

The value T, = 1.73 leads to the point estimate 84 = 0.454 of §; = Wa/oq-
Further, using Equation (3.4), we obtain a 95% confidence interval for §,
of [-0.06, 1.03].






A

Comparing treatment
to control

4.1 Equal unknown precision

Data and model

e Given two independent sets of measurements: x, . . ., x,, onacontrol variable
X,and y, ..., y,, Onatreatment variable Y, where the measurements on each
variable have the same, but unknown, precision. The X-dataare summarizedin
terms of the sample mean x and variance s2, and similarly the pair (y, s3) for
the Y-data.

e The x;'s are regarded as independent observations which form a sample from
anormal distribution with mean 11 and standard deviation o; similarly for the
y;'s, but the mean u» could differ from 11 while the standard deviation is the
same unknown o.

e The effect is defined by 6 = o, — 1 and the standardized effect by dcohen =
0/o. This standardized effect is often called Cohen's-d in the psychological
literature (Cohen 1988) and the effect size in Hedges and Olkin (1985).

Questions

e What isthe evidence for atreatment effect in a known direction? For example,
what isthe evidence against the null hypothesis ;11 = 1, and for the alternative
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w2 > w1?Or, in other words, isthe treatment variable Y larger than the control
variable X inthe sense that o > u1?

e By symmetry, if aternatives u, < wq are of interest, the change of direction is
reflected in the sign of the evidence T. Thus we only comment on the direction
w2 > p1 and interpret positive evidence as support for po > ug.

Test statistic and distribution

o Now ¢2{1/ny + 1/n5} is the variance of y — ¥, the best estimator of ., —
p1. For N = ny 4+ np and ¢ = ny/N it can be rewritten 62/{N(q(1 — ¢)}. This
variance, and hencethestandard error of y — x, isclearly minimizedfor g = 0.5;
that is, ny = no.

e A more appropriate standardized effect for differing sample sizes is
8=+/q(1=q) dconen Of which an estimator is§ = /g(T— ¢) (¥ — X)/s,, where
52 = {(n1 — Ds§ + (n2 — 1)s3}/(n1 + np — 2) is the pooled estimate of the
variance 2.

e Thetest statistiCtpoo = VN S.Largevalueﬁof tpool favor thealternative o > g
over the null wp = . The stetistic 7pe0 has the noncentral ¢, (1) distribution
with v = N — 2df , and noncentrality parameter A = /N & (see Johnson et al.
(1995), p. 509).

Conversion to evidence, interpretation and confidence intervals

e Because the test statistic has the same noncentral ¢-distribution as in the one-
sample problem of the last chapter, the transformation to evidence T = T(#pool)
is exactly the same here as it was there. Namely, 7 = /N K(8), where K
is given by Equation (3.1) as K(8) = v/2 sinh™1(8/+/2) = V2 In(8//2 +
V1+82/2).

e Evidenceisnow centered on t = /N K(/q(1 — q) dconen), Where K isgiven
by Equation (3.1). Clearly balanced sampling ¢ = 0.5 is preferred, because it
maximizes the expected evidence for fixed N.

e A 95% confidence interval for dconen 1S, for ¢ = zg.o75 = 1.96,

, 4.1

1 IC_l T—c 1 /C_l T+ c
NZTE) VN ) Va@ =9 N-1

where K~1(y) = +/2 sinh(y/+/2) = {e/¥2 — e¥/¥2}/,/2 istheinversefunc-
tiontoy = K(5).
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Choosing the sample size

o For expected evidence 7, wheninfact deohen = ds it sufficesto take sample size

N1 = {u/K(\/q(L - q) d)}> (4.2)

4.2 Differing unknown precision
Data and model
o Given two independent sets of measurements: x, . . . , x,, onacontrol variable
X,and yq, ..., y,, Onatreatment variable Y, where the measurements on each

variable havedifferent unknown precision. The X-dataare summarized interms
of thesamplemean x and variances?, and similarly thepair (3, s3) for the Y-data.

e The x;'s are regarded as independent observations which form a sample from
a normal distribution with mean ., and standard deviation oy; similarly y;'s
are regarded as independent observations which form a sample from a normal
distribution with mean ., and standard deviation o.

e The effect is defined by 6 = o — 11 and the standardized effect by 8§ =0/o,
whereo isascale parameter arising asfollows.Let N = n; + npand6 = y — x.
Then define

2 2
o? = NValf] = N {"1 + "2}. 4.3)
ni np

Note that the standard error of 6 is SE[6] = o/+/N . For further discussion of
this definition, see Section 21.2.

Questions

e |s the treatment variable Y larger/smaller than the control variable X in the
sensethat pp > g OF wo < 1, respectively?

e These questions can be rewritten in terms of § > 0 and § < 0, where § is the
standardized effect defined by § = (u2 — 1) /0.

e Asbefore, we only comment on the direction p, > ;.
Test statistic and distribution
o For A = af/nl, B = O’%/l’lz define the Welch df by

v = (A+ B)?/{A?/(n1— 1) + B?/(n, — 1). (4.4)

Further define estimates 9, & of v, o by substituting sample variances s2, s3 for
the respective population variances o2, o2 in Equations (4.3), (4.4).



34 COMPARING TREATMENT TO CONTROL

e Then the Welch statistic defined by twech = +/N(¥,,, — X,,,)/6 has, under the
null § = 0, an approximate Student z-distribution with 1 degrees of freedom.

Transformation to evidence

e The transformation of wech = v/N(Y,, — X,,,)/& to the evidence scale T =
T(twech) is redlized by Equation (21.6); it is similar to the vst of the Student
t-distribution.

e For variance ratio o = o2 /0? satisfying 0.5 < o < 2 and reasonably balanced
sampling 0.5 < ny/ny1 < 2 the variance of T is stabilized near 1 and nominal
95% confidence intervals for § derived from T are reliable for all |5 < 1,
provided N = n1 4+ np > 10. These results improve with increasing sample
sizesny, no; for further details see Section 21.4. In most applications |§] < 1.

Interpretation

e The expected evidence t = +/N K:(8) is defined for each &, § by K:(8) =
V2/E sinh™1(8 \/€/2); where sinh™1(x) = In(x + v/1 + x2). The parameter
& is defined in Equation (21.7) and £ ~ N/v; that is, £ is roughly equa to
the ratio of the total sample size N to Welch's df v. Note that the expected
evidence decreases in magnitude with increasing &, so it is desirable that & be
near 1.

e The congtant £ > 1 and it can be shown that & = 1 when the sample sizes
m,n are proportional to the standard deviations oy, 02, 0 if there is some
knowledge of the ratio g, the total sample size can be alocated accordingly.
For example if N = 30 and one knows a priori that o ~ 4 or o2/01 ~ 2, then
it is best to take ny/ny &~ 2, that is, n; = 10 and n, = 20. Of course usually
o is unknown, and then balanced sampling n; = n» is recommended, for then
1<é<2

Choosing the sample size

e For balanced sampling N = 2n4, the minimum value of |z|, as & varies, occurs
for £ = 2, and then 7 = +/N K2(8) = +/N sinh™1(8). Therefore the minimum
sample size N; required to guarantee expected evidence t; = /N sinh™1(3)
when s = §;1 is

N1 = {ra/ sinh™(81)}% (4.5)
For example, to guarantee ‘moderate’ expected evidence t; = 3.3 for § > 0
when in fact § = §; = 0.5 one needs N; = 47, or equal sample sizes of 24

each. For only ‘weak’ expected evidence of 1.645 under the same conditions
one needs equal sample sizes of 6 each.

e For unbalanced sampling, use Equation (21.9).
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Confidence intervals

e An approximate 100(1 — «) % confidence interval for 6 is given by the Welch
t-interval R .
A o A o
0—th1 g2 —,0+t1 02— - 4.6
0 tisa e B 46)
e For ¢ = 70,975 an approximate 95 % confidence interval for § based on the one-
sided evidence T = T(tweich) iS given by

2 g 2 3
[\/gsmh{\/;(T—c)},\/;snh{\/;(TJrc)}}, 4.7

where £ is estimated by &€ = N/b.

4.3 Examples

In the first example the assumption of equal unknown precision appears reasonable,
so the methods of Section 4.1 are employed, while in the second example unequal
precision is apparent and so the methods of Section 4.2 areillustrated.

4.3.1 Drop in systolic blood pressure

Summary statistics from seven studies in the review by Mulrow et al. (2004) are
shown in Table 4.1. In each study the sample mean y, gives the average drop in
systolic blood pressure for agroup of patients following a weight reducing diet, and
X isthe average drop for a control group. For every one of the studies sy, ~ sy, SO
the pooled estimate spool, x Of @common unknown standard deviation oy, is computed.
The two-sample pooled z-statistic with v, = ny, + ny — 2 degrees of freedom and

Table4.1 Seven studies comparing drop in systolic blood pressure for

treated patients undergoing a weight-loss regime (summarized by n,, y, s2) with
control patients not undergoing a weight-loss regime (summarized by n;, X, s1).
The estimated effect 4, pooled sample standard deviation spool, k., two-sample
t-statistic #y001, x @Nd evidence for a positive effect Ty for each k are also tabled.

~

ny  Xp S M Yk Sx% Ne O Spool.k  Ipoolk Tk

24 02 138 27 —-48 138 51 -50 1380 -129 —124
18 74 81 20 133 81 38 659 8.10 224 211
64 4.0 157 66 11.0 171 130 70 1643 243 239
9 -30 135 10 40 153 19 70 1448 105 09%4
25 150 165 24 80 204 49 —70 1851 —-1.32 -1.27
5 25 51 5 98 71 10 73 6.18 187 142
14 99 64 19 125 63 33 26 6.34 116 1.09

~NO OB~ WNE | &




Table4.2 Statistical summaries of eight studies from Mumford et al. (1984) are listed in columns 1-7. The results

compare length of stay in hospital for patients receiving psychotherapy summarized by (n2, y, s2) and control groups with
length of stay data summarized by (n1, X, s1). For each study k are also given the Welch degrees of freedom 1y, the estimated
effect 6y, the estimated scale parameter &, and the 95 % Welch confidence interval (4.6) for the unknown 6, .

k nix Xk STk nok Vi S2k U Ok O [Lk, Uil
1 13 6.50 3.80 13 5.00 4.70 22.99 -1.50 8.55 [—4.98, +1.98]
2 50 6.10 2.30 30 4.90 1.71 74.31 -1.20 4.03 [—2.10, —0.30]
3 35 24.90 10.65 35 22.50 3.44 41.02 —-2.40 15.83 [—6.22, +1.42]
4 20 12.30 1.66 20 12.50 1.47 37.45 0.20 3.14 [—0.80, +1.20]
5 10 3.19 0.79 10 3.37 0.92 17.60 0.18 1.72 [—0.63, +0.99]
6 14 5.50 0.90 13 4.90 1.10 23.26 —0.60 2.02 [—1.40, +0.20]
7 9 12.78 2.05 9 1056 113 1245  —222 331 [—3.92, —0.52]
8 8 7.38 141 8 6.50 0.76 10.75 —0.88 2.26 [—2.14, +0.38]
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the evidence for a positive effect T, are also shown in Table 4.1. It is apparent that
only studies 2 and 3 would reject the null hypothesis of no effect at level 0.05, and
the evidence for a positive effect, shown in the last column, is only weak for these
two studies. A 95 % confidence interval for Cohen’s-d in the second study, based on
Equation (4.1), is[0.05, 1.39]. Later in Chapter 25 we will demonstrate how one can
combine the evidence in the seven studies.

4.3.2 Effect of psychotherapy on hospital length of stay

Mumford et al. (1984) compare the effectiveness of treatment ‘ psychotherapy’ with
control ‘no therapy’ for reducing length of stay in hospital in days for eight dif-
ferent studies. The data are shown in Table 4.2. The sample variances indicate that
heteroscedasticity is present within most studies, so the Welch type ¢-statistic is
appropriate.

In the first study the estimated effect 6, = x; — y1 = —1.5 days, the standard
error of thisestimateis1/+/N1 = 8.548/+/26 = 1.676. The 95 % Welch confidence
interval for 6,1 is[—4.98, +1.98], which contains 0, so the hypothesis 6; = 0 would
not berejected at level 0.05. By the same argument, it isclear that only studies2 and 5
wouldreject at level 0.05 the null hypothesisof psychotherapy having no effect. These
results can be obtained on most statistical packages. But if one wantsto compare the
studies, it is better to look at standardized effects, rather than raw effects, because
then the studies are all compared on the basis of a scale-free measurement.

In Table 4.3 are shown the results for the standardized effect analysis. The esti-
mated standardized effect in the first study is 8; = 61/6; = —0.175 and a 95%
confidence interval for §; is[—0.570, +0.218]. Because this interval does contain O
we could not reject §; = O at level 0.05, confirming the small magnitude of the Welch
statistic t = —0.895. Only studies 2 and 7 provide level 0.05 significance that psy-
chotherapy reduceslength of stay. Thiswasalready foundin Table 4.2. However, now
we can actually see how much evidence there is for a positive effect in each study.

Table 4.3 For each study  in the Mumford et al. (1984) review are listed & ~
Ny /i, the Welch statistic iwech, « and the evidence T for a positive standardized
effect §; which liesin it. In the last column are the 95 % confidence intervals based
on (4.7) for the unknown values of §;.

A

& 8k welch,k T; [Lk, Ui
1 1.24 —-0.175 —0.895 —0.86 [—0.57, +0.22]
2 111 —0.298 —2662 —261 [~0.52, —0.07]
3 1.79 —0.152 —1.269 —1.24 [—0.39, +0.09]
4 1.13 0.064 0.403 0.39 [—0.25, +0.38]
5 1.28 0.105 0.469 0.44 [~0.34, +0.55]
6 1.27 —0.297 _1544 _147 [~0.69, +0.09]
7 172 —0.671 2845 _253 [—1.24, —0.14]
8 1.83 —0.388 —1.554 -1.41 [—0.94, +0.14]
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Note that the alternative § < 0 is of interest here. The positive evidence for negative
effect isequivalent to negative evidence for positive effect found here. Six of the eight
studiesyield standardized effects which suggest by direction that psychotherapy does
make a difference and these effects are al much greater in magnitude than the other
two. Thusit is plausible that there is at least weak evidence for an overall negative
effect in the eight studies, i.e. the overall reduction in length of stay.



5

Comparing K treatments

In this chapter we consider the simplest case of treatment comparisons. Based on K
samplestaken under K different conditions we want to know whether the conditions
lead to notable changes in the sample means.

5.1 Methodology

Data and model

e We are given K sequences of measurements of some outcome variable Y:
Y11, - - - » Yny through yg1, ..., Ykn,. The measurements are taken under vary-
ing conditions, either by applying different treatments or by modifying in some
other way the circumstances of the measurements. Following tradition, we call
these circumstances ‘ treatments' .

e The measurements are modelled as samples from K normal populations with
means ;. for the kth sample and with equal and unknown variance .

Questions

e What is the evidence for differential effects of the K conditions? The various
means u; are called treatment effects and the null situation occurs when they
areadl equal; that is, Hp : 1 = - -+ = ug. The dternative we are interested in
simply states that Hy is untrue.

e Because our aternative does not describe a precise deviation from the null
situation, no direction or sidedness is involved.

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
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Test statistic and distribution

e Thetreatment effects can be estimated by the samplemeans (i, = (yg1 + - -+ +
Yin,)/ Mk = Y. Thetotal ssamplesizeisN = nq + - - - + ng and the mean of all
measurementsis y = (n1y1 + - - - + ngyx)/N. A large variance of the sample
means[ny (y1 — y)2 + - - - + nx (yx — y)?]/(K — 1) supportsthealternativeof
unequal treatment effects, but this statistic is difficult to calibrate because its
size also depends on the size of the variance 2.

e The sample variances for the kth sample is s? = [(yx1 — )% + - - + Yk, —
)]/ (nx — 1). These can be pooled to create astronger estimate[(n; — 1)s? +
oo+ (ng — Ds%]/(N — K). Therescaled test statistic is

G [n1 (31— 92+ 4+ nk Gk — NA/(K — 1)
[(n1—Ds?+ -+ (ng — DsZ]/(N - K) ~

e Under the null hypothesis the test statistic S has an F-distribution Fx_1 y—x
with K — 1and N — K degrees of freedom and the usual procedure consistsin
deriving a p-value from atabulated F-distribution.

e Under aternatives S hasanoncentral F-distribution nc Fx_1 y— g (A) with non-
centrality parameter A = [ny(u1 — w)? + - - + ng(ug — w)?l/o?.

Transformation to evidence

e To convert the test value into evidence, we make use of the inverse of the
hyperbolic cosine function

cosh™(y) = In(y + /2 — 1).
Furthermore, let m = Fg; y_x(0.5) denote the median (50 % quantile) of the
F-distribution with K — 1and N — K degrees of freedom. For the computation

of the evidence we make a distinction between large and small values of the
test statistic. For values of S exceeding the median, the evidenceis

- /N—K(Cosh_l( (K—1)S+N—K )
2 JN-K(K-Dm+N-K)

—coshl( (K—l)m+N—K>)

N-—-K

For values of S below the median m, essentially the same formula can be used.
First we compute the flipped value of the test statistic

§*= F/il,N_K (1— Fxk-1nv—k(5).
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Then we compute the evidence with changed sign

_ N—K(wml( (K—1)$*+N—-K )
2 JN-K(K-Dm+N—-K)

—cosh—l( (K—l)m—i—N—K))
N-K )

For additional explanationsand derivations, the reader should consult Chapter 23.
Interpretation

e Thecrucia quantity for thetest statistic S isthe noncentrality parameter 1. The
bigger this value, the further we are from the null hypothesis. A standardized
effect for the Fx_1 y—x (A)-distribution is often defined as A or /N.

e Theevidence T iscalibrated and can beinterpreted on the scale of anormal dis-
tribution with variance 1. For the evidence statistic we have T ~ N(v/NK, 1),
where I = IC(1) dependson N, K and A.

e Thevalue of K isthe transformed effect computed as follows:

Ky — N—K<w$l( (K—Dm+r+N—-K )

2N JN-K(K-—Dm+N—-K)

oL (K—1m+N—-K
N-K ’

If IC exceeds zero and as N increases, the evidence in favor of the alternatives
will increase.

e Asin al the other tests discussed in this book, the key inferential function
translatestheapparent effect A into astatistically meaningful transformed effect.
The transformed effect is estimated by & = 7/+/N.

Choosing the sample size

e For aknown or assumed value of the noncentrality parameter A one can choose
the sample size N necessary to reach any desired expected evidence t. The
equation to solve is t = +/NK (1), which is not as simple as in some of the
other cases, since the Key Inferential Function itself depends on N and K.
We recommend to solve the equation by trial-and-error.

e Instead of fixing the expected amount of evidence , we may be interested in
designing the study to have a certain level (probability of false rejection) «
and power (probability of true rejection) 1 — B. In this case we need to solve
VNK) = z1-4 + 215, Where z, = ®~1(p) isthe p quantile of the standard
normal distribution.
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Confidence intervals

e Let ¢ =zgo75 =1.96. The interval T 4 1.96 is a confidence interval for

VN K.

e A nominal 95% confidence interval for A is given by
[L. U] = [K7HT = o), KHT +0)],

where

x+/(N — K) (Km + (N — K)) — (Km + (N — K)).

istheinverse functionto y = IC(%).

5.2 Examples

Comparing a treatment to a control is a common practice in many applications.
This comparison can be based on two series of measurements, one of which under
the condition of treatment and the other under the control condition. Alternatively,
one may form a sample of matched pairs and apply the treatment and the control to
one member of each of the pairs. The generalization to K treatments with K > 2 is
an equally useful method. Such experiments may again be performed in the form of
independent series of measurements or intheform of K blocks of sizen with random
allocation of the treatments to the units of each block (randomized block design).

Thetest we discuss here does not invol ve pai rwise comparisions or other methods
to determine the precise differences between the treatment effects. We are only con-
cerned with the evidence in favor of the alternative that ‘some’ difference between
the treatment effects exists.

5.2.1 Characteristics of antibiotics

Ziv and Sulman (1972; cited in Larsen and Marx (1986), p. 504) gave measurements
of Y = binding percentage characteristics of five antibiotics. Table 5.1 contains the
data and Figure 5.1 shows a plot of the five samples.

The F-test statistic is § = (1480.8/(K — 1))/(135.8/(N — K)) = 40.9, which
has to be compared to an F-distribution F4 15 with a 50% quantile of 0.88 and a
95 % quantile of 3.06. The evidence statisticis T = 7.1. Both computations lead to
identical conclusions. The evidence is seven standard deviations from zero, which
means that the evidence against the null hypothesis is very strong. The p-value is
6 x 108 which would also be interpreted as a very strong indication in favor of the
aternative.
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Table5.1 Binding percentages of five antibiotics. Thisis an example with
K = 5 different conditions. The sample sizen = 4 isthe samein each case,
which leadsto atotal sizeof N = Kn = 20.

Penicillin G Tetracycline Streptomycin  Erythromycin  Chloramphenicol
29.6 27.3 5.8 21.6 29.2

24.3 32.6 6.2 174 32.8

28.5 30.8 11.0 18.3 25.0

32.0 34.8 8.3 19.0 24.2
Averages

28.6 314 7.8 19.1 27.8
Sample variances

104 10.1 5.7 3.3 159

5.2.2 Red cell folate levels

Amesset al. (1978; discussed as Example 9.8.2 in Altman (1991)) contains measure-
mentsof theoutcomevariableY = red cell folatelevelsin patientstreated with nitrous
oxide, N,O (often called laughing gas). Thisisusually administeredin a50/50 mixture
with oxygen as a simple anesthetic agent. Among the toxicol ogical side effectsisthe
inhibition of an enzyme, leading to impairment of folate metabolism. In thisexample,

binding percentages
)

n -

Figure5.1 Thefive samples are shown aongside each other on a common vertical
axis. The order of the samplesisthe sameasin Table 5.1.
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Table5.2 Red cell folate levels (ug/l) in three groups of patients given
different concentrations of nitrous oxide-enriched ventilations. Thisisan
examplewith K = 3 different conditions. The sample sizesaren, = 8,n, = 9
and n3 = 5. Thetotal samplesizeis N = 22.

Long Short Oxygen only
243 206 241
251 210 258
275 226 270
291 249 293
347 255 328
354 273
380 285
392 295
309
Averages
316.6 256.4 278.0
Sample variances
3447.7 1378.0 1139.5
=§
S | e
[ ]
86
@ [}
¢
2 o °
Q O —
g8 ® °
L °
s °
[}
21e : i
[}
o $
8 -

Figure 5.2 Thethree samplesare shown alongside each other on acommon vertical
axis. The order of the samplesisthe sameasin Table 5.2.
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three groups of patients undergoing cardiac bypass surgery are considered. The
treatments given to these patients were distinguished according to the mixture they
breathed and the duration of the ventilation regime. Table 5.2 contains the data and
Figure 5.2 shows a plot of the three samples.

TheF-teststatisticisS = (15515.8/(K — 1))/(39716.1/(N — K)) = 3.71,which
has to be compared to an F-distribution F 19 with 250 % quantile of 0.72 and a 95 %
quantile of 3.52. The evidence statistic is T = 1.64, which speaks weakly in favor
of the alternative of some difference between the treatments. The p-value is equal to
0.044, close to the traditional 5 %.

The expected unit evidence is K= 1.64/+/N = 0.35 with an associated confi-
dence interval [0.35 =+ 0.21]. By how much would we have to increase the study
size N in order to reach moderate evidence of 3.3? Using K = 0.35, we must solve
v/ Naudy = 3.3/0.35 = 9.4, which gives Ng,qay ~ 88. Wewould thus have to quadru-
plethesizeof thestudy inorder to reach moderate evidence. Of course, thisprediction
is subject to considerable uncertainty. Had we used the lower confidence point for K,
we would have obtained Ngyay = 555.






6

Evaluating risks

In prospective studiestherisk or incidenceof contracting adiseaseisoften represented
by a probability p, the probability that someone drawn from a cohort contracts a
disease during a certain period of time. Or p could represent the prevalence of a
disease within acertain popul ation at the present time. In either case arandom sample
of individualsis examined at afixed time and the number within the sample with the
disease is noted. The question isthen how to use thisinformation to estimate p, or to
test hypotheses regarding p.

6.1 Methodology

Data and model

e Thedataareaset of n dichotomous observations; that is, each taking on one of
two possihilities, say D for diseased, D for not diseased, or labeled numerically
by 1and 0.

e The binomial model assumes that there are n independent, identicaly
distributed variables, say I, ..., I,, with P(I; = 1) = p, P(I; =0) = 1 — p,
where 0 < p < 1isunknown.

Questions

e What isthe evidence that therisk p exceeds a certain fixed level pg?

e What isaconfidenceinterval for therisk p?
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Test statistic and distribution

e The test statistic is the number of 1's amongst the n outcomes,
S = 2?21 I;; it hasthe binomial distribution with parametersn, p.

Transformation to evidence and distributional properties

o Let p=(S+3/8)/(n+ 3/4). Then the evidence for the alternative p > po
tothenull p = pg isgiven by the classic transformation

T = 2/n {arcsin(y/p) — arcsin(y/po) }-
e This T isapproximately norma for np(1 — p) > 5.

e The expected evidence E[T] = +/n K(p), where the Key Inferential Function

is defined by
K(p) = 2{arcsin(/p) — arcsin(/po) }.

e The evidence T has standard deviation lying between 0.95 and 1.0 for 0.2 <
p < 0.8for samplesizen = 9, and thisrange expandsto 0.07 < p < 0.93 for
n = 30.Foranyn, as p approaches0or 1, thestandard deviation of T approaches
0; but this does not mean that 7 is not a good estimator of its expected value.
For more information, see Figure 18.1 and accompanying text.

Interpretation

e Positivevaluesof T areevidencefor thealternative p > po, whilethemagnitude
|T| of a negative value of T is positive evidence for the alternative p < po.
Evidence T for the two-sided alternative p # po can be obtained from |T'| via
the transformation (2.3).

Choosing the sample size

e For testing p = po against p > po one may choose n; so that the expected
evidence for a fixed p; of interest is at least 7;. This requires n; to satisfy
71 < /1y K(p1), orny > {11/K(p1)}>.

e For example, if thenull is p = 0.5to achieve‘strong’ expected evidencer; = 5
against p = 0.9 one requires ny ~ 29. Some other values are also shown in
Table 6.1.

Confidence intervals

o Letting = (S +3/8)/(n + 3/4) and T = 2/n arcsin(ﬁ), 2.95% confi-
denceinterval for p isgiven by

[{on( i)} fon ()} ]

Itisunderstood that if the sine values are less than O or greater than 1, they are
replaced, respectively, by 0 and 1, before squaring.
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Table6.1 Approximate sample sizes required to achieve weak, moderate or
strong expected evidence for aternatives p; to the null pg = 0.5.

P1 arcsm(\/ﬂ) 71 = 1.645 71 =33 71 =5.0
0.5 0.78540 — — —
0.6 0.88608 67 267 617
0.7 0.99116 16 64 148
0.8 1.10715 7 26 60
0.9 1.24905 4 13 29

e These intervals are much more accurate than traditional large sample intervals
of theform p & z0.9751/P(1 — p)/n, where p = X/n (see Section 18.2).

e When p is near 0, confidence intervals for p are often derived after a log-
transformation of p = S/n. Such intervals are comparable in performance to
those based on the formuladisplayed above (see Section 18.4). A rule of thumb
suggested based on simulations reported in Section 18.4 is that the when con-
ditionsnp(1 — p) > 5and n > 25 are satisfied, then the arcsine intervals will
have empirical coverage between 93 and 97 %, and for np(1 — p) > 11 and
n > 100, the coverages will lie between 94 and 96 %.

6.2 Examples

These methods have already been illustrated for the case of pg = 0.5in matched pair
experimentsin Section 1.2.

6.2.1 Ultrasound and left-handedness

A study by Salvesen et al. (1993) found a slight positive association between in
utero routine ultrasonography and subsequent left-handedness of 8- and 9-year-old
children. Similar reports for only boys in a different study were reported by Kieler
et al. (1998). If the proportion of left-handersin the general populationis pg = 0.1,
how large a sample is required to obtain strong evidence that in utero routine ultra-
sonography leads to a proportion p of left-handers which exceeds the general popu-
lation proportion 0.1 by 10%? That is, what is the minimum sample size required to
obtain expected evidence 5 for an alternative p = p; = 0.11?

We require ny > {t1/K(p1)}? = (5/0.03263)? = 23481.3, or 23 482. For only
moderate evidence 3.3 of a 10% increase, one needs a minimum sample size of
np = 10229,

6.2.2 Treatment of recurrent urinary tract infections

If untreated, recurrent urinary tract infections continue in 65 % of observed patients
(see Section 19.5). Let p represent therisk of continued infection following treatment
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by antibiotics. In study 2 of Table 19.1 eight of 21 patients treated by antibiotics
had further infections during the study period. How much evidence is there for the
aternative p < 0.65 to the null p = 0.65 based on these data?

In the notation of this chapter n = 21 and S = 8. An estimate of pisp = (S +
3/8)/(n + 3/4) = 0.3895. Hence the evidence for the dternative p < 0.65isT =
2/n {arcsin(/po) — arcsin(y/p)} = 2+/21{arcsin(+~/0.65) — arcsin(+/0.3895)}
= 2.4, which is between weak and moderate. An analysis based on comparing treat-
ment patients to similar controls is given in Section 7.2.1.



2

Comparing risks

Unknown probabilitiesof abinary outcome (of survival, contracting adisease, say) for
individual sintwo groups, treatment and control, areoften called risks. The* treatment’
could be exposure to arisk factor, drug intervention, surgery, etc. Therisk p; to an
individual in the control group is compared to the risk p, in atreated group after
obtaining independent estimates of these parameters. Here we present new methods
for inference on the risk difference p; — p», the relative risk p;/p, and the odds
ratio p1(1 — p2)/{p2(1 — p1)}. It turns out that the evidence for a higher risk in one
of the groups is the same regardless of how this difference is measured: by the risk
difference, or relative risk, or oddsratio. We start from estimating the risk difference
A which has an advantage of linearity in probabilities. Standard methods for the
relative risk and odds ratio can be found in Chapter 19.

7.1 Methodology

Data and model

e There are ny subjects from a population of control subjects having proportion
p1 arisk; and x; of then; arefound to have the binary outcome of interest, say
disease. Similarly x, of the n, subjects from a population of treated subjects
having proportion p, at risk have the outcome of interest.

e Given X, X, independent, with each X; having the binomial distribution with
parameters (n;, p;) for some0 < p; < 1.
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Questions

e What is the evidence for treated subjects having a lower risk than control
subjects? That is, for A = p; — p2 > O; or, equivalently, for the relative risk
RR = p1/p> > 1lorfor theoddsratio OR = p1(1— p2)/{p2(1— p1)} > 17

e What are confidence intervals for the risk difference, relative risk and the
oddsratio?

Test statistic and distribution

e The test statistic and estimator of A is defined by S = A = py — p2, where
p1=(X1+05)/(n1+ 1), p = (X2 4+ 0.5)/(n2 + 1). Itsdistribution is com-
plicated and the standardized version (A — 0)/SE[ A] convergesto the standard
normal distribution much slower than commonly believed.

Transformation to evidence

e Let N =njy + ny be the total sample size, ¢ = n,/N the proportion of the
total allotted to the second sample. Define p = gp1 + (1 — g¢)p2and¢ = p(1 —
p)/{q(1 — g)}. Substitute p1, p» for p1, p2 in the formula for ¢ to obtain an
estimator ¢ of it. Then the evidence for the dternative A > Otothenull A =0

is defined by
T=+N arcsin(S/\ﬁ). (7.1)

e It is shown in Chapter 19 that T is approximately normal for a wide range of
parameters. Further r = E[T] = /N K(p), where p = A //Z , isthe correla-
tion effect sizeintroduced in Section 1.3.1, and the Key Inferential Function is
smply KC(p) = arcsin(p).

Interpretation

e The standardized effect for the difference A is § = A/ NVa[A] =
A/+/t—AZ?. The Key can be reexpressed as a function of the standardized
effect using the fact that p = §//1 + §2.

e To uniformly maximize the magnitude of the expected evidence |E[T]|
by choice of sample size alocation ¢, it suffices to uniformly minimize
= {pl— p)}/{qg(l—q)} by choice of q. Now for any ¢, the numerator
of ¢ has maximum value 0.25, and thus the maximum value of ¢ over the
parameter space can be minimized by maximizing the denominator of ¢; that
is, by choosing g = 0.5, or n; = ny.

Choosing the sample size

e Inorder to attain expected evidence r; = /N arcsin(p1) for acorrelation effect
size p; onerequires N > {r;/ arcsin(p1)}2. In particular, to attain ‘ moderate’
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expected evidence of 3.3= 2 x 1.645for p; = 0.5, one needs atotal sample
sizeof N > (6 x 3.3/m)%2 = 39.7, or N = 40. This calculation masks the fact
that depending on ¢, that is, on the ratio of sample sizes and resulting value of
p, very different raw effects A may result in the same value of p, and therefore
the same evidence.

e To achieve an expected evidenceof 7; = /N arcsin(A1/./Z ) against an effect
Ay, it suffices, for any fixed ¢, to take
N = {r/arcsin(2y/q(1— q) Ay) .

In particular, for r; = 3.3and A; = 0.5, it suffices to take equal sample sizes

totalling N = 40. For unequal sample sizes, alarger total isrequired.
Often abaseline value for the control risk is known, and thus when the desired
risk differenceisspecified, soisp, andtherequired samplesize N isdetermined.

Confidence intervals

e A nominal 95% confidence interval for p is given by

T — T
sin 20.975 _sin + Zo.975
VN VN

e And this leads immediately to intervals having the same confidence for the
standardized effect § = p/4/1 — p?, namely

[L.U] =

L U
V1I—12' J1-U2

e Further, the above 95% confidence intervals [L, U] for p = A/./C can be
multipliedby \/Z ,whereZ = {p(1 — p)}/{q(1 — ¢)}isanestimateof , toyield
nominal 95% confidence intervals[L 4, Ua] for A. Despite the extra estimate
involved, these intervals tend to have better coverage than the corresponding
intervalsfor p.

e The above preservation of intervals under transformations tacitly assumed that
theargument of the sinefunctioninthedefinitionof L, U lieswithintheinterval
[—n/2, /2] (wherein the sine function is strictly monotonic increasing). This
requires |T| < 3.0787+/N . Even for sample sizes as small as ny = n» = 8,
thismeans |T| < 12.3. Evidence T with magnitude 5 isconsidered ‘ strong’, so
thisrestriction on T islikely to be met in applications.

e Simulation studies of the empirical coverage probabilities are available in
Sections 19.2 and 19.3. The empirical coverage of intervals for p for balanced
sampling withn, = n, = 9and p = 0.5 rangesfrom 94.5to 98 % for all p not
too near 1. But when p = 0.2 much larger sample sizes are required to achieve
the same coverage. The corresponding intervals for A have more accurate
coverage.
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Extensions to relative risk and odds ratio

e Using the identities p; = p+ (1 — ¢)A and p, = p — gA one may rewrite
the relative risk in terms of p and A and similarly for the odds ratio. From
these expressions one can see that for fixed p, both the RR and OR are strictly
increasingin A. Sincetheevidence T = +/N arcsin(Sz~/2) has been derived
in Chapter 19 by a conditional argument, given p = p, thisevidencefor A > 0
can serve as evidence for RR > O or for OR > 0.

e Inview of the above remarks, a confidence interval [L, U] for A can be trans-
formed into one for the relative risk by substituting the endpoints L, U for A
in the expression RR = (p + (1 — ¢)A)/(p — gA) to obtain the endpoints of
an interval for the relative risk. Coverage of these confidence intervals, unlike
the coverage for confidenceintervalsfor A given above, has not yet been inves-
tigated by simulations. Until this has been done, we recommend instead the
standard confidence intervals for RR or OR given in Section 19.4.

7.2 Examples
7.2.1 Treatment of recurrent urinary tract infections

Albert et al. (2004) reviewed 11 studies in which antibiotic treatments of recurrent
urinary tract infections were compared to control groups. For more information, see
Section 19.5. Hereweonly consider the second study, inwhich X, = 8outof n, = 21
treated subjects continued to have infections while X; = 17 out of n, = 19 control
subjects continued to have infections during the study period.

Letting p1, p» betheprobabilities (or risks) of further infection for the control and
treated groups, wewant the evidencefor thealternative p, < p; tothenull hypothesis
p1 = po. Letting A = p; — p, wewant the evidencefor A > 0.

Now p, = 0.87500, p; = 0.38636and A = 0.48864. AlsoN = 40,q = ny/N =
21/40 = 0.525, s0 p = 0.6429 and £ = 0.9206.

Thisleadsto p = A/+/Z = 0.509 and evidence T = 3.38 for A > 0. Thus in
this study there is moderate evidence for the antibiotic treatments being effective in
reducing the risk of recurrent urinary tract infections.

A 95% confidenceinterval for p is[L, U] = [0.222, 0.748], for § theinterval is
[0.228, 1.125], for A itis[0.213, 0.717] and for RR it is[1.40, 3.69] .

7.2.2 Diuretics in pregnancy and risk of pre-eclamsia

Callinsetal. (1985) studied the benefit of taking diureticsduring pregnancy ontherisk
of pre-eclamsia. The data were obtained in nine clinical trials. These data were also
studied in Hardy and Thompson (1996) and in Biggerstaff and Tweedie (1997). The
previous analyses concentrated on the oddsratio of devel oping pre-eclamsia. Herewe
consider for simplicity the differencesin absoluterisk A, = py — po for ny patients
and ny, controls, k = 1, ---, 9. The sample sizes are Ny = ny, + ny. To calculate
the evidence in each study we need the correlation effect sizes p, = Ar//C,, where



Table 7.1 Results of nineindependent randomized clinical trials of effect of diuretics on pre-eclamsia. For each study the number xy;
out of ny; control subjects who had developed pre-eclamsiais listed, as well as the number x,, of ny subjects treated with diuretics.
See text for detail s regarding resullts.

k X1k nix Xok nok Ay Sk Ok Ly Uy Ky T;
1 14 136 14 131 —0.004 0.385 —0.006 —0.126 0.113 —0.006 —0.106
2 17 134 21 385 0.074 0.513 0.103 0.017 0.188 0.103 2.355
3 24 48 14 57 0.250 0.955 0.256 0.067 0.435 0.259 2.651
4 18 40 6 38 0.285 0.849 0.309 0.092 0.511 0.314 2.773
5 35 760 12 1011 0.034 0.126 0.097 0.050 0.143 0.097 4.070
6 175 1336 138 1370 0.030 0.411 0.047 0.009 0.085 0.047 2.454
7 20 524 15 506 0.008 0.134 0.023 —0.038 0.084 0.023 0.743
8 2 103 6 108 —0.036 0.159 —0.089 —0.222 0.045 —0.089 —1.299
9 40 102 65 153 —0.032 1.005 —0.032 —-0.154 0.091 —0.032 —0.512
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i are study-specific parameters. The evidence for apositive effect T, was cal culated

from Equation (7.1). The data, estimated parameters ¢;, correl ation effect sizes p and
95 9% confidence intervals for p, estimated transformed effects «; and evidence T;
from each trial are given in Table 7.1. The evidence is weak to moderate in studies
2-6, but there is no evidence of any benefit in the rest of the studies. For study 5 the
difference in risk is rather small, A = 0.034, but the evidence is the highest due to
large sample sizes. The confidence interval for A is[0.018, 0.051], the confidence
interval for RR is[1.82, 18.04] and the sample RR is 3.78. For study 4 the difference
inriskismuch larger, A = 0.285, but the evidence islower, thisisasmall study. The
confidence interval for A israther wide, [0.085, 0.470], and the confidence interval
for RRis[1.32, 7.17], while the sample RR = 2.71.
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Evaluating Poisson rates

Poisson processes are frequently used for modeling the number of rare eventsin time
or space, such as numbers of egquipment failures in a month, of traffic accidents at
an intersection in ayear, of mutations in a given segment of DNA, of cells growing
in a culture (see Section 17.3.1), of soldiers killed by horse-kicks in each corpsin
the Prussian cavalry during 20 years (see Section 8.2.1), and a multitude of other
phenomena. These numbers are called counts data, and one wants to use them to
make inferences regarding the rate of occurrence of the rare events. The presentation
below will be for processesin time.

8.1 Methodology

Data and model

e Giventhe observed number s, of occurrences(the count) of therare event during
atimeinterval of known length z.

e For a Poisson process, the number S, of eventsin any timeinterval of length ¢
has a Poisson distribution with parameter f, where © > 0 isthe unknown rate
of events per unit time.

e The Poisson(np) distribution also arises as an approximation to the binomial
(n, p) distribution with large n and small probability p; this approximation is
discussed in Section 18.4. One can think of n asa‘time’ parameter and p, the
probability of the rare event in any Bernoulli trial, as the rate per trial that the
rare events occur.

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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e One wants to make inferences regarding 1, which is estimated by the number
of rare eventsin an observation period of length ¢, divided by the length of the
interval i1 = S,/¢. The mean and variance of the Poisson distribution equal its
parameter, in thiscase ut, so 4 isan unbiased estimator of  with variance /¢
For larget, 1 is approximately normal with these parameters. The notation for
the discrete time case in which S, isthe count of rare eventsin » trials (and is
modeled by the Poisson(np) distribution) isp = S, /n.

Questions
e What is the evidence against the null hypothesis Hy : u = o and for the

aternative 1 > ©o? Or, equivalently, for a positive effect A = u — uo?
e What isaconfidence interval for A or for u?

Test statistic and distribution

e The test statistic S; has the Poisson(ur) distribution; large values of S, favor
A > 0.

e A large-sampletest statistic is

Zo= ] (- po. (8.1)
Io

Larger values of this test statistic favor the alternative A > 0 over the null
A = 0. Asthe length of the observation period ¢ increases without bound, the
distribution of Z, can be approximated by anormal distribution with mean /7 §
and variance /10, wheres = (u — o)/ /1o isthe standardized effect. Under
the null hypothesis, § = 0 and the approximating distribution of Z, is standard
normal.

Transformation to evidence

e The objective is to transform the test statistic onto the unit normal calibration
scale; thisis achieved by

T, = 2{\/S; +3/8 — \/uot + 3/8}. (8.2)

This definition of evidence is based on the variance stabilizing transformation
(Anscombe 1948) for the Poisson model (see Section 17.3.3).
e For ut > 5thevariance of T, is stabilized near 1 (see Section 17.3.2).

e For each value of 1 > o the Key isgiven by

K(ulio) = 2/t — /o). (8.3)
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e For large ¢ the distribution of 7, is approximately norma with mean

E[7)] = Vi K(ulpo) = 2V1 (/ — /o) and unit variance. Under the null
hypothesis, © = uo and 7, ~ N(O, 1).

Interpretation

e TheKey IC(u| o) given by Equation (8.3) measures the distance from w to .
Itisasimplefunction of therate . It can be rewritten (| o) = 2(/A + o
— /o) to show it istransformed effect; that is, a function of the effect A.

e It is also possible to rewrite the Key C(u|uo) as afunction of the standard-
ized effect 8, asis usualy done in this book. For the Poisson model this only
complicates the Key without adding any insight.

e Aninversetransformation to find u from the transformed effect is

K= (ylio) = [ max{ (y/2 + /it0), 0} 1% (8.4)

Since therate 1 > 0 the values of C~1(y| o) are truncated at zero.

e Theapproximate power of thelevel-« test based on the evidence 7, for detecting
an alternative wy, > uois

1— B(pilpo) = (1K (11l1to) — 21-a)-

This formula can be rewritten to give the expected evidence in terms of level
and power T = 21« + 21— (usl0)-

Choosing the time ¢ required to achieve a desired amount of evidence

o To obtain expected evidence 1y = /7 K (11| po) for alternative 1, the required
observation timeiss = {t1/K(u1|po)}?.

Confidence intervals

e Letc = zg975 = 1.96. A nominal 95 % confidenceinterval for K(u|uwo) isgiven
by
[L, U] =tY[T, —c, T, +c]. (8.5)
e A nominal 95% confidence interval for u isgiven by

(L., U =t"2[K T, — cluo) . KHTr + cluo) | (8.6)

where the function ~(y|uo) is given by Equation (8.4). This interval is not
symmetric around u ; its lower limit is non-negative due to the restrictions
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imposed on the inverse key function; the left limit L, > po if and only if
T, > c. The coverage of this interval is good when ¢t > 5, the range usualy
encountered in applications.

8.2 Example
8.2.1 Deaths by horse-kicks

This famous example of numbers of soldiers killed per year by horse-kicks in each
corpsin the Prussian cavalry belongsto L.J. Bortkiewicz (1868—1931) and has been
used to illustrate the application of the Poisson distribution in numerous textbooks.
These data are taken from Preece et al. (1988), who reproduce the complete data on
number of deaths each year for 20 years (1875 to 1894) for each of 14 corps. After
omitting four anomalous corps, they fit alog-inear model to the data and show that
the death rates are constant over time, but with different ratesfor different corps. The
total S, number of deaths during the 20 years for each corps are displayed in the
second column of Table 8.1.

For the sake of illustration assume that the safety regulations in the Prussian
cavalry required that the death rate from horse-kicks to be at most 0.5 per year in a
corps. Then wg = 0.5 and to ascertain compliance for each corps one needs to test

Table8.1 Bortkiewicz's dataon number S, of deaths by horse-kicks over

20 yearsfor each of 10 corps. The large-sample test statistic Z, isdefined in
Equation (8.1) and the evidence T; is calculated with Equation (8.2). The p-values
p. and pr arefor the tests based on Z, and T;, respectively, using the normal
distribution. L, and U,, are the lower and upper limits of the 95 % confidence
interval for the unknown rate .. The length of the observation period is¢ = 20

for each individual corps, ¢+ = 200 for the combined 10 corps (the row marked
‘Total’) and + = 180 after omitting corps X1V (the last row).

Corps St ,le Zl Pz Tt pr L;L U;L

I 12 06 0.632 0.264 0594 0276 031 0.99
Il 12 06 0.632 0.264 0594 0276 031 0.99

v 8 04 -0632 0736 -—-0.654 0743 0.00 0.73
\% 11 055 0316 0.376 0303 0.381 0.00 0.92
VI 12 06 0.632 0.264 0594 0276 031 0.99
VIl 7 035 -—-0949 0829 -1011 0844 0.00 0.66
IX 13 065 0949 0.171 0872 0192 034 1.05
X 15 0.75 1581 0.057 1400 0.081 042 117
X1V 24 12 4.427 0.000 3432 0000 0.76 1.72
XV 8 04 -0632 0736 -—-0.654 0743 0.00 0.73
Total 122 061 2200 0.014 2087 0.018 051 0.72

Total w/o XIV 98 054 0.843 0.200 0824 0.205 0.44 0.66
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the null « = 0.5 against the aternative i > 0.5. The results are given in columns 3
to 9 of Table 8.1.

Several corps have estimated death rates 1 above g = 0.5, but the evidence for
noncompliance is negligible except for corps X, where it is very weak (T = 1.4),
and for corps X1V, whereit is moderate (75 = 3.43).

But worryingly the overall death rate for all 10 corps (in the row marked total)
istoo high; there the evidence Top = 2.09 isweak, but certainly not negligible. The
computations are repeated after omitting the datafor corps X1V and the resultslisted
inthelast row of thetable; thistimethereis negligible evidencefor overly high death
rates.

The p-values from the Z-test (p) and those based on the evidence (pr) are
provided in Table 8.1 to compare the quality of the usual normal approximation
to the Poisson distribution with that of the vst-based approximation. The evidence-
based p-values are somewhat higher. This differenceisnoticeablefor corps X, where
pz = 0.057 (rather closeto being significant at level 0.05) whereas pr = 0.081. Now
S»0 hasthe null distribution Poisson(10), so the exact p-valueto three decimal places
is P(Sx > 15) = 0.083.

Similarly, for the total number of deaths, onefinds p, = 0.014, pr = 0.018 and
theexact p-valueto three decimal placesis0.018. Theexact p-valuesare much closer
to pr thanto p; because the variance stabilization provides a superior approximation
to the Poisson distribution compared to the standard normal approximation. The
coverage of the evidence-based confidenceintervalsfor u isaso much morereliable.
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Comparing Poisson rates

For two-sample data modelled by Poisson distributions with unknown rates (1, w2
one is often interested in comparing these two parameters. One may do this with
either the difference A = u, — 1 ortheratio p = o/ 1. Testing for the one-sided
aternative A > Otothenull A = Oisequivalent totesting for aternative p > 1tothe
null p = 1, but the statistical methods are different for these two parameterizations
of the problem.

For thedifference A, onefirst finds transformed parameter estimates of each rate;
thisleadsto evidencefor thealternative hypothesis A > 0whose expectation depends
on astandardized effect §, from which confidenceintervalsfor § can be derived. This
is called the unconditional approach in what follows.

For the ratio p the conditional distribution of the second one sample total, given
the two-sampletotal, isthe basisfor inference. It leads to evidence for the alternative
hypothesis whose expectation depends on p, from which confidence intervals for p
can be derived. Thisis called the conditional approach.

Recall that the Poisson(np) distribution is often used as an approximation to a
binomial (n, p) distribution with large n and small probability p. The parameter p is
the rate of occurrence of the rare event per Bernoulli trial, and is often called a risk
(of infection, disease, death) in the medical literature. When this approximation is
applicableto each of two sampleswith respectiverates p1, p,, the difference of rates
A = p, — p1 iscaled the risk difference and the ratio of rates p = p,/p; iscaled
the risk ratio or relative risk. Confidence intervals for the risk difference under the
Binomia model are found in Chapter 7.
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9.1 Methodology
9.1.1 Unconditional evidence

Data and model

e Rare events are observed to occur over time under two different sets of con-
ditions. The observed numbers x,,, x,, of these rare events in time intervals of
respective lengths #1, ., are recorded.

e Themeasurementsare modelled by independent Poisson processeswith respec-
tive rate parameters 111, 2. Thus for the first process the number X,, of rare
events has a Poisson distribution with parameter 11¢,, and similarly for the
second process Y,, ~Poisson (uzf2).

Questions

e What isthe evidence for apositive effect A = u, — nq; or, equivalently, for a
positive standardized effect § > 0 defined by Equation (9.2)?

e What is aconfidenceinterval for A or for §?

Test statistic and transformation to evidence

e A natural test statistic is A = fi, — 11 = Y,,/t2 — X,, /11, but its distribution
is complicated and the standardized version (A — 0)/SE[A] converges to the
standard normal distribution much slower than the evidence statistic 7; defined
below and first introduced by Huffman (1984).

¢ Asin the previous chapter, one can stabilize the variances of X, , Y;, to one by
applying the Anscombetransformationto obtain thestatistics Sxy=2,/X,,+3/8
and Sy=2,/Y,,+3/8. Then, letting t = 11 + 12, and g = 12/(t1 + 12), the evi-
dencefor A > 0isdefined by

T, =+\/1-qSy —q5x. (9.1)

e Forlargers, 1, thedistribution of 7; isapproximately normal with mean E[T] =
4/t 8 and variance 1, where the standardized effect § is defined by

§=2v/q(1-q) (V2 — V1r1). (9.2)
Under the null hypothesis, § = 0 and for large 11, t,, the statistic 7, is approxi-
mately standard normal.

e The Huffman (1984) statistic defined by (9.1) is a vst for this two-sample
Poisson problem and because E[T;] = /78, the Key Inferential Function is
especialy simple, K£(8) = 6.
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e For t1u1 >5 and ru, >5 the variances of Sy and Sy are reliably
stabilized near 1 (see Section 17.3.2); therefore the same is true for the test
dtatistic 7; , which gives the evidence for § > 0.

Interpretation

e The standardized effect § given by Equation (9.2) is a comparatively smple
function of the individual parameters v, and w,. But it cannot be rewritten as
afunction of the difference A aloneor theratio p alone. Thusthe statistic 7; is
a good measure of evidence, but it is not especially useful in itself for finding
confidence intervals for the risk difference or risk ratio.

e Theapproximate power of thelevel-« test based on 7, for detecting an alternative
81> 0is

1—B1) = (V181 — 21-0)-

This formula can be rewritten to give the expected evidence in terms of level
and power T = z1_o + 21-g(sy)-

Choosing the sample size to achieve a desired amount of evidence

e To obtain expected evidence T = /7 81 for astandardized effect 5, of scientific
interest when this effect actually exists, the total observationtime ¢ = t; + t»
must satisfy ¢ > {r/81}%. Individual observation times are found from
th = (1—¢g)t and 1, = gt. It is clear from Equation (9.1) that the maximum
evidence for agiven ¢ isobtained for ¢ = 0.5.

Confidence intervals

o Letc = zpg975 = 1.96. A nominal 95 % confidence interval for § is given by

[L,U =Y T —¢, T +c]. (9.3

The coverage of this interval is good when pit; >5 and ot > 5.
For fixed g the range of good coverage improves with .

9.1.2 Conditional evidence
Data and model
e The dataand model are exactly as in the previous section, but now the ratio of

rates p = o/ w1 is of interest. Inference is conditional on the observed total
X, + Y, = m which is assumed fixed.
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Questions

e What isthe evidence for aternative p > 1tothenull p = 1?

e What isaconfidence interval for p ?

Test statistic and distribution

e The conditional distribution of Y,, given X, + Y, = m is binomial with
parameters m and p = foua/(pnatipnz) = (1+ (¢ 1—=1p~H1, where
g = t/(t1 + 1) and p = uy/pu1 (see Lehmann (1986), pp.140-142). Let
Yiyjm ~ binomia(m, p) be a random varigble with this conditional
distribution; it is the test statistic for inference on p.

e The parameter p is a monotonically increasing function of p, with inverse
function p = (g1 — 1)(p~! — 1)~L. The hypotheses p = 1 versus p > 1 are
equivalent to p = g versus p > ¢. Large values of Y,,,, favor the aternative
p > ¢, so the traditional conditional test is carried out for an observed Yy, =
y by computing and evaluating the p-value P(Yy,, > y|p = g). For large
11, tp the statistic Y, is approximately normal with mean mp and variance
mp(1— p).

Transformation to evidence

e The conditional evidence Teong fOr the dternative p > ¢, and hencefor p > 1
is obtained by applying the vst for binomial distributed variables described in
Section 18.1to Sy:

Toona = 2¢/m {arcsin(y/p) — arcsin(y/g)}, (94)
where p = (Y, + 0.375)/(m + 0.75). Another expression isobtained viathe
trigonometric identity arcsin(y/x) + arcsin(l — 2x) = 7/2:

Teond = 24/m {arcsin(l — 2g) — arcsin(1 — 2p)}. (9.5)

o It followsfrom the properties of the vst transformed test statistic Y7, that Teong
is approximately normal with variance 1 and mean E[T] = ./m K(p), where
the Key is given by

K(p) = arcsin(1 — 2q) — arcsin(1 — 2p). (9.6)
Interpretation
e Recadll that thebinomial parameter p = p(p) ismonotonically increasing inthe

risk ratio p. Therefore one can interpret Teong as conditional evidence for the
aternative p > 1tothenull p = 1.
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e The approximate power of the level-« test for detecting an aternative p; > 1
can be found exactly asin Section 9.1.1.

Confidence intervals

e Let ¢ = zgg75 = 1.96. A nominal 95% confidence interval for « = K(p) is
given by

[L, U]l =m Y2[Teona — ¢, Teond + . 9.7)
e Let C = arcsin(1 — 2g) and write the inverse function to k = K(p(p))

_ 1-¢A—sin(C - €)

h(r) -
qg(14sin(C —«))

(9.8)

e A nomina 95% confidence interval for p is[h(L), h(U)].

e The coverage of the above intervalsis good for mp(1 — p) > 5.

Application to Bernoulli trials data

e In the preamble to this chapter it was noted that given a large number n, of
Bernoulli trialsindicating the occurrence of disease or no disease, say, and each
trial resulting in disease with small risk p;, the Poisson(ny p1) approximation
could be amodel for the number X, in the sample that have the disease. Let
Y., be the number in an independent sample of large size ny, small risk p,, so
that ¥, ~Poisson(nzp;). Then it is clear that the above conditional methods
(with#; = n;, u; = p;) apply totherelativerisk p = p»/p1. The unconditional
methods provide evidence for A = p, — p; > 0 and confidence intervals for
/P2 — /p1- Confidence intervals for A based on the Binomial model are
found in Chapter 7.

9.2 Example
9.2.1 Vaccination for the prevention of tuberculosis

The data in Table 9.1 are reproduced from Sutton et al. (2000). The data resulted
from 13 randomized clinical trials (RCTSs), each comparing a group vaccinated by
Bacillus Camette-Guerin (BCG) vaccine for the prevention of tuberculosis against a
nonvaccinated group, and originally reported by Colditz et al. (1994). It was suspected
that the distance from the equator affected the efficacy of the vaccine, and therefore
this covariate isinvestigated by means of meta-regression in Chapter 14.

The sample sizes in the RCTs are large and the risks of tuberculosis are rela-
tively small, so we model the data using the Poisson distribution. Here unconditional
and conditional evidence for each trial is calculated, and the two are compared.
Also calculated are confidence intervals for the relative risk p of tuberculosisin the
nonvaccinated group. All results are given in Table 9.2.
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Table9.1 Datafrom clinica trials of BCG vaccine efficacy, reproduced in a
modified form from Colditz et al. (1994).

Vaccinated Not vaccinated
Tria Latitude Disease No disease Disease No disease
1 44 4 119 11 128
2 55 6 300 29 274
3 42 3 228 11 209
4 52 62 13536 248 12619
5 13 33 5036 47 5761
6 44 180 1361 372 1079
7 19 8 2537 10 619
8 13 505 87886 499 87892
9 27 29 7470 45 7232
10 42 17 1699 65 1600
11 18 186 50448 141 27197
12 33 5 2493 3 2338
13 33 27 16886 29 17825

The trials in Table 9.1 vary considerably in both sample size and number of
diseased. Thetotal number of casesm variesfrom 8 (trial 12) to 1004 (trial 8), and the
total number of subjects N = n1 + n, varies from 262 (trial 1) to 176782 (trial 8).
Unconditional and conditional evidence for a relative risk p > 1 are listed in the
second and third columns of Table 9.2 and they nearly coincide. This is possibly

Table 9.2 Unconditional and conditional evidence, relative risk and its
confidence interval for the data from clinical trials of BCG vaccine efficacy.

Unconditional Conditional 95% CI for RR
Trial evidence evidence RR Lower Upper
1 157 1.55 243 0.95 6.95
2 412 4,16 4.88 2.40 10.79
3 2.24 2.26 3.85 1.37 12.80
4 11.58 11.78 4.23 3.36 5.36
5 0.95 0.95 1.24 0.86 1.81
6 8.99 9.04 2.19 1.89 2.55
7 3.19 3.20 5.06 2.29 11.36
8 -0.19 -0.19 0.99 0.89 1.10
9 1.99 1.98 1.60 1.08 2.38
10 5.67 5.74 3.94 2.54 6.27
11 3.00 3.00 1.40 1.17 1.69
12 -0.59 —0.56 0.64 0.17 2.19

13 0.06 0.06 1.02 0.65 159
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due to reasonably large values of N. Usually, conditional tests are considered to be
less powerful than unconditional, but we do not see this here. Evidence varies from
negligible(trials1, 5, 8, 12, 13) tostrong (trials4, 6, 10). Thenull hypothesisof equal
risksis rejected by traditional tests whenever the evidence is above 1.65.

The 95% confidence intervals for the relative risk p in Table 9.2 are based on
conditional inference, and are calculated from Equation (9.8). Note that the strength
of evidence and RR are not directly related: evidence also very much depends on the
total number of cases. Evidence in tria 6 is higher than evidence in trial 10, even
though the relative risk is only half asbig. Thisisduetom = 552 versusm = 82 in
the respective trials.
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Goodness-of-fit testing

Given observations x1, . .., xy from an unknown distribution, it is often desired to
think of them as asampl e from apopul ation which has shape similar to some standard
distribution F, where F may or may not depend on unknown parameters. Thisproblem
is called goodness-of -fit testing, meaning that the test is required to see how well the
distribution F fits the data. Only one test, the classic Pearson’s chi-square test, is
discussed in this chapter. We treat the case of fully known F foremost and only
briefly comment on the case of estimated parameters.

We do not recommend theindi scriminate use of the chi-squaretest in goodness-of -
fit problems. Its main disadvantage is the arbitrariness of the choice of the number of
intervals K (see below). There are better goodness-of-fit tests, such asthe Anderson—
Darling test or Shapiro—Wilks test for the normal distribution (see D’ Agostino and
Stephens, 1986). Rather, thischapter isincluded to demonstratethe breadth of possible
applications of our approach to evidence.

10.1 Methodology

Data and model

elet Xi,...,Xy be independent observations, each with the same
unknown distribution F, and partition the domain of F into K intervals, with
pr equalling the probability under F of an observation falling within the kth
interval. Denote by O, the observed number of observations falling in the kth
interval. The expected number of observations falling in the kth interval is
calculated as E; = Npy.

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
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Questions
e Arethe O,’sclose enoughto the respective E;’s so that the hypothesized model
F can be adopted? Or is there sufficient evidence to reject the model ?

e Arethe O,’stooclosetotherespective E;'s? That is, isthereanother explanation
for the very close agreement between model and data?

Test statistic and distribution

e Pearson’s chi-squared statistic C is defined by

K _ 2
c=>" (O — B0 (10.2)

e Pearson’s chi-squared statistic can be rewritten to bring more insight into its
properties. Under the true distribution F™ the probabilities p,((N) of an observa-
tion falling within the kthinterval are estimated by p\’ = 0, /N. The observed
numbers O, = p(N ) are compared to the expected numbers E; = Np;.. Then

the statisticis

2
K - Pk
k=1
e Under certain regularity conditions (see Chapter 3 of Greenwood and Nikulin

(1996)), for large N the null distribution of C is approximately x%_,; and
Pearson’stest rejects the hypothesized model F at level o whenC > x%_4 .95 -

e Under dternatives (see p.23 of Greenwood and Nikulin (1996)), the
Pearson statistic C of Equation (10.1) hasfor large N approximately ax%_;(Ay)
distribution, where

(10.2)

Transformation to evidence

e Evidence in the noncentral chi-squared statistic is found in Section 22.2. The
large-sample evidence in C for such alternatives A > 0 to A = O is obtained
from Equation (22.1), namely

Tx_1=hg_1(0). (10.3)
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e Thus rather than carrying out a traditional test and computing power for var-
ious alternatives, one can evaluate and interpret the evidence Tx_; which has
an approximate normal distribution, with standard error 1 in estimating its
mean defined in Equation (22.2). Inview of remark 2 following Definition 22.3,
for large N a simple-to-remember version of this Key is (9) = 6%/2, where
6 = 1/N, and the expected evidence E[Tx_1] = +/N K(6) = AY2.

Interpretation

e Asusual, werecommendthat Tx_; equal to 1.645, 3.3 and 5, each with standard
error 1, be roughly interpreted as weak, moderate and large evidence against
the model. A weak, moderate and large negative evidence is interpreted as an
evidence of a ‘too good to be true’ model fit. If Tx_1 were —3.3, say, this
result would be interpreted as moderate evidence for the existence of particular
reasons for an extraordinarily good fit between model and data.

e Greenwood and Nikulin (1996, pp. 27-28) remark that point hypotheses such
as Ao = 0 never really hold, and that one should really be testing A < Ag
against A > Ag, for some suitable choice of 1. This amounts to relaxing the
model assumption, and making it harder to reject the model(s) represented
by p1,..., px. They state that in many practical applications one can choose
2o = (1/NK?) >",(1/px); and, in particular for equiprobable intervals Ao =
1/N. Were this suggestion to be adopted, the appropriate measure of evi-
dence from Definition 22.6 would be given by Tx_1(Ao) = Tx—1 — ~/A0 =
Tx_1— 1/+/N . In practice this theoretical nicety is not likely to make much
difference to the evidence obtained.

e When the parameters of the distribution F need to be estimated from the data,
and these estimates are then used to calculate the expected values E; in the
Pearson statistic, it iscommonly stated that C ~ x%_,_,, wherer isthe number
of estimated parameters. In fact thisis true only when the parameters are esti-
mated from the cell counts O, and not from the original observations x;. Inthe
latter case, the distribution will lie somewhere between a chi-sgquare distribu-
tionwith K — r — 1and K — 1 degrees of freedom (see Chernoff and Lehmann
1954). Usually thisresultsin theinflated level of the goodness-of-fit test above
the nominal level. Luckily, the difference is not too large when the number of
intervals K islarge. Watson (1957) recommends K > 10 for anormal casewith
the mean and variance estimated by their sample counterparts.

Choosing the sample size

e Samplesize calculationsfor obtaining an expected evidence for afixed number
of intervals K and alternatived; = A /N arediscussedindetail in Section 22.4.1.
Alternatively, sample size calculations required to obtain a desired power are
given in Section 22.4.2. Such calculations are of not much value here, because
the choice of K isarbitrary and greatly affects the results.
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10.2 Example
10.2.1 Bellbirds arriving to feed nestlings

Table 10.1 gives the collective arrival times of bellbirds to a nest containing two
10-day-old nestlings. The mother bird isthe only female amongst the dozen bellbirds
arriving during a 90-minute period. The father of the nestlings is quarantined by the
zoologists, so the males can be considered potentia suitors, trying to impress the
female by their paternal efforts in feeding the nestlings.

It would be easier to test this hypothesisif one could model the arrival timesasa
Poisson processin time. For such a process, given that the number of arrivals during
the observation period is N, the arrival times have the same joint distribution as if
they were drawn independently from the uniform model on thisinterval (see Karlin
and Taylor (1975), p. 126). This result is the basis for a goodness-of-fit test for a
Poisson process. Arethe N arrival pointsdistributed ‘ at random’ within the interval?
That is, are they consistent with the uniform model or are they too regularly spaced
or too clumped together to be consistent with a Poisson(i) process?

The bellbird arrival data do appear more or less uniformly distributed over the 90
minutes, with small gaps at 40 and 85 minutes. The gap at 40 minutes can be partially
explained by the arrival of a much larger bird, a currawong.

10.2.1.1 Testing for ‘randomness’ of arrivals

The method is to partition the observation interval into K intervals of equal length,
each having probability 1/K under the uniform model, and test for ‘randomness
by comparing the expected number in each interval E, = N/K with the observed
number Oy viathe statistic C = >, (O — E)?Ey. In this case both large values

Table10.1 Arrival times of bellbirds to a nest during a 90-minute
observation period, after conversion from minutes and seconds to decimal
notation. The data were kindly supplied by Dr Michael Clarke of the School
of Zoology, La Trobe University.

0.000 0.250 2.250 2.583 2.750 3.200 3.500
3.750 4.583 5.583 5.666 6.500 6.666 7.000
7.750 9.166 9.750 10.000 11.083 15.666 15.833

16.500 17.833 18.083 18.916 19.416 21.833 22.666
22.750 24.133 24.750 26.166 26.250 26.500 28.500
29.916 30.333 30.583 32.333 33.166 33.500 34.333
35.166 35.666 36.250 36.500 38.833 39.000 43.583
44.500 49.000 50.833 50.916 51.000 51.250 51.833
52.166 53.250 54.333 55.000 55.333 56.916 57.333
57.666 57.916 58.666 58.750 59.916 60.716 62.916
65.500 66.250 66.833 67.250 67.916 69.916 71.333
72.250 73.166 76.583 77.583 78.583 78.750 79.750
81.666 82.483 88.916
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of C and small values of C raise doubt about the hypothesis of a Poisson process.
Large values suggest finding another model which explains the agglomeration of
observations, while small values suggest finding a model which explains why the
arrivals are so regular.

An analogous test for complete spatial randomness is often carried out when
observations are pointsin the plane, such as locations of treesin aforest, or of cells
growing in culture in a dish. The observation region is partitioned into a grid of
K equal-area regions, and the number of points falling within each region are the
observations Oy.. See Diggle (1983) for examples.

Returning to the bellbird data, there are N = 87 observations in the 90-minute
period. If oneuses K = 6 intervalsof length 15 minutes each, the expected number in
eachinterval is E; = 87/6 = 14.5. The observed numbers O, are 19, 17, 14, 18, 11
and 8, respectively, leading to a chi-sguared statistic C = 6.45and Ts = hg7(6.45) =
0.59. Thisresult hasstandard error 1, so can be considered neutral, discrediting neither
the uniform distribution of the arrivals, nor the hypothesis of randomness of arrivals.
If C had been 11.9, then T5(C) = +1.645 and we would say there is weak evidence
against the model in favor of amodel which allowsfor more agglomeration of points
than a uniform model. The traditional Pearson chi-squared test rejects at level 0.05
for C = 11.07.

If the result had turned out near C = 0.98 with Tg7; = hg7(0.98) = —1.645, or if
C = 0.09with Tg7 = hg;(0.09) = —3.3, thenwewould say thereisweak or moderate
evidence for the nonrandomness, and look for a specific reason why thereis so much
evidence: possibly the birds avoid each other, so the gaps between arrivals are more
regular than would be expected from random arrivals.
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Evidence for heterogeneity of
effects and transformed effects

Given K studies, it is customary in the meta-analytic literature to carry out a chi-
sguared test of the hypothesis of homogeneity of effects using Cochran’s Q statistic,
introduced by Cochran (1937, 1954). If the test fails to reject it is then assumed the
effectsareequal, and an estimate of the common effect can beobtained; if it doesreject
then an alternative model which allowsfor different effectsisassumed. In this chapter
we measure the evidence for the alternative of unequal effects, and also evidence for
unegual transformed effects. In either case, the evidence for heterogeneity isdifferent
for fixed and random effects models, so will be presented in separate sections bel ow.
The theory is given in Chapter 24.

11.1 Methodology
11.1.1 Fixed effects
Data and Model
e Given K studies of sizes n; measuring potentialy different effects u,, for
k=1,...,K.

e The estimated effects i, for the respective studies are mutually independent
and approximately normal with variances w; *.

e The inverse variances w; are used as weights for the effects u;, and their
estimates are denoted by wy.

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
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e Denote the weighted mean effect by ji,, = > wiur/ > wy and its estimate

~

Hg = > Wi/ > wy. For equal effects uy = [, for al k.

e Standardized effects are denoted by §;, and transformed (standardized) effects
by xx = K(8x), where K is the Key for the model, which is assumed to be
the same for all studies. These transformed effects can be combined with
weights n; to obtain x = > nykx /N, where N = > n; is the tota sample
size.

e Evidenceinthekthstudy satisfies T;, ~ N(,/niki, 1), to agood approximation.

o Transformed effects are estimated by k; = Ti//ny ; for each k the estimator i
is approximately normal with mean «; and variance n,jl. Their weighted mean
iSk = Enk/%k/N.

Questions

e What is the evidence against the null hypothesis of homogeneity of effects
Hp : i = pforal k andfor the aternative of heterogeneity Hy @ w; # uy for
some j # k?

o Alternatively, what is the evidence against the null hypothesis of homogeneity
of transformed effects Hj : «, = «foral k andfor thealternative HY : «; # ky
for some j # k?

Test statistic and distribution

e Totest for the homogeneity of effects, Cochran’s Q is defined by
Q= Wil —itz)>. (119
k

Larger values of the test statistic favor the alternative H; of the heterogeneity
of effects over the null Hy of homogeneity.

e For a fixed number of studies K and simultaneously growing sample sizes
ny — oo (see Section 24.1.1 for details), the distribution of Q isapproximately
x%_1(1) with the noncentrality parameter A = > wy (g — jiy)2. Under the
null hypothesis Ho, A = 0 and Q hasthe central x%_; distribution.

o Totest for thehomogeneity of transformed effects, thetest statistic Q* isdefined
by
Q" = m(ky — &) (11.2)
k

Larger values of Q* favor the aternative Hy of heterogeneity of transformed
effects over the null Hg of homogeneity.
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e For afixed number of studies K and simultaneously growing samplesizesn;, —
oo, the distribution of Q* is approximately x%_,(»*) with the noncentrality
parameter A* = > ni (kx — «)%. Under the null hypothesis Hg, A* = O and Q*
has the central x2 _, distribution.

Transformation to evidence

e The evidence for heterogeneity in Q is defined by

To=+0 —m/2 —+\/m/2, (11.3)

wherem = x%_, o5 isthe null median. This formulaonly appliesfor Q > m.
For O lessthan itsnull median it is defined by a symmetrization argument (see
Definition 24.1 in Section 24.1.2 for details).

e For large individual study sample sizes totaling N, Cochran’s Q is approxi-
mately distributed as x%_; (). Then Ty, is approximately N(zy, 1), where for
6 = 1/ N theexpected evidenceisty = /N K(0),and K = Kx_1 y isgivenby
(22.2). ThisKey for the noncentral chi-squared model is very complicated, but
for A, N increasing without bound and A /N approaching 6, the Key approaches
K(6) = /6. Under the null hypothesis Hy, o = 0and Ty ~ N(O, 1).

e The evidence in O* for heterogeneity of transformed effects is defined to be
thevstin (22.1) applied to 0*, and denoted T-. For large sample sizes T ~
N(zp-, 1), where the mean evidence is given by tp- = VN K(1*/N). Under
the null hypothesis H§, to- = 0 and Ty« ~ N(O, 1).

e Inthe normal model with equal sample sizesn;, = n described in Section 24.2
the variance of T, isreliably stabilized near 1 for n > 80, and the variance of
Ty forn > 20.

Interpretation

e Hypotheses (Hy, H1) and Cochran’s test based on Q are concerned with het-
erogeneity of effects u, whereas hypotheses (Hg, Hy) and the test based on
Q* are concerned with heterogeneity of transformed effects «;. In general,
these two problems are different. It is possible to have homogeneous effects
and heterogeneous transformed effects, or the other way round.

e Theapproximate power of thelevel-o Tp-based test for detecting an alternative
A>D0is

1—B() = 2(WNKG/N) — 21-0).
This formula can be rewritten to give the expected evidence in terms of level
and power: T = z1_o + 21-80)-

¢ Theusual methodol ogy can be used for samplesize cal culations, and confidence
intervalsfor the noncentrality parameter A derived. Neither seemsto be of much
practical interest.



80  EVIDENCE FOR HETEROGENEITY
11.1.2 Random effects

Data and model

e Continuing with the assumptionsand notation of Section 11.1.1, further assume
e ~ N(u, y?); the parameter 2 > 0 is called the interstudy variance. Then
the estimated effects i, for the respective studies are independent and approx-
imately normal: jiz ~ N(u, wit + y?).

e Alternatively, let the transformed effects «;, ~ N(k, ¥?). Then the estimated
transformed effects ;. for the respective studies are independent and approxi-
mately normal: k; ~ N(k, 1/n; + y?).

Questions

e What is the evidence against the null hypothesis of zero variance component
Hy : y? = 0 (equivalent to the null hypothesis of homogeneity of study effects
ux = p for al k, or homogeneity of transformed effects «; = « for all k) and
for the alternative of a positive variance component Hy : y? > 0?

Test statistic and distribution

o If the hypotheses about the raw effects i, are of interest, the test statisticisthe
Cochran’s Q defined by Equation (11.1).

o |If the hypotheses about the transformed effects «; are of interest, the statistic
Q* isappropriate.

o Larger valuesof thetest statistics Q or Q* favor thealternative H; of thenonzero
variance component over the null Hy of homogeneity.

e For a fixed number of studies K and simultaneously growing sample sizes
ny; — oo (see Section 24.1.1 for details), the null distribution of Q or Q* is
approximately central x%_;.

e The distribution of Q or Q* under alternatives y? > 0 differs from the dis-
tribution under aternatives of heterogeneity of fixed effects; for equal sample
sizesn, = N/K — oo and fixed K it is vescaled central chi-square distribu-
tion (1+ y?>N/K)x%_,. Otherwise it is a quadratic form in normal random
variables.

e For fixed sample sizes n;, and K — oo the distribution of both Q and Q* is
approximately normal with moments given in Equation (24.11).

Transformation to evidence

o Let M, =), w, be the sum of rth powers of the weights, and define
a= My — My/M; and b = My — 2M3/M; + (M2/M1)?, c = b/a® and d =
c(K—-1) —1
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e Theevidence 7, in Cochran’s Q (known weights) for the alternative 2> 0is

defined by (24.12) as
T 1 In cQ—d++/d+ (cQ —d)?
°7 Vac 1+Vd+1 ’

e The evidence 7). in Q* for y? > 0 is defined by (24.12) using the known
Weights Wy = Ng.

Interpretation

e The statistics O, O* have the same null distributions under both fixed and ran-
dom effects models. However, the alternatives themsel ves and the distributions
of these statistics under alternatives differ under the fixed and random effects
models. This resultsin differently defined evidence.

e Ingeneral, theevidencesfor heterogeneity in 7, and 7. for therandom effects
model are smaller than their fixed effects mode! counterparts Ty and Ty-. Both
increase with the number of studies K as the +/K; but the evidence for fixed
effectsincreases at the rate \/n for an average study sizen = N/K compared
to therate In(n) for random effects. Therefore the evidence for random effects
isunlikely to be large for small K regardless of study sample sizes.

o If the weights need to be estimated, then the moments (24.11) are only esti-
mated, and therefore vst (24.12) may not be reliable. This extra source of
variability caused by unknown weights undermines 7, and 7;,. Therefore the
inference using T+ and 7. which is based on transformed effects « and uses
known weights n;, is recommended.

11.2 Examples
11.2.1 Deaths by horse-kicks

We build on the analysis in Section 8.2.1 of the Bortkiewicz data on the numbers
of soldiers killed per year by horse-kicks in each corps in the Prussian cavalry. The
death rates over 20 years are denoted by ;. for each of K = 10 corps. The observed
death rates /i, and evidence T}, for the alternative . > 0.5 to the null © < 0.5 are
listed in columns 3 and 6 of Table 8.1. The ‘sample sizes' are the numbers of years
of observation, n; = 20 for all 10 corps.

Here the objective isto ascertain whether the death rates are homogeneous across
the corps. Assume the estimated death rates satisfy iy ~ N(ux, pux/nx), SO the esti-
mated weights for Cochran’s Q are wy, = ny/ /i, and the estimated weighted mean
is ﬁw = 0.544. Cochran’s statistic for heterogeneity is O = 13.19 with p = 0.154
found from the 3 distribution. The evidence for heterogeneity in Q is Ty = 0.960,
whichisnegligible.
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The choice of uo = 0.5 in this example does not affect the homogeneity (or lack
thereof) of theraw effects; the Q-test islocation invariant. For the transformed effects
ki = 2(\/itx — /o) of the Poisson model given by Equation (8.3) heterogeneity (or
lack thereof) measured by O* is aso free of the choice of g, for the same reason.

The estimated transformed effects are i, = Ti/./nx and their weighted mean is
k=" ngkr/ > n, = 0.122, leading to 0* = 14.54 with p = 0.105. The evidence
in O* for heterogeneity of transformed effects Tp- = 1.177, slightly more than that
in Tp. One might expect them to be equal, given that the «;’s are a monotonic
function of the w;’s, but Q and Q* are different statistics. Generally speaking, Q
approachesits limiting noncentral chi-squared distribution slower than does O* (see
Chapter 24).

Looking at the contribution of each corps to the value of QF = ny (&, — £)? it
can be seen that corps XIV with the highest death rate contributes the largest term,
8.32, followed by corps V111 with the lowest death rate, contributing 2.43. Still, these
values are not large enough to make the overall evidence for heterogeneity worth
further consideration.

11.2.2 Drop in systolic blood pressure

We continue the analysis of the Mulrow et al. (2004) datagivenin Section 4.3.1. The
objectiveisto assess the effectiveness of aweight-reducing diet for reducing systolic
blood pressure in seven different studies. The average drop in systolic blood pressure
for ny patients (y) and ny, controls (x;) and their pooled standard deviations speol
were used to calculate the two-sample pooled z-statistics 7, with vy, = ny +ngy — 2
degrees of freedom and the evidence for a positive effect T,. All these values are
shown in Table 11.1. In this example the raw effects of interest are differences
in means pu; = py — uy estimated by iy = yx — xx. The standardized effects of

Table11.1 Seven studies comparing drop in systolic blood pressure for treated
patients undergoing a weight-loss regime from Section 4.3.1. Sample sizes ny;, and
n, the estimated effect i, pooled sample standard deviation speol, x, two-sample
t-statistic #y00,  aNd evidence for a positive effect Ty for each k are tabled along with
contributions of each study to homogeneity statistics Q and Q* denoted by Q, and
0y}, respectively.

k Nk n2j Lk Spool, k Tpool, k T; Wy Ok QZ

1 24 27 -5.0 1380 -1.29 —-1.24 0067 477 420
2 18 20 5.9 8.10 2.24 211 0144 086 1.99
3 o4 66 7.0 16.43 243 239 0120 151 121
4 9 10 7.0 14.48 1.05 094 0023 028 0.20
5 25 24 —-7.0 1851 -1.32 —127 0036 391 425
6 5 5 7.3 6.18 1.87 142 0.065 097 113
7 14 19 2.6 6.34 1.16 109 0201 015 019
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interest, known as Cohen’s d (Cohen 1988), are §; = /oy for acommon, to treat-
ment and control groups, standard deviation o} estimated by the pooled standard
deviation spool -

To ascertainwhether the differencesin meansare homogeneous acrossthe studies,
the estimated weights are Wy = nyna /{(nu + nZk)sgka}, and the weighted mean
is ﬁu = 3.46. Cochran’s statistic for heterogeneity is Q = 12.45 with the p-value
p = 0.053 found from the Xé distribution. The evidence in Q is Ty = 1.491 which
isweak.

The estimated transformed effects are &, = Ti/+/nu + nx and their weighted
meanisk = Z(nlk + nzk)l?k/Z(nlk + ny) = 0.113. Thisleadsto O* = 13.17with
p = 0.041. The evidencein Q* is Tp- = 1.605, which is weak evidence for hetero-
geneity of transformed effects. Looking at the contribution terms of each study to Q
and Q*, itisseenthat studies 1 and 5 (the only two studieswith negative results) make
the main contributions to both statistics. In addition, study 2 makes a considerable
contribution to O* but not to Q. This study has the second largest effect, and also a
comparatively small standard deviation, resulting in alarge standardized effect.

11.2.3 Effect of psychotherapy on hospital length of stay

We continue the analysis of Mumford et al. (1984) dataintroduced in Section 4.3.2.
The objectiveisto compare the effectiveness of treatment * psychotherapy’ with con-
trol ‘no therapy’ for reducing length of stay (LOS) in hospital in days for eight
different studies. The data are given in Table 4.2. The sample variances suggest that
heteroscedasticity is present within most studies, so the Welch two-sample ¢-statistic
is employed.

Entries from Tables 4.2 and 4.3 needed here are collected in Table 11.2. The
row effects are the differences in mean LOS under two treatments, estimated by

Table11.2 Statistical summaries of eight studies from Mumford et al. (1984) are
listed in columns 2-8. The results compare mean difference in length of stay
in hospital for patients receiving psychotherapy and no therapy. For each study k
are given sample sizes ny;, and ny, the estimated effect (i, scale parameter oy,
standardized effect §;, Welch statistic fwech, » and evidence Ty, for a positive ;.

A A

nig nox fk Ok Sk welch.k Tx Ki

13 13 -150 855 -—-0.175 —0.895 —-086 —0.168
50 30 —-120 403 -0.298 —2.662 —-261 -0.129
35 35 —240 1583 —0.152 —-1.269 —-124 -0.148

O~NO O WNE| =

20 20 020 314 0.064 0.403 0.39 0.062
10 10 018 1.72 0.105 0.469 0.44 0.099
14 13 -060 202 —-0.297 —1.544 —-147 -0.283
9 9 —222 331 -0.671 —2.845 —253 —-0.598
8 8 —-0.88 226 —0.388 —1.554 —-141 -0.352
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fue = Xox — X1 The standard errors of these estimates are 6, /+/Ny, where N, =
ni + nog.

The estimated standardized effects are §;, = ix/6%. The estimated transformed
effects i, are k; = Nk’l/2 T, and are listed in the last column of Table 11.2. Six
of the eight studies yield negative effects which suggest that psychotherapy does
make a difference. In this discussion we wish to test whether the effects (raw and/or
standardized effects) are homogeneous.

Cochran's statistic for heterogeneity is O = 14.204 with p-value 0.048 found
from the x2 distribution. The evidence for heterogeneity of fixed effects in Q is
Ty = 1.54, which is very wesk.

The statistic for heterogeneity of the transformed effects is 0* = 8.814 with p-
value0.266. Theevidencein 0* is0.594. Thereisnegligible evidencefor heterogene-
ity of transformed effects. This happens because comparatively large standardized
effectsin thelast three studies correspond to small sample sizes, and therefore do not
contribute much to Q*.

11.2.4 Diuretics in pregnancy and risk of pre-eclamsia

We continue the analysis of Collins et al. (1985) datafrom Section 7.2.2. The objec-
tiveistoinvestigatethe possible benefit of taking diureticsduring pregnancy to prevent
pre-eclamsia. The raw effects are the differences in absolute risk of pre-eclamsiain
nine clinical trials of ny patients and ny, controls, k = 1, - - -, 9. The total sample
sizes are N, = ny, + ny. The standardized effects of interest are correlation effect
sizes py. The evidence for a positive effect 7, was calculated from the vst (19.1).
Thedata, correlation effect sizes p, and estimated transformed effects k; aregivenin
Table 7.1. Here we calculate evidence for heterogeneity of fixed transformed effects,
and also the evidence for random transformed effects.

The statistic for heterogeneity of the transformed effectsis 9* = 22.4, and the
evidence for heterogeneity in Q* is amost moderate at Tp- = 2.41. The constants
required for calculation of the evidence for random transformed effects given by
(24.12) arec = 0.268andd = 1.145. Thevalueof 7). = 1.900. Thusthereisaweak
evidencefor random transformed effects. Asexpected, the evidencefor heterogeneity
of random effectsisweaker than that for fixed effects, but in this example the random
transformed effects model is a reasonable way forward, whereas combining very
heterogeneous effects through the fixed equal effects model is rather foolhardy.

By contrast, there is no need to even calculate the evidence for random effectsin
any of the previous examplesin this section; it would be even weaker than the weak
to negligible evidence we found for the heterogeneity of fixed effects which was
calculated. Another consideration in adopting arandom transformed effects model is
whether the K studies can reasonably be viewed as arandom sample of studies from
alarger population of studies.
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Combining evidence: fixed
standardized effects model

In the previous chapter quantitative methods for helping to decide whether to choose
a fixed or random standardized effects model are provided. Therefore it is assumed
here that the researcher has aready decided to adopt a fixed standardized effects
model.

The choice between ‘fixed and equal’ and ‘fixed but unequal’ standardized effects
modelsis aided by the evidence T,- in Q* for heterogeneity of the transformed stan-
dardized effects ky, which indirectly measures the heterogeneity of the standardized
effects 8;, because al «; = K (), and K is a monotonically increasing function
assumed common to all models.

The distinction between the fixed and equal and fixed but unequal standardized
effects modelsis conceptually important but the methodology is exactly the same. In
thefirstmodel al 5, = § areassumed equal and of course§ isthe parameter of interest;
inthe second model, the §; are combined by § = K~ («), where « isaweighted mean
(weights equal to the sample sizes) of the «;'s. The theory is given in Chapter 25.
Other options for the heterogeneous case are presented in Chapters 13 and 14.

The standard meta-analytic approach is to first carry out a Cochran Q-test for
homogeneity of raw effects and, if it is not significant, combine the effects from the
respective studies using a weighted mean, with estimated inverse variance weights.
The same approach can be adapted to standardized effects. These methods are also
illustrated here for the sake of comparison and completeness. Their theory is well
established and available in many books on meta analysis from Hedges and Olkin
(1985) to Sutton et al. (2000).

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
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12.1 Methodology

Data and model

e Given K studies of sizes n;, measuring potentialy different effects ., for
k=1....K

e Theestimated effects i, k = 1, ..., K, for the respective studies are mutually
independent and approximately normal with means (i, and variances wk‘1 esti-
mated by @, *. A representative u for the K studies could be i, = 3, wyptx/

Zj w;.

e Standardized effects are denoted by 6§, and their transformed versions by «; =
K (8k). Their weighted mean isk = >, nyki/N, where N = > ny isthe total
sample size.

e Evidence in the kth study for §; > 0is T, which is approximately distributed
N(/ny ki, 1). Thetransformed effects are estimated by &y = 7/ /1y ; theesti-
mate &y, is approximately normal with mean «; and variance nk‘l.

Questions
e What is an estimate of a representative effect  and a confidence interval
for u?

e How does one define a representative standardized effect § for the K studies,
without assuming that the §,'s are equal ?

o What isthe evidencefor § > 0?

e What is a confidence interval for such as?

Transformation to evidence

o A representative « for the K studiesistheweighted meanx = >, nyki/N; and
the representative § = K~1(«). If it turns out that all §; are equal, this § equals
the common value, because «k;, = K(8;).

e Given independent (T3, ..., Tx), the combined evidence for § > 0 in the
K studiesis
Jn1 T Jng T,
Tyg = S VAT (12.1)
Vh1+ -+ ng

Asusual, when Ty.x isnegative, its magnitude |71 | isinterpreted as evidence
for § < 0. Because of the properties of the individual 7;’s, the combined evi-
denceis approximately normal with mean E[T1.x] = +/N « and variance 1. For
further discussion of this definition, see Section 25.2.2.
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Interpretation

e The combined evidence Ti.¢ lies on the calibration scale, so can be interpreted
as an estimator of its expectation with a standard normal error. It alows for
cancellation of positive and negative evidence from conflicting studies.

Confidence intervals

e Theweighted meanof effectsji,, = >, wipi/ Y, wristraditionaly estimated
by ;iw =, Wefk/ > Wi; and the 100(1 — «) % confidence interval for i,

has endpoints (1, + z1-4/2/+/>_; Wi - If the effects are equal to 1, say, then of
course thisis a confidence interval for u = j1y,.

e A 100(1 — @) % confidence interval for « has endpoints defined by (Ty.x +
Z1-a/2) /~/N . Aninterval of the same confidence for § = K~1(x) is obtained
by applying K ~* totheseendpoints. If thestandardized effectsareequal to §, say,
then it isaconfidenceinterval for the common §, rather than the representative
3 that transforms into the weighted average of the «;'s, defined earlier.

e Whentheeffects i, are one-to-one functions of the standardized effects §;, two
different interval estimates for the representative effect can be obtained from
the above two approaches. The interval based on the transformed standardized
effects technique has, generally speaking, better coverage properties due to the
variance stabilization process, which also improves the normal approximation.

Extension required for nuisance parameters
e When the Key K depends not only on a standardized effect § but aso on a
nuisance parameter &, the standardized effects are x;, = KC(&, &).

o If the Key is strictly monotonic in both arguments, a representative & can be
defined. The choice& = > ni& /N seemsreasonable; for more discussion, see
Section 25.2.3.

° Onge AareprwentAatives isdefined, itsesti mate% canbeusedto solvetheequation
K(5, &) =k foré.

° EndApoi ntsof thelevel 17 a confidenceinterval for 8§ = K~(«, &) aresolutions
for & to the equation KC(8, &) = & + z1_4/2/v/N .

12.2 Examples
12.2.1 Deaths by horse-kicks

We continue with the analysis of these dataand model from Section 8.2.1 and thetest
for heterogeneity in Section 11.2.1. Recall that for each of the 10 cavalry corpsin the
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Prussian army, the numbers of deaths by horse-kicks were modeled by the Poisson
distributionwith respectiverates i, , and theevidences T, for ;> 0.5foundfor each
corpsarelisted in Table 8.1. Further, we found negligible evidence for heterogeneity
of effectsand similarly negligible evidence for heterogeneity of transformed effects,
so we adopt the fixed and equal standardized effects model. The representative « is
related to the common mean 1 by k = K(u|po) = 2(\/i0 — /1t0), Where g = 0.5.

The evidence for « > 0 is given by Equation (12.1), and for equal sample sizes
of n; = 20 reduces to Tr.10 = 3 10, Tx/+/10 = 1.73, which is weak evidence for
noncompliance of regulations i« > 0.5. Note that thisis slightly less than the weak
evidence Togo = 2.09 for 1 > 0.5 obtained in Section 11.2.1. This latter measure of
evidence utilized the fact that all 10 cavalry corps could be considered as a whole,
with the same Poisson model. This example suggests that it is better to combine all
the K study test statistics before carrying out a single variance stabilization to obtain
evidence, rather than use avst for each and then combine the evidence. However, the
former option will not be available for most models.

Another objective is to find interval estimates of the representative standard-
ized effect §. But for the one-sample Poisson model § = (1 — 10)//ito and we are
more interested in an interval for u. Aninverse transformation to find . is given by
Equation (8.4) asIC~1(y| o) = (Max((y/2 + /10), 0))2. Theestimated transformed
effectsi, = Ti//nx andtheir weighted meank = > ngicx/ > Ny = 0.122werecal-
culatedin Section 11.2.1. Theestimated deathrate 1 = X~1(0.122) = 0.506, and the
95 % confidence interval for the death rate is[0.489, 0.701]; it is found by applying
K~1(y|1o0) to the endpoints of the interval for « which are (T1.19 & 1.96)/4/200.

The standard meta-analytic estimates are jz,, = 0.544 and the confidence interval
ﬁw + 21-a/2/+/ > wr = [0.442, 0.646]. Interestingly, i < ﬁw but the correspond-
ing confidence interval is more to the right. The first interval should have better
coverage, as follows from discussionsin Sections 17.3.5 and 17.3.6.

12.2.2 Drop in systolic blood pressure

We build on the analysis of the Mulrow et al. (2004) data in Section 11.2.2. The
objective is to assess the effectiveness of a weight-reducing diet for lowering sys-
tolic blood pressure in seven different studies. The estimated raw effects i, are the
differences in average drop in systolic blood pressure for ny, patients (y;) and ny
controls (x). The sample sizes are N, = ny; + nx, and the standardized effects of
interest are Cohen'sd; = /o, where acommon unknown standard deviation oy is
estimated by the pooled standard deviations spea « (Se€ Section 4.1). The evidence T
for apositive standardized effect d;, > Oisbased onthetwo-sample pooled z-statistics
ty, with all results givenin Table 11.1.

The estimated transformed effects ©,=T7;/+/N; and their weighted mean
k=>" Niki/ Y Ny=0.113 were calculated in Section 11.2.2, along with the evi-
dence for heterogeneity of Ty« = 1.605. So thereis only marginal to weak evidence
for heterogeneity of transformed effects. We adopt the fixed but unequal standard-
ized effects model. This means that we need to define a representative standardized
effect 6.
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For each study & the transformed effect is «; =K (/g (1 — qr) di) , where K (x)=
V2 sinh™(x/+/2) and g = ny/Ni. Here the Key is a function of both d; and the
study-specific constant ¢; (see Section 4.1). Therefore a representative value of ¢
should be chosen prior to solving the equation « = K(/g(1 — ¢) ) for a represen-
tative standardized effect 5. Let g = > Nygx/N = > _ny/N = n/N, so that g isthe
overall proportion of patients undergoing the weight-reducing diet. Then

V2 sinh(k/+/2)
Vad-¢

An estimate for § is § = 8,4(k). A confidence interval for « has endpoints (k £
zl,a/g)/ﬂ. Applying the function §, to this interval yields an interval for § with
the same confidence coefficient.

The evidencefor § > Oisdefined in (12.1) and equal to T1.7 = 2.06.

A point estimateof §is§ = 0.227 withthe 95 % confidenceinterval [0.068, 0.386].
Note that the confidence interval is not quite symmetric around §: the lower limit
is § — 0.1588, and the upper limit is § + 0.1595. This reflects the skewness of the
noncentral ¢-distribution.

8 =08,(6) =
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Combining evidence: random
standardized effects model

In Chapter 11 quantitative methods for deciding whether to choose afixed or random
standardized effects model are discussed, so it is assumed here that the researcher
has already decided to adopt a random standardized effects model. Thus there is
good reason to suppose an interstudy variance component y? > 0 exists and must be
accounted for. Whilewediscusstwo estimatesfor y, both are biased upwardsfor small
y, and small y seemsto betherule, not the exception, in applications. Fortunately, itis
not necessary to estimate y to find evidence for a positive standardized effect §, or to
find interval estimatesfor § in the presence of y. The theory is given in Section 25.3.
For other optionsto proceed in the case of heterogeneous effects, seethe fixed effects
model in Chapter 12 and the meta-regression in Chapter 14.

13.1 Methodology

Data and model

e For each of K studies adopting the same model, evidence T; is availablein the
kth study for apositive standardized effect §;, > 0. Further, for the same Key K
common to al the studies, the transformed standardized effects are defined by
K = IC((Sk)

e For the fixed standardized effects model, T; ~ N(/nx ki, 1), and the trans-
formed effects are estimated by &y = Ti/./nx, which are approximately
distributed N(ky, n,jl). Here the k;'s are constants.
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e For the random standardized effects model, the «;’s are assumed to be a
random sample from the N(k, y?) model, where «, y? are unknown; and the
just described distributions for the fixed model are now considered to be condi-
tional distributions, with the kth conditional on the value of «;. It follows that
the unconditional distribution of & is approximately N(x, n,jl +9?). The
parameters of interest are « and the representative standardized effect § =
K~1(x). For more discussion of this model, see Section 25.3.

Questions
e What are point estimates of the mean transformed effect « and of the interstudy
variance component y2?
e What isthe evidencefor « > 0?

e What is aconfidence interval for « and for 8§ = K~1(x)?

Point estimates of the mean transformed effect ¥ and § = K~1(x)

o Letik = (X, &)/K and s2 = Y, (& — k)?/(K — 1) denote the sample mean
and variance of the k;’s.

e Clearly i isan unbiased estimator of «, with variance Var[k] = ¢2/K, where
1 1
2__ .2
o=y + — Ek —nk.

It is left to the reader to show that E[s?] = 02, s0 s2 is an unbiased estimator
of o2, and one can estimate o without estimating 2. Thus approximately
i ~ N(x, E[s?]/K), and the standard error of estimation is SE[k] = s,/vK .

e The standardized effect § = K~(k) is estimated by § = K~1(k).

e Anaternative unbiased estimator of x employed for the case of fixed effectsin
Chapter 12 isk = > nyik/N. For this model its distribution is N(x, N~1(1 +
¥2>"n2/N)). The two estimators i and & coincide when the sample sizes are
equa ny =n=N/K .

Test statistic and transformation to evidence

e First note that when the sample sizes are all equal to n, the «;'s are just a
random sample from N(x, o%) with o = y? + 1/n. It followsthat /K ic/s, ~
tx—1()), with noncentrality parameter A = /K «/o. This noncentral Student
t-distribution can also be useful when the sample sizes are large enough so that
their reciprocals are small compared to 2.

e Thetest statistic for an aternativex > 0is Sx_1 = VK k/sq.
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e The evidencefor ¥ > 0 and hence § > 0 isgiven by

T, =«/2Ksinhl< « )
1.X \/ESK

Interpretation

e Whenall samplesizesareequal, this T}, isapproximately normal with variance
1 and mean E[T;*¢] = v/2K sinh~}(«/+/20). This mean evidence is mono-
tonically increasing in « and monotonically decreasing in y, because o2 =
1/n + y?. Thus a large number of studies K will be necessary to find even
weak evidencefor « > O when y islarge.

e When all sample sizes are approximately equal, or al their reciprocals small
compared to 2, the above results are expected to still be applicable, because
simulations of #-intervalsfor « found under these conditions demonstrate good
coverage probabilities.

Confidence intervals for mean transformed effect « and § = IC"1 (k)

e For equal samplesizesn;, = N/K anomina 100(1 — «) % confidence interval
for x has endpoints[L, U] defined by & & 1x_11-a/21/5%/K .

e [K~1(L), K~1(U)] covers§ with the same confidence coefficient.

e The above intervals are approximately valid for any general sample sizes ny
when they are large enough so that the values 1/n; are small relativeto y? (see
Section 25.3).

e In Section 25.3 it is shown that confidence intervals based on k are not reliable
under the random transformed effects model, so are not recommended.

Estimates of the parameter y?

e Recall theCochranstatistic 0* = 3~ ny (kx — )2 of Equation (11.2) for assess-
ing heterogeneity. Its expectation can be used to derive the method of moments
estimator 72, = (Q* — (k — 1))/(N — Y_n%/N), but this can take on nega-
tive values. DerSimonian and Laird (1986) proposed the modified estimator
72, = max{0, $2,} in order to correct this problem.

e Variance Var(y%) = Var(Q*)/(N — >_n?/N)?, where Var(Q*) is given in
Equation (24.11). The variance is small only when the number of studies K
islarge.

e Another estimator ? is 2 = max{0, s2 — + 3", 1 }. Once more, the variance

Ry

of p2issmall only for large K. Simulations show that both estimators are biased
upwards for small 2.
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13.2 Example
13.2.1 Diuretics in pregnancy and risk of pre-eclamsia

We continuethe analysisof the Collinset al. (1985) datastudiedin Sections 7.2.2 and
11.2.4. Theobjectiveistoinvestigate the benefits of taking diuretics during pregnancy
on the risk of pre-eclamsia by combining the evidence from nine clinical trials. The
raw effectsarethedifferencesinabsoluterisk Ay = py — pa for ny patientsand n g,
controls,k = 1, ..., 9. Thesamplesizesare N, = ny; + ny. Thestandardized effects
of interest are correlation effect sizes p, = Ax//C,, where ¢, are study-specific
parametersdefined by ¢ = {px(1 — pi)}/{qx(1 — q)} for gx = na/(nu + nz), and
P = qpu + (L — qr) pa- Theevidencefor apositive effect T, was calculated from
thevst (19.1). The data, correlation effect sizes p and estimated transformed effects k
aregivenin Table 7.1. Thereisaweak evidence 7j,. = 1.900 for random transformed
effectscalculatedin Section 11.2.4. Therandom effectsmodel isused hereto combine
the evidence for a positive representative correlation effect p.

The statistic Sx_1 = 1.796 and the p-value of 0.055 when performing a con-
ventional ¢-test for ¥ > 0 may be found from central rg-distribution. The evidence
T{i.x) = 1.749 seems|arger than it should be when compared to the p-value until we
recall that the evidence in the ¢-test (or any other evidence) isnot routinely calibrated
to provideavalue of 1.65when p = 0.05 (see Section 20.4.1 for discussion). If such
a calibration were desired, a corrected evidence Teorrected = 1.596 is calculated as
(1—0.7/(K — 1))v/2K sinh™1(Sx_1/+/2K), assuggested in Section 20.4.1. In any
casethereisaweak evidenceof apositive correl ation effect, sotherisk of pre-eclamsia
may be reduced by diuretics. The point estimate of transformed effect is = 0.079
and the 95 % confidenceinterval for « is (—0.022, 0.181). Finaly, point and interval
estimates of the correlation effect p are p = 0.079 with the 95 % confidence interval
(—0.022, 0.180).

It would be very easy to calculate point and interval estimates of the standardized
effect §, sinces? = p?/(1 — p?), butitisnot straightforward to estimate representative
absoluterisk difference A. To do that areasonable common value of ¢ isheeded, and
there is no evident way to define such avalue.

The estimates of interstudy variance are rather different: 5, = 0.003 and 35 =
0.013. Sincethe number of studies K = 9isnot large, the variation of these estimates
is rather high, and the confidence intervals for p and « given above are also rather
wide.

For comparative purposes, the same evidence was combined under fixed trans-
formed effects model, even though this model may be wrong to use due to high
heterogeneity (0* = 22.4and Ty« = 2.41). Thevaluesare p = 0.057, withthe 95%
confidence interval (0.034, 0.081). This interval is considerably more narrow than
theinterval for p under random effects.
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Meta-regression

In a meta analysis results from several studies are combined. When the studies are
heterogeneous, straightforward combination of test results may be too simplistic
and more sophisticasted techniques should be used. One such technique is meta-
regression. In this model, the effect sizes estimated in the individual studies are
modeled asfunctions of one or more characteristics of the studies (see Thompson and
Higgins 2002). The meta-regression model (fixed effects regression) is an extension
of the fixed effects model and is most appropriate when al variation above and
beyond the sampling error between study outcomes can be accounted for by the
covariates included. A mixed model is more suitable when the covariates explain
only part of the variation, and arandom effect term is used to account for aremainder
(Sutton et al. 2000, Chapter 6). Only fixed effects regression is considered in this
chapter.

Because the transformation of the study outcomes to evidences by applying an
appropriate vst ssimplifies the distributional properties, it is easier to formulate an
accurate model.

14.1 Methodology

Data and model

e The basic data consist of the observed evidence 71, . . ., Tx from K studies of
samplesizesn;, j=1,..., K.

o LetY; =k;=n;"*T; ~ N(K(8,), n;*) bethe estimated transformed effects,
which are related to the (standardized or raw) effects §; asindicated.
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e In addition, we are given u < K predictor variables X = (X1, ..., X,), dl of
which are study characteristics.

Questions

e What is the evidence that the covariates, which describe the characteristics or
circumstances of the studies, are related to the effect sizes §?

e To make the relationship between the covariates and the raw effect linear,
one has to apply alinearizing transformation f(8), which is usually treated as
known. The model then only depends on a u-vector of regression coefficients
(B1, ..., B,) andisof theform f(§) = B1 X1+ --- + B.X,. Inthismodel, the
regression coefficients relate directly to the raw effects .

e Thetransformed effectsk;, = K(3;) have estimates with approximately normal
distributions. No additional linearization isneeded. Thissuggeststhealternative
model k = B1X1 + - - - + B, X, inwhichtheregression coefficientsaredirectly
related to the transformed effects. This corresponds to a nonlinear model for
theraw effects, § = K~(B1X1 + - - - + B.X.). Thetwo models are equal when
JC) equals ().

e What are the estimates and confidence intervals for the regression coefficients
:611 ey ﬂu7

Theory

¢ Inthefirst model, which involves alinearizing transformation, we propose the
model

Yo = K(f 7 BiXaa + - + BuXw) + &, (14.1)

where we assume that ¢, ..., ¢ are independent with ¢, ~ N(O, n,{l). This
choiceisjustified by the fact that the estimated evidences are roughly normally
distributed.

e Relationship (14.1) is a nonlinear regression model with known variances. It
is aso part of the family of generalized linear models (GLMs) with the link
function g(y) = f(K~(y)) (see McCullagh and Nelder, 1999, for the general
theory of GLMS).

e The simpler model is a weighted linear regression model with known weights
ny, because the response variable Y has an expectation that is linear in the
covariates and a known variance of 1/n;

Y= ,BleZL +---+ ,BuXku + €. (142)

The two models (14.1) and (14.2) are equivalent when KC(-) = f(-).
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Using standard software

e The GLM analysis can be performed in a number of statistical software pack-
ages, including R, SPLUS, SASamong others. Usually the software hasalist of
ready-made link functions, corresponding to particular familiesof distributions,
but the functions of interest to us are not included. It is, however, possible to
pass the required information in the form of the link function g(y), itsinverse
g 1(-) anditsderivative g’ (-). Detailsdiffer for different software packages. One
may also need to specify a variance function, the description of the variance
as a function of mean. Since the errorsin (14.1) are normally distributed, the
variance function is constant. Most statistical packages aso include routines
for nonlinear regressions, which is an alternative way of fitting (14.1).

e Thelinear regression model relating Y linearly to the covariates (14.2) iseasiest
tofit. Virtualy all statistical packagesinclude aleast squares regression solver.

e In al casesthe sample sizes n;, must be used as case weights.

e The software for GLMs, nonlinear and linear regressions will compute avalue
for the squared global scale parameter o2 and make use of it in computing stan-
dard errors and confidence intervals. In our models, this global scaleis known
to be equal to one.

What to look for in the output

e Theestimates By, . .., B, of coefficients are obtained directly from the output.

e The standard errors of the estimates of the regression coefficients from the
output should be divided by the estimated global scale ¢ to account for the
fact that the global scale is one. These corrected values of standard errors are
denoted by s.e. [8:] in what follows.

Tests and confidence intervals

e The t-tests for coefficients B, # 0 given in the output should be changed to
z-tests based on the values of z = 6t. These can easily be transformed to two-
sided evidence.

e A confidence interval for the coefficient B is given by [f; =+ s.e. [5k]zl_a/2].

e The weighted residual sums of squares for regression or so called deviances
for GLMs are x%_,-distributed. They can be used for lack-of-fit testing, and
transformed to evidence for lack-of-fit via Equation (22.1).

e Supposeamodel H, C H, hasonly v parameters 84, . . ., B, whereas a model
H, includes u > v parameters B, ..., Bu, Buvt1, - -, Bu- The difference of
weighted residual sums of squares (or deviancesin the case of GLMs) has the
x2_, distribution, and can be used to test 8,,1 = ... = B, = 0. Large values

indicate nonzero coefficients, i.e. thelack of fit of model H, ascomparedto H,,.
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Traditional meta-regression

e Model (14.1) is a counterpart of the weighted regression for effects tradition-
aly used in meta analysis. This model assumes a normal distribution for the
linearized effect sizes f(6) and usesweights equal to theinverse estimated vari-
ancesof f(8). Sometimeslogistic regression isused when the effects of interest
are odds ratios. See Sutton et al. (2000, Chapter 6) for more details.

¢ Inthemode (14.1) theweightsareknown samplesizes, not estimated variances.
The results are thus more stable. In addition, the assumption of normality is
better justified due to the vst that was applied when computing evidence and
prior to the meta modeling.

14.2 Commonly encountered situations

In this section we discuss some common situations in which meta-regression is used.
Consider ametaanalysisof K two-sample studies (treatment versus control) of sizes
Ny = ny + ny, respectively. Throughout the remainder of this chapter, the subscript
k which ranges over the studies, is often suppressed for simplicity of notation. The
additional index is 1 for control and 2 for treatment. Denote by g, = ny /Ny the
proportion of observationsin the trestment arm of a study.

We will consider three common types of effects in this section. First, Cohen’s
standardized effect deonen = (U1 — c) /o, next the difference A = pr — pc of two
binomial proportions and finally the relative risk p = wur/uc for two Poisson rates.

14.2.1 Standardized difference of means

When the outcome of interest is a continuous variable and the variances o2 are
assumed to be equal between the two arms of a study, the results are usually reported
as standardized differences of the means for the two arms of the study dconen =
(¥2 — X1)/Spooled- IN this expression, x, and x; are the sample means, and spooled IS
pooled standard deviation. This statistic is an estimate of deohen = (U2 — 1) /o (See
Cohen, 1988).

In Section 4.1 the comparison of two group meansisdiscussed. The standardized
effect size is § = (¢(1 — ¢))Y?(u2 — 1) /o, wWhere g = ny/(n1 + n»). The corre-
sponding two-sample r-test statistic is fpogled = V/N§. This has a t-distribution with
v = N — 2 degrees of freedom and the corresponding vst is Azorin’s (1953) trans-
formation with the key

K@) = v/2sinh™(8/+/2) = V2In(8/v2 + /1 + 82/2).

To perform a GLM or nonlinear least squares meta-regression the linear rgl&
tionship between the covariates and the effect sizes is assumed to hold for d =
(g(1 — ¢))~Y?5. Thelink functionisthus g(y) = (¢(1 — ¢))~Y2K~1(y), where

K~Y(y) = V2sinh(y/v2) = {exp(y/v/2) — exp(—y/v/2)}//2.
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Theinverse link function is
g () = K((g(1 - g)?x) = V2sinh™*((q(1 — 9))"x/V/2),
and its derivativeis
g0 = (q(L— ) VAExPp(y/v2) + exp(—y/v/2)) /2.

When the variances in the two arms of a study are not assumed to be equal,
the Welch ¢-test should be used instead of the z-test with pooled variances, and the
appropriate vst may be found in Section 4.2.

14.2.2 Difference in risk (two binomial proportions)

Consider alinear model for a difference in risk in ametaanalysis of K studies. The
risk in question may bearisk of adisease and atreatment under consideration may be
amedical intervention or abehavioral change, such as a smoking cessation program.
The number of casesin the treatment and control arms (X, or X; respectively) can
be modeled as binomial random variables, and the differenceinrisk isthe difference
of binomial proportions A = p, — p; between the two arms of the study.

This basic model is considered in Chapter 19. Asusual, g = ny/(n1 + n). The
parameter p = gp1 + (1 — q) p> andfunction¢ = {p(1 — p)}/{g(1 — ¢)} introduced
in Section 19.1.1, are needed to specify the key function, which is given by (see
Equation (19.1))

K(A) = arcsin(A /7). (14.3)

Becausetherangeof A isrestricted, variouschoicesfor thelinearizing transformation
f(-) may beuseful. The key function incorporates one of the standard choices, so that
we may again take f(-) to betheidentity. Thelink functionisthen g(y) = K~1(y) =
/€ sin(y) withderivative g’ (y) = /¢ cos(y). Theproportions p; and p, areestimated
by p1 = (X1 4+ 0.5)/(n1 + 1), po = (X2+0.5)/(n2 + 1), and substituted into the
formulaefor A, p and ¢, to obtain estimated transformed effects Y = KC(A).

If, alternatively, alinear model isassumed for correlation effect sizesp = A //Z,
take g(y) = sin(y).

14.2.3 Log relative risk (two Poisson rates)

Consider ametaanalysisof K largestudiesof araredisease. The numbersof observed
cases X, and X1 can be modeled by Poisson random variables, and the relative risk
(RR) istheratio of Poisson rates p = o/ of thetwo arms of the study. Thisbasic
model was considered in Section 9.1.2.

For each study, conditionally on the total number of responses X; + X, = w, the
number of cases under treatment follows a binomial distribution,

Xogiven X1 + X, = w ~ B(w, p).

Asintheprevious case, variouslinearizing transformations f{(-) are considered in the
literature. One of the standard choicesisthelogarithm of therelativerisk In(p) related
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tothe parameter p vialinearizingtransformationin(p) = In(g~* — 1) — In(p~* — 1).
For the meta-regression, this quantity is chosen as the response variable.
The appropriate key is

K(p) = arcsin(1 — 2q) — arcsin(1 — 2p), (14.4)
andtheinversefunctionisK—1(x) = (1 — sin(arcsin(1 — 2¢) — x))/2. Thelink func-
tion isthus

(14.5)

1+sin(C —
g(y) = fK™ () =log(g™* — 1) — log (W> ’

1—sin(C — y)

whereC = arcsin(1 — 2g). Theproportion pisestimatedby p = (X2 + 0.375)/(w +
0.75), and it isused to obtain estimated transformed effects Y = KC(p); alinear model
isfitted for g(Y) = logp = log((g~* — 1)(p~* — 1)~Y). Theinverselink function is

_l( )_ C arcsin M
& W= Re™ +1

where R = ¢g~! — 1 and the derivativeis
2

$0) = s =)

14.3 Examples

This section presents two examples of meta-regression. First an example of meta-
regression for standardized differencesin means taken from Section 8.F.2 of Hedges
and Olkin (1985) is considered. Then ameta-regression for log relative risk of tuber-
culosis originally reported by Colditz et al. (1994) is refitted.

14.3.1 Effect of open education on student creativity

Effect size estimates from K = 10 studies of the effects of open versus traditional
education on student creativity are given in the Table 14.1. The covariate of interest
isthe grade level. Sample sizes for both modes of education are equal in each study,
and the effect size is dcohen = (X2 — X1)/Spooled- The variances in the two arms are
assumed to be equal (see Hedges and Olkin, 1985, pp. 185-187). Hedges and Olkin
usethevst transformation with the key function K(d)=g~1(d)=+/2sinh~(d/(2+/2))
before performing the standard linear model analysis, which testsfor thedifferencein
grades 1-3 (coded 1) versus grades 4-8 (coded 2). This correspondsto the regression
model (14.2).

Hedges and Olkin found the effect of open education to decrease significantly
in grades 4-8, with mean —0.327, and 95 % confidence interval [—0.484, —0.170].
The residual sum of squares (RSS) for their model is 31.285; and this model (which
includes grade differences only) is rejected at the 0.01 level using a chi-sguared
distribution with K — u = 8 degrees of freedom. A linear regression may be a better
model, providing an intercept of 0.5202 and slope of —0.1106 per grade, with RSS
equal to 27.821 till with 8 degrees of freedom.
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Table14.1 Effect size estimates from 10 studies of the effects of open versus
traditional education on student creativity, reproduced with minor changes from
Table 4, Section 8.F.2 of Hedges and Olkin (1985). The values of dy areinfact
slightly corrected unbiased standardized mean differences, but the difference
between these values and dconen Values is uniformly less than 0.02 across the table
and is therefore ignored.

Grade
Study level ny =ny dy P
1 6 90 —0.581 —0.288
2 5 40 0.530 0.263
3 3 36 0.771 0.381
4 3 20 1.031 0.505
5 2 22 0.553 0.275
6 4 10 0.295 0.147
7 8 10 0.078 0.039
8 1 10 0.573 0.284
9 3 39 —-0.176 —0.088
10 5 50 —-0.232 —-0.116

The other model (14.1) uses a norma GLM with link function g(y) =
2+/2sinh(y/+/2). Notethat g = 1 — g = 1/2 for each study. Both methods provide
similar answers.

The GLM approach with the response variable Y = & = g~*(d) aso showsasig-
nificant decrease in the effect of open education in grades 4-8, with mean —0.657
and 95% confidence interval [—0.974, —0.339]. Residua deviance is exactly the
same value of 31.285 we had before, and the lack-of-fit evidence is rather strong
at 3.259. Using grade as a continuous predictor, the model equationisd = g(¥) =
1.053 — 0.224 grade, with adjusted confidence intervals for the regression coeffi-
cients being [0.589, 1.516] for the intercept, and [—0.322, —0.125] for the slope.
The residual deviance is 27.742 with 8 degrees of freedom, and the lack-of-fit evi-
dence is 2.91. This is till not a perfect model. The plot of fitted versus observed
valuesof Y = g~1(d), and the QQ plot of theresiduals are shownin Figure 14.1. The
QQ plot is much better than for the model with dichotomous grade level.

14.3.2 Vaccination for the prevention of tuberculosis

Thedatafrom K = 13RCTseach comparing agroup vaccinated by BacillusCal mette-
Guerin (BCG) vaccine for the prevention of tuberculosis against a nonvaccinated
group, originally reported by Colditz et al. (1994), wereaready consideredin Section
9.2.1 and reproduced in Table 9.1. It was suspected that the distance from the equator
affected the efficacy of the vaccine, and therefore this covariate is to be investigated
in the meta-regression. Latitude was centered by subtracting its mean (33.46). Since
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Figure 14.1 Plot of fitted versus observed values of Y = g~1(d), and the QQ plot
of residuals for the GLM model of effects of open versus traditional education on
creativity with grade as a continuous covariate.

only the distance from the equator and not the sign is of interest, the negative sign in
study 9 carried out on the opposite side of the equator was dropped for the analysis.

14.3.2.1 Standard meta-regression with fixed effects

In the origina study the log(RR) of disease in vaccinated group, defined as 6 =
logp = log(uz/m1) was the response variable. Here the index 2 corresponds to
‘vaccinated’ and 1 to ‘nonvaccinated’ . The inverse variances of log(RR) were used
as weights in a standard weighted regression based on a normal approximation to
log(RR). The answer was

6 = —0.635 — 0.029(x — 33.46),

where x isthe distance from the equator in degrees latitude. Asthe distance from the
equator increases the log(RR) decreases, corresponding to greater vaccine efficacy.
To use correct tests and confidence intervals, the standard errors for the coefficients
were divided by the MSE 1.672. The adjusted confidence intervals for intercept
and slope are [—0.722, —0.547] and [—0.034, —0.024], respectively. The RR for
the average distance from the equator observed in the trials is an exponent of the
intercept estimate, which is 0.530. Similarly, the confidence interval for the RR is
[e0722, ¢=0547] = [0.486, 0.578].

The plot of log (RR) versus the distance from the equator, and the QQ plot of
the residuals are shown in Figure 14.2. The radii of circles on the left-hand plot
correspond to the weights of trials. The model isdriven by trials 6, 8 and 11. The QQ
plot shows three outliers.
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Figure 14.2 Plot of distance from the equator versus log (RR) with regression line
log(RR) = a + bx, and the QQ plot of residuals. Theradii of circles on the left-hand
plot correspond to the weights of trials. The labels are trial numbers. The model is
driven by trials 6, 8 and 11.

14.3.2.2 Meta-regression based on conditional standardized effects

The use of the Poisson approximation to the binomial is discussed in Section 18.4.
Following a recommendation of Decker and Fitzgibbon (1991) it can be used only
for small probabilities satisfying p < 0.47/n%3L. For the BCG data this condition is
satisfied for al trials except tria 6, in which the probabilities in both arms are too
large. In trial 2 the proportion of disease in the not vaccinated arm p = 0.1 isonly
dightly higher than 0.47/1°3! = 0.08. The data-generating mechanism can thus be

2 3

Pearson Residuals
0 1

log RR g(Y)

-1

-2

1 0 1
X Quantiles of Standard Normal

Figure 14.3 Plot of distance from the equator versus log RR g(Y) with the linear
fit g¢(Y) = a + bX from GLM, and the QQ plot of residuals. The radii of circles on
thefirst plot correspond to the inverse numbers of casesin trials. The labels are trial
numbers.
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approximated by the Poisson distribution, and the conditional key function (14.4)
can beused. Thisisamore adequate approach since transformed standardized effects
KC(p) are assumed to be normally distributed, whereas the log (RRs) themselves are
not. Let usfit amodel for log (RR) in the nonvaccinated group using the generalized
linear model (14.1) and the link function (14.5). Let w be the total number of cases
ineachtrial, and X, and X be the numbersin each subgroup (nonvaccinated versus
vaccinated). Response variable Y is a vector of transformed standardized effects
for conditional evidence (given total number w of cases in each trial) calculated as
Y = arcsin(1 — 2¢g) — arcsin(1 — 2p)), with p = (X, + 0.375)/(w + 0.75).
Thefitted model is

¢(Y) = logRR = 0.6513 + 0.0302(x — 33.46).

Note that the coefficients are very close to those from the standard meta-regression.
Thesignisoppositebecauseintheoriginal model theRRwasdefinedas /1, andin
(14.4) it was defined as as 1/ iu2. The estimated dispersion parameter iso? = 2.618.
The standard errors need to be divided by +/2.618. Adjusted confidence intervalsfor
the regression coefficients are [0.561 to 0.742] and [0.0249 to 0.0355], respectively.
The width of these confidence intervals hardly differs from the width of confidence
intervals for the standard meta-regression.

The plot of log RR g(Y) as afunction of the distance from the equator, and the
QQ plot of residuals are shown in Figure 14.3. The QQ plot is much better than for
the previous model. Its superiority to the QQ plot from the standard meta-regression
results from almost true normality of transformed standardized effects as opposed to
dubious normality of log RR.

Thenull devianceis164.2759 on 12 degrees of freedom, and theresidual deviance
is 28.8021 on 11 degrees of freedom. Thus the evidence for badness of fit is 2.53.
Thisis certainly not a perfect model as can be seen from the spread on the plot.
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Accounting for publication bias

A well-planned study may fail to generate the hoped-for amount of evidence. The
reasons may include an insufficient sample size, a smaller than expected effect size,
or imprecise and highly variable measurements of the influence of the treatment. By
combining several low-powered studies, stronger evidence may be obtained. Thisis
the idea that underlies meta-analysis. Publication bias is in some sense an inverse
outcome. A result enters the published record with a claimed evidence that is exag-
gerated. Thiscan be caused by aselection bias. If small studiesarerun repeatedly, one
or afew of them may produce weak evidence. Because the published weak evidence
is the maximal amount observed in repeated trials, this can happen even if the null
hypothesis of a zero effect sizeistrue.

If weknow something about the sel ection mechanism, the published evidence can
be corrected. The use of avst that |eadsto approximate normality with fixed variances
simplifies the necessary computations.

15.1 The downside of publishing

Data and model

¢ In ameta analysis one combines the available and comparable studiesin order
to obtain a more precise estimate of an effect. We assume that the estimated
evidences of K studies have been published. Thus, K couples of study sizes
and evidence values (ny, T;) for k =1, ..., K are at our disposal. These can
be combined to give evidence

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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Tcombined = \/n_lTl i MTK s (15.1)
for whichthesumn = ny + - - - + ng isthe appropriate sample size. The com-
bined effects found by a meta analysis often appear to overstate the evidence
and to be biased in favor of the alternative. Such a bias could be due to a
nonrandom selection of the studies, for example by favoring those studies that
show a large effect. Publication bias is the name given to such a selection.
Because the meta analyst only has access to published studies and because
studies are only published if they show a significant effect, a selection biasis
created.

e To model the publication bias, we suppose that the observed evidences satisfy

T ~ TN (Jng k. 1, 1.645),

where 7N denotes the truncated normal distribution with center ,/ny «, vari-
ance 1 and truncation point 1.645. Truncation at 1.645 meansthat al evidences
smaller than 1.645 are absent. Thetruncated normal density isconstructed from
anormal density by setting the value of the density equal to zero to the the left
of the cutoff point. The resulting curve is not a density, because it encloses an
area of lessthan one. To makeit into adensity, one multiplies by the necessary
constant.

This is the simplest possible explanation of the selection bias. To make
the model more general, we could choose another truncation point or make
the truncation point depend on the study. We could also make the effect size,
expressed by the value of «, depend on the study. But the positive side of such
modifications — they render the model more realistic — have to be balanced
with the negatives: they complicate the model’s use and make its results less
transparent.

Under the truncated normal model, some studies are absent from the pub-
lished record and wetake care of this by assuming knowledge about the mecha-
nism for truncation. A better model is obtained by adding an additional feature,
the number of missing or absent studies. The user of this model must specify
the number of missing studies. By doing this, one gains control over the bias
correction introduced in the meta analysis. Adjusting the cutoff point would
serve asimilar purpose.

Question

o |f Equation (15.1) gives a biased account of the combined evidence, how can
we correct for the bias?

Bias correction

e Based onthe sample (n;, T;) (i = 1, ..., K), the cutoff point and the number
of missing studies, a statistical estimate of x can be derived. The details of
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the calculation are explained in Chapter 26. Let kmea be this estimate. The
bias-corrected evidence estimate is then simply

Tineta = ~/N1 + -+ + g Kmeta.

Interpretation

e By construction, becausethe metaanal ysi stakesthe missing studi esinto account
and corrects a bias in favor of the aternative, we have Tieta < Teombined- BY
increasing the number of missing studies from zero, a decrease in Tinea Can be
observed and we recommend to compute the value for several choices.

15.2 Examples
15.2.1 Environmental tobacco smoke

Tweedie et al. (1996) give an example of relative risk estimates based on 36 case-
control studies. The disease these studies considered was lung cancer and the risk
factor was environmental tobacco smoke (ETS). The data given in the paper are
unadjusted risk ratios. The published valuesrange from 0.74 (no risk, ETS decreases
the occurrence of the disease) to 2.55 (large increase in risk for lung cancer due
to ETS). In Chapter 7 the transformation to evidence of risk estimates has been
discussed. There, risk isdefined asthe difference p1 — p,, where p; isthe probability
of the disease for the group with the risk factor activated and p, is the chance for
those with the risk factor absent. The relative risk on the other hand is equa to the
ratio RR = p]_/pz.

In order to prepare a data set suitable for our purpose, we needed a way to get
from one to the other. Assuming avalue for p,, thisiseasy and wefind p; — po =
p2(p1/p2) — p2 = p2(RR — 1). From the published data set, the sample sizes are
not known either. We made the assumption that each study used an equal num-
ber n; = ny = n of cases and controls. We were then able to infer the value of n
from the length of the confidence intervals for the relative risk given in Tweedie
et al. (1996).

Let R; = p2(RR; — 1) and N; = n; + n; denote the values for the risk and the
samplesizeintheith study. The evidenceisthen—up to the small sample corrections,
which are not important in this example — given by

T; = \/N; arcsin (R,-/\/m)’

where p; = (p1i + p2)/2 = p2 (RR; + 1)/2.
Conversely, we can infer the value of the relative risk RR from the evidence T
and the sample size N by solving the following equation:

p2 (RR—1)

Vi RRID2A-_pRR+ D2 o (T/V/'N).
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If there were selection bias, we would expect some studies at the lower end
of the evidence scale to be absent. A graphical inspection shows that the distribu-
tion of the 36 evidence values has a longer tail than the normal and its variance is
smaller than one. This could be the result of variation in the effect size « between the
studies.

Thecombination of the 36 evidenceval uesleadsto Teompined = 2.24, which corres-
pondsto arelative risk of 1.12. Assuming trunction with aknown number of missing
studies (censoring) and truncation point 1.645 leads to minimal corrections. When
the number of missing studies is for example set to five, we obtain Tinga = 2.19,
which correspondsto arelativerisk of 1.119. In this example we conclude that there
isweak evidence of an increase in lung cancer risk dueto ETS.
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Figure15.1 This plot shows the evidences obtained from 69 studies (Jané-Llopis
et al. (2003)). In the paper, the standardized mean differences are tabulated. We
assumed asamplesizeof 200individual sin each study and converted the standardized
mean differencesto evidence by asimplerescaling. In the left-hand panel the normal
density and an overlaid histogram of the evidence valuesis shown. In the right-hand
panel the sorted evidence values are compared to normal quantiles.
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15.2.2 Depression prevention programs

Jané-Llopis et al. (2003) report on a meta analysis of 69 studies on the effectiveness
of depression prevention programs. Figure 15.1 shows the sorted evidence values
versus normal quantiles. As pointed out in Jané-Llopis et al. (2003), the effects are
very nearly normally distributed, with the exception of four studies that reported
unusual findings. The plot reveals no publication bias due to suppressed studies near
thelower end. Sincethe paper does not contain sample sizes, we had to assumevalues
in order to apply the publication bias correction.

The combined evidence from the 69 studies equals 8.1 and speaks strongly in
favor of a positive effect. Assuming five missing studies modifies this value only
slightly downwardsto 7.9.

The two least significant studies have evidence values of —4 and —2. Deleting
these from the meta analysisresultsin an increased combined evidence of 9.0 instead
of 8.1. Correcting for publication bias assuming two missing studies with a cutoff
at evidence = —1.5, one abtains a corrected combined evidence of 8.3, which is
surprisingly close to the original value.

We have used these studies as an example for publication bias even though the
interest centers primarily on the differences between the study characteristics and the
influence of these differences on the outcome.
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16

Calibrating evidence in a test

Many scientistsregard the p-val ue asameasure of evidence against anull hypothesis,
while othersregard evidence better encapsul ated in aconfidenceinterval for an effect.
Two advantages of the p-value are that only one number is specified, and it has a
wide range of applicability. But the p-value also has numerous deficiencies which
have been widely documented: see, for example, Schervish (1996) and Goodman
(1998).

For us, theevidencefor an effect liesin atest statistic, and to measure the evidence
requiresonly atransformation to asimple calibration scale. On thisscalethe evidence
always has a standard normal error in estimating its expected value. Thus only one
number, the evidence for the effect, is reported, and it is always accompanied by a
known error distribution whichisfamiliar to al studentsof statistics. I nterpretation of
evidence isthen more natural and easily communicated to others. And interpretation
is possible under aternative hypotheses, extending the range of its usefulness.

This procedure further leads to confidence intervals for the effect, and facilitates
combination of evidence for the same effect from different studies. Having asimple
calibration scale allows for concentration on other important statistical issues of how
to choose alternative hypotheses, and whether to allow for different or even random
effectsin combining evidence from different studies.

Thepricepaid for calibrating evidence on such asimplescaleisthat one hasto get
there. Thisis donein theory by taking large enough samples so that the test statistic
or estimator isapproximately normal. But as many early statisticians pointed out, one
can a so get there with much smaller sample sizes by means of avariance stabilizing
transformation. What this meansin practiceisthat by applying avariance stabilizing
transformation to the test statistic, one can often achieve approximate normality, with
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standard deviation one, for much smaller sample sizes than required by central limit
theorem approximations.

Typically evidencewill be positive for apositive effect and negative for anegative
effect, that is, an effect in the opposite direction. One must allow for both, especially
when combining studies, so that conflicting results are allowed to cancel out. Because
of the symmetry of the normal calibration scale, it sufficesto define evidence for one
direction.

16.1 Evidence for one-sided alternatives

Let X have the normal distribution with mean p and variance o2, hereafter denoted
X ~ N(u, ). Inthis chapter we assume 1 is unknown and o = oy is known. One
may be interested in either testing a hypotheses regarding w, or in estimating w, and
these two problems are connected through the notion of statistical evidence.

For testing the null hypothesis Hy : 1 = o against the one-sided alternative
Hi: u > o we want a measure of the evidence against Hyp in favor of H;. Or,
if we do not have enough information to assume a one-sided aternative (the usual
case), then we want a measure of the evidence against Hy in favor of the two-sided
alternative H, : . # po. Thislatter problemispostponed until Section 17.4 because
first we need to get the calibration scale right.

Given arandom sample of observations X4, ..., X,, which are independent and
each distributed N(u, 03), the usua estimator of 1 and also a test statitic is S =
X, =Y, Xi/n. One rejects the null when S is large, because it is clear that large
values of S favor Hy over Hp. But what istheright calibration scale for the evidence
in S against Hy?

When estimating . the standard error of X, is og/+/n, which decreases at the
rate 1/./n, so one must effectively quadruple the experimental effort to double the
accuracy of the estimator of the unknown .. We take it as axiomatic that evidencein
favor of an alternative regarding . must grow at the same rate. It will be convenient
for what followsto definethe effect by 6 = 1« — g and thestandard|zed effectby 6 =
0/00. Inthis case thereis an obvious choice for estimating 6, namely 0, = X, — o-
It is evident that the null and alternative hypotheses can be restated in terms of 6
or §; for example Hp: 6 =0 against H; : 6 > 0. This simple model is called the
prototypical model.

We now define one-sided evidence against the null in favor of the positive alter-
native as any monotonically increasing transformation T = 7(S) of the test statistic
S for which T ~ N(E[T], 1); that is, for which T is on the unit normal scale for all
values of the parameters. A consequence of this definition is that evidence always
has anormal distribution with fixed standard deviation of 1, facilitating comparisons
between and combinations of evidence. Another isthat theevidence T isclosely iden-
tified with its expectation, in this case its mean © = E[T] = /n 6/0p. The standard
error of T in estimating 7 is 1.

In our simple model we can take T = /n (X, — j10)/00, Which is sometimes
caled the Z-test statistic. Clearly T ~ N(t, 1) for al w. As asimple example, fix
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o =5 and og = 5. Then for n = 4 and X4 = 10, the evidence against the null in
favor of the positive alternative is T = 2, with standard error 1 when considered an
estimator of the unknown 7. For n = 36 and X35 = 10, the evidence against the null
isT = 6, also with standard error 1.

The one-sided dternative i < o can be treated symmetrically, by replacing
T by —T. That is, negative one-sided evidence for i > g is positive one-sided
evidence for u < ug. Evidence for two-sided alternatives is defined in
Section 17.4.

16.1.1 Desirable properties of one-sided evidence

The reader will no doubt question the generality of the above definition, for once
the standard deviation o of the observations X; is unknown, or the distribution non-
normal, the test statistic S will have adistribution which is non-normal with variance
depending on unknown parameters. However, in many practical examples T can be
chosento stabilize thevarianceto 1, and simultaneously yield approximate normality.
We list below four desirable properties E1 to E4 for ameasure of evidence, whichin
practice are attained only to a certain, but usually sufficient, degree to measure the
evidence against the null hypothesis and for an aternative.

Let 6 be an unknown effect for whichitisdesiredtotest 9 = O against & > 0, and
let S be atest statistic which rejects Hy for large values of S. We want a measure of
one-sided evidence T to satisfy

e F,, theone-sided evidence T is amonotonically increasing function of S;
e E,, thedistribution of 7" isnormal for all values of the unknown parameters;
e E3, thevariance Var[T] = 1 for al values of the unknown parameters; and

e F,, the expected evidence T = 1(0) = Ey[T] is monotonically increasing in 6
from 7(0) = 0.

In the simple example of a normal model with known variance all of the above
properties hold exactly for evidence defined by the Z-test statistic; that is, estimated
standardized effect. In general, properties E, to E4 will hold only approximately, but
to asurprising degree, even for small sample sizes.

16.1.2 Connection of evidence to p-values

Thep-vaueforanobserved S = siscomputedby p = Po{S > s}, where Pyisthenull
distribution of S. Further, if T = T(S) satisfies properties E; to E3, then the p-value
can also be computed from the observed valueof T = tby p = Po{T >t} = ®(—1),
0t =t(p) = d (1 — p). Table 16.1 contains some values of #(p) for comparison
with p. Asasignificant promoter of p-values, Fisher (1926) originally suggested the
level 0.05, saying
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Table 16.1 Selected values of p, t(p) = ®~1(1 — p) and theratio 1(p)/1(0.05).
The second row is on the probit scale while the third row uses 0.05 as a
reference point. The traditional markers 0.05, 0.01 and 0.0005 represent
evidencein proportions1: /2 : 2.

p 0.0005 0.001 0.01 002 0025 005 01 0.1587
t(p) 3291 3.000 2326 2054 1960 1.645 1.276 1.000
t(p)/t(0.05 2000 1.879 1414 1248 1192 1.000 0.779 0.608

Personally thiswriter prefersto set alow standard of significance at the
5 per cent. point, and ignore entirely all results which fail to reach this
level. [Our emphasis.]

We somewhat arbitrarily describe valuesof T near 1.645 asweak evidence against
the null. Values of T which are twice as large we call moderate evidence, and val-
ues which are three times as large as strong evidence. Thus our definition of weak
evidence follows Fisher's low standard when the null is true, but we are otherwise
measuring evidence against the null on adifferent calibration scale, onewhich allows
for interpretation whether or not the null hypothesis holds.

Now the observed T = r is a monotonic function of the p-value; but the salient
difference between r and p isthat under alternativesthe p-value distribution ishighly
skewed and changing with sample size, making interpretation and combinations of
evidence difficult, as explained in Section 16.2.

16.1.3 Why the p-value is hard to understand
16.1.3.1 The p-value is a conditional probability

Thedefinition of thep-valuerequiresfour ingredients: first, anull hypothesisabout the
state of nature; second, atest statistic S which orders the outcomes of an experiment,
with the larger the value of S, the more evidence against the null hypothesis; third,
the probability distribution of the test statistic when the null hypothesis holds; and
fourth, an observed value of S = s from the experiment. The p-value of the outcome
S = s isthen defined to be the probability under the null hypothesisthat S > s. The
evidence is in the test statistic S and the p-value is a measure of ‘surprise’, with
smaller values of the p-value raising the question of whether the null hypothesis
could in fact be true. Note that the word ‘evidence' is used in the everyday sense of
the word.

The reason Fisher promoted the p-value is that he found it useful for discarding
unremarkable experimental results from those which might be worth further con-
sideration. Based on his experience with many experiments, he gave guidelines for
what might be considered significant p-values. But he did not intend that 0.05 should
become a standard for publication, or that p-values should be compared or used to
predict future experimental results.
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However, given its widespread adoption it was perhaps inevitable that not only
statisticians but scientistsin general would start trying to interpret it from frequentist
or Bayesian pointsof view. In particular, ascientist might ask whether one can expect
to obtain a similar p-value in an identical replication of the experiment; and if not,
why not (see the end of Section 16.2.2). Or, because p-values are often interpreted
naively astheprobability of the null hypothesis, given the data, one might ask whether
these concepts have anything to do with each other (see Section 16.4).

The above definition of the p-valueisaconditional probability, computed givenan
event S = sinaspecific experiment and therefore applicable only for that experiment.
It does not have any further interpretation. If onewantsto interpret it unconditionaly,
that is, from outside the particular experiment which led to it, one needs to define it
differently.

16.1.3.2 The unconditional, or random p-value

Let Sp be independent of S and have the null distribution of S. This Sy represents
the outcome of an independent repetition of the experiment, in which conditions are
identical to those of the original experiment, and in which the null hypothesis holds.
Then given S = s in the experiment just conducted, define the p-value by P(Sp > s).
This yields the same conditional p-value as above, because S and Sy have the same
distribution under the null hypothesis.

Now define the random p-value by PV = P(Sp > §) = 1 — Fo(S), where for
simplicity of presentation we assume the null cumulative distribution function Fy
(the cdf of Sp), is continuous. The cdf of PV, for0 < p < 1,is

Fpy(p) = P{PV < p} = P{1— Fo(S) < p}
= P{Fo(S) > 1— p} = P{S > Fy '(1 - p)} (16.1)
=1- Fi(Fy*(1- p)),

where F; isthe cdf of S. Note that this definition does not require F , the distribu-
tion of the original test statistic S, to be the same as the null distribution Fp. When
it does (F1 = Fp), it follows from (16.1) that Fpy(p) = p for 0 < p < 1, so the
random PV has the continuous uniform distribution on the interval [0,1]. When F;
differs from the null distribution, the random PV often takes on a very different
distribution.

16.1.3.3 Random p-value for the prototypical model

Let X ~ N(u, 1), with the hypotheses of interest being © = 0 and i > 0. Given
X = x, the ordinary (conditional) p-valueis P(Xp > x) = 1 — ®(x), where Xy has
the null distribution of X and is independent of it. The cdf of X depends on . and
iSF,(x) =P{X <x}=P{X —pn<x—pu}==>(x— u). The (unconditional) ran-
dom p-value based on X is PV(X) = 1 — ®(X). Substituting these resultsin (16.1),
oneobtainsitscdf Fpy (p)=1—F, (t(p))=P(t(p)—n), wheret(p)=®~1(1—p)isthe



118 CALIBRATING EVIDENCE IN A TEST

probit transformation discussed in Section 16.1.2. This cdf will be useful in deriving
properties of PV inthe next section.

16.2 Random p-value behavior

This section explainsin part why anew calibration scale for evidence in the p-value
isdesirable. For simplicity of presentation, let ;o = 0 and op = 1 inthe prototypical
model. Thus X ~ N(u, 1), the hypotheses of interest are u = 0 and 1 > 0 and the
random p-value based on X is PV(X) = ®(—X) = 1 — ®(X). The presentation is
for n = 1 observation, but results for any n can be obtained by replacing X by /n X,
and u by /npu.

16.2.1 Properties of the random p-value distribution

Let z, = ®~1(¢) denote the gth quantile of the standard normal distribution; that
is, ¢ = P(Z < z,), and define for each x the standard normal density by ¢(x) =
exp{—x?/2}/~/2x . Then for the prototypical model the random p-value PV hasthe
following properties:

e P;. Thegthquantileof thedistribution of PV(X) is p, = p,(1) = ®(z4 — ).
Thenotation p, = p, (1) emphasizesthat the gth quantile dependson . It may
also be expressed in terms of the power of the Neyman—Pearson level-(1 — g)
test, namely P, (X > z;) =1— ®(z; — n) = 1 — p,(u). With this formula
oneimmediately seesthat as i increases without bound, the gth quantile p, (1)
approaches 0 and the power approaches 1.

e P,. The expected value of the random PV(X) iSE, [PV (X)] = ®(—u/v/2).
The reason for stating this formulais that it is common to describe a random
variableinterms of its mean and standard deviation. Thiswe have already done
for the transformed p-value #( PV), where we found the mean to be 1 and the
standard deviation 1. But these are good summary measures only when the dis-
tribution is symmetric or nearly so. The p-value distribution under aternatives
is highly skewed, so the expected p-value is not a representative measure of its
distribution. In fact, it follows easily from properties P; and P, that:

e P3. The expected p-value equals the gth quantile of its distribution, where ¢
isgivenby g = ®(u(v/2 — 1)/+/2). For example, when 1 = 1, the expected
p-value equals the ¢ = 0.61 quantile of its distribution, and when u = 3 it
equalstheg = 0.81 quantile. Thusthe expected p-valueistotally unreliable for
representing the p-value distribution under alternatives. The expected p-value
was studied by Dempster and Schatzoff (1965) and more recently by Hung
et al. (1997) and Sackowitz and Samuel-Cahn (1999); the latter authors also
consider quantiles of the p-value distribution under aternatives and give an
application of their findings. Median p-values are investigated by Bhattacharya
and Habtzghi (2002).
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e P,. Thedensity of the p-valueis fry(p) = o(t(p) — w)/e(p)), 0 < p <1,
where t(p) = ®~1(1— p) foral 0 < p < 1. Thisformulais derived in Don-
ahue (1999). Plotting fpy (p) against p for any 1 > O reveasit to be concave,
monotonically decreasing and skewed to the right. Moreover, the plots change
shapewith u, so it is difficult to make comparisons between different p-values
under aternatives.

16.2.2 Important consequences for interpreting p-values

What are the implications of the above results P; to P, for interpreting the evidence
in the p-value? A good way to grasp the implications is to consider some quantiles
of the corresponding distributions. The p-value and corresponding probit-value X =
t(p) are related by a monotonically decreasing function so the gth quantile of one
distribution transforms into the (1 — ¢)th quantile of the other. For example, the
g = 0.5 quantile or median of X is u, and this corresponds to the median p-value
®(—un). When = 1.645, the median p-value is ® (—1.645) = 0.05. The reader is
asked to study the plot of 7(p) versus p in Figure 16.1, and find the corresponding
guantiles of these two distributions.

Next takethe g = 0.75 quantile of the evidencedistribution whichis i + 0.6745;
it transforms into the (1 — ¢) = 0.25 quantile of the p-value distribution, which is
®(—p — 0.6745). When . = 1.645thisquantileis ®(—2.32) = 0.01. Similarly the
reader can check that in this example the 0.25 quantile i — 0.6745 of the evidence
distribution transformsinto ®(—0.971) = 0.166. Thuswhen . = 1.645, the central
50 % of the evidence distribution (shown shaded in Figure 16.1) corresponds to the
50% of the p-value distribution lying between 0.010 and 0.166. The fact that the
latter interval is not centered on the median p-value of 0.05 reflects the asymmetry
of this distribution under aternatives.

Now let i« be unknown. Having observed X = x, a 50 % confidence interval for
w isof theform [x — 0.6745, x + 0.6745]. Thisinterval transformsinto a 50 % con-
fidence interval [® (—x — 0.6745), & (—x + 0.6745)] for the corresponding median
p-value ®(—pu). For example, when X = 1.645 the observed p-value is 0.05, but a
50% confidence interval for the median p-value is [0.010, 0.166]. The reader can
similarly find intervals with different levels of confidence, but the message is clear:
simply stating that the p-value is 0.05 gives the wrong impression that oneis closeto
the mark.

Animportant result followsfrom property P». If one has conducted an experiment
and obtained ap-valueof 0.05, thenthe estimate of 1 is1.645 and hencethe maximum
likelihood estimate of the expected p-value is ®(—1.645/+/2) = 0.122. Thusin a
repetition of the experiment, the researcher can expect a p-value of 0.122. Similar
findings are reported by Goodman (1992).

16.3 Publication bias

It is well known that the established practice of requiring experimental results to
contradict a null hypothesis of no effect at level 0.05 introduces certain anomalies.
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Figure 16.1 The curve shows the evidence ¢(p) for each p-value. The p-value
of 0.05 and its transformed value of 1.645 are highlighted. Around those values a
50 % confidence interval is drawn, both for the p-value itself and for the transformed
p-value. Also indicated is how the interval boundaries are linked to each other. On
the transformed scale, the random variation is the same, no matter the value of the
transformed p-value. This is indicated by the normal density and the shaded area
covering 50 % of the area.

The scientist who obtains a p-value of 0.049 may succeed in publishing the result,
while the one who obtains 0.051, which is not publishable, knows there isjust about
as much evidence against the null in his or her data as that in the 0.049 result. The
very fact of publication introduces a bias towards the alternative: a published p-value
is conditional on its being less than a threshhold. Of course there are other factors
which are more important in publishing than the size of the p-value, but here we only
examine this one.

Assume evidence T, = /nX,, for testing .« = 0 against .« > 0 in the prototypi-
cal model. Let A, = {PV, < 0.05} = {T,, > 1.645} be the event that the evidence
in the p-value is significant at level 0.05. The conditional evidence in the random
p-value, given that it is significant, is defined to be U, = T,|A,, where P, (A,) =
1— ®(cy,), Withe 4, = 1.645 — /n . Itisclear that the distributions of 7, and
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Figure 16.2 Plot of the publication bias function B(u) versus p. When « = 0.05
thebiasat u = zo.95 = 1.645isasurprisingly large B(1.645) = 0.8.

U, only depend on n and p through /n 1 so hereafter we only consider the case of
of n =1and write T = Ty and U = U;. One can substitute ./n 1 for p to recover
the general case when desired.

If one restricts attention to p-values which are significant at level 0.05, because
they arethe ones availablein theliterature, then one exaggerates the evidence in such
p-vaues by considering only U rather than T, effectively ignoring all nonsignificant
results. The difference in means B(u)=E,[U]—E,[T] will be called the publication
biasat ., for u > 0. Itisshown in Chapter 26 that B()=¢(c,)/{1—P(c,)}. A plot
of thisfunction is shown in Figure 16.2.

For small « the publication bias is considerable: the average overstatement of
evidence is more than 2 units on the probit scale. Of course, it is very unlikely
(probability near 0.05) that when o is small the p-value will be significant. Of more
concern is that when u = 1.645, say, which is an effect of some interest, that the
publication biasis 0.8. Estimation of publication biasand correction for it isthetopic
of Chapter 26.

16.4 Comparison with a Bayesian calibration

The p-value is often confused with the probability that the null hypothesis is true,
given the data. For many frequentists, this confusion can best be resolved by edu-
cation: in their view, the concepts of p-value and posterior probability are simply
incommensurable. However, a considerable amount of research has gone into mak-
ing such comparisons; see, e.g. Casellaand Berger (1987), Berger and Sellke (1987),
Berger et al. (1997), Selke et al. (2001), Hubbard and Bayarri (2003) and Berger
(2003) and the discussions following them. It is therefore of interest to compare the
calibration scale proposed here with arecent one by Selke et al. (2001).

These authors assume the p-value has the uniform density f; on [0,1] under
Hy and then consider aternative distributions f1(p) for the p-value under H;. The
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likelihood ratio (or Bayes factor) for Hy to H; isthen L(p) = fo(p)/f1(p), and,
assuming a positive prior probability 7o on Hy, the posterior probability of Hy, given
pis P(Hy|p) = {1+ (1 — mo)/moL(p)}~ L. Itisevident that for any f1(p) whichis
positive over [0,1] any desired value of P(Hp|x) can be obtained by choice of prior
probability ro. These authors choose a‘ default’ value rp = 0.5 and show that (under
some conditions) thelikelihood ratio L (p) isbounded below by B(p) = —ep In p for
p < 1/e and 1 otherwise. This leads to a lower bound a(p) = {1+ 1/B(p)}~* on
P(Hp| p). For example, when p = 0.05, x(p) = 0.289. This leads them to conclude
that the p-value overstates the evidence; it certainly does so if one uses P(Hp|p) asa
measure of evidence.

However, our thesis is that the p-value measures surprise, not evidence, so it is
of interest to place the a(p) bound on the probit scale. A plot of T(«(p)) against
T(p) = ®~1(1 — p) isshown in Figure 16.3, for comparison with our calibration of
the p-value. This graph shows that «(p) will typically underestimate the evidence in
the p-value by 1 unit, the standard deviation of T(PV,,), at |east for significant p-values
p < 0.05. In general P(Hp|p) will exceed a(p), so a person using the smallness of

T(p) and T(a(p))
2

T T T T 1
0 1 2 3 4

T(p)

Figure 16.3 Plotof T(a(p)) against T(p) for 0.0001 < p < 0.5. Theregion of inter-
estis T(p) > 1.645, corresponding to p < 0.05.
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P(Hy|p) as ameasure of evidence against the null will underestimate the evidence
in the p-value by even more than 1 unit.

The difference between the frequentist approach to testing and the Bayesian
approach espoused by Selke et al. (2001) is that these authors treat the hypothe-
ses symmetrically. Contrast this with the frequentist approach which chooses one
hypothesis to be the null so that the burden of proof is on the aternative, that is,
because by definition Type | error is more important than Type |1 error.

We have considered the usual situation where the Type| error (making a false
claim of an effect) is more important than the Type Il error (not detecting an effect).
But there are other problems where alarge enough ‘effect’, positive or negative, of
some proposed treatment is deleterious, and one will not adopt the treatment unless
it proves otherwise. In this case appropriate hypotheses are null Hp : |u| > o and
aternative Hy : || < wo- An inability to take into account the ramifications of
hypothesis choice can lead to confusion and major mistakes (see Hoenig and Heisey
2001). We agree with Hoenig and Heisey that writers of modern textbooks would
do well to emphasize the importance of choosing hypotheses carefully, and add that
Neyman (1950) devoted four pages of his elementary text explaining how to choose
appropriate hypotheses. The choice of hypothesesis determined by context, and they
can rarely beinterchanged in practice.

16.5 Summary

The p-value has been around for a long time because it has proven to be a simple
and useful tool for filtering out very weak experimental results. But scientists and
statisticians in particular want more from a measure of evidence. They want to be
able to compare evidence from different experiments, and combine evidence from
experiments testing for the same effect. When faced with a number of ‘significant’
results, each of which casts some doubt on the null hypothesis, it is natural to want
to combine these results, and to do so under an alternative hypothesis.

While the random p-value is simple to interpret under the null hypothesis, under
aternatives its distributions are highly skewed, making comparisons and combina
tions of results complicated. Neverthel ess, we have learned afew things by looking at
the p-value under aternatives for the prototypical model. Perhaps the most interest-
ing oneisthat given ap-value of 0.05, the estimated expected p-valuein an identical
replication of the experiment is 0.12.

By transforming the random p-value onto the probit scale, one obtains a measure
of evidence whose mean grows linearly with the effect and linearly with the square
root of the sample size. On thisscalea*highly significant’ p-value of 0.01 represents
about 40 % more evidence than a p-value of 0.05. Further, one must face the fact that
evidence contains random error, and on this proposed calibration scale it is always
1 unit, regardless of sample size or effect size. Often p-values are interpreted too
precisely, perhaps because they are cal culated to two or more decimal places. But the
evidencein aconditional p-value of 0.05 would better be reported as evidence 1.645,
with a standard error of 1.
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We compared the evidence in a Bayesian calibration of the p-value and found
that for al practical purposes, the posterior probability of the null, given the p-value,
contains about one standard error less evidence than the p-value.

If oneacceptsthe above proposal aspotentially useful for thinking about evidence,
the main remaining question is. how genera are the above results? In many sim-
ple applications of statistics, variance stabilizing transformations which are already
available will alow calibration on this scale, as we will demonstrate in the coming
chapters.
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The basics of variance
stabilizing transformations

In this chapter we first review the simplest method for variance stabilization, stan-
dardization of the test statistic. Then we outline a general method for obtaining a
variance stabilizing transformation, or vst, for short, and explain how we expect to
benefit from it in finding evidence and confidence intervals. Then we will illustrate
the theory with avst for the sample mean estimator of the Poisson mean. Finally, we
give animportant example where avst is desired: obtaining two-sided evidence from
one-sided evidence on the probit calibration scale.

17.1 Standardizing the sample mean

Giventhetest statistic X, based on asampleof n observationsfrom adistributionwith
mean p. and variance 2, it iscommon, especially whenr islarge, to ‘ standardize’ X,
by subtracting its mean, and dividing by its standard deviation to obtain a Z-statistic
Z, = /n (X, — ) /o. This has three effects: firstly, it resultsin a variable centered
at 0 (E[Z,] = 0) for al w, o; secondly, the variance is stabilized at 1 (Var[Z,] = 1
for al u, o); and thirdly, the distribution of Z, is approximately standard normal, by
virtue of the central limit theorem. Thus while X, has variance o2/ taking on all
positivevalues, Z, hasvariance 1 for all values of the parameters. The transformation
from X, to Z, thus‘ stabilizes the variance’. The benefits of this transformation are
clear, but it requires knowledge of the usually unknown parameter o2.

If o2 were replaced by the sample variance s? in the transformation, the resulting
Y, = /n (X, — u)/s, would not have astablevariancein the sense of being constant
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for all u, o, but it may be close enough to 1 for practica sample sizes n and a
corresponding range of u, o so that for the sake of inference about 1 we may be able
to act asthough it were so.

Definition 17.1 Any sequence of random variables {Y,} will be said to be variance
stabilized (to 1) if Var[Y,] = 1+ ¢,, wherenc, — 0asn — oo. Thisis sometimes
written Var[Y,] = 1+ o(n™Y). The constants {c, } may well depend on model param-
eters, and the convergence to 0 is not necessarily uniformin the parameters. In any
case wewrite Var[Y,] = 1.

In this book variance stabilization is about choosing transformations #,,(S,,) of
statistics { S, } that achieve the goa Var[h,(S,)] = 1. Asindicated, /,, can depend on
the known sample size parameter n. Note that £,,(S,) isitself astatistic.

In most cases the degree of approximation will be checked by simulations, even
when a limit theorem exists that gives the rate of convergence of the variance of
transformed variable to the target 1 as n increases without bound. We are mainly
interested herein small and moderate sampl e sizes, and often drop the subscript  on
h, when it is clearly understood.

17.2 Variance stabilizing transformations
17.2.1 Background material

Let X denotearandom variablewith variance Var[ X]. Suppose Y = h(X), whereh is
now any smooth function with at |east two derivatives. Then thefollowing expansions
may be helpful when Var[ X] issmall:

E[Y] = h(E[X]) +

LTV

Var[Y] = {h'(E[X])}*Var[X] + R>. (17.2)

Here R; and R, are remainder terms when the earlier terms on the right are used as
approximations to the mean and variance of Y; these remainder terms will typically
be of smaller magnitude than the earlier terms. These approximations will be used
repeatedly throughout this book and can be found in Johnson et al. (1993, p. 54) or
Bickel and Doksum (1990, p. 32); the latter reference also contains material on the
error of approximation when the random variable X is a sample mean.

Inour applications X = S, isatest statistic based onn observationsandh = h,, is
chosen so that the transformed test statistic Y = h,,(S,,) satisfiesVar[h,(S,)] = 1. A
first approximation to the expected valueis then given by thefirst termin (17.1), and
wewriteE[h,(S,)] = h,(E[S,]) for thisapproximation. It istypically growing at the
rate /n, while the bias term 4/ (E[S,])Var[S,]/2 is of smaller order, usually 1/./n,
and depending on unknown parameters. The remainders R, and R, are typicaly of
order n~3/2, also depending on unknown parameters.

Johnson et al. (1993, p. 54) or Bickel and Doksum (1990, p. 32) also point out a
simple method for finding afunction 2 so asto stabilize the variance, provided one
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can first write Var[ X] = g(E[ X]) for aknown function g. One defines / as any

h(x) = / x[g(t)]*l/zdt, (17.3)

provided the indefinite integral exists. Thus & is defined up to an additive constant.
It follows that {#'(E[X])}? = {g(x)} ! = {Var[X]} %, and then, by (17.2), we can
expect that Var[Y] = 1. Thus, in principle, variance stabilization is easy, but in prac-
tice this method of finding 2 may not be fruitful, because the resulting 2 may depend
on unknown parameters.

17.2.2 The Key Inferential Function

Let uscall our parameter of interest 6. If S, isatest statistic for 6 = 6y versuso > 6,
for which largevaluesof S, lead to rejection (S, could be an estimator @n), andh, isa
vst of S, obtained from (17.3), wetypicaly find that 4, (S,) hasavariance near 1 for a
desired range of values of 6, so it satisfies property E3 of Section 16.1.1 of ameasure
of evidence. Further, it is often the case that /,, can be chosen to be monotonically
increasing in its argument, so property E; is satisfied. In other words, £,,(S,,) is still
atest statistic for testing 6 = 6, versus 6 > 6. If it turns out that /2, dependson 6 or
unknown nuisance parameters, one can try substituting estimatesfor these parameters
to seewhether ameasure of evidence can be obtained by modification of #,,. Hereafter
we assume these hurdles have been overcome.

Property E,4 requires that the mean E[4,(S,,)] be monactonically increasing in 6
from O at 6. Inmany applicationsE[ 4, (S,)] isof theform /n K(0) for n, 6 of interest
and K a known monotonically increasing function of 6. By subtracting the known
constant /n K(8p) from h,,, we can ensure that 7,, = h,(S,) — «/n K(8) will have
amean t = E[T,] that satisfies E, as well as inheriting the properties E1, E3 from
h,(S,), because h, is defined only up to an additive constant. Finally, we need to
check that 7,, also satisfies condition E,, approximate normality for n, 6 of interest.
Having T,, approximately N(z, 1) witht = \/n K(0) ishighly desirable, becausethen
T,, hasavery well-known distribution and is an unbiased estimator of itsmean t, with
standard error 1. In the text to follow we often write 7,, ~ N(z, 1), even though the
distribution of T, is only approximately normal.

Definition 17.2 Given a statistical model and a measure of evidence 7,, that satisfies
properties E1—E,4 of Section 16.1.1. Supposing further that its expected evidence
T = E[T,] = /n K(6), wecall K theKey Inferential Function or simply the Key for
this statistical model.

The Key Inferential Function leads to the solution of many routine problems:

e K3 Choosing the sample size n. For testing 6 = 6, against 6 > 6y based on a
sample of n observations the expected evidenceis /n K(6) for each 6. To attain
a desired expected evidence t; against alternative 6; one heedsto choosern; to
be the smallest integer greater than or equal to {r1//C(61)}°.



128 VARIANCE STABILIZING TRANSFORMATIONS

e K, Power calculations. In the Neyman—Pearson setting the power function of
alevel « test based on T, satisfies

IO = Py(T, = z1-0)
=&(1 — 21-0a)
= O(V/nK(®) — z1-4). (17.4)

e K3 Finding confidence intervalsfor 6. A 100(1 — &) % confidenceinterval for
0 isgiven by

[ ,C_1<{T,, —;Q/z} ) | ,C_1<m +jﬁw/z}) ] W

where K1 isthe inverse function to /C.

It is tempting to interpret the Key Inferential Function as the expected evidence
attainable with the statistical model and only n = 1 observation. However, usually
T, ~ N(/n K(6), 1) only for moderate to large sample sizes. It is our experience
that the sample sizes required by these methods for inference are amost always
smaller than those based on standard asymptotics using the central limit theorem
alone.

Note that if the initial statistical model is reparametrized in terms of n = m(6),
where m isastrictly increasing function, then the Key Inferential Function remains
unchanged; that is, after variance stabilizationtheresulting T, ~ N (/n K(m~1(n)), 1),
where K isthe function described above.

Another caveat is that the simplicity suggested by properties K; to K3 is not
always available; in particular if the underlying test statistics have a skewed distri-
bution under both null and alternatives, it may not be possible to find a vst whose
expectation satisfiest = /n K () to auseful degree, for ak that isfree of the sample
Sizen.

A notable advantage of the methodology based on vsts is that it facilitates the
comparison and/or combination of evidence from several related studies, because the
evidence from all studiesis placed on the same calibration scale.

17.3 Poisson model example

Thetheory of Section 17.2 isapplied to counts datafrom one-sample experimentsfor
which the Poisson model isappropriate. Thetest statistic is moved onto the canonical
scale by a simple variance stabilizing transformation and interpreted as evidence,
which leadsto confidence intervalsfor the unknown model parameter. Later chapters
will follow and extend the same methodol ogy.
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17.3.1 Example of counts data

A standard method for ascertaining the concentration . of cells growing in aculture
isto place a square grid over the region and count the number of cellsin each of n
randomly chosen squares of unit area. If the cells are randomly distributed over the
region, it isreasonable to assumetheresulting numbers X4, . .., X, areindependent,
each with the same Poisson(y) distribution:

X

PXi=x) =€ " % forx=0,1,2, ... (17.6)

Itiswell known that E[X] = u = Var[X], so u isthe mean number of cells per unit
area. The standard error in estimating « by the sample mean X, is

SE[X,] = \/Var[X] = \/Ew \/?

Itisdesired to know whether © < poor u > po. Theusual test st_atisticis)?n, and for
large n the p-value of the test which rejects for large values of X, can be computed
asfollows. Having observed X,, = x,

p=PX,>%) = P{,/”()?n — o) = )G — Mo)} ~ D(—z0), (17.7)
Ko Ho

wherezo = /n (X, — po)//io. Thisp-valueis based on an asymptotic approxima-
tion, so will be referred to as pasym.

For example let o = 1, and take three samples of sizesn; = 10, ny, = 25, n3 =
100 from the Poisson(w.) model. Assumethese samples have respective sample means
X,, =3, X,, = 1.2, X,,, = 1.4. Then the approximate p-values given by (17.7) are
respectively 0.000000, 0.158655 and 0.000032. The exact p-values to six decimal
places are obtained using the fact that nX,, has the Poisson(n o) distribution and
are 0.000001, 0.182140 and 0.000092. The extremely small p-values will be hard
to interpret, whether one computes precise probabilities or not, because one has
almost no experience with such rare events. We want to measure the evidence on the
canonical scale, instead of trying to interpret the p-value, so we need to transform the
test statistic.

17.3.2 A simple vst for the Poisson model

Thestandard test statisticisthesamplemean X, of n observationsfromthe Poisson(s.)
distribution. Now Var[ X] = g(E[X]) for g(r) = t/n, soby (17.3) apossiblechoicefor
hish(x) = /n [*t7Y2dt = /4nx . Thisheuristic argument suggests Y = /4n X,
will have variance approximately 1. However, this approximation cannot hold for all
w, becausefor fixed n, as u approaches 0, so alsowill X,,. Thuswhile Var[Y] may be
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Figure17.1 The left hand panel shows a probability plot of 10 000 values of zg =
3(Xg — 1), where Xg is the mean of nine observations from the Poisson distribution
with mean 1. The right hand panel shows a similar plot for the variance stabilized
values T = 6(1/Xg — 1). These plots show that the distribution of T is much closer
to normality than zo, especially in the upper tail, where the p-values are computed
for testing u = 1 against © > 1. See Table 17.1.

approximately 1 for al u not too near 0, we need to know when the approximation
is good; and, as explained further below, agood ‘rule of thumb’ isn u > 5.

Next consider the expected value of the transformed test statistic Y. Thefirst term
in (17.1) givesthe approximate mean E[Y] = /4nu . Further, the second derivative
of hish”(x) = —y/n/4x3, so the second term —1/./16nu isthe biasterm. When
n u > 5, theratio of the biasterm to thefirst termin (17.1) is1/8nu < 1/40.

The above results suggest that for testing 1 = o versus u > g the evidence be
definedby T = h(X) — h(uo), for thentheresulting 7 would have approximate mean
T =E[T] = 2/n{ /i — /1o} and variance Var[ T] = 1. Further, the distribution of
T is approximately normal (see Figure 17.1) for even small sample sizes n, o it
satisfies the properties E; to E4 of a measure of evidence for testing 6 = 0 against
6 > 0, where 6 = u — ug is the effect. The evidence T can also be regarded as an
estimator of its expectation ¢, with SD[T] = 1. The Key Inference Function for this
model istherefore K(u) = 2{,/i — /Ity }-

It isinstructive to examine the mean and variance of T asafunction of u, for the
same example of X,, the mean of nine observations from a Poisson(x.) model. To
illustratethe computation of evidencefor the countsdataof Section 17.3.1, wesimply

find T, = v/4n; {\/X,,, — 1} fork = 1, 2and 3. Theresultsare shownin Table 17.2,
along with the corresponding p-values ® (—Ty). Thistabulation shows that ®(—Ty)
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Table17.1 For selected valuesof 1 the mean and standard deviation of the evidence
T = 6(1/Xo — 1) against = 1 infavor of u > 1; the values shown are

sample means and sample standard deviations based on 10 000 simulated samples
of size 9 from the Poisson(u) distribution. Note that the variance is quite stable,
while the expected evidence 7 rises with 1., as expected, with T = 6(,/u — 1).

L 1 2 3 4 5 10 20
E,[T] 008 242 434 59 737 1295 = 20.82
SD,[T] 1.02 1.01 1.01 1.00 1.00 1.01 1.01

is a better approximation to the exact p-values than the asymptotic approximation
Pasym. Both could be improved with continuity corrections. But the reader may well
ask, what isthe point of seeking approximationsto very small p-values? For how can
one possibly interpret them as measures of surprise, much less evidence, when one
has no experience with evaluating such rare events?

On the other hand, there is no pretence to precision for the evidence values T;
shown in column 6 of Table 17.2; they each have standard error 1 in estimating their
respective means, whether the null or alternative hypothesisistrue. They giveredistic
assessments of the evidence against the null i = 1 in favor of the alternative u > 1.
Because T isamost 5, it is strong evidence against the null, while T3 is moderate
evidence and 7» is almost negligible.

Thereader may observethat thereal issueishow to estimatetheeffect w — 1. This
isindeed one of our goals. But if a 95% confidence interval is found for w in each
of the three studies, they are roughly X, + 2+/X,/n, or, respectively, [1.85, 4.15],
[0.76, 1.64] and [1.16, 1.64]. The first interval appears to be estimating a different
parameter than the second and third. Denoting the mean concentration in the kth
sampleby ., inretrospect it would have been wiser to allow themeansto be different.
The strong assumption of homogeneity ©1 = w2 = uz needs to be examined up
front, and that is the purpose of Chapter 24. If this assumption is not tenable, then
the analysis becomes more complicated when one wants to combine evidence in the
three studies. One needs to decide what joint alternative in terms of the u;’'s is of
interest, and choose an appropriate combination of the 7,'s as evidence for it.

Table 17.2  Illustration of computations required for finding the evidence in three
samplesagainst « = 1infavor of u > 1. The p-values at the right are exact

to six places. The large-sample p-values pasym = ®(—z0), Where

0= \/E(Xnk -1).

Sample k ny Xn, 20 Dasym Ty D (=Ty) Exact p-vaue
1 9 3 6 0.000000 4.39 0.000006 0.000001
2 25 12 1 0158655 095 0.169928 0.182140
3 100 14 4 0.000032 366 0.000124 0.000092
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17.3.3 A better vst for the Poisson model

We showed the square root transformation could be applied to counts data which
followed the Poisson model to obtain a stable variance. It was also seen that trans-
formation led to approximate normality in our example. However, there are better
transformations available if one wants variance stabilization, and these are not nec-
essarily the same as those which transform towards normality. The problem of trying
to obtain both desirable properties simultaneously for the Poisson model is a hard
one which has been studied in some depth by Anscombe (1948), Efron (1982) and
Bar-Lev and Enis (1988).

Anscombe (1948) found that \/4n (X, + 3/8r) would both reduce bias and sta-
bilize the variance over a larger range of values of u than \/4nX, . Some results
based on 100 000 simulations are shown in Figure 17.2.

17.3.4 Achieving a desired expected evidence

We conclude this section by choosing the sample size to achieve a desired expected
evidence 7. For testing u = o versus u > uo the evidence was defined by 7 =
2/n {\/X, — Jito }. Theresulting t = E[T] = 2\/n { /i — /lio} and variance
Var[T] = 1. Therefore to obtain expected evidence t for the aternative hypothesis
when p = cuo, wherec > 1, taken = t2/4u0(/c — 1)2. To be specific, let po = 1
and . = 4 = 4uo. Thentherequiredn = t2/4. If wewant ‘ strong’ expected evidence
(which is three times the magnitude of ‘weak’ evidence 1.645) for this aternative
when it istrue, then werequiren = 6.25 ~ 6.

17.3.5 Confidence intervals

We want a confidence interval for the effect 6 = u — uo. It is easier to find the
confidence interval for 1 and then shift it to the left by 1o. We can use the results
aready obtained, namely \/4nX, ~ N(/Znu, 1), for nu sufficiently large, so in
principleal — « confidenceinterval for themean /4n . iscentered on v/4n X, with
length 2z1_,,2. By dividing the endpoints of thisinterval by +/4n and then squaring
them one obtains the confidence interval for w:

Rzl ey we

For example an approximate 95 % confidence interval for © whenn = 9, Xg = 3
and we take zgg75 = 1.96 ~ 2 is [1.96, 4.27], an interval which is not centered on
3 and is to be compared with the interval [1.85, 4.15] found earlier which is based
on X + 2 SE[X]. We do not expect thislast interval to have as accurate coverage as
the one given by (17.8), because the standardized mean is not as close to normality
as the variance stabilized mean (see Figure 17.1). An even better interval (in terms
of accurate coverage probability) is obtained by using Anscombe's transformation.
This amountsto replacing X,, by X, + 3/8n in (17.8).
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Figure17.2 Let X ~Poisson(u). Thegraph of SD,[+/4X ] versus i isshowninthe

bottom plot as a dashed line, and SD,,[/4(X + 3/8)] asathin solid line. In the top
plot are shown the target /4.1 versus . asathick solid line, and the expected values
of thetwo transformed statistics E,,[+/4X ] and the Anscombevst E,,[/4(X + 3/8) ]
introduced in Section 17.3.3 versus u asthick dashed and thin solid lines, respectively.
For n observations, one can replace X by nX, and u by nu on the horizontal axis.
Notethat for niu > 5, the Anscombe vst performs very well.
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Figure17.3 The empirica coverage probabilities of the nominal 95% confidence
intervalsfor u based on (17.8), asafunction of ., for ssmple size 1, are shown asthe
dashed line. The thin solid line gives the same coveragesfor (17.8) with Anscombe’'s
adjustment. See text for details.

17.3.6 Simulation study of coverage probabilities

While it is clear that the Anscombe vst stahilizes the variance and reduces the bias
better than the simple square root vst, it is not clear that it leads to better 95%
confidence intervals. A simulation study based on 100000 observations from the
Poisson(u) distribution were generated for . ranging from 0.2 to 10 in steps of 0.2.
For each observation the empirical coverage frequencies of (17.8) and the intervals
based on Anscombe’s vst were calculated; the results are shown in Figure 17.3. The
coverage probabilities continue to stabilize around 95% for larger u, athough this
is not shown.

The main conclusion is that if one uses the Anscombe-based intervals, then the
coverage probability always lies between 90 and 100 %, and for i > 7 the coverage
is between 94 and 96 %. These results are for intervals based on 1 observation. For
n > 1 observations it follows from the fact that S, = nX,, is one observation with
S,, ~Poisson(n, w) that the coverages will be closeto 95% for nu > 7.

17.4 Two-sided evidence from one-sided evidence

We return to the basic model of Chapter 16.1, normal with unknown mean & and
known variance o2. For testing 1 = uo against the one-sided alternative u > 1o
the test statistic is the sample mean X,, and the measure of evidence for the one-
sided alternative satisfying properties E; to E4 of Section 16.1.1 isdefined by T =
(X, — no)/oo. Without loss of generality we can take 1o = 0 and g = 1, S0
the measure of evidence reduces to T = /n X,, ~ N(y/n i, 1). For simplicity of
presentation, we only consider the casen = 1.

The problem now is to find a measure of evidence for the two-sided alternative
u # 0, thatis, || > 0. Fromthe symmetry of the problemitisclear that the evidence
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T* for the two-sided alternative should be be afunction of the sufficient statistic | 7.
Moreover, to be consistent with the definition of evidence for one-sided alternatives,
T+ should also satisfy properties E; to E, where the parameter of interest isnow | |.

We describe two very different methods leading to similar solutions. Thefirst, in
Section 17.4.1, isderived fromthe connection between | T |, which hasafolded normal
distribution, and the equival ent test statistic 72, which has the noncentral chi-squared
distribution with one degree of freedom. The second, in Section 17.4.2, is derived
from doubling the p-value.

Both solutions yield positive values of T+ for large | T'| that can be interpreted at
evidence for the alternative || > 0. And both yield negative values of T+ for small
| T| whose magnitude can be interpreted as positive evidence for the null || = O.
Thusthesign of 7+ isasignal asto which hypothesisis being supported: if negative,
thenull; if positive, the alternative. The magnitude | 7+ | givesthe degree of evidence.

17.4.1 A vst based on the chi-squared statistic

Thetest of || = 0 against || > O that rejectsthe null for large |T'| is equivalent to
the onethat rejectsfor large S = 72, and this statistic has the noncentral chi-squared
distribution with one degree of freedom and noncentrality parameter A = u2. Insym-
bols, S ~ x2(1). For moreinformation, see Chapter 22, wherein avst for the general
noncentral chi-squared distribution is derived and defined by (22.1). Now given a
vst for any statistic, inthiscase S, avst for asmooth one-to-onefunction of the statis-
tic, inthiscase | T| = ++/S, isthe original vst composed with the inverse function,
in this case the squaring function. Hence we are led to the following definition.

Definition 17.3 Let F; be the cdf of the central chi-squared distribution with one
degree of freedomand let ¢? be one-half the median of thisdistribution; i.e. F1(2c?) =
0.5. For the model T ~ N(u, 1) and hypotheses || = 0 against |u| > 0, the two-
sided evidencein | T'| is defined by

7% 448 —c2 —¢, forS>2c%
—VS§*—¢2 +¢, forS <2,

where S* = Fj 11 — F1(S)). This definition assigns (negative) evidence to values of
S lessthan the null median equal to the (positive) evidence assigned to corresponding
values greater than the median, where the correspondence is in terms of tail area
probabilities under the null; see also Definition 22.2.

The associated Key Inferential Function for the parameter || is a special case
of the Key for the noncentral chi-squared distribution given by Equation (22.3) for
N=1v=1andf = A = u? The median ism; = 0.4549364, so ¢ = 0.4769363

and £L=L(u?) =/u2+1—c2 =+/u?+0.7725318 0
(u*+05)
2,8

This T+ satisfies property E; of Section 16.1.1 because it is a monotonically
increasing function of the sufficient statistic | 7| (see the top plot in Figure 17.4).

(17.9)

Kduh =L - (17.10)
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Figure 17.4 In the top plot is shown the graph of evidence for the two-sided evi-
dence defined by (17.9) (the solid line) for comparison with the two-sided evidence
suggested by doubling the one-sided p-value (17.11) (the dashed line). Also shown
are reference lines depicting the graph of |7'| and T = +0.6745 = ®~1(0.75). Inthe
bottom plot is shown the empirical mean (dashed line) and standard deviation (dotted
line) of 7% defined in (17.9) based on 100 000 samples from the N(w, 1) distribution
for selected values of . The solid line is the graph of the Key Inferential Function
defined by (17.10). By symmetry, the plot for negative  is a reflection about the
vertical axis. For interpretation, see the text.

The other propertieswere checked by experiments, in which the empirical meansand
standard deviations were based on 100 000 simulated values of T+ at selected values
of |u|. The bottom plot in Figure 17.4 suggeststhat 7+ satisfies property Es, astable
standard deviation near 1. The estimated mean evidence E[ T*], also shown in the
bottom plot of Figure 17.4 as a dashed line, grows from 0 with |u|, thus satisfying
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Figure17.5 Histogramsof T+ defined by (17.9) based on 100 000 simul ated values
of T ~ N(u, 1), for each of thefour casesu = 0, 1, 2 and 3.

property E4. Further, it closely approximates the Key Inferential Function (17.10),
also plotted as a solid curve.

Thehistogramsin Figure 17.5 summarize the results of 100 000 simulated values
of T* for four cases © = 0, 1, 2 and 3, together with superimposed normal densities
having the same mean and standard deviation. The first distribution is more concen-
trated because it has a standard deviation near 0.86, while the others have standard
deviations closer to 1 (1.01, 1.06, 1.03, respectively). From these graphs and direct
plots of the densities (not shown) itisclear that desirable property E3, normality, will
almost be satisfied.

17.4.2 A vst based on doubling the p-value

Tomotivateanother definition of evidencefor two-sided alternatives . # 0, weinvoke
the probit transformation of the p-value for the one-sided alternative; recal T =
®1(1— p) and p = &(—T). For the two-sided alternative |u| > 0, the p-value is
pt =2®(—|T)). Therelation T = ®~%(1 — p) suggests evidence in the two-sided
p-value be defined by

Ty = @ 11— 2®(—|T]) = ® *(Fi(5)) . where S = T2 (17.11)

Thus one-sided evidence of 1.96 or —1.96 would become two-sided evidence 1.645.
The graph of this function is shown as a dashed line in the top plot of Figure 17.4.
It is very similar to that for 7+ defined earlier by (17.9). The advantage of T, over
T+ isthat it preservesthe p-valueinterpretation: ®(—T3,) = p*, by definition. One
advantage of T over T3, isthat it has variance stabilized closer to 1, and another
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is that it also provides a natural link to Chapter 22 on evidence in the chi-squared
statistic.

For |T| > pu* = ®~%(0.75), the two-sided p-value is less than 0.5, and the evi-
dence T3, inherits the ‘penalty’ property of p-values: if one assumes a two-sided
aternative when thereis prior knowledge to assume aone-sided aternative, one pays
the penalty of alarger p-value than necessary. On the other hand, assuming a one-
sided alternative when unjustified leads one to overstate the significane of the result.
What is the rel ationship between the evidence as defined here under these two differ-
ent assumptions regarding alternatives? The difference | T| — T3, is the amount of
evidence one loses for assuming a two-sided aternative when there is enough prior
knowledge to assume a known direction; it is also the amount by which the evidence
is overstated, by assuming a one-sided alternative when there is no basis for it.

17.5 Summary

In this chapter we described some standard methods for variance stabilization, and
showed how they canlead to aKey Inferential Function for testingamodel parameter.
This function supplements the p-value in much the same way that the power function
supplements the significance level in Neyman—Pearson hypothesis testing.

Weillustrated variance stabilization for the Poisson model and demonstrated how
it could be used to find the evidence for the one-sided alternative i > o to the
null hypothesis 11 = 0. The evidence in the sample mean X, for the alternative
w > o Was defined to be T = 2\/%{\/7” — /Mo }, or better, with X, replaced
by X, + 3/8n. This vst of X, has variance approximately 1 for all nu > 5, and
its expected value is T = 2./n { /it — /o }. Knowing this allows us to interpret
evidence as weak, moderate or strong, where ‘weak’ isessentially a0.05 result under
the null. It also enables us to choose a sample size to obtain a desired amount of
experimental evidence. The variance stabilization of X,, isaccompanied by increased
normality as n increases for fixed w. In particular, for nu > 7 the 95% confidence
intervals derived from Anscombe’s vst are quite reliable, and not too bad for all .

Returning to the basic normal model with unknown mean and standard deviation
1, we also considered the problem of defining evidence T* for two-sided alternatives
in terms of evidence for aone-sided alternative. We provided two solutions, the first
based on the equival ence between the test based on |T'| and that based on 72, which
has anoncentral chi-squared distribution with one degree of freedom. Thevst for |T'|
is asimple function of that for 72, which is a special case of the vst defined for an
arbitrary noncentral chi-sguared distribution foundin Chapter 22. Thusthetwo-sided
evidence function for normal tests links up with the chi-squared tests studied later.
The second solution was based on p-value arguments, and led to a vst for which the
two-sided evidence had similar performance characteristics to the first solution.

There is no all-purpose rule to tell us when we have achieved all the desirable
properties E1 to E 4 of ameasure of evidencefor one-sided alternatives; for each model
this needs to be checked. On the other hand, agreat deal of research has already gone
into vst for standard models, so we will draw on this literature whenever possible.
Efron (1982) provides a method for obtaining a transformation to normality.
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One-sample binomial tests

In this chapter we find the evidence in one-sample binomial data using the methods
introduced in the last chapter. They will be compared with some standard methods
and shown to be competitive in terms of leading to reliable moderate to large sample
confidence intervals. They will alow for easy interpretation of the evidence in test
statistics. Theinferenceis concerned with the parameter p, the probability of an event
inabinomial setting whichisoften called risk. Inturnsout that larger ssmplesizesare
required to obtain reliable resultswhen therisk p iscloseto O or 1, and in particular
wewill require the sample sizen to satisfy np(1 — p) > 5for valuesof p of interest.
Many researchersin medical statistics prefer to think interms of relative risk or odds
ratio, rather than risk differences, so we reformulate the notion of evidence in these
terms in Section 18.3; these concepts are further investigated in Chapter 19 in the
two-sample setting.

18.1 Variance stabilizing the risk estimator

Let X have the B(n, p) distribution, with 0 < p < 1. When testing p = po against
p > po we want to find the evidence for the alternative. We also want to find confi-
denceintervalsfor p or theeffect p — po. The usual test statistic p = X/n hasmean
E[p] = p and variance Var[p] = p(1 — p)/n, which varies with p, so we seek to
transform p.

The variance Var[X] = g(E[X]), where g(r) = (1 —1)/n, so by the method-
ology described in Section 17.2 a vstis h(x)=y/n [*{t(1—1)}~Y2dt=2/n arcsin
(v/x)+c. Theconstant c istaken to be 0 in thisclassic transformation, and Anscombe
(1948) hasshownthat 2,/n arcsi n(\/fo), where p=(X+3/8)/(n+3/4), comescloser
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to anormal distribution with unit variance and mean 2,/n arcsin(,/p) than does the
transformation applied to p.

Letc=—2/n arcsin(/po). Then T=h(p)=2./n {arcsin (\/p)—arcsin(,/po )}
will have approximate mean t(p) = E,[T] increasing from 0 as p increasesfrom po,
and thus satisfy property E4, Section 16.1.1, of ameasure of evidence. It should aso
satisfy properties E; to E3 for auseful range of parametersn and p becauseit isonly
a shift of the Anscombe (1948) statistic.

Definition 18.5 The Key Inferential Function for the binomial model when testing
p = po against p > pg isfor each p > pg given by

K(p) = 2{arcsin(/p) — arcsin(/po)}. (18.1)

For testing in the other direction p = pg against p < po the appropriate Key would
be the negative of (18.1).

For an example we took po = 0.0, so K(p) = 2arcsin(,/p ), and then simulated
400 000 values of T at each of n =9, 15, 30 and for p ranging from py = 0.01
to 0.99 in intervals of 0.02. The empirical means of 7/./n are plotted against p
in Figure 18.1, along with the target C(p). The bias is quite negligible over the
range shown, especially compared to the standard deviation. For n = 9 the standard
deviation of T is stable and near 1 for 0.2 < p < 0.8, but descends to 0 as p ap-
proaches 0 or 1. The range of variance stability increases with the sample size.

These plots contain the information required for any choice of pg. For example,
if po were 0.5 rather than 0.0 so the hypotheses were p = 0.5 against p > 0.5, then
the plot for the standard deviations would be simply the portion of the lower plot to
theright of 0.5. Similarly for the means, except that the values would be reduced by
2arcsin(/po ), in this case 2arcsin(+/0.5) = /2.

Extensive simulations (not shown) demonstrate that approximate normality of T
holds provided np(1 — p) > 5. Thus T cannot be considered a measure of evidence
(satisfying criteria E1 to E4 of Section 16.1.1) unlessthis condition holds. In the next
section we show the results of confidenceintervalsderived from T and compare them
with a standard large-sample method.

18.2 Confidence intervals for p

A nominal 95% confidence interval for the mean evidence t(p) is T + zo.975, SO @
nominal 95 % confidence interval for p is (T + zo.g75), OF

{n(awsn(v5) - 2 {an(aon(45) + 2 '} as2

Theseintervals are far morerelisblethan p £ zo 9751/ p(1 — p)/n, where p = X/n,
as shown in Figure 18.2. In the top plot the 95% confidence intervals based on
variance stabilization have for n = 9 actual coverage which istoo conservative for p
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Figure 18.1 Inthisplotthenull istakentobe p = po = Oandthealternative p > 0.
Empirical means of 7//n = 2{arcsin (/p)} and standard deviations of 7 for n =
9, 15and 30 are plotted asafunction of p. Thethick solid linein the upper plotisthe
graph of K(p) = 2arcsin(,/p) versus p. The empirical means of 7/,/n are shown
for n = 9 asadashed line, for n = 15 asathin solid line and for n = 30 as a dotted
line. In the lower plot are shown the corresponding empirical standard deviations for
the same cases.

outside[0.25, 0.75], and too liberal for p near 0.4 and 0.6. The coveragesfor n = 15
are acceptablefor p inside [0.25, 0.75], ranging from 93 to 97 % therein. For n = 30
the coverages are dependable for p inside[0.2, 0.8]. All suffer from spikes dropping
below 95 % and overconservatism for p near 0 and 1.

In the bottom plot are shown the coverages of the classic large-sampleintervals;
al are much worse than those in the top plot. Even for n = 30 these intervals can
descend to 88% coverage. Replacing p by p in any of these intervals only makes
things worse.
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Figure 18.2 Inthetop plot are shown the empirical coverage probabilities of nomi-
nal 95 % confidenceintervals based on (18.2) asafunction of p for n = 9 asadashed
ling, for n = 15 as athin solid line and for n = 30 as a dotted line. By way of com-
parison the lower plot shows similar empirical coverage probabilities based on the

large-sample confidenceinterval p +1.961/p(1— p)/n.

For p near Oor 1 larger sasmplesizeswill berequired to obtain evidence and/or reli-
able confidenceintervalsand this problem isexamined in somedetail in Section 18.4.

18.3 Relative risk and odds ratio

In comparing two risks p1, p» many researchersprefer to think interms of therelative
risk RR = p1/p, or oddsratio OR = {p1/(1 — p1)}/{p2/(1 — p2)} rather than the
risk difference A = p; — po. Whenbothrisksaresmall thesimplelogtransformation
of estimators of the former two quantities has an approximate normal distribution,
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for sufficiently large samples sizes. In other words, a straightforward methodology is
availablefor finding confidenceinterval sfor these quantities (see pp. 24-28 of Lachin
(2000), for example). Wewill compare these standard methods with other methodsin
Chapter 19. However, we can learn something about the log-transformed estimators
of RR and OR by first considering the one-sample problem in which X ~ B(n, p)
and we are comparing an unknown risk p with aknown null hypothesis value pg. In
this case only one parameter needs to be estimated.

18.3.1 One-sample relative risk

Consider the null hypothesis p = pg and dlternative 0 < p < pg, which ariseswhen
po isthe ‘known’ risk in a certain population (risk of disease, positive responseto a
standard treatment, etc.), and p is the expected risk to a treated patient in the study.
Rather than the simple difference po — p we are interested, say, in the relative risk
RR = po/p which will exceed 1 under the aternative hypothesis, because then the
treatment reducestherisk. Let6 = In(po/ p). Inferencefor 6 isequivalent toinference
for RR = pg/ p: the null hypothesisis now 6 = 0; the alternative 6 > 0.

Let X denotethe number of positive responsesin astudy of » treated patients, and
estimate p by p = X/n. Then standard asymptotics shows that 6 = In(po) — In(p)
has for increasing n an approximate normal distribution with mean 6 and variance
(1 — p)/(np). It is customary to form a 100(1 — «) % confidence interval [L, U]
for 0 by taking L = 6 — z1_4/2{(1 — p)/(np)}/? and similarly for U. Coverage can
be dlightly improved by modifying p = X/n to (X +0.5)/(n +0.5) or p = (X +
0.375)/(n + 0.75). A 95% confidence interval [L, U] for 6 is easily transformed to
a95% confidence interval [e”, eV] for RR = po/p.

The log-transformation is employed because when p is small the distribution of
p isvery skewed, while that of In(p) is more symmetric. This raises the question of
whether theevidenceinthetest statistic po/ p for thealternative p < po might bemea
sured by the standardized transformed test statistic /z In(po/P)[{p/(1 — p)}]Y>.
This statistic, for fixed 0 < p < 1 and large enough » has an approximate normal
distribution with variance 1 and asymptotic mean \/n In(po/p){p/(1 — p)}*/?. This
mean, when expressed in terms of the log-relative risk 8 = In(po/ p), is «/n Ko(9),
with Ko(8) = 6{poe?/(1 — poe~?)}¥2. An example of thisfunction for pg = 0.2is
plotted as a dashed line in Figure 18.3 for 6 > 0. Note that it cannot serve as a Key
function becauseit isnot monotonically increasing in 6 over the range of alternatives.
Also plottedisthe Key function corresponding to the (negative of the) Key functionin
(18.1), namely K(p) = 2/n {arcsin(,/po) — arcsin(,/p)}, after reparametrization
intermsof 6

K(6) = 2{arcsin(/po) — arcsin(/poe—?) }. (18.3)

The conclusion to be drawn from this comparison of Kq(6) and K (6) isthat while
they both arise as vsts, the former the mean of the standardized 6, the latter the
mean of the arcsine transformed &, the former transformation has a limited range of
applicability becauseit isnot increasing in 6 for al 6 > 0. And, aswe will see, both
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Figure 18.3 Plot of Ko(9) = 6{poe?/(1 — poe~?)}¥? against 6 = In(po/ p) when
po = 0.2, withgraph shown asadashed line. Notethat for small 6, correspondingto p
near po, itisaclose approximation to the Key function for thebinomia model K (0) =
2{arcsin(,/po) — arcsin(y/ poe~? )}, where again po = 0.2, with graph shown as a
solidline. Similar plotsarisefor different choicesof pg over theunitinterval, although
both functions uniformly increase in 6 with pg, and the degree of approximation
improves as pg approaches 0.

transformations achieve approximate normality at the same rate as n grows without
bound. Therefore the arcsine transformation is our vst of choice.

18.3.2 One-sample odds ratio

Given the odds ratio OR = {po/(1— po)}/{p/(1— p)}, relative to the null, let
n = In(OR). Then the original hypotheses p = po versus p < po can be reexpressed
in terms of the odds ratio as OR = 1 versus OR > 1; or, if one prefers, n =0
versusn > 0.

The estimator 7 obtained by substituting p for p in In(OR) has for n increasing
without bound a normal distribution with asymptotic mean n and variance
1/{np(1 — p)}. That is, the standardized 7 has a limiting normal distribution with
asymptotic mean {np(1 — p)}*/?2y and variance 1. This raises the question as to
whether the evidence in the log-odds ratio can be expressed in terms of the standard-
ized 7 with Key function {p(1 — p)}¥?In[{po(1 — p)}/{p(1 — po)}]. Equivalently,
when reexpressed in terms of », this possible mean evidence function becomes
K1(n) = n/co€/?/(1 + co€”), where cg = (1 — po)/ po. However, this function is
not monotonically increasing over the alternatives n > 0, so it cannot serve asaKey
function for a measure of evidence.

The negative of the Key function (18.1), which is appropriate for testing p = po
against p < po, can be reparametrized in terms of the log-odds ratio n to obtain a
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Key function for n = O against n > 0:

K(n) = 2{arcsin(y/po) — arcsin(y/1/(1 + co€?) }. (18.4)

Thisfunctionismonotonically increasinginn > 0, and K1(n) defined aboveisagood
approximation to it for small n. Again, asfor thelog-relative risk, the transformation
to evidenceisin terms of the classic arcsine transformation.

The main point is that if one prefers to think in terms of the simple difference
po — p or therelativerisk or the odds ratio the evidence in p remains the same. This
evidence will be roughly normally distributed with variance 1 and mean function /n
times the same Key function, whether expressed in terms of therisk in (18.1) or the
relativerisk in (18.3) or the oddsratio in (18.4).

18.4 Confidence intervals for small risks p

Itisclear from Figure 18.2 that the coverage probabilities of the confidence intervals
for p examined earlier, one based on the standardized p and the other based on
the vst arcsine transformation, vary greatly about the nominal 95% vaue when p
isnear 0 or 1. The problem is caused by the highly skewed nature of the binomial
distribution in these cases. Two additional methods are considered in this section, the
log-transformation and a Poisson approximation to the binomial.

18.4.1 Comparing intervals based on the log and arcsine
transformations

Again let X ~ B(n, p), p= X/n and p = (X + 0.375)/(n + 0.75). One possible
remedy to the problem of asymmetry is to find a confidence interval [L, U] for
6 = In(p) using the normal approximation N(In(p), (1 — p)/np) to the distribution
of In(p). Then[e*, Y] istaken to bethe confidenceinterval for p. For nominal 95%
confidence, define L = In(p) — zog7s{(1 — p)/np}*/?, and U = In(p) + zo.97s{(1 —
P)/np}Y/2. Another possibility isto usethearcsine-based confidenceinterval sdefined
earlier in (18.2). Thereislittle to choose between the two methods for nominal 95 %
confidence. As seen earlier in Figure 18.2, the empirical confidences zigzag about
the nominal level. Extensive simulations with 40 000 simulations for sample sizesn
ranging from 25 to 6400 and p ranging from O to 0.5 suggest that:

1. For n = 25 the log-transformed intervals had coverage between 93 and 97 %
for 0.1 < p < 0.4, whilethearcsine-transformed interval s had the samerange
of coveragefor 0.2 < p < 0.5.

2. For n > 50thelog-transformed intervals described above have empirical con-
fidence ranging from 93 to 97 % for p intheinterval [2.7/n, 0.5], while the
arcsineintervalshavethe samerange of empirical confidence over theintervals
[5/n, 0.5].

3. Forn > 100 empirical coverage between 94 and 96 % is held over the smaller
intervals[11/n, 0.5] and [19/n, 0.5], respectively, for the two methods.
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To summarize, the confidence interval s derived by either method require increas-
ingly large sample sizes as p approaches 0 in order for the empirical coverages to
approach the nominal 95 % coverage. The log-transformation is morereliable over a
dlightly larger range of values of p for large n.

For p close to 1, one can use the In(1 — p) transformation or the arcsine-based
intervals in (18.2); by symmetry, the results will parallel those above, but with p
replacedby 1 — p.

A ruleof thumb suggested by these simulationsisthat thewhen conditionsnp(1 —
p) > 5andn > 25aresatisfied, thenthearcsineinterval swill haveempirical coverage
between 93 and 97 %; and for np(1 — p) > 11 and n > 100, the coverages will lie
between 94 and 96 %.

18.4.2 Confidence intervals for small p based on the Poisson
approximation to the binomial

Another method uses the Poisson(u) approximation to the B(n, p) distribution with
u = np. Itisbased ontheresult that asn — oo and p — Owith u = np held fixed,
therandom variable X convergesindistributiontoavariable Y ~Poisson(ut). And for
aPoisson variable we know that the classic square root transformation is an effective
vst. Inview of Figure 17.3 one can expect confidenceinterval sbased on (17.8) applied
to the single observation Y to have good coverage for all u > 7. These intervals for
w are of the form {Y F zg.975/2}2. Both endpoints need to be divided by » to obtain
the interval for p. Empirical coverage probabilities of these intervals are, however,
somewhat disappointing. Thisis explained as follows.

Decker and Fitzgibbon (1991) are cited in Johnson et al. (1993), p. 118; they
recommend practical use of the Poisson approximation to thebinomial whenn®3p <
0.47. Thisbound, combined with our ‘ rule of thumb’ that « = np > 7 to obtain good
coverage of the Poisson parameter, suggests that these intervals will have reliable
coveragewhen 7/n < p < 0.47/n%3L.

Even for sample size n = 50 this range of p is void, while for n = 100 it is
0.07 < p < 0.11. Forn = 200itis0.035 < p < 0.091andforn = 500itis0.014 <
p < 0.068. Extensive simulations for sample sizes ranging from 200 to 1000 reveal
that the main advantage of theseinterval s over those based on the log-transformation,
say, is that the coverage is more conservative and remains above 95% for these
intervals; the disadvantage is that this is so over only the narrow range of p just
specified. Outside this range, but still within the interval 0.02 < p < 0.2, they tend
to betoo conservative with coveragesrising to 97 % or even 98 % even for n = 1000
and p =0.2.

In summary, for small p we do not recommend the Poisson approximation to
the binomial followed by the classic vst to obtain approximate large-sample confi-
dence intervals unless the interest lies in values of p within the above narrow range
of values, and at the same time outside a larger range of values of p where the
log or arcsine transformations studied earlier yield reliable intervals for p for any
given n.
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18.5 Summary

In this chapter we found that the classic arcsine transformation of the test statistic
p leads to dtatistical evidence T for testing p = po against p > po. The expected
evidence t = /n K(p) isdetermined by aKey Inferential Function &C(p) that can be
reparametrized intermsof therelativerisk po/p or oddsratio po(1 — p)/{p(1 — po}-
Minimum sample sizes were determined so that the transformation to evidence also
led to reliable 95% confidence intervals for p, even when it is near 0, and these
intervals are easily converted to intervals for the relative risk or odds ratio.
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Two-sample binomial tests

Let X ~ B(ni, p1) independent of Y ~ B(ny, p2). One parameter of interest is the
(raw) effect A = p1 — po. When p1, p, represent risksfor control and treatment sub-
jects, A iscalled therisk difference. In Section 19.1.1 we find ameasure of evidence
T for thealternative A > 0tothenull hypothesis A = 0. It turnsout that the expected
evidence is a simple function of a correlation effect size, which in turn is a mono-
tonic function of the standardized effect. Minimal sample sizes required to obtain
desired expected evidencefor raw effectsand effect sizesarefound in Section 19.1.3.
Then confidence intervals for these effect sizes are derived in Section 19.2, and in
Section 19.3 are presented confidence intervals for the risk difference A. Other stan-
dard parameters of interest, especially when pi, p, are small, are the relative risk
RR = p1/pzandtheoddsratio OR = p1(1 — p2)/{p2(1 — p1). New and traditional
methods for these parameters are discussed in Sections 19.1.4 and 19.4.

19.1 Evidence for a positive effect
19.1.1 Variance stabilizing the risk difference

Let g = ny/N represent the proportion of the total samplesize N = ny + n, alotted
to the second sample. Brown and Li (2005) introduce the parameter p = gp1 + (1 —
q) p2 sothe (p1, p2) unit square can be reparametrized intermsof A and p. Note that
pi=p+@Q—¢gAandp,=p—qA.

The maximum likelihood estimators of pi, p2, A and p are py = X/n1, p2 =
Y/na2, A = p1 — pp and p = gp1 + (1 — q) p2, respectively. Brown and Li (2005)
observe that Var[ A], when expressed in terms of p, ¢, A and N, is Var[A] = (¢ —
A?)/N,where¢ = {p(1 — p)}/{g(1 — ¢)} depends on the unknown parameter p.
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Now for moderate and large sample sizes the distribution of p is approximately
normal with mean p and variance

NVar[p] = {g* + (1 — 9%} — (1 — 29)(1 — 2p)A — g(1 — q) A

For equal sample sizes, ¢ = 0.5, p = p = (p1+ p2)/2 and the first term in this
expressionis p(1 — p). The second term drops out, and the third term isless than p?
in magnitude. So for equal sample sizes the large-sample distribution of p does not
depend (much) on A; that is, p isalmost ancillary for A: it reveaslittle about A. We
also note in passing that for ¢ = 0.5, Var[ p] = Var[A]/4.

In view of these facts, it seems reasonable to stabilize the variance of A, condi-
tional on p = p. Sowetreat p, and hence ¢, asif they were known in the following
paragraph, and then estimate them. We can expect the results to be useful for ¢ near
0.5and small A.

One can write Var[A] = g(E[A]), where g(1) = a — b2 witha = ¢/N and b =
1/N. Using the standard method described in Section 17.2, one obtains an indefinite
integral h(x) = [*|g(t)|~?dr = b~Y2arcsin(x¢~/?). This yields the conditional
evidence, given p = p, of /N arcsin(A¢z=Y/2). Then by substituting an estimate for
p in ¢, acandidate for unconditional evidence is obtained.

Definition 19.1 We found through experimentation that the choices p; = (X + 0.5)/
(n1+ 1), pp = (Y +0.5)/(ns + 1), when substituted into the formulasfor A, p and
={p@d— p)}/{g(1 — ¢)}, lead to a measure of evidence

T=vN arcsin(A 2*1/2). (19.1)

This T satisfies conditions E; to E4 of a measure of evidence as defined in
Section 16.1.1 for awiderange of parameter values A, p. Itisclear that condition E;
is satisfied because T is monotonically increasing in A. Approximate normality with
unit variance will need to be checked by simulations, but condition E4 is simpler to
verify.

To this end, define the standardized effect § = A // N Var[A] = A/+/¢ — AZ.
The associated correlation effect size is p = §/+/1+ 82 = A//T, as shown in
Section 1.3. Hence the first term in (19.1) for the expected evidence t=FE[T] =
V'N K(p) where C(p) = arcsin(p). Notethat thisis monotonically increasing from 0
as A increasesfromO; thus T = E[T] = +/N K(p) satisfiescondition E4 of ameasure
of evidence for testing A = O against A > 0.

Definition 19.2 The Key Inferential Function for testing A = O versus A > Ointhe
two-sample binomial model can be expressed in terms of the effect size as measured
by p or § and is given for each real § by

K(p) = arcsin(p) , where p = §/v/ 1+ 2. (19.2)
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19.1.2 Simulation studies

Asan example, weexaminethebehavior of T for equal samplesizesn; = n, andfixed
p = 0.5. Inthiscase A = p. The Key Inferential Function is shown as a thick solid
line in the upper plot of Figure 19.1. Also plotted are three graphs of the empirical
means of T/+/N versus A, where N = ny + n, = 2n1 = 18, 30 and 60. All means
are based on 100 000 simulations at A ranging from 0.01 to 0.99 in steps of 0.02.
It is clear that the bias in T/+/N for estimating C(p) is decreasing for all A as the
sample sizeincreases and further it isnegligiblefor A < 0.5 and these sample sizes.
The corresponding standard deviations of T are plotted as functions of A in the
lower plot and one can see that variance stabilization is achieved for a wide range
of A.

For asecond exampl e, we repeated the above experiments, but now withg = 2/3;
thatis, n, = 2n; and N = 3ny = 18, 30, and 60. The only differencein theresultsis
that the alternative hypothesisis restricted to [0, 0.75] because in general

max{—p/(1—¢q), (p—1D/q} < A <minf{p/q, (1— p)/(1—g)}, (19.3)

dueto therestriction that (p1, p2) liesin theunit square. Thereisadlight lowering of
the Key Inferential Function becauseq # 0.5, and the behavior of 7 defined by (19.1)
issimilar to that depicted in the plotsin Figure 19.1. The main disadvantage of using
unbalanced sampling is that actual and expected evidence is lower than it would be
with balanced sampling. But for these sample sizes the variance stabilization works
well when p = 0.5.

For the third and fourth examples we fixed p = 0.2 with the same total sample
sizes as above and considered both cases ¢ = 0.5 and ¢ = 2/3. However, except for
the total sample size of N = 60, the results are disappointing, and they suggest that
for small p larger sample sizes are required for T defined by (19.1) to be useful asa
measure of evidence.

19.1.3 Choosing sample sizes to achieve desired expected
evidence

In order to attain expected evidence r; = /N arcsin(p;) for acorrelation effect size
p1 ONne requires N > {r;/ arcsin(p1)}2. In particular, to attain ‘moderate’ expected
evidence of 3.3 =2 x 1.645 for p; = 0.5, one needs a total sample size of N >
(6 x 3.3/m)% = 39.7,0r N = 40. Thiscould beapportioned equally, or into somewhat
unequal sampleswhose sum is40. Further below we consider some cases of unequal
sample sizes.

To achieve an expected evidence of 7; = +/N arcsin(A1/./Z) against an effect
Ay, itsuffices, for any fixed ¢, totake N > {1/ arcsin(2,/q(1 — ¢) A1)}?. Inparticu-
lar, for r; = 3.3and A1 = 0.5, it sufficesto take equal samplesizestotaling N = 40.
For unequal sample sizes, alarger total isrequired.
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Figure 19.1 Empirical meansof T/./n and standard deviationsof T for equal sample
sizesplotted asafunction of A = p; — po. The parameter p = (p1 + p2)/2isfixed
a p=0.5s¢=1and A = p. Thethick solid line in the upper plot is the graph of
K(p) = arcsin(p) versus p. Theempirical meansof 7/+/N areshownform =n = 9
asadashed line, for m = n = 15 asathin solid lineand for m = n = 30 as adotted
line. In the lower plot are shown the corresponding empirical standard deviations of
T for the same cases.
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19.1.4 Implications for the relative risk and odds ratio

Usingtheidentitiesp; = p 4+ (1 — g)Aand p, = p — gA onecanrewritetherelative
rskRR=(p+ (1—¢g)A)/(p — gA) and seethat for fixed p, itisstrictly increasing
in A because 0 < g < 1. Similarly, the odds p1/(1— p1) =(p+ QA —q@)A)/(1—
p— (1 —¢g)A) isfor fixed p strictly increasing in A, while the odds p,/(1 — p2)
isstrictly decreasing in A. Thus for fixed p the oddsratio OR = p;(1 — p2)/{(1 —
p1)p2}isalso strictly increasing in A.

The evidence T = +/N arcsin(A7~Y/2) defined in (19.1) was derived by a con-
ditional argument, given p = p, so this conditional evidencefor A > 0 can serve as
evidencefor RR > Oorfor OR > 0. Thustheevidencefor apositive effect, whether it
beparametrizedby A, RR or OR, isthesame. Thesimulation studiesin Section 19.1.2
indicate that this evidence has good unconditional properties as well.

19.2 Confidence intervals for effect sizes

Whileitisclear that for large enough samplesizesni, n thedistribution of T defined
by (19.1) will be approximately normal with asymptotic mean = = +/N K(p) and
variance 1, so that T & zg.975 Will provide nominal 95% confidence intervals for t,
simulation studies are required to determine how well these intervals perform. Any
interval for 7 is easily transformed into an interval [L, U] for the correlation effect

size p, with
. T — zo.975 . T + z0.975
sn| ——=22|, sin| —==—]|. 194
( N ) ( v )] ae

And thisleadsimmediately to interval s having the same confidence for the standard-
ized effect §, namely [L/+/1 — L%, U/+/1— UZ]. Note that the above preservation
of intervals under transformations tacitly assumed that the argument of the sine func-
tion in the definition of L, U lies within the interval [—n/2, 7r/2]. Thisis the case
for |T| < 3.0787+/N .

In the top plot of Figure 19.2 are shown the empirical coverage probabilities of
nominal 95% confidence intervals[L, U] for p as defined above based on 100000
simulations. In the top plot p = 0.5 and there are three cases of equal sample sizes
ny = ny. For a total sample size of N = 18, the dashed line shows the empirical
coverage ranges from 94.5 to 98% for al p not too near 1. For a total N = 30,
the thin solid line shows the coverages range from 95 to 97.5% for the same p.
For p < 0.5 the results tend to be closer to 95% , but there is aways some dlight
fluctuation in coverage. For N = 60 the empirical coverages continue to improve.

In the bottom plot of Figure 19.2 are shown similar resultsfor p = 0.2 and equal
sample sizes. Because p1, p» are small, with average 0.2, larger sample sizes are
required to get accurate converage for p. Even though wetook N = 30, 60 and 120,
only the last really leads to accurate coverage of 95 % confidence interval's, and then
only for p < 0.2.

[L,U] =
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Figure 19.2 Theupper plot showsempirical coverage probabilities of nominal 95 %
confidence intervals for p defined by (19.4) when p = 0.5 and equal sample sizes
totaling N = ny + ny = 18 (dashed line), N = 30 (thin solid line) and N = 60 (dot-
tedline). Thelower plot givessimilar resultswhen p = 0.2 andthereareegual sample
sizes totaling N = 30 (dashed line), N = 60 (thin solid line) and N = 120 (dotted
line).
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19.3 Estimating the risk difference

The nominal 95% confidence intervalsfor p = A /,/Z given by (19.4) can be multi-
plied by ﬂ , Where ¢ isan estimate of ¢, to yield nominal 95 % confidence intervals
for A. They can be expressed as

~( T —zoors ~ [ T+ zogrs
[\/; ( VN ) Ve < VN ) '
Despite the additional estimate required, they tend to have better coverage properties

than the corresponding intervals for p under the same conditions (see Figures 19.2.
and 19.3).

(19.5)

19.4 Relative risk and odds ratio

We continue with the model X ~ B(ni, p1) independent of Y ~ B(ny, p2) where
p1, p2 represent risks for control and treated subjects, respectively, and it is now
desiredtofind aconfidenceinterval for therelativerisk or oddsratio. Themethodol ogy
for finding confidenceintervalsin Sections 19.4.1 and 19.4.2 is standard and can also
be found in Sections 2.3.2 and 2.3.3 of Lachin (2000), for example. New methods
for finding confidence intervals for the relative risk and odds ratio are presented in
Section 19.4.3.

19.4.1 Two-sample relative risk

Let the null hypothesis be no difference between treatment and control, with alterna-
tive that the treatment reduces the risk more than the control. Therelativerisk RR =
p1/ p2 whichwill exceed 1 under the alternative hypothesis. Let 6 = In(p1/ p2). Infer-
ence for 0 is equivaent to inference for the RR : the null hypothesisis now 6 = 0;
the alternative 6 > 0.

Let p1 = X/na, p2 = Y/ny, N = n1 +np and g = ny/N. Standard asymptotics
shows that § = In(p1/ p2) has, for large nq, n,, an approximate normal distribution
with asymptotic mean 6 and variance

1—P1+1—P2

var[d] = .
g nipi nap2

(19.6)
This formula assumes p1, p» > 0 and so we modify p; = X1/n1 to p; = (X1 +
0.5)/(n1 + 0.5) and similarly for p,. Using (19.6) the standard error of 0 = p1/p2
isestimated by SE[0] = {(1 — p1)/(n1p1) + (1 — p2)/(n2p2)}2.

One can then form a 100(1 — «) % confidence interval [L, U] for 6 by taking
L =0—2142SE[0] and U = 6 + z1_/» SE[6]. Thisinterval [L, U] for 6 is then
transformed to a 100(1 — o) % confidence interval [e, ¢V] for RR.

The standardized estimator S = (6 — 0)/SE[A]; then as n1, n, increase without
bound, wehave S convergingindistributiontoan N(E[ S], 1) distribution, withasymp-
totic mean E[S] = /q(T—¢)N 6/{gp2(1 — p1) + (1 — @) pa1(1 — p2)}*2. It is not
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Figure 19.3 Inthetop plot are shown the empirical coverage probabilities of nomi-
nal 95 % confidenceintervalsfor A based on (19.5) asafunction of A. It isassumed
p = 0.5. Thegraphsareshownforn; = n, = 9asadashedline, forn; = n, = 15as
athin solid lineand for ny = n, = 30 asadotted line. In the lower plot p = 0.2 and
sample sizes are again equal, with the graphs shown for n; = n, = 15 as a dashed
ling, for n1 = ny, = 30 asathin solid line and for n; = ny = 60 as adotted line.
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clear that this S satisfies the properties of a measure of evidence, even for p;, p2
small, so we do not use it as such.

19.4.2 Two-sample odds ratio

The odds ratio of control to treatment is OR = {p1/(1 — p1)}/{p2/(1 — p2)}. One
can estimate OR by substitution of p;, po for p1, p, to obtain OR. For small p;, p»
this estimator has a skewed distribution, so one again uses the log transformation.
Let the log-odds ratio be defined by n = In(OR). As for the relative risk, standard
asymptotics are employed to show # = In(OR) has, for ny, n, increasing without
bound, alimiting normal distribution with asymptotic mean » and variance:

1 1

+ .
nip1(l—p1)  n2p2(l— p2)

Var[7] = (29.7)
Thus the standard error of 7 is SE[7] = [1/n1p1(1 — p1)} + 1/{n2pa(1 — p)}] 72

Onethen obtains a 100(1 — «) % confidence interval [L, U] for n by taking L =
1l — z1—«y2 SE[7] and similarly for U. Thisinterval [L, U] for 5 is transformed to a
100(1 — a) % confidence interval [e~, V] for OR.

One can standardize 7 to obtain a statistic which is asymptotically normal with
variance 1, but aswith thelog relativerisk, it is not clear that this provides ameasure
of evidencefor n > 0 over the parameter space.

19.4.3 New confidence intervals for the RR and OR

The confidenceintervalsderived for A in Section 19.1.1 are based ontheevidence T,
which resulted from avst applied conditionally to the distribution of A, given p = p.
In view of the fact that for fixed p = gp1 + (1 — q) p2, the RR and OR are strictly
increasing in A as shown in Section 19.1.4, the intervals for A can be transformed
into intervals for the RR and OR, maintaining the same nominal conditional confi-
dence coefficient. Further investigation into these intervals and comparison with the
traditional intervals presented above are required before one can recommend them.

19.5 Recurrent urinary tract infections

Recurrent urinary tract infections are a common health problem, and treatment by
different antibiotics at various dosages has been tested in a large number of case-
control studies. A recent review by Albert et al. (2004) included asummary of 11 such
studies. For background, referencesand standard meta-anal ytic results, thereader may
consult the website at www.nicsl.com.au and follow the prompts. The dataare listed
in columns 2-5 of Table 19.1. Here x; is the number of n; control patients who had
recurrent infections, while x, is the number of n, treated patients who had recurrent
infections following treatment.

Thequantitiesin columns6-10 show for each study estimatesof therisk difference
A, the unknown constants p, Z, the correlation effect size p and evidence T for a
reduction of risk of infection A > 0. Definitionsfor each are givenin Section 19.1.1.
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Table19.1 Resultsof 11 independent studies of antibiotic treatment to
prevent recurrent urinary tract infection. For each study the number x; out of
ny control subjects who continued to have infectionsis listed, as well asthe
number x, of n, of treated subjects. See text for details regarding results.

StUdy X1 ni Xz np A p Is 0 T L U

1 17 22 1 23 0698 0419 0975 0.707 527 047 0.88
2 17 19 8 21 048 0643 0921 0509 338 022 0.75
3 4 13 2 15 0165 0245 0743 0192 102 —0.18 0.53
4 8 21 1 20 0315 0225 0698 0377 247 008 0.64
5 10 13 0 11 0.708 0366 0935 0733 403 041 094
6 13 17 4 18 0513 0501 1001 0513 319 021 0.76
7 5 6 1 13 0679 0571 1133 0637 301 024 091
8 15 25 3 25 0462 0365 0928 0479 353 022 0.70
9 13 23 1 20 0491 0300 0844 053 370 026 0.76
10 5 7 1 13 0580 0484 1098 0554 263 015 0.86
11 9 11 2 16 0645 0529 1032 0635 357 030 0.87

All estimated effects A are positive. The weighted average of risks p vary widely
from 0.192 to 0.708 and the estimates of correlation effect size p are al positive but
quite variable. The first study contains large evidence T for a positive effect due to
treatment, and the third study very little evidence, but most show moderate evidence
for a positive effect. These evidences are combined in Chapter 25.

The last two columns of Table 19.1 give confidence intervals[L, U] for the risk
difference A, with only the third study interval containing the null A = 0.

19.6 Summary

For two samples, variance stabilization led to very good coverage properties of inter-
val estimators of the risk difference A = p1 — p,. Whether similar techniques can
improveon traditional confidenceintervalsfor therelative risk and oddsratio remains
to be seen.
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Defining evidence in t-statistics

20.1 Example

Mulrow et al. (2004) conducted areview of studiesinwhichthedropin systolic blood
pressure following a weight-reducing diet for a group of patients was compared to
that of a control group. Here we only consider the results for the treated patients for
three studies, but a comparison of treated with control groups for seven studies is
given in Section 21.4.3. The data are summarized by sample size n, sample mean y,
and sample standard deviation s,,, shown in columns 2—4 of Table 20.1. Column 5
contains the Student z-statistic for each study denoted S,,, and column 6 the p-value.

20.2 Evidence in the Student ¢-statistic

Givenn observations Yy, .. ., ¥, fromthenormal model N(u, o), with both parame-
tersunknown, wewant ameasure of theevidenceagainst . = g infavor of i > .
Define the effect by 6 = 1 — o and the standardized effect by

d=10/0c=(u—po)o,

aratio of two unknown parameters. Denote the sample mean and variance of the
observations by ¥, and s2. Recall from Chapter 1 that when o = g is known, the
evidence in Y, for the one-sided aternative 1 > 1 is defined by To = /n (Y, —
wo)/oo ~ N(z, 1) with expected evidence t = /n 6/09. In this model with known
variance, thekey inferential function isthusequal to the standardized effect § = 6/0¢.
We now want to define the evidence and expected evidence when o is unknown.

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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Table20.1 One-sample datafor each of three studies measuring drop in
systolic blood pressure for treated patients undergoing a weight-loss regime.

Study n Vn Sn Sy p-value

1 27 -4.8 13.8 -1.81 8.2 x 1072

2 20 13.3 8.1 7.34 5.8 x 1077

3 66 11.0 17.1 5.23 19x 106
The t-statistic

Sy = \/E(Yn - MO)/Sn

has under the null hypothesis u = o the Student z-distribution with v=n — 1
degrees of freedom, but in order to derive the evidence, we need to study its dis-
tribution under the aternative u > wo. In this case, we can rewrite the r-statistic
as

_ A =)+ Vi (i — o)

Si‘l

Sn

which is known to have the noncentral z-distribution.

Definition 20.1 The random variable X defined as a function of two independent
random variables Z ~ (0, 1) and W ~ X2 by

_Z+n

- Wy
issaid to havea noncentral Sudent’sz, (1) distribution. The noncentrality parameter

A € R and the number of degreesof freedomv € {1, 2, 3, .. .} arethetwo parameters
that characterize thislaw.

When i > o, the r-statistic S, has a noncentral ¢-distribution with parameters
v=n—1and » = /né. This follows by putting Z = \/n(Y, — n)/o and W =
s2/o?. A good reference for the noncentral -distribution is Chapter 31 of Johnson
et al. (1995).

LettingT'(a) = [, x*~*e*dx denote the gammafunction of o > 0, thefirst two
moments of the noncentral ¢-distribution X ~ ¢,(1) are

12 T(*5h)

')

= <1+ 3 + 0(1/v2)> A (20.1)
4v

Vv

E[X] = ¢, A = (é)

E[X?] = vaz 1422
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var{X] = v12+kz(u32_63)

A2 ) E[X]?

=14+ +01H) =1+

2v 2v

The expansionsinto powersof 1/v arevalid when v — oo and are based on Stirling's
approximation for the gamma function. Using these approximations, one finds that

the vst appropriate when X ~ ¢,(A) hasto satisfy
(h' () (L +x%/(@v) =1
for all x (see Section 17.2). The solution is

L1 X
h(x) = ~/2v sinh ( «/Z> (20.3)
Thesinhfunction, an abbreviation for hyperbolic sinefunctionisdefined by sinh(x) =
(e" —e¥)/2 for al x. It has inverse function sinh~2(x) = In(x + +/x2 + 1) for all
x. The reader can verify that the inverse function is an odd function (sinh~(—x) =
—sinh™(x)), and that its first derivative is & sinh™'(x) = {1+x2}7Y2,
Equation (20.3) is due to Azorin (1953), who first studied variance stabilization of
the noncentral 7-distribution and derived amore el aborate and more accurate formula.
To define the evidence in the z-statistic, we apply the vst (20.3) to the r-statistic S,,,
but introduce a further simplification. In the case of the ¢-statistic, v = n — 1. Thus,

S
h(S,) = /2(n — 1) sinh™ [ ———— ).
(Sn) (n—1) ( /—Z(n—1)>
Because S, contains a factor of /n, we could further simplify the expression, if
weused v = n instead of v = n — 1. Thisintroduces asmall error of order O(1/n),
which is of the same order as the other simplifications we made.

+ 0(1/V?). (20.2)

Definition 20.2 The evidence in at-statistic for testing u = o against the alterna-
tivespu > uois

_ - Sn _ so—1 (Yn - MO)/Sn
T = ~/2n sinh <«/Z> = +/2n sinh (ﬁ ) (20.4)

Aswe will seein Section 20.4 the finite sample corrected evidence

”n__1i7> V2n sinh™L(S, /v/2). (20.5)

improves the normal approximation in the tails.

For the data of Section 20.1, the evidence is shown in Table 20.2.

Let 6, be the unknown drop in systolic blood pressure for the kth treated group.
Then for thefirst study 73 = —1.79isweak evidencefor the aternative 6, < Otothe
null hypothesis of no effect. However, T, = 6.26 and 73 = 5.06 provide strong evi-
dencefor therespectivealternativesd, > 0andé; > 0. All the T}’ shavestandard error
1. Themain question ishow to combine these evidence val ues, and that isthetopic for
later chapters. But first, in this chapter we justify the choice of evidence measure 7.

Teorrected = (
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Table20.2 One-sample datafor each of three studies measuring drop in
systolic blood pressure for treated patients undergoing a weight-loss regime.
Instead of the p-value, the evidence is indicated.

Study n Vn Sn S, Evidence T
1 27 —-4.8 13.8 -1.81 -1.79
2 20 13.3 8.1 7.34 6.26
3 66 11.0 17.1 5.23 5.06

Laubscher (1960) has studied the question whether or not the evidence is nor-
mally distributed and found problems for small values of n and large values of the
noncentrality parameter. If the normal approximation for the evidence were to hold,
wewould have T ~ N(/n(~/2sinh™1(8/+/2)), 1). Thequality of thisapproximation
can be checked in various ways, for example, by comparing quantiles, distribution
functions or densities and we will come back to this in more detail alittle later on.
For now, let us simply look at how well we do based on p-values. Figure 20.1 shows
the p-value after the application of the vst as a function of the p-value before the
transformation to evidence. The p-value often is based on the normal approximation,
the p-value before is computed with the central t-distribution; see Section 20.4.1.

We can aso check the approximation by looking at densities. The actual cumu-
lative distribution of the evidence T in (20.4) is

P(T <1 = P(«/Esinh‘1 <j;_n> < t>

= P(S,, < +/2nsinh (\/tz>>

= Fsudent (@th <t)

vn

where Fsugent(t|v, A) is the cumulative distribution function of the noncentral
t-distribution with v degrees of freedom and noncentrality A. From this formula the
density is easy to derive.

Figure 20.2 shows the densities in six representative situations together with the
approximate normal density. Thethree panelsinthetop row arefor n = 5, thethreein
the bottom row are for n = 10. The two left-most panels show the case of the central
t-density. The actual density of the evidence hasavariance that is slightly larger then
one, the variance the approximating normal density. This effect is quite visible when
n =5, but much less pronounced when n = 10. The two right-most panels have a
noncentrality of A = 4. In these cases, the actual density of the evidence remains
visibly asymmetric and the density of the evidence T again has a variance sightly
bigger than one. In addition, the mode of the approximating normal density isto the
left of the mode of the actual density. Again, we also note that these effects diminish
with increasing n. The two middle panelsarefor A = 2.

n—l,ﬁé),
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Normal approximation to evidence

I T I I T T
0.00 0.02 0.04 0.06 0.08 0.10

Original p-value

Figure 20.1 Thecurvesshow thep-valuesbeforeand after using thevst, for different
sample sizes. Idedly, all the curves would lie exactly on the diagonal of the chart,
whichisclearly not the case here. After our transformation (20.4), the p-values based
on the evidence are systematically too small. The curves in gray correspond to the
corrected evidence and here the approximation is good.

20.3 The Key Inferential Function for Student’s model
The expected evidence E[T] is approximately equal to

E[T] = v2n sinh™(/n §/~/2n)
= Vn(~2snh™(8//2)) = V/n K(8), (20.6)

where we made use of the approximate expectation of the t-statistic, which is \/n 8.
Of course, we want the evidence T based on n observations to satisfy 7'~ N(z, 1),
wheret = /n K(8) for some monotonically increasing function of § = (1 — o)/,
called the Key Inferential Function. And thisis exactly what seems to happen.
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Figure 20.2 The six panels show the density of the evidence T (20.4) in situations
with small sample sizes. The curvesin gray are the approximating normal densities.

Definition 20.3 The Key Inferential Function appropriate for Sudent’s ¢-test is
defined in (20.6) and equals

K@) = v2 sinh™1(8/v/2) = V2 In(6/v/2 + \/1+ 62/2) (20.7)

The graph is plotted in Figure 20.3.

TheKey Inferential Functiontransformsthe standardized effect § into transformed
standardized effect K(8). Thelatter isestimated by k = 7/ /n .

To achieve ‘moderate’ expected evidence 3.3 for the one-sided alternative when
8 = 0.5 one would need a sample size of n satisfying +/n K(0.5) = 3.3, or n = 35.
The evidence as usual has standard error 1 in estimating this expected value. We now
can compare the expected evidence for 1 > 0 when o is known with the expected
evidence when o is unknown. The former is ./ §, while the latter is \/n K(5). The
ratio is equal to {sinh™(8/+/2)}/(8/+/2), which is approximately 1 for small § but
behaves like {1 + §2/2} /2 for large 6.
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Figure 20.3 TheKey Inferential Functionfor Student’smodel isshown asafunction
of the standardized effect §.

Or, one can ask how much more work is required to obtain the same amount
of expected evidence. If m observations with o known and n observations with o
unknown are to lead to the same expected evidence, then the ratio of n to m satisfies
J/n/m =1+ §/6overtherangel < § < 20, so the extrawork required relativetom
is(n —m)/m = (1+8/6)2 — 1 = §/3 + §2/36. The extrawork required, because o
is unknown, is a quadratic function of the unknown standardized effect § over most
of the range of interest. In particular for § = 3, n must be roughly twice as large as
m to achieve the same expected evidence. When § = 6, n = 4m isrequired. We will
come back to this question in Section 20.6.

20.4 Corrected evidence

The expected value of the evidence satisfies E[T] = /n K(8). In this section we
discuss possible modifications of the evidence T with the aim of improving the
precision of the above approximate equality. Recall that = means equal up to some
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wiggleroom. We use thiswiggle room to simplify the choice of expressions. Both our
key K (20.7) and our evidence T (20.4) are easy-to-use formulas. But theimprecision
in = may lead to appreciable errors for small samples. Thus the desire to correct the
evidence.

20.4.1 Matching p-values

One of the ways in which the approximation error is made visible isin the p-value.
Suppose we had a study and we wished to test © = o against u > . Theresult of
the study can be summarized by its p-value pguqay and the sample size n. We know
how the p-value was calculated. It is equal to

Psudy = Fs(—=v/n (Y, — po)/sy) = Fs(=S,),

where F denotes the cumulative distribution function of a ¢-distribution withn — 1
degrees of freedom. We transform this information to evidence by way of

T, = h(Sy) =~ ZnSinhil(Sn/ \ 2”)
and could derive a p-value for the evidence as
Pevidence = P (=T,,).

By construction, itisevident that psudy = Pevidence- HOWever, exact equality does
not hold, which may to some users be disconcerting, especially when the study
p-value is below 5%, but the evidence p-value is above this bound. This particu-
lar problem is, of course, caused by the mistaken impression that the limit of 5%
is somehow sacred. So, our primary response to this worry is to emphasize that one
should not rely on the p-value in thefirst place. It is much easier to think in terms of
evidence. Because evidence has a standard error of 1, whether the p-valueis dlightly
below 5% or dlightly above 5% makes no real difference.

If, however, the trandation to evidence has to preserve the p-value, we suggest
using a correction. To have equality between the two requires

O(=T,) = Fs(=S,) & Ty = ha(S,) = =@ (Fs(=S,)).
A multiplicative correction to the vst of the form
hn () = (L4 ¢3) ha (),

with ¢, of order O(1/n) would beappropriate. It amountsto afinite sample correction
of lower order than the terms deleted in 20.1. The correction corresponds simply to a
multiplication of theevidence T and Figure 20.2 can guide usin thechoiceof ¢, . If we
multiplied theevidence T by aconstant slightly smaller than one, both deficiencieswe
noted in the discussion of these densities could be corrected, the mode of the density
would shrink towards zero and the variance would become smaller. To choose a
particular value of ¢,, we could, for example, demand that a study p-value of 5%
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trandate into an evidence p-value of 5%. Using the symmetry of the 7-distribution
Fg, thisimplies that

®(—h,(Fg1(0.95)) = Fg(—F5*(0.95) = Fy(Fg(0.05)
1+ ¢,) o (Fg'(0.95)) = —®1(0.05) = »(0.95)
cn = 7 10.95)/ h, (Fg1(0.95)) — 1.

This correction anchorsthe vst at the 95 % quantiles of the Student ¢-distribution and
the normal distribution. The correcting constant ¢, turns out to be nearly equal to

¢ =—-07/(n-1).

The corrected vst thus leads to the following evidence

0'71> V2 sinh™ (S, /v/2n) .
n_

Teorrected = (1 -

The fact that the correction has a negative sign means that the corrected evidence is
smaller than the uncorrected one. The corrected evidence thus has abigger associated
p'Val ue (_ Tcorrected) .

Mathematical statistics offers some additional insight to the problem of matching
p-values. The Cornish—Fisher expansion is a tool for matching all the quantiles of
an arbitrary distribution to those of a normal distribution. For the z-distribution it
leadsto

1
Fg'(p) = @7H(p) + [(@71(p)° = 307 (p)] .

Thisformulacould be used to derive amore general expression for the correction c;,.

20.4.2 Reducing bias

Another basis for choosing a correction is the bias incurred when estimating the
expected evidence E(T) = t = /nK(8). The plug-in estimate of E(T) issimply the
observed value T = T. Thisis equivaent to the use of

k=K@ =K (Su/v/n)

based onthestrai ghtforward estimate of the standardized effect, S, = (¥, — o) /Sy =
S, /+/n. Inorder to realize thefull potential of the Key Inferential Function, we need
an unbiased estimator Keyrectea for Which «/zn Keorrected ~ N(v/n K(8), 1). This will
enable us to find confidence intervals for § and to combine evidence from different
but related experiments, as described in Chapters 17 and 25.

There are two distinct sources of bias in the basic estimate K. First, as shown
in (20.1), 8, is not an unbiased estimate of 8, and, second, even if it were, K would
still be biased, because K is nonlinear. To compute the bias, consider the three-term
Taylor expansion

K(6,) = K©8) + (8, — 8) K'(8) + (8, — 82K (8)/2.
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Taking the expectation leads to

E[KG)] = K(8) + (E[5,] — 8 K'(8) + E[(6, — 91K (9)/2
From (20.1) wefind
E[8,] = 8(1 + 3/(4n)) and E[(5, — 8)7] = (1 + 82/2)/n.
Putting these two together yields
E[K(5,)] = K(8) + 38K/ (8)/(4n) + (L + 82/2) K" (8)/(2n).

Weleaveittothereader tocheck that k' (8)=(1+8%/2) Y2 and K" (8)=—8 (K'(8))%/2.
The above result thus ssimplifiesto

E[K ()] = K(8) + 38 K'(8)/(4n) — 8 K'(8)/(4n) = K(B(L+ 1/(2n))).

When matching p-values we found that the uncorrected estimate (20.4) sightly
overestimates the evidence. This is confirmed by the above computation. The
estimate k overestimates the Key Inferential Function by an amount that isinversely
proportional to the size of the study. This suggests a correction of &, namely

Kunbiased = K(8,[1 — 1/(2n)]) = ~/2 sinh™(§,(2n — 1)/ (2n)). (20.8)

In order to compute the evidence, K must be multiplied by ./n. This gives an alter-
native bias-corrected vst, namely

Tunbiased = /21 Sinh™((2n — 1)S,,/(2n ~/2n)). (20.9)

For the data of Section 20.1, the three versions of the evidence are shown in
Table 20.3.

Figure 20.4 demonstratesthat the bias correction doesindeed provide animprove-
ment on (20.4) by reducing the bias. The variance stabilization is, however, much
better with the finite sample correction, where the standard error is very nearly equal
to one, even for samples of size 10. For this reason, we do not recommend the use of
the evidence Tynpiasea iN practice.

Table 20.3 One-sample data for each of three studies measuring drop in
systolic blood pressure for treated patients undergoing a weight-loss regime.
The three versions of evidence are shown in the last three columns. The
corrections are of small size, but show that the raw evidence overstates the true
value somewhat.

Study n Sy Raw Corrected Unbiased
1 27 -1.81 —-1.79 —-1.74 —-1.76
2 20 7.34 6.26 6.03 6.14

3 66 523 5.06 501 5.03
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Figure20.4 In the top row of panels, the value of K(8) = v/2sinh™1(8/v/2) is
shown as a thick gray line. Also shown are the expected values of the estima-
tors k, Keorrected @Nd Kunniased fOr study sizes of n = 10, 20, 40. The expected values
were computed by taking the mean over 100,000 simulations. The panels in the
bottom row show the corresponding estimated standard deviations of the evidences
T, Teorrected, @Nd Tunbiased- The ordinate of each plot is provided by the standardized
effect 5.

20.5 A confidence interval for the standardized effect

How to construct a confidence interval for the standardized effect § = (u — po) /o is
the topic of this section.

The estimated key inferential statistic « is approximately normal with mean
K(8) = v/2 sinh™1(8/+/2) and variance 1/n for a range of values of 8. A nomi-
nal 95% confidence interval for KC(8) is given by [k & 1.96/./n]. Because K(-)
is a one-to-one function, this can easily be inverted to yield a confidence inter-
val for the standardized effect 5. The inverse function is § = +/2 sinh(K/+/2) =
{eX/V2 _ e=K/V2y /2, which leads to a nominal 95% confidence interval for § in
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terms of the evidence T = /n K of

[L.U] = ﬁsinh(T_l'%)\/Esinh(”l'%)]. (20.10)

V2n V2n

As seen above, the corrected evidence Tynniased 1S preferable and for smallest sample
sizes. When using the corrected evidence (20.5), the inversion formula leads to the
confidence interval

T 1.96 T 1.96
[ Lcorrected> Ucorrected] = [\/—th ( oorrec;e;i > \/_ nh < 00"60;6;1 s )1 K

n—1 n—1

which is always a bit wider than the confidence interval (20.10).

For the data of Section 20.1, the sample sizes are so large that the correction is
not necessary. Thefirst samplebased onn = 27 observationshas So; = —1.81 which
leads to § = —0.336 and a 95 % confidence interval for § from (20.10) of [L, U] =
[—0.75, 0.03]. For the next sample Sy = 7.3, 8 = 1.35 and [L, U] = [1.03, 2.40],
and the third Sgs = 5.23,8 = 0.62and [L, U] = [0.39, 0.92].

20.5.1 Simulation study of coverage probabilities

In Figure 20.5 are shown the empirical coverage probabilities based on 100000
simulations each of nominal 95% confidence intervals [L, U] for §, when (20.10)
is employed with Tynpissed = +/7 Kunbiased based on the bias-corrected vst given by
(20.8).

20.6 Comparing evidence in ¢- and z-tests
20.6.1 On substituting s for o in large samples

The expected evidence in a one-sided 7-test of . = g against u > g is equa to
/1K (8), whereas for the z-test it is equal to /né. For large § = (u — o) /o there
is thus a very notable difference in the evidence obtained from a r-statistic S =
(Y, — 110)/s, compared to a z-test Z = \/n(Y, — 10)/o. Clearly, as the sample
size n grows the standard deviation becomes more or less ‘known’ , the distributions
of thetwo test statistics under the null hypothesisare ‘equal’ and the decisionstaken
for or against the null hypothesis of the two tests are in agreement. The reason for
the difference in the evidences lies in the different behavior of the distribution of the
two test statistics when the alternative hypothesis holds. In Section 20.2 it was shown
that the distribution of the ¢-test has a noncentral ¢-distribution ¢, (1) withv =n — 1
and A = A(v) = /n 8 = /(v + 1) 8. If welet the sample size grow, the distribution
of X ~t,(A(v)) isfor large v delicately poised between normality and a skewed
distribution. The following proposition explainsin detail what happens.
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Figure 20.5 The coverage probabilities for the standardized effect § are plotted as
functions of & for ssmplesizesn = 5, 10, 25. The curvesin grey arefor the evidence
T (20.4), theblack curvesarefor the corrected evidence Tyorrected (20.5). The corrected
evidence leadsto coverage probabilities close to 95% over awide range of situations.

Proposition 20.1 Let X ~ 1,(A(v)). There are three cases of possible convergence
asv — o0, depending on the rate of growth of A(v) with v:

if A(v) = A, then X — N(A, 1);
if A(v) = V8, then X — /v8 — N(O, 1+ 62/2);
ifA(v) = VA fork > 1/2,  then (X — A(v))/V*"Y2 — N(O, §2/2).

Proof : By definition (20.1), we can write X as

Z A(v)
VW/v + VAR

where Z is a standard normal random variable and W isindependent of Z and hasa
x2 distribution. The mean and variance of W are v and 2v. The mean and variance of
1//W/v are thus approximately equal to 1 and 2v/(2v)? = 1/(2v).

Asv — o0, thefirst summand converges to anormal limit, and the standardized
variable v/2v (1//W/v — 1) dso tends to a normal distribution. In other words,
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2(v)//W/v is approximately normal with mean A (v) and variance A(v)?/(2v). The
three different cases correspond to different behaviors of the second summand.

Inthefirstcase, A(v) — A asv — oo, thesecondtermtendsin probability to A and
the sum of the two converges to a normal with mean A and variance 1. This situation
occurs when performing a z-test with alternatives that depend on the sample size n
and approach the null hypothesisasn grows. These so-called contiguous aternatives
are of theform wo + 6//v. For these alternatives the fact that the standard deviation
o has to be estimated has no importance and the two tests are equivalent.

The second case occurs when we consider the t-test under a growing sample
size but for afixed alternative © > wo. Here, the second summand is approximately
normal with mean /v § and variance §2/2. Since the two summands are independent,
their sum is approximately normal with mean /v and variance 1+ §2/2. In this
case, the ¢-test and the z-test are not equivalent. The ¢-test has a bigger variance due
to the fact that the standard error needs to be estimated.

Inthethird case, A(v) = vf §asv — oo, the second summand has an approximate
normal distribution with mean v § and variance v¥*~182/2. Here we are interested in
2k — 1 > 0, inwhich case the variance grows with v and we need to divide by v¥~1/2
in order to standardize. Doing this causes the first summand to converge to zero in
probability, thus proving the stated limit. This corresponds to a situation where with
growing sample size n the alternatives move away from the null hypothesis. In this
case it isthe variance of the estimate of the standard deviation which determines the
limit.

Except in the first case of contiguous alternatives, there is thus areal difference
between the z-test and the 7-test. This difference shows itself in a reduction of the
power of the ¢-test. One has to note, however, that the practical relevance of this
phenomenon is minor. The difference in the expected evidence is \/n (5 — K(8)).
This is going to be large in absolute value only if either the sample size n or the
standardized effect § or both arelarge. |n either case the expected evidence carried by
ar-statistic islarge aswell and the power is close to one. The contiguous alternatives
have originally been invented exactly as aresponse to this conundrum. If one makes
experiments with large n then the power will be close to one even for small effects
8 and, in order to study the power more closely, contiguous alternatives have to be
used.

20.7 Summary

For normal datathetest statistic for . = g isthe Student ¢-statistic, and its variance
stabilization was essentially solved by Azorin (1953). However, we require a little
more, because when we combine evidence from different studiesin later chapters, it
will be important that the expected evidence in each be of the form /n K (8) where
KC is monotonically increasing in the unknown standardized effect § = (u — wo) /o,
and that IC bethe samefor all studies. Therefore wereexpressed Azorin'svst interms
which enabled us to obtain unbiased estimates «; from different studies for which
each T = \/n_k/%k ~ N(ﬁlC(cS), 1.
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It turns out that the appropriate K (8) = +/2 sinh~1(5/+/2). Knowing thisfunction
determinesthe expected evidencein the Student 7-stati stic enabl es usto assesswhat to
expect for agiven sample size n and standardized effect §. It aso allows usto choose
the sample size to obtain a desired amount of expected evidence for a particular
aternative 5.

In order to estimate /n K (8) with standard error 1 we introduced two different
but similar bias-corrections. The benefits of finding agood vst become apparent when
calculating confidence intervals for the standardized effect §, where for all practical
purposes a sample size of 10 is sufficient to attain the nominal coverage of 95 % for
3 ranging from —2 to 2. This range includes what Cohen (1988) considers a ‘large’
effect, § = 0.8, and what W.G. Hopkin (http://sportsci.org/resource/stats/) calls‘ very
large’. The range of § for which this method yields accurate confidence intervals
increases with increasing sample size.

Next we examined the difference between the 7-test and the z-test. The latter
assumes knowledge of the standard deviation o, whereas the former does not. In
terms of the Key Inferential Function, this difference is plainly visible, whereas in
traditional asymptotic studies one is usualy left with the impression that it does
not matter for large sample sizes. We showed that thisis only true for the so-called
contiguous aternatives.
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Two-sample comparisons

Two-sample comparisons of normal populations, one sample undergoing treatment
and the other serving as control, remain some of the most commonly encountered and
challenging problemsin statistics. It is difficult when the populations have different
variances, the heteroscedastic case. The simpler homoscedastic case was solved long
ago and will be reviewed in passing. Another difficulty is conceptual: does one want
to comparethe popul ations by estimating the difference of their means, theraw effect,
or does one want to make inferences about a standardized effect, which is the effect
size relative to the dispersion of the populations? As we shall show, the evidencein
the Welch (1938) statistic for testing the hypothesis of no effect in the heteroscedastic
case has two parameters, one a standardized effect and the second a sampling design
factor, depending on how well the ratio of sample sizes agrees with the (unknown)
ratio of population standard deviations.

The model entails X1, ..., X,, i.i.d. N(u1, of) independent of Y1, ..., Y,, i.i.d.
N(uo, 05), al parameters unknown. The objective is to test a null hypothesis i =
12 against a one-sided alternative, say 1 < w2, or the two-sided aternative. By
definition the effect is6 = u, — 1 andthe standardized effect isé = 6/0, whereo is
ameasure of scale, or magnitude, defined by (21.1). But first we consider an example,
to help fix ideas.

21.1 Drop in systolic blood pressure

Summary statistics from the review by Mulrow et al. (2004) are shownin Table 21.1.
The drop in systolic blood pressure following a weight-reducing diet for a group
of patients was compared to that of a control group. The same article also includes
reviews of studiesthat include hypertensive reducing drugs, and the interested reader

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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Table21.1 Seven studies comparing drop in systolic blood pressure for

treated patients undergoing a weight-l1oss regime (summarized by n, y, s2)

with control patients not undergoing aweight-loss regime (summarized by n;, x, s1).
The estimated standardized effect in the kth study is8; = 6, /61 = (3« — Xx)/6x.

A

k N1 Xk S1k nak Vi sa  Ni Ok s

1 24 0.2 13.8 27 —-4.8 13.8 51 -50 -0.18
2 18 7.4 81 20 13.3 8.1 38 59 0.36
3 64 4.0 15.7 66 11.0 171 130 7.0 0.21
4 9 -3.0 135 10 4.0 15.3 19 7.0 0.24
5 25 15.0 16.5 24 8.0 20.4 49 -70 -0.19
6 5 25 51 5 9.8 7.1 10 7.3 0.59
7 14 9.9 6.4 19 12.5 6.3 33 2.6 0.20

can find much more information on the selection criteria and methodol ogy for these
meta analyses by consulting the Cochran Review website at www.nicsl.com.au.

These data suggest homoscedasticity within each study, which will alow us to
make comparisonsof new techniqueswith traditional onesbased on the assumption of
equal variances. Our current objective isto find the evidence against each hypothesis
6 = ua — ny = 0inthedirection of 6, > 0 and to find a confidence interval for
6, or 8. In Chapter 25 we will combine the evidence in all these studies and useit to
find a confidence interval for arepresentative standardized effect.

First we need to consider what we mean by a standardized effect in one study. In
the fifth study shown in Table 21.1, there is a negative effect —7.0, but the sample
standard deviations of control and treatment groups are 16.5 and 20.4, so the effect is
small relative to the spread within the control and treatment groups. By comparison,
in the sixth study a positive effect of 7.3 is alittle larger than the standard deviation
in each group. Clearly the raw effects, in themselves, do not convey the discrepancy
between control and treatment groups.

21.2 Defining the standardized effect

Writing N =n1+ny and ¢ = ny/N, the unbiased estimator of 6 defined by 0=
Y,, — X,, hasvariance

2 2
Var[] = % + %
N q(1—-¢q)

Letting o2 denote the quantity in the braces, we have SE[§] = o/+/N, Where o is
our chosen measure of scale; it isfree of N and depends only on the known relative
sample sizes and the unknown population variances.
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When o1 = 0, the standard error reduces to o/+/N = 01//N{g(1—9g)}, a
guantity minimized by taking ¢ = 0.5, and then o = 20, . More generally, Equation
(21.1) is minimized for fixed N by choosing the second sample proportion to be
q = o1/(01 + 02). Thiswill helpif one hasarough ideaof therelative sizesof o1, 0,
prior to sampling, and wants to estimate the effect 6.

We define the standardized effect by § = 6/0. In this chapter we find confi-
dence intervals for § and evidence for § > 0. When o1 = o>, the standardized effect
reduces to 8 = {g(1 — ¢)}/?{(u> — p1)/o1}. The second factor is often referred to
as Cohen’'s-d (Cohen 1988) in the psychological literature, and is called the effect
sizein Hedges and Olkin (1985). Thefirst factor {¢(1 — ¢)}*? isknown, and reflects
the impact of unbalanced sampling. We will not assume equal variances further. It is
helpful to rewrite § interms of ¢ = np/N, 0 = 02/0? and 81 = /oy

1 -1/2
s=54-— +2L (21.2)
1-g ¢

The ratio §; = 6/01 is the standardized effect relative to the scale oy of the first
(control) sample; it was originally proposed by Glass (1976), who argued that the
control sample should be the basis for standardization. For balanced sampling, that
is, ¢ = 0.5, the standardized effect § = 81(2 + 20) /2.

21.3 Evidence in the Welch statistic

Itisclear that testing the hypotheses6 = QO versusé > Qisequivalenttotestings = 0
versus § > 0, so in either case the evidence for the alternative will be the same. To
find it, we begin by variance stabilizing the Welch statistic, which iswidely used for
testing these hypotheses in the context of comparing two normal populations, with
all four parameters unknown.

21.3.1 The Welch statistic

Welch (1938) proposed a test statistic for § = 0 versus § > 0 which is defined by
fWelch = «/_(Yn2 - an)/a where ¢ is the estimate of o obtained by substltutmg
the sample variances s2, s2 for the respective population variances o2, o2. Welch
(1938, 1947) and Aspin (1948) showed that the distribution of fye g under the null
8 = 0 is approximately the Student z-distribution with v degrees of freedom. It has
df v = (A + B)?/{A?/(ny — 1) + B?/(na — 1)}, where A = 0%/n1, B = 05/n,. In
implementation, visestimated by D obtained by substitution of 52, s3 for the unknown
population parameters. Further, an approximate 100(1 — «) % confidenceinterval for
0 isgiven by

A /\

L,U — 1« O+t

(21.3)
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The statistic fwech Can be written as the ratio of independent variables, Z + § to
W, where Z is standard normal and W isthe square root of a mixture of independent
X2, 1, X2,_ variables. The exact distribution of nyecn for all parameter values is
derived in Nel et al. (1990), and is a generalization of the noncentral F-distribution.
They use it to show that Welch's approximate ¢-distribution methodology is quite
accurate for obtaining critical points. It does not appear to be useful in obtaining
confidence intervals for § because of its complicated form and dependence on the
unknown population variances.

21.3.2 Variance stabilizing the Welch ¢-statistic

Let w = 1/Var[f] be the inverse of the variance of the effect estimator 6 = Y, —
X, Further define the constants C = o /{n2(ny — 1)} + o5 /{n3(n, — )} and D =
a2 /{n3(n1 — 1?2} + 05 /{n3(n2 — 1)}. Then it is shown in Kulinskaya and Staudte
(2007) that

(21.4)

3w?C 105w*C?  5wiD
E[twach]~«/ﬁs{1+ o +K[ v }}

4 32 2

2c 39uwC?
Var[twecn] ~ 1+2w2C+N82{w +K { o

3

> 8 3w D]}. (21.5)
When K = 0 the terms in curly brackets are accurate to order O(N~1), and when
K = 1toorder O(N~?). The choice of K will be made later to improve the range of
parameters for which 95 % confidence intervals for § are obtained.

It follows from these approximations that Var[fwech] = a1 + a2E?[twech], Where
a; = 14 2w?C and a, isthe ratio of the quantity in curly brackets in (21.5) to the
square of thequantity in curly bracketsin (21.4). It thenfollowsby the samederivation
used in Section 20.2 that a variance stabilizing transformation of the Welch statistic
isgiven by:

1 1) (a2 12
T(twaich) = —75 Sinh~ {() tWeIch}~ (21.6)
a, a

The theory suggests this transformed statistic 7 = T(rwecn) Should be approxi-
mately normally distributed with variance 1, but simulationsare needed to verify these
claims(seebelow). Lettingny, n, tendtoinfinity withproportiong = ny/(ny + np) =
ny/N fixed, it followsthat a; — 1 and Na, — &/2, where

N o/A-93+03/® Q-9 3+0%3
—limY_.% 24 _ . 21.7
s=lm v {o?/A-q@) +0%/q)2  {L—g)t+0q 12 (21.7)
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Thus the variance stabilized Welch statistic in (21.6) will for large n1, n, have
expected value E[T] = v/ NK(8), wherethe Key is

_ /2 VES
m)_ﬁ s 1 (Y20, 218

Here & is a parameter depending only on the unknown ratio of variances ¢ and
the proportion ¢ of observations allocated to the second sample. For any § > 0 the
expected evidence t is decreasing in &, so to maximize t we want £ to be as small as
possible. Using elementary calculus, onecanshow & > 1withequality alongthecurve
o0=1{q/1—q)? orqg=/o/(1+ /o) = 02/(01 + 02). Thisisthe same ‘ choice
of ¢ which minimizesthe standard error of 6 (seethediscussion after Equation (21.1)).
Because the ratio of population variances is usualy unknown, balanced sampling
g = 0.5 isrecommended, for then the constant & isbounded and infact 1 < & < 2.

When & = 1 the asymptotic mean (21.8) reduces to = = +/N K(8), where KC(8)
is given by (20.5); that is, T reduces to the same expression for the mean evidence
encountered in the one-sample Student 7-statistic. Thisisin accord with the homo-
geneous case ¢ = 1 and balanced sampling, for then the Welch statistic and the
two-sample pooled ¢-test are approximately equal. Even in the nonhomogeneous
case, the Welch test statistic with ¢ = 0,/(01 + 02) has v & N. Further, the scale
parameter defined in (21.1) simplifies to o = o3 4 02. Thus in this case the scale
parameter depends on only one unknown, the sum of the standard deviations, soitis
not surprising that the evidence in nween IS then asymptotically equivalent tothatina
one-sample z-statistic. In the next section we describe the small-sample behavior of
the variance stabilized fwech.

21.3.3 Choosing the sample size to obtain evidence

For any fixed 0 < g < 1 and & = &(p) defined by (21.7) one can show that £(p) <
Emax = MaXo-p<co £(0) = Max{g~1, (L — ¢)~1}. Further the expected evidence
(21.8) in twach has, for any fixed §; > 0, its smallest magnitude when & = Emax,
because | 7| isdecreasing in &. Thusto guarantee expected evidence of at least |7;| for
al o when § = §; we need to choose N; so that

2 2
Nz 4 ”Z“ax / sinh~2 <31\/5”;‘X>] . (21.9)

For balanced sampling N = 2n; thisreducesto Ny = {1/ sinh’l(al)}z.

21.4 Confidence intervals for &
21.4.1 Converting the evidence to confidence intervals

If itistruethat T = T(twech) defined in (21.6) satisfies T ~ N(z, 1) at |east approxi-
mately, with 7 given by (21.8), then anominal 100(1 — «) % confidenceinterval for ¢
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iS[T — 2142, T + 21-ay2]. Now T = /2N/E sinh~ (/& §/+/2), so this confidence
interval for T can be modified to isolate § between two limits, namely

2 | & 2 . | &
l\/; th{ % (T — Zla/Z)} s \/g th{ % (T + Zla/2)}‘| s (2110)

Whereé is an estimate of & Thisis anominal 100(1 — «) % confidence interval for
8, but needs to be checked by simulations. In the foJIowi ng we substitute sample
variances for population variances in (21.7) to obtain &.

21.4.2 Simulation studies

Kulinskaya and Staudte (2007) report on a series of simulation studies for different
choices of o = 0%/0? and sample proportions g = na/(ny + nz) with total sample
size N = n1 + np ranging from 10 to 100, and raw effect 6 = o — w4 ranging from
0 to 5. For each configuration (g, r, N, 6), 100000 values of fwech Were generated,
and T = T(twacn) cOmMputed using transformation (21.6). After experimentation, the
constant K(g) = min{1, 1/3+ 4|q — 1/2|} required in (21.4) and (21.5) was found
to improve the accuracy of 95% confidence intervals for §. The empirical means of
T//N are close to the asymptotic value t/+/N and the empirical standard deviation
of T isalso closeto 1 for awide range of parameter values. For complete details we
refer the interested reader to Kulinskaya and Staudte (2007).

Table 21.2 gives a summary of the coverage probability results of nominal 95%
confidenceintervalsover therange 0 < § < 1. Inthe context of equal varianceso? =
o3, Cohen (1988) has described effect size values d = (1o — u1)/o1 equal to 0.2,
0.5and 0.8 as‘small’, ‘medium’ and ‘large’, respectively. These correspond to our
8 = 0.1, 0.25 and 0.4. Hedges and Olkin (1985, p. 87) similarly note that effect size

Table21.2 Columns 24 list the minimum and maximum empirical coverage
percentages of the nominal 95 % confidence intervals (21.10) for §, when0 < § < 1,
based on 100000 simulations. All numbers are rounded to the nearest 0.1 %.

(n1, n2) o=1 0=2 o=4

(5,5) (95.2, 95.5) (95.0, 95.2) (94.5,94.7)
(10, 10) (95.1, 95.2) (95.1, 95.2) (94.6, 95.0)
(20, 20) (95.0, 95.2) (95.0, 95.2) (94.7, 95.2)
(25, 25) (95.1, 95.2) (94.9, 95.2) (94.8, 95.1)
(50, 50) (94.9, 95.2) (95.0, 95.1) (94.9, 95.1)
(100, 100) (94.9, 95.2) (94.9, 95.1) (94.8, 95.2)
(5, 10) (94.8, 95.6) (95.1, 95.6) (95.2, 95.8)
(10, 20) (95.0, 95.2) (95.0, 95.3) (95.1, 95.5)
(20, 40) (95.0, 95.1) (95.0, 95.2) (95.0, 95.3)
(30, 60) (94.9, 95.0) (94.9, 95.2) (95.0, 95.1)

(60, 120) (94.9, 95.0) (95.0, 95.1) (95.0, 95.1)
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Table21.3 Values of the nwech Statistic, the variance stabilized statistic
T = T(tweich) given by (21.6) and 95 % confidence intervals[L;, U;] for §; based
on (21.10) and the data given in Table 21.1.

i Ni b, &:/v/N; twelch T [Li, U]

1 51 ~5.0 3.87 ~1.29 ~1.26 [—0.46, +0.10]
2 38 5.9 2.63 2.24 2.16 [+0.03, +0.70]
3 130 7.0 2.88 2.43 2.40 [+0.04, +0.39]
4 19 7.0 6.61 1.06 1.00 [-0.22, +0.71]
5 49 —7.0 531 -1.31 —1.29 [-0.47, +0.10]
6 10 7.3 391 1.87 1.61 [—0.11, +1.37]
7 33 2.6 2.24 1.16 1.12 [-0.15, 4+0.55]

values from quantitative research syntheses usually fall within their considered range
of 0to 1.5, which corresponds to our 0 < § < 0.75. It is also found in Kulinskaya
and Staudte (2007) that the lengths of these confidence intervals for §, which do not
assume equal variances, are only slightly longer than the best available when the
assumption is made.

21.4.3 Drop in systolic blood pressure (continued)

Table 21.3 shows the results of applying the procedures proposed in Sections 21.3
and 21.4.1 to each of theindividual studiesin Table 21.1. The evidencefor § > Ois
negligible in al studies except 2, 3 and 6 where it isweak.

Only the second and third studies are of level 0.05 significance in testing §; = 0
against §; # 0, because the 95% confidence intervals for 8, 83 shown in column 7
do not contain 0. The same two studies would yield 0.05 significance for testing
Mo = py; against wy; # y; using thetraditional Welch ¢ intervalsfor the differences
in means. So the question should be asked: what have we gained by considering
standardized effects rather than the raw differencesin treated and control responses?

What we have gained is the ability to make comparisons among studies, because
the standardized effects are free of the variability in the populations under considera-
tion in al the studies. Moreover, we can put al seven results together to combine the
evidence for various aternatives and to estimate an overall effect (see Chapter 25).

21.5 Summary

The evidence in the two-sample Welch statistic is found to have a form similar to
that in the one-sample ¢-statistic, again growing with a suitably defined standardized
effect through the sinh~* transformation, but now also dependent on a parameter &
which is a known function of the relative sample sizes and the unknown ratio of
variances. Knowing this enables one to choose the sample size to obtain a desired
expected evidence for agiven é.
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For any fixed § > 0 the expected evidence in fygch has a maximum near that of a
one-sample ¢-test with N degrees of freedom when g = o0,/(01 + 02) because then
& = 1. Larger valuesof &£ will only diminish the expected evidencein thetest statistic.
Because the ratio of variances is usually unknown, it is recommended that sampling
be balanced, forthenatleast 1 < &£ < 2.

Confidence intervals for the unknown standardized effect can be obtained for a
wide range of parameter values and even small sample sizes, provided sampling is
balanced.
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Evidence in the chi-squared
statistic

22.1 The noncentral chi-squared distribution

A comprehensive collection of results on the noncentral chi-squared distribution is
found in Johnson et al. (1995, Chapter 29); most material in this section is excerpted
from their work but stated in our notation.

Definition 22.1 Given v independent standard normal variables Z,, ..., Z, and v
constants p1, .. ., 4y, the distribution of S =3"" ,(Z; + wi)? has the noncentral
chi-squared distribution, and depends only on two parameters, vand » = >, u2.
Itisdenoted S ~ x2(A). When A = O this distribution is the standard (central) chi-
squared distribution, denoted x2.

In many applicationsthenull 2 = Oisrejected at level « in favor of the alternative
A >0when S > x2, , thel—« quantile of the x2 distribution. Denote the null
median by m, = x2 5. The difference v — m, between the null mean and median is
monotonically increasing with v from aminimum of 0.545 at v = 1 to aleast upper
bound of 2/3. The mean and variance of S ~ x2() are given by E[S] = v+ A and
Var[S] = 2v + 4.

Example. Between group sum of squares (for known variance)

Foreachgroupk =1, ..., K let X} = [X41, X2, - - - » Xk.n,] denote asample of ny
observations, each with distribution N(ug, 1). Also assume the elements of

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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X' =[Xy,..., Xk] are independent. Further introduce the total sample size N =
>, i, the sample proportions g; = ni/N, the kth sample mean X, the overall
sample mean X = 3, qi Xy, its expectation i = ", gxix and the parameter A =
N Y, qi(pk — )2 Then the between group sum of squares Y = N Y, g (X —
X)2 ~ x%(»), where v= K — 1. The ratio 8 = A/N = 3", qx(ux — 1)? depends
only on the relative sample sizes g;, and measures the variability of the group means
x using a weighted sum of squared deviations from the weighted mean ., with
weights g.

Toseewhy Y ~ x2(1), for every positive integer n denote by 1,, the n-vector of
1's, I, then x n identity matrix and J, then x n matrix of 1's. Let My be the block
diagonal matrix with kth diagonal submatrix J,, /n. Thenfor C = My — Jy /N the
between group sum of squares can bewritten asthequadraticformY = X'CX where
C is symmetric and idempotent. Hence by Rao (1973, Section 3.0.4) Y ~ x2(A),
where v = K — 1 is the rank of C (equal to the trace of C) and the noncentrality
parameter . = E[X]' CE[X] = N Y, qi (k. — )%

22.2 A vst for the noncentral chi-squared statistic

The asymmetry in the chi-squared distribution means that one must work harder to
stabilizeitsvariance, and that the Key Inferential Function will depend on the sample
size. Nevertheless, the methodol ogy can be carried out with useful consequences for
inference.

22.2.1 Deriving the vst

Let S be any test statistic with S ~ x2(1). We want avst T, = h,(S) such that 7,
satisfies the properties E; to E4 of Section 16.1.1; that is, ideally it should be mono-
tonically increasing in S, have variance 1, be normally distributed for all A and have
expectation monotonically increasing from 0 at the null with A.

Now E[S] = v+ A and Var[S] = 2v + 41 = g(E[S]), where g(r) = 4r — 2v, s0
by the method of Section 17.2, h(x) = [*{g(t)}~Y?dt = /x — /2 + ¢,, where c,
is any constant, should stabilize the variance of A(S) near 1. Further, the choice
¢, = —/v/2, yidlds afirst-order expected evidence E[1(S)] = /A + v/2 — /v/2,
which is monotonically increasing from O with .

However, the above promising heuristic argument is flawed, because E[S] > v
and therefore the relationship Var[ S] = g(E[S]) underlying the derivation is defined
only for¢ > v, andhences > v. Thedefinition of the vst needsto be extended to small
values of S in asmooth way so that the properties E; to E,4 are satisfied. This can be
doneif one centersthe vst on the null median m,, instead of the null mean v, and then
definesthevst for small S intermsof large S by asymmetrization about m,, asfollows.

Definition 22.2 Let F,, bethe cdf of the central chi-squared distributionwith v degrees
of freedom and let m, be the median of this distribution: F,(m,) = 0.5. For the
model S ~ x2(1), A > 0 and hypotheses » = 0 against A > 0, the evidence in S is



22.2 A VST FOR THE NONCENTRAL CHI-SQUARED STATISTIC 185
defined by

(s — {+¢S —m,J2 — Jm,j2, forS>m,; 221)

-/ §*=—m,/2 +m,/2, forS <m,.

where S* = F;1(1 — F,(S)). Positive values of T, areinterpreted as evidence for the
hypothesis A > 0. Negative values of T, will be interpreted, after multiplication by
minus one, as positive evidence for the null hypothesis A = 0.

Some graphs of T, are plotted in Figure 22.1 which reveal T, to be a smooth,
monotonically increasing function of S that is 0 at the null median. Further, as sim-
ulations reported in Section 22.3 demonstrate, the vst defined by (22.1) has variance
well-stabilized near 1 and is approximately normal for a wide range of parameter
values. Thusthisvst will be seen to satisfy E; to E3 of Section 16.1.1.

22.2.2 The Key Inferential Function

It turns out that the first-order mean &, (E[S]) is too rough an approximation for our
applications, and the bias correction term in (17.1) is al'so needed. In terms of the
parametersd = A/N,v = K — 1,themeanandvarianceof S areE[S] = N{6 + v/ N}
and Var[S] = N{46 + 2v/N}. Hence Equation (17.1) leads to the following key.

0.455 1.386 3.357 7.344
._—-""-'_—'__———:
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Figure22.1 Thegraph of T = T(S) defined by (22.1) is shown for v = 1 asasolid
ling, v = 2 asadashed line, v = 4 as as dotted line and v = 8 as along-dashed line.
The vertical reference lines show the respective central chi-squared medians.
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Definition 22.3 The Key Inferential Function for the noncentral chi-squared model
when testing & = 0 against & > 0 is defined by

6+ %) my 12
(60) = Lno(0) — L 2N)_ _ , 22.2
nal®) = L@ = 5520 = {7} (22.2)
where 2 12
Vv —m,
ﬁN,v(9)={9+ o } . (22.3)

A simpler, but less accurate, Key than (22.2) is obtained by replacing v in its
second term by 2v — m,, to obtain

" _ 1 m, 12
KN (6) = Lyu(6) — m - {ﬁ} . (22.4)

Remarks

1. TheKey Inferential Function defined by (22.2) for parameters N > v > 1and
6 = \/N of practical interest, gives the expected evidence in the noncentral
chi-squared distribution, in the sense that (22.1) satisfies

E[T,] = VN Ky, (6). (22.5)

2. For v= K — 1fixed and A, N — oo with @ = A/N fixed, Ky, (0) — 6Y2.
This remains true even if the number of groups K = v + 1 grows with N at
any rate lessthan N; that is, K = o(N).

3. There are some applications where one wants to test the hypotheses A < X
versus A > g, wherethe boundary A is positive. A vertical adjustment to the
evidence (22.1) allows one to do this (see Section 22.5).

22.3 Simulation studies

In order to assess the properties of T, defined by (22.1), 400 000 samples were gen-
erated for various degrees of freedom v > 2 and values of 6§ = A/N ranging from O
to 3in stepsof 0.1. For example, with K = 3groups, v = K — 1 = 2, and for atotal
number of observations N = 6, 12 and 24, the results are displayed in Figure 22.2.
Thesimulationsfor v = 2, but with N = 50, 100 and 200, are shown in Figure 22.3.
Details now follow.

22.3.1 Bias in the evidence function

The bias E[T,] — v/N Ky.,() = VN {E[T,]/v'N — Ky()} of T, in estimating
VN times the Key inferential Function in (22.2) is shown as a function of 0 <
0 < 3for N =6, 12 and 24 in the top left-hand plot of Figure 22.2. The maximum
absol ute bias (absolute difference between the two sides of (22.5)) is less than 0.04,
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Figure 22.2 In the first row of plots are shown the empirical biases and standard
deviations of T, for N = 6 (dotted line), N = 12 (dashed line) and N = 24 (solid
line). The second row of plots gives the empirical coverage probabilities of nominal
95 % upper confidence bounds and 95 % conditional confidence intervals.

so the bias squared is much smaller than the variance of T>, which is close to 1, as
illustrated in the top right-hand plot of the same figure. The distributions of 7, are
very closeto normality (not shown). These properties suggest that confidence bounds
and confidence intervals for 8 can be found for 6 = 1 /N and hence A.

22.3.2  Upper confidence bounds; confidence intervals

To the extent that 7, satisfies properties E1 to E4 of a measure of evidence, one can
expect T, + zo.95 to define anominal 95 % upper confidence bound for /N K Na(6),
and hence [0, Ky (T + 2095} /V/N )] defines a nominal 95% upper confidence
bound for 6. However, an explicit formula for IC;,}V is not readily obtained, so we
based our confidence bound on Ky, , of (22.4).

Definition 22.4 For fixeda < 0.5defineU, , = (T, + z1_o + +/m,/2 )°. Then, after
inversion of K3, ,, which requires the solving of a quadratic equation, one obtains a
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Figure22.3 A repeat of Figure 22.2, but now for N = 50 (dotted line), N = 100
(dashed line) and N = 200 (solid line).

nominal upper 100(1 — «) % confidence bound for 6 of the form [0, B] defined by

U 1/2 2 .
B =21 1 - —. 22.6
() ) - @26

The reader who carries out the derivation will find that instead of the constant
—v/(2N) appearing on the right-hand side of (22.6), one has (m, — 2v)/(2N). The
changeto —v/(2N) brings the coverage probability closer to the nominal value when
1 — o = 0.95, athough sometimes it drops slightly below 95%. To ensure at least
95 % confidence for al & we recommend replacing —v/(2N) with —m, /(2N). For
examples of the empirical coverage probabilities of nominal 95 % upper confidence
bounds when v = 2, see Figures 22.2 and 22.3.

Reliable confidence intervals for 6 are more difficult to obtain because the bias
and variance of T, are not closeto 0 and 1, respectively, when 6 is small. However,
if one only triesto form an interval when 7, exceeds z1_,2, thet is, when 7, islarge
enough to be significant at level «/2 for alternative 6 > 0, then one can expect some
success. Therefore we define conditional confidence intervals as follows.
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Definition 22.5 Assume that 7, > z1_/2. Then subject to this condition, define

Ly = (T) — 21-aj2 + /M, /2 )2 andU,o/2 = (T, + 21-a/2 + /m,/2 )Z-Anom'
inal 100(1 — &) % (conditional) confidenceinterval [L, U] for 6 has endpoints

Luas2 y2n2

L=—"=(1+41 -2, 27
4N < * { * v,a/2 } > 2N ( )
Uv /2 2Nz nt,

U=— 1 1 - . 22.8
ot o) ) -5 @29

Again, thechoiceof additiveconstant —m, /2N intheseequationsyieldsempirical
coverage closer to the 95% value. Some empirical coverage probabilities of these
intervals are displayed in Figures 22.2 and 22.3.

More examples are shown in Figures 22.4 and 22.5. In Figures 22.4 there were
K =5 groups, and hence v = 4, with total nhumber of observations N = 10, 20
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Figure 22.4 In the first row of plots are shown the empirical biases and standard
deviations of T, for N = 10 (dotted line), N = 20 (dashed line) and N = 40 (solid
line). The second row of plots gives the empirical coverage probabilities of nominal
95 % upper confidence bounds and 95 % conditional confidence intervals.
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Figure 22.5 Thecorresponding resultsfor v = 9,and N = 20 (dotted line), N = 40
(dashed line) and N = 80 (solid line).

and 40. Figure 22.5 displays the results for K = 10 groups, sov =9 and here N =
20, 40 and 80. Note that the conditional confidence intervals are not very reliablein
terms of coverage unless 6 is moderately large.

22.4 Choosing the sample size
22.4.1 Sample sizes for obtaining an expected evidence

Earlier in Section 17.2.2 some useful properties of the Key Inferential Function were
listed. In particular, property K; statesthat if onewantsexpected evidence r, for alter-
native 61, one needs to solve for the least integer N satisfying N > {r1/Kn.,(61)}%.
Thisgoal ismorereadily accomplished by solvingfor N in \/NIC”;,’U(Ql) = 11, Where
Ky., = Kn,» isfoundin (22.4). The equation of interest can now be rewrittenin terms
of \y=Nbj,a=a,=v—m,/2andb=b,(t) = 11 + /m, /28

1

fitd-————" = b, 229
SR W ven (229)
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which leads to a quadratic equation with positive solution

14+ b2+ b2+ b2
—d.

AL = Ay, 1) = 5

(22.10)

It follows that the minimum sample size required to obtain expected evidence 3 for
alternative 0, isthe least integer N; greater than or equal to A1 (v, t1)/61. Dropping
the subscripts, plots of the function A (v, 7) against = defined by (22.10) are shown
in Figure 22.6, for v =1, ..., 9. These plots make it easy to quickly determine the
sample size required to obtain expected evidence t; for aternative 6;.

For example, suppose we want moderate expected evidence of t; = 3.3 for alter-
natived; = 0.5. By following thevertical dashedlineinFigure 22.6 uptothegraphfor
v = 4, and then the horizontal dashed line over to the y-axis, one finds A(4, 3.3) =
19.8. This leads to the minimum sample size N; = 19.8/0.5 ~ 40. For the same
expected evidence against the smaller alternative 6, = 0.2, one would need asample
size N1 ~ 100.

lambdatnu(9, tau)
30 40 50 60

20

10

tau

Figure 22.6 Plots of the graphs (z, A(v, 7)) defined in (22.10) forv=1,2,...,9
from the lowest line (v = 1) to the highest (v = 9). The vertical dashed lines cor-
respond to weak, moderate and strong expected evidence (r = 1.645, 3.3 and 5,
respectively). These plots alow for a quick determination of sample sizes required
to achieve a desired expected evidence; see text for details.
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22.4.2 Sample size required to obtain a desired power

Property K, of the Key Inferential Function in Section 17.2.2 described how the
power 1 — 8 = I1(#;) against an alternative 0; at level o of a Neyman—Pearson test
based on an evidence statistic 7 was related to the expected evidence t = E[T],
namely T = z1_ + z1-p. Thisstatement isonly true when the distribution of the evi-
denceisexactly normal under both thenull 6 = 0 and alternative 6 = 6; hypotheses.
For the chi-squared statistic the distribution of the evidence T, defined by (22.1) is
very close to normal for aternatives but not so under the null hypothesis. Therefore
for the vst of Definition 22.2 we define i, 1o = hu(Fv*l(l — )), 0 that the exact
1— « quantileof T, = h,(S) isgiven by h, 1. Then abetter approximation to the
relationship between 7, level @ and power 1 — 8 is

T = hy14+21-8 (22.11)

Thisrelationship, together with the methodology devel oped in Section 22.4.1, allows
one to choose the sample size required to obtain power 1 — 8 = I1(61) = Py, (T, >
h, 1) aganst 6; at level «. One only needsto determine t from (22.11), substitute
it in A(v, ©) of (22.10), and find N, the smallest integer greater than or equal to
A(v, 7)/61. For example, with v =K — 1 =4, level « = 0.05 and power 8 = 0.8,
the relevant T = 1.50 + 0.84 = 2.34, s0 A(4, 2.34) = 11.9. For dternative 01 = 1,
onerequiresasample sizeof N = 12, while for alternative §; = 0.2, it is 60.

22.5 Evidence for A > Ag

The methods devel oped in Section 22.2 for testing A = O versus A > 0 can easily be
extended to situations where one wants to test the hypotheses A < 1o versus i > Ao,
where the boundary 1 is positive.

We continue to use the notation N observations and the test statistic § ~ Xf(x).
The parameter of interestisd = A/N.

Definition 22.6 Giventhemodel S ~ x2(1), » > 0, and afixed 1o > 0. Theevidence
for testing A < Ag Versus i > g isdefined by

T,(ho) = T, — /N Kn.,(60), (22.12)

where T, is defined in (22.1) and Ky, is its associated Key Inferential Function
(22.2). The magnitude of negative values of T, (Ag) are positive evidence for A < Ag
while positive values are evidence for A > Ao.

It follows from (22.5) that E[ T, (Ao)] = v/N{Kn.,(0) — Kn.,(60)}, SO the associ-
ated Key Inferential Function of T, (1o) isgiven for each& = A/N by

KN (@) = Kny(©) — Ko (6o). (22.13)

This T, (1) inherits from T, properties E; to E4 of Section 16.1.1 for a measure of
evidence: monotonicity in the test statistic S, an expected evidence growing from 0
asthe parameter increasesfrom the null, a stabilized variance near 1 and approximate
normality. Asaspecia case, 7,(0) = T, and Ky.,.0 = Kn.»-
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22.6  Summary

In this chapter we derived a vst for any statistic S having a noncentral chi-squared
distribution. This transformation required a smooth symmetrization about the null
median so that the resulting evidence T, is not only defined and variance stabilized,
but also approximately normal for all values of S. It turnsout that the Key Inferential
Function for this model requires a bias correction term in order to be useful for
inference. One can use this Key to derive upper confidence bounds and two-sided
confidence intervals for the noncentrality parameter, and simulations demonstrate
their accuracy providing the parameter is not too near zero. In addition, a slight
modification of the Key enables one to carry out accurate sample size calculations
to achieve a desired amount of evidence for an alternative of interest. Finally, we
showed that the transformation is easily modified to allow one to find evidence for
the noncentrality parameter exceeding a positive constant.
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Evidence in F-tests

23.1 Variance stabilizing transformations
for the noncentral F

The F-test is commonly used in the analysis of experiments in order to assess the
importanceof effectscompared tothebackground noiselevel. Intheone-way ANOVA
with unequal sample sizes an outcome variable Y is observed under K different
conditions, which may be different locations, different doses, or different treatments.
Thisresultsink samplesY;, ..., Yy, for (s =1, ..., K) withtotal samplesize N =
ni1 + -+ -+ ng. Inthe fixed effects model (FEM), the observations have expectation
E(Y,;) = s and constant variance 2. The F-test statistic is

K n (1, —7)% (k- 1)
POND Bl (Ysi — Ys)z /Y =) 7

where Y, isthe mean of sample s and Y isthe mean of all the observations. Denotethe
expected value of Y,; by ., and consider the null hypothesis i1 = o = - - - = uk.
If this hypothesisis actually true and if the measurements have anormal distribution
with constant variance and are independent of each other, then the test statistic S
has an F-distribution with v, = K — 1 and vy = 3.5 ,(n, — 1) = N — K degrees
of freedom for the numerator and the denominator, respectively. The proof of this
results requires the use of linear transformations and knowledge of their effects on
multivariate normal random vectors. It suffices to say that one can show that both
the numerator and the denominator are proportional to chi-squared random variables,
which furthermore are independent. The formal definition of the F-distributionisas
follows.

(23.1)

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
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Definition 23.1 Let U ~ x2 and V ~ x2 be two independent chi-squared ran-
dom variables, with v, and v; degrees of freedom, respectively. The distribution
of S = (U/v,)/(V/v,) issaidtobean F, ,, distribution.

If an alternative holds, that is, if at least one of the expected values ., is different
from the rest, then a noncentral F-distribution results. The behavior of the denomi-
nator of S is not affected by the fact that the null hypothesisis false. The numerator,
however, changes to anoncentral chi-squared variable with the noncentrality param-
eter equal to

K
A= Z ns(ﬂs - M)Z/OZ’ (232)
s=1

Where/'L = Zf:]_ n.vﬂ.v/ Zf:l ng.

A nice overview of theissues and several proposalsfor variance stabilizing trans-
formations are given in Laubscher (1960). Formally, our noncentral F-distributions
are defined as follows.

Definition 23.2 Let U ~ Xfﬂ (1) be a noncentral chi-sguared random variable with
noncentrality parameter A > 0 and v,, degrees of freedom. Let V ~ de be an inde-
pendent chi-squared random variable with v, degrees of freedom. The distribution of
S = (U/v,)/(V/v,) issaid to be a noncentral F-distribution, ncF,, ,,(A).

The central F-distribution correspondsto A = 0.
To derive the vst we have to express the variance of a noncentral F variable in
terms of its expectation. These two quantities are
eXpeCtatlon =vg(v, + )\)/(vn (Ud - 2))

2050 + 12+ 2050, + 20) (Vg — 2)
vZ (va — 2)%(vg — 4)

2 5 ~
= 2 . <(expectati0n+ vd) _‘W>_

Vg — Vp V2 (Vg — 2)

variance =

The variance exists when v; > 4 and the expectation is aways larger than
va/(vg — 2), which is the value of the expectation when A = 0. As a consequence,
the vst derived from the expression of the variance as a function of the expecta
tion is not defined for all possible values of the statistic S. This variance stabilizing
transformation (.S) for anoncentral F variablewith parametersv,, v, and A satisfies

W = \/ (v —4)/2

(x + Vd/vn)z - CZ(UH, Ud) '

where the positive constant is ¢2(v,, vg) = v3(v, + vs — 2)/(V2(vg — 2)) > 0. The
solution of this differential equation involves the hyperbolic cosine function, which
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is defined for any real number x by cosh(x) = (e + €7)/2. It iseasy to verify that
this function is symmetric. Only the positive branch, that is, cosh(x) for x > 0, is of
interest to us. The inverse value x satisfies

€ +e)=2ys ()2 —-2ye"+1=0

<:>ex=y:|:\/y2—l<:>COSh_l(y)::I:ln(y—i—\/yz—l).

The derivative of this function is exactly what we need for our vst . For the positive
root we have

14+y/v/y? =1 1

YV -1 /=1

a cosh™*(y) =
dy

Thevst thusis

h(S) = /(va — 4)/2 cosh™* (‘H‘“/")

C(Vn’ vd)

— \/(vy —4)/2 cosh™* ( U § F Va ) (23.3)
VY3 v =2/~ 2)

Strictly speaking, this is only valid for S > v,;/(v; — 2). For smaler values, one
can still use it, but when the quotient inside cosh~* becomes smaller than one, the
corresponding value of & no longer exists. This difficulty is discussed by Laubscher
(1960), who then switches to transformations in which the noncentrality parameter
A has to be estimated.

In order to extend the definition of the vst we will follow the general procedure
outlined for the chi-squared test, that is, (1) re-center the function (.S) such that it
is equal to zero at the median med,,, ,,, of the null distribution F,, ,, and (2) flip the
values for arguments above the median to those below the median in a symmetric
fashion. Also in analogy to the chi-squared case, it is useful to modify the above
function A (S) and to bring the median into play in its definition.

The F-test turnsinto the chi-squared test when the number of degrees of freedom
inthe denominator islarge. Consider the example of the one-way ANOVA (23.1) and
suppose the sample sizes used in the experiment are fairly large, so that v, is large
and v, /vy issmall. We will now expand (23.3) in order to see how it comparesto the
vst considered in Chapter 22. The denominator of the argument of the inverse of the
hyperbolic cosine function can be rewritten as

V2 (W 4 va —2)/(va —2) =3 L+ (v, — 2)/va) /(L — 2/vq)

=12 (L4 (v, — 2)/va) (L + 2/vq)
=7 (L4 v /va).
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Note that the subtraction of 2 in the numerator and denominator cancels out in the
limit. The inverse hyperbolic cosine function is evaluated at

a4 vn $)/ (va X4 v, /v)?) = L+ (v, /va) (L — v, /(2v))

14 v, S B vn/2.
Vg Vg

When evaluating cosh~2(1 + ¢) for asmall value of € wefind

cosh L (1+¢) =1In (1+e+ NGET T 1)
= |n(1+e+ \/26+62)
= +/2e.

It follows that for large v; and small v, /vy

HS = o B3 \/2 (uns j vn/2>

Va Va

= /1= 4/vg /v, S —,/2= /1, S — v, /2.

When v, is large compared to v,, it follows that v, S is a noncentral Xfﬂ variable,
whereas the denominator of the F-test statistic (23.1) is approximately equal to the
variance of the measurement error. We now compare the above expression with the
evidence (22.1) for the chi-squared test Y. For values of Y larger than the medianm,,
of the Xﬁn distribution, this evidence is up to the re-centering equal to

VY—-m, /2~ /v, S —m, /2.

This would be exactly equal to i(S), if we replaced in i(S) the half-mean v, /2
by the half-median m,, /2, which in turn is approximately equal to v, med,, ,,/2.
Looking back over the preceding development, we note that we could achieve the
necessary change by replacing (v, + v — 2) by (v, med,, ,, + vy — 2) inside the
inverse hyperbolic cosine function. To further simplify the formula, we leave out
the subtraction of 2 to arrive at

Va =82 coshl( v S+ va )

\/\)S (v, med veovg Vd)/vd

To center the transformation, we finally subtract the valueat S = med, ,,,, which is
equal to

n aj\)l)
\/(vd—4)/2005hl( Vn MEGy, vy + Y )

\/Vd (Vn maj Vn, Vg + Vd)
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Simulations of thistransformation for small numbers of degrees of freedom show that

the multiplier «/(vs — 4)/2 leads to variances below the target value of 1. A further

worthwhile modification consists in omitting the subtraction of 4 from v,.
Thisleads to the following definition of evidence.

Definition 23.3 Let S be an F-test statistic of the null hypothesisA = Oversusi > 0

with v, degrees of freedom for the numerator and v, degrees of freedom for the
denominator. The corresponding evidence is defined as

T =T(S) = sign(s —med,, ) 1 /LZd (cosh—1 (\/U (:”r:e; b = ))
d \Vn Vn, Vg d

_ Cosh,]_ vnmed Y,V + v
Vg ’

In this formula, S* denotes the flipped value of the test statistic, equal to

o S, if $> med,, ,,
T FY (A=F,,(9), ifS<med, ,,.

Vn, V4
Recall that the inverse of the hyperbolic cosine functionis

cosh™1(y) = In(y + /2 — 1).

Figure 23.1 shows the evidence as a function of the test statistic for two values
of v, and increasing values of v,,. Figure 23.2 illustrates the convergence to the chi-
squared case when the number of degrees of freedom in the denominator grows.

23.2 The evidence distribution

The evidence defined in the previous section is a monotonic transformation 7(S) of
the test statistic S, which itself has a noncentral F-distribution. It follows that the
evidence 7(S) has density

Sonvarn (S(D)S'(T),
where S(7) isthe inverse transformation and f,,, ,,,.»(S) isthe noncentral F density.
From Definition 23.3 it follows that

§*(T) = cosh <|T|\/?+cosh—1 < ”"medvvd""’d)>
Vg Vg

% \/Ud (Vn med Vi, Va + Vd) E
Vn Vn

’
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v,=5, 10, 100 and v4=20

0 2 4 6 8 10

Figure23.1 The curves show the evidence in an F-test statistic S for v, =5,
10, 100 and v; = 5, 20.

whose derivativeis

2 Y
I (AN E SRUSY o e
dar Vg V4

xSgN(T) \/2vg(v,med ,, o, + Va)/ (Vun/Va)-

Notethat S > med,, ,, & T > 0 & S*=S. Inthiscase, S(T)=S*(T).For T < 0, we
have $*(S)=F, ", (1—F,,.,(5)), which has inverse S(S*)=F; %, (1—F,, ,,(5*).

Here, S(T) = S(S*(T)). Thefinal result we need for calculating the density of T is

a5+ S(S*) = = fo,0a (8 / fr,04 (S)-
The density of T isthus equal to

— fv,,udk(S(D)(dS*/dD s |f T 2 0
iD= {fv,l,v,/,A(S(T))(dS*/dD (dS/dS*) , if T<DO. (234)
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Figure23.2 These plots show the evidence as a function of the test statistic for
the chi-squared test (solid curves) and for the F-test (dashed curves). To make them
comparable, the abscissa for the F-test is v, S. The horizontal line indicates zero
evidence.

When 1 = 0, the density of the evidence T is symmetric around zero and equal
to f(T) = fo, v,.2=0(S* (D)) (dS*/dT). Figure 23.3 shows plots of these densitiesfor a
sel ection of valuesfor degrees of freedom and noncentrality parameter. Theagreement
between the normal density and the density of the evidenceisonthewhole quite good.
The biggest discrepancies occur for A = 0, which isthe null hypothesis being tested.
For small v, (top row in Figure 23.3) the variance of the evidence is visibly smaller
than 1. When v, issmaller than v,,, the density of the evidence hasadlightly increased
variance. Inthetop row, when 1 = 0, itisevident that thederivative of thedensity of T
isnot smooth at 0. Thisisdueto adiscontinuity of the derivative of the transformation
d/dS T(S) at the point S = med,, ,,. In the other plots, the lack of smoothness at 0
islessvisible, but it is still present.
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Figure 23.3 The four panels show the densities of the evidence for four couples of
degrees of freedom. For comparison, the standard normal density ¢ isincluded (thin
line).

23.3 The Key Inferential Function

The evidence T has expected value E(T) = /N K(v,, v4, 1), where N isthe sample
size, that is, the total number of observations. A first approximation for this expecta-
tion is obtained by calculating the evidence we would obtain with the mean value of
the test statistic S:

E(T) = T(S = vg (o + 1)/ (v (vg = )
- \/ﬁ (Coshl ((vn +A)/<1—2/vd>+vd>
2 \/Vd (Vnmed Vs Vd + Vd)

 cosh-! v,med,, ., + va
V4 ’
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As shown in Figure 23.1, the transformation 7(S) to evidence is concave and the
above approximation is an upper bound on the actual expectation. This can be seen
very clearly when 1 = 0. We saw abovethat thedistribution of T issymmetric around
zero, but obviously the above approximate expectation is not zero. We could now go
ahead and compute a correction based on the second derivative of the transformation
7(S). However, the case when A = 0 suggests a simpler remedy, namely to use the
following formula:

vy T A
E = /% [ cosht [ eMSduwn + 2 H v
2 \/vd (Vnmed Yy, Vg + Vd)

n aj\) v,
—cosh™? ( W) >’ (23.5)

Vd

which clearly is equal to zero when A = 0. The matching normal distributions in
Figure 23.3 are all centered at the approximate expected value calculated by the
above expression and we note that it does a very good job.

The Key Inferential Function corresponding to (23.5) is as follows.

Definition 23.4 The Key Inferential Function when using an F-test is equal to
nmedv v, A
KG) = /22 | cosnt [ v AV
2N \/Vd (Vnmaj Vi s Vg + Vd)
—cosh! ( vammed,,., + va Ud) > .
Vd

As in all the other tests discussed in this book, the Key Inferential Function
transl ates the apparent effect A (see, for example, Equaton (23.2)) into a statistically
meaningful effect size. Figure 23.4 shows how the key varies with the noncentrality
parameter. For A close to zero one has K (1) = K’(0) A with the derivative approxi-
mately equal to

, 1—v,/N 1
K'(0) ~ b/ﬁ

Clearly, the larger v,,, the smaller the rate of increase. For larger values of the non-
centrality parameter, the Key Inferential Function grows logarithmically.
Theinterval T + 1.96 is a confidence interval for v/N K, which can be inverted

to obtain a confidence interva for the noncentrality parameter A. The inverse
function A(K) is

Vd

A(K) = cosh («/N/C \/2/vq + cosh™? < v”mEd””“f’_'_vd))

X\/Vd (Vnmed Vn,y Vg + Vd) - (Vnmaj Vp Vg + Vd)'
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Key Inferential Function
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Figure 23.4 The upper panel showsthe Key Inferential Function for the same com-
bination of degrees of freedom used in Figure 23.3, namely all combinations of
v, = 1(solid) or 10(dashed) andv, = 5 or 50. The one-way ANOVA setting, where
N =v, +vs + 1, is assumed. The lower panel shows the total expected evidence
from the experiment.

To compute the desired confidence limits, one has to substitute 7'+ 1.96 for
VNK.

Transforming the test statistic S to the evidence T not only provides a calibrated
scale on which to judge the outcome of a statistical test and to combine test results,
but it also makes sample size and power calculations easy. In testing . = uo versus
w = o+ A > o with asingle observation of a normal random variable with unit
variance, the true discovery rate or power at the alternative A > Ois

PT>z210)=PT -A>z(1-a)—A) =Pz — A),

where ® denotes the unit normal distribution function, z;_, isits1 — « quantile and
« isthe probability of afalsediscovery or thetype-| error rate. It followsthat in order
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to reach a probability for a true discovery or power of 1 — B, the alternative must
satisfy

o~ A=zp=—21 8 A=21_o+ 218
After transformation to evidence, we are approximately in the situation of atest as
described above, with the Key Inferential Function in the role of the shift parameter,
A =V NK®).
The power function of an F-test is thus approximately equal to
Power(x) = ®(z1-¢ — VNKR)).

In atypical situation, the noncentrality parameter A is approximately known or it is
assumed to have acertain size. The number of degrees of freedom inthe numerator v,
isalsotypically known, whereasthe number of degreesof freedominthe denominator
vy and with it the total size N of the study can be adjusted. In order to reach power
1 — B, the total sample size has to be chosen as

N = [P +21-p 2.
KX
To illustrate the approximation, Figure 23.5 shows the power curves as a function of
the noncentrality parameter for different sample sizes.

23.3.1 Refinements
The Key Inferential Function and the normal approximation
T ~ Normal (u = VNK (), 0% = 1)

lead to satisfactory results. Its main advantage is the simplicity of its use. No com-
plex approximations need to be calculated. Knowledge of the vst, which isasimple
function given in closed form, is sufficient. However, al the elements in the above
distributional approximation containserrors. The distribution of theevidence T isnot
exactly normal, its expectation is not exactly equal to the v indicated and its variance
is not exactly equal to 1. One could try to improve the approximate formulas given,
but this would lead to considerably more complicated expressions, which is reason
enough for us not to pursue these ideas any further.

23.4 The random effects model
The standard F-test in one-way ANOVA (23.1) is based on the two sums of squares

and
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Figure 23.5 The approximate and true power of the F-test as a function of the
noncentrality parameter A. Thevaluesfor the degrees of freedom are all combinations
of v, =1or 10 and v, = 5 or 50. In each case, the quality of the approximation is
satisfactory, with the exception of the couple v, = 5and v, = 5, where the power is
overestimated when using the key inferential statistic.

Under the fixed effects model (FEM) Y;; = i + ex; with iid random variables
exi ~ N(0, 02). Under the random effects model (REM) Y, = i + ax + ey, withiiid
ax ~ N(0, 0%) independent fromtheerrorse;; ~ N(0, o2). Thenull hypothesisunder
the FEM is Hp : ux = p, and under the REM itis Hp : 02 = 0.

Note that under the REM ¥, = a; + &, ~ N(O, 02 + 02/ny). Let wy =02 +
o?/ny = 020 + 1/my), and W = diag(wy) the K x K diagonal matrix with w; on
the diagonal . Note that the parameter 6 = 03 /o> measures the standardized distance
tothenull hypothesis. Therandomvector Z = (Y1, . .., Yx) hasdistribution N(0, W)
and can be used to rewrite the sum of squares SS, as

ny

SS, = Z'BZ. with B = (by) = ny (8k, - N)'
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Inthislast formula, §;; denotes Kronecker’sdelta, whichis1if k = r and O otherwise.
For abalanced design, n; = n = N/K,and by, = n(8, — 1/K).ThusSS, ~ (no2 +
T A1

For both REM and FEM, SS, ~ 02x% _, independently from SS,. Thus for a
balanced case

o SSI(K-D _

2
o4 _
I ):<1+n02>X—(1+n9)X,

e

where X ~ F, _x_1.,,=~—k. Thisisdifferent from the noncentral F-distribution we
found previously for FEM. In REM the distribution under alternatives is a scaled
central F-distribution.

23.4.1 Expected evidence in the balanced case

Using the formulas for the expectation and variance of a non-central F-distribution
wefind

Vg - K
E(S) = 1(0) = A+ n0) 5 = A+n0)
2 205(vy + vy —2)
v, (Vg — 2)2(vg — 4)
2(N — K)2(N —3)
(K—1(N—K—22(N—K — 4
2(N —3)
(K—1D(N—K— 4

Var(S) = o%(0) = (1 + nb)

=(1+ n9)2

= E(S)? =anp®)?, (23.6)

where 6 = 03 /02. The vst corresponding to (23.6) is 4 (S) = a~¥2In(S). Under the
null hypothesis, 8 = 0 and E(h(S)) = h(u(0))+h" (1 (0))a?(0)/2=a"/? In(14(0))
—a'/? /2, and subtracting this term, we obtain the evidence

T = a Y2In(S/(0)) + a%?/2. (23.7)
The expected evidence under a general aternativeis

E(T) = a *?In(w(0)/11(0)) — a*/?/2
(K—1)(N—-K-4
2(N — 3)

= (K — DY?[(n — 1)/2n)] In(1 + no). (23.8)

1/2
=a Y?In(1 +no) = ( ) In(1 + no)

Inthelast formulawe madeuseof N = Kn,N - K —-4=Kn—-1) —4~ K(n —
1) and N — 3 &~ Kn, which shows that this approximation holds when at |east one of
K ornislarge.
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23.4.2 Comparing evidence in REM and FEM

Under REM, the expected evidence is of order K%/ but depends on n at a much
lower rate of In(n). Thisis natural since one can improve the estimate of o3 only by
increasing the number of samples K (and not the number of observations n in each).
The noncentrality parameter A is related to 6 by the approximate equality N6 = A,
which equals n K6 in the balanced case. Depending on the choice of K and n, the
evidence in a REM may be bigger or smaller than in the corresponding FEM. Few
(smal K), but large (n large) samples is a design that is unfavorable to REM and
favorableto FEM. When K and n are about equal (both around +/N) then FEM tends
to produce more evidence in favor of an alternative A.

23.5 Summary

In this chapter we considered test statistics with an F-distribution. Under the null
hypothesis, the test statistic is a ratio of independent chi-squared variables, each
divided by its number of degrees of freedom. It often happens that under the alterna-
tives the numerator becomes a noncentral chi-squared variable and it is for this case
that we derived avst . The evidences resulting from F-testsin fixed effects ANOVA
models can be computed with the help of this transformation. Another large area of
applications are regression models.



24

Evidence in Cochran’s
Q for heterogeneity of effects

Given K studies measuring potentially different effects u, for k=1,..., K itis
customary to test the null hypothesis of equal effects, or homogeneity, using the Q
statistic introduced by Cochran (1954); it is a weighted sum of squared deviations
of the effects from their weighted mean, and the topic of Section 24.1. The alterna-
tive hypothesis of heterogeneity assertsthat . ; #  for some j # k. Assuming the
ui'S can be estimated by asymptotically normal statistics, Q has, under the alter-
native of heterogeneity, a limiting noncentral chi-squared distribution, as shown in
Section 24.1.1. Unfortunately, when the weightsin Q need to be estimated, the dis-
tribution of Q often converges slowly to itslimit, making p-valuesbased on thislimit
of dubious value. Welch (1951) and James (1951) suggested a better moderate sam-
ple size approximation to the null distribution of Q which leadsto the Welch F-test
for homogeneity, and Kulinskaya and Staudte (2007) proposed an approximation to
the distribution of Q under aternatives. But here we advocate thinking in terms of
evidence for the alternative of heterogeneity. A vst of Q from Chapter 22 will find
the large-sample evidence T, for heterogeneity of effects (see Section 24.1.2).

We aso introduce another approach which makes Q useful for even moder-
ately small sample sizes. The ideais to find the evidence in each of K studies, use
such evidence to estimate a transformation of the standardized effect and then apply
Cochran’'s Q with known weights to these transformed effects. The resulting Q* has
an approximate noncentral chi-squared distribution, and soisreadily transformed into
evidence on the canonical scale using the results of Chapter 22. The simple theory

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
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and applications of this approach are the content of Section 24.1.3. In Section 24.2
the performances of Q and Q* are examined through simulation studies.

The random effects model is discussed in Section 24.3. It is well known that
Cochran’s Q hasthesamenull distribution under thefixed and random effects models.
However, the aternative hypotheses are different for the two models, and for fixed
K the evidence for the alternative of heterogeneity in Cochran's Q for the random
effects model is smaller than for the fixed effects model.

24.1 Cochran’s Q: the fixed effects model

It is customary in the meta-analytic literature to carry out a chi-squared test of the
hypothesis of homogeneity of effects using Cochran’s Q. If the test fails to reject it
is then assumed the effects are equal, and if it does reject then an alternative model
which allows for different effects is assumed. In this section we propose to measure
the evidencefor the alternative of unequal effects; that is, to replace the all-or-nothing
approach of testing anull hypothesiswith ameasure of theevidenceinthetest statistic
Q; theresearcher then has more information with which to make adecision regarding
the choice of models.

24.1.1 Background material

Assumetheestimated effects i, k = 1, ..., K for therespective studiesaremutually
independent and satisfy ./wy (ftx — ux) — N(0O, 1). Cochran’s Q is defined by

Q= dn(fu — i) (24.1)
k

where i, = > wepi/ >, wi istheweighted effect, and ﬁ;k‘l isthe estimated asymp-
totic variance w,jl of [i;. Werestrict attention to situationswherefor each k there are
n; observations in the kth study and w; * = o?/n; for afixed, but usualy unknown
o? > 0. In particular when the observations in the kth study are modeled by the nor-
mal distribution N(jt, o2), one estimates ., by the sample mean i, = X; and w
by W, = ny/s?, where s? isthe sample variance.

Proposition 24.1 Assume Y is a mutivariate K-vector with Y ~ N(u, X), where
¥ is a known non-singular diagonal matrix with inverse W = £, Denote the kth
diagonal element of W by w; and define p;, = wk/(zj W), Pw = i Pk, and
Y, = >« PiYr. Then the statistic S has a noncentral chi-squared distribution:

S = (Y = ¥) ~ x50, (24.2)
k

where

= wil = fiw)? (24.3)
k
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Proof: Let P be the diagonal matrix with kth element p;, I the K x K iden-
tity matrix and J the K x K matrix of 1's. Further introduce the symmetric matrix
C = (I — JP/W(I — JP). Thenitiseasily checked that the quadraticformY'CY =
Zk wi (Y — Yw)z =S.

It now follows from a standard result (Serfling (1980), pp. 128-129) that if Y ~
N(p, ) with X nonsingular and if C is symmetric, then Y’'CY has a noncentral chi-
squared distributionifand only if S C £ C ¥ = X C ¥, in which case the degrees of
freedomisthetracetr (CX) and the noncentrality parameter isu'Cp.

To complete the proof, check that CX =71— PJ and JPJ=J, 0 TCX =
¥ — J/tr(W) = £ C X C . The degrees of freedom in the noncentral chi-squared
distribution of S aretr (CX) =tr (I — PJ) = K — 1, and the noncentrality paranm-
eter ish = p'Cp = >, wi(ug — Ww)?. Clearly this distribution is the central chi-
squared distribution if and only if all , are equal.

It will be rare that the conditions of the above proposition are satisfied; rather
it is usualy tacitly assumed that the statistical model of interest is imbedded in a
sequence of models indexed by a superscript @, say, for which the statistic of inter-
est, in our case Cochran's Q?, has a limiting noncentral chi-squared distribution,
and then this limiting distribution is used to approximate the unknown actua distri-
bution of the particular ith model in hand. Therefore we consider some extensions of
Proposition 24.1.

Proposition 24.2  Fix the number of groups at K and define limiting sample pro-
portions r = (r1, ..., rx), al rp > 0. Let n® = (Y, ..., n'?), with total denoted
NO® =3 nl, deflneasequenceof samplesizesfor thngroupssaIlsfyl ngn®/N®
— rasi — oo.Foreachk = 1,. Kandeveryzletu(’) bean estimator of ., based
on the available n\’ observations, and assume {n"}"/2{2\" — i} /or — N(O, 1) in
distribution asi — oo. Further assumethe f1;'sare mutually independent.
In vector notation, for w = [u1, ..., ux] and @@ = [, ..., aP7, it follows
that
YO = {NOY2RD — pd ¥ ~ NO, %) (24.4)

indistribution asi — oco. Here X isa diagonal matrix with Xy, = a,f/rk > 0.
With these preliminaries, we may now find:

1. Limitingdistributionof 0 = 3, (ne /oD { 1" — ﬁw}zfor unknown weights
under the null hypothesis of homogeneity. For each i define (W®}1=x0=
Cov[Y?D], PO=w® tr(W®) and CO=(I — JPDY WD (I—JP?D). Under
the hypothesis of homogeneity p = u1g, we have

. . o n(i) ~ 2
00 = Wy cOu® =3 T i — i | > (249)
k k

indistribution asi — oo.
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Proof: Observe that W®/N® — ¥~1 arising in Equation (24.4),
0 CO/ND — D= (I —‘JP)/Z‘l(I — JP). Letting ay = u{N®}¥2 and
using Y = {NOV/2{3® _ 41 we may write Equation (24.5) as

@i

c® :
N(i) (Y(l) +aN1]() (246)

0" = (y® +aN1K)/

because (I — JP?V) ay1g = Ok. It nowfollowsfromProposition 24.1 and the
continuity theoremthat Q¥ — Y'DY ~ x2_, asi — oo.

2. Limiting distribution of 0 for known weights under the alternative hypothe-
sisof heterogene| ty. Assumefor each, theeffect that wasfixed at 1 |s replaced

by 11" = u + Ac/{N)}¥2, and that for each k, (n{"}2{0 — 1"} /o —
N(ni, 1) in distribution as i — oo. Here i, = Akﬁ/ok Then (24.4) is
replaced by ¥ = {NOV/2La® _ y®Y ¥y ~ N(A, %) in distribution.
Hence by Proposition 24.1 and the continuity theorem,
0 = Y'DY ~ x2_,()), (24.7)
where
r=ADA=Y %A —A,2 (24.9)
o
k k

Note that the noncentrality parameter in the ith problem is approximately
2D = NO9OD where

(@)

00 =32 2 (1~ ) 249

k k

3. Limiti ng distribution of Q@ for unknown weights. Suppose that the weights
w’ = nl" jo2 areunknown, but theree><|stsfor eachk estimators6.” based on
the available n\” observationswith 5’ — o} > 0in probability. Then again
by the continuity theorem, Q¥ hasal i miting distribution given in the previous

two parts of this proposition.

24.1.2 Evidence for heterogeneity of fixed effects

Cochran’'s Q asdefinedin (24.1) isthe standard test statistic for testing against homo-
geneity of the effects ;. Whenever O has an approximate noncentral chi-squared
distribution one can calibrate the evidence in it for heterogeneity of effects using the
vst derived in Chapter 22.

Definition 24.1 Let Q ~ x2(A), withv=K — Ll and A = >, (nx/0?) (i — fLw)?.
The evidence in Q for heterogeneity is defined to be the vst in (22.1) applied to Q,
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anddenoted Ty = hg_1(Q). Then Ty ~ N(typ, 1), wherethemean evidenceisgiven
by 7o = +/N K(6), with the Key defined by (22.2) and & = A/N.

We consider some examplesillustrating the performance of T, with various con-
figurations of parametersin Section 24.2.

24.1.3 Evidence for heterogeneity of transformed effects

Wehavefoundinearlier chaptersthat an appropriatevst of atest statistic oftenleadsto
evidence T having an approximate N(z, 1) distribution, wheret = /N K(8), N isthe
sample sizeand § is a standardized effect. For example, the +/2n sinh™(t,_1/v/2n)
transformation of the Student z-statistic (20.4) leads to t = \/n K(8), where § =
(1 — po)/o.

Supposenow thereare K studies, each entailing astandardized effect . of interest,
and one wants to know if the standardized effects are equal or not. One could apply
the method of Cochran to the estimated effects §;, for k = 1, ..., K, provided one
could find weights vy for which /v (8 — 8) — N(0, 1). Another approach is based
on the existence of a vst of &, as follows: let Ty = h(5;) ~ N(/nx K(8), 1), at
least approximately. Then the transformed effects k, = K(8;) can be estimated by
ki = Ti//m ~ N(kx, 1/ni). Hence Cochran’s Q statistic can be calculated for the
Ki's with known weights n.:

0" = m(Re —kn)?. (24.10)
k

This Q* ~ x2_,(A*), where A* = 3", n; (ks — ic,)?. The evidencein Q* for hetero-
geneity of the «'sis clearly Ty« = hg_1(Q*) ~ N(tg+, 1), from Definition 24.1.
Note that 0* and Q do not usually measure the same type of heterogeneity. Further
note that if al n,’s are equal, O* can be written Q* = > (T — T)2.

24.2 Simulation studies

For each of K studies one has n; independent observations in the kth study, each
with mean p, variance o2. Let fi; bethe sample mean, so w; > = Var[fi] = o7/ny.
Let @y = ni/s?, where s? is the sample variance of the n; observations in study «.
Inthissectionlet Q = 3, wi(ftx — ii,)2 denote Cochran’sformulain the idealized
situation where the weights are known, O the usual formulawith estimated wei ghts
(24.1) and Q* given by (24.10).

Inthissimulation experiment, the evidencesfor heterogeneity ineach of @, O and
Q* were found for each of 40 000 replications of the parameter settings. Table 24.1
shows the result for K = 3 groups with equal sample sizes from standard normal
distributions. Thusthe hypothesis of homogeneous means holds. The computation of
Q assumes known weights w;, = nk/a,f = nyg, whilefor Q the weights are estimated
by Wy = nk/s,f.

Column 2 of Table 24.1 shows the sample sizes, and column 3 the empirical size
of the nominally level 0.05 test, an estimate of P(x3 > 5.99) = 0.05. Columns 5 and
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Table24.1 Empirica study of T, T, and Ty based on 40 000 samples from
K = 3 standard normal populations, with equal sample sizes.

ng Size A,Q 0 S0 TQ ST,
(0] 5 0.05 0 1.98 1.99 —0.52 0.99
10 0.05 0 1.99 2.00 —0.52 0.99
20 0.05 0 2.00 2.02 —0.52 1.00
40 0.05 0 1.99 1.99 —-0.52 0.99
80 0.05 0 2.00 1.99 —-0.51 1.00
Q 5 0.12 0 2.85 3.95 —-0.28 121
10 0.08 0 2.31 2.60 —-0.42 1.08
20 0.07 0 2.15 2.30 —0.47 1.04
40 0.06 0 2.06 211 —0.49 101
80 0.05 0 2.03 2.04 —0.50 101
o* 5 0.10 0 254 321 -0.37 1.15
10 0.07 0 215 2.36 —-0.47 1.04
20 0.06 0 2.07 2.17 —0.50 1.02
40 0.05 0 2.02 2.06 —-0.51 1.01
80 0.05 0 2.01 2.01 —-0.51 1.00

6 give the empirical mean and standard deviation of Q, estimates of E[Q] = 2 and
SD[Q] = 2. Columns 7 and 8 give the empirical mean and standard deviation of the
evidence Ty. Note that s, isnear 1, as expected, and the mean evidence is slightly
negative, indicating asmall positive evidencefor the null hypothesis of homogeneity.
Next consider the results for Q in the same table. It is clear from consideration
of the empirical size mean and standard deviation that this 0, the one actually used
in practice, has a distribution which is shifted to the right of its limiting distribution
x3. Nevertheless, the evidence T, appearsto reliably point to the null hypothesis.

Theresultsfor 0* in the same table are worth comparing with those of Q and Q.
For although O* measures the heterogeneity of the transformed effects k, = KC(6x),
where 8, = (ux — wo)/ox, When the o;’s are equal the §,’s (and «;'s) differ if and
only if the u’sdiffer. Thus Q* indirectly measuresthe evidence for heterogeneity of
the u;'s. Note that the size, mean and standard deviation of O*, aswell asthe mean
and standard deviation of the evidence in T~ are closer to those of theideal Q than
the commonly used Q.

In Table 24.2 are shown the corresponding resultsfor the three test statisticsunder
thealternative of heterogeneity: herethemeansare (0, 0, 1). All resultsare computed
as above, but now the estimated level is replaced by the estimated ‘ power’ at level
0.05; of course when the level isnot 0.05 (see Table 24.2 for the actual size) it isthe
estimated power at alevel equal to the size.

Consider first the results for the ideal Q which assumes known weights. The
estimated means and standard deviations in columns 5 and 6 are estimates of
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Table24.2 Empirical study of T, T, and Ty based on 40 000 samples from
K = 3 normal distributions, with means (0,0,1) and variances (1,1,1),

again with equal sample sizes. The ‘power’ of each Q-test is hot necessarily at
level 0.05, but rather at the estimated size of the test shown in Table 24.1.

ny ‘Power’ A 0 (0] So TQ ST,
0 5 0.35 3.33 5.32 413 0.65 112
10 0.63 6.67 8.66 5.53 143 1.09
20 0.92 13.33 15.38 7.55 254 1.03
40 1.00 26.67 28.57 10.46 4.05 101
80 1.00 53.33 55.26 14.67 6.20 1.00
Q 5 0.44 3.33 7.73 9.11 101 150
10 0.65 6.67 10.13 7.86 1.62 1.28
20 0.92 13.33 16.52 9.21 2.65 117
40 1.00 26.67 29.56 12.00 4.12 112
80 1.00 53.33 56.24 16.32 6.25 1.10
o* 5 0.34 2.89 5.73 5.73 0.66 128
10 0.56 5.78 8.07 5.88 1.28 1.15
20 0.88 11.56 13.74 7.42 2.29 1.06
40 0.99 23.12 25.10 10.01 3.69 1.02
80 1.00 46.25 48.25 13.82 5.70 1.01

E[Q] =2+ Ap and SD[Q] = /4 + 4X. For example, when sample sizes are all
equal to 5, the theoretical E[ Q] = 5.33 and its estimate is 5.32; and the theoretical
SD[Q] = 4.16 and its estimate 4.13. If the transformation to evidence T, worked
perfectly, its standard deviation would be 1, but in fact it is slightly larger, near 1.12.
The estimated expected evidence for heterogeneity is 0.65, with standard error 1.12,
which is very weak for these sample sizes.

Now if one uses O, one sees that the power and evidence are exaggerated over
what would one expect from using the asymptotic distribution under alternatives,
namely that of Q. Thislimiting noncentral chi-squared distribution does not describe
the actual distribution of Q.

Finally, for O* the noncentrality parameter - issmaller than that of Ay, but the
noncentral chi-squared parameters v = K — 1 = 2 and 1o~ yield theoretical mean
and standard deviation that are in good agreement with the estimated mean and
standard deviation, especially for sample sizes at least 10 each. Thusthe statistic T-
can be relied upon as measure of evidence for heterogeneity of standardized effects,
and in the case of equal variances, of the effects themselves.

The null distribution of Q* is quite stable under changes of the parameters, espe-
cially compared to 0. For example, if the null hypothesis of homogeneity still holds
for K = 7 groups, and the smallest samples correspond to the populations with the
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Table24.3 Empirical study of T, T, and Ty based on 40 000 samples of
respective samplesizesn = (5, 5, 5, 10, 10, 10, 25) from K = 7 normal
populations having means 1 = (0, 0, 0, 0, 0, 0, 0) and standard deviations
oc=1(2,2,2,1,0.5,0.5,0.5). Theseresultsare showninrows 2, 7 and 12,
which arelabeled 7 = 10. The subsequent rows show the results as the sample
sizes are repeatedly doubled.

n Size A 0 (0] So TQ STy
0 10 0.05 0 6.00 3.48 —-0.28 0.96
20 0.05 0 5.98 3.44 —-0.28 0.95
40 0.05 0 6.01 3.49 —-0.28 0.96
80 0.05 0 6.01 3.49 —-0.28 0.96
160 0.05 0 5.99 3.46 —-0.28 0.96
0 10 0.21 0 9.44 10.64 0.31 1.46
20 0.11 0 7.07 476 —0.05 1.09
40 0.08 0 6.48 3.99 —0.17 1.02
80 0.06 0 6.24 373 -0.23 0.99
160 0.06 0 6.09 357 —0.26 0.97
0* 10 0.11 0 7.05 5.17 —0.09 1.15
20 0.07 0 6.31 3.93 —0.22 1.01
40 0.06 0 6.14 3.68 —~0.25 0.98
80 0.06 0 6.08 3.59 —-0.27 0.97
160 0.05 0 6.02 351 —-0.28 0.96

largest variability, then the null distribution of Q is again shifted to the right much
more than that of Q* (see Table 24.3).

Other simulation studies were carried out, using 0 and Q* as defined above, but
thedatawere not generated according to thenormal model; rather they were generated
from the symmetric but heavy tailed Student’s 3 model and the double exponential
model; and also an asymmetric model composed of 80% normal and 20% from a
standardized exponential model. In all these cases the null distribution of Q* was
closer to the nominal 2 _, distribution than that of 0 (see Kulinskaya and Staudte
(2007) for details).

24.3 Cochran’s Q: the random effects model

In the fixed effects model (FEM) of Section 24.1 it was assumed that there existed
K independent /i, ~ N(jx, wk‘l), where wy = o,f/nk, either exactly, or in the limit
asall ny — oo. If thismodel is considered conditional on the 1;’s themselves being
arandom sample from the N(, y?) distribution, then the unconditional distribution
of the f1;'s is called the random effects model (REM). For the REM each [i; ~
N(u, w,:l +y?), where y? > 0.
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The parameter 2 is called the interstudy variance component, and under the
null hypothesis y = 0 the common distribution of the [i,’s is the same as for the
FEM under the null hypothesis of equal effects i, = w. Thusthe null distribution of
Cochran’s Q isthe central x%_; under either model.

However, the alternative hypothesisy > 0 under the REM isdifferent from that of
the FEM, whichisthat at least two of the w,’sdiffer. These alternative hypothesesfor
both models describe ‘ heterogeneity’, but for the FEM it is of fixed effects, while for
the REM it is of random effects. Thus one cannot expect the evidence in Cochran’s
Q for heterogeneity to be the same for the two models.

Let M, =, w}, bethe sum of rth powers of the weights, and definea = M; —
Mo/Myandb = My — 2M3/ M1 + (Mo/M1)?, ¢ = b/a? andd = c¢(K — 1) — 1. All
these constants are non-negative because the weights are assumed positive; and, when
theweightsare equal, c = 1/(K — 1) and d = 0. For the special case of K = 2, the
constantsc = 1 and d = O for any weights.

For the REM Biggerstaff and Tweedie (1997) obtain the moments

E[Ql =K —1+ay? (24.11)
Var[Q] = 2(K — 1) + 4ay? + 2b ",

and approximatethedistribution of Q by the gammadistribution with these moments.
Herewewant avst for Q, sowewriteVar(Q) = 2d(K —1)—4d (E[Q]) +2¢ (E[ Q] )2.
Thus Var[ Q] = g(E[Q]), where g(r) = ag + a1t + axt? and ag = 2(K — 1)d, a1 =
—4d and ap; = 2c.

By the traditional method of Section 17.2 any indefinite integral [*{g(1)}~*/2dr
isapossible candidate for a vst . This requires a standard integral:

X 1 - )
[ tao+ aur+ aa?yVean = smh1<“2x+“1).

@ \ 46loa2 — a%
After substitution of the constants into this formula, we obtain
1 cx—d
h(x) = sinh™! .
V2c ( Vd )

This h(x) has been chosen to stabilize the variance of Q at 1. To obtain a potential
measure of evidence, one must al so subtract off the mean i (E[ Q]) at the null hypoth-
esisy = 0; that is, when E[Q] = K — 1. Thisleadsto 7, = h(Q) — h(K — 1) as
evidence for the aternative hypothesis y > 0. Recalling the definition sinh™2(y) =
In(y 4+ /1 + y?), this evidence can be rewritten in terms of the log function.

Definition 24.2 Assuming the random effects model as defined above, the evidence
T, in Cochran’s Q for the alternative y > 0 is defined by

1 cQ—d++(cQ—-d?+d
ERER Sy

T, =

o \/z
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For the case of equal weightsd = 0, ¢ = 1/(K — 1) and T, = (1/+/2c) In(cQ).
Substituting the expected value of Q given by (24.11) into (24.12) leads to the
first-order approximation:

| 14 acy? 4+ \/d + (1 + acy?)?
E[TQ]_\/Z_C{In< s )} (24.13)

For the case of equal weightsd = 0, ¢ = 1/(K — 1) and E[T}] = (1/v/2c) In(1 +
2
acy®).

Remarks

1. A limited number of simulation studies were carried out using the REM to
determine whether T, has astable variance for 0 < y < 1, arange including
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Figure24.1 All plots compare the evidence in Q assuming the FEM (solid line)
with that assuming the REM (dashed line), for 0 < Q < 3x%_; gg5. The top left-
hand plot is based on K = 3 samples of size 10; the top right-hand plot has K = 6
samples of size 10; and K continues to double in the bottom | eft and right plots. The
vertical dotted linesindicate the df K-1 and the critical point x% g o5 Of thetraditional
test for heterogeneity.
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all applicationswe have encountered. For equal weightswy, = n, = N/K, the
standard deviation of TQ/ washear 1.5for K = 2,1.3for K = 3,1.15forK =5
and 1.07 for K = 10, uniformly in y over the range of interest. For unequal
sample sizes the standard deviation varied slightly more about these values.
Assuming equal sample sizes, the graph of the empirical mean evidence for
heterogeneity versus y had the same shape as the expected evidence (24.13).
It was biased downwards, by the fixed amount, 1/+/K, and when this was
added to 7, the bias almost disappeared. These results depend much more
on the value of K than on thetotal sasmplesize N = > ny, assuming only all
n; > 10.

2. Assuming known weightsit is of interest to compare the evidence for hetero-
geneity T, of Definition 24.1 for the FEM to the evidence in (24.12) derived
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Figure24.2 Theseplotsarebased onthesamevaluesof K asinFigure24.1, but now
thesamplesizesarevery unbalanced. For thetop | eft-hand plot, they are (10, 10, 100);
for the top right-hand plot (10, 10, 100, 10, 10, 100); and the pattern of doubling
the number of studies with sample sizes (10,10,100) continues. The discrepancy in
evidence for heterogeneity between the FEM and REM appears to be greater for this
unbalanced case.
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for the REM, because the same Q is often used to test for heterogeneity in
both models. Some plots making direct comparisons of these measures of evi-
dence are shown in Figures 24.1 and 24.2. Consider the upper left-hand plot
of Figure 24.1. It shows for K = 3 samples of equal size n; = 10 the graph
of Ty versus Q as a solid line compared to the graph of 7, versus Q as a
dashed line. The vertical dotted lines indicate the df K — 1 and the critica
point x%_, o5 Of the traditional test for heterogeneity. Note that both graphs
indicate similar evidence for their respective alternative hypotheses for Q up
to this critical point, but that for larger Q the evidence for heterogeneity is
lower in the REM.

3. Theplotsof Figures24.1 and 24.2 do not depend onthe size of w; = ny; rather
it isthe configuration of weights that matters, aswell asthe value of K.

4. The derivation leading to the above definition of 7, depends on the assump-
tion of known weights, and its validity can be compromised by substitution
of estimates for them. In applications one applies these evidences for het-
erogeneity to transformed effects, which are supposed to be approximately
normally distributed, with known standard variances 1/n; under the FEM.
But thiswill typically only be the casefor all n;, > 10, and the larger the n;’s
in theindividual studies, the better.

5. One could define anew version of Cochran’s Q using weights w, * 4 72, but
y? isnot easy to estimate, especially when it is small (see Chapter 25).

24.4  Summary

Inthischapter we studied Cochran’s Q under theideal situation wheretheweightsare
known and when they are estimated. We showed that the study sample sizes n;, must
be quitelarge before estimated weights can be safely substitutedin Q. That iswhy we
advocate thinking in terms of transformed standardized effects, whose distributions
aredesigned to be approximately normal with variancesequal to thereciprocalsof the
sample sizes. Then the weights on the transformed space are ‘ known'’ to be wy, = ny,
and one usesthe special case of Cochran’s Q that isdenoted O*. We a so showed that
evidence for heterogeneity in Cochran’s Q depends on which model is used: for the
random effects model TQ’ increasesin Q asIn(Q); whilefor the fixed effects model
To increases at the faster rate ./ Q .
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Combining evidence
from K studies

25.1 Background and preliminary steps

In this book we have shown that avst T = h(S) of atest statistic for a positive effect
u > 0 often can be chosen so that the T lies on the unit normal calibration scale;
that is, to auseful approximation T ~ N(z, 1). Thisconstruction allows oneto easily
interpret the evidencein thetest statistic S for © > 0, because T isan estimator of its
expected evidence t with known standard normal error. Frequently the test statistic
S and the vst & can be chosen so that T ~ N(/n «, 1), where n is the sample size,
and « = KC(8) is the Key Inferential Function applied to the standardized effect §.
This construction allows one not only to find confidence intervals for «, but also, by
back-transformation, for §.

Now suppose there are K independent studies with datawhich, it is decided, can
be interpreted using the same model with unknown parameters. The parameter of
interest, the effect, may change from study to study, so it is denoted u; for the kth
study. Often there are other parameters which may vary. For example if the normal
model is adopted, both u; and o, may differ with k, and if the Student 7-statistic Sy
is used in the kth study, we found that avst led to evidence whose mean grew with a
monotonic function of the standardized effect §; = (ux — wo)/ox.-

Let k. = K(8;) denote the kth transformed effect. In Chapter 24 we applied
Cochran’'s Q to the k;, = IC(Sk), k=1,..., K to obtain the evidence Ty- for het-
erogeneity of the ;s directly, and the §;’s indirectly. On the basis of this evidence
one then has to make a decision how to proceed. If there is little or no evidence
(say Ty~ < 1.645) for heterogeneity of fixed effects, then one might assume equal

Meta Analysis. A Guide to Calibrating and Combining Statistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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standardized effects §;, = § for al k, and proceed to combine evidence for the alter-
native § > 0 and find confidence intervals for § as described in Section 25.2.1.

Now assume Ty islarge enough to rai se doubts about the above simple model. We
describe three ways to proceed, depending on the assumptions oneiswilling to make
and thedataavailablefor analysis. First, if onewantsto estimate afixed and represen-
tative standardized effect § for the K studies, one can proceed as in Section 25.2.2.
Second, if one assumes the K studies in hand are a random sample from a larger
population of studies, present or future, and wants to draw inferences about a repre-
sentative § for thislarger population, then one can proceed asin Section 25.3. Third,
if one suspects that a covariate can explain the differences in the §;, then one can
employ meta-regression as explained is Chapter 14.

25.2 Fixed standardized effects
25.2.1 Fixed, and equal, standardized effects

Given K independent studies, with evidence T; in the kth study for § > O, for
k=1,..., K. Then, at least approximately, each T; ~ N(z, 1) where 7, = ,/ni «,
k = K(8) and K istheKey Inferential Function for the assumed model. The combined
evidencefor § > 0 should continue to be on the evidence scale: that is, it should con-
tinue to be approximately normally distributed with variance 1, and mean growing
with 8. By the method of Lagrange multipliers one can show that amongst all linear
combinations ~, v Tk, al v > 0, satisfying Var[y", v 7x] = > v? = 1, choosing
v, proportional to ,/n; maximizes the expected evidence E[Y °, v Ti] = >, vtk =
(3=« vko/nx) k. Therefore we choose this combination.

Definition 25.1 Define the combined evidence for § > 0 in the K studies by

JiT: JART
Trx = Lt vk Tk (25.1)
Jhi+---+ng

As usual, when Ty.x is negative, its magnitude |T1.k| is interpreted as positive evi-
dencefor § < 0.

Now E[T1.x] = v'N k,where N = >k k- S0a100(1 — «) % confidenceinterval
for k isgiven by (Ty.x + zl,a/g)/ﬁ. An interval of the same confidence for § =
KC~1(x) is obtained by applying ! to the endpoints.

If for each k the evidence Ty is of the form T, = /nz K(8;) where & is an
estimator of § in the kth study, then the above interval can be reexpressed in terms of
thek, = K(8,)’s. For then Ty.x /+/N istheweighted combination of the;’s, namely
Tik/vVN =& =Y, miky/N ~ N(x, 1/N).

The coverage of these intervals should be better than that of the coverage of
intervalsin individual studies, because weighted averaging of the T;'s should result
in adistribution closer to normality.
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25.2.2 Fixed, but unequal, standardized effects

In this section the §;’s are not assumed equal, but arepresentative § for these K stud-
iesisdesired. To obtain one, we first define a weighted transformed effect, and then
apply K~ toit.

Definition 25.2 Given k, = K(8), k =1, ..., K, define a representative « by
K= an/ck/N. (25.2)
k

This « gives weight proportional to the sample sizes involved in the K studies.

Other weights may be more appropriate, depending on circumstances. Define the
representative § for the K studiesby § = K~1(«), where K isthe appropriate Key for
the K studies.

Theevidencefor § > 0isdefined the same way it was for equal effects (Equation
(25.2)).

To find an interval estimate for § we first find one for «. Starting with & =
> nkky/N, it is easy to see that k is unbiased for «, and further & ~ N(k, 1/N).
As in the previous section of equal standardized effects, a nomina 100(1 — ) %
confidence interval for « has endpoints & + z1_4/2/ VN, and the same confidence
can be had in the interval for § obtained by applying K~ to the endpoints of this
interval.

The reader will have noticed that the estimation methodology is exactly the same
asfor fixed equal effects, but the parameter of interest § now has adifferent meaning.
While before § was assumed fixed for all studies, now the §;’s are allowed to vary,
and § isthe standardized effect that transformsinto the weighted average of the «;’s.
So the interpretation of § is quite different.

25.2.3 Nuisance parameters

We have found that in some contexts the Key K depends not only on a standardized
effect § of interest but also on anuisance parameter &; thus IC = (8, &). For example
with the two-sample ¢-test the Key depended on both the standardized difference
of means § and £~ = v/N, the ratio of Welch’'s degrees of freedom and the total
sample size (see Chapter 21 for details). In such cases one has not only §;’s from K
studies to combine, but also the &;’s. It appears that each problem may require an
ad hoc solution, but if (8, £) ismonotonic in &, aweighted average of the &;’s, with
weights proportional to the sample sizes, seems to be a useful prescription. Once a
representative & is defined, the same combination of ék’s leads to an estimator é of &,
and one can continue as follows.

For simplicity assume that /C(6, &) is not only strictly monotonic in each argu-
ment, but jointly continuous in both arguments. Let «;, = K (8, &) for dl &, and
let I%k = Tk/\/fl_k. ThiSI%k ~ N(kp, 1/nk) For N = Zk ng, define « by (252) Then
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define an overall standardized effect § in terms of the representative &, « as the
solution of

K5, 6) = k. (25.3)

This § exists because (8, &) is monotonically increasing in its first argument, by
definition. A nominal 100(1 — &) % confidence interval for « has endpoints k +
21-as2/ VN, and the same confidence can be found in an interval for § obtained
by fixing £ at £ and solving (25.3) for the endpoints of this interval. This procedure
should be checked by simul ations, as has been donefor the two-sample normal model
in Chapter 21 and in Kulinskaya and Staudte (2007).

Another attractive approach isto acknowledge different nuisance parameters and
condition on their values. Then Equation (25.3) is changed to

NS K6, &) = «. (25.4)

The solution § exists because the sum of the key functions is still monotonically
incireasj ng in §, and the confidence interval for § is obtained as above after fixing &
at &. This procedure has not yet been tried in applications.

25.3 Random transformed effects
25.3.1 The random transformed effects model

In traditional meta analysis interstudy variability is often modeled by assuming the
effectsthemselves are arandom samplefrom anormal model with apositive variance.
We follow this example, but introduce the interstudy normal model on the space of
transformed standardized effects, because on this space we have estimators resulting
from variance stabilization, and we know they are approximately normal with known
variances.

Given atransformation § — /C(§) that is monotonically increasing and continu-
ous, define for each k the transformed effect «;, = IC(8;). In the previous sections, it

was assumed the ;' swerefixed, but now itisassumed«, . . ., kx areasamplefrom
the N(x, %) model with unknown mean « and variance 2.
Conditiona on the observed values of «1, . . ., kx it isassumed further that there

exists estimators &, k = 1, ..., K, for which &, = K(5;) has a conditional distri-
bution, given ¢, which is N(K(8¢), 1/ni). (When K is the sinh~* transformation
applied to Student ¢-statistics this amounts to assuming the §;’s are independent, and
from rescaled Student ¢-distributions.)

To obtain the unconditional properties of thex;’s one must average over the distri-
bution N(x, ). By using the conditioning formulas for expectations and variances,
one finds:

E[IACk] =K

R 1
Varfie] = — + V2. (25.5)
k
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These assumptions define the random transformed effects model. The first goal
is to find evidence for « > 0, and hence § = K~1(x) > 0, where K is the common
Key for the K studies. The second goal isto find a confidence interval for «, and by
back-transformation 8. To achieve these goals, one apparently needs an estimator of
¥2, but thisis not the case, as we will see.

Before going any further, however, it is suggested that one find the evidence for
y > Ousing theevidencefor heterogeneity 7. inthe REM defined by (24.12) applied
to Q* =3, ni(ky — %)2. For, even if T,-, the evidence for heterogeneity of fixed
effectsislarge, it does not mean the evidence for heterogeneity of random effectsis
large enough to worry about. Assuming thereisweak or stronger evidencefor y > 0,
one can then proceed as follows.

Letk = O, kp)/Kands? = Y, (k — k)?/(K — 1) denote the sample mean and
variance of the &;’s. Then one can show that E[s?] = % + (1/K) >, (1/ny), which,
together with the fact that 2 > 0, leads to the estimator of 2 :

1 1
~2 2
= 02— -3 = 25.6
7 =m0 - 3 (@59
In this context of known weights equal to the sample sizes, the DerSimonian and
Laird (1986) estimator of y? reducesto
*—(K-1

VoL = maX{O, o-k-D . ) } (25.7)

N =3 ni/N

where N = 3", my, & = (O, miky) /N, and Q% = 3, ny(ky — k)2, It isreadily seen
that when the weights n; are equal, the above two estimators are identical.

25.3.2 Evidence for a positive effect

For the random transformed effects model just defined, the evidence T1.¢ of (25.1) is
alinear combination of normally distributed variables 7, = /n ki, and hence nor-
mally distributed, but its variance now depends on the unknown 2. And, substituting
one of the estimators 3 or yp; for y? leads to Ty.x with an unknown distribution.
Therefore we proceed differently.

Note that k is an unbiased estimator of « with variance

_ 1 1 2 E[s?]

Varld] = - zk:{nk +y } == (25.8)
using the fact that E[s?] = y2 + (1/K) 3", (1/ni). This suggests the Studentized
sample mean Sx_1 = VK (k — 0)/s, as a possible basis for measuring evidence
for « > 0, but it has an unknown distribution.

However, itisclear from (25.5) that the k' swill have constant variance whenever
al ny = n, say, and then Sx_1 ~ rx_1(1), the noncentral Student ¢-distribution with
K — 1 degrees of freedom and noncentrality parameter

-0
A= «/?\/% (25.9)
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The same result will hold to a good approximation if every 1/n; is small relative
to y?, because then the &;’s are a random sample from (almost) the same normal
population. Of course this speculation needs to be checked by simulations.

Let s1,/,, be the standard deviation of the reciprocal sample sizes. For al K > 2,
Y > 2s1/,,, thesimulations described in Section 25.3.5 suggest that thisis so; that is,
the variances 1/n; + y? of the k;'s are sufficiently close to each other so that for all
practical purposes one can proceed as though they were equal in the REM.

The condition y > 2s1/,, is likely to be met in practice if all n; > 10, because
then thisistruefor y > 0.05. One can estimate y using (25.6) or (25.7), for example,
but caution is in order because these estimators are biased upwards for small .
There are other estimators of y available, including a MLE by Biggerstaff and
Tweedie (1997), but to our knowledge its performance has not yet been checked with
simulations.

Definition 25.3 Assume the random transformed effects model for K studies, and
assume that all study sample sizes are at least 10 and y > 2s1,,,. The evidence
for « > 0 and hence § > 0 is given by applying the vst (20.4) for the noncentral
t-distribution to the statistic Sx_1:

* : —1 SK—l _ . _1 K
Tix = /2K sinh (ﬂ) = /2K sinh (ﬁs) : (25.10)

25.3.3 Confidence intervals for « and §: K small

Given the rationale for evidence for a positive effect in the REM in the previous
section, it is now tempting to employ the Student z-interval with ¢ = tg_11-4/2 tO
capture k:
Sk _ Sk

K—C——, K +¢c—— |. 25.11
Y ahhiv- (@19
Simulation studies described in Section 25.3.5 indicate that these ¢-intervals for «
have very accurate coverage for every K > land all y > s1/,,.

The small sample confidence interval for § is then given by [KX~1(L), K~1(U)].
where K isthe common Key for the K studies.

[L,U] =

25.3.4 Confidence intervals for x and é: K large

In the previous section we estimated « using equal weights on each «;, but one
may want more weight on «;'s which are based on larger sample sizes. Let k, =
> Uik / Zj v; be an estimator of « with known positive weights v,. Then &, ~
N(k, 02), where

(25.12)

o_ 1 Iyl
U”_{Zjvj}zl;vk{”kﬂ}'
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For inversevarianceweightsvy = ng, and N =), ny thissimplifiestomf =(1/N +
y2 Y, n2/N?). Letting ¢ = z1_,, alarge-sample 100(1 — &) % confidence interval
for k isgiven by

[Lo, U] = [k — ¢ &, Ko+ c60], (25.13)

whereé, isobtained from (25.12) after estimating y? using (25.6) or (25.7). Theselast
estimates require K to be very large, in order to achieve the nominal 95 % coverage,
as demonstrated in the next section.

The large sample confidence interval for § isthen given by [K—1(L,), K~1(U2)].
where K isthe common Key for the K studies.

25.3.5 Simulation studies

In order to evaluate the performance of the confidence intervals described in the pre-
vioustwo sections, avariety of valuesof K and samplesizesny, .. ., nx werechosen.
For each of these choices, 40 000 simulated samplesky, . . . , kg were generated with
kx ~ N(k, 1/n; + y?), wherethetarget « was held fixed, and y setinitialy to 0. The
threeintervalsinitially compared were;

1. the 95% Student ¢-interval defined by (25.11);

2. the large-sample 95% interval defined by (25.13), with ¢ = zgg7s and
y estimated by y of (25.6); and

3. the large-sample 95 % interval defined by (25.13), again with ¢ = zpg75 and
y estimated by yp; of (25.7).

Thissampling procedure was repeated for 30 more sel ected values of y in the unit
interval. Thisregion includes all estimated values of y we have seen in applications;
and, in any case, simulations for y ranging from 1 to 20 yielded no changes from
those at y = 1. The resulting empirical coverage probabilities for the three intervals
were plotted as functions of y.

e It immediately became apparent that the asymptotic intervals, points (2) and
(3) above, had coverage less than 95 %, sometimes by a large margin, for a
widerange of valuesof y, unless K was at least 40. For example, when K = 30
and al n; = 10, these intervals have coverage near 96 % for very small y, but
this drops to 94% for 0.2 < y < 1. Increasing al n;’s does not improve the
coverage, it isthe value of K that must be increased. Thus the asymptotics do
not ‘kick in" early enough for these intervals to be of practical value. Their
performance was greatly improved by replacing ¢ = zo.g75 by ¢ = tx—1.0.975, SO
hereafter we make this change.

e For small K the coverages of the r-intervals were overly conservative for very
small y but performed extremely well otherwise. The examplewithny = ny =
10, n3 = 50 is displayed in the top plot of Figure 25.1.
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Figure25.1 Thetop plotisfor K = 3 studies of sizes 10, 10 and 50. The dashed
line gives the empirical coverage of the r-interval defined by (25.11) as afunction of
y. The other graphs depict coverage of intervals defined by (25.13), with the dotted
line corresponding to ¥ of (25.6) and the solid line to yp; of (25.7). In both cases
¢ = 0975 8 in (25.11). In the bottom plot are shown the graphs of the coverage
probabilities of these three intervals for K = 6 studies of sizes 10, 10, 10, 50, 50
and 50.
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e The lower plot of Figure 25.1 shows the results for K = 6 studies with n; =
ny = ng = 10 and ny = ns = ng = 50. Thistime the yp; -based interval fares
much better than that based on 7, but both are soundly beaten by the Student
t-interval.

e The upper plot of Figure 25.2 compares the coverages of these intervals for
the sample sizes of the 11 studies of the recurrent urinary tract infections data
described in Section 19.5.

e Thelower plot of Figure 25.2 assumes 30 studies having sample size 10 and 10
having sample size 50. Even for this number of studies, the z-interval has the
best overall performance.

e The average lengths of the intervals were also found, and the ¢-intervals were
shorter than the other two intervals, which were similar in length.

In summary, for the ideal situation where the transformed effects «; are exactly
normally distributed with variances 1/n; + y?, the Student t-intervals for « are
preferred. The second best performer was the large-sample interval centered on a
weighted estimator « and using the DerSimonian and Laird (1986) estimator of y.
However, it needed to be modified, replacing zo.g75 by 7x—1.0.975, for it to be compet-
itive unless K is at least 40. Estimation of y is not necessary to carry out inference
regarding « for the REM, as we have seen. For those readers who want a confidence
interval for the parameter v, we suggest Biggerstaff and Tweedie (1997).

In practice the transformed effects «; will only be approximately normal with
standard deviations approximately 1/n; + y? under therandom (transformed) effects
model, so the above results must be treated with caution. Sample sizes in individual
studies must be large enough for variance stabilization techniques to work, and how
largethey must be dependson the model and (unknown) valuesof theparameters. This
warning also applies to other meta-analytic techniques that use estimated weights,
especially ones that advocate normal approximations for K only moderately large.

25.4 Example: drop in systolic blood pressure

We return to the example of two-sample comparisons studied in Section 21.1, with
original datain Table 21.1andresultsfor individual studiessummarizedin Table 21.3.
Recall that N; isthetotal samplesizeinthe kth study, T, isthe evidencefor apositive
effect and k;, = T /+/N; isthe estimated transformed standardized effect. These last
two resultsareshownin Table 25.1 to threedecimal places. Inthisexample Cochran’s
Q applied to the transformed effects yields Q* = > ny (& — £)? = 14.035 which
exceeds xZ ;o5 = 12.6, so this traditional test would reject the assumption of equal
transformed standardized effects; that is, the assumption of equal «;’s is rejected at
level 0.05 by thistest. Thisis custom, but till arbitrary.

Let mg = xZ 5 = 5.34812 be the median of the x3 distribution. The evidence
for heterogeneity T,- is found by applying the vst (22.1) to Q*; it yields Ty« =
O —mg/2 — /mg/2 = 1.7, which is only weak evidence for heterogeneity of
the fixed standardized effects. Without further information it could reasonably be
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Figure 25.2 Continuing with the sameintervalsasin Figure 25.1, thetop plot shows
empirical coverage for K = 11 studies with sample sizes 45, 40, 28, 41, 24, 35, 19,
50, 43, 20and 27. Only thez-interval coverageiscloseto0.95for al y. Similar results
are obtained in the bottom plot for K = 40 studies, 30 having sample size 10 and 10
having sample size 50. The average lengths of these intervals were a'so computed
and are substantially smaller for the r-interval s compared to the others, especially for
small K.
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Table25.1 For each of seven studies are shown the total sample sizes Ny, the
Welch df 1y, evidence for positive effect 7} and corresponding transformed
effects k.

k Ny f)k Ty IACk

1 51 48.30 —1.263 -0.177
2 38 35.58 2.158 0.350
3 130 127.62 2404 0.211
4 19 17.00 0.997 0.229
5 49 44.24 —1.285 —0.184
6 10 7.26 1.608 0.509
7 33 27.91 1117 0.195

assumed that the standardized effects are fixed and unequal, or that they are arandom
sample from a population of standardized effects.

The choice of model (fixed or random standardized effects) should be determined
on the basis of whether one wants to draw inferences regarding these seven studies
only, or rather one wants to draw inferences for a larger population of studies for
which these seven represent a genuine random sample. We will do the computations
for each model for illustrative purposes.

25.4.1 Inference for the fixed effects model

Whether one assumes all «; = « or the «;’s are different, and the representative
k=) . Neki/N, where N = 3, Ni, the inferential methods are the same. Using
(25.1) the evidence for « > Ointhese N = 7 studiesis T1.7 = 2.12, which is weak.
That is, thereisonly weak combined evidence for the conclusion that dieting leadsto
adrop in systolic blood pressure. This is not surprising, given that two of the seven
studies showed the opposite result. This evidence is readily converted into a 95%
interval (Tv.7 =+ zo.975)/+/7 for k, namely [0.009, 0.225].

A 95% confidenceinterval for § = K~1(«) requirestheinverse of the Key for the
Welch r-test. Recall from Chapter 21 the Key K(8) isfor each value of the nuisance

parameter £ given by
2 \/§3>
= /= snh7} X==).
Ke(8) \/;sm (ﬁ

In the kth study & = N; /iy, the ratio of the total sample size Ny = my + n; to
Welch's df for the two-sample comparison.

For all K = 7 studies a representative value of £ is & = N/ >k Uk, Where N =
> Ny isthe total sample size. Note that £ is aweighted harmonic mean (weights
Ni/N) of the &’s. For these data N = 330, 3, i = 307.9 and & = 1.072. The
overal § for the seven studiesisdefined by § = ICgl(/c), and hence a 95 % confidence

interval for § is obtained by applying ]C§—1 to each endpoint of the 95% confidence
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interval derived above for «. The result is almost the same, [0.009,0.226], because
the sinh~* function behaves like the identity near the origin.

25.4.2 Inference for the random effects model

For the random (standardized) effects model the evidencefor y > 0in Q* = 14.035
is by definition (25.3) equal to T}, = 1.43, which is very weak, so one should stay
with the FEM analyzed above. But for the sake of illustration, we proceed with the
analysis based on the REM.

The DerSimonian and Laird (1986) estimate (25.7) of the variance component
y?is % = 0.032. For these data one can also compute i = 0.162, s, = 0.2577 and
#? = 0.030 from (25.6).

The evidence for « > 0 is by Definition 3 given by 7', = 1.61. Note that thisis
smaller than the evidence found earlier for « > 0 using the fixed effects model. But
there is not much difference because 72 is small.

The 95% Student z-interval (25.11) for « is[—0.077, 0.400]. The 95% interval
for § is readily found by applying the transformation K- to each of the endpoints
of the previous interval, which yields [—0.076, 0.406]. Note that these intervals are
slightly larger than those obtained from «, & earlier, because they had to allow for a
small variance component. If y? were much larger, so would be these intervals.

25.5 Summary

Inthischapter we have proposed methodsfor combining evidencein K studiesfor the
fixed (equal or unequal) standardized effects model, aswell as arandom transformed
standardized effects model. For all models, a representative standardized effect is
defined and confidence intervals are provided. The methods are relatively simple
becauseit isassumed that variance stabilization techniques have aready transformed
thetest statistics onto the unit normal calibration scale. The reader is cautioned, how-
ever, that these techniques make strong assumptions, in particular that the evidence
for each study is on the calibration scale to a good approximation, for all parameters
of interest.
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Correcting for publication bias

26.1 Publication bias

It is well known that the established practice of requiring experimental results to
contradict a null hypothesis of no effect at level 0.05 introduces certain anomalies.
The scientist who obtains a p-value of 0.049 may succeed in publishing the result,
while the one who obtains 0.07 cannot publish. After reading this book it becomes
clear that this is an absurd situation, because the second study contains almost as
much evidence asthefirst one. Thevery fact of publication introduces abias towards
the alternative: a published p-value is conditional on its being less than a threshold.
When combining p-values obtained through published studies, one must be aware of
this selection bias and one must try to reduce its effect.

If selection biasaffectsasampl e, one can sometimes makeit visiblein an appropri-
ate plot. The missing parts show up as gaps, truncations, hollows, etc. Intheliterature
on publication bias the funnel plot is often cited as such atool.

Definition 26.1 Suppose we plan to combine a group of similar studies. For each
study two numerical summariesare at hand. First, an observed effect, which can bea
log oddsratio, the deviation of a mean fromthe null value, or something else. Second,
ameasure of the precision, such asthe standard error of the observed effect. The plot
of the precision as a function of the effect is called a funnel plot.

Example 26.1 A simulated example may help in illustrating the selection intro-
duced by publishing only studiesthat reach traditional significance asmeasured by a
p-value of less than 0.05. In this example, we look at 300 studies, each resulting in
an observed effect X that is normally distributed with a mean of x and a standard

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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Figure 26.1 The four funnel plots show the precision (equal to the standard error)
of each of 300 studies versus the observed effect X. Note that even though the study
sizeisindicated in the y-axislabels, the ordinate used in plotting is 1/./study size. A
study rejects the null hypothesis, if the effect exceeds 1.645/./study size. The dark
pointsindicate the studiesthat reject the null. The four panels correspond to different
actual effects. They gofrom u = 0.4 (upper left) to u = 0.1 (upper right) to « = 0.0
(lower left) and finally to © = —0.1 (lower right).

error of 1/./n, where n is the number of subjects in the study. Figure 26.1 shows
what happens if we select the studies leading to a significant result, while ignoring
the others. When the actual effect i islarge, or, more precisely, when the power of
the study is close to one, the selection biasis negligible. Thisisthe casein the upper
left-hand panel of Figure 26.1. Asthe power decreases, the publication bias becomes
more visible. In the upper right-hand panel, the funnel plot is asymmetrical and it is
clear that more than one half of what should be there is missing.

The most dangerous cases are shown in the lower row of plots, where the true
effects are zero (no effect whatsoever) and —0.1. In this latter case, the actual effect
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isin the opposite direction of the observed effect. In both cases, any published result
is a false discovery. Imagine the funnel plot containing only the dark points. Would
the reader, seeing these two plots, guess that something was amiss? In the lower
left-hand plot one might convince oneself that the funnel plot isabout half missing. In
the right-hand plot, however, there are only three published studies and they confirm
each other perfectly. And so, one would most likely conclude that a small positive
effect truly existed.

This example shows two things. For one, while the funnel plot isavalid ideain
some circumstances, there are many ways in which things can go wrong. Using it as
our tool for detecting biasisthus probably not agood idea. The second lesson isthat
unless we know more about how many unpublished studies have been performed, we
cannot compute areliable correction.

26.2 The truncated normal distribution

Weargueinthisbook infavor of another presentation of theresultsfrom observational
studies. Variance stabilizing the results of a study produces what we call evidence
having variance about equal to one. The outcome of a study is then summarized in
the evidence T, which is approximately normally distributed with mean /n« and
variance 1. In our formulas we assume exact normality of the observed evidences.
The first model for publication bias we will consider is a conditiona anaysis
of the published results. Being published implies that the p-value is below 0.05 or
that the evidence obtained satisfies ; > 1.645. Conditional on being published, this
means that the observed result #; no longer has a normal distribution, but rather a
truncated normal distribution, because 1; is guaranteed to exceed a certain bound.

Definition 26.2 Arandomvariable X issaid to have a truncated normal distribution
with truncation point 8 (X ~ TN (i, o2, B)) if it has density

_ p((x—w)/o)/o
f(xm’(f’ﬂ)_l—@((ﬂ—u)/a) forx > 8. (26.1)

For x < B, thedensity is equal to zero. The parameters of this distribution are u, o
and 8.

The mean of atruncated normal distribution (26.1) is equal to

o p((B— /o)
1-2((B—w/o)’

E[X]=pn+

which contains an expression for the numerical size of the bias one incurs when
using X for estimating .
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The published evidence T; of a study has a very simple truncated normal
distribution

Ty ~ TN (Jnik, 1, 1.645),

and assuming that 14, ..., t,, are a sample with these distributions, the likelihood
forkis

m

Liruncated (k) = H f(ti|’<\/”l_i, 1,1.645). (26-2)

i=1

An agorithm for maximizing the likelihood can be based on our expression for
the mean of atruncated normal. At the start, we simply ignore the bias and treat #; as
if it were normally distributed. The estimate of « isthen

m m
?ZZ \/n—,«ti/z n;.
i=1

i=1

Based on this, we can estimate by how much we overestimate the true effect « and
make a correction. The resulting algorithm is as follows:

1. Putk =0and " "
=Y van/ S
i=1 i=1
2. Compute the corrections

(1645 — i /)
" 1— (1.645 — K J17)

fori=1,...,m.

3. Update the estimate by putting k = k + 1 and

//Ekzz \/n_i(ti_bi)/z n;.
i—1 i—1

4. Stop the calculations and put Kyuncaeq €qual to the final value, as soon as the
estimate does not change any more, otherwise return to step 2.

Once the estimate of the underlying effect « is obtained, we have corrected for
the publication bias. The combined evidence is estimated by

m
Teombined by truncation = Z A/ Etruncated/ v m,
i=1
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Table26.1 Datarelating to Example 26.2.

o~

Kk

k

0 05
1 0.35
2 0.26
5 0.11
10 0.00
20 —0.09
30 -0.11
40 -0.12

and the combined p-value, corrected for publication bias, is

Pcombined by truncation = 1- CD(Tcombined by truncation)~

Example 26.2 Table 26.1 shows what happens when applying this procedure to the
case of the one smallish study of n = 16 subjects that gave significant evidence of
t = 2. The estimated bias is considerable. While the naive use of the lone published
study predicts that ¥ = 0.5, the conditional analysis based on the truncation model
predictsavalueof kyuncaed = —0.12, that is, an actual effect inthe oppositedirection.
As a CONseqUENCe, pcombined by truncation = 0.68 is larger than 0.5 and the evidence
Tcombined by truncation = —0.48 is negative.

26.3 Bias correction based on censoring

The estimation by the truncated normal is usualy not quite the right thing to do,
because it provides the same correction, whether there were any unpublished studies
or not. Intuitively one would think, however, that the number of unpublished studies
ought to play a part. If a single study is done and it has a p-value that is smaller
than 0.05, why should one correct for bias? If, on the other hand, only one in 300
studies resultsin such evidence, why should one believeitsresult? Theinterpretation
of published evidence is completely different depending on whether the published
study isthe only one ever done, or whether it isthe only one with an observed effect
that reaches the standard of traditional significance among many studies. In the first
case, wewould say that no biasis present, whereasin the second case avigorous bias
correction is needed.

Why does the conditional model we described above, and which seems plau-
sible, sometimes fail? Well, it assumes that the researchers performing the studies
will continue repeating them until one reaches a result with an associated p-value
smaller than 0.05. In this way, one is guaranteed to obtain a published study and
in effect the truncated normal is the correct model. In this model, each published
study has its natural proportion of accompanying unpublished studies. In reality,
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though, studies are planned and performed without the intention of repeating them
until one has a sufficiently large observed effect. The evidence obtained by each
study is thus not modeled by the truncated normal, but rather by the normal itself.
The bias is till there, but the reason is not truncation, it is rather censoring. The
evidence of any study that happens not to reach the required p-value of 0.05 is
suppressed.

If we had more detailed information about the unpublished studies — how many
there were and what sample sizes were used — we could take it into account by
replacing the previous likelihood (26.2) by

m l

Lesnsorea() = [ | ¢t = /i) [] @(1.645— /5. (26.3)
i=1 j=1

Here the number of unpublished studies is equal to / and the sample sizes are
nj, ..., n;. The published studies are characterized by the evidences 1, ..., t,, and
sizesny, ..., n,. The maximum likelihood estimate of « satisfies

m 1 ~
~ »(1.645 — \/ﬁ’ﬁﬁh&@d)
i \li = /i - \/ 1 = =0. (264
; Jn ( N Kcensored) ]Z: n; & (1645 — \/ﬁxcensored) ( )

Of course, we do not know how many unpublished studies have been performed
and, in order to use the new likelihood, we need to decide how big to choose /, the
number of unpublished studies and wheat to take for nj, ..., n;. The second choice
is the easier one. We propose to use the average size of the published studies, that
is, to put n; = >, ni/m for al j. Asfor the number of unpublished studies, we
propose to compute the bias corrected evidence and p-values for avariety of choices
and leave it to the user to make the final decision.

An agorithm that works reasonably well for solving the likelihood equation is
the Newton—Raphson iteration. It leads to the following little program.

1. Putk=0and

m m

@=Z Jn_,t,/g n;.

i=1

For each of the/ presumed | atent or unpublished studies, setn’; = 7, theaverage
study size of the observed studies.

2. Compute for j=1,...,1, that is, for the latent studies, the quantity u; =

1.645 — | /niir.
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() Compute the log-likelihood derivative

m 1
f=30 V= rR) =3 o)/ @),
i=1 j=1

(b) Compute the second derivative of the log-likelihood
m 1

fr==nmi=> N;ieup/®w,) u;+p)/u,)).

i=1 j=1

3. Update the estimate by putting k = k + 1 and

Ke = K1 — f11-

truncation

one unpullished

log-Likelihood Value
-15
\

=20
|

ten unpublished

299 unpublished

Figure 26.2 The figure shows the log-likelihood function for « for the data of
Example26.3. Whenweassumethat the singleavailablestudy isthe only oneever per-
formed (none unpublished), then the maximum likelihood estimateisk = 2/4 = 0.5.
We have seen previoudly that for the truncation model, kyuncated = —0.12. For the
censored case the values at which the various curves attain their maxima yield the
corresponding estimates. These values are equal t0 Keensored = 0.34, 0.07, —0.26 for
[=1,10, 299, respectively.
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4. Stop the calculations and put [icensored €qual to the final value, as soon as the
estimate does not change any more, otherwise return to step 2.

We could simplify the formulas somewhat by using the fact that in our proposed
procedure al the n’ have the same value, but we chose not to do so in order to give
the algorithm in full generality.

Example 26.3 Toillustratethebehavior of thecensored and truncated | og-likelihood
functions, consider again the example where a single study is available. It has weak
evidenceoft = 2andthenumber of subjectsusedwasn = 16. Figure 26.2 showsvari-
ouslikelihood functionsfor theunder lying effect «. If weassumethat one other study of
similar size has been left unpublished, the combined evidence s Teombined by censoring =
1.37 and the corrected p-value becomes peombined by censoring = 0.085. For the cen-
sored case, we assume that a number of unpublished studies, not attaining a p-value
of 0.05, had been performed. The size of these unpublished studies is taken to be
equal ton = 16, the size of the published study.

26.4 Summary

Biasing findings by selectively publishing only those studies that reach a certain
standard, while suppressing those that do not, has been called publication bias. In
this chapter we have shown two simple ways in which one can combine the results
from several studiesand correct for thisbias. Thefirst method i sbased on atruncation
model. It usually resultsin quite avigourous correction, but has the advantage of not
requiring any knowledge beyond the results of the published studies.

The second method is based on censoring. To implement it, we need to know
the number of unpublished studies as well as the number of subjects used in each
of the unpublished studies. In other words, some information about the unobserved
latent data must be available. For this method, we make apractical proposal that only
requires the user to guess the number of unpublished studies.

In the litterature on publication bias, the funnel plot is often advocated as a tool
for detecting the bias and even correcting for it. In our opinion, however, thisis not
a safe method and we do not recommend its use.

For further reading on these topics, we invite the reader to consult Chapter 15 at
http://www.cochrane-net.org/openlearning aswell asthe article by
Givenset al. (1997).



27

Large-sample properties
of variance stabilizing
transformations

27.1 Existence of the variance stabilizing
transformation

The following description of (asymptotic) univariate variance stabilizing transforma-
tions (vst's) is taken from Holland (1973), which gives a nicely written account of
the subject.

Let X,, be area-valued random variable with distribution depending upon areal
parameter 6 € D, an open interval in R . X,, may for example be an estimator based
on a sample of size n. Suppose that for every 0 € D the quantity \/n(X, — 6) —
N(0, 5%(0)) in distribution. The asymptotic variance o%(6) > 0 is assumed to be
continuousin D.

An asymptotic vst isaone-to-one, continuously differentiable mapping f : D —
R such that /n(f(X,) — f(6)) — N(O, 1) in distribution. Since X,, — 6 in proba-
bility, X,, € D with probability as closeto 1 as needed for n large enough. Therefore
f isdefined for the possiblevalues of X, with aprobability approaching 1asn — oc.
This situation is, of course, not satisfactory in practice. As aremedy and in order to
apply avst, one may have to extend the definition of f(-).

Assume that f exists and has a differential at each 6 € D, i.e. if |x, — 0| =
O(n~Y?) then f(x,) = () + (x, — 0) f'(9) + o(n=Y?). For the random variable

Meta Analysis: A Guide to Calibrating and Combining Satistical Evidence Elena Kulinskaya,
Stephan Morgenthaler, and Robert G. Staudte
© 2008 John Wiley & Sons, Ltd
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X, the same istruein probability, resulting in

V(f(X,) — f(6)) — N, a0 (f(9)?

in distribution. Since only continuously differentiable solutions of the differential
equation o?(8) ( f'())? = 1 are acceptable the sign should be 1 or —1 for al 6 € D.
In summary, the one-dimensional asymptotic vst problem always has a one-to-one
continuously differentiable solution given by

0
1) = fbo) £ | (o(1)~dr. (27.1)
0
The solution is unique up to an additive constant and the sign of its derivative. The
only requirement isthat o(6) is a continuous nonzero function of 6 in D, it does not
have to be one-to-one and may be constant. In the following, we will choose the
positive sign in the defining equation for the vst. The additive constant allows us to
fix the value of the vst at one point, for example, f(6p) = 0.

So far we were looking at the asymptotic vst valid in the n~Y2-vicinity of 6y. But
oftenthe vst isdefined on amuch larger region, or even globally, aswill beseeninthe
examplesin the next section. Interestingly, in all these examples, and in the mgjority
of variance functionsfor traditional exponential families, the variance o°(6) isafirst-
or second-degree polynomial in 6. In such cases a global vst exists and is a rather
simple transformation.

We also were working in a most simple case of o2 = o%(6), but a more general
case is 02 = o2(£; 0), where £ is a nuisance parameter. An example is the vst for
the Student ¢, where the variance is the nuisance parameter. The presence of nui-
sance parameters modifies the above asymptotic theory as follows. Equation (27.1)
changesto

0
f(015) = f(0ol$) +/9 (o(&; ) 'dk, (27.2)

which means that the vst depends on &. Suppose & is asymptotically independent
of X, =0, and £ — & in probability, then we may solve (27.2) with & substituted
for €.

Theasymptotic vst isbased on the asymptotic variance o2(6) and Equation (27.1).
In a finite sample setting, approximate variance stabilization can be achieved by
applying (27.1) to the actual variance o(6). We denote thefinite sample vst by £, (-).
Whenn — o0, the vst has the effect of rendering the asymptotic variance equal to 1
for all 6. For finite n, this holds only approximately, but in practice often goes along
way towards this goal.

27.2 Tests and effect sizes

Let us now compare tests and effect sizes before and after the vst. In the previous
section we considered an estimator X,, = 6. Itsmean E(X,) = 6 wasthemain param-
eter of interest. In adightly more general setting we shall consider test statistics X,
of anull hypothesis involving a real-valued parameter ¢. Denote the expectation of
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thetest statistic 6(¢) = E;(X,,). Assumewithout loss of generality that under the null
hypothesis ¢ = 0 and let 85 = 6(0). The effect size associated with the test based on
Y, = J/n (X, —6) is

8= (0—0p)/0(8) = (0— 0 f ), (27.3)

where f(-) isthe asymptotic vst for X,.
The Pitman efficacy of atest describesthe behavior of the asymptotic power. The
Pitman efficacy of thetest Y, is

ey = (d6(0)/dg) o(6p) ™ = (d6(0)/dt) f'(Bo)-

This result holds if 6(¢) is differentiablein ¢ at 0 with a positive derivative and o is
continuous at 6y and nonzero. The ARE of such testsistheratio of squared efficacies,
see Theorem 14.19 from van der Vaart (1998).

After application of the vst we obtain what we call evidence statistic throughout
this book. This is another test, which has the form T, = /n f(X,,). For T,, we have
weak convergence to a unit normal distribution /n(f(X,) — f(6)) — N(0, 1). This
new test statistic thus has an effect size of

f(0) — f(6o). (27.4)

It is easy to seethat the Pitman efficacy of atest is not affected by the application of
avst. Thetwo testsbased on Y, and 7,, are asymptotically equivalent.

Lemma 27.1 The Pitman efficacy of a test remains constant under the application
of the variance stabilizing transformation. In this sense, the tests Y, and 7, are
equivalent.

The proof is straightforward. The efficacy of T, is computed with the help of
(27.4) and equals ey = df(0)/d¢, where the derivative is evaluated at ¢ = 0. The
chain rule then leads to ez = (d0(0)/d?) f'(6o) = ey.

Comparing the original effect size § and the effect size after variance stabilization
f(6) — f(6p) onaninterval (6p, ) we obtain the following result.

Lemma 27.2 Supposethevst f{(-) istwice continuously differentiable. It follows that
the effect size of the transformed test 7, is larger than the effect size of the original
test Y, if and only if (iff) thevst is concave on (6g, 8). Thisholdsiff do/dd > 0, which
means that o is an increasing function of the parameter 6.

Proof: We expand f(6p) around the 6 and obtain f(6p) = f(6) + f'(0)(6p — 6) +
{f"(c)/2} (6 — 6p)?, for some ¢ lying between 6y and 6. When applying this to the
effect size for the test based on 7,, we have

JO) — f(6o) = (0 — 60) f' () —

(0607
2

(6 — 60)°

2 f// (C)

.y ().
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The transformed effect size is thus larger than the original effect size iff the vst is
concave on (o, 0), i.e.iff f7(0) < 0.

Recall that f'(8) = o(6)~1. From this it follows that f”(0) = —(c(h))°do/db.
This shows that the vst f(-) is concave on (6, 0) iff do/d6 > 0.

Example 1. Poisson counts

We observeasampleof counts, each having aPoisson distributionwith expectation 1.
The estimate for 1 isthe sample mean X,,, which satisfies \/n (X, — u) — N(O, w).
Totest u = po Versus i > g We use ¥, = i/n(X, — o). The asymptotic vst for
X, isup to an additive constant and a sign change equal to twice the square root, so
that T, = /n f(X,) = 2J/7,.

The effect size before applying the vstis § = (1 — uo)/. /. The transformed
effect is 2(, /it — /1t0). The derivative of o(u) is positive for v > 0, therefore the
vst increases the effect size.

Example 2. The t-test

The parameter of interest when using the r-statistic is the mean ., but we arein the
presence of a nuisance parameter, the variance 0. The test is constructed with the
help of X, and s,, the sample mean and standard deviation, which are asymptoti-
cally independent. We reject u = uo in favor of u > uo for large values of Y, =
(X, — o) /s,. A relevant standardized effect is Cohen's d = (1 — wo)/o, and
Y, = ﬁfi,r The statistic Y, is approximately normal with mean /nd and variance
o?(d) = 1+ d?/2 and the corresponding finite sample vst isdiscussed in Chapter 20.

Onefinds
fu(dy) =~/21n (an/ﬁ+ 1+ (&n/ﬁ)2> .

Theeffect sizebefore applyingthevst is§ = d/+/1 + d2/2. For the stetistic 7, =
Vi f.(d,), theeffect sizeis f(d) = v/2In(d/~/2 + /1 + d?/2). Thetwo effect sizes
are very close for small values of d. Say for d = 0.05, § = 0.049967 and f(d) =
0.04999. These functions grow very far apart for large values of d, with § — +/2in
the limit, whereas f(3) is unlimited.

Example 3. Binomial proportions

Here o(p) = /p(I—p), and 8= (p— po)/o(p). The sign sgn(do/do) =
sgn((1/2) — p). The sign is constant on (pg, p) if pg and p are at the same side
of 1/2. When po < p < 0.5 the vst should result in increased effect size. When
0.5 < pg < p thetransformed effect size should be smaller. The transformed effect
sizeis

f(8) = arcsin(1 — 2pg)— arcsin <

— —5+/ 2_(1— 2
1 2[)0 8/ 1+6 (1 2po) - (275)

1462
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When po = 1/2,

f(8) = arcsin ( ) = arctan(s).

8
V14682
This showsthat | £(8)| < |8] for po = 3.

Example 4. The sign test

Given n observations from a continuous distribution F(u, o) with unknown median
wu and scale parameter o, wewishtotest u = Oinfavor of u > 0. The sign statistic
S, =>; I{X; > 0} ~ Binomial (n, p,), with p,, = 1 — F(—u /o). This is exactly
the previous example with pg = 1/2and p,, > 1/2. The effect size § is positive, and
it is decreased by the vst.

27.3 Power and efficiency

The power of an asymptotically normal a-level test based on Y, is approximately
equal to 1 — ®(z1_, — +/n8), where § is given by (27.3). The sample size of a test
with power 1 — 8 can be calculated from

iy =8 Nz1g + 21-p)- (27.6)

Similarly, after the vst, the test based on 7, has power 1 — ®(z1_, — /n(f(0) —
f(6p)), and the sample size is calculated from

Vit = (f0) — f(60)) (21—« + 21-5)- (27.7)

Notethat (27.6) impliesthat § = (21—« + z1-p)/+/ny, Whichissmall for large sample
sizes. Recall from Lemma 27.1 that for small values of § we found f(6) = f(6o) +
(6 — o) f'(0) 4+ 0(8), which meansthat for large sample sizes (27.6) and (27.7) give
approximately identical sample sizes, since the above implies that f(0) — f(6o) ~
8. In many practical cases, though, this asymptotic equivalence is not sufficiently
accurate and the two sample sizes ny and nr may be quite different. The ratio of
(nominal) sample sizesis

ny/nr = ((f6) — f(60))/8)*. (27.8)

The following result is a corollary of Lemma 27.2.

Corollary 27.3 Asymptotic sample size calculation based on Y, resultsin a larger/
smaller sample size than the one based on 7, (i.e. ny > ny) iff the vst is concave
(do/d® > 0)/convex (do/dod < 0).

Example 5. The t-test (continued)

The effect size of the r-statistic is § = d/+/1+ d2/2 and becomes /2In(d/~/2 +
\/1+ d?/2) after the stabilizing transformation, where d = (1 — o) /o Specifies
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the alternative. The ratio of the nominal sample sizesis

ny/nr = 2+ d*d™?[Ind/~V2 + /14 d%/2)]°.

Fixing the sample size n and the fal se positive and false negative error rates o« and g,
one can solve Equation (27.6) for d. Substituting the result in the above equation, we
obtain an expression for the ratio of nominal sample sizesny/ny for agiven sample
size, level and power, denoted by (Y, T|n, «, B). We leave it to the reader to check
that this leads to

2
2n (21-¢ +71-8) +V2n
(21-¢ + 21-p)? V2n — (21-q + 71-p)? '

This ratio of sample sizes is a decreasing function of all three parameters, the
sample size and the false positive and false negative error rates « and 8. The limit
of r(¥, T|n, «, B) when the sample size n — oo is 1, but for moderate values of n
(between 10 and 100) the ratio is considerably greater than 1. Some examples are
givenin Table 27.1.

r(Y, Tin, a, p) = (27.9)

Example 6. The sign test (continued)

Consider testing Hy : p, = 1 — F(—u/o) = 1/2versus Hy : p, > 1/2. The effect
size of the sign stetistic is § = (p, — 1/2)/+/p.(1 — p,). After transformation to
evidenceviathevst, theeffect sizeis f(§) = arctan(s). Theratio of the samplesizesis
ny/nr = (8/ arctan(8))?. Substituting 8 = (21— + z1-p)/+/n in the above equation,
we obtain an expression for theratio 7(Y, T'|n, «, B) for agiven triplet (n, o, 8). This
is an increasing function of the error rates « and g, and of the sample size n. The
limit when the sample sizen — oo is 1, but for moderate values of n (between 10
and 100) theratio r(Y, T'|n, «, B) is considerably smaller than 1, i.e. the asymptotic

Table27.1 Values of theratio of nominal sample sizesr(Y, T'|n, «, B) calculated
from Equation (27.9) for t-test (columns 2—4) and the sign test (columns 5-7; seethe
text for explanation) for « = 0.05, 8 = 0.05, 0.10 and 0.20 and for various

sample sizesn.

t-test Sign test
n =02 =01 B =0.05 =02 =01 B =0.05
10 1.27 1.43 1.64 0.72 0.65 0.60
15 1.16 124 1.34 0.79 0.73 0.69
20 112 117 1.23 0.83 0.78 0.74
25 1.09 1.13 117 0.86 0.82 0.78
30 1.07 111 114 0.88 0.84 0.81
35 1.06 1.09 112 0.90 0.86 0.83
40 1.05 1.08 1.10 0.91 0.88 0.85
45 1.05 1.07 1.09 0.92 0.89 0.86
50 1.04 1.06 1.08 0.92 0.90 0.88

100 1.02 1.03 1.04 0.96 0.95 0.93
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Table27.2 Comparison of sample sizesfor the t-test at « = 0.05,

B = 0.05, 0.10 and 0.20. The sample sizes were selected for the r-test (n,) and
calculated using Equation (27.7) for the evidence-based test (n ). To do so, thevalue
of 6, = (u — no)/o was calculated with the help of the NCSS-PASS (2005)
software in order to match the chosen n,, @ and 8.

ng B 3 Sf(8) nr n/nr
10 0.05 1131 1.036 10.09 0.99
15 0.05 0.894 0.843 15.22 0.99
20 0.05 0.764 0.731 20.25 0.99
25 0.05 0.677 0.653 25.34 0.99
30 0.05 0.615 0.597 30.35 0.99
35 0.05 0.568 0.554 35.29 0.99
40 0.05 0.529 0.517 40.43 0.99
45 0.05 0.498 0.488 45.40 0.99
50 0.05 0.472 0.464 50.34 0.99
100 0.05 0.331 0.328 100.56 0.99
10 0.1 1.005 0.935 9.79 1.02
15 0.1 0.795 0.758 14.90 1.01
20 0.1 0.679 0.655 19.94 1.00
25 0.1 0.603 0.586 24.93 1.00
30 0.1 0.547 0.534 30.01 1.00
35 0.1 0.505 0.495 34.97 1.00
40 0.1 0.471 0.463 40.00 1.00
45 0.1 0.443 0.436 45.04 1.00
50 0.1 0.420 0.414 49.95 1.00
100 0.1 0.295 0.293 99.82 1.00
10 0.2 0.853 0.808 9.46 1.06
15 0.2 0.675 0.652 14.56 1.03
20 0.2 0.577 0.562 19.57 1.02
25 0.2 0.512 0.501 24.59 1.02
30 0.2 0.465 0.457 29.60 1.01
35 0.2 0.429 0.423 34.61 1.01
40 0.2 0.400 0.395 39.66 1.01
45 0.2 0.376 0.372 44.75 1.01
50 0.2 0.357 0.353 49.53 1.01
100 0.2 0.250 0.249 99.94 1.00

sample size calculation based on the standard normal approximation to the sign test
resultsin aconsiderably smaller sample size ny in comparison to the evidence-based
sample size calculation ny. Some examples are given in the last three columns of
Table 27.1.

The results of these two examples are rather striking. The evidence-based sample
size calculations for the t-test for sample sizes up to 100 give considerably smaller
values of n, whereas for the sign test they result in considerably larger values of
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Table 27.3 Comparison of sample sizesfor the sign test at nominal level « = 0.05
and for three values of the type Il error 8. The sample size ng was chosen,
whereasny and ny were calculated with the help of p,,, the aternative
corresponding to thetriplet (ns, o, 8). These were computed by the program
NCSS-PASS (2005).

ns Pu o B J nr ny ny —ns ns—ny
10 0963 0.011 005 2460 11.08 2.57 1.08 7.43
15 0903 0.018 005 1.365 15.98 7.56 0.98 7.44
20 0860 0.021 005 1.040 20.95 12.55 0.95 7.45
25 0830 0.022 0.05 0.877 25.92 17.47 0.92 7.53
30 0779 0049 0.05 0.672 31.02 24.05 1.02 5.95
35 0.764 0.045 005 0.623 35.99 28.78 0.99 6.22
40 0.753 0.040 0.05 0.586 40.97 33.53 0.97 6.47
45 0.743 0.036 005 0.556 45,93 38.25 0.93 6.75
50 0735 0.032 0.05 0532 50.95 43.03 0.95 6.97
100 0.664 0044 0.05 0.346 100.98 93.59 0.98 6.41
10 0946 0011 01 1.963 10.61 3.33 0.61 6.67
15 0878 0.018 0.1 1.156 15.60 8.58 0.60 6.42
20 0834 0021 01 0.898 20.60 13.67 0.60 6.33
25 0804 0.022 01 0.765 25.58 18.64 0.58 6.36
30 0752 0049 0.1 0.585 30.71 25.15 0.71 4.85
35 0739 0045 01 0.544 35.71 29.94 0.71 5.06
40 0729 0.040 0.1 0.514 40.67 34.70 0.67 5.30
45 0720 0.036 0.1 0.490 45.64 39.46 0.64 554
50 0713 0032 01 0.470 50.61 44.22 0.61 5.78
100 0.647 0044 0.1 0.306 100.72 94.83 0.72 5.17
10 0917 0011 0.2 1.508 10.16 4.34 0.16 5.66
15 0843 0.018 0.2 0.942 15.23 9.80 0.23 5.20
20 0799 0.021 0.2 0.745 20.25 14.96 0.25 5.04
25 0.770 0.022 0.2 0.641 25.25 19.97 0.25 5.03
30 0718 0.049 0.2 0.486 30.41 26.35 0.41 3.65
35 0.707 0.045 0.2 0.455 35.39 31.18 0.39 3.82
40 0698 0.040 0.2 0.432 40.37 35.98 0.37 4.02
45 0691 0.036 0.2 0.413 45.34 40.78 0.34 4.22
50 0685 0032 0.2 0.398 50.34 45.60 0.34 4.40
100 0.626 0.044 0.2 0.260 100.41 96.12 0.41 3.88

n than the simple asymptotic approximation of the traditional test statistic would
lead one to believe. How do the vst -based sample sizes compare with exact sam-
ple sizes obtained from the noncentral ¢ or from the binomia distribution? The
NCSS-PASS' (2005) software was used to obtain the values of 8, = (1 — uo)/o

LPower analysis and sample size software produced by NCSS (http://www.ncss.com)
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(effect sizefor ¢-test) for given valuesof n, o and g (see Table 27.2). Then thevst was
applied to calculate the effect size of the evidence-based r-test, f(8;). Finaly, the
sample sizeny was calculated with (27.7). Surprisingly, the sample sizes agree down
ton = 10, which showsthat sample size computations based on the evidence are very
accurate. Notethat minor differencesare explained by using exact and not rounded-up
sample sizesfor ny.

For the sign test at nominal level « = 0.05 and fixed g, the values of the actual
levels o and P, (probability under alternative) were calculated by the NCSS-PASS
(2005) for a given sample size ng. Then effect size § (effect size for sign test) and
transformed effect size f(8) were calculated asin Example 4, and were used to calcu-
late approximate sample sizesny and ny using not the nominal, but the true o level.
Table 27.3 contains the numerical values. The differences between the calculated
sample sizes and the actual sample sizes derived from the program are given in last
two columns. The evidence-based sample size is within 1 of the true sample size,
whereas the classic asymptotic sample size calculation substantially underestimates
the sample size needed.

27.4 Summary

In this chapter we have seen that under an assumption of asymptotic normality and
some standard regularity conditions, the vst always exists. Evidence obtained via a
vst isalsoasymptotically normal. ItsARE totheoriginal testis1. Wehavea so demon-
strated that the vst may both increase and decrease (positive) effect size, depending on
the behavior of variance as the function of the distance from the null. This difference
of the effect sizes may be very large, even unlimited. When the variance increases,
the vst increases the effect size. When the opposite istrue, the variance is the highest
at the null (see Examples 3 and 4 above). In this case the effect size decreases when
stabilizing the distribution. Finally, sampl e size cal culations based on variance stabi-
lizing transformations perform considerably better than standard asymptotic sample
size calculations for sample sizes up to 100, as was shown for the t-test and the sign
test.
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