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Preface 

In August 1999, at the Joint Statistical Meetings in Baltimore, the two of us 
were invited to present a paper on the analysis of DNA microchip data. This 
was the first presentation in any Joint Statistical Meetings on the topic of DNA 
microarrays, as they are now called. In just a few years, the field has exploded, 
and in August 2002, at the Joint Statistical Meetings in New York City, there 
were over a hundred presentations related to DNA microarrays! 

Our Baltimore paper outlined many of the issues that are still being dis- 
cussed today, including intensity-dependent normalization, the use of methods 
that are robust to outliers and improving the sensitivity of the analysis by bor- 
rowing strength across genes. However, there have been many developments 
since then, and this book represents our effort at organizing this material into a 
semi-coherent whole. 

Both of us were trained as statisticians at Princeton University, and while we 
became skilled at  data analysis, we did not learn much biology there, little did 
we realize how much we would need it later on in our careers. Thus the last few 
years have been an educational period for us, learning about molecular biology 
and having to rethink some of what we learned in statistics. Incidentally, the 
Statistics Department at Princeton is no more (a sad reflection on our field and 
we earnestly hope it is not a trend), while the Molecular Biology Department, 
which did not exist then, is growing. 

We would like to thank several bioinformaticians, scientists, and statisticians 
at  Johnson and Johnson Pharmaceutical Research and Development LLC 
who patiently helped educate us about genomics and microarrays and in writ- 
ing this book. We would particularly like to acknowledge Jim Colaianne, for 
his whole-hearted support throughout the entire project, Gordon Pledger for 
introducing us to microarrays, Gayatri Amaratunga, who organized the con- 
tents and references, Maria Drelich, who helped with the composition of the 
figures, Harindra Abeysinghe, who read through the molecular biology sections 
of the book and provided many useful comments (any remaining errors are 

xiii 
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ours), and Albert Lo and the students at SBM of Hong Kong University of 
Science and Technology for their inspiration and support. 

DHAMMIKA AMARATUNGA 
JAVIER CABRERA 



C H A P T E R  1 

A Brief Introduction 

Data analysis has, quite suddenly, begun to assume a prominent role in the 
life sciences. From being a science that generally produced relatively limited 
amounts of quantitative data, biology has, in the space of just a few years, 
become a science that routinely generates enormous amounts of it. 

To a large part, this metamorphosis can be attributed to two complementary 
advances. The first is the successful culmination of the Human Genome Project 
and other genome-sequencing efforts, which have generated a treasure trove of 
information about the DNA sequences of the human genome and the genomes 
of several other species, large and small. Biologists are now confronted with a 
huge number of genes being newly identified and the daunting, but exhilarat- 
ing, task of ascertaining their functions. 

This is where the second advance, the emergence of modern experimental 
technology, such as microarray technology, comes in. Currently the most widely 
used form of this technology is the DNA microarray, which offers scientists the 
ability to monitor the behavior patterns of several thousands of genes simulta- 
neously, allowing them to study how these genes function and follow how they 
act under different conditions. Another form of microarray technology, the 
protein array, provides scientists the capability of monitoring thousands of 
proteins simultaneously, for similar purposes. And this is just the beginning. 
Emerging technical innovations, such as bead-based arrays, have the potential 
to increase throughput even much more. 

These developments have ushered in a thrilling new era of molecular biol- 
ogy. Traditional molecular biology research followed a “one gene per experi- 
ment” paradigm. This tedious and inherently exhausting approach was capable 
of producing only limited results in any reasonable period of time. Although 
it has, without question, logged a series of remarkable achievements over the 
years, this approach does not allow anything close to a complete picture of 
gene function and overall genome behavior to be readily determined. 

Erplurution und AnuIyJis of DNA Mitrotirruy and Profein Arruv Data 
By Dhammika Amaratunga and Javier Cabrerd 
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2 A BRIEF INTRODUCTION 

The advent of microarray technology has created an opportunity for doing 
exactly this by fast tracking research practice away from a “one gene” mode to 
a “thousands of genes per experiment” mode and allowing scientists to study 
how genes function, not just each on its own, but jointly as well. 

In fact the way microarray technology is revolutionizing the biological 
sciences has been likened to the way microprocessors transformed the computer 
sciences toward the latter part of the twentieth century (through miniaturiza- 
tion, integration, parallel processing, increased throughput, portability, and 
automation) and the way the computer sciences, in turn, transformed many 
other disciplines just a few years later. Microarray technology has been brought 
into play to characterize genomic function in genome systems spanning all the 
way from yeast to human. 

Microarray experiments are conducted in such a manner as to profile 
the behavior patterns of thousands of nucleic acid sequences or protein simul- 
taneously. Plus, they are capable of being automated and run in a high- 
throughput mode. Thus they can, and do, generate mountains of data at an 
ever-increasing pace. The proper storage, analysis and interpretation of these 
data have turned out to be a major challenge. 

Our focus is on the analysis part. After all, the data alone does not constitute 
knowledge. It must be first analyzed, relationships and associations studied and 
confirmed, in order to convert it into knowledge. By doing so, it is hoped that 
a complete picture of the intermeshing patterns of biomolecular activity that 
underlie complex biological processes, such as the growth and development of 
an organism and the etiology of a disease, would emerge. 

One issue is that the structure of the data is singular enough to warrant 
special attention. The raw data from a DNA microarray experiment, for exam- 
ple, is a series of scanned images of microarrays that have been subjected to 
an experimental process. The general plan for analyzing this data involves 
converting these images into quantitative data, then preprocessing the data to 
transform it into a format suitable for analysis, and finally applying appro- 
priate data analysis techniques to extract information pertinent to the biologi- 
cal question under study. Application of statistical methodology is feasible as 
these experiments can be run on replicate samples, although, by and large, the 
amount of replication tends to be limited. Thus a complexity is that while there 
is data on thousands and thousands of genes, the information content per gene 
is small. As a result there is a sense that much of the data collected in micro- 
array experiments remains to be fully and properly interpreted. 

It should therefore not be a surprise that statistical and computational 
approaches are beginning to assume a position of greater prominence within 
the molecular biology community. While these quantitative disciplines have 
a rich and impressive array of tools to cover a very broad range of topics in 
data analysis, the structure of the data generated by microarrays is sufficiently 
unique that either standard methods have to be tailored for use with micro- 
array data or an entirely fresh set of tools has to be developed specifically to 
handle such data. What has happened, of course, is a confluence of the two. 
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The purpose of this book is to present an extensive, but, by no means, exhaus- 
tive, series of computational, visual, and statistical tools that are being used for 
exploring and analyzing microarray data. 

1.1 A NOTE ON EXPLORATORY DATA ANALYSIS 

Early statistical work was essentially enumerative and exploratory in nature, 
Statisticians were concerned with developing effective ways of discerning pat- 
terns in quantitative data. Then, from about a fourth of the way into the 
twentieth century, mathematics-driven confirmatory techniques began to dom- 
inate the field of statistics, driving data exploration into the background. The 
focus began to be the development of optimal ways to analyze data rigorously, 
but under various sets of fairly restrictive assumptions. 

Fortunately, toward the latter part of the twentieth century, data explora- 
tion began to make a comeback as an imperative aspect of statistics, having 
been revitalized almost single-handedly by Tukey (1962, 1977, 1986), who 
likened it to detective work. Exploratory data analysis (EDA), as the modern 
incarnation of statistical data exploration is called, is an approach for data 
analysis that employs a range of techniques (many graphical), in a strategic 
fashion, in order to: 

Gain insight into a data set 
- Discover systematic structures, such as clusters, in the data 

Flag outliers and anomalies in the data 
Assess what assumptions about the data are reasonable 

The last of these guides the data analyst to an approach or a model that 
should be suitable for a more formal phase in the analysis of the data. This 
confirmafory data analysi.y (CDA) phase, which may involve inferential proce- 
dures such as confidence interval estimation and hypothesis testing, allows the 
data analyst to probabilistically model the uncertainties of a situation to assess 
the reproducibility of the findings. CDA ensures that chance patterns are not 
mistaken for real structure. Even at this phase, EDA stresses the importance of 
running diagnostic checks to assess the validity of any underlying assumptions 
(e.g., Anscombe and Tukey, 1963; Daniel and Wood, 1971). 

EDA is particularly well suited to situations where the data is not well 
understood and the problem is not well specified, such as screening. For this 
reason EDA techniques have found their way into the world of data mining 
(Fayyad, Piatetsky-Shapiro, and Smyth, 1996). In data mining, broad-based 
methods that have the capability to discover and illustrate essential aspects of 
the data are of most value. Proper data visualization tools, for instance, are 
highly effective both at revealing facets of the data that otherwise may not be 
apparent and at challenging assumptions about the data that otherwise may be 
taken for granted. 
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I t  could be argued that EDA is as much an attitude or a philosophy about 
how a data analysis should be conducted as an assortment of techniques. 
The EDA approach suggests strategies for carefully scrutinizing a data set: how 
to examine a data set, what to look for, and how to interpret what has been 
observed. The key is that EDA permits the data itself to reveal its underlying 
structure and model without the data analyst having to make too many possi- 
bly indefensible assumptions. 

Over the years the popularity of EDA has been boosted by a number of 
noteworthy publications by Tukey and his students and colleagues, such as 
Mosteller and Tukey (1977), Velleman and Hoaglin (1981), Hoaglin (1982), 
Hoaglin, Mosteller, and Tukey (1983), Tukey (1986), Brillinger, Fernholz, and 
Morgenthaler (l997), Fernholz, Morgenthaler, and Stahel (2001), and has 
gained a large following as the most effective way to seek structures in data. 
Hoaglin, Mosteller, and Tukey (1983) provide an excellent introduction to 
EDA. Cabrera and McDougall (2002) give a wide range of applications of 
EDA to real world problems. 

That is not to forget CDA. Tukey (1980) argues that exploratory and con- 
firmatory analyses must both be components of a good data analysis. This is 
the approach we will take in this book. 

1.2 COMPUTING CONSIDERATIONS AND SOFTWARE 

The data analyst must have access to computing resources, both hardware and 
software, that are capable of dealing with the huge amounts of data that must 
be analyzed, Holloway et al. (2002) is a review of some of the issues related to 
this topic. 

A number of software packages offer the data analyst powerful tools for 
EDA and CDA, including interactive graphics and a large collection of statis- 
tical procedures. Two that are commonly used in the analysis of microarray 
data are R (Ihaka and Gentleman, 1996) and SPLUS. Other statistical packages 
that are good for EDA include SAS, JMP, DataDesk, Matlab, MINITAB, and 
STATISTICA. 

In addition libraries of routines specially designed for analysis of microarray 
data have begun to spring up. Some of these are in the public domain; others 
are only available commercially. A few are listed below: 

DNAMR (http: //www. rci. rutgers .edu/-cabrera/DNAMR.), 
which stands for “DNA Microarray Routines,” is a collection of R and 
SPLUS programs developed by the authors of this book. Implementations 
of many of the procedures described in this book are available in the 
DNAMR package and can be downloaded from the book’s web page. 

* The Bioconductor project (http: //www. bioconductor . org), based at 
the Biostatistics Unit of the Dana Farber Cancer Institute at the Harvard 
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Medical School and the Harvard School of Public Health, produces open 
source R software for scientists and statisticians working in bioinformatics, 
with primary emphasis on inference using DNA microarrays. 
MA-ANOVA (http://www.jax.org/research/churchill/soft 
ware/anova) is a set of functions written in Matlab by the Statistical 
Genetics group at the Jackson Laboratory for analysis of variance of 
microarray data. 
DRAGON (Database Referencing of Array Genes ONline) is a series of 
tools for analyzing and interpreting microarray data that has been devel- 
oped by a group of researchers at the Johns Hopkins University (http: // 
pevsnerlab. kennedykrieger . org/index. html). It has an annotate 
tool that can be used to add any type of biological information to the lists 
of genes. The Dragonview suite of tools can be used to visualize micro- 
array data relevant to the information derived from the annotate tool. 
SNOMAD is a collection of R programs for normalizing DNA microarray 
data. 
The Stanford University Laboratory for the Statistical Analysis of Micro- 
array Data (http: //www-stat. stanford.edu/-tibs/lab) has soft- 
ware called SAM: Significance Analysis of Microarrays, ScanAnalyze, 
Cluster, and Treeview. 

Although such packages are adequate for routine analyses, for more com- 
plex experiments the greater flexibility afforded by software developed in-house 
may be more desirable. In addition care must be taken that this software is not 
blindly (mis)used by an individual who does not have enough understanding of 
the details of the procedures-using the wrong methods to analyze data from 
an experiment may produce meaningless “findings” or, at the very least, be less 
than optimal. Unfortunately, few off-the-shelf packages offer a comprehensive 
data-handling system that integrates all of the data-related needs, such as data 
acquisition, storage, extraction, quality assurance, and analysis, that are essen- 
tial for even a moderate-sized microarray laboratory. 

1.3 A BRIEF OUTLINE OF THE BOOK 

Exploratory and confirmatory data analysis techniques can be applied to 
microarray data to: 

Assess the quality of a microarray 
Assess the quality of the individual spots on a microarray 
Determine which genes are differentially expressed 

* Classify genes based on how they co-express 
Classify samples based on how genes co-express 
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Biological question 
I 

Scan image 

pz%f,,.,/ *, Convert scanned image to spotted image 

"/ 
i 

Microarray 

Summarization 
Identification 
of differentially 

I 

Check quality of spotted image 

Adjust for background 1 
I Transform data 

Normalize data 

Check quality of normalized data 

expressing genes 
Pattern discovery 
Class prediction 

Interpret and report findings 

Figure 1.1 Schematic of a typical microarray data analysis. 

Following this, the investigator will generally try to: 

Connect differentially expressed genes to sequence databases 
- Locate differentially expressed genes on pathway diagrams 

Relate expression levels to other cell-related information 
Determine the roles of genes based on patterns of co-expression. 

Often this process will culminate in an insight of interest. 
Figure 1.1  shows schematically the path of a typical microarray data 

analysis. The reader may find it useful to periodically refer to it. In this book 
we will present a collection of techniques for analyzing microarray data. Before 
we embark on our journey, a brief road map of where we are going may be 
helpful. 

Chapter 2 is a brief introduction to molecular biology and genomics. Chap- 
ter 3 describes DNA microarrays, what they are, how they are used, and how 
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a typical DNA microarray experiment is performed. Chapter 4 outlines how 
the output of a DNA microarray experiment, the scanned image, is processed 
and quantitated and how image and spot quality checks are done. Chapter 
5 discusses preprocessing microarray data, which typically involves trans- 
forming the data and then applying a normalization. Chapter 6 discusses sum- 
marization of data across replicates. Chapter 7 describes statistical methods 
used for analyzing the simplest comparative experiments, those involving just 
two groups. Chapter 8 discusses more complex experiments and issues related 
to their design. The next two chapters deal with multivariate methods: Chap- 
ter 9 discusses unsupervised classification methods and Chapter 10 discusses 
supervised classification methods. Chapter 1 1 describes protein arrays. A typi- 
cal protein array experiment is outlined and methodology for analyzing protein 
array data is described. 

The website h t t p :  //www. rci . rutgers . edu/-cabrera/DNAMR will 
function as a companion to this book. It contains color versions of the figures, 
software, updates and any amendments related to the book. 
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Genomics Basics 

It is useful to review the basic concepts of modern molecular biology before 
fully immersing ourselves in the world of microarrays. We are sure that the 
reader who has had limited exposure to this fast-developing field will appreciate 
this review; others may skip ahead. Genomics is a fascinating subject; after all, 
it is the story of life, and can occupy a multi-volume book just by itself. In the 
interest of space, of course, it is necessary that we confine our discussion to 
those topics that are essential to an understanding of the science underlying 
microarrays, leaving other topics for interested readers to explore on their own. 
Some excellent general references that we, not being trained as molecular biol- 
ogists ourselves, have found useful are listed at the end of the chapter. 

2.1 GENES 

From ancient times it was suspected that there existed some sort of a hereditary 
mechanism that carried information from parent to child. It is because of 
this mechanism that family members tend to exhibit similar characteristics or 
traits. For example, they tend to resemble each other in terms of appearance 
and physical characteristics such as skin color, they tend to be predisposed 
toward certain diseases such as diabetes, cancer, and heart disease, and so on. 
However, inheritance is clearly not a perfect copying process. For example, a 
child of brown-eyed parents could turn out to be blue-eyed. Despite the efforts 
over the years of many leading scientists and thinkers to understand the heredi- 
tary mechanism, its precise nature remained an intriguing mystery until quite 
recently. 

Following centuries of speculation and research, the existence of discrete 
hereditary units, which we now call genes, has been firmly established. Each 
gene, either by itself or in combination with some other genes, provides a clear 
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and unambiguous set of instructions for producing some property of its organ- 
ism. The complete set of genes in an organism, essentially the master blueprint 
for that organism, is referred to as its genome. This blueprint contains all the 
hereditary instructions for building, operating, and maintaining the organism, 
and for passing life in like form on to the next generation of that organism. 

Until the twentieth century, there was hardly any concrete information as to 
what genes were and how they operated. Then a panoply of innovative research 
work and pathbreaking discoveries over (roughly) the first half of the twentieth 
century gave genes a chemical (molecular) existence. This culminated in the 
pivotal realization that genes are made of deoxyribonucleic acid (DNA). 

2.2 DNA 

A DNA molecule consists of two long strands wound tightly around each other 
in a spiral structure known as a double helix. The structure has been likened to 
a twisted ladder, whose sides are made of sugar and phosphate and whose rungs 
are made of bases. 

Each strand of the DNA molecule (i.e., each side of the ladder once it has 
been untwisted and straightened out) is a linear arrangement of repeating sim- 
ilar units called nucleotides. Every nucleotide has three components: a sugar 
(deoxyribose), a phosphate group, and a nitrogenous base. The base is one of: 
adenine, thymine, guanine, cytosine (A, T, G, C, for short). The bases on one 
strand are paired with the bases on the other strand according to the comple- 
mentary base pairing rules (also called the Watson- Crick base puking rules): 
adenine only pairs with thymine, guanine only pairs with cytosine. The pairs 
so formed are called hasepairs (bp, for short); they form the coplanar rungs of 
the ladder. The force that holds a base pair together is a weak hydrogen bond. 
Although each individual bond is weak, their cumulative effect along the strands 
is strong enough to bind the two strands tightly together. As a result DNA is 
chemically inert and is a stable carrier of genetic information. 

The sequences of bases along each of the two strands of DNA are comple- 
mentary to each other as they are matched by the complementary base-pairing 
rules. This complementary sequencing has an important consequence. It was 
recognized from very early on that whatever the entity was that was a heredi- 
tary unit, it must be able to self-replicate so that information could be passed 
on from generation to generation. At the time that the structure of DNA was 
deduced, there was a lot of excitement, as it was clear that the complementary 
structure of the DNA molecule would allow every DNA molecule to create an 
exact replica of itself, thus fulfilling this requirement. 

The D N A  replication process is, in principal, quite straightforward. First, the 
DNA molecule unwinds and the “ladder” unzips, thereby disrupting the weak 
bonds between the base pairs and allowing the strands to separate. Then, each 
strand directs the synthesis of a brand new complementary strand, with free 
nucleotides matching up with their complementary bases onto each separated 
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strand, a process that produces two descendant DNA molecules. Each descen- 
dant consists of one old and one new DNA strand. The constraints imposed by 
the complementary base-pairing rules ensure that each new strand is an exact 
copy of the old one with the order of the bases along the strands being faith- 
fully preserved. 

The preservation of the base order is crucial. The particular order of the 
bases arranged along any one strand, its DNA sequence, is the mechanism that 
specifies the exact genetic instructions required to create the traits of a particu- 
lar organism. 

Many genes are located along each long DNA molecule. A gene is a specific 
contiguous subsequence of the DNA sequence whose A-T-G-C sequence is 
the code required for constructing a protein. Proteins are giant complex mole- 
cules made of chains of amino acids and it is they that are actually both the 
building blocks and the workhorses of life. Proteins also regulate most of 
life’s day-to-day functions; even the DNA replication process is mediated by 
uzzymes, proteins whose job is to catalyze biochemical reactions. 

2.3 GENE EXPRESSION 

An organism’s DNA is located in its cells. Cells are the fundamental units of all 
living organisms, both structurally and functionally. A cell is a microscopic, yet 
extraordinarily complex, structure that contains a heterogeneous mix of sub- 
stances essential to life. 

There are many substructures within a cell. The most prominent one is a 
highly protected subcompartment called the nucleus, in which resides the organ- 
ism’s DNA. Enclosing the nucleus is the nuclear membrane, the protective wall 
that separates the nucleus from the rest of the cell, which is called its cyyto- 
plrisin. The entire cell is enclosed by the plusma membrane. Embedded within 
this membrane is a variety of protein structures that act as channels and pumps 
to control the movement of molecules into and out of the cell. 

The set of protein-coding instructions in the DNA sequence of a gene 
resembles a computer program. A computer program must first be compiled 
and executed in order for anything to happen. In much the same way a gene 
must be expressed in order for anything to happen. A gene expresses by trans- 
ferring its coded information into proteins that dwell in the cytoplasm, a pro- 
cess called gene expression. 

The transmission of genetic information from DNA to protein during gene 
expression is formulated by the cenfral dogma of’ molecular biology, which 
can be stated in oversimple terms as DNA --f mRNA 4 protein. This postu- 
lates that the protein-coding instructions from a gene are transmitted indirectly 
through messenger ribonucleic acid (mRNA), a transient intermediary molecule 
that resembles a single strand of DNA. There are a few differences between 
mRNA and DNA, three being that mRNA is single-stranded, its sugar is 
ribose, and it has the base urucil ( U )  rather than the base thymine. 
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When a gene is expressed, the DNA double helix splits open along its length. 
One strand of the open helix remains inactive, while the other strand acts as a 
template against which a complementary strand of mRNA forms (a process 
called transcription). The sequence of bases along the mRNA strand is iden- 
tical to the sequence of bases along the inactive DNA strand (except that 
mRNA has uracil where DNA has thymine). The mRNA strand then separates 
from the DNA strand and transports out of the nucleus, across the nuclear 
membrane, and into the cellular cytoplasm. There it serves as the template for 
protein synthesis, with consecutive (nonoverlapping) triplets of bases (called 
codons) acting as a code to specify the particular amino acids that make up an 
individual protein. The sequence of bases along the mRNA is thus converted 
into a string of amino acids that constitutes the protein molecule for which it 
codes (a process called translation). 

Each possible triplet of mRNA bases codes for a specific amino acid, one of 
the 20 amino acids that make up proteins. For example, GCC codes for ala- 
nine, CAC for histidine, AUC for isoleucine, and GAG for glutamic acid-the 
complete list is referred to as the genetic code. As there are four possible bases, 
there are 4’ = 64 possible triplets, but only 20 possible amino acids. This means 
that there is room for redundancy: for example, GCU, GCC, GCA, and GCG 
all code for alanine. This redundancy is a valuable feature of the genetic 
code as it provides a safeguard against small errors that might occur during 
transcription. 

In addition the genetic code has specific triplets to signal the start and the 
end of a coding sequence. The start codon, AUG, is the triplet of mRNA bases 
that signals the initiation of a sequence that is to be translated, while the stop 
codon is a triplet of mRNA bases-UGA, UAG, or UAA-that signals the 
termination of a coding sequence. The sequence of mRNA bases in between 
and including these two is called an open reading frame (ORF). All sequence 
information of coding interest lies in ORFs (but not every O R F  codes for 
a gene). Since the codes for the start and stop codons are known, given an 
mRNA sequence, it is a simple matter to read off all of its ORFs. 

Scientists involved in gene expression research usually find it easier to work 
with expressed sequence rags (ESTs) instead of the whole gene. An EST is a 
unique short subsequence (only a few hundred base pairs long), generated from 
the DNA sequence of a gene, that acts as a “tag” or “marker” for the gene. An 
advantage of ESTs are that they can be back-translated into genetic code that 
is coded for or expressed as an exon as opposed to an intron or other non- 
coding DNA. A short (typically S to SO bp long) fragment of single-stranded 
DNA, not necessarily associated with a gene, is called an oligonucleotide (oligo 
for short). 

Although every cell in an organism has a copy of the exact same genome 
(more or less), not all cells express the same genes, which is why different cells 
perform different functions. For instance, genes that are expressed in a brain 
cell may not be expressed in a stomach cell. In addition, even within the same 
cell, different genes will be expressed at different times, and perhaps at different 
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levels, depending on the phase of the cell and perhaps as a response to different 
stimuli. There are, however, a few exceptions: these are genes, called house- 
keeping genes, which are in constant use to maintain basic cell functions. 

2.4 HYBRIDIZATION ASSAYS AND OTHER 
LABORATORY TECHNIQUES 

Two single-stranded DNA molecules whose sequences are complementary to 
each other will exhibit a tendency to bind together to form a single double- 
stranded DNA molecule, a process known as hybridization. Two DNA strands 
(or one DNA strand and one mRNA strand) will hybridize with each other, 
regardless of whether they originated from a single source or from two different 
sources, as long as their base pair sequences match according to the comple- 
mentary base-pairing rules. Even when the sequences on the two strands do not 
match perfectly, as long as there is sufficient similarity, it is likely that some 
base pairing will occur and that a hybrid DNA molecule will be formed. 

The tendency of DNA strands of complementary sequence to hybridize pref- 
erentially is exploited in hybridization assays. In these assays a probe consisting 
of a homogenous sample of single-stranded DNA molecules, whose sequence is 
known, is prepared and labeled with a reporter chemical, usually a radioactive 
or fluorescent substance. An immobilized target, usually a heterogeneous mix- 
ture of single-stranded DNA molecules of unknown composition is challenged 
by the probe. As the probe will hybridize only to sequences complementary to 
its sequence, DNA sequences in the target that are complementary to the probe 
DNA sequence can be identified by the presence of reporter molecules. 

This concept is applied in blotting techniques. In Southern blotting the target 
DNA is separated by electrophoresis (see below) and transferred onto a filter, 
where it is exposed to the probe. Northern blotting is a variant in which the 
target is mRNA instead of DNA. As mRNA is the intermediary molecule in 
gene expression, Northern blotting provides a means of studying the expression 
patterns of specific genes. DNA microarrays can be regarded as a massively 
parallel version of Northern blotting. 

In in situ hybridization, denatured DNA (DNA in which the two strands are 
unwound and separated) is kept in place in the cell and is then challenged with 
mRNA or DNA extracted from another source and labeled with a reporter 
chemical, usually a fluorescent substance. By retaining the DNA in the cell, the 
specific chromosome containing the DNA sequence of interest can be identified 
by observing, under a microscope, the location of the fluorescence. 

Besides hybridization assays there are several laboratory techniques that 
have had, and continue to have, an enormous impact on progress in genomics 
research. Since they play an important role in microarray experiments, we will 
outline them briefly. 

Electrophoresis is a method of using an electric field to separate large mole- 
cules, such as DNA, RNA, and proteins, from a mixture of similar molecules. 
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An electric current is passed through a porous medium containing the mixture, 
usually a gel. The different kinds of molecules separate as different molecules 
will travel through the medium at different rates, depending on their electri- 
cal charge and size (e.g., small molecules typically travel farther through the 
medium than large molecules). 

Cloning is the process of using specialized DNA technology to produce 
multiple exact copies of a single gene or other segment of DNA to obtain 
enough material for further study. These clones can be grown in bacteria to 
produce multiple copies and large amounts of a given DNA molecule. The 
resulting cloned collections of DNA molecules are called clone libraries. 

Polymerase chain reaction (PCR) is a rapid and versatile procedure for gen- 
erating multiple copies of (i.e., for umphfying) virtually any fragment of DNA. 
The number of copies is limited only by rate-limiting factors such as the num- 
ber of cycles and the amount of enzymes, bases, and other reagents required. 

PCR is a cyclic process that involves repeating three basic steps over and 
over. The three basic steps are as follows: First, the two strands of the target 
DNA are unwound and separated by heating (a process called denaturing). 
Next, primers, short strands of single-stranded DNA that match the sequences 
at either end of the target DNA, are bound to their complementary bases on 
the now single-stranded DNA in a process called annealing. Finally, DNA is 
synthesized by a polymerase, an enzyme that is present in all organisms and 
whose job is to copy and, where necessary, repair genetic material. Starting 
from the primer, the polymerase reads a template strand and matches it with 
free complementary bases. This produces two descendant DNA strands, each 
of which consists of one old and one new DNA strand. As in DNA replication, 
the complementary base-pairing rules ensure that each new strand is an exact 
copy of the old one. Cycling through these three basic steps over and over 
generates more and more copies of the target DNA. The amount of DNA 
grows exponentially as it doubles with every cycle. Since each cycle takes only 
a few minutes, a laboratory scientist can generate millions of copies of the 
target DNA in less than an hour. For this reason and because of its specificity, 
its versatility, and its easy automatability, PCR has had a major impact on 
molecular biology and many related sciences in less than two decades. 

Reverse transcription is a procedure for reversing, in a laboratory, the pro- 
cess of transcription. It is accomplished by isolating mRNA, which is unstable 
and subject to degradation, and using it as a template to synthesize a com- 
plementary D N A  (cDNA) strand, which is stable and is not easily degraded. 
cDNA is so called because its sequence is complementary to the original 
mRNA sequence. This process utilizes the enzyme reverse transcriptuse. The 
resultant single-stranded cDNA molecule is considerably shorter than the par- 
ent DNA sequence, as it will have only its coding exon sequences; the non- 
coding intron sequences would have been excised during the formation of the 
original mRNA. Incidentally, as far as is known, the process of translation 
cannot be reversed. 

The cDNA generated by reverse transcription can, if needed, be amplified 
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by PCR. The process is then called reverse trunscriptase polymerase chain 
reaction (RT-PCR). RT-PCR is the one of the most sensitive techniques for 
detecting and quantifying target mRNA sequences. Among other uses, 
RT-PCR can be utilized to provide information on gene expression. 

2.5 THE HUMAN GENOME 

A few words now about our own genome. DNA in the human genome is made 
up of roughly three billion base pairs and is partitioned into 46 molecules, each 
of which resides in a threadlike cellular structure called a chromosome. Chro- 
mosomes come in pairs (except for the sex chromosomes): one of these is one of 
the father’s two corresponding chromosomes, the other is one of the mother’s 
two corresponding chromosomes. The two members of a pair of chromosomes 
are called homologous chromosomes. 

Chromosomes range in length from about 50 to 250 million bp. Each chro- 
mosome contains many genes. In total, the human genome is estimated to con- 
tain somewhere around 40,000 genes. Genes vary widely in length, from a few 
hundred bp to several thousand bp. Only a tiny percentage of human DNA 
includes exons, the protein-coding sequences of genes. Interspersed within many 
genes are introns, sequences that have no coding function and that are excised 
during transcription. In between many genes are other noncoding regions whose 
functions remain largely obscure. 

Every single human being has almost the exact same genome. In fact, at the 
genome level, we are 99.9% identical! However, genomes do vary slightly from 
person to person, a phenomenon known as genome uariation (or genetic variu- 
tion). It is this subtle variability in our genomes that is responsible for the evo- 
lution and diversity of the human race. Some genome variations are unique to 
a person, while others are passed on generation through generation via repro- 
ductive cells. 

The existence of genome variation means that some genes will differ slightly 
from person to person. When this bappens, each alternate version of a gene is 
called an allele. In fact every person carries two alleles of each gene, one in 
each of a pair of homologous chromosomes. When both alleles are the same, 
the person is said to be homozygous for that gene; otherwise, the person is said 
to be heterozygous for that gene. In the latter case only one of the alleles (called 
the dominant allele) may be expressed, the other one (called the recessive allele) 
may not be. The presence of two versions of each gene is another protective 
mechanism provided by nature; if one copy should happen to be defective, the 
other copy is there to compensate. 

Besides physical characteristics, a familiar example of genome variation is 
blood type. We are all of us classified as being A, B, AB, or 0. The ABO gene 
that controls the blood group has three alleles, which are designated as A, B, 
and 0. All three alleles have generally the same DNA sequence except for dif- 
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ferences at a few nucleotides. Alleles A and B, which code for proteins A and 
B, respectively, are co-dominant. Everyone is assigned a blood type according 
to which two alleles of the ABO protein he or she is carrying. Anyone who has 
AA or A 0  (and therefore has protein A only) is said to have blood type A. 
Anyone who has BB or BO (and therefore has protein B only) is said to have 
blood type B. Anyone who has AB (and therefore has both proteins) is said to 
have blood type AB. Anyone who has 00 (and therefore has neither protein) is 
said to have blood type 0. 

Since everyone has almost the exact same genome and any person-to-person 
genome variation is relatively minor, it is reasonable to try to establish a con- 
sensus human genome sequence; in other words, to sequence the entire human 
genome. This is exactly the stated goal of the much-publicized massive inter- 
national undertaking known as the Human Genome Project. A near-complete 
catalog of the human genome is now available and a complete catalog is only a 
few years away. 

2.6 GENOME VARIATIONS AND THEIR CONSEQUENCES 

Most genome variations are small and simple, and involve only a few bases- 
for example, one person might have a G where another has a C, or one person 
might be missing a T that another person has, and so on. Such genome varia- 
tions are due to mutations and polymorphisms, alterations in a DNA sequence. 
Some common alterations are one base being replaced by another (substitu- 
tion), a base being excised (deletion), a base being added (insertion), a small 
subsequence of bases being removed and then reinserted in the opposite direc- 
tion (inversion), and a small subsequence of bases being removed and then 
reinserted in a different place (translocation). 

A genome variation may be inherited or acquired. An inherited genome 
variation is present in the DNA of almost all of the organism’s cells and could 
be passed on to the next generation of that organism. Acquired genome varia- 
tions are mutations that occur spontaneously during DNA replication or are 
caused by an external environmental factor such as exposure to a toxic sub- 
stance. Such variations will only be present in the DNA of the affected cells and 
their direct descendants. Thus an acquired mutation will be passed on to the 
next generation of that organism only if it affects a reproductive cell, in which 
case a new line of hereditary gene mutation would be initiated. 

In practice, the terms “mutation” and “polymorphism” tend to be used 
interchangeably, but technically a polymorphism is a genome variation in 
which every possible sequence is present in at least 1 percent of people, whereas 
a mutation refers a genome variation that is present in less than 1 percent of 
people. Thus a location in a DNA sequence where 95 percent of people have an 
A and 5 percent have a T is a polymorphism, while a T in a location in a DNA 
sequence where 99.5 percent of people have an A and only 0.5 percent have a 
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T is a mutation. The common and properly functioning version of a gene is 
referred to as its wild-type allele; a version with a mutation is called a mutant 
allele. 

Many genome variations do not produce any noticeable effects, even at the 
cellular level. An obvious way for this to happen is for a variation to occur 
outside the genome’s coding regions. What may be somewhat surprising is 
that it can happen even when a variation occurs within a coding region. This 
is because of the redundancies in the genetic code that allow the same protein 
to be produced from two slightly different sequences. In addition, if that is not 
enough, cells have mechanisms that are capable of repairing certain types of 
damaged DNA. 

A small percentage of genome variations do produce noticeable effects, some 
deleterious, some beneficial. This is the genetic basis of biological diversity and 
the evolutionary process. 

Many polymorphisms that produce noticeable effects are, in general, harm- 
less; if not, they would not survive the natural selection process. However, this is 
not a hard and fast rule. For example, people with blood type 0 are more sus- 
ceptible to peptic ulcers and cholera than others, yet the trait did not die out (in 
fact, almost half the world’s population has this blood type), perhaps because 
they also are less susceptible to malaria and certain types of cancer. 

Certain mutations can be harmful with no obvious beneficial features. They 
could either cause a disease or increase a person’s susceptibility to a disease or 
even lead to death. For example, mutations in the p53 gene, which, in its wild 
type, codes for a protein that suppresses abnormal cell proliferation, may cause 
it to lose its ability to block abnormal cell growth, leading to cells dividing 
uncontrollably and forming tumors. Not surprisingly, mutations in the p53 
gene have been found to be strongly associated with cancer. 

It has been conjectured that most human genome variation may be attrib- 
utable to single nucleotide polymorphisms (SNPs), polymorphisms that involve 
just one nucleotide. Blood grouping is an example: the only difference between 
the genes for blood types A and 0 is that the gene for the former has a G 
base that has been deleted in the gene for the latter. SNPs are frequent in our 
genomes: it has been estimated that, on average, about one in every one thou- 
sand nucleotides is a SNP. 

Many scientists believe that SNPs underlie the susceptibility of certain peo- 
ple to certain diseases. An often-cited example is the association between the 
apolipoprotein E gene (ApoE, for short) and Alzheimer’s disease. ApoE has 
three alleles (called E2, E3, E4), each of which differs from any other by a SNP 
(there are two SNPs in all). It appears that those who have at least one copy of 
the E4 allele have a greater risk of developing Alzheimer’s disease (and earlier 
on in life), whereas those who have at least one copy of the E2 allele have a 
lesser risk of developing Alzheimer’s disease. 

Given a specific DNA sequence, there are, in theory, a huge number of pos- 
sible combinations of SNPs. However, SNPs are not randomly scattered along 
a chromosome. Instead, many of them occur in groups, called haplotypes, and 
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relatively few of the countless number of theoretically possible haplotypes are 
observed with any significant frequency. The SNPs defining a haplotype tend 
to be inherited together over generations and serve as more reliable genetic 
markers for diseases and other traits than any of the individual SNPs. 

As research progresses, the genomic basis of health and disease is being 
better and better understood. Clearly, the central theme of this effort is the 
better elucidation of genotype-phenotype relationships, such as the association 
between ApoE and Alzheimer’s disease. Genotype refers to the genetic makeup 
of an individual. Phenotype refers to the outward characteristics of the individ- 
ual. They are, naturally, connected, as the phenotype essentially results, func- 
tions, and develops based on the information provided by and encoded in the 
genotype. Despite this, the association between the genotype and the phenotype 
is by no means perfect. Environmental effects and other external factors tend to 
appreciably modify the actual manifestation. Statistical procedures that mea- 
sure association play a significant role in analyzing these complex relationships. 

2.7 GENOMICS 

Genornics is the branch of biology that studies the structure and function of 
genes. Much progress has been made in the area of structural genomics. Struc- 
tural genomics refers to the application of sequencing technologies to establish 
representative genome sequences for different organisms, particularly humans. 
Nowadays the term is increasingly being used to also refer to methods for 
determining protein structures as a primary tool for discovering the biological 
functions of genes and proteins and their interrelationships. 

The other key area isfunctional genornics, which, as its name implies, is the 
study of the functions of genes. It seeks to understand the behavior of all the 
genes in a genome (for all genomes). It is important to realize that just knowing 
the sequence of a gene does not imply that its function is also known. In addi- 
tion genes do not function in isolation. Instead, genes (and proteins) operate 
collectively in pathways, as coordinated sequences of genetic and molecular 
activities. Such pathways underlie all cellular processes. Therefore studying 
each gene as a separate discrete entity tells only part of a story, like a still from 
a film. On top of that, a plethora of external factors can aiter or disrupt a 
pathway. This constant interplay between genes, proteins, and external factors 
makes functional genomics a complex subject, one that was almost intractable 
until technologies, such as microarrays, emerged that allowed large numbers of 
molecular entities (perhaps even entire genomes) to be studied simultaneously. 

Among the important questions in functional genomics are: 

* Which genes are expressed in which tissues? 
* How is the expression of a gene affected by extracellular influences? 

Which genes are expressed during the development of an organism? 
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How does gene expression change during development and differentiation? 
* What is the effect of misregulated expression of a gene? 

What patterns of gene expression cause a disease or lead to disease 

* What patterns of gene expression influence response to treatment? 
progression? 

Over the last decade a great deal of progress was made in all of the various 
branches of genomics, and it is likely that this trend will continue for decades to 
come and benefit medicine, agriculture, and everyday life. 

2.8 THE ROLE OF GENOMICS IN PHARMACEUTICAL RESEARCH 

The immediate benefits of the progress in genomics will be seen in the dis- 
covery and development of novel pharmaceutical products ( Lennon, 2000). 
For example, much can be learned from studying general genotype-phenotype 
relationships and how these, in turn, affect drug response. This is the key aspect 
of phurfizacogenomics, the study of pharmacologically relevant genes. Research 
in pharmacogenomics attempts to elucidate how these genes manifest their 
variations, how these variations interact to produce phenotypes, and how these 
phenotypes and environmental factors combine to affect drug response. 

That genome variation does contribute to different individuals experienc- 
ing different pharmacological and toxicological reactions to medication has 
been amply demonstrated. For example, variations in the CYP2D6 gene, 
which codes for an enzyme involved with the metabolism of many commonly 
prescribed drugs, including analgesics, antiarrhythmics, beta-blockers, neuro- 
leptics, and antidepressants, have been found to seriously affect the therapeutic 
response to these drugs. Severe adverse drug reactions have also been asso- 
ciated with these varihtions. The wild-type allele of this gene is referred to as 
CYP2D6*1. Two variant alleles are CYP2D6*3 and CYP2D6*4. Both are due 
to SNPs: the CYP2D6*3 polymorphism is a deletion; the CYP2D6*4 poly- 
morphism is a substitution. Both truncate the protein that they code for, which 
results in functional CYP2D6 protein being absent. Those who have inherited 
two copies of variant alleles in any combination are likely to be poor metabo- 
lizers. Drugs, like codeine, which need CYP2D6 for activation, will not be 
effective in these patients. Other drugs, like lidocaine, are known to cause seri- 
ous side effects, even heart failure, in these patients. On the other hand, those 
who have one wild-type allele and one polymorphic allele are likely to be fast 
metabolizers, in whom the drugs are ineffective or unsafe. 

The fact that i t  is now possible to gather this sort of knowledge has led to 
the hype that the ultimate goal of pharmacogenomics will be “personalized 
medicine,” the ability to target a drug specifically to a patient based on his 
or her genotype, so that he or she will have maximal response with maximal 
safety. Needless to say, if pharmacogenomics ever lives up to this promise, 
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medicine would be revolutionized, as most currently available drugs are fully 
effective in only about half the patients to whom they are prescribed, and more- 
over a subset of these patients will experience undesirable side effects. Still, 
personalized medicine is a long way off, and to be realistic, i t  is uncertain as to 
whether it is even possible that given environmental factors, diet, age, lifestyle, 
life history, and state of health, all have the potential to influence an individual's 
response to medication. 

Thus the true long-term promise that pharniacogenomics offers is likely to 
be the ability to stratify patients and diseases based on genotype and to develop 
better strategies for therapy and prevention based on these stratifications. An 
example of a potential genotype-based therapy is pravastatin, which appears to 
be more effective in lowering cholesterol levels in people with the B 1 B 1 variant 
of the CETP gene than in other people. An example of potential genotype- 
based prevention is tamoxifen, which appears to prevent breast cancer among 
women with BRCAl and BRCA2 gene mutations. 

Clearly, such knowledge is useful for the development of novel pharniaceu- 
tical products. Therefore it  is hardly surprising that the pharmaceutical indus- 
try has embraced genomics and greatly expanded their investment in genomics- 
related research. The greatest impact has been on the drug discovery process. 
Genomics has begun to play a pivotal role in drug discovery particularly 
through pharmacogenomics and through improving the processes of drug 
tmget identification and drug target validation. 

A drug targef is typically a protein that is intimately associated with a dis- 
ease process and that is the intended site of drug activity. For example, the 
protein, immunoglobulin or IgE, is a target for allergy, it having been estab- 
lished that the allergy response is mediated by it. Information obtained from 
studying correlations between genome variations and disease information and 
from studying correlations between gene expression differences and disease 
information can be used to identify target molecules that directly underlie the 
disease processes themselves, rather than just the symptoms. Statistical methods 
play a significant role in this endeavor. 

Once a target has been identified, it must be validated to prove that inhibit- 
ing the target has the desired pharmacological effect. Gene expression studies 
can be used to validate a target by demonstrating that target genes are indeed 
expressed differently in different disease states. A more complex validation 
approach is to make a knockout mouse (a mouse lacking the gene that produces 
the target) and check whether it shows the desired behavior. For example, an 
IgE knockout mouse exhibits no allergic reactions, validating IgE as a target. 
Once an identified target has been adequately validated, an assay can be devel- 
oped to screen a number of chemicals, perhaps in a high throughput mode, for 
potential activity with i t .  

Protein research can also contribute to better drug design. Drugs generally 
work by binding with a target protein at a particular site on the protein, there- 
by inhibiting its normal function. If the structure of the target protein were 
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known, it may be possible to construct a drug specifically to interact with it, for 
example, by using a technology such as X-ray crystallography to examine a 
three-dimensional protein structure and then designing a small molecule that 
will be able to fit and bind into the pockets of the structure. 

The more specific a target site is the better. A drug’s toxic side effects 
usually stem from nonselectiuity, the affinity of the drug to more than just the 
intended site of activity. Drugs that aim specifically for the molecular differ- 
ences between diseased and normal cells are likely to be less toxic and, there- 
fore, more useful clinically. 

These are only some of the ways genomics and associated sciences can con- 
tribute to pharmaceutical research. 

2.9 PROTEINS 

All living organisms are composed largely of proteins. Proteins perform and 
regulate most of life’s basic functions. Thus structural proteins form part of a 
cellular structure, enzynies catalyze almost all the biochemical reactions occur- 
ring within a cell, regulatory proteins control the expression of genes or the 
activity of other proteins, and trunsporf proteins carry other molecules across 
membranes or around the body. 

Structurally proteins are giant complex chains of amino acids. A protein’s 
sequence of amino acids is determined by the DNA sequence of the gene that 
produced it. Proteins belong to a class of large compounds that are called 
polypeptides as the amino acids that comprise them are held together by pep- 
tide bonds. Polypeptide chains, in general, and protein chains, in particular, 
have a tendency to fold up into complex three-dimensional structures. A pro- 
tein’s particular function in the cell is determined not only by its amino acid 
sequence but also by the specific structure into which it folds. In addition, it is 
likely to be affected by other proteins present in the same cell at the same time. 
Thus proteins are much harder to study than genes. 

Interestingly there are far more proteins than there are genes. This is partly 
due to post-transl~Itional mod$cations (proteins, once synthesized at the trans- 
lation step of gene expression, are subject to a multitude of modifications) 
and partly due to alternatiue splicing (different ways of splicing the exons 
together after they are separated during transcription produces different mRNA 
sequences and thereby different proteins). 

The multitude of all proteins generated by a genome of an organism is 
called its proteorne, and the study of protein structure and behavior, which 
is getting more and more attention, is called proteomics. Proteomics encom- 
passes the identification of proteins in tissues, the characterization of their 
physicochemical properties (e.g., their sequences and post-translational mod- 
ifications), and the description of their behavior (e.g., what functions they per- 
form and how they interact with one another and their environment). 
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2.10 BIOINFORMATICS 

As stated in Chapter I ,  an inevitable consequence of the modern technology- 
driven research effort in genomics and genomics-related sciences is a steadily 
growing mountain of data, which is neither easy to examine nor straightfor- 
ward to understand. Given the sequence of the human genome, for instance, 
it is already a colossal task just to identify the individual genes. Ascertaining 
the function of the many thousands of genes and proteins identified and deter- 
mining how in this constellation genes and proteins interact among themselves 
(and under what circumstances) is a mind-boggling task that will challenge 
those working in this area for many years to come. Issues lie in data storage, 
in the querying and analysis of this data, in effective communication of these 
results, and in organizing them to infer functional relationships. 

The steady influx of genomics information has spawned a new discipline 
called bioinformafics that has become an integral part of genomics research. In 
bioinformatics, scientists in the biological and computational sciences, together 
with significant contributions from other disciplines, collaborate to provide 
insight into biological processes. Statistics is an essential component of many 
of these activities. As a fledgling discipline, bioinformatics does not yet have 
a well-defined charter, but some common bioinformatics activities are given 
below. 

Creution and Maintenance of Databases. As a first step, the magnitude and 
complexity of the data being collected has led to the creation of large rela- 
tional databases to store, organize, and index such data. At the moment DNA 
sequences (and protein sequences derived from them) comprise the majority of 
such catalogs. Some well-known examples are GenBank (a database that con- 
tains the totality of public DNA and protein sequence data), SWISS-PROT (a 
protein sequence database), and PDB (a database of three-dimensional biolog- 
ical macromolecular structure data). 

Anulysis of Sequence Information. In parallel with the development of large 
sequence databases, specialized tools (e.g., BLAST) are being devised to efi- 
ciently search, view, and analyze the data in these databases. This includes the 
development of methods for finding the genes in the DNA sequences of vari- 
ous organisms, clustering sequences into families of related sequences, aligning 
similar genes and proteins, and examining evolutionary relationships. Proba- 
bility and statistical techniques, such as hidden Markov models, can efficiently 
and automatically build representations of related sequences. They form the 
basis of several of the more sensitive database searching tools. Statistical meth- 
odology can also be brought into play to assess the significance of any match 
found. 

Prediction of Three-Dimensional Structure. Knowledge of physics and chem- 
istry, and information gathered from similar molecules, is being used to deduce 
the three-dimensional structure of proteins and other large molecules. 
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Expression Analysis. Pattern analysis of gene expression data (mostly 
obtained from DNA microarrays) using statistical and data mining tools is a 
major effort in bioinformatics. 

Modeling Dynamic Life Processes. The ultimate challenge in bioinformatics 
is to develop ways of putting together the information gathered from all the 
diverse areas of research in order to understand fundamental life processes. 

SUPPLEMENTARY READING 

The book by Gonick and Wheelis (1991) is an excellent introduction to genetics 
presented in an amusing and informal style. The book by Clark and Russell 
(1997) provides a more in-depth introduction. More detailed treatment can be 
found in the molecular biology textbooks by Alberts et al. (1994) and Strachan 
and Read (1999). 

Vingron (2001) argues the importance of applying statistical thinking to 
bioinformatics. The book by Ewens and Grant (2001) offers an introduction to 
statistical methods employed in bioinformatics. 

EXERCISES 

2.1. What are the complementary base-pairing rules? Describe their role in (a) 
DNA replication, (b) gene expression, (c) hybridization assays, (d) poly- 
merase chain reaction. 

2.2. Explain the function of (a) DNA, (b) mRNA, (c) start and stop codons in 
protein synthesis. 

2.3. Explain how a child of parents, both of whom are blood type A, could be 
blood type 0. 

2.4. Discuss some ways in which developments in genomics could alter the 
practice of medicine. 
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Microarrays 

The state of a cell at any given time is governed by which subset of its genes is 
expressed at that time. Recall that according to the central dogma of molecular 
biology (Section 2.3), the first step in gene expression is transcription, in which 
expressed DNA sequences are transcribed into mRNA. Thus it is reasonable to 
conjecture that from knowledge of what mRNAs are present in the cell and in 
what quantities, a scientist can make some inferences regarding the state of that 
particular cell. This line of reasoning has led to a considerable effort to measure 
and compare the levels of mRNA in cells in various states. The complete col- 
lection of mRNAs (including their alternative splicing variants) is referred to as 
the organism’s transcriptome. 

It could be argued that it is more pertinent to study the end products of 
gene expression, the proteins, rather than mRNA, which is an intermediate 
molecule. After all, i t  is these proteins that are responsible for most biological 
activities i n  the body. However, the function of a protein is determined not 
only by its amino acid sequence but also by the specific structure it folds up 
into. Furthermore proteins are difficult to purify. Thus an added inducement 
for working with mRNA levels, in order to investigate cell state, is that unlike 
proteins, they are relatively simple to study with current technology, even in a 
high-throughput mode. 

The DNA microarray (microarray or array, for short) has now become the 
most widely used technology for studying mRNA levels. DNA microarrays 
were developed as a general means of monitoring the expression patterns (or 
more precisely, the transcription patterns) of large numbers of genes (perhaps 
even entire genomes) at once, thereby bringing about a tremendous improve- 
ment over the tedious “one gene per experiment” paradigm that prevailed until 
then. 

In brief, a typical DNA microarray experiment proceeds as follows: Take 
a small glass slide. Suppose that the surface of the slide has been divided into 
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series of imaginary square cells to form a rectangular grid. Onto each square 
cell, stick a tiny amount of liquid that contains DNA corresponding to a gene 
of known sequence. Different cells will have different genes. Separately prepare 
a solution that contains a mixture of mRNAs whose sequences are unknown. 
Add to this solution a substance that fluoresces when excited by light. Pour the 
solution onto the slide. The mRNA molecules will diffuse over the slide and, 
wherever they find a matching (i.e., complementary) DNA sequence, such as 
the one taken from the gene from which the mRNA was transcribed, they will 
hybridize to each other and the solution will stick to the slide. Without a match 
the solution will not stick to the slide and can be washed away. Use a laser 
scanner to detect and measure the fluorescent signal being emitted at each cell. 

In a comparative microarray experiment, different slides containing the same 
set of genes will be exposed to different mRNA samples. By comparing the 
intensity levels of the fluorescent signals across the multiple mRNA samples, a 
scientist will be able to understand how the expression profile of a set of genes 
differs across the different mRNA samples. 

3.1 TYPES OF MICROARRAY EXPERIMENTS 

The simple microarray idea has enormous potential. Microarrays have already 
been heavily used in biological research to address a wide variety of questions. 
To motivate our subsequent discussion, we begin by presenting a few exam- 
ples of some such research. We emphasize that this discussion is by no means 
exhaustive and in fact represents only a fraction of the types of experiments 
that a scientist could envision addressing with this technology. 

3.1.1 

Cells from different tissues perform different functions. Although it is a simple 
matter to distinguish cells from different tissues by their phenotypes, the details 
of precisely why cells from one tissue behave differently from cells from another 
tissue remains a fertile topic for research. Since it is the individual proteins, 
particularly enzymes, within each cell that control all the various intermesh- 
ing biochemical reactions within that cell, a cell’s functions are determined by 
which proteins are produced by the cell, and this in turn depends on which 
genes are expressed by the cell. Microarray experiments can be used to identify 
which genes are preferentially expressed in which tissues. This would enable 
scientists to gain valuable insight into the mechanisms that govern the func- 
tioning of genes and cells. 

Experiment Type 1 : Tissue-Specific Gene Expression 

3.1.2 Experiment Type 2 Developmental Genetics 

The genes in an organism’s genome express differently at different stages of its 
developmental process. Interestingly it has been found that there is a subset of 
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genes involved in early development that is used and reused at different stages 
in the development of the organism, generally in different order in different tis- 
sues, with each tissue having its own combination. Crucial to these processes 
are growth factors; the same growth factors that can, later in an organism’s 
development, be involved in causing or promoting cancer; these genes are 
known as proto-oncogenes. Microarrays can, in principle, be used to track the 
changes in the organism’s gene expression profile, tissue by tissue, over the 
series of stages of the developmental process, beginning with the embryo and 
up to the adult. 

Supplementary applications of this line of research include deducing evolu- 
tionary relationships among species and assessing the impact of environmental 
changes on the developmental process of an organism. 

3.1.3 Experiment Type 3 Genetic Diseases 

There are many diseases called genetic diseases that are the result of mutations 
in a gene or a set of genes. A gene that is thus altered is called a niutunt gene. 
The result can be a disease as these genes express inappropriately or do not 
express at all. Cancer, for example, could occur when certain regulatory genes, 
such as the p53 tumor suppressor gene, are deleted, inactivated, or become 
constitutively active (i.e., become always transcribed, regardless of any regula- 
tory factors). 

Microarray experiments can be used to identify which genes are differ- 
entially expressed in diseased cells versus normal cells. This would enable sci- 
entists to identify genes associated with the disease process, such as the tumor 
suppressor genes and the oncogenes (i.e., normal cellular genes that, when 
inappropriately expressed or mutated, can transform normal cells into tumor 
cells) associated with the onset of cancer and the genes associated with the 
development of a cancer form a low-grade malignancy through to a high-grade 
malignancy. This would enable the development of drugs aimed directly at the 
difference between diseased and normal cells. Such drugs can be designed to 
specifically target a particular gene, protein, or signaling cascade, and they are 
therefore less likely to cause undesirable side effects. One way in which this 
knowledge would be useful is in the development of target assays for screening 
new compounds in high-throughput mode to assess their potential efficacy as 
treatments for the disease. 

There are certain diseases that have subtypes that are clinically indistin- 
guishable but are genetically heterogeneous. As they are different subtypes, it 
is most likely that they will call for different treatments. A case in point is 
acute lymphoblastic leukemia and acute myeloid leukemia (ALL and AML, 
for short). It is crucial for proper therapy that a correct clinical diagnosis be 
quickly made. However this can be extremely difficult due to the clinical simi- 
larity of the two diseases. Microarray experiments can be used to identify which 
genes are differentially expressed in the two different types of cancer patients, 
thereby creating specific disease profiles by virtue of their gene expression pat- 
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terns. The information gleaned from these studies could lead to diagnostic 
procedures. 

Sometimes such experiments also uncover disease subtypes that were not 
even known to exist. This would happen, for instance, if, during the course of 
studying a group of patients thought to be homogeneous, it is found that they 
exhibit two very distinct gene expression profiles, indicating two different dis- 
ease subtypes, as may explain why some patients were responding well to treat- 
ment while the others were not. 

Thus these types of experiments will afford scientists the capability of 
grouping diseases into classes. Eventually more precise, but less invasive, clini- 
cal diagnosis procedures could be developed. 

3.1.4 

There are many diseases called coniplex riisemses that are not caused by a few 
errors in genetic information but are caused instead by a combination of small 
genetic variations (polymorphisms) predisposing an individual to a serious 
problem. The risk of such an individual contracting a complex disease tends to 
be amplified by nongenetic factors, such as environmental influences, diet, and 
lifestyle. Coronary artery disease, multiple sclerosis, diabetes, and schizophre- 
nia are complex diseases where the genetic makeup of the individual plays a 
major role in predisposing the individual to the disease. The genetic compo- 
nent of these diseases is responsible for their increased prevalence among cer- 
tain groups, such as within families, within ethnic groups, within geographic 
regions, and within genders. Microarray experiments can be used to identify 
the genetic markers, usually a combination of SNPs, that may predispose an 
individual to a complex disease. 

Experiment Type 4: Complex Diseases 

3.1.5 Experiment Type 5 Pharmacological Agents 

Some genes alter their expression patterns when the organism is exposed to an 
external stimulus such as a pharmacological agent or a substance present in the 
environment. Microarray experiments can be used to identify genes that ex- 
press differently in response to such exposure. The information obtained from 
such experiments will be useful for target identification and target validation. 

The simplest such experiment is one in which a sample of cells is exposed to 
the pharmacological agent and permitted to reach a steady state of transcrip- 
tion. The mRNA levels in the treated cells can then be compared to those in a 
control sample. 

A potentially more informative experiment would be a temporal study. A 
temporal study is an experiment in which a sample of cells is exposed to the 
pharmacological agent and subsamples of the cell sample are drawn at succes- 
sive points in time. This allows the scientist to monitor the gradual change 
in gene expression profiles from the old steady state through to the new steady 
state. Such temporal studies provide information not only on which genes 
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undergo expression profile changes but also the order in which these changes 
occur. 

Microarrays are also useful as a means of assessing toxicity that evokes 
changes in gene expression. A toxicologist would expose cells or tissues or a few 
animals to a class of chemicals whose toxicity is known and, from this, estab- 
lish a signrrture, a common set of changes in gene expression produced by this 
class of toxic agents. Then another set of cells or tissues or animals is exposed 
to a chemical whose toxicity is unknown and the results matched against the 
signature. From this, the toxicologists should be able to make a prediction 
regarding the potential toxicity of that chemical. If successful, this procedure 
could be automated to allow for high-throughput toxicity screening of new 
molecular entities and should reduce the need for lengthy, expensive. and 
unpleasant animal testing of potential drugs. 

3.1.6 

For centuries, researchers in plant breeding have been trying, with some suc- 
cess, to improve cultivated plant species and their products. For example, given 
that crops are heavily influenced by the environmental conditions to which 
they are continuously exposed, researchers in plant breeding have attempted to 
induce greater tolerance for environmental stressors such as extreme weather 
conditions. Some other goals of plant breeding are to boost the resistance of 
plants to infections, to reduce insect predation, to maximize the productivity of 
plants, to improve the quality of plant products, to increase the nutrition level 
of foods processed from plants, and to develop characteristics of plant products 
that are valued by consumers (e.g., fruits that stay ripe for long periods of 
time). 

Microarray experiments can be used to identify the genes responsible for 
various traits of interest and to determine the conditions under which these 
traits are expressed. This information would enable scientists to create plant 
varieties with exact combinations of desirable traits. 

Experiment Type 6: Plant Breeding 

3.1.7 Experiment Type 7: Environmental Monitoring 

Environmental factors are known to affect gene expression, both as to whether 
or not a particular gene is expressed, and the degree to which it is expressed if, 
in fact, it is. Should a normal biological pathway be disrupted as a result of 
a gene expressing differently, the health of the affected organism could suffer. 
Thus it is important to assess the genome-level impact of exposure to environ- 
mental stressors, especially contamination of air, food, and water. Microarrays 
can be used to compare and contrast gene expression patterns across affected 
versus unaffected organisms, whether they be flora or fauna, taking into ac- 
count natural effects such as seasonal fluctuations. One goal of these experi- 
ments is the characterization of environmental changes that may be a hazard to 
health. 
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Another goal of environmental monitoring is the detection of pathogens in 
food and water. This is generally done by examining the DNA in potentially 
contaminated samples, as each pathogen possesses a DNA sequence unique to 
it. The traditional approach tends to be a slow and laborious process, which is 
highly undesirable in situations where rapid intervention may be critical. Using 
microarrays, monitors can simultaneously and swiftly screen for several differ- 
ent strains of pathogens. To do this, a microarray containing the DNA of a 
number of different pathogens would be prepared, DNA would be extracted 
from an environmental sample, and this DNA would be applied to the micro- 
array. If a pathogen is present in the sample, it will hybridize to the microarray 
and its presence would be detected. With this information, scientists can assess 
whether or not there is a hazard to health. 

3.2 
EXPERIMENT 

A VERY SIMPLE HYPOTHETICAL MICROARRAY 

It is easiest to explain the principal behind microarray experiments with a very 
simple hypothetical example. 

Suppose that we have obtained some cancerous liver tissue and some normal 
liver tissue from a liver cancer patient and that we want to know which genes 
are expressed differently in the two. We will begin by extracting mRNA from 
each tissue so that we have two mRNA samples. In each sample only mRNA 
corresponding to any genes that were expressed (i.e., transcribed) would be 
present. We will reverse transcribe the mRNA to cDNA and add some fluo- 
rescent dye to each sample. These two labeled samples are sometimes called 
rurgets. (Sometimes, however, they are called “probes” because they are used 
to probe the collection of spots on a microarray, but this usage appears to be 
now less standard-in order to avoid confusion, we will call them the labeled 
sumplcs.) 

Now suppose that we have prepared a DNA microarray containing the 
entire human genome (there is no such microarray as of yet, which is one rea- 
son why this example is hypothetical). Suppose that there are 36,000 genes. A 
DNA microarray for this experiment would be a tiny glass slide on which the 
36,000 genes are printed in, say, a 300 x 120 rectangular array of spots, one 
gene per spot. Each gene printed on the microarray is called a prohe. (In the 
confusion of terminology, they are sometimes called “targets.”) Two such 
microarrays are prepared. 

We will now flood one of the microarrays with the labeled sample from the 
cancerous tissue and flood the other microarray with the labeled sample from 
the normal tissue. We allow enough time for any cDNA in the samples to rec- 
ognize and hybridize to its complementary sequence in the microarray. Once 
we are satisfied that this has happened, we will wash off any excess labeled 
sample from the microarrays and dry them. 

Each spot on the microarrays where the labeled sample bound to the spot 
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would identify a gene that corresponds to some reverse transcribed mRNA in 
the sample. Such spots can be easily recognized, as they are the only ones that 
will fluoresce. In this way every spot on the microarray functions much like an 
independent assay for the presence of a particular mRNA. 

We will then scan the microarrays and measure the intensity level of fluo- 
rescence at each spot. By comparing these intensities across the two micro- 
arrays, we will be able to tell which genes are differentially expressed in can- 
cerous liver tissue versus normal liver tissue. 

Esumple. Let X ,  and Y(, denote the intensities measured for the gth gene 
in the normal liver tissue microarray and cancerous liver tissue microarray 
respectively, and let the ratio of these intensities be R, = Y q / X , .  This ratio is 
usually called the jbld chunge. Figure 3 . 1 ~  shows a scatterplot of Yq versus X ,  
and Figure 3.lb shows a histogram of {R,}. It is impossible to discern any 
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structure in these graphical displays because the data is so heavily skewed. 
However, by taking logs, we are better able to see structure. Figure 3.lc shows 
a scatterplot of log( Y q )  versus log(X,) and Figure 3.ld shows a histogram 
of {log(R,)}. In Figures 3.10 and 3.lc, most genes fall along the Y = X line, 
indicating that they are expressed to the same degree in both tissues. The dif- 
ferentially expressing genes are those that lie far away from the Y = X line. 
In Figure 3.lb most genes have R, values close to one (and, correspondingly, 
in Figure 3. Id most genes have log(R,) values close to zero), again indicating 
that they are expressed to the same degree in both tissues. The differentially 
expressing genes are those whose R, is large (e.g., R, > 2), indicating genes 
that are overexpressed or upregulated in the cancer cells, and those whose R,  is 
small (e.g., R, < 0.5) indicating genes that are underexpressed or downregulated 
in the cancer cells. Of the 3300 genes in this example, 145 genes are upregulated 
( R ,  > 2) and 124 genes are downregulated ( R ,  < 2). 

This is the general idea behind microarray experiments. 

3.3 A TYPICAL MICROARRAY EXPERIMENT 

The very simple hypothetical example that was given above outlined the five 
basic steps of a typical actual microarray experiment. The five steps are: 

1. Preparing the microarray 
2. Preparing the labeled sample 
3. Hybridizing the labeled sample to the microarray and washing the 

4. Scanning the microarray 
5. Interpreting the scanned image 

microarray 

We will now describe each of these steps in greater detail. 

3.3.1 Microarray Preparation 

To start with, we must have a collection of purified single-stranded DNAs. A 
drop of each type of DNA in solution is placed onto a specially prepared glass 
microscope slide by a robotic machine called an arrayer. This process is called 
arraying or spotting. The arrayer can quickly produce a regular grid of thou- 
sands of spots in a dime-sized area, small enough to fit under a standard slide’s 
coverslip. The DNA in the spots is bonded to the glass to keep it from washing 
off during the hybridization reaction and subsequent wash. This then is the 
DNA microarray for the experiment. 

The DNA spotted on the microarray may be either cDNA, in which case the 
microarray is called a cDNA microarray, or oligonucleotides, in which case the 
microarray is called an oligonucleotide array. 
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The DNA spotted on cDNA microarrays are cloned copies of cDNA, 
amplified by PCR, corresponding to whole or part of a fully sequenced gene 
or putative ORF; ESTs are commonly arrayed. These microarrays are widely 
applicable as their manufacture requires only that a large library of cDNAs 
be available as a source of clones. The sequence of the cDNA could be sev- 
eral hundred to a few thousand base pairs long. When only a part of a gene 
is spotted, the subsequence that is spotted is carefully chosen for maximal 
specificity. 

The DNA spotted on oligonucleotide arrays are synthesized chains of oligo- 
nucleotides corresponding to part of a known gene or putative ORF; each oligo- 
nucleotide is usually only about 25 base pairs long. In oligonucleotide arrays, a 
gene is represented by several different oligonucleotides; the oligonucleotides 
are carefully chosen for maximal specificity. 

The selection of DNA probes to be spotted on the microarray determines 
which genes can be studied in the experiment in which it is used. For organisms 
whose genomes have been completely sequenced, including several bacteria, 
viruses, and yeast, it is possible to array genomic DNA from every known gene 
or putative ORF in the organism. For these organisms enough DNA must be 
produced to make as many arrays as needed. One way to do this is to amplify 
each gene or putative ORF from total genomic DNA by PCR. However, one 
disadvantage of using PCR to make multiple copies for array spotting is that 
PCR can induce mutations, especially at higher cycles. An alternative is to 
clone fragment cDNAs, make large amounts of identical DNA copies by 
growing them in bacteria, and then extract plasmid, excising out the specific 
cDNA fragments. 

For organisms with larger and more complex genomes, such as the human 
genome, that have not yet been completely sequenced, a comprehensive array 
for the entire genome cannot yet be produced. Of course, in the case of the 
human genome, the location and sequence of a large percentage of human 
genes is now known, chiefly as a result of the Human Genome Project. There- 
fore the same method as above can be used to produce an incomplete but sub- 
stantial human genome microarray, with a complete one perhaps only a few 
years away. In addition there are methods for producing arrayable DNA even 
for unknown genes. 

There are a few different robotic technologies that have been developed for 
arraying microarrays. One method uses a robotic arm to touch and spot nano- 
scale droplets of the solution containing the cDNA or oligonucleotide. Another 
method uses ink jet technology to eject the solution onto the surface of the glass 
slide without the robot actually touching it. Other technologies concurrently 
synthesize oligonucleotides on the slide in situ, using either photolithography (a 
proprietary method developed by Affymetrix) or ink jet technology (a method 
developed by Rosetta Inpharmatics). 

The DNA probes arrayed on the microarrays are frequently referred to as 
“genes” even though this may not be quite accurate. 
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3.3.2 Sample Preparation 

The labeled sample is prepared separately. The first step here is to purify 
mRNA from total cellular contents. The experimenter must contend with sev- 
eral challenges here: ( I )  mRNA accounts for only a small fraction (less than 
3%) of all mRNA in a cell, (2) the more heterogenous the cells (e.g., the cells of 
solid tumors), the more difficult it is to isolate mRNA specific to the study, and 
( 3 )  captured mRNA degrades very quickly. As far as the latter is concerned, 
in order to prevent the experimental samples from being lost, the mRNA is 
immediately reverse-transcribed into more stable cDNA (for cDNA micro- 
arrays) or cRNA (for oligonucleotide arrays-cRNA is synthetic RNA pro- 
duced by transcription from a single-stranded DNA template). 

Even here there is a small problem: not all mRNAs are reverse-transcribed 
with the same efficiency. As this effect is gene-specific, the fluorescence intensity 
that is measured for a gene at the end of the study may not be a true reflection 
of original mRNA level. Consequently it would not be correct to compare flu- 
orescence intensities for different genes across a single sample. Fortunately, 
however, it would not be incorrect to compare fluorescence intensities across 
several samples. 

In order to be able to detect which cDNAs are bound to the microarray, 
the sample is labeled with a reporter molecule that flags their presence. The 
reporters currently used in microarray experiments are fluorescent dyes, called 
fiuors or Juorophores, chemicals that fluoresce when exposed to a specific 
wavelength of light. The labeled sample is the target for the experiment. 

The number of fluor molecules that label each cDNA depends on its length 
and also possibly its sequence composition. This is another reason why fluo- 
rescent intensities for different cDNAs cannot be quantitatively compared. 
However, identical cDNAs from different labeled samples will still be compa- 
rable as long as the same number of label molecules is added to the same DNA 
sequence in each labeled sample. 

3.3.3 The Hybridization Step 

The labeled sample is poured onto the microarray and allowed to diffuse uni- 
formly all over it. Then it is sealed in a hybridization chamber and incubated 
at a specific temperature for enough time to allow the hybridization reactions 
to complete. The experimental conditions should ensure that all areas of the 
microarray are exposed to a uniform amount of labeled sample throughout this 
time. 

A single-stranded DNA molecule will bind with highest affinity to another 
single-stranded DNA molecule with a precisely matching sequence and with 
significantly lower affinity to one with an imperfect match. The stringency of 
the hybridization depends on experimental conditions such as temperature. If 
the labeled sample contains a cDNA whose sequence is complementary to the 
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DNA on a given spot on the microarray, that cDNA will hybridize to the spot. 
Enough incubation time should be allowed for the hybridization reactions to 
complete. 

The microarray is then removed from the hybridization chamber and thor- 
oughly, but carefully, washed to eliminate any excess labeled sample. Finally 
the microarray is dried using a centrifuge or by blowing with clean com- 
pressed air. 

The quality of the hybridization can be assessed experimentally by spot- 
ting the probes for a set of hybridization control genes, spiking the labeled 
sample with a known amount of these controls prior to exposure to the array, 
and verifying that these control genes are, indeed, showing up as having been 
hybridized. 

3.3.4 Scanning the Microarray 

The microarray is scanned to determine the amount of labeled sample bound to 
each spot. Recall that the sample was labeled with fluorescent reporter mole- 
cules that emit detectable light when stimulated by a laser. The emitted light is 
captured by a scanner, such as a charge-coupled device or a confocal micro- 
scope, that records its intensity. Spots with more bound sample will have more 
reporters and will therefore fluoresce more intensely. 

Although it is only supposed to pick up light emitted by the target cDNAs 
bound to their complementary spots, the scanner will inevitably also pick up 
light from various other sources, including the labeled sample hybridizing non- 
specifically to the glass slide, residual (unwashed) labeled sample adhering to 
the slide, various chemicals used in processing the slide, and even the slide 
itself. This extra light is called huckground. 

Scanner settings can affect both the precision of the intensity measurements 
as well as the lower and upper threshold intensity levels that can be mea- 
sured. Intensities outside this range, called the dynamic range, cannot be prop- 
erly quantified and are often set to the corresponding threshold level. When 
intensities exceed the upper threshold, suturution is said to have occurred. There 
is a trade-off between the precision and the dynamic range: increasing one will 
decrease the other, and vice versa, so a balance must be struck. 

3.3.5 Interpreting the Scanned Image 

The end product of a microarray experiment is a scanned gray scale image 
(see Fig. 3.2) whose intensity measurements range from 0 to 216. The image 
is usually stored in 16-bit tagged image file format (tiff, for short). Image- 
processing software will convert the image into spot intensity measurements, 
which will then be analyzed for gene expression differences. 

Figure 3.2 shows a typical microarray image. The whiter spots are of higher 
intensity and can be associated with higher hybridization activity. The very 
dark spots occur at locations where there was little or no hybridazation. 
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Figure 3.2 A single-channel scanned image. 

3.4 MULTICHANNEL cDNA MICROARRAYS 

It has become a common practice among those who use cDNA microarrays to 
fashion the labeled sample out of two or more mRNA samples mixed together. 
Each mRNA sample in the mixture is labeled with a different fluorescent dye. 
At the scanning stage, the slide is scanned as many times as there are samples. 
Such microarrays are called multichannel cDNA microarrays. 

Figure 3.3 shows the two scanned images from a two-channel cDNA micro- 
array, in which one of the channels was exposed to a control mRNA sample 
and the second channel was exposed to a treated mRNA sample. Any spot 
whose intensity is different between the two channels (e.g., dark in channel 1 
and white in channel 2) corresponds to a spot that was differentially hybrized 
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Figure 3.3 
channel 2 (treated) 

Scanned images from ii small two-channel microarray ( 6 1 )  Channel I (control). (h) 

and, by inference, to a gene that was differentially expressed in treated versus 
control due to a treatment effect. 

Multichannel cDNA microarrays have some advantages that have led 
them to becoming the standard technology for cDNA microarrays over single- 
channel cDNA microarrays. For one thing it is often difficult to tightly control 
the amount of DNA that is spotted onto the slides, and this could vary from 
array to array for the same gene. The effect of this variation on downstream 
analysis can be reduced by the natural matching of samples in multichannel 
microarrays. In addition some economy is gained as data on expression levels 
of several mRNA samples can be gathered using just one slide. 

However, there are some drawbacks as well: (1) There is an overall dye 
effect, although this can usually be corrected by normalization (see Chapter 5). 
(2) If the objective is to compare a large number of mRNA samples, the logis- 
tics of setting it up become more complex with multichannel microarrays. ( 3 )  A 
more serious problem is that some genes may incorporate certain dyes better 
than other dyes, so gene-specific dye effects could occur. 

3.5 OLIGONUCLEOTIDE ARRAYS 

The technology for the production of high-density oligonucleotide arrays 
(Lockhart et al., 1996) was pioneered by Affymetrix and remains proprietary to 
this day. In an oligonucleotide array, a gene is represented by a set of 20 or so 
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oligonucleotides, called perfect march probes (PM). The multiple oligonucleo- 
tides that represent a gene are designed in such a way as to hybridize to different 
regions of the RNA corresponding to an expressed gene and act a series of 
multiple independent detectors for the gene. 

Each perfect match probe is paired with an artificially created mismatch 
probe (MM) that is fashioned by changing the middle base of the correspond- 
ing perfect match probe to its complementary base. The mismatch probe is 
intended to play the role of an internal control for hybridization specificity 
peculiar to its particular hybridization site. The hybridization to the gene by the 
perfect match probe represents specific hybridization and should be stronger 
than any nonspecific hybridization to the mismatch probe. In addition, if the 
PM intensities are consistently larger than the MM intensities for a probe set, 
this global effect is more likely to be indicative of actual presence of mRNA 
corresponding to that gene in the sample as opposed to being a random chance 
event. At least, that’s the theory-in practice, there is a great deal of contro- 
versy about the use of the mismatch probes. 

Affymetrix refers to each PM-MM pair as a probe pair and the entire set 
of probe pairs for a gene is called a probe set. High-density oligonucleotide 
microarrays are manufactured by synthesizing the oligonucleotides directly 
onto the surface of a silicon chip. The process is highly elaborate and involves 
defining the exposure sites on the chip with a series of semiconductor-based 
photolithographic masks and following this with a light-directed chemical syn- 
thesis of the oligonucleotides guided by their DNA sequences. The nature of 
the process is such that a very large number of oligonucleotides can be densely 
arrayed at the same time. 

3.6 BEAD-BASED ARRAYS 

New technologies are constantly emerging in an effort to extend the throughput 
and potential of microarrays. One of the most promising is bead-based micro- 
array technology. 

A bead-based fiber-optic microarray is a bundle of optical fibers. Micro- 
scopic wells are etched onto the end of each fiber. These wells hold the probe 
DNA sequences in bead form. The array is exposed to the fluorescently labeled 
sample. Wherever the labeled sample finds a matching (i,e., complementary) 
DNA sequence on the microarray, hybridization takes place. Without a match, 
the labeled sample does not hybridize to the probe. The array is illuminated 
with a lamp. This triggers fluorescence in the tagged samples, which causes 
a signal to be passed through the optical fiber to a detector, which indicates 
which probe DNA sequences match some sequence in the labeled sample. 

The throughput of three-dimensional bead-based microarrays is a great deal 
higher than conventional two-dimensional microarrays. In fact the number of 
DNA sequences tested could be in the hundreds of thousands, or even millions, 
range. 
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3.7 CONFIRMATION OF MICROARRAY RESULTS 

Microarray technology is still a dynamic and evolving entity. As such, the state 
of the technology at this time is that microarray experimental results could 
be rather variable. The value of microarray technology as a high-throughput 
screen for gene expression information is without question, but investigators 
should interpret any results from microarray experiments with some circum- 
spection (e.g., see Kothapalli et al., 2002). Thus the key is to utilize microarrays 
as a means of screening and prioritizing a large number of genes, but any find- 
ings pertaining to genes of special interest should be independently confirmed. 
This is generally done on a gene-by-gene basis using methods such as Northern 
blots or quantitative RT-PCR. 

SUPPLEMENTARY READING AND ELECTRONIC REFERENCES 

1. Animations. The Web sites http: //m. bio. davidson. edu/ 
courses/genomics/chip/chip.html and http://darwin.bio. 
u c i .  edu/-faculty/wagner/array2. html have animations that 
demonstrate how a DNA microarray experiment is performed. 

2. The Chipping Forecast (2001) and The Chipping Forecast II  (2002) are 
special supplementary issues of the journal Nature Genetics that carry 
several excellent review articles by several researchers who either pio- 
neered or significantly advanced the field of DNA microarrays. The 
Chipping Forecast is freely available online at http : //m. nature. 
com/ng/chips-interstitial.htm1. 

3. The Web site http://www.cs.wustl.edu/-jbuhler/research/ 
array has an excellent introduction to cDNA microarrays and compar- 
ative hybridization by J. Buhler. 

4. The book by Schena (1999) discusses various aspects of microarray 
experiments. 

5. Nguyen et al. (2002) provides an excellent review of the biological and 
technological aspects of microarray experiments in a format suitable for 
data analysts. 

EXERCISES 

3.1. What is the difference between a genetic disease and a complex disease? 
How would a microarray experiment to discover the genes involved in a 
genetic disease differ from an experiment to discover the genes involved in 
a complex disease? 

3.2. What is the advantage of doing a temporal study? 
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3.3. Outline the various steps of a typical microarray experiment. 

3.4. Explain the terms: background, saturation. 

3.5. Discuss the advantages and disadvantages of a two-channel microarray 
versus a single-channel microarray. 

3.6. What is (a) a probe pair (b) a probe set? 

3.7. In what way does quantitative RT-PCR complement microarrays? 
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Processing the Scanned Image 

When microarrays are scanned at the end of an experiment, the result is a 
series of images, one image per channel. Thus a one-channel microarray, such 
as an oligonucleotide array, yields one image per array, whereas a two-channel 
microarray yields two images per array, one image per channel. 

The scanner “reads” a microarray by dividing it up into a very large number 
of pixels and recording the intensity level of the fluorescence at  each pixel. The 
resulting rectangular array of pixels and their associated intensities constitutes 
the imrige of the microarray. 

The image must be converted into spot intensities for analysis (see the sche- 
matic in Fig. 4.1). The purpose of this conversion is to assign to every DNA 
sequence that was spotted on the microarray an intensity measure, called the 
spot intensity, reflecting the amount of labeled sample that hybridized to it. 

Following this, it is generally advisable to perform a series of quality checks 
on the data and, if necessary, generate warnings about possible problems, such 
as aberrant spots and defective microarrays, so that the investigator could take 
appropriate action. 

Finally, the spot intensity data should be adjusted for background fluores- 
cence. 

4.1 
SPOTTED IMAGE 

CONVERTING THE SCANNED IMAGE TO THE 

The task of quantifying a scanned image is often carried out in three steps. 
First, the location of each spot in the array is defined by assigning coordinates 
to the center of each spot-this is called gridding. Second, the signal, the set of 
pixels that correspond to labeled cDNA hybridizing to its complementary 
DNA sequence spotted on the microarray, is separated from the background, 
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Figure 4.1 Data processing steps starting with the raw image. 

the set of pixels that correspond to labeled cDNA hybridizing nonspecifically to 
the microarray-this is called seymentafion. Third, each spot is assigned an 
intensity value-this is called quantijication. We now mention some aspects of 
each step; Yang et al. (2000, 2001) provide more detailed accounts. 

4.1.1 Gridding 

If the arraying process arranged the spots in a perfect rectangular grid, as it  
should, the task of defining the spots by assigning coordinates to the center of 
each circular spot would be a simple matter: just overlay an appropriately sized 
grid on the microarray and move it around until it is properly aligned. In 
practice, however, the arraying process is not perfect, so the grid that is actually 
arrayed tends to be a slightly deformed version of the target regular rectangular 
grid. As a result the overlaid grid will need some fine-tuning, which can be done 
by manipulating the rows and columns of the overlaid grid until the it is satis- 
factorily aligned. Care must be taken that speckles and dust, which can fluo- 
resce as brightly as a spot, do not confuse the procedure. 

A somewhat more rigorous method would be to first locally smooth the 
image using a Gaussian kernel, designate the modes of the smoothed regions as 
the spot centers, and then modify the grid so that the distances from the spot 
centers to the centers of the rectangular or square regions containing each spot 
are minimized. 

4.1.2 Segmentation 

Once the locations of the centers of the spots have been determined, the next 
step is to separate from the background the spot, that is, the region of the slide 
on which cDNA was actually arrayed. This should not be too difficult if all the 
spots were circular with a well-defined boundary. The procedure would involve 
either fitting a circle with a constant diameter to all the spots on the image 
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($xed circle segmentation) or fitting circles with different diameters to different 
spots on the image (urhptive circle segnientution). 

In practice, neither of these segmentation procedures works particularly well 
as the spots tend to vary considerably in size, shape, and regularity due to a 
number of factors, such as the quality of the spotting tip of the arrayer (which 
degrades with use), how long the tip stays on the slide, the deposition of the 
cDNA causing a bowl-like depression, the coating on the slide, the surface 
tension and viscosity of the solution being arrayed, the ambient temperature 
and humidity, and the posthybridization processing of the microarray. Work in 
computer vision has suggested some ways of dealing with this problem. 

One such method is the seeded region groiving algorithm. The algorithm 
consists of the following steps: 

Step 1 .  Seed specifcution. To get this algorithm started, a set of pixels called 
seeds have to be specified. One simple way to do this is to let the seeds for 
signal be the estimated spot locations from the gridding step and to let the 
seeds for background could the midpoints. 

Step 2. Region growing. For each spot we have a seed for a signal region and 
a seed for a background region. The seeds are then “grown” into regions 
by allocating the remaining pixels to either signal or background region, 
depending on their intensity and their closeness to a seeded region. A pixel 
that is adjacent to an allocated pixel is considered a candidate for allocation 
into that region. At each step, among the pixel candidates for all regions, the 
pixel that is the closest in intensity to the average intensity of the corre- 
sponding region is assigned to that region. 

Step 3 .  Stopping rule. This process continues until all the pixels have been 
allocated to one of the regions. 

Another method is histogram segmentation. A mask is placed over each spot. 
The mask should be larger than the spot. The histogram of pixel intensities 
within the mask is examined to determine a threshold value. Each pixel within 
the mask is then classified as signal or background depending on whether its 
intensity is above or below this threshold. 

Therneau et al. (2002) discuss a method, based on the EM algorithm 
(Dempster et al., 1977), for sharpening spots to correct for the bleeding of one 
spot onto another. 

4.1.3 Quantification 

At each spot the average intensity of the pixels is measured. This observation is 
complemented by a number of other spot-related statistics that allow the qual- 
ity of the spot to be assessed (e.g., see Kuklin et al., 2001; Wang et al., 2001; 
Brown et al., 2001, recommend a pixel-by-pixel analysis of individual spots for 
two-channel microarrays). The following list outlines some typical spot-related 
statistics that are reported: 
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Spot intensity. The end product of the conversion process is an array 
{ X r ( }  of spot intensities: here X,, denotes the intensity of the spot located 
at the rth row and cth column of the array. At each spot the average 
intensity of the pixels designated as signal is taken to be its spot intensity 
value. The average used is often the mean, because it should be represen- 
tative of the number of labeled mRNA molecules hybridizing to the DNA 
spotted on the array. However, because the distribution of pixel inten- 
sities might be irregular, other measures of location, such as the median, 
trimmed mean, biweight, and mode, are also sometimes used. 
Spot bcickground. This is the average intensity of the pixels around the 
spot that were designated as background. The average used is often the 
mean or median. The background intensities are represented as an array 
{ B,, } of the same dimension as { X,, }. 

- Pixel intensity distribution. In general. the distribution of pixel intensities 
in and around a spot does not resemble a normal. Instead, for example, i t  
could be peaked with one or two long tails. This is one reason why the 
segmentation process can sometimes be imprecise. Spot cu and background 
cu are the coefficients of variation of the intensities of the pixels assigned to 
signal and background respectively. The higher the spot cu, the more vari- 
able are the intensities of the pixels that make up the spot and, possibly, 
the lower is the quality of the spot. Moreover the closer the spot intensity 
is to spot background or to saturation, the less reliable it is. 
Spot morphology. Measures associated with geometric characteristics of 
the spot, such as the size of the spot, also provide information on the quality 
of the spot. When seeking circular spots, two other such measures are cir- 
cularity, which is 471 times the area of the spot divided by its perimeter, and 
regularity, which is the proportion of pixels designated as signal by the 
segmentation procedure among the pixels falling within the circle des- 
ignated by the gridding procedure. The closer these measures are to unity, 
the more circular is the spot. 

4.2 QUALlTY ASSESSMENT 

Once the spotted image and related statistics are obtained, it is advisable to (1)  
assess the quality of the array and (2) evaluate the quality of the individual 
spots on the array. This is because sometimes the array could have a region of 
generally increased or decreased intensity and some spots might be defective. 
Figure 4 . 2 ~  shows a scanned image that has a few such blemishes. There are 
some speckles that could be dust. The background seems to be nonuniform. 
Figure 4.2h shows some spots with high-contrast background effects, and 
Figure 4 . 2 ~  shows some defective spots. 

Artifacts such as these, introduced perhaps by the experimental process or 
some odd random event (e.g., dust particles settling on the array), could seri- 
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Figure 4.2 
a few spots that show, (h) high-contrast background etrects, and (c) defective spots. 

(u) Scanned image with a few blemish like speckles and a nonuniform background and 

ously compromise the corresponding spot intensities. If the affected arrays and/ 
or spots are not identified and removed or otherwise adequately downweighted, 
they could mask true experimental effects. Several steps are involved in assess- 
ing the quality of an array and the spots within an array. 

4.2.1 Visualizing the Spotted Image 

Visual inspection of the data is a first attempt to appraise the quality of the 
spotted image. This can be done using a typical irizuye plot (referred to as a heut 
map in the computer science literature), in which each image pixel corresponds 
to a spot. The image plot is then examined and searched for obvious non- 
random patterns that would suggest poor data quality. If none is observed, the 
image is passed on to the next step. 

A basic graph for visualizing a spotted image is shown in Figure 4.3. 
The graph contains a central panel showing a color image with a color scale 
underneath. The central panel may be subdivided into groups from top to bot- 
tom giving the images of subpanels or clusters with a bar on the left indicating 
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Figure 4.3 Microarray graph. 

the subgroups. Finally, the right side of the graph shows the average profiles of 
each of the groups or subpanels. The average profiles are computed by taking 
the average of the subgroups across the columns and then normalizing each 
profile by dividing it by its maximum. 

4.2.2 Numerical Evaluation of Array Quality 

In addition to visual methods for checking for patterns in the spotted image, 
numerical methods should also be considered. This is because: 

It is possible that some of the more subtle spatial patterns in a spotted 
image are not visible in the image graph because the variation is small 
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enough not to show on the color scale or the color scale may not be sensi- 
tive enough to show the pattern. 
Automated methods are crucial for processing a large number of micro- 
array images, such as those that occur in a high-throughput environment, 
without the need for tedious individual visual inspection. 

4.2.3 Spatial Problems 

In order to ensure the integrity of the data, the spot and background intensities, 
{& } and { B,, }, must satisfy some quality criteria related to the spatial distri- 
bution of the intensities. The first one is that the background intensities must 
be uniformly distributed. We expect this to be approximately correct, or at a 
minimum, we expect that the background intensities will not display clear 
nonuniform patterns. 

A few nonuniform patterns appear quite often because they may be related 
to specific problems with the experimental process, such as hybridization arti- 
facts, inconsistent washing across the slide and other technical problems, that 
introduce topographical variation: 

Case 1.  A large smudge covering a substantial part of the area of the back- 
ground image. These smudges are areas of the array that show higher or 
lower intensities compared to the rest of the image. 

Case 2. Vertical or horizontal strips on the background image that show higher 
or lower intensities. 

Case 3. Diagonal strips again showing higher or lower background intensities. 
Case 4. A gradient in the background intensities going across the array. 
Case 5 .  A row or column effect such as an edge effect. 
Case 6 .  Bleeding in the spotted image, namely a series of consecutive spots that 

are blurred together forming a horizontal or vertical line. 

In order to detect such patterns, Amaratunga and Cabrera (2003b) propose 
a method that separates pixel intensities into high and low and separates them 
using only the two coordinates: row number and column number. If  the sepa- 
ration is successful, the array has an spatial problem and should be discarded; 
otherwise, the array is accepted. The steps of the algorithm they proposed are 
as follows: 

Step I .  Split the image into high-intensity and low-intensity spots. This is a 
binary split similar to the ones performed by a regression tree algorithm at a 
single node. The CART procedure (Breiman et al., 1984) does this by iden- 
tifying the cutoff that minimizes the within-group sum of squares. However 
this split is not robust against outliers. A simple alternative that is resistant 
to outliers is to set the cutoff to the mid point between to quantiles (e.g., 5'%1 
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and 95% quantiles). Then define the response at the spot at row Y and col- 
umn c: Yr, = 1 for high-intensity spots and Y,, = 0 for the rest. 

Step 2. Fit a quadratic discriminant function (see Section 10.3) to the binary 
response { Y,.,} using the spot coordinates (Y, c)  on the microarray as pre- 
dictors. Suppose that Z,, are the predicted responses by the discriminant 
function. In order to assess the goodness of the fit, calculate the proportion 
n of correctly predicted spots, that is, the proportion of spots with Y = Z.  
The null distribution of the n statistic can be simulated by a simulation the 
images. To do this, generate a large number (e.g., 300) of images by random 
permutations of the spot intensities and calculate the value of n for each 
image, resulting in the set {PI,. . . ,p300}. Estimate the p-value as the pro- 
portion of ni greater than the observed TC. This p-value measures the perfor- 
mance of the quadratic discriminant analysis and is used to determine the 
overall quality of the microarray. 

The outcome of the procedure above can be summarized in an image 
quality graph such as the one shown in Figure 4.4. The figure consists of a 
central panel showing a color image and a set of four graphs on the right side 
of the figure. The main panel displays an image representing the background 
intensities that are being analyzed. The color or gray scale corresponding to the 
main panel is shown on a narrow horizontal strip below the main panel. The 
right side of Figure 4.4 shows a column of four graphs: 

* The two graphs at the top of the right side show the average profiles of the 

The third and fourth graphs show the image graphs of the arrays { YrC}  
rows and columns of the main panel respectively. 

and { Z,,} respectively. 

4.2.4 Spatial Randomness 

Another way of assessing whether any part of an array is emitting higher 
signals compared to the rest of the array is to check whether the “outliers” 
in either the signal or the background are randomly scattered throughout the 
array or clustered together or distributed according to some pattern. In the 
algorithm in the previous section this check could be used as in the graphs of 
Figure 4.4. The assessment could be made using a simple test of complete spa- 
tial randomness, such as that proposed for a problem in ecology by Clark and 
Evans (1954). 

Suppose that the array has G spots, r of which are outliers. For the ith out- 
lier, let d, be the distance to the “outlier” closest to it, so that 2 = C,“=, d,/G is 
the average nearest-neighbor distance between the outliers. The test statistic for 
complete spatial randomness is 2 or its standardized form 

6- 1/(2fi) 
T C S R  = 

J(4 - n)/4G7cp1 
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Figure 4.4 Image quality graph. 

which has a standard normal distribution under complete spatial randomness. 
The parameter p can be estimated as = r / G .  Note that two aspects of the 
data are being ignored in doing this test: nonindependence of some nearest- 
neighbor distances and edge effects. More complex tests that adjust for these 
aspects of the data have been developed in the spatial data analysis field. 

This method is fast and would produce good results for arrays where the 
outliers appear in small clusters, such as the bleeding spots, case 6 in the list of 
Section 4.2.3. If the smudge covers a large part of the array, then i t  would help 
to smooth the image, but it may be harder to detect with this approach. 

4.2.5 Quality Control of Arrays 

Rigorous quality assurance ensures that the accuracy and precision of an 
experimental process is maintained over time. Besides continuously making 
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sure that the quality of the various individual steps of the microarray experi- 
mental protocol is being preserved, the experimenter should use the data being 
collected to monitor the stability, consistency, and overall performance of the 
experimental process as a whole. 

Microarray experiments are usually performed over time. It is important to 
take this temporal effect into account because experimental conditions tend to 
be affected by time. For example, the sample could vary (perhaps degrade) 
over time, operators of varying ability may run the experiment over several 
days, and various day effects (e.g., temperature and humidity) could affect the 
materials and the results. All these could potentially have a significant impact 
on experimental results. Therefore such effects should be monitored carefully. 
Some of these effects, if reasonably small, may be accounted for at the model- 
ing stage of the analysis. However, it is useful to be able to detect when an 
experiment may be going out of control in the early stages of the experiment, or 
a series of experiments as it is being run, so that the experimenter can intervene 
immediately and address any experimental problems. 

The process of data acquisition starts with the outcome of the experiment 
that is the microarray. The microarray is then scanned and the scanned raw 
image is processed to generate the spotted image. The spotted image is stored in 
the database. 

A simple quality control procedure can be established at the moment when 
the spotted image is stored in the database by running a procedure that pro- 
duces the following items: 

1. An image quality graph, such as the one shown in Figure 4.4, could be 
used to detect specific problems with the array. 

2. A side-by-side display of boxplots of the sequence of arrays that have 
been observed up to this point, or a set of summaries based on them, 
could be used to check whether there are any changes from the previous 
arrays to the current one. 

This quality control process requires that the process of data acquisition be 
automated as mach as possible, in order to avoid unnecessary delays on the 
experimental side. Figure 4.5 shows an experiment where a change in operator 
produced a shift in the scale of the observations in the last four arrays. 

4.2.6 Assessment of Spot Quality 

Once an array is deemed to be of satisfactory quality to be included in an 
analysis, the quality of the individual spots should be assessed. Actually spot 
quality assessments can be done at two different stages of an analysis. 

First, at the image processing stage, the quality of a spot can be assessed by 
studying the properties of its pixel intensity distribution or its spot morphology 
(see Section 4.1.3). Since it is unlikely that a single quantity could capture 
everything that could go wrong with a spot or a spot intensity measure, some 
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Figure 4.5 Quality control graph. 

composite index must be formed from the above-mentioned quality metrics 
to flag suspect spots. These flagged spots can then be individually examined 
visually, if necessary. 

Then, at the post normalization stage, if replicates are available, each set of 
replicate spots can be analyzed to check whether any value in the set is mark- 
edly different from the others (this is described in Section 5.7). The replicates 
may be repeated spots on an array, technical replicates, or biological replicates. 
Exclusion or downweighting of spots that are considered low quality is likely to 
improve downstream analyses. 

4.3 ADJUSTING FOR BACKGROUND 

In principal, the intensities of those pixels not corresponding to spots should be 
zero. However, this never happens. Instead, because of various reasons such as 
nonspecific binding of the labeled sample to the array substrate and substrate 
fluorescence, these pixels emit a low, but not insubstantial, level of fluorescence 
that may vary with location. 

The concern is that the spot intensities may also contain a certain amount of 
this nonspecific fluorescence, called the background fluorescence. I t  is custom- 
ary therefore to estimate a background intensity from data and, assuming that 
the spot signal intensity is an additive combination of the true spot intensity 
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Figure 4.6 LL$: Line graphs of background showing the row and column medians. Right: Image 
plot of the background. 

and the background, to subtract the background from the raw spot intensity 
values to yield a set of background-ucljusted spot intensity vahies. 

4.3.1 Estimating the Background 

There are a few different ways in which the background is estimated. 

Global Background Adjustment. A very simple estimate of the background 
is the average intensity of all the pixels not belonging to spots. However this 
na'ive approach is rarely effective, because the background often tends not be 
uniform over the entire microarray. 

Example. Figure 4.6 is an image graph of the background intensities for a 
microarray of 140 rows and 24 columns. The left side of the graph shows the 
row and column medians, while the right side shows an image plot of the 
background. Clearly, there is some topographical variation across the slide. 
The intensities decrease moderately from the left to right along the columns, 
and a few rows on the bottom of the array have higher intensities than the rest. 

Spot Background Adjustment. The spot background can be subtracted from 
the spot intensity value to yield a spot buckgroundadjusted spot intensity vulurs. 
However, the segmentation process, which separates spot from background, is 
usually imperfect, and the spot background often contains a contribution from 
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the signal. This manifests itself as a nonzero correlation between spot intensity 
and background intensity; spots with high intensity tend to have high spot local 
background, whereas spots with low intensity tend to have low spot back- 
ground. In this case it is evident that subtracting the spot local background 
would not be the right idea. 

Example. Figure 4.70 shows a scatterplot of spot intensity versus background 
intensity, both on a log scale. Spearman's rank correlation coefficient (see Sec- 
tion 5.6) is 0.92, indicating a strong monotone relationship. 

Smoothed Background Adjustment. The true variation in background across 
an array should be smooth as it is due to experimental effects-such as 
hybridization artifacts, the washing process, and scanning variation-that vary 
gradually across the slide. The background may be smoothed by running a 
simple smoothing procedure through the array. For example, one simple 
smoothing procedure is to take the median of the 49 values in the 7 x 7 subgrid 
surrounding a spot as the smoothed background value at the spot. Yang et al. 
(2000) describe a more sophisticated smoothing procedure called nznrphotoyical 
opeiiirig. 

Esrnqde. Figure 4.7h shows a scatterplot of spot intensity versus smoothed 
background intensity. both on a log scale. The smoothed background values 
are now uniformly distributed across the spot intensity values. Nevertheless, 
certain spatial features, notably the left to right gradient and the rows of high 
intensities in the bottom rows, still remain as shown by Figure 4.8, which is 
the smoothed background analogue of Figure 4.6. In other words, while the 
sporadic high background intensities that were associated with the high signal 
spots have been dampened by the smoothing, the background is not uniform 
throughout the slide. 
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Figure 4.8 Lrfi: Line graphs of locally smoothed background showing the row and column 
medians. Right: Image plot of the smoothed background. 

Zonal Background Adjustment. Affymetrix uses a variation of smoothed back- 
ground adjustment, called zonal background adjustment, for its oligonucleotide 
microarrays. This approach can also be used with cDNA microarrays. 

First, the microarray is split up into K rectangular zones, z k ,  k = 1 , .  . . , K 
(Affymetrix uses the default K = 16). For each zone a low percentile of the spot 
intensities, SZ,, is chosen as the background, Bk, for that zone (Affymetrix uses 
the second percentile as its default; this is the value such that 98 percent of spot 
intensity values are larger than it and 2 percent are smaller). 

If we were to just use Bk as the background for zone Zk, there could be 
a sharp transition in background estimates when crossing a zone. As this is 
unlikely to reflect reality, a smoothed version of these background estimates is 
used instead. The background for a given spot then is a weighted sum of all the 
Bk values, where the weights are inversely proportional to how far the spot is 
from the various zone centers. That is, if the distance between the gth spot and 
the center of z k  is d g k ,  the gth spot would be assigned a weight: wgk = I /d jk .  In 
practice, a small positive factor, do, is added to the denominator to ensure that 
it will never be zero, so Wgk = I/($& + do). The background, R;, for the yth 
spot is then the weighted sum 
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4.3.2 Adjusting for the Estimated Background 

Most arrays generally have a background that is not spatially uniform even 
after smoothing. This background could be sizable enough to affect the spot 
intensity distribution and therefore any downstream analysis. For this reason i t  
is generally removed from the spot intensities prior to formal analysis. 

Suppose that the spot intensity at the yth spot is SI, and the background 
intensity was estimated to be BI,. The ha~kground-Li~~sled spot intensity 
iialue, A14, is  obtained by shifting the spot intensity down by the background 
intensity: 

In principle, SI, should be larger than BI,. However, either due to some 
problem or perhaps purely due to random variability, this may not always be 
the case as BI, can exceed Sf‘,, leading to a negative value for AIc/. As this is  
not desirable, sometimes a small additional adjustment is made. 

One very simple way to do this is to set a threshold. For example, if T is a 
low percentile of the SIg values (e.g., the fifth percentile), take the hackyround- 
&usred threshoided spot intensity i’cliue, AI,, to be 

A],  = max(SI, - BI,. T ) .  

While these suggestions regarding background adjustment are reasonable, how 
to properly adjust for spatially nonuniform background still appears to be an 
open research problem. 

4.4 EXPRESSION LEVEL CALCULATION FOR TWO-CHANNEL 
cDNA MICROARRAYS 

Let the adjusted spot intensities for the two channels of a two-channel array be 
{ A I y R }  and {A14c},  where the letters R and G refer to the colors red and green, 
respectively, that are typically used to label the channels. If channel C is a ref- 
erence channel, then the expression level of the gth gene in channel R is usually 
stated as a gene expression ratio: 

Usually, however, there is a systematic effect due to the use of two different 
dyes that need to be removed from { A Z y R }  and {AI<,G) by normalization prior 
to calculating these ratios (see Section 5.5.4). 
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4.5 EXPRESSION LEVEL CALCULATION FOR 
OLIGONUCLEOTIDE ARRAYS 

In high-density oligonucleotide arrays, such as those manufactured by Affy- 
metrix, a gene is represented by a probe set, which is a set of 20 or so oligonu- 
cleotides called the perfect match probes, along with a set of paired mismatch 
probes. The expression level for a gene, which Affymetrix refers to as the gene’s 
signal, is therefore not directly measured but rather obtained by combining the 
perfect match and mismatch intensities of the probe set for the gene in some 
way. There are several ways in which a composite value can be calculated. 

4.5.1 The Average Difference 

Let PM,,  and MM,, denote the (untransformed) background-adjusted spot 
intensity measurements for the ith perfect match probe and mismatch probe 
respectively for gene g ( i  = 1 , .  . .  ,mg, g = 1 , .  . . ,G) .  Noting that Y,, = 

PM,; - MM,, functions as a measure of the hybridization level of the gth 
gene’s ith probe, the most natural estimate of the signal, S,, for the gth gene is 

In other words, S, is the arithmetic mean of the Y,, values. One of Affyme- 
trix’s early approaches was exactly this, with one modification: in order to 
lessen the impact of gross outliers on this estimate, any Y,, value further than 
three standard deviations away from the mean is discarded from the calculation 
of S,. Affymetrix called this estimate the average difference (an older version 
used a trimmed mean, which Affymetrix referred to as “Olympic scoring”). 
However, recognizing problems with this estimator, Affymetrix has recently 
modified their algorithm. 

4.5.2 A Weighted Average Difference 

One problem with the average difference is that although the mismatch probes 
are placed on the array to provide probe-specific estimates of any stray signal 
due to nonspecific hybridization that may affect the perfect match probe, it can 
happen that M M y ;  also contains some portion of the true target signal. Thus 
a nonlinear relationship between the PMYi and MM,j intensities can often be 
detected. Therefore each MMyi value should be adjusted to give an ideal mis- 
match value, IMYi,  prior to subtracting it from its corresponding PM,; .  

If PMY; exceeds M M g i ,  Yqj represents a possible measure of the true hybrid- 
ization level for the ith probe for gene y and IM,, is usually set to MMgi. On 
the other hand, if MMYi exceeds P M , ; ,  which can happen either due to some 
biological or physical effect or due to random variability, Y,i is negative and 
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no longer represents a possible measure of the hybridization level. In this case 
Affymetrix recommends using an algorithm they developed for calculating a 
value for fM,, that satisfies 0 < IMq, < PM,, based on the behavior of the 
totality of probes in the gth probe set (the Affymetrix web site offers details). 

Once this is done, S, is calculated as an average of the Y,, values, where now 
x,, = P M , ,  - fA4[,, (and all Y,, > 0). However, as the Y,, values may contain 
outliers, instead of merely taking their arithmetic mean as above, they are log 
transformed (let A’,, = log( Y,,)), then averaged using their one-step biweight 
mean, and finally exponentiated back to the original scale: 

The log transformation reduces the skewness of distribution of { Ygi}  and the 
use of the one-step biweight mean reduces the influence of outliers on the final 
estimate. 

The one-step hiweigh[ mean is a weighted mean that offers efficiency as 
well as resistance to outliers. It is calculated as follows: Let M ,  and MAD,  
denote, respectively, the median and the MAD (median absolute deviation 
from the median) of the {X,,}. For each observation, A’llj, calculate uyi = 
(X,; - M,)/TMAD,, which indicates how “unusual” it is, then assign it a 
weight n’,, based on the hiweight wvighting.function: w(u)  = (1  - u 2 ) 2  if (u (  < 1 
and ~ ( u )  = 0 otherwise. The weighting process is such that observations rela- 
tively close to the center of the data will be assigned high weights, whereas any 
observations relatively far from the center of the data, namely outliers, will be 
assigned low weights. The tuning constant, T ,  determines the amount of effi- 
ciency and resistance desired. The larger r is, the more efficient the estimator is 
if the { X g f }  are normally distributed, but the more vulnerable i t  is to being 
affected by outliers. The smaller z is, the less efficient the estimator is if the 
{A’,,} are normally distributed, but the less influenced it is by outliers. A com- 
promise between these two extremes offers both high efficiency at the nor- 
mal distribution and resistance should the data contain outliers. The one-step 
biweight mean is the weighted mean: 

Various other averaging methods have been proposed. For instance, Efron 
et al. (2001) explored the possibility of averaging {log(PM,,) - c log(MM,,)}, 
with a preference for the compromise value for c of 0.5. 

4.5.3 Perfect Matches Only 

Concerned that MM,, contains too much target signal to functioii as a true 
measure of nonspecific hybridization, some investigators prefer to avoid utiliz- 
ing them altogether (e.g., Naef et al., 2001). These investigators calculate S,  as 
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an average of the PMyi values. However, as the distribution of { PM,;} is usu- 
ally skewed, instead of merely taking their arithmetic mean as in Section 4.4.1, 
it is better to log transform them prior to averaging, and use as signal either 

or the one-step biweight mean described in Section 4.4.2 with IM,i = 0. 

4.5.4 Background Adjustment Approach 

Irizarry et al. (2002) examined the distribution of { M M y i }  on an array and, 
observing that it was consistent with a mixture of low background intensities 
and high signals corresponding to probes detecting transcript, concluded that 
the mode of this distribution constituted a natural estimate of background for 
the array. Estimating the mode using a density kernel estimate and using it 
as the background, an average of the background-adjusted perfect match val- 
ues is then the estimate of signal: 

4.5.5 Model-Based Approach 

Li and Wong (2001 b) proposed a model-based approach. Their model 

postulates that the perfect match to the mismatch difference is, except for ran- 
dom error, egi - N(0, g:), the product of a model-based expression index O,, 
whose estimate functions as S,, and a probe-specific sensitivity index 4 .. The 
model parameters are estimated using maximum likelihood, and S, is estimated 
as a weighted mean: 

9' 

The Li and Wong model is most useful when several 
(see Section 6.2). 

replicates are available 

4.5.6 Absent-Present Calls 

The availability of several PM,i and MMqi intensities for a probe set allows the 
reliability of the measurement of the signal corresponding to that probe set to 
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be assessed. The rationale behind the procedure is that a probe set whose probe 
pairs consistently exhibit PM,, intensities greatly exceeding their corresponding 
MM,, intensities is more likely displaying a reliable signal than one whose 
PM,, intensities are all close to their corresponding MM,, intensities. 

Based on this rationale, Affymetrix reports, for each gene on the array, an 
absolute call, which indicates whether the transcript (mRNA) for that gene was 
likely to have been present, absent, or marginal in the sample. A present call 
( P )  indicates a gene for which there was enough transcript in the sample to 
quantify the abundance of that transcript to an acceptable degree of reliability. 
In most cases the genes that are so designated can be considered to be expressed. 
On the other hand, an absent call ( A )  indicates the exact opposite. This does 
not necessarily imply that the transcript was absent in the sample but rather 
that the amount of transcript could not be established reliably. A marginal call 
( M )  indicates that the detectable level of transcript for that gene was close to 
negligible. 

One simple way to assign an absolute call is to calculate the t statistic (see 
Chapter 7): 

and check whether it exceeds a specific cutol€. 

each probe pair, i, is assigned a score R,i: 
Affymetrix’s algorithm is based on a rank-based statistic. For probe set y, 

A probe pair whose PM,; intensity greatly exceeds its MM,; intensity will 
have an R,i score close to unity, whereas a probe pair whose PM,; and M M y ;  
intensities are roughly similar will have an R,; score close to zero. The scores 
for a probe set are then ranked from 1 to ni, according to their distance from r ,  
a specified low threshold (e.g., 0.15). The sum, Ry+, of the ranks of all probe 
pairs whose R,; exceeds r is the one-sided Wilcoxon’s .yigJy,led runk lest statistic 
for determining whether the R,; scores are consistently below r .  The p-value, 
po,  associated with this statistic can be obtained. A probe set that has many R,; 
scores near unity and is therefore considered more reliable will have a large 
Rgi and therefore a low (more significant) p-value, whereas one with many R,, 
scores near zero will have a small R!,; and therefore a high (less significant) p-  
value. An absolute call is then made based on this p-value. For example, if 
pN < 0.04, a present call is made; if 0.04 < pc, < 0.06, a marginal call is made; 
and if pu > 0.06, an absent call is made. 

Absolute calls are often used for gene-filtering purposes. 
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SUPPLEMENTARY READING 

The ScanAlyze user manual written by M. Eisen (available online at http: // 
www.microarrays .org/software. html), user manuals of other image 
processing software, such as Genepix, QuantArray, Genespring, and Im- 
agene, and the Affymetrix white papers (available online at http: //www. 
af fymetrix. com/index. af f x) provide useful information about the topics 
covered in this chapter. 

EXERClSES 

Use the dataset p4. txt that is found in the book’s Web site. This dataset 
consists of 432 genes by 14 columns. The first two columns are labeled row and 
column representing the positions of the spots on the slide. The next twelve 
columns are labeled S1,. . . ,S6,  B1,. . . , B6, representing data from six micro- 
arrays. The column labeled S1 has the signal data and the column labeled B1 
has the background data for microarray number 1 .  In the same way Si and 
Bi correspond to the ith microarray for i = 1, . . . , 6 .  Each microarray is made 
of 36 rows and 12 columns that correspond to the positions of the spots on 
the chip. 

4.1. Extract the data and place it in 12 separate arrays of dimension 36 x 12, 
six for signal arrays and six for background arrays. Verify that the array 
rows and columns are correctly placed by manually checking a few indi- 
vidual spots. As a check of the quality of the arrays, explore the individual 
arrays using image plots and compare the intensities and backgrounds 
using scatterplots. Try to evaluate the data quality with the information 
that you have collected at this stage. 

4.2. Some of the six background images in the dataset may show that the cor- 
responding sample is defective, from the point of view that each one may 
have one or more of the nonrandom patterns listed in Section 4.2. Identify 
the samples that you think are defective and that appear to pass the qual- 
ity check. Note: If you use R or SPLUS, functions for performing several 
quality checking routines are available in the DNAMR package. 

4.3. Use the complete spatial randomness (CSR) criterion to check for non- 
random arrays within the set, and compare the results of the test to the 
results that you obtained in Problem 4.2. 

4.4. Perform a background correction of the six arrays in two ways: 
a. Take the difference between the signal and background and take the 

ratio between signal and background. Which one gives the most rea- 
sonable results? 
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b. Draw pairwise scatterplots of the microarrays before and after you 
remove the background, and use the graph to justify whether or not to 
adjust and which way is better. 

4.5. Another way to remove the background is to smooth the background 
using a spatial smoother. You may use the function provided for this pur- 
pose in our R/SPLUS library DNAMR. 
a. Once the background intensities have been smoothed, repeat the same 

b. Write a brief summary of the results of both problems. State which 
tasks as in Problem 4.4, but using the smoothed background. 

background correction method appears to work best and why. 
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Preprocessing Microarray Data 

Once the experiment has been run and spot intensity data collected, it is neces- 
sary to preprocess this data prior to formally analyzing it. Preprocessing is 
needed to address several data-related issues: 

1. To transform the data into a scale suitable for analysis 
2. To remove the effects of systematic sources of variation 
3. To identify discrepant observations and arrays 

Preprocessing can greatly enhance the quality of any downstream analyses. We 
will now discuss each of these issues in turn. 

Exumple. The methods in this chapter will be illustrated using Example E.5, 
which is data from an experiment involving 10 pairs of microarrays, CIA, 
ClB, C2A, C2B,. . . , ClOA, ClOB. Each pair of microarrays corresponds to a 
single mRNA sample (labeled C1, C2,.  . . , and ClO), which was taken from a 
mouse following treatment and hybridized to two separate microarrays (labeled 
A and B). The two microarrays in each pair are technical replicates as they are 
exposed to the same biological sample. The five mice from which samples C1 to 
C5 were drawn are controls, so they are biological replicates, while each of the 
other five was treated with one of five drugs. There were 3300 genes arrayed on 
the microarrays. 

5.1 LOGARITHMIC TRANSFORMATION 

Often spot intensity data is initially transformed for analysis by a logarithmic 
trunsformation, X -+ log(X). It is preferable to work with logged intensities 
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rather than absolute intensities for a number of reasons: the variation of logged 
intensities tends to be less dependent on the magnitude of the values, taking 
logs reduces the skewness of highly skewed distributions, and taking logs 
improves variance estimation. 

Moreover logged intensities facilitate visual inspection of the data. The raw 
data is often very heavily clumped together at low intensities followed by a 
very long tail. More than 75% of the data may lie in the lowest lo‘% range of 
intensities. The details of such configurations are impossible to discern. After 
the log transformation the data is spread out more evenly, making it easier to 
examine visually. 

Often logarithms of base 2 are used. 
Other simple power transjbrmations (i.e., transformations of the form 

X + X’’ for some p > 0) have been found to be useful for certain datasets (e.g., 
Amaratunga and Cabrera, 2001 a, 2001b, use a square root transformation: 
X --$ fl and Tusher et al., 2001, use a cube root transformation: X -+ 

but the log transformation is, by far, the most widely used. 

Example. Figure 5.1 shows a histogram and normal probability plot of the 
data for C1A before and after log transformation. I t  is clear that the transfor- 
mation has greatly reduced the skewness of the distribution but it has not 
eliminated it altogether. We will use the log transformed data in the remainder 
of this chapter. 

0 20000 40000 60000 80000 4 6 8 
INTENSITY LOG INTENSITY 
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-4 -2 0 2 4 -4 -2 0 2 4 

Quantiles of Quantiles of 
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Figure 5.1 
formation. The straight lines in the normal probability plots are identity lines. 

Histograms and normal probability plots of spot intensities before and after log tran5- 



62 PREPROCESSING MICROARRAY DATA 

5.2 VARIANCE STABILIZING TRANSFORMATIONS 

Several data analysts observed that more complex transformations, such as the 
started log transformation, X -+ log(X + c), appeared to better achieve the dual 
objective of symmetrizing the spot intensity data and stabilizing their variances 
(e.g., Sapir and Churchill, 2000, use such a transformation). 

The rationale for this was investigated in greater detail by Rocke and Dur- 
bin (2001) using data from experiments involving arrays with replicate spots. In 
analogy with models used for estimating the actual concentration of an analyte 
in a sample for a given response, they found that it was appropriate to model 
spot intensity data as 

X = a + p e ' l + E ,  

where CI is the mean background, p is the true expression level, and the terms q 
and e represent normally distributed error terms with mean zero and variances 
0,: and 0: respectively. Spot intensity data often manifests the distributional 
features implied by this model: 

At very low expression levels, where p is close to zero, the measured spot 
intensity is dominated by the first term in the model, so that X E a, and X 
is approximately normally distributed with mean a and variance 05. 

- At very high expression levels, where p is large, the measured spot inten- 
sity is dominated by the second term in the model, so that X E pe", and 
X is approximately lognormally distributed with variance p 2 S i ,  where 
Si  = eU:(eU: - I ) .  Thus the variance of X varies linearly with p 2 .  How- 
ever, on the log scale, log(X) z log(p) + q, indicating that the variance of 
log(X) is constant. 
At moderate expression levels, the measured spot intensity is in between 
the two extremes above and behaves as a mixture of a normal and log- 
normal distribution with variance p2Si + cri,  which, again, varies with p .  

Durbin et al. (2002) showed that the generulized log transformation 

stabilizes variance in that the transformed data has constant variance equal to 
Si. A similar transformation was suggested by Huber et al. (2002). 

In order to apply this transformation, the parameters CI, a;, and 0: must be 
estimated from the spot intensity data. If replicate blanks or negative controls 
are available, the background parameters c1 and 0,' can be estimated as their 
mean and variance. If not, they can be estimated as the mean and variance of a 
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set of unexpressed genes. The parameter .;I" can be estimated as the mean and 
variance of a set of highly expressed genes. Details of the procedure are pro- 
vided by Rocke and Durbin (2001). 

Unfortunately, by using the generalized log transformation, the convenient 
interpretation of log ratios as log fold changes (see Chapter 7), which is pos- 
sible with an ordinary log transformation, is lost. Rocke and Durbin (2002) 
demonstrate that the started log transformation, X + log(X + c ) ,  with c = 
(cr;/Si) - c(, is a reasonable compromise. 

5.3 SOURCES OF BIAS 

The complexities and intricacies of the microarray experimental process often 
introduce systematic effects into the intensity measurements. These effects can 
be substantial enough to dilute the effects that the experimenter is trying to 
detect. Among other sources of variability systematic effects have been attrib- 
uted to: 

the concentration and amount of DNA placed on the microarrays, arraying equip- 
ment such as spotting pins that wear out over time, mRNA preparation, reverse 
transcription bias, labeling efficiency, hybridization efficiency, lack of spatial homo- 
geneity of the hybridization on the slide, scanner settings, saturation eflects, back- 
ground fluorescence, linearity of detection response, ambient conditions. 

In addition dye bius is present in almost all multichannel experiments. Gen- 
erally, the Cy5 (red) intensities tend to be higher than the Cy3 (green) intensities 
but the magnitude of the difference generally depends on the overall intensity. 
The reason for the imbalance between the channels is the difference between 
the physicochemical properties of the dyes, the labeling efficiencies, and the 
scanning properties of the dyes and the scanner settings. 

Some of these sources of variability can be controlled to a limited extent 
with due diligence on the part of the experimenter. However, few can be com- 
pletely eliminated. 

Because systematic variation will generally affect different microarrays to 
different extents, in order to be able to make valid comparisons across micro- 
arrays, we need to try and remove the effects of such systematic variations and 
bring the data from the different microarrays onto a common scale. 

5.4 NORMALIZATION 

Early microarray researchers noticed substantial differences in intensity mea- 
surements even among microarrays that were treated exactly alike. Differences 
still persist despite huge improvements in the technology, but their magnitude is 
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Figure 5.2 
on the scatterplot is the identity line, and the thicker line is a smooth of the plot. 

Side-by-side boxplot display and scatterplot of arrays CIA and CIB. The thinner line 

not as high as in the early days. The differences can generally be traced to sys- 
tematic effects as described in Section 5.3 above. The purpose of normalization 
is to remove, by data processing, as much as possible, the effects of any sys- 
tematic sources of variation. Normalization can be regarded as a sort of cali- 
bration process that improves the comparability among microarrays treated 
alike. 

Example. In Figure 5.2 the data from microarrays CIA and C1B are plotted 
against one another. Although both were hybridized to the same sample, it is 
clear that the intensities are systematically higher in microarray C1 B compared 
to microarray C1A. In Figure 5.3, the data from microarrays CIB and C5B are 
plotted against one another. These microarrays were hybridized to different 
samples, but because the samples were taken shortly after treatment, it is 
unlikely that more than a few genes would be differentially expressed in the 
two. Yet the plot shows most of the intensities are generally higher in micro- 
array C lB  compared to microarray CLA. 

Early efforts at normalization used simple methods. One such method is 
normalization by the sum. In this method the sums of the intensities of the k 
microarrays being normalized are forced to be equal to one another. The 
rationale for doing this is that the total mRNA content should be roughly the 
same across samples. Suppose that the k original sums were X I , ,  . . . , X k + .  If 
we divide all the observations in the ith microarray by Xt+? their sum will be 
I .  Doing this for all the microarrays would make all the sums equal (to I ) ,  as 
desired. 
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Figure 5.3 Side-by-side boxplot display and scatterplot of arrays C1A and C5B. The thinner line 
on the scatterplot is the identity line, and the thicker line is a smooth of the plot. 

Example. Figure 5.4 shows the data from microarrays CIA and CIB plotted 
against each other after normalization by the sum. Now the observations are 
more in agreement. 

An entirely equivalent method is normalization by the mean, in which the 
arithmetic means of the microarrays are equated. A similar, but not equivalent, 
idea is normalization by the tnedinn, in which the microarray medians are 
equated. Q3 nornictlizafion, in which third quartiles are equated, is on the same 
lines and is reasonable when it is expected that about half of the genes are 
unexpressed and the third quartile is then roughly the median intensity of the 
expressed genes. 

All of these are examples of global or linear normuiization schemes. The 
common feature of these normalization schemes is that they assume that the 
spot intensities on every pair of arrays being normalized are linearly related 
with no intercept so that the lack of comparability can be corrected by adjust- 
ing every single spot intensity on any microarray by the same amount, called 
the normalizing factor, regardless of its intensity level. 

5.5 INTENSITY-DEPENDENT NORMALIZATION 

The relationship between the spot intensities in Figure 5.2 is clearly nonlinear. 
It suggests that the factor necessary to adjust low-intensity measurements 
should be different from the factor necessary to adjust high-intensity mea- 
surements. In other words, an intensity-dependent normulisution method, a nor- 
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Figure 5.4 Side-by-side boxplot display and scatterplot of arrays CIA and CIB after mean nor- 
malization. The thinner line on the scatterplot is the identity line, and the thicker line is a smooth of 
the plot. 

malization scheme in which the normalizing factor is a function of intensity 
level, should be preferable to any global normalization method. In intensity- 
dependent normalization the transformed spot intensity data is normalized 
using a nonlinear normalization function: X + , j (  X ) .  

As it arises naturally by studying plots such as Figure 5.2, the need for 
intensity-dependent normalization was recognized independently by a num- 
ber of different data analysts, including Amaratunga and Cabrera (2001a, b), 
Dudoit et al. (2002), Li and Wong (2001a), Schadt et al. (2001), and Yang et al. 
(2001). Other papers on this topic, including Astrand (2001), Bolstad et al. 
(2002), Colantuoni et al. (2002), Hoffman et al. (2002), Irizzary et al. (2002), 
Quackenbush (2002), Tseng et al. (2001) and Yang et al. (2002). Hoffman et al. 
(2002), and Yang et al. (2002), have demonstrated that normalization can have 
a profound effect on downstream analysis. 

For an intensity-dependent normalization there must be a reference or hase- 
line microarray to which all the microarrays are normalized. In the absence of 
a universal standard against which the arrays can be calibrated, this is usu- 
ally some sort of average microarray, a mock array fashioned out of the aver- 
ages of the arrays being normalized. One possibility is the median mock array. 
If X,i denotes the transformed spot intensity measurement for the yth gene 
(y = 1,. . . , G) in the ith microarray (i = 1,. . . , I ) ,  the median mock array will 
have as its yth observation: 

hfrl = median{X,l, . . . , xg] }  
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Prior to constructing the reference microarray, it is generally a good idea to 
first perform a median or Q3 normalization so that all the microarrays are 
brought to a common overall level to start with and each can contribute to the 
construction of the reference microarray. 

One key issue for any normalization is the selection of an invuriant gene set, 
the subset of genes that will be used to estimate the normalization functions. 
This set of genes should exhibit the following characteristics: 

1. Their expression levels should remain constant across the arrays being 
normalized so that they can be used to estimate the normalization 
functions. 

2. Their expression levels should span the entire range of expression levels 
observed in the experiment so that it will not be necessary to extrapolate 
the estimated normalization functions. 

3. The normalization relationship for these genes should be representative 
of the normalization relationship for the all the genes so that they can be 
used to normalize all. 

The invariant gene set could be: 

Conrrol genes. A small number of DNA sequences could be specially 
arrayed onto the microarray specifically for normalization purposes. Syn- 
thetic or cross-species DNA sequences have been used for this purpose. 
Then, if necessary, DNA sequences complementary to these sequences 
would be spiked into the probe at a known concentration. One concern 
with this procedure is whether characteristic 3 is satisfied. 

* Housekeeping genes. A small number of housekeeping genes could be 
arrayed onto the microarray. If it can be assumed that these genes express 
at about the same level across the set of arrays being normalized, these 
genes will form an invariant gene set. However, a number of the more 
commonly used housekeeping genes have been found to express differ- 
entially across various samples, so whether they satisfy characteristic 1 is 
debatable. If they are all low to moderate expressing genes, they also may 
not adequately satisfy characteristic 2. 
Unchunging genes. Metrics from the raw data could be used to select 
a subset of genes that appear to be the least likely to be differentially 
expressed. One way to do this is to rank the spot intensities on each array, 
including the reference microarray, from smallest to largest, and then to 
select as the invariant gene set those genes whose ranks across the micro- 
arrays are the least different from the reference microarray. If the gene 
set is not carefully chosen, characteristics 1 and 2 may not be adequately 
satisfied. 
All the genes on the urray. It is reasonable to expect that only a very small 
percentage of the genes will be differentially expressed across the arrays 
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being normalized, as is the case with many microarray experiments. Then 
the entire set of genes on the microarray can be used as the invariant gene 
set, since most normalization schema are robust to small perturbations. 
This assumption will be more realistic (and characteristic 1 more likely to 
be satisfied), the larger the number of genes on the arrays and the smaller 
the percentage of genes differentially expressed across the arrays being 
normalized. 

As with global normalization, intensity-dependent normalization can be 
performed in several different ways. 

5.5.1 Smooth Function Normalization 

In smooth .function normalization each microarray is normalized as follows: 
First, the inverse, g, =Ap’, of the monotone normalization function, J;, for the 
ith microarray, is estimated by fitting the model 

xgi = g i ( M , )  + E g i ,  

where 
set. The normalized values for the ith microarray are then obtained from 

is a random error term, to the (Xgi ,  M g )  data, for the invariant gene 

In spiine normalizafion, the function g, is a smooth but flexible function such 
as a cubic spline with a small number (e.g., 7) of degrees of freedom; the 
smaller the degrees of freedom, the smoother is the fit. In lowess normalization, 
the function gi is estimated by fitting a lowess smooth (Cleveland, 1979) to the 
invariant gene set. The lowess smooth is essentially a series of locally linear 
fits, each fitted robustly so as to limit the influence of outliers. A user-specified 
parameter, span, denotes the fraction of data (e.g., span = $) used for smooth- 
ing at any data point; the larger it is, the smoother the fit. Note that neither 
of these methods is affected by a small percentage of outliers. Alternative 
smoothers such as a multilinear continuous function, a piecewise running 
median or kernel-based methods may also be used. 

Example. Figure 5.5 shows the data from microarrays ClB and C5B plotted 
against each other after spline normalization. As these are biological replicates 
and, other than natural variability, no differential expression was expected 
between the two, all 3300 genes were used as the invariant gene set. The 
observations are now in good agreement. 

5.5.2 Quantile Normalization 

The objective of quantile normalization is to make the distributions of the 
transformed spot intensities, { X g i } ,  as similar as possible across the micro- 



INTENSITY-DEPENDENT NORMALIZATION 69 

Y 

I I I I I I I 
5 6 7 8 9 1 0 1 1  

LOG (C16) 

Figure 5.5 Side-by-side boxplot display and scatterplot of arrays CIA and C5B after spline nor- 
malization. The thinner line on the scatterplot is the identity line. and the thicker line is a smooth of 
the plot. 

arrays, or, at least as similar as possible to the spot intensity distribution of the 
median mock array. Either a subset of quantiles or all the quantiles may be 
equated. 

To equate a subset of quantiles, say the percentiles, as in Amaratunga and 
Cabrera (2001b), calculate the percentiles (Q,o,. . . , Q11o0) of the ith array and 
the percentiles ( Q M o , .  . . , QMIOO) of the median mock array. For any value X,,,  
find the interval, [ Q I / l ,  Ql(/l+ll]. to which i t  belongs and obtain its normalized 
value, X i , ,  by linearly interpolating between the pair of points ( QM~,,  Q,/,) and 

Bolstad et al. (2002) give the following algorithm to equate all the quantiles: 
Arrange the transformed spot intensity into a G x Z matrix X .  Sort each 
column of X to give X,,,,. Take the means across the rows of X,,,,, and assign 
this mean to each element in the row to get X,,,,,. Obtain the normalized ver- 
sion X ’  of X by rearranging each column of X,,, , ,  to have the same ordering as 
the original X .  

Quantile normalization is useful for normalizing across a series of conditions 
where it is believed that a small but indeterminate number of genes may be 
differentially expressed, yet it can be assumed that the distribution of spot 
intensities does not vary too much. 

( QM(/~+ I > Qijh+ I ).  

Esample. Figure 5.6 shows the data from microarrays CIB and C5B plotted 
against each other after quantile normalization with, again, all the genes used 
as the invariant gene set. As with spline normalization, the observations are in 
agreement. In fact both methods appear to perform similarly. 
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Figure 5.6 Side-by-side boxplot display and scatterplot of arrays CIA and CSB after quantile 
normalization. The thinner line on the scatterplot is the identity line, and the thicker line is a 
smooth of the plot. 

5.5.3 Normalization of Oligonucleotide Arrays 

Oligonucleotide arrays can be normalized using any of the methods described 
above. Normalization can be carried out either at the probe level or at the sig- 
nal level. Using data from a spike-in experiment, Irizarry et al. (2002) demon- 
strate that probe level normalization is the more effective, as it reduces bias and 
variability with the benefits carrying over to the expression level. 

5.5.4 Normalization of Two-Channel Arrays 

Consider the log-transformed spot intensities, { X q ~ }  and { X q ( ; } ,  for the chan- 
nels of a two-channel array, where the letters R and G refer to the colors, red 
and green respectively, that are typically used to label the channels. If there 
is no systematic dye bias, the data points on a scatterplot of X,, versus X,/G 
should generally lie along the Y = X line. If this is not the case, then it is nec- 
essary to normalize the two channels. 

Yang et al. (2001) argue that it is easier to assess this with an MVA plot, a 
scatterplot of M,] versus A , ,  where M ,  = A',/, - X,, and A ,  = ( X q ~  + XYc)/2. 
Here {Ay) is analogous to the median mock array that was used as the refer- 
ence array above. If there is no systematic dye bias, the points on the MVA 
plot would be scattered around the A4 = 0 line. Otherwise, normalization can 
be done using any of the methods described above. 

For an intensity-dependent normalization the normalization function is 
fitted to the MVA plot, and the fitted values, hq, which function as the nor- 
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Figure 5.7 Scatterplot and MVA plot of arrays ClOA and ClOB before and after lowess normal- 
ization. The thinner line on the scatterplots is the identity line (in the plots on the left) or the zero 
line (in the plots on the right), and the thicker line is a smooth of the plot. 

malization adjustments, are calculated. The normalized values are taken to be 
Xl;R = X,R - fig/2 and X i G  = X,G + A2(,/2. 

After normalization, the expression ratios, R, = exp(XiR - A'&-), should be 
scattered around unity if few genes are differentially expressed across the two 
channels. 

Exntnple. Figure 5 . 7 ~  shows the data from microarrays ClOA and ClOB 
plotted against each other. Even though the arrays appear to be reasonably in 
agreement, Figure 5.7t7, the MVA plot shows more clearly that they are not. A 
lowess normalization with span = i ,  with all the genes used as the invariant 
gene set, produces normalized arrays that are more in agreement with each 
other, as is clear from Figures 5 . 7 ~  and 5.7d. Figure 5.8 shows histograms of 
the expression ratios before and after the normalization. It can be observed that 
this distribution is more centralized at the null value of unity after normaliza- 
tion as no genes should be differentially expressed between ClOA and ClOB. 

5.5.5 Spatial Normalization 

Sometimes the arraying equipment or the experimental conditions can intro- 
duce systematic spatial effects within a single slide. In such cases a within-slide 
normalization should be considered (Colantuoni et al. 2002; Schuchhardt et al. 
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Figure 5.8 
normalization. The vertical line is the unit line. 

Histogram of gene expression ratios for array ClOA and ClOB before and after lowess 

2000; Yang et al. 2001). This can be done by subdividing the slide into a grid. 
A natural grid is the grid determined by the print tip of the arrayer. Normal- 
ization across the subsections of the grid can be done using any of the methods 
described above. Care must be taken not to normalize out array defects and 
other artifacts. 

5.5.6 Stagewise Normalization 

When the data includes both technical replicates as well as biological replicates, 
it is most effective to carry out the normalization in stages. The technical rep- 
licates can be normalized using smooth function normalization and the biolog- 
ical replicates can be normalized using quantile normalization. i f  the biological 
replicates fall into groups, such as treatment groups, each group can be nor- 
malized separately using quantile normalization, and then all the arrays in all 
the groups can be normalized across all the arrays using quantile normaliza- 
tion. Figure 5.9 is a schematic of a stagewise normalization. 

ExampZe. Figure 5.10 shows the results of a stagewise normalization. Figure 
5 . 1 0 ~  shows a side-by-side boxplot display of the data before any normaliza- 
tion is done (SO). Figure 5.10h is the data after normalizing the technical repli- 



JUDGING TEE SUCCESS OF A NORMALIZATION 73 

1 Normalize biological replicates within groups I 

Normalize biological replicates across groups 

I 
~ ~~ 

I Check quality of normalized data 

1 Transform data back to original scale (if necessary) [ 
Figure 5.9 Schematic of a stagewise normalization. 

cates via spline normalization (SI). Figure 5 .10~  is the data after normalizing 
the control biological replicates via quantile normalization (S2). Figure 5.10d 
is the data after normalizing across all 20 microarrays via another quantile 
normalization (S3). 

5.6 JUDGING THE SUCCESS OF A NORMALIZATION 

Consider the normalization of two arrays, whose log-transformed spot in- 
tensities arc { Y q , }  and { Yc/2}. A normalization based on a monotone normal- 
izing procedure (as those described in Section 5.5) will be truly successful 
in bringing them into agreement only if they are, more or less, monotonically 
related to each other. Whether this holds for { Y y l }  and { Yr/2} can be assessed 
by calculating their Spearman's runk Correlation coe@cient: 

1 2 E 3 R g l  - i ( G +  1)}{Rg2-@+ I,} 
G ( G 2  - 1) PS = 1 

where R,, is the rank of Yg; when the { Y g j }  are ranked from 1 to G. 
Spearman's rank correlation coefficient is a measure of monotone (not 

necessarily linear) association between two variables. The value of ps lies in 
between -1 and + I ,  with values close to + l  indicating that the two sets of 
values are positively associated to each other, values close to - 1 indicating that 
the two sets of values are negatively associated to each other, and values close 
to 0 indicating that the two sets of values not associated with each other. Thus, 
if is is high (i.e., close to one), it is likely that a normalization of the sort 
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described above would be able to bring the two sets of values into agreement, 
whereas, if is is low (i.e., much lower than one), it is unlikely that a normal- 
ization of the sort described above would be able to bring the two sets of values 
into agreement. 

The value of Spearman's rank correlation coefficient is unchanged by a 
monotone normalization procedure. Therefore, while it is a good measure of 
whether a normalization would be successful, it cannot be used to judge the 
success of a monotone normalization procedure. 

Instead, once a normalization has been performed, the degree of success of 
the normalization can be assessed via the c o n c o r h c e  correlation coeficient 
(Lin, 1989), an index that quantifies the degree of agreement between two sets 
of numbers. The concordance correlation coefficient, p,, is defined as 

where yc = C,"=, Y,,/G and sf = C:=,( Yc,l. - yc . )2 /G are, respectively, the 
mean and variance of the cth microarray ( I *  = 1,2)  and .TI? = C,"=, ( Y , I  - YI ) . 
( Yq2 - Y?) /G is the covariance. p,. is a standardized measure of E [ (  Y,, - Y,2)*]  

and pc = 1 if and only if { Y , , }  and { Yq2} are in perfect agreement. Otherwise, 

Spearman's rank correlation coefficients and concordance correlation co- 
/ I c  < 1 .  

efficients can be used together to assess the need for normalization: 

If, for a pair of arrays, p, is very high (as a rough rule of thumb, greater 
than 0.99), normalization may not be necessary. 
On the other hand, ifp, is not very high and is is high (as a rough rule of 
thumb, greater than 0.8), indicating a monotone, but not strongly concor- 
dant relationship, normalization is very likely to be highly beneficial. 

* When both j?, and is are low, indicating that the relationship between the 
arrays is not strong, i t  may be worth looking further to see whether there 
was a problem with either of the arrays before doing any normalization. 

When normalizing across a series of arrays, it is instructive to display, on 
image plots, the pairwise Spearman's rank correlation coefficients (the resulting 
display is called a Spearman m u p )  and the pairwise concordance correlation 
coefficients (the resulting display is called a concordunce mup).  

E.~czrtlple. Figure 5.1 l u  shows a Spearman map of the data. It shows a strong 
monotone relationship among the 10 control replicates and also among 2 other 
technical replicate pairs. All the Spearman's rank correlation coefficients are 
greater than 0.85, indicating that the arrays can be normalized. Figure 5.1 1h 
shows a concordance map of the data, with several concordance correlation 
coefficients below 0.9, so there is a need for a normalization. Figure 5.1 l c  
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Figure 5.11 (u) Spearman map, (b) concordance map before normalization, (c) concordance cor- 
relation coefficients at various stages of normalization, and ( d )  concordance map after normaliza- 
tion [on gray scale, low to high correlations go from black to white]. 

shows a side-by-side boxplot display of the concordance correlation coefficients 
after each stage of the stagewise normalization (SO to S3 are defined in Section 
5.5.6). Figure 5.1 Id shows a concordance map after the complete normaliza- 
tion; all the concordance correlation coefficients are now above 0.9. Observe 
how the concordance improves at each stage, culminating in the substantially 
higher concordance in the control group after normalization. 

Some comments regarding various correlation coefficients: 

1. If the distributional properties of the values change substantially during 
a normalization (e.g., the skewness is decreased), it is possible that the 
concordance correlation coefficients might increase, but this may only be 
an artificial improvement. 
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2. The more familiar Pearson’s correlation coefficient, 

measures how close { Y Y l }  and { Yq2} are to linearity rather than to 
agreement. 

3. For a pair of microarrays that have been normalized by equating all the 
quantiles, the concordance correlation coefficient will equal Pearson’s 
correlation coefficient. This is because, after such a normalization, the 
quantiles of both microarrays are identical, and therefore both means are 
equal, F, = L2, as are both variances, s: = si. 

4. Spearman’s rank correlation coefficient is equal to (a) Pearson’s correla- 
tion coefficient calculated on the ranks of the data and (b) the concor- 
dance correlation coefficient calculated on the ranks of the data. 

5.7 OUTLIER IDENTIFICATION 

Outliers are observations that appear to be inconsistent with the majority of the 
data. When there are replicate arrays, the replicates could be used to identify 
discrepant spot intensities in the data. Let A’,, denote the transformed and nor- 
malized spot intensity measurement for the gth gene on the ith array. An outlier 
is an observation, A’,,, that is substantially different from a majority of the 
other values X,, for that same gene. The same observation may or may not 
have been discovered as an unusual observation in the spot quality checks per- 
formed at the preprocessing stage (see Section 5.2.6). 

Many ways of identifying outliers in replicate observations have been sug- 
gested (Barnett and Lewis, 1994, provide an extensive review of the vast litera- 
ture on this topic). 

5.7.1 

Some common approaches to outlier identification are as follows: 

Nonresistant Rules for Outlier Identification 

The z-score rule (Grubbs’ test). Calculate a z-score, zyi, for every observa- 
tion: 

where r, and s, are the mean and standard deviation of the gth gene. Call X,, 
an outlier if lzg,l is large, say, greater than five. 
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The CV rule. Call the furthest observation X ,  from the mean, x,, an 
outlier if the coefficient of variation, CV, = s,/x, exceeds some prespecified 
cutoff. 

Neither of these rules is a particularly reliable tool for detecting outliers. 
Their most serious drawback is that they are based on statistics that are them- 
selves influenced by outliers. For example, if there is a large outlier in the data, 
both the mean and the standard deviation will be inflated by its influence and 
both the z-score of the outlier itself and the CV will appear normal. This phe- 
nomenon is known as masking, an outlier remaining undetected because it is 
hidden either by itself or by some other, usually adjacent, outliers. A related 
effect is swamping, which happens when a normal observation is classified as an 
outlier because of the presence of an unrelated outlier or outliers. 

5.7.2 

As in the discussion above, the outlier detection method must be based on sta- 
tistics that are resistant to outliers, meaning not influenced by them, such as the 
median and the MAD (median absolute deviation from the median and scaled 
to be consistent at the normal distribution). Both measures can tolerate up to 
almost 50 percent outliers without being affected. Thus a more reliable outlier 
detection rule is as follows: 

Resistant Rules for Outlier Identification 

The resistant z-score rule. Calculate a resistant z-score, zii,  for every obser- 
vation 

where i, and i, are the median and MAD of the gth gene. Call X,, an outlier if 
IzLI is large, say, greater than five. 

One remaining problem is that microarray experiments usually have little 
replication. With very few replicates, the median and MAD (in particular, the 
latter) are not dependable estimates of the location and scale of the data. The 
estimation of the scale can be improved by observing that with microarray 
data, there is a relationship between the median and the MAD across all the 
genes. Assuming that this is a trErelationship, a: =f(p,), use it to calculate a 
smoothed version of MAD, MAD,, that will be moreLtable as it “borrows 
strength” from similar expressing genes. To calculate MAD,, first calculate the 
absolute deviations from the median: AD,, = IX,, - gq1. Then run a smoother, 
such as a smoothing spline, through the relationship of AD,, versus %,, and use 
the fitted value, MTDo, ,  as an estimator of scale for the gth gene. The following 
revised rule can be used to identify outliers: 
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Figure 5.12 Scatterplot of (normalized) array C4A with the outliers plotted as filled circles and an 
image plot of the array showing, in white, the positions of the outliers. 

The revised z-score rule. Calculate a revised -7-score, zif ,  for every observa- 
tion 

Call A'(,, an outlier if is large, say, greater than five. 

E.wmple. When the control group data (arrays CIA to C5B) were screened 
for outliers using the revised -7-score rule with a critical value of five, 119 ob- 
servations were designated as outliers. None of the arrays had a substantially 
higher proportion of outliers than the others. Therefore there is no evidence 
that any of the arrays is particularly different from the rest. The outliers found 
on array C4A are shown in Figure 5.12, both on a scatterplot of C4A versus 
the median mock array and on an image plot of the array. The latter shows 
that the outliers are randomly scattered through the array. Therefore, there is 
no evidence that C4A has any spatial problems. 

5.8 ASSESSING REPLICATE ARRAY QUALITY 

Methods for assessing the quality of a single array or a series of arrays were 
discussed in Section 4.2. Replicate arrays (e.g., the set of arrays in the control 
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group in the example) can be also used to judge array quality by seeing whether 
any of them is different from the others: 

If the Spearman correlation coefficients between one of the arrays and 
each of the other arrays is substantially lower than the other Spearman 
correlation coefficients, then that array is suspect. 
When a procedure in Section 5.7 discovers substantially more outliers on 
one of the arrays more than on  any of the other arrays, then that array is 
suspect. 

In addition, when there are groups of arrays, such as one group of arrays 
hybridized to control samples and another group of arrays hybridized to treat- 
ment samples, the extent of the differences can be roughly assessed from a 
Spearman map or a concordance map (e.g., the lighter 10 x 10 square area 
in the lower left quadrant of Figs. 5 . 9 ~  and 5.9d, separating out the control 
group). The more obvious the separation, the more substantive will be the dif- 
ference between groups. However, small and subtle differences between groups 
are not be evident in these displays. 

EXERCISES 

5.1. A crude, but resistant, estimate of the skewness of a distribution is 

where Ql, M ,  and Q3, are the first quartile, median, and third quartile 
respectively. Calculate the value of K for the data from C 1 A in dataset E5, 
before transformation and after transformation by X + log(X - c), for 
c = 0,10, .  . . ,50. Comment. 

5.2. Construct a MVA plot for the data from arrays C9A and C9B in dataset 
E5. Normalize the data using a spline normalization, and redraw the MVA 
plot. Compare the gene expression ratios before and after normalization. 
Comment . 

5.3. Consider the data from CIA, CIB, ClOA, and ClOB in dataset E5. Carry 
out a stagewise normalization for this data. The average expression level 
in the “control group” can be estimated as the averages of CIA and ClB. 
The average expression level in the “treated group” can be estimated as 
the averages of ClOA and CIOB. Plot these averages against each other 
before and after normalization. Comment. 
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5.4. Determine whether there any outliers in the following: 
a. 10.07 10.11 10.27 10.10 9.88 

9.99 10.13 9.76 9.22 10.04 

b.10.07 10.11 10.27 10.10 9.88 
9.99 10.13 9.76 2.22 10.04 

using (i) the z-score rule and (ii) the resistant z-score rule. 

5.5. Average the data for each mouse, for example, C1 = (CIA + ClB)/2. 
Identify any outliers in the set of averages for C1, C2, C3, C4, C5 using (a) 
the z-score rule (b) the resistant z-score rule. Is there any evidence that any 
of the mice is an outlier? 

5.6. Use the postnormalization MVA plot in Problem 5.2 to determine 
whether there are any discrepant pairs of observations between arrays 
C9A and C9B. 
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Summarization 

Once the spot intensity data have been preprocessed, statistical estimation 
techniques can be applied to summarize the data across replicates and deter- 
mine the expression level of each gene. 

6.1 REPLICATION 

Replicution, the execution of an experiment on more than one unit, is an 
important consideration when performing any experiment (Fisher, 195 1 
remains a key reference). There is a sound scientific rationale for replication. 
In the first place, by averaging over replicates, the underlying parameters of 
interest can be estimated with greater precision, as replication followed by 
averaging dampens the effect of chance variations on parameter estimates. The 
higher the number of replicates, the greater the precision. Second, replication 
provides information that allows the extent of experimental variation to be 
estimated. This is crucial for evaluating the statistical significance of any find- 
ings from the experiment. 

Unfortunately, there is often confusion about what constitutes replication 
in a microarray experiment. This is because there are several types of replica- 
tion in a microarray experiment, each giving information regarding a different 
source of variability. Some examples are as follows: 

Spotting a gene several times on an array allows the gene’s variability 
within the array to be assessed. 
Hybridizing a number of microarrays to the same labeled mRNA sample 
allows the variability across arrays to be assessed. I n  this case the micro- 
arrays can be regarded as tcchnicd replicates. 

Esplorcrtion and Ancr!vsis of’DNA Microcirry,, uiid Protein Arruy Do/u 
By Dhammika Amaratunga and Javier Cabrera 
ISBN 0-471-27398-8 Copyright 0 2004 John Wiley & Sons, Irtc. 

82 

Exploration and Analysis of DNA Microarray and Protein Array Data 
Edited by DHAMMIKA AMARATUNGA and JAVIER CABRERA 

Copyright 0 2004 by John Wiley & Sons, Inc 



TECHNICAL REPLICATES 83 

* Hybridizing a number of microarrays to different labeled mRNA samples 
prepared from the same mRNA sample allows the variability of the label- 
ing and sample preparation procedure to be assessed. Here, again, the 
microarrays can be regarded as technical replicates, but the source of vari- 
ability they assess is different from the technical replicates above. 

- Collecting several mRNA samples from a number of different but similar 
subjects allows biological variability (e.g., animal to animal or tissue to 
tissue differences) to be assessed. In this case the replicate microarrays can 
be regarded as hiologicul replicates. 

It is important to realize that any type of replication offers information only 
regarding the particular source of variability associated with that type of repli- 
cation and no other. Thus, for instance, increasing the number of technical 
replicates merely because they are less costly than biological replicates will not 
offer an increase in information about biological variability. 

Careful consideration should go into what type of replication to include in 
an experiment. To increase the overall precision of an experiment, it is most 
effective to add replication where there is greatest variability and, therefore, 
least precision. Thus, if there is high subject to subject variability and the 
measurements taken across the technical replicates are very precise, increasing 
the number of subjects will increase the overall precision of the experiment 
more than increasing the number of technical replicates. In fact, as the techni- 
cal aspects of microarray experiments improve, biological variability is likely to 
constitute the highest percentage of variability i n  an experiment. The drawback 
is that it is usually the costliest. In any case, the number of biological replicates 
to include in an experiment should be carefully assessed, as without enough 
biological replicates, the overall sensitivity of the experiment will be low and 
reliably extending experimental findings beyond the limited confines of the 
experiment may prove to be difficult. 

Churchill (2002) and Lee et al. (2000) give further guidance regarding repli- 
cation in microarray experiments. 

6.2 TECHNICAL REPLICATES 

We will first discuss technical replicates. These are used to deal with technical 
variation, which arises from the handling steps, such as mRNA extraction, 
amplification, labeling, hybridization, and scanning. This variation introduces 
uncertainty to the intensity measurements associated with a gene. Using tech- 
nical replicates and averaging across them allows gene expression levels to be 
estimated with greater precision. The higher the number of replicates, the 
greater is the precision. 

The summarized intensity level of a gene on the microarrays that are 
exposed to the sample is an average of its intensity levels across the technical 
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replicates. The average could be a simple estimator such as the arithmetic mean 
or the median or a more sophisticated estimator such as a biweight mean. 

Let us examine this in some detail. Let Xgi denote the (suitably transformed 
and normalized) spot intensity measurement for the ith technical replicate of 
the 9th gene, g = 1 , .  . . , G, i = 1 , .  . . , n.  The random variable XYi,  with mean 
py, represents the (true) mean expression level of the 8th gene and the (true) 
variance 09”. We write this using statistical notation as X,i - (,U,,CT;). The 
model parumeters pq and C; are estimated using observed data. 

An alternative, and entirely equivalent, formulation is to write this as: 
Kqi = py + cyi. Here cgi is the error introduced by the ith technical replicate for 
the gth gene. Note that the statistical interpretation of the word “error” differs 
from its conventional meaning: it is used to denote the difference between an 
observed value (here X g l )  and its value as expected according to a statistical 
model (here p,). The error ~ , i  is a random variable with mean zero and vari- 
ance o;, namely E,, - (o,o,’). 

The usual estimators of the model parameters, ps  and c;, are respectively, 
the sample mean xq and the sample variance si, for the 9th gene: 

The standard error of ,C, (i.e., the standard deviation of f i g )  is o/&, which is 
estimated by 6,/fi, 

These estimators are all optimal in many senses if the underlying distribution 
of Xgi, or equivalently, c,i, is normal, that is, if X,, - N(p,, yi), or equivalently 
cyi - N(O,c$). However, if not, the estimators might have undesirable proper- 
ties. In particular, if X,, contains outliers, as is often the case with microarray 
data, bothh, and $ will be suboptimal, and perhaps seriously so. 

It may therefore be preferable to estimate the values of p, and oq in such a 
way that the extent to which they are influenced by outliers is limited. Such 
estimators are said to be resistant. The most resistant reasonable estimators of 
pL1 and are the median and the median absolute deviation ,from the mediun 
(MAD): 

Mg = median(Tqi), 

MAD, = median{jK,i - M,l } .  

These estimators are so resistant that almost half the observations have to be 
bad before the estimators themselves are affected. However, there is a price to 
pay for so much resistance. These estimators are not very efficient, meaning 
they tend to have high variability. 
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It is possible to obtain reasonably high efficiency at the normal distribution 
coupled with reasonably high resistance should the data contain outliers. Such 
estimators are said to be statistically robust. The price is that they are not 100% 
efficient (but the efficiency can exceed 90%) and they come at a slight compu- 
tational cost. Biiveight means and biweight standard deviations are statistically 
robust estimators of p ,  and oy. 

The biweight mean is defined as the value jc, that maximizes q” -ohy) 
I= I r s y  

where the objective function y is defined by p(u) = ( 1  - ( 1  - ~ ~ ) ~ ) / 6  if < I 
and p(u)  = 1/6 otherwise, sf is a resistant estimate of o,, and the tuning con- 
stant T determines the amount of efficiency and resistance desired. The larger T 

is, the more efficient the estimator is if the distribution is truly normal, but the 
less resistant it is. The smaller T is, the less efficient the estimator is if the dis- 
tribution is truly normal, but the more resistant it is. A compromise between 
these two extremes offers both high efficiency at the normal distribution and 
resistance should the data contain outliers. 

There is no closed form expression for the biweight mean. This is where the 
computational cost comes in. The biweight mean has to be calculated using an 
iterative process. The iteration is begun at M,, the median of the gth gene. For 
each observation calculate uy, = (X4, - M q ) / ~ s f ,  which indicates how 
unusual it is; then assign it a weight rujy = w(usj)  based on the biweiqht weight- 
ing function: w(u)  = ( 1  - u2)’ if (u (  < 1 and w(u) = 0; otherwise (note that 
w(u)  = p ’ (u ) /u ) .  The weighting process ensures that observations relatively 
near the center of the data will be assigned high weights. If there are any 
observations relatively far from the center of the data (i.e., outliers), they will 
be assigned low weights. Calculate a weighted mean 

using these weights. 
These steps can be iterated, now beginning with M i ,  until there is, for all 

practical purposes, no change in M i .  The resulting estimator is the biweight 
mean, as desired. However, it has been shown that just doing a single iteration 
usually produces an estimator that inherits the high resistance of the median 
and gains substantially in efficiency. Therefore this estimator, called the one- 
srep hiweight mean, is sometimes used instead of the fully iterated version. 

The usual choice for s: is M A D , .  This is the natural choice because the 
estimate of o, used here must be resistant, but it does not necessarily have to 
be particularly efficient. However, this choice may not work very well with 
microarray data. The problem is that the number of technical replicates tends 
to be very small and the MAD is too unreliable in such instances. 
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An alternative choice for sf can be obtained by exploiting the fact that 
is usually a function of pQ, such that 042 =J’(pu,). This involves first modeling 
the log( MAD,)  versus log( M,) relationship using, for example, a spline with a 
few degrees of freedom; the spline is an estimate off’. Then a value for sf is the 
value associated with log(M,) as predicted by the fit. 

The biweight mean, originally proposed by Tukey, belongs to a particular 
class of statistically robust estimators called M-estimators (the book by Hoa- 
glin, Mosteller, and Tukey, 1983, gives a good review of robust estimation). 
Other estimators in this class are obtained by using different objective functions 
with bounded derivatives. Huber proposed p(u)  = u 2 / 2  if Iu( < 1 and p ( u )  = 

IuI - 1/2 otherwise. Hampel proposed p(u)  = u 2 / 2  if IuI < h l ,  p ( u )  = hllul - 
h f / 2  if hl < [u/  < l z2 ,  p(u) = h4 + hs(h3 - 1 ~ 1 ’ )  if h2 < /uj < h3, and p ( u )  = hg 
otherwise. Andrews proposed p ( u )  = (1  - cos(nu))/n2 if IuI < 1, p(u)  = 2 / n 2  
otherwise. Note that the median can be obtained by setting p(u)  = IuI. Finally 
it can be observed that the mean corresponds to p(u)  = u 2 / 2 ,  but since its deriva- 
tive, p’(u)  = u, is not bounded, it is not, strictly speaking, an M-estimator, as 
it is the boundedness of the derivative that is the key to resistance. 

The idea of weighting observations according to how distant they are from 
the center of the data is also used for calculating robust standard deviation 
estimates. The biweight standard deviation estimate, S,, is defined as 

where T A  is a tuning constant that determines the resistance and efficiency 
desired, ui = (X,i - ~ , ) / ( Z A S ~ ) ,  with sf set to MAD, or smoothed MAD,  as 
before, is a measure of how unusual x,j is, and $(u)  = u( 1 - u 2 ) 2  if Iu1 < 1 and 
$(u)  = 0 otherwise (note that $(u)  = p ’ ( u ) ) .  The biweight standard deviation 
belongs to a particular class of statistically robust estimators of standard devi- 
ation called A-estimators. Another class of robust variance estimators, with 
perhaps slightly better properties, are known as 7-estitnators. 

Yet another robust estimator of p, is the trivrimed mean. The a%, trimmed 
mean of a set of observations is obtained by ordering the observations from 
smallest to largest, removing (i.e., trimming) the prespecified percentage, a%, of 
observations from each end of the ordered list, and taking the mean of the rest. 
The ordinary mean is, of course, a 0% trimmed mean; the median is something 
like a 50% trimmed mean; and the 25% trimmed mean is called a midmean. 

6.3 BIOLOGICAL REPLICATES 

Biological replicates are used to deal with biological variation, which is the nat- 
ural variability among subjects due to genetic diversity, environmental effects 
and other causes. This variation also contributes uncertainty to the intensity 
measurements associated with a gene. Using biological replicates and averag- 
ing across them allows gene expression levels to be estimated with greater 
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biological precision. The higher the number of replicates, the greater is the 
precision. 

In this case the average intensity measurement of each gene can be estimated 
in an analogous way to the case where there were technical replicates, so we 
will not go into details here. 

6.4 EXPERIMENTS WITH BOTH TECHNICAL 
AND BIOLOGICAL REPLICATES 

In certain experiments there will be both biological replicates as well as techni- 
cal replicates. 

E.xumplr. The first five pairs of microarrays in Example E5: C1 A, CIB, C2A, 
C2B,. . . , CSA, C5B correspond to five control samples. Each pair of micro- 
arrays corresponds to a single mRNA sample (labeled C1, C2, . . . , C5), which 
was taken from a mouse following treatment and hybridized to two separate 
microarrays (labeled A and B). The two microarrays in each pair are technical 
replicates as they are exposed to the same biological sample. The five mice from 
which samples CI to C5 are biological replicates. There were 3300 genes 
arrayed on the microarrays. 

In the example above the number of technical replicates was the same (i.e., 
two) for every biological replicate. In such cases the experiment is said to be 
huluncrd with respect to the replication. If the number of technical replicates 
was not the same across the biological replicates, the experiment is said to be 
unhulnnced with respect to the replication. Balanced experiments have several 
advantages. 

When there are both biological replicates and technical replicates, the esti- 
mated average intensity measurement would be subject to biological variation 
as well as technical variation and some of the calculations change. In order to 
study this situation, let X,, denote the intensity of the j th  technical replicate 
within the ith biological replicate for the yth gene. Here ,q indexes the genes 
(y = I , .  . . , G ) ,  j indexes the biological replicates ( j  = 1,. . . ,a)  and i indexes 
the technical replicates ( i  = 1,. . . , n). 

The statistical model for this situation shows the presence of both sources of 
variability: 

In this model, pg is the overall (true) mean, clYi is the effect of the j th  biological 
replicate (q - (0, C T & , ~ ~ ~ ) ) ,  E</Y is the effect of the ith technical replicate within 
the j th  biological replicate ( ~ ~ 0  - (0, o & . ~ ~ ~ ) ) .  

Let X, = C,"=l C,:, X,,/an denote the overall mean and xg, = C,':, Xq,/n 
denote the mean for the j th biological replicate. The expected value for the 
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overall mean is 

The mean squared error across biological replicates 

measures the variation across biological replicates. It also has a contribution 
due to the variation across technical replicates as shown by its expected value: 

The mean squared error across technical replicates 

measures variation across technical replicates. Its expected value is 

We can use the expected values to derive estimators for the model param- 
eters: 

GS = x,l 

MS,"'OL - M S Y H  

6&CH;(I = MS,TECH 

- 2  
n f f ~ ~ ~ ~ ; g  = 

The mean has expected value and variance given by 

W,) = P g  

2 7 
- OBIOL. O?ECH,g var(x,) = 2 + ~ 

a an 

The variance of Xr/ can be estimated by plugging in the estimates of o&oL and 
4 E C H :  

A -  MS,B'OL - MS,TEC'H + MS,?CH - MS,B'OL var(Xr/) = - 
an an an 
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In other words, the variance of xg is estimated by dividing by a the variance 
across the biological replicates of the means obtained by averaging across the 
technical replicates. 

The overall mean x, could be affected by outliers among the biological rep- 
licates as well as outliers among the technical replicates. Therefore a resistant 
version should offer protection against both types of outliers. To begin with, 
observe that xg is a mean of means; that is, it is the mean across the biological 
replicates of the a means across the technical replicates: 

or in simple terms, 

Zg = meanj meani(xgij). 

Resistant and robust estimators of pg can be obtained by replacing the means 
with resistant analogues. 

Working along these lines, Amaratunga and Cabrera (2001a, b) proposed a 
highly resistant estimator for prt called the median-ofmedians (MOM): 

My = median, mediani(Xgij). 

However, no simple resistant estimators of C T & ~  or C T & ~  analogous to MAD 
are readily available. A standard error for Mg can be estimated using a resam- 
pling procedure. 

Example. Since the control group in Example E5 bas both biological repli- 
cates as well as technical replicates, median-of-medians were calculated to 
summarize the data across the replicates for the genes in the control group. 
Medians were calculated for the genes in each treatment group. Figure 6.1 
shows the treatment group average plotted against the control group average 
for the first four treatments. The filled circles represent genes that showed a 
threefold or greater increase or decrease in expression compared to the control 
group. 

A robust estimate of puy can be obtained by replacing the means with robust 
analogues: 

2, = biweightmeani biweightrnean,(X,,). 

In other words, we first calculate the biweight mean across the technical 
replicates for each biological replicate. Then the overall biweight mean is the 
biweight mean across the a biological replicates. 

Recall now that the variance of x, is estimated by dividing by a the variance 
across the biological replicates of the means obtained by averaging across the 
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Figure 6.1 
treatments. 

Treatment group average plotted against the control group average for the first four 

technical replicates. Analogously the variance of 2, is estimated by dividing by 
u the variance across the biological replicates of the means obtained by aver- 
aging across the technical replicates. In equation form 

This then produces a robust estimate of the variance of xq as an estimate of ,ug. 

6.5 MULTIPLE OLIGONUCLEOTIDE ARRAYS 

The expression level of a gene, summarized across multiple oligonucleotide 
arrays, can be calculated using the methods described. 

A model-based alternative estimation approach was proposed by Li and 
Wong (2001b) for one probe set in multiple oligonucleotide arrays. For the ,jth 
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probe pair in this probe set, let PM,, and M M ,  denote the (untransformed) 
expression level measurements for the perfect match probe and mismatch probe 
respectively in the ith microarray. 

Let 8, denote the true expression level of the probe set in the ith array. The 
model postulates that ( I )  the observed measurements for M M ,  and PM,/ are 
linear functions of 13, and (2) for a truly expressed gene the strength of the PM, 
versus 0, relationship is greater than the strength of the MM, versus 0, rela- 
tionship. Algebraically the Li- Wong mode/ can be written 

The parameters, vJ, OI,, and dj ,  are all assumed to be nonnegative and (2) above 
implies that 4, should be strictly positive for a truly expressed gene. 

Subtracting the equation for MM from the equation for PM indicates that 
the PM-MM differences can be modeled by the simpler reduced Li- Wong 
model: 

Ylj = PMq - M M ,  = Oj(bI + c. 

In words, the perfect match to mismatch difference is, except for random error, 
the product of a model-based expression index 0, and a probe sensitivity index 
dJ. Although some information is lost in using this simpler model, i t  is easier to 
use and is often adequate for most practical purposes. The model is over- 
parametrized and some constraint, usually the constraint that Zb; = J ,  is 
imposed in order to make the model identifiable. The model is fitted by esti- 
mating the parameters of this model that minimize the ordinary least squares 
criterion. They can be obtained by iterative application of a standard least 
squares routine alternating between estimation of 0, and 4, until convergence. 

Statisticians will recognize the PM-MM difference model as an exponen- 
tiated form of the two-way ANOVA linear model with a probe pair effect, an 
array effect, no intercept term, and no interaction term: 

Whereas writing the model in its raw form allows negative values of Y,, to 
be accommodated, there are certain clear advantages to writing the model the 
ANOVA way. One is that if the arrays correspond to different types of samples 
(e.g., some are from normal tissue and the rest are from diseased tissue), more 
complex models that include such experimental factors and their interactions 
can be postulated as in Chapter 8, whereas the Li-Wong model cannot be 
simply extended beyond the one-way treatment design. For designs where both 
models can be fitted, Chu et al. (2002b) compared the two model fits and found 
that they produced comparable results. On the other hand, the linear model 
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inherently has certain operational advantages due to its linearity; for example, 
it is easier to fit and the distributional properties of its error term are nicer. 

Whichever model is used, there are certainly several benefits to taking a 
model-based approach over just averaging. By modeling, overly influential 
observations, such as outliers, can be automatically flagged, and the effects of 
various experimental factors can be statistically assessed. 

Efron et al. (2001) discuss a different approach for summarizing data in a 2 3  
factorial experiment involving eight oligonucleotide arrays. 

6.6 ESTIMATING FOLD CHANGE IN TWO-CHANNEL 
EXPERIMENTS 

We now consider two-channel microarray experiments. For the gth gene on 
the ith microarray ( i  = I , .  . . ,n ) ,  let XIY, and XZ,, refer to the log-transformed 
and normalized intensity measurements referent to the samples labeled with 
channels 1 and 2 respectively. Let X ( s r  - ( p c 8 ,  a:(,), c = 1,2 ,  i = 1 , .  . . , n .  One 
of the principal objectives of two-channel microarray experiments is to estimate 
the true differential expression for the gth gene, p, = p,, - pZY, and to pick out 
those that appear to be the most differentially expressed. 

The natural estimate of the differential expression is 

This is called the log,jold change as it is the estimated differential expression on 
a logarithmic scale and, when transformed back to the original scale, 

gives the fold change. 
The fold change (or log fold change) is a very reasonable, easily understood 

and readily interpretable estimate of the true differential expression. Conse- 
quently it is also, by far, the most widely used. Nevertheless, it is wise to be 
cautious when interpreting fold changes across a multitude of genes because a 
given fold change may have a different interpretation for a gene whose expres- 
sion level is low in both channels as compared to a gene whose expression level 
is high in both channels. 

The standard error of by is 

S se(b,) = 
Jt;’ 

where so is the standard deviation of { Y,i = XI,; - X2gi}. The standard error of 
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Jg is, approximately 
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6.7 BAYES ESTLMATION OF FOLD CHANGE 

Newton et al. (2001) attempt to overcome the problem of different interpreta- 
tions being necessary for genes with different expression levels by using an 
Bayesian hierarchical modeling approach to estimate the true differential ex- 
pression. The models are based on the gamma distribution. This is because 
gamma distributions have several features pertinent to this situation: their sup- 
port is (0, a), they are skewed, their coefficient of variation can be controlled, 
they are easy to work with, and it  can be argued that they may be meaningful 
biologically. 

Suppose that X,; and Yq; are the intensity measurements from the sample 
labeled with channels 1 and 2 respectively. Assume that they have been suitably 
transformed and normalized and then transformed back to the original scale. 

The intensities X,; and Yg; can be modeled as independent gamma random 
variables: Xgi - gamma(a,O,), YYi - gamma(a,Uy). Since their means are 
p.x = E(X,,) = a/B., and pr = E( Y[,J = a / f I y ,  the ratio of their means is 
p = p C , / p y  = fIy/Bx. Their variances are var(Xg;) = u / O ~ ~  and var( Y,;) = a/O;, 
so that X,; and Y,; both have the same coefficient of variation, l/&, regdrd- 
less of whether or not they have the same variance, which is reasonable to 
expect after normalization. The hierarchical aspect of the model is that the 
parameters (O,T, Or) themselves are modeled as (Oy, B Y )  - gamma(a0, v ) .  

The posterior distribution of true differential expression can be derived using 
Bayes's theorem: 

~ e t  Xg; - ( ~ , y g l  g i g )  and Ygi - ( p y y r  g$Y). 

2 

The statistic 

which lies somewhere in between the mean and the mode of this distribution, is 
used as the empirical Bayes estimator of the true differential expression. Those 
familiar with the concept of regularization (see Section 10.3) will recognize that 
ij,? has the form of a shrinkage estimator. For a gene whose expression level is 
high in both channels, ij,"" will be quite close to b,, whereas for a gene whose 
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expression level is low in both channels, br will be shrunk toward 1; the 
amount of shrinkage is governed by v. Thus the empirical Bayes estimator is 
able to reflect the decreased variation in differential expression with increasing 
intensity. 

Unfortunately, there is no closed form expression for v. The unknown 
parameters, (a, ao, v),  in the model are estimated by marginal maximum likeli- 
hood, whose details are provided by Newton et al. (2001). Besides this, another 
slight drawback to b,"" is that it does not inherit the natural fold change inter- 
pretation of Dg.  

Not surprisingly, the ordering of the most significantly expressed genes using 
empirical Bayes estimates will generally be quite different from that using reg- 
ular estimates. 

EXERCISES 

6.1. Explain the need to have both technical replicates and biological replicates 
in a study. 

6.2. Read Efron et al. (2001) and outline the summarization procedure used 
there. 

6.3. For the data in  Example E5, calculate the median-of-medians for the 
control microarrays and the medians for the treatment group C10. Plot 
them against one another. Do any genes appear to be differentially ex- 
pressed in the treatment group compared to the control group? 
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Two-Group Comparative 
Experiments 

Many microarray experiments are comparative in nature. That is, their objec- 
tive is to compare the expression levels of a set of genes across two or more 
conditions, in particular, to identify genes that are significantly differentially 
expressed across these conditions. For example, an experiment might be con- 
ducted to compare the expression levels of several genes in cancerous liver cells 
versus those in normal liver cells in an attempt to identify those genes that 
are expressed in cancerous liver cells but not in normal liver cells, and vice 
versa. As another example, an experiment might be conducted to compare the 
expression levels of several genes in cancerous liver cells in a group of patients 
treated with a particular test drug versus those in a group of untreated patients 
in an attempt to identify those genes that are expressed in treated cancerous 
liver cells but not in untreated cancerous liver cells, and vice versa. 

The simplest way to analyze comparative experiments is to consider each 
gene in isolation and to compare its expression levels across the groups. At a 
higher level of complexity, genes can be analyzed in combination, comparing 
the expression levels of clusters of genes across the groups. The clusters may be 
prespecified or identified as part of a clustering exercise. Besides finding indi- 
vidual differentially expressing genes, any collection of genes that is found to be 
differentially expressed across the groups could be used to deduce the regula- 
tory pathways involved in the situation under investigation. 

We will begin by considering the simplest and most common case: a com- 
parative experiment in which two groups are being compared to one another. 
In the first few sections of this chapter we will discuss methods for analyzing 
each gene on its own. The concepts introduced in this initial discussion are 
important in their own right and will also lay the foundation for more complex 
and refined analyses, which are discussed in the later sections of this chapter. 
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E,uample. In an example that will recur throughout the chapter, we consider a 
comparison between the gene expression profiles of two groups of four mice. 
The first group of mice was treated with a vehicle control while the other group 
was treated with a test compound. Several hours post-treatment, a mRNA 
sample was extracted from the liver of each animal and placed on a microarray 
containing 4077 genes. Intensity measurements were taken, log transformed 
and normalized. A scatterplot matrix showing painvise scatterplots of the gene 
expression profiles of the eight mice is shown in Figure 7.1. 

We will use the following notation in this chapter. Suppose that we are 
comparing the expression levels of a set of G genes in two groups of micro- 
arrays, which we will refer to as Group 1 and Group 2. There are n~ micro- 
arrays in Group 1 and n2 microarrays in Group 2, and the total sample size is 
N = nl + n2. Let xyrl denote the intensity measurement for the gth gene in the 
ith microarray in the j th  group, where i = 1,. . . , nl; j = I ,  2; and g = 1, .  . . , G. 
When emphasis on the gene is unnecessary, we will omit the first subscript and 
denote the intensity measurements xL,. It is assumed that the data has already 
been suitably transformed and normalized. In addition, let XI, XI, s/, .S, denote, 
respectively, the mean, median, standard deviation, and median absolute devi- 
ation (MAD) from the median of the j th group. 

7.1 BASICS OF STATISTICAL HYPOTHESIS TESTING 

We digress now to review briefly the fundamentals of statistical hypothesis 
testing. We expect readers with statistics backgrounds to skip this section. 

In statistical hypothesis testing, the conjecture that there is no difference 
between groups is called the null hypothesis. With microarray data, there are G 
null hypotheses being tested, the gth null hypothesis, for y = I , .  . . , G, being 
that the 8th gene is differentially expressed across the groups. 

The result of a hypothesis test is its decision. There are two possible deci- 
sions: rejecf the null hypothesis and claim that there is a difference between the 
groups (which can be thought of as a positizie finding) or do not reject the null 
hypothesis and declare that there is insufficient evidence to detect a difference 
between the groups (which can be thought of as a negative finding). 

If the decision of the test is to reject the null hypothesis, it may be correctly 
rejecting a null hypothesis that is false (called a true positive) or it may be 
incorrectly rejecting a null hypothesis that is true (called a fulse positive or a 
Type Z error), we do not know which. On the other hand, if the decision of the 
test is not to reject the null hypothesis, it may be correctly not rejecting a null 
hypothesis that is true (called a true negative) or it may be incorrectly not 
rejecting a null hypothesis that is false (called a false negative or a Type IZ 
error), we do not know which. Table 7.1 is a simple tabular representation of 
these four possibilities. 
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Null hypothesis not rejected 

Null hypothesis rejected 

Table 7.1 

Null hypothesis true Null hypothesis false 

True negative False negative 
(Type I1 error) 

False positive True positive 
I I (Type I error) 1 I 

In practice, we do not know whether the null hypothesis is true or false. 
Thus we really have no way of knowing whether the test might have made the 
right decision or reached a false positive or false negative decision. However, 
what is fascinating is that it is possible to set up the test to reduce the chances 
of making such errors. This is what distinguishes a “good” test from a “bad” 
test. 

The key to a good test is a good test statistic. The test statistic is generally a 
sample statistic that reflects how far the observed data is from the situation 
described by the null hypothesis. Many test statistics, T, have the form T = r/s.  
Here r is an estimate of the size of the biological effect being tested; the further 
the data is from the null hypothesis (i.e., the more likely that the null hypothe- 
sis is false), the larger the value of r. The denominator, s, is a standard error 
that measures the variability of r. Thus T measures how large the biological 
effect r is relative to its variability s .  It is no accident that T has the form of a 
signal-to-noise ratio with r as the “signal” and s as the “noise.” 

The probability distribution of the test statistic under the null hypothesis is 
called its null distribution. Based on the null distribution, we can calculate the 
p-vulue, the probability of observing a value as extreme as that observed if 
the null hypothesis was true. Clearly, the smaller the p-value, the greater is the 
weight of evidence against the null hypothesis. A typical decision rule for a test 
states that the null hypothesis is rejected if and only if the p-value is less than a 
specified value called the signifcance level (or just the /eve/) of the test. 

The probability of the test reaching a false positive decision is called thefhlse 
positive rate (or the Type I error prohubility) and the probability of the test 
reaching a false negative decision is called thefulse negative rate (or the Type IZ 
error probability). Also the “true positive rate” is called the specificity and the 
“true negative rate” is called the sensitivity or power. Naturally we would like 
both the false positive rate and the false negative rate to be zero, but this is 
impossible. On top of that, decreasing one tends to increase the other; in other 
words, increasing the specificity lowers the sensitivity, and vice versa. Thus we 
have to arrive at some compromise between the two. 

The most popular such compromise is the Neymun-Peurson upproad to 
statistical hypothesis testing. In this approach the false positive rate is con- 
trolled at a specified small value, called the size of the test, and then the test is 
set up to have as small a false negative rate (or, equivalently, as high a true 
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negative rate) as possible-in other words, “fix the size, maximize the power.” 
Generally, the size of the test is bounded above by the significance level. 

Of course, life is not so simple. In order to select or develop a good test for a 
particular situation, it is necessary to make some assurnpiions about that situa- 
tion. Different assumptions for the same situation will generally lead to quite 
different tests and, what is more unsettling, perhaps even quite different test 
results. Thus it is important to consider one’s assumptions carefully and to keep 
in mind that if the assumptions being made are not correct, the size and power 
properties one expected the test to display might not be achieved. This is why it 
is always a good idea to run some diugnostics to check whether the assumptions 
underlying the test seem to hold. If they do not appear to hold, it is wise to 
rethink the testing procedure. 

7.2 FOLD CHANGES 

Early analyses of microarray data declared a gene differentially expressed if its 
fold increase or fold decrease exceeded a specified cutoff. For example, in their 
seminal paper on using microarrays to study gene expression in Arctbidopsis 
tlrriiiuna. Schena et al. (1995) declared a gene differentially expressed if its 
expression level showed a fivefold difference between the two mRNA samples. 

On a logarithmic scale, the decision rule that declares that changes of 
h-fold or greater are significant translates into asserting that a gene should be 
declared differentially expressed if IXz - -?I I > log(h) 

Exunzplr. For the example dataset, Figure 7 . 2 ~  shows a histogram of the 
D = Xz - X I  values, which range from -1.66 (i.e., a 5.26-fold downregulation 
compared to control) to 1.72 (i.e., a 5.58-fold upregulation compared to con- 
trol) with a near zero median of 0.01 with 119 genes showing a twofold or 
greater upregulation compared to control and 144 genes showing a twofold or 
greater downregulation compared to control. 

The reliance on fold change alone to designate significance has, rightly, been 
criticized. Keep in mind that the means are merely estimates of the true but 
unknown mean expression levels and hence are subject to variability. Genes 
with high variability have a reasonable probability of having a large fold 
change and looking deceptively interesting. The problem with the fold change 
approach is that it utterly fails to take this uncertainty into account. It is 
entirely possible, after all, that a gene might exhibit a tenfold change and yet 
not be significant because it has high variability, whereas another gene might 
exhibit a twofold change and be highly significant, both statistically and bio- 
logically, because its expression level measurements had low variability and 
were therefore more precise. 

The variability of the estimates can be assessed and should be used to adjust 
the threshold (an early paper on microarrays, Chen et al., 1997, developed 
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some distribution theory in this regard). This is the idea behind the t-test 
discussed in Section 7.3 and extensions of the t test that are discussed later. 
Applying the same arbitrarily chosen threshold to all the genes in the study is 
just not appropriate. 

7.3 THE TWO-SAMPLE t TEST 

The most basic statistical test for comparing two groups is the two-sample t test. 
The two-sample t test statistic is given by 

where 

is the pooled estimate of variance. 
If the data is drawn from a normal distribution (the normal distribution is 

sometimes called the Gaussian distribution) and is homoscedastic (i.e., has 
equal variances): xr, - N(,uj,02), the null distribution of T, is a t-distribution 
with degrees of freedom v = n~ + n2 - 2. If the observed value of T ,  is TP,oh,, 

then the p-value is given by the probability p y  = Prob(lT,I > Ty,ohs). A gene is 
declared significantly differentially expressed at level of significance CI if p e  < a. 

Exumple. Of the 4077 genes in the example, 998 are significantly differentially 
expressed at the 5 percent level according to the two-sample t test above; 523 
are upregulated compared to control, while 475 are downregulated compared 
to control. Figure 7.2b shows a scatterplot of the difference in means versus the 
cube root of the pooled variance, with the genes found significantly differ- 
entially expressed by the t test plotted as filled circles and the others as clear 
circles. Figures 7 . 2 ~  and 7.2d show scatterplots of the p-values versus the dif- 
ferences in means and the cube roots of the pooled variances, respectively. 
These plots indicate that the f test has a tendency of ignoring those genes that 
have large differences in means (i.e., large fold changes on the raw scale) if 
they also should happen to have high variances. This is reasonable, but its 
inclination to focus on genes with small variances may be too strong when the 
variances are estimated from small samples from which variance estimates 
cannot be well estimated. This behavior of the t test is addressed in Sections 
7.10 and 7.11. 
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(a 
Figure 7.2 (u) Histogram of the difference in means; the two vertical lines refer to twofold changes. 
(h)  Scatterplot of the difference in means versus the cube root of the pooled standard error with 
those genes found significant by the two-sample t test shown as filled circles; the central vertical and 
horizontal lines pass through the medians of the axes while the other two horizontal lines refer to 
twofold changes. (c) Scatterplot of the p-value versus the difference in means. ( d )  Scatterplot of  the 
p-value versus the cube root of the pooled standard error. Genes found significant by the two- 
sample t test are shown as filled circles. The two vertical lines in (c) refer to twofold changes, and 
the horizontal lines in (c) and ( d )  refer to a p-value cutoff of 5%. 

Observe that the t test statistic has the form of a signal-to-noise ratio as 
mentioned in Section 7.1. The “signal” is the numerator that reflects the dif- 
ference we are trying to discover; the “noise” is the denominator that reflects 
the variability of the system. 

The two-sample t test can be modified to test whether the average intensity 
of the first group is greater or less than that of the second group by some 
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specified value, A (e.g., A = log(2) for a twofold difference). The test statistic 
for this is 

The null distribution of TA is, again, a t-distribution with degrees of freedom 
v = nl + n2 - 2. Since very small group differences are usually of no interest 
and can come up significant due to having unbelievably small variances as 
outlined above, it is better to use this form of the t test to focus in on more 
meaningful differences. 

Example. Of the 4077 genes in the example, 223 are upregulated by more 
than twofold compared to control, while 175 are downregulated by more than 
twofold compared to control. 

The assumptions of normality and homoscedasticity are critical to the t test’s 
functioning properly. For instance, if the underlying distribution has longer 
tails than a normal distribution, the denominator of the t test statistic will be 
inflated, and it will generally be harder to reject the null hypothesis by way of 
the t test. Therefore the r test should have a lower false positive rate than 
expected (because of which it is sometimes claimed that the t test is robust) but 
a much higher false negative rate (Le., lower power) than expected. 

When the assumption of normality is tenable but that of homoscedasticity is 
not, the t test will tend to have a higher false positive rate than expected. In an 
attempt to alleviate this problem, an unequal-variance form of the t test, called 
Welch’s test, has been proposed. The test statistic for Welch’s test is given by 

121 - 221 - A 
T,, = 

nl n2 

with A = 0 when trying to detect any differences. The null distribution of T,, is 
approximately a t-distribution with degrees of freedom: 

V =  

If the observed value of T, is TL,;Ob.s, then the p-value is given by the prob- 
ability p,, = Prob((T,,I > TUiob.,). A gene is declared significantly differentially 
expressed at level of significance a if p ,  < a. 
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A test based on T,, can be shown to have, more or less, the correct test size 
even if c: # 0;. There is a drawback, however: having fewer degrees of free- 
dom than T,, T, also tends to be less powerful. The loss of power may be sub- 
stantial enough, particularly when M I  and n2 are very small, to consider using 
T, ,  even when a moderate amount of heteroscedasticity is present. 

Example. In the example, Welch’s test finds 872 genes that are significantly 
differentially expressed. The same genes were also found to be significantly dif- 
ferentially expressed by the f test, demonstrating that the latter flags more dif- 
ferences as being significant; 455 are upregulated compared to control, and 417 
are downregulated compared to control. 

7.4 DIAGNOSTIC CHECKS 

The residuals, rf, = x,, - i,, form the basis for checking the validity of the 
assumption that the data follow a normal distribution. Here the residuals are 
centered at the median rather than at the mean because, with the median being 
relatively unaffected by outliers, it provides a more resistant estimator of the 
center of the distribution than the mean. When the residuals are sorted and 
plotted against the quantiles of a normal distribution, the resulting plot, called 
a normal probubility plot, should be roughly linear if the underlying distribu- 
tion was a normal distribution. With microarrays, it is usual to perceive some 
tapering away at the ends, indicating some degree of long-tailedness in the data. 

If the variances appear to differ across the groups, the standardized residuuls, 
rf; = (x,/ - .fl)/.<, may be used instead. Again a resistant measure of scale, .i,, is 
used instead of the traditional measure of scale, sl .  Large absolute values of Y; 
indicate outliers. 

With microarray data, it is in  fact useful to gather all the residuals across all 
the genes ( r 6 )  for making the normal probability plot. 

E.ump1e. A normal probability plot of the standardized residuals for the 
example is shown in Figure 7.3. The plot indicates that the central portion of 
the distribution of the residuals resembles a normal distribution, but the tails 
of the residual distribution are considerably longer than those of a normal dis- 
tribution. 

This graphical check is often enough, but there are several formal statis- 
tical tests for assessing the normality of the underlying distribution as well. 
One of the most effective is the Shapiro-Wilk test. Other tests include the 
Kolmogorov-Smirnov test and its modifications, such as the Anderson- 
Darling test. With a very large number of observations, however, these tests 
will indicate nonnormality even with trivial departures from perfect normality. 
Therefore we will not use them here. 

Formal tests for unequal variances across groups, such as Bartlett’s test and 
Levene’s test, require larger sample sizes than are generally available in micro- 
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array studies. Hence they are not described here. However, it is possible to 
get some idea as to how close the variances in the two groups are by plotting 
{s i f }  versus {si/;}. Here we use the cube root transformation which brings the 
distribution of variances closer to a normal distribution (Wilson and Hilferty, 
1931). 

Example. Figure 7 . 4 ~  shows a scatterplot of {sf,!;} versus {s;;}. This plot 
shows that, on an individual gene basis, the variances in the two groups can 
differ quite markedly. However the normal probability plot of {sif} versus 
{s$;}, shown in Figure 7.4b, indicates that the distributions of the variances 
are the same across the two groups. 

7.5 ROBUST t TESTS 

If the f test is applied when the data is normally distributed except for a few 
outliers, these outliers will tend to degrade the power of the test. What happens 
is that the outliers will inflate the denominator of the test statistic more than its 
numerator, so the test statistic is less likely to be large and its propensity for 
being large when the null hypothesis is false will be dampened. Consequently 



RANDOMIZATION TESTS 105 

1.5 1.5 - 

v) 

a, 0 
m 
a, 0 

mr 1.0 .- 
i! 
cu (v 
(I a 
$ 0.5 
a 

0.0 

0.0 0.5 1 .o 1.5 0.0 0.5 1 .o 1.5 
Group 1 variances Group 1 variances 

(a )  ( b )  

Figure 7.4 (a )  Scatterplot (on a cube root scale) and (h) normal probability plot of the variance 
estimates for Group 1 versus the variance estimates for Group 2. In each plot the straight line is the 
identity line. 

the false positive rate of the test will be low (called robustness ofvrrlidify), which 
is fine, but the false negative rate of the test will be high (called lack of robust- 
ness of eflciericy). 

The r test can be rendered robusr (i.e., it can be made to be less influenced by 
outliers) by replacing the means and variances in the test statistic with robust 
versions of these sample statistics. One robust form of the t test is obtained by 
replacing the means by biweight means (or their one-step counterparts) and the 
variances by A-estimators or r-estimators (these estimators are described in 
Section 6.2). 

Exiunple. The robust t test, with a tuning constant set so that it is very resis- 
tant to outliers, finds that 228 genes are upregulated compared to control and 
224 genes are downregulated compared to control. The reason for the relatively 
small number of significant genes is the loss of power due to the high resistance. 
Raising the tuning constant will give results closer to the t test. Figure 7.5 
illustrates the resistance of the robust t test. It shows the data for three genes 
that are declared not significant. by the f test but significant by the robust 1 test 
at the 5% level of significance and one gene that is the reverse. It can be seen 
that the first three all have a single extreme outlier that prevents them from 
turning up significant. This is why it is so important with microarray data to 
use methods that are not heavily influenced by outliers. 

7.6 RANDOMIZATION TESTS 

Rundornizution tests are resampling-based procedures for assessing how rea- 
sonable the null hypothesis is in the face of the observed data. As in any 



7.
0 

6
.8

 

>
 

I- 5
 6

.6
 

z
 

W
 

I- z 8 
6.

4 
-1

 

6.
2 

6.
0 

9.
0 

8.
8 

c 5
 8

.6
 

z
 

w
 

I- z (3
 

8.
4 

9 

8.
2 

7.
5 

7.
0 

>
 

rn Z
 

w
 

I- 5 6
.5

 

t-
 z 

6.
0 

,- 

I
 

I 
5.

40
 

5.
35
 1 

. 
(3

 

-1
 

5.
25

 

5.
20

 

5
.1

5
{ 

, 
, 

, 
, 

0.
0 

0.
2 

0.
4 

0.
6 

0.
8 

1
 .O

 
0
.0

 0
.2

 0
.4

 0
.6

 0
.8

 1
 .O

 
0.

0 
0.

2 
0.

4 
0.

6 
0.

8 
1 .

O 
0.

0 
0.

2 
0.

4 
0

.6
 0

.8
 1

.0
 

32
8 

16
76

 
37

84
 

26
86

 

F
ig

ur
e 

7.
5 

Lo
g 

in
te

ns
iti

es
 fo

r 
th

e 
co

nt
ro

l g
ro

up
 a

nd
 th

e 
tre

at
m

en
t 

gr
ou

p 
fo

r 
fo

ur
 g

en
es

, t
he

 fi
rs

t t
hr

ee
 o

f 
w

hi
ch

 
ar

e 
sig

ni
fic

an
t b

y 
th

e 
ro

bu
st

 t 
te

st
 b

ut
 n

ot
 s

ig
ni

fic
an

t b
y 

th
e 

t 
te

st.
 t

he
 fo

ur
th

 o
f w

hi
ch

 is
 n

ot
 s

ig
ni

fic
an

t b
y 

th
e 

ro
- 

bu
st

 t 
te

st 
bu

t s
ig

ni
fic

an
t 

by
 t

he
 r 

te
st

. 



RANDOMIZATION TESTS 107 

hypothesis-testing situation, a randomization test proceeds by selecting a test 
statistic, T, which measures how far the observed data is from the situation 
described by the null hypothesis. 

For the two-group situation the most natural candidate for a test statistic is 
the t test statistic. The observed value of T,  f&s, is compared to the distribution 
of values of T that are obtained by randomly reassigning the data to the two 
groups, keeping the sample sizes the same. In other words, the procedure is to 
repeat the following for every possible permutation of the data: 

Step 1 .  Permute the data. 
Step 2. Assign the first nl observations to the first group and the remaining nz 

observations to the second group. 
Step 3. Calculate the test statistic (which we will denote t;)  for the permuted 

data. 
Step 4. Count the number of the permutations whose t; value exceeds tohs, and 

divide this count by the total number of permutations to get the proportion, 
p ~ ~ . , . ~ ~ ,  of times the value of the t statistic on the permuted data exceeded the 
value of the t statistic on the data we actually obtained. 

This proportion, ppernJ ,  is an estimate of the probability of such an extreme 
result under the null. In other words, it functions as a p-value. A gene is de- 
clared significantly differentially expressed at level of significance s( if ppernl  < u.  
Performed this way, this test is also referred to as a pernzutrttion test. If it is 
impractical to perform all possible permutations, one can get by doing a sub- 
stantial number of random permutations instead. 

The idea that motivates permutation tests is that, if the null hypothesis 
were true, then all possible permutations of the data are equally likely to have 
occurred. The order of the data that we observe would be just one of the 
equally likely orders and f o b ,  should appear as a typical value of the random- 
ization distribution of T. If this does not seem to be the case, then that should 
be regarded as evidence against the null hypothesis. 

Incidentally, for the two-group situation, both the difference between the 
means and the mean of the first group could be used as the test statistic and are 
in fact equivalent to using the t statistic. 

Esatnple. There are two groups of four, making for 35 possible permutations. 
We use the difference in means, T(i = 22 - XI, as the test statistic and regard Tl/ 
as significant if the observed value 1 Tlf, ()I,, 1 of 1 T(f1 exceeds 1 TdI in at most one 
permutation, which constitutes a two-sided test of level 2/35 = 5.7'%,, which we 
will call 5% without quibbling over the extra 0.7%). This test finds that 1384 
genes are significantly differentially expressed; 65 I are upregulated compared to 
control. while 733 are downregulated compared to control. 

The advantage of a randomization test is that it does not require specifica- 
tion of the underlying distribution to be valid. However, a randomization test is 
robust to outliers only if the test statistic itself is resistant. Thus a randomiza- 
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tion test based on a difference of means is not robust, but a randomization test 
based on a difference of medians, suitably standardized, is robust. 

7.7 THE MANN-WHITNEY-WILCOXON RANK SUM TEST 

When it is clear that the underlying distribution is far from normal, it may still 
be reasonable to assume that the distributions for the two groups are identical 
except for a location effect, so that xil - F ( p ) ,  xi2 - F ( p  + O), where F ( p )  
denotes a distribution centered at p. The Mann-Whitney-Wilcoxon test can be 
used to test the hypothesis that location parameter 6’ = 0. 

Once the observations have been ranked from 1 to N in increasing order, the 
test statistic for the Mann-Whitney-Wilcoxon test is the rank sum statistic, 
R, the sum of the ranks corresponding to the observations in Group 1. This 
statistic measures the degree of overlap between the two groups, the smaller 
the overlap, the further the value of R is from its null value of n1 ( N  + 1)/2, 
indicating a group difference. 

The null distribution of R has been tabulated (e.g., see Hollander and Wolfe, 
1999) for small values of nl and n2 using an argument similar to that of per- 
mutation tests. For larger values of nl and n2, the fact that 

has, approximately, a 
can be used to obtain 

standard normal distribution under the null hypothesis 
p-values. If the observed value of R is Robs, then the p -  

value is given by is the probability p~ = Prob(lR1 > Robs). A gene is declared 
significantly differentially expressed at level of significance a if p~ < a. 

Rank-based tests, like the Mann-Whitney-Wilcoxon test, are referred to as 
nonparametric tests or distribution-free tests, as they do not depend on strong 
distributional assumptions holding to be valid and can be used in a wide range 
of situations. However, they are less powerful than their parametric counter- 
parts; in other words, their p-values tend to be higher, making it harder to 
detect real differences as being statistically significant. If the sample sizes are 
large, the difference in power is minor. On the other hand, with small sample 
sizes, as in typical microarray experiments, nonparametric tests have very little 
power to detect differences. 

Example. The Mann-Whitney-Wilcoxon rank sum test finds 11  17 genes are 
significantly differentially expressed at the 5% level (the actual level is 5.7%, but 
as with the randomization test, we will not quibble over the extra 0.7‘%), 952 of 
which were also found to be significantly differentially expressed by the t test; 
588 are upregulated compared to control, while 529 are downregulated com- 
pared to control. The genes that were found to be significantly differentially 
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expressed by the rank sum test but not the t test had large variance differ- 
ences across the two groups, demonstrating the t test’s loss of power when this 
happens. 

Chen et al. (1997), one of the earliest microarray papers to apply a formal 
statistical test, used the Mann-Whitney-Wilcoxon rank sum test for the seg- 
mentation step in image processing. Chambers et al. (1999) apply the Mann- 
Whitney-Wilcoxon rank sum test to analyze microarray data from a study of 
human cytomegalovirus infection. 

For microarray data, Zhang et al. (2002) propose a different nonparametric 
scheme. They suggest sorting and scoring the intensities on each array from I 
(for the lowest intensities) to, say, 10 (for the highest intensities) based on a 
clustering algorithm and then comparing the scores across the groups of arrays. 
Their rationale is that as much as half the data on an array could be referring 
to nonexpressing genes and any differences among them is due to experimental 
variability. This way changes in scores across arrays would be better than 
changes in raw values as indicators of differential expression. 

7.8 MULTIPLICITY 

Analyzing microarray data involves performing a very large number of statis- 
tical tests, as a test is being run on each and every gene. One drawback of doing 
so many tests is that the more the number of statistical tests performed, the 
higher the overall false positive rate and the higher the expected number of 
false positives. Therefore the microarray researcher must beware of attaching 
too much importance to all the findings labeled “significant,” without making a 
suitable allowance for multiple testing. 

In the case of G statistical tests, each performed at level 2, if the tests are 
independent, the probability of making at least one false positive is 1 - ( 1 - a )  ‘, 
which is very close to unity for large G, and the expected number of false pos- 
itives is aG, which is very large for very large G. Thus the number of false 
positives can be so high as to overwhelm and totally obscure any actual effects. 

It is possible to alleviate this problem by adjusting the individual p-values of 
the tests for multiplicity. Indeed, a number of ways of doing so exist in the 
statistics literature. One major drawback, though, is that such procedures could 
lower the sensitivity as drastically as they raise the specificity. Indeed, in 
microarray experiments, G is so large and the number of replicates is so small 
that the power of the multiplicity adjusted tests is likely to be very small. In 
other words, aggressively adjusting for multiplicity could seriously impede the 
ability of the tests to find truly differentially expressing genes. 

7.8.1 

This dilemma can be resolved by taking a pragmatic view as to how the overall 
objective of the study demands that the p-values be adjusted for multiplicity 

A Pragmatic Approach to the Issue of Multiplicity 
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(e.g., Nadon and Shoemaker, 2002, make a similar suggestion). For instance, a 
researcher in a screening study may be willing to accept a fairly large number 
of false positives in order to improve his or her chances of identifying some 
truly differentiating genes. In another instance, a researcher’s resources may be 
so limited that he or she would be able to follow up on only a handful of genes 
that appeared to be the most interesting. In such cases stochastic multiplicity 
considerations are useful to the extent that they protect the researchers from 
assiduously following up on random patterns. However, there is no reason to 
slavishly adhere to classical cutoffs like the one that demands that a p-value 
should be less that 5% after multiplicity adjustment to declare significance. 

In such cases, as long as there is some evidence that the experiment is pick- 
ing up differences (i.e., the experiment is not a failure, as can be assessed by a 
quality check of the arrays as briefly outlined in Section 5 .8 ) ,  a reasonable 
approach is to rank the genes from 1 to G according to some criterion, such as 
the t statistic, and to select the H genes with the best ranks for further study. 
The second researcher would want H to be quite small and would be more 
selective about how the H are chosen, whereas the first researcher would take a 
larger H. Multiplicity considerations may help in choosing H. The gene rank- 
ing could be based on one or more factors, but it is always preferable to rank a 
statistic that takes experimental variability into account, such as the t test sta- 
tistic, or equivalently, the p-value associated with the t test statistic, rather than 
one that does not, like the fold change. 

A modification of this approach is to rank the G genes, select a moderate 
size H of them, and then run these H through a cluster analysis (Chapter 9), 
with the intention of picking either one gene or a very small subset of genes 
from each tight cluster as the “most interesting” genes. The rationale for doing 
this is that, since genes mostly express along genetic pathways, an assemblage 
of co-expressing genes that express differentially across the treatment groups 
are more interesting than a single gene with a unique expression profile that 
is differentially expressed across the treatment groups. Annotation information, 
if available, should also be useful in so picking a subset of interesting genes 
(Bouton and Pevsner, 2000, 2002). In practice, the most satisfactory gene 
selection procedure is likely to be some blend of all these considerations. 

In later studies, particularly confirmatory studies or studies that are to 
be submitted for external publication, the researcher would want to protect 
against an excessively high number of false positives. In such cases a formal 
multiplicity adjustment should be applied. 

7.8.2 Simple Multiplicity Adjustments 

We will now outline several ways of adjusting the p-values for the increased 
false positive rate due to multiple testing. Consider a situation in which G sta- 
tistical tests have been performed. Let P I , .  . . , p~ be the G observed p-values. 
Suppose that according to the rejection rule, R of the G tests led to rejection of 
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the individual hypotheses they were testing and, unbeknown to us, V of those 
were actually false positives. 

If we make no adjustments for multiple testing, we are controlling the per- 
eonzparison error rate (PCER): PCER = E( V ) / G .  This tends to be too per- 
missive in practice, as described above. Most conventional multiplicity adjust- 
ments attempt to control the fumilywise error rate (FWER), the probability, 
Prob( V > 0), of committing at least one false positive among all the hypo- 
theses tested. 

Classical p-value adjustments are single-step procedures in that the same 
adjustment is applied to each p-value regardless of their ordering. 

Bonferroni: The Bonferroni p-value for the kth test is simply p," = Kpk. 
If i t  exceeds 1, it is set to I .  The Bonferroni adjustment is highly con- 
servative in that it produces large adjusted p-values that make it difficult to 
reject many null hypotheses, and consequently the adjusted tests have low 
power. 
Sidak: The Sidak p-value (Sidak, 1967) for the kth test is if = 1 - 
(1  - ~ k ) ~ .  Sidak p-values are slightly less conservative than Bonferroni 
p-values. 

Example. The Bonferroni p-values for the example data set can be obtained 
by multiplying each individual p-value by 4077, the number of genes. When 
this is done with the t test p-values, only 12 remain significant, 5 are upregu- 
lated, and 7 are downregulated compared to control. In this case the Sidak 
method is only slightly more liberal: it finds one additional upregulated gene. 

7.8.3 Sequential Multiplicity Adjustments 

While such adjustments certainly offer full protection against too many false 
positives being committed, they are so strong that they result in too many false 
negatives being committed. An alternative approach is sequential p-value 
adjustment, a technique pioneered by Holm (1979) and extended by a number 
of others. These methods take the order of the observed p-values into account 
with smaller p-values being adjusted more than larger p-values. For instance, 
with step-down sequential testing, successively smaller adjustments are made at 
each step of the procedure. These methods retain control of the FWER and are 
generally more powerful than single-step p-value adjustments as they do not 
inflate the p-values as much as the single-step procedures. 

Suppose that the unadjusted p-values have been ordered so that PI < p z  
< . . . < p ~ .  Sequential methods can be either step-down or step-up. We now 
outline a few of the proposed methods. 

Holm-Bonferroni: The Holm-Bonferroni step-down p-values are deter- 
mined as 
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As always, if any adjusted p-value exceeds 1, it is set to 1. 

larly as 
Holm-Sidak: The Holm-Siduk step-down p-values are determined simi- 

p,"" = I - (1 -PI) K 1 

Hochberg: Assuming that the G p-values are independent and uniformly 
distributed under their respective null hypotheses, Hochberg (1988) dem- 
onstrated that Holm's step-down adjustments control the FWER even 
when calculated in a step-up fashion. The Hochberg step-up p-values are 
determined in reverse order to the step-down Bonferroni as 

The advantage of doing the adjustments step-up instead of step-down is 
that the adjustments are uniformly smaller for the former than for the 
latter. Therefore the step-up technique is more powerful and the number of 
false negatives is reduced. However, this improved power comes at the cost 
of having to make the assumption of independence. 
Westfall-Young: The Westfall and Young step-down p-values (1993) are 
determined as 

k = l ,  . . . , g  I=k ...., c 

These adjusted p-values usually have to be estimated by simulation and 
this is, as a result, a computationally much more intensive method than the 
others. On the other hand, it has a couple of advantages: (1 )  Unlike the 
other methods, it takes into account the possibility that the tests may not 
be independent of one another, a valuable consideration for microarray 
data as genes rarely act in isolation. ( 2 )  It is less conservative than the 
other methods. 

Example. 
same significant genes as the Bonferroni method. 

Applying the Holm-Bonferroni method to the example finds the 

A very different approach to the multiplicity problem in microarray experi- 
ments has been taken by Allison et al. (2002). They assess the true positive rate 
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using the fact that if all the null hypotheses were true (i.e., none of the genes are 
differentially expressed) and the gene expression levels were independent across 
all genes, then the distribution of p-values would be uniform on the interval 
[0, I ] ,  regardless of the statistical test used or the sample size. On the other 
hand, if some subset of the genes are differentially expressed, the p-values will 
tend to cluster at low values. This effect can be mirrored by modeling the set of 
p-values as a random sample from a mixture of beta distributions. Applying 
Bayes's rule, the posterior probability that a gene is differentially expressed can 
then be calculated for each gene. 

7.9 THE FALSE DISCOVERY RATE 

All the FWER-controlling adjustments described in Section 7.8 are very large. 
This is because controlling the FWER is a stringent criterion that inherently 
forces. large adjustments. When G is large, as in microarray experiments, 
FWER-controlling adjustments are likely to be too strong and result in far too 
many false negatives. This is clearly undesirable, particularly when making a 
large number of inferences. The overall conclusion is not necessarily erroneous 
as soon as one of them is incorrect. All that one is concerned about is prevent- 
ing an inordinately large number of false positives from clouding the results. 

In such situations Benjamini and Hochberg (1995; see also Yuketieli and 
Benjamini, 1999) proposed controlling the false di.scovery rate (FDR) instead. 
The FDR is defined as the expected proportion of false positives among the 
positive findings: 

FDR = E - 1 R > 0 Prob[R > 01. j," 1 
If all the null hypotheses were true, the FDR would equal the FWER and 
controlling the FDR would be equivalent to controlling the FWER. If not 
every null hypothesis was true, the FDR maintains some control over the 
number of false positives in an adaptive fashion, in the sense that the more the 
number of the hypotheses that are truly false, the smaller is the FDR. Hence 
procedures that control the FDR tend to be more powerful than procedures 
that control the FWER at the same level. Benjarnini and Hochberg (1995) 
suggested the following step-up procedure to adjust the ordered p-values so as 
to control the FDR: 

Benjamini-Hochberg: The Benjumini-Hochberg adjusted p-values are 
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These p-values are less conservative than Hochberg's step-up adjustments 
and are guaranteed to control the FDR when the original p-values are 
independent and uniformly distributed under their respective null hypoth- 
eses. 

7.9.1 The Positive False Discovery Rate 

Storey and Tibshirani (2001) proposed a modified version of the FDR, called 
the positive false discovery rate (pFDR): 

pFDR = E [ i  1R > 01. 

The pFDR emphasizes the fact that an adjustment is only necessary when there 
are positive findings. 

Given a decision rule, the pFDR can be estimated via a permutation proce- 
dure. Suppose that the decision rule is to reject any test statistics, T, that exceed 
a specified value t ,  and that, of the G test statistics, hobs exceeded t + .  In B' 
permutations suppose that an average number h* of test statistics exceeded 
t+ so that, when there are no true positives, the number of (false) positives 
observed is h * .  Then a natural estimate of the pFDR is 

If the number G+ of genes that are truly differentially expressed is not small, 
then this estimate of pFDR will be too high. The way to improve it is to mul- 
tiply this crude estimate by an estimate of z+ = G.+/G. A somewhat ad hoc 
estimate of n.+ can be obtained by considering the genes with the smallest 
values of T (i.e., those such that T < t - ,  where t- is some prespecified value) as 
being truly not differentially expressed, as they are the least likely to be differ- 
entially expressed. Suppose that kohs test statistics had T < t - ,  and that in the 
B* permutations, on average, k*  test statistics had T < 2 - .  Then an estimate of 
xi is fi+ = kob.s/k* and an improved estimate of pFDR is given by 

pFDR = f i , (&) . 
Example. In analyzing the data in the example with the two-sample t test, any 
gene whose t test statistic exceeded t,. = 2.447 (the 97.5th quantile of a t dis- 
tribution with 6 degrees of freedom) in absolute value was flagged as being 
significant at the 5'% level. Recall that 998 such genes were flagged. In the 34 
possible permutations of the data, an average of 138.15 genes are flagged, 
leading to a simple pFDR estimate of 138.15/998 = 13.8%. A total of 1259 
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genes have t test statistics below t- = 0.718 (the 75th quantile of a t dis- 
tribution with 6 degrees of freedom) in absolute value, whereas in the 34 
possible permutations of the data, an average of 1958.71 genes have t test sta- 
tistics below t- in absolute value, so that it+ = 1259/1958.71 = 0.643. Hence 
the improved estimate of pFDR is pFDR = (0.643)(0.138) = 0.089, which is 
about 9%. 

Unlike the procedures in Section 7.8, the pFDR does not actually provide a 
p-value adjustment. Recalling that the p-value is the smallest Type I error rate 
at which the null hypothesis is rejected, an analogue to the p-value associated 
with a particular test statistic with the pFDR approach is the y-value (Storey, 
2001), which is analogously defined as being the smallest pFDR at which that 
test statistic is declared significant. 

Further details of this way of assessing the effect of multiple testing are pro- 
vided by Storey and Tibshirani (2001, 2002). Theoretical aspects of this proce- 
dure have been developed by Storey (2001, 2002) and Efron et al. (2001) by 
casting it in an Empirical Bayes framework. 

7.10 SMALL VARIANCE-ADJUSTED t TESTS AND SAM 

Let us now revisit the t test. With small samples the t test statistic tends to be 
highly correlated with the standard error term that appears in its denominator. 
As a result the test has a propensity for picking up significant findings at a 
higher rate from among those genes with low sample variance than from 
among those genes with high sample variance (as observed in Figure 7.2). This 
property of the t test is especially troubling because it is difficult to estimate 
standard errors well when the sample size is low and small standard errors can 
occur purely by chance. Since the sample sizes used in microarray experiments 
are typically very small, the small sample effect of the t test tends to manifest 
itself in such experiments as a high false positive rate for genes whose variabil- 
ity is low and a high false negative rate for genes whose variability is high. This 
effect is somewhat related to the problem of competition bias in model selec- 
tion, where when several models compete to be selected, the ones that appear 
the best with the data at hand get selected. This is clearly an undesirable state 
of affairs, and proposals to avoid this problem have begun to appear in the 
microarray data analysis literature. 

E-wmplc.. Figure 7.6 shows scatterplots of ( I )  the two-sample t test statistics 
versus the pooled standard errors for the two groups and (2) the absolute value 
of the two-sample t test statistics versus the pooled standard errors for the two 
groups. The scatterplot on the left has a rotated volcano shape indicating that 
genes with small variances have large t test statistics, and vice versa. Figure 7.7 
shows the proportion of significant t statistics as a function of the pooled stan- 
dard errors for c( values of 0.05, 0.01, and 0.001. The graphs demonstrate the 
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problem of obtaining too many significant t-statistics for small values of the 
pooled standard error. 

7.10.1 Modifying the r Statistic 

One solution to the problem was suggested by Tusher et al. (2001). They add 
a carefully chosen constant, a so-called fudge factor, to the denominator of 
the t statistic. Recall that the r test statistic, Ty,  for the gth gene, has the form 
Ty = r,,/s,, where r,, = IXs - ,ij<]I and s,, = sPsJ(  l /n r )  + (l /nz) (see Section 
7.3).  The adjusted t statistic is 

where r is the fudge factor. This test statistic is often called the SAM t stufislic, 
where SAM stands for “significance analysis of microarrays.” 

T,(O) is, of course, the ordinary r statistic, Ty. Tg(c) with a very large value 
of c is equivalent to the t statistic without its denominator, namely to r(,. The 
plan is to choose an intermediate positive value of c for which, given c, the 
dependence of Ty(c) on sy is as small as possible. The simplest way to do this, 
in practice, is to study the relationship of T</(c) versus sy for a number of dif- 
ferent values of c, with the intention of retaining as the fudge factor, c, the one 
for which the dependence of Ty(c) on sy is least. 

Tusher et al. (2001) (see also the documentation accompanying the software 
package, SAM) implement this is as follows: Let s” be the ccth percentile of 
the {sg} values, and let Ty(s”) = rs/(sy + s’). Compute the percentiles, ql < 
y2 . . . < ~ 1 0 0 ,  of the ss values. For c( E { 0 , 5 ,  10,. . . , IOO}, compute the mad 
(median absolute deviation from the median), u,(cI ) ,  of the Tq(sM)  values within 
the interval [q], qj+l] for j = 1 ,2 , .  . . , n. Then compute C U ( C I ) ,  the coefficient of 
variation of the U , ( C I )  values. Choose as & the value of CI that minimizes cu(cc). 
Fix as 2 the value s’. 

An alternative proposal for estimating the fudge factor (Broberg, 2002) in- 
volves studying the false negative rate versus the false positive rate, a relation- 
ship called the receiuer operating churucteristic (ROC) curve, for various values 
of c, and choosing as the fudge factor the value of c that corresponds to the 
point on the ROC curve that is nearest the origin. 

7.10.2 

Once the SAM t statistics, TY(2), are calculated, the critical value of Ts(2) that 
separates significance from nonsignificance must be set. For the ordinary I sta- 
tistic this is done by looking up the quantiles of a r-distribution. However, the 
null distribution of the SAM t statistic, Tg(2), is not a t-distribution, so this is 
no longer correct. In fact the null distribution is intractable. Therefore Tusher 

Assessing Significance with the SAM t Statistic 



118 TWO-GROUP COMPARATIVE EXPERIMENTS 

et al. (2001) assess the significance of the observed Tg(L:) values via a permuta- 
tion procedure. 

Suppose that a suitable 2 has been identified and that the Ty(?) values have 
been calculated and sorted into increasing order: T(l)(c^) I T(q(2) 5 ... I 
T(c,(?). The permutation procedure proceeds by permuting the columns of 
the data matrix, A’, and assigning the first nl columns to group 1 and the 
remaining n2 columns to group 2, A total of B such permutations will be done. 
For the hth permutation, compute the statistics, Tib(?), and the corresponding 
order statistics: T$( t )  I TGj(2) I . . .  I 7;Cb,(t). From the set of B permuta- 
tions, the expected order statistics of Ty(L:) can be estimated by T(g)(2)  = 
C,”=, T$(?)/B. Any gene g that is such that its Tq(2) value substantially 
exceeds its T(g)  (2) value is possibly differentially expressed. 

This can be examined further by plotting the Tg( t )  values versus the T ( g ) ( t )  
values. The central part of this plot lies along the identity line, where Tg(2) = 
T(y)(P), indicating genes that are not differentially expressed. The ends tail 
away from this line; the further a gene is located from the identity line, the 
more likely it is that the gene is significantly differentially expressed. 

The procedure to declare significance is as follows: For a fixed threshold, A, 
starting at the origin and moving up to the right, find the first il genes such that 
Tg(2) - T(g)(2)  > A and call all genes past i l  “significant positive.” Similarly, 
starting at origin and moving down to the left, find the first i 2  genes such that 
Tg(2) - T ( # ) ( t )  < -A and call all genes past i2 “significant negative.” For a 
given value of A, call the smallest value of T,(L:) among the significant positive 
genes the “upper cut point,” cut,(A), and the largest value of Tg(?)  among the 
significant negative genes the “lower cut point,” cut,,(A). 

This process can be carried out for a series of A values. For each value of A, 
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Figure 7.8 Graphs showing the performance of SAM. (a) Scatterplot of the sorted SAM t statistics 
versus their expected values; the oblique lines correspond to A = 2. (b) Proportion of significant 
genes produced by SAM versus pooled standard error. 
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count the total number of significant genes and determine the average number 
of genes falsely identified as differentially expressed. For the latter, compute the 
median, k,,,, and the 90th percentile, ko.9, of the proportions of values among 
each of the B sets of T$(t)  values that fall in between the cut points, cutc,(A) 
or cut,(A). The proportion of genes that are truly not differentially expressed 
(i.e.? TC+ in Section 7.9.1) is taken to be twice the proportion of values, Tq(2), 
that fall in between the quartiles of all the values of all the T;;(E) values. 
The values of k,,, and ko.9 are multiplied by this proportion and used to calcu- 
late the positive false discovery rate, pFDR, as k ,  (or keg) divided by the 
number of significant genes. By evaluating pFDR for several values of A, a 
suitable strategy can be devised to decide which genes are significantly differ- 
entially expressed. 

E-yample. Figure 7 . 8 ~  shows a scatterplot of the sorted SAM t statistics versus 
their expected values for the example-the oblique lines correspond to A = 2. 
Figure 7.86 shows the proportion of significant genes produced by SAM versus 
the pooled standard error. Table 7.2 gives a list of typical values of A, the 
number of false discoveries, the number of genes declared significant, the 
pFDR for both 50% and 90% and the FPR (false positive rate) for both 50% 
and 90%. 

Table 7.2 Summary of a SAM analysis 

A 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
I .o 
1.1 
1.2 
1.3 
1.4 
I .5 
1.6 
1.7 
1.8 
1.9 
2.0 

- 

FP 
(50%1) 

1847 
1351 
949 
645 
400 
249 
143 
76 
39 
20 
10 
6 
4 
2 
1 
1 
0 
0 
0 
0 

FP FDR 
(90%) Called (50%) 

1951 3514 0.526 
1515 2996 0.45 1 
1 I30 2550 0.372 
812 2182 0.296 
538 1787 0.224 
366 1567 0. I59 
228 1306 0.109 
135 1112 0.068 
80 93 1 0.042 
45 746 0.027 
28 628 0.017 
16 537 0.01 1 
8 446 0.008 
5 389 0.005 
3 31 1 0.004 
2 269 0.002 
2 226 0.000 
1 186 0.000 
1 154 0.000 
1 139 0.000 

FDR FPR 
(90%)) (50%) 

0.555 0.453 
0.506 0.33 1 
0.443 0.233 
0.372 0.158 
0.301 0.098 
0.233 0.06 1 
0.175 0.035 
0.121 0.019 
0.086 0.010 
0.061 0.005 
0.045 0.002 
0.030 0.001 
0.019 0.001 
0.014 0.000 
0.0 10 0.000 
0.009 0.000 
0.008 0.000 
0.003 0.000 
0.004 0.000 
0.004 0.000 

FPR 
(90%,) 

0.479 
0.372 
0.277 
0.199 
0.132 
0.090 
0.056 
0.033 
0.020 
0.01 I 
0.007 
0.004 
0.002 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
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7.10.3 Strategies for Using SAM 

Since the pFDR does not actually provide a p-value adjustment and pFDR is 
not monotone in A, it is sometimes unclear as to how to decide which genes are 
significantly differentially expressed, that is, essentially, how to set A. Some 
strategies for selecting a suitable value for A are as follows: 

1. Settle on the highest pFDR the researcher is willing to tolerate ( e g ,  5% 
or 1%). Select the smallest value of A that corresponds to that pFDR. In 
our example in Table 7.2, if we choose pFDR (90%) = 1%, this corre- 
sponds to A = 1.2. 

2. It is sometimes difficult to prespecify a value for pFDR or A. In this event 
it may be more convenient to stay with the more familiar ‘‘classical’’ 
strategy of choosing a A that corresponds to a fixed proportion of false 
positives, say 0.01. From Table 7.2 this method would produce A = 1.1. 

3. Begin with strategy 2 to pick a A, then check the pFDR for that A, and if 
the pFDR is too high, increase A as long as (a) there is a sizeable reduc- 
tion in the pFDR and (b) the number of genes declared significant does 
not decrease substantially. For Table 7.2 we may argue that A = 1.1  
corresponds to a pFDR of 4.594, which is sufficiently low. 

4. Begin with an initial number of genes the researcher would like to follow 
up on. Calculate the pFDR and FPR for that number. If they are satis- 
factorily small, stop. Otherwise, adjust the number of genes until both 
pFDR and FPR are at comfortable levels. 

We may still pick up genes exhibiting fold changes that are so small as to be 
biologically irrelevant. In the event that we want to omit them and pick up only 
those genes that exhibit at least an h-fold change, then, in addition to being 
significant positive or significant negative, a gene must also satisfy IX - jj > 
log(h) in order to be declared significantly differentially expressed. 

7.10.4 An Empirical Bayes Framework 

The theoretical underpinnings of the SAM approach were investigated by 
Efron et al. (2001) by casting it in an Empirical Bayes framework. This frame- 
work is as follows: Suppose that p~ is the probability that a gene is differ- 
entially expressed and that f E ( z )  and J ~ ( z )  denote the probability density 
functions of Z = T ( c )  for genes that are differentially expressed and not differ- 
entially expressed respectively. Then 

is the probability density function for the mixture distribution of Z. 

gene is differentially expressed: 
Applying Bayes’s rule to this model gives the posterior probability that a 
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The density f ( z )  can be estimated from the observed (2,) values. The null 
density f o ( z )  is estimated by permuting the columns of X as with the SAM 
procedure. Efron et al. (2001) describe how to use logistic regression to esti- 
mate f o ( z ) / f ( z ) .  The probability P E  is set equal to its maximum value: 1 - 
minz(f(Z)/fo(Z)}. Based on these estimates, the posterior probability ( z )  
that a gene is differentially expressed can be determined for each gene. 

7.1 0.5 

In order to understand what SAM does, we present a careful analysis of the 
original microarray data question and explain the behavior of SAM. 

Microarray data typically exhibits a strong dependence relationship between 
gene effect mean and variance, that is, between p(, and oq (see Fig. 7.9). This 

Understanding the SAM Adjustment 
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Figure 7.9 The four graphs show the strong dependence between location and scale at the raw 
scale. But, for the pool standard error and mean differences of the logged data, the dependence is 
much smaller. 
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dependence is reflected in the values of Xg and s, in the raw data. This is one 
reason why a transformation such as log or square root, followed by a nor- 
malization step, are applied to the original data as described in Chapter 5. The 
hope is that by doing these transforniations, some or all of the following prob- 
lems will be resolved for the overwhelming majority of the genes: 

1. p, and 06, are dependent. 
2. Even if p, and cy are independent, the og are not homogeneous, because 

they vary from gene to gene. 
3. og varies from group to group. 

One cannot expect to change or eliminate all these problems with a simple 
transformation. It maybe possible to eliminate the first or even the second 
alone, but in practice, we may expect combinations of the three or all the three 
problems to exist in one dataset. 

Exumple. 
after log transformation and normalization. 

Figure 7.9 shows that the dependence has been reduced somewhat 

This background is useful because it lets us study different scenarios that 
may arise in practical situations and enables us to understand what SAM will 
do in each of these cases. Here are the scenarios. 

Case I .  Assume that oy is constant for all the groups and all the genes and oc, 
is independent of p, for all groups. 

In this case T,(c) and sg are dependent for all values of c, but the correlation 
goes to zero as c goes to infinity. SAM will choose a value of a close to 100%. 
SAM with a large constant is equivalent to using the t statistic without the 
denominator, and finding the critical value for the t statistic that corresponds to 
significance. 

Case 2. Assume that (a) oo is the same for both groups and is distributed as 
F, and (b) o4 is independent of prl for both groups. 

In this case Ty(c) and sy are negatively correlated for small c, but the corre- 
lation becomes positive as c goes to infinity. SAM will choose a fudge factor c 
that makes the correlation more or less zero. Simulation results suggest that 
when the distribution of oq is very skewed to the right, such as a chi-squared 
distribution with one or two degrees of freedom, the resulting fudge factor c 
corresponds to very small values of c1 near O'%. However, when the distribution 
of oq is not heavily skewed, SAM will choose values of a close to 100'X~ This 
does not imply that there is no dependence between Tq(c) and sy, since, for 
almost all distributions F,, there exists no constant, c, that makes the distribu- 
tion of T,(c) independent of s,,. However, SAM may produce a reasonable 
reduction of the dependence. 
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Case 3. Assume that 0, is the same for all groups and 0, is dependent of p, 
for all groups and their joint distribution is Fp,o. 

In this case it appears also unlikely that a constant c would totally eliminate 
the dependence of the distribution of T,,(c) from sy. However, again, SAM 
should produce a reasonable reduction of the dependence. 

Case 4. 

the same comments as above apply. 

In addition to case 3 assume a correlation structure among the genes. 
The column permutations in SAM preserves the correlation structure, but 

Exccniplr. Figures 7.1 and 7.9 indicate that ciO and ,ti, are very positively cor- 
related. On the other hand, this correlation structure is reduced when we sub- 
tract the gene means, so it may be just a result of the high variation among 
gene mean effects. Nevertheless, it is worth noting that this effect should be 
checked before using the methods for cases 2 or 3 and some modifications may 
be necessary to account for it. 

7.11 CONDITIONAL r 

Amaratunga and Cabrera (2003~) propose a novel method of addressing the 
dependence of T, from sC1 by determining, from the distribution of T, condi- 
tioned on .Y</, the critical value of T, that separates significance from non- 
significance. This method is called the conditional t (CT) approach. 

The CT procedure provides a solution to the problem of small sample stan- 
dard deviations by estimating the conditional distribution of T, given s, and 
calculating the critical values la ($)  that help us decide which genes are up- or 
down-regulated and which are not according to whether or not T, > f a ( s g ) .  

The procedure to calculate the critical values, t , (s ) ,  will depend on which of 
the above four cases is assumed. We start with the basic method that will be 
used for handling case 2. Case I is difficult to separate from case 2 ,  in practice, 
because we never know when the variances are constant or variable. Procedures 
for case 3 and case 4 are extensions of the procedure for case 2. 

CT for Case 2. The simplest development of the method is in the situation in 
which oq is a realization from the distribution F,, where F, is the same for all 
the groups and all the genes and CJ, is independent of p o .  The procedure is 
comprised of two steps: 

Step 1. Estimate F,. 
Step 2. Estimate the conditional distribution of TyIs,, and as a consequence, 

estimate the values tn(sy) for a few u’s. 

These steps are now described in more detail. 
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Step 1. Estimate F,. We know that the empirical distribution of s,, namely Fs, 
is a biased estimator of the distribution F,. This bias is especially large for 
very small sample sizes as is typical of many microarray experiments. The 
reason for the large bias is that the distribution of .$[IT* is approximately 
a*~;-,/(n - 1). It follows that, for small n, the marginal distribution of s j  
has heavier tails than those of F,. 

This bias can be corrected by using a simulation method initially pro- 
posed in Amaratunga and Cabrera (2001b). This method is itself a version of 
the target estimation procedure of Cabrera and Fernholz (1999) and Cabrera 
and Watson (1997). The idea is to estimate the function g : [0 : 11 + [0,1] 
defined by g(F,(x)) = ps(x). Since g is strictly monotonic, it can be inverted 
in order to obtain an estimate of F,(x) .  The steps to estimate F,(x) are as 
follows: 
a. Generate a null distribution for the data by subtracting the sample means 

and dividing by the standard deviations. 
b. Assume that ps(x) is the true distribution of IT. Then resample from the 

null distribution of x and multiply each sample by a IT generated from 
pT(.x). Repeat this 10,000 times and, this way, get 10,000 pairs of samples 
for 10,000. 

c. From each pair of samples, calculate a value for the pooled sample 
standard deviation, namely s;, for g = 1, .  . . , 10,000. Let p,*(x) be the 
empirical distribution of the 3;'s. Then the estimator of g is obtained by 
mapping the empirical distribution FT into F5..  More precisely 

g ( y  = pj(x)) = pTv(p['(y)) and g- ' ( y )  = p5(pj:'(y)). 

Hence the estimator of F, is 

p,(x) will be used in the second part of the method to generate the stan- 
dard deviations of the gene populations. 

Step 2. The second part of the method involves generating the conditional 
distribution of t l sd ,  and the first steps are the same as Steps a and b of the 
algorithm above: 
a. Generate a null distribution for the data by subtracting the sample means 

and dividing by the standard deviations. 
b. Resample from the null distribution of x and multiply each sample by a 

IT generated from p,(x). Repeat this 10,000 times and, in this way, obtain 
10,000 pairs of samples for 10,000. From each pair of samples, calculate 
a value for the pooled sample standard deviation and the two-sample 
t statistic, namely sg and t, for g = 1 , .  . . , 10,000. 

c. We estimate t ,(s,) using a quantile regression estimate for t, versus sq 
and estimate the regression quantile curve for the 1 - a quantile. A crude 
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but effective way to estimate the quantile curve is to split the 10,000 
points into 100 groups of 100 points sorted by sy and calculate the 1 - CI 
quantile for each group. We call it f ( , )  and calculate the group medians 
for sq, and call it s(,) j = 1, .  . . , 100. Then we estimate t,(sg) by fitting a 
smoother such as lowess or a smoothing spline to t(,) versus qf). To esti- 
mate the quantile function, it is recommended to take the log of t(f) and 
s(,) first and then to estimate the quantile function. 

CT for Case 3. Now assume that (T and p are not independent. The main dif- 
ficulty is that instead of estimating the distribution of (T alone, we must now 
obtain and estimate the joint distribution of (T and p. Conceptually this is not a 
problem, but computationally it requires using two-dimensional smoothers and 
inverting two-dimensional functions. 

The first part of the procedure is more complicated than for case 2 because 
we need to invert a function h : R 2  ----t R2. We can assume that h is continuous 
and differentiable, and y has to be one to one in order to have a well-defined 
inverse h-'.  

The second part of the procedure in case 2 can be replicated for case 3, with 
the exception that og and pg are sampled from their joint distribution. As in 
case 2 we estimate the cutoff, r,(sp), from the joint distribution of t ,  and sp by 
conditioning on sp. Moreover it is also possible to estimate the cutoff con- 
ditioning also on the overall sample mean, fa(ss,Xp). 

It is easy to see that the overall error rate of the CT procedure is LY. Let s and 
t be the random variables representing the pooled variance estimate and the 
t statistic for a randomly selected gene. Let f'( t ,  s) be the joint probability density 
function o f t  and s. This is a mixing distribution, since s has a distribution that 
depends of the gene. The CT procedure consists of rejecting a null hypothesis if 
f > h(s)  and conditioning on s the probability of type one error is a. The fol- 
lowing calculation shows that the overall unconditional probability of type one 
error is also a: 

f (  t ,  S )  dta ds = LY f (  t ,  s) dt ds = LY. 

Example. Figure 7.10 shows a comparison between the pooled standard 
errors of the genes and three distributions: x distributions with 0.5, 2, and 6 
degrees of freedom. If the assumption of equal variances was true (and the 
genes were all independent of one another), we would expect that the pooled 
standard errors would be approximately proportional to a x distribution with 
6 degrees of freedom. Instead, they appear to be closer to a x distribution 
with 0.5 degrees of freedom. Such a large difference strongly suggests that the 
gene variances are heterogeneous. Therefore we apply the CT method for case 



126 

10001 

2. u 

L 4 ; _1 
200 

0 

E7 Data 

" 

1 

TWO-GROUP COMPARATIVE EXPERIMENTS 

Case 1 
n 

Case 2 Case 3 

I I I I I I I I I I 1  
0 1 2 3 4  0 1 2 3 4 5 6  

SP SP 
( a )  

Figure 7.10 (a) A histogram of the pooled standard errors for the genes is compared to three dis- 
tributions. Case 1: Chi-square with 0.5 degrees of freedom. Case 2: Chi-square with 2 degrees of 
freedom. Case 3: Chi-square with 6 degrees of freedom. (h) Quantile-quantile plots of the pooled 
standard errors for the genes versus three distributions. Case I: Chi-square with 0.5 degrees of 
freedom. Case 2: Chi-square with 2 degrees of freedom. Case 3: Chi-square with 6 degrees of free- 
dom. 

2. The curves in Figure 7.1 1 represent the proportion of significant genes 
reported by the CT procedure using the method for case 2. It is clear that the 
CT method greatly reduces the dependence of the significance of the t statistic 
on sq. Although SAM does an exemplary job of correcting the problem at the 
low range of sy, it is not clear that a simple constant correction will produce a 
homogeneous t across the whole range of sg values. The CT approach is a more 
direct means despite its call for more assumptions. It should produce, in gen- 
eral, a more homogenous result. 

7.12 BORROWING STRENGTH ACROSS GENES 

Inferences drawn from experiments with little replication can be terribly 
unreliable and nonreproducible. Largely this is because the fewer the number of 
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samples used in an experiment, the less precise the variance estimates are. 
Using the signal-to-noise analogy, without a reasonable estimate of “noise,” it 
becomes difficult to separate the “signal” from the “noise.” 

This is of particular concern with microarray experiments as they are noto- 
rious for having few true replicates, particularly biological replicates. Statistical 
inferences reached purely on an individual gene basis could be driven by weak 
variance estimates and may not be particularly trustworthy. On the other hand, 
even if a microarray experiment has only a few replicates, there is always data 
on a large number of genes. Thus an appealing idea for improving inferences 
from microarray experiments is to “borrow strength across genes.” 

7.12.1 Simple Methods 

The simplest approach is to assume that every gene has the same variance and 
then estimate that variance as the average variance across all the genes: 



128 TWO-GROUP COMPARATIVE EXPERIMENTS 

1 

I I I 

0.2 0.4 0.6 0.8 1 .o 
Pooled Sd 

Figure 7.11 
a = 0.05,0.01,0.001 versus the pooled standard errors. 

Proportion of significant genes producted by the conditional I method for values of 

Amaratunga and Cabrera (2001b) describe such a situation, although they use 
a different approach. 

However, rarely is it the case that all genes have the same variance. More 
often, the variance tends to be high for genes whose expression levels are high, 
low for genes whose expression levels are low, and variances of genes whose 
expression levels are similar to one another tend to be closer than genes whose 
expression levels are very different from one another. In this case it is reason- 
able to assume that oil = f ( p u , , ) ,  where f is a smooth continuous function. So 
we can fit the model 

using a semiparametric smoothing procedure such as lowess or a spline 
smoother, and take the fitted value as $3, 

Another approach on the same lines is to use as s,$ the local average of the 
standard deviation for genes showing similar expression levels as gene g. To 
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do this, first order all the genes within a treatment group according to their 
average expression levels. Then consider the given gene and the k next higher 
expressing genes and the k next lower expressing genes. Take the average of the 
standard deviations of these 2k + 1 genes as 

Using either si, or s i2 may produce an overly smooth estimator of a:. This 
can be remedied by estimating 05 by a composite estimator that is a weighted 
combination of the observed variance of the gth gene and the smoothed vari- 
ance estimate: 

u; =as; + ( 1  - or 

Doing this results in increased precision for variance estimates, and thus in- 
ferences are made more trustworthy. However, the question remains, how to 
choose A? 

7.12.2 A Bayesian Model 

Baldi and Long (2001) present a formal development of modeling the (,u,u2) 
dependence by casting it in a Bayesian framework. They begin by assuming 
that the data has a normal distribution, so that for a particular gene in a par- 
ticular group 

where, for simplicity, we have omitted the subscript g for gene and j for group. 
Let X and s2 denote the sample mean and sample variance for this gene in this 
group. 

Following fairly standard Bayesian practice, the variance parameter, the 
prior distribution of ,u and o2 is defined in two parts as follows: a: is taken to 
follow an inverse gamma distribution while, given a:, the mean parameter ,us is 
taken to follow a normal distribution: 

This formulation corresponds to a conjugate prior. A bonus is that the resulting 
joint prior distribution of (,u,a2) forces p and o2 to be dependent, as can be 
observed in many microarray experiments. 

Applying Bayes’s theorem, followed by some algebraic manipulations, we 
can obtain the posterior distribution: 
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2 2 Aon 2 vno,Z = vooo + ( n  - 1)s + - (X - P O )  
10 + n 

Observe that the parameters of the posterior distribution combine information 
from the prior and the data. The posterior mean is a weighted average of the 
prior mean and the sample mean. The posterior degrees of freedom is the prior 
degrees of freedom plus the sample size. The posterior sum of squares is the 
prior sum of squares plus the sample sum of squares plus the residual uncer- 
tainty due to the discrepancy between the prior mean and the sample mean. 

The prior mean is usually set to the sample mean: po = X so that pn = X. The 
mean of the posterior distribution is 

provided that vo + n > 2. 
Baldi and Long (2001) use a simple rule of thumb to assign a value to vo. 

They assume that a minimum of K points are necessary to adequately estimate 
a standard deviation (they use K = 10, but Tukey has made persuasive argu- 
ments that K = 30) and choose wo so that vo + n = K .  

These values are then plugged into the f test statistic. 

7.13 TWO-CHANNEL EXPERIMENTS 

Consider a two-channel microarray experiment whose objective is to compare 
two types of samples, A1 and A2. Suppose that there are K microarrays and 
that on each microarray there are two channels, one channel corresponding to 
A1 and the other channel corresponding to A2. Let KGk be the log-transformed 
and normalized spot intensity level for gth gene and the channel of the j th  
array that corresponds to sample type A k ;  here = I , .  . . , G, j = I , .  . . , n, and 

The value Y,, = XqJl - X#2 is the difference in the log expression level 
between the two channels in the j th  sample for the gth gene (or equivalently the 
log of the fold change between the two channels); Fg = cy=I Ygj/n is the mean 

k = 1,2. 
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and VY = Cy=,( Y,, - F,)'/(n - 1) is the variance of the { Y,} values for the 
yth gene. 

7.13.1 

The paired sample t test statistic for testing for differential expression 

The Paired Sample t Test and SAM 

- 
V 

If the data is drawn from a normal distribution, the null distribution 

is 

of T,, is a 
t-distribution with degrees of freedom v = JZ - 1. If the observed value of -Tq is 
T4,"b.%, then the p-value is given by the probability pcI = Prob(lT,( > T4.0hs). A 
gene is declared significantly differentially expressed at level of significance c1 if 
PY a. 

As described in Section 7.10 for the two-sample t test, the paired sample f 

test can also have the problem that, with small samples, that the t test statistic 
tends to be highly correlated with the standard error term appearing in its 
denominator. This results in a high false positive rate for genes whose variabil- 
ity is low and a high false negative rate for genes whose variability is high. The 
SAM modification to the t statistic described in Section 7.10.1 can also be used 
here. The modified SAM t statistic is 

where the fudge factor c is estimated as described in Section 7.10.1. The rest of 
the procedure then proceeds as described there. 

7.13.2 Borrowing Strength via Hierarchical Modeling 

Several authors (Lee et al., 2000; Efron et al., 2001; Newton et al., 2001; Pan 
et al., 2002; Lonnstedt and Speed, 2002) have proposed various ways of bor- 
rowing strength across genes via Bayesian hierarchical modeling. These con- 
structions begin by assuming that some unknown proportion, p ~ ,  of the G 
genes are actually differentially expressed. For those genes, the indicator vari- 
able ZY = 1 while, for the rest, I ,  = 0. The question is to determine, based on 
the data, which genes are the most likely to truly have Iq = 1. 

A mixture model is developed as follows: Suppose that p~ is the probability 
that gene g is differentially expressed and that f ~ ( y )  and f ~ ( y )  denote the 
probability density functions of Y, for genes that are differentially expressed 
and not differentially expressed respectively. Then 

is the probability density function for the mixture distribution of Y,. 
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Lee et al. (2000) assume a normal distribution for Y,, for each g, the various 
components of the mixture model can be estimated using, for example, the EM 
algorithm (Dempster et al., 1977). 

Lonnstedt and Speed (2002) similarly assume that Ysu. - N ( p g , o i ) .  In the 
prior distribution, genes having no previous evidence of effects are considered 
exchangeable, making the posterior mean effect for each gene borrow strength 
from the observed effects of the other genes. Thus a large observed effect of 
a gene will be shrunk toward zero in the posterior mean when the gene is 
exchangeable with other genes that have mostly small observed effects. Candi- 
date genes, for which there is some prior evidence for an effect, will be treated 
separately. 

Following fairly standard Bayesian practice as before (Section 7.3.2), the 
variance parameter, c$, is taken to follow an inverse gamma distribution while, 
given oi, the mean parameter pg is taken to follow a normal distribution: 

( 0  if Iq = 0, 

This formulation implies a correlation between the difference in means and the 
variance for those genes that are differentially expressed. 

Applying Bayes’s rule, we can work out the log posterior odds for the gth 
gene to be differentially expressed: 

Prob(Zg = 0 1 M a )  I ’ Prob(!, = 1 I M d )  
By = log 

which works out to 

The By values provide a ranking of the genes with respect to the posterior 
probability of each gene being differentially expressed. 

Generally, it is impossible to estimate simultaneously all the four parameters 
p ,  u, u, and c. To circumvent this problem, p is fixed at some prespecified value. 
Then u and u are estimated by the method of moments, while c is estimated 
from the top proportion of genes. 
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Another approach to this problem is given by Newton et al. (2001) based on 
the model given in Section 6.3. 

SUPPLEMENTARY READING 

Many basic statistical textbooks ( e g ,  Triola, 2001, 2002) describe the funda- 
mentals of statistical hypothesis testing. Cox and Hinkley (1974) presents a 
more advanced philosophical discussion. 

EXERCISES 

7.1. Consider the following subset of data related to four genes, G1, G2, G3, 
G4. Their expression levels (log transformed and normalized) in four con- 
trol tissues C1, C2, C3, C4, and four test tissues, T1, T2, T3, T4, are 
shown below: 

c1 c2 c3 c4 T1 T2 T3 T4 

G1 9.011 9.064 9.067 9.008 8.944 9.087 8.963 9.074 
G2 10.556 10.373 10.657 10.336 10.101 10.073 10.095 11.273 
G3 11.967 12.014 11.757 12.101 11.604 11.782 11.503 11.861 
G4 10.211 10.282 10.284 10.087 10.104 9.981 10.131 10.473 

a. Are any of these genes significantly differentially expressed in test tissue 
versus control tissue if the investigator decides to regard twofold or 
greater-fold changes as significant. 

b. Use a two-sample t test at the 5% level (two sided) to test whether any 
of the genes are significantly differentially expressed in test tissue versus 
control tissue. 

c. Repeat part b using Welch’s test. 
d. Repeat part b using the Mann-Whitney-Wilcoxon test. 
e. Repeat part b using the robust t test. 
f. Repeat part b using a permutation test with the difference in medians as 

test statistic. 
g. For each gene, examine the residuals to check whether any observa- 

tions can be considered outliers. Observe that there are two extreme 
outliers. Remove them and repeat parts a to f. Do any conclusions 
change? 

7.2. Golub et a]. (1999) (data available online) compared the gene expression 
profiles of 11 AML patents with that of 27 ALL patients. 
a. What method did the authors of this article use to select 50 genes? 
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7.3. 

b. Determine which genes are statistically significantly differentially ex- 
pressed in AML versus ALL using (i) t test (ii) Welch’s test (iii) robust t 
test (iv) SAM test (v) Wilcoxon Mann Whitney rank sum test, with and 
without a Bonferroni adjustment for multiplicity. Compare these lists 
with each other and the list obtained by the authors of the article. 

c. Determine the pFDR for each of the unadjusted tests in part b. 

The dataset data7. txt in the library DNAMR contains eight biological 
samples representing the expression levels for cell tissue for eight rats. 
Four of the rats are treated with a drug and the other four are treated with 
a placebo. 
a. Calculate the mean, variance, and t test statistics for each gene, and 

construct the following plots for this data: cube root variance versus 
mean (average across groups), t test statistics versus mean, t test statis- 
tics versus cube root variance. Do you observe any volcano effect in 
your graph? Produce a list of significantly expressed genes. 

b. Use the SAM methodology. Compare the four SAM strategies sug- 
gested in Section 7.10.3, and choose an appropriate value for A. Pro- 
duce a list of differentially expressed genes that comes out for your 
choice of A, and report the pFDR and the expected number of false 
discoveries. 

c. Using the functions included in the DNAMR library for R/SPLUS, deter- 
mine the significant genes using the conditional t method. Finally, 
compare this list with the previous lists from parts (a) and (b) and try to 
reach a conclusion as to which genes are differentially expressed. 
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Model-Based Inference and 
Experimental Design Considerations 

Over the years a significant number of applied statistics problems have been 
successfully solved by, either directly or indirectly, applying statistical linear 
modeling techniques. Therefore it is not surprising that this workhorse of 
mainstream applied statistics has been tried and found to be useful for analyz- 
ing comparative microarray experiments as well. In addition to being of prac- 
tical value for analysis, these models also provide a constructive framework 
upon which to reflect on what experimental designs might be appropriate for a 
proposed microarray experiment, an essential, but often sadly neglected, aspect 
of any research endeavor. 

The literature on this topic is growing gradually. Kerr and Churchill (2001a, 
2001b) and Kerr et al. (2000, 2002) are “early” references on the application of 
linear modeling techniques for the analysis of data from multichannel cDNA 
microarrays. They also advocated the application of sound experimental design 
principles to microarray experimentation and proposed various innovative 
designs for multichannel cDNA microarray experiments. Churchill (2002) and 
Yang and Speed (2002) are more recent reviews of this work. Wolfinger et al. 
(2001) proposed a two-stage approach for fitting linear models, including 
mixed effect models. Chu et a]. (2002) discuss linear models for oligonucleotide 
array experiments. 

Here we will review some of the statistical models that have been used for 
analyzing microarray data. Obviously the model that one would consider using 
in a particular circumstance depends entirely on the experimental design of the 
situation, and because it would be far too space-consuming to cover a large 
range of situations, we will focus only on some common ones. Experimental 
design issues will also be addressed. 
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8.1 THE F TEST 

Consider a simple comparative microarray experiment whose objective is to 
investigate how genes express differentially across a single factor, V. The fac- 
tor might represent treatments, tissue types, times, or something else. Follow- 
ing Kerr and Churchill (2001a, b), we will use the generic term “varieties” to 
refer to them. Let Y,, be the suitably transformed and normalized expression 
level measurement for the gth gene (9 = 1,  . . . , G) in the j th microarray ( j  = 
1 , .  . . , JL) assigned to variety i ( i  = 1 ,  . . . , I ) .  Let N = Cf=l J,  denote the total 
sample size. 

The simplest approach is to model the data for each gene separately as 

where pg represents the average signal for the gth gene, KY represents the 
additional signal due to the effect of the ith variety on the gth gene, and E , ~  

represents an error term that subsumes all sources of variability not accounted 
for by the terms in the model, including random noise. The traditional 
assumption is that the { E ~ ~ }  are independently and identically distributed as a 
normal distribution with mean 0 and variance oi, which we write as eyll - 
NID(0,o;). 

This model is fitted for each gene using ordinary least squares, and statistical 
theory shows that the estimates so obtained have several desirable optimality 
properties. The primary hypothesis of interest, whether the gth gene is differ- 
entially expressed across the varieties (i.e., whether V,, = 0 for all i), can be 
tested for statistical significance via an F test. This type of approach is called 
unulysis of vuriunce (ANOVA). 

The F test statistic for testing whether the gth gene is differentially expressed 
across the varieties involves the mean square umong varieties, 

and the mean square error, 

where j ,  = c,?, y,/J, is the mean of the ith group and p = C,’=, E;:, y , / N  is 
the overall mean (the subscript g has been omitted from all the equations for 
simplicity). The F test statistic, 
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is the average squared difference in intensities across the varieties, as measured 
by M S (  V ) ,  relative to the variability or “noise” in the observations, as mea- 
sured by M S ( E ) .  Under the null hypothesis of no difference in intensities across 
the varieties, both MS( V )  and M S ( E )  are estimates of the error variance ~ y ’ ,  
so that their ratio, F, is close to unity and is distributed as a F distribution with 
I - 1 and N - I degrees of freedom. When there are differences among the 
varieties, MS(  V )  would generally be substantially larger than M S ( E )  and F 
would generally be substantially greater than unity. The larger the value of 
F, the greater is the weight of evidence against the null hypothesis. If the 
observed value of F is FobJ, then the p-value is given by the probability p~ = 

Prob(F > Fobs). A gene is declared significantly differentially expressed at level 
of significance ct if p~ < a. 

Example. Experiment E8 was conducted to study the gene expression profiles 
of mice in response to a particular drug. Nine mice were treated with the drug 
and 1 hour, 2 hours, and 3 hours after treatment, three mice were randomly 
sacrificed and mRNA from their liver was harvested. In addition there were 
three control mice to provide 0 hour information. A dozen microarrays (one 
for each mouse) containing 2004 genes were challenged with the mRNA and 
intensity data collected. The F test was applied for each gene separately, and 
335 were found to be significantly differentially expressed across the four treat- 
ments. When a Bonferroni correction was applied, only two genes were found 
to be significantly differentially expressed across the four time points. 

The F test is an extension of the t test that can be applied when I 2 2. When 
I = 2, the F test is equivalent to the usual two-sample t test based on To 
described in Section 7 . 3 .  With very small sample sizes, the F test statistic, like 
the t test statistic, tends to be highly correlated with the mean square error term 
that appears in its denominator, causing it to pick up significant findings at a 
higher rate from amongst those genes with Iow variance than from among 
those genes with high variance, resulting in a high false positive rate for genes 
whose variability is low and a high false negative rate for genes whose vari- 
ability is high. 

In the SAM approach of Tusher et al. (2001), the F test statistic is regular- 
ized to adjust for this effect as follows: 

where c is a fudge factor whose value is estimated as for the t test statistic as 
described in Section 7.4 to reduce the dependence of F ( c )  versus c. 
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8.2 THE BASIC LINEAR MODEL 

In a simple comparative microarray experiment whose objective is to investi- 
gate how genes express differentially across a single factor, varieties V,  there are 
three effects or factors-varieties ( V ) ,  arrays ( A ) ,  and genes (G)-that could 
potentially influence the expression level measurements { Yyo}, where Yyo is the 
suitably transformed and normalized expression level measurement for the gth 
gene (g = 1 , .  . . , G) in the j th  microarray ( j  = 1 , .  . . , J , )  assigned to variety i 
( i  = 1, .  . . , I ) .  Therefore it is reasonable to try to formulate a model that 
describes the relationship between Yqr, and these three effects and their inter- 
actions or some subset of them. We can use the platform of this model to esti- 
mate the extent of the influence of each effect and to assess how significant it is. 

Before we write down a model, it behooves us to think about what effects 
we ought to include in it and what effects, if any, it may be acceptable, or even 
necessary, to exclude. The obvious candidates for any model are the main 
eflects: 

An array effect, A ,  would account for overall differences in expression level 
measurements among the arrays after the effects of all the other factors in 
the model have been removed. If the normalization effort was successful, 
the array effect should be fairly small. 
A gene effect, C, would account for differences among the average expres- 
sion level measurements across the multitude of genes. Such an effect 
transpires due to many causes. For example, the facts that some genes 
have higher natural expression levels than others, some sequences tend to 
be labeled more efficiently than others due to factors such as sequence 
length and sequence composition, and some genes tend to hybridize more 
efficiently than others. 
A variety effect, V, would account for differences in expression level 
measurements if some of the varieties are substantially higher or lower 
overall than others. 

Then there are the various two-factor interaction Cects: 

A variety-gene interaction effect, VG, would account for how a gene 
expresses differentially across the varieties. Given a particular gene g, if 
any one of the ( VG)gi terms is larger than the others relative to the under- 
lying variability, it means that that particular variety is inducing a higher 
level of expression than the other varieties. Clearly, contrasts among the 
(VG) , , ,  for each g, are the quantities of greatest interest in comparative 
microarray experiments. 
An array-gene interaction effect, AG, would account for the variability of 
a spot across the arrays averaged over all the spots. This effect would be 
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observed if the concentration or amount of DNA spotted on the micro- 
arrays varies from array to array. 
A variety-array interaction effect, VA,  would account for variability across 
the varieties for arrays. This effect, however, is not estimable as each array 
contains only a single variety. 

The simplest additive linear model that can be fitted to all the genes simul- 
taneously involves the factors V, A ,  G, and V G  

Here p represents the average signal across the whole experiment, and the 
errors eyr, are independently and identically distributed as a normal distribution 
with mean 0 and variance r s 2 :  ty,, - NID(0,  02). The model is fitted using ordi- 
nary least squares, and hypotheses of interest, such as whether each gene is 
differentially expressed across the varieties, can be tested for statistical signifi- 
cance via F tests. 

With microarray data, it is possible that none of the assumptions of nor- 
mality, independence, and homoscedasticity hold: 

* Nonnormnlity. Empirical evidence seems to indicate that it is reasonable 
to assume that the error distribution is symmetric and normal-like (i.e., 
bell-shaped) in the middle. The problem is in the tails. For one thing they 
tend to be quite heavy (see Chapter 7), and except for very well-behaved 
experiments, there tend to be a handful of extreme outliers that could 
damage some estimates severely. In addition there is a truncation effect at 
very high gene expression levels as a result of saturation. 
Lack o j  independence. Genes rarely express in isolation but rather along 
biological pathways. Therefore it would be wrong to assume that the 
expression levels of the genes in the experiment are totally independent of 
one another. On the other hand, it is impossible to model any aspect of the 
gene correlation structure in advance and the size of the samples used in 
typical microarray experiments just does not permit it to be inferred from 
the data. Therefore, generally, the best one can do is to assume indepen- 
dence and hope that it does not affect the properties of the test too much. 
There is good reason to believe that this might be the case. Followup 
analyses, such as cluster based methods can then address the lack of inde- 
pendence should it remain a concern. 

* Ht.terciscedusticit~, In some microarray experiments it can be observed 
that all the genes appear, perhaps after a transformation, to have the same 
variance; in these instances it is fine to assert that cyij - ( 0 , ~ ’ ) .  However, 
in most microarray experiments, it appears to be the case that those genes 
that exhibit high expression levels also tend to exhibit high variances, and 
vice versa; in these instances it is more appropriate to write E,V ‘c. (O,ai), 
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which postulates a gene-specific variance. In fact it may even be appropri- 
ate, in some situations, to write cgij - (0, oii) to cover the eventuality that 
if gene g is differentially expressed across the different varieties i, that it also 
has different variances across the varieties. In some instances it may be 
better to model the variance to level relationship explicitly by 09’ = f( p g )  
or oji = f ( p g i ) ,  where pg  denotes the true overall mean expression level of 
the gth gene and pgi denotes the true mean expression level of the gth gene 
in the ith variety. 

8.3 FITTING THE MODEL IN TWO STAGES 

There is a natural categorization of the effects in a microarray experiment into 
gene-speczjic effects (effects involving G)  and global effects (effects not involving 
G). These two sets of effects are orthogonal to one another; that is, they are 
statistically independent of one another and the effect of one does not mask nor 
interfere with the other. 

Motivated by this categorization and the computational and statistical dis- 
advantages associated with fitting a linear model in one giant step, Wolfinger et 
al. (2001) suggested breaking the fitting down into two stages, essentially fitting 
two submodels, one submodel to the global effects (they call this the normal- 
ization model) and one submodel to the gene-specific effects (they call this the 
gene model). 

The normalization model 

is fitted first and serves to adjust the data for the global effects that otherwise 
could bias the gene-specific inferences. The array effect could be regarded as a 
random effect. There are no gene-specific effects in the model. The error term 

In the second stage, the residuals, R,g, from the normalization model are 
regarded as gene expression level measurements that have been centered and 
normalized for extraneous effects and used as input to the gene model: 

sgg - (0 ,Oi) .  

where the error term egg - ( O l d ) .  
In principle, the two-stage fit and the one-stage fit should produce results 

that are close, if not identical, to each other, since the effects being fitted in the 
normalization model are orthogonal to the effects being fitted in the gene 
model. However, this is not exactly the case as the residuals, Rgi,, are generally 
slightly correlated to one another. Nevertheless, this effect should be small, and 
in practice, there should be little difference between the two sets of results. 



EXPERIMENTAL DESIGN CONSIDERATIONS 141 

There are a few key advantages to the two-stage process: 

It is computationally much less demanding. 

heteroscedasticity by letting tYii - (O,.,'). 
When fitting the gene model, it is possible to accommodate gene-specific 

The first fit residuals, can be used as input to clustering. 

8.4 MULTICHANNEL EXPERIMENTS 

In multichannel experiments, in addition to the effects mentioned in Section 
8.1, there is a global effect due to dye (D) .  Some dyes tend to produce con- 
sistently higher fluorescent signals compared to other dyes. Therefore, when 
modeling such experiments, a dye main effect that measures the overall effect 
of dye-to-dye variability on expression level measurement should be included 
in the model. Now let Yqi)k denote the suitably transformed and normalized 
expression level measurement for the gth gene with the kth dye in the jth 
microarray representing variety i. Including the dye effect in the model, we can 
model this situation as 

y . .  - 
ggk - P + V,  + Aj + D/i + Gg + (VC),, + " ; j .  

To account for spot-to-spot variation, we can add a term AC: 

y . .  - 
gq - CL + C: + Aj + Dk + Gg + (VG)  Y' + ( A G )  gj . + %ii. 

In addition, to account for the possibility that dyes might be interacting with 
genes, we can add a dye-gene interaction effect D G  

Yyo = P + V ,  + Aj + Dk + Gg + (VG),; + ( A G ) ,  + (DG),, + 

8.5 EXPERIMENTAL DESIGN CONSIDERATIONS 

Most experiments involve studying how a variable of interest is affected by a 
series of factors. The design of such an experiment refers to the assignment of 
samples over the levels of the various factors. For microarray experiments the 
variable of interest is the expression level of a gene and the experimental design 
refers to the assignment of samples over the levels of factors such as variety and 
dye. The number of replicates to use for the various different types of replica- 
tion is also an experimental design consideration. 

8.5.1 

We will commence our discussion with multichannel microarray experiments, 
where the scope for improving inference by applying principles of classical 
experimental design is most apparent. 

Comparing Two Varieties with Two-Channel Microarrays 
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DESIGN D1 ARRAY A,  

The following simple example can be used to illustrate some of the key 
points to keep in mind when designing a microarray experiment. An experi- 
menter is planning to perform a DNA microarray experiment to compare the 
effects of two varieties A and B, and intends to use two two-channel cDNA 
microarrays, A1 and A2. We will call the two channels R and G to represent 
the two dyes, red and green, that are most often used. There are four obvious 
designs: 

ARRAY A2 

DESIGN D2 

Channel R 

I Channel R I A 1 B I  

ARRAY A1 ARRAY A 2  

A A 

Channel R 

Channel G 

I Channel G I B I B I 

A B 

REF REF 

Channel R 

Channel G 

1 DESIGN D4 1 ARRAY A t  1 ARRAY A 2  1 

In design DI, array specific effects are confounded with variety effects in that 
if a gene is differentially expressed in A I  versus A2, it will be impossible to 
know whether to attribute it to array or to variety. Thus it is better to avoid 
this design if possible. Of course, with single-channel arrays, this aspect is 
unavoidable. Incidentally, in experimental design parlance, arrays are essen- 
tially experimental blocks with as many levels as there are channels; in two- 
channel experiments, they are blocks of size two. 

In design D2, dye-specific effects are confounded with variety effects. Since it 
is known that sizable dye effects are possible, some care must be taken if using 
this design. 

In design D3, the dyes assigned to the two varieties in the first array are 
switched in the second array. This modification makes it possible to separate 
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DESIGN 

Channel R 

out both array-specific effects as well as dye specific effects by fitting the model 

ARRAY ARRAY A2 ARRAY A3 ARRAY A4 

A1 B1 A2 BZ 

= P + K + A ,  + Dk + Gy + (VG),, + ( A G ) ,  + (DG),, + E ~ ~ ,  

Channel G 

or one of the other smaller models mentioned above. In the two-stage modeling 
approach, the normalization model would be 

BI At B2 A2 

with each of the effects having one degree of freedom. The gene model would 
be 

For obvious reasons this type of design is called a dye-swap design or dye-flip 
design. While there is a clear advantage to dye-swap designs, they do require 
some extra effort on the part of the experimenter because each sample has to be 
labeled with both dyes. 

If there are biological replicates, it is advisable for the dye-swap design to be 
applied to each pair of biological replicates, giving rise to the replicated dye- 
swwp design: 

Here A; refers to the ith biological replicate given variety A and Bi refers to the 
ith biological replicate given variety B. 

Design 0 4  includes REF, a reference variety. It is useful to have such a 
variety to which hybridization results can be referred. However, if the primary 
objective of the experiment is to compare varieties A and B, it is not advisable 
to use this design. It is more efficient to make a key comparison directly on one 
array rather than indirectly via an intermediate comparison. 

8.5.2 Comparing Multiple Varieties with Two-Channel Microarrays 

Now suppose that an experimenter is planning a microarray experiment to 
compare the effects of several varieties-for illustration, say three varieties, A ,  
B, and C-and intends to use two-channel microarrays. Suppose that a refer- 
ence variety REF, of no intrinsic interest, is also available. Two possible de- 
signs are the reference sample design and the loop design. The reference sample 
design is as follows: 



144 MODEL-BASED INFERENCE AND EXPERIMENTAL DESIGN CONSIDERATIONS 

DESIGN D1 ARRAY A1 

Channel R REF 

ARRAY A 2  ARRAY AJ 

REF . REF 

In this design, dye effects are confounded with test variety versus reference 
variety effects, but since these are not of intrinsic interest, this is not a problem. 

The loop design was proposed by Kerr and Churchill (2001) as a natural 
extension of the dye-swap design: 

Channel G 

1 DESIGN D 2  1 ARRAY A1 1 ARRAY A 2  I ARRAY AJ 1 

B C A 

1 Channel R I A I B I C I 

DESIGN D 4  ARRAY A1 I ARRAY A 2  I ARRAY A 3  ARRAY A 4  

A dye swap could be included in the loop design to yield a saturated design: 

Channel G 

DESIGN 

Channel R 

Channel G 

A B C REF 

The reference variety could be included in the loop design if necessary: 

I Channel R I REF I A I B I C I 

The loop design has two clear advantages over the reference sample design. 
One is that the dye effect is estimable in the loop design. The second is that 
there is essentially double the amount of information in the loop design for the 
varieties of interest compared to the reference sample design. Loop designs are 
useful for temporal studies. In this case A ,  B,  and C would be three successive 
time points. 

However, despite their nice properties, there are some drawbacks to loop 
designs as well. One is that like dye-swap designs, they require some extra effort 
on the part of the experimenter because each sample has to be labeled with 
both dyes. However, doing so is also likely to introduce additional variability. 
Another risk, particularly with large experiments is this: microarray technology 
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is still fallible, and it is not uncommon to have a problem with an array. If this 
happens with a loop design and the defective array cannot be salvaged, there 
may be some difficulty in drawing proper conclusions from the study unless 
there was adequate replication. 

Now consider the situation in which one of the varieties, say A ,  is a control, 
and the goal of the experiment is to compare the other two varieties, B and C, 
to A .  As a general rule, if a painvise comparison is considered important, it 
is always advisable to have an array that represents that comparison in the 
design. Thus a sensible design for this situation is the comparison to control 
design: 

The general guidelines outlined above are applicable to complex settings as 
well. An example is Churchill and Oliver (2001), who apply them to propose an 
alternative design for a complex microarray experiment described by Jin et al. 
(2001) and involving three factors: strain, sex, and age. To establish a library of 
gene expression data or to compare many samples to one another, one could 
use two-channel arrays with a common reference sample or, provided the 
experiment is well under control, single-channel arrays. 

8.5.3 Single-Channel Microarray Experiments 

The experimental designs used in single-channel microarray experiments should 
also require careful consideration. For example, consider an experiment in 
which four treatments, A ,  B, C, D, are being compared. Each treatment is to be 
given to four animals. If the sample from each animal corresponded to one 
array, there would be 16 arrays in all, which we can refer to as A l ,  A2, A3, A4, 

B , ,  B2, B3, B4, CI, C2, C3, C4, Dl, D2, D 3 ,  D4. Suppose that the facility is a 
small one, so that at most four arrays can be performed in any one day. This 
means that the experiment has to be run over a period of four days. Assume 
that the experiment was run as follows: 

Day 3 I CI, Cz, G, C4 
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In this case, if there was a day effect (and such an effect has been observed 
in practice), then the treatment effect is totally confounded with day effect. 
Instead it is much better to run: 

In this design, day effects can be estimated and these estimates can be used to 
adjust the treatment-gene effects. 

8.6 MISCELLANEOUS ISSUES 

In general, it is advisable to adhere, as much as possible, to the fundamental 
precepts of the theory of design of experiments (DOE, for short): randomiza- 
tion, replication and balance. 

Randomization. Arrays should be assigned to varieties at random. 
* Replication. Replication was described in Section 6. I .  While the examples 

in this section have been shown with the minimum number of arrays pos- 
sible for illustrative purposes, it is always advisable to replicate as much as 
possible. 

* Balance. Ultimately the power of experimental design lies in been able to 
study many factors with few arrays, but doing so in such a way as to 
maximize the information content. One of the keys to this is proper statis- 
tical balance. An effect is babnced with respect to another if the first effect 
occurs equally often with the second effect. Balance confers orthogonality 
on the two effects and prevents an effect of interest being influenced by 
another effect. For example, by balancing varieties with dyes (i.e., by en- 
suring that each variety is labeled with each dye an equal number of 
times), the variety-gene interactions of interest are not biased by dye-gene 
interactions. This is particularly crucial when genes are not replicated on 
arrays, as in this case the dye-gene effect interaction would not be estima- 
ble and it would not be possible to adjust the variety-gene interaction 
for it. 

The more carefully planned an experiment is, the better the use that can be 
made of available resources. 
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ARRAY A1 ARRAY A2 ARRAY A3 ARRAY A4 

W W M M 

SUPPLEMENTARY READING 

Channel G 

There is an extensive literature on statistical linear models and statistical ex- 
perimental designs, dating back to Sir R. A. Fisher, a renowned geneticist and 
statistician who, motivated largely by problems that arose from agricultural 
experiments, pioneered work in these areas. Fisher (1951) remains, to this day, 
the best exposition of the philosophy behind practical experimental design. 
Cochran and Cox (1992) is another classical textbook on this topic. McCulloch 
and Searle (2001) is an up-to-date treatment of the theory of linear models. 

W M W M I 

EXERCISES 

DESIGN ARRAY A1 ARRAY A z  ARRAY A3 ARRAY A4 

Channel R W W M M 

Channel G M M W W 
- 

8.1. Consider only the 0, 1, and 2 hour data Experiment E8. 
a. Carry out gene-specific F tests to determine which genes are signifi- 

cantly differentially expressed across the three groups at the 5% level (i) 
without any adjustment for multiplicity (ii) with Holm’s adjustment for 
multiplicity. 

b. Calculate the FDR for the results in part a. 
c. For the analysis in part a, draw a scatterplot of log(MS( V ) )  versus 

log(MS(E)) .  Comment. 
d. Fit the linear models suggested in Section 8.2 to the data. Compare the 

results here with those in part a. 
e. Carry out gene-specific f tests to determine which genes are not sig- 

nificantly differentially expressed at 1 hour, compared to the control, 
but are significantly differentially expressed at 2 hours, compared to the 
control. Compare these genes with those picked out in part a. 

8.2. Lee et al. (2002) mention a two-channel microarray experiment that was 
run to compare two types of kidney tissue, wild type ( W )  and mutant 
( M ) .  The experiment had the following design: 
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DESIGN ARRAY A ,  ARRAY A2 ARRAY A 3  

Channel R A B C 

Channel G B C D 

8.3. Compare the loop design 

ARRAY A g  

D 

A 

DESIGN ARRAYAl  A R R A Y A ~  A R R A Y A ~  

Channel R A A B 

to the modijkd loop design also suggested by Kerr and Churchill (2001b): 

A R R A Y A ~  

B 

Channel G 
~ 

C D C D 
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Pattern Discovery 

Thus far we have been discussing statistical techniques for identifying those 
genes that are differentially expressed across a series of conditions. These anal- 
yses were essentially all conducted on a gene-by-gene basis. While there is little 
doubt that these analyses yield useful results, they do suffer from one basic 
shortcoming: they neither expose nor exploit the correlated patterns of gene 
expression displayed by genes behaving jointly, such as genes performing 
similar functions or genes operating along a genetic pathway. As a result 
they fail to make use of what should ideally be the full potential of multi-gene 
experiments. This can be resolved by applying multivariate analysis techniques 
to elicit more complex structures from microarray data. 

Multivariate methods can be used both for finding multivariate patterns in 
data (called pattern discovery or unsupervised classification or cluster analysis) 
and for predicting classes (called class prediction or supervised classijication or 
discriminant analysis). We will discuss pattern discovery in this chapter and 
class prediction in the next. 

9.1 INITIAL CONSIDERATIONS 

When taking a multivariate approach, it is customary in the microarray lit- 
erature to organize the data as a gene expression matrix, a G x p matrix, 
X = {x~, ,} ,  whose G rows and p columns represent, respectively, the G genes 
and p samples. Depending on the experiment, the p samples may correspond to 
p tissue types, cell lines, times, patients, treatments, experimental conditions, or 
something else. The values xy,  that make up the gene expression matrix could 
be either the measured gene expression level for the gth gene in the ith sample, 
suitably transformed and normalized, or, particularly in two-channel experi- 
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ments, the log of the ratio of the normalized gene expression level for the gth 
gene in the ith sample relative to its corresponding value in a reference sample. 

When it comes to analysis, there is a dichotomy of approaches. Depending 
on the goal of the analysis, the columns may be regarded as the variables and 
the rows as the observations, as in traditional multivariate statistical analysis, 
or the roles of the rows and the columns could be reversed. If the objective of 
the analysis is to identify groups of genes that have similar regulatory niecha- 
nisms, the columns (i.e., the samples) are regarded as the variables and the rows 
(i.e., the genes) are regarded as the observations. However, if the objective of 
the analysis is to classify the samples on the basis of their gene expression pro- 
files, the rows (i.e., the genes) are regarded as the variables and the columns 
(i.e., the samples), are regarded as the observations. In this latter case, not only 
is the notation diametrically opposite to traditional multivariate statistical 
analysis notation, but also unlike traditional multivariate statistical analysis, 
the number of variables, G, greatly exceeds the number of observations, p .  In 
contrast, almost all traditional multivariate data analysis methods were devel- 
oped with the expectation that the number of cases would exceed the number of 
variables. 

We will discuss both multivariate approaches in this chapter. However, to 
discuss methods of clustering genes in Section 9.2, we will use traditional mul- 
tivariate statistical analysis notation, namely the columns are the variables and 
the rows are the observations. In Section 9.3, where the goal is to summarize 
the information provided by a large pool of genes into a few variables that are 
more manageable, the genes are treated as variables and the samples as cases, 
contrary to classical statistical notation. 

In many applications, besides the gene expression data, there is also auxil- 
iary information available about the individual rows and/or columns. This 
information can be stored as couariates for the rows and/or columns. For 
example, we may know that the samples can be categorized as treatment or 
control, that they come from different patients (perhaps demographic infor- 
mation, such as age and gender, is also available), and that they are from dif- 
ferent tissue types. On the other hand, for some, if not all genes, we may have 
some information regarding their functionality; certainly their sequences will be 
available. In this chapter we discuss unsupervised methods that do not consider 
the covariate information directly in the analysis, although it may be used for 
interpreting the findings of the analysis. In the next chapter we will discuss 
supevuised methods that do take covariate information into account. 

The definitions of sample variance-covariance and sample correlation be- 
tween two genes were given in Section 5.5. These two definitions are applied for 
the definitions of the sample variance covariance and correlation matrices: 
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R =  

where srJ and r,{ is the sample covariance and correlation coefficients between 
the ith and j th  genes respectively. These two C x G matrices are of rank p - 1. 
Given the fact that in microarray experiments G is normally in the thousands, 
the dimension reduction methods described in Section 9.3 are needed. If 
we consider the gene expression matrix as a dataset where the genes are the 
observations and the samples are the variables then the dimension of the cor- 
relation and covariance matrices is p x p and, since p is typically much smaller 
than G, there is less of a problem with the dimensions (unless, of course, when 
p is very large). 

Exarnp/e. We will use a subset of the data of Khan et al. (2001) to illustrate 
the methods of this chapter. The dataset contains gene expression measure- 
ments, obtained using cDNA microarrays, from four types of pediatric small 
round blue cell tumors (SRBCT). Here we concentrate on the subset with 
types: rhabdomyosarcoma (RMS) and the Ewing family of tumors (EWS). 
This data was filtered to remove any gene that consistently expressed below a 
certain minimum level of expression, leaving expression data for 2308 genes 
(C = 2308). A subset of 43 cells is considered here (23 EWS, 20 RMS so 
p = 43). 

Working with 2308 genes is too many for the purpose of the illustrations 
that will be presented throughout this chapter. For this reason we will concen- 
trate in only 100 genes that were selected because they produced the highest 
t-values for comparing the means of the two groups of samples for each indi- 
vidual gene. The complete set will be described more thoroughly in Chapter 10. 

9.2 CLUSTER ANALYSIS 

Broadly speaking, cluster analysis, a significant branch of unsupervised learning, 
refers to a hodgepodge collection of algorithms and procedures. Cluster analy- 
sis has been developed over the years, and across a variety of disciplines, for 
organizing a given multivariate dataset into an assortment of clusters in such a 
way that the observations within each cluster are more or less similar to each 
other. 

As might be expected, cluster analysis was one of the first multivariate data 
analysis techniques employed for an analysis of microarray data (the seminal 
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paper in this regard is Eisen et al., 1998). There is a compelling argument for 
using cluster analysis for analyzing gene expression data. It is reasonable, after 
all, to expect that a set of genes operating in a particular genetic pathway 
would behave fairly similarly across a series of conditions. For this reason their 
expression levels are likely to be relatively highly correlated and, in a cluster 
analysis, should all fall into a single cluster. A cluster analysis will sort the 
entirety of genes (or a suitably selected subset of them) into a series of clusters 
in such a way that those genes that behaved the most similarly in the experi- 
ment will be members of the same cluster, while genes that behaved differently 
will be members of separate clusters. The hope, of course, is that genes per- 
forming similar functions or participating in the same genetic pathway would 
all congregate in the same cluster. 

The gene clusters generated by the cluster analysis can then be assessed in 
the context of known or putative genetic pathways, such as metabolic path- 
ways, gene families, and subcellular components, in order to deduce functional 
relationships. For example, if a gene is known to code for a particular enzyme, 
it can be mapped onto the reaction that is catalyzed by that enzyme. By ex- 
ploring constructs of all qualitatively feasible metabolic pathways from a set 
of biochemical reactions, inferences can be made regarding the pathway. As 
another example, in experiments involving normal and diseased subjects, the 
findings from a cluster analysis could lead to the discovery of a genetic pathway 
(or the disruption of one) that causes a disease. Of course, cluster analysis 
cannot reveal functionally related genes if they do not display similar expres- 
sion patterns or if they express with a time delay. Still, with technology having 
evolved to such a state that it is possible to array almost an entire genome onto 
a microarray, cluster analysis has emerged as one of the most valuable tools for 
gathering information about how genes work in combination. 

Both the statistics and data mining literature are replete with clustering 
methods that are mostly algorithmic in nature. Most clustering algorithms can 
be classified as being either hierarchical or partitioning. We will discuss these in 
the following sections. However, all clustering methods depend on either a dis- 
similarity or similarity measure, which quantifies how far, or how close, two 
observations (in this case, genes) are from each other. We will discuss such 
measures first. 

For the clustering approach, we treat the gene expression levels from a gene 
(i.e., the gene’s expression projile over the samples) as multivariate observa- 
tions. This does not mean that we cannot use clustering methodology when we 
believe that genes are treated as variables, but conceptually it is more rigorous 
to think of genes as multivariate observations in the remainder of this section. 

9.2.1 

Given data for two genes, g and h, with corresponding data xr/ = (xgj) and 
x}, =  XI^) (i.e., the gth and hth rows of X ) ,  a dissimilarity measure (sometimes 
referred to as a distance), D(.x,, XI,), is a statistic that states quantitatively how 

Dissimilarity Measures and Similarity Measures 
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dissimilar xg and xh are to each other. There are many choices for D and many 
of the better choices satisfy the following dissimilarity axioms: (1) D 2 0, (2) 
D = 0 if and only if xg = xh, (3) D gets larger the further xg and Xh are apart, 
and (4) D(xg,xh)  = D ( x f l , x g ) .  Some choices for D also satisfy either ( 5 )  the 
triangle inequality, D(x, ,  xh) I D(x , ,  x,) + D(x; ,  xh) or (6) the ultrametric in- 

The most widely used dissimilarity measure is the Euclidean distance, DE. 
&(xg, xh) is the geometrical distance between xy and xh in the p-dimensional 
space in which they lie: 

equality, D(x, ,  xh) I max(D(xg, x,), D(xh, x,)). 

DE satisfies all the dissimilarity axioms above but has the drawback that 
changing the column variances could substantially change the ordering of the 
distances between the genes and, as a result, change the clustering. Of course, 
one could hope that the normalization step would have relegated this to a non- 
issue by bringing the column variances into close alignment with one another. 
Otherwise, one way to reduce this effect is to divide each column by its stan- 
dard deviation or median absolute deviation. This gives the standardized Eu- 
clidean distance: 

However, some care is necessary when rescaling the data this way as it could 
also dilute the differences between the clusters with respect to the columns that 
are intrinsically the best discriminators. Skewness could also exacerbate the 
effect of scaling on the data. 

Two other dissimilarity measures that have been used for clustering are the 
Manhattan or city block distance, 

and the Canberra distance, 

Clustering can be also be based on similarities between pairs of observations 
rather than dissimilarities between pairs of observations. A measure of similar- 
ity, C(x,,xh),  between two objects, xy, XI*, must comply with the conditions: ( I )  
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C(x,,xh) = C(xh ,xg) ,  ( 2 )  C(x,,xh) I C(x,,x,) for all Y, h,  and (3) C gets 
smaller the further xY and Xh are apart. A similarity measure can be converted 
to a dissimilarity measure by the standard transformation (see Mardia, Kent, 
and Bibby, 1979): 

DC(Xq,Xh) = \ice x ,> x y ) + C ( X h , X h )  - 2C(Xh,X,). 

One popular example of a similarity measure is Pearson’s correlation coeffi- 
cient, R: 

R measures how linearly correlated {x,} and {xh} are to each other. It lies be- 
tween - 1 and +1 and, the closer it is to these values, the more linearly cor- 
related {x,} and {xh} are to each other, with negative values indicating nega- 
tive association. Values near zero connote the absence of a linear correlation 
between { xY}  and { xh} .  

R can be converted to a dissimilarity measure using either the standard 
transformation 

or the transformation 

Note that neither Dcl nor D c ~  quite satisfies the dissimilarity axioms. For 
instance, instead of axioms (2) and (3), Dcl = 0 if and only if x, and xh are 
linearly correlated (rather than if and only if x, = ~ h ) ,  and D c ~  increases 
toward its maximum value of one the less linearly correlated x~,  and xh are. 
Nevertheless, it is a useful measure to use with microarray data, as co- 
expressing genes could have expression levels that are highly correlated to each 
other despite how far apart their expression levels are. 

When the observations have a natural reference value, c, the observations 
may be centered at c rather than at the mean: 

For example, when clustering gene expression ratios’s rank and the observa- 
tions are log expression ratios, c = log,( 1) = 0 is a natural reference value. 

Spearmcrn’s runk correlution coejirient (see Section 5.6), which is the Pearson 
correlation coefficient calculated on the ranks of the data, measures closeness in 
terms of whether two observations are monotonically related to each other. 
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9.2.2 Guilt by Association 

When a set of genes is known to be associated with a disease (or other factor), 
discovering that there is a novel gene whose expression profile closely matches 
that of one of the known genes could prove to be a very valuable piece of 
information about the genetic pathway involved in the disease process. Besides 
assisting in better understanding of pathways, medical applications are also 
possible; for example, if the novel gene is one that is expressed earlier in the 
progression of the disease than any of the known genes, it could perhaps be 
used as a disease marker allowing for earlier diagnosis and treatment of the 
disease. Walker et al. (1999) call this concept guilt by association. 

Any of the dissimilarity or similarity measures mentioned in Section 9.2.1 
could be used for searching through a database of gene expression profiles that 
includes data for both known genes and novel genes. Thus, for example, if gene 
d is a known gene, any novel gene g that is such that R ( x d ,  x,,) is relatively very 
high, would be considered “guilty by association” and subjected to closer 
scrutiny to assess its involvement in the disease process. 

On the other hand, since many genes tend to express only under specific cir- 
cumstances, it is possible that these measures would be dampened by the many 
genes that are not expressed. Also, when the database has been derived from 
diverse sources, there may be some doubt as to whether the data are directly 
comparable. For these reasons it may be preferable to dichotomize the data 
(i.e., transform them to a binary variable that is set equal to 1 if the gene is 
expressed and 0 otherwise) and use the log odds ratio or the Fisher exact test 
(Agresti, 2002) as a measure or test of association. 

The premise underlying guilt by association is that functionally related genes 
would display very similar expression patterns. This has been demonstrated to 
be true to some extent as, for instance, when they are co-regulated by common 
transcription factors. However, in other instances they may not necessarily 
display similar expression patterns, and conversely, genes having quite different 
functions may exhibit similar expression patterns simply due to chance. Thus 
some care is necessary, particularly in view of the large number of correla- 
tions being estimated, that a novel gene with an expression profile that, just 
by chance, happens to look correlated to that of a known gene, is not in- 
advertently found “guilty,” and vice versa. 

9.2.3 Hierarchical Clustering 

Hierarchical clustering (Sokal and Michener, 1958, is an often cited early ref- 
erence, but not the earliest) is one the most widely used clustering methods. I t  is 
not surprising that some of the key developments in this area, such as Eisen 
et al. (1998) and Alizadeh et al. (2000) utilized hierarchical clustering method- 
ology. Hierarchical clustering methods can themselves be classified as being 
either bottom up or top down. 

Bottom-up clustering (also known as ayglomeratiue hierarchical clustering) 
algorithms are initiated with each gene situated in its own cluster. At the next 
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and subsequent steps, the closest pair of clusters is agglomerated (i.e., com- 
bined). In principal, the process can be continued until all the data falls into 
one giant cluster. 

Whenever two clusters are agglomerated, the distances between the new 
cluster and all the other clusters are recalculated. Different hierarchical clus- 
tering schemes calculate the distance between two clusters differently: 

In complete linkage hierarchical clustcring (or farthest-neighbor clustering), 
the distance between two clusters is taken to be the largest dissimilarity 
measure between any two members in different clusters. 
In single linkage hierarchical clustering (or nearest-neighbor clustering), the 
distance between two clusters is taken to be the smallest dissimilarity 
measure between any two members in different clusters. 
In average linkage hierarchical clustering, the distance between two clusters 
is taken to be the arithmetic mean of the dissimilarity measures between all 
pairs of members in different clusters. 
In centroid clustering, the distance between two clusters is taken to be the 
dissimilarity measure between the cluster centers. 
In Ward’s clustering, the distance between two clusters is taken to be the 
sum of squares between clusters divided by the total sum of squares, or 
equivalently, the change in R2 when a cluster is split into the two clusters, 
where the coeficient of determination, R2 ,  is the percent of the variation 
that can be explained by the clustering. 

Despite their apparent similarity these methods have different properties and 
will generally cluster the data in quite different ways and may even impose a 
structure of their own. The complete linkage hierarchical clustering algorithm 
is set up to minimize the maximum within-cluster distance, and hence it tends 
to find compact clusters but may overemphasize small differences between 
clusters. The single linkage hierarchical clustering algorithm is set up to max- 
imize the connectedness of a cluster, and hence it exhibits a highly undesirable 
tendency to find chainlike clusters; by creating chains, two dissimilar observa- 
tions may be placed in the same cluster merely because they are linked via a 
few intermediate observations. The average linkage hierarchical clustering 
algorithm and the centroid clustering algorithm are compromises between the 
above two; note, however, that unlike the other methods, they are not invariant 
to monotone transformations of the distances. Nevertheless, the number of 
small tight clusters they usually produce can be useful for the discovery process. 

Eisen et al. (1998) applied an average linkage hierarchical clustering proce- 
dure with dissimilarity measure D, and c = 0 to a dataset consisting of gene 
expression ratios generated from an experiment in the budding yeast Sacchu- 
romyces cerevisiae. The data was a combination of time course data from sep- 
arate experiments involving the diauxic shift (DeRisi et al., 1997), the mitotic 
cell division cycle (Spellman et al., 1998), sporulation (Chu et al., 1998), and 
temperature and reducing shocks. The goal of the exercise was to understand 
the genetic processes taking place during the life cycle of the yeast. The cluster 
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analysis successfully identified patterns of genomic expression correlated with 
the status of cellular processes within the yeast during diauxic shift, mitosis, 
sporulation, and heat shock disruption. In another experiment Alizadeh et al. 
(1999) applied hierarchical clustering to separate diffuse B-cell lymphomas, an 
often fatal type of non-Hodgkins lymphoma, into two subtypes, which corre- 
sponded to distinct stages in the differentiation of B-cells and showed substan- 
tial survival differences. 

Top-clown clustering (also known as divisive hierarchical clustering) algo- 
rithms are initiated with all the genes placed together in one cluster. At the next 
and subsequent steps, the loosest cluster is split into two. In principal, the pro- 
cess can be continued until each gene is alone in its own cluster. A serious 
computational issue that sometimes hinders the use of top-down clustering 
methods is that at the early stages there are a huge number of ways (e.g., 
ZG-‘  - I ,  in the first stage) of splitting even the initial cluster. Divisive algo- 
rithms are rarely used in practice. 

Typically the hierarchical clustering process is terminated either once a 
specified number of clusters has been reached or a criterion has been opti- 
mized or has converged. Several criteria for choosing an appropriate number of 
clusters have been proposed, none entirely satisfactory. Some criteria are as 
follows: 

Ward’s (1963) statistic, which is R2 of the entire configuration. An ade- 
quate clustering is gauged by graphing the change in R 2  against the num- 
ber of clusters. 
The gup statistic (Tibshirani et al., 2000), which is the change in within 
cluster dispersion compared to its expected value. 
A nornialized ratio of between- and within-cluster distances (Calinski and 
Harabasz, 1974). 

- Difference of weighted within cluster sum of squares (Krzanowski and Lai, 
1985). 

* A prediction-based resampling method for classifying microarray data 
(Dudoit and Fridlyand, 2002). 

* A stability-based resampling method (Ben-Hur et al., 2002), where a stable 
clustering pattern is characterized as a high degree of similarity between a 
reference clustering and clusterings obtained from subsampies of the data. 

The hierarchy of fusions in which the clusters are formed either by a bottom- 
up clustering algorithm or by the hierarchy of divisions in which the clusters 
are divided by a top-down clustering algorithm can be displayed diagrammati- 
cally as a hierarchical tree called a dendrogram. Each node of the dendrogram 
represents a cluster and its “children” are the subclusters. One reason for the 
popularity of hierarchical clustering is the ease with which dendrograms can be 
interpreted. 

E.ramnpfe. Figure 9.1 shows dendrograms for the hierarchical decompositions 
obtained by applying ( 1 )  average linkage hierarchical clustering and (2) com- 
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plete linkage hierarchical clustering with dissimilarity measure DC to the tumor 
example data described above. It is easy to observe that these two methods 
produce slightly skewed trees, whereas Ward’s method, shown in Figure 9.2, 
produces a more balanced and clear tree. 

In general, it is known that all hierarchical clustering methods may produce 
unbalanced trees, and in many cases some of the clusters can consist of single 
observations. Another undesirable pattern that one observes when using these 
methods is a big cluster with most of the data and a few small clusters around 
it. Nevertheless, hierarchical clustering remains a popular clustering tool. 

Example. On the question of selecting the number of clusters, Figure 9.2 
shows the dendrogram generated by the Ward method and next to it is a graph 
of Ward’s statistic versus the corresponding number of clusters. From the dip 
in this second graph at 12, it was decided to select 12 as the number of clusters. 
The average profiles of these 12 clusters are displayed in Figure 9.3. The pro- 
files clearly show that it is very easy to differentiate between the two groups of 
tumors (samples). 

We can also apply the clustering methods to the samples. In this case the 
genes will act as the variables. 

Example. For simplicity we continue with the top 100 genes selected using the 
t statistic. Figure 9.4 displays the dendrogram produced by Ward’s hierarchical 
clustering procedure that clearly separates the samples into two groups. The 
two groups correspond to the two tumor groups. To complete the analysis, we 
may draw a microarray image graph combining the elements that we have seen 
here in Figures 9.2, 9.3, and 9.4. The graph is shown in Figure 9.5. The main 
panel represents the image graph of the intensities for the 100 x 43 array. A 
horizontal and a vertical bar on the top and left side of the main image indicate 
the clustering of genes and samples respectively. The right panel shows the 12 
cluster profiles on a normalized scale from zero to one. Finally, the lower panel 
shows the color scale for the main image. 

Friedman and Meulman (2002) present a distance-based clustering approach 
called COSA (which stands for “clustering objects on subsets of attributes”) 
that attempts to identify groups of samples that exhibit preferentially close 
values in different, possibly overlapping subsets of genes. 

9.2.4 Partitioning Methods 

Partitioning methods split the data up into a specified number of non- 
overlapping clusters. The general idea behind most partitioning methods is to 
cluster the genes so that the sum of squared dissimilarities of each gene from 
the closest of a set of representative central genes is minimized. Clearly, this 
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Figure 9.3 Average profiles of the 12 clusters obtained using Ward’s method. Nabs is the number 
of observations within the cluster. 

problem cannot be solved in real time and several algorithms, three of which 
are k-means clustering, k-medoids clustering, and self-organizing maps, have 
been developed to produce approximations. 

The k-means clustering algorithm (an early version was described by Mac- 
Queen, 1967) is a procedure that clusters the G genes around k cluster centers. 
It is an iterative procedure that is begun with a set of k initial cluster centers. 
Each gene is then placed in the cluster whose center is closest in distance to the 
gene. The genes in each cluster are then averaged to produce a new cluster 
center. The procedure is repeated with the repositioned cluster centers. This 
process is continued until no gene is reallocated to a new cluster or a criterion 
function has been optimized. 

At each stage, cluster statistics can be computed to assess the strength of 
the clusters. One such statistic is 0, the average intracluster distance across 
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Figure 9.4 
clustering method applied was Ward’s. 

Hierarchical tree of a cluster analysis of 43 samples using the 100 genes dataset. The 

clusters: 

where n, is the number of members of the rth cluster, x,, is the sth member of 
the rth cluster and 2, is mean of the rth cluster. indicates the tightness of the 
clusters. 

Another cluster statistic is S, the total within cluster sum of’ squares: 

where n, is the number of members of the rth cluster, xrSi is the j th  coordinate 
of the sth member in the rth cluster, and X r j  is the j th  coordinate of the mean of 
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Figure 9.5 Microarray graph summarizing the gene clusters and the sample clusters. The main 
panel is the image plot of the intensities for the 100 x 43 array. The horizontal and vertical bars on 
the top and left side of the main image indicate the clustering of genes and samples respectively. The 
right panel shows the 12 cluster profiles on a normalized scale from zero to one. The lower panel 
shows the color scale for the main image. 
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the rth cluster. A stopping rule that is sometimes used is to stop the iteration 
once the total within-cluster sum of squares stops reducing by appreciable 
amounts; in other words, until the process converges to  a local minimum of the 
total within-cluster sum of squares. 

Typically the entire procedure is repeated with a set of different randomly 
generated initial cluster centers and the best solution, the one that has the 
smallest total within-cluster sum of squares overall, is chosen as the final parti- 
tion for that value of k. Since it also impossible to know in advance how many 
clusters there are in the data, the procedure is also generally repeated with 
several different values of k. For instance, Brazma and Vilo (2000) applied 
k-means clustering to a 6221 x 80 gene expression matrix, in which k was 
varied from 2 to 1000 and, for each k, the process was run 10 times with differ- 
ent random initial cluster centers. Tavazoie et al. (2000) also applied k-means 
clustering to gene expression data. 

The k-medoids clustering algorithm (Kaufman and Rousseeuw, 1990) is 
identical to the k-means clustering algorithm, except that the cluster centers are 
taken to be the p-dimensional medians (which are sometimes called medoloids) 
rather than the means. Dudoit and Fridyland (2002) use k-medoids for cluster- 
ing microarray data because medoids, like medians, are less affected by outliers 
than means. 

The self-organizing map (SOM) (Kohonen, 1995) is a neural network pro- 
cedure that is also similar to k-means clustering. It imposes a constraint, how- 
ever, that forces the cluster centers to lie in a discrete two-dimensional space. 
Thus it produces a mapping of the data from a multidimensional space to a 
two-dimensional space in which the clusters are sorted according to their degree 
of similarity. As a result neighboring clusters are interpreted as being similar, 
while clusters that appear more distant in the two-dimensional space are more 
diverse. Tamayo et al. (1999) and Toronen et al. (1999) used SOM for cluster- 
ing microarray data. 

Partitioning methods are inherently nonhierarchical. In partitioning meth- 
ods, unlike in hierarchical methods, the clusters obtained when the data are 
partitioned into k clusters cannot be constructed as a merger of the clusters 
obtained when the data is partitioned into k + 1 clusters. Generally, partition- 
ing methods will produce spherical clusters. Tibshirani et al. (2000) report 
finding that k-means clustering produces tighter clusters than hierarchical clus- 
tering. 

Example. Consider the dataset consisting of the top 100 genes, Table 9.1 
shows the number of membership discrepancies between the groups produced 
by the various clustering methods when choosing twelve clusters. For example, 
there are 17 discrepancies between Ward’s and k-means groupings because 17 
observations appeared in different clusters. The k-means method was started at 
the grouping resulting from Ward’s method because it achieved the lowest 
value of the within clusters sum of squares, compared with the other two pos- 
sible methods. The single linkage and centroid methods produce very skewed 
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Ward 
Average 
Complete 
Single 
Centroid 

Table 9.1 Discrepancies for four clustering procedures applied to a subset of 100 genes 

K-Means Ward Average Single Centroid 

17 
39 39 
27 23 30 
79 78 64 73 
80 71 64 I 2  8 

trees, possibly caused by the correlations among the genes, and as a result there 
are many small clusters and high discrepancies with the other methods. 

9.2.5 Model-Based Clustering 

Model-based clustering is a partitioning method in which a probability frame- 
work is posited for the clusters. The model states that (1) the genes fall into k 
clusters, (2) a proportion, pr (where Cr=r pr = I ) ,  of the genes belong to the 
rth cluster, ( 3 )  the genes that belong to the rth cluster were all generated from 
a distribution, J’ (x ;Q, ) ,  and (4) the parameter 0,. is different from cluster to 
cluster. This then implies that any observation x is a realization from the mix- 
ture model 

k 

r=l  

Usually f(x; 0,) is ta,n to be a p-variate Gaussian distribution. ,,I this case 
0, has two components: 0, = ( p r ,  zr), where p, is the mean and Cr is the 
variance-covariance matrix for the Gaussian distribution in the rth cluster. 
Banfield and Raftery (1993) point out that a geometrical structure can be 
imposed on the clusters by specifying a format for the variance-covariance 
matrices, C,. This has the advantage of reducing the otherwise large number of 
parameters that have to be estimated. Four structures worth considering for C ,  
are (1) C,. = IZ (where Z is the identity matrix), which forces spherical clusters 
of equal volume, (2) 1, = & I ,  which forces spherical clusters of possibly 
unequal volume, (3) Cr = ADAD’, where A is a diagonal matrix and D is an 
orthogonal matrix, which forces elliptical clusters having equal volume, shape 
and orientation across the clusters, and (4) not imposing any structure on C,.. 
The unconstrained model 4 is, of course, the most general, but it requires a 
large number of observations per cluster in order to be fitted adequately. The 
model 1 appears to be closely related to k-means clustering. 

Given a value for the desired number of clusters, k, the parameters, Or,  of the 
individual clusters, and the mixing proportions, p r ,  are estimated using the EM 
algorithm. The EM algorithm involves alternating through a series of expecta- 
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tion (E) and maximization (M)  steps. In the E step, the probability of each 
observation belonging to the each cluster is estimated conditionally on the cur- 
rent values of 0,. In the M step, the values for d, are estimated based on the 
current cluster membership probabilities. Once the algorithm ultimately con- 
verges, each observation becomes a member of the cluster in which it has the 
largest conditional probability. Banfield and Raftery (1 993) provide additional 
details of the procedure. 

One advantage of model-based clustering is that, instead of having to heu- 
ristically judge which clustering result seems best, as has to be done with most 
other clustering procedures, with model-based clustering one has recourse to a 
probabilistic framework that can be used to compare across competing clus- 
tering results. Thus, in practice, one would fit the model with different values of 
k and different structures of C,, and then, for each model fitted, a criterion 
function that judges how well the model fits the data, without overfitting, can 
be used to pick the best model and, thereby, the best clustering result. The two 
criteria that are generally used are the Akuike information criterion (AIC), 

AIC,, = 2 log p ( X ( f i , , ,  Mnl)  - 2~ , , ,  

and the Buyesiun information criterion (BIC), 

Here MI, refers to the mth model, u,, is the number of parameters in O m ,  and 
GI,, is the maximum likelihood estimator of On,. Large values indicate better 
models. 

Model-based clustering will find spherical or elliptical clusters, depending on 
how C, is specified, but will not find nonconvex structures. Model-based clus- 
tering has been applied to microarray data by McLachlan et al. (2002), Pan et 
al. (2002), and Yeung et al. (2001). Somewhat similar approaches are described 
by Holmes and Bruno (2000) and Barash and Friedman (2002). 

9.2.6 Chinese Restaurant Clustering 

Chinese restaurant clustering, proposed by Lo et al. (1995), is a Bayesian 
approach to model-based clustering. The idea is to construct a Dirichlet prior 
distribution over the space of partitions and build a likelihood using the mix- 
ture model given in Section 9.2.5. Bayes’s theorem is then applied to determine 
the posterior distribution, and its mode over the space of partitions is calcu- 
lated. 

In practice, this involves the construction of a Gibbs sampler that produces 
a sequence of partitions. The iteration is continued until the mode partition 
of the posterior distribution is clearly identified. This algorithm has the draw- 
back that it is computationally highly intensive; that is, it may take a long time 
to produce the desired partition. However, it is a very interesting approach 
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because it does not separate the selection of the number of clusters from the 
assignment of the genes to the clusters. In that sense it is more natural than 
many of the more conventional clustering algorithms. The “Chinese restau- 
rant” label comes from the practice of some Chinese restaurants of sitting the 
entering customers at a vacant or new table according to a decision of the res- 
taurant host. This phenomenon resembles the initial steps of the algorithm, 
where the genes are assigned to their respective initial clusters. Cabrera and Lo 
(2003) developed a blocking algorithm that greatly improved the computa- 
tional performance of Chinese restaurant clustering. When applied to zebrafish 
microarray data it produced a clear separation, which was not evident from 
traditional methods such as k-means and Ward’s method. 

9.2.7 Discussion 

It is highly unlikely that gene expression data can be clearly and unambigu- 
ously separated into a set of well-defined clusters. Consequently different clus- 
tering algorithms will generally produce different, even conflicting, results. 
Loosely, a good clustering method will produce clusters whose within-cluster 
similarity is high and between-cluster similarity is low. However, the kinds of 
clusters found will vary according to the clustering method used, and they may 
not be directly comparable. The best method, if one even exists, would be data 
dependent. It is impossible to assert therefore that any one clustering method, 
or, for that matter, any one of the seemingly endless variations on the basic 
algorithms, is uniformly better than any other method. Hence, in practice, it is 
best to run more than one clustering method on any given dataset. 

9.3 SEEKKNG PATTERNS VISUALLY 

Clusters and other patterns in multivariate data can also be captured by repre- 
senting the data visually. To discuss this, we will treat the G genes as G vari- 
ables and the samples as cases. Of course, the dimensionality of microarray 
data (ie., the number of variables [genes] in microarray data) precludes dis- 
playing the data as is. Instead, the data must be projected onto a lower (e.g., k )  
dimensional space (usually k = 2, maybe k = 3) and plotted in this latter space. 
Projecting G-dimensional observations into k-dimensional observations essen- 
tially involves fashioning k new variables out of the G original ones. The pro- 
cess of projecting the data this way is called dimension reduction. 

There are a number of ways to reduce the dimensionality of a dataset. For 
many of the simpler methods, like principal component analysis and factor 
analysis, the k new variables are k linear combinations of the G original vari- 
ables; these methods are called lineur reduction techniques. On the other hand, 
methods like multidimensional scaling are nonlinear reduction techniques. An- 
other method, projection pursuit, was proposed by Friedman and Tukey (1974) 
as a way to explicitly “pursue” projections that have interesting structure. 
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9.3.1 Principal Components Analysis 

We begin with principal components analysis (PCA), a method of classical 
multivariate analysis that is the most commonly used technique for dimension 
reduction. Several data analysts have used PCA for working with microarray 
data (e.g., on PCA for analyzing a temporal microarray dataset, see Ray- 
chaudhuri et al., 2000; Yeung and Ruzzo, 2001). 

PCA is particularly useful in situations where we are dealing with many 
correlated, and therefore redundant, variables and we want to reduce them to a 
few new uncorrelated variables, constructed as projections, linear combinations 
of the original variables, without losing too much information. The first new 
variable, namely the first principal component, is the linear combination of 
expression patterns that explains the greatest amount of variability in the data. 
The second principal component is the linear combination of expression pat- 
terns that explains the greatest amount of variability remaining in the data after 
accounting for the first principal component. Each succeeding principal com- 
ponent is similarly obtained. 

Projecting the data into the dimensions spanned by the leading principal 
components will reveal data structures, such as clusters, that stretch the data 
point cloud out. This is why PCA is often used as a way of examining the data 
for clusters. When there are a few well-separated clusters, it is possible that 
PCA will find projections that separate the clusters. However, in other cases, it 
may not work so well: for instance, when there are a large number of noisy 
variables that do not contribute much information regarding the clusters, or 
when the clusters themselves are located in such a way that they do not stretch 
the point cloud out, or a rather extreme example when the clusters are centered 
at the corners of a high dimensional configuration, such as a simplex. 

Example. We now return to the top 100 gene data described in Section 9.1. 
Figure 9 . 6 ~  shows a two-dimensional view of this 100-dimensional data, while 
Figure 9.66 shows a two-dimensional view of the 43-dimensional space. The 
two dimensions plotted are the first two principal components, denoted PCI 
and PC2 (each is a linear combination of the 100 “variables”), obtained by 
PCA. In both views it can easily be perceived that the data has two groups. 
Note, however, that this structure would not have been evident from a one- 
dimensional view in the PCl direction in the second figure. 

The projecion of X in the direction I is XI,  the variance of which is I’SI. Thus 
the first principal component is the projection I that maximizes I’SI. Generally, 
principal components are calculated directly from the eigenvalues and eigen- 
vectors of either the variance-covariance matrix of X or the correlation matrix 
of X .  However, because in microarray experiments these matrices are of a very 
high dimension, G x G, it is computationally much more efficient to use the 
singular value decomposition, in which the largest matrix that needs to be 
computed is of size G x p ,  where p is considerably smaller than G. 
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Figure 9.6 Principal components of the top 100 genes for 43 tumor cells: ( l r )  Cells are the ob- 
servations and genes are the variables. (b) Genes are the observations and cells are the variables. 

Suppose that the rows of X are centered; that is, the average of xq is zero for 
all g. The singular value decomposition (SVD) of X is defined as 

X = U D V T ,  

where U is a G x p orthogonal matrix ( U l U  = I r ) ,  which projects the G- 
dimensional samples into p-dimensional samples, V is a p x p orthogonal 
matrix ( V ' V  = Ir) ,  which projects the p-dimensional genes into other p- 
dimensional genes, and D is a p x p diagonal matrix, whose diagonal elements, 
Sh,  are called singular values. We will assume that SI I s2 i . . . 5 sp. Alter et al. 
(2000) describe an analysis of microarray data using SVD. 

From the SVD, it follows that the sample variance-covariance matrix of X 
with the genes as variables is 

S = X X '  = UD2U' .  

Hence the column vectors of U are the principal components of 5' and the 
square of the diagonal elements of D are their respective variances: 

D 2 = (  U = ( u l ,  ..., up). 

s:...o 

o . . . s 2  

We denote the eigenvalues of S: A.1 = sf,  . . . , Ap = $. 
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We can also obtain the eigenvalues and eigenvectors of the sample correla- 
tion matrix, R ,  using the same procedure if we standardize the vector x,, by 
subtracting the mean and dividing by the standard deviation. 

As we mentioned in Section 9. I ,  our notation in this section differs from the 
standard SVD notation in classical multivariate analysis because in microarray 
data the multivariate observations are the columns and the variables (i.e., the 
genes) are the rows of the data matrix. In classical multivariate notation the 
reverse is true: the observations are the rows and the variables are the columns 
of the data matrix. For this reason our formulas for the singular value decom- 
position and principal components are slightly different than the ones found in 
any classical multivariate analysis text. 

The objective now is to select a subset of k principal components containing 
most of the information in the original data. There are several ways to select 
k .  The proportion of the variance explained by the k components is p k  = 
(21 + . . . + &)/(A, + . . . + A p ) .  The number of principal components could be 
selected by one of the following criteria: 

1. 

2. 

3. 

4. 

k components explain some fixed percentage of the variance (70'%, 80?4, 
etc.). 
k eigenvalues are greater than the average of the eigenvalues (for the 
correlation matrix the average is I ) .  
Scree plot. Graph the eigenvalues and look for the last sharp decline and 
choose k as the number of points above the cutoff. 
Null hypothesis test that the last m eigenvalues are equal. This is tanta- 
mount to testing that they are all essentially close to zero. Use as test 
statistic 

2 m  + 11 

i=p-m t I 

where i = C~pp,n+l  i l / m .  The null distribution of the test statistic, u, is 
approximately a chi-squared distribution with (m - l ) ( m  + 2 ) / 2  degrees 
of freedom. In many microarray experiments this method will eliminate 
only a few components because asymptotic results do not hold for cases 
with large number of variables and relatively few observations. However, 
this result is also true if we concentrate only on a range of components, 
say the first m, as long as certain assumptions about the multiplicity of 
eigenvalues are true. This topic is the subject of further research. 

Example. Returning to the example in Section 9.1, Table 9.2 shows the sum- 
mary of the 43 principal components of the 100 genes. This table is used to 
decide how many components are needed when following the methods above 
for principal components selection. 
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Table 9.2 Principal components summary for all the 43 principal components 

Cumulative Cumulative 
Component Variance Variance Percent Percent 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

26.845 
11.732 

1.846 
1.534 
1.227 
1.047 
0.892 
0.803 
0.763 
0.615 
0.539 
0.471 
0.434 
0.395 
0.343 
0.333 
0.308 
0.303 
0.277 
0.261 
0.216 
0.209 
0.190 
0.181 
0.171 
0.146 
0.138 
0.123 
0.116 
0.1 10 
0.106 
0.098 
0.081 
0.075 
0.068 
0.061 
0.054 
0.048 
0.039 
0.036 
0.030 
0.022 
0.001 

26.845 
38.577 
40.422 
41.957 
43.184 
44.231 
45.123 
45.926 
46.689 
47.304 
47.843 
48.314 
48.748 
49.143 
49.486 
49.819 
50.127 
50.430 
50.707 
50.967 
51.184 
51.392 
51.582 
51.763 
5 1.934 
52.080 
52.218 
52.342 
52.457 
52.567 
52.674 
52.771 
52.852 
52.927 
52.994 
53.056 
53.110 
53.157 
53.197 
53.233 
53.263 
53.286 
53.287 

50.38 
22.07 

3.463 
2.880 
2.303 
1.965 
1.674 
1 SO8 
1.43 1 
1.155 
1.011 
0.884 
0.814 
0.742 
0.644 
0.624 
0.579 
0.568 
0.519 
0.489 
0.406 
0.392 
0.357 
0.339 
0.321 
0.274 
0.260 
0.231 
0.2 17 
0.206 
0.199 
0.183 
0.151 
0.141 
0.127 
0.1 15 
0.101 
0.090 
0.074 
0.068 
0.057 
0.042 
0.002 

50.378 
72.394 
75.858 
78.737 
8 1.040 
83.005 
84.679 
86.187 
87.618 
88.773 
89.784 
90.668 
9 1.482 
92.223 
92.867 
93.491 
94.070 
94.638 
95.158 
95.647 
96.053 
96.445 
96.801 
97.141 
97.462 
97.735 
97.995 
98.226 
98.443 
98.649 
98.849 
99.032 
99.183 
99.324 
99.45 1 
99.566 
99.667 
99.757 
99.831 
99.899 
99.956 
99.998 

100.00 
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Figure 9.7 Scree plot. 

1. Using criterion 1, it is appropriate to choose k between 2 and 12, since 
they determine the range of 70 to 90%) variability. More than 12 compo- 
nents would mean very small increments in the variance. 

2. The average of the eigenvalues is 1.24, which suggests that we should 
keep no more than 5 components. 

3. The Scree plot is shown in Figure 9.7, suggesting that the number of 
components would be either 2 or 6 or 9. 

4. There is a group of very small eigenvalues that we are going to discard, 
or otherwise the method produces negligible results. We concentrate on 
the last 25 principal components. Then the test becomes significant for 6 
components or less and it becomes very significant for 2 or less. 

In conclusion, it appears that two is the best number of PCs because it sat- 
isfies criteria 1 through 3, and we saw in Figure 9.6 that the two-dimensional 
view in the plane spanned by the first two PCs does indeed show the primary 
structure in the data, which is the separation of the samples into two groups. If 
72% of the variability is not regarded as high enough, either six or nine princi- 
pal components could be chosen: 

p - r n 1 2 4  20 15 9 8 7 6 5 4 3 2 1 
~~ 

0.1 5 32 146 182 222 279 340 425 554 1632 3260 
9.2 37 94 195 215 237 259 282 307 332 358 386 
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9.3.2 Factor Analysis 

Factor analysis (FA) assumes the existence of a few latent variables that define 
the phenomena under study. The observations are functions of these unknown 
latent variables, or more specifically are linear combinations of the latent vari- 
ables. 

The objective of factor analysis is to estimate the latent variables and to try 
to express them in a form as related as possible to the original observations. 
The statistical model for factor analysis is 

where x is a column vector of G components, and it is assumed that the vector 
f has k components and E ( f )  = 0, cov(f) = I .  The matrix A = {A,} is a 
G x k matrix of the coefficients of the linear combinations of the factors that 
compose the observed variables. The error term, E,  is a G-dimensional vector 
satisfying E(s)  = 0 and COV(E) = $ = diag($, , . . . , $G). In addition f and E are 
assumed independent of each other in the sense that cov(J’,c) = 0. Next we 
enumerate some of the important elements of the factor model: 

1. Covariance matrix. The factor model expresses the G x (G  - 1)/2 co- 
variances among the G coordinates of x in terms of G x k loadings { A i , }  
and G variances { $,}: 

X = cov(Af + E )  = cov(Af) + COV(E) = A C O V ( ~ ) A ’  + $ = AA’ + $ 

2. Factor loudings. The factor loadings A, represent the covariances of 
the variables with the factors. For example, the loading of variable XI on 
factor f i  is 

3. Communality. We break down the variance of a variable between a 
component due to the common factors and a variable specific compo- 
nent. 

clt = var(x,) = (2,: + . . . + A:~) + $l = A,? + +,. 

The communality component is h,? and the component specific to the 
variable is $,. 

4. Nonuniqueness. The factors are identifiable only up to an orthogonal 
transformation. Let T be an orthogonal transformation, namely TT’ = I .  
Then 
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where A* = AT and f * = T’ f .  In addition, the properties o f f  are pre- 
served by f *.  E( f * )  = 0, cov( f *)  = I ,  and C O V ( ~ * ,  E )  = 0. In terms of 
the decomposition of the covariance matrix C = A*A” + $ = AA’ + $, 
the communalities do  not change since hT2 = h;. 

Estimation. 
methods for estimating the factors: 

We assume the factor model with m factors. There are two basic 

1. Principal components method. 

s = CDC‘ E C,D,C;  + Y = AA’+Y,  

where Yl = s,, - Cr ii. This decomposition is iterated a few times. 

and obtain the maximum likelihood estimators of A and $. 
2. Muximum likelihood method. Assume that the observations are N ( p ,  Z), 

In choosing the number of factors, we have ideas parallel those of PCA: 

1. m factors explain some fixed percentage of the variance (70%) or  80%). 
2. m eigenvalues are greater than the average of the eigenvalues (for the 

3. Scree plot. Graph the eigenvalues and look for the last sharp decline and 

4. Null hypothesis test that there are m factors. The test statistic is 

correlation matrix the average is 1). 

choose m as the number of points above the cut off. 

The null distribution of the test statistic u is approximately a chi-squared 
distribution with ( ( p  - m)’ - p  - m ) / 2  degrees of freedom. 

Rotations. Since factors are identifiable only up to an orthogonal transfor- 
mation, it is convenient to choose the orthogonal transformation or rotation 
that produces a set of factors that are the easiest to interpret. Since it is likely 
that the number of factors m is much smaller than the number of variables G,  
the rotation is to be chosen so each variable contributes mainly to one or few 
factors. In some cases rotations produce a grouping of G variables into m sub- 
groups represented by the factors. There are several methods for obtaining the 
appropriate rotation. 

1. Graphical approach. When m is 2 or 3, it is easier to just do a graph and 
find the best rotation by eye. Software such as Ggobi or JMP provide 
tools for performing the rotation with the aid of a mouse. 
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2. Varimax. This method computes the rotation-that maximizes the vari- 

3. Quurtimax. Maximizes the variance of the square loadings of each row 

4. Promax. Power transformation plus rotation, so it is a transformation. 
5. Procustes. Rotation to match a canonical configuration. 
6. General oblique. A is now not necessarily orthogonal, but it is a non- 

ance of the square loadings in each column of A. 

of A. 

singular matrix. 

Factor analysis is sometimes criticized because the assumptions of the 
underlying factors may be unrealistic. Many phenomena are very complex in 
nature and may not fit into the FA framework. In addition the application of a 
rotation may produce overoptimistic results just by chance. For these two 
reasons we recommend that FA be used only as an exploratory data analysis 
technique that is helpful for summarizing the variables in problems, such as the 
microarray data analysis, where the number of variables (genes) requires sim- 
plification and, hopefully, meaningful simplification. 

Example. Factor analysis seems to suggest that nine factors or two are a good 
number. This is similar to the PCA conclusions in the sense of the dimension- 
ality of the data. In Table 9.3 we give a table obtained from the R software with 
the factor loadings, and it shows that the most substantial changes indicate that 
we should select either two or nine factors. 

9.3.3 Biplots 

The b@lot (Gabriel, 1971; Gabriel and Odoroff, 1990) is a graphical display of 
X in which two sets of markers are plotted simultaneously. One set of markers 
a l ,  . . . ,ac represents the rows of X ,  and the other set of markers, bl,  . . . , b,,, 
represents the columns of X. The basis of the biplot is that any matrix, X ,  can 
be approximated by a rank two matrix, X2, of the same size as X and that this 
latter matrix, X2, can be factored as X2 = AB’,  where A is a G x 2 matrix, 
whose ith row is a,, and B is a p x 2 matrix, whose j th  row is b,, so that 
X z AB’.  

Such an approximation can be obtained in several ways. For example, in 
the SVD, X = UDV’, if only the two largest singular values, SI and s-2, are 

Table 9.3 Factor analysis results using 10 factors 

Fact1 Fact2 Fact3 Fact4 Fact5 Fact6 Fact7 Fact8 Fact9 Fact10 

Ssloadings 17.73 11.42 1.187 1.055 1.015 0.891 0.822 0.632 0.560 0.317 
Proportional 0.412 0.266 0.028 0.025 0.024 0.021 0.019 0.015 0.013 0.007 

Cumulative 0.412 0.678 0.706 0.730 0.754 0.775 0.794 0.809 0.822 0.829 
variance 

variance 
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Figure 9.8 Biplot of the first two principal components 

retained, a rank two decomposition X2 = U2D25* can be obtained and fac- 
tored as A = U2D; and B = U2Di with a + b = I ,  for example, (a ,  b )  = (0, I ) ,  
(a, b)  = ( l , O ) ,  or (a ,  b )  = (0.5,0.5). Chapman et al. (2002) use biplots for 
visually exploring microarray data from plant pathlogy experiments. 

Example. Figures 9.8 and 9.9 show two biplots. The first biplot is for the first 
two principal components. The second biplot is for the first two factors after 
Varimax rotation. The points represent the 100 genes, and they display a pat- 
tern of two clear clusters. The reason for these two clusters is that these 100 
genes were selected as having a highly significant t statistic for differentiating 
between two types of tumors. Hence there are two types of genes: ( 1 )  those that 
are differentially upregulated for the first tumor group and (2) those that are 
differentially upregulated for the second group. The PCA and FA methods 
capture this fact automatically, and it shows as clusters in the biplots. In addi- 
tion the biplot shows that the cells are also split into two groups that also cor- 
respond to the two groups of tumors. The biplot graph for the FA is better for 
this separation because it does a Varimax rotation in the factor space. 

9.3.4 Spectral Map Analysis 

Wouters et al. (2002) found the spectral map, an extension of the SVD-based 
biplot originally developed by Lewi (1976) for displaying activity spectra of 
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chemical compounds useful as a means of uncovering patterns in microarray 
data. 

Spectral map analysis proceeds as follows: First, the data are transformed 
into relative values such that they sum to unity along the rows and along the 
columns. The row weighting has the effect that genes that have lower, and 
therefore generally unreliable, intensity measurements get lower weights than 
genes with higher intensity measurements. If xi+ is the ith row sum, xi, is the 
j t h  column sum, and x++ is the overall total, this operation is 

Next the transformed data are doubly centered. This removes the “size” 
effect, leaving only contrasts between the different rows and contrasts between 
the different columns. If Xi+ is the ith row mean, X + j  is the j th  column mean, 
and X++ is the overall total, this operation is 

The centered data is now globally standardized. If W, = diag,(l/n), W, = 

diag,,( 1 / p )  and d = 1, W, Y 2  W,Z,,, this operation is 
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Let the resulting matrix be denoted Z.  A generalized version of the singular 
value decomposition is used in spectral map analysis: 

where again U and V are orthogonal matrices and D is a diagonal matrix of 
singular values. 

The factor scores, S = W[‘” UD”, and the factor loadings, L = W;”’ VDB 
are plotted on a biplot for the first few singular values. Different values for 01 

and produce biplots with different characteristics. In drawing spectral maps, 
one generally sets both to 0.5, which produces a distortion of the interpoint 
distances. 

9.3.5 Multidimensional Scaling 

In Section 9.2 we described the methods for constructing similarity or dissimi- 
larity measures among observations and how to use them for obtaining clus- 
ters. The reverse problem is also interesting. Suppose that we have obtained a 
measure of similarity or dissimilarity between a set of objects. Can we produce 
a set of points that represent the objects in some low-dimensional Euclidean 
space? 

In some microarray experiments we may want to assign more importance to 
certain genes, truncate some low values, in essence define a complicated mea- 
sure of dissimilarity or similarity. In these cases it may be useful to be able to 
represent the data in a low-dimensional space based on the dissimilarity or 
similarity measure. 

One method of doing this is multidimensional scaling. We begin with a 
matrix of dissimilarities D = (d,))  among n objects (objects can be subjects, 
genes, etc.). If the information available consists of a similarity matrix S,  then 
we proceed to obtain D as shown in 9.2. 

Let A = (uI / )  = ( - i d y ) ,  and let the matrix B =  ( I  - G-’ 1 1 ’ ) A .  
( I  - G-l 1 l’), where I is the G x G identity matrix and 1 is a vector of 
length G with all its values equal to one. Then, if B is positive semidefinite, let 
Y denote the first k eigenvectors of B, standardized so their length squared is 
the corresponding eigenvalue. The matrix Y gives a configuration of points in 
the k-dimensional real space with a distance matrix that is closest to D. The 
representation may not always be adequate if the dimension k is not sufficiently 
large for our data. 

9.3.6 Projection Pursuit 

Data of three or more dimensions are difficult to visualize. On the other 
hand, two-dimensional, or even three-dimensional, views (i.e., two- or three- 
dimensional projections) of the data are easy to visualize. In a two-dimensional 
graph, it is not hard to make out clusters or any other data structures. In a 
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three-dimensional graph, we can use rotation software that enables us to visu- 
alize the data. However, as the dimension gets higher, visualization becomes 
difficult at best. 

One solution is to look at  low-dimensional projections of high-dimensional 
data, but again, we encounter a problem because, as the dimension gets higher, 
the number of views becomes far too large. The motivation behind projection 
pursuit (PP) methodology ( Friedman and Tukey, 1974; further developed by 
Friedman, 1987; see also Barnett, 1981) is to find a few low-dimensional views 
of the data that describe the structure of the high-dimensional dataset, such as 
clusters, outliers, or subspaces containing the data, as they may provide inter- 
esting information about the scientific questions motivating the data analysis. 

A projection is considered interesting if it shows a nonrandom or non- 
normally distributed point cloud. Projections showing a pattern of clusters or 
showing outliers are considered “interesting” since they differ markedly from a 
normal distribution. However, projections chosen at random are likely to be 
close to a normal distribution. This is a consequence of the central limit theo- 
rem because projections are linear combinations of variables. 

The method of projection pursuit finds the projections that optimize a crite- 
rion called the projection pursuit index that measures how interesting a structure 
is within a view. The most common indexes are the Legendre index and the 
Hermite index. 

Let Y = P X  be a one dimensional projection of our data. The Hermite 
index measures the distance from the empirical distribution of Y to a normal 
distribution. It was proposed by Hall (1989); Cook et al. (1993, 1995) recom- 
mended using just two of the Hermite polynomial expansions of this distance 
resulting in a very simple expression that it is easily computable and hence not 
difficult to optimize. The two term Hermite index is 

where uo = ave(n-’I4e- ” I 2 )  and a1 = ave(n-’I4p- ‘ ‘ P  x Y ) .  The function 
“ave” represents the average of the expression over the sample points. 

In order to define the Legendre index, we transform the projection Y into 
a variable U in the interval [ - I ,  I ]  by the function U = 2 0 (  Y )  - 1, where 0 ( t )  
is the normal distribution function. The Ltyendrr index measures the L2 dis- 
tance between the distribution of U and a uniform distribution on the interval 
[- 1,1]. This index was proposed by Friedman (1987). Again, we use a two- 
term approximation based on Legendre polynomial expansion: 

where U I  = 6 ave( U )  and u2 = 6 ave(3U2 - 1). 
The method of projection pursuit consists of selecting projections that opti- 

mize a projection pursuit index and examining these projections graphically for 
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interesting structures. Cook et al. (1993, 1995) provide a detailed assessment of 
these and other indexes. 

9.3.7 Data Visualization with the Grand Tour and Projection Pursuit 

Cook et al. (1993, 1995) describe Xgobi/Ggobi, a fascinating computer imple- 
mentation of these ideas that combines the idea of a Grand Tour (essentially, a 
movie of data projections, a continuous sequence of two-dimensional projec- 
tions of multidimensional data; Asimov, 1985) with that of projection pursuit. 

Example. Figure 9.10 shows a screen of the software Ggobi in action. The 
dataset is the same tumor data except that now 63 patients are included, cor- 
responding to four types of tumors. The projection pursuit method succeeds in 
identifying four clusters corresponding to the four types of tumors without 
using the tumor information. The main panel in Figure 9.10 shows a two- 
dimensional projection selected by the PP index with the four clusters in differ- 
ent colors and glyphs. The top left panel shows the main controls, and the left 
bottom panel displays the controls and the line graph of the PP index that is 
being optimized. The graph shows a deep valley at whose bottom the opti- 
mization algorithm was turned on. The index value corresponds to a sequence 

Figure 9.10 Ggobi display finding four clusters of tumors using the PP index on the set o f63  cases. 
The main panel shows the two-dimensional projectlon selected by the PP index with the four 
clusters in different colors and glyphs. The top left panel shows the main controls, and the left 
bottom panel displays the controls and the line graph of the PP index that has been optimized. The 
line graph shows the index value for a sequence of projections ending at the current one. 
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of projections, ending at the current one, which is the optimum reached by the 
algorithm. This is the projection shown in the central panel. 

9.4 TWO-WAY CLUSTERING 

Section 9.2 dealt with methods for clustering genes (these same algorithms can 
also be applied to cluster samples), while Section 9.3 dealt with methods for 
spotting clustering samples (these same methods can also be applied to spot 
genes that cluster together). In fact it makes sense to consider two-way cluster- 
ing, in which both genes and samples (i.e., both the rows and the columns of 
the expression matrix) are clustered simultaneously. The goal of such an anal- 
ysis is to identify groups of genes that participate in a biological activity taking 
place in only a subset of the samples. 

Two-way clustering is somewhat more challenging than one-way clustering 
and new tools have been developed for this purpose. A straightforward 
approach, however, is to apply one-way clustering procedures separately to the 
rows and the columns and then to reorder the rows and the columns in such a 
way as to produce a two-way clustering. 

9.4.1 Block Clustering 

Block clustering (Hartigan, 1972; used by Tibshirani et al., 2000, for gene 
expression data) reorders the rows and columns of X to produce a matrix with 
homogeneous blocks of gene expression. The algorithm is started off with all 
the data in one block. At the next and each subsequent stage, the row or col- 
umn split of all existing blocks that reduces total within-block variance the 
most is used to create new blocks. If an existing row or column split intersect a 
block, the block has to be split accordingly. Otherwise, all split points are tried. 
The process is continued until a large number of blocks are obtained. Then 
some blocks are recombined until an optimum number of blocks is obtained. 

A form of block clustering called coupled two-clustering was applied to colon 
cancer data by Alon et al. (1999) and to colon cancer and leukemia data by 
Getz et al. (2000). 

9.4.2 Gene Shaving 

Gene shaiiing (Hastie et al., 2000) is a two-way clustering procedure that finds 
possibly overlapping clusters. 

Initially each row of the gene expression matrix, X ,  is centered to have zero 
mean. Then a linear combination of rows (i.e., genes) having maximal varia- 
tion in the column space is found. This is the first principal component of the 
rows of X. A specified proportion (typically 10%) of the genes having the 
lowest correlation with this linear combination is removed (“shaved”) from 
the data. This process is repeated until only a single gene remains. This process 
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generates a nested sequence of gene blocks, one of which is selected as the first 
cluster by optimizing a criterion, usually the gap statistic (Tibshirani et al., 
2001; also see Section 9.2.3). 

At the next and each subsequent step, the rows of the gene expression matrix 
are orthogonalized with respect to the average gene in the cluster and the above 
steps are repeated with the orthogonalized data to find more clusters. 

9.4.3 The Plaid Model 

The plaid model was proposed by Lazzeroni and Owen (2002) as a method for 
identifying K,  possibly overlapping, clusters of genes in which similarity within 
a cluster may extend across only a subset of the p samples. 

The rough idea is that each cluster has its own mean expression level. Thus 
the genes belonging to the kth cluster have mean p o  + p k  across the samples in 
that cluster, where po refers to a background expression level and & refers to 
the average expression level unique to the kth cluster. This is equivalent to 
writing 

k = l  

where pjk = 1 if and only if the ith gene belongs to the kth cluster and is zero 
otherwise, t i jk = 1 if and only if the j th  sample belongs to the kth cluster and is 
zero otherwise, and eii is a zero-mean error term. 

The formulation can be set to be highly flexible. The constraint C,"=, pix. 
= 1 ,  that insists that a gene belongs to one and only one cluster, is not imposed. 
Instead, some genes may appear in more than one cluster, so that Ck=, pik 2 2 
for those genes, and some genes may not appear in any of the clusters, so that 
Ck=l pik = 0 for those genes. The constraint C,"=, ~~k = 1, which insists that 
a sample belongs to only one cluster, is also not imposed. Instead, some 
samples may appear in more than one cluster, so that C,"=, Kjk 2 2 for those 
samples, and some samples may not appear in any of the clusters, so that 
C,"=, xjk = 0 for those samples. 

It is useful to add more structure to this basic model by extending it to allow 
for a distinct regulatory effect for each gene and each sample within a cluster: 

K 

K 

Observe that this model is essentially a superposition of K two-way ANOVA 
models. The constraints, C,"=, plkc(ik = 0 and C,"=, ~ , k p ~ ~  = 0, are imposed to 
avoid over parameterization of the model. 
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Somewhat more generality is obtained by writing 

Fitting this model is nontrivial. Lazzeroni and Owen (2002) present an algo- 
rithm for doing so. 

SOFTWARE NOTES 

Software for commonly used clustering techniques, such as the various hierar- 
chical clustering procedures and k-means, has been implemented in a number 
of different forms and are available in all statistical packages. Some imple- 
mentations are better than others at  handling large datasets and applications 
with large numbers of variables. 

In R and SPLUS, the relevant functions are h c l u s t  for hierarchical cluster- 
ing and krneans for k-means. The methods described in Kaufman and Rous- 
seeuw (1990) are also available in R and SPLUS: agnes for agglomerative 
hierarchical clustering, pam (which stands for “partitioning around medoids”) 
and Clara (which stands for “clustering large applications”) for k-medoids 
clustering, d i a n a  for divisive hierarchical clustering, and f a n n y  for fuzzy 
clustering. Software for model-based clustering is available in R and SPLUS as 
the function rnclust .  

EisenLab’s c l u s t e r  is a popular tool for clustering large microarray data- 
sets via hierarchical clustering, self-organizing maps, k-means and principal 
components analysis. TreeView is an equally popular tool for displaying 
hierarchical cluster analysis results as dendrograms. There are a number of 
other such programs developed especially for clustering microarray data, such 
as GeneClus t  (which does hierarchical clustering and gene shaving and uses a 
simulation-based procedure to evaluate the results), G e n e c l u s t e r  (which does 
self-organizing maps), G e n e s p r i n g  (which does hierarchical clustering, self- 
organizing maps, k-means, and principal components analysis), and P a r t e k  
(which does self-organizing maps and k-means). 

SUPPLEMENTARY READING 

There has been such an extensive body of work on the subject of cluster analy- 
sis that there are entire books devoted just to this topic, including Aldenderfer 
and Blashfield (1984), Everitt (1993), Gordon (1999), Hartigan (1972) and 
Kaufman and Rousseeuw (1990). The latter emphasizes outlier-resistant tech- 
niques. Surveys are provided by Cormack (1979) and Gnanadesikan and Ket- 
tenring (1989). A number of multivariate analysis textbooks also provide 
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detailed accounts of clustering techniques, including Gnanadesikan ( 1997), 
Krzanowski (2000), Mardia, Kent, and Bibby (1979), and Seber (1984). The 
books by Hastie, Tibshirani, and Friedman (2001) and Ripley (1996) lie at the 
interface of statistics and data mining. 

EXERCISES 

9.1. Verify that DE, DM, D,, and DCAN satisfy the dissimilarity axioms 1 
through 5. 

9.2. Use the full Khan et al. (2001) dataset of 88 samples that is included in the 
DNAMR package. 
a. Perform the principal components analysis to reduce the dimension of 

the gene set. 
b. Select the number of principal Components that appears to represent 

the entire dataset using the four criteria that are given for this purpose. 
c. Graph the principal components using the (i) biplot and (ii) spectral 

map analysis, and try to identify the dusters. 

9.3. Continue with the full Khan et al. (2001) dataset of 88 samples that is 
included in the DNAMR package. 
a. Perform the factor analysis using the varimax rotation procedure. 
b. Select the number of factors that appears to represent the entire dataset 

c. Graph the main factors using the biplot and try to interpret the factors 

d. Compare the results with those of Problem 9.3. 

using the four criteria that are given for this purpose. 

in the graph and try to identify clusters. 

9.4. Continue with the full Khan et al. (2001) dataset of 88 samples that is 
included in the DNAMR package. Use a few principal components se- 
lected in Problem 9.2, or otherwise, use the principal components data set 
provided in the book’s Web page. 
a. Perform a cluster analysis to search for patterns among the genes using 

b. Compare the result from part a with other methods such as Ward’s 

c. Use the results of the previous part b as the initial configuration for the 

single-linkage hierarchical clustering. 

method and average linkage. 

k-means clustering procedure and compare the results. 

9.5. Graph the results from Problem 9.4 using the microarray plot in 
DNAMR. 
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Class Prediction 

Microarray experiments can be used to classify mRNA samples on the basis of 
the type of mRNA that is present in them. For example, suppose that mRNA 
samples are available from several tumors. The tumors are known to be of 
various different classes, but for this set of tumors, we know to which class each 
tumor belongs. Now it is likely that different genes are expressed in the cells of 
different tumor classes. Therefore it can be conjectured that it ought to be pos- 
sible to differentiate among the tumor classes by studying and contrasting their 
gene expression profiles, that is, by studying how the types and amounts of 
mRNA present in them vary from class to class and applying cluss prediction or 
supervised clclssiJication techniques to develop a classification rule to discrimi- 
nate them. The knowledge gleaned from this exercise can be used not only 
to gather valuable information regarding the gene expression pattern of the 
underlying disease process, but also to predict the class of a new tumor of 
unknown class based on its gene expression profile. 

This paradigm has tremendous potential as it is sometimes difficult to dis- 
tinguish among certain tumor/cancer subtypes by clinical and histopathological 
means, as is current practice, but yet it is possible to discriminate among them 
by studying their gene expression data. The path breaking paper in this regard 
was by Golub et al. (1999), who demonstrated its feasibility by separating out 
two different but clinically indistinguishable types of leukemia, ALL (acute 
lymphocytic leukemia) and AML (acute myelocytic leukemia), based on gene 
expression information. Incidentally this data has been subsequently reanalyzed 
many times using various different methods (the book by Lin and Johnson, 
2002, has several re-analyses). 

Since then many applications of this idea have been reported. For instance, 
Hedenfalk et al. (2001) compared gene expression profiles for two types of 
hereditary breast cancer (breast cancer with BRCAl mutation and breast can- 
cer with BRCA2 mutation) and found that distinctly different groups of genes 
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are expressed by the two types, suggesting that a heritable mutation affects the 
gene expression profile of the cancer. 

In addition quite a few applications have used cluster analysis to analyze 
microarray data even when class information was available. The better the 
resulting clusters matched the known classes, the better the clustering was 
deemed to be performing and the more informative the data structures that 
produced those clusters. This, however, is an indirect and thereby highly ineffi- 
cient approach to the problem of classification. 

Example. We will use the data of Khan et al. (2001) to illustrate the methods 
of this chapter. The dataset contains gene expression measurements, obtained 
using cDNA microarrays, from four types of pediatric small round blue cell 
tumors (SRBCT): neuroblastoma (NB), rhabdomyosarcoma ( RMS), the 
Ewing family of tumors (EWS), and Burkitt lymphomas (BL), a subtype of non- 
Hodgkins lymphoma. The four cancer types are clinically and histologically 
similar, yet their response to treatment is markedly different, making accurate 
diagnosis essential for proper therapy. The purpose of the study was to classify, 
as accurately as possible, a cell as being one of these four types using gene ex- 
pression information. The microarrays measured the expression levels of 6567 
genes. This data was filtered to remove any gene that consistently expressed 
below a certain minimum level of expression, leaving expression data for 2308 
genes. A total of 88 cells were analyzed. Data for 63 of these cells (23 EWS, 20 
RMS, 12 NB, 8 BL) was used as a training set, while the data for the remaining 
25 cells (6 EWS, 5 RMS, 6 NB, 3 BL, 5 non-SRBCT) was set aside to make up 
a blind test set. 

10.1 INITIAL CONSIDERATIONS 

As in the previous chapter, the data in this chapter will be set up as a gene 
expression matrix, a G x p matrix, X = { whose G rows and p columns 
represent, respectively, the G genes and p samples. Depending on the experi- 
ment, the p samples may correspond to p tissues, cell lines, tumors, or some- 
thing else. The p samples belong to k different classes. It is known a priori 
to which class each sample belongs and there are n, samples from the j t h  
class, C,=l n, = p .  The p-vector, y = {I?}, indicates to which class each sarn- 
ple belongs: thus y ,  = s if the j th  sample belongs to the sth class. 

The values x,, that make up the gene expression matrix could be either the 
measured gene expression level for the ith gene in the j th  sample, suitably 
transformed and normalized, or, particularly in two-channel experiments, the 
log of the ratio of the normalized gene expression level for the ith gene in the 
,jth sample relative to its corresponding value in a reference sample. A generic 
G-vector, x = (XI,. . . , x ~ )  will denote a gene expression pro$le, a vector of gene 
expression data for the G genes. 

The gene expression matrix, X, functions as a training set (also called a 

L 
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learning set or design set) for classification as it is a set of samples for which 
the classes are known and gene expression data is available. The objective of 
supervised classification is to use the training set data for “training” purposes, 
that is, to develop a classification rule. The idea is that given a new sample 
with gene expression profile x, the classification rule can be used to predict, as 
accurately as possible, the true class of the new sample (assuming that its true 
class is one of the k classes) based on its gene expression profile, x. Generally, 
the classification rule will be based on a classifier that partitions the space of all 
possible x’s into k disjoint subsets, A l ,  . . . , A k ,  such that if x falls into A,$, then 
x is predicted to belong to class s. 

10.1.1 Misclassification Rates 

If a classification rule predicts that x belongs to class s when the truth is that x 
belongs to some other class t ( t  # s ) ,  then a misclassification is deemed to have 
occurred. The proportion of misclassifications in the training set, called the 
inisclassijication rate, is the most natural measure for evaluating the perfor- 
mance a classification procedure. 

However, since the classification rule would have been optimized, in some 
sense, for the training set, this raw misclassification rate tends to seriously 
underestimate the true error rate of the procedure. 

One way to circumvent this problem is test set cross-vulidation which con- 
sists of setting aside a portion of the samples as a validation set or test set, then 
construct the classification rule based on the training set, which is now all the 
samples other than the test set, and use the proportion of misclassifications in 
the validation set as an assessment of the performance of the procedure. 

Another strategy that is on the same lines, but is a less wasteful use of 
resources, is Ieave-out cross-validation. In leave-out-one cross-uulidution, each 
sample in turn is set aside as a one-sample validation set and its class is pre- 
dicted by constructing the classification rule based on the rest of the samples 
as the training set. The proportion of misclassifications is an indication of the 
performance of the classification procedure. A variant of this strategy is leave- 
out-k cross-validation in which the number of samples set aside as the validation 
set at each step is k rather than one. 

Bootstrap methodology (Efron and Tibshirani, 1993, is a good general ref- 
erence) can be used to improve the behavior of the raw misclassification rate, 
EOhr, as a measure of the true misclassification rate, E, of a classification pro- 
cedure. A set of p samples, chosen at random with replacement from the 
original p samples, is used as the training set (called the bootstrap training set), 
with which a classification rule is constructed. The original p samples are 
used as the validation set, from which a misclassification rate can be deter- 
mined. This is repeated several times and the average misclassification rate, 
E’,  is determined. The misclassification rate of the procedure is taken to be 
Ehool = Eohr + (E’ - Eoh,) = E * .  A slightly modified version of this, called the 
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0.632 bootstrup, that has been shown to be an improvement is E0.632 = 

0.368E0h, + 0.6326**, where E" is the average bootstrap misclassification rate 
for those samples that are not included in the bootstrap training set. 

10.1.2 

The idea is to use either the genes or certain combinations of the genes as clas- 
sifiers for classifying the samples into classes. Since the number of genes gener- 
ally greatly exceeds the number of samples, if we were to treat all the genes as 
classifiers, there will a great deal more classifiers than samples. By retaining 
such a large number of classifiers, it is incredibly easy for a classification rule 
to find good-looking but irreproducible and meaningless separation. This will 
result in a spuriously low misclassification rate in the training set, but a high 
misclassification rate in a test set. 

There is an intuitive geometrical argument that illustrates this fact. Suppose 
that we have a dataset of three samples and two genes, where the three samples 
are members of two classes. If we represent the three samples as three points in 
the two-dimensional plane, i t  is easy to see that, if the points are not aligned, 
there is always a line in the plane that splits the three samples into the two 
classes. The same is true if we have four samples and three genes in three 
dimensions divided into two classes, as there is a two-dimensional plane that 
produces the correct classification. The argument generalizes to a dataset with 
p + 1 samples and p genes that spans the p-dimensional space and the samples 
are members of two classes. Then there is a ( p  - 1)-dimensional plane that 
produces the correct classification. The good behavior of this linear classifica- 
tion is just a geometrical artifact and should not be taken to imply that the 
genes in the dataset are good classifiers. However, when the number of samples 
is much greater than the number of genes, the geometrical artifact disappears, 
and any good classification will be a consequence of the relationship between 
the gene expression levels and the classes. This means that in order to demon- 
strate that a set of genes are genuinely good classifiers, we need to have many 
more samples than classifiers. 

Besides this issue. biological considerations make it highly likely that, among 
the thousands of genes printed on an array, only a handful are really useful as 
classifiers in any situation, with the retention of the rest merely contributing 
noise and obfuscating the separation between classes. Thus the performance of 
a classification procedure would be vastly improved by reducing this number 
beforehand to a much smaller number of relevant genes, a process known as 
genejilturing. It is best that this reduction be carried out independently of the 
classification rule as; otherwise. there will be a risk of overfitting, but this is 
rarely possible. 

Besides the use of prior knowledge, the simplest strategy to reduce the 
number of genes is to argue that the genes that are likely to be the best classi- 
fiers will express diRerentially across the different classes. If this is the case, they 

Reducing the Number of Classifiers 
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can be identified using the tests for differential expression (e.g., the t test, SAM, 
CT, or F test, with a sufficiently low FDR) that were discussed in Chapters 7 
and 8. 

While it surely makes sense to eliminate as a potential classifier any gene 
that expresses at about the same level in all the samples, there are some prob- 
lems with this approach: (1) filtering out too many genes may lead to loss of 
most of the classification information, particularly with the risk that some of 
those genes are just false discoveries, while retaining too few genes may not 
reduce enough noise, (2) there may exist a set of genes that together acts as 
a classifier, but each individual gene in the set does not, (3) there could be a 
redundancy of information as many genes may be picking up the same pattern 
of differential expression, and (4) since, in microarray experiments, the gene 
pool is very large, there will be individual genes that, just by chance, may 
appear to be good classifiers in the dataset at hand but this result may not 
be reproducible. In fact it is possible that some of the extraordinarily good- 
looking results that were reported in the early days of microarray research but 
that subsequently failed to reproduce could be due to this phenomenon. 

Another way to filter genes that overcomes many of the previous objections 
is to consider multiple genes simultaneously. Bo and Jonassen (2002) show 
that a pair of genes in combination separates two classes better than doing the 
filtering gene by gene. Gene pairs (or other multiples) can be selected using 
Hotelling’s t test (e.g., see Mardia et al., 1979), the multivariate form of the t 
test. 

Multiple genes can also be considered simultaneously by constructing linear 
combinations of genes. This can be done using dimension reduction methods, 
such as principal components analysis or factor analysis, which were intro- 
duced in Section 9.3. By dropping all but the most important linear combina- 
tions, these methods will produce a small set of classifiers made up offeatures, 
linear combinations of the genes, in such a way that they preserve, in some 
sense, almost all the information contained in the original genes. The classifiers 
are then features rather than individual genes. 

Khan et al. (2001) use PCA to generate features for class prediction with 
microarray data. However, one nagging concern with using PCA this way 
is that the information we are most interested in, that is, information related 
to class diflerences, could be overwhelmed by other aspects of the data that 
are irrelevant to the class prediction problem. Preceding PCA or FA by a gene- 
filtering step should mitigate this concern somewhat. 

Particrl least squares (PLS) is another method for defining features. Whereas 
PCA sequentially constructs orthogonal linear combinations, XI, of the G genes 
that maximize the variance, var(Xf), without paying any heed to the classes, y ,  
PLS sequentially constructs orthogonal linear combinations, XI, of the G genes 
that maximize the covariance, cov(XI, y )  between XI and the classes, y .  This 
seems to address the concern with PCA mentioned above, but, if PLS was pre- 
ceded by a gene filtering step, it is unlikely to produce results that are substan- 
tially different from PCA. However, Nguyen and Rocke (2002) do report an 
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improvement in classification by using PLS rather than PCA for feature selec- 
tion in a microarray context. 

An alternative is to run a PCA as above and then rank the principal com- 
ponents in the order suggested by the ratio of between class variance to within 
class variance. This strategy was originally proposed by Krzanowski (1992) for 
a chemometrics problem and then was implemented and extended by Land- 
grebe et al. (2002) and Coombes (2002) for classifying microarray data. An 
alternative that may be able to do this more directly is projection pursuit 
regression (Friedman and Stuetzle, 1981), which tries to find smooth functions 
of the linear combinations XI that correlate with y .  

Yet another way to reduce the effective number of classifiers is to run a 
clustering procedure over the set of genes or a large interesting subset of them, 
and form features that are the averages of the clusters or, alternatively, one or 
two principal components. 

Many researchers have recognized the importance of classifier selection for 
microarray classification problems. Golub et al. (1999) and Dudoit et al. (2002) 
discuss individual gene selection, and the latter, in particular, shows how the 
performance of many classification rules can be improved by reducing the 
number of classifiers. Several papers in the book edited by Lin and Johnson 
(2002) discuss the general issue. 

For simplicity, in the remainder of this chapter, we will refer to G classifiers 
even though the actual number of classifiers may have been reduced to a 
smaller number. 

Example. 
niques with the example of the four types of SRBCT tumors. 

We will illustrate some of the proposed dimension reduction tech- 

Method 1. Take the first 10 principal components for the entire set of 2308 
genes. Since the sample covariance matrix is a 2308 by 2308 singular matrix 
of rank 62, we use the singular value decomposition described in Chapter 9. 
Figure 10.1 shows the scatter plot of the 63 training samples and the 25 test 
samples in the coordinates of the first two principal components (i.e., the 
two first PCA basis). The training samples are represented by small filled 
symbols, while the testing samples are the unfilled larger symbols. The test 
set symbols in the graph show a nearly random pattern, indicating that two 
principal components are not enough to produce a good classification rule. 

Method 2. Select the genes that have a significant F statistic at CI = 0.001 the 
level and take the top 10 principal components. This subset contains a total 
of 450 significant genes. As in the previous case, the sample covariance ma- 
trix is high dimensional and highly singular and hence the principal compo- 
nents are calculated with the singular value decomposition method. Figure 
10.2 shows the scatter plot of the 63 training samples and the 25 test samples 
in the two first PCA basis with the same style as Figure 10.1. The data shows 
a clear separation between the four classes for both training and testing sets 
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Figure 10.1 This graph shows the 63 training samples and the 25 test samples in the coordinates of 
the first two PCA basis. The training samples are represented by small filled symbols while the 
testing samples are the unfilled larger symbols. The data shows a nearly random pattern that illus- 
trates the poor performance of this classification rule. 

that suggest that this dimension reduction method will produce good classi- 
fication rules. 

Method 3a. Select the 50 most significant genes for the F statistic and cluster 
the genes into I0 clusters. Take the average of the genes in each cluster to 
produce a set of 10 classification variables. The variables can be sorted in 
order of significance using the values of the F statistic. Figure 10.3 shows the 
scatter plot of the 63 training samples and the 25 test samples in the two 
first PCA basis with the same style as Figure 10. I and 10.2. The data shows 
a clear separation between the four classes for both training and testing sets 
that is almost as good as the one in Figure 10.2. This suggests that this 
dimension reduction method will produce good classification rules. 

Method 3b. This is a variant of the previous method. Take the 10 classifiers in 
method 3a, and calculate the 10 principal components. The 10 principal 
components will produce the same classification rule that the previous 10 
cluster mean variables, but there maybe subsets of principal components 
that perform better than equal size sets of cluster means. Figure 10.4 shows a 
clear separation between the four classes for both training and testing sets 
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that is as good as the one in Figure 10.1. This suggests that this dimension 
reduction method will produce good classification rules. 

Method 4. Select the 30 most significant genes for the F statistic and take the 
top 10 principal components. Figure 10.5 shows the scatterplot of the 63 
training samples and the 25 test samples in the two first PCA basis. The data 
shows a clear separation between the four classes for both training and test- 
ing sets that suggest that this dimension reduction method will produce good 
classification rules. 

10.2 LINEAR DISCRIMINANT ANALYSIS 

The oldest and one of the simplest methods of supervised classification, linew 
discriiiiitiunt cinulysis (LDA) (Fisher, 1936) endures to this day as one of most 
popular classification techniques. It is based on finding the linear projections 
(views) of the data that most effectively separates out the k classes. 

The most common situation is the case k = 2, where there are just two 
classes of samples. In this case classification can be based on the projection 
i t , ' ,~ :  the projection is made in the direction M.' where the classes are most 
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Figure 10.3 Two cluster means of 50 significant genes. This graph shows the 63 training samples 
and the 25 test samples in the two first PCA basis. The data shows a strong clustering pattern that 
explains the excellent performance of the classification rules. 

widely separated in the training set. Letting n,, the G-vector XJ and the G x G 
matrix S, denote, respectively, the sample size, the mean and the variance- 
covariance matrix of the sth class in the training set, and letting S = 
((nl  - 1)Sl + (122 - I ) S 2 ) / ( n l  + n2 - 2 )  denote the pooled variance-covariance 
matrix, a standardized measure of the separation between the two samples in 
the training set in the direction w is given by 

2 (w’x-, - lV/.Y2) 
A =  

w’Sw 

The direction w that maximizes A is 

w = S-(x, - xz), 

where S -  denotes the generalized inverse of S,  because, with microarray data, 
S will almost always be singular. The classification rule then is based on the 
linear cluss$er: 
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Figure 10.4 The first two principal components for the means of 10 clusters obtained from a sub- 
set of the top 50 significant genes. This graph shows the 63 training samples and the 25 test samples 
in the two first PCA basis. The graph shows that for the EWS tumors two observations in the test- 
ing and one in the training are in the boundary with the group of NB tumors. 

The classification rule is 

If w’x > rtl’(xl + .?2)’/2, then x is classified as belonging to class 1. 
Otherwise .Y is classified as belonging to class 2 .  

While no distributional assumptions were made in the derivation above, this 
rule can also be obtained under the assumption that the data is normally dis- 
tributed with the same variance covariance matrix, in which case the rule can 
also be shown to possess various optimality properties. 

This method can be readily generalized to the case of more than two classi- 
fiers (Rao, 1948). Again, let n,, the G-vector X, and the G x G matrix S, 
denote, respectively, the sample size, the mean and the variance-covariance 
matrix of the 8th class in the training set. Let 

denote the overall mean and pooled variance-covariance matrix. Then a stan- 
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Figure 10.5 Principal components for the top 30 significant genes. This graph shows the 63 train- 
ing samples and the 25 test samples in the two first PCA basis. The data shows a strong clustering 
pattern that explains the excellent performance of the classification rules. 

dardized measure of the separation between the k sample means in the training 
set in the direction w is given by 

w’Bw A=-- 
W’SW ’ 

where B = z:=l(%5 - x)(Xs - 3)’ is the between class matrix. 
The extreme values of A correspond to the eigenvalues, A,,. . . , I , ,  and 

eigenvectors, wl, . . . , wy of S-B,  where S- denote the generalized inverse of 
S.  There are at most t = min(k - 1, G) distinct eigenvalues. The eigenvector 
that corresponds to the largest of these eigenvalues is the direction in which 
the classes are maximally separated in the training set and provides the view 
of most interest. On the other hand, the eigenvectors corresponding to the 
smallest eigenvalues tend to obscure the separation of the samples into classes. 

Let Dh(x) = c:=,[(x - Xh)’wX]* denote the squared distance (in terms of the 
1 eigenvectors) of x from the hth class mean. Then x is predicted to belong to 
the class whose mean is closest to x, namely to the class h that has the smallest 
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value of Dh(x). This is equivalent to using the linear discriminant function 

and assigning x to the class with the largest L{,(x). 
It has been found that LDA with no initial gene filtering does not perform 

well. Indeed, in the comparison study of Dudoit et al. (2002), i t  was one of the 
worst performers. Besides the issues discussed in Section 10. I .2, the difficulty of 
estimating S efficiently with a very small p ,  a common problem in microarray 
studies where replication is limited, is at least partly responsible for this phe- 
nomenon. In fact the performance of LDA improves significantly with aggres- 
sive gene filtering. 

E.xample. In order to illustrate the use of the LDA method and the improve- 
ment garnered by gene filtering, we apply it to the four variable reduction 
methods in Section 10.2. Since each reduction method produces 10 classifiers in 
a given order, we apply LDA to a few subsets in the given order. The results 
are shown in Table 10.1. The message is very clear, since methods 2, 3, and 4 
did reasonably well and much better than method 1 .  In particular, methods 3 
and 4 used very few genes. Method 3 with four classifiers used only twenty 
genes, which was the lowest in terms of number of genes. 

10.3 EXTENSIONS OF FISHER’S LDA 

Fisher’s basic method has, over the years, been extended in various ways. 

Quadratic Discriminant Analysis (QDA). Dropping LDA’s assumption that 
the true variance covariance matrices of the classes are the same produces the 
QDA classification rule: assign x to the class with the largest value of 

Table 10.1 
number of misclassifications for both training and testing samples 

Results of Fisher LDA for the four rules for selecting classifiers giving the 

10 Cluster 
10 PC of 2308 10 PC of 450 Means of 50 10 P c  of 30 

Genes Genes Genes Genes 

Training Testing Training Testing Training Testing Training Testing 

2 Classifiers 35 13 0 2 4 2 3 2 
3 Classifiers 5 5 0 0 0 1 1 I 
4 Classifiers 0 3 0 0 0 0 0 0 
10 Classifiers 0 3 0 0 0 0 0 0 
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Table 10.2 Results of QDA for the four rules for selecting classifiers giving the number 
of misclassifications for both training and testing samples 
~~ ~ ~ 

10 Cluster 
10 PC of 2308 10 PC of 450 Means of 50 10 PC of 30 

Genes Genes Genes Genes 

Training Testing Training Testing Training Testing Training Testing 
2 Classifiers 26 14 0 2 3 2 4 6 
3 Classifiers 0 6 0 I 1 1 0 5 
4 Classifiers 0 6 0 1 0 0 0 0 
7 Classifiers 0 3 0 0 0 0 0 0 

Note: The lowest row uses 7 classifiers because one of the classes has only 8 samples. 

Example. We repeated the LDA analysis using the QDA method. Since each 
reduction method produces 10 classifiers in a given order, we apply LDA to a 
few subsets in the given order. The results are shown in Table 10.2 are more or 
less the same as those in table 10.1, perhaps slightly worse in the sense that they 
vary a bit more among the last three variable reduction procedure. The expla- 
nation is that some of the class sizes are very small (8 is the smallest one so we 
may use a maximum of 7 classifiers) and in such cases using a QDA rule means 
increases the numbers of parameters in the model to a point that it may pro- 
duce a worse fit. In any case the differences between QDA and LDA are small. 

Diagonal Linear Discriminant Analysis (DLDA). A special case of QDA 
occurs when Sh is set to be a diagonal matrix that is the same for every class. 
Thus correlations between genes and variance differences between samples are 
ignored. It turns out that, like LDA, DLDA is a linear classification rule. 
Dudoit et al. (2002) found that DLDA to be one of the strongest performers in 
their comparison study. 

Diagonal Quadratic Discriminant Analysis (DQDA). Another special case of 
QDA is when sh is set to be a diagonal matrix that is different across classes. 
This is a quadratic classification rule. 

Regularized Discriminant Analysis (RDA). When the sample sizes in the train- 
ing set are small, as is typically the case with microarray data, it is likely to be 
difficult to estimate Sll efficiently. Consequently the performance of QDA may 
not offer an improvement over LDA, even though the covariance matrices of 
the classes are moderately different (as we saw in the example above). A com- 
promise is to use a weighted average of Sl1 and S: 

( 1  - U ) S h  + as 
(1  - a)& + an S' = 

I1 

as an estimate of the covariance matrix of the hth class. QDA is then applied as 
above with Sl in place of sh, with the value of a estimated to maximize per- 
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formance via cross-validation. This compromise was reached by shrinking Sh 
toward a common value, S, along the lines of the concept of regularization, 
which suggests shrinking a highly parametrized model toward one that is less 
highly parametrized. It has been demonstrated that regularization improves 
certain properties of the estimation, at the cost, however, of a slightly biased fit. 
Another mode of regularization is to shrink S towards a diagonal matrix. It has 
being argued (e.g., see Friedman, 1989) that one advantage of this double reg- 
ularization for the classification problem is that it can be used to reduce the 
emphasis of the smaller eigenvalues. 

Prediction Analysis for Microarrays (PAM). The plan behind this method 
proposed by Tibshirani et al. (2002) is to use a simple centroid distance classi- 
fication rule but to regularize by shrinking the centroids in a similar way as was 
done in the SAM method described in Section 7.3. Define the G-dimensional 
vector, 4, = (2, - Z)/[ml(s + so)], where m, = ,/-, s is a vector of 
length G containing the within-class standard deviations for each of the G genes 
and $0 is a fixed constant equal to the median of the components of s. We 
define the new shrunken centroids as 

where d; = sign(d,)(ld,l - A)+ and A is a fixed scalar. The sign function gives 
a vector of the signs of the components of d,, that is, it returns a vector of 
+ 1 ’s, - 1 ’s, and 0’s for positive, negative and zero components respectively. 
The value of A is chosen according to the method of cross-validation described 
in Section 10.5 below. The procedure has an in-built gene selection mechanism 
as the vector $ may have some zero components, which would imply that 
those genes are automatically excluded as classifiers. 

Flexible Discriminant Analysis (FDA). This method consists of two steps. 
First, a nonlinear model is fitted to the data using a binary numeric represen- 
tation of the response. For this step, any nonlinear nonparametric regres- 
sion estimator, such as generalized additive models, lowess, projection pursuit 
regression, or MARS, can be used. Second, a linear discriminant classification 
rule is applied to the fitted values from the first step as predictor variable and 
the same response variable. Hastie et al. (1994) provide further details. 

Buyes’s Rule. In the event that prior probabilities (XI, . . . , nk) can be assigned 
to the k classes, classification by Bayes’s rule is to assign x to the class with the 
largest value of 

For a toxicogenomics problem in which the classes were not well defined, Ra- 
ghavan et al. (2003) apply a modified version called j k z z y  chss prediction. 
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10.4 NEAREST NEIGHBORS 

Nearest-neighbor methods for classification (first proposed by Fix and Hodges, 
1951) are among the oldest and more successful classification methods. 

Following the notation in Section 10.1, let x, represent the j th  sample and 
yi give the class number of the j th sample. Let x be the candidate sample for 
classification, and let S k , x  be the set of the k nearest neighbors of x in the 
training set. The simplest k-nearest neighbor (kNN,  for short) method consists 
of estimating the probability that x belongs to the ith class p ( i l x )  by the pro- 
portion of the k nearest neighbors that belong to the ith class: 

The classification rule is based on a “majority vote”: x is assigned to the ith 
class if i maximizes the probability fi(ilx). 

This method assumes that the p (  ilx) is approximately constant in the region 
containing the k nearest neighbors of x, for all i. In practice, this means that the 
number, p ,  of samples should be large and the number, G, of genes should be 
small compared to p ,  which is atypical of microarray experiments. Since this is 
never the case, a few of the principal components or factors should be taken as 
classifiers as explained above in Section 10.1.1. 

Dudoit et al. (2002) found that along with DLDA, kNN had very good 
performance in their comparison study, particularly when it was preceded by 
gene filtering. Pomeroy et al. (2002) analyzed microarray data from 99 patients 
using kNN after gene filtering and demonstrated that medulloblastomas, the 
most common malignant brain tumors of childhood, were molecularly distinct 
from other brain tumors. 

More sophisticated implementations of the kNN method are readily avail- 
able, for example: 

1. The decision rule can be rendered more complex by introducing the idea 
of a loss function. Let lo represent the loss that is sustained by stating that 
x belongs to the ith class when, in reality, x belongs to the j th  class. Then 
we calculate the risks 

.j= I 

The decision rule will assign x to the class that gives the minimum of the 
risks r; .  

2. By rescaling the variables by dividing them by their corresponding stan- 
dard deviations before computing the k nearest neighbors, the distance 
between the samples will be scale independent. 
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3. Friedman (1994) introduced a combination of nearest neighbors and 
recursive partitioning that is very successful. 

Example. We redo the classification using the kNN method. The results are 
shown in Table 10.3 are more or less the same as Table 10.1, perhaps slightly 
worse in the sense that only procedure 3 achieves 0 misclassifications. 

10.5 RECURSIVE PARTITIONING 

A classification rule induces a partition in the space of all possible samples that 
assigns each possible sample to a class. The best partition is selected by opti- 
mizing a classification criterion. In reality the number of possible partitions 
produced by a method depends only in the configuration of the observed sam- 
ples, and as a result the number of possible partitions grows exponentially with 
the number of samples in our dataset. In most practical cases it is not possible 
to find the globally optimal partition and we resort to methods that produce 
nearly optimal partitions. One such method is recursive partitioning that is used 
to generate classification trees. 

Trees are the obvious method for displaying the results of recursive parti- 
tioning, and consequently statisticians have been growing them at least since 
Morgan and Sonquist (1963). Many methods for growing classification trees 
have been proposed by statisticians (e.g., CHAID-Hartigan, 1975; FIRM- 
Hawkins and Kass, 1982; CART-Breiman et al., 1984; SPlus TREE-Clark 
and Pregibon, 1992) and computer scientists (e.g., C4.5-Quinlan, 1993). These 
conventional recursive partitioning methods generate partitions of the samples 
with the goal of reaching a partition that generates a good prediction rule. 

In Figure 10.6, on the left panel, we show a simple classification function of 
two variables f ( X ,  Y ) ,  which is expressed in the form of a tree rule on the right 
panel. The way to read the tree is “If X 2 2, then class I ;  if X < 2 and Y 2 2, 
then class 2; .  . . .” One of the nice properties of such trees is that they produce 
classification rules that have a wide appeal because they resemble decision rules 
that are easier to understand compared to most other competitive methods. 

10.5.1 Classification Trees 

A classijication tree is an easily understandable way of graphically displaying 
the results of a recursive partitioning procedure. For gene expression data the 
inputs to a classifier are gene expressions, ratios of gene expressions, or linear 
combinations thereof, obtained from principal components or factor analyses. 
The example in Figure 10.7 shows a classification tree. The process of building 
a classification tree has two stages: ( I )  building the tree, and (2) pruning the tree. 

Building the Tree. A binary tree begins at a root node where the data is split 
into two buckets using one of the classification variables from the set. The split 
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Function f(X,Y) Tree form of f(X,Y) 
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Figure 10.6 Classification tree for a function ,[(A', Y ) .  

is performed by optimizing one of the criteria below over all possible partitions 
generated by some logical condition in any of the classification variables. The 
conditions are of the form: x, > c goes to the right bucket and x; I c goes to 
the left bucket. This produces two new nodes, right and left ( R ,  L) ,  which are 
split into two buckets each by the same process that took place at the root 
node. If the size of a node is less than a predetermined constant m, then the 

EW 

BL 

Corno 1 > = -2.926 

Cornp 1 > = 6.085 RM 

NB 

Figure 10.7 Classification tree for the cancer groups using 10 principal components of the top 100 
cancer genes. The classification rule produces zero mistakes in the training set and five mistakes in 
the training set. 
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node is labeled a terminal node, and it is not split. The process continues until 
all nodes have either been split or are terminal nodes. The result is a binary tree 
that produces a partition (made up of terminal nodes). 

In some microarray data analysis classification problems, we may use cate- 
gorical classifiers. For example, instead of using the spot intensity X as a clas- 
sifier variable, we find that the spot intensities have been categorized into 
variables Z reflecting that a group of one or more genes all highly express 
(2 = 1)  or not all highly express (2 = 0). These classifiers may generate cate- 
gorical splits where the categories of 2 are split into two groups such that the 
splitting criterion is minimized. 

Let us consider the case when the objective is to classify the samples into 
only two classes, class 0 and class 1. The objective of the tree method is to 
produce a partition of terminal nodes that are relatively pure in the sense that 
almost all the observations at a terminal node belong to only one class. The 
most popular criteria that have been propose to achieve this goal are as follows: 

Gini index. This is the criterion used in the original version of Breiman 
et al. (1984)’s clussificution und regression tree (CART) methodology. The 
objective function is 

where p and 4 are the proportions of observations going to the left and 
right buckets, p~ and 4~ are the proportions of 0’s and 1’s in the left-side 
bucket, and p~ and 4 R  are the proportion of 0’s and 1’s in the right-side 
bucket respectively. 

* Entropy. This criterion is used by the C4.5/C5 algorithms by Quinlan 
(1993) that is very widely used in computer science applications: 

Tree. A deviance-based criterion proposed by Clark and Pregibon (1992) 
has been implemented in statistical software such as SPLUS and R: 

A less well-known, but interesting, criterion is Lee and Buja’s (1999) data- 
mining criterion, 

Many the criteria above are widely used by practitioners and the choice of a 
“best” criterion remains an open question. 

The tree method can also be applied for regression analysis that is when 
there is a continuous response variable that is analyzed by a tree model. The 
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splitting criterion is 

where n R ,  ffi, and n L ,  6; are the number of observations and sample variance 
in the right and left bucket respectively. 

Pruning the Tree. 
problems: 

The tree-building step is likely to experience two kinds of 

1. An overfitted tree, with small buckets at the terminal nodes. 
2. An oversized tree, which is hard for the practitioner to interpret. 

A way to correct these problems is by pruning the tree. Since step one of the 
tree-building procedure produces an ordered sequence of trees, the question 
becomes where to stop. 

One procedure to do this is test set cross validation, which consists of sepa- 
rating a portion of the data (25%-50%) that we will call testing set and leave 
the remaining part of the dataset for training. The tree is built using the train- 
ing set alone and results in an ordered sequence of trees. For each tree in the 
sequence, a misclassification rate is estimated using the testing set alone, and 
the tree with the lowest misclassification rate is chosen. This procedure requires 
a large initial dataset, and even then, it seems unnatural to discard a part of 
the dataset for training since it will reduce the performance of the method. 
An alternative technique that improves on this is called V-fold cross-validation; 
details can be found in Breiman et al. (1984). 

One weakness of classification trees is that some nodes may have few 
observations, making the predictions at those nodes unreliable. Techniques 
have been proposed to improve the predictive ability at those nodes and there- 
fore of the tree, in general. Two such procedures are bootstrap aggregating 
or bagging (Breiman, 1996) and boostiny (Freund and Schapire, 1997). The 
idea behind both these methods is to produce slightly perturbed classifiers 
from the training data by resampling. Bagging generates replicate training sets 
by sampling with replacement from the training set. Boosting retains all the 
samples but weights each sample differently, and generates different classifiers 
by adjusting the weights. Each method generates multiple classifiers that are 
combined by voting to form a composite classifier. In bagging, each component 
classifier has the same vote, while in boosting, each component classifier has 
a different vote based on an assessment of its accuracy. Dudoit et al. (2002) 
found that boosting and bagging improves the performance of CART-like 
procedures with microarray data. 

Example. In Figure 10.7 we show a tree graph generated using the tree 
method with the four-tumor data example. The input classifiers are the two top 
principal components of the best 100 genes and the node splitting criterion used 
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was the Gini index. The method produced a tree with three splits and four ter- 
minal nodes that fits the training data perfectly and has 5 mistakes on the 20 
testing samples. This performance is typical of trees with small training sets. 

10.5.2 Activity Region Finding 

The activity region fznding (ARF) method for growing classification trees 
was proposed by Amaratunga and Cabrera (2003a). ARF trees are trees that 
exclude large parts of the data where no information is available and concen- 
trate only in subsets that contain the important information. The advantage of 
ARF over recursive partitioning (RP) methods is that it produces simpler more 
condensed trees in cases where RP methods give very complex and elaborated 
hard to interpret trees. 

Building the A R F  Tree. The ARF tree is a ternary tree; that is, each node IS 

split into three groups. The splits are of the form c1 I x, I c2 so there are three 
subgroups. 

The basis of the ARF approach is the H criterion. For data of the form 
D = {( Y,, x L ) } ,  where i = 1,. . . , N ,  Y, is a Bernoulli variable, which is either 
0 (“failure”) or 1 (“success”), and x, = (x,,, . . . , x r , ) ‘  is an r-vector of pre- 
dictor variables. The objective is to discover high-uctiuity regions (HARs) 
ranges of values of x (i.e., subsets of the form S = nlk, as described above) 
associated with high values of Prob( Y = 1 I S )  (i.e., with high-success proba- 
bilities). 

It is natural to consider that, for the kth predictor variable, xk, an “inter- 
esting” interval, Ik = { u k  < XI, I h k } ,  is one that has a substantially higher 
proportion of successes compared to D, meaning one such that p ( I k )  = 
Prob( Y = 1 I ZI,) is substantially larger than p ( D )  = Prob( Y = 1 I D). In order 
to compare p(11,)  across subsets, I k ,  of different sizes on an equal footing, we 
need a statistic that is not much dependent on n ( Z k ) ,  the number of observations 
in I k .  Such a statistic is 

where 0; = p ( D ) (  1 - p ( D ) ) / n ( l k ) ,  as z(&; D) is approximately N ( 0 ,  l) ,  regard- 
less of sample size, except for very small samples, for a random binary series of 
length N with success probability p ( D ) .  The larger the value of z ( I k ;  D) is, the 
more interesting is l k .  

10.6 NEURAL NETWORKS 

Inspired by the way the brain supposedly processes information, neural net- 
works are a class of highly flexible nonlinear models for studying complex 
patterns in data and for predicting new observations from existing ones. Use 
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INPUTS: X1 

HIDDEN 
LAYER 

OUTPUTS: y, 

Figure 10.8 Graph of an ANN with one hidden layer. 

of these models is very popular in data mining, machine learning, and other 
application areas related to computer science, although they are significantly 
less favored by statisticians. One reason is that neural networks intentionally 
tend to be heavily overparametrized, which goes totally against conventional 
statistical wisdom that identifies overparametrization with overfitting. 

However, in many modern classification problems this overparametrization 
may not be a serious concern because the data may have the following charac- 
teristics: there is no overlap between the classes, the surface that separates the 
classes is highly nonlinear, and there are massive amounts of data so that the 
separation can be identified by the procedure. For problems with such charac- 
teristics, the risk of overfitting is less of a concern than the ability to capture 
highly nonlinear separations. 

A basic model for neural networks appears under the name jeed-forwurd 
single hidden luyer neurul nets, which consist of an input layer, an output layer 
and a hidden layer in between. Figure 10.8 gives a visual scheme of the struc- 
ture of such neural nets. Each node has one or more inputs and one output. 
The neural net mode1 is structured as follows: 

1. The input layer (or first layer) consists of as many nodes as classifiers are 
available for the fit. The output of each node is the corresponding value 
of the classifiers assigned to it (see Fig. 10.8). 

2. Each node inputs the outputs of the nodes of the prior layer and it out- 
puts a fixed function of the linear combination. The function, sometimes 
called a trunvfer function, is usually a logistic function or any other sig- 
moidal shaped function for classification problems and the identity func- 
tion for regression problems. The sigmoidal function is 

h(x, y )  = tanh(cr0 + a1 (.wry)’) 

3. The output layer (or last layer) has as many nodes as responses are 
available for the fit. 
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Table 10.4 Results of ANN for the four rules for selecting classifiers giving the number 
of misclassifications for the testing samples 

10 Cluster 
10 PC of 2308 10 PC of 450 Means of 50 10 PC of 30 

Genes Genes Genes Genes 

Training Testing Training Testing Training Testing Training Testing 
2 Classifiers 18 14 0 2 0.5 I .5 0 3.5 
3 Classifiers 8 14 0 1 0 0.5 0 1.5 
4 Classifiers 0 3 0 0.5 0 0.5 0 1.5 
10 Classifiers 0 8 0 0.5 0 0.5 0 1.5 

Note: The two columns show differences for using different numbers of nearest neighbors. 

The process of estimating the parameters of the neural net (“learning”) uses 
a very complicated “backfitting” algorithm that does not always find the opti- 
mal parameter values. However, a nice feature of the neural net model is that it 
can be implemented in computer hardware. It would be a mistake for statis- 
ticians to ignore neural net methodology because it does produce excellent 
results in many applications. The difficulties mentioned above will likely be 
overcome with new research and greater computational resources. 

Example. We redo the classification using the ann (which stands for artiJicia1 
neural network) function in the R software. We used one hidden layer with 
K = 0, . . . ,20 nodes and found that the number of nodes made little effect. We 
allowed direct links between the input layer and the output layer. The results 
are shown in Table 10.4 are more or less the same as Table 10.3. The 0.5 in the 
table means that different trainings produced different results in the classifica- 
tion because of the differences in the initial conditions. The ANN was trained 
one thousand times, and the results are reported as 0.5 when about half of the 
time we got zero misclassifications; the other times we have 1 or more mis- 
classifications. It appears that procedures 2 and 3 performed slightly better than 
procedure 4. 

10.7 SUPPORT VECTOR MACHINES 

Support vector machines (SVM ) are generalizations of the linear classifier 
methods (e.g., LDA) that have become very popular in the machine learning 
literature. 

Suppose that the training set is classified into two classes { f l ,  - l},  then 
the SVM classification rule is of the form r(x) = sign(P’x - Po).  This function 
defines a separation hyperplane between the two classes. Some of the features 
that make SVM popular are as follows: 
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Figure 10.9 SVM example with two groups of points. The shaded area represents the separation 
region. The arrows indicate the location of the support vectors. 

1. The criterion for estimating the hyperplane is to maximize the margin of 
separation between the classes, as shown in Figure 10.9, by the shaded region 
in the graph. This is an interesting idea, but it is not affine invariant and it may 
not be optimal in situations when the scales of the different classifiers may not 
be very similar. 

2. The linear classifiers can be extended to nonlinear ones by augmenting 
the set of classifiers to the sometimes-called “feature” space, which includes 
the classifiers plus nonlinear functions of them. The form of the nonlinear 
classifier is 

where the most popular forms for h are the following: 
a. Radial basis functions, 
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b. Siymoidal functions, 
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h ( x ,  y )  = tanh(a0 + c11 ( ~ ’ y ) ~ ) .  

3. The estimation of the classifier rule parameters is performed using a 
quadratic programming algorithm. The solution can be expressed as a function 
of a few of the samples that are called support vectors that gives the name to the 
method. Figure 10.9 shows a graph of an example of SVM in two dimensions, 
indicating the support vectors and the maximal separation region. 

SVMs have been used for analyzing microarray data. For example, Brown et al. 
(2000) use SVMs to predict functional roles for uncharacterized yeast ORFs. 

A good general introduction to SVM can be found in a collection of four 
papers in Hearst (1998), where the authors give high praise to the theoretical 
simplicity of SVM compared to neural nets, and the reasons why SVM are 
becoming very popular in the area of machine learning. On the other hand, 
they point out that there are still no applications where these methods have 
been shown to be significantly superior to other nonlinear classification tech- 
niques. Our intuition of SVM is that they are different than other methods in 
the sense that they pay special attention to the boundary of separation between 
the regions corresponding to each class, and this may yield small improvements 
of the classification prediction rate. 

Incidentally, computer-intensive nonlinear classification methods are becom- 
ing more and more popular because of the widespread availability of very fast 
computers, and there are many implementations of them in modern software. 

10.8 INTEGRATION OF GENOMIC INFORMATION 

Gene expression information from microarray studies can be integrated with 
information from other sources, such as annotation and partial information 
regarding genetic pathways, to develop more complete views of biological pro- 
cesses. We outline briefly some efforts in this regard. 

10.8.1 

Blower et al. (2002) describe a method called SA T unulysis for systematically 
associating molecular features of compounds with gene expression patterns, 
with the objective of predicting which molecular substructures would be present 
in drugs that are active in cells whose genes are expressed according to a spe- 
cific pattern. SAT analysis links together three databases of information on 
cells and chemical compounds. The three databases are A, a k x 1 “activity 
matrix” consisting of experimental measures of the inhibitory effect of each of 
the k compounds against each of I cell lines; T, a G x I “target matrix” of gene 
expression patterns measured by DNA microarrays for G genes in the I cell 

Integration of Gene Expression Data and Molecular Structure Data 
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lines; and S, a h x k “structure matrix” of 0’s and 1’s that identifies which of a 
very large number, h,  of molecular structural features are present in each of the 
k compounds. 

If A and T are properly standardized, the k x G matrix AT‘ consists of 
Pearson correlation coefficients, and the k x G matrix SAT‘ consists of associ- 
ation measures whose (i, j ) th  value measures the tendency of the ith structural 
feature to occur in cell lines in which the j th  gene is expressed. Mining this 
latter matrix via a series of targeted subsetting strategies leads to insights re- 
garding these associations. 

10.8.2 Pathway Inference 

The study of co-expression of genes across a series of experimental conditions, 
such as time, provides an assortment of clues from which it is hoped that the 
genetic pathways involved in a biological process could be reconstructed. The 
simplest way of assessing these clues is by determining the functional classes to 
which co-expressing genes belong and using any knowledge gained from doing 
this to “fill in the blanks” whenever partial information about a biological 
pathway is available. More complicated assessments involve the use of Baye- 
sian network models. 

A Bayesian network model can be graphically represented as a directed 
graph. The nodes of the graph represent genes. Arrows connect those nodes 
where the expression of one gene regulates the expression of another, either 
directly or due to an external stimulus. The state of a daughter node condi- 
tional on the state of its parent nodes is modeled by a probability distribution. 
The whole model is fitted either by using a scoring function to evaluate how 
well the network matches the observed data or by performing tests for condi- 
tional independence on the observations. However, definitive conclusions are 
difficult to reach from fitting these models due to various reasons such as (1) the 
lack of availability of sufficient data to adequately and reliably fit the model 
and (2) the nonuniqueness of the fit, indicating the statistical equivalence of 
totally different gene regulation pathways. 

As functional genomics develops, research that involves integrating genomic 
data from diverse sources will lead to a better understanding of complex bio- 
logical processes. 

SOFTWARE NOTES 

Software for commonly used supervised classification techniques has been 
implemented in a number of different platforms and are available in all statis- 
tical packages. As with clustering algorithms, some implementations are better 
than others at handling large datasets and applications with large numbers of 
variables. 

In R and SPLUS and its associated libraries, some relevant functions are Ida 
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for Fisher’s linear discriminant analysis, qda for quadratic discriminant analy- 
sis, knn for the nearest-neighbors method, rpart (tree in sPLUS) for classi- 
fication trees, and nnet for neural networks. 

Some programs specially designed for microarray data are Genecluster 
(which does kNN) and Partek (which does gene filtering, discriminant analy- 
sis and neural networks): 

PAM is available online at www-stat. stanford.edu/-tibs/PAM. 
ARF is available online at www. rci . rutgers . edu/-cabrera/DM. 

SUPPLEMENTARY READING 

As with cluster analysis, the literature on class prediction is very broad. The 
Hand (1997) book is a useful general reference. A number of multivariate 
analysis textbooks also provide detailed accounts of supervised classification 
methodologies, including Gnanadesikan (1997), Krzanowski (2000), Mardia, 
Kent, and Bibby (1979), and Seber (1984). The books by Hastie, Tibshirani, 
and Friedman (2001) and McLachlan (1992) and Ripley (1996) lie at the inter- 
face of statistics and data mining. 

EXERCISES 

10.1. Golub et al. (1999) performed a supervised classification on oligonucleo- 
tide microarray data (the data is available online) related to two types of 
leukemia: AML and ALL. Read the article and answer the following 
questions: 
a. Briefly outline the authors’ goals and the analysis they performed and 

b. Summarize the data using PCA or FA on all the genes. 
c. Perform a classification using (i) LDA, (ii) DLDA, (iii) QDA, and (iv) 

kNN using all the genes in the data. Report the misclassification rate 
in the training set and the test set. 

d. Repeat parts b and c using only the 50 genes identified in the paper as 
being the strongest classifiers. Report the misclassification rate in the 
training set and the test set. 

e. Compare the results of the various analyses that you performed, and 
draw your conclusions. 

the conclusion that they reached. 

10.2. Use the Khan et al. (2001) data that was covered in this chapter and from 
the training set select the top 5 genes that produce the most significant 
F statistic for comparing the mean expression between the four tumor 
classes. 
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a. Use the LDA procedure to produce a classification rule for the four 
tumor classes and estimate the misclassification rate for the training 
and testing sets. 

b. Repeat the procedure for the top 10 genes, 15 genes, 20 genes, and 25 
genes. Make a table showing the misclassification rates of the 5 clas- 
sification rules and comment on the table. 

c. Repeat the procedure for all the previous cases, but instead of using 
the raw gene data, take the top two principal components as the clas- 
sifiers. Make a new table of the performance of all the previous clas- 
sifiers, and summarize your findings. 

10.3. For the Khan et al. (2001) data in the previous problem: 
a. Draw a biplot using the top 100 genes according to the F ratio crite- 

rion. 
b. Once this is done, draw a biplot of the training sets and try to find 

clusters by hand; that is, print the biplot graph, and with a pencil draw 
the regions corresponding to each class. 

c. Proceed by graphing the dots corresponding to the testing set, and 
check the misclassification rate of your clusters. 
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Protein Arrays 

Protein array experiments display strong similarities to their DNA microarray 
counterparts. Protein arrays are rapidly becoming established as a powerful 
means to detect proteins, to monitor their expression levels, to ascertain their 
functions, and to investigate how they interact with each other and with exter- 
nal effects. Although the protein array field is still in its infancy, it is gaining 
momentum and is fast becoming one of the most promising areas of biomedical 
research. 

1 I .1 INTRODUCTION 

Proteins are the workhorses that regulate and perform the main functions of 
the cell (see Chapter 2). They carry out all kinds of housekeeping activities, 
they are catalysts of chemical reactions, they act as channels and pumps, and 
they perform motor functions. Some of the proteins involved in protein array 
experiments are as follows: 

Antibodies. Antibodies are proteins produced by B-lymphocyte cells, which 
are a certain type of white blood cell. As part of the immune system, the 
function of an antibody is to bind with a specific protein (antigen) lying on 
the surface of a foreign cell. This protein-binding property plays an impor- 
tant role in the technology for the realization of protein array experiments. 
There are five classes of antibodies that are also called immunoyfobulins: 
lgA, IgD, lgE, lgG, and IgM. 
Antigens. Antigens are proteins that lie on the surface of foreign cells and 
are detected by specific antibodies. Antibodies will bind with antigens in 
order to neutralize them and to help other parts of an organism’s immune 
system recognize foreign cells such as bacteria or viruses. 
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* Enzymes. These are proteins that perform catalytic functions; that is, they 
accelerate a chemical reaction without been consumed by it. In particular, 
enzymes are involved in the synthesis of DNA and proteins. Enzymes are 
involved in the synthesis of proteins from RNA code by translation. The 
RNA code is subdivided into triplets of ordered nucleotides that are called 
codons. Proteins are formed of chains of amino acid molecules. There are 
20 possible amino acids, and each codon codes for one specific amino 
acid-but more than one codon may code for the same amino acid. The 
process of protein formation consists of translating the RNA code into a 
chain of amino acids bonded together to form the protein molecule. The 
enzyme’s role in the protein formation is similar to the role of an assembly 
line in the making of a product. 

Although some of the basic concepts of protein arrays are covered in this 
chapter, some more complete general references in the genomics literature are 
Kodadek (2001), MacBeath (2002), and Angenendt et al. (2002). 

11.2 PROTEIN ARRAY EXPERIMENTS 

Theoretically a protein array experiment can be fashioned to follow a path 
similar to a DNA microarray experiment. A protein sample is extracted from 
cells or whole tissues and labeled with dye, the labeled protein sample is 
incubated with a prefabricated array consisting of a large number of proteins 
printed in high density on a glass slide, any unbound labeled protein sample 
is removed via a filtration process, and the array is scanned to measure the 
amount of bound sample protein. 

However, there are some crucial differences between a protein array experi- 
ment and a DNA microarray experiment. In addition to its amino acid 
sequence, the three-dimensional structure a protein folds into is an essential 
determinant of its function. Thus the protein on the array must be folded 
appropriately but in such a way that the recognition sites on the protein are not 
obscured. Clearly, proteins cannot simply be printed onto a two-dimensional 
glass surface to study function as is done with DNA. Thus the technology of 
DNA microarrays described in Chapter 3 has to be modified considerably. 

Several methods for fabricating protein arrays have been proposed. The 
basic idea is to bind the protein to the glass slide with some agent and to label it 
with a fluorescent dye that can be detected by a scanner. Three methods have 
been proposed for constructing protein arrays: 

1. SandHiich immunoassays. The microarray spots are made of packed anti- 
bodies that will bind with specific proteins and then a second set of anti- 
bodies that have been labeled with a fluorescent dye will bind with the 
captured proteins (Fig. 1 1. la) .  The scanner will read the fluorescence 
signal and assign a measure of protein abundance. 
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Figure 11.1 Protein array types: (a) sandwich method, (h)  antigen method. 

2. Antigen capture immlmoassays. This method is similar to sandwich im- 
munoassays except that the second antibody with the fluorescent tag is 
not used (Fig. 1l . lb).  Instead, it requires chemical labeling of the pro- 
teins (or some alternative method of measuring protein abundance on 
each spot). 

3. Antigen capture immunoassays. This approach consists of immobilizing 
the protein molecules in the sample directly. An antibody labeled with 
fluorescent dye is used to detect any particular protein. 

When two dyes are used, dye-swap designs (see Section 8.5.1) may be used as 
one dye may bind more efficiently with certain proteins than the other dye. 

11.3 SPECIAL ISSUES WITH PROTEIN ARRAYS 

Although there are many similarities between the images scanned from protein 
arrays and the images scanned from DNA microarrays, the processes that 
generated them (described in the previous section and in Chapter 3) are quite 
different. Some of the issues that differentiate protein arrays from their DNA 
siblings that affect the data analysis are as follows: 

1. The objective of protein arrays is not only detection of protein but also 
measurement of protein abundance, whereas the objective of most DNA 
microarray experiments is focused on which genes are expressed or dif- 
ferentially expressed. 

2. In DNA microarray experiments there is a PCR step that amplifies the 
sample. In protein arrays there is no such amplification step. For single 
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dye experiments, it is possible to amplify the signal by three orders of 
magnitude using enzyme catalyzers (Knezevic et al., 2001), but for two 
dye experiments, this technology has not been developed as yet. Conse- 
quently the detection level is an important issue because a protein that is 
present in the sample at  a low concentration may not be detected by the 
protein array experiment. 

3. Cross-detection is also an issue because some antigens may bind to more 
than one protein. 

4. The protein population is much more diverse than the gene population 
and involves many more interactions. For example, there are more than 
two thousand proteins in the human cell controlling gene expression only. 
Therefore there is great potential for much larger microarrays and more 
complex experiments than for the DNA case. The technology for protein 
array spotting is advancing rapidly and will be a useful means of analyz- 
ing patterns of variation in hundreds of thousands of proteins. 

Besides this application of protein detection, another role of protein arrays 
is to study the functions of proteins. The advantage of protein arrays for this 
purpose is that they are well-suited to the control conditions of experiments. A 
typical experiment consists of studying the interaction between two proteins. 
The aim is to be able to study the functionality of many proteins at once in one 
experiment. 

1 1.4 ANALYSIS 

Fluorescence data from protein arrays is analyzed using an analogous approach 
to that used with DNA microarray data. In the schematic display shown in 
Figure 11.2, we outline a series of steps that need to be followed for analyzing 
protein array data. Observe that although Figure 11.2 is a modification of the 
DNA microarray analysis schematic display shown in Figure 1.1, the data anal- 
ysis part is essentially similar. We now review a few of the main steps here: 

Step 1. Spotting of microarray and background array. The raw image produced 
by the scanner the is input data; spotted intensities and spotted background 
the are output data. 

Step 2. Log (or similar) transformation. This is to remove, totally or partially, 
the heavy skewness of the spotted intensities, 

Step 3. Quality control. The procedures described in Chapter 4 can be used to 
check the quality of the spotted arrays and the spots themselves. 

Step 4. Normalization. Global or intensity dependent normalization among a 
group of arrays is applied to correct for any systematic biases in the mea- 
surement scales. With protein arrays this step should be applied with caution 
because it could lower the signal of some high signal spots. 
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Figure 11.2 Protein array analysis schematic. 

Step 5. Outliers among the proteins. These can be identified using the methods 

Step 6. Outliers among the arrays. These can be identified using concordance 

Step I .  Analysis of the corresponding biological problem. 

outlined in Chapter 5. 

correlation coefficients and the other methods outlined in Chapter 5. 

11.5 
PROTEIN CONCENTRATIONS 

USING ANTIBODY ANTIGEN ARRAYS TO MEASURE 

In these early days of protein array experiments, some researchers are explor- 
ing groups of antibody/antigen pairs to show that it is possible to estimate 
protein concentrations using antibody/antigen microarrays. Haab et al. (2001) 
developed a method for protein array printing and used the arrays to measure 
the quantities of many specific proteins in complex solutions. They conducted 
a comparative fluorescence assay with two dyes, using 115 antibody/antigen 
pairs, with 6 to 12 replicates per pair, comprising a total of 1188 spots per 
microarray. In one group of 6 arrays antibodies were employed to detect their 
corresponding antigen pair and in another group of 6 microarrays the reverse 
experiment was performed, that is, using antigens to detect antibodies. The 
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researchers reported that 50Yn of the antigen arrayed and 20% of the antibody 
array allowed detection of proteins at some of the antibody-antigen pairs and 
allowed the detection of proteins at concentrations of 1 ng/ml (nanogram/ 
milliliter). Haab et al. (2001) indicated that these sensitivities are great enough 
for measuring many clinically important proteins in patient blood samples. 

The method used to determine when a protein was detected relayed on using 
6 arrays at six different concentrations of the sample. Recall that each individ- 
ual array contains six replicate spots (except for a few with up to 12) of the 
same antibody/antigen so for each protein we observe a 6 x 6 array of logged 
ratios. A threshold value was assigned for each protein by calculating the mean 
of the six replicates at the lowest concentration plus two times their standard 
deviation. For each of the remaining five concentrations, if all the six spots 
gave ratios above the threshold value, then the protein was detected at that 
concentration. The results of the experiment showed a 50% detection rate of 
arrayed antigens and a 20nh of detection of arrayed antibodies at the highest 
concentration and lesser values for the lower concentrations. 

This method of calculating the threshold is highly variable. Suppose that for 
simplicity, the ratios for the low concentration sample for a particular protein 
have a normal distribution with zero mean and standard deviation one. Then 
the ideal threshold would be equal to 1.96, but because we are calculating the 
threshold with only six values, the resulting threshold would range between 0.5 
and 3.5 approximately 95% of the time. 

An alternative way to check if a protein is detected by the microarray is to 
consider the concordance correlation between the observed values and the true 
protein concentration values. The concordance correlation coefficient (see Sec- 
tion 5.6) measures the agreement between two sets of paired numbers. 

Figure 1 1.3 shows the histogram of the observed concordance correlation 
coefficient of the observed ratios and their corresponding ideal values for both 
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Figure 11.3 Concordance correlations for antigen and antibody arrays. 



220 PROTEIN ARRAYS 

1 .o 

0.8 

0.6 

c 0.4 
.- 8 
2 0.2 
c 

0.0 

-0.2 

-0.4 

I 

I I I I I I 

Antibody 
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1 

Figure 11.4 Concordance correlations for antigen arrays versus antibody arrays (with the identity 
line). 

sets of antibody and antigen microarrays. A simple way to compare these two 
sets of concordance correlation coefficients is by drawing their scatterplot as in 
Figure 1 1.4. In Figure 11.4 there appear to be two distinct groups of proteins 
on the top right corner, some are above the diagonal line indicting that the 
concordance correlation coefficients are higher for the arrayed antigens and 
some are below the line indicting that the concordance correlation coefficients 
are higher for the arrayed antibodies. In order to estimate a threshold for the 
concordance correlation, we permuted the samples and calculated a null distri- 
bution for the concordance correlation coefficients. It turned out that the 95th 
percentile of the null distribution corresponded to, approximately, a 0.75 con- 
cordance, although the values differ from protein to protein. The number of 
detected proteins with arrayed antibodies was 59, or approximately 50%, and 
the number of detected proteins with arrayed antigens was 31, which is approxi- 
mately 27%. These numbers appear to be different enough to suggest that the 
detection rates for antibody arrays are slightly higher than the detection rates 
for the antigen arrays. 

This kind of study is only the beginning in a new period of biological 
research. As advances in technology propel genomics and proteomics forward, 
novel technologies will emerge generating fresh challenges for the sophisticated 
data analyst. 
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EXERCISES 

11.1. In the analysis in Section 11.4, in the third paragraph, it was suggested 
that if the low concentration sample for a particular protein has a normal 
distribution with zero mean and standard deviation one, the ideal thresh- 
old would be equal to 1.96. However, because we are calculating the 
threshold with only 6 values, the resulting threshold would range between 
0.5 and 3 . S  approximately 95% of the time. 
a. Perform a small simulation to verify this result. 
b. Repeat the procedure assuming that the distribution of the low 

concentration ratios is a chi-squared distribution with 2 degrees of 
freedom. 

11.2. The dataset El  1 in the DNAMR library consists of 12 samples contain- 
ing 1200 spots corresponding to 200 proteins with 6 replicates each. The 
first 6 samples are technical replicates at a concentration of 1 ng/ml. The 
second set of 6 samples are also technical replicates but spotted at a 
concentration of 10 ng/ml. The objective is to determine which proteins 
are detected in the sense of being differentially expressed between both 
groups. Carry out this analysis making sure that you follow the basic 
analysis steps and use the quantile normalization option. 
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