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Preface

This book is intended to help researchers and students analyze high through-
put epigenomic data, in particular DNA methylation microarray data, with
sound statistics. It is divided into four parts. Part I, chapters 1 to 4, be-
gins with an introduction to the basic statistics that is needed to comprehend
the rest of the book. Chapters 2 and 3 are more biological and describe the
wet bench technologies producing the data for analysis. Bioinformaticians
and experimenters benefit by working closely together to design experiments
with sufficient power and high quality. Chapter 4 preprocesses the data to
remove systematic artifacts resulting from imperfection in the measurement.
In Part II, chapters 5 and 6, the normalized data are then subject to con-
ventional hypothesis-driven analysis looking for differential methylated loci
between populations. Genomic tiling arrays may differ in their specific aims
and a whole chapter is devoted to tiling arrays. Part III, chapters 7 to 10,
concerns exploratory analysis, which hopefully lead us to new hypotheses. In
particular, functions and roles of unannotated DNA elements are associated
with those of known ones by cluster and network analysis. Part IV, chapters
11 to 13, introduces the public online resources that facilitate justification and
discussion of the findings.

DNA methylation microarrays share the same underlying hybridization
principles as gene expression microarrays. Many of the analyses in the book,
therefore, apply not only to DNA methylation but also to gene expression and
histone modifications by chromatin immunoprecipitation on chip.

Graphical and artistic presentation of the data is no less crucial than statis-
tical computation. We strove to produce decent plots that serve as examples
of the resulting analysis throughout the chapter. Electronic files of the plots
accompany the book. The data used to illustrate the book were produced at
the Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental
Health in Toronto, Canada.

We are indebted to the entire team of the KFEL, especially Axel Schu-
macher, James Flanagan, Jonathan Mill, Zachary Kaminsky, Thomas Tang,
Carolyn Ptak, and Gabriel Oh for enlightening discussions and comments.
Part of the work was supported by grants from the National Science Coun-
cil (Taiwan) to Sun-Chong Wang and from the National Institute of Mental
Health (R01 MH074127), Canadian Institutes for Health and Research, On-
tario Mental Health Foundation, NARSAD, and the Stanley Foundation to
Arturas Petronis.

Sun-Chong Wang Arturas Petronis

Systems Biology and Bioinformatics Institute Epigenetics Laboratory
National Central University Centre for Addiction and Mental Health
Chungli Taoyuan, Taiwan Toronto, Ontario, Canada
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Chapter 1

Applied Statistics

Phenotype is shaped by DNA sequence variation, environment, epigenetic
variation and their interactions. A few measures in statistics help summarize
the characteristics in the collected data regarding the location and shape of
the data distribution. Graphical presentation of data is especially useful in
comprehending, interpreting and contrasting results, such as the relations
between measured quantities.

Description of data changes from one to another independent sample be-
cause of the inherent biological variability. Experimental goals are, however,
invariantly aimed at the interests of the general population. Methods are
needed for us to generalize the results beyond local sample. The central limit
theorem that relates sample characteristics to population characteristics un-
derpins the method of induction. Statistical hypothesis tests are introduced
to control the risk of false claims. Tests differ depending on the way of com-
parisons and/or on the type of data.

Relations among data can be explored by the techniques of linear models
and contingency tables. We address the sample size issue, which is essential to
project planning. Equations are provided for deductive reasoning; most sta-
tistical software/packages, such as R/Bioconductor, encapsulate the formulas
into single functions, returning results after a mouse click on a user interface.
The job becomes that of choosing the right options to the right functions.
Chapter 1 serves this purpose.

1.1 Descriptive statistics

Given N independent measurements, it is often desirable to summarize
the large number of data values in ways that are succinct yet informative.
Examples are abundant, and mundane examples include the blood pressure
measured in N days and the time spent on the road to the office in N trips.
The quantity of primary interest is the typical value in the sample data.
With such typical values, one gets a sense of how effective the medication is
she has been receiving and how soon she has to leave for the office. The other
quantity of essential importance is the dispersion in the data values. On days

1
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of blood pressure highs, she isn’t panicking because of the variability in the
readings. On occasion of important dates, she is better off leaving early for
the meeting. The two quantities in the data values, i.e., central tendency and
variation, therefore, are of central importance and we use them daily without
notice.

There are measures of central tendency and variation. Different measures
can give rise to quite different values. Preferred choice for measures depends
on the context. A pictorial presentation of the data helps guide one through
the selection of the appropriate measure.

1.1.1 Frequency distribution

The most common way of visualizing a dataset is to group the data values
into different intervals or categories. For example, we count the numbers of
times the blood pressure (traveling time) falls within the interval between x
and x + δx, between x + δ and x + 2δ, ..., etc, mmHg (hr). Next we plot
the counts over the whole range of the measured values and get a frequency
distribution of the data. Note that since the total number of measurements is
N , the sum of all the counts in the frequency distribution is equal to N . This
kind of a plot is called a histogram. Since the process of making histograms
is so routine in statistical data analysis, the word histogram is being used as
a verb.

When we compare two frequency distributions, the comparison can be dif-
ficult when the two Ns differ by a lot. In such cases, we normalize the counts
by dividing them by N , the sum of all the normalized counts now becom-
ing one. The normalized frequency distributions now can be easily compared
because the areas under the normalized counts are all the same. Figure 1.1
shows an example of the probability density distribution. The other use of
normalized frequency distributions is that, when N is large enough, they can
be interpreted as probability density distributions, which is discussed below.

1.1.2 Central tendency and variability

A measure for central tendency in the data values x = xi, x2, · · · , xN is the
sample average or arithmetic mean, x̄,

x̄ =
1

N

N
∑

i=1

xi . (1.1)

The mean value (1.1) is prone to shift by extreme values in the data distribu-
tion. Extreme values can occur due to the nature of the processes generating
the data or to insufficient numbers of data values. For example, the commuter
time is protracted by a subway strike. If the increased time happens to be
included in dataset x in mean calculation, the obtained average is inflated by
the outlying value.
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FIGURE 1.1: Length distribution of the probes on a CpG island microar-
ray. The dotted line locates the average (= 773 bp) while the dashed line is
the median length (= 306 bp).

Median is a way to remedy the nonrobustness caused by extreme values. To
calculate the median, we sort the data values in increasing order. The value
in the middle of the sorted data string is the median. In case there is an even
number of data values, the average of the two middle values is used as the
median. Median is the second quartile in the data distribution; half of the
data values are smaller and the other half are larger. Because it is rank that
is involved in locating median, it is clear that median is robust to outliers.

Means or medians give an idea of the typical magnitude representing the
bunch of data values. As important is the dispersion in the values, which is
quantified by the standard deviation,

s =

√

√

√

√

1

N − 1

N
∑

i=i

(xi − x̄)2 . (1.2)

The summation inside the square root is over squared deviations from the
mean. N − 1 in the denominator is equal to the number of independent
data values for the calculation of s. That is, given x̄, only N − 1 pieces of
independent information remain in the dataset. It is called degrees of freedom
in statistics.

Like mean, standard deviation can vary from dataset to dataset if some
datasets contain outliers. A measure of variability that is resistant to outliers
is MAD (median absolute deviation) using medians,

MAD = median
(

|xi −median(x)|
)

. (1.3)
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The other common robust measure for distributional dispersion is IQR (in-
terquartile range), which is the difference between the third and first quartiles
of the data values.

1.1.3 Correlation

In section 1.1.1, we advocated graphical presentation of the data with fre-
quency distributions prior to analysis. From the distributional curves in the
plot, we decide not only suitable measures of central tendency and variability
for the description of the data, but also the type of correlation and test for
subsequent analysis.

1.1.3.1 Pearson product-moment correlation

If we position diet consumption according to the scale on the horizontal
axis and the blood pressure of the same day along the vertical axis, we form
a graph called scatter plot. In such a plot of consumption versus pressure, if
the pressure increases linearly with consumption, we say pressure is positively
correlated with consumption. Likewise, if blood pressure decreases linearly
with drug dosage, the pressure is said to negatively correlate with the drug.
We call properties (such as blood pressure or different dosages) that vary
between individuals or over time variables . The variation may be due to
randomness, treatment or free will. The variables that are measured are
called dependent or response variables and those that are manipulated are
called independent variables, explanatory variables or factors. A quantity for
the strength and direction of the linear relation between two variables x, y is
the Pearson product-moment correlation coefficient (after Karl Pearson),

r =

∑N
i=1

(xi − x̄)(yi − ȳ)

(N − 1)sxsy
, (1.4)

where x̄, ȳ and sx, sy are the sample means and standard deviations for x
and y, respectively.

Pearson correlation coefficient is between 1 and −1. A value of 0 indicates
no tendency of co-variation between the two variables. In social sciences, a
coefficient of 0.3 (or−0.3) is considered large, warranting further investigation.
Figure 1.2 shows examples of extreme correlation from technical replicates.
Note that correlation does not mean causation. For example, the increasing
blood pressure might have been caused by some other environmental factors,
such as stress, which have not been taken into account in the analysis. A
cause-and-effect relationship between two variables is hard to prove, if not
impossible. A way of approximating a proof is to rule out as many false
causes as possible.
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FIGURE 1.2: Scatter plot of replicated DNA methylation microarray mea-
surements. Top shows two replicates of the tissue sample from an individual.
Bottom shows two replicates of the tissue from two individuals.
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1.1.3.2 Spearman’s rank correlation

If the variable increases monotonically, but not linearly, with the other vari-
able in a scatter plot, Pearson correlation coefficient can return a misleading
result. In such cases where linearity may not be assumed, we calculate in-
stead Spearman’s rank correlation coefficient (after Charles Spearman). To
get Spearman’s correlation coefficient, we convert the (usually continuous)
data values into ordinal numbers according to their rank in relation to others.
The rankings are then fed into equation (1.4), producing Spearman’s rank
correlation coefficient. The coefficient obtained this way, therefore, quantifies
the degree of co-variation between the ranks of one variable and those of the
other variable.

1.2 Inferential statistics

Finite time and resources bound the number of subjects for a research.
The measures introduced in descriptive statistics characterize the distributions
of phenotypes pertaining to the participating subjects. The goal of most
research, however, is to extend the conclusion on the studied subjects to the
general public. Making inferences beyond what is described in the sample data
is not possible without probability theory and implicit assumptions [Casella01,
Hogg05].

1.2.1 Probability distribution

Probability is used to deal with uncertainty, which originates from the
stochastic and/or random nature of the variable. The blood pressure of an
individual changes with her physiological conditions around the clock. If we
reduce the intraindividual variability by taking blood pressure before, say,
morning meals, blood pressure still varies across individuals over the variant
genetic backgrounds.

Suppose a procedure against high blood pressure is being developed and
that the average blood pressure of N patients is measured for the purpose
of efficacy assessment. If we recruit another independent set of N patients,
the average blood pressure of the new set will be different from the previous
average because of the variability in between-individual blood pressure. Av-
erages differ from set to set, giving rise to a distribution of the means. It is
important to know how precise the mean of a sample set is representing the
population mean before we can proceed with the assessment.

A probability distribution of the blood pressure P (y) would help by telling
us the likelihood of picking an individual with a particular blood pressure
y if she is picked at random from the population. The mean and standard
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deviation of the population blood pressure is not, and will probably never be,
known. Thus, the question is how well the population mean is approximated
by a sample mean. Central limit theorem holds the key.

1.2.2 Central limit theorem and normal distribution

The central limit theorem is the foundation of many statistical methods.
The mathematically proven theorem says that, from a set of N independent
variables y1, y2, · · · , yN each of which has a finite mean µ and standard devi-
ation σ, the following mean

Ȳ =
y1 + y2 + · · ·+ yN

N
(1.5)

is normally distributed with mean µ and standard deviation σ/
√

N as N is
large (e.g., N > 30).

In our example, µ and σ are the mean and standard deviation of the popula-
tion blood pressure distribution P (y). The central limit theorem says that the
sample mean Ȳ approaches the population mean µ for large N . Furthermore,
the larger the N , the better the approximation as the standard deviation of
Ȳ is proportional to 1/

√
N .

Central limit theorem also explains the ubiquity of normal distributions.
As a quantitative trait with continuous levels, blood pressure can be thought
to be under the influence of n genes. Imagine that the allelic effect of gene
i on men’s blood pressure is zi. An individual’s blood pressure y is then
y = z1+z2+· · ·+zn. If we apply the central limit theorem to y, the probability
distribution P (y) of an individual’s pressure follows a normal distribution.

The central limit theorem also turns out to be a windfall to statisticians
because Gaussian functions are known to be tractable mathematically. Many
powerful tools in statistics, to be introduced below, thus have been developed
assuming the data are normally distributed. If not, transformations of the
data into normal are tried so that existing tools can be applied.

1.2.3 Statistical hypothesis testing

We readily get the mean from a sample of N patients. Although the sam-
ple mean approximates the population mean, it does fluctuate. To claim the
efficacy of a treatment, which was tested on a limited number of sample pa-
tients, to all the patients in a population, we run into the risk of making false
efficacious claims. The procedure of statistical hypothesis testing helps us
minimize the risk.

1.2.3.1 Null hypothesis

First of all, efficacy itself can be hard to define. For example, a reduction in
the average blood pressure by Ȳ mmHg can be beneficial to some but not to
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others. Instead, we usually put forward a null hypothesis Ho of no effect on the
average blood pressure after treatment, which is easy to state qualitatively and
quantitatively. Negation of the null hypothesis is the alternative hypothesis
Ha, which is usually what researchers are looking after. It is good to be
reminded that, although we use data from the sample, the conclusion is to be
inferred to the larger patient population.

The aim of biomedical research eventually comes down to a null hypothesis.
A null hypothesis also dictates what data are collected and compared. In
the drug efficacy example, the data are the blood pressure of each patient
before and after treatment. We, therefore, form N pre- minus post-treatment
blood pressure differences from the N patients. Suppose we find an average
difference of Ȳ mmHg in the N patients. Recall that the blood pressure
fluctuates irrespective of treatment. So what do we decide on the effect of the
drug on high blood pressure patients at large?

1.2.3.2 Student’s t-distribution and p-value

The idea is to have the distribution of the average difference Ȳ so that
we know how wildly it can fluctuate. We, therefore, calculate the so-called
t-statistic,

t =
Ȳ

sY /
√

N
, (1.6)

which, under the null hypothesis of no population difference Ho : Y = 0,
is shown to distribute as a probability density function called Student’s t-
distribution (after William Sealy Gosset) with N −1 degrees of freedom. The
sY in the denominator of equation (1.6) is the sample standard deviation of
the N blood pressure differences using equation (1.2). With the t-distribution
and the degrees of freedom, we know how Ȳ behaves. In particular, given a
value of t by equation (1.6), we calculate the area, under the t-distributional
curve, larger than t. Since the t-distributional curve is normalized to 1, the
area is the probability of observing a blood pressure difference larger than Ȳ .

To make conclusions based on the sample data, we estimate the probability
of observing the difference or larger assuming that that drug has no effect.
The probability, called (one-tailed) p-value, is thus the chance that we get a
difference larger than Ȳ by chance alone. If the p-value of Ȳ is as large as,
say 0.5, then the drug effect is not significant because we expect to observe
such a Ȳ once every two such assessments given that the drug is not effective.
On the other hand, if the p-value is as small as, say 0.05, then because the
chance of getting such a Ȳ by pure chance is only 1 out of 20, we are willing
to bet that this blood pressure difference Ȳ is due to the drug. The p-value
of the hypothesis test indicates the statistical significance of the test result.
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1.2.3.3 Type I and type II errors

In the above, we used 0.05 as the significance level, α = 0.05, to reject our
null hypothesis, embracing the alternative hypothesis that the drug had an
effect. The level is the chance that the drug did not have any effect while we
erroneously claim so. It is called type I error or false positive. We usually set
the level as low as possible so that we do not commit this type of error.

A low level of significance indicates that we attribute the observed blood
pressure difference to a small chance rather than to a drug. If the drug did
work, we fail to discover its effect and commit a type II error or false negative.

The chance of rejecting a null hypothesis, which is indeed false, is equal to
one minus type II error rate and called statistical power or, simply, power.
It is seen that the lower the level of significance set for the test, the lower
its power. A significance level of 0.05 is chosen by most researchers for the
tradeoff between type I and type II errors.

1.2.4 Two-sample t-test

The blood pressure data in our example are special in the sense that a
patient’s blood pressure before the treatment is compared to that after the
treatment; the data from a patient are matched or paired. The average of the
pretest minus posttest differences is tested for (or against) the null hypothesis
of no difference Ho : Y1 = Y2 where Y1 and Y2 are the means of populations
1 and 2. Many other applications, such as comparing the blood pressure
between a healthy male and a healthy female, allow no pairing. In these
cases, which are more often encountered, we again calculate the t-statistic,

t =
Ȳ1 − Ȳ2

√

(s2
1 + s2

2)/N
, (1.7)

where Ȳi and si are the sample means and standard deviations of group i = 1, 2
and N is the number of individuals per group. The t-statistic follows the
Student’s t-distribution with 2N − 2 degrees of freedom. The sample size per
group can be unequal: N1 6= N2. The denominator of equation (1.7), called
standard error, needs to be slightly modified, so does the degrees of freedom
when N1 6= N2.

1.2.5 Nonparametric test

Distribution of the data values in the sample is assumed normal in the
derivation of Student’s t-distribution for the significance of the test statistics
equation (1.6) and equation (1.7). The normality condition does not always
hold in the sample data, as outliers may occur. When no distributional shape
in the data is assumed, we use the tests proposed by Frank Wilcoxon for the
comparison of distribution locations.
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1.2.5.1 Wilcoxon signed-rank test

Without regard to distributional shape of the data, if the treatment has no
effect on blood pressure, we expect that half of the pretest−posttest differences
are positive and half are negative. That is to say that the median of the
differences is zero. We can use the Wilcoxon signed-rank test to examine the
null hypothesis of zero median in the matched differences,

Ho : median(Y ) = 0 , (1.8)

where Y s are patients’ blood-pressure differences before and after treatment.
To estimate the significance of the median difference, a test statistic is formed
involving the sum of signed ranks of the absolute differences. The distribution
of the test statistic is tabulated (or approximated by a normal distribution
when N > 10) from which associated p-values can be estimated. Wilcoxon
signed-rank test can also be applied to ordinal data. It is a nonparametric
alternative to the paired Student’s t-test.

1.2.5.2 Wilcoxon rank-sum test

For unmatched data where strict normality is not true, we can test the
following null hypothesis using Wilcoxon rank-sum test,

Ho : median(Y1i
− Y2j

) = 0 , (1.9)

where Y1i
is the ith data value from population 1 and Y2j

is the jth data value
from population 2 with i and j running over the members of each population.
The test involves sorting the combined data into ranks. The sum of the ranks
from one group, the statistic in this test, should be close to that from the
other group if the two data distributions are from a single population. The
p-values are calculated from the distribution of the test statistic. Wilcoxon
rank-sum test is equivalent to a two-sample t-test on rankings of the combined
data.

Because mean values are sensitive to outliers, if the data distribution is
not symmetric, we suggest Wilcoxon tests lest the t-tests report spurious sig-
nificance. When the data distributions are not far from normal, parametric
tests of equation (1.6) and equation (1.7) are more efficient (i.e., having higher
power). We may bring nonnormal data into more or less normal by transfor-
mation and employ the parametric t-tests for mean comparison.

1.2.6 One-factor ANOVA and F -test

When experimentation gets so involved that more than two groups (e.g.,
treatments) are compared, we can, in principle, apply two-sample t-tests to
each of the pair of group means. For k groups, the number of possible pairs
is k × (k − 1)/2, 5 percent of which are expected to be false positives. We
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introduce the F -test that improves over the multiple t-tests by analysis of
variance (ANOVA).

Suppose we recruit n = k × N independent patients for treatment com-
parison. We randomly partition the patients into k groups, each of which
is assigned a treatment. Note that one of the groups receives a placebo as
control. The experimental objective is to test any difference in the patients’
responses to the various treatments. We set up the null hypothesis, which in
the setting reads,

Ho : µ1 = µ2 = · · · = µk , (1.10)

where µi is the mean response of patients of population i. Recall again that
the hypothesis refers to populations.

If the null hypothesis is true, the sample means Ȳ s are just various real-
izations of the same population and from the central limit theorem the Ȳ s
distribute as a normal distribution with variance σ2/k, where σ is the stan-
dard deviation of the population. The variance of Ȳ can be estimated by
MSB,

MSB =
SSB

k − 1
=

N
∑k

i=1
(Ȳi − ¯̄Y )2

k − 1
, (1.11)

where ¯̄Y is the mean of the means Ȳ s. Note that each deviation of Ȳ from ¯̄Y
is weighted by the number of subjects in the group. The variance under the
null hypothesis σ2/k can be estimated by MSW ,

MSW =
SSW

k(N − 1)
=

∑k
i=1

∑N
j=1

(Yij − Ȳi)
2

n− k
, (1.12)

where Yij is the response of patient j in group i. If the null hypothesis is true,
the found variance MSB should be close to the expected variance MSW , i.e.,
the F -statistic,

F =
MSB

MSW
, (1.13)

should be ≃ 1. The distribution of F -statistic was shown to follow the F -
distribution (in honor of Sir Ronald Aylmer Fisher) with k − 1 and n − k
degrees of freedom under the null hypothesis. Given a level of significance
α = 0.05, we determine the p-value of the above F -ratio. If the p-value is
smaller than 0.05, the data do not support the null hypothesis, suggesting
that at least one of the equality in equation (1.10) does not hold.

1.2.7 Simple linear regression

In addition to tests for differences in means, we may desire to explain the
observed data by constructing a model like,

y = β0 + β1x + ǫ , (1.14)
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where y is the response variable, β0 an intercept term, x the explanatory
variable, β1 the corresponding parameter (or regression coefficient) and ǫ an
error term to account for anything that is not taken care of by the parameters.
The response y can be blood pressure and the x weight. The model (1.14),
therefore, predicts β0 units of pressure when the weight is zero and a change
of β1 units of pressure per unit increase in weight. The model (1.14) is called
linear regression because it is linear in the parameters βs. Now suppose we
have collected N independent sets of data, each set recording an individual’s
blood pressure and weight. We can estimate the two parameters from the data
assuming the ǫs for the blood pressures from individuals are independent and
identically distributed (i.i.d.) as a normal distribution with mean zero and
variance σ2.

To test the model (1.14), we form the null hypothesis,

Ho : β1 = 0 , (1.15)

asserting the blood pressure does not change with weight. If we graph the N
pairs of y and x in a scatter plot, the model (1.14) describes a straight line
with slope and intercept β1 and β0. The parameters for the population are
unknown. We can estimate them from the data using the method of ordinary
least squares, which amounts to tuning the slope and intercept so that the
sum of the squared distances of the data points to the line is minimized. The
least squares estimates for the population parameters are

b1 =

∑N
i=1

(xi − x̄)(yi − ȳ)
∑N

i=1
(xi − x̄)2

, (1.16)

for the slope and b0 = ȳ − b1x̄ for the intercept. With b0 and b1, we can
estimate y given any x: ŷi = b0 + b1xi, i = 1, 2, 3, · · · , N . The least squares
estimate of b1 is associated with uncertainty because of the random sampling
of y. This is seen from the term yi − ȳ in equation (1.16). The variance of b1

is
∑

i(∂b1/∂yi)
2σ2 according to how errors propagate. The standard error of

b1 is, therefore, shown to be

SE(b1) =

√

√

√

√

∑N
i=1

(yi − ŷ)2/(N − 2)
∑N

i=i(xi − x̄)2
. (1.17)

Under the null hypothesis of zero slope, the t-statistic,

t =
b1

SE(b1)
, (1.18)

follows a t-distribution of N − 2 degrees of freedom, from which we calculate
the one-tailed p-value giving us the probability for the data to generate a
larger than b1 slope by chance when, in fact, the slope in the population is
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TABLE 1.1: A Contingency Table for Chi-Square Test

BMI
province A B C D Any Province

Underweight uA uB uC uD uA+uB+uC+uD
Normal nA nB nC nD nA+nB+nC+nD
Overweight oA oB oC oD oA+oB+oC+oD

uA+ uB+ uC+ uD+
Any weight nA+ nB+ nC+ nD+ Total

oA oB oC oD

zero. Notice the N in SE(b1) in equation (1.17). To lower the uncertainty in
slope determination, one way is to increase the sample size N .

Recall the equivalence of t-test to F -test: t2df = F1,df . If we square equation
(1.18), it can be shown that,

F =

∑N
i=1

(ŷi − ȳ)2
∑N

i=1
(yi − ŷi)2/(N − 2)

=
SSM

SSE/(N − 2)
=

(SST − SSE)

SSE/(N − 2)
, (1.19)

where SST =
∑N

i=1
(yi − ȳ)2 is the total sum of squares. Since SST is asso-

ciated with β1 = 0 and SSE with β1 6= 0, the last equality tells us that the
F -statistic of equation (1.19) is measuring the reduction in the total sum of
squares when β1 is turned on. If the improvement is large enough, we gain
support for the regression model (1.14).

The model (1.14) can be readily extended to include more than one inde-
pendent variable. It is worth noting that the correlation of equation (1.4) is
related to the linear model (1.14) in the way,

r2 =
SSM

SST
. (1.20)

A interpretation of r2, therefore, says that it measures the fraction of vari-
ability in the dependent variable that can be explained by the model (i.e.
independent variable(s)). It is called coefficient of determination in statistics.
In section 5.8, we illustrate a nonparametric permutation method to assess
the statistical significance of r.

1.2.8 Chi-square test of contingency

Oftentimes we are interested in the interaction between factors. For ex-
ample, in a study of dependence of people’s weight on the area they live, we
randomly select N=1000 from the nation and count the number of subjects
from province A, who are underweight, normal or overweight. We repeat the
categorization for each province and obtain Table 1.1.

Denote the nationwide overweight proportion as p(o) and the proportion
of province A residents as p(A). If weight is independent of province, we
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would expect to find N × p(o) × p(A) in cell (o, A) in Table 1.1. When the
observed counts are far away from expectation, contingency of weight on area
is implicated. The overweight probability p(o) can be estimated by counting
all the overweight people regardless of their residence. The sum is then divided
by N , which should be the total counts in the table. The probability p(A)
is obtained similarly by dividing the sum of column A over different weight
categories by the total number of counts N .

The statistical significance of the dependence is found by the χ2-statistic,

χ2 =

r
∑

i=1

c
∑

j=1

(Oij − Eij)
2

Eij
, (1.21)

where the summation is over the total numbers of rows, r, and columns, c,
in the contingency table and Oij and Eij are, respectively, the observed and
expected counts in cell (i, j). If there is no dependence between the two factors
in the population, the value of χ2-statistic behaves like the Pearson’s χ2-
distribution (after Karl Pearson) with (r−1)×(c−1) degrees of freedom as N
is large. From the χ2-distribution, we get the one-tailed p-value corresponding
to the found χ2 in the data and reject the null hypothesis of no dependence
in the population if the p-value is smaller than the prespecified significance
level α. A precaution is that for the test to be valid, the number of counts in
each cell has to be larger than five. Otherwise, Fisher’s exact test (after Sir
Ronald Aylmer Fisher) has to be used.

1.2.9 Statistical power analysis

Specifying null hypotheses and seeking to reject the false ones are routinely
undertaken in biomedical investigations. Power in statistics refers to the prob-
ability of rejecting a null hypothesis which is false. Power depends on four
quantities, namely significance level α, effect size δ, variability σ in the pop-
ulation and sample size N , among which N is what we can plan. Sample
size, in turn, translates to the scale of the experiment. In research proposals
to funding agencies, we usually perform a power analysis to demonstrate or
justify the budget we are asking for. If the power is not shown adequate, there
is little argument for project funding.

The desired power is usually set at 0.8 or higher. We will discuss the
required sample size at this power when we change one of the other quantities
while keeping the rest fixed. Suppose we are testing the difference in the
average blood pressures between males and females. If the blood pressures
are truly different between sexes, the larger the difference δ (called effect
size), the smaller the sample size we need before we convince ourselves of the
difference. If the variability σ in blood pressures among individuals in the
population is small, we will need a small sample size to observe a difference
of δ between the the male and female populations. Setting a larger value
of α means that we tend to consider the observed difference more of a true
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discovery than a fluke. A weaker level of significance, therefore, requires a
smaller sample size.

Variability σ of the variable in a population is never known to us. It can
nevertheless be estimated from the results of our or others’ past related exper-
iments. The significance level is usually set at α = 0.05. We then plug into the
power analysis formula a range of possible effect sizes to see the corresponding
sample sizes. We then project the sample sizes that look feasible under the
constraints of finite time span and manpower. Finally, we get an idea of the
required sample size per group for 80 percent chances of detecting a larger
than δ difference in a population of variability σ in the detecting variable at
a significance level of 0.05.





Chapter 2

DNA Methylation Microarrays and
Quality Control

A microarray experiment involves various steps, each of which is prone to
error. For random error, repeated measurements will improve the precision.
For systematic error, data normalization is to remove the bias. In either
case, we need to have control of the quality of microarray measurements so
that the results are reliable and credible. To this end, this chapter reviews
the principles of gene expression microarrays which, after adaption, enable
genome-wide DNA methylation profiling. We introduce two-color microar-
rays with probes from CpG (cytosine-guanine) island libraries and one-color
oligonucleotide tiling arrays with probes covering nonrepetitive portions of
the genome region of interest. Two popular enrichments of DNA methyla-
tion fragments for microarray hybridization are introduced; one is based on
methylation sensitive restriction enzymes and the other on immunoprecipita-
tion with antibodies against methylated DNA.

After hybridization, a microarray is scanned, resulting in an image of flu-
orescent intensities. An example of a measure for microarray quality is in-
troduced. Array quality can be used to screen for outlier arrays that can be
discarded for subsequent analysis. Meanwhile, visual inspection of an array
image helps identify local peculiarity within the array.

If an experimental result is to be useful for the community at large, the
experimental finding has to be reproducible by others. Although systematic
studies of the reproducibility of microarrays for differential DNA methyla-
tion have not be done, identification of differentially expressed genes by high
density, one-color, gene-centric microarrays was found to be reproducible be-
tween laboratories. Reproducibility and comparability of DNA methylation
microarray experiments can be enhanced by control spots on the microarrays.
Further improvement is expected by selecting the loci of large methylation
fold changes between sample groups.

The situation is similar for the mapping of methylated DNA fragments using
unbiased tiling arrays. In the mapping of RNA transcripts on the genome us-
ing tiling arrays, the unprocessed probe intensities from the tiling arrays were
found to be highly correlated between biological replicates. The correlation of
the hybridization intensities from enriched methylated or unmethylated DNA
fragments may not be as high due to the variabilities in the source as well as
in the enrichment.

17
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2.1 DNA methylation microarrays

DNA methylation is one of the major epigenetic mechanisms that cause
heritable alterations in various genomic functions, including gene expression,
without a change in the coding and promoter sequences of the gene. Methyla-
tion can occur at the CpG dinucleotides in the promoter regions of mammalian
genes. The affinity of the transcription factor binding sites changes, resulting
in silencing of the gene’s transcription. Stable heritable patterns of tran-
scriptional silencing underlie normal development of multicellular organisms.
Examples include genomic imprinting and X chromosome inactivation. Dis-
rupted epigenetic profiles by gene mutations inflict human diseases, which can
be innately inherited or somatically acquired. For example, several neurode-
velopmental disorders (Beckwith–Wiedemann syndrome, Prader–Willi and
Angelman syndrome, Rett syndrome) were found to originate from the DNA
methylation and other epigenetic changes. Aberrant de novo methylation of
tumor suppressor genes, occurring early in tumorigenesis, is a hallmark of
human cancers. Autoimmune diseases and aging are among other examples.
An understanding of the function and regulation of genome for better health
thus will benefit most from epigenomic studies. Profiling of the methylation
pattern along the complete genome is essential to elucidating the role of DNA
methylation in organismal development and genome stability.

DNA microarrays are a high throughput technology, allowing for simultane-
ous measurements of the abundance of thousands of different DNA fragments
in cells in a single assay [Schena95, Lockhart96]. Figure 2.1 illustrates the
principles of DNA microarray. The basic idea is that the sequences of the
fragments of interest are identified and immobilized on different locations on
a solid (usually glass) surface. The affixed sequences are called probe se-
quences. The fragments from the sample are called targets, which are labeled
with fluorophores before hybridizing to the microarray. During hybridization,
the targets will preferentially bind to the spots whose probe sequences are
complementary to the targets’. A readout system scans and records the flu-
orescent intensity from each probe on the microarray surface. The location
and magnitude of the intensity tells what DNA fragments are present in what
amount in the cellular sample.

Design of microarray probes for mammalian DNA methylation has focused
on CpG islands [Cross94, Heisler05] or promoter regions where there exist
over-than-expected numbers of CpG dinucleotides. Regions of dense CpG
dinucleotides are called CpG islands (CGIs). Figure 2.2 maps the CGI probes
of a human CGI microarray onto the human genome. The majority of CGIs
co-localize with gene promoters. DNA methylation profiling thus has also uti-
lized promoter microarrays. CGI-centric microarrays are biased in the sense
that the methylation patterns in non-CGI regions are missed. An unbiased
methylation profiling calls for tiling arrays whose probes cover the whole (non-
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repetitive) genome. Discussion of data from both types of microarrays appears
in the book.

2.2 Workflow of methylome experiment

DNA microarrays were originally developed for high throughput gene ex-
pression measurement. The fragments in the last section would refer to the
sequences reverse-transcribed from mRNAs in the context of transcriptome
studies. To obtain genome-wide methylation profiles (so-called methylome),
we rely on the protocols for enriching methylated DNA in the sample. En-
richment methods advance at a rapid pace. We introduce two of them that
are mature in the techniques and versatile in the applications.

2.2.1 Restriction enzyme-based enrichment

The first is based on restriction enzymes that digest DNA sequences at
specific sites into short fragments. The method is particularly suited for com-
paring methylation profiles in samples of different pathological or physiological
conditions [Yan02, Schumacher06]. Genomic DNA from two samples are cut
at non-CGI sites into fragments (100 to 200 bp). Some of the resulting frag-
ments contain CpG islands, which are either methylated or not. The cut ends
of the fragments are ligated with linkers. Methylation-sensitive restriction
enzymes are then applied to chop up those fragments that contain unmethy-
lated CpGs. The remaining fragments, mostly containing methylated CGIs,
are amplified by polymerase chain reaction (PCR). After labeling reaction,
the two differently labeled samples are co-hybridized to the CGI microarray.
Data are analyzed to identify differentially methylated loci. Note that single
nucleotide polymorphisms (SNPs) between two samples at the same cutting
sites may yield differences in hybridization intensities, mimicking methylation
differences. This confounding factor has to be addressed in the analysis. Fi-
nally, independent studies are run to, for example, confirm the regulatory role
of the selected CGIs. Figure 2.3 depicts the workflow of a DNA methylation
microarray experiment using methylation-sensitive restriction enzymes.

2.2.2 Immunoprecipitation-based enrichment

The second approach to enrichment is derived from chromatin immunopre-
cipitation, (ChIP) which is widely used in studies of protein–DNA interactions
and histone modifications. The protein-bound DNA is randomly broken into
small fragments. Fragments containing the proteins are pulled down by the
antibodies specific to the protein in question. The isolated fraction is puri-
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fied and hybridized to the microarray after labeling. When the ChIP assay
is modified using antibodies against 5-methylcytosine, the methylated DNA
immunoprecipitation (mDIP) method enables capturing of methylated DNA
[Weber05]. mDIP, coupled with genomic tiling microarrays, is suitable for un-
biased whole genome methylation profiling, uncovering non-CGI methylation
regions. Figure 2.4 shows the key steps for the methylation enrichment using
mDIP.

2.3 Image analysis

The microarrays are post-hybridization washed and dried and are ready for
image acquisition. Often seen scanners are AXON GenePix R© scanners (>
4000 series) for dual-channel DNA microarrays and Affymetrix GeneChip R©
scanners (> 3000 series) for single-channel oligonucleotide arrays. A microar-
ray scanner consists of solid-state lasers for fluorophore excitation, photomul-
tipliers for photon detection, optics for uniform detection across the surface,
and the associated data acquisition electronics. Design goals of the scanner
are to achieve high scan speed, high spatial resolution, high signal-to-noise
ratio and high intensity dynamic range (sixteen-bit). Results of scanning are
sixteen-bit grayscale image files in TIFF format per channel. The image files
are to be stored for an indefinite time, whereas the duplexes on the hybridized
arrays can decay quickly.

The image files are then analyzed by the software accompanying the scan-
ner. The microarray image analysis software performs alignment of image
blocks; locates the features (i.e., probes) within blocks; divides the pixels of
a feature into signal (or foreground) and background; calculates the mean,
median and standard deviation of the signal and background intensities; and
outputs the calculations of each feature into a text file row by row. The out-
put files (e.g., ∗.GPR from GenePix and ∗.CEL for Affymetrix), together with
the TIFF files, are considered raw data of the microarray experiment.

Of interest for data quality control are the signal-to-noise ratio column and
“flag” column in an output GPR file. GenePix uses a proprietary feature
finding algorithm that defines circles, the pixels within which register light
from specific hybridization. Light outside the circles are background inten-
sities from nonspecific hybridization or from stray photons during scanning.
The image analysis software then calculates the signal-to-noise ratio for each
spot by dividing the mean signal minus mean background intensities by the
standard deviation of the background pixel intensities. Each spot is also asso-
ciated with a flag indicating whether its quality is “good” or “bad.” By bad,
it means the circularity of the signal by the feature-finding algorithm is bad
or that the circle is so large that it overlaps with other circles.
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FIGURE 2.5: Array quality control. Array quality is defined as the per-
centage of unflagged spots on the array. The median quality of the total of
111 arrays is 0.98. There are, however, a few outlying arrays as seen by their
low percentages (<95 percent).

An epigenetic profiling experiment can involve dozens of microarrays. It
is essential to ensure that the quality of the assay is uniform between the
microarrays within and between hybridizations. As a measure of quality, we
count the number of spots that are flagged bad upon reading in a microarray.
The ratio of the bad spots to the total number of spots on the microarray is
defined as the quality of the microarray. A low quality may indicate imper-
fection in probe spotting or array hybridization. Figure 2.5 shows an example
of the plot of quality versus arrays. We may exclude the bad spots or the
whole low-quality microarrays for subsequent data analysis. Fortunately, as
the coating and printing technologies improve, variations in probe fabrication
are greatly reduced. For example, the Agilent’s SurePrint R© technology syn-
thesizes 60-mer oligonucleotide probes in situ on the array using a noncontact
inkjet approach, greatly enhancing spot uniformity.
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2.4 Visualization of raw data

Inspection of microarrays by eye is indispensable to identify artifacts that
escape image analysis software. For example, nonhomogeneous hybridization
over the microarray surface can cause a changing shade from one edge (or
corner) of the microarray to the opposite edge (corner). The image can also
show scratches due to surface contamination. To visualize a microarray, the
positions and mean intensities of the spots are read. Dots are painted on a
two dimensional canvas with relative positions and greenness and redness cor-
responding to the input data. The plot includes both signal and background
intensities of each probe. Figure 2.6 to Figure 2.8 show examples of the im-
ages from a two-channel human CpG island microarray. It is also desirable to
juxtapose all the array images to ease comparison, as shown in Figure 2.9.

2.5 Reproducibility

An international project by the MicroArray Quality Control (MAQC) con-
sortium, under the U.S. Food and Drug Administration (FDA) sponsorship,
studied the intra- and interplatform reproducibility of genome-wide gene ex-
pression profiling by different microarray platforms [MAQC06]. The unprece-
dented large-scale study involved 137 laboratories using 1327 microarrays of
7 different platforms ranging from homebrew, two-color spotted microarrays
to commercial one-color oligonucleotide arrays. The results from the pilot
phase of the project indicated that, within laboratories using the same plat-
form, the expression measurements, having a coefficient of variation of 5 to
10 percent in the expression signals from replicates of the same sample, are
repeatable. Furthermore, between laboratories using the same platform, the
identified differentially expressed genes, having an average concordance of 89
percent, are reproducible. Finally, between one-color platforms, the identified
differentially expressed genes, having an average concordance of 74 percent,
are comparable. The results are encouraging considering the diversity in the
probe design strategies and in the protocols leading to hybridization across
the platforms.

DNA methylation microarrays are, however, different from gene expression
microarrays in their prelabeling steps toward hybridization. In particular,
DNA methylation microarray experiments based on restriction enzymes in-
volve the extra steps of digestion, ligation and PCR amplification (cf. Figure
2.3). In technical replicating DNA methylation microarray measurement with
genomic DNA from the same biological source, digestion and ligation should
in theory perform similarly each time, provided the conditions are correct
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channels of a human CpG island 12k microarray.
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FIGURE 2.9: Juxtaposition of multiple arrays in an experiment for easy
comparison.
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FIGURE 2.10: Microarray replication. A data point resulted from a probe
on a microarray. Colors refer to batches of replications. Methylation fold
changes of the y-axis are relative to a common reference sample. x-axis is
across different individuals. Probes 7 P 17, 7 P 18 and 8 0 17 have identical
position annotation, representing intraarray technical replication.
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(e.g., with enough enzymes and adaptors). The fragments bound by the
primers in the initial stages of the PCR have higher chances of being am-
plified. While much of this is the same, slight changes in the early cycles
between PCRs can produce different amounts of enrichment fractions. The
PCR step is thought to contribute most of the variability in enrichment based
on restriction enzymes. In Figure 2.10, we show results of replication at dif-
ferent levels: intraarray technical replicates, interarray technical replicates
and interarray biological replicates. The concordance decreases as the level of
replication drops from within arrays to between samples as we expected. The
median Pearson correlation of the methylation (raw log intensity ratios) be-
tween interarray technical replicates by human CpG island microarrays over
thirty-seven independent individuals was found to be 0.76. To reduce the
variability, for a sample, we may have, say, two technical replicates up to the
PCR step. The two batches of amplicons then are pooled into one, before
hybridizing to a microarray.

2.5.1 Positive and negative controls by exogenous sequences

In the wake of the potentially larger variability in DNA methylation com-
pared with gene expression microarray experiments, manufacturers of CpG
island microarrays have included control spots in their design. That is, in
addition to the CpG island clones, PCR products of artificial sequences are
spotted on the microarray. The artificial sequences are made by screening
against existing annotated sequence databases to make sure they are not ho-
mologous to any eukaryotic and prokaryotic genomes known to date. Preset
amounts and ratios of the sequences corresponding to the artificial probes
are then spiked into the case and control samples. The different amounts
and ratios define the red and green intensities and the intensity ratios, serv-
ing as positive controls. Allowance is also made to spot on the microarray
negative controls using DNA of foreign species, such as salmon sperm. The
control probes together with the spike-ins are useful for between-experiment
normalization and comparison, improving reproducibility.

2.5.2 Intensity fold-change and p-value

The MAQC result also revealed an increase in cross-platform concordance
if the lists of differentially expressed genes were derived from genes ranked
according to their fold-changes, besides their p-values [MAQC06]. The impli-
cation for the restriction enzyme-based enrichment is that different enzymes
can be exploited for mapping of methylated or unmethylated genome. Sup-
pose 10 percent of the CpG dinucleotides in a CpG island is methylated in
control samples. A 10 percent increase in the methylation level in cases results
in a two-fold change (from 10 percent to 20 percent) in the methylation ratio.
However, at a CGI locus whose methylation level is already as high as, say
80 percent, a 10 percent change from 80 percent to 90 percent gives rise to
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only a fold change of 1.125 between the controls and cases. The enrichment
strategy of Figure 2.3 is, therefore, optimal in targeting the unmethylated
regions of genome for hypermethylation detection and is suitable in such ap-
plications as abnormal silencing of tumor suppressor genes and cancer-specific
hypermethylation in cancer research.

2.5.3 DNA unmethylation profiling

On the other hand, since the majority of the cytosines in human genome
are methylated except for the tissue-specific and housekeeping genes, it is
arguably more informative to target the methylated genome for hypomethy-
lation detection in exploratory studies. Now, again, suppose the methylation
status at a locus changes from 90 percent to 80 percent between groups. If
what we measure is the degree of unmethylation, the change corresponds to a
two-fold change (from 10 percent to 20 percent) in intensities. The restriction
enzyme-based enrichment proves flexible in this regard. To measure degrees
of unmethylation [Schumacher06], genomic DNA are digested with methyla-
tion sensitive restriction enzymes such as HpaII, which cuts at unmethylated
CCGG. The digested fragments are ligated to DNA adaptors. PCR, with
primers complementary to the adaptor sequences, then preferentially ampli-
fies the shorter (50 b to 1.5 kb) fragments, i.e., the unmethylated DNA frag-
ments. The remaining steps, i.e., labeling and hybridization, follow those in
Figure 2.3.

2.5.4 Correlation of intensities between tiling arrays

In applications where we are identifying genomic regions of DNA methy-
lation in an unbiased fashion, enrichment of the regions by methyl DNA im-
munoprecipitation followed by genomic mapping by high-density tiling arrays
does the job. A related task is the mapping of the transcribed regions of the
genome by high density tiling arrays. An assessment of the performance of
such mapping using Affymetrix and NimbleGen R© tiling arrays reported that
the average Pearson correlations of the unprocessed hybridization intensities
between arrays (either technical or biological replicates) within platforms were
as high as 0.96 for Affymetrix and 0.83 for NimbleGen [Emanuelsson06]. A
high correlation in transcript mapping indicates high reproducibility in hy-
bridization. However, in methylation mapping, variability in biological sources
(cells in a tissue do not share a common epigenome) and noise from the mDIP
enrichment are expected to compromise the reproducibility.

In terms of detecting a methylated fragment, the higher the density of the
tiling array, i.e., the more probes for, say, every 100 bp of the genome, the
higher the sensitivity of the detection. The reason is that for a methylated
fragment, more measurements are obtained from the larger number of probes,
manifesting the sample size problem of section 1.2.9.





Chapter 3

Experimental Design

Microarrays are a high-throughput assay technology that measures the ex-
pression levels of thousands of genes in a single experiment. On the other
front is the increasing number of species whose genomes are decoded, thanks
to the continuously decreasing cost of DNA sequencing. The two technologies
together are revolutionizing biological experimentation. A microarray mea-
surement involves a series of steps including DNA/RNA extraction, enzyme
digestion, labeling, hybridization, washing, drying and scanning. Skills and
experience are indispensable in each step for high quality and reproducible re-
sults. Costs of samples, microarrays, chemicals and labor are not insignificant.
A better design generates a dataset with less noise, giving rise to a result of
higher statistical significance. A particular design can also limit the analysis
methods that can be applied to the data. Careful planning of microarray
experiments, therefore, can never be overemphasized.

Differently labeled DNA fragments compete to bind to the complementary
sequences of the probes on a two-color microarray. The dual channels open
up opportunities for different designs of microarray experiments. A design
may lead to a better estimation of the parameters of interest than others.
The choice thus depends on the experiment’s specific aims. We start with
three general designs, namely, reference design, balanced block design and
loop design, that compare DNA methylation (or gene expression) between
classes. The design involving single-color oligonucleotide chips is equivalent
to a reference design with two-color DNA microarrays. We also describe design
guidelines for factorial and time-course experiments that cater for particular
methylation contrasts of interest.

The number of samples/microarrays required for confident hypothesis test-
ing is central to any grant application as it translates to the amount of funds
requested. We address the sample size issue based on sound statistics. Pooling
of samples saves microarrays. However, we argue against pooling unless there
are no other options. Note that, in the following when there is no confusion,
the terms DNA methylation and gene expression are used interchangeably, so
are the corresponding technologies.

35
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3.1 Goals of experiment

3.1.1 Class comparison and class prediction

Designs of microarray experiments will depend on experimental objectives.
Microarrays are used to look for sequence fragments (loci) that are differ-
entially methylated across conditions. For example, genomic DNA samples
from diseased cell populations are isolated and labeled with red dye (Cy5),
and those from healthy cells with green dye (Cy3) in a two-color CpG island
microarray experiment. Another example is to label samples on drug treat-
ment with one of the dyes and without treatment with the other. In one-color
oligonucleotide chip experiment, half of the chips are hybridized with dis-
eased (treated) samples and the other half with healthy (untreated) samples.
We call this kind of experiments class comparison because classes, such as
diseased, normal, treated and untreated, are known and defined before exper-
iment. After the differentially methylated loci (expressed genes) are identified
by microarray experiments, they are verified by independent quantification
techniques, such as bisulfite sequencing. The methylation profile of the differ-
entially methylated loci can then be used as a signature in later microarray
measurements for the purpose of diagnosis and/or prognosis. This type of
applications can be called class prediction.

3.1.2 Class discovery

Suppose we obtain one hundred DNA methylation profiles for one hundred
different phenotypes, one profile for each phenotype. We define a distance
metric in the space of epigenomic dimensions. We then calculate the dis-
tance between any pair of the profiles. Because of variation in the samples,
pairs whose distances are below a margin set by the variation are considered to
belong to a taxonomy or cluster. If the one hundred samples are from one hun-
dred breast cancer patients, we could be discovering breast cancer subtypes if
clusters are found among the one hundred methylation profiles. Alternatively,
if we have twenty samples from twenty normal individuals, we calculate the
epigenetic distances between any two genes in the twenty-dimensional space.
We again try to find clusters. Genes that fall into the same cluster are likely
to share a cellular function. Clustering in this way hopes to yield clues on the
function of unknown genes. Experiments of this kind are called class discovery

and microarrays are a promising tool in this application.

Microarrays are also employed to study the effect of treatment on differ-
ent strains of organisms. Yet, in time-course experiments using microarrays,
researchers might be interested in the precise instance of time when the loci
change the methylation or expression. As the technology advances, we expect
to see more novel applications of microarrays in biomedical research. There is
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rarely an optimal design that is universal to all experimental goals. Different
experimental aims dictate different designs. We, therefore, will summarize
guidelines that address statistical issues in the design of microarray experi-
ments.

What is specifically meant by “design” in a microarray experiment? An in-
vestigator hardly has unlimited time and resources to conduct an experiment.
Either the amount of biological specimens is limited because they derive from
a rare species. Or the total number of microarrays available is fixed because
of lean budget. More often, both the specimens and microarrays are con-
strained. Even though neither is a major concern at the time of experiment,
the investigator may want to perform it at a minimal cost in the hope that
more follow-up experiments can be planned in the long run. Questions arise as
to how to assign samples to microarrays and, on a microarray, how to assign
labels to samples. For single-color oligonucleotide chips, the issue is greatly
simplified. In fact, the design and analysis of single-color oligonucleotide chips
are reduced to those of reference design of two-color microarrays.

3.2 Reference design

Reference design is one of the most common designs in microarray experi-
ments. In this design, multiple aliquots of a single sample are prepared and
labeled with one of the dyes, say, Cy3. An aliquot of sample i from indi-
vidual i is also prepared and labeled with Cy5, where i = 1, 2, 3, · · · , up to
the number of samples in the experiment. Each Cy3-labeled aliquot is then
mixed with a Cy5-labeled aliquot for co-hybridization to a microarray. The
design does not necessarily mean the number of independent samples is equal
to that of microarrays. For example, we can have an aliquot of sample 1 on
microarray 1 and the other aliquot of sample 1 on microarray 2. The num-
ber of distinct biological samples thus is less than or equal to the number of
microarrays in a reference design. Microarrays 1 and 2 are technical repli-
cates. Figure 3.1 shows a reference design. In the figure, a box represents an
aliquot of sample and an arrow indicates a microarray. The head and tail of
the arrow refer respectively to Cy5 and Cy3 labeling. Since the Cy3-labeled
sample is from a common biological source and present in every microarray,
it is called reference sample. The Cy5-labeled samples are called nonrefer-
ence samples. In a class comparison experiment involving, say, twenty-four
patients, the reference sample can be prepared by pooling the genomic DNA
(or RNA) from twenty-four matched healthy individuals for DNA methylation
(or gene expression). Aliquots of the pooled DNA (RNA) are then labeled
Cy3 for microarray hybridization.

The spots on a microarray slide can vary in size and quality of printing.
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χ
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FIGURE 3.1: Reference design. Samples a, b, c are from one class while
samples α, β and χ are from the other class. R is a common reference.
A microarray is conveniently represented by an arrow, which points toward a
Cy5-labeled sample from a Cy3-labeled sample. The reference design is readily
extended to the task of comparing more than two classes. The nonreference
samples can be a, b, α, β, 1 and 2, belonging to three classes, for example.
The chapter appendix includes more examples.

Furthermore, the concentration of target sequences on the surface of the slide
can be nonuniform during hybridization. The resulting variability in DNA
methylation measurement is hopefully canceled in two-color microarrays be-
cause whenever a spot registers a brighter red signal due to the nonuniformity,
it might register a brighter green, too (cf. Figure 2.6 and Figure 2.7). The
ratio (or log ratio) is not affected by the locus-by-spot effect. (It is called
gene-by-spot effect in gene expression microarrays.) Two-color microarrays
in a reference design as in Figure 3.1 are efficient in finding loci that are dif-
ferentially methylated between conditions. Efficiency here is defined as the
inverse of the variance of estimation. That is, the higher the efficiency, the
more precise the parameters are estimated.

On the other hand, the experimental objective can be to find differences
among individuals (usually of the same class, as in the case of subtype discov-
ering by clustering). Note that objectives can also be multiple with a primary
goal and many secondaries. Reference design is also appropriate in such ap-
plications, the reason being that the same reference sample is used in all
microarrays so that it serves as a common reference for comparing the nonref-
erence samples on the microarrays. This feature allows us to perform a class
discovery analysis on data from reference design. The suitability of a reference
design for the dual purposes of class comparison and class discovery lends its
prevalence in microarray experiments. In fact, most commercial software for
two-color microarray data analysis implicitly assumes that measurements are
done in a reference design so that conventional statistical toolkits, such as t-
test and clustering (cf. chapter 5, chapter 7), such as K-means can be readily
applied.
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3.2.1 Dye swaps

It is known that Cy3 fluorophore binds better to nucleotides than Cy5 does,
resulting in a brighter Cy3 intensity even though the competing sequences in
the mixture are of equal amount. This dye bias can be corrected for by
normalization introduced in the next chapter. It, however, was also found
that the bias could depend on target sequences. This sequence-specific dye
bias cannot be removed by the normalization. We can observe the sequence-
specific dye bias by plotting the distribution of log ratios from an experiment
where two aliquots of the same sample are individually labeled to Cy3 and
Cy5. We expect around zero log ratios (i.e., no fold change) for most of
the sequence fragments from such a self hybridization. Any fragment with
log ratio far away from zero is a potential victim of dye bias and should be
marked with caution in subsequent analysis.

When we compare among nonreference samples in a reference design, the
sequence-specific dye bias effect does not matter since all the nonreference
samples are labeled with the same dye. If, however, we are comparing non-
reference with the reference sample, the sequence-specific dye bias becomes
trouble. To eliminate the artifact, we allocate, say, two pairs of microarrays
for replication. The microarrays in each pair are technical duplicates of each
other except that the dye assignment in one microarray is reversed to that
in the other microarray in the same pair. The two pairs of dye-balanced mi-
croarrays can be used to assess the sequence-specific dye bias effect (cf. section
5.2.2). The result is then used for the correction on all the microarrays. Note
that given a total of, say, twenty microarrays in this case, we choose to form
two dye swapping pairs. The number of independent biological samples is
eighteen (= sixteen singlets + two duplicates). If we form ten pairs of dye
swaps, the number of independent biological samples reduces to ten. The
power of statistical inference suffers. This is because the biological variability
(intersample standard deviation of methylation or expression) is, in general,
larger than the technical variability (intrasample standard deviation of methy-
lation or expression) in microarray experiments. To lower the total variability
for increased power, the priority is to reduce the biological variability by in-
creasing the number of biological samples. Technical replicates do not help
much and two or three pairs of dye swaps are considered enough to estimate
sequence-specific dye bias.

3.3 Balanced block design

Block design has a longer history in statistical experimental design than mi-
croarray technology. Since DNA microarrays use two colors, we can compare
two classes of samples arranged in the so-called balanced block design shown
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FIGURE 3.2: Balanced block design. Samples a, b, c, d, e, f are from one
class while samples α, β, χ, δ, ǫ and φ are from the other class.

in Figure 3.2. In the design, samples 1 of class 1 and 2 are labeled respec-
tively red and green on microarray 1; samples 2 of class 2 and 1 are labeled
respectively red and green on microarray 2, · · · , and so on. Labeling half the
samples with red dye and the other half with green dye for each class is a
way to eliminate the sequence-specific dye bias. The balanced block design
example of Figure 3.2 takes this approach to make it immune to the bias.

The advantage of a balanced block design is that, given the same number
of microarrays, the design has a higher power of distinguishing classes than
a reference design [Simon03]. This is because the comparison of classes in
this design is direct, whereas the comparison among the nonreference samples
via the reference sample in a reference design (cf. Figure 3.1) is indirect.
The advantage degrades as the number of classes to compare increases. In
particular, if the number of samples is the same, the power of a balanced
block design becomes similar to or lower than that of a reference design as
the number of classes to compare goes beyond two. This is because in such
cases the number of microarrays used by a balanced block design is less than
that by a reference design.

The major drawback of a balanced block design is that data from such a
design are not appropriate for class discovery. This is because all pairwise
distances are required for cluster analysis. In a balanced block design, how-
ever, not all such distances are calculable. Whereas in a reference design,
distances between any pairs of nonreference samples can be obtained through
the reference sample.

It can happen that the assignment of classes to samples had erred and the
mistake was not realized until after data-taking. When the correction is made
during data analysis, the configuration can no longer be a balanced block de-
sign, resulting in a loss of efficiency for class comparison. The worst scenario
is that samples of the same class are comparing to each other such that class
comparisons cannot be made. Similarly, if one or two microarrays failed dur-
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FIGURE 3.3: Loop design. Samples a, b, c are from one class while sam-
ples α, β and χ are from the other class for class comparison.

ing hybridization, the remaining microarrays cease to form a balanced block
design, compromising its efficiency. A reference design remains a reference
design in such cases. Balanced block design thus is not as robust as reference
design.

3.4 Loop design

Loop design was proposed by Kerr and Churchill in an effort to minimize
the average of the between-sample estimation variances (i.e., the so-called
A-optimality) [Kerr01a]. The design, therefore, is supposed to be optimal
when comparisons between all possible pairs of samples are of interest. In the
design, Figure 3.3, an aliquot of a sample is labeled red in one microarray and
the other aliquot of the same sample is labeled green in the other microarray.
Using the same sample on the two microarrays as an intermediary, the two
microarrays are considered to be connected. If we continue the pattern with
new microarrays until the last microarray, which hosts the last sample and
the first sample, the connecting pattern is closed, forming a loop.

The power of a loop design is always higher than that of a reference de-
sign given the same number of microarrays or samples for class comparison.
Specifically, when the number of microarrays is fixed, the efficiency of loop
design is higher than reference design, but lower than balanced block design.
The advantage, however, fades as the number of classes increases or as the
ratio of biological variability to technical variability goes beyond two. As in
balanced block design, sequence-specific dye bias effect can be estimated and
adjusted in loop design because classes are balanced with respect to dye.

Unlike balanced block design, loop design generates data from which dis-
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tances between any two samples can be calculated, through the intermediary
samples. Therefore, loop design is effective in class discovery. However, the
precision of distance estimation strongly depends on the relative position of
the samples in the loop. The farther apart the two samples are along the
chain, the larger uncertainty in the distance estimation. This is because the
estimation will have to go over the intermediary microarrays between the two
samples. The more intermediary microarrays there are, the more noise can
accumulate from the individual hybridizations.

Loop design suffers the same weakness in robustness as balanced block
design. If class assignments have to be changed or few outlier microarrays
have to be discarded, the loop can be broken, paralyzing the analysis.

3.5 Factorial design

We have so far focused our discussion of microarray experimental design on
class comparison and discovery. In some cases, the experimental objectives
can be more refined. For example, we may be interested in the different drug
responses across cell lines. The primary objective is then the “interaction”
between drug and phenotype. Differences in the methylation (or expression)
between drugs and between phenotypes are secondary objectives. This is an
example of factorial design where multiple factors, each of which can have
many different levels, are used to explain experimental observations.

For the purpose of illustration, we first consider a 2 × 2 factorial design.
Suppose an experiment is planned to detect difference in DNA methylation
between patients and controls. Furthermore, the difference can depend on
sex. We have two factors: disease status and sex. Each has two levels: patient
versus control and male versus female. We acquire DNA samples from male
patients (mP), female patients (fP), male controls (mC) and female controls
(fC). From the four types of samples, six different pairings can be formed
for hybridization on a two-color microarray. There are actually twelve if we
count the dye-swap of each pair. Suppose the number of microarrays we can
afford is fixed in this experiment. The question is then which pairs should we
choose in order to minimize the uncertainty in the estimation of differential
methylation. In other words, how should we arrange the samples on the
microarrays in order to maximize efficiency.

To study the design, we employ a so-called linear additive model of DNA
methylation (or gene expression). The model is simple, yet it captures the
essence of many complex biological phenomena. First of all, we use loga-
rithm of fluorescence intensity as the measure of DNA methylation (or DNA
unmethylation, gene expression) level. (The intensity is already background-
corrected and normalized (cf. chapter 4).) This convention is found em-
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TABLE 3.1: Linear Model for DNA Methylation or Gene Expression

Experimental Conditions in the 2 × 2 Factorial Design Log-intensity

mC µ
mP µ + α
fC µ + β
fP µ + α + β + Iαβ

pirically adequate. Especially, the transformation turns many multiplicative
effects encountered in biology into additive ones. The log intensity of a locus
is then described by a sum of parameters or coefficients that represent the
effects of the factors as in Table 3.1. In the table, parameter µ represents the
methylation level of mC. If we take mC as a reference point, then µ represents
the baseline level of DNA methylation. α represents the effect of disease on
male patients. β represents the difference in methylation levels between fe-
male and male controls. Iαβ represents the sex-specific effect on the disease.
Note the model applies to every probe on the microarray. That is, every DNA
fragment has its own µ, α, β and Iαβ . Note also that since we can have many
DNA samples from different individuals of each condition for the experiment,
data from each individual are applied to the same model. The parameters
estimated, therefore, represent mean effects over the individuals of the same
class.

From the parameterization of the model in Table 3.1, it is clear that the
effects of disease on male and female are picked up, respectively, by α and
α+Iαβ . If no sequences with significant nonvanishing Iαβ are found, then the
disease affects evenly between sexes. In this case, those sequences whose αs
are significantly different from zero confer susceptibility to the disease. If the
primary objective of the experiment is to find the disease effect, we should
direct our limited resources (i.e., microarrays) toward measuring α and Iαβ ,
at the expense of measuring β.

DNA microarrays utilize two labels. Differently labeled target sequences
from two samples (e.g., mC and mP) compete to hybridize to the comple-
mentary probe sequences on the microarray. Table 3.2 lists all possible pairs
of samples on a microarray together with the parameters each measures from
the log intensity ratio.

With Table 3.2, it becomes clear that our top priority is to invest in config-
urations 1 and 4, which measure α and α+ Iαβ . The next priority goes to the
rest of the configurations, which, in addition, measure the less interesting β.
If we have a total of six microarrays available for the experiment, we see that
we would choose the design on the top of Figure 3.4 rather than the reference
design in the middle of Figure 3.4. The optimal design would change as the
objective of the experiment shifts. For example, suppose now estimation of α,
β and the interaction effect Iαβ are of equal importance. The optimal design
becomes the bottom of Figure 3.4.
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FIGURE 3.4: Factorial design with emphasis on different parameters. (See
text for details.)
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TABLE 3.2: Parameters Measured by a Microarray Using
log(R/G) = log(Cy5/Cy3) = log(Cy5) − log(Cy3) in a 2 × 2
Factorial Design

Configuration Cy5 ← Cy3 Log-Intensity-Ratio

1 mP ← mC α
2 fC ← mC β
3 fP ← mC α + β + Iαβ

4 fP ← fC α + Iαβ

5 fP ← mP β + Iαβ

6 fC ← mP β − α

Note: cf. Table 3.1.

Remember to guard against sequence-specific dye bias, arrangement of sam-
ples should be symmetric with regard to the dye. The objective can become
so demanding that, in a factorial design, we also desire the robustness and/or
class discovery feature of a reference design. Figure 3.5 shows a design that
is a blend of reference and factorial designs. In the design, individual male
(female) patients are hybridized to a pool of male (female) controls. This
can be seen as separate measurements on α and α + Iαβ . If we can combine
the estimate for α from each experiment in one analysis, we can improve the
precision of the estimation. We accomplish this by establishing links between
the male and female pools as shown in the figure. The example also demon-
strates the extensibility of reference design. The experiment involving males
in the upper half of Figure 3.5 could have been done some time before the
experiment involving females in the lower half of the figure. If the male ref-
erence sample has been well preserved since, the two experiments can then
be integrated through the microarrays measuring the male versus the female
reference.

Design considerations for the 2 × 2 factorial case can also be straightfor-
wardly extended to designs with more than two factors such as 2 × 2 × 2
and more levels per factor such as 2 × 3. For example, Table 3.3 shows the
linear model for a 2 × 3 factorial design where the two factors are disease
and regimen. The symptoms of the disease can be mild (C), moderate (M)
and severe (S) and the types of regimen can be regular (1) versus special diet
(2). If we are interested in the methylation changes between the regimen at
different phases of disease progression, i.e., the interaction terms Iαγ and Iβγ

in the linear model of Table 3.3, an optimal design is shown in Figure 3.6
where we use only ten microarrays.
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FIGURE 3.5: An extended reference design; a, b, c can be three patients
in one group and α, β and χ can be three controls in the other group. R is a
reference sample. The prefix m refers to male and f to female.

TABLE 3.3: Linear Model for DNA Methylation or Gene Expression

Experimental Conditions in the 2 × 3 Factorial Design Log-Intensity

1C µ
1M µ + α
1S µ + β
2C µ + γ
2M µ + γ + α + Iαγ

2S µ + γ + β + Iβγ
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1S1C 1M

2M2C 2S

FIGURE 3.6: A 2 × 3 factorial design. 1 and 2 can refer to different diets
or treatments. C, M, S can correspond to three different phenotypes, cell lines
or time points.

3.6 Time course experimental design

Time course experiments are useful to study the roles genes play in a molec-
ular pathway. In fact, one of the early demonstrations of microarray technol-
ogy is a time course experiment profiling yeast genome expression across time
points during glycolysis [DeRisi97]. Evidence suggests that the methylation
profiles between monozygotic twins diverge with age. DNA methylation pat-
terns are not as ephemeral as gene expression. Nevertheless, time course
measurements on DNA methylation are not unimaginable.

Consider a time course experiment where RNA are extracted from cells
that are harvested at four time points. There are six ways to pair the time
points for co-hybridization. Similar to Table 3.1 and Table 3.2 for a factorial
design, we parameterize the effect of time lags on gene expression with a
linear model. The expected log intensity ratios from all possible different
hybridization configurations can be shown in Table 3.4, where αi represents
the expression changes between time i, ti, and time zero, t0, for i = 1, 2, 3.

Now, if the primary interest is in the effect of time on the expression rela-
tive to the expression at time zero (i.e., α1, α2, α3), we would allocate more
microarrays to configurations 1, 2 and 3. If, instead, the interest is in the
effect relative to the previous time point (i.e., α1, α2−α1, α3−α2), we would
focus on configurations 1, 4 and 6. Given that only six arrays are available
for the time course experiment, we would choose the left design of Figure
3.7 for the former objective and the center one for the latter. Owing to the
symmetry, the design in the right of Figure 3.7 can be shown to be efficient
for both objectives [Glonek04].
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TABLE 3.4: Parameters Measured by a Microarray Using
log(R/G) = log(Cy5/Cy3) = log(Cy5) − log(Cy3) in a Time
Course Experiment

Configuration Cy5 ← Cy3 Log-Intensity-Ratio

1 t1 ← t0 α1

2 t2 ← t0 α2

3 t3 ← t0 α3

4 t2 ← t1 α2 − α1

5 t3 ← t1 α3 − α1

6 t3 ← t2 α3 − α2

t2

t0

t2

t0

t2

t0

t1

t3 t3 t3

t1 t1

FIGURE 3.7: Time course experimental designs that optimize estimation
of DNA methylation or gene expression differences between absolute time
(left), relative time (center) or both (right).
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3.7 How many samples/arrays are needed?

3.7.1 Biological versus technical replicates

Degrees of DNA methylation exhibit variation across distinct samples of the
same class (e.g., tissues or cells from different tissues and/or different individ-
uals). The variation is of biological nature and is called biological variability.
When a microarray measurement is repeated with samples derived from the
same biological source, the measured intensities may vary from microarray to
microarray. The variation is of technical origin and is called technical vari-
ability. Variation in the result of a microarray experiment comes from both
biological and technical variations.

Recall that the error in sample mean estimation is related to the sample
variance, which decreases with sample size. Because of biological variability,
in order to make statistical inference about population, we need to sample as
many independent biological sources from the population as possible. Further-
more, in most two-color DNA microarray experiments, biological variability
overwhelms technical variability, the ratio of biological to technical variabil-
ity ranging from two to eight. (Biological variability in inbred animals or
monozygotic twins can be expected to be smaller.) Figure 3.8 shows examples
of distributions of variability in log intensity ratios from methylation measure-
ments on some human tissues. From the figure we can estimate the biological
variability, σbio, by σ2

bio
= σ2

tot − σ2
tech

, where σtot and σtech are respectively
the total and technical variability. The examples show that the biological vari-
ability is about 4.5 times the technical variability. Therefore, it is understood
that we strive to obtain as many genomic DNA samples from independent bi-
ological sources as possible for a microarray experiment. Technical replicates
on the same biological samples tell little about population/idiosyncrasies. In a
microarray experiment, two or three pairs of dye-swapping technical replicates
that purport dye bias correction usually suffice.

3.7.2 Statistical power analysis

So, how many samples should be prepared for an experiment? To bet-
ter answer the sample size question, we formulate the problem into a power
analysis. Stories unfold as researchers are curious about (or upset with) a
null hypothesis of no differences in means between two classes. Samples are
then collected in order to prove (or disprove) the null hypothesis. Because of
variation in individuals, a wrong conclusion about a difference can be made
when there is, in fact, no difference, committing a false positive. Researchers
generally tolerate no more than 5 percent cases of false positives. The 5 per-
cent is called false positive rate, α. On the other hand, because of insufficient
samples, an experiment can fail to find a difference when there is in fact one,
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FIGURE 3.8: Frequency distributions of variability in log intensity ratios
from two-color CpG island microarrays with reference designs. The self hy-
bridization measured technical variability while the rest registered total vari-
ability. A distribution results from 7843 standard deviations from the 7843
unique sequence probes on the microarray. Methylation data are background-
corrected and normalized. Note the distribution can depend on experimental
protocols, such as hybridization temperatures.
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making a false negative. Let δ denote the size of difference between the means.
(It is also called effect size.) The chance of committing false negatives is false
negative rate, β. Statistical power, 1− β, is the probability of demonstrating
a true mean difference of size ≥ δ. We usually set the false negative rate at
0.1 so that the power, i.e. chance of correctly rejecting the null hypothesis,
is 90 percent. Let σ represent the standard deviation of the sample measure-
ments, which are assumed normally distributed. Statistical power, 1 − β, is
a function of α, δ, σ and sample size n per class. n is the number of samples
per class (or per group). In fact, given four of the five parameters, the rest
can be calculated. Specifically,

n = 2

[

z1−α/2 + z1−β

δ

]2

σ2 , (3.1)

where z1−α/2 indicates the 100(1− α/2)th percentile of the t-distribution (or
standardized normal distribution for large n) [Dobbin05].

Equation (3.1) applies readily to reference designs of two-color microarrays
as well as one-color oligonucleotide chips. In the case of a two-color microarray
experiment, σ2 is the variance of the log-intensity-ratios, while in the case of an
oligonucleotide chip experiment, it is the variance of the log-intensities. Note
that both intensities are background-corrected and normalized. σ includes
contributions from both biological variability σbio and technical variability
σtech,

σ2 = σ2
tot = σ2

bio + σ2
tech . (3.2)

An effect size of one, δ = 1, indicates a two-fold change when the logarithm of
the intensity is base 2. Different sequences on the microarray have different
values of σ, as demonstrated in Figure 3.8. A conservative estimation for sam-
ple size is to use the value at the 90th percentile of the σ distribution. From
Figure 3.8 for human tissues in two-color CpG island microarray experiments
with common reference design, we find it to be around σ ∼ 0.5 or 20.5 = 1.4
fold. α = 0.001 gives on average ten false positives per ten thousand true neg-
atives. (The choice of 0.001, instead of 0.05, has to do with multiple testing
correction, which is discussed in section 5.5.) Equation (3.1) with α = 0.001,
β = 0.1, δ = 1, σ = 0.5 then gives us the number of biological samples per
class n = 13 needed to achieve a statistical power of 0.9 in detecting over two-
fold differentially methylated loci between the two classes with an average of
ten false positives per ten thousand nondifferentially methylated loci on the
microarray. Figure 3.9 to Figure 3.11 show the sample sizes for other settings
of the parameters.

A reference design uses about twice the number of microarrays a balanced
block design does because one of the channels of every microarray in the
reference design is allocated to the same reference sample. Balanced block
design, therefore, provides microarray savings. However, the variability σ in
the log-intensity-ratios in a balanced block design is, in general, larger than
that in a reference design since the ratio in a balanced block design is of
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FIGURE 3.9: Minimum fold change versus variability in log2 ratios over
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FIGURE 3.11: Power versus minimum fold change over various variability
in log2 ratios at two different sample sizes and false positive rates.
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individual i to individual j, which tends to be more diverse than individual
i to a common reference in a reference design. To achieve the same power
as a reference design, a balanced block design, therefore, would need more
biological samples, according to equation (3.1).

3.7.3 Pooling biological samples

A practice in microarray experiments is to mix independent biological sam-
ples into a pool prior to labeling and hybridization. The rationale behind
pooling is that differences in DNA methylation (or gene expression) due to
sample-to-sample variation are reduced by sample averaging [Kendziorski05].
The resulting reduction in the overall variance of the methylation at a locus
σ2 is

σ2 =
σ2

bio

R
+

σ2
tech

M
, (3.3)

where R is the number of samples in a pool and M the number of technical
replicates per sample. Note that the within-class biological variability σbio of
methylation varies wildly from locus to locus while the technical variability
σtech, being more of a property of the instrumentation, is relatively constant
over loci (cf. Figure 3.8). Pooling (i.e., R > 1) thus can be very effective for
those loci whose σbio are much greater than σtech.

Since less microarrays will be consumed, pooling is advantageous when
microarrays are expensive relative to samples. However, to be able to assess
the within-population variation of methylation, we should not mix all samples
together into a single pool. Instead, we arrange, say, fifteen samples from one
class into three pools and fifteen samples from the other class into the other
three pools, each pool consisting of five samples. Pooling in this way, in
principle, is not to undermine identification of differentially methylated loci.
If the number of microarrays per class is less than three, pooling is the only
choice. The disadvantage of pooling is that specific information on individual
samples is lost, preventing removal of outlying and thus likely poor quality
samples.

In a large design involving many samples and microarrays, pooling extra
samples onto a fixed number of microarrays decreases the variability across
experiments. On the other hand, if we pool a fixed number of samples on less
microarrays, we can risk finding less number of differentially methylated loci.
For example, compare a measurement of ten samples using twenty microarrays
with the other measurement of the same number of samples, but using only
five microarrays. The former design has R = 1 and M = 2 while the latter
R = 2 and M = 1 in equation (3.3). Suppose the biological variances σ2

bio of
loci g1, g2, g3 are, respectively, 4, 2, 1 (in an arbitrary unit, and same below),
and their technical variances σ2

tech
are all equal to 2. The overall variances

σ2 of the three loci g1, g2, g3, according to equation (3.3), are, respectively,
5, 3, 2 in the former scenario (R = 1 and M = 2), and become, respectively,
4, 3, 2.5 in the latter scenario (R = 2 and M = 1). We see that, because of
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FIGURE 3.12: Schematics of a reference design for three group compar-
ison. Samples a, b, c are from one class. Samples α, β and χ are from the
second class while samples 1, 2, 3 and 4 are from a third class. R is a common
reference.

varying biological variability in DNA methylation, pooling while reducing the
number of microarrays helps identify some differentially methylated loci (e.g.,
locus g1 in this example) at the expense of other loci (e.g., locus g3) albeit
the sacrificed loci are not many according to the distributions in Figure 3.8.

We have discussed pooling in terms of class comparison. If we are also
interested in class discovery by, for example, the method of clustering on
methylation data, we do not want to pool samples. In fact, as the price of a
microarray continues to drop, we do not need pooling except when scarcity of
samples necessitates it.

3.8 Appendix

The reference, balanced block and loop designs in Figure 3.1 to Figure 3.3
are concerned with two-class comparisons. They were presented so because
of ease of illustration not because of their limitation. Here, in Figure 3.12 to
Figure 3.14, we extend the designs to the task of comparisons among three
classes.
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FIGURE 3.13: A balanced block design for comparing samples from three
groups. Group one samples include a, b, c, d; group two samples are α, β, χ,
δ; and group three samples are 1, 2, 3 and 4.
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FIGURE 3.14: (Top) A loop design that involves samples from three
groups: samples a, b are from a group; samples α, β from the other group and
samples 1 and 2 from a third group. (Bottom) If we have more microarrays,
a set of replicate arrays are the hybridizations shown in blue.



Chapter 4

Data Normalization

Normalization is a preprocessing procedure that is routinely applied to mi-
croarray data. The objective of normalization is to minimize, or even re-
move, the effects on data of artifacts that were inevitably introduced into
the measurement due to imperfection of the technologies. Only after proper
normalization can we contend with confidence that the identified changes in
methylation or expression are of biological origins. Although nonbiological ef-
fects can be modeled together with biological ones in the analysis, we opt for a
two-stage approach where methylation data are normalized first. Normalized
data are then subject to exploration by various methods, which are the topics
of subsequent chapters. Because of the two different types of microarrays, the
ways they are normalized are somewhat different. Finally, in cases where the
principles underlying the normalization are not well justified, we resort to the
hybridization of known DNA fragments with the counterpart control probes
on the microarray for normalization.

4.1 Measure of methylation

After hybridization in a microarray experiment, unbound nucleic acids are
washed off the microarray slides. The quantity of the DNA sequences bound
to a probe reflects the amount of either methylated or unmethylated DNA
fragment (depending on which DNA fraction was enriched — methylated or
unmethylated) in the sample. Recall that the sequences were labeled with
fluorescent dyes prior to hybridization. A laser beam in a microarray scan-
ner then shines on the probes to excite the dyes. Cyanine 3 (Cy3) labeled
sequences will emit green light (∼570 nm) while Cyanine 5 (Cy5) red light
(∼670 nm) upon excitation. The emitted photons are then measured by a
light sensor, such as photomultiplier tube (PMT) or CCD camera in the scan-
ner. The scanning produces an image file, usually in uncompressed TIFF
format, for each color. An image analysis software is then used to locate the
bright spots in the TIFF image and quantify the brightness, as well as the
quality, of the spots. Results of the image analysis are output to a file of
plain text format, such as my array data.gpr and my array data.spot for
two-color DNA microarrays or my array data.cel for single-color oligonu-
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cleotide chips. The remaining sections are dedicated to the analysis of the
image-analyzed data.

In the file, results of image analysis are usually rendered in a spreadsheet.
A row corresponds to a probe sequence. Different columns display different
attributes of the sequence, such as its ID, the physical location of the spot
on the microarray; the mean, median and standard deviation of the intensi-
ties from the foreground pixels (due to the target sequences and are called
signal or foreground intensities); the mean, median and standard deviation
of the background intensities (due, for example, to stray fluorescence from
other chemicals on the slide); and other quality control measures of the spot
intensities, such as signal to noise ratio, circularity of the signal intensities,
and so on. The meaning of each column is manifested in the header of the
table. Magnitudes of the intensities are between 0 and 65,535. That is, they
are 16-bit integers resulting from the 16-bit grayscale TIFF image acquired
by the scanner.

Microarray measurements are noisy; the levels of random noise we have
experienced are in the 10 to 40 percent range. The number of fragments
interrogated in a microarray can be hundreds to tens of thousands. The
number of microarrays hybridized in a single experiment can be a dozen to
over a hundred. In view of the large quantity of noisy data from microarray
experiments, we need statistics to help better analyze the data and interpret
the result.

Many powerful statistics tools have been developed for Gaussian (i.e., nor-
mal) distributions. The ubiquity of normal distributions is ascribed to the
central limit theorem. We, therefore, first of all would like to have a look at
the distributions of the green and red intensities of the spots in a microarray.
Figure 4.1 shows examples of such raw intensity distributions from two dual-
color microarrays by two different scanners. We see that the distributions
are skewed with long tails to the right. The skewed distributions suggest a
model for the methylation that consists of an exponential component plus a
Gaussian noise,

y = ηeµ + b + ǫ , (4.1)

where y and b are, respectively, the green (or red) signal and background
intensities recorded in the data file, µ is the methylation level of the locus
in the Cy3-labeled (or Cy5-labeled) sample, η is a multiplicative constant,
and ǫ is a Gaussian noise of the background with mean zero and standard
deviation σ. With the model of equation (4.1), we take logarithm of the
background-subtracted intensity to get the methylation level µ,

log(y − b− ǫ) = µ + log η . (4.2)

In Figure 4.2, we show again the distributions of the data of Figure 4.1, but
the intensities in the distributions are now background corrected and logarith-
mically transformed. We see that they become more symmetric and closer to
Gaussian distributions. Most of the tools of classical statistics then can be
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FIGURE 4.1: Distributions of raw signal and background intensities for a
13,056-spot human CpG island microarray on the left and 7680-spot mouse
CpG island microarray on the right. The vertical green and red spikes near
zero are the backgrounds.

readily applied to the logged microarray data. The other advantage of loga-
rithmic transformation of the intensities is that effects that are multiplicative
become additive (cf. η in equation (4.1) and equation (4.2)).

4.2 The need for normalization

A microarray experiment involves many steps, including DNA or RNA iso-
lation, restriction enzyme digestion and PCR amplification for methylation,
labeling, hybridization, washing, and scanning. Any of these is prone to ran-
dom noise and systematic biases. Even when the same experiment with sam-
ples from the same biological source, reagents of the same batch, equipments
in the same laboratory, is repeated by the same experimenter following the
same protocol at the same ambient conditions, the measured intensities are
bound to be different. This technical variability is an example of random
fluctuations. On the other hand, it has been known that Cy3 fluor is incorpo-
rated to nucleotides with a higher efficiency than Cy5. The measured green
light intensities will be higher than red light even though the same amounts
of Cy3- and Cy5-labeled target sequences are admitted to the mixture for
hybridization. This asymmetric dye effect is an example of systematic bias.

As an illustration of the obscuring effects of random and systematic errors,
we show in Figure 4.3 examples of the so-called self hybridization where two
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FIGURE 4.2: Distributions of the background-subtracted intensities. Data
are from Figure 4.1. The dashed-line distributions on each side come from
13,056 and 7680 draws from the normal distributions whose means and stan-
dard deviations are calculated from the corresponding intensity distributions.

aliquots from a mixture are separately labeled with Cy3 and Cy5 fluors for co-
hybridization. Since the Cy3 and Cy5 channels are derived from an identical
cellular source, we would expect a straight line along the diagonal of a green
versus red intensity scatter plot. Deviations from the diagonal clearly manifest
a need for normalization.

4.3 Strategy for normalization

To accommodate random and systematic noise, we can extend equation
(4.2) by adding, to the right-hand side of it, a noise term and as many bias
terms as desirable. The resulting model is linear additive. Many regression
methods in statistics then can be utilized to estimate the parameter of interest,
i.e., µ, along with other nuisance effects. This one-step approach is straight-
forward. However, in many cases estimating methylation (or expression) levels
is not the end of the story. We would like to pick up differentially methylated
spots. We may want to categorize sequences according to their methylation
profiles by the use of clustering methods. We might further want to investigate
the interwoven dependences (interactions) among sequences (genes). The var-
ious analyses are most likely implemented in different application software on
different platforms and explored by different people of diverse research inter-
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FIGURE 4.3: Log2 red versus log2 green intensities from self hybridiza-
tions. All spot intensities are background-corrected. (Left) Human blood
DNA on a human CpG island microarray. (Right) Mouse brain DNA on a
mouse CpG island microarray.

ests. A general strategy, therefore, is to estimate the methylation (expression)
without tying oneself to the detailed assumption on the error model. We call
this a two-step process where nonbiological artifacts are firstly eliminated to
a great extent from the data. The normalized data then are exported for
further analysis [Kerr01b, Wolfinger01].

As we will see, normalization itself is further modularized. Modularization
lends flexibility. We are free to justify the various combinations of normaliza-
tion options before plunging into the next phase of analysis.

4.4 Two-color CpG island microarray normalization

Two-color DNA microarrays are among one of the popular microarrays.
Their flexibility accounts, in part, for the prevalence. In fact, many homemade
microarrays belong to this technology category. Also an important feature of
DNA microarrays is that they perform direct comparisons between case and
control samples by forming methylation (expression) ratios. Because of the
ratio, many within-array artifacts, such as the effects due to variations in
spot size, spot shape, hybridization conditions, etc., are canceled. A major
concern about DNA microarrays is nonspecific hybridization. The number of
bases of the single-stranded DNA that are immobilized on the spot in a DNA
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microarray is in the hundreds (∼500 bp). The longer the single-stranded DNA
molecule, the more susceptible it is to cross hybridization.

4.4.1 Global dependence of log methylation ratios

The number of probes in a microarray is huge, reaching tens of thousands.
Selection of CpG islands or genes as probes is random for pioneering studies.
Even for a complete coverage of the genome on the microarray, the numbers
of genes that undergo over- or under-expression under an experimental setting
are not thought to be as huge. For example, in a microarray experiment to
search for genes that predispose to a disease, we would expect to find only
few such aberrant genes, plus the secondary genes that are regulated by the
aberrant genes. The rest of the genes behave normally. The expression levels
of the normal genes in the diseased samples should be the same as those of
the normal genes in the healthy samples. Similar arguments apply to DNA
methylation.

Diseased samples are conventionally labeled with red fluor and healthy sam-
ples with green. Using our measure of methylation (or expression) in section
4.1, we calculate the difference in the log red intensity, R, and log green in-
tensity, G, of a spot, log R − log G = log(R/G). It is understood that all
intensities are background subtracted before log transformation. Note that in
microarray community, base 2 logarithm is more often used than the natural
logarithm because log2(R/G) = 1 spells that the red intensity is 21 = 2-fold
over that of the green intensity.

Since most loci show no differential methylation, the majority of the log
intensity ratios (or simply log ratios) are zero and the distribution of these log
ratios should peak around zero. Sequences whose log ratios are far away from
the peak are called outliers. Figure 4.4 shows examples of the distributions of
log ratios from self hybridizations. There are indeed peaks in the histogram,
but the centers of the peaks are off zero. When we plot more such histograms
from other two-color microarrays we observe that the peaks usually sit on the
left-hand side of zero. This again demonstrates a low incorporation efficiency
of the red (Cy5) dye in comparison to the green (Cy3) dye. Furthermore,
different PMT (photomultiplier tube) high voltage settings during scanning
also can shift the peak.

A first step toward correcting for the dye bias is thus to bring the center
of the distribution to zero. This is easily done by subtracting the log ratio of
each sequence i by the median of the log ratios,

log2(Ri/Gi) = log2(Ri/Gi)− c , (4.3)

where c is the median of the log intensity ratios. Recall that median is less
influenced by extreme values than mean, which explains why it is used in
the correction. The = sign in equation (4.3) means assignment; the center-
adjusted log intensity ratio on the right is assigned to and replacing the origi-
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FIGURE 4.4: Distributions of log intensity ratios from self hybridizations.
(Data are from Figure 4.3.)

nal log intensity ratio on the left. This is the syntax used in most programming
languages and environments including R and Bioconductor (cf. chapter 13).

4.4.2 Dependence of log ratios on intensity

The scatter plot of red versus green intensities as in Figure 4.3 reveals
artifacts in a microarray measurement. In a two-color DNA microarray, the
quantities of primary interest are methylation or expression ratios (i.e., fold
changes), which are numerically obtained by log2(R/G) = log2 R− log2 G. In
the spirit of Figure 4.3, it would be informative if we can have a scatter plot
that uses log intensity ratio as one of the axes. A natural choice for the other
axis would be (log2 R + log2 G), which is independent of or, in mathematical
jargon, orthogonal to (log2 R− log2 G). We decide to use (log2 R + log2 G)/2,
which has an additional property of being the average of the log red and log
green intensities. The resulting scatter plot is call M-A plot [Dudoit02] where
M stands for minus and A for average,

M = log2 R− log2 G
A = 1

2
(log2 R + log2 G)

(4.4)

Figure 4.5 shows the M-A plots of Figure 4.3 after the global correction by
median equation (4.3).

Recall that we would expect a vast throng of zeros with only a meager
presence of outliers. The zeros should be independent of the fluorescent in-
tensities. That is when the log R value of a spot is large, its log G value is
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FIGURE 4.5: Log intensity ratio M as a function of average log intensity
A. Fluorescence intensity data are from Figure 4.3 but transformed according
to equation (4.4).

also large so that their difference remains close to zero. An M-A scatter plot
should show a cloud of points along the horizontal line at M = 0 across A’s.
The banana shape of points in the M-A plot of Figure 4.5 rebuts the expec-
tation. This discloses the artifact of dependence of ratios on intensities. To
correct for such intensity dependence, we can extend equation (4.3) such that
the constant c now becomes a function of the average intensity,

log2(Ri/Gi)← log2(Ri/Gi)− c(Ai) . (4.5)

It would be helpful if we could find the c(A) with an analytical form that
is universal to microarrays. Unfortunately, when we plot more and more M-
A plots from different microarrays, we find persistence of the artifact, but
the shape can be quite different from one microarray to another. Figure
4.5 already shows two hybridizations and the shapes are indeed different. A
handy algorithm called loess (or lowess for robust locally weighted polynomial
regression) in statistics comes to the rescue. Loess first breaks the distribution
of data points into segments and then fits a linear line or quadratic curve to
each segment of the data. The algorithm in essence works by representing
a function of complex form by pieces of simple linear or quadratic functions.
Results of loess fitting do not depend on the small percentage of extreme
values in the dataset. Furthermore, it is robust as long as the number of data
points in each segment is large enough.
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4.4.3 Dependence of log ratios on print-tips

A microarray is found to have a dependence of M on A of its own. We know
that spots are arranged in grids on the surface of a microarray slide. The spots
are printed by a set of print-tips, each of which prints a grid of spots. Because
of the peculiarity of each print-tip, it is not surprising to find that the spots
by a print-tip have a unique dispersional distribution of M versus A pertinent
to the tip. We show in Figure 4.6 and Figure 4.7 the M-A plot and M-value
boxplot of Figure 4.5 stratified by different print-tips.

To correct for the print-tip effect, we extend equation (4.5) so that the
correcting function c(A) depends not only on intensity, but also on print-tip
[Yang01, Yang02, Smyth03],

log2(Ri/Gi) = log2(Ri/Gi)− c(Ai, Tip) , (4.6)

where Tip is the print-tip group to which probe i belongs. The normalization
of equation (4.6) is no harder than repeating the loess regression equation
(4.5) on the spots belonging to a print-tip as many times as there are different
print-tips that printed the microarray. Information on the print-tip layout is
usually stored in the same data file containing the raw intensities. We show
in Figure 4.8 and Figure 4.9 the M-values boxplots and M-A plots of the data
normalized by the print-tip loess method equation (4.6).

In designing a microarray, the spot location for the probe sequence on the
array is chosen at random. That is, it is unusual, if not unwise, to print
those protein synthesis-related genes in one grid or block of the microarray,
metabolism related genes in another block, and so on. Similarly, chromosome
six CpG islands are printed all over the microarray instead of concentrating in
one or few grids. As a consequence, the spreads (i.e., standard deviations or
median absolute deviations) of the distributions of intensity ratios by different
print-tips should be more or less the same. Boxplots of the normalized log
intensity ratios by different print-tips are shown in Figure 4.8. The horizontal
bar inside the box is the median (i.e., 2nd quartile) of the distribution. The
lower and upper edge of the box enclose, respectively, the 1st and 3rd quartile
of the data. The length of the whisker is by convention 1.5 times the height of
the box. The data points beyond are plotted because they are likely outliers.
The taller the box, the wider the distribution, indicating that many of the
sequences printed by the print-tip are hyper- or hypomethylated (over- or
under-expressed).

Since spot locations are chosen randomly, it is unlikely to find nonuniform
box heights from one print-tip to another. If it does happen, the cause of
such systematic bias can be unequal lengths or openings of the print-tips.
One remedy is to multiply a constant factor to each ratio of the same print-
tip. That is, shrink (say, ×4/5) the over-estimated ratios from one print-
tip and inflate (×5/4) the under-estimated ones from the other so that the
spreads of all the ratios are roughly the same, independent of the print-tips
[Yang02]. Note that this scaling factor method would increase the overall
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FIGURE 4.6: The M-A plot of Figure 4.5, but stratified according to the
print-tips on the microarrays (top: human, bottom: mouse). The red curve
shows the loess fit to data points in a grid on the microarray.
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FIGURE 4.9: M-A plots of the print-tip loess normalized data (cf. Figure
4.5).

standard deviation (cf. Appendix (section 4.7)). It should not be used without
justification. In fact, as the microarray technology advances, there may be no
need for such correction.

4.4.4 Normalized Cy3- and Cy5-intensities

In some applications, we are interested in normalized Cy3- and/or Cy5-
intensities. That may happen when, for example, the Cy3 channel is asso-
ciated with samples from twins and the Cy5 channel with those from the
co-twins. It might then be more convenient to work with log2R and log2G
than the fold change. We can solve log2R and log2G in terms of M and A
from equation (4.4),

log2 R = A + M

2

log2 G = A− M

2
.

(4.7)

The normalized log2R and log2G are obtained by substituting the print-tip
loess adjusted M-value equation (4.6) into the above formula. Figure 4.10
shows distributions of the normalized log intensities of Figure 4.2.

Note that we cannot treat such normalized single color (log2) intensities
from a two-color DNA microarray as two independent measurements of the
samples. They are not fully independent because the two measurements share
the same make of the spot, hybridization condition, ..., etc. The intensities
from the two channels are highly correlated. Log2R and log2G, therefore,
do not give us much more information than the ratio log2R/G alone. In
other words, the nature of competitive hybridization between Cy3- and Cy5-
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FIGURE 4.10: Normalized log2 intensities of Figure 4.2.

labeled sequences to the same probe makes two-color DNA microarrays good
at measuring methylation (or expression) difference.

4.4.5 Between-array normalization

The normalization procedures we have so far dealt with are within-array.
After within-array normalization, artifacts are removed as much as possi-
ble. We could hopefully proceed to look for differentially methylated spots.
However, in light of the substantial noise in microarray technology, a single
measurement speaks little. To be able to build credibility of the result, we
need to replicate the measurement. Statistical tools can then be used to assess
the confidence in the result before we report a finding.

Replication can be of different levels. When the biological samples in the
replicates are derived from the same cells, we call these technical replicates.
In this case, since the samples in the microarrays have identical genotype and
phenotype, after within-array normalization, we would expect the spreads of
the ratios to be approximately the same across microarrays. Nonuniformity
in the spreads suggests evidence for variation in, e.g., hybridization. If this
is the case, we can apply the scaling factor technique in the previous section
to perform between-array normalization. Separate constants are multiplied
to individual microarrays, bringing the spreads of ratios distributions to a
common value. The between-array normalization ensures that class (or group)
means are not dominated by one or few outlier microarrays.

In most applications, we hybridize DNA samples from independent biolog-
ical sources to microarrays. For example, we want to study the molecular
etiology of a disease. We then collect samples from many affected individuals
for microarray assay. This is an example of biological replicates. Because
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of idiosyncrasies, we would not expect the expression profiles to be the same
across individuals. The assumption of a uniform spread across microarrays no
longer holds. We need other criteria, such as control spots, for between-array
normalization in such cases.

4.5 Oligonucleotide arrays normalization

Oligonucleotide chips, such as Affymetrix R© promoter arrays, are among
one of the most popular microarray platforms. Oligonucleotide tiling arrays
are discussed in chapter 6. They generally provide a larger number of probes
per unit area than two-color DNA microarrays. The experimental design
for oligonucleotide chips is relatively simple because hybridization involves
only one sample. A second sample will have to be hybridized to a second
chip. (Pooling of samples was discussed in section 3.7.3.) Comparisons made
between the samples are then indirect. The major disadvantage of oligonu-
cleotide chips lies in their relatively high cost.

4.5.1 Background correction: PM – MM?

In oligonucleotide technology, the nucleotides in a probe are typically 25-
mer. They are synthesized on the surface of the chip by photolithographic
techniques developed by Affymetrix, Inc. A similar platform was also devel-
oped by Agilent Technologies, Inc. R© The typical number of bases in a gene
or CpG island is definitely greater than twenty-five. Therefore, in the design,
hundreds and thousands of probes along the DNA segment of interest are cho-
sen to represent the gene or CpG islands. The probes are called perfect match
(PM) because their DNA sequences are from verified public databases. To be
able to detect nonspecific binding, the thirteenth base of a perfect match is
deliberately mistaken in making a so-called mismatch (MM) probe. A PM
probe and its corresponding MM probe form a probe pair. Subtraction of
MM intensity from PM intensity, in principle, gets rid of signals from cross
hybridization. The set of eleven to twenty probe pairs is called a probeset,
which collectively measures the methylation status or expression level of a
target sequence.

The idea of using mismatches to ward off nonspecific hybridization is neat.
However, it was found that MM intensities increased with PM intensities,
suggesting that mismatch probes measure not only nonspecific hybridization,
but also specific hybridization. It is also known mathematically that sub-
traction elevates uncertainty. For example, differencing increases the variance
by a factor of 2. It, therefore, is contended that background correction by
subtracting MM from PM not be performed if the gain does not outweigh the
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FIGURE 4.11: (a) Scatter plot of PM versus MM log2 intensities on an
oligonucleotide chip that contains 835,396 probes and 16,726 AffyIDs. Points
above the red line indicate MM > PM. (b) The PM intensities from a probeset.
Each color is from an oligonucleotide chip. Note that histograms from different
chips are slightly displaced for displaying purpose.

loss. Moreover, it is not rare to find a probe pair with MM intensity > PM in-
tensity (cf. Figure 4.11(a)). Subtraction would lead to a negative methylation
or expression that inflicts conceptual difficulty. Therefore, in case of doubt,
the reader can simply focus on the PMs and leave alone the MMs without
losing much. Figure 4.11(b) shows an example of the PM intensities from the
same probeset on three oligonucleotide chips.

4.5.2 Quantile normalization

The number and coverage of sequences in a high density oligonucleotide
chip reaches the genomic scale. In a mutant versus wild type experiment,
one or two genes are knocked out in the mutant mice. The number of af-
fected genes due to the knockout is assumed to be only a tiny fraction of the
genome. The bulk of the genome expression is intact. Provided we can make
the assumption, the distributions of the PM intensities across different chips
should be very much alike. Methylation distributions are also conditioned on
the proviso.

Statisticians use quantile-quantile plot (qqplot) to visualize if two distribu-
tions are the same. If they are, their quantiles should delineate a straight line
along the diagonal of the plot. The quantile normalization for oligonucleotide
chips is an extension of the two-dimensional qqplot to N dimensions where
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FIGURE 4.12: The three steps in quantile normalization. Log PM intensi-
ties on a chip are stored in a column. (The pen color helps place the averaged
numbers back to the original positions.)

N is the number of PMs on a chip [Bolstad03]. The algorithm is simple and
fast. Usually we start by storing the PM intensities (or PM and MM if the
mismatch is decided to be accounted for) in a matrix with different rows for
the different PM readings and columns for chips. The quantile normaliza-
tion then consists of three steps: (1) sort the numbers in each column in an
ascending order, (2) replace each number in a row with its row mean, and
(3) rearrange the numbers in the column into its original order. Figure 4.12
illustrates the algorithm with a toy system containing three chips each having
five PM probes. Figure 4.13 shows the distributions of log2 PM intensities
from three oligonucleotide chips with and without quantile normalization.

Note that the assumption behind the quantile normalization is very strin-
gent. In the case where the phenotypes and/or genotypes (i.e., SNPs) among
the samples are known to be very different, we may be hesitant to assume a
common shape in the distributions. The numbers of sequences in high den-
sity oligonucleotide chips are nevertheless huge. The assumption that most of
the methylation (expression) are invariant across comparisons may still hold.
Because it is also the assumption on which the two-color DNA microarray
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FIGURE 4.13: Distributions of the log2 PM methylation intensities from
three postmortem brains on three oligonucleotide chips before quantile nor-
malization on the left and after on the right.

normalization is based, we can borrow the methods for two-color DNA mi-
croarrays from section 4.4.1 and section 4.4.2. In doing so, we first form pairs
of oligonucleotide chips so that one chip in the pair measures red channel
while the other green. We then proceed as though they were two-color DNA
microarrays. Namely we apply equation (4.5) on the probe intensities from
each pair of the chips. After the first round exhausts all possible pairings,
we go for the second round. We continue the cycle until there is little ad-
justment in the intensities between successive iterations. The procedure can
become computationally intensive especially when the number of chips in the
experiment is large.

4.5.3 Probeset summarization

Methylation or expression levels are our quantities of concern. The PM val-
ues in a probeset can differ from one another by two orders of magnitude (i.e.,
100 times, cf. Figure 4.11(b)). We need a mechanism that summarizes the
eleven to twenty PM values in a probeset into a single measure of methylation
status (expression level) for the sequence.

Two-color microarrays and oligonucleotide chips take advantage of the pref-
erential binding between adenine and thymine and between guanine and cy-
tosine in the hybridization. Both capture the light emanating from the flu-
orescent dye. They share many commonalities in the technology. It is not
surprising the methylation (expression) levels by oligonucleotide probesets
can be modeled in a similar way. Following equation (4.2), for a probeset,
the methylation (expression) level µ appears linear in the logarithm of the
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FIGURE 4.14: Log methylation ratios of brain 2 to brain 3 as a function
of the average log methylation before (left) and after (right) quantile normal-
ization. (cf. Figure 4.13.)

individual PM values,

log2 PMj = µ + αj + ǫj , (4.8)

where α accounts for the effect of probe such as affinity, ǫ is a Gaussian noise
with mean zero, and j indexes the probe inside the probeset [Irizarry03].
With a constraint like

∑

j αj = 0, µ can be readily estimated by a robust
regression method, such as median polish, in statistics. In Figure 4.14, with
the probeset summarization equation (4.8), we show the pre- and postquantile
normalized M-A plots of one possible comparison of methylation between the
three oligonucleotide chips in Figure 4.13.

4.6 Normalization using control sequences

The normalization has so far been based on very general assumptions on
the distribution of the differential methylation and transcription. Namely, an
overwhelming majority of the DNA fragments in a two-color DNA microar-
ray comparing, say, the diseased with healthy groups of samples exhibit no
change in methylation and expression. Or, the locations and shapes of the
PM distributions from the many oligonucleotide chips in an experiment are
virtually identical. Some research laboratories with specific target sequences
in mind produce their own homemade microarrays with only a limited number
of preselected sequence fragments on them. Examples can include SARS (se-
vere acute respiratory syndrome) microarrays that interrogate only the genes
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involved in the respiration and related pathways. The CpG islands around
a few selected genes, such as tumor suppressor genes, can also be spotted
on a boutique microarray for cancer diagnosis. (We will not address custom
oligonucleotide chips because the production cost can be too high for most to
afford.) The assumption breaks down in such cases.

In order to keep using the normalization algorithms that have been de-
veloped, one way is to utilize the sequences whose methylation (expression)
levels are known to be invariable under the varying biological contexts studied
in the experiments. Genes that code for proteins involved in such basic cel-
lular maintenance functions as cytoskeletal component, glycolytic pathway,
protein folding, ribosomal synthesis are traditionally selected as control or
so-called housekeeping genes. The CpG islands in the promoter regions of
the housekeeping genes thus are unmethylated irrespective of samples, serv-
ing as negative controls. In addition, control sequences are also chosen from
DNA exogenous to the genome under study. They also can be artificial se-
quences that share no significant sequence homology with the eukaryotic and
prokaryotic genomes sequenced so far. In these cases, polymerase chain re-
action (PCR) products of the control sequences are provided for microarray
printing. The associated mRNA spikes are also commercially available for
reverse transcriptase labeling. Recall that the intensity ratio depends on the
intensity in a bizarre way (cf. section 4.4.2). Various amounts of mRNA
spike-ins to the fluorescent labeling, therefore, should be prepared to cover
the full range of hybridization intensities. Note that spikes for the Cy3- and
Cy5-labeling reactions can also be prepared at predefined abundance ratios,
serving as standardized positive controls for the purpose of calibration and
between-array normalization.

Given the negative control spots with methylation or transcription proper-
ties that meet our normalization assumptions, we run the loess normalization
equation (4.6) through them. That is over only those indexes is that repre-
sent the negative control spots. Once we obtain the the correction function
c(A, Tip) this way, we repeat the process equation (4.6), but now over the
rest of the spots on the microarray [Yang02, Smyth03]. This procedure equiv-
alently sets zero weights to spots other than the negative control spots in
determining the correction. Figure 4.15 and Figure 4.16 show two examples
of the normalization with control spots on a custom dual-color CpG island
microarray containing a total of only four hundred spots. In these exam-
ples, log intensities of all the spots were used in the print-tip loess, but we
took advantage of the control spots by doubling their weights in the loess
normalization.

Because of the local dependence of fold-change on intensity, if the spike-in
DNA fragments or mRNA are absent at some concentration in the mixture,
the correction c(A, Tip) will be missing its value at that intensity. As a con-
sequence, we have to be cautious of any spurious results of normalization on
customary microarrays in which the amounts of spike-in controls failed to
cover the whole dynamic range of the hybridization intensities.
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CpG island microarray that consists of only four hundred spots.

5 10 15

−
6

−
4

−
2

0
2

4
6

12991817_SCZ_2vs2b_Hpa_Hin_Aci

A

M

cDNA
HpaII−C1
HpaII−C2
Hin6I−C1
Hin6I−C2
AciI−C1
AciI−C2
TaiI−C1
TaiI−C2
pBR322
pUC57
PhiX174
Arabidopsis
Blank

pre normalization

5 10 15

−
6

−
4

−
2

0
2

4
6

12991817_SCZ_2vs2b_Hpa_Hin_Aci

A

post normalization

FIGURE 4.16: Normalization using the “control spots” (in color) on a
CpG island microarray that consists of only four hundred spots.



Data Normalization 79

(1
,1

)
(1

,2
)

(1
,3

)
(1

,4
)

(2
,1

)
(2

,2
)

(2
,3

)
(2

,4
)

(3
,1

)
(3

,2
)

(3
,3

)
(3

,4
)

(4
,1

)
(4

,2
)

(4
,3

)
(4

,4
)

(5
,1

)
(5

,2
)

(5
,3

)
(5

,4
)

(6
,1

)
(6

,2
)

(6
,3

)
(6

,4
)

(7
,1

)
(7

,2
)

(7
,3

)
(7

,4
)

(8
,1

)
(8

,2
)

(8
,3

)
(8

,4
)

(9
,1

)
(9

,2
)

(9
,3

)
(9

,4
)

(1
0
,1

)
(1

0
,2

)
(1

0
,3

)
(1

0
,4

)
(1

1
,1

)
(1

1
,2

)
(1

1
,3

)
(1

1
,4

)
(1

2
,1

)
(1

2
,2

)
(1

2
,3

)
(1

2
,4

)

−
1

.0
0
.0

0
.5

1
.0

1
.5

13046344_ESA_4vs9.gpr

location normalized

print−tip

M

(1
,1

)
(1

,2
)

(1
,3

)
(1

,4
)

(2
,1

)
(2

,2
)

(2
,3

)
(2

,4
)

(3
,1

)
(3

,2
)

(3
,3

)
(3

,4
)

(4
,1

)
(4

,2
)

(4
,3

)
(4

,4
)

(5
,1

)
(5

,2
)

(5
,3

)
(5

,4
)

(6
,1

)
(6

,2
)

(6
,3

)
(6

,4
)

(7
,1

)
(7

,2
)

(7
,3

)
(7

,4
)

(8
,1

)
(8

,2
)

(8
,3

)
(8

,4
)

(9
,1

)
(9

,2
)

(9
,3

)
(9

,4
)

(1
0
,1

)
(1

0
,2

)
(1

0
,3

)
(1

0
,4

)
(1

1
,1

)
(1

1
,2

)
(1

1
,3

)
(1

1
,4

)
(1

2
,1

)
(1

2
,2

)
(1

2
,3

)
(1

2
,4

)

−
1

.0
0

.0
0

.5
1

.0
1

.5
2
.0

13046344_ESA_4vs9.gpr

location and scale normalized

print−tip

M

FIGURE 4.17: Distribution of the log ratios across print-tips in a microar-
ray without (left) and with (right) scale normalization.

4.7 Appendix

Figure 4.8 shows the normalization by separate loess regressions to the
spots belonging to different print-tips. We mentioned in section 4.4.3 a scale
normalization that brings the boxes to a common height. Figure 4.17 shows
a scale normalization within a microarray. Remember that such an operation
may increase the overall variation of the ratios. If the distribution of box
heights are more or less uniform, such as in Figure 4.17, a scale normalization
may not be necessary.

Figure 4.18 is a step-by-step illustration of the within-array and between-
array normalization (for two-color CpG island microarrays) in action. Notice
that array # 3 is penalized by the scaling in the between-array normalization.
The use of scaling thus has to be justified.
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FIGURE 4.18: Upper left: raw data. Upper right: print-tip loess normal-
ization. Lower left: plus scale normalization within arrays. Lower right: plus
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Chapter 5

Significant Differential Methylation

In mammalian genomes, many of the high CG-dinucleotide content regions
occur in or near the promoters of genes. The so-called CpG islands are mostly
unmethylated. CpG island methylation is correlated with gene expression
silencing. Aberrant methylation thus was found to be associated with many
developmental disorders and cancers. Identification of differential methylation
between cases and controls has implications in molecular etiology, diagnosis
and therapy.

An organism’s genome consists of hundreds to many thousands of genes.
To conserve resources, not all genes are necessarily expressed at all time.
Instead, a minimum number of core genes are expressed, producing proteins
for routine operation and maintenance of the cell. Other genes are expressed
during various stages of cellular development and in response to dynamic
environmental stimuli.

There, in principle, can be as many CpG island probes on a microarray for
DNA methylation as there are genes in the genome. Microarrays are a high-
throughput technology. One of its major applications lies in identifying the
DNA regions or genes that exhibit changes in methylation or expression across
different cellular or external conditions. Because of noise in the measurement
and variability in the samples, we need statistics to help make inference about
population from our experiment that involves only a limited number of sam-
ples. In later sections of this chapter, we also cover topics that go beyond
differential methylation or expression. In discussing analysis of DNA methy-
lation or gene expression, we assume the microarray data have already been
properly normalized by the methods in the last chapter.

5.1 Fold change

If the average fluorescent intensity of the amplicons from affected samples is
1600 and that of the control samples is 800, we speak of a methylation (or un-
methylation depending on the protocols used) fold change of 2 (= 1600/800).
Methylation levels, which are presumably proportional to the methylated CpG
sites in the probe, can go either up or down relative to the control. For hy-
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permethylation, the range of fold changes is between 1 and infinity; while
for hypomethylation, it is bounded between 1 and 0. The distribution of
fold changes is not symmetric. Bioinformaticians therefore take the (base 2)
logarithm of the hybridization intensity as the measure of DNA methylation
or gene expression level. Distributions of log intensity ratios (i.e., log fold
changes) of the thousands of probe sequences on a microarray then look like
a Gaussian distribution, which is symmetric around zero. A quick look at the
data for differential methylation is then to place a cut-off at, say, 2 on the
positive side of the log ratio distribution for DNA fragments which underwent
over four (= 22) fold up methylation and -2 on the negative side for fragments
which underwent over four (= 2−2 = 1/22) fold down methylation in the mi-
croarray experiment. Figure 5.1 shows an example of thresholds to log ratios.

Normalized microarray data is known to show a characteristic funnel distri-
bution in its plot of log ratios versus average log intensities (cf. the M-A plot of
Figure 4.9 in section 4.4.3)): Low log intensities tend to vary wildly in their
log ratios. Poisson statistics tell that the lower the amplicon (or mRNA)
count, the larger the error in the proportion. A similar account says that
measurements of weak signals are less reliable. Some researchers, therefore,
remove spots of weak intensities prior to analysis (cf. Figure 5.1).

Because a microarray experiment almost always involves biologically and/or
technically replicated measurements, we can calculate the standard deviation
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FIGURE 5.2: Spots whose log fold changes are over a threshold in at
least three (left) and four (right) among the five measurements. CGH for
comparative genomic hybridization measures gene copy number variations.

of the log ratios for every probe. Standard deviation, average deviation of the
log ratios from the mean log ratio, serves as a measure of consistency of the
measured log ratios from the replicated measurements. We can, in addition to
a threshold to fold changes, put an upper bound on the standard deviations
in identifying differentially methylated sequence fragments. Figure 5.2 shows
a similar method that requires that the methylation fold change at a locus
pass a certain threshold in at least three or four out of five measurements.

A threshold to fold changes, however, can be very subjective. One inves-
tigator may set a threshold at three-fold, while the other may decide that
four-fold is the right value. If the threshold value is set too high, lots of spots
of potential interest may be missed. On the other hand, if it is set too low,
many uninteresting spots will be included for further investigation. The same
criticism applies to bounds on standard deviations. We need a measure of
significance for differential methylation. Note that the discussion applies to
gene expression microarray data.
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5.2 Linear model for log-ratios or log-intensities

A researcher has in mind a model describing a phenomenon of interest. She
then sets up an experiment to test the adequacy of the model. If the results of
repeated measurements fall within model predictions, say, 95 percent or more
of the time, the agreement can be considered significant, lending her confi-
dence in the model. In many disciplines, it is the so-called null hypotheses, or
null (or reduced) models, that are conveniently, and thus traditionally, tested
by experimenters. If results of the repeated measurements meet predictions of
the null model 5 percent or less of the time, evidence for the null hypothesis
is weak, prompting us to reject the null model.

Logarithmic transformation of fluorescent intensities symmetrizes the re-
sulting distribution. The transformation also stabilizes the variability in the
sense that magnitude of variation in the intensities is compressed by taking
the log. Furthermore, thanks to the equality log(xy) = log x + log y, multi-
plicative effects, such as fold change, become additive in the logarithmic space.
Linear additive models thus have been developed for the log ratios from two-
color DNA microarrays and the log intensities from single-color oligonucleotide
chips. The models, being linear, are simple, yet they have been shown to rep-
resent a good approximation to the otherwise complex and even intractable
phenomena, such as gene transcription [Kerr01b, Smyth04]. In what follows,
we take a common reference design of two-color DNA microarray experiment
as an example of linear model analysis for differential methylation and ex-
pression. The statistical analysis in this example applies equally well to data
with single-color oligonucleotide chips.

5.2.1 Microarrays reference design or oligonucleotide chips

Suppose eight independent biological samples, a1, a2, b1, b2, c1, c2, c3 and c4,
together with eight aliquots from a common reference sample, ri = r, i =
1, 2, 3, · · · , 8, are prepared for the experiment. Samples a1 and a2 belong to
one condition (or phenotype, class); samples b1 and b2 to the other condition;
and samples c1, c2, c3 and c4 to yet another condition. For example, a1 and
a2 may be the genomic DNA from the blood of two schizophrenia patients, b1

and b2 the genomic DNA from the blood of two bipolar disorder patients, and
c1, c2, c3 and c4 from the blood of four healthy controls. The common reference
can be from the genomic DNA of a yet independent healthy individual. The
design and labeling of the experiment are shown in Figure 5.3. Notice of
the dye-swapping, that is, the reference samples in microarrays a1 ← r and
a2 → r differ in the labeling. The aim of the experiment is to find sequences
that show significant differential methylation across conditions.

Since there are three conditions from eight distinct biological sources, we
are to estimate the three mean log ratios, each corresponding to a condition;
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a2

r

c1 c4

b1 b2

c2 c3

a1

FIGURE 5.3: A common reference design with dye-swaps. A microarray
is represented by an arrow whose head represents Cy5 labeling and tail Cy3
labeling. Sample as belong to a class, sample bs to a second class and sample
cs to a third class.

namely, βa, βb and βc, where βa represents the mean log ratio of samples a1, a2

to r, and βb the mean log ratio of samples b1, b2 to r, and so forth. βa, βb and
βc, the quantities of interest, are called coefficients (or parameters) in linear
model. We will find it convenient to represent the coefficients in a column
vector ~β = (βa, βb, βc)

T , where the superscript T stands for matrix transpose.
Note that (βa, βb, βc) is a 1 by 3 matrix or row vector and (βa, βb, βc)

T becomes
a 3 by 1 matrix or column vector. The symbols and notations should present
no hurdle. They are meant to make formulas neater.

In the analysis, background corrected Cy3 and Cy5 intensities are read in.
After taking log of the intensity ratios and performing the ritual of normal-
ization (cf. chapter 4), we need to let the analysis know what coefficient a
microarray’s measurement contributes to the estimate of. In the example of
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Figure 5.3, the relations are

~y =

























log(a1/r)
log(r/a2)
log(b1/r)
log(r/b2)
log(c1/r)
log(r/c2)
log(c3/r)
log(r/c4)

























=

























1 0 0
−1 0 0

0 1 0
0 −1 0
0 0 1
0 0 −1
0 0 1
0 0 −1





























βa

βb

βc



 +

























N(0, σ2)
N(0, σ2)
N(0, σ2)
N(0, σ2)
N(0, σ2)
N(0, σ2)
N(0, σ2)
N(0, σ2)

























= X~β + ~ε ,

(5.1)

where the vector ~y holds the data, the 8 × 3 matrix, X , is called design
matrix, and N(0, σ2) is a draw from the normal distribution of mean zero and
standard deviation σ. That is, the errors or fluctuations on the spot from the
eight microarrays are independent and identically distributed (i.i.d.) random
variables. It is also understood we have an equation like (5.1) for every spot
on the microarray and that the same analysis is independently done for every
spot. In other words, we have assumed noncorrelation between the sequences.
We also dropped the index on spot in equation (5.1) for simplicity.

Once a model like equation (5.1) is written down, the rest is straightforward.
For example, to get an estimate of the unknown coefficients βa, βb and βc,
trial values of β′

a, β′
b, β

′
c are iteratively adjusted so that the sum of squared

residuals, SSR,

SSR = [log(a1/r)− β′
a]2 + [− log(r/a2)− β′

a]2 + [log(b1/r)− β′
b]

2+
[− log(r/b2)− β′

b]
2 + [log(c1/r)− β′

c]
2 + [− log(r/c2)− β′

c]
2+

[log(c3/r)− β′
c]

2 + [− log(r/c4)− β′
c]

2

(5.2)

is minimized subject to constraints if any. In fact, since the model is linear,
analytical solutions exist for the best estimate of the coefficients ~β,

~̂β = (XT X)−1XT ~y , (5.3)

where the hat ˆ stands for estimate. An independent estimate for the error
variance σ2 in equation (5.1) is the sum of squared residuals divided by the
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degrees of freedom,

σ̂2 =
SSR

N − p
=

(~y −X~̂β)T (~y −X~̂β)

N − p
, (5.4)

where N is the number of microarrays and p the number of coefficients. Their
values are N = 8 and p = 3 for the example of equation (5.1).

Because of one channel in oligonucleotide chips, we use log intensities, in-
stead of log ratios, for the ~y in the linear model equation for single-color
oligonucleotide chips. Likewise, there will be no dye-swapping oligonucleotide
chips and the −1s in the design matrix X will all be 1s for experiments with
single-color oligonucleotide chips.

5.2.2 Sequence-specific dye effect in two-color microarrays

Sequence-specific dye effect occurs when one of the dyes binds better to the
target sequence in the labeling reaction. The consequence is that the relative
intensities from the spot is shifted by a value, which is specific to the probe
sequence. The value, or magnitude of the bias, reveals itself when the true
log intensity ratio is zero. In the language of linear regression, the bias is an
intercept term on the right-hand side of equation (5.1).

True log intensity ratios are unknown to us. They are actually the quantities
we are going to find out through the experiment. Moreover, they are not
necessarily zeros. The bias, if any, can be made evident with dye-swapping
duplicate measurements. Suppose the log ratio reads 3 in one microarray
while it reads −1 in the other duplicate whose dye orientation is reversed
with respect to the former. The average of the log ratios is [3 − (−1)]/2 = 2.
The bias, therefore, is 3−2 = 1. We see that with an offset value of 1, the log
ratios from the pair of dye-swapping measurements become balanced about
the offset. The dye effect thus produces a nonvanishing baseline level in the
ratios.

To take into account sequence-specific dye bias using dye-swapping microar-
rays, we expand the coefficient vector ~β to include a coefficient βdye for dye

effect, i.e., ~β = (βdye, βa, βb, βc)
T in the example of equation (5.1). The design

matrix X will have to be expanded accordingly to instate the coefficient βdye,

~y = X~β + ~ε =

























1 1 0 0
1 −1 0 0
1 0 1 0
1 0 −1 0
1 0 0 1
1 0 0 −1
1 0 0 1
1 0 0 −1

































βdye

βa

βb

βc









+ ~ε . (5.5)
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With the added column of 1s in X , the coefficient for dye bias appears as
an intercept term in the linear model. Appendix of this chapter presents
more design examples and their linear models. Since different experimental
designs end up with different design matrices, familiarity with design matrix
formulation helps straighten up subsequent data analysis.

5.3 t-test for contrasts

Equation (5.3) finds the best estimates for the log-ratios at differing condi-
tions from the intensity data. We can now form contrasts of our interest. For
example, we are interested in the comparison of methylation status between
conditions a and c. Since β̂a is an estimate of log(a/r) and β̂c an estimate of

log(c/r), we form a contrast between β̂a and β̂c by β̂a − β̂c, which represents
a best estimate of the difference βa−βc = log(a/r)− log(c/r) = log(a/c), i.e.,
the log fold change between the two conditions a and c. Since there can be so
many different constructs of contrasts, we, again, introduce contrast matrix ~c
to simplify notations. In this example, with ~cT = (0, 1, 0,−1),

~cT ~̂β = (0, 1, 0,−1)









β̂dye

β̂a

β̂b

β̂c









= β̂a − β̂c , (5.6)

is the contrast of our interest. Similarly, ~cT = (0, 0, 1,−1) will compare con-
dition b with condition c and ~cT = (0, 1,−1, 0) enables a contrast between
conditions a and b. If our interest is in contrasts between a condition and the
reference, the contrast matrix can be ~cT = (0, 1, 0, 0), (0,0,1,0) or (0,0,0,1). If
we are to seek any dye effect, the contrast matrix will be ~cT = (1, 0, 0, 0).

Linear models do not pay off if they do not go beyond fold change. Because
of the error εs in the model (5.1) or (5.5), estimation of contrast ~cT ~β is subject
to uncertainty (see also equation (5.3)). Once we know how the estimates
distribute in general, we can assess the significance of any particular contrast
between the estimates. Statistically, we put forward a null hypothesis of no
difference in the contrast Ho and an alternative hypothesis Ha that is the
negative of Ho,

Ho : ~cT ~̂β = 0 e.g. ˆlog(a/c) = 0

Ha : ~cT ~̂β 6= 0 i.e. ˆlog(a/c) 6= 0 .
(5.7)

We then test the null hypothesis by calculating the t-statistic, which is the es-
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timated effect size, ~cT ~̂β, in units of its estimated standard deviation, ˆstd(~cT ~β),

t–statistic = ~cT ~̂β/ ˆstd(~cT ~β)

= ~cT ~̂β/
√

σ̂2~cT (XT X)−1~c

∼ tN−p .

(5.8)

The t-statistic can be shown to follow a Student’s t-distribution of (N − p)
degrees of freedom. We can then let computers find the corresponding p-value
of the t-statistic. For example, in R (cf. chapter 13), the two-sided p-value is
obtained via the command, 2*(1-pt(abs(t-statistic),N-p)), where pt()

and abs() are built-in functions in R, returning, respectively, the probability
and absolute value of the input. The manual of the function can be retrieved
by the command help(pt) in the R environment.

A p-value is the probability that a probe’s DNA methylation (or gene’s ex-
pression) are different between the two conditions due to chance. Specifically,
it is the probability value of getting the test statistic at least as extreme as
that would be obtained by chance alone, given that the null hypothesis Ho is
true. The smaller the p-value, the less likely that chance is the only opera-
tor behind the observation granted by Ho. That is, a small p-value provides
evidence against the null hypothesis. Statisticians typically use 0.05 as the
significance level, a p-value below which spells that the alternative hypothesis,
i.e., fold change in our case, is significant. With the linear models (5.1) or
(5.5) and t-statistic (5.8), we savor the flavor of statistical significance.

5.4 F-test for joint contrasts

In larger experiments, we very often want to test multiple contrasts simulta-
neously (i.e., multiple testing). For example, we want to pick up differentially
methylated loci between conditions a and c and between conditions b and
c. Likewise, in a time course methylation experiment, we are interested in
identifying loci that are differentially methylated between any successive time
points. We then stack up individual contrasts to form an augmented contrast
matrix, C,

C~̂β =





0 1 −1 0
0 1 0 −1
0 1 0 0













β̂dye

β̂a

β̂b

β̂c









=









~̂
aβ − ~̂

bβ

~̂
aβ − ~̂

cβ

~̂
aβ









=







ˆlog(a/b)
ˆlog(a/c)
ˆlog(a/r)






. (5.9)
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The null hypothesis for the multiple contrasts is

Ho : C~̂β = 0 i.e. ˆlog(a/b) = 0, ˆlog(a/c) = 0, ˆlog(a/r) = 0

Ha : at least one of ˆlog(a/b) 6= 0, ˆlog(a/c) 6= 0, ˆlog(a/r) 6= 0 .
(5.10)

To test the null hypothesis, we follow the technique of analysis of variance
(ANOVA) by comparing the estimated standard deviation that is obtained

assuming C~̂β = 0 (i.e., the null model) with that assuming C~̂β 6= 0 (i.e., the
full model). The result is an F -statistic; it essentially measures the relative
increase in fitting errors when we move from a full model to a null model.
With SSRn

, dfn, SSRf
and dff for the sums of squared residuals and degrees

of freedom for the null and full models, respectively, it can be shown that a
least square estimate of parameters leads to

F–statistic =
[

(SSRn
− SSRf

)/(dfn − dff )
]

/
[

SSRf
/dff

]

= (C~̂β)T
(

C(XT X)−1CT
)−1

(C~̂β)/(σ̂2q)

∼ Fq,N−p ,

(5.11)

which follows, if Ho is true, an F -distribution of q numerator and (N − p)
denominator degrees of freedom with q the number of (independent) contrasts
in the hypothesis testing.

We get the p-value for Fq,N−p > F -statistic by calling functions in R,
clicking a button in an analysis software or looking up percentile tables. The
larger the F -statistic, the smaller the p-value. The p-value lets us decide
whether the increase in fitting errors is large enough to reject exclusion of

the parameters (i.e., with C~̂β = 0). p < 0.05 is normally accepted as the
significance level of rejecting a null hypothesis in favor of the alternative. If
the null hypothesis is rejected, it is an indication that the sequence exhibits
differential methylation in at least one of the contrasts. If we are interested
in the particular contrast(s) that is (are) attributable to the methylation, we
then perform individual t-tests as in the last section.

t- or F -statistics and their distributions under the null hypothesis help us
assess the statistical significance in the estimated fold changes between groups
of samples. It is a great addendum to the threshold to fold change method
in identifying differentially methylated sequences (expressed genes). Now, for
every probe sequence, we have both mean fold change and p-value. We plot
the fold change in one axis and − log10 of the p-value on the other for every
probe on the microarray to form the so-called volcano plot. The larger the
− log10(p-value), the smaller the p-value. It, therefore, serves as a measure
of statistical significance of the estimated fold change. Figure 5.4 shows an
example of volcano plot.
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FIGURE 5.4: Volcano plot of twins versus co-twins in black and self versus
self in blue. Spots outside the two vertical red lines and below the horizontal
red line are possible false positives by the fold change method alone. Spots
inside the two vertical lines and above the horizontal line are possible false
negatives by the fold change method. Spots in the upper left and right corners
are promising candidates for further investigation. The self–self hybridizations
in this example help place the vertical cuts.
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5.5 P-value adjustment for multiple testing

Linear models such as equation (5.1) apply to individual spots. t- or F -
statistics are then calculated, spot by spot, to test for significant fold changes
over the contrasts. If the p-value of a contrast is small enough, we reject the
null hypothesis of no fold change and claim a positive finding (i.e., a DNA
locus causing the phenotypic difference under study is predicted). Given a
critical p-value, α, of 0.05, the probability of falsely rejecting a null hypoth-
esis is 5 percent. That is, the null hypotheses are rejected by chance, not
by truly differential methylation among the samples. The false rejections are
called false positives. Consider a microarray consisting of ten thousand DNA
sequence probes. An α of 0.05 will, on average, return five hundred false
positives even though in reality none of the ten thousand sequences are dif-
ferentially methylated (expressed)! The large number of erroneous findings
means that huge resources will be wasted in follow-up experiments. A simple
way to save waste, and to keep the researcher’s reputation as well, is to lower
the critical p-value α.

5.5.1 Bonferroni correction

Suppose that the rate of an auto accident per person per day is 1/10,000.
The rate is low, but still we hear accounts of auto accidents every day. The
reason is that the entire population is tested in auto safety every day. The
population-wise auto accident rate, therefore, is appreciable. Similarly, a
high throughput microarray experiment interrogates a large number of DNA
fragments in parallel. The experiment-wise error rate, i.e., the chance of any
false positives in an experiment, can become appreciable even though the
spot-wise error rate α is already set to a small value of 0.05.

One way of controlling the experiment-wise error rate is to lower the critical
p-value by a factor of G, i.e.,

α = α/G , (5.12)

where G is the number of probes in a microarray and = is an assignment
operator. Note that in the case of multiple contrasts as in equation (5.10), G
is the number of probes multiplied by the number of simultaneous contrasts.
With this Bonferroni correction for critical p-value, the chance of any false
positives in the experiment, 1− (1− α/G)G, remains as low as α:

1− (1− α/G)G ≈ α . (5.13)

5.5.2 False discovery rate

Reducing false positives by controlling experiment-wise error rate is con-
sidered too conservative in that true positives are hard to emerge due to loss
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FIGURE 5.5: Multiple testing corrections (left) and volcanoes before (right
top) and after (right bottom) FDR correction. The number of rejected hy-
potheses is the number of probes on the microarray that will survive a user
prescribed cutoff (a horizontal line). Bonferroni correction amounts to multi-
plying the raw p-value by 12,192, the total number of tests (i.e., probes). If,
after multiplication, the value is over 1, it is set to 1 because probability does
not exceed 1.

of power (i.e., increased false negatives). A middle-ground (cf. Figure 5.5)
between the unadjusted p-value and the stringent experiment-wise error con-
trol is to limit the so-called false discovery rate (FDR), which is the expected
proportion of false positives among the claimed positives [Benjamini95],

FDR =
# of false positives

# of false positives + # of true positives
. (5.14)

(FDR is set to zero if the denominator is zero.) After FDR adjustment of the
p-values, a cut-off at 0.3 means that we expect, on average, seven out of ten
predicted positives to be true positives.

Procedures that consider the joint probability distribution of test statis-
tics for each hypothesis have been proposed in order to account for the si-
multaneous test of multiple hypotheses. Algorithms have been developed
to adjust p-values for FDR control [Benjamini95]. For example, in R, the
function p.adjust(raw p values, method="fdr") returns p-values adjusted
using the FDR method given the raw p-values in the vector raw p values.
Figure 5.5 shows an example of volcano plots before and after FDR correction.
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5.6 Modified t- and F-test

The classical t-test equation (5.8) for two-condition comparison and F -test
equation (5.11) for multicondition comparison improve upon the fold change
method for identifying differentially methylated loci. The point is that a
mean fold change or, more generally, a linear combination of the estimated
fold changes are associated with a random error. Given an estimate for the
error in the fold change, we can determine the level of significance of the fold
change between conditions.

When the sample size (i.e., number of samples per condition) is small, it
is known that estimation becomes unreliable. It can, for example, happen
that the estimated standard deviation σ̂ of equation (5.4) is too small due
to lack of samples. Since the estimated standard deviation σ̂ appears in the
denominator of equation (5.8) and equation (5.11), the resulting t- and F -
statistic will be too large. Modifications to the classical t- or F -statistics,
therefore, were proposed to regularize the statistic [Efron01, Lönnstedt02].
One can for example replace the σ̂ in equation (5.8) and equation (5.11) with
(σo + σ̂)/2 where σo is an empirical constant. The replacement effectively
places a lower bound to the estimated standard deviation. A candidate for σo

is the standard deviation of the log-ratios of all the spots on the microarray.
The next job will be the p-value calculation since the modified statistic may
not follow the classical t- or F -distributions any more. A permutation analysis
can assist in evaluating the p-value.

The standard deviation of the log ratios (or log intensities) of a sequence is
sequence dependent (cf. Figure 3.8). Recall that, for simplicity, we dropped
the index g in the linear model including σg . A microarray provides simul-
taneous measurements of the methylation (or expression) levels of thousands
of loci (genes). For a better estimation of the individual σgs, it would be
beneficial that information on σ̂g from other loci (genes) is shared. This is of
particular use when the sample size in the experiment is small (e.g., less than
ten). An implementation that realizes the information sharing is empirical
Bayes [Smyth04, Smyth05] (note, again we drop the index g on σ̂),

σ̂2 =
d0σ̂

2
0 + (N − p)σ̂2

d0 + (N − p)
, (5.15)

where σ̂2
0 is an inverse Gamma prior on the variance and d0 is a constant

to be estimated from the data of all loci (genes). When we substitute the
modified sample variance into the statistic, it can be shown that the modified
t- and F -statistics follow t- and F -distributions under the null hypothesis
with (d0 + N − p) and (q, d0 + N − p) degrees of freedom [Smyth04]. The
extra degrees of freedom d0 come from the fact that information is borrowed
from the ensemble of loci (genes) for statistical inference about individual loci
(genes).
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Ref

a b c βα χ

1 2 3

FIGURE 5.6: A reference design with dye-swaps for within-group and
between-group variation study. Samples a, b, c belong to a group; samples
α, β and χ to a second group; and samples 1, 2, and 3 to a third group.
A microarray is represented by an arrow whose head represents Cy5-labeled
sample and tail Cy3-labeled sample.

5.7 Significant variation within and between groups

Loci whose methylation are highly variable (or stable) between individuals
within and among populations may suggest their importance in clinics as well
as in evolution. As an illustration, we apply linear models to address the issue
of significant variations in methylation within and between groups. Figure 5.6
shows an experimental design comparing variations between the three samples
within each group and among three groups using eighteen microarrays.

5.7.1 Within-group variation

We begin with the identification of loci that show significant variation in
methylation between samples within the same groups. The null hypothesis
states that there exist no differences between the samples within each group,
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while the alternative hypothesis says the opposite. That is,

Ho : µa = µb = µc, µα = µβ = µχ, µ1 = µ2 = µ3

and µa 6= µα 6= µ1

Ha : µa 6= µb 6= µc 6= µα 6= µβ 6= µχ 6= µ1 6= µ2 6= µ3 .

(5.16)

The full model for the alternative hypothesis has nine coefficients corre-
sponding to the total of nine samples in the three groups (cf. Figure 5.6).
The reduced model for the null hypothesis, on the other hand, has only
three coefficients corresponding to the three different groups because now
the within-group samples do not differ under the null hypothesis. We fit the
two linear models to the data, getting their mean sums of squared residuals.
We then form the F -statistic as in equation (5.11) and look up the tabu-
lated F9−3,18−9-distribution for the p-value. We repeat the fitting for each
locus and rank the loci according to the p-values. Loci whose methylation
vary significantly within the groups can be identified given a cut-off on the
p-values.

5.7.2 Between-group variation

The test of between-group variation is the canonical one, i.e., to see if any
of the group means is different from another. We average each dye-swapping
microarray pair to form averaged log ratios for the spot on the microarray:

log2 R/G =
log2 R/G− log2 R′/G′

2
, (5.17)

where log2 R′/G′ is from the dye swapping microarray. The nine averaged log
ratios of a spot are then fitted to the two representations of the linear model
where one respects grouping of samples and the other does not. That is,

Ho : µ{a,b,c} = µ{α,β,χ} = µ{1,2,3}

Ha : at least two of them are different .
(5.18)

The mean sums of squared residuals returned from the regressions are then
used to form the F -statistic. The p-value of a spot is obtained from the
F3−1,9−3-distribution.

As the example in Figure 5.7 shows, with the proportions of significantly
variable loci identified within groups and between groups, we are able to quan-
tify the difference between the within-group and between-group variations.
Figure 5.8 is a “volcano” plot of the multisample F -test that is equivalent to
Figure 5.4 for two-sample t-test. Because of the diversity in gene functions, we
might focus on a subset of genes on the microarray that pertain to a specialized
biological pathway for the variation study. Similarly, in DNA methylation,
we focus on the loci on few chromosomes. We may also need to justify the
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FIGURE 5.7: Raw- (left) and FDR-adjusted (right) p-values of the F -test
for sample variation within- and between-groups. Note that the red bars are
shifted right a bit for display purpose. Data were from a design similar to
Figure 5.6, but of a larger scale.

way the microarrays are normalized between arrays because, for example, few
outlier microarrays might dominate the between-group variation.

Note also that if the group means are close to one another, we might need
to have an enough number of groups or samples per group in order to reject
the null hypothesis of no variation in means at a certain confidence level
with, say, 90 percent chance. For example, given a within-group standard
deviation equal to 0.25, we need seven independent samples per group in order
to detect a 1.6-fold difference in one of the three groups (corresponding to a
between-group standard deviation of 0.4 = std(0, 0, log2 1.6)) with a power of
0.9 and false positive rate of 0.001. The sample size issue for ANOVA test here
is similar to that for two-sample t-tests encountered in section 3.7.2 during
experimental design.

5.8 Significant correlation with a co-variate

We might be interested in identifying loci whose methylation levels increase
(or decrease) with the levels of a factor, such as age, lifetime antipsychotics
or any other quantitative traits. In these cases, we profile the methylation
of, say, twenty individuals, each with a pair of dye-swapping microarrays in
a common reference design. To correct for the dye bias, we again find the
mean methylation ratios from the pair of dye-swapping technical duplicates by
equation (5.17). We then calculate the Pearson product-moment correlation
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FIGURE 5.8: Volcano plot of the F -test results of Figure 5.7. Black and
red circles are respectively the within- and between-group standard devia-
tions of the fold changes under the settings of equation (5.18). Loci in the
upper right region exhibit significant fold changes between conditions and are
promising candidates for further studies. None appear in the present exam-
ple.
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FIGURE 5.9: Loci whose methylation status correlates with age in years
(left) and lifetime antipsychotics (right) in arbitrary units.

coefficient (cf. section 1.1.3.1) between the twenty mean log ratios and the
twenty ages for each locus on the microarray. We can rank the loci according
to the magnitudes of the correlation coefficients. However, we need a measure
of statistical significance, i.e., p-value, otherwise an arbitrary threshold to the
correlations would be subjective.

To get the p-value of the correlation coefficient, we randomly permute the
ages of the individuals. We then calculate the Pearson correlation coefficient
between the twenty log ratios and the twenty permuted ages, for each locus.
We repeat the permutation procedure ten thousand times and get a distribu-
tion of ten thousand artificial Pearson correlation coefficients for each locus.
The distribution is what the correlation coefficients would distribute under
the null hypothesis of no correlation between the methylation and age. Let’s
look at the first locus first. Assume its real correlation coefficient is 0.6. If
among the ten thousand artificial correlation coefficients of this locus, only
ten are larger than 0.6, then the one-sided p-value of this correlation coeffi-
cient is 10/10,000 = 0.001. If the correlation coefficient of the second locus
is −0.3 and among the ten thousand artificial correlation coefficients for this
locus, five thousand are less than it, then its p-value is 5,000/10,000 = 0.5.
We continue the evaluation to get the p-values of the rest of the loci on the
microarray. We next correct the raw p-values for multiple testing by FDR.
We can plot the correlation coefficient on the x-axis and − log10 of the FDR-
adjusted p-values on the y-axis. We will get a volcano plot similar to that
of Figure 5.4. Figure 5.9 shows examples of the loci that are identified to
correlate with the age and lifetime antipsychotics.
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5.9 Permutation test for bisulfite sequence data

We have so far focused on methods for identifying differential methyla-
tion at prescribed levels of significance. In short, with linear models on log
transformed intensities, error terms due (mainly) to biological variability are
estimated. The error inevitably propagates into the estimate of contrasts of
biological interest. Knowing the distribution of the estimates, we are able to
assess the statistical significance of the differential methylation. We then rank
the differentially methylated loci in order of their significance.

CpG island microarrays, together with methylation-sensitive restriction en-
zymes, are a high throughput technology for DNA methylation profiling. The
importance of DNA methylation lies in the finding that, in mammals, the de-
gree of DNA methylation in the regulatory regions often inversely correlates
with the expression of corresponding genes. Outliers in volcano plots, such as
Figure 5.4 and Figure 5.5 identify candidate loci that show differential methy-
lation among samples. After some bioinformatic research, such as to remove
those loci with SNPs and copy number variations, we select a few promis-
ing loci for confirmation by an independent technique, such as sequencing of
bisulfite-treated DNA. The resulting data are a string of 0s and 1s for the
CpGs in a sequence clone (e.g., 1 corresponds to a methylated cytosine and
0 to an unmethylated cytosine). The question of interest remains the same:
Is the methylation profile in one DNA sample (or group of samples) differ-
ent from that in another DNA sample (or group of samples)? In this case
of bisulfite sequencing, the data presented to the analyst are of dramatically
different nature. Linear models (5.1) for log ratios or log intensities are not
applicable here.

With the bisulfite sequencing method, a sample’s methylation profile is
represented by a collection of sequenced clones. Suppose the DNA fragment
under investigation contains thirty CpG sites. The thirty 0s and 1s are stored
in a row vector per clone. So, for example, in the case of six clones per sample,

~A =

















0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1
1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 0
1 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1
0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 0 1

















~B =

















0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0
0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1
0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1
0 0 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1
0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1
0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0

















,

(5.19)
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represent, respectively, samples A and B. The task is then to determine if the
methylation profile at the locus represented by matrix ~A is the same as that
by matrix ~B. Note that the order of the rows in the matrix is irrelevant as
we can put a clone in any row.

5.9.1 Euclidean distance

First of all, we need to define a metric based on which dissimilarity can
be quantified. The common one is Euclidean distance, which is simply the
ordinary three-dimensional distance extended to any higher dimensions. Next,
in analogy to the probeset for a gene in a single-color oligonucleotide chip, we
summarize the matrix into a single row vector by averaging along the column.
So, for example, the first element in the summarized row vector Ā is obtained
from the first column of matrix ~A by Ā1 = (0 + 0 + 1 + 0 + 1 + 0)/6 =
0.33, and similarly for the other elements in the vector. Figure 5.10 plots
such summarized vectors from a real dataset. The distance d between the
summarized vectors Ā and B̄ is calculated,

d =

√

√

√

√

30
∑

i=1

(Āi − B̄i)2 . (5.20)

We got a distance, which alone tells little. The next key ingredient will be a
measure of significance. That is to find the p-value of the distance d, which
is the probability of observing a value of distance as large as or larger than
d under the null hypothesis that matrix ~A and matrix ~B are obtained by
sampling from the same population of clones. If the one-sided p-value is less
than α, we say that we reject the null hypothesis at the significance level of
α.

To get the p-value under the null hypothesis, we combine together the six
rows in each of the two matrices into a pool with twelve rows. We then
randomly select six rows from the pool to form an artificial matrix ~A′. The
sampling is done without replacement. The remaining six rows in the pool
then form matrix ~B′. We summarize matrices to form row vectors Ā′ and
B̄′ as before. We then calculate the Euclidean distance d′ between Ā′ and B̄′

according to the metric equation (5.20). We repeat the permutation procedure
one thousand times. Since the selection from the pool is random, we will get
one thousand different d′s.

With the frequency distribution of the distances d′s under the null hypoth-
esis as in Figure 5.10, we find the area under the distribution curve between
the rightmost end of the curve to d. The area is divided by the total area,
which is one thousand in this case, to get the fractional area. The one-sided
p-value of d is then the fractional area. Finally, the p-value is compared to
the desired significance level α to see if we can reject the null hypothesis of
no difference between the two samples.
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FIGURE 5.10: Plot of the summarized vectors (left) and distribution of
the distances calculated from summarized vectors from permutation (right).
The goal is to test if the patterns in the left panel differ from one another.
The black curve on the right is from ten thousand permutations, while the
red curve is a Gaussian fit to it.

Note that since we have only twelve rows in the pool, we can have at most
C12

6 = 12!/(6!6!) = 924 d′s instead of one thousand mentioned above. To
get a precise p-value, the distribution of d′s has to be smooth, calling for a
large number of d′s. The number of six samples per condition, therefore, is
considered a minimum for a permutation test. The method can be extended
to find p-values of multicondition tests as we extend from the two-sample
t-test to multisample F -test.

5.9.2 Entropy

We found the dissimilarity metric in equation (5.20) worked well in most
situations. It is very sensitive to the signal profiles in the locus. For example,
if the data are such that the summarized vector Ā contains a tall peak at
site five while B̄ a short or no peak at the same site, the Euclidean distance
between the two samples will be large. That is, the two samples represented
by matrices ~A and ~B are quite dissimilar under the metric. In other situations
where each matrix contains a peak, but at different site inside the locus, the
distance will also be large according to the definition in equation (5.20).

The Euclidean distance becomes unsuitable if biology tells us that peak
locations are not important as long as there are peaks in the locus. What we
need in this case is a metric that detects and counts features in the locus. En-
tropy, which plays a central role in information science and statistical physics,
measures degree of randomness and looks useful in the present setting. If the
methylation intensities are weak and each of the thirty sites in the locus (5.19)



Significant Differential Methylation 103

has an equal chance of methylation (i.e., the 1s in matrix ~A in equation (5.19)
are sparse and equally distributed in it), which of the site will be methylated,
if we are given a seventh clone, is least predictable. We say that the entropy
of such a locus is maximal. On the other hand, if a certain site in the locus
is always methylated (i.e., a column in the matrix is full of 1s), then we are
willing to bet that the site will also be methylated in a new clone. The locus
in this case should have a minimal entropy. A definition of entropy S that
has the properties is

S = < log2(1/p) > = −
N

∑

i=1

pi log2 pi , (5.21)

where the square brackets mean average, pi is the probability of site i being
methylated and N is the number of sites in the locus. Note that pis, being
probabilities, should sum up to one:

∑N
i=1

pi = 1. It can be shown that the
maximum entropy has a value of log2 N . We can divide equation (5.21) by this
maximum value so that the normalized entropy is bounded by 1 independent
of the number of sites N .

After adopting equation (5.21) as a metric of randomness in methylation at
a locus, we can calculate the “distance” d = |SA−SB| between samples A and
B. We then proceed to assess the significance of difference by permutation as
before.

5.10 Missing data values

Missing values are not uncommon in microarray data. These can happen
when, for example, after subtracting background from foreground, the fluo-
rescent intensity of a spot becomes zero or negative. When we take log of a
nonpositive number, the value returned is undefined. Therefore, the analy-
sis program has to be prepared for these exceptions. (Note that there exist
algorithms that guarantee that all intensities are positive after background
correction.)

The ways missing values are handled will depend on where they occur. If
undefined values, in the form of NaN, ±Inf or NA in most programming lan-
guages, enter into t- or F -tests, they can simply be removed in calculating the
mean and standard deviation with the number of samples, and thus degrees
of freedom, reduced accordingly.

In the case of correlation between two vectors, the counterpart elements in
the other vector will have to be removed as well. So, for example, the Pearson
correlation between (1, NA, 3, 4, 5) and (6, 7, 8, 9, 10) will be calculated between
(1, 3, 4, 5) and (6, 8, 9, 10).
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TABLE 5.1: Description of Data Files in a Factorial Design

Chip # Wild Type (W) or Mutant (M) Treated (T) or Untreated (U)

1 W U
2 W T
3 W T
4 M U
5 M T
6 M T

In Euclidean distance calculation, the sum of squared differences can be
inflated in proportion to compensate for the squares that are missing due to
undefined values. So, for example, the distance between (1, 2, 3) and (2, 3, NA)
is

√

(12 + 12)× (3/2) = 1.732051.

In the entropy example, a missing value in the matrix of equation (5.19) can
be replaced with 0.5, instead of removing the whole column. The imputation
is fair because, assuming independence, the value that is missing can be either
0 or 1 with equal chance.

5.11 Appendix

Design matrix translates a designed experiment into linear algebra. It is a
gateway between laboratory experiment and data analysis. A design matrix
has its number of rows equal to the number of microarrays (or oligonucleotide
chips) in the experiment. The number of columns of the design matrix is equal
to the number of independent coefficients in the linear model. A contrast
matrix maps the coefficients onto the contrasts of biological interest. This
section aims to help readers familiarize themselves with the design and the
associated matrices.

5.11.1 Factorial design

Table 5.1 describes a 2 × 2 factorial design where all the four possible
different conditions are measured with six independent samples on six single-
color oligonucleotide chips. Similar measurements can be accomplished by
two-color DNA microarrays with a common reference. We represent the four
independent coefficients in the linear model by WU, WT, MU and MT. The
6 × 4 design matrix that links the intensity measurements from the chips to
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TABLE 5.2: Description of Data Files in a Time-Course Experimental
Design

Array # Wild Type (W) or Mutant (M) Hours (H) Dye Swap

1 W 0 -
2 W 0 yes
3 W 6 -
4 W 24 -
5 M 0 -
6 M 0 yes
7 M 6 -
8 M 24 -

the coefficients is then,

















log intensity in chip 1
log intensity in chip 2
log intensity in chip 3
log intensity in chip 4
log intensity in chip 5
log intensity in chip 6

















=

















1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

























WU
WT
MU
MT









. (5.22)

If we are interested in the contrast between wild/mutant treated and wild/
mutant untreated and in the loci that respond differently to the treatment
between strains, the contrast matrix that makes up the contrasts of interest
from the coefficients will be





WT v WU
MT v MU

(MT v MU) v (WT v WU)



 =





−1 1 0 0
0 0 −1 1
1 −1 −1 1













WU
WT
MU
MT









. (5.23)

5.11.2 Time-course experiments

The factorial design can be easily extended to factors having more than two
levels. For example, instead of treatment or none, consider the measurement
of methylation difference at time in hours after the treatment in a time course
experiment using two-color microarrays with reference design as outlined in
Table 5.2. Note that because of two colors, allowance can be made for dye
swapping as in the table.

A set of coefficients that can be modeled is W0, W6, W24, M0, M6 and
M24. The design matrix has dimensions 8 × 6 and relates the intensity ratios
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from the eight microarrays to the six coefficients,

























log ratio in array 1
log ratio in array 2
log ratio in array 3
log ratio in array 4
log ratio in array 5
log ratio in array 6
log ratio in array 7
log ratio in array 8

























=

























1 0 0 0 0 0
−1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1









































W0
W6
W24
M0
M6
M24

















. (5.24)

The loci that respond to either six hours or twenty-four hours in either wild
type or mutant can be sought for via the multiple contrasts,









W6 v W0
W24 v W0
M6 v M0
M24 v M0









=









−1 1 0 0 0 0
−1 0 1 0 0 0

0 0 0 −1 1 0
0 0 0 −1 0 1

























W0
W6
W24
M0
M6
M24

















. (5.25)

Note that once (W6 v W0) and (W24 v W0) are determined, (W24 v W6) is
known. Thus, there is no need for a (W24 v W6) above.

The loci that respond differently in mutant relative to wild type are iden-
tified through the contrasts,

(

(M6 v M0) v (W6 v W0)
(M24 v M0) v (W24 v W0)

)

=

(

1 −1 0 −1 1 0
1 0 −1 −1 0 1

)

















W0
W6
W24
M0
M6
M24

















. (5.26)

5.11.3 Balanced block design

Balanced block design compares samples directly by labeling samples of
one class in one channel and samples of another class in the other channel on
two-color microarrays. Table 5.3 shows an example of balanced block design
comparing samples of three classes. Although there are three species, the
number of independent pairwise comparisons is only two, say species 1 versus
2 and species 3 versus 2. Once these two log ratios are determined, the last
pairwise comparison, i.e., species 1 versus 3, can be derived. The linear model
that describes the experiment of Table 5.3 involves only two coefficients. The
design matrix that relates the log ratio measurements in the microarrays to
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TABLE 5.3: Description of Data Files in a
Balanced Incomplete Block Design

Array # Cy3 Cy5

1 species 1 species 2
2 species 1 species 3
3 species 2 species 1
4 species 2 species 3
5 species 3 species 1
6 species 3 species 2

TABLE 5.4: Description of Data Files in a
Loop Design

Array # Cy3 Cy5

1 A B
2 B A
3 B C
4 C B
5 C A
6 A C

the coefficients in the linear model is
















log Cy5/Cy3 in array 1
log Cy5/Cy3 in array 2
log Cy5/Cy3 in array 3
log Cy5/Cy3 in array 4
log Cy5/Cy3 in array 5
log Cy5/Cy3 in array 6

















=

















−1 0
−1 1

1 0
0 1
1 −1
0 −1

















(

log species 1/species 2
log species 3/species 2

)

.

(5.27)
All pairwise comparisons among the species can now be made via the con-
trasts,





species 1 v species 2
species 3 v species 2
species 1 v species 3



 =





1 0
0 1
1 −1





(

log species 1/species 2
log species 3/species 2

)

. (5.28)

5.11.4 Loop design

Table 5.4 illustrates a loop experimental design comparing twelve samples
from three classes using six two-color microarrays. Microarrays 1, 3 and 5
form a loop and microarrays 2, 4 and 6 are the dye swaps. Again, unlike
the previous common reference design examples in section 5.11.1 and section
5.11.2 where the number of independent coefficients in the model is equal to
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the number of distinct phenotypic classes in the experiment, there are just
two ratios that we can independently estimate from the six microarrays. Let
the two ratios be A/B and C/B. Once these two are determined, the last, i.e.,
A/C, can be obtained via (A/B)/(C/B). That being said, we write down the
model for this experiment,

















log Cy5/Cy3 in array 1
log Cy5/Cy3 in array 2
log Cy5/Cy3 in array 3
log Cy5/Cy3 in array 4
log Cy5/Cy3 in array 5
log Cy5/Cy3 in array 6

















=

















−1 0
1 0
0 1
0 −1
1 −1
−1 1

















(

log A/B
log C/B

)

. (5.29)

All pairwise comparisons are made via the contrasts,





A v B
C v B
A v C



 =





1 0
0 1
1 −1





(

log A/B
log C/B

)

. (5.30)



Chapter 6

High-Density Genomic Tiling Arrays

A large-scale international project by the ENCODE consortium studying the
regulatory elements in 1 percent of human genome revealed significant roles
and activities of histone modifications in gene transcription and DNA replica-
tion. One of the major technologies in the endeavor was tiling arrays, which
consist of oligonucleotide probes from the entire ENCODE region, includ-
ing introns within genes and regions between genes (but excluding repetitive
sequences). The pilot project also assessed and developed protocols of high-
density tiling arrays and found the hybridization results were reproducible
across platforms and laboratories. As a trend is seen toward tiling array
assay, we dedicate this chapter to the analysis.

Common goals of DNA methylation measurements using tiling arrays in-
clude (1) identification of methylation regions in a population of samples and
(2) identifying regions of differential methylation between sample populations.
If there are negative control arrays, after proper intra- and interarray normal-
ization, positive calls can be identified by nonparametric one-sample Wilcoxon
test in the first application and two-sample Wilcoxon test in the second ap-
plication. If no control arrays are available, in order to reduce false positive
calls, we may need to set a threshold for hybridization intensity in addition
to the cutoff by a critical p-value. Different probes for the same intended tar-
get can bind very different amounts of the target. When estimating a probe
intensity, we require that the probes in its (genomic) proximity work together
in providing a robust estimate for the probe reading. The robust estimates
are related to the Wilcoxon test.

The number of tiling arrays can be refrained in the preliminary phase of
an investigation. In particular, there might be no biological replicates let
alone technical replicate arrays. Still, we hope to gain as much insight from
the study as we can in order to guide the way toward future experiments.
We introduce the technique of biplot for principal component analysis that
is appropriate to the end. A biplot summarizes various methylation relations
on a single two-dimensional plot.

As we upscale the wet bench technology to higher density microarrays, such
as genomic tiling arrays, the number of data points (i.e., probes) increases by
many hundred-fold. The demand on computer memory and speed increases
as a result. Access to PC clusters in a computing facility will be desirable in
undertaking such massive analysis in a timely fashion.

109
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6.1 Normalization

6.1.1 Intra- and interarray normalization

Methods for tiling array normalization [Kampa04, Royce05, Emanuelsson06]
depend on the hypothesis tests that, in turn, hinge on the experimental objec-
tives. Some tests need no normalization. However, we describe normalizations
that are applicable to most circumstances: quantile normalization for intraar-
ray normalization and median normalization for interarray normalization.

We apply quantile normalization to array replicates on the same biological
sample. Quantile normalization brings the distributions from different repli-
cate arrays into a common location and shape. The rationale is that since
the samples are from the same source, say pancreatic cells from the same
individual, the methylation profiles should be more or less the same. The
normalized data can be pooled together for the identification of methylation
sites/boundaries in the genome.

In cases where we have samples of different origins or conditions on different
arrays, we have to further normalize the data for between-array comparison.
The reason is that the hybridization or scanning conditions might differ from
array group to array group. A popular interarray normalization is to scale
the intensities so that the median intensity of every array is the same. This is
done by first dividing the intensities by the array median. We then multiply
every intensity by, say, one thousand so that the median intensity of every
array becomes one thousand.

6.1.2 Sequence-based probe effects

A tiling array contains millions of oligonucleotide probes that cover the
one-dimensional genome at a regular interval just like tiles covering the walls
of our bathroom. The length of a probe is typically twenty-five (thirty-six or
sixty) bases. State of the art tiling arrays cover the nonrepetitive-sequence
portion of the genome with overlaps so that the resolution (i.e., end-to-end
distance between neighboring tiles) is seven bases. Before tiling microarrays,
oligonucleotide arrays were developed to assay the abundance of gene tran-
scripts, using sixteen to twenty probes for a target gene. Every 25-mer probe
sequence has its optimal annealing temperature at which the target sequence
binds most efficiently to the probe. However, since the hybridization is car-
ried out at a single temperature, it is not surprising to find that probes in a
probeset targeting the same transcripts register a wide range of intensities.
(Note the varying intensities could be due to alternative splicing when the
probes target different exons of a gene.) For example, the probes with high
GC (guanine-cytosine) content in their sequences on average have higher in-
tensities than the probes with low GC content because of the higher affinity
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FIGURE 6.1: Distributions of the raw PM and MM intensities of a human
ENCODE2 tiling array. Because of high density, only the intensities of the
probes covering chromosome 11 are shown.

between G and C than between A and T. Furthermore, the effect depends
not only on the content, but also on the nucleotide position in a probe. The
sequence-based bias becomes worse in tiling arrays [Royce07] because, un-
like the gene-centric oligonucleotide arrays where we choose sixteen to twenty
optimal probes to form a probeset representing a gene, there is no room in
choosing what cover the genome.

In relation to the sequence-based bias, it is found that almost all probes
register intensities even though we do not expect that sequences over all the
genome regions are transcribed. Unspecific hybridization, therefore, is ubiq-
uitous in microarrays using short oligonucleotides. In Figure 6.1 we show an
example of the distributions of probe intensities from a tiling array profil-
ing DNA methylation using restriction enzyme enrichment. Indeed, we see a
dominant fraction of the probes with low, yet nonvanishing, intensities even
though not the entire chromosome is expected to be methylated.

The background intensity due to unintended hybridization can be estimated
by control arrays to which known unmethylated (or methylated, depending on
what is under profiling) samples are hybridized. The background-subtracted
probe intensities are then used in downstream analysis for methylation profile
or differential methylation. Since demethylated samples are not always avail-
able, an alternative is to use the promoter regions of the essential housekeeping
genes as control probes. In this scheme, probes are grouped according to their
GC content. The median intensity of the control probes in a GC group serves
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FIGURE 6.2: Distribution of log2(PM−MM) of the intensities in Figure
6.1. Note that since log20 is -Inf and log2(negative value) is NaN (not a
number), the distribution shown is for the PM that are larger than MM.

as the background intensity for the other probes in the same GC group.

On the other hand, Affymetrix R© addresses the issue of unspecific hybridiza-
tion by complementing each probe with a mismatch probe (MM), whose se-
quence is identical to the counterpart (PM), save the middle base. The idea is
that fragments that bind to the mismatch probe are not specific to the perfect
match probe. It was found that PM−MM corrected for much of the sequence
based probe effect in tiling arrays although there was room for improvement.
In Figure 6.2 we show the distribution of log2(PM−MM) from the PM and
MM in Figure 6.1 with PM>MM.

6.2 Wilcoxon test in a sliding window

It was reported in the last section that, in genomic regulatory elements
profiling using tiling arrays, different probes bind to the same intended targets
with different affinity and that subtracting mismatch probe fluorescence is a
way of lessening the effect of unspecific hybridization. The findings apply
to methylation profiling because the same hybridization principle underlies
microarray applications. We enriched genomic DNA with HpaII methylation
sensitive restriction enzyme followed by ENCODE2 tiling array hybridization
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and show in Fig. 6.3 the probe (perfect and mismatch) intensities in a section
of human genome. (ENCODE represents the project of ENCyclopedia Of
the Dna Elements [ENCODE07], succeeding the Human Genome Project.)
We see varying intensities across two hundred bases that span a typical CpG
island. The variation in intensities in nearby probes can be hundreds fold as
illustrated from the intensities around genomic coordinate 1712000 in Figure
6.3. Figure 6.4 shows the background (mismatch) subtracted probe intensities
of the same gnomic region. Again, we see great variation in the hybridization
intensities over genomic near neighbors.

We know that a robust metric for the central tendency of a non-Gaussian
distribution is median. Therefore, we are tempted to utilize median as a
measure of hybridization intensity that is resistant to outlying intensities.
To represent the intensity at probe i, we identify the probes whose starting
nucleotides are within one hundred bases upstream of the center nucleotide
of probe i and the probes whose ending nucleotides are within one hundred
bases downstream the center nucleotide of probe i. The window size in this
case is two hundred one bases. After aggregating the readings, we calculate
the median to represent the hybridization intensity of the probe defining the
window. The procedure is repeated to the next probe, i.e., probe i + 1, i + 2,
..., and so on and thus is called sliding window [Kampa04].

The other argument for the windowing technique is that methylated (or
transcribed) fragments are usually wider than probe length, which is typically
twenty-five bases. Intensities from the neighboring probes are not independent
of one another. Aggregating information from the neighboring probes in a
tiling array is not only legitimate, but also advantageous.

The use of medians reminds us of the Wilcoxon tests introduced in chap-
ter 1. To determine the significance of methylation, we resort to Wilcoxon
signed-rank test for the null hypothesis of a symmetric distribution of the
(PM−MM)s from the probes in a window around zero. The alternative
hypothesis is a right-skewed distribution of (PM−MM)s, i.e., PM>MM. A
Wilcoxon signed-rank test returns, besides p-value, a robust estimate for the
PM−MM called pseudomedian [Kampa04], which is the median of the pair-
wise averages of the input values (PM−MM in the present case). In Figure
6.5, we show the p-value along with the pseudomedian of every probe along
the genomic region of Figure 6.3 and Figure 6.4. The plot is reminiscent of
the “volcano” plot showing both fold-changes and p-values from two-color
microarrays in chapter 5. In Figure 6.4 is also shown the pseudomedian es-
timate of the PM−MM in a window of size two hundred one bases. We see
that although PM−MM can swing from positive to negative between probes,
pseudomedians are resilient to variations.

In general, the larger the window size, the more robust the estimation of
the methylation. This is because a wider window contains more PM−MM
measurements, effectively increasing the sample size. Therefore, to enhance
the power of the measurement, we increase the number of replicate arrays.
The PM−MM pairs from all the arrays in the same window then can be
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FIGURE 6.3: The PM and MM probe intensities over a region of chro-
mosome 11 on an ENCODE2 tiling array. The gaps on the left and right
represent repetitive regions and are excluded from the array design. We see
that the probe intensities can change abruptly by many hundred-fold.
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FIGURE 6.4: PM−MM of Figure 6.3 over the region of Figure 6.3. Also
shown is the pseudomedian (in red) of the PM−MM in a window of size
two hundred one bases. It is seen that the pseudomedian estimate of probe
intensity is robust against the outlying probes in a window.
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pooled together for the Wilcoxon test. Alternatively, if there is only one
array available, we cannot but increasing the the window size. A drawback
for wide windows is that sharp methylation boundaries are hard to detect
because a large proportion of measurements are shared between neighboring
windows so that estimate (pseudomedian or p-value) changes only slowly from
one window to the next. In Figure 6.6, we show the Wilcoxon p-values from
window sizes between 101 and 251 bases. We see that the p-value estimates
start to converge for window sizes above 201.

In applications where we compare between the tiling arrays on samples at
two different conditions, we pool the log2(PM−MM) of the probes in a win-
dow from the arrays belonging to each sample group. We then run Wilcoxon
rank-sum test of chapter 1 for the null hypothesis of equal location of the two
distributions of log2(PM−MM). The p-value returned from the test indicates
significance of the difference in the methylation at the center of the probe,
which defines the window. The test is performed from probe to probe, gener-
ating a series of p-values. In Figure 6.7, we show an example of the p-values
for the methylation difference between mono- and bi-allelic expressed cells
from thymus.

6.2.1 Probe score or scan statistic

So far, we have introduced two quantities for a tiling array probe, namely an
estimate for the (difference in) hybridization intensity and the associated test
p-value. The estimation gains robustness and power by borrowing information
from nearby measurements. The situation is similar to the two-color CpG
island microarray probes that have fold-changes and p-values. Question arises
as to the criteria of calling a “hit.” A small p-value usually signifies significant
measurement; the (difference in) intensity may be large or small as long as
it is consistent across the probes in the window. Therefore, we are tempted
to use −log10(p-value) as the score for a probe or scan statistic. Whenever a
probe score is above, say 5, (i.e. p-value < 0.00001), it is designated as a hit.

As was found in a recent large-scale study on cross-platform reproducibil-
ity of gene expression microarrays, hit calling based a threshold fold-change
slightly improves the reproducibility [MAQC06]. To claim a hit in tiling ar-
ray, we would suggest a p-value cutoff together with a threshold on the probe
intensity estimate. A suitable value of the intensity threshold can be readily
obtained by (a) negative control array(s).

6.2.2 False positive rate

There are as many p-values as there are probes in a high-density array. In
conventional gene-centric oligonucleotide arrays, probe intensities in a probe-
set are summarized to represent a gene transcript measurement. P-values in
this context are associated with (differential) gene expression. If we downplay
the regulation of genes in a pathway, the gene expression levels are considered
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FIGURE 6.7: Wilcoxon rank-sum test p-values for the probes in 201-base
windows across the ENm011 region of the ENCODE project. In a window,
the PM − MM probes from the mono-allelic arrays are compared with those
from the bi-allelic arrays using Wilcoxon rank-sum test.
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FIGURE 6.8: FDR-adjusted p-values of Figure 6.7. The regions repre-
sented by the four tallest peaks are identified as the regions that show differ-
ential methylation between the mono- and bi-allelic expressed thymic tissues.
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independent of one another. We then apply multiple testing correction to the
raw p-values in an effort to control the array-wise false positive rate.

The design philosophy of high-density tiling arrays is unbiased in the sense
that no a priori weights are put on regulatory or coding sequences. We may
group probes together to represent a feature, such as a gene, if we know where
and what the feature is. In an exploratory study using tiling arrays, this is out
of the question. Features, such as DNA methylation, can span a region wider
than a probe. We, therefore, know that nearby probes are not independent.
But again, before locating the feature, we are not able to group the related
probes into a probeset-like entity.

The interdependence poses a problem with p-value correction for multiple
testing, which usually assumes independence among the multiple tests. A way
of estimating the false positive hit rate in tiling arrays is to shuffle the probes
and repeat the analysis. By shuffling, say, one thousand times, a landscape
of p-value distributions is obtained. We may then select a value from the null
distributions as cutoff for the p-values from real data. The selected cutoff value
determines the array-wise false positive rate we can tolerate. The shuffling
method is conceptually easy and methodologically amenable to variant null
hypotheses. It is, however, computationally intensive. An popular alternative
for multiple testing correction is by the false discovery rate (FDR) introduced
in section 5.5.2. In Figure 6.8, we also show the FDR corrected p-values.

6.3 Boundaries of methylation regions

One of the major purposes of using unbiased tiling arrays is to locate the
methylation regions in the genome with great resolution. This is approached
by array hybridization with enriched fractions from the methylated DNA im-
munoprecipitation technique (mDIP) in section 2.2.2. The methylation inten-
sity pattern ideally looks like piece-wise steps (or segments) along the chro-
mosome with varying heights from step to step. The points at which heights
change are the locations of the mDIP fraction boundaries on genome.

A model to describe the behavior is by the so-called structural change model
[Huber06],

yi = µS + ǫi for S < i < S + 1 , (6.1)

where yi is the intensity estimate of probe i, µS the height of segment S de-
fined by the change points at probes S and S+1, and ǫi the measurement error
of probe i. The index i runs over the probes, which are within the segment.
Unknown parameters in the model of equation (6.1) including boundaries of
the segments S and segment heights µS can be estimated by minimizing the
sum of squared residuals SSR =

∑

i,S(yi− ȳS)2, with ȳS being the mean of yi

in segment S, by dynamic programming algorithms. Note that as the number
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of segments Smax increases, the sum of squared residuals decreases. Minimum
SSR occurs when the number of segments equals to the number of probes:
Smax = N . A way to tax large Smax is by the Bayesian information crite-
rion (BIC), which subtracts log likelihood of the fit (2πSSR/N)−N/2e−N/2

by a penalty proportional to the number of parameters in the model S log N
[Huber06].

In practice, ideal piece-wise steps in the intensity profile may not be realized.
To run the structural change model of equation (6.1) on tiling array data, we
may need to set the maximum number of segments Smax manually instead
of relying on BIC. Figure 6.9 shows an example of the segmentation using
the structural change model with Smax set heuristically to six. As the figure
shows, sharp edges are located by the model. Without manual bounding,
the BIC finds a Smax = 23, which can be seen as overfitting of the data or
inadequacy of the model.

6.4 Multiscale analysis by wavelets

DNA methylation can be corroborated or induced by a single proximal
methylated CpG dinucleotide via the action of maintenance and de novo DNA
methyltransferases. Genomes thus exhibit patterns of contiguous DNA methy-
lation. Correlational relations of DNA methylation with histone modifications
help better understand the integrated regulation of chromatin accessibility in
the nucleus. Because of the epigenetic modifications over extended regions
of a chromosome, hybridization signals at some scale, e.g., 1 kb, may reveal
better correlation than at others.

Discrete wavelet analysis [Percival00] is a powerful method of decomposing a
signal y into a smooth part sJ plus a sum of details dj at successive resolutions
js,

y = sJ +

J
∑

j=1

dj , (6.2)

where 2J ≤ N , N being the number of data points in y. The detailed com-
ponent dj in equation (6.2) captures the changes in y on scales between 2j

and 2j+1 units underlying y. Missing data values in y, which is assumed to
contain evenly spaced data points, can be added by linear interpolation. The
top panel of Figure 6.10 illustrates a decomposition of a one-dimensional im-
age with four pixels (9,7,3,5), the underlying units in which are one pixel.
The function in d1 in the figure is called Haar wavelet, which is dilated in d2

and translated in d1. The wavelet coefficients (2,1,-1) measure the degrees
of “match” between the original signal and the dilated and shifted wavelets
at the corresponding scale and translation. The bottom panel of Figure 6.10
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FIGURE 6.9: Segmentation of the methylation regions by the struc-
tural change model of equation (6.1) on the pseudomedian estimates of the
PM−MM probe intensities of Figure 6.5. The parentheses on the x-axis indi-
cate uncertainty in the boundary identification.
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shows a similar decomposition of the intensities of hybridization of enriched
fragments to a tiling array.

If we can regard the details as noise (this is the reason why we choose
the wiggly Haar wavelet), the signal can be readily denoised by subtracting
the details from the signal. The denoised signal sJ , therefore, smooths the
fluctuations with period shorter than 2J+1 units. The smooth curve s5 in the
bottom panel of Figure 6.10 shows such a denoising of DNA methylation by
wavelet analysis. We may perform the denoising up to different scales. Figure
6.11 shows the heatmap of sJ of the hybridization data of Figure 6.10 for J
equal to 0, 1, 2, ..., 9. A suitable scale then can be chosen for subsequent
analysis, such as array comparison. Note that biology also has a word on the
suitable genomic scales. If statistical properties of the methylation profiles at
many different scales are the same, the system is self-similar. Self-similarity
may provide clues to the mechanical mechanisms behind DNA methylation.

6.5 Unsupervised segmentation by hidden Markov model

The wavelet-based multiscale analysis of tiling array data determines a scale
and also smooths the data. We then are prompted with the question of
whether the genomic region is “on” or “off.” A simple thresholding on the
smoothed intensities may determine the state of the genomic region, but the
choice of a threshold value is subjective. The on or off hidden state at a region
is to be inferred from the measured hybridization intensity at the same region.
Suppose the probability of observing a methylation intensity when the state
is on (or off) is known and can be described by a, say, Gaussian with mean
and standard deviation. These probabilities are called emission probability.
Suppose the state at region i depends only on that at region i − 1. This
property is called Markovian [Rabiner89]. Suppose the probability that a
state at i is on (or off) given that the state at i − 1 is on (or off) is known.
These probabilities are called transition probability. With the emission and
transition probabilities, the hidden state at regions i, i = 1, 2, ..., N , can be
found from the observed methylation intensities at the same N regions by the
Viterbi algorithm. That being said, we first have to estimate the parameters
of the hidden Markov model including the emission, transition, and marginal
probability of the state at the first region. The task is accomplished by the
Baum-Welch algorithm, which successively alternates between estimation for
the data likelihood given a trial set of parameters and maximization of the
data likelihood by adjusting the parameter values until convergence in the
parameter values. Figure 6.12 shows such a segmentation of the methylation
intensities over the ENCODE ENm011 region, after wavelet smoothing, by
the hidden Markov model.
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bottom is the probe intensities in the selected region of Figure 6.9.
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FIGURE 6.12: Categorization of the wavelet-smoothed methylation in-
tensities s10 (black line) into binary states (green shade). Data, consisting of
53, 953 probe measurements, are from the tiling array of Figure 6.9.
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6.6 Principal component analysis and biplot

As researchers have little idea of what to expect from a genome-wide profil-
ing using high-density tiling arrays, it is wise to first explore the new territory
with only a handful of tiling arrays. The other reason for the frugality is the
array cost although it is continuously slipping. We, therefore, imagine that
samples of different nature are hybridized to only a dozen tiling arrays without
technical replication. The samples can be from different tissues of the same
or different individuals at various disease status using different enrichment
strategies, ..., and so on. The plan is to learn as much as possible from the
pilot study with limited numbers of tiling arrays.

If each sample comes from a different condition in such type of exploratory
studies, the number of factors (or variables) approaches that of tiling arrays,
presenting a challenge for statisticians. We introduce a multivariate analysis
called principal component analysis (PCA) that is suited to the current task.

An ENCODE2 tiling array has 2.3 million probe pairs, each of which can
be thought of as an observation of the sample that was hybridized to it. It
would be of extreme use to learn both the difference between the probes and
that between the samples. Suppose there are twelve samples on twelve arrays.
Twelve samples give twelve numbers for each probe, in other words creating
a twelve-dimensional space for each probe. Differences in probe responses can
be seen from the relative positions of the probes in the twelve-dimensional
space. The difficulty arises as to visualizing the probes in a space whose
dimensions are larger than three.

The twelve dimensions might not be all independent. For example, samples
one, two and three may have come from the same tissue while others from
various tissues. The probe readings from samples one, two and three thus
are more correlated than any other trios. If we somehow combine the corre-
lated samples and use the merged one as a replacement for the three original
samples, we effectively reduce the dimensions from twelve to ten. PCA works
out the combination, reducing the high dimensions to usually two for the
sake of two-dimensional graphical presentation. Each of the two dimensions,
called first and second principal components, incorporates probe responses
from the samples, with the first principal component captures the majority
of the variation in the samples and the second principal component, indepen-
dent of the first component, the second majority. Points close together in the
two-dimensional principal component space indicate similarity in the probe
responses among the twelve samples.

On the other hand, since samples one, two and three give similar responses
to the observation, their contributions to the formation of the two principal
components must be similar. If we take a sample’s proportional contribu-
tions to a component as a coordinate, we get a point on the two-dimensional
principal component space for each sample. We draw a line linking the point
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and the origin. Then the three lines representing samples one, two and three
must subtend small acute angles because of their similar contributions to the
principal components.

It is convenient to present the two types of relations (i.e., probe–probe and
sample–sample relations) on a single two-dimensional plot [Zhang07]. The
result is called biplot of PCA. Figure 6.13 shows such an example. From the
lines in the biplot, we see that the samples can be grouped into three clusters
corresponding to three tissue types. In addition, for those points that are along
a group of lines of, say, spleen tissue, we can say that the methylation status
at the genomic positions of those probes represent the epigenetic (i.e., DNA
methylation) markers of spleen. A PCA biplot analysis, therefore, uncovers
probe–probe, sample–sample and probe–sample relations.
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FIGURE 6.13: Biplot of principal component analysis result. Black dots
indicate probes (or observations) and red arrows indicate samples. Dots close
together mean their responses are similar across the samples. Arrows close
together mean the samples are correlated. Dots along an arrow, if any, can
be thought of as the DNA methylation markers of the sample.





Chapter 7

Cluster Analysis

As the number of CGI (CpG island) loci in a high throughput microarray goes
up, the methylation in previously unexplored and unannotated genomic re-
gions is measured. One way to characterize the unannotated CpG islands is to
associate them with the annotated CpG islands in the microarray. The func-
tion of the unannotated CGIs and the downstream genes can be implicated
from that of the associated annotated CGIs. The association is accomplished
by clustering, which is the topic of this chapter.

When associating loci with other loci, as in the example above, we talk
about clustering on loci. On the other hand, occasions arise when we asso-
ciate biological samples. For example, the methylation of colon cancer cells is
profiled and we are associating arrays into clusters. Different clusters of arrays
may reflect cancer at different stages of progression. In this application, we
refer to clustering on samples. The clustering algorithms in this chapter are
applicable to either application.

We first introduce principal component analysis, which is useful for graph-
ical presentation of high dimensional data on two dimensions. Clustering is
considered an exploratory analysis, which generates rather than proves hy-
potheses. In particular, different clustering algorithms yield different clus-
tering results. If we understand the various premises and (dis)advantages of
different clustering algorithms, we can better choose the algorithm that is ap-
propriate for the application. We introduce procedures to assess the quality,
significance and reproducibility of clusters.

7.1 Measure of dissimilarity

Before clustering, we need to decide a metric of dissimilarity between two
objects (loci, genes or samples). The most commonly used dissimilarity mea-
sure in cluster analysis is Euclidean distance, d12,

d12 =

√

√

√

√

p
∑

i=1

(x1i − x2i)2 , (7.1)

129
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where x1i is the methylation level (log intensity for single-color oligonucleotide
arrays or log ratio for two-color DNA microarrays) of locus 1 at condition (or
sample) i and there are p conditions in the experiment. When exploring
microarray data with clustering, we are generally interested in the shape of
the methylation profile, but not in the actual magnitude of the methylation
levels. For example, loci that show similar methylation across conditions
are considered closely related to each other irrespective of whether the ratios
between them are 1.2 or 2.0. The problem with Euclidean distance equation
(7.1) is that its values depends on the shape as well as magnitude of the profile.
One remedy is to set the methylation mean to zero and standard deviation to
one by the following standardization before clustering,

x1i ←
x1i − µ1

σ1

, (7.2)

where µ1 and σ1 are the mean and standard deviation of the methylation of
locus 1 across conditions.

The other common dissimilarity measure is 1 minus Pearson correlation co-
efficient. Pearson coefficient measures the strength and direction of a linear
relationship (i.e., correlation) between two sets of data points. Pearson coef-
ficient is independent of the magnitude. Also it can be shown that 1 minus
Pearson correlation coefficient is proportional to squared Euclidean distance
on standardized datasets. After standardization, results of clustering using 1
minus Pearson correlation are equivalent to those using Euclidean distance.

7.2 Dimensionality reduction

Thousands of probe sequences reside on a typical microarray. On the other
hand, up to a hundred or so samples can be hybridized in a single microarray
experiment. We take as an example a time course experiment where samples
after radioactive exposure are measured at five different time points by CpG
island microarrays, each of which contains 13,056 spots. Figure 7.1 shows
the log methylation ratios over time. In the figure, a row represents a locus
and a column represents a microarray. The color is applied in such a way
that the lighter (darker) the color, the larger (smaller) the log ratio. In the
case of missing data, nothing is painted, leaving a blank (i.e., white) cell.
Missing data points can occur when background intensities are larger than
foreground intensities, giving rise to unacceptable negative intensities. Now,
suppose the goal is to find methylation patterns that are characteristic to
different classes of samples. Plots like Figure 7.1 give us few clues as a sample
is represented by an overwhelming number (i.e., 13,056) of attributes. On
the other hand, if the aim is to find characteristic profiles across different
experimental conditions (or phenotypes), the large number of conditions can
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FIGURE 7.1: Heatmap of a time-series DNA methylation data. Different
rows are for the different probes on the microarray and columns are at different
time points in minutes since radiation treatment.

slow down or even prohibit convergence of our estimate of the profiles to the
true profiles.

Microarray data are conveniently stored in a matrix where rows record loci
and columns conditions (cf. Figure 7.1). If the number of loci is n and the
number of conditions is p, the dimension of the matrix is n × p. For the
purpose of visualizing clusters, we would like to have a way of projecting
the n p-dimensional vectors (or p n-dimensional vectors) into a two or three
dimensional space.

A solution to the curse of dimensionality is to find a lower dimensional space
in which minimum error due to the projection is produced while maximum
variability in the data is preserved. A most commonly used technique for
dimension reduction is principal component analysis (PCA), which is also
known in linear algebra as Karhunen-Loève transformation. Imagine the log
intensities or log ratios of the ith sample are stored in a column vector ~ai =
(ai1, ai2, · · · , ain)T , where n is the number of spots on the microarray slide
and superscript T stands for matrix transpose. We average samples to get
~̄a = (1/p)

∑p
i=1

~ai, where p is the number of samples (or phenotypes) in the
experiment. We then subtract ~̄a from individual samples to get ~a′

i = ~ai − ~̄a
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FIGURE 7.2: Data in the first three principal component space.

and form the n× n sample covariance matrix Σ by,

Σ = 1

n−1



~a′
1 ~a′

2 · · ~a′
p







~a′
1 ~a′

2 · · ~a′
p





T

= 1

n−1
AAT .

(7.3)

The components ~u’s are constructed by solving for the eigenvalues and eigen-
vectors of the covariance matrix Σ,

(Σ− λiI)~ui = 0, i = 1, 2, · · · , n . (7.4)

Here “eigen” originates from German, meaning “of itself”. The important
properties of the eigen-space of Σ are that the ~u’s form a complete set of
orthogonal bases and that λi is the variation in direction ~ui. The ratio
λi/

∑n
i=1

λi thus gives us the proportion of variation in direction ~ui. We
order the eigenvalues so that λ1 > λ2 > · · · > λn and call the first few corre-
sponding eigenvectors principal components. (Note that if the dimension of
AAT is daunting, we can instead first find the eigenvectors ~vi’s of AT A. ~ui

can then be obtained by A~vi with the same corresponding eigenvalue.) Figure
7.2 shows an example of dimension reduction where the methylation at one
hundred twenty-four cytosines of a sample is represented by the first three
principal components of the one hundred twenty-four methylation measure-
ments.

Besides algebra, biology can help us in the problem with dimension reduc-
tion. Although methylation (or expression) levels are profiled on a genomic
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scale, only a fraction of the loci (genes) are expected to hypo- or hypermethy-
late (under- or over-express) in the context of the experiment. The majority
of the loci (genes) are intact; their methylation (expression) levels relative to
the controls remain fixed and close to 1 across different conditions such as time
points throughout out the experiment. Data normalization relies heavily on
the same assumption. Therefore, we can calculate the variance of the methy-
lation (expression) levels, i.e., log intensities for single-channel oligonucleotide
chips or log ratios for dual-channel microarrays in a reference design, across
conditions. We rank the loci (genes) according to their variances and pick up,
say, the top 5 percent loci (genes) from the ranked list. The dimension is in
this way reduced by a factor of twenty. In addition to variance, we can also
include covariance in the ranking. This amounts to ranking according to the
row sum of the covariance matrix Σ of equation (7.3).

7.3 Hierarchical clustering

Hierarchical clustering results in loci (or samples) ordered in a tree-like
structure called dendrogram [Kaufman90]. The structure appeals to biolo-
gists by providing a view of the relatedness of loci within and between clusters
[Eisen98]. There are two approaches to hierarchical clustering. Agglomerative
hierarchical clustering works bottom-up, while divisive hierarchical clustering
works top-down. Because the algorithm of hierarchical clustering is determin-
istic and sensitive to outliers, agglomerative (divisive) hierarchical clustering
generates clusters that are more accurate in the bottom (top) levels. Depend-
ing on the interest of the biologist, she, therefore, should choose the approach
that best suits her needs.

7.3.1 Bottom-up approach

In the beginning of an agglomerative hierarchical clustering, every locus
is a cluster. The algorithm then finds and merges the two clusters whose
distance is shortest. The centroid of the clusters that were just merged is
calculated and to be used in between-cluster distance calculation later. The
agglomerating process continues until all loci are merged into a final cluster.
Variants of the algorithm exist as to how to define and calculate the between-
cluster distance. For example, we pair one member from one cluster with a
member from the other cluster. The pair-wise distance is then calculated.
The distance between the two clusters is then defined as the largest pair-wise
distance. This is called complete-linkage hierarchical clustering.

Figure 7.3 shows the agglomerative hierarchical clustering on the top twenty
variable loci from the time course experiment of Figure 7.1. The scale on the
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FIGURE 7.3: Agglomerative hierarchical clustering on the top twenty vari-
able loci of the data in Figure 7.1. The height of the shoulder measures the
Euclidean distance between the clusters.

left of the tree measures the distance values. Looking at the height of the
shoulder of the bifurcation, we see that locus 7 and locus 11 are closest to
each other. They thus were merged in the first iteration of the algorithm.
The merged loci formed a cluster that was merged with locus 4 later in the
algorithm. Likewise, locus 12 and locus 19 were merged in the second iteration
and loci 5 and 13 in the third iteration. The merging proceeded until it
reached the top of the tree. If the methylation measurement of loci 5 and/or
13 was noisy by chance, the noise went into the centroid of their cluster. Noise
accumulated along the way, deteriorating the clustering toward the top of the
tree. Care has to be taken in interpreting results of hierarchical clustering.

How many clusters there are is a tough question to many clustering algo-
rithms. In hierarchical clustering, the answer can be relegated to biologists.
If, based on prior knowledge, we believe there are only two clusters, we cut
the tree at the appropriate level to get two subtrees. If on the other hand, we
opt for a three-cluster solution, we cut the tree at a bit lower level to get three
independent subtrees. The cutting procedure is shown in Figure 7.4. (More
about where to cut the tree will be provided later.) Note that clusters are
nested in the dendrogram; clusters reside within a cluster. Also noted is the
fact that two loci are next to each other in the tree does not necessary mean
they are similar. For example, locus 4 and locus 13 in Figure 7.3 are right
next to each other. But they belong to two big clusters the distance between
which is as large as 5.
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FIGURE 7.4: Cutting of the dendrogram at different levels, giving rise to
different numbers of clusters. The red horizontal line at 4.5 in the top panel
cuts the tree into two subtrees, the loci within each of which belong to a
cluster. When we lower the cut, more clusters are generated, as indicated by
the labels.
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FIGURE 7.5: Result of divisive hierarchical clustering. The input data
are the same as Figure 7.3

7.3.2 Top-down approach

Divisive hierarchical clustering works the opposite way. All loci are assigned
to a single cluster to begin with. The locus that has the largest average pair-
wise distance to the other loci is picked up and split from the original cluster,
forming a new cluster. Loci that are closer to this new cluster than the old
cluster change their association to join the new one. This divides the cluster
into two clusters. The procedure stops when every locus is itself a cluster. We
show in Figure 7.5 the result of divisive hierarchical clustering on the same
twenty loci as those in Figure 7.3. Figure 7.6 displays clusters resulting from
different cuts on the divisive tree.

Comparing Figure 7.3 and Figure 7.5, we see that the agreement between
the two approaches is not bad. In particular, memberships of some of the
clusters are identical. Because the algorithm starts from the top levels of the
tree, the divisive approach in principal better captures the gross structure of
the tree. If the biologist has no presumption about the number of clusters,
the number of steep stems may give us clues. Long stems correspond to large
differences in cluster distances. So, for example, in Figure 7.5, we may be
tempted to cut the tree at the height of 3, giving rise to five clusters. Figure
7.7 shows the clustering on both loci and time points with the results arranged
in a heatmap where different methylation levels are represented by colors.
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FIGURE 7.6: Results of different cutting of the Figure 7.5 tree displayed on
its two-dimensional principal component space. Loci in a cluster are enclosed
in a loop.
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FIGURE 7.7: Heatmap of the top one hundred variable methylation loci
over the five time points. Also shown are the hierarchical clustering on both
loci and conditions (i.e., time-points). Note that the order of the time points
and loci are rearranged according to the clustering results. With the cluster-
ing, we do see patterns of methylation in the two-dimensional space.
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7.4 K-means clustering

K-means is another most widely used clustering technique. In the method,
the number of clusters, K, is an input number specified by the user. The
method then tries to minimize the sum of squared distances of loci g from the
centroids C̄i(g) of the clusters that they belong to,

arg min
{Ci}

D̄({Ci}) = arg min
{Ci}

1

n

K
∑

i=1

∑

g∈Ci

|g − C̄i(g)|2 . (7.5)

The algorithm starts from K randomly selected cluster center locations. Every
locus finds its distances to the K centers and associates itself to the nearest
cluster. After the associations, the cluster center locations are updated. The
processes of locus association and center updating alternate and repeat until
the center locations change no more. The algorithm is not deterministic in
that different initiating centers can yield different results. Therefore, the
algorithm is usually run several times with random initialization. The result
that gives the smallest sum of squared distances is taken as the final. The other
option is to initialize K-means with the partition result from a hierarchical
clustering. Figure 7.8 shows the K-means clustering on the same top twenty
loci as in the previous hierarchical clustering examples.

The number of clusters has to be given to run a K-means, which poses no
difficulty if we know the number in advance. In many situations, however,
we do not know it. If we increase the number of clusters, the sum of squared
distances, equation (7.5), decreases. When the number of clusters reaches the
maximum equal to the number of loci, the sum goes down to zero as each
locus sits on its center. We need to stop increasing K at some point. A
principled approach is Bayesian information criterion (BIC), which amounts
to maximizing the probability P (K, {Ci}|{~g}) of model (K and {Ci} in our
case) given DNA methylation data ({~g}),

BIC = arg max
K,{Ci}

log(P (K, {Ci}|{~g}))

≃ arg max
K,{Ci}

log(P ({~g}|K, {Ci}))−
K · p

2
· log n

= −n
2

arg min
K,{Ci}

log(D̄(K, {Ci}))−
K · p

2
· log n + const .

(7.6)

The higher the BIC score, the better the model. The first term on the right-
hand side of equation (7.6) is, apart from a scale factor, the log of the least
mean squared distances of equation (7.5). The second term is a penalty be-
cause of the minus sign. It is proportional to K · p, which equals the number
of parameters (i.e., the coordinates of cluster center locations) in the model.
In other words, BIC finds a parsimonious model that best fits the data. Note
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FIGURE 7.8: Results of K-means clustering, on the same twenty top vari-
able loci as those in Figure 7.5 and Figure 7.6, with different input K. Different
clusters are labeled with different symbols and enclosed in different loops.
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that the role of n and p can change depending on what we are clustering on.
If we cluster on samples, in equation (7.6), n is the number of samples and p
the number of loci on the microarray.

In Figure 7.9, we plot the BIC scores versus K. The gain in the data
likelihood (i.e., the first term of the BIC) as K increases does not overcome
the penalty. It, therefore, suggests that K = 2 is a better choice for the
number of clusters in clustering the twenty most variable loci in the time
course experiment. K-means clustering tends to find clusters of loci that
spherically distribute with equal volume in the high (p- or n- depending on
what we are clustering on) dimensional space. This is due to the property
of the objective function that the algorithm tries to optimize: The weights
to the within-cluster sums of squared distances are the same for different
clusters. As we can imagine that loci in a biological pathway may be more
tightly regulated than loci in the other pathway, a clustering method, such as
the model-based clustering algorithm to be described below, that makes the
allowance is desirable.

7.5 Model-based clustering

DNA methylation is correlated with transcriptional silencing. Loci that
show similar methylation profiles across conditions may regulate the expres-
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sion of genes of similar functions. Co-methylation thus can result from co-
regulation in an epigenetic regulatory network. The expression level of a gene
in the upper hierarchy of a biological network can be critical in initiating
the expression of downstream genes. The expression level of a gene could be
stringent at one stage and less so at the other stages of development. Or, the
gene expression levels of one cluster can have more leeway than those of the
other clusters. Methylation profiles with unequal variances between condi-
tions thus can be envisioned. Moreover, a promoter, when collaborating with
other promoters, can be involved in different genome activities.

The biological picture suggests that the methylation (or expression) pro-
files of different clusters of loci (genes) should be distributed with varying
orientations, shapes and volumes in the high (e.g., # of time points in a time
course experiment) dimensional space. Instead of weighting clusters equally,
model-based clustering accommodates unequal weights between clusters in
equation (7.5). The result is a spherical distribution of methylation profiles
with unequal volume in the high-dimensional space. If we allow common un-
equal weighting of profiles within each cluster, the distribution is elliptical
with equal volume, shape and orientation between clusters. The most uncon-
strained model is unequal weights between and within clusters. Model-based
clustering achieves the parametrization of weights via the covariance matrix
of a mixture of multivariate Gaussian distributions. Furthermore, the likeli-
hood of the mixture model is taken as the joint probability of a locus (gene)
belonging to a certain cluster.

The more general a model is, the more parameters it needs. The number of
data points naturally places a cap on the complexity of the model that can be
built. In analogy to equation (7.6) for K-means, the model-based approach
to clustering employs Bayesian information criterion on the issue of model
selection. Figure 7.10 shows the clustering of the twenty loci in the radiation
time course experiment by the model-based method. The result returns a best
model that has five spherical clusters with unequal volume.

7.6 Quality of clustering

Clustering purports to maximize intracluster cohesion and intercluster sep-
aration. However, whatever data are given, clustering algorithms return clus-
ters. Clustering thus is more a hypothesis generating than a hypothesis testing
tool in microarray data analysis. It is desirable that we have a measure of
quality for the overall clustering result as well as for each returned cluster.
Suppose that locus i belongs to cluster C, we describe the so-called silhouette
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FIGURE 7.10: Different clustering results from different clustering algo-
rithms.
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width Si that quantifies the clustering quality of locus i,

Si =
bi − ai

max (bi, ai)
, (7.7)

where ai is the average distance of locus i to all the other loci in cluster
C, and bi is the smallest of the distances between locus i and all the loci
that do not belong to cluster C. Possible values of the silhouette width are
within the range: −1 < Si < 1. Note that the smaller the ai, the tighter is
locus i to the cluster. As ai approaches zero, Si approaches the maximum 1,
indicating good clustering of locus i. The smaller the bi, the closer is locus i
to its neighboring cluster. As bi approaches zero, Si approaches the minimum
-1, suggesting wrong association of locus i with cluster C. After calculating
the silhouette width of each locus, we can form the silhouette width of a
cluster by averaging the silhouette widths of the loci belonging to the same
cluster. Likewise, we can find an overall silhouette width of the clustering
by forming the average of all the silhouette widths. Figure 7.11 displays the
silhouette widths of individual loci by divisive hierarchical clustering with
different subtree cutting.

7.7 Statistically significance of clusters

Silhouette width serves as a quantitative measure for cluster quality. More
often we want to assess the statistical significance of a cluster. We describe a
procedure to estimate the p-value of a cluster by going through the ritual of
statistical hypothesis test, which involves the following three steps: (1) define
a test statistic for cluster homogeneity, (2) formulate the null hypothesis and
null distribution, and (3) obtain the p-value of the cluster.

The average distance of pairs of loci in a cluster is easy to calculate and
thus serves as an appropriate statistic for the test of homogeneity of loci in the
cluster. The null hypothesis of the test then states that the average distance
is zero. The null distribution that corresponds to the null hypothesis can be
defined by setting to zero the mean methylation of every locus in the cluster
while preserving the covariance structure of the DNA methylation data. We
then calculate the statistic from a resample of the null distribution. After,
say, a thousand resamplings, we get a distribution of a thousand average
distances. The one-tailed p-value of the cluster, whose average distance is
denoted by d, can be obtained by dividing by one thousand the number of
times the average distances from the resampled null distributions exceeds the
true average distance d.

The procedure outlined above applies to clustering on loci. When the clus-
tering is on samples, we notice that the mean zeroing step in getting the null
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FIGURE 7.11: Quality of clusters by their silhouette widths.
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distribution does not work because the distribution of DNA methylation is
already centered by normalization (cf. chapter 4). Fortunately, we seldom
use all the loci on the microarray in clustering. Instead, we select loci which
show great variability across samples/conditions. (If we could select the loci
by, say, two-sample t-test, meaning that we have already known the classes of
the samples, we would not be doing the clustering.)

The above procedure estimates the p-values of individual clusters. A clus-
tering yields multiple clusters. We can adjust the p-values for multiple testing
by either Bonferroni or false discovery rate methods discussed in section 5.5.

7.8 Reproducibility of clusters

An issue that is closely related to significance is reproducibility (or stability)
of clustering results. DNA methylation and gene expression is a stochastic
process. Measurement of methylation or expression levels is further corrupted
by noise. Loci are grouped together in a cluster by a clustering algorithm
using mean methylation levels. Because of the uncertainty in the mean, how
often will the same loci be found grouped together?

We utilize simulation to address the issue. In linear model analysis of
DNA methylation or gene expression data, mean methylation or expression
levels (i.e., log intensities or log ratios) are represented by fitted coefficients.
Uncertainties (i.e., errors) in the coefficients are returned as the mean sum
of residuals. We then can generate an artificial dataset by adding, to each
coefficient, a resample of the error. We filter loci by picking out the, say, the
top one hundred variable loci. We then apply the clustering algorithm to the
simulated methylation of the selected loci, and obtain a clustering result. We
repeat the resampling, filtering and clustering, say, one thousand times. We
then count the numbers of times pairs of loci are in the same cluster among
the one thousand clustering results. Finally, we report clustering result at a,
say, 95 percent reproducibility with the loci that co-appear over 95 percent of
the time in the clusters.

7.9 Repeated measurements

We have so far assumed that mean values of replicated data points are
used for distance calculations in clustering algorithms. The use of mean
values is straightforward and applicable to most clustering algorithms. It,
however, does not take full advantage of information from repeated measure-
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ments, which provide not only mean values, but also standard deviations of
the means.

An approach to improve the reproducibility of clustering using repeated
measurements is to down-weight noisy data during distance calculations,

d12 =

√

√

√

√

p
∑

i=1

(x̄1i − x̄2i)2

σ2
1i + σ2

2i

, (7.8)

where x̄1i is the mean methylation level (log intensity or log ratio) of locus 1 at
condition (e.g., phenotype) i: x̄1i = (1/r)

∑r
j=1

x1ij , and σ1i is the standard
deviation of x1ij over the j = 1, 2, · · · , r repeated measurements of samples.
If samples are to be clustered and r spots are replicated on the microarray,
d12 is the distance between samples 1 and 2, the summation is over the p
selected loci, and the means and standard deviations are over the replicated
spots on the microarray. If the replicate measurements on sample i is noisy,
i.e., σ2

1i + σ2
2i is large, the contribution of sample i to d12, among the total of

p samples, is diminished according to equation (7.8).





Chapter 8

Statistical Classification

One of the major applications of DNA methylation microarrays is to identify
epigenetic markers for disease diagnosis. Other applications include classifying
diseased samples into distinct subtypes. Classification algorithms are widely
used for pattern recognition, which is one of the main subjects in machine
learning. A familiar example is to build a spam filter that classifies incoming
e-mails into spam and nonspam.

High-density microarrays measure the methylation at CGI (CpG island)
locations across entire genome. Not all of the locations are informative in
classification as not all the words in an e-mail are useful in discriminating the
e-mail. The first step in building a classifier thus is to select the informative
loci. The step is critical as we select discriminatory keywords in successfully
filtering e-mails.

The building of a classifier relies on a training dataset in which the disease
status of every sample is known. Parameters of the classifier are then tuned
in order to minimize the classification error. It is usually found that simple
classifiers perform well in comparison to sophisticated ones. We introduce
two simple classifiers and also illustrate the performance of a classifier by the
technique of receiver-operating-characteristic curves.

8.1 Feature selection

Classification is not new. It is used in tasks such as document categorization
and face recognition. DNA sample classification with microarray data is, how-
ever, of particular challenge because of the problems with small sample size
and noise that are inherent in microarray experiments. A large-scale microar-
ray experiment can involve up to hundreds of sample-array hybridizations. A
typical microarray, however, features tens of thousands of spots on a single
slide. In DNA methylation, it is know that hypermethylation of the CpG is-
lands in or around the promoters of tumor suppressor genes is associated with
cancers. Silencing of different tumor suppressor genes in different tissues may
lead to different cancers. In gene expression, it is estimated that only about
40 percent of the genes are expressed in a cell at a particular instance of time.
Many of them are so-called housekeeping genes that are constantly expressed
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in order to maintain the basic operation of the cell. We, therefore, can say that
most of the data points (log intensities or log ratios) are uninformative and
uninteresting because of their irrelevance to phenotype discrimination. The
uninteresting loci show no differential methylation/expression across samples.
If the uninteresting loci are not removed from the analysis, not only do they
aggravate computational load, but they may contribute to misclassification
due to measurement error.

Biological knowledge helps in selecting loci for classifier building. For ex-
ample, if we know a priori the sequences that code for the proteins (e.g.,
tumor suppressors) in the biological machinery (i.e., expression silencing dur-
ing carcinogenesis) that characterizes the biological (cancerous) samples in
the microarray experiment, we should include the promoters in the learn-
ing set of the classification. Unfortunately, oftentimes, we do not have the
knowledge, which explains why we launch genomic-wide measurements using
microarrays for clues. Chapter 5 and chapter 6 serve the purpose and describe
methods to identify interesting loci. Specifically, t- and F -tests and their non-
parametric counterparts, Wilcoxon tests, are introduced to rank differentially
methylated loci across conditions in terms of their statistical significance. In
the same spirit, we can try to rank loci according to the signal-to-noise ratio,
SNR,

SNR =
|µ̂1 − µ̂2|
σ̂1 + σ̂2

, (8.1)

where µ̂i and σ̂i are, respectively, the sample mean and sample standard
deviation of the methylation in class i.

After ranking by a test-statistic, we need to decide how many loci to be
included in the training set for classifier building. It is believed that the num-
ber of samples per class should ideally be five to ten times the number of loci
per class in developing a classifier. Since the number of samples per class can
be up to around one hundred, we are forced to select about ten or less loci
per class for classification. In Figure 8.1, we show the selected features on
a PCA (principal component analysis) biplot. In the example, the methyla-
tion at one hundred twenty-four CpG-dinucleotide sites in the promoters of
eleven genes were measured from thirty-four brains, out of which twenty-four
were Alzheimer’s disease patients. The five roughly equally spaced blue ar-
rows in the plot indicate that they work independently and synergistically to
represent the thirty-four samples. The five sites were among the top loci by
site-wise two-sample t-tests. The other one hundred nineteen CpG sites are
not informative and need not be included in classification.

Loci (genes) selected according to the rank may end up coming from the
same group of loci (genes) that are co-methylated (co-regulated) by a DNA
methyltransferase (transcription factor). Because we want to include as many
decorrelated loci as possible for the purpose of class discrimination, we can
first cluster loci and then select the few top ranking loci from each cluster in
the hope that a diverse army of loci are selected to represent a class. Chapter
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7 covers several popular clustering algorithms.

8.2 Discriminant function

Classification is a statistical decision theory problem and Bayes statistics
is convenient in tackling the issue [Berger85]. Suppose p(k, x) is the joint
probability of class k and data x and that p(x) is the probability of data
x = (x1, x2, · · · , xn) where xi is the methylation (or expression) at locus i and
n is the number of informative loci selected for the classification study. Then
the conditional probability p(k|x) = p(k, x)/p(x) is the probability of class k
given the data x. By the equality p(k, x) = p(k|x) p(x) = p(x|k) p(k), Bayes
theorem states that, p(k|x) = p(x|k) p(k)/p(x). Because p(x) is fixed given
the observation of x, it serves as a normalization constant to the probability.
We can write the Bayes theorem as,

p(k|x) =
p(x|k) p(k)

∑K
l=1

p(x|l) p(l)
∝ p(x|k) p(k) , (8.2)

where there are K different classes in the samples. p(k|x) is also called class
posterior probability because we calculate it after data are taken. Similarly,
p(k) is called class prior because we somehow know it before observing the
data. p(x|k), class-conditional probability, is the density of x in class k.
With the Bayes rule that minimizes misclassification, classification of data
x amounts to finding the class k that is maximal among the (log) posterior
probabilities,

C(x) = arg max
k

p(k|x)

= arg max
k

p(x|k) p(k)

= arg max
k

log(p(x|k) p(k)) .

(8.3)

With the statistical skeleton, different assumptions about the distribution of
data points in the class, i.e., different parametrizations of the class-conditional
density p(x|k), lead to variants of classifiers. For example, a general form
of the class-conditional density is the multivariate Gaussian, thanks to the
central limit theorem,

p(x|k) =
1

(2π)n/2|Σk|1/2
exp

(

− 1

2
(x− µk)T Σ−1

k (x− µk)
)

, (8.4)

where µk is the mean vector and Σk the covariance matrix of the methylation
(expression) of the loci (genes) in class k. Now we collect the methylation
data from samples with known class labels (e.g., various cancers) to form
the so-called training set (uninformative loci are thrown out according to the
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previous section). We then estimate the class mean µk and class covariance
Σk from the data in the training set, x′, by,

µk ← µ̂k = 1

Nk

∑

i∈k x′
i

Σk ← Σ̂k = 1

Nk−1

∑

i∈k(x′
i − µ̂k)(x′

i − µ̂k)T ,
(8.5)

where the summation is over the samples in class k and Nk is the number
of samples in that class. The class prior p(k) can be estimated from the
proportion of cases in class k among all the N samples,

p(k) =
Nk

N
. (8.6)

With the estimation for the prior (8.6) and the distributional assumption (8.4)
with parameter estimates (8.5) from the training samples, the class member-
ship of new methylation (expression) data x is predicted by the discriminant
function (8.3),

Ĉ(x) = arg max
k

[

− 1

2
log |Σ̂k| −

1

2
(x− µ̂k)T Σ̂−1

k (x − µ̂k) + log Nk

]

, (8.7)

where terms independent of k have been dropped. The hat on C(x) empha-
sizes the fact that the prediction is based on quantities estimated from the
samples in the training set. The major term, i.e., the second term, on the
right-hand side of equation (8.7) is the (squared) Mahalanobis distance be-
tween the two vectors x and µ̂k. An intuitive interpretation of the discriminant
function (8.7) then states that the predicted class of x is the class whose esti-
mated class mean vector µ̂k is, under an appropriate distance metric, closest
to x.

8.2.1 Linear discriminant analysis

We make the simplifying assumption that the covariance matrices are the
same for samples of different classes: Σk = Σ. We also estimate Σ from the
covariance matrix of all samples,

Σk ← Σ← Σ̂ =
1

N −K

K
∑

k=1

∑

i∈k

(x′
i − µ̂k)(x′

i − µ̂k)T . (8.8)

Plugging it into equation (8.7) and again ignoring terms that have nothing to
do with k, we find that the discriminant function becomes

Ĉ(x) = arg max
k

[

xT Σ̂−1µ̂k −
1

2
µ̂T

k Σ̂−1µ̂k + log Nk

]

= arg max
k

δk(x) .

(8.9)
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Note that the general discriminant function (8.7) is quadratic in x but with
the simplification of a common covariance matrix of equation (8.8), it becomes
linear. As a consequence, the boundary between any two classes k and l is a
plane in the n-dimensional space and can be obtained by solving for the xs
that satisfy the equation δk(x) = δl(x).

Classification by equation (8.9) is called linear discriminant analysis. Com-
pared with the elliptical class boundaries of the quadratic discriminant analy-
sis equation (8.7), linear boundaries of the linear discriminant analysis are less
flexible. However, because less parameters need be estimated, classification
by linear discriminant analysis appears in practice more robust.

8.2.2 Diagonal linear discriminant analysis

In the linear discriminant analysis (8.9), we may ignore correlation, assum-
ing that the covariance matrix is diagonal:

Σ = diag(σ2
1 , σ2

2 , · · · , σ2
n)← diag(σ̂2

1 , σ̂2
2 , · · · , σ̂2

n) , (8.10)

where we have again used sample quantities to approximate population quan-
tities. The classification rule then becomes

Ĉ(x) = argmin
k

[

1

2

n
∑

i=1

(xi − µ̂ki

σ̂i

)2

− log Nk

]

. (8.11)

Simplifying assumptions greatly reduce the number of probability density
parameters to be estimated. Although strong assumptions can introduce bias
to the true distribution of DNA methylation, error in classification Ĉ(x) can
be less because of better estimates for the parameters. Simpler classifiers thus
are found to perform well in practice. Performance, however, also depends
critically on what loci are selected for classification.

8.3 K-nearest neighbor

In contrast to the parametric approach that leads to a discriminant func-
tion, k-nearest neighbor (kNN) are a nonparametric classifier. In this case,
again, a distance metric is used and kNN uses either Euclidean distance or
one minus correlation coefficient. k is a positive integer in kNN. Suppose k
equals 3 and there are two classes in the training samples. Then the clas-
sification rules of the 3NN are: (1) among the training set, find the three
samples whose distances to the unknown sample are shortest; and (2) the
class of the unknown sample is then decided by the class of the majority of
the three samples. So, for example, if two (or three) out the three samples
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belong to class one, then the class of the unknown sample is class one. Since
class prediction is by majority vote, k is better chosen from odd integers for
dichotomous classification. Ties still happen if the number of classes is greater
than two. In these cases, they are broken at random.

In the classification by kNN, the class-conditional probability density p(x|k)
is approximated by

p(x|k) =
kV

NkV
, (8.12)

where V is a volume element around x in the n-dimensional space, kV is the
number of samples of class k in V and Nk is the total number of samples of
class k in the training set. The prior (unconditional) density p(x) of data x
is estimated by

p(x) =

∑K
k=1

kV

NV
, (8.13)

where the numerator is the total number of samples in volume V , K is the
number of classes, and N is the total number of samples in the training
set. Putting equation (8.12), equation (8.13) and equation (8.6) into Bayes
theorem gives immediately the kNN rules

p(k|x) =
p(x|k) p(k)

p(x)
=

kV
∑K

k=1
kV

. (8.14)

A small integer k in kNN translates to a small volume element V . In other
words, the smaller the k, the local-er information of samples around x is used
to predict x’s class. The class boundaries in kNN are nonlinear. The larger the
k, the smoother the boundary. A larger k takes into account more samples
around x, and, in addition, could provide richer probabilistic information
among the competing predictions (cf. equation (8.14)). On the other hand,
too large a k is detrimental because it destroys the locality by considering too
many distant, irrelevant samples. Optimal values of k can be determined by
cross validation.

8.4 Performance assessment

A classifier is a function that maps a data vector into a class label. To
build a classifier, we use a training set containing data with known labels.
However, because of noise in, and random sampling of, the training data,
the predicted class is a random variable. An essential quantity of a classifier
thus is its accuracy, or 1 – error rate. Ideally, after training, we use yet
the other independent dataset, whose class labels are also known, to test the
performance of the classifier. The dataset is called test set. In microarray data
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TABLE 8.1: Linear Discriminant Analysis, # of Loci = 20

Predicted
Schizophrenia Bipolar Disorder

Schizophrenia 7 5
Actual

Bipolar Disorder 8 4

classification, numbers of samples are already small. If we further divide the
limited samples into training set and test set, we suffer more from the small
sample size problem. In practice, therefore, we use the training set for both
training and cross validation. As it was pointed out that feature selection
was part of the classification, loci should be selected using the training set. If
they are selected with the help of the whole data, misclassification rates will
be downward estimated.

It is found that complicated classifiers, which perform well with plenty of
samples, may not perform as well as simple classifiers (such as diagonal linear
discriminant analysis and k-nearest neighbor) when numbers of samples are
small. This is because a small variance in prediction, compared with bias in
prediction, often leads to an overall small classification error.

8.4.1 Leave-one-out cross validation

A way to use training set for both training and validation is the leave-one-
out cross validation (LOOCV). In the scheme, a sample is first taken out of
the training set. The class of the taken sample is then tested by the rest of
the samples in the training set. The leave-one-out process is done one sample
by one sample until all the samples in the training set are tested for their class
labels.

As an example, we consider an experiment profiling methylation of twenty-
four diseased cases versus a pool of healthy controls. After normalization,
we rank the loci by t-statistic. Twenty top loci are selected. The cases are
actually from two subtypes: twelve schizophrenia and twelve bipolar disorder.
We train a classifier to see how well the subtype is classified by the selected
loci. Table 8.1 shows the performance of a linear discriminant analysis by
leave-one-out cross validation. The classification error rate is the proportion
of the sum of the off-diagonal counts over the total counts in the table: (5
+ 8)/24. We see that the rate is as bad as a random guess. Indeed, we test
the null hypothesis of no association between the actual and predicted classes
against the alternative hypothesis of a positive association by Fisher’s exact
test for count data. The p-value of the Fisher’s test on Table 8.1 is found to
be 0.8 and we fail to reject the null hypothesis. We suspect that the poor
performance might be due to the noise in the selected loci. We reduce the
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TABLE 8.2: Linear Discriminant Analysis, # of Loci = 5

Predicted
Schizophrenia Bipolar Disorder

Schizophrenia 11 1
Actual

Bipolar Disorder 2 10
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FIGURE 8.2: Error rate of a linear discriminant analysis classifier as a
function of the number of selected loci.

number of loci and repeat the assessment by cross validation. Figure 8.2 shows
the classification error rate as a function of number of loci. We see that the
error does drop. When the number of selected loci is five, the classification
result is shown in Table 8.2. The p-value of Fisher’s test on Table 8.2 is
0.00032, suggesting a significant association of prediction with true class.

We can use the same technique to find the optimal k for k-nearest neighbor.
As an illustration, we use the same training set (twenty-four diseased samples)
as in the linear discriminant analysis above. Borrowing from the previous
result, we use the top five loci for kNN. We repeat the leave-one-out cross
validation for different ks. The result is shown in Figure 8.3, which indicates
that k around 7 gives a better performance. Table 8.3 lists the result of the
7-nearest neighbor.
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TABLE 8.3: Result of 7-Nearest Neighbor, # of Loci = 5

Predicted
Schizophrenia Bipolar Disorder

Schizophrenia 11 1
Actual

Bipolar Disorder 1 11
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FIGURE 8.3: Error rate of a kNN classifier as a function of k given the
top five loci from Figure 8.2.
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TABLE 8.4: Confusion Matrix

Test Result
Negative Positive

Normal a b
Actual Status

Diseased c d

8.4.2 Receiver operating characteristic analysis

When assessing the performance of a diagnostic classifier by, say, leave-one-
out cross validation, we obtain the so-called confusion matrix of Table 8.4.
The false positive rate is calculated by the ratio b/(a + b) from the matrix.
Since specificity is the chance of identifying nondisease, i.e., a/(a + b), the
false positive rate is equal to (1 – specificity). The true positive rate is by
the ratio d/(c + d). Since sensitivity is the chance of detecting disease, the
true positive rate is equal to the sensitivity. An ideal classifier has a false
positive rate of 0 and true positive rate of 1. If we plot the false positive rate
on the x-coordinate and the true positive rate on the y-coordinate, we obtain
a receiver operating characteristic (ROC) point. For each classifier, we obtain
a point. The better classifier is then the one whose point is closer to (0,1) on
the plot.

To better understand the utility of ROC, we summarize the task of a kNN
with leave-one-out cross validation classification in an example: (1) the train-
ing set consists of thirty-four brains whose classes (i.e., Alzheimer’s (AD) or
controls) are known; (2) for brain i, its distances to the other thirty-three
brains are calculated; (3) the k brains, which are closest to brain i are identi-
fied; (4) the class of brain i is then determined by the majority of the k brains’
classes. Now, each brain’s methylation was measured at one hundred twenty-
four cytosine sites and the questions are: (1) which methylation sites are to
be included in the classification and (2) k = ? True positive claims on the
twenty-four AD brains increase at the cost of increasing false positive claims
on the ten control brains. The ideal scenario is to have high true positive rate
and low false positive rate. In Figure 8.4, we show the determination of both
the informative sites and k using the ROC curve.

In many situations, the costs of misdiagnosing positives and negatives are
not symmetric. For example, if a person is diagnosed to be ill when she is,
in fact, healthy, the cost of this false positive is further tests for the illness.
On the other hand, if one is diagnosed to be healthy when she is, in fact, ill,
the cost of the false negative can be fatal. When comparing and optimizing
classifiers, we often need to take into account the relative cost of misclassifi-
cation. ROC curves help achieve the goal. Let α and β denote, respectively,
the cost of a false alarm and missing a positive. The total cost of both types
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FIGURE 8.4: ROC curve of kNN classification with leave-one-out cross
validation. The performance of the classifier varies as the selected sites and/or
value of k change. If accuracy is defined as (tp+tn)/(p+n), then the red
classifier of 5NN with three marker sites and the green classifier of 1NN with
six marker sites give, respectively, an accuracy of (22+7)/(24+10) = 0.85 and
(21+8)/(24+10) = 0.85. That is, they perform equally well in prediction.
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of misclassification is then

cost = 1

a+b+c+d · (α · b + β · c)

= (1 − c+d
a+b+c+d) · α · b

a+b + c+d
a+b+c+d · β · (1− d

c+d)

= (1 − p) · α · x + p · β · (1− y) ,

(8.15)

where x is the false positive rate, y the true positive rate, and p = (c+d)/(a+
b + c+ d) the proportion of positives in the training set. An optimal classifier
is selected to be the one whose cost is least. Equation (8.15) indicates that
equo-cost points form parallel, straight lines and that to lower the cost we
decrease x and increase y. As an example, Figure 8.5 shows the ROC curve of
a kNN classifier with different k. Suppose there are equal numbers of diseased
cases and normal controls in the training samples, i.e., p = 0.5. If the cost of
a false positive is the same as that of a false negative, i.e., α = β, the slope
of the equo-cost lines is 1. Examples are the green lines in Figure 8.5. To
choose the number of nearest neighbors for the kNN classifier in this case, we
see that k = 5 or 7 are better than k = 3 and 9. On the other hand, if p = 0.5
and β/α = 5, i.e., the cost of a false negative is five times that of a false
positive, the slope of the equo-cost lines is 1/5. Examples of such asymmetric
cost cases are the red lines in Figure 8.5. We see that the optimal choice for
the k in kNN is k = 9 in this case. Note that the ruggedness of the ROC curve
(in blue) in Figure 8.5 is due to small sample size. If the number of samples
in the training set can be increased, the rates can be estimated at a higher
resolution, resulting in a smoother ROC curve and a better determination of
the value of k.
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Chapter 9

Interdependency Network of DNA
Methylation

The number of human CpG islands was estimated to be within a hundred
thousand. One approach to the genomic scale data analysis has been to
perform locus-wise statistical test for methylation differences between cases
and controls. After correcting for multiple testing, we identify candidate
loci for verification by independent techniques. Although extension to the
standard tests has been developed to enhance the power of the tests, the
issue of interdependence in the between-locus DNA methylation has not been
systematically addressed.

Silencing of the genes in a pathway can happen during development, leading
to specific tissues. Other examples of gene silencing via DNA methylation
include genomic imprinting and X chromosome inactivation. Knowledge of
the inter-locus DNA co-methylation is important. Construction of the map
of DNA co-methylation is a step ahead, accounting for the interdependence
unaccounted for by conventional approaches.

We introduce “net” correlation as a measure of pairwise co-methylation.
The pairwise relation is direct in the sense that we calculate the Pearson
correlation between two methylation loci after taking into account the effects
of the methylation at other loci. Statistically significant relations are then
conveniently represented by edges linking nodes, forming a graph (or network).
The topology of such graphs is most likely shaped by evolution. We introduce
metrics to characterize the DNA co-methylation networks. Studies of the
mechanisms underlying the emergent structure of the co-methylation graphs
help better understand epigenetics. In particular, comparisons of the healthy
with diseased graphs elucidate what has gone wrong in development and/or
mitosis.

As the number of CGI loci in a network can be huge, we partition the net-
work into subnetworks in such a way that edges within the subnetworks are
denser than those across subnetworks. The identified subnetworks are called
modules. The loci in a module may correspond to a suite of regulatory ele-
ments that are involved in controlling a pathway. We thus go on to test for the
hypotheses that particular chromosomes and roles (e.g., gene ontology, path-
ways and protein domains) are enriched in the modules. A graph approach
helps better understand epigenomics, providing insights into innovative phar-
maceutical, environmental and behavioral interventions to disorders.

163
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9.1 Graphs and networks

Methods in chapter 5 for the identification of differentially methylated loci
run statistical tests on arrays one locus at a time. We get p-values from
individual tests and adjust the p-values for multiple testing. We then rank
the loci for significance according to the adjusted p-values. The procedure
assumes independence of the methylation status at a locus from another.
The assumption may be over-simplistic as we know that cells undergo tissue-
specific DNA methylation during early organismal development. Aberrant
de novo DNA methylation over regions of genome has also been observed
throughout stages of tumorigenesis. The methylation states at some loci,
therefore, are interrelated. As a step beyond the locus-wise test for differential
methylation of chapter 5 and chapter 6, we introduce graph theoretical method
to take into account the interdependency of methylation among loci.

A graph (or network) is composed of nodes and edges. A node represents
a variable and in the context of DNA methylation microarray experiment,
is the measured methylation status at a locus. The status can be the mean
log intensity on a probe from one-color microarrays or the mean log intensity
ratio at a probe from two-color microarrays in a common reference design. If
the correlation coefficient of methylation between two nodes across samples,
such as measurements at different time points in a time-series experiment, is
found significantly large, we draw an edge connecting the two nodes. Since
we establish an edge based on correlation, which is invariant under a ↔ b,
i.e. cor(a,b) = cor(b,a), the edges are undirected. If the establishment of
an edge involves regression models, which explicate the response of a node to
the other, we can assign directionality to the edge so that the graph becomes
directed. We focus the discussion on undirected graphs in this chapter and
on directed graphs in the next chapter.

9.2 Partial correlation

When there are only two variables in a system, correlation by Pearson
product-moment coefficient introduced in chapter 1 is useful for the relation-
ship between the two. When there are more than two variables in the system,
correlation between two variables may be mediated by a third one. Since in-
direct relations can be obtained once we acknowledge all the direct relations,
indirect relations are redundant. The primary goal, therefore, is to uncover
the direct relations, which can be measured through partial correlation.

Suppose the methylation gi at locus i is measured by a microarray investi-
gating a total of N loci. The relation of DNA methylation between locus 1
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and the rest excluding locus 2 is modeled by

g1 = α3g3 + α4g4 + · · ·+ αNgN + ǫ1 , (9.1)

where αi are regression coefficients and ǫ1 is the residual. We write down the
relation of DNA methylation between locus 2 and the rest excluding locus 1
in a similar fashion,

g2 = β3g3 + β4g4 + · · ·+ βNgN + ǫ2 , (9.2)

where βi are another set of regression coefficients. After regressing equation
(9.1) and equation (9.2), which amounts to minimizing ǫi by finding the best
αi and βi, the partial correlation between loci 1 and 2 is calculated by the
Pearson product moment coefficient between the two minimized residuals:
V12 = cor(ǫ1, ǫ2) = V21. The procedure is applied to any pair i, j, yielding
N(N − 1)/2 partial correlations between any pair of loci whose methylation
are measured by the microarray.

Note that it can be shown [Lezon06] that the probability of a measured
methylation profile p(g) = p(g1, g2, · · · , gN) gives rise to a maximum entropy
S defined as

S = −
∑

g

p(g) log(p(g)) (9.3)

when
p(g) ∼ e−1/2

P

ij
giVijgj (9.4)

with Vij being the partial correlation between gi and gj and proper centering of
the data: < gi >= 0. Partial correlation, therefore, quantifies the interaction
between two DNA methylation loci. The profile p(g) in equation (9.4) is also
the most probable given the samples.

9.3 Dependence networks from DNA methylation micro-
arrays

The linear regression model like equation (9.1) has N − 2 unknown param-
eters. To estimate them, we would need on the order of N different samples.
Since N , the number of probes (i.e., loci) in a microarray, can be tens of
thousands, it is impossible to have that many samples and microarrays. We
would in practice have to preselect a subset of loci from the microarray.

If the methylation at a locus is constant across individuals, so is the residual
according to equation (9.1). Thus, the locus is not likely to correlate with
other loci in terms of methylation in the samples. Therefore, we would want
to discard the loci showing low variations in methylation across individuals. In
other words, we calculate and rank the standard deviation of the methylation
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intensities (or ratios) across the samples for every probe on the microarray and
select, say, the top one hundred variable loci for partial correlation calculation.
We can calculate the mean methylation of the rest of the loci on the microarray
and designate the mean to an artificial locus called “rest.” Every microarray
is then represented by the 101 = (top 100 + rest) measurements. The N is
effectively diminished to 101, a manageable size.

If we have two groups of samples, one being affected individuals and the
other unaffected controls, we calculate and rank the standard deviations of
each group. We then select top one hundred loci from each group and form
the union of the two top one hundred lists. If forty loci appear in both lists,
the union will then consist of one hundred sixty unique loci. We then use the
one hundred sixty loci in the construction of the dependence network of DNA
methylation for each group of samples. Likewise, we may follow the “mean
field” technique above and use one hundred sixty-one loci.

Similar to the p-value for a Pearson product-moment correlation coefficient
(cf. equation (1.19) in section 1.2.7), a p-value associated with the test for
null hypothesis of zero partial correlation can be obtained [Schafer05]. Among
the N = 100 selected loci, we obtain the 100 × 99/2 partial correlations and
associated p-values. We can adjust the p-values for multiple testing by the
method of false discovery rate (FDR) of section 5.5.2 and establish an edge
between any two loci whose partial correlation is significantly different from
zero. If we set the significance level at 0.01 and, say, 800 partial correlations
have their FDR-adjusted p-values smaller than 0.01, then 8 among the 800
edges are expected to be false positives.

Alternatively, we permute the one hundred preselected probes in each array.
The model of (9.1), (9.2), · · · , etc. is then applied to the permuted data
to obtain 100 × 99/2 partial correlations and the associated p-values. The
smallest (unadjusted) p-value can then be used as the cutoff for the p-values
from unpermuted data. The rationale is that since the relationships among
the probe measurements are destroyed and become random by permutation,
any genuine partial correlation should be more significant than the best that
would be obtained by chance. Suppose we choose the p-value cutoff to be
10−7. From each permutation, we get the number of false positive edges
whose p-values are lower than 10−7. After many permutations, we have a
sense of the average false positive edges in the network under the 10−7 cutoff.

In Figure 9.1 is shown the dependence network of DNA methylation from
eighteen control sperm on fifty-four CpG island microarrays in a common
reference design. An edge between two nodes means a direct association of
methylation between the two loci observed among the sperm samples. That
is, an increase in methylation at one locus is associated with an increase (or
decrease) in methylation at the other locus among normal sperm.
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FIGURE 9.1: Interdependence network of DNA methylation using CpG
island microarrays. 1079 CGI loci whose methylation levels are variable among
the eighteen individuals are selected in network reconstruction. An edge is
drawn between two loci if the partial correlation is significantly (raw p-value
< 10−7) different from zero. The genomic locations of the loci are mapped
to the human genome, which is arranged around a circle. A single locus right
underneath the circle is the “rest” representing the mean methylation of the
rest of the selected loci. (See text for detail.)
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9.4 Network analysis

Biological networks [Barabasi04], such as metabolic networks, protein–pro-
tein interaction networks, gene transcription regulatory networks and neural
networks, have been studied and shown to exhibit properties that are not
found in random networks, in which edges are randomly assigned to pairs
of nodes. For example, we may calculate the shortest distance between a
substrate and a product in a metabolic network by counting the number
of reactions the substrate takes to produce the product along a metabolic
pathway. We obtain the distances for any two nodes in the network and get the
mean of all the pair-wise distances. To compare, we create a random network
by detaching the edges and reassigning them to nodes that are randomly
picked and paired. We again calculate the mean distance of the random
network. It was found that many networks in nature including biological
networks have shorter mean distances than random networks. A shorter mean
distance in the case of metabolic (neural) networks may reflect an evolutionary
legacy since metabolites (excitations) are produced (received) with greater
efficiency.

In addition to mean distance, many metrics that are defined on the network
as a whole or on the individual nodes are informative. We can rank the nodes
according to the metric and select the top ranking nodes for further investi-
gation. We can also pick up the nodes whose metrics from the methylation
network of affected samples are very different from those of control samples.
The network approach is to complement the traditional analysis of differential
methylation, which ignores the interrelations among loci.

Before moving on, we introduce the adjacency matrix that conveniently
represents a network. For a network with N nodes, we create an N by N
matrix A. The (i, j) element of A is one, Aij = 1, if nodes i and j are connected
by an edge and zero, Aij = 0, otherwise. Note that for an undirected network,
A is symmetric: Aij = Aji and that, by the definition of partial correlation
equation (9.1), the diagonal elements of the matrix are zero: Aii = 0. The
number of edges in a network is the number of ones in the matrix divided by
two. The average number of edges per node, therefore, is

< k >=
1

2N

N
∑

i=1

N
∑

j=1

Aij , (9.5)

which quantifies how densely the nodes in the network are interconnected.
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FIGURE 9.2: Frequency distribution of the connectivities (# of edges per
node) of the network in Figure 9.1. Note that both axes are in logarithmic
scale. The average number of edges per node < k > of the network is 1.5.

9.4.1 Distribution of connectivities

The number of edges k attaching to a node can be readily obtained by

ki =
N

∑

j=1

Aij , (9.6)

for all the nodes i = 1, 2, · · · , N in the network. The frequency distribution
p(k) of connectivity k gives the chance of picking up a node whose connectivity
is equal to k.

For a random network, the connectivities are Poisson distributed, peaking
at average number of edges per node < k >. A distribution of connectivities
that deviates from a Poisson indicates that the network is nonrandom. Figure
9.2 shows the connectivity distribution of the network of Figure 9.1, the non-
Poisson of which suggests a nonrandom component in the formation of the
network.

9.4.2 Active epigenetically regulated loci

The fat tail on the right of the connectivity distribution of Figure 9.2 indi-
cates enrichment of nodes with large k. High-k nodes are those that connect
to many other nodes; they are hubs in the network. Hubs in a protein-protein
interaction network are thought to be essential proteins since they can bind
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with many other proteins to form complexes that assume functional roles in
many pathways. Mutations in the DNA sequences coding for the hubs thus
can be lethal. Likewise, hubs in the dependence network of DNA methylation
may coincide with hot regulatory regions (such as DNaseI hypersensitive sites,
histone modification sites or transcription factor binding sites) including CGI
loci and promoters, the methylation of which correlate with that of many
other regulatory regions.

Given two methylation networks, one from controls and the other from
cases, we compare lists of the top connectivity nodes in the networks and
identify the nodes that are different in terms of the ranks. For example, a
locus may be present in one of the top lists, but absent in the other. The
loci that are identified may be actively involved in pathways in one group
of individuals. The same pathways, however, are relatively dormant in the
other group of individuals. The method of network analysis, therefore, has
the potential of identifying shifts in the functional paradigms (e.g., pathways)
between groups of individuals.

9.4.3 Correlation of connectivities

A next step in network analysis is to look at the average connectivity of a
node’s connected nodes, which can be calculated by

knni =
1

ki

N
∑

j=1

Aijkj , (9.7)

and is called assortativity knni of node i. We find the assortativities of all the
nodes in the network and plot knni versus ki. If the assortativities increases
(decreases) with connectivities in the plot, it indicates that hubs tend (not)
to connect with other hubs in the network. The network is called assortative
(disassortative).

Human social networks are assortative in the sense that people of the same
background, such as language and race, live together, just like birds of a
feather flock together. Technological networks, such as the World Wide Web,
are disassortative because of the competition for Web visitors among the giant
Web servers, such as Yahoo and Google. In Figure 9.3, we plot the average
assortativities Knn of the nodes having the same connectivities over the range
of the connectivities, k = 1, 2, · · · , kmax,

Knn(k) =
1

Nk

N
∑

i=i

knniδki,k , (9.8)

where Nk =
∑N

i=1
δki,k is the number of nodes whose number of edges is k

and δki,k = 1 if ki = k and δki,k = 0 otherwise. A decrease in Knn with k in
Figure 9.3 indicates that the methylation at hot CGI loci are more correlated
with cold CGI loci than with other hot CGI loci.
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FIGURE 9.3: Frequency distribution of the assortativity (neighbor’s mean
# of edges) of the network in Figure 9.1. Note that both axes are in logarith-
mic scale.

If we imagine the chromosomes in the nucleus as relatively immobile noodles
with highly diffusive DNA methyltransferases and histone modifying enzymes
moving around, the fact that the dependence network of DNA methylation is
neither assortative nor disassortative may indicate that the distribution of ac-
tive CGI loci is uniform in the three-dimensional nuclear space and that active
CGI loci compete for no DNA methyltransferases because there are plenty of
them. Changes in the assortativity of the network can implicate changes in
the chromosomal organization or availability of DNA methyltransferases in
the nucleus.

9.4.4 Modularity

Metabolic networks can be partitioned into subnetworks or modules so that
reactions most often take place between the substrates within modules. Pro-
teins in modules of a protein-protein interaction network may bind together to
form various complexes. Modularity confers evolutionary advantage in that
new exogenous functions are inserted into an evolving genome without en-
dogenously reinventing the functions. Furthermore, complex functions can
emerge from assemblies of simple functions.

To identify modules in a DNA methylation network, we try various parti-
tions of the network so that the densities of edges between the nodes within
sought modules are larger than expected by chance. There may appear dif-
ferent partitioning of the network that fulfills the requirement so it helps to
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define network modularity Q [Newman06] that serves to compare different
partitions,

Q =

∑

i,j∈modules
(Aij − Pij)

∑

i ki
, (9.9)

where Pij is the probability that nodes i, j are connected by chance. The
denominator is simply a conventional normalization. Since node i has ki

edges and node j has kj edges, a natural choice for Pij is Pij ∝ kikj . The
constraint

∑

ij Pij =
∑

i ki finally gives Pij = kikj/
∑

i ki. Note that the
modules in the summation in equation (9.9) are not known beforehand. The
task is to find a segregation of the nodes into modules that maximizes the
modularity Q in equation (9.9).

An efficient algorithm has been developed for the detection of modules in
networks based on leading eigenvalue in maximizing equation (9.9) [Newman06].
The algorithm starts with the network as a single module and calculates its
modularity. It then divides the network into two subnetworks, improving the
modularity Q as a result. Each of the two subnetworks is subject to division.
Division of the divided subnetworks goes on until the modularity Q improves
no more. The indivisible (sub)subnetworks are the modules. An advantage
of the algorithm is that the hierarchical structure of subsubnetworks within
subnetworks is unraveled on the way toward maximizing Q. In Figure 9.4, we
show the hierarchy of the identified modules in the network of Figure 9.1 using
the eigenvalue based algorithm for module detection. Note that improvement
in Q becomes insignificant toward the leaves of the dendrogram. A hierar-
chical display of Figure 9.4 showing the relations of the subnetworks is useful
in case we are merging modules into megamodules. Note also that we found
large modules containing lots of CGI loci as well as many small modules con-
taining only a couple of loci. Figure 9.5 results from the redrawing of Figure
9.1 with the modular information of Figure 9.4.

9.4.4.1 Positional enrichment analysis

CGI loci in a module are more likely co-methylated than those between
modules. We can hypothesize that the CGI loci in a module cluster and
co-localize within a chromosome. Before testing the hypothesis, we plot the
positional distribution of the selected loci along the genome in Figure 9.6. As
seen in the figure, the selected loci show no enrichment in particular chro-
mosomes. The dependence network of DNA methylation is built from the
preselected loci based on the significance of partial correlations under a pre-
set false discovery rate.

We count the number Ei of network loci that locate in chromosome i and
plot the distribution of the counts versus chromosomes in Figure 9.7. Simi-
larly, for a module, we count the number Oi of loci in the module that are
located in chromosome i to obtain the chromosomal distribution of module
loci. The null hypothesis of the positional enrichment test states that the
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FIGURE 9.4: The hierarchical structure of the DNA methylation network
of Figure 9.1 by the eigenvalue-based algorithm to maximize the modularity
of equation (9.9). The improvement in the modularity in each division is
indicated by the length of the vertical bar. Division of a subnetwork stops
when there is no improvement in modularity. The indivisible leaves in the
hierarchical tree are modules. The number of modules in the network is forty.
The median of the module sizes is ten loci. Locus IDs are labeled by numbers.
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FIGURE 9.5: DNA methylation network of Figure 9.1 redrawn with the
modular information in Figure 9.4. Nodes in a module are in the same color.
Within-module edges are in black and between-module edges are in gray. The
coloring and labeling correspond to those of Figure 9.4.
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chromosomal distribution of the CGI loci in a module is no different from
that of the pre-selected CPI loci.

The hypothesis can be tested by chi-square test,

χ2 =
23
∑

i=1

(Oi − E′
i)

2

E′
i

, (9.10)

where E′
i = (

∑

i Oi)(Ei/
∑

i Ei) is what is expected from the null hypothesis.
The p-value of the test can be obtained from chi-square distribution with
twenty-two degrees of freedom. We run the test on each of the large modules.
Any chi-square p-value below a preset significance level indicates that the loci
in the module co-localize in some chromosome(s).

9.4.4.2 Functional enrichment analysis

Modularity of biological networks sounds conceptually sound. The job,
therefore, is to seek evidence of association between biological functions and
network modules. To this end, we first identify the genes that are downstream
of the CGI loci. That is, a CGI locus on the microarray is tied to a gene. The
functions of the gene can be classified according to, for example, the Gene
Ontology (GO) terms the gene is mapped to. If we find an overrepresentation
of a GO term for the genes in a module, we get support for the idea that the
loci in a module are involved in the regulation of a biological function.

Suppose the dependence network of DNA methylation has one thousand
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FIGURE 9.7: Distribution of the chromosomal location of the loci. Black
is the distribution of all the annotated loci in the microarray. Yellow is the
distribution of the unique, nonrepetitive sequence loci in the microarray. Red
is the distribution of the top 1079 variable methylation loci among the eighteen
independent sperm samples. Blue is the loci in a module. P-value of the chi-
square test is 0.83.
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CGI loci, fifty of which are mapped to a GO term, and that one of the largest
modules in the network contains sixty loci. If the loci in the module are formed
from the one thousand CGI loci by chance, we would expect to find about
three loci in the module to have the GO term: 60× 50/1000 = 3. If instead
we find thirty loci in the module having the GO term, we gain confidence that
the module is not formed by chance.

The probability of drawing m apples in n picks, without replacement, from
a basket of N objects containing M apples and N−M nonapples is described
by the hypergeometric distribution f ,

f(m; N, M, n) =

(M

m

)(N−M

n−m

)

(N

n

)

. (9.11)

In the above example, N = 1000, M = 50, n = 60 and the one-tailed p-value of
the GO term enrichment test is calculated by p-value =

∑n
i=m f(i; N, M, n).

We can move on to test the other GO term, likely changing M , the number
of network loci mapping to the new GO term, as a result. We then find m,
the number of module loci mapping to the GO term, and calculate the p-
value of m using equation (9.11). If the p-value is smaller than a predefined
significance level, which is usually 0.05 divided by the number of GO terms,
it is an indication that the GO term is enriched in the module. After finishing
all the GO terms in the module, we move on to test GO term enrichment in
another large module.

GO terms, annotating the roles of genes in organisms, are organized in a
tree-like graph with root, grandparents, parents, · · · , children. The annota-
tions of children are more specific than those of parents. For example, an
apple (child) is a fruit (parent). A gene mapped to a child GO term must
also be mapped to the parent GO term. The GO terms thus are correlated.
As a consequence, if apple is found to be enriched in the above test, we would
also find that the term fruit is also enriched. Since we are more interested
in specific terms, we can start the enrichment test from the children terms.
Once a child GO term is found significantly enriched in the module, the loci
mapped to the child GO term are removed from the list of m loci when we
move to test the parent GO terms. In this way, the less specific parent GO
terms are less likely to be called significant [Alexa06].

Association of module loci to KEGG pathways and PFAM protein domains
can be tested in the same fashion.





Chapter 10

Time Series Experiment

De novo methylation mostly occurs in embryonic development, responsible
for genomic imprinting, X-inactivation and transposon suppression in mam-
mals. Aberrant de novo methylation of the CpG islands in the promoters
of growth regulatory genes occurs frequently in human cancers. Maize root
tissues undergo genome-wide demethylation when the seedlings are exposed
to cold stress. Homeostatic imbalance of the components, such as folate, me-
thionine and S-adenosylmethionine, in the biosynthetic pathways for DNA
and histone methylation may precede disorder. A time-ordered microarray
measurement of the evolving pattern of DNA methylation, monitoring the
fate of 5′ cytosines, helps elucidate the regulatory program of the epigenetic
machinery.

Analysis of the data by clustering and correlation helps infer the function
of an unknown promoter/gene under the assumption that promoters/genes of
the same biological function display similar methylation/expression profiles
over time. To tap further into the data is the inference of regulatory net-
works that depict which promoter/gene, at what time, regulates which other
promoters/genes.

We view the relations among the players in a regulatory network as a graph-
ical model consisting of nodes and arrows (i.e., directed edges). A node, cor-
responding to a player, is associated with a quantity whose value is measured
by microarrays or other high throughput assays. An arrow pointing from node
A to node B represents that A “regulates” B in the manifestation that the
observed methylation or expression of A precedes that of B. Note that for
a better interpretation of the reconstructed regulatory network, quantities of
different nature, such as promoter methylation, histone modifications, gene
expression and protein/metabolite concentrations of the biological system,
have to be measured simultaneously in an experiment.

Regulatory networks reconstructed from microarray data aim to help elu-
cidate the mechanism of cellular processes in the molecular level. However,
even for N = 20 selected nodes, the number of possible different network struc-
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tures (combinations of arrows) is astronomical: 220×20 ∼ 10120. Furthermore,
researchers face a challenge posed by the noisy and low-replicate/frequency
characteristics of current microarray data. We would prefer an approach that
is parsimonious in that the number of regulatory relations in the reconstructed
gene network decreases as the noise level of the expression data increases. The
parsimony is to lower the false positive rate.

We describe a methodology for regulatory network reconstruction from
time-series microarray experiments that aims to address the above issues.
First of all, a nonlinear model is described that relates the hybridization in-
tensity (DNA methylation or gene expression or both) of a regulated locus to a
power-law function of the hybridization intensities of regulating loci. The dy-
namic model, in difference equation form, can be extended to accommodate
delayed methylation or transcription that could arise due to transport and
diffusion of gene products across cellular compartments. An objective score
function is then defined that consists of a likelihood function and a penalty
term. The former awards high scores to good network structures that better
fit the microarray data while the latter penalizes complex structures that tend
to overfit the data. The penalized likelihood score materializes the concept of
parsimonious network reconstruction.

The rest is about computational implementation. Among the global search
algorithms for best networks, we introduce genetic algorithms (GAs) in which
a population of chromosome-like solutions to the optimization problem re-
combine with each other and mutate on ways toward best solution to the
problem. Advantages of employing GAs are threefold. First, an observa-
tion of the objective function shows that the likelihood term approaches an
asymptotic value set by noise as the network structure gets more and more
complicated, i.e., more arrows. We can then design evolution in the GA such
that networks grow from the simplest structure containing only one arrow. As
more arrows emerge in the network, the asymptotic value is reached; further
growing of the network becomes unfavorable due to the penalty term. The
GA in such design effectively explores the simple structure regime, mitigating
computation burden. The strategy is in accordance with the spirit that more
(less) regulatory relations are reconstructed with less (more) noisy datasets.

Secondly, as the problem is usually underdetermined, many different struc-
tures may serve equally well as solutions. Network structures that survive
evolution before we quit the GA are all strong candidates for the best solu-
tion to the reconstruction. Thirdly and pedagogically, in analogy to microar-
ray measurement where sequence fragments compete to hybridize to specific
probes, GAs are performing soft-microarraying where combinations of arrows
compete to maximize the score.
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10.1 Regulatory networks from microarray data

Signal transduction pathways are familiar examples of the cascades of reac-
tions in the cell following external excitations. The production of the pathway
end-products slows down to an eventual stop by some kind of feedback mech-
anisms that desensitize the receptor’s response to the initiating signals. The
cascade and feedback form a loop of regulation. As pathways intertwine,
as exemplified by the between-module connectivities in the last chapter, the
relations among the regulators (e.g., DNA methyltransferases, histone modi-
fying enzymes, transcription factors/cofactors) and regulatees (CpG islands,
core histone tails, transcription factor binding sites) form a complex regula-
tory network. Note that the roles of regulators and regulatees can exchange
depending on the perspective. An experiment that profiles DNA methyla-
tion, histone modifications and mRNA/RNA simultaneously at different time
points after stimuli has the potential of unraveling the regulatory network
underlying the response. Time series experiments are also persuited by stem
cell researchers for a better understanding of cellular differentiation.

We focus on time-series experiments of microarrays, in particular DNA
methylation, which is the topic of the book, but other possibilities, such as an
integration of the measurements, should not be disregarded. A straightfor-
ward approach to the network reconstruction is the modeling of methylation
and/or expression at a locus by a linear combination of the methylation and/or
expression of all the loci in the network. A total of N by N “weight” param-
eters will have to be determined from the N by T data points, where N is
the number of loci in the network and T the number of time points in the
time-series microarray experiment. Values of T range from 5 to 20, limiting
the size of networks that can be reconstructed in this approach. In cases
where T < N , solutions are underdetermined. Fortunately, an experiment
is usually designed for a specific physiological process that involves no more
than ∼100 genes. And after a filtering process for conspicuously methylated
and/or expressed loci, only tens of loci are left.

In microarray experiments, noise arises from intrinsic stochasticity of bio-
chemical reactions and from extrinsic errors in measurement technology, even
after proper data normalization (cf. chapter 4). Uncertainty can effectively
be reduced by repeated measurements. However, the numbers of technical
replicates in current microarray experiments can still be as low as 1. We
may curb the high false positives due to the large noise in an ad hoc manner
with thresholds to the weight parameters. Alternatively, we will introduce
an approach that casts the network reconstruction task into an optimization
problem in which a score function consisting of a penalty term against com-
plex networks is defined. We need a prescription of the model before applying
the optimization.
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10.2 Dynamic model of regulation

The combinatorial effect of regulator loci on regulatee locus i is modeled
by the following power-law formalism,

xi,t+1 = xi,t + αi

∏

j∈S′

i

x
wji

j,t

∏

k∈S′′

i

xwki

k,t−1
− βixi,t , (10.1)

where xi,t, for two-color microarrays, is the hybridization intensity ratio of
locus i at time t to that at time zero. αi and βi are positive real parameters,
quantifying the methylation and demethylation rate of locus i. The products
are over the sets of loci that “regulate” locus i: S′

i contains the loci whose
methylation at time t affects xi,t+1 and S′′

i contains the loci whose methyla-
tion at time t− 1 affects xi,t+1. The exponents wji and wki are nonzero real.
If wji > 0, locus j “activates” locus i since ∂xi,t+1/∂xj,t > 0. Otherwise locus
j “represses” locus i. Mathematically, it was shown that many general classes
of functions can be locally approximated by products of power-law functions.
Empirically, it has also been demonstrated that the essential nonlinear fea-
tures of synergism and saturation in many biological and complex systems
can be captured by the power-law formalism [Savageau87, Savageau98]. We
therefore adopt the form in equation (10.1) for a compact and tractable rep-
resentation of the dynamic effect of regulators on regulatees.

In order not to clutter the formula, equation (10.1) contains only two differ-
ent time delays, relative to t + 1, on the right-hand side: t, t− 1. It, however,
is known that we can extend to include more delays if necessary. For example,
we may allow four delays, t, t − 1, t − 2, and t − 3, in the product on the
right-hand side of equation (10.1).

10.3 A penalized likelihood score for parsimonious model

In the model of equation (10.1), xs are measured by microarrays at various
time points. Now suppose we have a trial network for locus i. That is, we
assume a set of S′

i, S′′
i , and the associated parameters αi, βi, wji, wki for locus

i in equation (10.1). By substituting the measured fluorescent intensities
at time t and t − 1 to the right-hand side of equation (10.1), we can then
predict, the intensity of locus i at the next time point, t + 1. If our presumed
network and parameter values are right, we can expect, due to noise, that the
measured intensities xi,t deviate little from the predicted x′

i,t and that the
deviations are normally distributed: pi,t(x

′
i,t − xi,t) = N(< x′

i,t − xi,t >, σi).
We have assumed that the magnitude of error is independent of time, i.e.,
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FIGURE 10.1: Distribution of expression ratios. Histograms are plotted
that show the distributions of yeast gene expression ratios under heat shock.
The solid line histogram shows the 8140 ratios in the time-zero dataset. The
smooth curve is a Gaussian fit to it. The mean of the Gaussian is 1.04 and the
standard deviation is 0.39. The dashed line histogram shows the 8140 ratios
5 minutes after the temperature upshift. Comparing the two histograms, we
see that some gene expression are repressed under heat shock stress.

σi,t = σi. We do this for every time point to get a prediction of the time-
ordered hybridization intensity profile of locus i. We further assume σ is
the same for every locus: σi = σ, i = 1, 2, 3, · · · , N . We then estimate the
standard deviation of the measurement errors, σ, by the standard deviation
of the distribution of intensity ratios of the probes on the microarray. The
ratios are to the intensity at the first time point (i.e., time zero). An example
of σ estimation from a time-series microarray experiment is shown in Figure
10.1. The probability Pi of the time-series data for locus i, can be obtained
by the product, Pi =

∏T
t=2

pi,t, where T measurements were made at time
points 1, 2, · · · , T .

Given the data, to differentiate possible candidate networks, we can define
a score function for the regulatory network of locus i as the logarithm of Pi
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plus a penalty term [Schwartz78],

scorei(S
′
i, S

′′
i ; αi, βi, wji, wki) =

−
∑T

t=2
(x′

i,t − xi,t)
2

2σ2
− T − 1

2
log(2πσ2)

−di

2
log(N · (T − 1)) ,

(10.2)

where the second line is log likelihood log(Pi) and the third line is a penalty
proportional to the number of parameters, di, in the network for locus i.
The total score of the overall network consisting of all the N preselected
loci is obtained by summing up the above score for individual loci. This
decomposition has the effect of reducing the space of possible networks from
2N×N to N × 2N .

The score function depends on the trial network structure S′
i and S′′

i that
carry parameters, αi, βi, wji, wki. As the structure gets complicated (more
arrows), the sum of squared prediction errors (the numerator of the first term
in the second line of equation (10.2)) gets small and log(Pi) approaches the
asymptotic value determined by σ (second term in the second line of equation
(10.2)). Further growth of arrows increments di and thus decreases the score.
The effect is a parsimonious reconstruction of regulatory networks.

A second observation of equation (10.2) is that for noisy microarray data
characterized by a large σ, log(Pi) approaches the asymptotic value quickly
when new arrows are attached to the network structure. The effect is a coarser
(finer) reconstruction of networks with noisier (cleaner) data.

Note that the above algorithm aims to construct regulatory relations that
hold throughout the time of the experiment. The assumption is valid as exper-
iments are designed to unravel the programmed methylation and/or expres-
sion during a process. However, as pathways are cross linked, other regulatory
programs may step in in the middle of the experiment, changing the network
structure. We have to be provident about the time horizon of the experiment
and preselection of the N loci.

10.4 Optimization by genetic algorithms

As the number of possible networks is astronomical, exhaustive searches in
the network structure space, followed by estimation of the best parameters
embedded in the trial structure, consume a great deal of computation. Fur-
thermore, computing demand is expected to scale up with N as a polynomial
in N . If we place an upper limit on the number, k, of arrows leaving/entering
a node, we can greatly reduce the search space and thus computation time. It,
however, is speculated that a biological network can contain “super” loci (or
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hubs) that link to many other loci; the network structure exhibits so-called
scale-free property.

To maximize the score function of equation (10.2), we propose to find the
optimal structure by genetic algorithms (GA) [Holland62] and, given a trial
structure S′

i and S′′
i in the GA, we maximize log(Pi) by adjusting αi, βi,

wji, and wki parameters by the method of downhill simplex [Nelder65], which
we found efficient in minimizing the sum of squared prediction errors of the
power-law form in equation (10.2) [Wang04].

A genetic algorithm is a biology-inspired computational technique to find
exact or quasi-exact solutions to optimization/search problems. GAs are in-
spired by evolutionary idea of natural selection, consisting of iterations of
inheritance, mutation, recombination and selection. First of all, an initial pop-
ulation of possible network structures (called chromosomes) to the problem is
created. The total score (cf. equation (10.2)) or fitness of each chromosome
is calculated. We then rank the chromosomes according to their fitnesses.
Fitter chromosomes are then selected for random mating, producing daughter
chromosomes. The daughter chromosomes are also allowed to mutate. The
population then enters into a new generation where scoring, selection, mating
and mutation of the chromosomes take place. The procedure of survival of
the fitter repeats from generation to generation until no further improvement
in the average score of the population of chromosomes. We then quit the
iteration, outputting the chromosome (i.e. network) with highest score as the
solution to the optimization problem equation (10.2). The advantage of GA
is that it exploits random search within an otherwise indefinite space for best
solutions. The production of new chromosomes by crossing over two selected
chromosomes during the mating operation is believed to be a way out of local
minimum traps, which plague most other search algorithms. A mutation op-
eration in the GA can also be defined to randomly generate or eliminate an
arrow.

GAs are general and thus applicable in principle to any optimization prob-
lems. However, efficient GAs rely on how to encode trial solutions into “chro-
mosomes” that are to recombine and mutate [Wang03]. For example, we can
represent a network by a vector of nodes each of which specifies its incoming
and outgoing arrows. Two vectors can then cross over to give rise to two
daughter vectors. A node in the vector can also mutate by repointing one
of its outgoing arrow to a different destination node. GAs thus are suitable
for searches in the space of network structure. On the other hand, it proves
inefficient to optimize by GAs the real valued α, β and w parameters in the
network structure, the reason being that it is not convenient to encode real
numbers into chromosome or vector-like objects. Instead, we found downhill
simplex algorithm to be efficient for the optimization of α, β and w values.

Taking advantage of the properties of the score function equation (10.2),
we explore the promising low-k structural regime by growing a network from
the simplest structure containing only one arrow in the GA. Moreover, for
a trial network, we calculate and rank the sum of squared prediction errors
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of each locus. The structure mutation in the GA is then operated on the
locus whose sum of squared prediction errors is the largest. Namely, we play
“divide (network into subnetworks for individual loci) and conquer (the worst
locus)” generation by generation in the GA. Since more arrows are needed to
account for a larger sum of squared prediction errors, the effect is that our
reconstruction does not prevent super loci, which are regulated by many loci.

We try a population of, say, two thousand trial networks in the GA, which
starts the evolution from the simplest networks, each of which contains only
one randomly generated arrow (i.e., regulator-regulatee pair). To test if the
GA population size is large enough, we can run the program a couple of times
to see if results are reproducible. We quit the program when the average score
of the population stops increasing. A network is made up of arrows. We count
the numbers of the arrows appearing in the population of networks in the last
GA generation. The arrows with highest frequencies represent the most likely
regulatory relations among the loci.



Chapter 11

Online Annotations

DNA sequences make up the language of living cells. Understanding the cryp-
tic words and phrases in the grammar of life processes is the quest of molec-
ular biology. As the volume and complexity of molecular data explode in
the genomic era, computerized information processing tools, such as biomed-
ical databases and analysis software, become an absolute requirement for im-
proved healthcare. We describe computerized systems that store and enable
users to retrieve and analyze knowledge about molecular biology, genetics and
biochemistry.

Researchers at different stages of biomedical investigation appreciate differ-
ent levels of biological information. For example, sequence maps and expressed
sequence tags (ESTs) are essential for microarray probe and polymerase chain
reaction (PCR) primer design. Annotated genes’ transcription start sites serve
as the reference frames for epigenetic profiling. Literature abstracts abbre-
viate previous findings. Disease genes and mechanisms are relevant to the
discussion of new findings. A gateway to the various databases is useful for
meta-analysis.

Many biological experiments have been, and only, on simpler model organ-
isms because of technical and/or ethical issues. A picture of life that is inde-
pendent of species is important in that the knowledge can hopefully be easily
translated to humans. Proteins, gene products, are the fundamental working
and/or structural entities of living cells. Knowledge of their structures and
functions is directly related to health. Metabolism involving enzymes and
small molecules in pathways is well conserved across species through evolu-
tion and closely related to pharmaceutics.

11.1 Gene centric resources

11.1.1 GenBank: A nucleotide sequence database

GenBank of National Center for Biotechnology Information (NCBI), in col-
laboration with the European Molecular Biology Laboratory (EMBL) of the
European Bioinformatics Institute (EBI) and the DNA Data Bank of Japan
(DDBJ), has been receiving sequence depositions from sequencing laboratories
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and centers worldwide since 1993. (See: www.ncbi.nlm.nih.gov) The accepted
nucleotide sequences (over 50 bp in length) are fragments of genomic DNA
or mRNA that can cover single or multiple genes from over 240,000 distinct
organisms. A successful sequence submission is assigned a unique and stable
accession number. Annotation of the sequence is attributed to the submitting
group and includes the biological information defined by GenBank Feature
Table Definition. Upon receipt of the submission, GenBank processes the
sequences to make sure that sequences and translations are matched, name
and lineage of the organism are corrected, vectors are not contaminated, and
PubMed/MEDLINE identifiers are added. To compare a query sequence, such
as a probe sequence on a microarray, we run a BLAST search that will identify
sequences in the target genome (e.g., human) in the GenBank that resemble
the query sequence based on sequence similarity.

11.1.2 UniGene: An organized view of transcriptomes

Many organisms of medical and agricultural interest have not yet been
prioritized for genomic sequencing despite increasing efforts and improving
techniques of large-scale sequencing centers. Nevertheless, high-throughput
sequencing of transcribed sequences started in 1991 and cDNA (i.e., reverse
transcribed mRNA) sequences serve as proxies to gene sequences. In addition,
even after genomic sequencing, the collection of cDNA provides a tool for gene
discovery. However, the number of transcribed sequences is larger than that
of genes and the sequencing of expressed sequence tags (ESTs (∼500 bp in
length)) is relatively inaccurate. UniGene, a database of cDNA sequences, ad-
dresses the issues of redundancy and inaccuracy and aims to provide effective
use of the transcriptome.

UniGene focuses on protein coding genes or (expressed pseudogenes) of the
nuclear genome. The collected clone inserts are over 100 bp and contain non-
repetitives. It minimizes the frequency of multiple UniGene clusters being
identified for a single gene. The content of a UniGene cluster entry includes:
summary of the sequences in the cluster; possible proteins for the gene by
similarity tests against the proteins from selected eight model organisms (hu-
man, mouse, rat, fruit fly, zebrafish, nematode worm, thale cress, Baker’s
yeast); inferred map position of the gene; originating tissues; and a list of the
component sequences.

11.1.3 RefSeq: Reviews of sequences and annotations

GenBank publishes the sequences and annotations from primary sequenc-
ing centers. In addition, RefSeq reviews and synthesizes the information in an
effort to serve as the best nonredundant and comprehensive collection of nat-
urally occurring DNA, RNA and protein sequences of major organisms. The
database also includes collection of alternatively spliced transcripts, proteins
from these transcripts, and close paralogs and homologs. Nonredundancy is
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objective and based on clustering identical sequences or family of related se-
quences. The database updates daily and contains over 4700 organisms rang-
ing from viruses, bacteria, to eukaryotes, chromosomes, organelles, plasmids,
transcripts and over 4.2 million proteins. An entry is assigned an accession
number with prefix NG for genomic region, NM for mRNA, NP for pro-
teins, NR for RNA, etc. Manual curation includes literature and database
review. The content of an entry shows curation of the sequence/annotation
and explicit links to chromosome, transcript and protein information.

An accession is associated with a RefSeq status, indicating the level of cu-
ration. Low levels of curation include INFERRED, MODEL, PREDICTED
and PROVISIONAL. INFERRED, MODEL and PREDICTED mean they
are predicted by computational analysis (i.e., BLAST) against GenBank in
identifying the longest mRNA for a locus. They fit model for potential genes,
but are not supported by experimental evidence. PROVISIONAL means the
information is provided by outside collaborators and has not undergone in-
house review yet. High levels of curation include REVIEWED and VAL-
IDATED. REVIEWED indicates that sequence data and literature are re-
viewed by NCBI staff or a collaborating group. VALIDATED means the cor-
responding genomic DNA sequence, mRNA sequence and protein sequence
are validated. RefSeq is accessible via BLAST.

11.1.4 PubMed: A bibliographic database of biomedical jou-
rnals

PubMed R© is a database developed and run by NCBI at National Library
of Medicine (NLM) of National Institutes of Health (NIH). PubMed’s primary
data source is MEDLINE R©, which includes seventeen million citations dating
back to 1950 from five thousand biomedical journals published over the globe.
The fields covered in MEDLINE include medicine, nursing, dentistry, veteri-
nary medicine, health care, and preclinical sciences, such as molecular biology.
In addition to MEDLINE, PubMed collects citations in general science and
chemistry journals that contain life science articles. Citations are in English
or with English abstracts.

The database processes file submissions from publishers at 9:00 a.m. East-
ern Time, Monday through Friday. A new citation is assigned a PubMed
ID number (PMID). New citations become available in PubMed around 11:00
a.m. Eastern Time the next day. In searching, synonyms and English variants
are accepted. Furthermore, terms that underneath the hierarchy of NLM’s
controlled vocabulary will be automatically included in the search. Abbre-
viations, such as N Engl J Med, are recognized and translated into The New

England Journal of Medicine. In author search, last name precedes ini-
tials, e.g., Bush GW. A feature of PubMed search is that related articles can
be listed.
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11.1.5 dbSNP: Database for nucleotide sequence variation

DNA sequence variation, at a rate of 1 per ∼400 bases, is one of the major
factors for individual phenotypic characteristics and propensity to disorders.
The types of polymorphisms in dbSNP include single nucleotide polymor-
phisms or SNPs, deletion insertion polymorphism or DIPs and short tandem
repeats or STRs. A dbSNP entry lists information about the sequences flank-
ing the polymorphism, the frequency at which the polymorphism occurs in
population and the experimental methods, protocols or conditions by which
the variation was assayed. The database accepts variation in any part of a
genome of any organisms.

11.1.6 OMIM: A directory of human genes and genetic dis-
orders

OMIM
TM

, standing for Online Mendelian Inheritance in Man, is a contin-
uously updated and authoritative compendium of human genes and inherited
disorders. It is curated and edited by The Johns Hopkins University School
of Medicine and elsewhere (Dr. Victor A. McKusick and co-workers) and
developed for the Web by NCBI.

An entry of OMIM is associated with a unique and stable six-digit MIM
number. The content consists of: synopsis of the disorder (disease or pheno-
type) and gene including the official name/symbol and clinical features; gene
map including cytogenetic location; reference citations with PMIDs; mouse
ortholog and its map location; and allelic variants (i.e., disease-producing mu-
tations). The database contains over 2000 (1400) autosomal and 180 (120)
X-linked diseases or phenotypes with known (unknown) molecular basis.

11.1.7 Entrez Gene: A Web portal of genes

Entrez Gene, superseding LocusLink, is a hub of information about genes.
The database collects known and predicted genes and is species-independent.
An entry is assigned a unique and stable GeneID and contains explicit and
comprehensive links to other gene-centered resources at NCBI, such as Uni-
Gene, OMIM and GEO. Note that previously established LocusID are retained
in Entrez Gene as GeneID. Entrez Gene, therefore, is perhaps the Web site
from which most researchers start their journey of gene annotations. Figure
11.1 shows the homepage of Entrez Gene from which most of the databases
at NCBI can be searched.

The content of an entry includes: the official symbol and full name of the
gene; synopsis of the function of the encoded protein and RNA products;
map location in chromosome coordinates; sequence information from RefSeq,
GenBank and Swiss-Prot accessions; function details including pathways, GO
terms, protein interactions, Enzyme Commission numbers, diseases or allelic-
specific phenotypes with links to other databases; quantitative expression from
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FIGURE 11.1: The homepage of Entrez Gene. The pull down menu reveals
the plentiful databases that are available from the page.
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GEO and spatio-temporal expression from UniGene.

The text-based search and retrieval system developed at NCBI make pow-
erful search for biomedical information possible. To narrow the search, one
chooses options in field, property and filter. A field is a subcategory of informa-
tion, such as gene name, organism and disease. A property is a keyword in the
entry, e.g., encodes a ribosomal RNA, located in the mitochondrion, has
an associated RefSeq of type validated. A filter specifies relationship of
the entry to other databases at NCBI. For example, Entrez Gene entries

with additional data in GEO and Entrez Gene entries with explicit

links to OMIM. Furthermore, Boolean operators AND, OR, and NOT are
provided. With these provisions, one can, for example, “find entries of fungi
genes that have expression data in UniGene or GEO.”

11.2 PubMeth: A cancer methylation database

PubMeth is a database about DNA methylation and cancer. (See: www.
pubmeth.org) It is created by text mining abstracts in MEDLINE/PubMed
using methylation-, cancer- and detection-related keywords and textual vari-
ants such as methylation, hypermethylation, methylated, BRCA1, BRCA 1,
BRCA-I, lymphoma, non-Hodgkin lymphoma, b-cell lymphoma, ..., etc. Af-
ter retrieval, the abstracts are sorted and ranked according to the counts of
keywords and/or aliases appearing in the sentences. The sorted abstracts
are manually reviewed and annotated before they are stored. Therefore, the
PubMeth database is more than a subset of PubMed.

Query can be made in two ways: gene-centric and cancer-centric. The
former accepts gene symbols, names or RefSeq IDs to query in which cancer
(sub)types the genes under consideration were reported to be methylated. The
returned page summarizes the genes in order of the numbers of references to
the genes and the numbers of samples tested for methylation. The complete
records link to the original PubMed records. The latter enters cancer subtypes
to receive an overview of the genes that were described as methylated in the
selected cancer types together with the percentages of samples that showed
methylation.

11.3 Gene Ontology

As the genomic sequences of more model organisms are sequenced, a high
degree of sequence and function conservation among the organisms starts re-
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vealing. This may not be surprising as the core biological processes, such as
DNA replication, transcription and metabolism, are common in all eukary-
otes. Biologists now contemplate a finite universe of genes and gene products
that are shared by all species. Opportunities are accompanied with chal-
lenges. Traditional biologists have focused on the activity of a single protein
occurring in a specific cellular location of a particular organism. The adopted
nomenclatures can vary depending on the organism and level of annotation.
A precisely defined, common and controlled vocabulary are in need for consis-
tent description of the roles of genes and gene products in any organism. In
addition, relationships among the terms represent biological knowledge. The
goal of Gene Ontology (GO) is to provide a tool for the unification of biol-
ogy (www.geneontology.org). (An ontology comprises a set of defined terms
with structured relationships.) Specifically it strives to facilitate automatic
transfer of knowledge from one organism to another.

The GO consortium started the joint project in 1998 with three collabo-
rating organizations: FlyBase (Drosophila), Mouse Genome Informatics and
Saccharomyces Genome Database. Since then, the consortium has expanded
its membership and now contains sixteen databases covering twenty-seven
species ranging from plant, animal to microbial genomes. GO constructs
three species-independent ontologies: molecular function, biological process
and cellular component, defined in Table 11.1. The state of knowledge of the
roles the gene products play in cells of most organisms is changing and thus
incomplete. To address the issue of effectively organizing and updating the
knowledge, which is at varying stages of completeness, GO takes a different
approach than the standard indexing (i.e., keyword searching) and hierarchi-
cal (e.g., EC numbering) systems in most databases, by connecting GO terms
into nodes in a network. The structure associates genes with nodes within a
GO. The resulting structure, which is technically known as directed acyclic
graphs, connects terms to the parent (i.e., less specialized) terms and, if any,
to child (i.e., more specialized) terms. Figure 11.2 shows an example of such
graphs. Genes are associated with nodes within a GO. The network struc-
ture is species-independent and enables queries made at different levels, e.g.,
“genes in mouse genome that are involved in signal transduction.”

Note that GO is not another sequence database nor is it a gene catalog. GO
describes how gene products behave in a cellular context. And, annotations
of genes/gene products that appear in other databases report the supporting
evidence defined by GO terms. GO collects no three-dimensional structure,
no domain structure, no yet small molecules, and no evolution and expression.
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FIGURE 11.2: A graphical view of the hierarchical structure of GO terms.
A box is a GO term, connecting to other terms by arrows that can represent
either “is a” or “part of.”
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TABLE 11.1: Three Categories of Gene Ontology

Ontology Definition Example GO Terms

Molecular function Activity by the gene product Catalytic activity,
or gene product group at Toll receptor binding
the molecular level

Biological process A series of events Signal transduction,
accomplished by one or pyrimidine
more ordered assemblies metabolism
of molecular functions

Cellular component Part of a larger object Nucleus, proteasome

11.4 Kyoto Encyclopedia of Genes and Genomes

Functions of genes are only realized in the context of interacting molecules
(gene products and small molecules) in the cell. With the philosophy, Kyoto
Encyclopedia of Genes and Genomes (KEGG) started operation in 1995, aim-
ing to establish and maintain the links between the genes in the genome and
the network of interacting molecules in the cell. KEGG runs four composite
databases: PATHWAY, GENES, LIGAND and BRITE. (See: www.genome.jp
/kegg/)

The PATHWAY further divides into five sections: (1) metabolism, such as
carbohydrate metabolism, (2) genetic information processing, such as tran-
scription, (3) environmental information processing, such as ligand-receptor
interaction, (4) cellular processes, such as cell cycle, and (5) human diseases
including neurodegenerative and infectious disorders. In a pathway is drawn
a network of interacting molecules. Metabolic mechanisms are known to be
highly conserved from mammals to bacteria. Metabolic pathways, which are
networks of enzymes or EC numbers, of an organism are generated computa-
tionally from a reference pathway. Regulatory pathways, such as signal trans-
duction and apoptosis, on the other hand, are more diverse across organisms
and have to be generated manually. Biochemically, a metabolic reaction can
be characterized by an indirect protein–protein interaction by two successive
enzymes, while a regulatory reaction involves either a direct protein–protein
interaction as in binding and phosphorylation or an indirect protein–protein
interaction such as gene transcription by a transcription factor. KEGG de-
fines orthologs by similarity in not only sequences (nucleic and amino acids)
but also functions (i.e., conserved subpathway or complex). KEGG Orthol-
ogy (KO) numbers thus are developed in an effort to encode the nodes in
regulatory pathways as the EC numbers in metabolic pathways. A recent
supplement to KEGG is the BRITE database, which is a collection of hi-
erarchical relations of biological objects. A combination of PATHWAY and
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BRITE helps infer higher order functions. Figure 11.3 shows an example of
the bladder cancer pathway.

The GENES database holds a collection of gene catalogs. It has over 2.7
million entries, covering over 650 species/strains. The database automati-
cally matches genes in the genome with the gene products in the pathway
by ortholog identifiers. The content of a GENES entry includes: name, an-
notation, chromosomal position, sequences from GenBank and RefSeq, links
to PubMed, and class inferred from the PATHWAY database. The LIG-
AND database collects chemical compounds in the cell, metabolites, drugs,
xenobiotic compounds, enzymes and enzymatic reactions. A standalone Java
application for microarray data analysis developed at KEGG called KegArray
allows co-regulated genes from the expression profile analysis to be mapped
to the gene products in a pathway or to a cluster of genes encoded on the
chromosome.

11.5 UniProt/Swiss-Prot protein knowledgebase

Swiss-Prot has been providing high-level curated protein sequences since
1986. (See: beta.uniprot.org) It also features a minimum level of redundancy
in the data and high level of integration with other databases. Swiss-Prot
now contains over 188,000 sequence entries from over 9441 species. The five
most represented sequences in the database are human, mouse, Baker’s yeast,
Escherichia coli, and rat. The average length of the protein sequences in the
database is 361. The shortest and longest sequences have, respectively, 2 and
8797 amino acids.

As with any sequence database, an entry in Swiss-Prot contains two types
of information: data and annotation. Data includes sequence, taxonomy of
the biological source and citations. Annotation shows: functions; posttrans-
lational modifications, such as carbohydrates, acetylation; domains and sites,
such as ATP-binding sites and zinc fingers; secondary structure, such as α
helix and β sheet; quaternary structure, such as heterotrimer; similarity to
other proteins; diseases associated with any deficiencies in the protein; and se-
quence variants. Annotations in the entry appear in comment lines, keyword
lines and feature table. Annotations result from original reports, literature
reviews as well as comments from peers.

Swiss-Prot minimizes redundancy by merging identical sequences into a
single entry. If conflicts arise from different citations, they are indicated in
the feature table. Swiss-Prot achieves resource integration by cross-referencing
to ∼100 other related databases. Furthermore, a large number of document
files indexing proteins, species/strains, tissues, authors, citations, accession
numbers, keywords, etc., are distributed with Swiss-Prot.
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FIGURE 11.3: The manually drawn pathways representing our knowledge
on the molecular interaction networks for human bladder cancer by KEGG.
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In addition to the Swiss-Prot section, UniProt contains a computer anno-
tated section, which processes data in GenBank/EMBL/DDBJ before they
are manually annotated and added to Swiss-Prot. The computer annotation
performs tasks, such as annotation standardization, redundancy removal and
evidence attribution. Figure 11.4 shows the new Web site of UniProtKB.

11.6 The International HapMap Project

DNA sequence variations, in particular, single nucleotide polymorphisms
(SNPs), do not occur independently. Rather, in a stretch of chromosome, some
combination of SNPs may be more common than other combinations, resulting
in haplotype blocks. This is because of some hotspots on the chromosomes
at which DNA strands crossover and break during meiosis. The International
HapMap Project, since 2002, is to create a haplotype map of human genome
from samples of diverse genetic backgrounds from Nigerians, Americans of
northern and western European ancestry, Japanese and Han Chinese. The
project has so far produced a haplotype map of an SNP density of one per
kilobase, which is ∼30 percent of all the common SNPs in the assembled
human genome. The project has greatly advanced the design and analysis of
whole genome association studies on complex human diseases. Data including
SNP frequencies, genotypes and haplotypes are freely available at HapMap
Web site (www.hapmap.org) (cf. Figure 11.5) and dbSNP.

11.7 UCSC human genome browser

Base-by-base view of DNA sequence is useful for designing primers for
experiments and associating motifs with functions. The other view of the
genome in terms of exons, ESTs, mRNAs, CpG islands, SNPs, histone mod-
ifications, DNaseI hypersensitivities, cross-species homologies, and so on are
preferred to shed light on their interrelations. A genome browser at University
of California at Santa Cruz (UCSC) hosts an interactive Web browser that
enables search and display of a genome at various levels (genome.ucsc.edu).

We start a browser session by inputting the gene name or a region of a chro-
mosome. In the returned display of the browser contains three main parts.
The top part shows controls to search, zoom (in or out) and scroll across the
chromosome. The bottom part lists more controls for fine tuning the display.
The middle part shows the genome annotations, which are dynamically gener-
ated according to our control settings. An annotation usually resulted from a
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FIGURE 11.4: The homepage of UniProt, the world’s most comprehensive
resource on protein informatics.
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FIGURE 11.5: Homepage of the International HapMap Project.
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measurement, such as microarray experiment, and is arranged in a horizontal
“track” which is laid out over the genome. If various annotations (i.e., mea-
surements) are available and chosen, they are displayed into a stack of tracks
all aligned against our selected genome region. A track, once clicked on, opens
up into a full mode displaying such detailed descriptions as the experimental
protocols, cell lines and authors in obtaining the data as well as links to other
databases. The usefulness of the stacked tracks is that multiple lines of evi-
dence are displayed in a single screen. On the basis, users are able to make
informed judgment about the biology of the chosen region. In Figure 11.6, we
show an example of the display on one of the ENCODE regions [ENCODE07]
in the UCSC genome browser. Figure 11.7 shows the same region, but with
a different selection of tracks.
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FIGURE 11.6: An example of UCSC human genome browser on the EN-
CODE ENm011 region showing tracks of SNPs, CGIs, RNAs, mRNAs, H3ac,
H4ac, DNase, DNA replication time series experiments on various cell lines.
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FIGURE 11.7: The same ENCODE region as in Figure 11.6 but with
tracks on sequence conservation, histone modifications, transcription factor
bindings and DNA methylation.





Chapter 12

Public Microarray Data Repositories

As the manufacturing technologies advance and experimental protocols opti-
mize, the comparability between microarray experiments improves. However,
reproducibility also depends on details (e.g., parameters and normalization) in
the experiment and analysis. Therefore, it is helpful, and has become manda-
tory, that raw microarray data – DNA methylation, histone modifications or
gene expression – along with information on the assay and analysis are made
available in public data repositories for free assessment by third parties. We
describe the minimum prerequisite information about a microarray experi-
ment for publication to most scientific journals and the most popular public
warehouses for data deposition, after an introduction to the international or-
ganization that promotes DNA methylation and epigenetics.

12.1 Epigenetics Society

The aim and activities of the Epigenetics Society (formerly DNA Methy-
lation Society), an international scientific society, are to foster the scientific
research and education of naturally occurring DNA methylation in prokary-
otes and eukaryotes among scientists and students who are interested in the
field. The society also publicizes the study of DNA methylation to molecular
biologists who are not directly working on DNA methylation. The society
maintains a network of hundreds of scientists worldwide interested in the ge-
netic and biochemical aspects of DNA methylation via e-mail communications
on paper abstracts, topical reviews, upcoming conferences, job postings and
technical discussions. In partnership with Landes Bioscience Publishing, the
society has published its official journal, Epigenetics, since January 2006.
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12.2 Microarray Gene Expression Data Society

The Microarray Gene Expression Data (MGED) Society originated from a
grass root movement in 1999 among a group of biologists, computer scientists
and data analysts working in the burgeoning field of functional genomics and
proteomics by high throughput microarray technologies. In 2002, it became a
nonprofit international organization with sponsorships from major microarray
vendors.

The aim of MGED is to facilitate sharing and exchanging of microarray
data and information. Specifically, the focuses are on:

1. promoting standards in the microarray community including scientific
journals, microarray hardware/software users and developers;

2. development of free and commercial standard-supportive software;

3. development of data quality metrics to assess local and global quality
of two-color/oligonucleotide arrays, and standardization of experimental
protocols and data transformation including normalization (the latter
can be achieved by standardizing the documentation of data transfor-
mation/normalization to communicate in a common and unambiguous
manner);

4. development and adoption of ontologies (i.e., controlled vocabularies)
for describing microarray experiments with an entire set of attributes.
Ontology helps queries and searches in databases;

5. extending the standards to include high-throughput life sciences experi-
ments other than gene expression, such as ChIP on chip (i.e., large scale
chromatin-immunoprecipitation) and array CGH (i.e., comparative ge-
nomic hybridization) experiments.

12.3 Minimum Information about a Microarray Experi-
ment

It has been a tradition in biomedical disciplines that data supporting pub-
lications should be made publicly available, the rationale being to help data
interpretation and experiment verification by reviewers/editors and readers.
To comply with the tradition, MGED develops and advocates guidelines called
Minimum Information about a Microarray Experiment (MIAME) to help ex-
perimenters present their data. The MIAME checklist is shown below.
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• Experiment design:

a) Experimental goal, such as title of the manuscript

b) A brief description, such as abstract in the manuscript

c) Keywords, e.g., time course (using MGED ontology terms recom-
mended)

d) Experimental factors, e.g., dose or genetic variations (using MGED
ontology terms recommended)

e) Experimental design, i.e., relationships between samples/treatments

f) Quality assessment steps, such as replicates and dye swaps

g) Links to supplemental Web sites

• Samples used, extract preparation and labeling:

a) Origin of the biological sample, such as name and provider of the
source and other characteristics, such as gender, age, disease state

b) Sample manipulation and its protocol, e.g., growth conditions and
separation techniques

c) Values of each experimental factor for each sample, e.g., time = 30
min

d) Extract preparation protocols, e.g., RNA extraction and purifica-
tion protocols

e) Any external controls, such as spikes

• Hybridization procedures and parameters:

a) Protocol and conditions for hybridization, blocking, washing and
staining, if any

• Measurement data and specifications:

a) Raw data, i.e., scanner/imager output (images are optional)

b) Normalized and summarized data, i.e., the gene expression data
matrix consisting of normalized log ratios averaged from several
related arrays

c) Image scanning hardware and software and their processing pa-
rameters

d) Normalization, transformation, and selection procedures and their
parameters

• Array design:

a) Platform type, i.e., either spotted glass array or in situ synthesized
array, surface coating specifications, product identifier/catalog ref-
erence number for commercial arrays
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b) A table including feature (i.e., spot) location meta/column, meta/
row on the array, a spot ID number, type of spot, i.e., control or
measurement, the sequence for oligo-based spot, source/preparation
and database accession number for cDNA- or PCR-based spot,
primer for PCR-based spot, annotation of the spot, e.g., gene name

c) Principal array organisms

12.4 Public repositories for high-throughput arrays

12.4.1 Gene Expression Omnibus at NCBI

In response to the increasing demand of a public database for high-through-
put hybridization arrays, NCBI initiated the Gene Expression Omnibus (GEO)
project in 1999. Since then, GEO has served as a hub for the submission, stor-
age and retrieval of microarray data.

A GEO entry is distinguished by three organizational entities: platform,
sample and series. The platform identifies whether the array is a nucleotide,
tissue or antibody array. The sample indicates whether the experiment is dual
or single mRNA target sample hybridization. The series defines a time course,
dose-response, unspecified ordered, or unordered experiment. A GEO entry
is assigned an accession number. A platform entry has prefix GPL. A sample
entry has prefix GSM. And a series entry has prefix GSE. Figure 12.1 shows
an example of returned pages of GEO listing all the deposited microarrays
having to do with DNA methylation. Note that to save storage space, GEO
does not archive raw image data.

To deposit data, ASCII-encoded text files containing tables of data can be
uploaded. GEO’s Web site provides a simple step-by-step procedure for users
to upload data files and enter metadata interactively through Web forms.
Note that whether or not data is MIAME-compliant is determined by the
provided content, not by the submission format. It is the responsibility of the
submitter to make sure that the data is MIAME compliant. The checklist
in the previous section provides such a guide. Submitted data can remain
private up to six months until the manuscript quoting the data is published.

12.4.2 ArrayExpress at EBI

ArrayExpress, established at EBI in 2002, is an international public repos-
itory aiming to store well annotated microarray data in accordance with
MGED’s MIAME requirements. To help submitters who have no previous
knowledge of MIAME, ArrayExpress has developed MIAMExpress, which is
a Web-based, MIAME-supportive tool for data submission. MIAMExpress
is an open-source software and can be obtained for installation at local site.
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FIGURE 12.1: The page returned from GEO after a query with the key-
words “DNA methylation.” Fifty-six experiments were found, each containing
multiple arrays.
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After data submission and before its release, the ArrayExpress curation team
checks for MIAME-compliance, accuracy and completeness of biological infor-
mation and data consistency. An accession number is then assigned to each
experiment that contains the hybridizations linking to a publication.

12.4.3 Center for Information Biology Gene Expression data-
base at DDBJ

Center for Information Biology gene EXpression database (CIBEX), a sys-
tem since 2004 in compliance with MIAME, serves as a public repository for a
wide range of high-throughput experimental data including microarray-based
experiments measuring mRNA, serial analysis of gene expression (SAGE tags),
and mass spectrometry proteomic data.



Chapter 13

Open Source Software for
Microarray Data Analysis

Although commercial software exists for microarray data analysis, the flex-
ibility and functionality of the software never catch up with the expanding
diversity and changing subtlety of the biological aims of most research labora-
tories. The situation is true for epigenomics where innovative techniques are
emerging. Novel analysis has to be devised for the developing technologies as
well.

A natural choice of the analysis platform for microarray data is R, which
is an open source language and environment for statistical computation, in
accordance with the general philosophy of public domain knowledge of chapter
11 and chapter 12. As a consequence, R has been the most popular computer
language among statisticians in academia. In addition to its focus on statistics,
R also produces high-quality graphics for data presentation.

The functionality of R is supported by a rich body of functions bundled into
packages. The core packages include those statistical and graphical functions
and are installed by default when R is downloaded for installation. Other
packages are optional and can be downloaded for installation anytime later
when desired. The optional packages are developed by members of the R
community at large and everyone is welcome to make his or her contribution
to the R project.

As high-throughput technologies including DNA sequencing and microar-
rays progress, data of different nature on genomic scales are generated, cre-
ating biological metadata. Another open source project, Bioconductor, dedi-
cated to the analysis of genomic data using R, was launched. The packages in
Bioconductor include various facilities to communicate with the online Web
resources of chapter 11.

The majority of the analyses and graphs in the book were produced using R.
R, as a command line language, requires a bit more learning than commercial
software, which is usually equipped with full-blown graphical user interface.
However, it is worth investing in the learning as we found that the benefits
far exceeded the cost in the long run.
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13.1 R: A language and environment for statistical com-
puting and graphics

R (www.r-project.org and Figure 13.1), since 1997, is a freely download-
able software, consisting of a language and runtime environment for statistical
computing and graphics. It runs on a variety of computer platforms including
Linux, Windows and MacOS. After installation, users start an R session by
clicking on the R icon. Within the session, users key in R built-in functions
with parameters and data. R then interprets the input and returns computa-
tional results as well as any graphical output on a separate window. R, there-
fore, is interactive. The default R distribution installs such base packages for
parametric and nonparametric statistical tests, linear and generalized linear
models, nonlinear regression, cluster analysis, time-series analysis and flexible
graphical functionality for various kinds of data presentations [Dalgaard04].

Processed data, such as normalized microarray data, can be stored into R
recognizable “image” files on hard drives, which can be read in in future R ses-
sions for further analysis from possibly other machines by collaborators. All
typed in functions in the command line during an R session can be recorded
into an R “history” file, serving as analysis log. An integral part of the R func-
tions/packages is the html help pages (cf. Figure 13.2). Most routine chores,
such as figure file generation for power point presentation, are facilitated by
mouse clicks. R not only reads Microsoft Excel files, its computational results
can also be stored in tab delimited format files readable by Excel. R, as a free
software under the Free Software Foundation’s GNU General Public License,
is developed by a community of R users and developers worldwide. Technical
questions have most likely been asked and answered by other users in various
R forums.

13.2 Bioconductor

Besides the default base packages, R has over eight hundred add-on pack-
ages, available at cran.r-project.org, contributed by the dedicated R researchers
and developers for applications ranging from geology to finance. Bioconductor
(www.bioconductor.org), since 2001, is another open source and open devel-
opment project, collecting R packages for the analysis and comprehension of
genomic data, in particular DNA microarray data.

Features of the Bioconductor R packages include: high-quality documen-
tation of the R packages; state of the art statistical and graphical methods
for high-throughput data; real-time association of microarray data with an-
notation data from such Web databases as GenBank, GO and PubMed. The
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FIGURE 13.1: The homepage of R linking to mirror sites for download.
A related project Bioconductor, together with other information, such as R
manuals and FAQs, is also linked.
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FIGURE 13.2: The help page of the statistical power analysis function
power.t.test(). It is invoked by typing > help(power.t.test) under the
R prompt > in an R session.
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latter is achieved by the “annotation data packages” that map the unique
probe IDs on a microarray to GeneIDs, which in turn map to the items in
such databases as OMIM, KEGG and GO. Figure 13.3 shows the description
of one of the essential packages in Bioconductor collection. In the following,
we briefly describe the functionalities of some packages selected from Biocon-
ductor and R. Note that detailed documentation accompanies each package.

13.2.1 marray package

The marray package reads in an assortment of two-color DNA microar-
ray datafiles including *.gpr and *.spot. The package includes functions
for within-array normalization, such as the print-tip loess method described
in chapter 4. The package also includes various diagnostic image plots for
microarray quality assessment (cf. chapter 2).

13.2.2 affy package

The affy package reads in Affymetrix *.CEL files. It provides functions to
access PM and MM probe data. It includes histograms, images and boxplots
for array quality assessment. The package also provides quantile normalization
and various probeset summarization methods of chapter 4 for oligonucleotide
arrays.

13.2.3 limma package

The limma package not only normalizes two-color microarray data, but also
analyzes designed microarray data (cf. chapter 3) for differential methylation
or expression using the linear models of chapter 5. The package also provides
empirical Bayesian methods for microarray experiments of small sample sizes.
Affymetrix array data after normalization can be ported to limma functions
for differential methylation/expression analysis using linear models. Note that
p-values from multiple tests can be corrected for by R’s built-in function
p.adjust(raw pvalue,method="fdr").

13.2.4 stats package

The stats package is one of the base packages in R. It includes such func-
tions as principal component analysis and various clustering algorithms. The
packages also provides the associated plotting functions for hierarchical trees
and PCA biplots.
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FIGURE 13.3: The limma package under the (software(microarray)) hier-
archy of Bioconductor task view.



Open Source Software for Microarray Data Analysis 217

13.2.5 tilingArray package

The tilingArray package provides functions for segmenting the hybridiza-
tion intensities from a high-density tiling array using the structural change
model in chapter 6. The package also includes a Bayesian information crite-
rion method to determine the number of segments (cf. Figure 7.9). Unsu-
pervised segmentation is performed by the hidden Markov model methods in
HiddenMarkov.

13.2.6 Ringo package

The Ringo package provides functions for raw tiling array data import,
quality assessment, normalization, visualization, detection and quantification
of ChIP-enriched regions. The use of R, as of other Bioconductor packages,
allows users to leverage other R functionality, such as the wavelet analysis
method in one of R’s signal processing packages waveslim.

13.2.7 cluster package

The cluster package provides a divisive hierarchical clustering algorithm
of chapter 7 including silhouette width and the associated plot method for the
graphical display. It also includes a method to cut the resulting dendrogram
(tree).

13.2.8 class package

The class package provides functions for k-nearest-neighbor with leave-
one-out cross validatory classification. The validation procedure is better
coupled with the ROC technique of chapter 8 for the determination of k and
other parameters.

13.2.9 GeneNet package

The GeneNet package provides functions for the calculation of partial cor-
relations and their p-values for the analysis of the interdependence network
of chapter 9. The package is especially useful for the cases where the number
of arrays (i.e., samples) is much less than that of loci.

13.2.10 inetwork package

The inetwork provides functions for the identification of modules in a net-
work (cf. chapter 9) using the leading eigenvalue method for modularity max-
imization. The package also provides various plotting functions for network
visualization. It also includes several functions for network metrics.
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13.2.11 GOstats package

The GOstats package provides functions to test over- or underrepresen-
tation of GO terms in a list of genes using hypergeometric tests. The test
function also includes an option to discount the correlation among the GO
terms (cf. section 9.4.4.2 and Figure 11.2).

13.2.12 annotate package

The annotate package establishes the bridge between local analysis and the
rest of the world, such as the various public databases at NCBI (cf. chapter
11) and the meta-data libraries at Bioconductor. The package also provides
functions to output analysis results into html files with hyperlinks to other
Web resources, such as Gene Ontology.
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