Data Analysis
for Chemists

Applications to QSAR and
Chemical Product Design

David Livingstone

Independent Consultant and Visiting Professor at the
Centre for Molecular Design, University of Portsmouth, UK.
Formerly Manager, QSAR, SmithKline Beecham Pharmaceuticals

Oxford New York Tokyo
OXFORD UNIVERSITY PRESS
1995



Data Analysis for Chemists







This book has been printed digitally and produced to a standard design
in order to ensure its continuing availability

OXFORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford OX2 6DP
Oxford University Press is a department of the University of Oxford.
It furthers the University's objective of excellence in résearch, scholarship,
and education by publishing worldwide in
Oxford New York

Auckland Bangkok Buenos Aires Cape Town Chennai
Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata
Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi
Sdo Paulo Shanghai Singapore Taipei Tokyo Toronto

with an associated company in Berlin

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© David Livingstone, 1995

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

Reprinted 2002

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval systeimn, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Livingstone, David (David J.)

Data analysis for chemists: applications to QSAR and
Chemical product design/David Livingstone.
Includes bibliographical references and index.

1. QSAR (Biochemistry)—Statistical methods. I. Title.
QP517.S85L55 1995 574.19°2°072—dc20  95-14967

ISBN 0-19-855728-0 (Hbk)
ISBN 0-19-855727-2 (PbK)



This is for my sister, Delia
(13th July 1942-26th July 1990)






Preface

The inspiration for this book came in part from teaching quantitative
aspects of drug design to the B.Sc. and M.Sc. students of medicinal
chemistry at the University of Sussex. It has also been necessary for me to
describe a number of mathematical and statistical methods to my friends
and colleagues in medicinal (and physical) chemistry, biochemistry, and
pharmacology departments at Wellcome Research and SmithKline
Beecham Pharmaceuticals. I have looked for a textbook which I could
recommend which gives practical guidance in the use and interpretation of
the apparently esoteric methods of multivariate statistics, otherwise known
as pattern recognition or chemometrics. I would have found such a book
useful when I was learning the trade, and so this is intended to be that sort
of guide.

There are, of course, many fine textbooks of statistics, as there are for
medicinal chemistry and quantitative drug design, and these are referred to
as appropriate for further reading. However, I feel that there isn’t a book
which gives a practical guide for chemists to the processes of data analysis.
The emphasis here is on the application of the techniques, although a certain
amount of theory is required in order to explain the methods. This is not
intended to be a statistical textbook, indeed an elementary knowledge of
statistics is assumed of the reader, but is meant to be a statistical companion
to the novice or casual user.

It is necessary here to consider the type of research which these methods
may be used for. Historically, techniques for building models, both physical
and mathematical, to relate biological properties to chemical structure have
been developed in pharmaceutical and agrochemical research. Many of the
examples used in this text are derived from these fields of work. There is no
reason, however, why any sort of property which depends on chemical
structure should not be modelled in this way. This might be termed
quantitative structure-property relationships (QSPR) rather than QSAR
where A stands for activity. Such models are beginning to be reported;
recent examples include applications in the design of dyestuffs, cosmetics,
egg-white substitutes, artificial sweeteners, cheese-making, and prepared
food products. I have tried to incorporate some of these applications to
illustrate the methods, as well as the more traditional examples of QSAR.

The chapters are ordered in a logical sequence, the sequence in which data
analysis might be carried out—from planning an experiment through
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examining and displaying the data to constructing quantitative models.
However, each chapter is intended to stand alone so that casual users can
refer to the section that is most appropriate to their problem. The one
exception to this is the introduction which explains many of the terms which
are used later in the book. Finally, I have included definitions and
descriptions of some of the chemical properties and biological terms used in
panels separated from the rest of the text. Thus, a reader who is already
familiar with such concepts should be able to read the book without undue
interruption.

Steeple Morden DJ.L.
July 1995
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1
Chemical properties and chemical structure

1.1 Introduction

Most applications of data analysis involve attempts to fit a model, usually
quantitative,* to a set of experimental measurements or observations. The
reasons for fitting such models are varied. For example, the model may be
purely empirical and be required in order to make predictions for new
experiments. On the other hand, the model may be based on some theory
or law, and an evaluation of the fit of the data to the model may be used
to give insight into the processes underlying the observations made. In
some cases the ability to fit a model to a set of data successfully may
provide the inspiration to formulate some new hypothesis. The type of
model which may be fitted to any set of data depends not only on the
nature of the data (see Chapter 3) but also on the intended use of the
model. In many applications a model is meant to be used predictively, but
the predictions need not necessarily be quantitative. Chapters 4 and 5 give
examples of techniques which may be used to make qualitative predictions,
as do the classification methods described in Chapter 7.

In some circumstances it may appear that data analysis is not fitting a
model at alll The simple procedure of plotting the values of two variables
against one another might not seem to be modelling, unless it is already
known that the variables are related by some law (for example absorbance
and concentration, related by Beer’s law). The production of a bivariate
plot may be thought of as fitting a model which is simply dictated by the
variables. This may be an alien concept but it is a useful way of visualizing
what is happening when multivariate techniques are used for the display of
data (see Chapter 4). The resulting plots may be thought of as models
which have been fitted by the data and as a result they give some insight
into the information that the model, and hence the data, contains.

How can such models be constructed to describe the relationship
between biological activity (or some other property) and chemical
structure?

* According to the type of data involved, the model may be qualitative.
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1.2 What is QSAR/QSPR?

The fact that different chemicals have different biological effects has been
known for millenniums; perhaps one of the earliest examples of a medicine
was the use by the ancient Chinese of Ma Haung, which contains ephe-
drine, to treat asthma and hay fever. Table 1.1 lists some important bio-
logically active materials derived from plants; no doubt most readers will
be aware of other bioactive substances derived from plants. Of course it
was not until the science of chemistry had become sufficiently developed to
assign structures to compounds that it became possible to begin to spec-
ulate on the cause of such biological properties. The ability to determine
structure enabled early workers to establish structure—activity relationships
(SAR), which are simply observations that a certain change in chemical
structure has a certain effect on biological activity. As an example,
molecules of the general formula shown in Fig. 1.1 are active against the
malaria parasite, Plasmodium falciparum. The effect of structural changes
on the biological properties of derivatives of this compound are shown in
Table 1.2, where the chemotherapeutic index is the ratio of maximum
tolerated dose to minimum therapeutic dose.

Table 1.1 Some examples of plant-derived compounds

Artemisin Antimalarial Sweet wormwood

(Artemisia annua L.)
Ascaridol Anthelminthic Jerusalem artichoke

(Chemopodium anthelminticum)
Aspirin Analgesic Willow bark

(Salix sp.)
Caffeine Stimulant Tea leaves and coffee beans
Digitalis Antiarrythmic Foxglove

(Digitalis purpurea)
Ephedrine Sympathomimetic Ma Huang

(Ephedra sinica)
Filicinic acid Anthelminthic Fern

(Aspidium filix mas)
Nicotine Stimulant Tobacco

(Nicotiana tabacum)
Permethrin Insecticide Crysanthemum
Quinine Antimalarial Cinchona bark

(Chinchona officinalis)
Reserpine Tranquilizer Fern

sedative {Rauvolfia spp.)
Strychnine Central nervous Seeds
system stimulant (Strychnus nux vomica)

Taxol Antitumour Pacific yew tree

(Taxus breviofolia)
Vinblastin and Antitumour Rosy periwinkle

Vingristine

(Catharanthus roseus)
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NHXNEL,
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N

Fig. 1.1. Parent structure of the antimalarial compounds in Table 1.2.

R

Such relationships are empirical and are semi-quantitative in that the
effect of changes in structure are represented as ‘all or nothing’ effects. In
the example shown above, replacement of oxygen by sulphur (compounds
8 and 3) results in a decrease in activity by a factor of 5, but that is all that
can be said about that particular chemical change. In this case there is
only one example of that particular substitution and thus it is not possible
to predict anything other than the fivefold change in activity. If the set of
known examples contains a number of such changes then it would be
possible to determine a mean effect for this substitution and also to assign
a range of likely changes in activity for the purposes of prediction.

Table 1.2 Effect of structural variation on the antimalarial activity of derivatives of
the parent compound shown in Fig. 1.1

X R1 R2 Chemotherapeutic

index

1 (CHy)2 NO, OEt 0

2 (CH3)2 Cl OMe 8

3 (CHJ3)3 Ci OMe 15

4 (CH2)3 H H 0

5 (CH)3 cl OEt 75

6 (CH3)4 Cl OFEt 11.2

7 (CH,)3 CN OMe 10

8 (CH3)s Ci SMe 2.8

An SAR such as that shown here only applies to the set of compounds
from which it is derived, the so-called ‘training set’ as discussed in Section
1.5 and Chapter 2. Although this might be seen as a disadvantage of
structure-activity relationships, the same qualification also applies to other
quantitative models of the relationship between structure and activity. One
of the powerful features of modelling is also one of its disadvantages, in
that any model can only be as ‘good’ as the training set used to derive it.
Making use of a number of more or less reasonable assumptions, the SAR
approach has been used to derive more quantitative models of the re-
lationship between structure and activity using a technique known as the
Free and Wilson method which is described in Chapter 6.

What then of quantitative structure—activity relationships (QSAR)? The
carliest expression of a quantitative relationship between activity and
chemical structure was published by Crum Brown and Frazer (1868-9)
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¢ = f(C) 1.1n

where ¢ is an expression of biological response and C is a measure of the
‘constitution’ of a compound. It was suggested that a chemical operation
could be performed on a substance which would produce a known change
in its constitution, AC. The effect of this change would be to produce a
change in its physiological action, Ad. By application of this method to a
sufficient number of substances it was hoped that it might be possible to
determine what function ¢ is of C. It was recognized that the relationship
might not be a strictly mathematical one because the terms AC, ¢, and
b + Ad could not be expressed with ‘sufficient definiteness to make them
the subjects of calculation’. It was expected, however, that it might be
possible to obtain an approximate definition of f in eqn (1.1). The key to
the difference between the philosophy of this approach and SAR lies in the
use of the term quantitative. The Q in QSAR refers to the way in which
chemical structures are described, using quantitative physicochemical de-
scriptors. It does not refer to the use of quantitative measures of biological
response, although this is a common misconception.

Perhaps the most famous examples of early QSAR are seen in the linear
relationships between the narcotic action of organic compounds and their
oil/water partition coefficients (Meyer 1899; Overton 1899). Table 1.3 lists
the anaesthetic activity of a series of alcohols along with a parameter, Zn,
which describes their partition properties (see Box 1.2 in this chapter for a
description of m). The relationship between this activity and the physico-
chemical descriptor can be expressed as a linear regression equation as
shown below.

log 1/C = 1.039 Y'n — 0.442 (1.2)

Regression equations and the statistics which may be used to describe their
‘goodness of fit’, to a linear or other model, are explained in detail in

Table 1.3 Anaesthetic activity and hydrophobicity of a series of alcohols (from
Hansch et a/. 1965, with permission of Academic Press)

Alcohol Yn Anaesthetic activity
(log 1/C)

C,Hs0H 1.0 0.481
n-C3H,0H 1.5 0.959
n-C4HgOH 2.0 1.5623
n-CsHy,0H 25 2152
n-C;H,50H 35 3.420
n- C3H17OH 4.0 3.886
n-CoH1g0H 4.5 4.602
N*C10H21OH 5.0 5.00
ﬂ—CﬂHngH 5.6 5.301

n-C1 2H250H 6.0 5.124
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Chapter 6. For the purposes of demonstrating this relationship it is suf-
ficient to say that the values of the logarithm of a reciprocal concentration
(log 1/C) in eqn (1.2) are obtained by muitiplication of the values by a
coefficient (1.039) and the addition of a constant term (—0.442). The
equation is shown in graphical form (Fig. 1.2); the slope of the fitted line is
equal to the regression coefficient (1.039) and the intercept of the line with
the zero point of the x-axis is equal to the constant (—0.442).

The origins of modern QSAR may be traced to the work of Professor
Corwin Hansch who in the early 1960s proposed that biological ‘reactions’
could be treated like chemical reactions by the techniques of physical
organic chemistry (Hansch et al. 1963). Physical organic chemistry,
pioneered by Hammett (1937), had already made great progress in the
quantitative description of substituent effects on organic reaction rates and
equilibria. The best-studied and most well-characterized substituent
property was the electronic effect, described by a substituent constant
SIGMA (see Box 1.1). Hansch, however, recognized the importance of
partition effects in any attempt to describe the properties of compounds in
a biological system. The reasoning behind this lay in the recognition that
in order to exert an effect on a system, a compound first had to reach its
site of action. Since biological systems are composed of a variety of more
or less aqueous phases separated by membranes, measurement of partition
coefficients in a suitable system of immiscible solvents might provide a
simple chemical model of these partition steps in the biosystem.* Although
the olive oil/water partition system had already been demonstrated to be
of utility, Hansch chose octan-i-ol as the organic phase of his chem-
ical model system of partition. Octan-1-ol was chosen for a variety of

6.

54

4]
log 1/C 3/
2]

14

n
Fig. 1.2. Plot of biological response (log 1/C) against Zn (from Table 1.3).

* The organic phase of a partition coefficient system is intended to model the fatty, hydrophobic
(water hating), membranes and the aqueous phase the hydrophilic parts of a biosystem.
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Box 1.1
The electronic substituent constant, o

Consider the ionization of benzoic acid as shown below where X is a sub-
stituent in the meta or para position to the carboxyl group.

o
Og O Oy O
@ —_— p + H
X X

The extent to which this equilibrium goes to the right, to produce the car-
boxylate anion and a proton, may be expressed by the value of the equili-
brium constant, K3, which is known as the concentration ionization constant

[AT]H]
Ke="ar

where the terms in square brackets represent the molar concentrations of the
ionized acid (A™), protons (H"), and the un-ionized acid (HA). This is a
simplification of the treatment of ionization and equilibria but will serve for
the purposes of this discussion. The ‘strength’ of an organic* acid, i.e. the
extent to which it ionizes to produce protons, is given by the magnitude of
K,, most often expressed as the negative logarithm of X, pK,. Since pX,
uses the negative log, a large value of X, will lead to a small number and vice
versa. Typical pK, values of organic acids range from 0.5 (strong) for tri-
fluoroacetic acid to 10 (very weak) for phenol. The strength of bases can also
be expressed on the pK, scale; here a large value of pK, indicates a strong
base. A very readable description of the definition and measurement of acid
and base strengths, along with useful tabulations of data, is given in the
monograph by Albert and Serjeant (1984).

One of the features of an aromatic system, such as the benzene ring in
benzoic acid, is its ability to delocalize electronic charge through the alter-
nating single and double bonds. Once again, this is a simplification, since the
bonds are all the same type; however, it will serve here. A substituent on the
benzene ring is able to influence the ionization of the carboxyl group by
donating or withdrawing electronic charge through the aromatic system.
Since ionization produces the negatively charged carboxylate anion, a sub-
stituent which is electron-donating will tend to disfavour this reaction and
the equilibrium will be pushed to the left giving a weaker acid, compared
with the unsubstituted, with a higher pK,. An electron-withdrawing sub-

* Inorganic acids, such as HCl, H,80,, and HNO;, are effectively always completely
dissociated in aqueous solution.
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stituent, on the other hand, will tend to stabilize the anion since it will tend
to ‘spread’ the negative charge and the equilibrium will be pushed to the
right resulting in a stronger acid than the unsubstituted parent. Hammett
(1937) reasoned that the effect of a substituent on a reaction could be
characterized by a substituent constant, for which he chose the symbol ¢ and
a reaction constant, p. Thus, for the ionization of benzoic acids the Hammett
equation is written as

pox = log Kx — log Ky

where the subscripts x and H refer to an x substituent and hydrogen (the
parent) respectively. Measurement of the pK, values of a series of substituted
benzoic acids and comparison with the parent leads to a set of po products.
Choice of a value of p for a given reaction allows the extraction of ¢ values;
Hammett chose the ionization of benzoic acids at 25°C in aqueous solution
as a standard since there was a large quantity of accurate data available.
This reaction was given a p value of 1; the substituent o values derived from
these pK, measurements have been successfully applied to the quantitative
description of many other chemical equilibria and reactions.

reasons: perhaps the most important is that it consists of a long hy-
drocarbon chain with a relatively polar hydroxyl head group, and
therefore mimics some of the lipid constituents of biological mem-
branes. The octanol/water system has provided one of the most suc-
cessful physicochemical descriptors used in QSAR, although arguments
have been proposed in favour of other models and, recently, three
further chemical models of partition have been suggested (Leahy et al.
1989). It was proposed that these provide information that is com-
plementary to that of the octanol/water system. When Hansch first
published on the octanol/water system he defined (Hansch er al. 1962)
a substituent constant, m, in an analogous fashion to the Hammett o
constant (see Box 1.2). The generalized form of what has now become
known as the Hansch approach is shown below

log 1/C = an + bn* + co + dE,+ const. (1.3)

where C is the dose required to produce a standard effect (see Section
1.4.1); n, o, and E; are hydrophobic, electronic, and steric parameters
respectively (see Box 1.3); a, b, ¢, and d are coefficients fitted by regression;
and const. is a constant. The squared term in =« is included in an attempt
to account for non-linear relationships in hydrophobicity. The form of an
equation with a squared term is a parabola and it is true that a number of
data sets appear to fit a parabolic relationship with the partition coeffi-
cient. However, a number of other non-linear relationships may also be
fitted to such data sets and non-linear modelling in hydrophobicity has
received some attention, as described in Chapter 6.
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Box 1.2
The hydrophobic substituent constant, =

The partition coefficient, P, is defined as the ratio of the concentrations of a
compound in the two immiscible phases used in the partitioning system. The
custom here is to take the concentration in the organic phase as the nu-
merator; for most QSAR applications the organic phase is 1-octanol.

[ lor
P T e

Here, the terms in the square brackets refer to the concentration of the same
species in the two different phases.

Hansch chose logarithms of the partition coefficients of a series of sub-
stituted benzenes to define a substituent constant, =, thus

nx = log Py — log Py

where x and H refer to an x-substituted benzene and the parent, benzene,
respectively. The similarity with the Hammett equation may be seen but it
should be noted that there is no reaction constant equivalent to the Hammett
constant p. If a substituent has no effect on the partitioning properties of
benzene, its © value will be zero. If it increases partition into the octanol
phase, then P, and hence log P, will be larger than for benzene and = will be
positive. Such a substituent is said to be hydrophobic; a substituent which
favours partition into the aqueous phase will have a negative n value and is
said to be hydrophilic. Some representative n values are shown in the table.

Hydrophobic Hydrophilic
Substituent n Substituent i
~CH3 0.56 -NO, —-0.28
—C(CHs)3 1.98 -OH —-0.67
—CsHs 1.96 —COzH —0.32
~CgH14 2.51 —NH, —1.23
~CF3 0.88 —-CHO -0.65

A couple of interesting facts emerged from early investigations of = values
following the measurement of partition coefficients for several series of
compounds. The substituent constant values were shown to be more or less
constant and their effects to be, broadly speaking, additive. This is of par-
ticular importance if a quantitative relationship involving n is to be used
predictively; in order to predict activity it is necessary to be able to predict
values for the substituent parameters. Additivity breaks down when there are
interactions between substituents, e.g. steric interactions, hydrogen bonds,
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electronic effects; ‘constancy’ breaks down when there is some interaction
(usually electronic) between the substituent and the parent structure. One
way to avoid any such problem is to use whole molecule log P values, or log
P for a fragment of interest, but of course this raises the question of cal-
culation for the purposes of prediction. Fortunately, log P values may also
be calculated and there are a number of more or less empirical schemes
available for this purpose (Livingstone 1991).

In the defining equation for the partition coefficient it was noted that the
concentration terms referred to the concentration of the same species. This
can have significance for the measurement of log P if some interaction (for
example, dimerization) occurs predominantly in one phase, but is probably
of most significance if the molecule contains an ionizable group. Since P
refers to one species it is necessary to suppress ionization by the use of a
suitable pH for the aqueous phase. An alternative is to measure a dis-
tribution coefficient, D, which involves the concentrations of both ionized
and un-ionized species, and apply a correction factor based on the pkK,
values of the group(s) involved. Yet another alternative is to use log D values
themselves as a hydrophobic descriptor, although this may suffer from the
disadvantage that it includes electronic information.

The measurement, calculation, and interpretation of hydrophobic para-
meters has been the subject of much debate. For further reading see Leo et
al. (1971), Dearden and Bresnen (1988), and Livingstone (1991).

Box 1.3
The buik substituent constant, MR

In eqn (1.3) three substituent parameters n, o, and E;, are used to describe
the hydrophobic, electronic, and steric properties of substituents. The
substituent constant E;, due to Taft (1956), is based on the measurement of
rate constants for the acid hydrolysis of esters of the following type

X-CH,COOR

and it is assumed that the size of the substituent X will affect the ease with
which a transition state in the hydrolysis reaction is achieved.

A variety of successful correlations have been reported in which E; has
been involved but doubt has been expressed as to its suitability as a steric
descriptor, mainly due to concern that electronic effects of substituents may
predominantly control the rates of hydrolysis. Another problem with the E,
parameter is that many common substituents are unstable under the condi-
tions of acid hydrolysis.

An alternative parameter for ‘size’, molar refractivity (MR), was suggested
by Pauling and Pressman (1945). MR is described by the Lorentz—Lorenz
equation
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_n?—1 molwt

Tnt+1 4
where n is the refractive index, and d is the density of a compound, normally
a liquid. MR is an additive-constitutive property and thus can be calculated
by the addition of fragment values, from look-up tables, and nowadays by
computer programs (Livingstone 1991). This descriptor has been successfully
employed in many QSAR reports although, as for E,, debate continues as to
precisely what chemical property it models. A variety of other parameters
has been proposed for the description of steric/bulk effects (Livingstone
1991) including various corrected atomic radii (Charton 1991).

What of QSPR? In principle, any property of a substance which is
dependent on the chemical properties of one or more of its constituents
could be modelled using the techniques of QSAR. Although most of the
reported applications come from pharmaceutical and agrochemical
research, publications from more diverse fields are beginning to appear.
For example, Narvaez and co-workers (1986) analysed the relationship
between musk odourant properties and chemical structure for a set of
bicyclo- and tricyclobenzenoids. A total of 47 chemical descriptors were
generated (Table 1.4) for a training set of 148 compounds comprising 67
musks and 81 non-musks. Using the final set of 14 parameters, a dis-
criminant function (see Chapter 7) was generated which was able to
classify correctly all of the training set compounds. A test set of 15
compounds, six musk and nine non-musks, was used to check the pre-
dictive ability of the discriminant functions. This gave correct predictions
for all of the musk compounds and eight of the nine non-musks.

Another example involves a quantitative description of the colour-
fastness of azo dye analogues of the parent structure shown in Fig. 1.3

Table 1.4 Descriptors used in the analysis of musks (from Narvaez et a/. 1986,
with permission of Oxford University Press)

Number of descriptors

Generated Used® Final®
Substructure 8 7 2
Substructure environment 6 6 2
Molecular connectivity 9 6 4
Geometric 15 8 4
Calculated log P 1 1 0
Molar refractivity 1 1 0
Electronic 7 6 2
Total 47 35 14

® Some descriptors were removed prior to the analysis due to correlations with other parameters or
insufficient non-zero values (See Chapter 3).
® Number of parameters used in the final predictive equation.
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X1
CH,CHg
X N=N
CH,CH,Xs
X3 X X4

Fig. 1.3. Parent structure of azo dye analogues (from Carpignano et a/. 1985 with permission
of the Society of Dyers and Colourists).

(Carpignano et al. 1985). Amongst other techniques, this study applied the
method of Free and Wilson (see Chapter 6) to the prediction of colour-
fastness. Briefly, the Free and Wilson method involves the calculation,
using regression analysis, of the contribution that a substituent in a par-
ticular position makes to activity, here the activity is light-fastness of the
dye. It is assumed that substituents make a constant contribution to the
property of interest and that these contributions are additive. The analysis
gave a regression equation which explained 92 per cent of the variance in
the light-fastness data with a standard deviation of 0.49. An extract of
some of the predictions made by the Free and Wilson analysis is shown in
Table 1.5, which includes the best and worse predictions and also shows
the range of the data. One advantage of this sort of treatment of the data
is that it allows the identification of the most important positions of
substitution (X; and Xs) and the most positively (CN and Cl) and nega-
tively influential substituents (NO, and OCHy3).

Table 1.5 Predicted light-fastness of azo dyes (from Carpignano et a/. 1985, with
permission of the Society of Dyers and Colourists)

Dye® Calculated light-fastness Residual®
1 4.03 0.47
4 5.50 0.00
8 5.35 ~0.35

13 2.84 0.16

18 1.05 -0.05

19 6.69 0.31

21 4.25 0.75

28 2.15 -0.15

39 5.76 -0.76

44 5.36 -0.36

 Selected dyes from a larger set have been shown here.
b Ditference between predicted and measured.

1.3 Why look for quantitative relationships?

The potential of organic chemistry for the production of new compounds
is enormous, whether they be intended for pharmaceutical or agrochemical
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applications, fragrances, flavourings, or foods. In 1994, Chemical Abstracts
listed more than 13 million compounds, but this is only a tiny percentage
of those that could be made. As an example, Hansch and Leo (1979) chose
a set of 166 substituents to group into various categories according to their
properties (see Chapter 2). If we consider the possible substitution posi-
tions on the carbon atoms of a relatively simple compound such as qui-
noline (Fig. 1.4), there are 10'° different analogues that can be made using
these substituents. If the hunt for new products merely involved the
synthesis and testing of new compounds without any other guidance, then
it would clearly be a long and expensive task.

Of course, this is not the way that industry goes about the job. A large
body of knowledge exists ranging from empirical structure-activity re-
lationships to a detailed knowledge of mechanism, including metabolism
and elimination in some cases. The purpose of quantitative structure—
activity (or property) relationships is to provide a better description of
chemical structure and perhaps some information concerning mechanism.
The advantage of having a better description of structure is that it may be
possible to transfer information from one series to another. In the example
shown in Section 1.2, it was seen that substitution of a sulphur atom by
oxygen resulted in an improvement in activity. This may be due to a
change in lipophilicity, bulk, or electronic properties. If we know which
parameters are important then we can, within the constraints of organic
chemistry, design molecules which have the desired properties by making
changes which are more significant than swapping oxygen for sulphur.

The work of Hansch ef al. (1977) provides an example of the use of
QSAR to give information concerning mechanism. They demonstrated the
following relationship for a set of esters binding to the enzyme papain.

log 1/K,,=1.0315 +0.576+0.61MR,+3.8 (1.4)
n=25r=0907 s=10.208

Where K., the Michaelis—Menten constant, is the substrate concentration
at which the velocity of the reaction is half maximal. The subscripts to the
physicochemical parameters indicate substituent positions. The statistics
quoted are the number of compounds in the data set (n), the correlation
coefficient (r) which is a measure of goodness of fit, and the standard error
of the fit (s); see Chapter 6 for an explanation of these statistics. It is
possible to try to assign some chemical ‘meaning’ to the physicochemical

g9
=

N

166" =3.47 x 10"
Fig. 1.4. Quinoline
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parameters involved in eqn (1.4). The positive coefficient for o implies that
electron-withdrawing substituents favour formation of the enzyme-
substrate complex. Since the mechanism of action of papain involves the
electron-rich SH group of a cysteine residue, this appears to be consistent.
The molar refractivity term (see Box 1.3) is also positive, implying that
bulkier substituents in the 4 position favour binding. The two parameters
n4 and MR, are reasonably orthogonal* for the set of 25 compounds used
to generate eqn (1.4), and since the data does not correlate with w4 it was
concluded that a bulk effect rather than a hydrophobic effect was
important at position 4. The prime sign associated with the © parameter
for position 3 indicates that where there were two meta substituents the ©
value of the more hydrophobic substituent was used, the other m; value
being ignored. The rationale for this procedure was that binding of one
meta substituent to the enzyme placed the other meta substituent into an
aqueous region outside the enzyme binding site. It was also necessary to
make this assumption in order to generate a reasonable regression equa-
tion which described the data.

Following the QSAR analysis, Hansch and Blaney (1984) constructed a
model of the enzyme and demonstrated that the invariant hydrophobic
portion of the molecules could bind to a large hydrophobic pocket. In this
model, one of the two meta substituents also fell into a hydrophobic
pocket forcing the other meta substituent out of the binding site. The
substituent at the 4 position points towards an amide group on the enzyme
which is consistent with the assignment of a bulk not hydrophobic com-
ponent to enzyme binding at this position. The QSAR equation and
molecular graphics study in this instance appear to tie together very nicely
and it is tempting to expect (or hope!) that this will always be the case. A
note of caution should be sounded here in that strictly speaking a corre-
lation does not imply causality. However, there is no need to be unduly
pessimistic: correlation can inspire imagination!

1.4 Sources of data

At this point it is necessary to introduce some jargon which will help to
distinguish the two main types of data which are involved in QSAR. The
biological or other property data is known as a dependent variable. It is
expected that this type of data will be determined by chemical structure,
and it will thus be related by some more or less complex function to the
physicochemical properties which are themselves dictated by structure. It is
the aim of QSAR to predict values of one or more dependent variables
from values of one or more independent variables. The independent

* Orthogonal here means uncorrelated.
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variables are physicochemical properties such as 7« and o which, although
dependent on chemical structure, are not dependent on the biological data.
Dependent variables are usually determined by experimental measurement
or observation on some (hopefully) relevant test system. This may be a
biological system such as a purified enzyme, cell culture, piece of tissue, or
whole animal; alternatively it may be a panel of tasters, a measurement of
viscosity, or the quantification of colour. Independent variables may be
determined experimentally or may be calculated. Important features of
data such as scales of measurement, distribution, and scaling are described
in Chapter 3. Here we shall just consider the sources of data.

1.4.1 Dependent data

Important considerations for dependent data are that their measurement
should be well defined experimentally, and that they should be consistent
amongst the compounds (mixtures, samples, products) in a set. This may
seem obvious, and of course it is good scientific practice to ensure that an
experiment is well controlled, but it is not always obvious that data is
consistent, particularly when analysed by someone who did not generate it.
Consider the set of curves shown in Fig. 1.5 where biological effect is
plotted against concentration. Compounds 1-3 can be seen to be ‘well
behaved’ in that their dose-response curves are of very similar shape and
are just shifted along the concentration axis depending on their potency.
Curves of this sigmoidal shape are quite typical; common practice is to
take 50 per cent as the measure of effect and read off the concentration to
achieve this from the dose axis. The advantage of this is that the curve is
linear in this region; thus if the EDsy (the dose to give 50 per cent effect)
has been bracketed by experimental measurements, it simply requires

100 4 e e

Effect %

log C

Fig. 1.5. Typical and not so typical dose—+response curves for a set of five different
compounds.
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linear interpolation to obtain the EDsy. A further advantage of this
procedure is that the effect is changing most rapidly with concentration in
the 50 per cent part of the curve. Since small changes in concentration
produce large changes in effect it is possible to get the most precise
measure of the concentration required to cause a standard effect. The
curve for compound 4 illustrates a common problem in that it does not
run parallel to the others; this compound produces small effects (<50 per
cent) at very low doses but needs comparatively high concentrations to
achieve effects in excess of 50 per cent. Compound 5 demonstrates yet
another deviation from the norm in that it does not achieve 50 per cent
effect. There may be a variety of reasons for these deviations from the
usual behaviour, such as changes in mechanism, solubility problems, and
so on, but the effect is to produce inconsistent results which may be
difficult or impossible to analyse.

The situation shown here where full dose-response data is available is
very good from the point of view of the analyst, since it is relatively easy
to detect abnormal behaviour and the data will have good precision.
However, it is often time-consuming, expensive, or both, to collect such a
full set of data. There is also the question of what is required from the test
in terms of the eventual application. There is little point, for example, in
making precise measurements in the millimolar range when the target
activity must be of the order of micromolar or nanomolar. Thus, it should
be borne in mind that the data available for a QSAR/QSPR analysis may
not always be as good as it appears at first sight. Any time spent in a
preliminary examination of the data and discussion with those involved in
the measurement will usually be amply repaid.

1.4.2 Independent data

The physicochemical parameters used to describe molecules may come
from a variety of sources. Chemical mode! systems such as those described
for hydrophobic and electronic effects have proved successful, as have
models for bulk and steric effects. A good account of many of these
(mainly) substituent constants is given in the paper by Van de Water-
beemd et al. (1989). In principle, any experimentally measured property
may be used as a physicochemical descriptor. A number of these are
shown in Table 1.6. There can, however, be a major disadvantage in the
use of experimental properties. If the experimental parameter cannot be
predicted, it will be necessary to synthesize a new compound before the
property can be measured. Since a major aim of QSAR is to predict before
synthesis, the use of such a descriptor may, to some extent, defeat its own
purpose. Of course, if the biological test is difficult, slow, or expensive, a
QSAR involving experimental parameters may be very useful.
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Table 1.6 Some experimental parameters used in QSAR

Descriptor Symbol
Melting point m.p.
NMR chemical shift )
Infra-red frequency v
Half-wave reduction potential Eypa
Half-life for hydrolysis in mouse plasma t
fonization potential Iy
Half life for reaction with 4-nitrothiophenol ti2
Chromatographic retention R

Some experimental properties can be predicted with varying degrees of
success. Carbon-13 NMR chemical shifts, for example, may be predicted
by use of a combination of modelling by molecular mechanics and con-
sideration of the electronegativity of the constituent atoms of the molecule
(Jaime 1990). A handbook of chemical property estimation methods, un-
fortunately no longer in print, was assembled by Lyman et al. (1982).

A very useful addition to these experimental and chemical model-based
descriptors are parameters which may be calculated solely from con-
sideration of molecular structure. One such class of parameters is based on
the topology of a molecule: they are known as molecular connectivity
indices (see Box 1.4). These descriptors may be calculated very readily and
have the advantage that they may be applied to quite diverse sets of
structures. As a result they have found applications in environmental
studies where data sets containing non-homologous structures are not
unusual (Basak and Magnuson 1983; De Flora er al. 1985; Nirmala-
khandan and Speece 1988).

One of the drawbacks with molecular connectivity descriptors is the
difficulty in moving back from connectivity values to chemical structure.
That is to say, it is difficult to predict a chemical structure which will give
a particular value of a connectivity index.

Another class of descriptors which can be calculated purely from a
knowledge of molecular structure is obtained from the computer-based

Box 1.4
Molecular connectivity indices

Molecular connectivity is a topological descriptor, that is to say it is calcu-
lated from a two-dimensional representation of chemical structure. All that is
required in order to calculate molecular connectivity indices for a compound
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is knowledge of the nature of its constituent atoms (usually just the heavy
atoms, not hydrogens) and the way that they are joined to one another.

Consider the hydrogen-suppressed graph of the alcohol shown below. The
numbers in brackets give the degree of connectivity, 8,, for each atom; this is
just the number of other atoms connected to an atom. For each bond in the
structure, a bond connectivity, Cy, can be calculated by taking the reciprocal
of the square root of the product of the connectivities of the atoms at either
end of the bond. For example, the bond connectivity for the first carbon—
carbon bond (from the left) in the structure is

Ci=1/v1x3
More generally the bond connectivity of the kth bond is given by

Cr = 1//5%;

where the subscripts i and j refer to the atoms at either end of the bond. The
molecular connectivity index, y, for a molecule is found by summation of the
bond connectivities over all of its N bonds.

N
x=>_Ck
k=1

For the butanol shown below, the four bond connectivities are the reciprocal
square roots of (1x3), (1x3), 2x3), and (2x1) which gives a molecular
connectivity value of 2.269. This simple connectivity index is known as the
first-order index because it considers only individual bonds, in other words
paths of two atoms in the structure. Higher order indices may be generated
by the consideration of longer paths in a molecule and other refinements

M

() © O

C——C—-C/
| ®@
C
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have been considered, such as valence connectivity values, path, cluster, and
chain connectivities (Kier and Hall 1986).

Molecular connectivity indices have the advantage that they can be readily
and rapidly calculated from a minimal description of chemical structure. As
might be expected from their method of calculation they contain primarily
steric information, although it is claimed that certain indices, particularly
valence connectivities, also contain electronic information. Molecular con-
nectivity has been shown to correlate with chemical properties such as water
solubility, boiling point, partition coefficient, and Van der Waals’ volume.
They have also been used to describe a variety of biological properties in-
cluding toxicity, and have a number of environmental applications.
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Box 1.5
Parameters from molecular models

The creation of molecular models using computers has become a common
feature in many areas of chemical research. The information used to create the
models may be experimental (from X-ray structure determination, NMR
experiments, and so on) or may be theoretical (from empirical methods such as
molecular mechanics or less empirical techniques such as quantum mechanics).
Having built the models, the molecular modelling software may be used to
calculate a very wide variety of descriptors. Some may be geometrical, for
example, the distance (and spatial relationship) between functional groups,
minimum and maximum dimensions in a given axis, volume, etc. Others may
depend upon calculation of electronic distribution and energies: molecular
orbital energies are good examples, and the highest occupied (HOMO) and
lowest unoccupied (LUMO) are particular favourites. Another class of
descriptor involves the calculation of an interaction energy between a probe
atom or group and the molecule of interest. This is usually carried out at
regularly spaced intervals on a grid of points surrounding the molecule or, in
the case of a large molecule such as a protein, enclosing a particular part of the
computer model. This approach tends to lead to the generation of very large
numbers (thousands) of parameters and thus requires multivariate techniques
in order to analyse the data. Theoretical descriptors have also been proposed
as replacements for ‘traditional’ parameters such as log P and a grid-based
approach has been used to ‘explain’ pK, values.

The range of parameters that may be calculated from computer models of
chemical structure is only limited by the imagination of the theoretical
chemists who devise the techniques and, in some cases, the users who employ
them. The success of these approaches, however, is largely determined by
correct application of the appropriate techniques of multivariate analysis.

molecular modelling packages which are now widely available. A varicty
of physicochemical properties may be calculated using such systems (see
Box 1.5); Livingstone (1991) discusses the generation of such parameters
and also puts them into context with the more ‘traditional’ descriptors
used in QSAR.

1.5 Analytical methods

This whole book is concerned with analytical methods, as the following
chapters will show, so the purpose of this section is to introduce and
explain some of the terms which are used to describe the techniques. These
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terms, like most jargon, also often serve to obscure the methodology to the
casual or novice user so it is hoped that this section will help to unveil the
techniques.

First, we should consider some of the expressions which are used to
describe the methods in general. Chemometrics is used to describe ‘any
mathematical or statistical procedure which is used to analyse chemical
data’ (Kowalski er al. 1987). Thus, the simple act of plotting a calibration
curve is chemometrics, as is the process of fitting a line to that plot by the
method of least squares, as is the analysis by principal components of the
spectrum of a solution containing several species. Any chemist who carries
out quantitative experiments is also a chemometrician! This term has its
analogue in other sciences; biometrics in biology and psychometrics in
psychology. Univariate statistics is (perhaps unsurprisingly) the term given
to describe the statistical analysis of a single variable. This is the type of
statistics which is normally taught on an introductory course; it involves
the analysis of variance of a single variable to give quantities such as the
mean and standard deviation, and some measures of the distribution of
the data (see Chapter 3). Multivariate statistics describes the application of
statistical methods to more than one variable at a time, and is perhaps
more useful than univariate methods since most problems in real life are
multivariate. We might more correctly use the term multivariate analysis
since not all multivariate methods are statistical. Chemometrics and
multivariate analysis refer to more or less the same things, chemometrics
being the broader term since it includes univariate techniques.*

Pattern recognition is the name given to any method which helps to
reveal the patterns within a data set. Some of the display techniques de-
scribed in Chapter 4 are quite obvious examples of pattern recognition
since they result in a visual display of the patterns in data. However, to go
back to the example of a calibration curve, the equation used to describe
the fit of a linear (or otherwise) curve to a data set is also an example of
showing a pattern in data. In this case the pattern is not shown visually
but is revealed in the rather more concise form of an equation. Pattern
recognition and chemometrics are more or less synonymous. Some of the
pattern recognition techniques are derived from research into artificial
intelligence. We can ‘borrow’ some useful jargon from this field which is
related to the concept of ‘training’ an algorithm or device to carry out a
particular task. Suppose that we have a set of data which describes a
collection of compounds which can be classified as active or inactive in
some biological test. The descriptor data, or independent variables, may be
whole molecule parameters such as melting point, or may be substituent
constants such as ®n, or may be calculated quantities such as molecular

* But, of course, it is restricted to chemical problems.
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orbital energies. One simple way in which this data may be analysed is to
compare the values of the variables for the active compounds with those of
the inactives (see discriminant analysis in Chapter 7). This may enable one
to establish a rule or rules which will distinguish the two classes. For
example, all the actives may have melting points above 250°C and/or may
have n values below 1. The production of these rules, by inspection of the
data or by use of an algorithm, is called supervised learning since knowl-
edge of class membership was used to generate them. The dependent
variable, in this case membership of the active or inactive class, is used in
the learning or training process. Unsupervised learning, on the other hand,
does not make use of a dependent variable. An example of unsupervised
learning for this data set might be to plot the values of two of the de-
scriptor variables against one another. Class membership for the com-
pounds could then be marked on the plot and a pattern may be seen to
emerge from the data. If we chose melting point and r as the two variables
to plot, we may see a grouping of the active compounds where n <1 and
melting point >250°C.

The distinction between supervised and unsupervised learning may seem
unimportant but there is a significant philosophical difference between the
two. When we seek a rule to classify data, there is a possibility that any
apparent rule may happen by chance. It may, for example, be a coin-
cidence that all the active compounds have high melting points; in such a
case the rule will not be predictive. This may be misleading, embarrassing,
expensive, or all three! Chance effects may also occur with unsupervised
learning but are much less likely since unsupervised learning does not seek
to generate rules. Chance effects are discussed in more detail in Chapters 6
and 7. The concept of learning may also be used to define some data sets.
A set of compounds which have already been tested in some biological
system, or which are about to be tested, is known as a learning or training
set. In the case of a supervised learning method this data will be used to
train the technique but this term applies equally well to the unsupervised
case. Judicious choice of the training set will have profound effects on the
success of the application of any analytical method, supervised or un-
supervised, since the information contained in this set dictates the in-
formation that can be extracted (see Chapter 2). A set of untested or yet to
be synthesized compounds is called a test set, the objective of data analysis
usually being to make predictions for the test set (also sometimes called a
prediction set). A further type of data set, known as an evaluation set, may
also be used. This consists of a set of compounds for which test results are
available but which is not used in the construction of the model
Examination of the prediction results for an evaluation set can give some
insight into the validity and accuracy of the model.

Finally we should define the terms paramefric and non-parametric. A
measure of the distribution of a variable (see Chapter 3) is a measure of
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one of the parameters of that variable. If we had measurements for all
possible values of a variable, (an infinite number of measurements), then
we would be able to compute a value for the population distribution.
Statistics is concerned with a much smaller set of measurements which
forms a sample of that population and for which we can calculate a
sample distribution. A well-known example of this is the Gaussian or
normal distribution. One of the assumptions made in statistics is that a
sample distribution, which we can measure, will behave like a population
distribution which we cannot. Although population distributions cannot
be measured, some of their properties can be predicted by theory. Many
statistical methods are based on the properties of population distributions,
particularly the normal distribution. These are called parametric techniques
since they make use of the distribution parameter. Before using a para-
metric method, the distribution of the variables involved should be
calculated. This is very often ignored, although fortunately many of the
techniques based on assumptions about the normal distribution are quite
robust to departures from normality. There are also techniques which do
not rely on the properties of a distribution, and these are known as non-
parametric or ‘distribution free’ methods.
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2
Experimental design—compound and
parameter selection

2.1 What is experimental design?

All experiments are designed insofar as decisions are made concerning the
choice of apparatus, reagents, animals, analytical instruments, tempera-
ture, solvent, and so on. Such decisions need to be made for any individual
experiment, or series of experiments, and will be based on prior experience,
reference to the literature, or perhaps the whim of an individual experi-
mentalist. How can we be sure that we have made the right decisions?
Does it matter whether we have made the right decisions? After all, it can
be argued that an experiment is just that; the results obtained with a
particular experimental set-up are the results obtained, and as such are of
more or less interest depending on what they are. To some extent the
reason for conducting the experiment in the first place may decide whether
the question of the right decisions matters. If the experiment is being
carried out to comply with some legislation from a regulatory body (for
example, toxicity testing for a new drug may require administration at
doses which are fixed multiples of the therapeutic dose), then the experi-
mental decisions do not matter. Alternatively the experiment may be in-
tended to synthesize a new compound. In this case, if the target compound
is produced then all is well, except that we do not know that the yield
obtained is the best we could get by that route. This may not matter if we
are just interested in having a sample of the compound, but what should
we do if the experiment does not produce the compound? The experiment
can be repeated using different conditions: for example, we could change
the temperature or the time taken for a particular step, the solvent, or
solvent mixture, and perhaps the reagents. These experimental variables
are called factors and even quite a simple chemical synthesis may involve a
number of factors. What is the best way to set about altering these factors
to achieve the desired goal of synthesizing the compound? We could try
‘trial and error’, and indeed many people do, but this is unlikely to be the
most efficient way of investigating the effect of these factors, unless we are
lucky. However, the most important feature of experimental design lies in
the difference between ‘population’ values and ‘sample’ values. As will be
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described in the next chapter, any experimental result, whether a mea-
surement or the yield from a synthesis, comes from a population of such
results. When we do an experiment we wish to know about the population
structure (values) using a sample to give some idea of population beha-
viour. In general, the larger the number of samples obtained, the better
our idea of population values. The advantages of well-designed experi-
ments are that the information can be obtained with minimum sample
sizes and that the results can be interpreted to give the population
information required. The next section gives some examples of strategies
for experimental design. This can be of use directly in the planning of
experiments but will also introduce some concepts which are of con-
siderable importance in the analysis of property—activity data.

One may ask the question ‘how is experimental design relevant to the
analysis of biological data when the experimental determinations have
already been made?’. One of the factors which is important in the testing
of a set of compounds, and indeed intended to be the most important, is
the nature of the compounds used. This set of compounds is called a
training set, and selection of an appropriate training set will help to ensure
that the optimum information is extracted from the experimental mea-
surements made on the set. As will be shown in Section 2.3, the choice of
training set may also determine the most appropriate physicochemical
descriptors to use in the analysis of experimental data for the set. At the
risk of stating the obvious, it should be pointed out that the application of
any analytical method to a training set can only extract as much in-
formation as the set contains. Careful selection of the training set can help
to ensure that the information it contains is maximized.

2.2 Experimental design techniques

Before discussing the techniques of experimental design it is necessary to
introduce some terms which describe the important features of experi-
ments. As mentioned in the previous section, the variables which de-
termine the outcome of an experiment are called factors. Factors may be
qualitative or quantitative. As an example, consider an experiment which
is intended to assess how well a compound or set of compounds acts as an
inhibitor of an enzyme in vitro. The enzyme assay will be carried out at a
certain temperature and pH using a particular buffer with a given sub-
strate and perhaps cofactor at fixed concentrations. Different buffers may
be employed, as might different substrates if the enzyme catalyses a class
of reaction (e.g. angiotensin converting enzyme splits off dipeptides from
the C-terminal end of peptides with widely varying terminal amino acid
sequences). These are qualitative factors since to change them is an ‘all or
nothing’ change. The other factors such as temperature, pH, and the
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concentration of reagents are quantitative; for quantitative factors it is
necessary to decide the levels which they can adopt. Most enzymes carry
out their catalytic function best at a particular pH and temperature, and
will cease to function at all if the conditions are changed too far from this
optimum. In the case of human enzymes, for example, the optimum
temperature is likely to be 37°C and the range of temperature over which
they catalyse reactions may be (say) 32 to 42°C. Thus we may choose three
levels for this factor: low, medium, and high, corresponding to 32, 37, and
42°C. The reason for choosing a small number of discrete levels for a
continuous variable such as this is to reduce the number of possible ex-
periments (as will be seen below). In the case of an enzyme assay, ex-
perience might lead us to expect that medium would give the highest
turnover of substrate although experimental convenience might prompt the
use of a different level of this factor.*

A particular set of experimental conditions is known as a treatment and
for any experiment there are as many possible treatments as the product of
the levels of each of the factors involved. Suppose that we wish to in-
vestigate the performance of an enzyme with respect to temperature, pH,
and the presence or absence of a natural cofactor. The substrate con-
centration might be fixed at its physiological level and we might choose
two levels of pH which we expect to bracket the optimum pH. Here the
cofactor is a qualitative factor which can adopt one of two levels, present
or absent, temperature may take three levels as before, and pH has two
levels, thus there are 2 x 3 x 2 = 12 possible treatments, as shown in
Table 2.1. The outcome of an experiment for a given treatment is termed a
response; in this enzyme example the response might be the rate of con-
version of substrate, and in our previous example the response might be
the percentage yield of compound synthesized. How can we tell the im-
portance of the effect of a given factor on a response and how can we tell
if this apparent effect is real? For example, the effect may be a population
property rather than a sample property due to random variation. This can
be achieved by replication—the larger the number of replicates of a given

Table 2.1 Experimental factors for an enzyme assay

Factor Type Levels Treatments
Temperature (°C) Quantitative 32,37,42 3
Cofactor Qualitative Yes/No 2
pH Quantitative 70,78 2
Total 12

* Optimum enzyme performance might deplete the substrate too rapidly and give an inaccurate
measure of a compound as an inhibitor.
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treatment then the better will be our estimate of the variation in response
for that treatment. We will also have greater confidence that any one result
obtained is not spurious since we can compare it with the others and thus
compare variation due to the treatment to random variation. Replication,
however, consumes resources such as time and material, and so an im-
portant feature of experimental design is to balance the effort between
replication and change in treatment. A balanced design is one in which the
treatments to be compared are replicated the same number of times, and
this is desirable because it maintains orthogonality between factors (an
important assumption in the analysis of variance).

The factors which have been discussed so far are susceptible to change
by the experimentalist and are thus referred to as controlled factors. Other
factors may also affect the experimental response and these are referred to
as uncontrolled factors. How can experiments be designed to detect, and
hopefully eliminate, the effects of uncontrolled factors on the response?
Uncontrolled factors may very often be time-dependent. In the example of
the enzyme assay, the substrate concentration may be monitored using an
instrument such as a spectrophotometer. The response of the instrument
may change with time and this might be confused with effects due to the
different treatments unless steps are taken to avoid this. One approach
might be to calibrate the instrument at regular intervals with a standard
solution: calibration is, of course, a routine procedure. However, this
approach might fail if the standard solution were subject to change with
time, unless fresh solutions were made for each calibration. Even if the
more obvious time-dependent uncontrolled factors such as instrument drift
are accounted for, there may be other important factors at work.

One way to help eliminate the effect of uncontrolled factors is to ran-
domize the order in which the different treatments are applied. The con-
sideration that the order in which experiments are carried out is important
introduces the concept of batches, known as blocks, of experiments. Since
an individual experiment takes a certain amount of time and will require a
given amount of material it may not be possible to carry out all of the
required treatments on the same day or with the same batch of reagents. If
the enzyme assay takes one hour to complete, it may not be possible to
examine more than six treatments in a day. Taking just the factor pH and
considering three levels, low (7.2), medium (7.4), and high (7.6), labelled as
A, B, and C, a randomized block design with two replicates might be

A, B B CAC

Another asay might take less time and allow eight treatments to be carried
out in one day. This block of experiments would enable us to examine the
effect of two factors at two levels with two replicates. Taking the factors
pH and cofactor, labelled as A and B for high and low levels of pH, and 1
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and 0 for presence or absence of cofactor, a randomized block design with
two replicates might be

Al, B0, Bi, A0, Al, B0, B1, A0

This has the advantage that the presence or absence of cofactor alternates
between treatments but has the disadvantage that the high pH treatments
with cofactor occur at the beginning and in the middle of the block. If an
instrument is switched on at the beginning of the day and then again half-
way through the day, say after a lunch break, then the replicates of this
particular treatment will be subject to a unique set of conditions—the one-
hour warm-up period of the instrument. Similarly the low pH treatments
are carried out at the same times after the instrument is switched on. This
particular set of eight treatments might be better split into two blocks of
four; in order to keep blocks of experiments homogeneous it pays to keep
them as small as possible. Alternatively, better randomization within the
block of eight treatments would help to guard against uncontrolled
factors. Once again, balance is important—it may be better to examine the
effect of one factor in a block of experiments using a larger number of
replicates. This is the way that block designs are usually employed, ex-
amining the effect of one experimental factor while holding other factors
constant. This does introduce the added complication of possible differ-
ences between the blocks. In a blocked design, the effect of a factor is of
interest, not normally the effect of the blocks, so the solution is to ensure
good randomization within the block and/or to repeat the block of
experimental treatments.
A summary of the terms introduced so far is shown in Table 2.2.

Table 2.2 Terms used in experimental design

Term Meaning

Response The outcome of an experiment

Factor A variable which affects the experimental response. These can be
controlied and uncontrolled, qualitative and quantitative

Level The values which a factor can adopt. In the case of a qualitative factor
these are usually binary (e.g. present/absent)

Treatment Conditions for a given experiment, e.g. temperature, pH, reagent
concentration, solvent

Block Set of experimental treatments carried out in a particular time-period or

with a particular batch of material and thus (hopefully) under the same
conditions. Generally, observations within a block can be compared with
greater precision than between blocks

Randomization Random ordering of the treatments within a block in an attempt to
minimize the effect of uncontrolled factors

Replication Repeat experimental treatments to estimate the significance of the effect
of individual factors on the response (and to identify ‘unusual’ effects)
Balance The relationship between the number of treatments to be compared and

the number of replicates of each treatment examined
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2.2.1 Single-factor design methods

The block design shown previously is referred to as a ‘balanced, complete
block design’ since all of the treatments were examined within the block
(hence ‘complete’), and the number of replicates was the same for all
treatments (hence ‘balanced’). If the number of treatments and their
replicates is larger than the number of experimental ‘slots’ in a block then
it will be necessary to carry out two or more blocks of experiments to
examine the effect of the factor. This requires that the blocks of experi-
ments are chosen in such a way that comparisons between treatments will
not be affected. When all of the comparisons are of equal importance (for
example, low vs. high temperature, low vs. medium, and high vs. medium)
the treatments should be selected in a balanced way so that any two occur
together the same number of times as any other two. This type of
experimental design is known as ‘balanced, incomplete block design’. The
results of this type of design are more difficult to analyse than the results
of a complete design, but easier than if the treatments were chosen at
random which would be an ‘unbalanced, incomplete block design’.

The time taken for an individual experiment may determine how many
experiments can be carried out in a block, as may the amount of material
required for each treatment. If both of these factors, or any other two
‘blocking variables’, are important then it is necessary to organize the
treatments to take account of two (potential) uncontrolled factors.
Suppose that: there are three possible treatments, A, B, and C; it is only
possible to examine three treatments in a day; a given batch of material is
sufficient for three treatments; time of day is considered to be an
important factor. A randomized design for this is shown below.

Batch Time of day
1 A B C
2 B C A
3 C A B

This is known as a Latin square, perhaps the best-known term in ex-
perimental design, and is used to ensure that the treatments are rando-
mized to avoid trends within the design. Thus, the Latin square design is
used when considering the effect of one factor and two blocking variables.
In this case the factor was divided into three levels giving rise to three
treatments: this requires a 3 x 3 matrix. If the factor has more levels, then
the design will simply be a larger symmetrical matrix, i.c. 4 x4, 5x 5, and
so on. What about the situation where there are three blocking variables?
In the enzyme assay example, time of day may be important and there
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may only be sufficient cofactor in one batch for three assays and similarly
only sufficient enzyme in one batch for three assays. This calls for a design
known as Graeco-Latin square which is made by superimposing two
different Latin squares. There are two possible 3 x 3 Latin squares:

A B C A B C
B C A C A B
C A B B C A

The 3 x3 Graeco-Latin square is made by the superimposition of these
two Latin squares with the third blocking variable denoted by Greek
letters thus:

Ao BB Cy
By Ca AB
CB Ay Ba

It can be seen in this design that each treatment occurs only once in each
row and column (two of the blocking variables, say time of day and
cofactor batch) and only once with each level (a, B, and y) of the third
blocking variable, the enzyme batch. Both Latin squares and Graeco-Latin
squares (and Hyper-Graeco-Latin squares for more blocking variables) are
most effective if they are replicated and are also subject to the rules of
randomization which apply to simple block designs. While these designs
are useful in situations where only one experimental factor is varied, it is
clear that if several factors are important (a more usual situation), this
approach will require a large number of experiments to examine their
effects. Another disadvantage of designing experiments to investigate a
single factor at a time is that the interactions between factors are not
examined since in this approach all other factors are kept constant.

2.2.2 Factorial design (multiple-factor design)

The simplest example of the consideration of multiple experimental factors
would involve two factors. Taking the earlier example of a chemical
synthesis, suppose that we were interested in the effect of two different
reaction temperatures, 77 and T,, and two different solvents, S; and S, on
the yield of the reaction. The minimum number of experiments required to
give us information on both factors is three, one at 715 (y;), a second at
T1S> (y2) involving change in solvent, and a third at 75S; (ys) involving a
change in temperature (see Table 2.3). The effect of changing temperature
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Table 2.3 Options in a multiple-factor design

Temperature
Solvent 7, 7>
Sy Y1 Y3
Sa Y2 Ya

is given by the difference in yields y; —y; and the effect of changing solvent
is given by y,—y;. Confirmation of these results could be obtained by
duplication of the above requiring a total of six experiments. This is a ‘one
variable at a time’ approach since each factor is examined separately.
However, if a fourth experiment, 7,5, (y4), is added to Table 2.3 we now
have two measures of the effect of changing each factor but only require
four experiments. In addition to saving two experimental determinations,
this approach allows the detection of interaction effects between the
factors, such as the effect of changing temperature in solvent 2 (y4—V,)
compared with solvent 1 (y3—y;). The factorial approach is not only more
efficient in terms of the number of experiments required and the identifi-
cation of interaction effects, it can also be useful in optimization. For
example, having estimated the main effects and interaction terms of some
experimental factors it may be possibie to predict the likely combinations
of these factors which will give an optimum response. One drawback to
this procedure is that it may not always be possible to establish all possible
combinations of treatments, resulting in an unbalanced design. Factorial
designs also tend to involve a large number of experiments, the in-
vestigation of three factors at three levels, for example, requires 27 runs (3
where f is the number of factors) without replication of any of the com-
binations. However, it is possible to reduce the number of experiments
required as will be shown later.

A recently published example (Coleman ez al. 1993) nicely illustrates the
use of factorial design in chemical synthesis. The reaction of 1,1,1-tri-
chloro-3-methyl-3-phospholene (1) with methanol produces 1-methoxy-3-
methyl-2-phospholene oxide (2) as shown in the reaction scheme. The
experimental procedure involved the slow addition of a known quantity of

HaC

HaC
3 A\ _0o
| PCly + CHgOH ——— RC
OCHy

Scheme 1.
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methanol to a known quantity of 1 in dichloromethane held at subambient
temperature. The mixture was then stirred until it reached ambient tem-
perature and neutralized with aqueous sodium carbonate solution; the
product was extracted with dichloromethane. The yield from this reaction
was 25 per cent and could not significantly be improved by changing one
variable (concentration, temperature, addition time, etc.) at a time. Three
variables were chosen for investigation by factorial design using two levels
of each.

A: Addition temperature (—15 or 0°C)
B: Concentration of 1 (50 or 100g in 400cm> dichloromethane)
C: Addition time of methanol (one or four hours)

This led to eight different treatments (2%), which resulted in several yields
above 25 per cent (as shown in Table 2.4), the largest being 42.5 per cent.

The effect on an experimental response due to a factor is called a main
effect whereas the effect caused by one factor at each level of the other
factor is called an interaction effect (two way). The larger the number of
levels of the factors studied in a factorial design, the higher the order of
the interaction effects that can be identified. In a three-level factorial
design it is possible to detect quadratic effects although it is often difficult
to interpret the information. Three-level factorial designs also require a
considerable number of experiments (3') as shown above. For this reason
it is often found convenient to consider factors at just two levels, high/low
or yes/no, to give 2’ factorial designs.

Another feature of these full factorial designs, full in the sense that all
combinations of all levels of each factor are considered, is that interactions
between multiple factors may be identified. In a factorial design with six

Table 2.4 Responses from full factorial design
(from Coleman et al. 1993, with permission of the
Royal Society of Chemistry)

Order of treatment Treatment Yield (%)
combination®

3 - 248
6 a 425
1 b 38.0
7 ab 18.2
2 c 32.8
4 ac 33.0
8 be 13.2
5 abc 243

® Where a lower-case letter is shown, this indicates that a particular
factor was used at its high level in that treatment, e.g. ‘a’ means an
addition temperature of 0°C. When a letter is missing the factor
was at its low level.
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factors at two levels (2° = 64 experiments) there are six main effects (for
the six factors), 15 two-factor interactions (two-way effects), 20 three-
factor, 15 four-factor, 6 five-factor, and 1 six-factor interactions. Are these
interactions all likely to be important? The answer, fortunately, is no. In
general, main effects tend to be larger than two-factor interactions which
in turn tend to be larger than three-factor interactions and so on. Because
these higher order interaction terms tend not to be significant it is possible
to devise smaller factorial designs which will still investigate the experi-
mental factor space efficiently but which will require far fewer experiments,
It is also often found that in factorial designs with many experimental
factors, only a few factors are important. These smaller factorial designs
are referred to as fractional factorial designs, where the fraction is defined
as the ratio of the number of experimental runs needed in a full design.
For example, the full factorial design for five factors at two levels requires
32 (2°%) runs: if this is investigated in 16 experiments it is a half-fraction
factorial design. Fractional designs may also be designated as 2" where f
is the number of factors as before and » is the number of half-fractions,
25~ is a half-fraction factorial design in five factors, 262 is a quarter-
fraction design in six factors.

Of course, it is rare in life to get something for nothing and that
principle applies to fractional factorial designs. Although a fractional
design allows one to investigate an experimental system with the ex-
penditure of less effort, it is achieved at the expense of clarity in our ability
to separate main effects from interactions. The response obtained from
certain treatments could be caused by the main effect of one factor or a
two- (three-, four-, five-, etc.) factor interaction. These effects are said to
be confounded; because they are indistinguishable from one another, they
are also said to be aliases of one another. It is the choice of aliases which
lies at the heart of successful fractional factorial design. As mentioned
before, we might expect that main effects would be more significant than
two-factor effects which will be more important than three-factor effects.
The aim of fractional design is thus to alias main effects and two-factor
effects with as high-order interaction terms as possible.

The phospholene oxide synthesis mentioned earlier provides a good
example of the use of fractional factorial design. Having carried out the
full factorial design in three factors (addition temperature, concentration
of phospholene, and addition time) further experiments were made to
‘fine-tune’ the response. These probing experiments involved small changes
to one factor while the others were held constant in order to determine
whether an optimum had been reached in the synthetic conditions. Figure
2.1 shows a response surface for the high addition time in which per-
centage yield is plotted against phospholene concentration and addition
temperature. The response surface is quite complex and demonstrates that
a maximum yield had not been achieved for the factors examined in the
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Yield 30
(%)

Concentration 00
(g/400cm3 DCM) 80
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0.0
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temperature (°C)

Fig. 2.1. Response surface for phospholene oxide synthesis (from Coleman et a/. 1993, with
permission of the Royal Society of Chemistry).

first full factorial design. In fact the largest yield found in these probing
experiments was 57 per cent, a reasonable increase over the highest yield
of 42.5 per cent shown in Table 2.4. The shape of the response surface
suggests the involvement of other factors in the yield of this reaction and
three more experimental variables were identified: concentration of
methanol, stirring time, and temperature. Fixing the concentration of
phospholene at 25 g in 400 cm® of dichloromethane (a broad peak on the
response surface) leaves five experimental factors to consider, requiring a
total of 32 (2°) experiments to investigate them. These experiments were
split into four blocks of eight and hence each block is a quarter-fraction of
32 experiments. The results for the first block are shown in Table 2.5, the
experimental factors being

A: Addition temperature (— 10 or 0°C)

B: Addition time of methanol (15 or 30 minutes)

C: Concentration of methanol (136 or 272 cm?)

D: Stirring time (0.5 or 2 hours)

E: Stirring temperature (addition temperature or ambient)

This particular block of eight runs was generated by aliasing D with AB
and also E with BC, after carrying out full 2* experiments of A, B, and C.
As can be seen from Table 2.5, the best yield from this principal block of
experiments, which contains variables and variable interactions expected to
be important, was 78 per cent, a considerable improvement over the
previously found best yield of 57 per cent. Having identified important
factors, or combinations of factors with which they are aliased, it is
possible to choose other treatment combinations which will clarify the
situation. The best yield obtained for this synthesis was 90 per cent using
treatment combination e.
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Table 2.5 Responses from fractional factorial
design (from Coleman et al. 1993, with permission
of the Royal Society of Chemistry)

Treatment Yield (%) Aliasing effect
combination®

- 451

ad 60.2 A with -BD
bde 62.5 B with —CE +AD
abe 46.8 D with —~AB
ce 77.8 C with -BE
acde 49.8 AC with -DE
bed 53.6 E with -BC
abc 70.8 AE with CD

® As explained in Table 2.4,

2.2.3 D-optimal design

Factorial design methods offer the advantage of a systematic exploration
of the factors that are likely to affect the outcome of an experiment; they
also allow the identification of interactions between these factors. They
suffer from the disadvantage that they may require a large number of
experiments, particularly if several levels of each factor are to be ex-
amined. This can be overcome to some extent by the use of fractional
factorial designs although the aliasing of multi-factor interactions with
main effects can be a disadvantage. Perhaps one of the biggest dis-
advantages of factorial and fractional factorial designs in chemistry is the
need to specify different levels for the factors. If a factorial design
approach is to be successful, it is necessary to construct treatment com-
binations which explore the factor space. When the experimental factors
are variables such as time, temperature, and concentration, this usually
presents few problems. However, if the factors are related to chemical
structure, such as the choice of compounds for testing, the situation may
be quite different. A factorial design may require a particular compound
which is very difficult to synthesize. Alternatively, a design may call for a
particular set of physicochemical properties which cannot be achieved,
such as a very small, very hydrophobic substituent.

The philosophy of the factorial approach is attractive, so are there re-
lated techniques which are more appropriate to the special requirements of
chemistry? There is a number of other methods for experimental design
but one that is becoming applied in several chemical applications is known
as ‘D-optimal design’. The origin of the expression ‘D-optimal’ is a bit of
statistical jargon based on the determinant of the variance—covariance
matrix. As will be seen in the next section on compound selection, a well-
chosen set of experiments (or compounds) will have a wide spread in the
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experimental factor space (variance). A well-chosen set will also be such
that the correlation (see Box 2.1) between experimental factors is at a
minimum (covariance). The determinant of a matrix is a single number
and in the case of a variance—covariance matrix for a data set this number
describes the ‘balance’ between variance and covariance. This determinant
will be a maximum for experiments or compounds which have maximum
variance and minimum covariance, and thus the optimization of the de-
terminant (D-optimal) is the basis of the design. Examples of the use of D-
optimal design are given in the next section.

Further discussion of other experimental design techniques, with the
exception of simplex optimization (see next section), is outside the scope of
this book. Hopefully this section will have introduced the principles of
experimental design; the reader interested in further details should consult
one of the excellent texts available which deal with this subject in detail
(see Box et al. 1978; Morgan 1991). A recent review discusses the appli-
cation of experimental design techniques to chemical synthesis (Carlson
and Nordahl 1993).

2.3 Strategies for compound selection

This section could also have been entitled strategies for ‘training set se-
lection” where compounds are the members of a training set. Training sets
are required whenever a new biological test is established, when com-
pounds are selected from an archive for screening in an existing test, or
when a set of biological (or other) data is to be analysed. It cannot be
stressed sufficiently that selection of appropriate training sets is crucial to
the success of new synthetic programmes, screening, and analysis. The
following examples illustrate various aspects of compound selection.
Some of the earliest techniques for compound selection were essentially
visual and as such have considerable appeal compared with the (appar-
ently) more complex statistical and mathematical methods. The first
method to be reported came from a study of the relationships between a
set of commonly used substituent constants (Craig 1971). The stated
purpose of this work was to examine the interdependence of these para-
meters and, as expected, correlations (see Box 2.1) were found between the
hydrophobicity descriptor, @, and a number of ‘bulk’ parameters such as
molecular volume and parachor. Why should interdependence between
substituent constants be important? There are a number of answers to this
question, as discussed further in this book, but for the present it is suf-
ficient to say that interdependence between parameters is required so that
clearer, perhaps mechanistic, conclusions might be drawn from correla-
tions. As part of the investigation Craig plotted various parameters to-
gether, for example the plot of o vs. = shown in Fig. 2.2; such plots have
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Box 2.1
The correlation coefficient, r

An important property of any variable, which is used in many statistical
operations is a quantity called the variance, V. The variance is a measure of
how the values of a variable are distributed about the mean and is defined by

V= i(x,- — %) /n
i=1

where Z is the mean of the set of x values and the summation is carried out
over all » members of the set. When values are available for two or more
variables describing a set of objects (compounds, samples, etc.) a related
quantity may be calculated called the covariance, Ciy . The covariance is a
measure of how the values of one variable (x) are distributed about their
mean compared with how the corresponding values of another variable (y)
are distributed about their mean. Covariance is defined as

n

C(x,y) = Z(xi - i)(yi _'J_")/n

=1

The covariance has some useful properties. If the values of variable x change
in the same way as the values of variable y, the covariance will be positive.
For small values of x, x—X will be negative and y—j will be negative
yielding a positive product. For large values of x, x—% will be positive as
will y—y and thus the summation yields a positive number. If, on the other
hand, y decreases as x increases the covariance will be negative. The sign of
the covariance of the two variables indicates how they change with respect to
one another: positive if they go up and down together, negative if one
increases as the other decreases. But is it possible to say how clearly one
variable mirrors the change in another? The answer is yes, by the calculation
of a quantity known as the correlation coefficient

1
r=Cuy/[Viy x Vil

Division of the covariance by the square root of the product of the in-
dividual variances allows us to put a scale on the degree to which two
variables are related. If y changes by exactly the same amount as x changes,
and in the same direction, the correlation coefficient is + 1. If y decreases by
exactly the same amount as x increases the correlation coefficient is —1. If
the changes in y are completely unrelated to the changes in x, the correlation
coefficient will be 0.




Strategies for compound selection | 37

+G -TC c +G +T0
[ 1 CF,SO
N02 L4 32
SO,NH, CH,S0, oo °.
) ° COOCH oy 5
3
o &5
eCONH,  CH,CO OCF,

COOH® | o225 ®
20 -1.6 -1.2 -08 -04 ooeFos4 08 1.2 16

i 1 L t ‘ 1. i n
CH,CONH Ho escH
OCH, OCH, °
& -0.25 t-Butyl
°
OH
F-0.50
o NH, ® NMe,
- 075
-0 -1 -0 +TC

Fig. 2.2. Plot of & vs = for a set of common substituents (from Craig 1971, copyright (1971)
American Chemical Society).

since become known as Craig plots. This diagram nicely illustrates the
concept of a physicochemical parameter space. If we regard these two
properties as potentially important experimental factors, in the sense that
they are likely to control or at least influence experiments carried out using
the compounds, then we should seek to choose substituents that span the
parameter space. This is equivalent to the choice of experimental treat-
ments which are intended to span the space of the experimental factors.
It is easy to see how substituents may be selected from a plot such as
that shown in Fig. 2.2, but will this ensure that the series is well chosen?
The answer is no for two reasons, First, the choice of compounds based on
the parameter space defined by just two substituent constants ignores the
potential importance of any other factors. What is required is the selection
of points in a multidimensional space, where each dimension corresponds
to a physicochemical parameter, so that the space is sampled evenly. This
is described later in this section. The second problem with compound
choice based on sampling a two-parameter space concerns the correlation
between the parameters. Table 2.6 lists a set of substituents with their
corresponding 7 values. At first sight this might appear to be a well-chosen
set since the substituents cover a range of —1.2 to + 1.4 log units in  and
are represented at fairly even steps over the range. If, however, we now list
the o values for these substituents, as shown in Table 2.7, we see that they
also span a good range of o but that the two sets of values correspond to
one another. In general, there is no correlation between © and ¢ as can be
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Table 2.6 = values for a set of
substituents (from Franke 1984,
with  permission of Elsevier

Science)

Substituent 7

NH, ~1.23
OH -0.67
OCH3; -~0.02
H 0.00
F 0.14
o} 0.70
Br 0.86
SCF4 1.44

seen from the scatter of points in Fig. 2.2. For this particular set of
substituents, however, there is a high correlation of 0.95; in trying to
rationalize the biological properties of this set it would not be possible to
distinguish between electronic and hydrophobic effects. There are other
consequences of such correlations between parameters, known as colli-
nearity, which involve multiple regression (Chapter 6), data display
(Chapter 4), and other multivariate methods (Chapters 7 and 8). This is
discussed in the next chapter and in the chapters which detail the
techniques.

Table 2.7 n and o values for the substituents in
Table 2.6 (from Franke 1984, with permission of
Elsevier Science)

Substituent 7 o

NH, —1.23 —~0.66
OH —0.67 -0.37
OCH3 -0.02 -0.27
H 0.00 0.00
F 0.14 0.06
Cl 0.70 0.23
Br 0.86 0.23
SCF, 1.44 0.50

So, the two main problems in compound selection are the choice of
analogues to sample effectively a multi-parameter space and the avoidance
of collinearity between physicochemical descriptors. A number of methods
have been proposed to deal with these two problems. An attractive ap-
proach was published by Hansch and co-workers (Hansch et al. 1973)
which made use of cluster analysis (Chapter 5) to group 90 substituents
described by five physicochemical parameters. Briefly, cluster analysis
operates by the use of measurements of the distances between pairs of
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objects in multidimensional space using a distance such as the familiar
Euclidean distance. Objects (compounds) which are close together in space
become members of a single cluster. For a given level of similarity (i.e.
value of the distance measure) a given number of clusters will be formed
for a particular data set. At decreasing levels of similarity (greater values
of the distance measure) further objects or clusters will be joined to the
original clusters until eventually all objects in the set belong to a single
cluster. The results of cluster analysis are most often reported in the form
of a diagram known as a dendrogram (Fig. 2.3). A given level of similarity
on the dendrogram gives rise to a particular number of clusters and thus it
was possible for Hansch and his co-workers to produce lists of substituents
belonging to 5, 10, 20, and 60 cluster sets. This allows a medicinal chemist
to choose a substituent from each cluster when making a particular
number of training set compounds (5, 10, 20, or 60) to help ensure that
parameter space is well spanned. This work was subsequently updated to
cover 166 substituents described by six parameters; lists of the cluster
members were reported in the substituent constant book (Hansch and Leo
1978), sadly no longer in print. Table 2.8 lists some of the substituent
members of the ten cluster set.

Another approach which makes use of the distances between points in a
multidimensional space was published by Wootton and co-workers
(Wootton et al. 1975). In this method the distances between each pair of
substituents is calculated, as described for cluster analysis, and substituents
are chosen in a stepwise fashion such that they exceed a certain preset
minimum distance. The procedure requires the choice of a particular
starting compound, probably but not necessarily the unsubstituted parent,

High Similarity Low

Fig. 2.3. Example of a similarity diagram (dendrogram) from cluster analysis (after
Reibnegger et al. 1993, with permission of Butterworth—~Heinemann).
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Table 2.8 Examples of substituents belonging to clusters in the ten cluster set
(from Hansch and Leo 1979, with their kind permission)

Cluster Number Examples of substituents
set number of members
1 26 -Br, ~Cl, -NNN, —CHs, -CH,Br
2 17 ~S0,F, -NO,, ~CN, —1-Tetrazolyl, -SOCH3;
3 2 —10,, ~N{CH3)3
4 8 ~0OH, -NH;,, -NHCH3, -NHC4Hg, ~NHCgH5
5 18 —CH,0H, -NHCN, -NHCOCH3;, ~CO,H, ~-CONH,,
6 21 —OCF3, —CH,CN, —-SCN, -C0O,CH3, -CHO
7 25 —NCS, —Pyrryl, —OC003H7, —COCsHs, —OCSH5
8 20 —CHl, ~CgHs, —CsH1, —Cyclohexyl, ~C4Hg
9 21 ~-NHC =S(NH,), -CONHC3Hy, -NHCOC,Hs,
~C(OH){(CF3),, ~NHSO,CgH5g
10 8 ~0OC4Hg, -N(CH3),, ~N(C,Hs),

and choice of the minimum distance. Figure 2.4 gives an illustration of this
process to the choice of eight substituents from a set of 35. The resulting
correlation between the two parameters for this set was low (—0.05). A
related technique has been described by Franke (Streich et al. 1980) in
which principal components are calculated from the physicochemical de-
scriptor data (see Chapter 4) and interpoint distances are calculated based
on the principal components. Several techniques are compared in the
reference cited.

n
n-Bus 0.5_
o
[+]
o]
° o
o
Z ®Br °
o
° ° °
.-P 0 ]
ERERC N o NO,
*
r T ) y —>»>
R o 0.5
05 H o
NMe2 ° °
b -]
° 1<)
*SO,Me
+NH, °
-0.54

(-]

Fig. 2.4. Example of the choice of substituents by multidimensional mapping (from Wootton
et al. 1975, copyright (1975) American Chemical Society).
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These techniques for compound selection have relied on the choice of
substituents such that the physicochemical parameter space is well covered;
the resulting sets of compounds tend to be well spread and interparameter
correlations low. These were the two criteria set out earlier for successful
compound choice, although other criteria, such as synthetic feasibility,
may be considered important (Schaper 1983). An alternative way to deal
with the problem of compound selection is to treat the physicochemical
properties as experimental factors and apply the techniques of factorial
design. As described in Section 2.2, it is necessary to decide how many
levels need to be considered for each individual factor in order to de-
termine how many experimental treatments are required. Since the number
of experiments (and hence compounds) increases as the product of the
factor levels, it is usual to consider just two levels, say high and low, for
each factor. This also allows qualitative factors such as the presence/ab-
sence of some functional group or structural feature to be included in the
design. Of course, if some particular property is known or suspected to be
of importance, then this may be considered at more than two levels. A
major advantage of factorial design is that many factors may be con-
sidered at once and that interactions between factors may be identified,
unlike the two parameter treatment of Craig plots. A disadvantage of
factorial design is the large number of experiments that may need to be
considered, but this may be reduced by the use of fractional factorials as
described in Section 2.2. Austel (1982) was the first to describe factorial
designs for compound selection and he demonstrated the utility of this
approach by application to literature examples. The relationship of a full
to a half-fractional design is nicely illustrated in Fig. 2.5. The cube re-
presents the space defined by three physicochemical properties A, B, and C
and the points at the vertices represent the compounds chosen to examine
various combinations of these parameters as shown in Table 2.9. An extra
point can usefully be considered in designs such as this corresponding to

3 4

Fig. 2.5. Representation of a factorial design in three factors (A, B, and C) (from Austel
1982, with permission of the European Journal of Medicinal Chemistry).
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Table 2.9 Factorial design for three parameters
(two levels) (from Austel 1982, with permission of
the European Journal of Medicinal Chemistry)

Compound A B C
1 - - —
2 + — -
3 - + —
4 + + —
5 - - +
6 + — +
7 - + +
8 + + +

Table 2.10 Fractional factorial design for three
parameters (two levels) (from Austel 1982, with
permission of the European Journal of Medicinal
Chemistry)

>
o«
O

Compound

1(5)"
2(2)
3(3)
4(8)

+ 1 + |
+ + ||
+ 1 ] +

# () corresponding compound in Table 2.9.

the midpoint of the factor space. If A, B, and C are substituent constants
such as m, o, and MR which are scaled to H = 0, this midpoint is the
unsubstituted parent. A fractional factorial design in these three para-
meters is shown in Table 2.10. This fractional design investigates the main
effects of parameters A and B, factor C is confounded (aliased, see Section
2.2.2) with interaction of A and B. The four compounds in this table
correspond to compounds 2, 3, 5, and 8 from Table 2.9 and in Fig. 2.5
form the vertices of a regular tetrahedron, thus providing a good
exploration of the three-dimensional factor space.

The investigation of the biological properties of peptide analogues gives a
particularly striking illustration of the usefulness of fractional factorial
design in the choice of analogues to examine. The problem with peptides is
that any single amino acid may be replaced by any of the 20 coded amino
acids, to say nothing of amino acid analogues. If a peptide of interest is
varied in just four positions, it is possible to synthesize 160,000 (20*) ana-
logues. As pointed out by Hellberg et al. (1987) who applied fractional
factorial design to four series of peptides, the development of automated
peptide synthesis has removed the problem of how to make peptide
analogues. The major problem is which analogues to make. In order to
apply the principles of experimental design to this problem it is necessary to
define experimental factors (physicochemical properties) to be explored.
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Table 2.11 Descriptor scales for the 20 ‘natural’ amino acids
(from Hellberg et al 1987, copyright (1987) American
Chemical Society)

Acid 21 22 Z3

Ala 0.07 -1.73 0.09
Val -2.69 —2.53 —-1.29
Leu -4.19 ~1.03 —0.98
lle —4.44 —1.68 —1.03
Pro ~1.22 0.88 2.23
Phe —4.92 1.30 0.45
Trp —4.75 3.65 0.85
Met —2.49 —-0.27 —-0.4
Lys 284 1.41 -~3.14
Arg 2.88 2.52 ~3.44
His 2.4 1.74 1.1
Gly 2.23 -~5.36 0.30
Ser 1.96 ~1.63 0.57
Thr 0.92 -2.09 —~1.40
Cys 0.7 -0.97 413
Tyr —-1.39 2.32 0.01
Asn 3.22 1.45 0.84
Gin 218 0.53 -1.14
Asp 3.64 1.13 2.36
Glu 3.08 0.39 —0.07

These workers used ‘principal properties’ which were derived from the
application of principal component analysis (see Chapter 4) to a data
matrix of 29 physicochemical variables which describe the amino acids. The
principal component analysis gave three new variables, labelled Z,, Z,, and
Zs, which were interpreted as being related to hydrophobicity (partition),
bulk, and electronic properties respectively. Table 2.11 lists the values of
these descriptor scales. This is very similar to an earlier treatment of phy-
sicochemical properties by Cramer (1980a,b), the so-called BC(DEF)
scales. The Z descriptor scales thus represent a three-dimensional property
space for the amino acids. If only two levels are considered for each
descriptor, high (+) and low (—), a full factorial design for substitution at
one amino acid position in a peptide would require eight analogues. While
this is a saving compared with the 20 possible analogues that could be
made, a full factorial design is impractical when multiple substitution
positions are considered. A full design for four amino acid positions
requires 4096 (8%) analogues, for example. Hellberg suggested % (for one
position), —}; th and smaller fractional designs as shown in Table 2.12.

One of the problems with the use of factorial methods for compound
selection is that it may be difficult or impossible to obtain a compound
required for a particular treatment combination, either because the
synthesis is difficult or because that particular set of factors does not exist.
One way to overcome this problem, as discussed in Section 2.2.3, is D-
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Table 2.12 Number of peptide analogues required
for fractional factorial design based on three Z
scales (from Hellberg er al. 1987, copyright (1987)
American Chemical Society)

Number of Minimum number
varied positions of analogues
1 4
2 8
3-5 16
6-10 32
11-21 64

optimal design. Unger (1980) has reported the application of a D-optimal
design procedure to the selection of substituents from a set of 171,
described by seven parameters.* The determinant of the variance-
covariance matrix for the selected set of 20 substituents was 3.35 x 10!
which was 100 times better than the largest value (2.73 x 10°) obtained in
100 simulations in which 20 substituents were randomly chosen. Herrmann
(1983) has compared the use of D-optimal design, two variance max-
imization methods, and an information-content maximization technique
for compound selection. The results of the application of these strategies
to the selection of ten substituents from a set of 35 are shown in Table
2.13. Both the D-optimal and the information-content methods produced
better sets of substituents, as measured by variance (V) or determinant (D)
values, than the variance maximization techniques.

The final compound selection procedures which will be mentioned here
are the sequential simplex and the ‘Topliss tree’. The sequential simplex,
first reported by Darvas (1974), is an application of a well-known optimi-
zation method which can be carried out graphically. Figure 2.6 shows three
compounds, A, B, and C, plotted in a two-dimensional property space, say
7 and o but any two properties may be used. Biological results are obtained
for the three compounds and they are ranked in order of activity. These
compounds form a triangle in the two-dimensional property space, a new
compound is chosen by the construction of a new triangle. The two most
active compounds, say B and C for this example, form two of the vertices of
the new triangle and the third vertex is found by taking a point opposite to
the least active (A) to give the new triangle BCD. The new compound is
tested and the activities of the three compounds compared—if B is now the
least active then a new triangle CDE is constructed as shown in the figure.
The procedure can be repeated until no further improvement in activity is
obtained, or until all of the attainable physicochemical property space has

* The reference includes listings of programs (written in APL) for compound selection by D-
optimal design.



Strategies for compound selection | 45

Table 2.13 Subsets of ten substituents from 35 chosen by four
different methods (from Herrmann 1983, with permission)

Method®
h D V(1) V(2)
H H H Me
n-butyl n-butyl phenyl t-butyl
phenyl t-butyl OH Ot
CF3 O-phenyl O-pheny! O-n-amyl
O—phenyl NH, NMEz NH,
NHZ NMEZ NOz NMez
NMe2 N02 COOEt NOz
NO, SO,Me CONH, COO0(Me),
SOzNHz SOzNHz 502Me SOZNHz
F F Br F
V =1.698 1.750 1.437 1.356
D=1.038 1.041 0.487 0.449
h =1.614 1.589 1.502 1.420

® The methods are: h, maximization of information content; D, D-optimal design;
V(1), maximal variance (Streich et al 1980); and V{(2), maximal variance
{Wootton et al. 1975).

been explored. This method is attractive in its simplicity and the fact that it
requires no more complicated equipment than a piece of graph paper. The
procedure is designed to ensure that an optimum is found in the particular
parameters chosen so its success as a compound selection method is de-
pendent on the correct choice of physicochemical properties. One of the
problems with this method is that a compound may not exist that corre-
sponds to a required simplex point. The simplex procedure is intended to
operate with continuous experimental variables such as temperature,
pressure, concentration, etc. There are other problems with the simplex

A

Biological
activity

o

Fig. 2.6. lllustration of the sequential simplex process of compound selection (after Darvas
1974, copyright (1974) American Chemical Society).
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Fig. 2.7. lllustration of the ‘Topliss tree’ process for compound selection; L, E, and M
represent less, equal, and more active respectively (after Topliss and Martin 1975, with
permission of Academic Press).

procedure, for example, it requires biological activity data, but it has a
number of advantages, not least of which being that any selection procedure
is better than none.

The “Topliss tree’ is an operational scheme that is designed to explore a
given physicochemical property space in an efficient manner and is thus
related to the sequential simplex approach (Topliss and Martin 1975). In
the case of aromatic substitution, for example, this approach assumes that
the unsubstituted compound and the para-chloro derivative have both
been made and tested. The activity of these two compounds are compared
and the next substituent is chosen according to whether the chloro sub-
stituent displays higher, lower, or equal activity. This is shown schemati-
cally in Fig. 2.7. The rationale for the choice of -OCHj; or Cl as the next
substituent is based on the supposition that the given effects are dependent
on changes in @ or ¢ and, to a lesser extent, steric effects. This decision
tree and the analogous scheme for aliphatic substitution are useful in that
they suggest a systematic way in which compounds should be chosen. It
suffers, perhaps, from the fact that it needs to start from a particular
point, the unsubstituted compound, and that it requires data to guide it.
Other schemes starting with different substituents could of course be
drawn up and, like the simplex, any selection scheme is better than none.

2.4 Summary

The concepts underlying experimental design are to a great extent
‘common sense’ although the means to implement them may not be quite
so obvious. The value of design, whether applied to an individual
experiment or to the construction of a training set, should be clear from
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the examples shown in this chapter. Failure to apply some sort of design
strategy may lead to a set of results which contain suboptimal informa-
tion, at best, or which contain no useful information, at worst. Various
design procedures may be applied to individual experiments, as indicated
in the previous sections, and there are specialist reports which deal with
topics such as synthesis (Carlson and Nordahl 1993). A detailed review of
design strategies which may be applied to the selection of compounds has
been reported by Pleiss and Unger (1990).
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3
Data pre-treatment

3.1 Introduction

One of the most frequently overlooked aspects of data analysis is con-
sideration of the data that is going to be analysed. How accurate is it?
How complete is it? How representative is it? These are some of the
questions that should be asked about any set of data, preferably before
starting to try and understand it, along with the general question ‘what do
the numbers, or symbols, or categories mean?

The next few sections discuss some of the more important aspects of the
nature and properties of data. It is often the data itself that dictates which
particular analytical method may be used to examine it and how successful
the outcome of that examination will be.

3.2 The nature of data

So far, in this book the terms descriptor, parameter, and property have
been used interchangeably. This can perhaps be justified in that it helps to
avoid repetition, but they do actually mean different things and so it
would be best to define them here. Physicochemical property refers to a
feature of a molecule which is determined by its physical or chemical
properties, or a combination of both. Descriptor refers to any means by
which a molecule is described or characterized: the term aromatic, for
example, is a descriptor, as are the quantities molecular weight and boiling
point. Parameter is a term which is used to refer to some numerical
measure of a physicochemical property. The two descriptors molecular
weight and boiling point are also both parameters; the term aromatic is a
descriptor but not a parameter, whereas the question ‘how many aromatic
rings? gives rise to a parameter. All parameters are thus descriptors but
not vice versa.

In the examples of descriptors and parameters given here, and in pre-
vious chapters, it may have been noticed that there are differences in the
‘nature’ of the values used to express them. This is due to differences in
their scales of measurement. It is necessary to consider four different scales
of measurement: nominal, ordinal, interval, and ratio. It is important to be
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aware of the properties of these scales since the nature of the scales
determines which analytical methods can be used to treat the data.

Nominal

This is the weakest level of measurement, i.e., has the lowest information
content, and applies to the situation where a number or other symbol is
used to assign membership to a class. The terms male and female, young
and old, aromatic and non-aromatic are all descriptors based on nominal
scales. These are dichotomous descriptors, in that the objects (people or
compounds) belong to one class or another, but this is not the only type of
nominal descriptor. Colour, subdivided into as many classes as desired, is
a nominal descriptor as is the question ‘which of the four halogens does
the compound contain?’.

Ordinal

Like the nominal scale, the ordinal scale of measurement places objects in
different classes but here the classes bear some relation to one another,
expressed by the term greater than (>). Thus, from the previous example,
old > middle-aged > young. Two examples in the context of QSAR are
toxic > slightly toxic > non-toxic, and fully saturated > partially satu-
rated > unsaturated. The latter descriptor might also be represented by the
number of double bonds present in the structures although this is not
chemically equivalent since triple bonds are ignored. It is important to be
aware of the situations in which a parameter might appear to be measured
on an interval or ratio scale (see below), but because of the distribution of
compounds in the set under study, these effectively become nominal or
ordinal descriptors (see Section 3.3).

Interval

An interval scale has the characteristics of a nominal scale, but in addition
the distances between any two numbers on the scale are of known size.
The zero point and the units of measurement of an interval scale are
arbitrary: a good example of an interval scale parameter is boiling point.
This could be measured on either the Fahrenheit or Celsius temperature
scales but the information content of the boiling point values is the same.

Ratio
A ratio scale is an interval scale which has a true zero point as its origin.

Mass is an example of a parameter measured on a ratio scale, as are
parameters which describe dimensions such as length, volume, etc.
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What is the significance of these different scales of measurement? As was
mentioned in Section 1.5, many of the well-known statistical methods are
parametric, that is, they rely on assumptions concerning the distribution of
the data. The computation of parametric tests involves arithmetic
manipulation such as addition, multiplication, and division, and this
should only be carried out on data measured on interval or ratio scales.
When these procedures are used on data measured on other scales they
introduce distortions into the data and thus cast doubt on any conclusions
which may be drawn from the tests. Non-parametric or ‘distribution-free’
methods, on the other hand, concentrate on an order or ranking of data
and thus can be used with ordinal data. Some of the non-parametric
techniques are also designed to operate with classified (nominal) data.
Since interval and ratio scales of measurement have all the properties of
ordinal scales it is possible to use non-parametric methods for data mea-
sured on these scales. Thus, the distribution-free techniques are the ‘safest’
to use since they can be applied to most types of data. If, however, the
data does conform to the distributional assumptions of the parametric
techniques, these methods may well extract more information from the
data.

3.3 Data distribution

As mentioned in Chapter 1, statistics is often concerned with the treatment
of a small* number of samples which have been drawn from a much larger
population. Each of these samples may be described by one or more
variables which have been measured or calculated for that sample. For
each variable there exists a population of samples. It is the properties of
these populations of variables that allows the assignment of probabilities,
for example, the likelihood that the value of a variable will fall into a
particular range, and the assessment of significance (i.e. is one number
significantly different from another). Probability theory and statistics are,
in fact, separate subjects; each may be said to be the inverse of the other,
but for the purposes of this discussion they may be regarded as doing the
same job.

How are the properties of the population used? Perhaps one of the most
familiar concepts in statistics is the frequency distribution. A plot of a
frequency distribution is shown in Fig. 3.1, where the ordinate (y-axis)
represents the number of occurrences of a particular value of a variable
given by the scales of the abscissa (x-axis). If the data is discrete, usually
but not necessarily measured on nominal or ordinal scales, then the

* The term small here may represent hundreds or even thousands of samples. This is a small
number compared to a population which is often taken to be infinite.
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Fig. 3.1. Frequency distribution for the variable x over the range —10 to +10.

variable values can only correspond to the points marked on the scale on
the abscissa. If the data is continuous, a problem arises in the creation of a
frequency distribution, since every value in the data set may be different
and the resultant plot would be a very uninteresting straight line at y = 1.
This may be overcome by taking ranges of the variable and counting the
number of occurrences of values within each range. For the example
shown in Fig. 3.2 (where there are a total of 50 values in all), the ranges
are 0-1, 1-2, 2-3, and so on up to 9-10.

It can be seen that these points fall on a roughly bell-shaped curve with
the largest number of occurrences of the variable occurring around the
peak of the curve, corresponding to the mean of the set. If more data
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Fig. 3.2. Frequency histogram for the continuous variable x over the range 0 to +10.
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Fig. 3.3. Probability distribution for a very large number of values of the variable x; u equals
the mean of the set and o the standard deviation.

values are available they will form a smoother curve until in the limit,
where a very large number of values are used, we obtain the smooth curve
shown in Fig. 3.3.

It is at this point that we see a link between statistics and probability
theory. If the height of the curve is standardized so that the area under-
neath it is unity, the graph is called a probability curve. The height of the
curve at some point x can be denoted by f(x) which is called the prob-
ability density function (p.d.f.). This function is such that it satisfies the
condition that the area under the curve is unity

jf(x)dxz 1 3.1

This now allows us to find the probability that a value of x will fall in any
given range by finding the integral of the p.d.f. over that range:

probability (x; < x < xp) = J flx)dx (3.2)

X1

This brief and rather incomplete description of frequency distributions and
their relationship to probability distribution has been for the purpose of
introducing the normal distribution curve. The normal or Gaussian
distribution is the most important of the distributions that are considered
in statistics. The height of a normal distribution curve is given by

fx) = %\/z_ne“*“)’/%l (3.3)
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This rather complicated function was chosen so that the total area under
the curve is equal to 1 for all values of u and o. Equation 3.3 has been
given so that the connection between probability and the two parameters
and o of the distribution can be seen. The curve is shown in Fig. 3.3 where
the abscissa is marked in units of o. It can be seen that the curve is
symmetric about p, the mean, which is a measure of the location of the
distribution. About one observation in three will lie more than one stan-
dard deviation (o) from the mean and about one observation in 20 will lie
more than two standard deviations from the mean. The standard deviation
is a measure of the spread; it is the two properties, location and spread, of
a distribution which allow us to make estimates of likelihood (or
‘significance’).

Some other features of the normal distribution can be seen by con-
sideration of Fig. 3.4. In part (a) of the figure, the distribution is no longer
symmetrical, there are more values of the variable with a higher value.
This distribution is said to be skewed, it has a positive skewness; the
distribution shown in part (b) is said to be negatively skewed. In part (c)
three distributions are overlaid which have differing degrees of ‘steepness’
of the curve around the mean. The statistical term used to describe the
steepness, or degree of peakedness, of a distribution is ‘kurtosis’. Various
measures may be used to express kurtosis; one known as the moment ratio
gives a value of three for a normal distribution. Thus it is possible to judge
how far a distribution deviates from normality by calculating values of
skewness (= 0 for a normal distribution) and kurtosis. As will be seen
later, these measures of how well ‘behaved’ a variable is may be used as an
aid to variable selection. Finally, in part (d) of Fig. 3.4 it can be seen that

(@) (b)

© (d)

Fig. 3.4. illustration of deviations of probability distributions from a normal distribution.
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the distribution appears to have two means. This is known as a bhimodal
distribution, which has its own particular set of properties distinct to those
of the normal distribution.

There are many situations in which a variable that might be expected to
have a normal distribution does not. Take for example the molecular
weight of a set of assorted painkillers. If the compounds in the set con-
sisted of aspirin and morphine derivatives, then we might see a bimodal
distribution with two peaks corresponding to values of around 180
(mol.wt. of aspirin) and 285 (mol.wt. of morphine). Skewed and kurtosed
distributions may arise for a variety of reasons, and the effect they will
have on an analysis depends on the assumptions employed in the analysis
and the degree to which the distributions deviate from normality, or
whatever distribution is assumed. This, of course, is not a very satisfactory
statement to someone who is asking the question, ‘is my data good enough
(sufficiently well behaved) to apply such and such a method to it?. Un-
fortunately, there is not usually a simple answer to this sort of question. In
general, the further the data deviates from the type of distribution that is
assumed when a model is fitted, the less reliable will be the conclusions
drawn from that model. It is worth pointing out here that real data is
unlikely to conform perfectly to a normal distribution, or any other
‘standard’ distribution for that matter. Checking the distribution is
necessary so that we know what type of method can be used to treat the
data, i.e., parametric or non-parametric, and how reliable any estimates
will be which are based on assumptions of distribution. A caution should
be sounded here in that it is easy to become too critical and use a poor or
less than ‘perfect’ distribution as an excuse not to use a particular tech-
nique, or to discount the results of an analysis.

Another problem which is frequently encountered in the distribution of
data is the presence of outliers. Consider the data shown in Table 3.1
where calculated values of electrophilic superdelocalizability (ESDL10) are
given for a set of analogues of antimycin Al, compounds which kill
human parasitic worms, Dipetalonema vitae. The mean and standard de-
viation of this variable give no clues as to how well it is distributed and the
skewness and kurtosis values of —3.15 and 10.65 respectively might not
suggest that it deviates too seriously from normal. A frequency distribu-
tion for this variable, however, reveals the presence of a single extreme
value (compound 14) as shown in Fig. 3.5. This data was analysed by
multiple linear regression (discussed further in Chapter 6), which is a
parametric method based on the normal distribution. The presence of this
outlier had quite profound effects on the analysis, which could have been
avoided if the data distribution had been checked at the outset (parti-
cularly by the present author). Outliers can be very informative and should
not simply be discarded as so frequently happens. If an outlier is found in
one of the descriptor variables (physicochemical data), then it may show
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Table 3.1 Physicochemical properties and antifilarial activity of antimycin
analogues (from Selwood et a/. 1990, copyright (1990) American Chemical
Society)

Compound ESDL10 Calculated Melting Activity
number log P point (°C)
1 -0.3896 7.239 81 —0.845
2 —0.4706 5.960 183 —0.380
3 —0.4688 6.994 207 1.398
4 —0.4129 7.372 143 0.319
5 —0.3762 5,730 165 —0.875
6 -0.3280 6.994 192 0.824
7 —0.3649 6.755 256 1.839
8 —0.5404 6.695 199 1.020
9 -0.4499 7.372 151 0.420
10 —0.3473 5.670 185 0.000
11 —0.7942 4.888 212 0.097
12 --0.4057 6.205 246 1.130
13 —-0.4094 6.113 208 0.920
14 —1.4855 6.180 159 0.770
15 —0.3427 5.681 178 0.301
16 —0.4597 6.838 222 1.357

that a mistake has been made in the measurement or calculation of that
variable for that compound. In the case of properties derived from com-
putational chemistry calculations it may indicate that some basic
assumption has been violated or that the particular method employed was
not appropriate for that compound. An example of this can be found in
semi-empirical molecular orbital methods which are only parameterized
for a limited set of the elements. Outliers are not always due to mistakes,
however. Consider the calculation of electrostatic potential around a
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Fig. 3.6. Frequency distribution for the variable ESDL10 given in Table 3.1.
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molecule. It is easy to identify regions of high and low values, and these
are often used to provide criteria for alignment or as a pictorial ex-
planation of biological properties. The value of an electrostatic potential
minimum or maximum, or the value of the potential at a given point, has
been used as a parameter to describe sets of molecules. This is fine as long
as each molecule in the set has a maximum and/or minimum at
approximately the same place. Problems arise if a small number of the
structures do not have the corresponding values in which case they will
form outliers. The effect of this is to cause the variable, apparently
measured on an interval scale, to become a nominal descriptor. Take, for
example, the case where 80 per cent of the members of the set have an
electrostatic potential minimum of around —50 kcal/mole at a particular
position. For the remaining members of the set, the electrostatic potential
at this position is zero. This variable has now become an ‘indicator’
variable which has two distinct values (zero for 20 per cent of the mole-
cules and — 50 for the remainder) that identify two different subsets of the
data. The problem may be overcome if the magnitude of a minimum or
maximum is taken, irrespective of position, although problems may occur
with molecules that have multiple minima or maxima. There is also the
more difficult philosophical question of what do such values ‘mean’.

When outliers occur in the biological or dependent data, they may also
indicate mistakes: perhaps the wrong compound was tested, or it did not
dissolve, a result was misrecorded, or the test did not work out as
expected. However, in dependent data sets, outliers may be even more
informative. They may indicate a change in biological mechanism, or
perhaps they demonstrate that some important structural feature has been
altered or a critical value of a physicochemical property exceeded. Once
again, it is best not to simply discard such outliers, they may be very
informative.

Is there anything that can be done to improve a poorly distributed
variable? The answer is yes, but it is a qualified yes since the use of too
many ‘tricks’ to improve distribution may introduce other distortions
which will obscure useful patterns in the data. The first step in improving
distribution is to identify outliers and then, if possible, identify the cause(s)
of such outliers. If an outlier cannot be ‘fixed’ it may need to be removed
from the data set. The second step involves the consideration of the rest of
the values in the set. If a variable has a high value of kurtosis or skewness,
is there some good reason for this? Does the variable really measure what
we think it does? Are the calculations/measurements sound for all of the
members of the set, particularly at the extremes of the range for skewed
distributions or around the mean where kurtosis is a problem. Finally,
would a transformation help? Taking the logarithm of a variable will often
make it behave more like a normally distributed variable, but this is not a
justification for always taking logs!
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A final point on the matter of data distribution concerns the non-
parametric methods. Although these techniques are not based on dis-
tributional assumptions, they may still suffer from the effects of ‘strange’
distributions in the data. The presence of outliers or the effective con-
version of interval to ordinal data, as in the electrostatic potential ex-
ample, may lead to misleading results.

3.4 Scaling

Scaling is a problem familiar to anyone who has ever plotted a graph. In
the case of a graph, the axes are scaled so that the information present in
each variable may be readily perceived. The same principle applies to the
scaling of variables before subjecting them to some form of analysis. The
objective of scaling methods is to remove any weighting which is solely due
to the units which are used to express a particular variable. An example of
this can be seen in the comparison of 'H and *)C NMR shifts. In any
comparison of these two types of shifts the variance of the >C measure-
ments will be far greater simply due to their magnitude. One means by
which this can be overcome, to a certain extent at least, is to express all
shifts relative to a common structure, the least substituted member of the
series, for example. This only partly solves the problem, however, since the
magnitude of the A shifts will still be greater for *C than for 'H. A
commonly used steric parameter, MR, is often scaled by division by 10 to
place it on a similar scale to other parameters such as 7 and o.

These somewhat arbitrary scaling methods are far from ideal since,
apart from suffering from subjectivity, they require the individual inspec-
tion of each variable in detail which can be a time-consuming task. What
other forms of scaling are available? One of the most familiar is called
normalization or range scaling where the minimum value of a variable is set
to zero and the values of the variable are divided by the range of the
variable

X = ‘Xij - ‘X] (mln)
= Xy(ma) — X, ani)

(3.4)

In this equation X7, is the new range-scaled value for row i (compound i)
of variable j. The values of range-scaled variables fall into the range
0 = <Xj = <1; the variables are also described as being normalized in the
range zero to one. Normalization can be carried out over any preferred
range, perhaps for aesthetic reasons, by multiplication of the range-scaled
values by a factor. A particular shortcoming of range scaling is that it is
dependent on the minimum and maximum values of the variable, thus it is
very sensitive to outliers.
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Another form of scaling which is less sensitive to outliers is known as
autoscaling in which the mean is subtracted from the variable values and
the resultant values are divided by the standard deviation

X; - X
X =—"1—1 (3.5)
Oj
Again, in this equation X represents the new autoscaled value for row i of
variable j, X; is the mean of variable j, and o; is the standard deviation
given by eqn 3.6.

X (o — %)
o = (Zﬁ> (3.6)

i=1

Autoscaled variables have a mean of zero and a variance (standard
deviation) of one. Because they are mean centred, they are less susceptible
to the effects of compounds with extreme values. That they have a
variance of one is useful in variance-related methods (see Chapters 4 and
5) since they each contribute one unit of variance to the overall variance of
a data set.

One further method of scaling which may be employed is known as
feature weighting where variables are scaled so as to enhance their effects
in the analysis. The objective of feature weighting is quite opposite to that
of ‘equalization’ scaling methods described here; it is discussed in detail in
Chapter 7.

3.5 Data reduction

This chapter is concerned with the pre-treatment of data and so far we have
discussed the nature of data, the properties of the distribution of data, and
means by which data may be scaled. All of these matters are important, in so
far as they dictate what can be done with data, but perhaps the most
important is to answer the question ‘what information does the data con-
tain?’. It is most unlikely that any given data set will contain as many pieces
of information as it does variables.* That is to say, most data sets suffer
from a degree of redundancy and this section describes ways by which
redundancy may be identified and, to some extent at least, eliminated. This
stage in data analysis is called data reduction in which selected variables are
removed from a data set. It should not be confused with dimension

* An example where this is not true is the unusual situation where all of the variables in the set
are orthogonal to one another, e.g., principal components (see Chapter 4), but even here some
variables may not contain information but be merely ‘noise’.
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reduction, described in the next chapter, in which high-dimensional data sets
are reduced to lower dimensions, usually for the purposes of display.

An obvious first test to apply to the variables in a data set is to look for
missing values; is there an entry in each column for every row? What can
be done if there are missing values? An easy solution, and often the best
one, is to discard the variable but the problem with this approach is that
the particular variable concerned may contain information that is useful
for the description of the dependent property. An alternative is to provide
the missing values, and if these can be calculated with a reasonable degree
of certainty, then all is well. If not, however, other methods may be
sought. Missing values may be replaced by random numbers, generated to
lie in the range of the variable concerned. This allows the information
contained in the variable to be used usefully for the members of the set
which have ‘real’ values, but, of course, any correlation or pattern invol-
ving that variable does not apply to the other members of the set. An
alternative to random fill is mean fill which, as the name implies, replaces
missing values by the mean of the variable involved. This, like random fill,
has the advantage that the variable with missing values can now be used; it
also has the further advantage that the distribution of the variable will not
be altered, other than to increase its kurtosis, perhaps. Another approach
to the problem of missing values is to use linear combinations of the other
variables to produce an estimate for the missing variable. As will be seen
later in this section, data sets sometimes suffer from a condition known as
multicollinearity in which one variable is correlated with a linear combi-
nation of the other variables. This method of filling missing values cer-
tainly involves more work, unless the statistics package has it ‘built in’,
and is probably of debatable value since multicollinearity is a condition
which is generally best avoided. The ideal solution to missing values is not
to have them in the first place!

Another fairly obvious test to apply to the variables in a data set is to
identify those parameters which have constant, or nearly constant, values,
Such a situation may arise because a property has been poorly chosen in
the first place, but may also happen when structural changes in the
compounds in the set lead to compensating changes in physicochemical
properties. Some data analysis packages have a built-in facility for the
identification of such ill-conditioned variables. At this stage in data
reduction it is also a good idea to examine the distribution of each of the
variables in the set so as to identify outliers or variables which have
become ‘indicators’, as discussed in Section 3.3. Values of the distribution
parameters may also be used as decision criteria when choosing which of a
pair of correlated variables to retain.

This introduces the correlation matrix. Having removed ill-conditioned
variables from the data set, a correlation matrix is constructed by calcu-
lation of the correlation coefficient between each pair of variables in the
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set. A sample correlation matrix is shown in Table 3.2 where the corre-
lation between a pair of variables is found by the intersection of a parti-
cular row and column, for example, the correlation between C log P and
Iy is 0.503. The diagonal of the matrix consists of 1s, since this represents
the correlation of each variable with itself, and it is usual to show only
half of the matrix since it is symmetrical (the top right-hand side of the
matrix is identical to the bottom left-hand side). Inspection of the corre-
lation matrix allows the identification of pairs of correlating features, al-
though choice of the level at which correlation becomes important is
problematic and dependent to some extent on the requirements of the
analysis. There are a number of high correlations (»>0.9) in Table 3.2,
however, and removal of one variable from each of these pairs will reduce
the size of the data set without much likelihood of removing useful
information.

Table 3.2 Correlation matrix for a set of physicochemical properties

Ix 1.000
ty 0.806 1.000
ClogP 0524 0503 1.000
CMR 0.829 0942 0591 1.000
CHGE(4) 0344 0349 0.286 0.243 1.000
ESDL(4) 0.299 0.257 0.128 0.118 0.947 1.000
DIPMOM 0.337 0.347 0.280 0.233 0531 0.650 1.000
EHOMO 0.229 0172 0.208 0.029 0.895 0.917 0.433 1.000
Ix ly ClogP CMR CHGE(4) ESDL(4) DIPMOM EHOMO

Having identified pairs of correlated variables, two problems remain in
deciding which one of a pair to eliminate. First, is the correlation ‘real’, in
other words has the high correlation coefficient arisen due to a true cor-
relation between the variables or is it caused by some ‘point and cluster
effect’ (see Section 6.2) due to an outlier. The best, and perhaps simplest,
way to test the correlation is to plot the two variables against one another,
effects due to outliers will then be apparent. It is also worth considering
whether the two parameters are likely to be correlated with one another. If
one is electronic and the other steric then there is no reason to expect a
correlation, although one may exist, of course. On the other hand, max-
imum width and molecular weight may well be correlated for a set of
molecules with similar overall shape.

The second problem, having decided that a correlation is real, concerns
the choice of which descriptor to eliminate. One approach to this problem
is to delete those features which have the highest number of correlations
with other features. This results in a data matrix in which the maximum
number of parameters has been retained but in which the inter-parameter
correlations are kept low. Another way in which this can be described is to
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say that the correlation structure of the data set has been simplified. An
alternative approach, where the major aim is to reduce the overall size of a
data set, is to retain those features which correlate with a large number of
others and to remove the correlating descriptors.

Which of these two approaches is adopted depends not only on the data
set concerned but also on any chemical (or biological) knowledge con-
cerning the compounds in question. It may be desirable to retain some
particular descriptor or group of descriptors on the basis of mechanistic
information or hypothesis. It may also be desirable to retain a descriptor
because we have confidence in our ability to predict changes to its value
with changes in chemical structure; this is particularly true for some of the
more ‘esoteric’ parameters calculated by computational chemistry techni-
ques. What of the situation where there is a pair of correlated parameters
and each is correlated with the same number of other features? Here, the
choice can be quite arbitrary but one way in which a decision can be made
is to eliminate the descriptor whose distribution deviates most from
normal. This is used as the basis for variable choice in a published pro-
cedure for parameter deletion called CORCHOP; a flow chart for this
routine is shown in Fig. 3.6. Although the methods which will be used to
analyse a data set once it has been treated as described here may not
depend on distributional assumptions, deviation from normality is a rea-
sonable criterion to apply. Interestingly, some techniques of data analysis
such as PLS (see Chapter 7) depend on the correlation structure in a data
set and may appear to work better if the data is not pre-treated to remove
correlations. For ease of interpretation, and generally for ease of sub-
sequent handling, it is recommended that at least the very high correla-
tions are removed from a data matrix.

Another source of redundancy in a data set, which may be more difficult
to identify, is where a variable is correlated with a linear combination of
two or more of the other variables in the set. This situation is known as
multicollinearity and may be used as a criterion for removing variables
from a data set as part of data pre-treatment. It is also desirable to remove
multicollinearity from data sets since this can have adverse effects on the
results given by some analytical methods, such as regression analysis
(Chapter 6). Factor analysis (Chapter 5) is one method which can be used
to identify multicollinearity. Finally, a note of caution needs to be sounded
concerning the removal of descriptors based on their correlation with
other parameters. It is important to know which variables were discarded
because of correlations with others and, if possible, it is best to retain the
original starting data set. This may seem like contrary advice since the
whole of this chapter has dealt with the matter of simplifying data sets and
removing redundant information. However, consider the situation where
two variables have a correlation coefficient of 0.7. This represents a shared
variance of just under 50 per cent, in other words each variable describes
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Fig. 3.6. Flow diagram for the correlation reduction procedure CORCHOP (from Livingstone
and Rahr 1989, with permission of VCH).

just about half of the information in the other, and this might be a good
correlation coefficient cut-off limit for removing variables. Now the
correlation coefficient between two parameters also represents the angle
between them if they are considered as vectors, as shown in Fig. 3.7. A
correlation coefficient of 0.7 is equivalent to an angle of approximately
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Fig. 3.7. lllustration of the geometric relationship between vectors and correlation
coefficients (from Livingstone and Rahr 19889, with permission VCH).

45°. If one of the pair of variables is correlated with a dependent variable
with a correlation coefficient of 0.7 this may well be very useful in the
description of the property that we are interested in. If the variable that is
retained in the data set from that pair is one that correlates with the
dependent (X; in Fig. 3.7) then all is well. If, however, X; was discarded
and X, retained then this parameter may now be completely uncorrelated
(6 = 90°) with the dependent variable. Although this is an idealized case
and perhaps unlikely to happen so disastrously in a multivariate data set,
it is still a situation to be aware of. One way to approach this problem is
to keep a list of all the sets of correlated variables that were in the starting
set. Figure 3.8 shows a diagram of the correlations between a set of
parameters before and after treatment with the CORCHOP procedure. If
no satisfactory correlations with activity are found in the de-correlated set,
individual variables can be re-examined using a diagram such as Fig. 3.8.
A list of such correlations may also assist when attempts are made to
‘explain’ correlations in terms of mechanism or chemical features.

3.6 Summary

Selection of the analytical tools which will be used to investigate a set of
data should not be dictated by the availability of software on a favourite
computer, by what is the current trend, or by personal preference, but
rather by the nature of the data within the set. The statistical distribution
of the data should also be considered, both when selecting analytical
methods to use and when attempting to interpret the results of any
analysis. Problems of scaling have been described here and also the almost
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Fig. 3.8. Dendrogram showing the physicochemical descriptors (for a set of antimalarials)

retained after use of the CORCHOP procedure. Dotted lines indicate parameters that were

present in the starting set (from Livingstone 1989 with permission of the Society of
Chemical Industry).

inevitable problem of redundancy, along with some suggestions as to how
best to resolve such problems.
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4
Data display

4.1 Introduction

This chapter is concerned with methods which allow the display of data.
The old adage ‘a picture is worth a thousand words’ is based on our
ability to identify visual patterns; it is probably true to say that man is the
best pattern-recognition machine that we know of. Unfortunately, we are
at our best when operating in only two or three dimensions, although it
might be argued that we do operate in higher dimensions if we consider
the senses such as taste, smell, touch, and, perhaps, the dimension of time.
There are a number of techniques which can help in trying to ‘view’
multidimensional data and it is perhaps worth pointing out here that this
is exactly what the methods do—they allow us to view a data set from a
variety of perspectives. If we consider a region of attractive countryside, or
a piece of famous architecture such as the Taj Mahal, there is no ‘correct’
view to take of the scene. There are, however, some views which are
‘better’ from the point of view of an appreciation of the beauty of the
scene, a view of the Taj Mahal which includes the fountains, for example.
Figure 4.1 shows a plot of the values of two parameters against one
another for a set of compounds which are marked as A for active and 1
for inactive. Looking at the plot as presented gives a clear separation of
the two classes of compounds, the view given by the two parameters is
useful. If we consider the data represented by parameter 1, seen from the
position marked view 1, it is seen that this also gives a reasonable
separation of the two classes although there is some overlap. The data
represented by parameter 2 (view 2), on the other hand, gives no
separation of the classes at all. This illustrates two important features.
First, the consideration of multiple variables often gives a better descrip-
tion of a problem: in this case parameter 2 helps to resolve the conflict in
classification given by parameter 1. Second, the choice of viewpoint can be
critical and it is usually not possible to say in advance what the ‘best’
viewpoint will be. Hopefully this simple two-dimensional example has
illustrated the problems that may be encountered when viewing multi-
variate data of 50, 100, or even more dimensions.

Now to multivariate display methods. These methods can conveniently
be divided into linear and non-linear techniques as discussed in the
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Fig. 4.1. Plot of a set of active (A) and inactive (I) compounds described by two
physicochemical properties.

next two sections; cluster analysis as a display method is covered in
Chapter 5.

4.2 Linear methods

The simplest and most obvious linear display method is a variable-
by-variable plot. The advantages of such plots are that they are very easy
to interpret and it is easy to add a new point to the diagram for prediction
or comparison (this is not necessarily the case with other methods, as will
be shown later). One of the disadvantages of such an approach is that for
a multivariate set, there can be many two-dimensional plots, n(n—1) for »
variables. Such plots not only take time to generate but also take a lot of
time to evaluate. Another disadvantage of this technique is the limited
information content of the plots; Fig. 4.1 shows the improvement that can
be obtained by the addition of just one parameter to a variable which
already describes the biological data reasonably well. How can further
dimensions be added to a plot? Computer graphics systems allow the
production of three-dimensional pictures which can be viewed in stereo
and manipulated in real time. They are often used to display the results of
molecular modelling calculations for small molecules and proteins, but can
just as easily be adapted to display data. The advantage of being able to
manipulate such a display is that a view can be selected which gives the
required distribution of data points; in Fig. 4.1, for example, the best view
is above the plot. The use of colour or different-shaped symbols can also
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be used to add extra dimensions to a plot. Figure 4.2 shows a physical
model, a reminder of more ‘low-tech’ times, in which a third parameter is
represented by the height of the columns above the baseboard and activity
is represented by colour. Another approach is shown in the spectral dia-
gram in Fig. 4.3 which represents a simultaneous display of the activities
of compounds (circles) and the relationships between tests (squares); the
areas of the symbols represent the mean activity of the compounds and
tests. A fuller description of spectral map analysis is given in Chapter 8.

Through these ingenious approaches it is possible to expand diagrams to
four, five, or even six dimensions, but this does not even begin to solve the
problem of viewing a 50-dimensional data set. What is required is some
method to reduce the dimensionality of the data set while retaining its
information content. One such technique is known as principal component
analysis (PCA) and since it forms the basis of a number of useful methods,
both supervised and unsupervised, I will attempt to explain it here in some
detail. The following description is based, with very grateful permission,
on part of Chapter 6 of the book by Hilary Seal (1968).

.
Fig. 4.2. A physical model used to represent three physicochemical properties, © and o on
the baseboard and MR as the height of the balis. Five colours, indicated by numbers, were
used to code the balls (representing compounds) for five activity classes.
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Fig. 4.3. Spectral map of the relationships between the activity of neuroleptics (circles) and
in vivo tests (squares). (From Lewi 1986 with permission of the European Journal of
Medlicinal Chemistry.)

We have seen in Chapter 3 (Figs 3.1 and 3.2) that a frequency dis-
tribution can be constructed for a single variable in which the frequency of
occurrence of variable values is plotted against the values themselves. If we
take the values of two variables which describe a set of samples (com-
pounds, objects, mixtures, etc.) a frequency distribution can be shown for
both variables simultaneously (Fig. 4.4). In this diagram the height of the
surface represents the number of occurrences of samples which have
variable values corresponding to the X and Y values of the plane which
the surface sits on. The highest point of this surface, the summit of the hill,
corresponds to the mean of each of the two variables. It is possible to take
slices through a solid object such as this and plot these as ellipses on a
two-dimensional plot as shown in Fig. 4.5. These ellipses represent po-
pulation contours: as the slices are taken further down the surface from
the summit, they produce larger ellipses which contain higher proportions
of the population of variable values. Two important things can be seen-
from this figure. First, the largest axis of the ellipses corresponds to the
variable (X)) with the larger standard deviation. Thus, the greatest part of
the shape of each ellipse is associated with the variable which contains the
most variance, in other words, information. Second, the two axes of the
ellipses are aligned with the two axes of the plot. This is because the two
variables are not associated with one another; where there are high values
of variable X5, there is a spread of values of variable X, and vice versa. If
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Fig. 4.4. Three-dimensional plot of the frequency distribution for two variables. The two
variables have the same standard deviations so the frequency "surface’ is symmetrical. (From
Seal 1968 with permission of Methuen.)

X2
H+40, |
M+20, ]
W, ﬁ SONON90Y 991999
Hy-46, —
T T T T X
y-40, 1,-26, i W+20, u,+40,

Fig. 4.5. Population contours from a frequency distribution such as that shown in Fig. 4.4. in
this case, the variables have different standard deviations (o,>0,) so the contours are
ellipses (from Seal 1968 with permission of Methuen).

the two variables are correlated then the ellipses are tilted as shown in Fig.
4.6 where one population contour is plotted for two variables, ¥ and X,
which are positively correlated. The two ‘ends’ of the population ellipse
are located in two quadrants of the X-Y space which correspond to (low
X, low Y) and (high X, high Y). If the variables were negatively corre-
lated, the ellipse would be tilted so that high values of ¥ correspond to
low values of X and the other end of the ellipse would be in the (low Y,
high X) quadrant. The relationship between the two axes, X and Y, and
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Fig. 4.6. Population contour for two correlated variables, X and Y. The axes X' and Y’

represent mean-centred variables achieved by translation of the origin of X and Y. The axes

X" and Y" are formed by rotation of X’ and Y’ through the angle o (after Seal 1968 with
permission of Methuen and Co.).

the population ellipse, which can be thought of as enclosing the cloud of
data points, shows how well the original variables describe the information
in the data. Another way of describing the data is to transform the axes X
and Y to new axes X’ and Y’ as shown in the figure. This is achieved by
translation of the origin of X and Y to a new position in the centre of the
ellipse, a procedure called, unsurprisingly, centring. A further operation
can be carried out on the new axes, X’ and Y’, and that is rotation
through the angle o marked on the figure, to give yet another set of axes,
X" and Y". These are the two basic operations involved in the production
of principal components, translation and rotation.

Now it may seem that this procedure has not achieved very much other
than to slightly alter two original variables, and both by the same amount,
but it will be seen to have considerable effects when we involve larger
numbers of variables. For the present, though, consider the results of this
procedure as it illustrates some important features of PCA. The new
variable, X", is aligned with the major axis of the ellipse and it is thus
explaining the major part of the variance in the data set. The other new
variable, Y, is aligned with the next largest axis of the ellipse and is thus
explaining the next largest piece of information in the set of data points.
Why is this the next largest piece of variance in the data set? Surely
another direction can be found in the ellipse which is different to the major
axis? The answer to this question is yes, but a requirement of principal
components is that they are orthogonal to one another (also uncorrelated)
and in this two-dimensional example that means at 90°. The two im-
portant properties of principal components are:
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(1) the first principal component explains the maximum variance in the
data set, with subsequent components describing the maximum part of
the remaining variance subject to the condition that

(2) all principal components are orthogonal to one another.

In this simple two-dimensional example it is easy to see the directions that
the two principal components (PCs) must take to describe the variance in
the data set. Since the two axes, X and Y, were originally orthogonal it is
also easy to see that it is only necessary to apply the same single rotation
to each axis to produce the PCs. In the situation where there are multiple
variables, the same single rotation (including reflection) is applied to all
the variables. The other feature of principal component analysis that this
example demonstrates is the matter of dimensionality. The maximum
number of components which are orthogonal and that can be generated in
two dimensions is two. For three dimensions, the maximum number of
orthogonal components is three, and so on for higher dimensional data
sets. The other ‘natural’ limit for the number of components that can be
extracted from a multidimensional data set is dictated by the number of
data points in the set. Each PC must explain some part of the variance in
the data set and thus at least one sample point must be associated with
each new PC dimension. The third condition for PCA is thus

(3) as many PCs may be extracted as the smaller of p (data points) or n
(dimensions) for a p x n matrix (denoted by ¢ in eqn (4.1)).*

There are other important properties of PCs to consider, such as their
physical meaning and their ‘significance’. These are discussed further in
this section and in Chapter 7; for the present it is sufficient to regard them
as means by which the dimensionality of a high-dimensional data space
can be reduced. How are they used? In the situation where a data set
contains many variables the PCs can be regarded as new variables created
by taking a linear combination of the original variables as shown in eqn

@.1).

PC] =aii + aynva + ... Ay nVn
PCy=ayvi +axava + .. . azuvs
PCy=agivi T agova+ .. . Gynvn 4.0

Where the subscripted term, a; represents the contribution of each ori-
ginal variable (v;—v,) in the N-dimensional set to the particular principal
component (1—-+g) where g (the number of principal components) is the
smaller of the p points or n dimensions. These coefficients have a sign

* Actually, it is the rank of the matrix, denoted by r(A), which is the maximum number of
linearly independent rows (or columns) in A. 0 < (A) < min (p, n), where A has p rows and »
columns.
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associated with them, indicating whether a particular variable makes a
negative or positive contribution to the component, and their magnitude
shows the degree to which they contribute to the component. The coeffi-
cients are also referred to as loadings and represent the contribution of
individual variables to the principal components.* Since the PCs are new
variables it is possible to calculate values for each of these components for
each of the objects (data points) in the data set to produce a new (re-
constructed but related) data set. The numbers in this data set are known
as principal component scores; the process is shown diagrammatically in
Fig. 4.7. Now, it may not seem that this has achieved much in the way of
dimension reduction: while it is true that the scores matrix has a ‘width’ of
g this will only be a reduction if there were fewer compounds than vari-
ables in the starting data set. The utility of PCA for dimension reduction
lies in the fact that the PCs are generated so that they explain maximal
amounts of variance. The majority of the information in many data sets
will be contained in the first few PCs derived from the set. In fact, by
definition, the most informative view of a data set, in terms of variance at
least, will be given by consideration of the first two PCs. Since the scores
matrix contains a value for each compound corresponding to each PC it is
possible to plot these values against one another to produce a low-
dimensional picture of a high-dimensional data set. Figure 4.8 shows a
scores plot for 13 compounds described by 33 calculated physicochemical

1 > N variables

1 (columns)
Original
l data
matrix
P
samples
(rows)
> PC > PC
1 : Q scores 1 ! ¢ loadings
Reduced data PC
l matrix of l loadings
scores matrix
P N
samples variables

Fig. 4.7. lllustration of the process of principal components analysis to produce a ‘new’ data

matrix of Q scores for P samples where Q is equal to {or less than) the smaller of MV {variables)

or P (samples). The loadings matrix contains the contribution (loading) of each of the NV
variables to each of the Q principal components.

* A loading is actually the product of the coefficient and the eigenvalue of the principal
component (a measure of its importance) as described later.
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Fig. 4.8. Scores plot for 13 analogues of y-aminobutyric acid (from Hudson et a/. 1989,
copyright (1989) Wellcome Foundation).

properties. This picture is drawn from the scores for the first two PCs and
it is interesting to see that the compounds are roughly separated into three
classes of biological activity—potent, weak, and no agonist activity.
Although the separation between classes is not ideal this is still quite an
impressive picture since it is an example of unsupervised learning pattern
recognition; the biological information was not used in the generation of
the PCs. Table 4.1 gives a list of the loadings of the original 33 variables
with the first three PCs. This table should give some idea of the complex
nature of PCs derived from large dimensional data sets. Some variables
contribute in a negative fashion to the first two PCs, e.g., CMR, 4-ESDL,
3-NSDL, and so on, while others have opposite signs for their loadings on
these two PCs. The change in sign for the loadings of an individual
variable on two PCs perhaps seems reasonable when we consider that the
PCs are orthogonal; the PCs are taking different ‘directions’ and thus a
variable that contributes positively to one PC might be negatively asso-
ciated with another (see Fig. 4.13). Where the signs of the loadings of one
variable on two PCs are the same, the loading for that variable on a third
PC is often (but not always) reversed, demonstrating that the third com-
ponent is taking a different direction to the first two. It should be pointed
out here that the direction that a PC takes, with respect to the original
variables, is arbitary. Reversing all of the signs of the loadings of the
variables on a particular PC produces a component which explains the
same amount of variance. When PCs are calculated for the same data set
using two different software packages, it is not unusual to find that the
signs of the loadings of the variables on corresponding PCs (e.g., the first
PC from the two programs) are reversed, but the eigenvalues (variance
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Table 4.1 Loadings of input variables for the first three principal
components (total explained variance=70 per cent) (from
Hudson et a/. 1989, copyright (1989) Welicome Foundation)

Loading

Variable PC, PC, PC;

CMR —0.154 —-0.275 0.107
1-ATCH —0.196 0.096 0.298
2-ATCH 0.015 —-0.203 —0.348
3-ATCH 0.186 0.003 0.215
4-ATCH —~0.183 0.081 —0.197
5-ATCH —0.223 0.061 —0.027
6-ATCH 0.272 —0.030 0.049
X-DIPV 0.152 —0.085 —0.059
Y-DIPV 0.079 -0.077 -0.278
Z-DIPV 0.073 -0.117 0.019
DIPMOM —0.019 0.173 —0.006
T-ENER 0.137 0.146 —-0.242
1-ESDL 0.253 ~0.156 0.120
2-ESDL 0.221 -0.071 —-0.020
3-ESDL —0.217 0.108 —0.248
4-ESDL —0.167 ~0.115 —0.245
5-ESDL —-0.105 0.197 0.158
6-ESDL 0.128 0.072 0.337
1-NSDL 0.183 —0.253 0.148
2-NSDL 0.186 —0.236 0.025
3-NSDL —0.021 —0.136 —0.365
4-NSDL —0.226 0.195 —0.046
5-NSDL ~0.111 0.227 0.141
6-NSDL —0.099 0.257 0.125
VDW.VOL —-0.228 -0.229 0.031
X-MOFI —0.186 —0.238 0.136
Y-MOFI -0.186 —0.266 0.093
Z-MOF! —0.209 -0.238 0.0390
X-PEAX —-0.218 -~0.178 -0.020
Y-PEAX —0.266 -0.050 0.084
Z-PEAX —0.051 —-0.217 0.035
MOLWT —0.126 —0.263 0.189
IHET.1 0.185 —-0.071 —0.052

explained) are the same. The other important piece of information to note
in Table 4.1 is the magnitude of the coefficients. Many of the variables that
make a large contribution to the first component will tend to have a small
coefficient in the second component and vice versa. Some variables, of
course, can make a large contribution to both of these PCs, e.g.,, CMR,
T-ENER, 1-ESDL, 1-NSDL, etc., in which case they are likely to make
a smaller contribution to the third component. The variable T-ENER
demonstrates an exception to this in that it has relatively high loadings on
all three components listed in the table.*

* For this data set it is possible to calculate a total of 13 components although not all are
‘significant’ as discussed later.
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Fig. 4.9. Scores plot for fruit juice samples: A, apple juice; P, pineapple juice; and G, grape
juice ( from Dizy et al. 1992, with permission of the Society of Chemical Industry).

Figure 4.9 shows an example of the value of PCA in food science. This
is a scores plot for the first two PCs derived from a data set of 15 variables
measured on 34 samples of fruit juices. The variables included pH, total
phenols, reducing sugars, total nitrogen, ash, glucose content, and formol
number, and the samples comprised 17 grape, 11 apple, and six pineapple
juices. As can be seen from the figure, the first two components give a very
satisfactory separation of the three types of juice. The first PC was related
to richness in sugar since the variables reducing sugars, total sugars, glu-
cose, °Brix, dry extract, and fructose load highly onto it. This component
distinguishes grape from apple and pineapple juice. The second PC, which
separates apple from pineapple juice was highly correlated with the
glucose : fructose ratio, total nitrogen, and formol number. In this example
it is possible to attempt to ascribe some chemical ‘meaning’ to a PC, here
sugar richness described by PC;, but in general it should be borne in mind
that PCs are mathematical constructs without necessarily having any
physical significance. An example of the use of PCA in another area of
chemical research is shown in Fig. 4.10. This scores plot was derived from
PCA applied to a set of seven parameters, calculated log P and six
theoretical descriptors, used to describe a series of 14 substituted benzoic
acids. The major route of metabolism of these compounds in the rat was
determined by NMR measurements of urine, or taken from the literature,
and they were assigned to glycine (Fig. 4.11a) or glucuronide (Fig. 4.11b)
conjugates. A training set of 12 compounds is shown on the scores plot in
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Fig. 4.10. Scores plot for a set of benzoic acids described by seven physicochemical

properties. Compounds are metabolized by the formation of glucuronide conjugates

(squares) or glycine conjugates (circles) and two test set compounds are shown (triangles).
(From Ghauri et a/. 1992, copyright (1992) Wellcome Foundation.)

Fig. 4.10 where it can be seen that the glucuronide conjugate-forming
compounds (squares) are well separated from the rest of the set. Two test
set compounds are shown as triangles; compound 13 is metabolized by the
glucuronide route and does lie close to the other glucuronide conjugate
formers. However, this compound is also close, in fact closer, to a glycine
conjugate-forming acid (number 6) and thus might be predicted to be
metabolized by this route. The other test set compound lies in a region of
PC space, low values of PC,, which is not mapped by the other com-
pounds in the training set. This compound is metabolized by the glycine
conjugate route but it is clear that this could not be predicted from this

@ FOCO.NH.CHQ.COOH
COOH

o}
() CFS‘QCOAO OH

HO OH

Fig. 4.11. Structure of (a) the glycine conjugate of 4-fluorobenzoic acid; (b) the glucuronic
acid conjugate of 4-trifluoromethylbenzoic acid. (From Ghauri et a/. 1992, copyright (1992)
Wellcome Foundation.)



Linear methods | 77

scores plot. This example serves to illustrate two points. First, the PC
scores plot can be used to classify successfully the metabolic route for the
majority of these simple benzoic acid analogues, but that individual pre-
dictions may not be unambiguous. Second, it demonstrates the importance
of careful choice of test and training set compounds. Compound 14 must
have some extreme values in the original data matrix and thus might be
better treated as a member of the training set. In fairness to the original
report it should be pointed out that the selection of ‘better’ variables, in
terms of their ability to classify the compounds, led to plots with much
better predictive ability.

As was seen in Table 4.1, PCA not only provides information about the
relationships between samples in a data set but also gives us insight into
the relationships between variables. The schematic representation of PCA
in Fig. 4.7 shows that the process produces two new matrices, each of
width Q, where Q is the smaller of N (variables) or P (samples). The scores
matrix contains the values of new variables (scores) which describe the
samples. The loadings matrix contains the values of the loadings (corre-
lations) of each variable with each of the Q principal components. These
loadings are the coefficients for the variables in eqn (4.1) and can be used
to construct a loadings plot for a pair of PCs. In an analysis of an ex-
tensive set of physicochemical substituent constants, Van de Waterbeemd
and colleagues (1989) produced the PC loadings shown in Table 4.2. The
loadings for the full set of substituent constants are shown projected onto
the first two PC axes in Fig. 4.12. In this figure each point represents a
variable; where points are clustered together, the variables are all highly
associated with one another. Those points which lie close to the origin of
the plot (e.g. 38, 43, 44, and 50) make little contribution to either PC,

Table 4.2 Loadings for selected variables on the first two PCs*
(reproduced with kind permission from Van de Waterbeemd et
al. 1989, copyright (1989) ESCOM Science Publishers B.V.)

No. on Fig. 4.12 Parameter PC, PC,
1 PIAR -0.72 0.1
2 PIAL —0.66 0.16
3 FARR —0.71 0.23
4 FALR —0.69 0.21
5 FARHL ~0.72 0.17
[ FALHL 0.69 0.23
7 K 0.04 —0.49

38 SX 0.14 0.04

43 RE 0.07 0.01

44 | 0.14 0.07

50 HD 0.12 0.07

59 RAND 0.09 0.39

* From a total of 75 parameters describing 59 substituents.
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Fig. 4.12. Loadings plot for a set of 75 substituent constants (reproduced with kind
permission from Van de Waterbeemd et a/. 1989, copyright (1889) ESCOM Science
Publishers B.V.).

conversely the points at the extremes of the four quadrants are highly
associated with their respective PCs. The cluster of variables represented
by points 1 to 6 is a chemically ‘sensible’ one, these are all descriptors of
lipophilicity. The fact that parameter 59 lies close to the origin is
reassuring, this variable was generated from random numbers. Descriptor
7 is derived from measurements of charge-transfer complexes, its
relationship to other parameters is examined further in Section 7.3. Points
which lie on their own in the PC space represent variables which contain
some unique information not associated with other variables.

By joining the points representing variables to the origin of the PC plot
it is possible to construct vectors in the two-dimensional plane of PC
space. This type of representation can be adapted to produce a diagram
which aims to give another, more visual, explanation of principal com-
ponent analysis. In Fig. 4.13 the solid arrows represent individual variables
as vectors, with the length of each arrow proportional to the variance
contained in the variable. This is not the same type of plot as Fig. 4.12; the
two-dimensional space is not PC space but is intended to represent N
dimensions. The position of the arrows in the diagram demonstrates the
relationships between the variables, arrows which lie close to one another
represent correlated variables. The first PC is shown as a dotted arrow and
it can be seen to lie within a cluster of correlated variables. The loadings of
these variables (and the others in the set) are found by projection of the
arrows onto this PC arrow, illustrated for just two variables for clarity.
The length of the PC arrow is given by vector addition of the arrows
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Fig. 4.13. Pictorial representation of the relationship between data vectors (variables),
shown by solid lines, and PCs shown by dotted lines. The plane of the diagram is not ‘real’
two-dimensional space or PC space but is meant to represent NV dimensions.

representing the variables and, as for the individual variables, this
represents the variance contained in this component. The second and third
PCs lie within other sets of correlated variables and are shorter vectors
than the first since they are explaining smaller amounts of variance in the
set. The PC vectors are not at right angles (orthogonal to one another) in
this diagram since the space in the figure is not ‘real’ two-dimensional
space. The relationship between PC vectors and the variable vectors
illustrates an operation that can be carried out on PCs in order to simplify
their structure. This can be of assistance in attempts to interpret PCs and
may also result in PCs which are better able to explain some dependent
variable. The three PC vectors shown in Fig. 4.13 were generated so as to
explain the maximum variance in the data set and thus there are a lot of
variables associated with them. This association of many variables with
each component leads to low loadings for some of the variables,
particularly some of the more ‘important’ (high-variance) variables. By
trying to explain the maximum amount of variance in the set, PCA
achieves a compromise between PC ‘directions’ that are aligned with high-
variance variables and directions that are aligned with a large number of
variables. Rotation of the PCs allows new directions to be found in which
fewer variables are more highly associated with each PC. There are a
number of techniques available to achieve such rotations, one of the
commonest is known as varimax rotation (Jackson 1991). Table 4.3 shows
the loadings of seven physicochemical parameters on four PCs for a set of
18 naphthalene derivatives. High loadings, i.e., variables making a large
contribution, for each component are shown in bold type. It can be seen
that the first component in particular has a quite complicated structure
with four variables contributing to it and that two of these, = and MR, are
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Table 4.3 Parameter loadings for four principal components (from Livingstone
1991, after Schultz and Moulton 1985, with permission of Springer-Verlag)

Parameter 1 2 3 4

n 0.698" —0.537 —0.121 —0.258
MR 0.771 0.490 —-0.302 —0.002
F 0.261 0.389 0.745 —0.423
R 0.405 -0.012 0.578 0.697
Ha —0.140 0.951 0.071 —0.101
Hqg —0.733 0.373 —0.271 0.172
T 0.739 0.412 ~0.404 0.163

* Boldface numbers indicate parameters making a large contribution to each component.

properties that it is desirable to keep uncorrelated. Table 4.4 shows the
loadings of these same variables on four PCs after varimax rotation. The
structure of the first PC has been simplified considerably and the corre-
lation between n and MR has been almost eliminated by reducing the =
loading from 0.6988 to 0.2. This parameter now loads onto the second PC
(note the change in sign) and the properties which were highly associated
with the third and fourth PCs have had their loadings increased. Varimax
rotation results in a new set of components, often referred to as factors, in
which loadings are increased or reduced to give a simplified correlation
structure. This rotation is orthogonal, that is to say the resulting factors
are orthogonal like the PCs they were derived from. Other orthogonal
rotations may be used to aid in the interpretation of PCs and non-
orthogonal (oblique) rotations also exist (Jackson 1991).

Table 4.4 Parameter loadings after varimax rotation (from Livingstone 1991, after
Schultz and Mouiton 1985, with permission of Springer-Verlag)

Parameter 1 2 3 4

T 0.200 0.919* 0.012 0.012
MR 0.891 0.195 0.093 0.061
F 0.020 —0.003 0.975 0.123
R 0.081 0.018 0.115 0.982
Ha 0.272 0.451 0.318 -0.083
Hg -0.159 —0.285 -0.138 —0.148
T¥ub 0.974 0.037 -—0.024 0.064

* Boldface numbers indicate parameters making a large contribution to each component.

Scores or loadings plots are not restricted to the first two PCs, although
all of the examples shown so far have been based on the first two PCs. By
definition, the first two PCs explain the largest amount of variance in a
data set, but plots of other components may be more informative; Section
7.3.1, for example, shows a data set where the first and fourth PCs were
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most useful in the explanation of a dependent variable. Plots are also not
restricted to just two PCs, although two-dimensional plots are quite
popular since they fit easily onto two-dimensional paper! The physical
model shown earlier (Fig. 4.2) is a four-dimensional plot and the spectral
map (Fig. 4.3) contains a third dimension in the thickness of the symbols.
Figure 4.14 shows a plot of the first three PCs calculated from a GC-MS
analysis (32 peaks) of natural orange aroma samples. The different
samples, labelled A to P, were of distinct types of orange aroma provided
by six different commercial flavour houses. These orange aromas could be
classified into nine separate categories, as indicated by the different sym-
bols on the plot, and it can be seen that this three-dimensional diagram
separates the categories quite well.

PCA;

0.87 -

0.40 _

-0.07 _|

0.72 : PCA3

PCA, -1.14

Fig. 4.14. Scores plot on the first three PCs for a set of natural orange aroma samples
described by GC-MS data. Different samples are indicated by the letters A-P, and different
categories by different symbols (from Lin et a/. 1993 with permission of Eisevier Science).

As mentioned at the beginning of this section, PCA lies at the heart of
several analytical methods which will be discussed in later chapters. Some
other features of PCs, such as their ‘significance’, are also discussed later in
the book; this section has been intended to illustrate the use of PCA as a
linear dimension reduction method.

4.3 Non-linear methods

For any given data set of points in N dimensions it is possible to calculate
the distances between pairs of points by means of an equation such as that
shown in eqn (4.2).
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dj = ( Z (dig — dj,k>2) (4.2)
K

=1N

This is the expression for the Euclidean distance where dj; refers to the
distance between points i and j in an N-dimensional space given by the
summation of the differences of their coordinates in each dimension
(k = 1, N). Different measures of distance may be used to characterize the
similarities between points in space, e.g., city-block distances, Mahalonobis
distance (see Digby and Kempton 1987 for examples), but for most
purposes the familiar Euclidean distance is sufficient. The collection of
interpoint distances is known, unsurprisingly, as a distance matrix (see
Section 5.2 for an example) and this is used as the starting point for a
number of multivariate techniques.

The display method which is considered in this section is known as non-
linear mapping (Kowalski and Bender 1973), NLM for short, and takes as
its starting point the distance matrix for a data set calculated according to
eqn (4.2). The distances in this distance matrix are labelled dj to indicate
that they relate to N-space interpoint distances. Having calculated the N-
space distance matrix, the next step is to randomly (usually, but see later)
assign the points (compounds, samples) to positions in a lower dimen-
sional space. This is usually a two-dimensional space for ease of plotting
but can be a three-dimensional space if a computer graphics display with
stereo is used, or a two-dimensional stereo plot with appropriate viewer.
Having assigned the p points to positions in a two-dimensional coordinate
system, distances between the points can be calculated using eqn (4.2) and
these are labelled dj. The difference between the N-space interpoint
distances and the 2-space interpoint distances can be expressed as an error,
E, as shown in eqn (4.3).

E="(d} - dy)’/(dy’ (43)

i>j

Minimization of this error function results in a two-dimensional display of
the data set in which the distances between points are such that they best
represent the distances between points in N-space. The significance of the
power term, p, will be discussed later in this section: it serves to alter the
emphasis on the relative importance of large versus small N-space inter-
point distances.

A physical analogy of the process of NLM can be given by considera-
tion of a three-dimensional object composed of a set of balls joined
together by springs. If the object is pushed onto a flat surface and the
tension in the springs allowed to equalize, the result is a two-dimensional
representation of a three-dimensional object. The equalization of tension
in the springs is equivalent to minimization of the error function in eqn
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(4.3). A two-dimensional plot produced by the NLM process has some
interesting features. Each axis of the plot consists of some (unknown) non-
linear combination of the properties which were used to define the original
N-dimensional data space. Thus, it is not possible to plot another point
directly onto an NLM; the whole map must be recalculated with the new
point included. An example of an NLM which includes both training set
and test set compounds is shown in Fig. 4.15. This plot was derived from a
set of bicyclic amine derivatives which were described by nine calculated
parameters.  Antiviral activity results were obtained from a plaque-
reduction assay against influenza A virus. It can be seen from the map that
the active compounds are grouped together in one region of space. Some
of the test set compounds lie closer to this region of the plot, though none
of them within it, and thus the expectation is that these compounds are
more likely to be active than the other members of the test set. This is a
good example of the use of an NLM as a means for deciding the order in
which compounds should be made or tested. Another use for NLM is to
show how well physicochemical property space is spanned by the
compounds in the training set, or test set for that matter. Regions of space
on the NLM which do not contain points probably indicate regions of N-
space which do not contain samples. The qualifier ‘probably’ was used in
the last statement because the space on an NLM does not correspond
directly to space in N dimensions. A map is produced to meet the criterion
of the preservation of interpoint distances so as we move about in the
2-space of an NLM this might be equivalent to quite strange moves in N-
space. Small distances on the NLM may be equivalent to large distances in
the space of some variables, small or zero distances with respect to other
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Fig. 4.15. NLM of a set of antiviral bicyclic amine derivatives (from Hudson et a/. 1989,
copyright (1989) Wellcome Foundation).
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variables and may even involve a change of direction in the space of some
variables.

Another example of the use of NLM to treat chemical data is shown in
Fig. 4.16. This NLM was calculated from the same GC-MS data used to
produce the principal component scores plot shown in Fig. 4.14. The
NLM clearly groups the samples into nine different categories, the

Flowery herbal-like

5 Butter oil-like
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6 66 Pepper-like
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Fruity tea-like
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Fig. 4.16. NLM of natural orange aroma samples described by 32 GC-MS peaks (from Lin et
al. 1993 with permission of Elsevier Science).
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Fig. 4.17. NLM of hallucinogenic phenylalkylamine derivatives described by 24
physicochemical properties; e is active, + is low activity, O is inactive (from Clare 1990,
copyright (1990) American Chemical Society).
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descriptions of the samples are comments made by a human testing panel
(see later). Figure 4.17 shows another example of an NLM, this time from
the field of drug design. This plot shows 63 hallucinogenic phenyl-
alkylamine derivatives characterized by 24 physicochemical properties.
Compounds with high activity are mostly found in the top-left quadrant of
the map, the inactive and low-activity compounds being mixed in the rest
of the space of the map. Interestingly, this map also shows three active
compounds which are separated from the main cluster of actives. These
compounds lie quite close to the edge of the plot and thus in a region of
the NLM space that might be expected to behave in a peculiar fashion.
They may actually be quite similar to the rest of the active cluster, in other
words the map may ‘join up’ at the axes and they are simply placed there
as a good compromise in the minimization of the error function. An
alternative explanation is that these compounds exert their activity due to
some unique features, they may act by a different mechanism or perhaps
occupy a different part of the binding site of a biological receptor. Display
methods are quite good tools for the identification of compounds, samples,
or objects which have different features to the rest of the set.

Figure 4.18 illustrates the use of the power term, p, in eqn (4.3). The
bicyclic amine data set shown in Fig. 4.15 was mapped using a value of
two for this term. With p = 2, both large and small interpoint distances
are equally preserved; this compromise ensures the best overall mapping of
the N-space interpoint distances. Figure 4.18 shows the result of mapping
this same data set using a value of —2 for p. This has the effect of
preserving the larger interpoint distances at the expense of the smaller
ones; the result is to ‘collapse’ local clusters of points thus emphasizing the
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Fig. 4.18. NLM, using a power term p=—2, of the antiviral bicyclic amine derivatives shown
in Fig. 4.15 (from Hudson et a/. 1989, copyright (1989) Wellcome Foundation).
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similarities between compounds. The effect on the data set has been quite
dramatic: the active compounds still cluster together and it can be seen
that none of the test set compounds join this cluster. However, one of the
test set compounds now lies very close to the cluster of actives and thus
becomes a much more interesting synthetic target. Two of the remaining
test set compounds are close together (only one need be made) and one of
the test set compounds has been separated from the rest of the set. This
latter compound may now represent an interesting target to make, as it
may be chemically different to the rest of the test set, or may be ignored
since it lies a long way from the active cluster. Synthetic feasibility and the
judgement of the research team will decide its fate.

The final examples of the use of display methods to be shown here also
involve a different type of descriptor data, results from a panel of human
testers. In the analysis of natural aroma (NOA) samples reported earlier
(Lin et al. 1993) a human testing panel was trained over a period of three
months using pure samples of 15 identified components of the NOA
samples. A quantitative descriptive analysis (QDA) report form was de-
vised during the course of the training; the QDA form was used to assign
a score to a number of different properties of the NOA samples. PCA of
the QDA data for the same samples as shown in Fig. 4.14 resulted in the
explanation of 58 per cent of the variance in the data set in the first three
PCs. A scores plot on these three PC axes is shown in Fig. 4.19 where it
can be seen that the NOA samples are broadly grouped together into
different categories, but the classifications are not as tight as those shown

PCA,
0.97 |
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Fig. 4.19. Scores plot for a set of NOA samples described by sensory QDA data. The QDA
data was autoscaled and variance-weighted (see reference for details). Symbols are the same
as those used in Fig. 4.14 (from Lin et al. 1993, with permission of Elsevier Science).
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Fig. 4.20 NLM of a set of NOA samples described by Fisher-weighted sensory QDA data.
Symbols are the same as those used in Fig. 4.14 (from Lin et a/. 1993, with permission of
Elsevier Science).

in Fig. 4.14. Figure 4.20 shows a non-linear map of Fisher-weighted QDA
where it can be seen that some of the categories are quite well separated
but not as clearly as the NLM from GC-MS data (see Fig. 4.16).*
Some of the advantages and disadvantages of non-linear mapping as a
multivariate display technique are listed in Table 4.5. Most of these have
been discussed already in this section but a couple of points have not.
Since the technique is an unsupervised learning method, it is unlikely that
any grouping of objects will happen by chance. Any cluster of points seen
on an NLM generally represents a cluster of points in the N-dimensional
space. Such groupings may happen by chance although this is much more
likely to occur when a supervised learning method, which seeks to find or
create patterns in a data set, is employed. The significance of a group of
points found on a non-linear map, or any other display for that matter,
may be assessed by a method called cluster significance analysis as
discussed in Chapter 5. The fact that the display is dependent on the order
of the compounds and changes as compounds are added or removed is a
consequence of the minimization of the error function. The calculated map
depends on the initial guess for the 2-space points since the minimizer will
find the nearest local minimum rather than the global minimum (@if one
exists). A common way to choose the initial positions of the points in

* Fisher-weighting and variance-weighting are different procedures for weighting variables
according to their ability to classify samples (see Varmuza 1980).
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Table 4.5 Non-linear mapping—pros and cons

Advantage

No assumptions concerning mechanism and may identify different mechanisms
Unsupervised learning so chance effects unlikely

Does not require biological data

Non-linear

Can change the emphasis on the preservation of interpoint distances

Can view multivariate data in two (or three) dimensions

Disadvantage

Unknown non-linear combination of variables

Cannot plot a point directly on the map

Display may change dramatically as points are added/removed
Cannot relate NLM distances to AV-space distances (mapping errors)
Display depends on the order of data entry

2-space is to assign them randomly, but a disadvantage of this is that
running the NLM routine several times on the same data set may produce
several different maps. One approach to overcoming this problem is to use
principal component scores as the initial guess for the 2-space positions; a
disadvantage of this is that the resultant map may be more ‘linear’ than is
desirable. Since the error function is calculated over a summation of the
distance differences, adding or removing points may alter the subsequent
display. This can be disconcerting to newcomers to the method, particu-
larly when we are accustomed to display methods which give only one
‘answer’.

4.4 Summary

Multivariate display methods are very useful techniques for the inspection
of high-dimensional data sets. They allow us to examine the relationships
between points (compounds, samples, etc.) in both training and test sets,
and between descriptor variables. Linear and non-linear methods are
available, both with advantages and disadvantages, which have proved
useful in numerous chemical applications. The linear approach (PCA)
forms the basis of a variety of multivariate techniques as described later in
this book. Finally, it is not possible to say in advance which, if any, is the
best approach to use.
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5
Unsupervised learning

5.1 Introduction

The division of topics into chapters is to some extent an arbitrary device to
produce manageable portions of text and, in the case of this book, to
group together more or less associated techniques. The common theme
underlying the methods described in this chapter is that the property that
we wish to predict or explain, a biological activity, chemical property, or
performance characteristic of a sample, is not used in the analytical
method. Oddly enough, one of the techniques described here (nearest-
neighbours) does require knowledge of a dependent variable in order to
operate, but that variable is not directly involved in the analysis. The
display methods described in Chapter 4 are also unsupervised learning
techniques, and could have been included in this section, but I felt that
display is such a fundamental procedure that it deserved a chapter of its
own. Cluster analysis, described in Section 5.4, may also be thought of as
a display method since it produces a visual representation of the
relationships between samples or parameters. Thus, the division between
display methods and unsupervised learning techniques is mostly artificial.

5.2 Nearest-neighbour methods

A number of different methods may be described as looking for nearest
neighbours, e.g., cluster analysis (see Section 5.4), but in this book the
term is applied to just one approach, k-nearest-neighbour. The starting
point for the k-nearest-neighbour technique (KNN) is the calculation of a
distance matrix as required for non-linear mapping. Various distance
measures may be used to express the similarity between compounds but
the Euclidean distance, as defined in eqn (4.2) (reproduced below), is
probably most common:

dj = J ( Z (dix — dj,k)2> (5.1)
K=TN
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where dj; is the distance between points i and j in N-dimensional space. A
distance matrix is a square matrix with as many rows and columns as the
number of rows in the starting data matrix. Table 5.1 shows a sample
distance matrix from a data set containing ten samples. The diagonal of
this matrix consists of zeroes since this represents the distance of each
point from itself. The bottom half of the matrix gives the distance, at the
intersection of a row and column, between the samples represented by that
row and column; the matrix is symmetrical, i.e., distance B> A = distance
A-B, so the top half of the matrix is not shown here. An everyday
example of a distance matrix is the mileage chart, which can be found in
most road atlases, for distances between cities.

Table 5.1 Distance matrix for ten samples

A 0

B 1.0 0

C 2.6 25 0

D 28 26 1.3 0

E 3.2 22 28 21 0

F 34 24 3.1 3.0 1.3 0

G 3.7 34 4.1 3.0 1.3 1.3 0

H 6.2 5.3 4.3 3.0 3.0 3.2 29 0

I 9.8 9.7 4.0 3.7 6.2 75 6.2 35 0

J 10.0 9.9 44 4.0 6.3 7.6 6.4 3.6 1.2 0
A B c D E F G H | J

The classification of any unknown sample in the distance matrix may be
made by consideration of the classification of its nearest neighbour. This
involves scanning the row and column representing that sample to identify
the smallest distance to other samples. Having identified the distance (or
distances) it is assumed that the classification of the unknown will be the
same as that of the nearest neighbour, in other words samples that are
similar in terms of the property space from which the distance matrix was
derived will behave in a similar fashion. This mimics the ‘common-sense’
reasoning that is customarily applied to the interpretation of simple two-
dimensional plots, the difference being that here the process is applied in
N-dimensions. Figure 5.1 shows a two-dimensional representation of this
process. The training set compounds are shown marked as A and I for
active and inactive; the unknown, test set, compounds are indicated as X,
Y, and Z. The nearest neighbour to compound X is active and that to
compound Y is inactive, and this is how these two would be classified on
the basis of one nearest neighbour. Classification for compound Z is more
difficult as its two apparently equidistant neighbours have different activ-
ities. Although one of these neighbours may be slightly closer when the
values in the distance matrix are examined, it is clear that this represents
an ambiguous prediction. With the exception of one close active com-
pound the remaining neighbours of compound Z are inactive and the
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Fig. 5.1. Two-dimensional representation of the KNN technique; training set compounds are
represented as A for active and | for inactive, test set compounds as X, Y, and Z.

common-sense prediction would be for Z to be inactive. This is the
meaning of the term k in k-nearest-neighbour, & refers to the number of
neighbours that will be used for prediction. The choice of a value for &k will
be determined by the training set; this is achieved by comparing the pre-
dictive performance of different values of k for the training set com-
pounds. Figure 5.1 also illustrates a quite common situation in the analysis
of multivariate data sets; the two activity classes are not linearly separable
(i.e., it is not possible to draw a single straight line that will divide up the
space into two regions containing only active or inactive compounds).
Some analytical methods operate by the construction of a hyperplane, the
multivariate analogue of a straight line, between classes of compounds (see
Chapter 7). In the case of a data set such as this, the KNN method will
have superior predictive ability.

Nearest-neighbour methods are also able to make multi-category pre-
dictions of activity; training set samples can be ranked into any number of
classifications, but it is important to maintain the balance between the
number of classes and the number of members within a class. Ideally, each
class should contain about the same number of members although in some
situations (such as where the property is definitely YES/NO) this may not
be possible to achieve. The reason for maintaining similar numbers of
members in each class is so that a ‘random’ prediction of membership for
any class is not significantly greater than that for the other classes. This
raises the question of how to judge the prediction success of a nearest-
neighbour method. When a training set is split into two classes, there is a
50 per cent chance of making a successful prediction for any compound,
given equal class membership. A success rate of 80 per cent for the
training set may sound impressive but is, in fact, little over half as good
again as would be expected from purely random guesses. Where classes do
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differ significantly in size it is possible to change the random expectation in
order to judge success. For example, if class 1 contains twice as many
members as class 2, the random expectations are ~66 and ~33 per cent
respectively. Another aspect of the balance between the number of classes
and the size of class membership concerns the dimensionality of the data
set. When the number of dimensions in a data set is close to or greater
than the number of samples in the set, it is possible to discover linear
separation between classes by chance. The risk of this happening is ob-
viously greatest for supervised learning methods (which are intended to
find linear separations) but may also happen with unsupervised techniques.
There are no ‘rules’ concerning the relationship between dimensions and
data points for unsupervised learning methods but, as with most forms of
analysis, it is desirable to keep the problem as simple as possible.

Now for some examples of the application of nearest-neighbour
methods to chemical problems. An early example involved the classifica-
tion of compounds described by calculated NMR spectra (Kowalski and
Bender 1972). The data set consisted of 198 compounds divided into three
classes (66 each) of molecules containing CH;CH,CH,, CH;CH,CH, or
CH;CHCH. The NMR spectra were preprocessed (see reference for de-
tails) to give 12 features describing each compound and the data set was
split in half to give training and test sets. Table 5.2 shows the results for
training set and test set predictions using !-nearest neighbour. Since there
are three classes with equal class membership, the random expectation
would be 33 per cent correct, and thus it appears that the nearest-neigh-
bour technique has performed very well for this set. Also shown in Table
5.2 are the results for a method called the linear learning machine (see
Section 7.2.1) which has performed quite poorly with a success rate only

Table 5.2 Nearest-neighbour classification for NMR (12 features) data set (from
Kowalski and Bender 1972, copyright (1972) American Chemical Society)

Correct / Total

Training set Test set
1-nearest-neighbour
Class 1 60/66 60/66
Class 2 680/66 60/66
Class 3 64/66 64/66
Total 184/198 = 93% 184/198 = 93%
Learning machine
Class 1 56/66 54/66
Class 2 12/66 12/66
Class 3 24/66 23/66

Total 92/198 = 46% 89/198 = 45%
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slightly above that expected by chance, suggesting that the data is not
linearly separable. An application of KNN in medicinal chemistry was
reported by Chu and co-workers (1975). In this case the objective was to
predict the antineoplastic activity of a test set of 24 compounds in a mouse
brain tumour system. The training set consisted of 138 structurally diverse
compounds which had been tested in the tumour screen. The compounds,
test set, and training set, were described by a variety of sub-structural
descriptors giving a total of 421 parameters in all. Various procedures were
adopted (see reference for details) to reduce this to smaller sized sets and
KNN was employed to make predictions using the different data sets. The
KNN predictions were averaged over these data sets to give an overall
success rate of 83 per cent. A comparison of the predictions with the
experimental results is shown in Table 5.3

Table 5.3 Comparison of predicted and observed antineoplastic activities (from
Chu et a/. 1975, copyright (1975) American Chemical Society)

Non-active False negative Active False positive
KNN 14 1 6 3
Experimental 17 7

Scarminio and colleagues (1982) reported a comparison of the use of
several pattern recognition methods in the analysis of mineral water
samples characterized by the concentration of 18 elements, determined by
atomic absorption and emission spectrometry. The result of the application
of cluster analysis and SIMCA to this data set is discussed elsewhere
(Sections 54 and 7.2.2); KNN results are shown in Table 5.4. The
performance of KNN in this example is really quite impressive; for two
regions, the training set samples are completely correctly classified up to five
nearest neighbours and the overall success rate is 95 per cent or better

Table 5.4 KNN classification results for water samples, collected from four
regions, described by the concentration of four elements {Ca, K, Na, and Si)
(from Scarmino et a/. 1982, with kind permission)

Region Number of Number of points incorrectly classified
samples
1-NN 3-NN 5-NN 7-NN
Serra Negra 46 2 3 3 2
Lindoya 24 0 0 0 1
Séo Jorge 7 1 2 1 1
Valinhos 39 0 0 0 0
Correct (%) 97.3 95.5 96.4 96.4
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(~25 per cent success rate for the random expectation). A test set of seven
samples was analysed in the same way and KNN was found to classify all
the samples correctly, considering up to nine nearest neighbours.

A recent example of the use of KNN in chemistry was reported by
Goux and Weber (1993). This study involved a set of 99 saccharide
residues, occurring as a monosaccharide or as a component of a larger
structure, described by 19 experimentally determined NMR parameters.
The NMR measurements included a coupling constant and both proton
and carbon chemical shifts. The aim of the work was to see if the NMR
data could be used to classify residues in terms of residue type and site of
glycoside substitution to neighbouring residues. A further aim was the
identification of important NMR parameters, in terms of their ability to
characterize the residues. To this end, a number of subsets of the NMR
parameters were created and the performance of KNN predictions, in this
case 1-NN, were assessed. Table 5.5 illustrates the results of this 1-NN
classification for the full dataset and five subsets. For the full dataset of 19
variables, one residue is misassigned, and for two subsets this mis-
classification is eliminated. Two of the other subsets give a poorer classi-
fication rate, demonstrating that not only can the NMR data set be used
to classify the residues but also that the important parameters can be
recognized.

Table 5.5 Nearest-neighbour classification of
glycosides (from Goux and Weber 1993, with
permission of Elsevier Science)

Data set Number misassigned
(% correct)

UAR-19 (ful set) 1(99)
DP-12 0 (100)
DP-9 8 (90)
SP-6/1 0 (100)
SP-6/4 1(99)
SP-6/5 3 (96)

5.3 Factor analysis

Principal component analysis (PCA), as described in Chapter 4, is an
unsupervised learning method which aims to identify principal compo-
nents, combinations of variables, which ‘best’ characterize a data set. Best
here means in terms of the information content of the components
(variance) and that they are orthogonal to one another. Each principal
component (PC) is a linear combination of the original variables as shown
in eqn (4.1) and repeated below
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PCq = Q41" + a42V2 +... ag NVN (52)

The principal components do not (necessarily) have any physical meaning,
they are simply mathematical constructs calculated so as to comply with
the conditions of PCA of the explanation of variance and orthogonality.
Thus, PCA is not based on any statistical model. Factor analysis (FA), on
the other hand, is based on a statistical model which holds that any given
data set is based on a number of factors. The factors themselves are of two
types; common factors and unique factors. Each variable in a data set is
composed of a mixture of the common factors and a single unique factor
associated with that variable. Thus, for any variable X} in an N-dimen-
sional data set we can write

Xi = a,-,lFl + a,-,ze +... a,-_pr + Ei (53)

where each a;; is the loading of variable X; on factor Fj;, and E; is the
residual variance specific to variable X;. The residual variance is also called
a unique factor associated with that variable, the common factors being F;
to F, which are associated with all variables, hence the term common
factors. The similarity with PCA can be seen by comparison of eqns (5.3)
and (5.2). Indeed, PCA and FA are often confused with one another and
since the starting point for a FA can be a PCA this is perhaps not
surprising,

The two methods, although related, are different. In the description of
eqn (5.3) the loadings, a;;, were described as the loadings of variables X;
on factor F; so as to point out the similarity to PCA. Expression of this
equation in the (hopefully) more familiar terms of PCA gives these load-
ings as the loadings of each of the common factors, F; to F,, onto variable
X;. In other words, PCA identifies principal components which are linear
combinations of the starting variables; FA expresses each of the starting
variables as a linear combination of common factors. PCA seeks to ex-
plain all of the variance in a data set; FA seeks to factor (hence the name)
the variance in a data set into common and unique factors. The unique
factors are normally discarded, since it is usually assumed that they
represent some ‘noise’ such as experimental error, and thus FA will reduce
the variance of a data set by (it is hoped) removing irrelevant information.
Since the unique factors are removed, the remaining common factors all
contain variance from at least two, if not more, variables. Common factors
are explaining covariance and thus FA is a method which describes cov-
ariance, whereas PCA preserves and describes variance. Like PCs, the
factors are orthogonal to one another and various rotations (like varimax,
see Section 4.2) can be applied in order to simplify them. One of the
advantages claimed for FA is that it is based on a ‘proper’ statistical
model, unlike PCA, and that by discarding unique factors the data set is
‘cleaned up’ in terms of information content. FA, however, relies on a
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Table 5.6 Sorted rotated factor loadings (pattern) from factor analysis of meat and
fish data® (from Li-Chan et al. 1987 with permission of the Institute of Food
Technologists)

Factor 1 Factor 2 Factor 3
Dispersibility —0.959 0.000 0.000
Solubility —0.939 0.000 0.000
ANS . 0.864 0.000 0.255
Gel-M 0.862 0.000 0.000
Gel-E 0.853 0.288 0.000
EC —0.848 0.000 0.000
CPA 0.844 0.000 0.000
FBC -0.604 0.293 0.000
Cookloss 0.529 0.000 ~0.457
Protein 0.000 0916 0.000
Mince-pH 0.000 —0.852 0.285
S.E.P. 0.000 0.821 0.000
SH 0.000 0.617 0.000
Moisture 0.000 0.000 0.966
Fat 0.000 —0.382 —0.891

* Loadings less than 0.2500 have been replaced by zero.

number of assumptions and these are equally claimed as disadvantages to
the technique. Readers interested in further discussion of FA and PCA
should consult Chatfield and Collins (1980), Malinowski (1991), or
Jackson (1991).

What about applications of FA? An interesting example was reported by
Li-Chan and co-workers (1987) who investigated the quality of hand-
deboned and mechanically deboned samples of meat and fish. The samples
were characterized by physicochemical properties such as pH, fat, and
moisture content, and by functional properties such as gel strength and per
cent cookloss (in terms of weight). Factor analysis of the overall data set
of 15 variables for 230 samples extracted three factors which described 70
per cent of the data variance. The factor loadings are shown in Table 5.6
where it can be seen that factor 1 includes the hydrophobic/hydrophilic
properties of the salt-extractable proteins, factor 2 describes total and salt-
extractable proteins and mince pH, and factor 3 is associated mainly with
moisture and fat. The factor loadings may be plotted against one another
as for PC loadings (Fig. 4.12) in order to show the relationships between
variables. Rotated factor loadings from Table 5.6 are shown in Fig. 5.2 in
~ which various groupings of associated variables may be seen. For example,
total and salt extractable protein are associated, as are solubility, dis-
persibility, and emulsifying capacity. Factor scores may be calculated for
the samples and plotted on the factor axes. Figure 5.3 shows factor scores
for factor 3 versus factor 2 where it can be seen that the fish samples are
quite clearly distinguished from the meat samples which, in turn, fall into
two groups, hand-deboned and mechanically deboned.
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Fig. 5.2. Loadings plot on the first two factors for 15 variables used to describe samples of
meat and fish. SOL, solubility; EC, emulsifying capacity; DISP, dispersability; FBC, fat binding
capacity; SH, sulphydryl content; PROTEIN, protein content; SEP, salt-extractable protein;
H20, moisture content; pH, pH of a mince suspension; FAT, crude fat content; COOKLOSS,
percentage weight lost after cooking; GEL-M, gel strength of mince; GEL-E, gel strength of
extract; ANS and CPA, protein surface hydrophobicity using aromatic (ANS) or aliphatic
{CPA) fluorescent probe (from Li-Chan et a/. 1987, with permission of the Institute of Food
Technologists).

Takagi and co-workers (1989) applied FA to gas chromatography re-
tention data for 190 solutes measured using 21 different stationary phases.
Three factors were found to be sufficient to explain about 98 per cent of
the variance of the retention data; physicochemical meanings to these
factors were ascribed as shown below:

Factor 1: size
Factor 2: polarity
Factor 3: hydrogen-bonding tendency

As is usually the case with PCA, the attribution of any physical meaning
to factors is not straightforward, particularly for the ‘later’ factors (smaller
eigenvalues, less variance explained) from an analysis; this was the case for
the third factor. Factor loadings for the three factors are shown in Table
5.7. Part of the argument in favour of factor 3 as a hydrogen-bonding
factor is the negative loading of a proton donor stationary phase (HCM
18) and the positive loading of proton acceptor phases (DEGA, PPESR,
and EGA). Another part of the argument is that non-polar stationary
phases have approximately zero loadings with this factor,

The attempted physicochemical interpretation of the factors highlights a
common problem with PCA and FA, along with the question of how
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Fig. 5.3. Plot of factor scores for meat and fish samples. C, B, P- hand-deboned chicken,

beef, and pork; M, m, mechnically debonded pork and chicken; F, cod fish; f, cod fish in

presence of cryoprotectants (from Li-Chan et a/. 1987, with permission of the Institute of
Food Technologists).
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Fig. 5.4. Scores plot on factors 3 and 2 derived from GC retention data (from Takagi et a/.
1989, with permission of the Pharmaceutica! Society of Japan).

significant is a factor (or PC) which only describes a few per cent of the
data variance. The significance of factor 3 is uncertain but it is clearly
useful since a scores plot of factor 3 versus factor 2 separates the solutes in
terms of chemical functionality as shown in Fig. 5.4. The physicochemical
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Table 5.7 Factor loadings calculated by PFA (principal factor analysis) method
(from Takagi et a/. 1989 with permission of the Pharmaceutical Society of Japan)

Factor 1 Factor 2 Factor 3
CCR* 0.922 0.990 0.997
AP1-L 0.898 0.431 —0.001
CASTOR 0.983 0.133 —0.094
CW1000 0.847 -0.315 —0.004
DEGA 0.945 —-0.311 0.083
D2EHS 0.968 0.238 —0.044
DIDP 0.969 0.224 —0.040
DC550 0.942 0.321 0.087
EGA 0.953 —-0.279 0.089
HCM18 0.971 0.050 -0.227
HYP 0.901 —-0.419 —-0.052
IGE880 0.981 —0.183 —0.005
NPGA 0.994 -0.095 0.022
PPESR 0.966 0.208 0.150
QUAD 0.931 —0.326 —-0.089
SE30 0.931 0.359 0.000
SAIB 0.998 0.002 0.030
TCP 0.993 0.031 —-0.016
TX305 0.982 —-0.181 —0.055
U2000 0.994 —0.07 —-0.037
VF50 0.812 0.399 0.020
XF1150 0.960 -0.195 0.138

* Cumulative contribution ratio.

interpretation of factors is nicely illustrated by a factor analysis of solvent
parameters reported by Svoboda and co-workers (1983). Many attempts
have been made to characterize solvents in terms of their effect on
chemical reactions, their ability to dissolve solutes, their effect on prop-
erties such as spectra, and so on. This has led to the development of many
different parameters and a variety of attempts have been made to relate
these parameters to one another. Table 5.8 shows the loadings of 20
parameters, for 51 solvents, on four factors which have been rotated by
the varimax method. The parameters associated with the first factor de-
scribe electrophilic solvation ability, while those associated with factor 2
concern solvent polarity. The third factor is associated with nucleophilic
solvation ability and the fourth factor with dispersion solvation forces. It
was proposed that a property, 4, which is dependent on solvent effects
could be described by an equation consisting of these four factors as
shown in eqn (5.4):

A= Ay + adP + bBP + eEP + pPP (5.4

where AP (acidity parameter) is the electrophilic factor, BP (basicity
parameter) is the nucleophilic parameter, EP (electrostatic parameter) the
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Table 5.8 Coordinates of parameters in factor space of the selected set (set 2)
(from Svoboda et al. 1983 with kind permission)

Parameter F1 Fa Fs Fq
B —0.079 0.012 0.610 0.008
E+{30) 0.181 0.263 0.002 0.092
z 0.305 -0.018 0.021 0.133
g 0.261 0.078 0.144 0.014
sB 0.225 0.208 —0.010 0.051
DN 0.187 -~0.208 0.560 —0.161
0.154 0.237 0.026 -0.047
ng" —0.010 0.044 -0.010 —~0.600
YP® —0.097 0.473 0.090 0.068
pp? —0.014 0.046 —0.008 —0.604
E 0.297 0.073 —0.042 0.124
a'h 0.355 —0.015 0.022 0.037
AN 0.390 —~0.066 —0.026 —~0.014
n 0.026 0.413 -0.032 —0.250
log P ~0.113 —0.103 —0.152 —~0.167
5 0.373 0.024 -0.014 ~0.114
15 0.094 —0.480 —0.046 0.106
5 0.363 —0.011 —0.071 -0.113
B —0.137 0.169 0.472 0.140
@ 0.028 ~0.320 0.159 ~0.222

a S1, the parameter S defined by Zelinski.
bg,, the parameter S defined by Brownstein.
®The Kirkwood function of dielectric constant YP (e—1)/(2e+1).
9The function of refractive index PP= (n*—1)/(n*+1).
®The index of molecular connectivity of the nth order.
polar factor, and PP (polarizability parameter) the dispersion factor. A4, is
the value of the solvent-dependent property in a medium in which the
solvent factors are zero (cyclohexane was suggested as a suitable solvent
for this). The coefficients @, b, e, and p are fitted by regression to a
particular data set and represent the sensitivity of a process, as measured
by the values of 4, to the four solvent factors. Application of this pro-
cedure to 22 chemical data sets identified examples of processes with quite
different dependencies on these solvent properties.

The final example of FA to be discussed here involves a number of
insecticides, which are derivatives of the pyrethroid skeleton shown in Fig.
5.5. Computational chemistry methods were used to calculate a set of 70

o K

Me/Cl

Fig. 5.5. Pyrethroid parent structure; rotatable bonds are indicated by arrows (from Hudson
et al. 1992, copyright (1992) Wellcome Foundation Ltd).
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Table 5.9 The molecular features of the QSAR pyrethroids (identified by FA)
(from Ford et a/. 1989 with permission of the Society of Chemical Industry)

Factor Principal associated Molecular feature
descriptors and loadings

1 A11(0.97), A12(0.99), The nature of the acid moiety indicated by
A13(0.91), A16(—0.99), associated MW and partial atomic charges
A17(—0.95), MW(—-0.63)

2 NS9(0.97), NS10(0.97), Tendency of the atoms around the central
NS8(0.96), NS11(0.96), ester linkage to accept and the cis geminal
ES15(0.77), NS7(0.77) methy! to donate electrons

3 ES1(0.94), ES7(0.94), Tendency of the atoms associated with the
ES8(0.94), ES9(0.94), ester linkage to donate electrons
ES10(0.95)

4 A3(0.84), A5(0.84), Partial atomic charges on the meta carbon
A10(0.85), ET(—0.84) atoms of the benzyl ring and the carbonyl

carbon

5 NS2(0.90), NS3(0.75), Tendency of the ortho- and meta-carbon
NS5(0.77), NS6(0.87), atoms of the benzyl ring to accept electrons
A7(—0.77)

6 DCA(0.86), SA(0.79), Molecular bulk, surface area and distance
CD(0.71), VWV(0.71) of closest approach

7 DVZ(0.82), DM(0.81) Dipole strength and orientation

8 MW(0.70) Molecular weight due to the alcohol moiety

molecular properties to describe these compounds (Ford e al. 1989).
Factor analysis identified a set of eight factors (Table 5.9) which explained
99 per cent of the variance in the chemical descriptor set. The physico-
chemical significance of the factors can be judged to some extent by an
examination of the properties most highly associated with each factor, as
shown in the table. The factors were shown to be of importance in the
description of several biological properties of these compounds (see Sec-
tion 8.5). These pyrethroid analogues are flexible as indicated by the ro-
tatable bonds marked in Fig. 5.5. The physicochemical properties used to
derive the factors shown in Table 5.9 were based on calculations carried
out on a single conformation of each compound using a template from an
X-ray crystal structure. In an attempt to take account of conformational
flexibility, molecular dynamics simulations were run on the compounds
and a number of representative conformations were obtained for each
analogue (Hudson er al. 1992). The majority of these conformations re-
present an extended form of the molecule, similar to the X-ray template,
but some are ‘folded’. The physicochemical property calculations were
repeated for each of the representative conformations of each analogue
and the resulting descriptors were averaged. Running factor analysis on
this time-averaged set resulted in the identification of nine ‘significant’
factors (eigenvalues greater than 1), one more than the factor analysis of
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the static set. This additional factor suggests that there is extra informa-
tion in the time-averaged set. Several of the static and time-averaged
factors were highly correlated with one another and it was shown that
these factors could be used to explain the lifetimes of the folded con-
formations.

5.4 Cluster analysis

Chatfield and Collins (1980), in the introduction to their chapter on cluster
analysis, quote the first sentence of a review article on cluster analysis by
Cormack (1971): ‘The availability of computer packages of classification
techniques has led to the waste of more valuable scientific time than any
other “statistical” innovation (with the possible exception of multiple-
regression techniques).” This is perhaps a little hard on cluster analysis
and, for that matter, multiple regression but it serves as a note of warning,.
The aim of this book is to explain the basic principles of the more popular
and useful multivariate methods so that readers will be able to understand
the results obtained from the techniques and, if interested, apply the
methods to their own data. This is not a substitute for a formal training in
statistics; the best way to avoid wasting one’s own valuable scientific time
is to seek professional help at an early stage.

Cluster analysis (CA) has already been briefly mentioned in Section 2.3,
and a dendrogram was used to show associations between variables in
Section 3.4. The basis of CA is the calculation of distances between objects
in a multidimensional space using an equation such as eqn (5.1). These
distances are then used to produce a diagram, known as a dendrogram,
which allows the easy identification of groups (clusters) of similar objects.
Figure 5.6 gives an example of the process for a very simple two-dimen-
sional data set. The two most similar (closest) objects in the two-dimen-
sional plot in part (a) of the figure are A and B. These are joined together
in the dendrogram shown in part (b) of the figure where they have a low
value of dissimilarity (distance between points) as shown on the scale. The
similarity scale is calculated from the interpoint distance matrix by finding
the minimum and maximum distances, setting these equal to some arbi-
trary scale numbers (e.g., 0 and 1), and scaling the other distances to lie
between these limits. The next smallest interpoint distance is between point
C and either A or B, so this point is joined to the A/B cluster. The next
smallest distance is between D and E so these two points form a cluster
and, finally, the two clusters are joined together in the dendrogram. This
process is hierarchical and the links between clusters have been single; the
procedure is known, unsurprisingly, as single-link hierarchical cluster
analysis and is one of the most commonly used methods. Another point to
note from this description of CA is that clusters were built up from
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Fig. 5.6. lllustration of the production of a dendrogram for a simple two-dimensional data
set.

individual points, the process is agglomerative. CA can start off in the
other direction by taking a single cluster of all the points and splitting off
individual points or clusters, a divisive process.

There are many different ways in which clusters can be generated; all of
the examples that will be described in this section use the agglomerative,
hierarchical, single-linkage method, usually referred to as ‘cluster analysis’.
Most textbooks of multivariate analysis have a chapter describing some of
the alternative methods for performing CA, and Willett (1987) deals with
chemical applications. It may have been noticed that in this description of
CA the points to be clustered were referred to as just that, points in a
multidimensional space. They have not been identified as samples or
variables since CA, like many multivariate methods, can be used to
examine relationships between samples or variables. For the former we can
view the data set as a collection of p objects in an N-dimensional para-
meter space. For the latter we can imagine a data set ‘turned on its side’ so
that it is a collection of N objects in a p-dimensional sample space. When
using CA to examine the relationships between variables, the distance
measure employed is often the correlation coefficients between variables.

The study of mineral waters characterized by elemental analysis dis-
cussed in Section 5.2 (Scarminio et al. 1982) provides a nice example of the
use of CA to classify samples. Figure 5.7 shows a dendrogram of water
samples from one geographical region (Lindoya) described by the con-
centrations of four elements. The water samples were drawn from six
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Fig. 5.7. Dendrogram of water samples characterized by their concentrations of Ca, K, Na,
and Si (from Scarminio et a/. 1982, with kind permission).

different locations in this region and one group on the dendrogram, cluster
IV, contained all the samples from one of these locations. The samples
from the other five locations are contained in clusters I, II, and III. One
sample, cluster V, is clearly an outlier from this set and thus must be
subject to suspicion.

The characterization of fruit juices by various analytical measurements
was used as an example of a principal component scores plot (Fig. 4.9) in
Chapter 4 (Dizy et al. 1992). A dendrogram from this data is shown in
Fig. 5.8 where it is clearly seen that the grape, apple, and pineapple juice
samples form distinct clusters. The apple and pineapple juice clusters are
grouped together as a single cluster which is quite distinct from the cluster
of grape juice samples. This is interesting in that it mimics the results of
the PCA; on the scores plot, all three groups are separated, but the first
component mainly serves to separate the grape juices from the others while
the second component separates apple and pineapple juices. This is a good
illustration of the way that different multivariate methods tend to produce
complementary and consistent views of the same data set.

The dendrogram in Fig. 5.9 is derived from a data matrix of EDsg
values for 40 neuroleptic compounds tested in 12 different assays in rats
(Lewi 1976). This is an example of a situation in which the data involves
multiple dependent variables (see Chapter 8), but here the multiple bio-
logical data is used to characterize the tested compounds. The figure
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Fig. 5.8. Dendrogram showing the associations between grape (G), apple (A), and
pineapple (P) juice samples described by 15 variables (from Dizy et al. 1992, with
permission of the Society of Chemical industry).

demonstrates that the compounds can be split up into five clusters with
three compounds falling outside the clusters. Compounds within a cluster
would be expected to show a similar pharmacological profile and, of
course, there is the finer detail of clusters within the larger clusters. A
procedure such as this can be very useful when examining new potential
drugs. If the pharmacological profile of a new compound can be matched
to that of a marketed compound, then the early clinical investigators may
be forewarned as to the properties they might expect to see.

The final example of a dendrogram to be shown here, Fig. 5.10, is also
one of the largest. This figure shows one thousand conformations of an
insecticidal pyrethroid analogue (see Fig. 5.5) described by the values of
four torsion angles (Hudson et al. 1992). A dendrogram such as this was
used for the selection of representative conformations from the one
thousand conformations produced by molecular dynamics simulation.
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Fig. 5.9. Dendrogram of the relationships between neuroleptic drugs characterized by 12
different biological tests (from Lewi 1976, with permission of Editio Cantor Verlag).

Conformations were chosen at equally spaced intervals across the
dendrogram ensuring an even sampling of the conformational space
described by the torsion angles. In fact, the procedure is not as simple as
this and various approaches were employed (see reference for details) but
sampling at even intervals was shown to be suitable.

5.5 Cluster significance analysis

The advantage of unsupervised learning methods is that any patterns that
emerge from the data are dependent on the data employed. There is no
intervention by the analyst, other than to choose the data in the first
place, and there is no attempt by the algorithm employed to “fit’ a
pattern to the data, or seek a correlation, or produce a discriminating
function (see Chapter 7). Any groupings of points which are seen on a
non-linear map, a principal components plot, a dendrogram, or even a



108 | Unsupervised learning

0.0 | S S

S *“

04

Similarity

.
"

i i

F

|
I
|

_rf iy —

"ﬂ' ,iIWM 1111’11 ] mlf ‘m.ﬂﬁﬂm l| Mﬂﬂm,,ﬂm uﬂ.’”

Fig. 5.10. Dendrogram of the relationships of different conformations of a pyrethroid
derivative described by the values of four torsion angles {from Hudson et a/. 1992, copyright
(1992) Wellcome Foundation Ltd).
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simple bivariate plot are solely due to the disposition of samples in the
parameter space and it is unlikely, although not impossible, to have
happened by chance. There is, however, a major drawback to the un-
supervised learning approach and that is an evaluation of the quality or
‘significance’ of any clusters of points. Many analytical methods, parti-
cularly the parametric techniques based on assumptions about population
distributions, have significance tests built in. If we look at the principal
component scores plot for the fruit juices (Fig. 4.9) or the dendrogram
for the same data (Fig. 5.8) it seems obvious that the groupings have
some ‘significance’, but is this always the case? Is it possible to judge the
quality of some unsupervised picture? McFarland and Gans (1986) ad-
dressed this problem by means of a method which they termed cluster
significance analysis (CSA). The concept underlying this method is quite
simple: for a given display of N samples which contains a cluster of M
active (or otherwise interesting) samples, how ‘tight’ is the cluster of M
samples compared with all the other possible clusters of M samples?
Various measures of tightness could be used but the one chosen was the
mean squared distance (MSD) which involves taking the sum of the
squared distances between each pair of points in the cluster divided by
the number of points in the cluster (M).

The process is nicely illustrated by a hypothetical example from the
original report. Figure 5.11 shows a two-dimensional plot of six com-
pounds, three active and three inactive. The total squared distance (TSD)
for the active cluster is given by
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Fig. 5.11. Plot of active (A) and inactive {0} compounds described by two parameters (from
McFarland and Gans 1986, copyright (1986) American Chemical Society).

TSD = (x1-x2)> + 1=p2)° + (x1=x3)* + (1=p3)* + (ra—x3)* + (y2—y3)°
(5.4)

and the mean squared distance
MSD = TSD/3 5.5

The probability that a cluster as tight as the active cluster would have
arisen by chance involves the calculation of MSD for all the other possible
clusters of three compounds. The number of clusters with an MSD value
equal to or less than the active MSD is denoted by 4 (including the active
cluster) and a probability is calculated as

p=AIN (5.6)

where N is the total number of possible clusters of that size, in this case
three compounds. It is obvious from inspection of the figure that there is
one other cluster as tight as or tighter than the active cluster (compounds
2, 3, and 4) and that all other clusters have larger MSD values since they
include compounds 1, 5, or 6. There are 20 possible clusters of three
compounds in this set and thus 4 = 2, N = 20, and

p=2/20 = 0.10 (5.7)

If a probability level of 0.05 or less (95 per cent certainty or better) is
taken as a significance level then this cluster of actives would be regarded
as fortuitous.

Figure 5.12 shows a plot of a set of inhibitors of the enzyme monoamine
oxidase (MAO) described by steric (ES) and hydrophobic (z) parameters.
It can be seen that the seven active compounds mostly cluster in the top
left-hand quadrant of the plot. The original data set involved a dummy
parameter, D, to indicate substitution by OCH; or OH at a particular
position, and in the application of CSA to this problem, a set of random
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Fig. 5.12. Plot of active (A) and inactive {(O) inhibitors of monoamine oxidase (from
McFarland and Gans 1986, copyright (1986) American Chemical Society).

Table 5.10 Application of CSA to a set of 20 MAO
inhibitors (from McFarland and Gans 1986
copyright (1986) American Chemical Society)

Parameters A* p

D 21464 0.27688
RN 14825 0.19124
nc 1956 0.02523
ES 118 0.00152
D,n 1299 0.01676
D, ES 1175 0.01516
RN, ES 172 0.00222
n, ES 7 0.00092
RN, =, ES 151 0.00195
D, =, ES 78 0.00101

* From a total possible set of 77,520 subsets of 7.

numbers, RN, was added to the data. The results of CSA analysis for this
data are shown in Table 5.10 where it is seen that lowest probability of
fortuitous clustering is given by the combination of = and Eg.

This illustrates another feature of CSA; not only can it be used to judge
the significance of a particular set of clusters, it can also be used to test the
effect (on the tightness of clusters) of adding or removing a particular
descriptor. Thus, it may be used as a selection criterion for the usefulness
of parameters. One thing that should be noted from the table is the large
number of possible subsets (77,520) that can be generated for this data set.
This may cause problems in the analysis of larger data sets in terms of the
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amount of computer time required. An approach to solving this problem is
to compute a random sample of the possible combinations rather than
exhaustively examining them all (McFarland and Gans 1986). CSA has
been compared with three other QSAR techniques in the analysis of three
different data sets (McFarland and Gans 1987).

5.6 Summary

Unsupervised learning methods, like the display techniques described in
Chapter 4, are very useful in the preliminary stages of data analysis.
Cluster analysis and FA produce easily understood displays from high-
dimensional data sets and may be used when the number of variables in
the set exceeds the number of samples. Although care must be exercised in
the choice of class members when using k-nearest-neighbours, this and
other methods described in this chapter should be reasonably safe from the
danger of chance correlations. Cluster significance analysis allows us to
attempt to assign significance levels to any ‘interesting’ groupings of
samples seen using these methods or multivariate display techniques.
Finally, in common with all of the other methods described in this book, it
is not possible to say that any one technique is ‘best’.
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6
Regression analysis

6.1 Introduction

Regression analysis is one of the most commonly used analytical methods
in chemistry, including all of its specialist subdivisions and allied sciences.
Indeed, the same can probably be said about most forms of science. The
reason for its appeal lies perhaps in the fact that the method formalises
something that the human pattern recogniser does instinctively, and that is
to fit a line or a curve through a set of data points. We are accustomed to
looking for trends in the data that the world presents to us, whether it be
unemployment or inflation figures, or the results of some painstakingly
performed experiments. We do this in the hope, or expectation, that the
trends will reveal some underlying explanation of how or why the data is
produced. In its simplest form, regression analysis involves fitting a
straight line through a set of data points represented by just two variables,
calculating an equation for the fitted line, and providing estimates of how
well the points fit the line. The first section of this chapter will discuss
simple linear regression and the calculation and interpretation of its stat-
istics. The next section describes multiple linear regression: how the
equations are constructed, non-linear regression models and the use of
indicator variables in regression, including Free and Wilson analysis. The
final section discusses some important features of regression analysis such
as the comparison of regression models, tests for robustness, and the
problems of chance correlations. Regression analysis based on variables
derived from multivariate data, principal components, factors, and latent
variables is discussed in Chapter 7, Supervised learning.

6.2 Simple linear regression

We have already seen in Chapter 1 an example of a simple linear re-
gression model (eqn 1.2, Fig. 1.2) in which anaesthetic activity was related
to the hydrophobicity parameter, 1. How was the equation derived? If we
consider the data shown plotted in Fig. 6.1, it is fairly obvious that a
straight line can be fitted through the points. A line is shown on the figure
and is described by the well-known equation for a straight line.
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Fig. 6.1. Plot of the values of variable y against variable x with a fitted straight line.
y=mx+c (6.1)

The value of ¢ (2.0), the intercept of the line, can be read from the graph
where x=0 (y=m0+c) and the value of m (1.0), the slope of the line, by
taking the ratio of the differences in the y and x values at two points on
the line (yo—y1)/(x2—x;). A line such as this can be obtained easily by
laying a straight edge along the data points and it is clear for this data that
if another person repeated the procedure, a line with a very similar
equation would result.

Figure 6.2 shows a different situation in which the data points still
clearly correspond to a straight line but here it is possible to draw different
lines through the data. Which of these two lines is best? Is it possible to
say that one line is a better fit to the data than the other, or is some other
line the best fit? Whether or not there is some way of saying what the
‘right’ answer is, it is clear that some objective way of fitting a line to data

y

X

Fig. 6.2. Plot of y against x where two different straight lines can be fitted to the points.
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such as those shown in these figures is required. One such technique is
called the method of least squares, or ordinary least square (OLS), in
which the squares of the distances between the points and the line are
minimized. This is shown in Fig. 6.3 for the same data points as Fig. 6.2
with the exception that there is an extra data point in this figure. The extra
point corresponds to the mean of the x (X) and y (¥) data,

‘Zl Xi ZJ; Yi
o= = T o= i= 2
x ek ; (6.2)

and it can be seen that the regression line, or least-squares line, passes
through this point. Since the point (X, j) lies on the line, the equation can
be written as

y—y=m(x-3%) (6.3)
the constant term, ¢, having disappeared since it is explained by the means
¢=7—mx. (6.4)

Equation (6.3) can be rewritten as
y=73+m(x-X) (6.5)
and thus for any value of x (x;) an estimate of the y value (;) can be made

Pi = +m(x; — %). (6.6)

Fig. 6.3. Hlustration of the process of least squares fitting.
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The error in prediction for the y value corresponding to this x value is
given by

Vi—Pi=yi~y—m{x;— X). (6.7)

This equation can be used to express a set of errors for the prediction of y
values over the whole set of data (n pairs of points) and the sum of the
squares of these errors is given by

U= 155 mlxi~ 2. (68)
i=1

Minimization of this sum of squares gives the slope of the regression line
(m), which is equivalent to minimizing the lengths of the dotted lines,
shown in Fig. 6.3, between the data points and the fitted line. It can be
shown for minimum U (where dU/dm = 0 and d2U/dm? is positive) that
the slope is given by

> (i = %) i - 7)
m ==L . (6.9)

n

5 (- %)

f==]

Thus both the slope and the intercept of the least-squares line can be
calculated from simple sums using eqns (6.4) and (6.9). In practice, few
people ever calculate regression lines in this way as even quite simple
scientific calculators have a least-squares fit built in. However, it is hoped
that this brief section has illuminated the principles of the least-squares
process and has shown some of what goes on in the ‘black box’ of re-
gression packages.

Having fitted a least-squares line to a set of data points, the question
may be asked, ‘how well does the line fit?. Before going on to consider
this, it is necessary to state some of the assumptions, hitherto unmen-
tioned, that are implicit in the process of regression analysis and which
should be satisfied for the linear regression model to be valid. These
assumptions are summarized in Table 6.1, and, in principle, all of these
assumptions should be tested before regression analysis is applied to the
data. In practice, of course, few if any of these assumptions are ever
checked but if simple linear regression is found to fail when applied to a
particular data set, it may well be that one or more of these assumptions
have been violated. Assumptions | and 2 are particularly important since
the data should look as though it is linearly related and at least the
majority of the error should be contained in the y variable (called a
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Table 6.1 Assumptions for simple linear regression

The x and y data is linearly related

The error is in y, the dependent variable

The average of the errors is O

The errors are independent; there is no serial correlation among the errors (knowing
the error for one observation gives no information about the others)

The errors are of approximately the same magnitude

The errors are approximately normally distributed (around a mean of zero)

PWN -

(o4}

regression of y on x). In many chemical applications this latter assumption
will be quite safe as the dependent variable will often be some experi-
mental quantity whereas the descriptor variables (the x set) will be cal-
culated or measured with good precision.

The assumption of a normal distribution of the errors allows us to put
confidence limits on the fit of the line to the data. This is carried out by
the construction of an analysis of variance table (the basis of many stat-
istical tests) in which a number of sums of squares are collected.* The total
sum of squares (TSS), in other words the total variation in y, is given by
summation of the difference between the observed y values and their mean.

TSS =) (35 (6.10)
i=1

This sum of squares is made up from two components: the variance in y
that is explained by the regression equation (known as the explained sum
of squares, ESS), and the residual or unexplained sum of squares, RSS.
The ESS is given by a comparison of the predicted y values () with the
mean

ESS = (% -7y (6.11)
i=1
and the RSS by comparison of the actual y values with the predicted
RSS = Z i — 9% (6.12)
i=1

The total sum of squares is equal to these two sums

* There is no agreed convention for abbreviating these sums of squares, other treatments may
well use different sets of initials.
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TSS = ESS + RSS. (6.13)

These sums of squares are shown in the analysis of variance (ANOVA)
table (Table 6.2). The mean squares are obtained by division of the sums
of squares by the appropriate degrees of freedom. One degree of freedom
is ‘lost” with each parameter calculated from a set of data so the total sum
of squares has n—1 degrees of freedom (where » is the number of data
points) due to calculation of the mean. The residual sum of squares has
n—2 degrees of freedom due to calculation of the mean and the slope of
the line. The explained sum of squares has one degree of freedom
corresponding to the slope of the regression line.

Table 6.2 ANOVA table

Source of variation Sum of squares Degrees of freedom Mean square
Explained by

regression ESS 1 MSE (=ESS)
Residual RSS n—2 MSR (=RSS/n—2)
Total TSS n—1 MST (=TSS/n—1)

Knowledge of the mean squares and degrees of freedom allows assess-
ment of the significance of a regression equation as described in the next
section, but how can we assess how well the line fits the data? Perhaps the
best known and most misused regression statistic is the correlation co-
efficient. The squared correlation coefficient (%) is given by division of the
explained sum of squares by the total sum of squares

, ESS

"= (6.14)
This can take a value of 0, where the regression is explaining none of the
variance in the data, up to a value of 1 where the regression explains all of
the variance in the set. r*> multiplied by 100 gives the percentage of vari-
ance in the data set explained by the regression equation. The squared
correlation coefficient is the square of the simple correlation coefficient, r,
between y and x (see Panel in Chapter 2 p. 36). This correlation coefficient
can take values between —1, a perfect negative correlation (y decreases as
x increases), and +1, a perfect positive correlation. Correlation coeffi-
cients, both simple and multiple (where several variables are involved), can
be very misleading. Consider the data shown in Fig. 6.4. Part (a) of the
figure shows a set of data in which y is clearly dependent on x by a simple
linear relationship; part (b) shows two separate ‘clouds’ of points where
the line has been fitted between the two groups; parts (c) and (d) show two
situations in which a single rogue point has greatly affected the fit of the
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Fig. 6.4. Plot of six different sets of y and x data.

line.* Table 6.3 gives the data used to produce these plots and some of the
statistics for the fit of the line. The correlation coefficients for these four
graphs (and parts (¢) and (f) of Fig. 6.4) are very similar, as are the
regression coefficients for x (0.55 to 0.82). There is a somewhat wider range
in values for the constant term (0.20 to 0.80), but overall the statistics give
little indication of the four different situations shown in parts (a) to (d) of
the figure. Parts (e) and (f) show two other types of data set for which a
single straight line fit is inappropriate, a curve (e) and two separate straight
lines (f). Once again the statistics give little warning, although the large

* This situation is often referred to as a ‘point and cluster effect’; the regression line is fitted
effectively between two points, the rogue point and the cluster of points making up the rest of
the set.
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Table 6.3 Data and statistics for the regression of y on x for the six data sets in Fig.
6.4 (after an original example by Anscombe (1973))*

Y1 X 4] X1 Y2 X2 ¥2 X2

1.898 2.790 2.092 2573 0.920 1.149 1.090 0.716
3.318 211 2.820 1.879 1.138 0.577 1.187 0.648
3.385 3.672 2.287 1.318 1.266 1.047 1.802 1.343
—0.460 1.224 2.011 2.967 1.267 0.942 1.960 0.683
0.900 0.130 2.819 2.354 0513 0.673 1.088 0.676
3.718 2276 2127 1.686 0.401 0.892 0.765 0.462
2.046 2.668 1.866 3.462 0.770  0.831 2.081 0.654
—1.344 0.374 3.655 2.644 0.483 1.422 1.783 0.637
2.459 1.114 3.630 1.880 1.258 0.661 1.178 0.350
3.659 3.333 1.020 0.070 0594 0922 1.065 1.779
3.667 3.631 3.865 2.897 0.671 0.962 1.068 0.485
2.908 2224 1.986 0.689 1.702 1.055 1.141 0.977
0.589 0.198 1.948 0.749 1.420 1.017 1.414 1.188
4150 3.973 1.442 0.312 0.204  0.483 2484 1.074
3.066 3326 ~1.605 0.007 1.453  0.295 0.837 0.036
3.859 3.459 2.590 3.483 1.365 0617 0.835 1.004
2.093 1.082 2.664 2.866 1432 0521 2170 3.090
3.647 3.294 1.989 1.230 1.810 0.927 2.500 2.970

3.255 2.487 0776 2026 3220  2.830
1.014 1.101 1500 0819 2670  2.940
1.639 2.532 0.934 1055 2800  3.160
0.484 2.195 1219 1.090 2230  3.080
1.294 2.928 1076 1.043 2680  3.540
1.521 1.595 0962 1483 2710  2.820
2.554 2.750 1449 1227 2200  3.680
3.170 2.751 0.957 0372 2830  3.100
3.962 3.893 1486 0.865 2540  2.830
2.304 2.793 1084 1452 2380  3.190
1.898 3172 0483 1589 2470  3.400
0.122 0.903 1477 1343 3200  2.600
0.309 1.523 0168 1593 2280  2.840
3.979 3.218 0.307 1.080
r=0.702 r=0.706
F=46.77 F=60.55
SE=0.95 SE=0.56
RC=0.82 (0.12) RC=0.55 (0.07)
c=0.48 (0.12) ¢=0.69 (0.12)

* The statistics reported for each fit are—the simple correlation coefficient, r; the F statistic, F; the standard
error of the fit, SE; the regression coefficient for x, RC, followed by its standard error in brackets; the
constant of the equation, ¢, followed by its standard error in brackets.

standard errors of the constants do suggest that something is wrong. The
lesson from this is clear; it is not possible to assess goodness of fit simply
from a correlation coefficient. Indeed, this statistic (and others) can be very
misleading, as well as very useful. In the case of a simple problem such as
this involving just two variables the construction of a bivariate plot will
reveal the patterns in the data. More complex situations present extra
problems as discussed in the next section and Section 6.4.
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Table 6.3—(continued)

Y3 X3 Ya X4 Ys X5 Ye Xg

0.191 0.542 0.333 0.250 1.600 02560 0.250 0.250
1.270 0.575 0.665 0.500 0.813 0750  0.800 0.800
1.536 0.961 0.998 0.750 0.500 1.000 1.250 1.250
0.943 1.772 1.663 1.250 0.313 1.250  2.000 2.000
0.742 0.895 1.862 1.400 0.250 1.500 2.750 2.750
0.837 1.361 2128 1.600 0.313 1.750  3.000 3.000
0.851 0517 2527 1.900 0.500 2.000 3.500 3.600
0.399 0.800 2.793 2100 0.813 2250 0.080 0.250
1.369 1.2156 2993 2.250 1.2560 2500 0.400 0.800
0.643 0.854 3.325 2.500 1.813 2.750 0.510 1.250
0.740 1.580 1.800 3.800 2500 3.000 0.700 2.000:

0.405 1.914 3313 3250 0810 2.750
0.731 0.275 3.950 3500 0.995 3.000
0.733 1.262 1185 3.500
0.807 0.095
1.512 0.847
1.233 0.803

0.666 1.164
0.619 0.850

0.365 0.948

1.692 1.365

0.319 1.015

1.667 1.268

4.000 4.000

r=0.702 r=0.709 r=0.707 r=0.708
F=21.34 F=9.11 F=10.97 F=12.09
SE=0.56 SE=0.72 SE=0.90 SE=0.80
RC=0.72 (0.16) RC=0.68 (0.22) RC=0.85 (0.26)  RC=0.66 (0.19)
¢=0.20 (0.21) ¢=0.80 (0.43) c=—0.30 (0.57) ¢=0.04 (0.42)

6.3 Multiple linear regression

Multiple linear regression is an extension of simple linear regression by the
inclusion of extra independent variables

y =axy +bxy+ ... + constant. (6.15)

Least squares may be used to estimate the regression coefficients (aq, b, ¢,
and so on) for the independent variables (x;, x,, x3, and so on), and the
value of the constant term. Goodness of fit of the equation to the data can
be obtained by calculation of a multiple correlation coefficient (R?) just as
for simple linear regression. In the case of simple linear regression it is easy
to see what the fitting procedure is doing, i.e., fitting a line to the data, but
what does multiple regression fitting do? The answer is that multiple
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Fig. 6.5. lllustration of different surfaces corresponding to two-term regression equations.

regression fits a surface. Figure 6.5 shows the surface fitted by a two-term
equation in  and o (a plane) and an equation which includes a squared
term. It is difficult to illustrate the results of fitting higher order equations
but the principle is the same; multiple regression equations fit a surface to
data with a dimensionality equal to the number of independent variables
in the equation. It was shown in the previous section that the correlation
coeflicient can be a misleading statistic for simple linear regression fitting
and the same is true for the multiple regression case. It is more difficult (or
impossible) to check a multiple regression fit by plotting the data points
with respect to all of the parameters in the equation, but one way that
even the most complicated regression model can be evaluated is by plot-
ting predicted y values against the observed values. If the regression
equation is a perfect fit to the data (R*> = 1), then a plot of the predicted
versus observed should give a straight line with a slope of one and an
intercept of zero. When some particular points are badly predicted it will
be obvious from this plot; a curved plot suggests some other equation is
more appropriate.

What about an assessment of the significance of the fit of a multiple
regression equation (or simple regression) to a set of data? A guide to the
overall significance of a regression model can be obtained by calculation of
a quantity called the F statistic. This is simply the ratio of the explained
mean square (MSE) to the residual mean square (MSR)

MSE
F= MSR' (6.16)
An F statistic is used by looking up a standard value for F from a table of
F statistics and comparing the calculated value with the tabulated value. If
the calculated value is greater than the tabulated value, the equation is
significant at that particular confidence level. F tables normally have
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values listed for different levels of significance, e.g., ten per cent, five per
cent, and one per cent. As might be expected, the F values are greater for
higher levels of significance. This is equivalent to saying that we expect the
explained mean square to be even larger than the residual mean square in
order to have a higher level of confidence in the fit. This seems like good
common sense! Table 6.4 gives some values of the F statistic for different
numbers of degrees of freedom at a significance level of five per cent. It
can be seen that the table has entries for two degrees of freedom, the rows
and the columns. These correspond to the number of degrees of freedom
associated with the explained mean square, MSE, which is given by p
{where p is the number of independent variables in the equation) and with
the residual mean square, MSR, which is given by n—p—1 (where n is the
number of data points). An F statistic is usually quoted as F(v; v,), where
vi=p and v,=n—p—1. When regression equations are reported, it is not
unusual to find the appropriate tabulated F value quoted for comparison
with the calculated value.

The squared multiple correlation coefficient gives a measure of how well
a regression model fits the data and the F statistic gives a measure of the
overall significance of the fit.* What about the significance of individual
terms? This can be assessed by calculation of the standard error of the
regression coefficients, a measure of how much of the dependent variable

Table 6.4 Five per cent points (95 per cent confidence) of the F-distribution
(reproduced from Lindley and Miller 1953, with permission of the Biometrika trustees)

Vi

\73 1 2 3 4 5 10 0

1 1614 1895 216.7 2246 230.2 2419 2543
2 185 19.0 19.2 18.2 19.3 194 195
3 1013 9.55 9.28 912 9.01 8.79 8.53
4 7.7 6.94 6.59 6.39 6.26 5.96 5.63
5 6.61 5.79 5.41 5.19 5.05 474 4.36
6 599 5.14 4.76 4,53 4.39 4.06 3.67
7 5.69 4.74 4.35 4.12 3.97 3.64 3.23
8 5.32 4.46 4.07 3.84 3.69 3.35 2.93
9 5.12 4.26 3.86 3.63 3.48 314 2.7
10 4.96 4.10 3.7 3.48 3.33 2.98 2.54
15 4564 3.68 3.29 3.06 2.90 2.64 207
20 435 3.49 3.10 2.87 2.71 2.35 1.84
30 417 3.32 292 2.69 2,53 216 1.62
40 408 3.23 2.84 2.61 2.45 2.08 1.51
0 3.84 3.00 2.60 237 2.21 1.83 1.00

* As long as the data is well distributed and does not behave as the examples shown in Fig. 6.4.
This situation is often difficult to check for multivariate data.
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prediction is contributed by that term. A statistic, the ¢ statistic, may be
calculated for each regression coefficient by division of the coefficient by its
standard error (SE).

b

= iSEofbl (6.17)
Like the F statistic, the significance of ¢ statistics is assessed by looking up
a standard value in a table; the calculated value should exceed the tabu-
lated value. Table 6.5 gives some values of the ¢ statistic for different
degrees of freedom and confidence levels. Unlike the F tables, ¢ tables have
only one degree of freedom which corresponds to the degree of freedom
associated with the error sum of squares. This value is given by (n—p—1),
where # is the number of samples in the data set and p is the number of
independent variables in the equation, including the constant. It can be
seen from the table that the value of ¢ at a five per cent significance level,
for a reasonable number of degrees of freedom (five or more), is around
two. This is equivalent to saying that the regression coefficient should be at
least twice as big as its standard error if it is to be considered significant.
Again, this seems like good common sense.

Another useful statistic that can be calculated to characterize the fit of a
regression model to a set of data is the standard error of prediction. This
gives a measure of how well one might expect to be able to make

Table 6.5 Percentage points of the t-distribution (reproduced from Lindley and
Miller 1953, with permission of the Biometrika trustees)

P

vi 25 10 5 2 1 0.2 0.1

1 2.41 6.31 1271 31.82 63.66 318.3 636.6
2 1.60 292 4.30 6.96 9.92 2233 31.60
3 1.42 2.35 3.18 4.54 5.84 10.21 12.92
4 1.34 213 2.78 3.75 4.60 7.17 8.61
5 1.30 2.02 2.57 3.36 4.03 5.89 6.87
6 1.27 1.94 2.45 3.14 3.7 5.21 5.86
7 1.25 1.89 2.36 3.00 3.50 4.79 5.41
8 1.24 1.86 2.31 2.90 3.36 4.50 5.04
9 1.23 1.83 2.26 2.82 3.25 4.30 4.78
10 1.22 1.81 2.23 276 3.17 414 4.59
12 1.21 1.78 218 2.68 3.05 3.93 432
15 1.20 1.75 213 2.60 2.95 3.73 4.07
20 1.18 1.72 2.09 2.53 2.85 3.55 3.85
24 1.18 1.71 2.06 2.49 2.80 3.47 3.75
30 1.17 1.70 2.04 2.46 2.75 3.39 3.65
40 1.17 1.68 2.02 2.42 2.70 3.31 3.55
60 1.16 1.67 2.00 2.39 2.66 3.23 3.46
120 1.16 1.66 1.98 2.36 2.62 3.16 3.37

oo 1.15 1.64 1.96 2:33 2.58 3.09 3.29
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individual predictions. In the situation where the standard error of mea-
surement of the dependent variable is known, it is instructive to compare
these two standard errors. If the standard error of prediction of the re-
gression model is much smaller than the experimental standard error then
the model has ‘over-fitted’ the data, whatever the other statistics of the fit
might say. After all, it should not be possible to predict y with greater
precision than it was measured, from a model derived from the experi-
mental y values. Conversely, if the prediction standard error is much larger
than the experimental standard error, then the model is unlikely to be very
useful, although in this case it is likely that the other statistics will also
indicate a poor fit. Where the experimental standard error is unknown the
standard error of prediction can still be used to assess fit by comparison
with the range of measured values. As a rule of thumb, if the prediction
standard error is less than ten per cent of the range of measurements the
model will be useful. For many data sets, particularly from biological
experiments, a prediction within ten per cent may be regarded as very
good. A summary of the statistics that have been described so far is shown
in Table 6.6.

Table 6.6 Statistics used to characterize regression equations

Statistic Use
Correlation coefficient r Gives the direction (sign) and degree
{magnitude) of a correlation between two
variables

Multiple correlation coefficient R? A measure of how closely a regression model
fits a data set

F statistic F A measure of the overal! significance of a
regression model

t statistic t A measure of the significance of individual terms
in a regression equation

Standard error of prediction SE A measure of the precision with which
predictions can be made from a regression
equation

6.3.1 Creating muitiple regression models

Creation of a simple linear regression equation is obvious; there are just
two variables involved and all that is required is the estimation of the
slope and intercept parameters, usually by OLS. The construction of
multiple linear regression equations, on the other hand, is by no means as
clear since the selection of independent variables for the equation involves
choice. How can this choice be made? One obvious strategy is to use all of
the independent variables and this in fact is the basis of one technique for
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the creation of multiple regression equations, backward-stepping regres-
sion. This procedure, as the name implies, begins by construction of a
single linear regression model which contains all of the independent vari-
ables. Each term in this equation is examined for its contribution to the
model, by comparison of ¢ statistics, for example. The variable making the
smallest contribution is removed and the regression model is recalculated,
now with one term fewer. Any of the usual regression statistics can be used
to assess the fit of this new model to the data and the procedure can be
continued until a satisfactory multiple regression equation is obtained.
Satisfactory here may mean an equation with a desired correlation coef-
ficient or a particular number of physicochemical properties, etc.
Forward-stepping regression is—as might be expected—the reverse of
this procedure. It begins with an equation containing only a single
physicochemical parameter and involves adding terms one at a time.
However, what may be surprising is that the application of a forward-
stepping and backward-stepping procedure to the same data set does not
necessarily yield the same answer. Newcomers to data analysis may find this
disturbing and for some this may reinforce the prejudice that ‘statistics will
give you any answer that you want’, which of course it can. The explanation
of the fact that forward and backward stepping procedures can lead to
different models lies in the presence of collinearity and multicollinearity in
the data. A multiple regression equation may be viewed as a set of variables
which between them account for some or all of the variation in the
dependent variable. If the independent variables themselves are correlated
in pairs (collinearity) or as linear combinations (multicollinearity) then
different combinations may account for the same part of the variance of y.
An example of this can be seen in eqns (6.18) and (6.19) which describe the
plsy for the inhibition of thiopurine methyltransferase by substituted
benzoic acids in terms of calculated atomic charges (Kikuchi 1987).

plso = 12.5¢2, — 8.3 (6.18)

n=15 r=20.757

plso = 12.5q6; — 8.4 (6.19)

n=15 r=0.785

The individual regression equations between plsy and the two m-electron
density parameters have quite reasonable correlation coefficients and thus
it might be expected that they would be useful in a multiple regression
equation. The two equations, however, are almost identical, indicating a
very high collinearity between these descriptors. When combined into a
two-term equation (eqn 6.20), which has an improved correlation coeffi-
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cient, we see the effect of this collinearity; even the sign of one of the
coeflicients is changed.

plso = —74qan + 84qen — 6.3 (6.20)

n=15 r=0.855

The fact that these two descriptors are explaining a similar part of the
variance in the plsy values was revealed in the statistics of the fit for the
two-term equation (high standard errors of the regression coefficients).
Collinearity and multicollinearity in the descriptor set (independent
variables) may lead to poor fit statistics or may cause instability in the
regression coefficients. Indeed, regression coefficients which are seen to
change markedly as variables are added to or removed from a model are a
good indication of the presence of collinear variables. Are there solutions
to these problems in the construction of multiple linear regression equa-
tions? Does forward- or backward-stepping regression give the best model?
Are there alternative ways to construct multiple linear regression equa-
tions? Unfortunately, there are at least as many solutions as there are
problems and there is also a large variety of procedures for the con-
struction of regression models. One popular approach is to calculate all
possible equations and then select the best on the basis of the fit statistics.
The speed of modern computers allows such calculations to be carried out
routinely but this procedure will be particularly prone to chance effects
(see Section 6.4.2). The use of orthogonal variables, as described in the
next chapter, can overcome the problems of collinearity but the question
of variable selection for the models remains.

6.3.2 Non-linear regression models

Non-linear models may be fitted to data sets by the inclusion of functions
of physicochemical parameters in a linear regression model—for example,
an equation in  and n* as shown in Fig. 6.5—or by the use of non-linear
fitting methods. The latter topic is outside the scope of this book but is
well covered in many statistical texts (e.g. Draper and Smith 1981).
Construction of linear regression models containing non-linear terms is
most often prompted when the data is clearly not well fitted by a linear
model, e.g. Fig. 6.4e, but where regularity in the data suggests that some
other model will fit. A very common example in the field of quantitative
structure—activity relationship (QSAR) involves non-linear relationships
with hydrophobic descriptors such as log P or n. Non-linear dependency
of biological properties on these parameters became apparent early in the
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development of QSAR models and a first approach to the solution of these
problems involved fitting a parabola in log P (Hansch 1969).

log1/C = a(log P)* + blog P + ¢o -+ constant (6.21)

Equation (6.21) may simply contain terms in 7 or log P, or may contain
other parameters such as o and so on. Unfortunately, many data sets
appear to be well fitted by a parabola, as judged by the statistics of the fit,
but in fact the data only corresponds to the first half or so of the curve.
This is demonstrated in Fig. 6.6 for the fit shown in eqn (6.22).

log1/C = 1.37log P — 0.35(log P)* + 2.32 (6.22)

Dissatisfaction with the fit of parabolic models such as this and a natural
desire to ‘explain’ QSARs has led to the development of a number of
mechanistic models, as discussed by Kubinyi (1993). These models give rise
to various expected functional forms for the relationship between bio-
logical data and hydrophobicity, and data sets may be found which will be
well fitted by them. Whatever the cause of such relationships it is clear that
non-linear functions are required in order to model the biological data. An
interesting feature of the use of non-linear functions is that it is possible to
calculate an optimum value for the physicochemical property involved
(usually log P). For example, eqn (6.22) gives an optimum value (at which
log 1/C is a2 maximum) for log P of 1.96. This ability to derive optimum
values led to attempts to define optima for the transport of compounds
across various biological ‘barriers’. For example, Hansch and co-workers
(1968) examined a number of QSARs involving compounds acting on the
central nervous system and concluded that the optimum log P value for
penetration of the blood-brain barrier was 2. Subsequent work, by Hansch
and others, has shown that the prediction of brain uptake is not quite such
a simple matter. Van de Waterbeemd and Kansy (1992), for example, have

log 1/C *

log P

Fig. 6.6. Plot of biological response (C is the concentration to give a particular effect)
against log P.
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demonstrated that brain penetration may be described by a hydrogen-
bonding capability parameter (A,;) and Van der Waals’ volume (V).

108(Chrain/ Colood) = —0.338(=£0.03) Agiic + 0.007(=£0.001) Vi + 1.73(£0.30)

n=20 r=0934 s=0290 F=58 (6.23)

where the figures in brackets are the standard errors of the regression
coefficients and s is the standard error of prediction.

6.3.3 Regression with indicator variables

Indicator variables are nominal descriptors (see Chapter 3) which can take
one of a limited number of values, usually two. They are used to distin-
guish between different classes of members of a data set. This situation
most commonly arises due to the presence or absence of specific chemical
features; for example, an indicator variable might distinguish whether or
not compounds contain a hydroxy! group, or have a meta substitution. An
indicator variable may be used to combine two data sets which are based
on different parent structures. Clearly, the dependent data for the different
sets should be from the same source, otherwise there would be little point
in combining them, and there should be some common physicochemical
descriptors (but see later in this section, Free—Wilson method). Indicator
variables are treated in multiple regression just as any other variable with
regression coefficients computed by least squares. An example of this can
be seen in the correlation of reverse phase HPLC capacity factors and
calculated octanol/water partition coeflicients for the xanthene and
thioxanthene derivatives shown in Fig. 6.7 (Fillipatos et al. 1993). The
correlation is given by eqn (6.24) in which the term D was used to indicate
the presence (D=1) or absence (D=0) of the -NHCON(NO)- group, in
other words series I or series II in Fig. 6.7.

log P = 0.813(:0.027)log ky + 2.114(£0.161)D (6.24)

n=24 r=0972 s5=0365

Examination of the log &, values showed that the replacement of -oxygen
by sulphur did not produce the expected increase in lipophilicity and it was
found that a second indicator variable, S, to show the presence or absence
of sulphur could be added to the equation to give

log P = 0.768(£0.021)log ky + 2.115(20.115)D + 0.415(+0.095)S  (6.25)

n=24 r=0985 s5=0.260
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A /i’?‘o/\\/cI
I\II N
NHCO(CH2) ,N(R3)2
oo
: AP
R2 R+
I II

Fig. 6.7. Parent structures for the compounds described by eqn 6.24 and 6.25(reproduced
with permission from Fillipatos et a/. 1993, copyright 1993 ESCOM Science Publishers B.V.}.

The correlation coefficient for eqn (6.25) is slightly improved over that for
eqn (6.24) (but see section 6.4.3), the standard error has been reduced, and
the regression coeflicients for the log &y and D terms are more or less the
same. This demonstrates that this second indicator variable is explaining a
different part of the variance in the log P values. It may have been noticed
that eqns (6.24) and (6.25) do not contain intercept terms: this is because
the intercepts are not significantly different to zero. These examples show
how indicator variables can be used to improve the fit of regression
models, but do the indicator variables (actually their regression coeffi-
cients) have any physicochemical meaning? The answer to this question is
a rather unsatisfactory ‘yes and no’. The sign of the regression coefficient
of an indicator variable shows the direction (to reduce or enhance) of the
effect of a particular chemical feature on the dependent variable while the
size of the coefficient gives the magnitude of the effect. This does not
necessarily bear any relationship to any particular physicochemical prop-
erty, indeed it may be a mathematical artefact as described later. On the
other hand, it may be possible to ascribe some meaning to indicator
variable regression coefficients. The log P values used in eqns (6.24) and
(6.25) were calculated by the Rekker fragmental method (see Section 9.2.1
and Table 9.2). This procedure relies on the use of fragment values for
particular chemical groups and the -NHCON(NO)- group, accounted for
by the indicator D, was missing from the scheme. The regression coeffi-
cient for this indicator variable has a fairly constant value, 2.114 in eqn
(6.24) and 2.115 in eqn (6.25), suggesting that this might be a reasonable
estimate for the fragment contribution of this group. Measurement of
log P values for two compounds in set I allowed an estimate of
—2.09(+0.14) to be made for this fragment, in good agreement with the
regression coefficient of D. At first sight this statement may seem sur-
prising since the signs of the fragment value and regression coefficients are
different. The calculated log P values used in the equations did not take
account of the hydrophilic (negative contribution) nitrosureido fragment
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and thus are bigger, by 2.11, than the experimentally determined HPL.C
capacity factors.

How does an indicator variable serve to merge two sets of data? The
effect is difficult to visualize in multiple dimensions but can be seen in two
dimensions in Fig. 6.8. Here, the two lines represent the fit of separate
linear regression models, for multiple linear regression these would be
surfaces. If the indicator variable has a value of zero for the compounds in
set A it will have no effect on the regression line, whatever the value of the
fitted regression coefficient. For the compounds in set B, however, the
indicator variable has the effect of adding a constant to all the log 1/C
values (1 x regression coefficient of the indicator variable). This results in a
displacement of the regression line for the B subset of compounds so that
it merges with the line for the A subset.

An indicator variable can be very useful in combining two subsets of
compounds in this way since it allows the creation of a larger set which
may lead to more reliable predictions. It is also useful to be able to
describe the activity of compounds which are operating by a similar
mechanism but which have some easily identified chemical differences.
However, the situation portrayed in Fig, 6.8 is ideal in that the two re-
gression lines are of identical slope and the indicator variable simply serves
to displace them. If the lines were of different slopes the indicator may stiil
merge them to produce an apparently good fit to the larger set, but in this
case the fitted line would not correspond to a ‘correct’ fit for either of the
two subsets. This situation is easy to see for a simple two-dimensional case
but would clearly be difficult to identify for multiple linear regression. A
way to ensure that an indicator variable is not producing a spurious,
apparently good, fit is to model the two subsets separately and then
compare these equations with the equation using the indicator. The
situation can become even more complicated when two or more indicator

log 1/C

Fig. 6.8. lllustration of two subsets of compounds with different (paraliel) fitted lines.



132 | Regression analysis

variables are used in multiple regression equations; great care should be
taken in the interpretation of such models.

An interesting technique which dates from the early days of modern
QSAR, known as the Free—Wilson method (Free and Wilson 1964)
represents an extreme case of the use of indicator variables, since regres-
sion equations are generated which contain no physicochemical para-
meters. This technique relies on the following assumptions.

1. There is a constant contribution to activity from the parent structure.

2. Substituents on the parent make a constant contribution (positive or
negative) to activity and this is additive.

3. There are no interaction effects between substituents, nor between
substituents and the parent.

Of these assumptions, 1 is perhaps the most reasonable and 3 the most
unreasonable. After all, it is the interaction of substituents with the elec-
tronic structure of the parent that gives rise to Hammett o constants (see
panel in Chapter 1, p. 6). However, despite any misgivings concerning the
assumptions,* this method has the attractive feature that it is not neces-
sary to measure or calculate any physicochemical properties; all that is
required are measurements of some dependent variable. The technique
operates by the generation of a data table consisting of zeros and ones. An
example of such a data set is given in Table 6.7 for six compounds based
on the parent structure shown in Fig. 6.9. A Free—-Wilson table will also
contain a column or columns of dependent {(measured) data; for the
example shown in Table 6.7 results were given for minimum inhibitory
concentration {MIC) against two bacteria, Mycobacterium tuberculosis and
Mycobacterium kansasii. Fach column in a Free-Wilson data table,
corresponding to a particular substituent at a particular position, is treated

Table 6.7 Free-Wilson data table (from Waisser et a/. 1993 with kind permission)

Compound R4 R,
H 4-CHj 4-Cl 3-Br H 4'-CH; 4'-OCH,

X! 1 0 0 0 1 0 0
Xl 1 0 0 0 0 1 0
Xl 1 0 0 0 0 0 1
XIX 0 1 0 0 0 0 1
XXX 0 0 1 0 0 1 0
XXXV 0 0 0 1 1 0 0

* The first two assumptions are implicit, although often not stated, in many other QSAR/QSPR
methods. The third assumption may be accounted for to some extent by the deliberate inclusion
of several examples of each substituent.
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C—NH-

R1 RZ
Fig. 6.9. Parent structure for the compounds given in Table 6.7 (from Waisser et a/. 1993,
with kind permission).
as an independent variable. A multiple regression equation is calculated in
the usual way between the dependent variable and the independent vari-
ables with the regression statistics indicating goodness of fit. The regres-
sion coefficients for the independent variables represent the contribution to
activity of that substituent at that position, as shown in Table 6.8.

One of the disadvantages of the Free—~Wilson method is that—unlike
regression equations based on physicochemical parameters—it cannot be
used to make predictions for substituents not included in the original
analysis. The technique may break down when there are linear de-
pendencies between the structural descriptors, for example, when two
substituents at two positions always occur together, or where interactions
between substituents occur. Advantages of the technique include its ability
to handle data sets with a small number of substituents at a large number
of positions, a situation not well handled by other analytical methods, and
its ability to describe quite unusual substituents since it does not require
substituent constant data. A number of variations and improvements have

Table 6.8 Activity contributions for substituents as
determined by the Free~Wilson technique (from
Waisser et a/. 1993 with kind permission)

Substituent AMIC against
M. kansasii® M. tuberculosis®

4-H —0.397 —0.116
4-CHs 0.264 0.101
4-OCH3 0.290 0.337
4-Cli 0.095 -0.101
3-Br —0.253 ~0.312
4'-H —-0.078 0.088

~CHs 0.260 0.303
4'-OCH3 —0.081 0.085
4'-C| 0.403 0.303
3.4-Cl, —0.259 —0.586
4’-C—CgHq4 —-0.589 -0.399
4'-Br 0.345 0.205
Ho® 1.871 1.887

® Fit statistics, 7 = 0.774, s = 0.43, F = 3.59, n = 35.
®r=0.745,5=0.42, F=3.01,n = 35.
° 1o is the (constant) contribution of the parent structure to MIC.
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been made to the original Free-Wilson method, these and applications of
the technique are discussed in a review by Kubinyi (1988).

6.4 Multiple regression—robustness, chance effects, and
the comparison of models

6.4.1 Robustness (cross-validation)

The preceding sections have shown how linear regression equations, both
simple and multiple, may be fitted to data sets and statistics calculated to
characterize their fit. It has also been shown how at least one statistic, the
correlation coefficient, can give a misleading impression of how well a
regression model fits a data set. This was shown in Fig. 6.4 which also
demonstrates how easily this may be checked for a simple two-variable
problem. A plot of predicted versus observed goes some way towards
verification of the fit of multiple regression models but is there any other
way that such a fit can be checked? One answer to this problem is a
method known as cross-validation or jack-knifing. This involves leaving
out a number of samples from the data set, calculating the regression
model and then predicting values for the samples which were left out.
Cross-validation is not restricted to the examination of regression models;
it can be used for the evaluation of any method which makes predictions
and, as will be seen in the next chapter, may be used for model selection.

How are the left-out samples chosen? One obvious way to choose these
samples is to leave one out at a time (LOO) and this is probably the most
commonly used form of cross-validation. Using the LOO method it is
possible to calculate a cross-validated R?, by comparison of predicted
values (when the samples were not used to calculate the model) with the
measured dependent variable values. This is also sometimes referred to as
a prediction R?. Such correlation coefficients will normally be lower than a
‘regular’ correlation coefficient and are said to be more representative of
the performance (in terms of prediction) that can be expected from a
regression. Other ‘predictive’ statistics, such as predicted residual sum of
squares (PRESS, see Chapter 7), can also be calculated by this procedure.
Cross-validation can not only give a measure of the likely performance of
a regression model, it can also be used to assess how ‘robust’ or stable the
model is. If the model is generally well fitted to a set of data then omission
of one or more sample points should not greatly disturb the regression
coefficients. By keeping track of these coefficients as samples are left out, it
is possible to evaluate the model for stability, and also to identify which
points most affect the fit.

Although LOO cross-validation is the most obvious choice, is it the
best? Unfortunately, it is not. Figure 6.10 shows a simple two-dimensional
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X

Fig. 6.10. Two-dimensional example of a data set with outliers.

situation in which a straight line model is well fitted to a set of data points
which also contains a few outliers. Some of these points (a and b) will not
affect the fitting of the line to the rest of the data and so will be badly
predicted (whether included in the mode! or not) but would not alter the
regression coefficients. Other points (¢ and d) which lie off the line but
outside the rest of the data will affect the fit and thus will be badly pre-
dicted when left out and will alter the coefficients of the model. So far, so
good—IL.OO cross-validation would identify these points. Samples e and f,
however, occur along with another point well removed from the line and
thus LOO would not identify them as being poorly predicted. A solution
to this problem might be to leave compounds out in groups but the
question then arises as to how to choose the groups. Cross-validation in
groups can also result in the need for a lot of computer time to carry out
the recalculation of the models and can generate a lot of information
which needs to be assessed. Cross-validation is a useful technique for the
assessment of fit and predictive performance of regression (and other)
models but it is not the perfect measure that some have proposed it to be.
A good solution to the questions of robustness and predictive performance
is to use well-selected training and test sets, but this is a luxury we cannot
always afford.

6.4.2 Chance effects

One of the problems with regression analysis, and other supervised
learning methods, is that they seek to fit a model. This may seem like a
curious statement to make, to criticize a method for doing just what it is
intended to do. The reason that this is a problem is that given sufficient
opportunity to fit a model then regression analysis will find an equation to
fit a data set. What is meant by ‘sufficient opportunity’? It has been



136 | Regression analysis

proposed (Topliss and Costello 1972) that the greater the number of
physicochemical properties that are tried in a regression model then the
greater the likelihood that a fit will be found by chance. In other words,
the probability of finding a chance correlation (not a true correlation but a
coincidence) increases as the number of descriptors examined is increased.
Will not the statistics of the regression analysis fit indicate such an effect?
Unfortunately, the answer is no; a chance correlation has the same
properties as a true correlation and will appear to give just as good (or
bad) a fit.

Do such chance correlations happen, and if so can we guard against
them? The fact that they do occur has been confirmed by experiments
involving random numbers (Topliss and Edwards 1979). Sets of random
numbers were generated, one set chosen as a dependent variable and
several other sets as independent variables, and the dependent fitted to the
independents using multiple regression. This procedure was repeated many
times and occasionally a ‘significant’ correlation was found. A plot of
average R? versus the number of random variables screened, for data sets
containing different numbers of samples, is shown in Fig. 6.11. As ori-
ginally proposed, the probability of finding a chance correlation for a
given size of data set increases as the number of screened variables is
increased. Plots such as that shown in the figure may be used to limit the
number of variables examined in a regression study although it should be
pointed out that these results apply to random numbers, and real data
might be expected to behave differently. Perhaps the best test of the sig-
nificance of a regression model is how well it performs with a real set of
test data.

0.8 No. observation
. ——— 7
074 =" —o— 10
o= 5
- 20
--#- 25
) — 30
Mean R ~r= 50
—h— [0

T T I T
3 5 7.5 10 125 15 20 30

No. variables

Fig. 6.11. Plot of mean R? versus the number of screened variables for regression equations
generated for sets of random numbers (from Topliss and Edwards 1978, copyright (1979)
American Chemical Society).
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6.4.3 Comparison of regression models

If two regression equations contain the same number of terms and have
been fitted to the same number of data points, then comparison is simple.
The R? values will show which equation has the best fit and the F and ¢
statistics may be used to judge the overall significance and the significance
of individual terms. Obviously, if one equation is to be preferred over
another it is expected that it will have significant fit statistics. Other factors
may influence the choice of regression models, such as the availability or
ease of calculation of the physicochemical descriptors involved. If the re-
gression equations involve different numbers of terms (independent vari-
ables), then direct comparison of their correlation coefficients is not
meaningful. Since the numerator for the expression defining the multiple
correlation coefficient (eqn 6.14) is the explained sum of squares, it is to be
expected that this will increase as extra terms are added to a regression
model. Thus, R* would be expected to increase as extra terms are added.
An alternative statistic to R?, which takes account of the number of terms
in a regression model, is known as the adjusted R? coefficient (R?)

n—1
n—p
where n is the number of data points and p the number of terms in the
equation. This statistic should be used to compare regression equations
with different numbers of terms. Finally, if two equations are fitted to

different numbers of data points, sélection of a model depends on how it is
to be used.

R*=1-(1-R?Y

(6.26)

6.5 Summary

Regression analysis is a very useful tool for the identification and
exploitation of quantitative relationships. The fit of regression models
may be readily estimated and the direction and magnitude of individual
correlations may give some useful clues as to mechanism. Regression
models are easily interpreted, since they mimic a natural process by which
we try to relate cause and effect, but it should be remembered that a
correlation does not prove such a relationship. Successful regression
models may inspire us to design experiments to examine causal relation-
ships and, of course, empirical predictions are always of use. There are
dangers in the use of regression analysis—even quite simple models may be
very misleading if judged by their statistics alone—but there are means by
which some of the dangers may be guarded against. This chapter has been
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a brief introduction to some of the fundamentals of regression analysis; for
further reading see Draper and Smith (1981), Montgomery and Peck
(1982), or Rawlings (1988).
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7
Supervised learning

7.1 Introduction

The common feature underlying supervised learning methods is the use of
the property of interest, the dependent variable, to build models and select
variables. Regression analysis, which warranted a chapter of its own be-
cause of its widespread use, is a supervised learning technique. Supervised
methods are subject to the danger of chance effects (as outlined in Section
6.4.2 for regression) which should be borne in mind when applying them.
The dependent variable may be classified, as used in discriminant analysis
described in the first section of this chapter, or continuous. Section 7.3
discusses variants of regression, which make use of linear combinations of
the independent variables; Section 7.4 describes supervised learning pro-
cedures for feature selection.

7.2 Discriminant techniques

The first two parts of this section describe supervised learning methods
which may be used for the analysis of classified data. One technique,
discriminant analysis, is related to regression while the other, SIMCA, has
similarities with principal component analysis (PCA). The final part of this
section discusses some of the conditions which data should meet when
analysed by discriminant techniques.

7.2.1 Discriminant analysis

Discriminant analysis, also known as the linear learning machine,* is in-
tended for use with classified dependent data. The data may be measured
on a nominal scale (yes/no, active/inactive, toxic/non-toxic) or an ordinal
scale (1,2,3,4; active, medium, inactive) or may be derived from continuous
data by some rule (such as ‘low’ if <10, ‘high’ if > 10). The objective of

* Linear discriminant analysis is equivalent to the linear learning machine. There are also
procedures for non-linear discriminant analysis (as there are for non-linear regression) but these
will not be considered here.



140 | Supervised learning

regression analysis is to fit a line or a surface through a set of data points;
discriminant analysis may be thought of as an orthogonal process to this
in which a line or surface is fitted in between two classes of points in a
data set. This is illustrated in Fig. 7.1 where the points represent com-
pounds belonging to one of two classes, A or B, and the line represents a
discriminating surface. It is confusing, perhaps, that the discriminant
function itself (shown by the dotted line in Fig. 7.1) does run through the
data points; the discriminant surface represents some critical value of the
discriminant function, often zero. Projection of the sample points onto this
discriminant function yields a value for each sample and classification is
made by comparison of this value with the critical value for the function.
In this simple two-dimensional example the discriminant function is a
straight line, in the case of a set of samples described by N physico-
chemical properties the discriminant function would be an N-dimensional
hypersurface. The discriminant function may be represented as

W =aix1 +axy+ ...an%n (7.1
or more succinctly as
n
W = Z a;x; (72)
=1

where the x;’s are the independent variables used to describe the samples
and the a/s are fitted coeflicients. These coefficients are known as the
discriminant weights and may be rescaled to give discriminant loadings
(Dillon and Goldstein 1984) which are the loadings of the variables onto
the discriminant function, reminiscent of principal component loadings,
and which are in fact the simple correlation of each variable with the
discriminant function. Two things may be noticed from this equation and

Fig. 7.1. Two-dimensional representation of discriminant analysis. The dotted line represents
the discriminant function and the solid line a discriminant surface which separates the two
classes of samples.
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the figure. The combination of variables is a linear combination, thus this
method strictly should be called linear discriminant analysis (LDA). The
line shown drawn in the figure (which is at right angles to the dis-
criminant function) is not the only line that could be drawn between the
two classes of compounds. Creation of a different discriminant surface
(drawing another line) is achieved by computing a different discriminant
function. Unlike regression analysis, where the least squares estimate of
regression coefficients can give only one answer, the coefficients of the
variables in a discriminant function may take one of a number of values.
As long as the discriminant function correctly classifies all of the samples,
then it does not matter what the values of the discriminant loadings are.
This is not to say that an individual discriminant analysis procedure run
repeatedly on the same data set will give different answers, but that
discriminant functions are more susceptible to change when samples or
descriptors are added to or removed from the data set. The fact that a
unique solution does not exist for a discriminant function has implica-
tions in the use of discriminant analysis for variable selection, as de-
scribed in Section 7.4. Figure 7.1 also demonstrates how one of the
alternative names, the linear learning machine, arose in artificial in-
telligence research. The algorithm to generate the discriminant function is
a ‘learning machine’ which aims to separate the two classes of samples in
a linear fashion by ‘learning’ from the data.

Returning to eqn (7.1), how is this used? Once a discriminant function
has been generated, a prediction can be made for a compound by multi-
plication of the descriptor variables by their coefficients and summation of
these products. This will give a value of W which, if it exceeds some
critical value, will assign the compound to one of the two classes. A value
of zero may be used as the critical value so that if W is positive the
compound belongs to class 1 (A in Fig. 7.1), if negative then to class 2 (B
in Fig. 7.1). The question also arises of how to judge the quality of a
discriminant function. In terms of prediction, this is quite easily done by
comparison of the predicted class membership with known class mem-
bership. A more stringent test of the predictive ability of discriminant
analysis is to use a leave one out (LOO) cross-validation procedure as
described for regression analysis in Section 6.4.1. It is also possible to
compute a statistic for discriminant analysis which is equivalent to the F
statistic used to characterize the fit of regression models. This statistic may
be used to judge the overall significance of a discriminant analysis result
and, in a slightly different form as a partial F statistic, also used to con-
struct discriminant functions (see Dillon and Goldstein 1984).

An early example of the use of discriminant analysis in QSAR involved
inhibition of the enzyme monoamine oxidase (MAO) by derivatives of
aminotetralins and aminoindans shown in Fig. 7.2 (Martin ez al. 1974, see
also Section 5.5). These compounds inhibited the enzyme in vitro, and it
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Fig. 7.2. Parent structure for the compounds shown in Table 7.1 {(from Martin et a/. 1974,
copyright (1974) American Chemical Society).

was possible to obtain percentage inhibition data for them in an enzyme
assay, but the crucial test was a measure of their activity in vivo. This was
assessed by judgement of the severity of symptoms following administra-
tion of dl-Dopa and was given a score of 0, 1, 2, or 3 as shown in Table
7.1. Initial examination of the data by discriminant analysis suggested that
the compounds should be classified into just two groups,* and thus a two-
group discriminant function was fitted as shown in the table. This function
involved the steric parameter, E;, and an indicator variable which showed
whether the compounds were substituted in position X or Y in Fig. 7.2.
The results of classification by this function are quite impressive: only one
compound (number 18) is misclassified. A more exacting test of the utility
of discriminant analysis was carried out by fitting a discriminant function
to 11 of the compounds in Table 7.1 (indicated by a *). Once again, ES
and the indicator variable were found to be important; one of the training
set compounds was misclassified and all of the test set compounds were
correctly assigned.

A comparison of the performance of discriminant analysis and other
analytical techniques on the characterization of two species of ants by gas
chromatography was reported by Brill and co-workers (1985). Samples of
two species of fire ants, Solenopsis invicta and S. richteri, were prepared
using a dynamic headspace analysis procedure. The gas chromatography
analysis resulted in the generation of 52 features, retention data for cutic-
ular hydrocarbons, for each of the samples. Each of these descriptors was
examined for its ability to discriminate between the two species of ants and
the three best features selected for use by the different analytical methods. A
non-linear map of the samples described by these three features is shown in
Fig. 7.3 where it is clear that the two species of ants are well separated.
Analysis of this data was carried out by k-nearest-neighbour (see Section
5.2), discriminant analysis and SIMCA (see Section 7.2.2). The discriminant
analysis routine used was the linear learning machine (LLM) procedure in
the pattern recognition package ARTHUR (see Software appendix). A

* This was supported by the pharmacology since on retest, some compounds moved between
groups 0 and ! or 2 and 3, but rarely from (0,1) to (2,3) or vice versa.
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Table 7.1 Structure, physicochemical properties, and potency as MAO inhibitors
(in vive) of the aminotetralins and aminoindans shown in Fig. 7.2 (from Martin et
al. 1974, copyright (1974) American Chemical Society)

Structure Properties® Potency
Number »n° R X Y Il ES Observed®  Calcu- Calcu-
tated? lated®
1 2 CHj H OCH;, 13 0.00 3 1 1*
2 3 H OCH; H 1.2 0.32 3 1 0"
3 3 H H OCH; 1.3 0.32 3 1 1
4 3 CH,CH3 H OCH3 22 -007 3 1 1
5 3 CHj; H OCH;3 1.7 0.00 2 i 1*
6 3 CHs; H OH 1.7 0.00 2 1 1
7 2 H H OCH; 0.8 0.32 2 1 1
8 3 CHa, OCH; H 1.7 0.00 1 0 0"
9 3 (CH2)20CH3 H OCH; 1.7 —-0.66 1 0 (ol
10 3 (CH2),CH; H OCH; 27 -0866 1 0 (oM
11 3 (CH2)sCHz H OCH; 42 —-068 1 0 0
12 3 CH,CeH5g OCH; H 356 -0.68 1 0 0
13 3 (CH,),0H H OCH,3 1.0 -0.66 1 0 0
14 3 CHj, OH H 17 0.00 0 0 0*
15 3 CH(CH3)» OCH; H 286 -—1.08 0 0 0
16 3 CH(CHa), H OCH3 26 —-1.08 0 0 0"
17 2 CH(CHgj), H OCH;, 21 —-1.08 0 0 0
18 2 H OCH; H 0.8 0.32 0 1 0*
19 3 (CH2)CH3 H OCH3 14 -0.66 0 0 0*
20 3 (CHz)6CHz H OCH; 4.7 —-0.68 0 0 0

? Two indicator variables were also used to distinguish indans and tetralins and the position of
substitution (X or Y).

® Where n is the 7 in Fig. 7.2.

¢ Activity was scored (0-3) according to the severity of symptoms; scores 2 and 3 are active compounds,
0 and 1 inactive.

9 Calculated from a two-group discriminant function.

° Calculated from a two-group discriminant function which was trained on half of the compound set
(indicated by *).

training/test set protocol was used in which the data was split up into two
sets five times, with all of the original data used as a test set member at least
once. Results of these analyses are shown in Table 7.2. These rather im-
pressive results are perhaps not surprising given the clear separation of the
two species shown in Fig. 7.3. They do, however, illustrate an important
general feature of data analysis and that is that there is no ‘right’ way to
analyse a particular data set. As long as the method used is suitable for the
data, in this case classified dependent data, then comparable results should
be obtained if the data contains appropriate information.

These two examples have mmvolved classified dependent data and con-
tinuous independent data. It is also possible to use classified independent
data in discriminant analysis, as it is in regression (such as Free—Wilson
analysis) or a combination of classified and continuous independent
variables. Zalewski (1992) has reported a discriminant analysis of sweet
and non-sweet cyclohexene aldoximes using indicator variables describing
chemical structural features. From the discriminant function it was



144 | Supervised learning

-
A Q)
A
A
°°<>%@> n
o ad 4 A
Lod
< A, A oa
& o Ad
b3 N
A%A

Fig. 7.3. Non-linear map of two species of fire ant, So